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The definition, properties, and applications of the single-particle (electron) density p (r) are discussed in this
review. Since the discovery of Hohenberg-Kohn theorem, which gave a theoretical justification for
considering p(r), rather than the wave function, for studying both nondegenerate and degenerate ground
states of many-electron systems, p (r) has been acquiring increasing attention. The quantum subspace concept
of Bader et al. has further highlighted p (r) since a rigorous decomposition of the three-dimensional (3D) space
of a molecule into quantum subspaces or virial fragments is possible, the boundaries of such subspaces being
defined solely in terms of p(r). Further, p(r) is a very useful tool for studying various chemical phenomena.
The successes and drawbacks of earlier models, such as Thomas—Fermi-Dirac, incorporating p(r) are
examined. The applications of p(r) to a host of properties—such as chemical binding, molecular geometry,
chemical reactivity, transferability, and correlation energy—are reviewed. There has been a recerit trend in
attempting to bypass the Schrodinger equation and directly consider single-particle densities and reduced
density matrices, since most information of physical and chemical interest are encoded in these quantities.
This approach, although beset with problems such as'N-representability, and although unsuccessful at
present, is likely to yield fresh concepts as well as shed new light on earlier ideas. Since charge density in 3D
space is a fundamental quantum-mechanical observable, directly obtainable from experiment, and since its use
in conjunction with density-functional theory and quantum fluid dynamics would provide broadly similar
approaches in nuclear physics, atomic-molecular physics, and solid-state physics, it is not unduly optimistic to
say that p(r) may be the unifying link between the microscopic world and our perception of it.
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largely built in this way, there are serious reasons
why chemists should not remain completely satisfied

Reviews of Modern Physics, Vol. 53, No. 1, January 1981 Copyright © 1981 American Physical Society 95



96 Bamzai and Deb: Single-particle density in chemistry

with this kind of approach. The main reasons are (i)
Even with present-day techniques one can only hope for
approximate solutions to (1.1) except in the special
cases of one-electron atoms and one-electron komo-
nuclear diatomic molecules; (ii) ¥ is a function of
space and spin variables in the multidimensional con-
figuration space, being indeterminate to within a phase
factor, and no physical significance can be attributed
to ¥; as a result, the chemist is forced to abandon any
attempt at directly visualizing what atoms and molecules
are “doing”, since such visualizations can only be done
in the three-dimensional (3D) space; (iii) This depen-
dence on ¥, and on the Schrodinger equation, has re-
sulted in a curious dichotomy in quantum chemistry
whereby simple ad hoc qualitative approaches (much
used by chemists) exist side by side with rigorous or
ab initio approaches bereft of simple concepts and pic-
tures; and there appears hardly any hope of ever
bridging the chasm between the two.

Now, most observables of interest to chemists and
physicists correspond to one- and two-electron oper-
ators, and the expectation values of these operators
can be evaluated once the single-particle and two-par-
ticle density matrices (Sec.II.A) are known [see, for
example, Davidson (1976)]. There is a considerable
economy in dealing with these density matrices, rather
than the wave function i, since the former are functions
of many fewer space and spin variables. It is thus pos-
sible to construct an alternative formulation of the
quantum mechanics of many-electron systems, em-
ploying density matrices rather than the wave function;
further, it is generally believed that all information of
physical and chemical interest is encoded in these den-
sity matrices. Unfortunately, although the density-
matrix approach began with a lot of promise, a direct
determination of density matrices raises the horren-
dous specter of N-representability (Sec.II.C), and all
hopes of solving the N-representability problem for the
two-particle density matrix seem to be abandoned at
present.

The single-particle (electron) density is the total
particle (electron) density in 3D space and may be ob-
tained either directly (in principle) or from the sin-
gle-particle density matrix or the wave function. Since
it obviously contains considerable information, it is an
attractive basis for the construction of models to study
chemical phenomena for several reasons: (i) Being
a function in the 3D space, it can be easily visualized,
since we live and perceive in a 3D world.  (ii) It can be
related to classical concepts. (iii) It is an observable,
directly measurable by experimental methods such as
diffraction and scattering. It is therefore possible to
talk about ckhemistry in 3D space, dealing with both
ground and excited states of molecules. The present
article is mainly devoted to this purpose.

A’ question, however, 'arisés regarding the funda-
mental significance of the single-particle density vis-
a-vis the wave function and the density matrices. This
reassurance is provided by the Hohenberg-Kohn the-
orem [Hohenberg and Kohn (1964)]; which states that,
for both nondegenerate and degenerate ground states
of many-electvon systems, the enevgy is a unique
Junctional of the single-particle density. Thus, all
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information about the ground states of molecules is con-
tained in the single-particle density.? Further, Sre-
brenik and Bader (1975) have shown that a decomposi-
tion of 3D molecular space into quantum subspaces is
possible, the boundaries of such subspaces being defined
solely in terms of the properties of single-particle den-
sity (Sec. II.B.3).

These fundamental issues have been further dis-
cussed in Secs. II.A-II.G following which the signif-
icance of single-particle density regarding chemical
binding, molecular geometry, intermolecular forces,
chemical reactivity, and other molecular properties
has been examined. The connection between p(r) and
the fluid-dynamical interpretation of quantum mech- -
anics is also delineat ed.

II. FOUNDATIONS
A. From wave function to reduced density matrices

The wave function ¥(x,,X,,X;, . . . ,Xy) describes a
system of N indistinguishable particles in a pure state.
With fermions the wave function changes sign when the
particles undergo an odd permutation and remains un-
changed by an even permutation.

The N-particle density matrix associated with ¢ is
given by
C XK, Ky e e, X ) e (2.1)

In (2.1), x;=r;s,, viz., the set of space and spin vari-

D*=y(x,,%,, .

. ables. Associated with any fixed N-particle function

) there is a linear operator P,, called the projector
onto ¥, such that

Py =, (2.2)
where f is any N-particle function. Therefore
Py= 9] . (2.3)

If we wish to regard P, as an integral operator [see
Coleman (1980)], we see that the kernel is the N-par-
ticle density

16 S SIS FHIALC IS (S AR (2.4)

By integrating with respect to the coordinates of (N
— 2) particles, we obtain

D(x,, %55 X1,[%3)

= _[zp(xl,xz, e X (R RS, Ky e e s X ARy ., Ay

(2.5)

Clearly, D%(x,,X,;X},X}) is the kernel of a two-particle

2Although the Hohenberg-Kohn theorem has not been proved
for excited states, implying that for such states the single-
particle density may not contain all information, it would
still be worthwhile to extract the large amount of information
which p(r) does contain for excited states. For a generaliza-
tion of density-functional theory for excited states, see
Theophilou (1979). It is also possible to argue that since p(r)
for the ground state fixes the Hamiltonian to within an addi-
tive constant, p(r) in fact contains sufficient information to
specify completely all the excited states of a system under-a
local external potential.
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operator D? such that
D? f=D?f(x,,%,)
= f D*(%y, %53 K], Xg) f (%], X])dx] dx; (2.6)

is the function obtained by the action of D? on f. Sim-
ilarly,

D'(x,,x])= f 16 3 S SXNORK] Ky, e v e Kp)AKy, v v, dXy

= sz(xl,xz;XLXZ)dxz (2.7)
is the first-order reduced density matrix.
The normalization condition for i gives
f D3(x,,X,; X, X,)dX, dX, = f D'(x,;%x,)dx,=1. (2.8)

For a one-particle observable represented by an op-
erator symmetric in N particles,

N
A=) A(x,), (2.9)
i=1
the expectation value is given by
la ]d)):Nf [Ax,)D y5 %))y o, A, - (2.10)
Similarly, for a two-particle operator
B= 2 B(x,x,), (2.11)
i<j
N(N-1
@|B[p)= ’“(-5—-)
T 1B )0ty 505 K0, 5D s o, 5 05
(2.12)

Thus the nonrelativistic energy depends on the first-
and second-order density matrices

E=n [ nDtax,+ 9—-(-’\%—‘-1-)ngde1de. (2.13)
In (2.13), % is the kinetic energy of one electron and its
attraction to the nuclei, whereas g is the electron-
electron repulsion operator. Equation (2.13) highlights
the importance of the first- and second-order density
matrices.

Von Neumann [(1955); see also Roby (1973)] showed
that in order to discuss mixtures of states on ensem-
bles, it is convenient to specify the ensemble by means
of a positive operator D¥, the Von Neumann density
operator, such that the expectation value of an obser-
vable, e.g., energy, is given by )

Tr(HD")= fHDNdxl, ee.,dXy. (2.14)
In case the system is in a pure state,

D¥=p,, (2.15)
and we get the familiar expression

Tr(HD¥ = |H | . (2.16)

However, if the system is an ensemble of pure states
Y;, weighted by W,;, where
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w,>0, (2.17)
2 w1, (2.18)
7
then
DY= 3OW,P,, = Z lpow, ;] - (2.19)
i
The single-particle density p(r) is given by
p(r) =N_[ Y*pds, dx, ... dxy. (2.20)
From (2.20) we clearly see that
fp(r)dr=N. (2.21)

Thus, given the wave function, it is a straightforward
task to obtain the density matrices as well as p(r). One
may also conceive of a quantum mechanics formulated
in terms of density matrices as primary quantities,
rather than the wave function. However, the direct
evaluation of density matrices is not at all simple as
one faces the formidable N-representability problem
(see Secs. II.D and IL.E).

However, most chemical and physical observations
of interest deal with structure and properties of mo-
lecules in the real 3D space. Hence, as mentioned in
Sec. I, there is a strong motivation to develop models
and concepts in terms of observables in 3D space,
e.g., p(r). The theoretical justifications for dealing
with p(r) are discussed below.

B. p(r) as a fundamental quantity
1. The Hohenberg-Kohn theorem

In proving their theorem (see Sec. I), Hohenberg and
Kohn (1964) considered a collection of an arbitrary
number of electrons enclosed in a large box, moving
under the influence of an external potential »(r) and
the mutual Coulomb repulsion. We outline their proof
below. i

In the language of second quantization, the Hamiltonian
for the system is

H=T+V+U, (2.22)
where

r=4 [ vyr@viear, (2.23)

v=[ s, (2.24)

U=% f -ﬁ P*(r)Y* (e’ )P(r’)Y(r)dr dr’ . (2.25)

In the above expressions for kinetic and potential
energy operators, y, y* are the local field operators
[see Fetter and Walecka (1971); Longuet -Higgins (1966)]
expressed in terms of particle creation and annihi-
lation operators. The electron density associated with
the nondegenerate ground state y is given by

p(r) =@ |[p*(x)y(r) [9),

which is clearly a functional of v(r). Conversely, it can

(2.26)
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be shown that v(r) is a universal functional of p(r) apart
from an additive constant. Assuming v’(r) to be another
potential with ground state |zj)') that gives rise to the
same density p(r), we know i’ #3 since they satisfy
different Schrodinger equations [unless v’(r) — v(r)
= constant].

By the minimal property of the ground state

E':<¢)' IHI Id),><<w|H, |¢>= <l/) |H+ V' =V I¢>, (2.27)
so

E'<E + f [v'(r) = v(r)]o(r)dr . (2.28)
Similarly,

E<E'+ f [v(r) = v'(r)] p(r)dr . (2.29)
Addition of the last two equations leads to an incon-
sistent result:

E'+E<E’'+E. (2.30)

Hence v(r) is a unique functional of p(r). Since v(r)
fixes H, the full many-particle state is a unique func-
tional of p(r).

Hohenberg and Kohn also show the energy functional
defined by

E, [p]Ef v(r)p(r)dr+ F[p], (2.31)

where F[p] is a universal functional valid for any num-
ber of particles and any external potential, viz.

Flpl=®|T+U |¥,

assumes its minimum value for the correct p(r) if the
admissible functions are restricted by the condition

(2.32)

N[p]sf p(r)dr=N. (2.33)
It is well known that for a system of N particles, the
energy functional of ¥’ ,

e, [ 1=@|V [0+ @ |T+U [0,

has a minimum at the correct ground state ¥, relative
to arbitrary variations of ¢’ in which the number of
particles is kept constant. In particular, let i’ be the
ground state associated with a different external po-
tential »’(r). Then

g, [¥']= f v'(r)p’(r)dr + F[p’]

is greater than

e, [v]= fv(r)p (r)dr +F[p]. (2.34)
Thus the minimal property of E, [p] is established
relative to all density functions p’(r) associated with
some other external potential »’(r).

If F[p] were a known, sufficiently simple functional
of p, the problem of determining the ground-state en-
ergy and density in a given external potential would be
rather easy, since it requires the minimization of a
functional of the 3D density function. However, the
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major part of the complexities in the many-electron
system is associated with the determination of F[p]
(see Sec. 2 of Hohenberg and Kohn, 1964).

At first, the Hohenberg-Kohn theorem seems to be
a rather startling result: The electron density p(r)
alone carries enough information to determine com-
pletely the ground state of a system. However, as
Coleman (1980) has shown, one obtains from Kato’s
(1957) cusp condition,

lim [Inp(»)]=-2z. (2.35)

r~0
In (2.35) p is the spherically averaged p(r). The cusps
at the nuclei are the only singularities of p(r). Thus
p(r) contains a “record” of the position and strength
of the nuclear charges z; moreover,

f p(r)dr=N. (2.36)
This information is sufficient to specify the ground
state of the molecule.

2. The density-functional theory

The central works of this theory are the Hohenberg-
Kohn theorem and subsequent reduction of the energy-
density-functional variation to a set of one-electron
Schrodinger-type equations by Kohn and Sham (1965).
The scheme is formally analogous to the Hartree the-
ory; however, exchange and correlation are accounted
for in a local approximation.

For p(r) which is slowly varying, the exchange-cor-
relation energy of an interacting system can be written
as

£ 1p)= [ p(rles | po)ar, (2.37)
where €, is the exchange-correlation energy per elec-
tron of a uniform gas of density p.

Since the energy

E= fv(r)o(r)dr+ %f —8(—1—')%1_%5—51—5’—+G[p],
(2.38)
where
Glp]=T,[p]+E,[p], (2.39)

T, [p] being the kinetic energy of a system of noninter-
acting electrons of density p, is stationary and

[ sor-0, (2.40)
we obtain the equation

[ ootx) (o) SealBliu,. (o)) -0. (2.41)
In (2.41)

p(r)=v(r)+ [ LEIL (2.42)
and

My [0]= @Z‘S—Ml (2.43)
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is the exchange and correlation contribution to the
chemical potential of a uniform gas of density p.

For a given ¢ and u, one obtains the p(r) which sat-
isfies these equations by solving the one-particle
Schrodinger equation

(=2 P2+ {o(@) + 1, [ p(@) DY, (x) =2 ,,(x) (2.44)
and setting
p(r)= 2 |9 [*. (2.45)

Equations (2.42) to (2.45) are solved self-consistently,
assuming that a p(r), ¢(r), and u, are constructed
from (2.42) and (2.43) and then the new p(r) is found
using the last two equations.

The method is accurate only for the case of high-
density uniform electron gas (Hedin and Lundqvist,
1969), although an approximate functional form for a
slowly varying inhomogeneous electron gas has been
derived (Hohenberg and Kohn, 1964; Kohn and Sham,
1965; Kleinman, 1974) and local-density theories based
on this scheme have been appliedtoatoms and molecules
with considerable success (Tong and Sham, 1966;
Gunnarsson and Johansson, 1976; Gunnarssonetal.,
1977; Harris and Jones, 1978). For systems which
have a net spin, the local-spin-density approximation
is to be used (Von Barth and Hedin, 1972; Rajagopal
and Callaway, 1973). Thus the extension to spin-un-
restricted spin-density formalism (Gunnarsson and
Lundqvist, 1976) involves the minimization of an en-
ergy functional both of charge density and the spin den-
sity. With an additional assumption, Gunnarsson and
Lundqvist (1976) have modified the scheme to give the
lowest energy corresponding to wave functions with a
given set of quantum numbers.

Zunger and Freeman (1976) have proposed a fully
self-consistent solution of the one-particle equations
in a periodic solid within the local-density-functional
formalism. For the correlation part of the chemical
potential they use the previously suggested form of
Singwi et al. (1970), which has yielded good results for
charge densities and total ground-state energies for
atoms (Tong, 1972) and molecules (Gunnarsson and
Johansson, 1976). Thus they employ

f)ﬂigf’(;)]=Fx[p(r)]+Fc[p(r)] (2.46)
P

3 1/3 B o
=-[—ﬂ-p(r] + ﬂaAln(1+X ), (2.47)
where X=7 /A, $m3=p7, and A, B, C, @ are numerical
constants. The ground-state properties such as struc-
ture factors, cohesive energies that have been com-
puted for diamond, show good agreement with experi-
ment. Note that both exchange and correlation energies
are employed as local functionals of single-particle
density.

Although the Kohn-Sham local-exchange-correlation
method and local-spin-density approximation have been
widely used, since they provide computational schemes
that are practical, certain doubts have been raised
(Elyashar and Koelling, 1977; Herman et al., 1969)
regarding the validity of the density-gradient expansion
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using only a finite number of terms for real systems
in regions of high gradients, e.g., near a nucleus; the
present trend is to avoid such gradient expansions as
far as possible.

In molecules and solids, the external potential con-
sists of one or more nuclei producing a very inhomo-
geneous electron-density distribution. Further, if one
is interested in the valence electrons, viz., ifthenuclei
and core electrons are forming the fixed external po- .
tential, then a nonlocal external potential is to be
considered. Such an extension of the Hohenberg-
Kohn theorem has been done by Gilbert (1975).

In this more general case, a nondegenerate
ground-state wave function is a universal functional
of the one-particle reduced ensemble density kernel
u(x,,x%,). Gilbert has also shown that any non-negative
differentiable function such that i

f p(r)dr=N

is an N-representable single-particle density. Thus the
problem of restricting trial density functions to those
that are N-representable is simple.

Nakatsuji and Parr (1975) derived three different
exact variational formulas that include only one-elec-
tron functions as variables, starting fromthe integrated
Hellmann-Feynman (Epstein ef al., 1967), integral
Hellmann-Feynman (Parr, 1964; Kim and Parr, 1964),
and the virial (Clinton, 1960) theorems. The problem
with these variational formulas is that théy require
correct density functions associated with an arbitrary
chosen reference potential; this is, in general, im-
possible! Nakatsuji and Parr are of the opinion that
although no such method is available at present, even
an approximate method could be very useful.

A general linear screening formalism in the density-
functional formalism has been developed by Ying and
co-workers (Ying et al., 1971, 1975; Smith et al.,
1973,-1974) for dealing with chemisorption on metals.
The chemisorbed species can be represented by an
external charge distribution perturbing the metallic
surface. They assume the substrate to be a jellium
model of positive charge density, and the density func-
tional G[p] is represented by the first two terms of
the gradient expansion valid for slow variation of the
density p. The perturbation due to the chemisorbed
entity is treated in linear approximation. The the-
oretical results for ionic desorption energy, relative
magnitude of dipole moment, resonance levels, etc.,
agree well with experimental measurements in the case
of hydrogen chemisorbed on a tungsten surface.

Nonlocal approximations to exchange have also been
recently proposed (Gunnarsson ef al., 1976, 1977,
Alonso and Girifalco, 1977, 1978); these avoid gradient -
expansions but are based on conserving total exchange
charge and satisfying some of the limiting conditions on
the exchange charge density. Results on free atoms
show improvements on the local approximation.

In passing, we mention the theorem analogous to the
Hohenberg-Kohn theorem that has been derived by
Epstein and Rosenthal (1976) for finite matrices. Let
H be an N XN Hermitian matrix, E its lowest eigen-
value (possible degenerate), and 3 a lowest eigenvector;
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the density p; is defined by

12
p;= _d)z___.,
S 2
T 1,

Let V be a diagonal N X N Hermitian matrix “potential”
and define H° by

i=1,2,...,N. (2.48)

H=H°+V.

Then the theorem states that the quantities V,; - E for
those i for which ¥;#0 ave unique functions of the p;
(and H°). Epstein and Rosenthal have demonstrated the
theorem with 2 X2 Hermitian and 3 x3 real symmetric
matrices.

An interesting recent work of Parr et al. (1978) iden-
tifies the chemical potential of density-functional the-
ory with the concept of electronegativity. Electro-
negativity is constant throughout an atom or molecule
and constant from orbital to orbital within an atom or
molecule, i.e., the electrons distribute themselves
among orbitals in such a way asto equalizethe chemical
potential from orbital to orbital, a phenomenon anal-
ogous to the situation in macroscopic thermodynamics.
They suggest modifications, of the Hartee-Fock theory
and a reshaping of the electronegativity concept, since
the Hartree-Fock theory does not provide a model that
easily accounts for equal electronegativities for all
orbitals.

Parr ef al. obtain an equation which shows that electro-
negativity differences determine the charge transfers
occuring on bond formation. They also define an atom
in a molecule in terms of three conditions; interestingly,
the virial fragments (Sec. II.B.3) satisfy two of these
conditions. Further, by assuming that for a neutral
atom with atomic number Z the chemical potential is
zero and the energy is —0.612727/3  Parr et al. (1979)
have proposed a local energy density functional for the
ground states of atoms and molecules,

E[p]= %Aof p5//3(r)§ir+ %B0N2/3fp4/3(r)dr

+ fv(r)p(r)dr s (2.49)
where A,=6.4563 and B,=1.0058. The first term on the
right represents the electronic kinetic energy, the sec-
ond represents the interelectronic repulsion energy for
N electrons, and the third is the electron-nuclear
attraction energy with »(r) as the external potential.

For molecules in this local-density approximation, the

contours of »(r) are contours of p(r). For an atomic
species with fractional charge g=1- (N/Z), the en-
ergy may be written as

—-E/Z2N"3=0.6343+0.1721¢. (2.50)

However, Tal et al. (1980) are doubtful whether such
a local density approximation will closely resemble
real systems. These authors have made interesting
studies on the explicit correspondence between p(r) and
v(r) in terms of their topographical properties (see
Hohenberg-Kohn theorem).

There have been various other extensions, both fun-
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damental and calculational, to the density-functional
theory. Thus, for example, it has recently been ex-
tended to excited states (Theophilou, 1979), relativistic
systems (Rajagopal, 1978; McDonald and Vosco, 1979),
and certain time-dependent situations (Peuckert, 1978;
Deb and Ghosh, 1981). The theory has also beenapplied
to elucidate the transition from a low-density electron
crystal (Wigner crystal) to a uniform electron gas
(Shore et al., 1978). The spin-density-functional the-
ory has been employed by Rose et al. (1980) to study
the phase transitions of electrons in a lattice of fixed
point charges; the metal—insulator transition is found
to be of first order, while the formation of magnetic
moments at the proton sites is of second order [see
also Becker (1980)]. For some recent works on cal-
culational aspects, based on the pseudopotential for-
malism, see Szasz el al. (1975) and Zunger ef al.
(1979); see alsothe reviews by Gunnarsson and Jones
(1980), and Rajagopal (1980).

3. The quantum subspace

Although the concept of a subspace has played a dom-
inant role in the study of crystals, it is only recently
that Srebrenik and Bader (Srebrenik and Bader, 1975;
Srebrenik, 1975; Bader, 1975) have demonstrated two
new principles of quantum mechanics. First, the vari-
ational principle for the energy is applicable to and, as
a consequence, defines a particular class of sub-
spaces. Second, the Hamiltonian operator of a many-
electron system may be expressed as a sum of single-
particle Hamiltonians through the use of a complete set
of virial sharing operators leading to a definition of
subspace energy.

Srebrenik (1975) had shown that the Hohenberg-Kohn
theorem applies to a finite region in space for a one-
electron system, provided that the region is bounded
by a zero-flux surface. This was later extended (Bader,
1975) for many-electron systems.

The Schrddinger equation subject to the boundary con-
dition is equivalent to the statement that the description
of a quantum-mechanical system is obtained by ex-
tremizing

G(¢) = f (Z FVer-vo+ (V+x>¢*¢)d7, (2.51)

7

where (¢ | ¢) remains constant, and V,X are the po-
tential energy operator and the Lagrange parameter,
respectively. It can be shown that the natural boundary
condition reduces to

Vaen,=0 (2.52)
for all particles 7 for all points on the boundary sur-
face, ﬁi being the unit normal to the surface. Thus the
satisfaction of (2.52) guaranteed by the vanishing of 3
(and Vv,¥) yields the equivalence between solving the
Schrddinger equation and extremizing G(¢).

It has been demonstrated (Srebrenik and Bader, 1975)
that the Schrddinger equation may be solved over a sub-
space of the total system, the boundary condition that
ensures the variational principle holds over the same

" subspace being

p(r)+7(r)=0 vreS), (2.53)
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where 7(r) is the unit normal to the surface S(r) at r.
The partitioning surfaces obtained by (2.53) are called
the zero-flux surfaces; they define a collection of all
gradient paths of p(r) originating from and terminating
at stationary points [Vp(r) =0] in the molecular charge
distribution. .

Bader and Runtz (1975) had earlier shown that such
a procedure divides the molecule into atom-like frag-
ments, the surfaces intersecting the chemical bonds.
Any gradient path not terminating at the internuclear
stationary point terminates at one ofthe nuclei where
the boundary condition is violated; thus the surfaces
(R2)-are unique. The boundary condition defines a unit
cell in a solid, a molecule in a collection of molecules,
a group of atomic fragments ina molecule, and ultimate-
ly an atomic fragment. For examples of such par-
titioning surfaces in di- and polyatomic molecules, see
Figs. 1 and 2.

The variational property of the energy and the satis-
faction of the virial theorem are connected by the op-
eration of scaling of wave function coordinates. More-
over, the scaling of electronic coordinates implies
setting the variational function equal to r+ Vy. By per-
forming the scaling operation and defining the kinetic
and potential energy operators for a fragment, it has
been shown (Bader and Beddall, 1972; Bader et al.,
1973; Srebrenik and Bader, 1975) that

—2T(R)=V,(Q)=V'(Q)+V"(Q)+V,Q), (2.54)
where

v@= [ - 32 pwar, (2.55)

Q (] o

V"(Q)=Ldr,fdr2£-£§fﬁ, (2.56)
and

Vn=_ ZRa'Fa(Q)’ (257)

Fa(ﬂ)=za_£2p(r)—:—;§-dr. (2.58)

Thus the right-hand side of (2.54) is the result obtained
when the virial operator is averaged over a subspace

Vo) =N(-r, -V, V), . (2.59)
Further, the fragment energy has the additive property

> EQ)=E.
o
By defining the potential energy operator
pi==7+V,, (2.60)

whose action on the potential energy Vis to project
out the potential energy of the ith particle

2 B.v=v,

the total Hamiltonian of a many-electron system can
be reduced to a sum of one-electron contributions.

H= 3 H,= 3 (- 5V2+h, V).
1 1

(2.61)

(2.62)
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Srebrenik and Bader (1975) have proved that the
total energy for a fixed nuclei system (Born-Oppen-
heimer approximation) in the absence of any external
forces is purely electronic. The time-dependent sub-
space variational principle has been derived by Sre-
brenik et al. (1978) using a modified form of Hamil-
ton’s principle. The principle is also a variational
statement of a time-dependent hypervirial theorem,
generalized to systems bounded by zero-flux surfaces;
a time dependence to subspace properties may thus be
ascribed. In a subsequent paper Bader et al. (1978) use
Schwinger’s quantum action principle to obtain a quan-
tum-mechanical description of a subspace. The ex-
pression for the subspace action integral operator
obeys a principle of stationary action. Schwinger’s
quantum action principle is reexpressed as a sum of
changes in the action integral operator for each sub-
space in the system. Thus the total changeinthetrans-
formation function as given by the action principle may
be expressed in terms of a sum over action changes
for each atomlike fragment.

On the basis of these extensive studies, Bader et al.
(1979) have found that the vector field of the single-
particle density, Vp(r) characterizes the universal
properties of p(r). The trajectories of Vp(r), all of
which terminate at particular critical points [points
at which Vp(r)=0], define the atoms in a molecule in
a manner consistent with the chemical concept of an
atom in a molecule. Collard and Hall (1977) have put
forth a formalism demonstrating the use of orthogonal
trajectories and their critical points in the analysis of
scalar functions. The catastrophe theory of Thom
(1975) gives the discontinuous change in topological
characteristics of a molecular distribution when a con-
tinuous change in its nuclear coordinates is occurring.
Linking up their work with these theories, Bader
et al. (1979b) extend their study to the dynamic case
and give a precise meaning to the concepts ofthe making
and breaking of bonds.

With this link-up, the primary concepts of chemistry
find precise definitions in terms of topographical prop-
erties of molecular charge distribution, e.g., the
existence of a (3,1) critical point (Bader et al., 1979b)
is associated with a particular chemical property,
viz., the neighboring atoms are bonded to one another.
Similarly, molecular structure and its stability are a
result of competition between various nuclei in the
molecule for the electronic charge of the system.

C. Electron correlation and N-representability

Wigner and Seitz (1933,1934) coined the term “elec-
tron correlation” in the study of the electronic struc-
ture and cohesive energy of metals. Kutzelnigg (1973)
has discussed the two aspects to correlation: “cor-
relation energy” is that part of the energy one ignores
when one uses a single-determinantal wave function.
If we seek a definition independent of the choice of the
wave function, it is appropriate to refer to the “best”
Slater determinant in terms of the energy criterion,
viz., the Hartree-Fock energy. Since it is necessary
to distinguish between relativistic effects, one may
define, following Ldwdin (1959), the correlation en-
ergy as the difference between the “true” Hartree-Fock
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and the “true” nonrelativistic energy.

There is also a statistical correlation of electrons in
space as a consequence of the exclusion principle; the
effect of this “Fermi correlation” on the energy is al-
lowed for in the energy of a Slater determinant wave
function. i

Long ago, Coulson (1960, p. 175) had remarked, “It has
frequently been pointed out that a conventional many-
electron wave function tells us more than we need to
know... . There is an instinctive feeling that matters
such as electron correlation should show up in the two-
particle density matrix... but we still do not know the
conditions that must be satisfied by the density ma-
trix.” This problem of obtaining intrinsic criteria by
which to recognize when a function D?(x,, X,; X{,X;) can
be expressed by (2.5), viz., :

DZ(XI,XZ;X{,Xé)

=fzp(xl,xz,...,xN)zp*(x;,‘xé,...,xN)dxs,..‘,de,

(2.5)

was termed the N-representability problem by Cole-
man (1963), who devised the necessary and sufficient
conditions for the N-representability of the first-order
density matrix. However, this has not been possible in
the case of the second-order density matrix.

One might think that to obtain D? it would be sufficient
to minimize the energy expression (2.13) subject to the
normalization condition (2.8). However, D? also sat-
isfies

D?(x,, X,3 X}, X5) = D**(X1,|X$; X, X,) (2.63)
viz., D? is Hermitian. In addition,
D2(x,, X,; X}, X3) = =D*(X,, X, X}, X})
= -D%(x,,X,; X5, X)) . (2.64)

D?%=0, viz., D? acting as an operator on the space of
all antisymmetric functions of two variables has non-
negative values. The variation of D2 must be further
restricted by the condition that D?(x,,x,;Xx,X;) can be
represented in (2.5) by an integral involving the wave
function which is antisymmetric in N particles. Al-
though a simple solution to this problem seems unlikely,
even partial success could increase our understanding
of correlation and other phenomena.

The problem stated above is that of pure N-represen-
tability, since D*(x,,X,;x{,x}), as given by (2.5), is
represented by a pure state. Corresponding to an
ensemble, one has the ensemble N-representability
problem on which much research workhas been focused.
Over the years there have been various approaches
(beset with frustration) to solve the N-representability
problem. Here we shall mention only some of the con-
cepts developed in this area. Extensive materialdealing
with this problem can be found in Davidson (1976), in
the proceedings from two conferences at Queen’s Univ-
ersity (Coleman and Erdahl, 1968; Erdahl, 1974), as
well as in the review article by Coleman (1980).

The set of N-representable or ensemble N-repre-
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sentable D? matrices form a convex® set and the
mathematical tools constructed to study convex sets
can be effectively employed. Further, inthe variational
method to obtain D%, ensemble N-representability
automatically ensures pure N-representability.

Coleman (1963) has obtained the following important
result: A necessary and sufficient condition that D* be
ensemble N-representable is that its eigenvalues be
non-negative and less than or equal to N**, Such a sim-
ple characterization has been possible since the eigen-
values At of D' constitute a complete set of invariants
under the action of the unitary group U(») of transfor-
mations of the orthonormal spin-orbital basis set.

The eigenfunctions of D!, the natural spin orbitals,
are well suited for expanding ¥; those of D?, the nat-
ural geminals g;, also possess similar virtues. If
22 be the eigenvalues of g,

D*= 27‘2; |gi><g£l ’

then it can be shown that the energy E is given by the
sum of contributions associated with natural geminals

&

(2.65)

N ‘
E==5 Y gk, (2.66)
where K? is the reduced Hamiltonian
K2=HQ)+H2)+(N-1)H(12). (2.67)

Yang (1962) and Bloch (1965) have shown that large
values of A% can be associated with the phenomenon of
superconductivity. A number of necessary conditions
for N-representability of D! have been obtained by
various workers; these are the so-called D, @, B, G
conditions (Coleman, 1980). Simons and Harriman
(1970) have introduced the concept of “approximate
N-representability”. For further discussions of these
problems, see Coleman (1978) and Levy (1979).

In conclusion, the problem of pure N-representability
of D? is of paramount importance to molecular phys-
icists, since D? is believed to contain all information
of physical interest. The density matrix approach is
very attractive since it can be generalized to include
ensembles and grand canonical ensembles in a beau-
tifully simple manner. Indeed D ¥ was introduced by
Von Neumann in order to lay a proper mathematical
basis for statistical mechanics.

Unfortunately, although various ingenious approaches
have been employed, the pure N-representability of
D? seems intractable. Thus dirvect evaluation of D?
is beset with great difficulties and approximations.
Nevertheless, the prize of its solution is well worth
the effort, since, once the problem is solved, it will
unfold an entire new area of quantum mechanics: quan-
tum mechanics where the Schrdinger equation would
no longer receive primary attention and where new con-
cepts would unfold as well as light being shed on old
ones such as electron correlation.

3A subset ¢ of a linear space is convex if together with any
two points of ¢, all the points in the straight segment with
these two points as end points are also contained in ¢. A con-
vex set is thus determined by its extreme points.
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However, as Gilbert (1975) has shown (Sec. II.B),
the N-representability problem associated with the di-
rect determination of p(r) is much simpler. Such
attempts at direct determination of p(r) are discussed
below.

D. The Thomas-Fermi model

Since its invention by Thomas (1926) and Fermi
(1928), and subsequent modification by Dirac (1930),
the Thomas-Fermi model has been useful in the study
of heavy atoms and solids. Properties that are rea-
sonably independent of the detailed structure of the outer
electron shells of the atom [e.g., equation of state at
high pressures (Feynman ef ql., 1949)] are well rep-
resented. On the other hand, properties such as
atomic diamagnetism, which is proportional to the
mean square radius of the charge distribution in the
atom, are poorly represented by this approach.

The model supposes a degenerate free electron gas
for the atom. The electron gas is under the influence
of a mean potential which varies from point to point in
the atom. The electron interaction is ignored except
for the mean screening effect of the electron cloud.
This approximation holds for high-density regions
(hence in the interior of atoms). Dirac improved on
this by including the exchange energy of a free elec-
tron gas, thereby accounting approximately for the
tendency of electrons of like spin to keep away from
each other. His work related the Hartree-Fock theory
and the Thomas-Fermi model. His assumption was
that the distribution of electrons in phase space is the
local Fermi density

p(r)=(27h)® for p<pp(R) (2.68)

=0 for p>pp.

The density is hence zero, outside some radius R, the
Fermi momentum p being a function of R. Theis
(1955) showed that this assumption was a consequence
of the fact that the system was in its ground state and
that D? is idempotent. Ldwdin (1955) introduced
correlation by using sums of Slater determinants, and
this yields fractional occupation numbers for the sin-
gle-particle states [for a review on the Thomas-Fermi
model, see March (1957)].

Gell-Mann and Brueckner [(1957); see also Gell-
Mann (1957)] accounted for the tendency of electrons
of opposite spin to stay apart, viz., the Coulombic
repulsion, and later modifications were introduced by
Lewis (1958), who obtained a general equation from
which the Thomas-Fermi (TF) and Thomas-Fermi-
Dirac models emerged as special cases. The second
error in the TF model, not unrelated to correlation,
was that electrons did not interact with each other. In
order to tackle this, Fermi and Amaldi (1934) simply
multiplied the charge distribution each electron sees
by a factor (z - 1)/z, z being the nuclear charge.

In an interesting work, Baldzs (1967) studied the for-
mation of stable molecules within the statistical theory
of atoms. He demonstrated that no theory, however
complex, can describe binding so long as (within it)
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the density p(r) is expressed as a local function of the
electric potential alone. Binding occurs if there exists
a range of internuclear separations for which the forces
on the nuclei are attractive. Balazs thus concluded

that the Thomas-Fermi, Thomas-Fermi-Dirac,
Thomas-Fermi-Gombas (Gombas, 1949) theories can-
not give rise to molecular binding. The Thomas-Fermi
model with Fermi-Amaldi correction cannot give rise
to molecular binding for homonuclear diatomic neutral
molecules if N> 4.

However, the Thomas-Fermi-Weizsicker [see
Gombas (1949)] theory gives stable homonuclear dia-
tomics. Coupled with Poisson’s equation

V2 =4mne , (2.69)
where p(r)=-ne, »n being the number density, any of
the above theories invokes a relation between p(r) and
¢. For example, the Thomas-Fermi theory gives

F=o(p = pp)'?, (2.70)
where
1 3/2
o= 52 (e;) , (2.71)

a, being the Bohr radius. In the Thomas-Fermi-Dirac
theory

F=0l(@= o +7 2 7P

1\2 e>1/2
() ()

In the formulas above, ¢, is related to the chemical
potential of the electrons

(2.72)

(2.73)

—ePo= L, (2.74)
and its value is obtained subject to
fndv=N. (2.75)

Thus Baldzs’s work shows that no binding is possible
if n=f(¢), where f is an arbitrary non-negative function
depending only ,on ¢, and not on its derivatives or other
functions.

Putting

n=y, (2.76)

the Weizséicker relation between ¢ and y is

(ep+wx=% kX3 —4Kk,A% , (2.77)
where

K= 3: 02’3 (2.78)
and

K %zg“"- (2.79)

In (2.77) the second term on the right is the Weizsicker
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correction* (without which one gets back the Thomas-
Fermi case). Baldzs shows that this correction indeed
stabilizes the molecule.

Interestingly enough, his work sheds light on the pre-
vious calculations by Sheldon (1955), who studied the
N, molecule formation in the Thomas-Fermi-Dirac
model and concluded that the model yields unstable
N,.?

In passing, we also note that temperature effects
were incorporated in the Thomas-Fermi model by
Feynman et al. (1949), whereas field-theoretic for-
mulations involving Green’s function (Schwinger, 1951;
Martin and Schwinger, 1959) (which resembles in some
ways the time-independent formulation using N-par-
ticle density matrices) have been applied to the quan-
tum-mechanical many-particle ’system; the Thomas-
Fermi model can also be obtained as a special case
(Baraff and Borowitz, 1961). Interesting extensions

‘In terms of p(r), the Weizsiicker inhomogeneity correction
to the kinetic energy is commonly written as (in atomic units)

.
TW=§f——(Vpp) dr.

The original Thomas-Fermi approximation assumes that

particle wave functions may be replaced locally by plane waves.

The Weizsicker correction introduces an explicit account of
the deviation from plane waves. This correction, whose
original derivation was not satisfactory, has preoccupied
many scientists. It appears as the first term in a gradient
expansion for a ‘“reasonably slowly varying’ density, with or
without the 1/9 factor, depending on the type of density varia-
tion (Hodges, 1973). On the other hand, Alonso and Girifalco
(1978) derive this correction in a local-density approxima-
tion, without resorting to a gradient expansion. However, the
major source of error in their kinetic energy formula arises
from regions of rapidly varying electron density and inac-
curate knowledge of the correlation factor involved. The
basic trouble with all Thomas-Fermi-type methods is that
kinetic energy is really a nonlocal functional (unknown) of
electron density and that it depends on derivatives of the cor-
relation factor, while the exchange energy depends on inte-
grals of the correlation factor [for discussion, see Alonso and
Girifalco (1978)].

Tal and Bader (1978) have shown that local values of the
kinetic energy functional including Weizsacker correction are
incorrect. Rather than choosing a nonlocal functional of p,
they suggest the partitioning of p into two terms, one rapidly
varying and the other slowly varying, and use the Weizsiacker
correction for both the terms. This considerably improves
the local behavior and also reduces the total error. Oliver
and Perdew (1979) have generalized the kinetic energy ex-
pression for the ground state of an inhomogeneous electron
gas as a functional of p(r), and of p(r) as a functional of v (r),
to the case of two unequal spin densities (spin-up and spin-
down).

5These works do not clearly conclude that the Weizsicker
correction is sufficient to yield the correct binding. Baldzs
has not investigated the possibility of the potential curve’s
being so shallow that no energy level could be accommodated
in it. While Sheldon demonstrates the lack of success of the
Thomas-Fermi-Dirac model in the case of N,, it is not ap-
parent whether the Weizsacker correction would yield total
binding energy or only a fraction of it. Yonei (1971) has re-
cently obtained good binding energies for diatomic molecules
using the Thomas-Fermi-Dirac model with 1/5 Weizsicker
correction, whereas Wang and Parr (1977) suggest the use
of 1/9 Weizsacker unconstrained correction.
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to the Thomas-Fermi model such as inclusion of rel-
ativistic effects, comparison with X method, etc.,
have been considered [see the series of papers in
Int. J. Quant. Chem. Symp. (1975), Vol. 9].

E. Determination of p(r) using the force criterion

Bader and Jones (1963a) obtained the density distri-
bution for the H,O molecule in its equilibrium con-
figuration by requiring that the forces exerted on the
nuclei by the distribution, as calculated by the Hell-
mann-Feynman theorem [see Deb (1973)], balance the
nuclear repulsive forces. The requirement of zero
resultant force provides one with a number of con-
straints any proposed density function must fulfill. These
constraints may be used to fix a corresponding number
of parameters in the density function. For example,
in H,O three parameters in p(r) may be determined by
observing the requirement that the resulting forces
exerted on the O nucleus along the symmetry axis and
on the H nuclei along and perpendicular to the bond
axes must be zero. The remaining force components
give trivial conditions, as they are zero by symmetry
alone.

Thus the criteria of zero resultant forces may be
used to fit a relatively sophisticated density function
to any nuclear framework. Bader and Jones (1963b)
have also determined p(r) for HF by the force cri-
teria, as well as requiring p(r) to predict the correct
dipole moment. The ability of p(r) to give expectation
values of other one-electron operators is satisfactory.

The NH, molecule has also been studied (Bader and
Jones, 1963a) in the same framework and the density
distribution is compared with self-consistent field
(SCF) calculations. In NH, the three forces, not
balanced by symmetry considerations are F,, F,, and
F, (see Fig. 1). The most serious criticism of this
work is the omission of any polarization around the H
nuclei. Being limited in the number of parameters that
one can employ by the number of forces to be balanced,
one cannot include these polarizations and other fine
details. Mukherji and Karplus (1963) suggested a con-
strained variational method which has been employed
by Loeb and Rasiel (1970) using the zero force cri-

FIG. 1. F,, F,, and F, are the three distinct forces in NH;
that are not zero from symmetry considerations alone. Z is
along the C; axis of the molecule. P,, P, denote 2p orbitals,

« being the angle between them, whereas 2pz is along the
z—-axis. (Reproduced from Bader and Jones, 1963c. Courtesy,
R. F. W. Bader).
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terion. However, there is an increase in total energy.
Thus it is clear that in the method of Bader and Jones
(essentially nonvariational) the sacrifice in energy must
be considerable.

F. Determination of p(r) via the Milne equation

Although the Thomas-Fermi model provides us a
means of obtaining p(r) once we know the potential and
vice versa, it suffers from disadvantages (Sec. II.D)
and attempts to correct these end up with formulas too
complicated for practical use.

Starting from a single Slater determinant, Light and
Yuan (1973) have obtained closed expressions for the -
reduced density matrices. Based on these expressions,
one can directly obtain the radial density function.

Performing the Langer transformation
r=e* (2.80)

(2.81)

on the radial part of the wave function R,,(v), one ob-
tains

x=ln7r

R,(r)=e"?VU, (x), (2.82)
where
Un,(x)=CNw(x)sinfxw'z(x)dx. (2.83)

-0

The R, is substituted in the radial equation of a Cou-
lomb potential and it is shown that w(x) satisfies the
Milne equation

w” (x)

o) +[2Ee® +2ze* = (1 +1/2)?] —w™*(x)=0. (2.84)
The radial density distribution is
1|w2(x) 7 82w 2%(x) sinby(x) p
P, A)=— - z , (2.85)
v m T, A sinznT(x)
7-0
where
7iab x
w0 =2 gy - [ Tirza, (2.86)
°] e .
T0=7’Z%; ¢>0=2f w2dx, (2.87)
A —e
X 0
Oy (x) = (N+§)11[ w'zdx/ w%x . (2.88)
In (2.85), A, is the Fermi energy determined by
f w(x,x,)dx =N +3)m (2.89)

—c0

Using (2.84), (2.85), and (2.89), the radial density dis-
tributions for various ! values of several noninteracting
electrons in the Coulomb potential can be determined.

For an atom with closed-shell structure, p(r) is given
by

p@)=2p,), (2.90)

where
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p,(x) =9 2(21 + 1RZ, (r). (2.91)
n

A second Milne equation, using an analytic expression

for the potential for the atom is solved, subject to the

quantization conditions for electron orbital energies

- -E,, and Fermi energy 2.

Yuan and Light (1974) have applied the formalism to
the Kr atom and compared their p(r) with that obtained
by other methods. The authors claim that these form-
ulas give accurate results including the shell structure
(believed to be missing in the Thomas-Fermi method)
through the entire » space, except for a small region
around the nucleus. However, the belief that the shell
structure exhibited by p(r) indicates the accuracy of the
results must be treated with caution for the following
reason: There seems to be widespread belief that the
shell structure is reflected by relative maxima in p(r).
This, however, is a misconception. Weinstein et al.
(1975) have plotted p(r) for ground states of various
atoms, using SCF (near Hartree-Fock) wave functions,
and their investigations definitely indicate that p(r) is a
monotonically decreasing function, although no general
proof has been offered by them. Actually, the shell
structure is revealed by a different change in slope of
the density; this is seen more clearly by plotting
logp() vs 7 for closed-shell atoms.

The method proposed by Yuan and Light appears to
be promising in that there are fewer equations to be
solved. If the potential V({r) is known, one can directly
obtain p() and by an interpolation scheme, much faster
than the iterative method, the eigenvalues and Fermi
energies can be obtained. Kirzhnits and Shpatakovskaya
(1972) follow a similar approach, except that they start
with a semiclassical approximation instead of the Milne
equation and obtain.one formula for a closed-shell
atom, in contrast to Yuan and Light’s approach that
yields one formula for each [ state.

G. Determination of p(r) via the partition function

Lawes and March (1980) have proposed an approxi-
mate differential equation for the direct calculation of
electron density in closed-shell atoms and molecules.

In case of one-dimensional motion, they obtain the third-
order equation

8p 1 8V 183
(M—V)—a‘;ﬂ—é‘p e -gﬁ (2.92)
in a local-density approximation. Here u is the chemi-
cal potential and V is the (one-body) external potential
containing the effects of exchange and correlation subtly
through p. Eq. (2.92) is exact for a linear harmonic
oscillator and should yield better results with larger
number of electrons.

For a closed-shell atom one may treat the central-
field problem as a.one-dimensional (1D) case. Equation
(2.92) then takes the form

8y, 1 @°

9 1 .
—[u, - V,]BT(’Vzp,)=§’VZP1 o7 +§§T—3(’72P1) ’ (2.93)

where

10 +1)

V,0r)=V0r)+ 57T

(2.94)
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p@) =2 @L+1)p,). (2.95)

By assuming that all 4,’s are the same and equal to u
[see Parr et al. (1978)], i.e., by writing

8
JR— 2 (=3 (22
W= ?p) Z,:(ZZ““I)“’zw %p,), (2.96)
Eq. (2.93) may be transformed as
1 8°
TR p)+~r p——+ (T V)—(r 0)
10+1)(20+1) C
)'_‘, o [yp,+5y-(y o). (2.97)

In a molecular situation, say in the 1D case, Lawes
and March propose that one should first calculate the
effective potential U(xB), followed by the generalized
partition function Z(xB), and then obtain p(x) by taking
the inverse Laplace transform of Z/B. For this, define
Z (rB) as the diagonal element C(»7B) of the canonical
density matrix C(»»’8) which is defined in terms of the
external potential V(r),

C(?’T’B):Zl/);?(r)l/),-(r’)exp(—Ba,.) . (2.98)

Define also the effective potential matrix U@ r’B) by
Clr'B)=Colrr'B) exp[-BU(rr'B)],

where C is the free-particle result. The diagonal ele-
ment of U is the effective potential, and it satisfies
the 1D nonlinear third-order differential equation

um” ) U'}

(v -0 +8 [(U— no G-

/EU_ _3_ ’ ”] 63_ 3 _
+B? [U sg —gl'U"|+gU”=0. (2.100)
The linear approximation of (2.100) is

%(V'-U{)+ UM_BEEU' 0, (2.101)
and its 3D generalization yields the equation

alu

WY, -5U, - V) -B 35—1=0. (2.102)
The solution of (2.102) is

0,68)= [ ger'8)Vaar, (2.103)
where

g(rr'ﬁ)=;exp [—2— ]r—-r'[z] (2.104)

mBlr-r'l B : :

However, this first-order solution should be further
refined in order to obtain a better p. Hopefully, this
approach should be applicable to the ground-state den-
sity of a molecule with arbitrarily low symmetry, with
large-density gradients and low-density regions.

As discussed earlier, the purpose behind all these
works had been to find a reliable (preferably accurate)
method for directly determining p(r), independent of the
Schrddinger equation. However, the Schrddinger equa-
tion, or its variant, generally crops up somewhere
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(2.99)

along the mathematical procedure. Indeed, it has been
said that if one throws the Schrodinger equation out of
the front door, it returns through the back window!
Thus far, our discussion has highlighted the impor-
tant properties of p(r), methods aimed at its direct
determination, and the problem one faces of incorpora-
ting electron correlation in p(r). Although the problems
that arise in these contexts are not yet satisfactorily
solved, work on them is continuing in several countries.
Once we have the single-particle density at hand, the

next job is to extract from it various information of
physical and chemical significance. Therefore, in

spite of not having satisfactorily resolved the earlier
problems, we now proceed to consider the applications
of p(r) to the study of molecular properties. Our main
object in the subsequent discussions would be to high-
light the concepts, rather than the mathematical intri-
cacies, in kinship with the spirit (McWeeny, 1976, p.28),
“Perhaps we should be more adventurous once in a
while, forgetting the rigours of the variation theorem,
N-representability, and the like and concentrating a bit
more on the physics.”

I1l. APPLICATIONS
A. p(r) and chemical binding

With brilliant insight the great physicist Sir Issac
Newton had stated in his Optics (1704): “The parts of
all homogenal hard Bodies which fully touch one another
stick together very strongly. And for explaining how
this maybe, some have invented hooked atoms, which is
begging the question... I had rather infer from their
cohesion, that their particles attract one another by
some force, which in immediate contact is exceedingly
strong, at small distances, performs the chymical
operations abovementioned and reaches not far from
the particles with any sensible effect... . There are
therefore Agents in Nature able to make the Particles
of Bodies stick together by very strong Attractions.

And it is the Business of experimental Philosophy to
find them out” [quoted in Holden (1965), p.1].

Even today it is difficult to make a better statement
of the problem of chemical binding which adopts a force
viewpoint in contrast to an energetic one. The quan-
tum -mechanical concept of forces® in molecules is intro-.
duced via the Hellmann-Feynman theorem (Hellmann,
1937; Feynman, 1939; Deb, 1973; Epstein, 1980),
which states that if ¥ be a normalizable eigenfunction of
H with eigenvalue E, and X be a real parameter in H,

oH
9E _<¢ '2)7‘¢>
a_— .

@)

The force on any nucleus, considered fixed for a quan-
tum-mechanical system of electrons and nuclei, is then
given by the classical electrostatic interaction exerted
on the nucleus by the other nuclei and by the electron
density for all the electrons.

Chemical binding, which is the interpretative study

(3.1)

fBased on interpretations of the Aharonov-Bohm effect,
there is a controversy regarding whether the language of forces
in quantum mechanics is irrelevant or not. For a discussion
on this, see Erlichson (1970)
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of molecule formation in terms of the forces on the
nuclei, emphasizes the role of p(r). Given'a molecular
charge distribution p(r), determined either by the
variational method or by an alternative method, a
rationalization of binding or lack of it in a system is
possible.

Within the framework of the Born-Oppenheimer (1927)
approximation, the total force exerted on a nucleus o
with coordinates X,, charge z, is given by the sum of
nuclear and electronic contributions,

F(X,) =F"(X,) +F°(X,), (3.2)
where
(%) =20 [ dx,dx, -+ -dx,p* Zva, ST 63)

Because of the equivalence of the electrons, the right-
hand side of (3.3) reduces to

zaf der,‘l

where p(r) is the single-particle density,

p(r):Nf dslf dxzf dxy ¥y,

where x; denotes the set of space coordinate r; and the
spin coordinate s; of the ith electron.

Berlin (1951) partitioned the space of a diatomic mole-
cule into binding and antibinding regions by defining a
quantity

p(r)

(2.20)

fr) =;z;§‘—cosea +f7§—-cosf95, (3.4)

(-3

f(r) being the total force exerted parallel to the inter-
nuclear axis by a unit negative charge at r. Regions
where f(r)>0 are the binding regions, whereas f(r)<0
defines the antibinding regions. The basis of this defini-
tion is as follows.

The electronic contribution to the force on either nu-
cleus is

§% =F%4=5(F%, +F4) =—3 ff(r)p (r)dr . 3.5)

Here, a right-handed system centered on @ and a left-
handed one on B is assumed to ensure that the total
forces exerted on nuclei are equal in sign as well as in
magnitude.

Half of the total of the forces exerted on both nuclei
in the system is (R being the internuclear distance)

EF-Z"‘ZB -%ff(r)p(r)dr-

For a system at equilibrium internuclear separation,
the force & equals zero. Since p(r) is positive every-
where, the sign of the second term arises solely due to
f(r). Regions where f(r)>0 reduces &, thus binding the
nuclei, and the reverse is true for f(r) <0.

When & <0, the force exerted by the binding region is
greater than the nuclear repulsion and the antibinding
forces, thus drawing the nuclei closer. If F is binding
for all R, in the range R, <R <<, then the resulting
equilibrium corresponds to an energy minimum. At
R=R,, § reduces to zero. Bader (1964) has extended
this notion of binding and antibinding regions to poly-
atomic molecules by superposing the diatomic Berlin

(3.6)
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diagrams for the bonds included in a molecule, viz.,

a volume element is said to be binding if it exerts a
binding force on all nuclei. Such a definition, however,
does not permit a study of electron reorganizations
during bending, twisting, etc., or a rationalization of
the molecular geometry.

Koga et al. (1979) have generalized Berlin’s defini-
tion to polyatomic molecules: The space around the
molecule is divided into accelerating and resisting re-
gions with respect to the process along any internal
coordinate. Whereas Berlin defined f(r) by (3.4), Koga
et al. propose the choice of center-of-mass-~of-the-nu-
clei coordinate system, in which internal motions of
many-particle systems are more appropriately des-
cribed. In this system

Zo co'seu

r m +m,
fCMN() My +m8( B ,r.i a

cosh) )
¥

The boundary surfaces for Berlin’s case vary according
to z,/z5, while for this case, the surfaces also depend
on the masses. It is shown that the former is a special
case of the latter.

For the polyatomic case, considering the transforma-
tion from Cartesian to internal coordinates, the internal
force is given as

EFR=f frp(r)dr +nuclear part, (3.8)
where f is the suitably transformed electronic force
operator in the internal coordinate system. The elec-
tronic part of the force is positive if fz>0 and vice
versa. The positive force accelerates the nuclear re-
arrangement along R, whereas negative force resists
it. Thus fz>0 are accelerating regions, whereas fz<0
are resisting regions. Koga et al. have applied their
formalism to a nonlinear triatomic molecule AB,.
Superposing the generalized Berlin diagrams on the dif-
ference density maps (see below), the geometry of H,O
is discussed; the electron density reorganizations at
nonequilibrium geometries are seen to occur in a way
that facilitates the restoring of the molecule to its
equilibrium geometry.

1. Difference density

Charge redistribution always accompanies the forma-
tion of a molecule, the extent of charge reorganization
in any region being measured by the difference density

ap(r),
Ap(r) =p,(r) - p, (). (3.9)

In (3.9) p,(r) is the molecular charge density at r,

- whereas p,(r) is the sum of contributions from undis-

torted atomic densities, the nuclei being those com-
prising the molecule. Ap(r) is obviously a function of
the internuclear distance R.

A simple mathematical argument using the electro-
static Gauss theorem by Hirshfeld and Rzotkiewicz
(1974) shows that superposition of spherical atomic
densities leads to a net repulsive force between the
nuclei (arising due to their incomplete screening). Thus
Ap(r)>0 in the binding region is a necessary (though
not sufficient) condition for binding, viz., charge den-
sity is concentrated in the binding region so as to exert
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large attractive forces on the nuclei in order to over-
come the repulsion between them.

The isodensity contours (Bader et al., 1967; Bader,
1970) of Ap(r) at various internuclear separations give
a visual idea of the charge redistribution taking place.
A comprehensive list and analysié of such maps have
been considered by Bader (1980). The contours of p(r),
while not particularly useful in discussions of chemical
binding, do nevertheless provide a useful estimate of
the molecular size, e.g., the 0.002 contour is useful in
deciding the latter, as 95% or more of p(r) usually re-
sides within this contour (Bader et al., 1967).

As mentioned earlier, since we do not have satisfac-
tory methods of obtaining p(r) directly, the question
naturally arises as to whether Hartree-Fock densities
are sufficiently accurate for the study of chemical bind-~
ing via the Ap(r) concept, or whether a neglect of elec-
tron correlation leads to misinterpretations about chem-
ical binding. Bader and Chandra (1968) have shown that
the Hartree-Fock density for H, underestimates p(r)
near the nuclei and overestimates it in the binding re-
gion by only 1%. Moreover, electron correlation in-
troduces a second-order correction in the density for
closed-shell systems (Kern and Karplus, 1964). The
magnitude and relative significance of this correction
depends on the system concerned. For further discus-
sion on this point, see Smith (1977).

Bader and Jones (1961, 1963) have also obtained p(r)
by an alternative method, discussed in Sec. IL.LE, and
compared the expectation values of one-electron opera-
tors such as diamagnetic susceptibility, nuclear shield-
ing constants, quadrupole coupling constants with those
obtained from SCF wave functions. This p(r) should not
be used to study chemical binding, since it suffers
from certain limitations, as discussed earlier.

Covalent and ionic binding exhibit different charac-

0.5
DENSITY DIFFERENCE AXIS

teristics (Bader and Henneker, 1965) in the Ap(r) maps.
It is natural to characterize the bond region by the lo-
cation, relative to the nuclei, of the charge increase
which binds the nuclei. Thus the pure covalent bond is
one for which the bond density map shows an increase
in density in the binding region, which is shared equally
by both nuclei. On the other hand, for ionic molecules
like LiF the increase in density which binds the nuclei
is localized on F. However, this localized charge is
not symmetrically placed with respect to the F nucleus
(this nucleus would then experience a positive electric
field due to the partially descreened Li nucleus), but is
polarized towards the Li nucleus. Such a polarization
exerts a force on the anionic nucleus which counter-
balances the net force of repulsion due to the positive’
electric field. Similarly, the density in the vicinity of
the Li nucleus is polarized away from F, to counter-
balance the net force of attraction exerted by the den-
sity transferred to F. Such polarizations are evident
in the bond density maps for LiF as well as in the Ap(r)
maps (see Fig. 2). It is possible (Bader et al., 1967) to
decompose the total electronic force into orbital con-
tributions by expressing p(r) as the sum of orbital den-
sities; the force due to a particular orbital density can
be further reduced to a sum of atomic force (force
exerted on a nucleus by its own charge population),
overlap force (force exerted by the overlap density),
and screening force (force exerted by the atomic
charge density of the second nucleus). Thus in the co-
valent bond, it is the force exerted by the overlap den-
sity that binds the nuclei together. In a similar manner,
the binding and antibinding character of molecular or-
bitals has also been studied (Cade et al.,1969). Tal and
Katriel (1977) relate the binding-antibinding character
of an orbital to the derivative of the orbital energy

0.000

|- 0.05

FIG. 2. Bond density (or density difference) maps and their profiles (in a.u.) along the internuclear axis for N, and LiF. The
solid and dashed lines represent an increase and a decrease, respectively, in the molecular charge density relative to the over-
lapped atomic distributions. These maps contrast the two possible extremes of the manner in which the original atomic charge
densities may be redistributed to form a chemical bond. (Reproduced from Bader et al., 1967. Courtesy, R. F. W. Bader).
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oe; _ _BF (3.10)
R o,

In (3.10) £;,n,; are the orbital energy and occupation
number of the ith orbital. Other workers (Chandra and
Sundar, 1971; Sundar and Chandra, 1974; Hirschfeld
and Rzotkiewicz, 1974; Chandra and Sebastian, 1976)
have also studied chemical binding in diatomic mole-
cules within the force framework.

2. Dissociation energies

The descreening of two nuclei that approach each
other causes the charge to migrate to the region of
overlap. In a covalent bond, the shared density binds
the nuclei. Thus the amount of descreening taking place
determines the charge migration. Bader et al. (1967)
have concluded that there is a direct relationship be-
tween chemical bond strength (dissociation energy) and
the magnitude of the electrostatic field due to charge
redistribution.

Hirshfeld and Rzotkiewicz (1974) have also made a
study along similar lines. They obtain a linear correla-
tion between the net binding electrostatic force and the
dissociation energy for AH and 4, systems. They have
also decomposed this field into contributions from core,
o, and 7 densities. The contribution of the o valence
orbitals to the field at a first-row nucleus varies regu-
larly from binding in Li to antibinding in ¥. Similarly,
the m orbital role is studied.

A possible criticism of this study is the fact that cal-
culation of the penetration field has been done by as-
suming spherical reference atomic densities. Bader
(1980), however, is of the opinion that the undistorted
densities, whenever employed as reference states,
must be realistically chosen; they should correspond
to the appropriate spectroscopic states the atoms find
themselves in after dissociation.

3. Virial theorem

The virial theorem (Slater, 1935) for a diatomic mole-
cule states that

aE

2T =-V-R 57, (3.11)

where T, V are the kinetic and potentiai energy of the
system. At R=R,, since the binding energy A E must
be negative,

AV<O, (3.12)
AT >0, (3.13)
2AT ==AV. (3.14)

In (3.12), (3.13), and (3.14) the symbol A denotes the
difference in value between the molecule and the sep-
arated atoms.

The virial theorem, along with the Hellmann-Feyn-
man theorem, provides a detailed description of the
charge redistribution taking place during molecule
formation in terms of the decrease in potential energy
and increase in kinetic energy.

K the net force is binding, the virial theorem gives

aT<3|av| (3.15)

and vice versa; atequilibrium, of course, we get (3.14).
If one has a complete knowledge of ¥, dF/dR, one may
obtain further constraints on dT/dR and dV/dR.

Rev. Mod. Phys., Vol. 53, No. 1, January 1981

- However, the use of these theorems to study bonding
and binding had been criticized by Ruedenberg (1962,
1975), and Feinberg and Ruedenberg (1971) while Bader
(1980) has refuted their criticism. On the basis of ex-
tensive work notably by Bader et al. and by Hirschfeld
and Rzotkiewicz (1974), there is hardly any doubt now
that the force picture of chemical binding, though at-
tractively simple, is nevertheless rigorous.

4. Charge equivalent of force

It is pertinent to mention here the use of the virial
fragment concept (see Sec. II.B.3) to illustrate the
model of ionic binding proposed by Bader et al. (1967).
The previous arbitrariness in partitioning p(r) can be
removed, since the atomlike fragments partitioned by
zero-flux surfaces have a sound quantum-mechanical
basis. i

In an ideal ionic system, the transfer of one electron
to form A*B” takes place; the B fragment will exert a
force equivalent to one negative charge (assuming a
spherical symmetry for the charge distribution) on nu-
cleus A.

2
25— 5, (B) = -1, (3.16)
Za
In (3.16) F,(B) is the force on nucleus A due to the
charge distribution of B.
The populations c (),
c@)=25 -N,, 3.17)

and charge equivalents of the forces that the fragment
charge distributions exert on the nuclei can be evalua-
ted (Bader, 1980),e.g.,in LiF, 0.94 excess electrons on F
exert a force at Li equivalent to —0.76 charges; simi-
larly, in LiH, 0.91 excess charge on H exerts aforce at Li
equivalent to —0.62 charges. Thus the charge distribu-
tions of the anionic fragments (F), (H) do not attain the
idealized negatively charged ion in terms of forces on
the cationic nucleus. This is because of their diffuse
and polarized nature. The cationic distribution, on the
other hand, is approximately spherical; hence one finds
the net force on Li and the charge equivalent of the
force exerted on the anionic fragment to be nearly equal.
Bader (1980) has also studied the effect of nuclear re-
pulsive potential on the fragment energy E(R2).

5. Kinetic energy

Bader and Preston (1969) define a kinetic energy den-
sity

PYRUNS o/ (r) »vp; (r) 3.18
(l‘) 8 zi: D [63) ’ ( )
p; (r) being the orbital density of the ith orbital,

p,(£) =X, ¥ (X)e; (r) (3.19)

where A; is the occupation number of the SCF orbital ¢,.

f G)dr=T, (3.20)

where the quantity G(r)dr is the contribution to the to-
tal kinetic energy of the system from the volume ele-
mentdr.

These authors have studied the effect of charge ac-
cumulation in the binding region on the kinetic energy
of the system. Consider 7, and 7, to be the parallel and
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perpendicular components, respectively, of the kinetic
energy. ‘

-1/89]89] __L< o? >
T 2<8?'Bz>— 2 Z/)822 v) (6.21)
BRICTLANCTN
T“z {(ax v/t ay |8y
1 8% o2
——"2—<Z/) 57+-8_5)_2— ¢> . (3.22)
For spherical distributions
T, =3T,, (3.23)
hence
T,-T, 1
=F=g- (3.24)

The change in the value of this quantity from its
atomic value of 3 hence provides a measure of the ex-
tent to which the molecule formation effects changes in
T, and T}, thereby highlighting the role of T in the pro-
cess. Detailed analyses have been considered for H,,
He,, and extended for other diatomics.”

Wilson and Goddard (1970,1972) have also devised *
orbital partitioning of the binding energy that places
particular emphasis on changes in kinetic energy quan-
tities. They attribute a decrease in kinetic energy, de-
termined by an exchange-type density which must be
described in terms of a set of molecular orbitals from
a Geshkenbein-Ioffe (GI) type of wave function (Goddard,
1967), to be responsible for chemical binding.

In the case of H, and H,*, charge accumulation in the
binding region leads to a local de crease in kinetic en-
ergy of a molecule (relative to separated atoms), and
hence the increase in the kinetic energy as a result of
charge accumulation in the nuclear potential field could
be tolerated. However, for the more general cases,
the localized decreases in kinetic energy are primarily
in the antibinding region. Thus it is not certain if the
localized decreases in the binding region are a neces-
sary general requirement for chemical binding to take
place.

The preceding discussion makes it clear that the sin-
gle-particle density yields outstanding qualitative in-
formation on chemical binding, via useful concepts
such as isodensity contours of p(r), Ap(r), the Hell-
mann-Feynman theorem, the virial theorem, kinetic
energy density, etc. Although the numerical results
depend heavily on the wave functions from which p(r)
is obtained [in the absence of a completely satisfactory
method for the direct determination of p(r)], and al-
though this is certainly a.drawback of the force ap-
proach, there is no reason for dissatisfaction with the
single-particle density.

The phenomenon of chemical binding is intricately
linked with that of molecular geometry, viz., the
shapes and sizes of molecules. As reflected in the dis-
cussion below, the broad problem of molecular geome-
try is mainly concerned with formulating general princi-

"Since we are concerned only with charge density in 3D
space, we shall not discuss the calculation and interpretation
of momentum densities. For a review, see Epstein (1975).
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ples and constructing models in order to have a physi-
cal or pictorial understanding of the ground- and ex-
cited-state geometries of molecules. The use of single-
particle density has greatly aided the development of
such versatile concepts and models.

B. p(r) and molecular geometry

The earlier models of molecular geometry were
based on energetic considerations. The Mulliken-
Walsh model (Mulliken, 1942; Walsh, 1953) tackled
the problem by plotting correlation diagrams in which
the molecular orbital (MO) energies were plotted
against the valence angles and the Walsh rules were
formulated to explain the correlation between the num-
ber of valence electrons and molecular shapes.

The Hartree-Fock SCF theory gives a relation be-
tween orbital energies €, and the total energy E of a
molecule,

E=Y Ney+ V=V, , (3.25)
k
A, being the occupation number of the Zth MO. How-
ever, in the Walsh formulation to study the stabilities
of alternative molecular shapes via orbital behavior,
the relation

Euz’; ALEp

seems to have been employed.
Recently, Politzer (1976) has obtained the relation

E~3(V, +2V,). (3.27)

(3.26)

Starting from (3.27) and by employing the virial theorem,
Ruedenberg (1977) finds

Eugzk NE

to be approximately valid. Thus, there is a theoretical
basis (see later inthis section) for the Mulliken-Walsh
model.

The Valence-Shell Electron-Pair Repulsion (VSEPR)
model (Sidgwick and Powell, 1940; Gillespie and
Nyholm, 1957; Gillespie, 1972, 1974) considers that
the distribution of electrons in the valence shells of
atoms in molecules is determined largely by the opera-
tion of the Pauli exclusion principle. The important
physical consequence of the exclusion principle is that
electrons with parallel spins have a maximum proba-
bility of being found as far apart as possible and this in
turn leads to the conclusion that for a central atom,
forming two or more covalent bonds, the electrons in
the valence shells are localized in pairs such that the
least distances between them are maximized.

However, as Bader and Preston (1966), Bills and
Snow (1975), and Drago (1973) have discussed, the basic
concept underlying the model appears to be fallacious;
the antisymmetry requirement does not necessarily
lead to repulsions between electron pairs in the 3D
space. The VSEPR model is applicable only to the
ground states of those ‘molecules where one can easily
identify the central atom. It cannot be applied to the
internal rotation problem. However, the theoretical
situation regarding VSEPR is still not completely clear,

(3.28)
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especially since Schmiedekamp et al. (1979) have shown,
through ab initio calculations on a number of molecules,
that the calculated relative sizes of bonds and lone
pairs agree very well with the VSEPR assumptions.
Also, some apparent failures of the model can be ex-
plained by examining the total angular space require-
ments of the bond and lone-pair orbitals, rather than
restricting attention only to the bond angles.

In the Second-Order Jahn-Teller (SOJT) theory pro-
posed by Bader (1960, 1962), Bartell (1968), and Pear-
son (1969-1971, 1976), the energy expression is exam-
ined when the perturbation on an idealized molecular
configuration is a small displacement along the ith
normal coordinate @,),

2
5@ =B+ @ (b | + 593 (1o 255

0

oH v >|
50 |Pe
+@z 20 N°0Q, [M/] (3.29)
k#0 -
In (3.29) ¥, ¥, are the wave functions for the ground and
kth excited states, respectively, of the undistorted
molecule; E, is the energy associated with ¥,. The
summation in the last term extends over all the excited
states including the continuum.
Since ¥, for most molecules is nondegenerate and to-

tally symmetric, and because @; changes the molecular

shape,

12ty

(3.30) is equivalent to assuming that the first-order
Jahn-Teller (FOJT) (1937) distortion has already oc-
curred. Thus the third term in (3.29) leads to a de-
stabilization, whereas the last term which accounts for
charge reorganization (since it includes ¥,’s) leads to
stabilization. The net effect determines whether the
idealized configuration of the molecule changes into
another more (or less) stable structure by the distor-
tion @;. The SOJT model then proceeds to evaluate this
effect by imposing the drastic assumption that only the
first low-lying excited state of appropriate symmetry
has a dominant contribution to the infinite sum over the
excited states. This approximation has been examined
by Bamzai and Deb (1978), and a relation between the
SOJT model and the highest occupied molecular orbital
(HOMO) postulate (see later inthis section) isindicated.

Since the SOJT theory is based on MO symmetry con-
siderations, sometimes it is difficult to apply to mole-
cules possessing almost no symmetry. Sometimes or-
bital sequence is also difficult to state precisely.® Al-
though the SOJT theory can be extended to the excited
states, it cannot be applied to the internal rotation
about a single bond.

In case 9, belongs to a degenerate energy level, the
First-Order Jahn-Teller effect (FOJT) (see also Arono-
witz, 1976; Englman, 1972) has to be considered. The
effect is to distort such molecules into a lower symme-

(3.30)

8While applying the SOJT model, one takes the orbital se-
quence from experimental or theoretical results. Thus the
success of the SOJT model seems to reflect the internal con-
sistency of the MO formulation.
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try. In the case of linear molecules, however, the
Renner-Teller effect (Renner, 1934) takes place.

Coulson and Strauss (1962), as well as Coulson and
Deb (1969) have examined the FOJT effects based on the
force formulation of the effect due to Clinton and Rice
[(1959); see also Clinton (1960)]. The distortion in
VCl, has been studied, and the numerical results are in
good agreement with experiment (Coulson and Deb, 1969).

Molecular geometry models based on energetics have
also been formulated by Takahata et al. [(1971); see
also Schnuelle and Parr (1972)] and Liebman (1974).
Extensions to the Walsh model have been proposed by
Gimarc (1970, 1971, 1979), Buenker and Peyerimhoff
(1972, 1974), and Stenkamp and Davidson (1973), Coul-
son and Deb (1971) have provided a reinterpretation of
the Walsh diagram on the basis of the Hellmann-Feyn-
man theorem.

In the Hartree-Fock MO approximation, the Hellmann-
Feynman force on nucleus 4 is as given by (3.2)

F(X,) =g"(X,) +5°(X,) (3.2)
=—z, E zp 11;{’3“—8+z,,2 NG, (3.31)
B=£A AB i

where J,; is the orbital contribution to the force

(EFAi = <¢i IfA I¢i>) .

Integrating &,; over the displacement of the nucleus 4,
the electronic energy can be written as a simple sum of
orbital contributions. The change in electronic energy
obtained by such a procedure corresponds with that ob-
tained directly from the Hartree-Fock method, if the
exact Hartree-Fock orbitals are used throughout the
displacement. Thus, the electronic part of the energy
is expressible as a sum of orbital contributions, in
principle. This is not the case with the conventional
formula of the Hartree-Fock theory.

Coulson and Deb show that for a triatomic molecule
AH,, with apex angle @ a#td A-H length A, the total
energy relative to linear form is

[s] i o

E(a)=2 zf we(oz)+(cosec ?—1>/2. (3.32)
The first term in (3.32) represents the change in the
electronic energy and the second term that in the nu-
clear-nuclear repulsion energy. w: (@) is the work done
in bending a molecule against the electron-nuclear at-
tractive forces generated by the single-particle density
in the 7th occupied MO.

w@=nf flaa. (3.33)
The correlation diagram for w}(a) has been plotted,
and agreement with the Walsh diagram is obtained.
This work explains why, for many molecules, a plot of
Hartree-Fock eigenvalues against a valence angle can
be used for geometrical interpretations, as has been
done by many workers [see, for example, Buenker and
Peyerimhoff, 1974].

The highest occupied molecular orbital (HOMO) model
(Deb, 1974, 1975; Deb et al., 1974,1976) considers the
orbital contributions to the force acting on the terminal
nuclei. The exact transverse force is
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¢)
F.(X,) =2, Z NFL =2y = ;_I;Q_B

i B=3zA AB
The HOMO postulate (Deb, 1974) states that the gross
equilibrium geometry is governed mainly by the be-
havior of the HOMO. If the HOMO is insensitive with
regard to a valence angle, the angular behavior of
the next lower MO, if sensitive, will determine the
shape; if this MO is also insensitive, then the next
lower MO is to be examined, and so on. In the case
when the HOMO and the MO next to HOMO cross each
other in energy and have opposite influences on the va-
lence angle, the net effect of these MO’s is to be con-
sidered. The HOMO postulate, in conjunction with
Hellmann-Feynman theorem, has been remarkably
successful in answering problems dealing with all static
aspects of molecular geometry. The validity of its
geometrical predictions has further been tested by
intermediate neglect of differential overlap (INDO) and
complete neglect of differential overlap (CNDO/2) cal-
culations on a number of new interesting molecules
(Deb et al., 1977; Deb and Mahajan, 1981; Mahajan
and Deb, 1981a, b). For the 17 quixotic hypothetical
molecules studied by Deb and Mahajan (1981)—HCLi,
HBBe, HBLi~, HCB, HNBe, HNB*, HBB~, NaHLi*,
LiB,*, MgBe,, LiB,", MgB,, LiH,?* (unstable), H,0",
CH,”, HBO,?* (unstable), HBF,?* (unstable)—seven cur-
rent molecular geometry models were examined, viz.,
Mulliken-Walsh, VSEPR, HOMO postulate, ESF (see
later), SOJT, Takahata ef al., and Liebman’s models.
The HOMO postulate was found to be the most success-
ful, having only one exception (NaHLi*), whereas the
Mulliken-Walsh model stands next with only three ex-
ceptions (HNB*, NaHLi*, HBF,?*). However, the HOMO
postulate has not been derived from an a priovi quan-
tum -mechanical basis, although some reasoning has
been proposed (Deb, 1975). This reasoning in terms of
electron relaxation has been tested with INDO wave
functions for BeH,, but an unequivocal answer could
not be obtained (Mahajan and Deb, 1981c).

Nakatsuji (1973) has also proposed a versatile elec-
trostatic force (ESF) theory which can be applied to a
variety of molecular phenomena, such as shapes (Naka-
tsuji, 1973, 1974; Nakatsuji et al., 1973), vibrational
force constants (Nakatsuji et al., 1973), chemical reac-
tions (Nakatsuji, 1973a, 1974a; Nakatsuji et al., 1973),
and long-range interactions (Nakatsuji and Koga, 1974;
Koga and Nakatsuji, 1976). Here we outline the essence
of their work; the details may be found in a recent re-
view by Nakatsuji and Koga (1980).

I {x,} is the atomic basis set, P is the bond order
between X, and X,, the force F(X,) is rewritten as

R,
EF(}(A) =ZA{ZPTS<XTIfA ’X$> - Z Zp }z_gﬂ—} I (3'34)
78 BezA AB
where
Ta v
=4 (3.35)
The single-particle density is taken as
(3.36)

Cp@) =) P X, (o)X (r) .
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The Hellmann-Feynman force is then partitioned into
three parts, similar to the earlier orbital partitioning
that was proposed by Bader: The atomic dipole (AD)
force comes from the one-center integrals; the ex-
change (EC) force comes from the net exchange force
integrals [which represent the net attractive (or re-
pulsive) force due to the accumulation (or depletion) of
electron density in the overlap region], the extended
gross charge (EGC) force which constitutes the rest of
the force. Thus

F, =FAD L FECL FEGC, 3.37)

The AD, EC, and EGC forces can be written in terms of

{x,}, £,, and P,,.
One may employ the point-charge approximation for
the integrals in the EGC force,

R
<st xSB> = 1?:33 ’
and the Mulliken approximation for the three-center
integrals (X,p|f,|Xsc)» Where B,C#A and 7#s,

r

A
3
Va

(3.38)

<x'rB lfA | xsc>

=éSrBsC(<X.rB,fA'X'rB>+<XsCffA|xsc>), (3-39)

where S, .. is the overlap between X, and Xsc. The
approximate® EGC force thus obtained is called the
gross charge (GC) force.

The ESF model then proceeds to consider the role of
each of these forces in determining geometry, the sta-
ble balance of these yielding equilibrium. A set of
guidelines, based on the force integrals on A in A-A
and A-H pairs, has been given (Nakatsuji, 1973a) in
order to assess the relative importance of these forces,
and the geometries of ground and excited states are
rationalized (Nakatsuji and Koga, 1980) on the basis of
these. The ESF model can deal with static and dynamic
changes in molecular geometry, and can make both
qualitative and quantitative geometry predictions.

By virtue of their use of single-particle density, the
force models of molecular geometry have proved to be
more useful and versatile than almost all the energetic
models proposed earlier. Although the force models
bring forth their own difficulties, not completely re-
solved at present, their enhanced visual appeal makes
their theoretical foundations more transparent and
sound.

The above discussions on chemical binding and mole-
cular geometry (Secs. III.A and III.B) pave the way to a
study of intermolecular forces and chemical reactivity.
We shall now proceed to discuss the former as a pre-
lude to a study of the latter. However, it should be
realized that chemical binding, molecular geometry ,
intermolecular forces, and chemical reactivity repre-
sent merely an artificial partitioning of the broad
problem of molecular interactions and that one hopes
that some day we should have a unified theory that
incorporates all these problems in a simple, coherent,
and rigorous manner.

This approximation is not to be used for rigorous ESF
calculations.
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C. p(r) and intermolecular forces

Because of the small changes being introduced by the
interaction, until the repulsive part of the potential sur-
face is reached, the intermolecular force problem can
be effectively tackled via the perturbation method.
However, in the region where the overlap of the wave
functions of the two molecules is not negligible, the
theory poses the following difficulty: The unperturbed
Hamiltonian H, (this is the Hamiltonian for the separa-
“ted molecules so that it considers that part of the total
potential which is due to interactions of electrons with
their “own” nuclei and with the other electrons in their
“own” molecule) is not invariant with respect to the
antisymmetrizing operator, A. Now

AH-HA=0. (3.40)
However, from

H=H,+V, ' (3.41)

AHy-H,A=VA~AV, (3.42)

of which neither side is zero. Thus we have an in-
equality between an apparently zero-order expression
and an apparently first-order expression, which shows
that any simple perturbation theory in which various
terms are considered order by order is bound to fail.
Chipman et al. (1973) have discussed various attempts
to overcome this problem.

In the energy approach, the problem is studied by
comparing the calculated energies of the two separated
molecules and of the “supermolecule” comprising the
two species. Ingenious methods such as the introduction
of second quantization and diagrammatic perturbation
theory, etc., have been discussed in a review article
by Stamper (1975).

In their study of two H atoms approaching each other,
Hirschfelder and Eliason (1967) verified an earlier con-
jecture of Feynman (1939) that the long-range van der
Waals attraction arises due to a dipole-dipole force.
They were able to obtain an accurate value of this force
(R™" term) in a perturbative treatment of the H-H inter-
action. Contour maps of Ap(r) for H, show (Bader and
Chandra, 1968) pictorially that at R~8 a.u., the atomic
distributions are inwardly polarized due to a dipole mo-
ment (of order R™) induced on each atom; each nucleus
experiences a binding force due to its own distorted
charge density. :

A major difficulty in applying the Hellman-Feynman
theorem to the study of intermolecular forces is the
lack of reasonably good p(r) for such systems. Since
electron correlation is expected to play an important
role, one should really employ electron densities of
beyond Hartree-Fock accuracy. Thus, such applica-
tions have been restricted to very small systems. In-
teratomic forces probably “reflect the state of the art
in a more candid way.”

Chandra and Sebastian (1976) have partitioned p as

P=Pu+Ppu.+ Lp (3.43)

and have studied the H«--He" interaction leading to the
lowest two states of the HeH* ion. The behavior of the
f% (charge equivalent of the electronic force along the
bond onthe nucleus Aby charge density; see Sec. II1.A.4)
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is studied as a function of R,X?

=R? 24
i_Rf p(r)ridr.

Within the ESF framework, Nakatsuji and Koga (1974)
have studied the long-range interaction between two
atoms. At large R, the EC force varies as e™2F and can
hence be neglected in comparison to the 1/R varying
terms. The force on A thus arises from the AD and
EGC contributions,

542z, | p Ay Qar,,

(3.44)

(3.45)

grac =24{f py (B)f §Yat, -%} s (3.46)

pr=p @A) +p,(B).

In a perturbative approach, the following two results
can be obtained:

F"(AD)=0 Vn if A is a bare nucleus. (3.47)
F,(EGC) =0 at large R if p,(B) is spherically sym-
metric and B is a neutral atom. (3.48)

Nakatsuji and Koga (1974) have calculated the leading
terms of the interaction, obtaining excellent agreement
with the corresponding energy calculation. Nakatsuji
et al. (1973) have also studied the intermediate range
interaction between two initially planar methyl radicals
to form ethane. ) '

Koga and Nakatsuji (1976) have cleared an earlier
paradox (Coulson and Hurley, 1962; Hirschfelder and
Coulson, 1962; Steiner, 1973) concerning the applica-
tion of the Hellmann -Feyﬁman theorem to long-range
forces: There were contradictions about whether cer-
tain types of wave functions satisfied the theorem or
not. The authors demonstrated that the proper choice
of coordinate system ensures satisfactory forces on
application of the theorem. The relative (R) system
(in which nuclei and electrons of each subsystem are
measured from an origin fixed in each subsystem) is
amenable for application of the theorem, since the nth
order force is equal to the derivative of the nth order
perturbation energy and wave functions and their de-
rivatives up to order n determine the force up to or-
der 2n +1. Thus the force treatment of long-range
interactions is as accurate as the energetic (pertur-
bative) treatment.

In an alternative approach, Gordon and Kim (1972;
Kim and Gordon, 1974) have proposed a model, in-
volving p(r), which describes satisfactorily the inter-
molecular potentials between closed-shell systems, at
shorter distances out to the potential minima, but
which fails to give an adequate description of the en-
tire potential curve. Their calculation of energy is
based on three main approximations: First, it is as-
sumed that no rearrangement or distortion of the se-
parate atomic densities takes place when the atoms
approach each other. Thus this undistorted distribu-
tion will not describe a situation where a strong chemi-
cal bond is formed. Second, the Coulomb interaction

93) Note that 2z, within the integral sign in Eq. (3.44) denotes
a .coordinate, mot a nuclear charge.
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between all charges are calculated using additive elec-
tron density. The electronic kinetic energy, exchange
energy, and correlation energy are evaluated using the
uniform electron gas approximation. Last, atomic
Hartree-Fock wave functions are used for constructing
p(r).

Using this model, Kim and Gordon (1974a) have
evaluated the interactions of rare gas atoms with al-
kali and halide ions. The calculated potential curves
agree well with available experimental results. How-
ever, the model fails at larger distances, since in-
duction forces are not included. Similar calculations
on ion-ion interaction potentials (Kim and Gordon,
19'74b) yield molecular bond energies, bond lengths,
and vibrational frequencies in agreement with experi-
mental data.

The method works quite well for larger systems.
Rae (1973) has demonstrated that an additional spurious
electron self-energy term is the reason the calculation
for He- - - He is not very satisfactory. On correction
of this error and inclusion of dispersion terms, Rae
has obtained potential curves for all inert gas pairs.'®
Lloyd and Pugh (1974) have improved on the Ar--«Ar
and Kr - - - Kr curves by employing the electron gas
approximation to only the valence electron density.

Clugston (1978) critically discusses the assumptions
in the Gordon-Kim model and assesses the relative
performance of the model and its various modifica-
tions. Specifically, there are certain problems as-
sociated with writing the supermolecular density as a
sum of undistorted spherical atomic densities. Da-
vidson (1976) points out that this is not the correct
zero-order formula and that the kinetic energy will
therefore show erratic behavior. Kolos and Radzio
(1978) have used the correct zero-order density, con-
taining additional terms besides the superposed atomic
densities, and have obtained better values for both
kinetic and potential energies. However, note that
classically two such atomic densities lead to inter-
molecular repulsion at all internuclear distances
(Sec. II1.A.1). The fact that the Gordon-Kim model
does yield an attractive part of the intermolecular po-
tential energy curve is due to the manner in which the
model handles the exchange-correlation energy den-
sity functional. This ensures an attractive potential
at large R. In fact, correlation energy contributes
nearly 85% to the well depth for Ne---Ne, Ar---Ar,
Kr--:-Kr, and Xe---Xe, while the He - - - He potential
energy curve is made too negative with a rather deep
minimum! However, this correlation energy is of the
short-range type. Hence, for all other systems po-
tential curves are too high for R>R . But the repul-
sive part of the potential curve is very well described.
Further, the He - - - He results are considerably im-
proved if the dispersion contribution is included for
large R and the correlation energy for short R (Clug-
ston, 1978).

Kim (1975) has also studied the nonadditive three-

0gince these approaches start off with isolated neutral
atoms, interesting questions such as the occurrence of the
maximum in the interaction (Matsen and Scott, 1966) between
He (1s 2s3; 3S) and He (1s2;1s) remain unanswered.
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body interactions of rare gas atoms. Using again the
assumption that the supermolecular density is equal

to the sum of the separated atomic densities, the non-
additive interaction energies for He,, Ne;, Ar,, Kr,

at small and intermediate distances have been calcu-
lated and found to be very small (Kim, 1975a). At in-
termediate and large distances these energies are

few percent or less than the total interaction over most
internuclear separations (Kim, 1975b).

D. p(r) and chemical reactivity

In order to explain the reactive properties of
molecules various concepts such as atomic charges
(Julg, 1975), bond orders, free valences, frontier
electron densities (Fukui, 1971, 1976; Fleming
1976), and localization energies have been proposed
from time to time.

In the population analysis scheme of Mulliken
(1955), the atomic charges are expressed in terms
of the coefficients of the linear combination of
atomic orbitals (LCAO) forming the total wave func-
tion. Such descriptions have been fairly successful.
However, the populations are dependent on the math-
ematical form of the wave function, which is obviously
a drawback. Politzer and Harris (1970), as well as
Bader ef al. (1971), have proposed that the atomic
charge on atom 7 be (z, -Q,), where

Q, =fp(r)dr . (3.49)
In (3.49) the integration is performed over a region 7
associated with the »th atom. In this case, a description
in a different basis set will also predict the same
atomic charges. Thus by introducing p(r), an earlier
ambiguity is removed. However, the charge defined
by (3.49) is assumed to be a point charge centered at
the atom [although p(r) does account for the “smeared”
electron distribution].

Bonaccorsi et al. (1970) introduced the concept of
molecular electrostatic potential, V(r), generated in
the 3D space of the molecule:

_ Za
V)= R, o -

In a series of papers (Bonaccorsi et al., 1970-1972,
1974, 1975; Berthier ef al., 1972; Petrongolo and
Tomasi 1973; Scrocco and Tomasi, 1973, 1978; Ghio
and Tomasi, 1973), they used this idea to study the
reactive properties of several molecules, including
those of pharmacological interest (Petrongolo and
Tomasi, 1975; Pullman and Courriere, 1973). This
has, in fact, stimulated a great deal of work by many
researchers. :

The first term on the right-hand side of (3.50) is the
contribution to V(r) from the nuclei, whereas the se-
cond term is the contribution from the electronic dis-
tribution to the potential at r. +@V(r) is the electro-
static interaction energy between the undistorted
molecule and the charge +Q located at r; hence +QV(r)
is the first-order term in a perturbative treatment of
the total interaction energy. Thus polarization,
charge transfer, and exchange effects whichare significant

p(r’)dr’
lr —rl "’

(3.50)
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factors when the two distributions are fairly close are
not accounted for in the V(r) given by (3.50). Hence
V(r) is more useful for studying the earlier stages of
interaction.

When isopotential contours of V(r) are drawn for a
particular molecule, the reactive properties may be
studied in a qualitative fashion by examining regions of
negative potential (possible sites of electrophilic at-
tack) versus regions of positive potential (these may
not necessarily reflect sites of nucleophilic attack
since they may arise due to hydrogen atoms or high
nuclear charges). The reliability of the results rests
on two factors: the accuracy of p(r) and the accuracy
to which the integral in (3.50) is computed.

The V(r) concept has been applied with promising
results to many systems, an example being nucleic
acid bases (Bonaccorsiefal, 1972b; Pullman and Cour -
riere, 1973; Pullman and Pullman, 1973). Such mole-
cules are particularly interesting since they possess
more than one possible site for protonation or electro-
philic attack, thus providing a good test as to whether
the isopotential curves of V(r) can distinguish among
different positions of attack. Molecules with similar
charge distributions on the protonating site frequently
offer very different behavior, e.g., in both adenine and
guanine (Fig. 3) N, is the most charged among the py-
ridine-type nitrogens; however, alkylation reactions
occur preferentially at N, and Og of guanine, but at
N, or N; of adenine. The isopotential maps for an ap-
proaching unit positive charge account for this, and
they are the first to do so unambiguously. The map of
adenine constructed by using ab initio wave functions
shows strong attraction for an external positive charge
at N, and N,. The map for guanine in the CNDO/2 pro-
cedure, although less reliable, nevertheless shows the
difference in behavior between the two compounds.

. (a)

The effects of polarization and charge transfer have
been studied by Pullman (1973) for the peptide bond
with the conclusion that these effects leave the overall
reactivity pattern unchanged. However, for large
molecules with several competing reactive sites, it
seems pertinent to investigate the effects of interaction
at one site on the reactivity of another, since the inter-
action produces changes in the charge distribution that
may affect the other fragments of the molecule. This
problem has been tackled by Bartlett and Weinstein,
(1975; Weinstein, 1975) viaa double perturbation theory
todescribe the simultaneous attack ofa large molecule
by two or more charged species. The effects of the
interaction with a neutral molecule on the reactivity
of adenine were also reproduced (Weinstein, 1975)
successfully by this method. Recently Chang et al.
(1976) have formulated a multiple perturbation method
for the treatment of molecular reactivity to describe
the simultaneous interaction of a molecule containing
several reactive sites with a second molecule and a
point charge. The modification of the reactivity pro-
perties of the main molecule by electrostatic inter -
action, polarization, dispersion, and correlation cor-
rections due to the presence of the second molecule is
identified from the effects of these corrections on the
interaction energy with the point charge. The method
is applied to a simple molecule containing two reactive
sites, e.g., formyl fluoride HCOF, interacting with
HF at hydrogen-bond distances. The results are in
agreement with the “supermolecule” LCAO SCF cal-
culations, indicating that the electron redistribution
is adequately represented by the perturbation method.
These new approaches have been applied to study re-
activity patterns of the tryptamines (Green et al.,
1976). A list of molecules for which maps of V(r) have
been characterized is given in a review by Politzer and

O0.0

(b)

FIG. 3. Isopotential maps (in keal mole™!) for the approach of a unit positive charge in the planes of (a) adenine (using an ab initio
wave function), and (b) guanine (using a CNDO wave function). (Reproduced from Pullman and Pullman, 1973. Courtesy, Butter-

worths and Company, London).
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Daiker (1980).

In an interesting work Srebrenik et al. (1974) have
related the molecular binding energy to the electro-
static potential. Let V(R,R}) denote the electrostatic
potential generated at R/ due to electron density and
nuclear distribution denoted by R, viz.,

o [ _PR,x) Zg
V®R,R,) fwlr—n,;ld“ > R

Bt a

(3.51)

The force exerted on nucleus « will be the gradient of
this potential at R/, =R, :

FoRa) = =2, [VLVR,RY) Iny n, - (3.52)

The difference in energy between two configurations
R,,R, is the electrostatic work done in moving the nu-
cleus a from its position in R, (say R,,) to its position
in R, (say R,,), through the gradient of the electrostatic
potential, itself a function of R,

Roa
AE:-zaf [V4V (R, R - p 4R, - (3.53)

Ria
Thus the electrostatic view of chemical binding pro-
vides a conceptual link between AE and V.

In the ESF theory proposed by Nakatsuji and co-
workers it was recognized that the AD and EC forces
are the dominant factors for determining molecular
structure. Chemical reactivity is also tackled by simi-
lar considerations. The dynamic behavior of the elec-
tron cloud during a chemical reaction is expected to
be an important factor giving rise to the internal forces
that work to resist or accelerate the process. When
the electron cloud precedes the nuclear motion, the
system receives a force that accelerates the process
and vice versa. It is possible to relate this electron
reorganization to the AD, EC, and EGC forces. The
electron density in the atomic region of nucleus A gives
rise to the AD force on A, and that in the A -B bond '
region gives rise to the EC force on A. The electron
density in the other regions mainly shields the other
charges (EGC force) and does not have the electron
preceding or following character (except in the case
of ionic reactions where this character would also
manifest itself in the EGC force).

Starting from the Hellmann-Feynman and Integral
Hellmann-Feynman theorems, the guiding principle
obtained for chemical reactions is as follows (Nakat-
suji, 1973a; Nakasuji and Koga, 1980): If the electron-
cloud preceding occurs at the configuration a, the nu-
clear arrangement will proceed in the @ direction, but
if the electron-cloud following occurs, the system will
rearrange inthe —Q direction.’’ Further, if the energy
change is known to be monotonous throughout the pro-
cess between ¢ and f, the occurrence of the electron-
cloud preceding means that the configuration f is more
stable than the configuration ¢ and vice versa.

Thus for chemical reactions (Nakatsuji, 1973a), the
interaction between reactants should cause an increase
in electron density in the region between the reactive
sites of the reactants and at the same time must cause

The nuclear displacement coordinate of a system from
initial (¢) to final (f) states is designated as @, whereas « is
the intermediate nuclear configuration between i and f.
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a decrease in electron density in the region of the old
breaking bond. Nakatsuji et al. (1973) have reported
the study of two approaching methyl radicals to form
the dimer, viz., ethane molecule. For other radical
and ionic reactions, such as the formation of NH; and
H,'O, see Nakatsuji et al. (1978) and Koga et al. (1979).

In passing, it is pertinent to mention that the ener -
getic models such as the SOJT (Pearson, 1971,1972,
1976) model, Frontier Molecular Orbital theory (Fu-
kui, 1976; Fleming, 1976), Woodward-Hoffman rules
(Woodward and Hoffmann, 1970), and earlier works
of Dewar (1966) and Zimmerman (1966) have met with
considerable success in the study of chemical reac-
tions. These models are based on MO symmetry con-
siderations for the two approaching systems. Recently
Mclver and co-workers (Mclver and Stanton, 1972;
Mclver and Komornicki, 1972; Mclver, 1974) have
examined the role of the transition state symmetry and
structure in the interpretation of chemical reactions.
Thus the application of group theory provides a means
of classifying geometries and normal vibrations, re-
duces computational labor, and sometimes even pro-
vides “selection” rules for the allowed structures of
the transition states. In contrast, models such as the
electrostatic potential method, as well as the ESF
theory, deal with p(r) and regard the changes occurring
in it to be of primary importance in the study of chem-
ical reactivity.

We shall now discuss briefly some interesting works
dealing with p(r) that shed light on properties such as
transferability, quadrupole coupling constants, cor-
relation energy, etc.

E. p(r) and some miscellaneous properties
1. Transferability

One of the most fascinating observations in chem-
istry is the fact that fragments or groups of fragments
in molecules have an almost fixed characteristic set
of properties, e.g., dipole moment, polarizability,
reactivity, etc., in differing chemical environments.'?
This retention of properties has recently been justi-
fied by the virial fragment concept, based on rigorous
quantum-mechanical foundations (Sec. II.B).

It is possible to state the condition to be satisfied if a
fragment is to possess an identical energy and popula-
tion in two different systems in electrostatic equili-
brium. The requirement that E(2) be the same implies
that 7(f2) and V() be the same in both systems.

V(Q)=ViQ)+V°(Q), (3.54)

where Vi(§2) and V°(2) are the virial of forces origina-
ting within the fragment and the virial of forces ex-
erted on the fragment by the nuclei and charge density
outside the fragment. Since the fragment is identical
in all respects, the inner virial Vi(§2) will be the same.
Hence the sum of the virials of all the external forces
exerted on the fragment (the individual contributions
will necessarily be different) must be identical in the
two systems.

L2For an interesting discussion on transferability of mole-
cular shapes, see Deb (1974,1975).
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Bader and co-workers (Bader and Beddall, 1972;
Bader et al., 1973) have observed that kinetic and total
energies of fragments remain unaltered when the
fragment electronic charge remains so. Thus the ex-
tent to which fragment properties remain unchanged
in different systems is determined by the extent to
which p(r) remains unchanged. This implies that T
(), V(2) are also conserved. .

Tomasi and his co-workers (Bonaccorsi et al., 1970,
1971b; Scrocco and Tomasi, 1973) have studied the
contribution arising from various groups in the mole-
cule to properties such as (x), (y), (xy), etc. The ex-
tent of variation of the terms among the set of mole-
cules is a clue to the degree of conservation. An ex-
amination of such data shows a fair conservation of the
electrostatic potential of CH,.

Recently, Bonaccorsi et al. (1976,1977) have devised
a method for obtaining a fairly accurate description
[compared to the SCF generated V(r)] of the electro-
static potential V(r) of a molecule which does not re-
quire a previous calculation of the molecular wave
function. The molecule is considered to be composed
of completely localized electron pairs, expressed in
terms of LCAO models directly transferable from one
molecule to another. They observe that the V(r)’s show
a noticeable degree of transferability from one mole-
cule to another.

2. Total energies, energy differences, correlation
energies

Foldy (1951), Wilson (1962) and/Frost (1962) obtained
expressions for the energies of atoms and molecules
by visualizing a process in which p(r) depends on a
parameter X\ which varies from 0 to 1, attaining the
final value 1, as the nuclear charges get switched on
from O to their final values; hence

HQ) = Tuzzﬂ -—AZ 2o +Z-— (3.55)
ai i<j i
oH Za2
= =2x = (3.56)
RS a<s Bas
Thus the electronic energy E, is
ZaZ plr,x)
E, =2, T - Zzaf f"( dr dx . (3.57)
«a<B (2 (:] o

The trouble with applying (3.57) to actual systems is
that p(r, ) must be known throughout the range of in-
tegration.

Politzer and Parr (1974) prove

2 z ’
E=%¢3_§Lmz/2<g~j’§)lvdz', (3.58)
where
p(r’, z)dr’
¢o=(§3’5—([i‘;—i—z-)) L[ (3.59)

=0

In (3.59) ¢(r, 2) is the free-atom screening function
which measures the screening of the nucleus by elec-
trons in a spherically symmetric free atom of nuclear
charge z,
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P(r,z) = ——L—W(: Z), (3.60)
where
Vir,z) pf‘; lefi[r (3.61)

In (3.58) the path of integration for the second term
is the isoelectronic series having N electrons and a
nuclear charge ranging from zero to z.

For the case of molecules, the screening function
¢, is defined for each nucleus @, and an analogous
expression for the energy of the molecule in terms
of a property evaluated at its nuclei can be obtained:

3
E=3 Zza% o=t Zf '2< Oq ") dzl,. (3.62)
In (3.62),
a,0 = a_gg) (3.63
.(Pa,O (aya ra=0, . )
where
balry, 1= Lol Ea N (3.64)
p(r’, Ndr’
Vira A)# Vg +BM lRB-r I lr-r,l
(3.65)

Thus V(ra;)\) is the total molecular electrostatic po-
tential evaluated at a point r, measured from nucleus
a, and ¢, represents the screening of a by electrons
and other nuclei.

There are three main formulas for computing energy
differences:

N ap - SUslHplUp)  GulHally)
AFE =
R AT Tal B

the tilde indicating that the quantities are approximate.

(i) AE =fB <‘/’(7‘)lzi;lw(")> dx.
BTV IFTN

Equation (3.67) is the integrated Hellmann-Feynman
(Epstein et al., 1967) formula; A is some parameter,
when A=A, =y,, and when A=B, § =¢5. The princi-
pal drawback in Afz"d is that ¢(X) is required to be known
for the range of integration.

WplHpg =Hyly,)
Wplda)

Equation (3.68) is the Integral Hellmann-Feynman for -
mula, whose utility was recognized by Parr and co-
workers (Parr, 1964; Kim and Parr, 1964; Kim, 1968;
Parr et al., 1968; Wyatt and Parr, 1965, 1966).

Kim and Parr (1964) showed

, (3.66)

(3.67)

(111) AE = (3.68)

AE =AV,,+ [ o, Hrdr, (3.69)
where dr is the configuration space volume element,
AV, is the nuclear -nuclear repulsion energy difference
for the two configurations,
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BaZ Z 2
av,, =25 _3 L (3.70)
a<B ] aB aB
z z
H=3-%-3.%, (3.71)
o -2 o« o

and p 5 is the first-order spinless electron transition
density,

N
Pap= §f ¥p(1,2,...,N0,Q1,2,...,N)ds,;dx,...dxy,

(3.72)

S being the overlap integral.

The integrated Hellmann-Feynman theorem has been
applied to the barrier to the internal rotation problem,
one such example being the ethane molecule, tackled
by Ruedenberg (1964). ‘

In the viewpoint of the ESF theory proposed by Na-
katsuji and co-workers, the dominant origin of the in-
ternal rotation barrier arises (Nakatsuji and Koga,
1980) from the behavior of p(r) during the process of
internal rotation. For example, in the case of ethy-
lene, the orbital following and the resulting resisting
- force are the origin of planarity of the molecule. The
same holds for the coplanarity of a wide range of dou-
bly bonded hydrocarbons. Thus the orbital following
and preceding are the origin of the rotational barrier
and arise from the difference in interactions (i.e., dif-
ference in overlap effects) of the p, and p, atomic or-
bitals (AO’s) with the electron cloud of the rotor of
another side (Nakatsuji and Koga, 1980).

Regarding the correlation energy, Lie and Clementi
(1974) propose that E, be calculated semiempirically
in terms of a functional of the Hartree-Fock density
p(r):

E_ = f pelpldv. (3.73)
They defined a modified density

pmz Eﬁipi H (3.74)
where

7, = g 0.5(2n)?

n; being the occupation number of the ¢th orbital. The
empirical expression for E_ is

E, = f 0.02096(1.2 +p1/3)1pt/3gy

+f 0.02096 In(1 +2.39p*/*) p dv. (3.175)

m

This form ensures that computed values of the atomic
correlation energies agree with experiment, both for
closed- and open-shell states.

The functional is then used to calculate E, for first-
row hydrides, as well as homonuclear diatomics of the
first-row atoms. They observe an improvement with
experiment in binding energies and dissociation ener -
gies, over the corresponding Hartree-Fock values
when Hartree-Fock functions with proper dissociation
were employed.
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Kim and Gordon (1974) have calculated kinetic, ex-
change, correlation, and total energies for several
atoms within the electron gas formalism. A com-
parison with values obtained from Hartree-Fock cal-
culations shows a characteristic accuracy of 10%.

3. Xa scattered wave method

Slater and co-workers (Slater, 1965, 1974, 1978;
Johnson, 1966, 1973; Slater and Johnson, 1972; John-
son and Smith, 1972) proposed an alternative to the
LCAO-MO method. Based on the scattered wave me-
thod in solids (Korringa, 1947; Kohn and Rostoker,
1954), the Xa method aims to solve the Fock equations’

Fo;=xi:, (3.76)
where
F=T+V +V,. (3.77)

~

V., is evaluated classically as the potential due to the
nuclear charges and the electron density p(r), given
by the usual expression

p= Z N;p¥o,,

where qbz is the ith occupied spin orbital and N; equals
unity.

Dividing the p(r) into terms due to the up and down
spins, the local exchange terms in the X« approxima-
tion are given by

~ 3 1/3
Vgt ==3a [—gpk] (3.78)
and a similar expression for the spin-down term.

In order to solve Eq. (3.76) numerically, the mole-
cule is divided into a number of regions: atomic re-
gion of nonoverlapping spheres, interatomic region
between the atomic spheres and an outer sphere, and
extramolecular region outside the sphere.

In the first region, V is spherically averaged, in
the second it is assumed constant (equal to the volume
average), and in the third it is spherically averaged.
Starting from the Herman-Skillman (1963) free-atom
potentials, the spin orbitals are found by an iterative
scheme. This is the so-called muffin-tin approxima-
tion; o is an adjustable parameter, of value~0.7.

The total energy E,, is obtained by the Slater sta-
tistical total energy, and it dissociates correctly to the
separated atoms. The eigenvalues of the virtual or-
bitals are calculated for a field of (N —1) electrons
and are more appropriate for the description of ex-
cited states. The method gives a good description of
one-electron properties and has been successfully ap-
plied to large molecules, including those of biological
interest. It does, however, have its disadvantages,
viz., poor prediction of molecular geometries where
lone pairs are involved, a poor description of barriers
to rotation for certain molecules, and inadequate de-
scription of m-electron systems. Johnson et al. (1973)
have given a review of the method, while Slater (1973)
has offered suggestions to remove the weaknesses.

While the errors due to the muffin-tin approximation
can be quite large, e.g., for large planar molecules, it
has been emphasized (Connolly, 1977) that these errors



Bamzai and Deb: Single-particle density in chemistry 119

are not in the Xa method itself. Various modifications
have been suggested to compensate for these errors
[for a discussion, see Costas and Garritz (1979)], and
the exact relation between the muffin-tin approximation
and non-muffin-tin corrections has been discussed by
Danese and Connolly (1974; Danese, 1974). The non-
muffin-tin results for H,, C,, N,, and CO are consi-
derably improved over the muffin-tin ones, although
Danese (1977) pointed out that since neither the Xa nor
the local density-functional theory describes all atomic
multiplets, there may be problems in describing bond-
breaking processes by these methods. However, Har-
ris and Jones (1979) have calculated the binding energy
curves for low-lying states of the 3d-dimers, K, to
Cu,. Overall, they obtained reasonably good agree-
ment with spectroscopic data and attributed the dis-
crepancies in the calculated curves to an incorrect
description of s -d transfer which is inherent in the
local spin-density -functional for exchange-correlation
energy which these authors employed. In the case of
chemisorption of oxygen on a nickel (001) surface, non-
muffin-tin corrections lead to a good description of the
photoemission spectrum and the interaction energy of
oxygen on the metal surface (Li and Connolly, 1977).

There are ways of avoiding altogether the numerical
solution of X equations, thus bypassing the muffin-tin
approximation. One such way is the discrete varia-
tional method (see Baerends and Ros, 1975, 1978; Ro-
sen et al, 1979) where an LCAO-type strategy is adop-
ted. The one-electron wave functions { ¢,} are expan-
ded as linear combinations of suitably chosen analytic
basis functions {x},

¢, = jZchji .

The method requires the selection of a discrete set of
appropriate sample points r,, with associated weights
w,, followed by minimization of the error matrix

(3.79)

8= 2wt EF =g, r), (3.80)

where F is the one-electron Hamiltonian. This gives
the secular equation

| Fy; =28, =0 (3.81)
where
Fti = Z ka?‘(rk)FXj(rk) ’ (3.822)
k
Sy = E we XF () X;(x,) . (3.82b)
k

While Baerends and Ros used Slater -type AO’s as
basis functions, Sambe and Felton (1975, 1979) em-
ployed Gaussian functions in the basis. The charge
density and the Xa local exchange potential are ex-
pressed in terms of certain auxiliary fit functions i
and g;, centered at the nuclei,

p(r)= Z a;f;(), (3.83a)

- 3a[3p(r)/8m] /3 z b, g,(r). (3.83b)
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The Hamiltonian matrix elements are then evaluated
analytically in terms of integrals involving f;, g,, and
¢;, and the coefficients a; and b, are fitted by a least-
squares procedure. For both small and large mole-
cules, these LCAO-type techniques lead to much im-
proved results as compared to the earlier muffin-tin
approximation, without unduly increasing computer
time.

4. Force constants, quadrupole coupling constants

If ', A" are parameters specifying nuclear posi-
tions, one obtains, on differentiating the Hellmann-

Feynman formula,
3aH 98 z,/J
* —_—
fzp 8A3A” ll)dT flp ah’ ahli

ay* o H
+f ax” an VAT
Byef's Brown (1959) termed the last two terms in (3.79)
as nonclassical, since the first term gives the force
constant in a classical electrostatic picture in which
the nuclei move through a fixed charge density due to
the electrons and the other nuclei, whereas the last two
terms involve the transition densities when the per-
turbation theory expression is written.
Salem (1963), while discussing formulas for force
constants, wrote 8%E, /6R? for a diatomic molecule as

= 9 Eel
Koxe = 5307

(3.84)

_ T " 3p cosh
K=z, [qA + yp(A) —fa——XA S 4 dr] ) (3.85)
where
225 _ 0(3 cos?6,, —1)
1= 53 — (3.86)
A RS 7’A

is the electrostatic field gradient at nucleus A due to
nucleus B and the electrons; g, also appears in the
quadrupole coupling constant expression, eq,Q,, @,
being the quadrupole moment of nucleus A.

In a related work Anderson and Parr (1970) expres-
sed the molecular electron density for a diatomic mole -
cule as

(3.87)

where NPF means “not perfectly following.” The force
constant can then be written as

P =P, +Pg +PNpF »

1

ViEel =4nz ,p(A) -z, f V-V, -Ir—_R-;'—dT

The part of the electron density that moves rigidly with
A gives no contribution to ViEﬂ, Hence p, does not
enter. Further, V,p;=0 (nucleus B is fixed while A
moves). Thus

8%2Ea 2 OE,

2 = e— £ Z el

ViEa 9R? R 3R
=4mz ,pg(A)

1
+<4773APNPF(A )"'ZA <VAPNPF . V4m>> . (3.88)

(3.88) is an exact expression.
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If we assume pypyp(A) to be negligible compared to
pg(A), we obtain

K~V3E, ~[41z,0(A) ], . (3.89)

A detailed review of expressions for force constants
is given by Goodisman (1980).

We shall conclude this article with a brief discussion
on two recent interrelated concepts which are likely to
find quite interesting applications in the near future.
These are respectively concerned with internal stres-
ses in molecules and the fluid-dynamical interpretation
of quantum mechanics. :

F. p(r) and internal stresses in molecules

As an extension of the force concept, following the
suggestion of Feynman (1939a), Deb and Bamzai (1978,
1979) have presented a stress formalism: Associated
with each point in the 3D space of a molecule , a
stress tensor S% can be defined in terms of internal
fields arising due to the nuclear and electronic dis-
tribution. - The index v refers to the direction of the
local force and ¢ refers to the direction of the posi-
tive outward normal to the area on which the force
acts. The single-particle density p(r) is sufficient to
construct S}, whose components have the same form
as Maxwell’s stress tensor for classical electromag-
netic fields.

For many-electron systems the covariant derivative
of S/ yields the local electrostatic force density,

Sy . =py(E,+F,)+p(E,+F,). (3.90)

In (3.90) E, is a component of the field arising due to
nuclear charge distribution p, (related by Poisson’s
equation E¥, =4mpy,), whereas F, is the field arising
due to electronic distribution p. It has been shown that

Se= Z%[G”Gu—%éij-G] (3.91)
satisfies (3.90), where
G=E+F==-VV (3.92)

mol »

V o1 being the molecular electrostatic potential, Eq.
(3.50).

A simple model for chemical binding may be con-
structed (Deb and Bamzai, 1979) starting from the
stress tensors S %(1), S ¥ (II) as those for the initial
undistorted systems to form S 2 (I+II), viz., the stress
tensor for the final system, after a charge migration
Ap has taken place.

S (I+1I)=S &(I)+S 4 (II) +S % (I,II) +S " (interaction).
(3.93)

It can be readily shown
S “(interaction) = Z%; [G(D#d, +J*G(I), -G (I)- J]
+ Z% [G(ID)*J, +J*G( 1), -5 *G(II) - T]
1
* I [J4J, -5 64T -T]. (3.94)

In (3.94) J is related to Ap,
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s

J¥, =4np . (3.95)

The interaction between systems I and II can be stu-
died by monitoring the changes in total stress, elec-
trostatic force density, and interaction stress. The
chemical binding in the H, molecule has been studied
using this approach and certain interesting features
have been obtained; e.g., for a point in the antibinding
region, the total stress and third interaction stress
[last term in Eq. (3.94)] were studied for various R and
found to pass through a minimum at an R value close to
R,. These detailed local variations can be rational-
ized by means of classical electrostatic arguments. A
similar study has also been carried out for H,"” (Bam-
zai and Deb, 1981).

The stress formalism by virtue of its information
content and retention of classical ideas seems to be
a promising alternative approach for studying mole-
cular behavior. It is likely that fresh insights into
transferability [the integration of (3.90) is a charac-
teristic property of a virial fragment] and reactivity
will be obtained by studies on other diatomics.

While the above work is an electrostatic viewpoint,
Deb and Ghosh (1979) have proposed a comprehensive
stress tensor for a many-electron polyatomic system,
consisting of contributions from kinetic energy, Cou-
lomb energy, and exchange-correlation energy. Start-
ing from the local density-functional theory (Sec. IL B),
the “local” force density is obtained as the covariant
derivative of the stress tensor, consisting of classical

(Coulomb) and quantum force densities, where the
quantum force density is derived from the Bohm (1952)

potential for each electron together with the exchange-
correlation potential. A stationary state arises due to
a balance between classical and quantum forces.'?

The works of Wong [ (1976) and also Wong et al.
(1975)] also deal with applications of a quantum stress
tensor to complicated motions of nuclear systems, as
well as density oscillations in many-fermion systems
in their ground states. The kinetic energy density ten-
sor of Deb and Ghosh has the same form as the “quan-
tum stress tensor” defined by Takabayashi (1952),
Pauli (1958), Rosen (1974), Epstein (1975), and Wong
(1976).

The condition for the vanishing of the local force
density has been shown to be a special case of the
Euler or Navier-Stokes equation in fluid dynamics (Deb
and Ghosh, 1979). A zero local force density every-
where prevents a spontaneous collapse of electronic
charge onto the nuclei as well as a spontaneous oozing
out of electronic charge from the system.

Bartolotti and Parr (1980) have also examined the
concept of pressure within density-functional theory.
They define a stress tensor o whose divergence, the
corresbonding force density, contains kinetic and ex-
change-correlation contributions, but not the electro-

131t must be emphasized, however, that in such “local”
studies one has to choose very accurate p(r) in contrast to
the case of “global” studies, where a cancellation of errors
associated with densities from various regions of space may
occur. Thus a judicious selection of points of interest (Deb
and Bamzai, 1979) and proper densities should yield new
insights and finer details than were hitherto possible with
global studies.
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static one. The scalar pressure P is then defined as

1
=-~3tro,

and a Gibbs-Duhem equation involving this pressure is
derived.

G. o(r) and quantum fluid dynamics

Madelung (1926) and Takabayashi (1952) had sug-
gested that the motion of a Schrodinger fluid can be
represented by an irrotational flow of a compressible
perfect fluid having a stress tensor associated with it.
Thus the time -dependent wave equation for N particles,
masses m,,v=1,2,...,N moving under the influence
of a potential given by

(ﬁ_fyﬁ v )w 0
2 &5 m
can be transformed into a system of hydrodynamical
equations in a 3N-dimensional space. In (3.96) ¢
=y(r,t) and V,=98/9r,, r being a vector r,, r,,...,ry
with 3N components that are position vectors of the N
particles.

Writing § =Re*S, where R(r,t),S(r,?) are two real
functions, (3.96) reduces to (in atomic units)

(3.96)

f:dw (pv,) + —‘—; =0, (3.97)
v,
m, 23 =—grad, (@ +K +V), (3.98)
where
pp=p(r,t) =R?, (3.99)
v, = zgrad,,s R (3.100)
N 2 1/2
=—7? Z puz , (3.101)
w=1 n,
N
K= %E m,v2 (3.102)

w=

When N =1, the equations are identical to hydrodyna -
mical equations of motion. The fluid-dynamical as-
pects of matter flow have been formulated and explored
recently by a number of workers, notably Kan and
Griffin [(1977); see also Griffinand Kan (1976)], who con-
sider a single quantal particle moving ina time-dependent
external potential. Various fluidic models for nuclei
can be encompassed in this framework. The basic
generalizations for extension of the treatment to the
many -body Schrédinger fluid are also set forth by them.

When N> 1, the hydrodynamical equations are in 3N-
dimensional space; having no direct physical meaning,
since our space of observation is 3D. Therefore the
following question has been posed by Janossy (1973,
1974, 1976): Is it possible to replace p, and v by other
variables that depend on one coordinate vector each,
viz., can the system be characterized by densities in
3D space ?

The quantities depending on one position vector only
can be introduced by averaging the original quantities
over (N —1) position vectors, e.g., the 3D projection
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of the density of the nth particle is

Pa(r) =[f p(ryry---ry)dr,: - -dr,dr,, - drN] -
(3.103)

Janossy ((1976) has shown that the projected current and
charge densities obey continuity equation. However,
the projections of the hydrodynamical variables in 3D
space do not obey strict equations of motion. If one
could succeed in formulating equations of motion con-
taining projected densities only, a “classical” picture
of the N-body system could be built up in the 3D space
(see later in this section).

Hirschfelder and co-workers have also contributed
several works pertaining to the hydrodynamical as-
pects. of quantum mechanics. The problem of reflec-
tion and transmission of a beam of particles hitting a
two-dimensional square potential barrier has been con-
sidered by them (Hirschfelder et al., 1974a); the two
sets'® of streamlines correspond to the real stream-
lines r(¢,r,) obtained by integrating

(3.104)

and the imaginary streamlines r(¢;,r,) obtained by in-
tegrating

Quantized vortices occurring around nodes of wave
functions have been discussed by Hirschfelder et al.
(1974b), while Hirschfelder and Tang (1976a) have pro-
vided computer simulation of the streamlines, density
contours, and surfaces of constant phase for an atom-
diatomic molecule collision considering an idealized
potential energy surface. These enable one to see how
the system goes from its initial to final configuration,
thus giving a more detailed understanding of the mech-
anism of the collision. The elastic scattering of two
particles interacting with a spherically symmetrlc
square potential

V(r)=0,

(3.105)

voa (3.108)

=C, r<a

has also been dealt with (Hirschfelder and Tang,
1976b); the distortion of the streamlines provide a vi-
sual explanation of the collisional cross sections.

In another work, Hirschfelder (1977) has enunciated
two types of quantum vortices: axial vortices that have
angular momentum dipole moments and toroidal vor -
tices that have orbital angular momentum quadrupole
moments. The equations of motion of wave function
nodal points and vortices as the result of either time or
perturbations have also been developed. The analysis
for spin-free systems has recently been extended
(Hirschfelder, 1978) using Breit-Pauli type Hamil-
tonians involving particle spins, as well. The equa-

UThe fluid-dynamical picture of quantum mechanics suffers
from an unresolved paradox: the “real” velocity (xVS) ap-
pears in the continuity equation, whereas the “imaginary”
velocity (< Vin p, p= R?) appears additionally in the equations
of motion.
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tions of change for the property x* 0y are derived where
X, ¥ are wave functions satisfying the same time-de-
pendent Schridinger equation and 6 is an arbitrary
operator. Equations of change are obtained for the
following subobservables Re{y*6y}:

(i) 6 =1, one obtains the equation of continuity,

(ii) 6 =p/m, one obtains the equation of motion,

(iii) 6 =L =r X p, one obtains the equation of change of
angular momentum density,

(iv) 6=p*/2m, one obtains the equation of change of
kinetic energy density.

Reduction of the configuration space of a bound-state
system to three dimensions results in projecting the
properties onto 3D space.

Dl(x*ew)=f fx*Gzpdrz...drN, (3.107)

where D, is the desired projector. In terms of the
natural spin orbitals ¢,’s with occupation number »,’s
Hirschfelder obtains

D, (x*69) = Y n,(620,0,) , (3.108)
where
N
0(r,s,t)= D 0,(r;,8;,1). (3.109)
i=1

Thus the N-particle quantum-mechanical system may -
. be viewed as a fluid mixture with each natural spin
orbital as a component. However, one is confronted
with the same problem as before; the limitation of this
description in terms of spin orbitals is that one does
not obtain a useful description of equations of change
(ii) to (iv). Thus it remains to be seen whether the
natural-orbital way of studying equations of change
would be useful for properties other than the proba-
bility density. However, one advantage of natural or-.
bitals is that in terms of these it is possible to derive
the Euler and Navier -Stokes equations of fluid motion
in the 3D space (Ghosh and Deb, 1981a) by recognizing
that it is not the individual velocities associated with
the natural orbitals, but rather the individual current
densities, which sum together to give the correspon-
ding quantity in 3D space.

Following an earlier work by Ying (1974), Deb and
Ghosh (1981) have recently explored the connection
between density-functional theory and quantum fluid
dynamics, through a dynamical extension of the former
[see also Peuckert (1978)]. The Hohenberg-Kohn the -
orem has been proved for a time-dependent harmonic
perturbation with a sufficiently low frequency to avoid
transitions from the ground state into excited states.
The corresponding time-dependent one-particle Schro-
dinger equation [see Eq. (2.44)] can then be variational-
ly derived in a local density approximation by using
a fluid-dynamical Lagrangian density. The advantage
of such a wedding between density-functional theory
and quantum fluid dynamics is that it preserves the
“particle” description of the system in the sense that
the N-electron fluid has N components, each of which
is an independent-particle Schrddinger fluid charac-
terized by a density function p;(r) and an irrotational
velocity field w;(r), ¢=1,...,N. Note, however, that
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the mean velocity u(r) of the N-electron fluid is not
irrotational, in g¢neral, contrary to the basic assump-
tion of Ying (1974).

The above fluid-dynamical interpretations in both
configuration space and 3D space have led to studies
on dynamic polarizabilities of atoms and molecules
(Askar and Demiralp, 1974; Bartolotti and Tyrell,
1978; Bartolotti and Epstein, 1979; Ghosh and Deb,
1981D).

IV. CONCLUDING REMARKS

The wide range of molecular properties discussed
in this article convincingly demonstrates that the sin-
gle-particle density p(r) is a very attractive starting
point for the construction of models to understand
molecular behavior. Indeed, one need not be a star-
ry-eyed optimist to say that p(r) may well be the uni-
fying link in our perception of various facets of the
molecular world. This is because the enhanced visu-
ality of p(r), in contrast to the wave function, enables
one to employ classical concepts like potential, force,
and stress in a quantum-mechanical framework and
reveals information on a system in a much more trans-
parent manner. In a number of instances, as discussed
in this article, the use of p(r) yields new and deeper
physical insights than similar studies based on the
wave function; thus, the latter studies are comple-
mented and strengthened by the former. Further,
formalisms based on p(r) as a basic variable, such
as the density-functional theory and quantum fluid dy -
namics, are likely to find more and more applications
in nuclear, solid-state, atomic, and molecular phy-
sics, so that one has broadly similar approaches to
attack diverse microscopic problems. Although, at
present, in the absence of any really satisfactory me-
thod for its direct evaluation, p(r) hangs on the apron
strings of the wave function for all practical purposes,
one hopes that “there will be radically new and better
schemes... . Perhaps an accurate functional giving
the energy in terms of the electron density will be
found so that densities will be obtained directly, thus
bypassing wave functions for many purposes. That
really could be revolutionary. ..”(Wilson, 1976, p. 47).
For the chemist this change in emphasis from wave
function top(r) for interpretative purposes is rather like
leaving the main road to sniff at some wayside flo-
wers and—who knows ? —this might yet turn out to be
the most exciting development in quantum chemistry.
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