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This paper is a review of the present status of the problem of the properties of the dielectric function of
matter. It is shown that the dielectric function e{q,to} obeys the Kramers —Kronig relations only when
momentum q is identically equal to zero. For an arbitrary momentum q+0 the dielectric function does not
obey the Kramers —Kronig relations, and the static dielectric function at q+0 may have a negative sign
[e(q,O}&Oj. It is shown that the appearance of a negative sign for the static dielectric function does uot
contradict the requirements of system stability. Special attention is paid to the possible existence of a negative
sign for the static dielectric function in real physical systems. It is shown that the inequality e {q,O} & 0 at q+0
is valid for a rather wide class of condensed media (simple metals, uouideal plasma, etc.}.The interrelation
between the existence of a negative sign for the dielectric function and the problem of high-temperature
superconductivity is briefly discussed.
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I. INTRODUCTION

'See the appendix also.

There is some question whether the longitudinal
static dielectric function (DF) of matter e(q, &u) at co =0
can acquire negative values. This question is first of
all of general physical interest, since it associates the
existence of general model-independent limitations
upon such an important characteristic of matter as DF
with the conditions of causality, stability, etc. It is
also important in particular cases, for example, in the
problem of a radical increase -of the superconductor
critical temperature T, : from the condition e(q, 0)& 0
a rather rigid and universal upper bound on the value
of T, has been derived (Cohen and Anderson, 1972).'

Most guides to the electrodynamics of condensed
media give an unreservedly negative answer to this
question. Such a conclusion follows directly from the
Kramers-Kronig relations for the DF, which undoubt-
edly contradict the negative sign of the DF. However,
the very problem of the existence of Kramers-Kronig
relations discussed in many papers (Landau and

Lifshitz, 1960; Pines and Nozieres, 1966; Martin,
1967; Kirzhnits, 1976) turns out to be not at all simple.

Almost fifteen years ago Pines and Nozihres (1966)
emphasized that Kramers-Kronig relations for the DF
s(q, to) itself cannot be derived from the causality prin-
ciple, since this quantity is a function of response to
the totaL field, which in the general case cannot be con-
trolled. Control can be realized for an external field
only; and, correspondingly, Kr amer s -Kr onig r e lations
can be derived from the causality principle only for
the inverse DF s '(q, w), which serves as a function of
response to an extexnaL field. However, an apprehen-
sion was expressed in the same book that with the
violation of Krarners-Kronig relations for the DF there
arises an instability under a spontaneous appearance
of a positively charged density wave.

The view that violation of Kramers-Kronig relations
for the DF is nevertheless possible and in some cases
even inevitable wa. s expressed by Martin (1967). The
author gives an example of a physical situation (a uni-
form electron gas near the crystallization point) in
which Kramers-Kronig relations are violated already
in the stable phase near the values of a momentum
which correspond to the lattice parameter of the crys-
tal. Unfortunately, the question of the sign of the DF
was not investigated in this work at all, and the prob-
lem of stability was only mentioned.

The most detailed and systematic investigation of this
problem has been carried out by one of the present
authors (Kirzhnits, 1976), who was stimula. ted by
studies on high-temperature superconductivity [see
also Kirzhnits (1977)t. This work analyzes the need to
fulfill both Kramers-Kronig relations and stability con-
ditions and shows that at any nonzero wave vectors g
the DF of matter is not really obliged to obey Kramers-
Kronig relations. Consequently, the quantity c(q, 0)
can be negative without any contradiction of causality
and stability requirements. However, as is established
in the same book, at q - 0 Kr amer s -Kronig relations
must be satisfied both for the DF itself and for its
reciprocal. Correspondingly, the long-wave limit of
the static DF must be a positive quantity. It is only to
this case that the general statement made by Landau
and Lifshitz (1960) on the necessity of a positive sign
of DF refers.
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At the same time, the work by Kirzhnits (1976) left
practically untouched the question of the existence of
real media with a negative static DF. Moreover, the
author expressed the opinion that such systems, if they
do exist, must be rather exotic ones. In recent years
the situation has changed radically [see Fasolino et al.
(1978), Dolgov and Maksiniov (1978), and Hansen and
McDonald (1978)]. The inequality s(q, 0) &0 at qc0 has
turned out to be fulfilled for a rather wide class of con-
densed media (simple metals, nonideal plasma, etc. ).
These facts are unfortunately not yet generally known,
and up to now there have appeared some papers based
on the use of too strict an inequality e(q, 0) & 0 (Cohen,
1979; Rajogopal, 1979).'

The main aim of the present review, therefore, to
present systematically the status of the problem of an
admissible sign of the static DF and to consider certain
examples of real physical systems with a negative val-
ue of s(q, 0). For a more detailed consideration of this
problem see the preprint by Dolgov et al. (1978).

In this paper we use the units 5 =1, k =1.

I I. DIELECTRIC FUNCTION OF HOMOGENEOUS
SYSTEMS

A. A general theoretical consideration

Let us first of all define the quantity s(q, ur), under-
standing it as a longitudinal DF of a homogeneous and
isotropic substance. ' We shall subject the system under
consideration to the action of an external source with
the Fourier component of the charge density 6p, (q, cu).
As a result there appears in the system an induced
charge 5p, (q, &u), which together with 6p, makes up the
total change in the charge density 5p, =6p, +6p,-. The
corresponding values of the induction 6D and the field
strength 5E are determined from the Maxwell equa-
tions:

div5D =4m 5p„div(5E =4&I5p, .
In the language of introduced values DF is defined by

either of the followi-ng relations:

&D(q, (u) =& (q, (u) &E(q, (o),

&p, (q, ~) =e(q, ~)&p (q, ~).
In what follows we shall use for convenience either the
variables 5D, 5E or 6p„&p, .

To clarify the question of admissible sign for the
static DF of matter one can use two types of arguments
based, respectively, on causality and system stability
considerations. These arguments, which are closely
connected with each other, will be considered below.

1. Causality (Krarners-Kronig relations}

If one impo'ses some influence (I) on the system under
consideration and examines the change (A) which it

As is shown in Sec. III of the present review, the Wigner
crystal DF considered in these papers is actually negative.

In Sec. III the case of an anisotropic inhomogeneous sub-
stance (crystalline medium) will be considered in detail.

4%e should emphasize that here and below the quantity K
designates a real microscopic fieM, but not a field averaged
over a physically infinitesimal volume.

induces, one can introduce a response function (R) by
the relation

A. =R xI.
The causality principle requires that the change be
delayed with respect to the influence itself. This im-
poses definite and well known limitations on the analyt-
ical properties of the response A as a function of fre-
quency, which are expressed by relations of the
Kramers-Kronig type,

( ) ( )
1 d(u ImR(q, (o')

qr &
' ~2 2

t 0

In the static limit

(4)

dh)
R(q, o) =R(q, ) +— „rmR(q, ~') .

0
(4')

Limitations on the value and sign of the static DF will
be found from the latter relation.

With this purpose it should be clarified whether the
DF [and reciprocal to it I/e(q, u)] can be treated as a
response function. The simplest case is when we act
on the system by an external charge (I=Op, ) and con-
sider the full change in the charge (A =5p, ) to be the
result of this action. Then a.ccording to Eq. (8) the
function (R =1/c) reciprocal to DF will serve as a,

response function, and one can write Kramers-Kronig
relations for it. With account taken of the equality
c(q, ~) =1, Eq. (4) gives

1
1/c(q, 0) =1+— ., Iml/c(q, co') .

0

If we also take into account the inequalities

1mc(q z) ~ 0, Iml/r. (q, &u) & 0,

s (q, 0) ~ 1, s(q, 0) & 0 (7)

fallaw directly from Eq. (5). Thus the causality condi-
tions corresponding to the action of an external charge
on the system do not preclude negative values for a
static DF system. Only the values between 0 and 1 turn
out to be forbidden.

It is instructive to note that one can in principle rea-
lize the influence of an external charge with any ar-
bitrary values of the w'ave vector q; correspondingly,
the inequalities (7) hold for arbitrary values of this
quantity. In fact, an external charge with q=0'
is easily directed by placing the system inside a capac-
itor on which the external charge density changes. As
for the case @40, it is easily realized if we .imagine
within the system a conductor with a small external
point charge having a large mass and hence not subject
to the influence of the system. The field of this charge
has all the Fourier components.

5More precisely, with q-L, where L is the characteristic
length of the system.

following from a direct relation of the quantity
Iml/s(q, co) with the structure factor of the system
(or with the probability of an inelastic particle scatter-

- ing on the system), then inequalities of the farm
1/s(q, 0) ~ 1 or, equivalently,
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Let us pass to the second case, in which the influence
is imposed not by an external but by a total charge (I
=5@,) and the induced change is a variation in the ex-
ternal charge (4 =5p, ). In this case, which is much
more complicated than the previous one, the response
function is the DF itself [R =&(q, u), see Eq. (2)]. If the
letter quantity could really be thought of as a response
function, the Kramers —Kronig relations (4) would hold
for it—in particular, relation (4'):

By virtue of the same inequalities (6), from this rela-
tion it would follow that a negative value for the static
DF c(q, 0) ~ 1 is impossible. Therefore, to decide
whether such values are possible one must determine
whether the DF may be considered at arbitrary mo-
menta as a response function. This appears to be pos-
sible only for q =0 (more precisely for q-I/I).

So, the Kramers-Kronig relations for the DF itself
can be written for q =0 oniy, and then Eq. (8) gives the
inequality'

s(q =0, 0) ~ 1, (9)

Note that as the inequality (9) is violated in a one-compon-
ent charged system with a homogeneous compensating back-
ground, the compressibility of the system becomes negative,
which leads to the instability of the system. This is an addi-
tional argument in favor of Eq. (9) [see Pines and Nozieres
0-966)1.

which is usually presented without the condition that it
is valid for a long-wave limit only.

To confirm what has been said one should bear in
mind that the very nature of the total charge (or the
field strength E) is such that it is much more difficult
to govern the behavior of these quantities than that of
the external charge or of induction. In any case this
can be done by placing the system inside a capacitor
on which it is not the charge density as before but the
potential difference that changes according to the law
assumed. By changing the latter quantity with the aid
of a battery we change the field strength (the total
charge), and the external charge flowing to (or away
from) the capacitor characterizes the result of such
an action. It is obvious that in the imaginary experi-
ment under consideration only-the Fourier components
of the charge or field with q=0.

Any attempt to fix an arbitrary Fourier component of
the total charge or field strength is in principle con-
demned to failure. If, for example, one introduces into
the system a conductor on the end of which an electro-
static potential is kept (or changed according to the
given law), this fixes the field strength only in the im-
mediate neighborhood of the end of the conductor. At
other points of the system the values of the strength
cannot be considered given since they are determined
by the r e sponse of the system. Meanwhile, the Four ier
component of the strength depends on the values of this
quantity in the entire space. A successful result might
be achieved only by placing inside the system a set of
conductors, the potential at the ends of which is fixed
or changes according to the given law. The higher the
value of q, the denser this set must be. It is clear,

a V(y) . 0 8'V(cp) ej
By ' '

By By-' (10)

where the quantities y and j belong to a definite value
of q and co =0.

To consider uniformly both the above-mentioned
cases, i.e. , the appearance of the field E and induction
D, it is convenient to choose for the quantity y the
medium polarization

and for the current the corresponding external field
—D and -E. Then conditions (10) give the inequalities
(7) and (9), which thus play the role of system stability
criteria. Note that the same inequalities could be

~In these considerations it is sufficient to limit ourselves
to the case when the DF remains real at u= 0. Then the fre-
quency acquires an imaginary part of bath the signs, one of
which corresponds certainly to the increase af the correspond-
ing quantity.

however, that we shall be dealing here with a system
which has nothing in common with the original one.

2. Stability

The above re,suits are confirmed by considerations
having to do with the stability of the system. Inequali-
ties (7) and (9) acquire the physical meaning of stabil-
ity criteria.

Let us ask what will happen to the system when the
Kramers-Kronig relations hre violated. It is readily
seen that in this case the system will be unstable under
a spontaneous appearance of an electric field (if the
relation for I/c is violated) or induction (if the relation
for the DF itself is violated). This can be seen from
the fact that the Kramers-Kronig relations express the
analyticity of the corresponding functions in a complex
frequency plane. Therefore a violation of these rela-
tions will lead to the appearance of a zero or a pole
for DF, respectively, at a complex value of frequency.
As can be seen from Eq. (2), this will mean an increase
in time of the field strength E or induction D.'

It is instructive to note that in a system taken by it-
self (in the absence of external charges) the induction
that appears spontaneously must satisfy the Maxwell
equation div5D =0 [see Eq. (1)]. It follows from this
that the corresponding instability appears only at q =.0,
due to the equation q 5D(q, co) =0. At the same time
a spontaneously appearing field strength which satisfies
the equation div6E = 4&&p,. may have arbitrary Four ier
components. What has been said makes it clearer why
condition (9) refers to q =0 only, whereas condition (7)
refers to arbitrary q.

For a consistent consideration of stability under a
spontaneous appearance of some quantity y one should
introduce the so-called effective potential V(y), which
corresponds in the simplest cases to the energy or free
energy and has a minimum in y when in equilibrium.
The conditions for the minimum of this quantity give
the criterion of stability. It is known that there exists
a relation 8 V(cp)/By = -j, where j is a current conjugate
to the quantity y (the interaction has the form jq&).
From this the system stability conditions take the firm
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directly observed from the I e Chatelier-Braun prin-
ciple: The response of the system to the action from
outside must be a weakened resistance to this action.
In our case the response of the system consists in the
appearance of the charge 6p,. equal to

has the form

s(q, 0) =1 —
2 m, (q, 0),

where-

(14)

Requiring that this quantity diminish 6p, and 6p„re-
spectively, we come indeed to the inequalities (7) and
(9). From the relations presented above one can find
expressions for the effective potential with respect to
the field I and induction

(12)

These expressions are far from coinciding with the
total energy of a polarized system:

cE' D'
8m Bmc

'

So, the potential V(E) is obta. ined from the total energy
D'/Snab by Legendre transformation to the variable E
(this gives —sE'/8m) and also by a further subtraction
of energy D'/8w, which would, in a vacuum, come from
the external sources (in this case from the external
charge p, ). For this reason the arguments in favor of
a positive sign for the DF based on Eq. (18) cannot be
considered correct.

Concluding this section we should note that a violation
of condition (7) at q4 0 leads to the spontaneous appear-
ance in the system of charge density waves with a given
value of q. This follows directly from what has been
said above: Violation of condition (9) implies violation
of the stability criterion by a spontaneous appearance
of polarization or, equivalently, an induced charge p,

B. Physical examples

In the preceding section we have shown that the ex-
istence of negative values for a static longitudinal DF
does not contradict the general principles of electro-
dynamics of condensed matter and does not lead to in-
stability of the system. This fact by itself does not
mean, of course, that such a situation is sure to occur
ig concrete systems. It appears, however, that the
existence of negative values for a static DF is not only
possible but in some important cases inevitable. In
what follows it wil, l be seen that examples of such sys-
tems are already being considered in the literature.

%e shall concern ourselves with the simplest model
system, namely, that of charged one-component plasma
electrons on a homogeneous compensating background.
This model has lately attracted much attention and has
been studied intensively both in the quantum case and
in the classical limit.

1. E lectron quantum plasma

The interest in quantum one-component plasma [see
Lundqvist (1973), Brovman and Eagan (1974), Kugler
(1975), and Gorobchenko and Maksimov (1980)] is first
of all due to the fact that this model renders rather
well a large number of characteristic properties of
electrons in metals. Neglecting exchange and correla-
tion effects, the corresponding expression for the DF

& —x' &+x
tr, (q, 0) = —N(0) (1 + In, x q/=2P

is a polarization operator of the noninteracting electron
gas (Lindhart, 1954), and where X(0) is an electron
state density on the Fermi surface. The quantity m, (q, O)
is seen to be negative at all values of the momentum
q. Therefore, when exchange and correlation effects
are disregarded, the static DF of the electron gas is
decidedly a positive quantity.

So it is clear that we may hope to obtain a negative
value for the DF in an electron gas only if exchange
and correlation effects play an essential role. The
relative magnitude of these effects is determined by
dimensionless parameter s

3

where n is the electron density, and as =1/me' is the
Bohr electron radius. The quantity rs in practice
represents the ratio of the potential energy of particles
to their mean kinetic energy. In a strongly compressed
system, where x~ «1, all the exchange and correlation
effects can be fully disregarded, and Eq. (14) will be
valid for the DF. In a system with low density, where
x~ »1, the exchange and correlation effects must be
taken into account. The electron plasma of real metals
possesses densities in an intermediate region 1 ~x~ ~ 6,
and therefore the calculation of its DF is quite a dif-
ficult problem.

First of all we shall show that in a rarefied electron
gas the existence of negative values for a static DF is
generally speaking not only possible but inevitable.
With this purpose we shall present in somewhat sim-
plified form the arguments contained in the early work
by Martin (1987).

I et us consider a quantum one-component plasma in
the absence of external charges (p, =0). Its DF depends
on the value of the parameter x~. As the latter in-
creases, the system gradually changes from the state
of an ideal gas to the state of a strongly interacting
liquid. At a, certain critical value of rg [which is dif-
ficult to estimate —see the review by Care and March
(1975)]the electron liquid is crystallized and the Wigner
crystal appears 8

But the appearance of the charge density wave 5p,
with q=qo (qo stands for the Wigner crystal period) is
only possible provided that the condition

s(q„O) =0

is met. This is a direct consequence of the relation
s(q, co)5p,.(q, &u) =0 that follows from Eq. (2) at p, =0.

It should be noted that another type of phase transition in .

a one-component plasma with a large ~~—a "gas-liquid"
transition with a stratification of the system into dense and
rarefied phases —has also been discussed in the literature
(Kugler, 1975; Wiser and Cohen, 1969; and Van Horn, 1967).
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S(q, u)) =—
i dt e'"'(n (t)n (0)),

OO

(15)

where n (f) is a Fourier component of the electron
density. The quantity S(q, &e) determines the Kramers-
Kronig relations for the inverse DF [see, for example,
P ine s and No zier e s (1966)):

4n'e2 " dE S(q, E)
(16)

At a nonzero temperature T the factor 1 —exp(-E/T)
should be included under the integral sign in Eq. (16).

In the classical limit the temperature T exceeds all
the characteristic density oscillation frequencies. This
leads to the following expression for the static DF of
the classical one-component plasma:

4rne'
& '(q, O) =1 —,, S(q),

where
1

S(q) =—
I d~S(q, ~)

n p

(17)

(18)

is a static structure factor, and n is the electron densi-
ty.

In a recent article by Fasolino ef al. (1978) the static
DF of the classical one-component plasma was calcu-
lated with the aid of Eq. (17), and estimates of the sta-
tistical structure factor (18) were made from the cal-
culations of Hansen (1973) by the method of molecular
dynamics. The results are presented in Fig. 1, which
illustrates that the static DF is negative in a wide range
of values for the parameter I' =e'/aT [a =(4mn/3) ' '],"

1

Owing to condition (7), an equilibrium approximation
of DF to zero is possible only on the side of negative
values. Therefore, even at vs&vs, i.e. , in a stable
liquid phase, the static DF must be negative. ' More-
over, as will be shown in Sec. III, it remains negative
in a crystal state, too.

To complete the picture, one should also investigate
other instabilities which are not connected with charge
redistribution. One should make sure that they do not
appear until the DF becomes negative and that the re-
distribution of the system due to these instabilities
does hot change the sign of the DF.

In the electron system, we speak of the spontaneous
appearance of spin density waves. Analysis of the above
questions [see Uspenskii (1979); see also Kugler (1975),
Kim (1976), and Kimball (1973)] shows that negative
values for the DF appear at lower values of r~ than spin
density waves. Furthermore, at the transition of the
system into a magnetic state, negative values for the
DF may be retained. In this connection we should men-
tion the paper by Nagaev (1975) wherein such va, lues
were obtained in the investigation of ferromagnetic
semiconductor s.
2. Classical one-component plasma

Going on to the consideration of one-component
plasma, we introduce the dynamical structure factor
of the system

O.O

-0.5

—I.O
E(k)

-2.0

I

a
t fj

I

) I

i

J

f
I

I

t

I
I

I
l
I
I

I
I
I
I
l
I
I
I
I
I

tI

l. I'=70~l
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\
'~

\

t
I ~ I

IO l5

FIG. 1. Statistical dielectric function for classical charged
fluids vs wave number. Dotted curves: classical one-com-
ponent plasma, for three values of plasma parameter I;
dashed curve: symmetric molten salt; full curve: molten
soldium chloride at 1148 K (Fasolino et al. , 1978).

namely, at 40 ~I" +160 for all the values of the mo-
mentum q considered by the author s.

According to calculations by Hansen (1973), at I"= 170
in the system under consideration crystallization be-
gins. As canbe seen from Fig. 1, at values close to this,
the value of the DF at some point q, approaches zero,
i.e. , the boundary of the region of admissible values
for the DF (see Sec. I). Therefore, according to what
has been said with respect to the quantum plasma, the
approach to this boundary leads to the spontaneous
appearance of charge density waves with the wave vec-
tor q„ i.e. , to a crystallization of the system.

One should bear in mind that as a matter of fa,ct
crystallization is a first-order phase transition which
proceeds at values of I" less than that at which the curve
z(q, O) touches the abscissa axis. The latter value char-
acterizes an absolute instability of the system and de-
termines the boundaries of overheating or overcooling
for the first-order phase transition.

3. IVlany-component plasma

Concluding this section we shall touch upon the ques-
tion of the DF of a many-component plasma (a. normal
electron-ion plasma, liquid metals, melted ion crys-
tals, etc. ). Apart from the vast literature devoted to
ordinary classical plasma there exist a great many
papers studying the DF of a quantum many-component
plasma [e.g. , Ginoza (1974), March and Tosi (1973),
and Tosi, Parrinello, and March (1974)].

The total dielectric function of a many-component
plasma can be expressed by formulas (15)-(18), where
the quantity n should now be understood as the sum over

~This claim was verified in recent calculations by Brosens
et al. (1980).

In the classical plasma this parameter plays the same
role as the parameter r& in the quantum plasma.

Rev. Mod. Phys. , Vol. 53, No. 'I, January 1981
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all the plasma components Z, n, (K.imball, 1973).
In Fasolino et al. (1978) the data on the static DF are

presented for the model of a melted two-component
symmetric ion crystal and for molten NaCl. The au-
thors used the results of Hansen and McDonald (1975),
who ealeulated the structure factor by following the
methods of molecular dynamics, and (for molten Nacl)
the direct neutron measurements of Edwards et al.
(1975) (see Fig. 1). From this figure it can be seen
that in this case the static DF is also negative at all
the momenta investigated. Analogous situations will
undoubtedly take place for many liquid metals, although
as far as we know detailed calculations for these have
not as yet been presented.

A model ca.lculation of the DF of liquid metals with
account taken of the contribution to polarizability only
from heavy ions' located in a random field of fast elec-
trons was made by Dallacasa (1977). As can be seen
from the expression obtained here for DF [Dallacasa's
Eq. (2.22)] this quantity is indeed negative in a wide
range of momenta q. Moreover, from the condition
c(q, 0) =0 Dallacasa (1977) determines the temperatures
of crystallization and the crystal periods appearing for
a number of simple metals. These values in his opinion
coincide rather well with experimental data.

III. DIEI ECTRIC FUNCTION OF CRYSTAl BODIES

A. Crystal dielectric function matrix

Up to now we have considered only uniform and iso-
tropic media, whose DF depends on the difference be-

1. Definition of the crystal dielectric function

In a homogeneous isotropic system the DF was de-
fined by either of the two equivalent relations (2). The
longitudinal DF of a crystal will be defined as a re-
sponse function which connects the changes of the ex-
ternal 5y, and the total 5p, electrostatic potential

ett. ( )=f d ' (, ')e(t, ( '), (19)

where four-dimensional designations x = (x, t) are used.
Passing over to the momentum representation (dqq
= dqd(d/(2n )')

tween the two coordinates, and the Fourier component
on the momentum q (as well as upon frequency). Owing
to the absence of space homogeneity in crystals, the
DF becomes a function of both the coordinates separate-
ly and, in the momentum representation, of two inde-
pendent momenta. However, owing to the periodic
structure of the crystal, these momenta are not quite
arbitrary there, but differ by the reciprocal lattice
vector. Accordingly, the DF of a crystal depends on
the vectors q +K,g+K', where the momentum q is
limited to the first Brillouin zone, and K and K' are
the reciprocal lattice vectors. Thus the DF of a crystal
(and other quantities of the same origin) is a matrix in
the vector space K.

e (x,x') = e(x, x', t —t') = g fd qe (q+ K, q'+ K', )exp[( tx(t —t') tx—t(q+ K)x+ t(q+ K')x'], (20)

we obtain

~+.(q+K, ~)=p c(q+K, q+K', &u)5y, (q+K ~). (19')

where 5@I3)(x) is a potential created by the second
charge, can be rewritten in the form

dx dx'dx" 5p,"'(x)c '(X,X")V,(x",xt)5p,"'(x') .

q+K); q+Kt)~
5D, (q+ K, ~)=~, , c (q+ K, q+ K', ~)

K'
x 5E&(q+ K', &u),

5p, (q+ K, co)=~, ,c (q+ K,q+ K', ~)5p, (q+ K', ~) .f q+ K1'
fq+K'I

(21')

(21)

We sha, ll introduce the inverse matrix c '(q+ K, q
+ K', &u) by the relation

g c '(q+ K,q+ K", cu)c(q+ K",q+ K', ~)= 5«, .

With the aid of this matrix, relations reciprocal to
Eqs. (19) and (21) are expressed.

By means of the DF one can express the interaction
energy of two external charges 5p,")(x) and 5p,")(x) in-
side the system. The corresponding correction to the
action function

Relations analogous to Eq. (2) are obtained from this
one by using the operators V and 4 ' and take a differ-
ent form:

From this it can be seen that the effective charge in-
teraction "potential" inside the system has the form

V.„(x,x')= fdx "e '(x, x")V.(x",x'),

or in the momentum representation

4m
V,«(q+ K, q+ K', ~)=,c '(q+ K,q+ K', cu) . (22)

t q+ K't'

Here V,(x,x') = 5(t —tt)/~x —x'~ is an ordinary Coulomb
potential. The matrix (22) must be Hermitian since
the correction to the action is real. In the static ease
when the DF matrix components are real, this gives
the following relation important for the future:

c '(q+ K,q+ K', 0)/~ q+ K'
~

' = c '(q+ K', q+ K, 0)/~ q+ K
~

' .
(23)

2. Macroscopic dielectric function

'The matrix character of the DF must be taken into
account in our consideration of an effective interaction
between particles in the crystal, in lattice dynamics,

Rev. Mod. Phys. , Vol. 53, No. 1, January 1981



Dolgov, Kirzhnits, and Maksimov: Sign of the dielectric function 87

and in many other questions. This leads, among other
things, to the fact that an action external to the system
with a momentum q+ K evokes a response in all the
momenta q+K' with an arbitrary inverse lattice mo-
mentum K'. This meatus that even when a system is
placed in an external charge field slowly varying in
space, with a small momentum q, there appear rapidly
oscillating components of the induced charge with vec-
tors q+ K (or, in other words, with a period of the or-
der of the lattice period).

Nevertheless, for crystals one can also introduce a
DF ~(q, ~u) [Agranovich and Ginzburg (1966); Platzman
and Wolff (1973)]which depends on one momentum only
and connects the components of the total and external
potentials with one a,nd the same momentum,

6V.(q, ~) =s(q, ~)6q, (q, ~). (24)

c (q, cu) = 1/s '(q+ 0,q+ 0, ~) . (25)

At small ~q ~«
~

K
~

the quantity s(q, &u) is a normal
macroscopic D F which determines the connection be-
tween electric field and induction, averaged over phys-
ically infinitesimal volumes. At high values of q such
an interpretation is impossible. However, in this case
the quantity s(q, &u) also keeps its exact microscopic
meaning expressed by Eq. (24), although it does not
provide complete information about the electrodynam-
ics of the medium contained in the matrix c(q+ K,q
+ K', cu). We shall call the function s(q, &u) a macro-
scopic DF of the crystal for arbitrary values of q.

In what follows we are dealing with this function only.
In particular, when considering the sign of the DF,
which is the key problem here, we shall speak not of a
definite sign of the matrix s(q+ K,q+ K, O), but simply
of the sign of the macroscopic DF s(q, O). It is just to
this latter quantity that the general considerations dis-
cussed in Sec. II refer, by definition (24).

(Analogous relations connect 6D with 6E and 6p, with
6p, .) In fact, let us write Eq. (19') in the form

6q, (q+ K, ~)=g s '(q+ K,q+ K', ~)6p, (q+ K', ~)
Ks

[see Adler (1962), and Wiser (1963)) where on the
right-hand side the quantity 5p„as distinct from 6p, ,
can be chosen arbitrarily (see Sec. II). It could be such
that only the component 6y, (q, ~) with K= 0 would be
nonzero. Then, considering the response of the sys-
tem, which corresponds to the same momentum q (K'
= 0), we have

5q' (q, ~) = ~ "(q+ 0, q+ 0 ~)5q', (q ~) ~

From this it is clear that the role of the usual DF in
the crystal is played by the quantity

undergoing crystallization. 'The answer to this ques-
tion was given as far back a.s 1964 by de bette, who
suggested that at small q the static DF of a signer
crystal must be a negative quantity. A consistent cal-
culation of the DF of a quantum signer crystal is a
matter of considerable difficulty and has not yet been
carried out. In the classical limit the DF of a signer
crystal was calculated in the work of Bagchi (1969) and
has the following form:

s(q, ~) q', ~'(q, &) —~' '

In this expression

4myge2

Pl pn

(26)

where m is the mass of the particles, n is their densi-
ty, e,, is the phonon polarization vector, and co(q, A. ) is
their frequency. As has been established [see Bagchi
(1969), and Care and March (1975)], in a. cubic Wigner
crystal there exist three oscillation branches: two
transverse branches with a sound spectrum at small
momenta q and one longitudinal branch with a frequency
tending to the plasma frequency „at q- 0. For these
frequencies there exists the following sum rule

g u'(q, A. ) = &u,', . (27)

Calculating the maximal value of the right-hand side of
Eq. (26) at co= 0 over frequencies ~(q, A. ) with account
taken of Eq. (27), one can easily see that

where n=q/q. The right-hand side of this inequality is
always negative and reaches its maximal (zero) value
when the direction of n coincides with that of one of
the polarization vectors e,~." Hence, the DF of a
signer crystal is negative for any values of the vector
q.

4. General dynamic relations

he question of the sign of the D F in a realistic crys-
tal model with two structural components —electrons
and ions (nuclei) —will be considered in the next sec-
tion. Here we shall only present some general rela-
tions that describe the crystal as a specific two-com-
ponent plasma which consists of electrons and oscilla-
ting ions. For an effective interaction potential of the
electron-ion system [see Eq. (22)] in the harmonic ap-

. proximation, disregarding the lattice structure, we
may use the following expression (Pines, 1963):

3. Wigner crystal

V~ V~ e~
s(q, co) s„(q, ~) s„(q, &u) ~' —cu,'+ i6

' (28)

As a very simple example let us consider a macro-
scopic DF of a Wigner crystal, i.e. , an electron crys-
tal in a system with a homogeneous positive back-
ground .

Going back to what has been said in Sec. II.B.2, we
ask what will happen to the sign of the static DF for
both a quantum and a classical one-component plasma

Here V is a Fourier transform of the Coulomb poten-
tial, s„ is a purely electron DF (rigid lattice), n is a
matrix element of the bare electron-ion interaction,

' This follows from the condition@(ne &) = 1 and the in-
equalities 1» jne &)» (ne &J, which become equalities at n
=eq
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and (q) is the phonon frequency. Equation (28) des-
cribes the interaction of two charges as the sum of two
terms: an interaction in the absence of lattice oscilla-
tions and an interaction by means of phonons emitted
and absorbed by initial charges due to the renormalized
electron-ion interaction v'/s„(q, &u).

When the lattice structure is taken into account and
the situation becomes translationally noninvariant, it is
more convenient to proceed from the coordinate repre-
sentation in which the expression for the DF takes the
form (Maksimov, 1975; Karakozov and Maksxmov,
1978; Dolgov, 1978):

e '(x, x )=e.,'(x,x')eg J dx,dx,dx,e.,'(x, x )V„e"(x„R )Re.(i, ,—..i, )Vee" (R, , x) e.,'( x„x)V.'( x„x)
na'

(2'9)

Here c,, is an inverse electron DF that takes the periodic potential into account as a rigid nonoscillating lattice,
is a pseudopotential of the electron-ion interaction, n is the number of the ion, R is its coordinate, D„, is the

Green's function of ion displacement, V, is an inverse matrix of the Coulomb interaction.
Equation (29) for the inverse DF is of quite a general character and describes any type of crystal (metals, dielec-

tries, and semiconductors). The specific character of a given crystal is contained in the quantity c,, (an inverse
electron D F).

Going on to the momentum representation we shall use Eqs. (20) and

() i

R:e.(i)-Z fd'q(x —x,'(q' )e in] g, ] exp(ixi —iq(R, —R,.)],
R R

where e~ is the phonon polarization vector, co~(q) its frequency, and M„ the ion mass. From this and from Eq. (26)
the expression for a static inverse D F determining the macroscopic crystal D F takes the form"

s '(q+ O, q+ 0, 0) =s, ,'(q+ O, q+ 0, 0)

ei (K'] e-K] )
( q+ Ki )

R

c,,'(q+ 0,q+ K, 0)U'* (q+ K)[q+ K, e,(l ', q)]

ll'
x [q+ K', e, (l, q)]~"(q+ K')s, ', (q+ K', q+ 0, 0) . (30)

Here we have passed from the summation over n to the
summation over the corrdinates of l (with respect to the
cell center of the atom inside one cell whose volume is
designated by 0). In addition, we have disregarded the
frequency dependence of c„ in the second item of Eq.
(30), since characteristic electron frequencies are
much more than phonon frequencies (adiabatic approx-
imations).

Equation (30), where conduction electrons and those
entering into the ion composition are considered sep-
arately, can be applied to metals. In the general case
the potential v" (x, R, ) should be replaced by the Cou-
lomb potential Z]e'/~x —Re~ (Z, is the nuclear charge)

, and at the same time take into account all the elec-
trons of the system. It is convenient to introduce an
effective ion charge tensor (Pick et al. , 1970)

l

Z, '(q) =Z, [~.,'(q + 0, q + 0, 0)] '

q (q+K)]]

K
(31)

which is a microscopic definition of the effective. charge
introduced by Born in the study of ion crystal dynamics
[see Pick (1970)]. Within the limit of small q the quan-
tity (31) vanishes for metals and nonpolar dielectrics;
for ion dielectrics the longitudinal part of the tensor
Z, ~, which indicates screened charge, is transformed
in this limit into the ion charge Z& (Pick et af. , 1970).

he entire ion contribution to the macroscopic crys-
tal DF is expressed through the quantity (31), which
describes the long-range Coulomb field of an ion. In
fact, taking into account Eq. (23), we have

s !(q+ 0 q+ 0, 0) = c '(q+ O, q+ 0, 0) —[c,'(q+ O, q+ 0, 0)] ZR~ Zx "(q)e~(1 q)Z7 (q)&~RI q)
M~M~ ~&~ q

(32)

To conclude this section we should note without giving
corresponding general formulas [see Maksimov (1975),
Pick et al. (1970), Sham (1969), and Keating (1968)]
that the phonon frequencies ~ themselves depend on the
value of the electron D F c„. This can be seen in the
early literature from an elementary formula which re-
fers to the structureless jellium model (Pines, 1963)

~2For the sake of simplicity we have considered the pseudo-
potential to be just a function of the difference of coordinates,
although in fact it is a nonlocal operator.

where „ is the ion plasma frequency.

B. Electron and ion parts of the dielectric function

As can be seen from Eqs. (28)-(30), the total in-
verse crystal D F consists of two parts, one describ'ng
polarization properties of electrons in the field of a ri-
gid lattice and the other describing the contribution of
the oscillating ions themselves. Now we are in a posi-
tion to consider these parts separately.
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1. E lectron dielectric function

As has already been noted, the electron DF c„cor-
responds to a rigid lattice whose ion masses are con-
sidered infinitely large. In Sec. II we have already
emphasized that the DF of a, uniform ideal electron gas
is positive and that negative values for it could be ex-
pected only if exchange and correlation effects were
taken into account. The same conclusion is true also
for electrons in a periodic lattice field if we take into
account the ma, croscopic DF of the system with infinite-
ly heavy ions. Here we shall concentrate on the role of
exchange and correlation effects.

Let us begin with the case of metals whose D F has a
singularity at q- 0:

s,', (q+ O, q+ 0, 0)~q'. (34)

In the case of simple metals, which alone will be con-
sidered hereafter, nondiagonal matrix elements of the
DF are small, since the electron-ion pseudopotential
g" is small (see Sec. I):

i .,(q+o, q+K, o)i« .,(q+o, q+0, 0).
Although a number of papers (Wiser, 1963; Moore et

a/. , 1974; Sturm, 1976) are devoted to direct calcula-
tion of an electron DF for metals, no reliable results
on the sign of this quantity have been obtained by esti-
mating the role of exchange and correlation effects.
These effects in real metals (excluding perhaps ferro-
magnets) are evidently insufficient for their electron
D F to become a negative quantity.

Going on to the case of semiconductors and dielec-
trics [see Gandelman and Ermachenko (1963), Van
Vechten and Martin (1972), Onodera (1973), Johnson
(1974), Louie et a/. (1975), Hanke and Sham (1975),
Sinha et a/. (1974), Lannoo (1977), and the review by
Hanke (1978)], we should note that at q —0 their elec-
tron D F tends to a constant limit for which the follow-
ing designation is used:

I

lime, ~{q+o,q+ 0, 0) —= I/c(~) .

(35)

This designation implies that the electron DF coincides
with the total one when frequencies exceed phonon fre-
quencies (but are small as compared with characteris-
tic electron frequencies).

One should bear in mind that. exchange and correlation
effects, which could lead to a negative sign of the elec-
tron DF, determine the short-range order in the sys-
tem and therefore can be considered as manifestations
of local field effects in the broad sense of the word.
This means that changes in the local structure of the
system near a given particle are responsible for the
difference between the true field configuration and an
averaged one. '3

In classical macr oscoplc electrodynamics {e.g.
Tamm, 19VV) local field effects lead to a difference be-
tween the macroscopic DF of the medium and the sim-
ple expression

c =1+4m'nn

~SNote that long-range effects (nondiagonal matrix elements
of the DF) prevent the emergence of negative DF values
(Maksimov and Mazin, 1978).

and are described by the well known Lorentz-Lorenz
formula,

c =1+4vno. /(I —dna) . (36)

Here 0. is the polarizability of an individual atom, n is
the atom density, and v is a numerical constant equal in
the simplest cases to 4v/3. From Eq. (36) it can be
seen that at high values of polarizability one can hope
for the appearance of a negative sign for the DF.

However. , it is clear that argumentation based on Eq.
(36) cannot be taken seriously, since it refers essen-
tially to the value q =0, for which the DF must be a
positive quantity [see Eq. (9)]. In fact, an increase of
n may at most cause the DF to diverge with a subse-
quent reconstruction of the system to a ferroelectric
state. This possibility was pointed out long ago by
Slater (1967), and the physical causes of the high value
of polarizability {particularly in application to the ions
O ) were discussed by Migoni et a/. (1976).

Thus, to determine the possibility of a negative DF
one must have an expression more general than the
Lorentz-Lorenz formula and one which is valid at qc0.
Repeated attempts have been made to derive such an ex-
pression in the framework of a consistent quantum-
mechanical approach (Onodera, 1973; Johnson, 1974;
Sinha et a/. , 1974; Lannoo, 19VV). The difficulties en-
countered by the authors of these papers were overcome
by Maksimov and Mazin (19V8), who gave a microscopic
derivation of the Lorentz-Lorenz formula for dielec-
trics with strongly bound electrons at q =0. From this
paper it can also be seen that at q& 0 the formula for
the DF is quite different from Eq. (36) and this
quantity is not expressed through polarizabilities of in-
dividual atoms. In any case, we may state that the val-
ues g„&0 at qg 0 are improbable since the polarization
term in the DF decreases rapidly as q increases.

Thus we see that the question of the sign of the elec-
tron DF for crystals remains open. There is a sus-
picion that a negative sign for this quantity wouM lead
to instability of the lattice if the finite ion mass were
taken into account, a suspicion which arises when we
consider even a simple formula like Eq. (32) leading to
~q &0 at c„&0. However, this very formula cannot be
applied to a real crystal. In particular, for simple
metals Uspenskii (1979) has shown the admissibility of
negative values for the electron DF, and Kukkonen and
Wilkins (1979) have stated that such a situation actually
obtains in cesium.

Nevertheless, in what follows we shall proceed from
positive values for the electron DF. This assumption
only makes stronger our subsequent result for a nega-
tive total DF in some classes of solid bodies.

2. ion part of the dielectric function

Let us now turn to the question of whether or not the
effects connected with ion oscillations change the sign
of the DF and make it negative. As before, we shall be-
gin with metals —only simple ones that have only one
atom in the elementary cell.

As has already been emphasized [see Eq. (35)], in
simple metals one may disregard nondiagonal compo-
nents of the matrix c,', . This makes it possible to re-
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tain on the right-hand side of Eq. (30}only the terms
with K =K' =0 and simultaneously (in the direction of
high symmetry) to discard transversal phonons for
which (qe~) =0. This leads to a simple expression for
the macroscopic DF (Dolgov and Maksimov, 1978):

)
=c,',(q+O, q+0, 0)

c~q, O

uP„r.,',(q+ 0, q+ 0, 0) v "(q)
;(q) v.(q)

(37)

where

4~+Z2e'

t

6 (P,O) /" )
/~~ G/2 j

I

FIG. 2. Static dielectric function for normal metals (K, Al,
Pb, and metallic H) vs wave vector in (j. , 0, 0) direction
(G—reciprocal lattice vector).

is the ion plasma frequency, coL the longitudinal acous-
tic phonon frequency v" the electronic-ion interaction
pseudopotential, and V, =4mZe'/q' the Coulomb poten-
tial.

In the isotropic structureless "jellium" model (Pines
and Nozieres, 1966; Pines, 1963), where v" =V, and

cuz ——~,/c„, the electron and ion contributions to the
inverse DF completely compensate each other, and, as
is well known, the static DF is infinite at all values of
q [I/c(q, O) =0]. However, in a crystal where apart
from longitudinal there also exist transversal oscilla-
tion modes, such a balance between electron and ion
contributions to the DF can be shifted towards negative
values by the quantity v(q, 0). This is connected with
the corresponding decrease of the quantity w2~(q) due to the
existence of sum rules like Eq. (27), which fix the sum

Calculations of c(q, 0) for simple metals K and Al with
the use of real phonon spectra I see, for example, Heine
et al. (1970)] and for metallic hydrogen using calcula-
tional data (Beck and Straus, 1975) were carried out by
Dolgov and Maksimov (1978), and the results are pre-
sented in Fig. 2. From Fig. 2 it can be seen that the
DF of a metal may acquire any value. In Coulomb sys-
tems where V;,(q) =V,(q) (i.e. , in metallic hydrogen) the
DF is negative at all values of q.

Let us proceed to the case of dielectrics and consider
first the limit q-0. Rewriting Eq. (32) in this limit so
as to apply it to the case of not more than two atoms in

an elementary cell, we have

~(q, o) ~( ) ~'( ) ~~ (M, M, ,)'~'„2(0) (38)

lime(q, 0) = ~(~) . (39)
g~ o

Although in polar dielectrics the contribution from
the optical mode in Eq. (38) is negative, as in metals,
it is always modulo less than I/c(~). It can be shown
(Sinha et a/. , 1974; Sham, 1969; Dolgov, 1978) that this
contribution makes up

where ~z~ is the frequency of transverse optical oscilla-
tions. This leads to the well know Liddane-Sacks- Tell-
er formula (Cochran and Cowley, 1962):

2

lim~(q, 0) =—~ c(~) .
o

(40)

The formulas obtained show that at q-0 the rnacro-
scopic DF of a dielectric is a positive quantity. At q@ 0
all oscillation modes contribute to the DF of the dielec-
tric; and. since the ion term in Eq. (32) is negative, one

may expect, generally speaking, that beginning from
some momentum this contribution will exceed the elec-
tron contribution and that the total DF in the dielectric
will also become negative. Such a situation is most
probable in semiconductors with a narrom forbidden
band.

It is mell known that an electron DF in narrow-band
semiconductors (such as Si and Ge) does not differ from
a metallic one for sufficiently large wave momenta ~q ~

& q„where q, = E /v~. Here E is the electron gap in
the semiconductor and n~ the Fermi velocity for free
electrons with a density equal to that of the valence
electrons of the semiconductor. So one may hope that
the static macroscopic DF of semiconductors at mo-
menta tq ~

&q, is negative, as in metal. Naturally, to
confirm this conclusion one should carry out concrete
calculations of the DF in semiconductors.

In concluding this section me shall briefly touch upon
the question of the behavior of the DF in the limit q-0
and the need for the limiting condition (9), c(q =0, 0)& 0.
As we know already, the macroscopic DF in noncon-
ducting crystals (dielectrics and semiconductors) is al-
ways positive at q = 0. If it appears to be negative at

where c(~) is an electron DF (see above). Here we have
left only the contribution from the longitudinal optical
mode, since other modes make a contribution that van-
ishes like q in the limit q-0. In this respect dielec-
trics differ radically from metals, for which all oscil-
lation modes contribute to the DF at q-0. This can be
seen from Eq. (32), in which, though the second item
vanishes like q for all oscillation modes, the first item
by virtue of Eq. (34) simultaneously becomes zero ac-
cording to the same lam.

Thus, because of the finite value of the electron DF
c(~) in a dielectric, the relative value of the ion contri-
bution to the total DF deere. ases considerably. In par-
ticular, in nonpolar dielectrics, where such a contribu-
tion is altogether absent at q-0, the total DF coincides
with the electron one:

Rev. Mod. Phys. , Vol. 53, No. 1, January 1981



Dolgov, Kirzhnits, and Maksimov: Sign of the dielectric function

nonzero values of q, there exists a certain finite mo-
mentum q, determined by the inner system parameters
at which the DF may change its sign.

In metals and, in general, in systems with nonlocal-
ized charges the situation is quite different. As shown
by Dolgov and Maksimov (1978) and seen from Eq. (37)
of the present review, for the simple metals the DF can
remain negative up to any arbitrarily low values of q.
As follows from the work by Fasolino et al. (1978), an
analogous situation exists also for one-component and
two-component plasmas. Thus in metal there are no
inner parameters determining values of the momentum
at which the DF becomes positive. In an unbounded
metal condition (9) is apparently fulfilled not as the
limiting relation lim, ,c(q, 0) )0, but for one singled-
out point q =—0.' In metals of limited size these char-
acteristic features manifest themselves in momenta
q- I/f. , where I. is the crystal dimension, and appar-
ently it is only for such momenta that the macroscopic
DF of a metal meets condition (9).

IV. CONClUSION

From the considerations presented in the preceding
sections it can be seen that the existence of negative
values for the static DF contradicts no general princi-
ples and moreover that such negative values are possi-
ble for a rather wide class of materials. An essential
condition here is the absence of a microscopic electro-
neutrality, as in the case of a Wigner crystal or the
presence of nonlocalized charges, as in a metal or mol-
ten electrolyte.

In this review we have not considered questions con-
nected with other properties of systems with a negative
static DF, excluding the stability property. We have
briefly touched upon the relation between high-tempera-
ture superconductivity and the sign of the DF (see the
appendix). It is clear that these questions require more
detailed consideration.
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APPENDIX: THE SIGN OF THE STATIC DIELECTRIC
FUNCTION AND THE PROBLEM OF
SUPERCONDUCTIVITY

As we have already mentioned, a very strict restric-
tion on the upper bound for the critical temperature of
a superconductor has been derived from the condition
c(q, 0)& 0 (Cohen and Anderson, 1972; Kirzhnits et al. ,
1970, 1973). Since this question is very important, we
should like to present here the argument of Cohen and
Anderson (1972). Then we shall consider this problem
taking into account the results obtained in this review.

Cohen and Anderson (1972) proceeded from the known
formula for the critical temperature of superconduct-
ors~

1 l p.

Ip. —p*) ' 1+ p, Inc~/&u,

~4The circumstance that for the DF of a metal the point q=0
is singled out has already been emphasized by Izuyama (1973).

which is strictly derived for the case of a weak coupling
[see, for example, Kirzhnits et al. (1970, 1973)]. Here
coo is the characteristic frequency of a phonon, c~o0' (A)p

is the Fermi electron energy, and X, p. are the dimen-
sionless coupling constants of the phonon and Coulomb
interactions, respectively. The inhibition of the Cou.—
lomb interaction in superconductivity, expressed by the
denominator of the formula for JLI, *, is a well known ef-
fect connected with electron rescattering in a wide
(compared to ~0) region (Bogoliubov et al. , 1958).

The quantities X and p, are directly connected with the
effective interaction between electrons by the DF of the
system,

V.„(q, (u) = 4ve'/q'c(q, w) .
This relation has the form

~ =lv(0)( v.„(q,o)),

(A2)

(A3)

The value of T, ~ for the small X turns out to be rath-
er low. Taking into consideration some effects of
strong coupling, Cohen and Anderson (1972) obtained a
rather different formula and they estimated the quantity
&, ~ at X = p. = &

"' as a value of the order of 10 K.
It has been mentioned (Kirzhnits, 1977; Maksimov,

1977) that Cohen and Anderson were far from taking in-
to account all the effects which take place in a real met-
al. Therefore, from the quantitative point of view, this
resul. t may be criticized. Moreover, the existence of a
negative static DF leads to complete removal of the re-
strictions on &, established by C ohen and Ander son
(1972).

All preceding considerations in this appendix have
been based on Eq. (A2) for the effective interaction
among electrons, which holds true only for the weak
coupling. To conclude this section we shall briefly
touch upon the following question: What effect does the

- existence of negative values for the DF have upon the

~~At large values of p there is a strong tendency to the ap-
pearance of ferromagnetism in the system.

where the brackets imply averaging over the momentum
transfer on the Fermi surface, and where N(0) is an
electron density of states on this surface. An effective
value for the momentum q, essential to such an averag-
ing, turns out to be large, i.e., of the order of the
Fermi momentum P~.

Equation (A3) shows that if the static DF of the system
were positive, the inequality X ~ p, would hold obligator-
ily, i.e., the sum of .the interactions among electrons
would be repulsive. The very appearance of supercon-
ductivity, possible only when the inequality X & p, * holds,
would be due to the above-mentioned effect of the Cou-
lomb interaction inhibition.

From this it immediately follows that the critical
temperature has an upper bound. In fact, setting X = p,

in Eq. (Al) (which is the most favorable relation), one
can easily see that being a function of mo the quantity
&, has a peak: With the increase of ~0 it increases at
first [due to the increase of the preexponential in Eq.
(Al)], then falls (due to the decrease of the logarithm
inhibiting Coulomb interaction). The maximum of T,
occurs at ~, =c~e ' ~ and equals

QHlRx g e 3 /)t
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FIG. 3 Effective interaction between two electrons.

effective interaction among electrons '7

As we have established already in the case of a one-
component plasma, negative values for the DF in this
system appear only due to exchange and correlation ef-
fects. It is clear that in an effective interaction it is
also necessary to take these effects into account. In
diagram language this means that we need to introduce
the vertex I'„corrections shown in Fig. 3 by means of
triangles. It is clear, nevertheless, that this wUL not-
influence the total sign of the effective interaction,
since the contribution from vertex parts is described
by an essentially positive expression iI'„

I
. At tQe

same time the connection between the sign of the effec-
tive electron interaction and the sign of the macro-
scopic DF ot metals is in fact very complicated (partic-
ularly in the case of strong coupling) and is far from
clear.
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