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Theories of electron scattering by ionized impurities in semiconductors are reviewed. The early foundations
based on the Born approximation and their subsequent refinements are discussed thoroughly. The phase-shift
method which is not restricted to the Born approximation is also presented. The sitnation in heavily doped
semiconductors is described. The theories are then compared critically with experiments. Finally, conclusions
are drawn and some plausible lines of future work are outlined.
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I. lNTRODUCTION

A. Significance of ionized impurity scattering

Impurities influence the electronic behavior of semi-
conductors in two ways. The bound states of a carrier
localized at an impurity and the associated energy to
create a delocalized state determine the tyPe and '12Q~-
bex of the charge carriers and their lifetime through
recombination involving such bound states. The impuri-
ties also scatter the carriers, leading to changes in
their motion under the influence of an electric field;
therefore the ~»&«ty is the affected observable.

Scattering of car riers by ionized impurities is most
important at low temperatures, where phonon effects
are small. Sufficiently large doping levels may extend
this regime towards room temperature. Figure 1 shows
an example of carrier mobility as a function of tempera-
ture for two levels of doping with impurities. The mo-
bility limited by ionized impurity scattering decreases

with decreasing temperature, since the low- temperature
carriers have correspondingly smaller thermal veloci-
ties, w hic h lead to a lar ger change in momentum through
the Coulomb interaction between the impurity ion and the
charged carriers. The low-temperature mobility is thus
a measure of the impurity or defect content of a semi-
conductor specimen. The maximal mobility and the
temperature of this maximum are in fact often quoted
by materials suppliers and materials users as a mea-
sure of the purity and perfection of a crystal; higher
mobility and lower temperature of maximal mobility
indicate better quality. A mobility analysis within the
ionized impurity scattering regime provides information
about chemical impurities which is in most cases more
sensitive than conventional chemical analysis. Advances
in our understanding of scattering by ionized impurities
are intimately linked to advances in the materials
sciences.

Bound states at shallow and deep impurities are cur-
rently a lively topic of experimental and theoretical in-
vestigations. Shallow donors and acceptors may be de-
scribed by a hydrogenic "effective-mass theory" while
the theory of deep impurity levels is much more diffi-
cult (Pantelides, 1978). The present great efforts de-
voted to the bound states will undoubtedly stimulate new
interest in the parallel problems concerning ionized
impurity scattering. We therefore consider it timely
and useful to present this review on the current state of
theory and experiment for this specific process affecting
mobility.

B. Outline of this review

We start in Sec. II with the Boltzmann equation for-
malism which is most frequently used in describing the
carrier transport properties in semiconductors. The
early theories of ionized impurity scattering which look
upon the scattering as a small perturbation on the car-
rier motion, or in other words, using the Born approxi-
mation, are outlined in Sec. III in order to facilitate fur-
ther discussion. The problems with these theories and
their subsequent refinements are then presented in Sec.
IV. Corrections to the Born approximation are con-
sidered in Sec. V. Section VI contains a discussion of
the comparative importance of the various refinements
of t. he Brooks-Herring theory. Section VD is devoted to
a description of phase-shift analysis which is not re-
stricted to the Born approximation. The problems which
are of current interest in heavily doped semiconductors
are covered in Sec. VIII. We compare theory with ex-
periment in Sec. IX, for elemental as well as for com-
pound semiconductors, and discuss the cases of agree-
ment and disagreement. Finally, in Secs. X and XI we
offer some conclusions and discuss the prospects for
future work.

i04
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I i l I
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FIG. l. Electron mobility versus temperature for n-type
Gahs. Curves a and b are for room-temperature carrier con-
centrations of 3x10 and 1.5xl0 ~ cm, respectively.

I I. SOLUTION OF THE BOLTZIVIANN TRANSPORT
EQUATION

The Boltzmann equation has had remarkable success
in describing the transport properties of semiconduc-
tors (see, for example, Ziman, 1960; Conwell, 1967;
Nag, 1980). The calculation, with the help of the Boltz-
mann equation, of carrier mobility as limited by
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ionized impurity scattering is described below. '
We concentrate on n-type materials, i.e., take the

current carriers to be electrons. Furthermore, we con-
sider an isotropic conduction-band structure. Thj.s as-
sumption holds well for most direct-gap semiconductors.
For indirect-gap semiconductors the conduction band
valleys are anisotropic, and here further elaborations
are necessary in describing electron transport (Blatt,
1957a; Paige, 1964). The case of anisotropic band
structures will be discussed in Sec. IV.C.

Charge-carrier transport problems are concerned
with the determination of the distribution function
f (k, r, t) in the presence of applied fields. This function
gives the probability that the state corresponding to the
Bloch wave vector k at a point in the crystal given by the
position vector r is occupied by a current carrier at
time t. If we restrict our attention to conditions of
homogeneity and to steady-state problems under the
influence of a time-independent electric field g, f be-
comes a function of k only. The Boltzmann equation
giving the function f then reads

(eg/8) &„f= Bf
coll

1

where e is the magnitude of the electron charge, A is
Planck's constant divided by 2&, V„ is the gradient op-
erator in the k space, and (Bf/Bt)„„ indicates the rate
of change of f due to collisions.

We introduce a spherical coordinate system for k with
the polar axis along 8. Because of symmetry, f(k) can-
be a function of k and the polar angle 8 only, and can be
expanded in Legendre polynomials. At low fields the
drift velocity is much smaller than the thermal velocity,
and here the Legendre polynomial expansion functions
fall off rapidly. . It is therefore adequate to truncate the
series after the second term. We shall hence write

f (k) =f0 (E) — „k4 (E) 0 cos G,
ehg Bf,

where E is the energy for wave vector k and m~ is the
band-edge effective mass. The function f, (E) is the
equilibrium Fermi-Dirac distribution function; in the
special case of nondegeneracy, f, (E) reduces to the
Maxwell- Boltzmann form. The equation for the func-
tion 4 (E) is obtained by substituting Eq. (2) into Eq. (1).

For this purpose we need the expression for (Bf/Bt) „„,
which we consider below.

If P(k, k') denotes the a Priori probability of transi-
tion of an electron from the state k to the state k' per
unit time, we may write (Blatt, 1968)

) =—
~ J (J'(Ir', k)f (k')[1 —f (k)]

—P(k, k') f (k) [1 —f (k') ])dk', (3)

x [C (E')k' cosG' —C (E)k cos G] dk',

(5)
where we have used the identity

f, (E)[l-f,(E)]=-~.T,E, (6)

k„and T being the Boltzmann constant and the lattice
temperature, respectively.

We shall now introduce a spherical coordinate sys-
tem with the k direction as the polar axis. In this sys-
tem let (O', P, @) be the spherical coordinates of k', the
azimuthal angle @ being measured from the k —g plane
(Fig. 2). One may then write

k' cos G' = k' cos P cos G + k' sin P cos@ sinG

dk'=k'2dk' sinp dpd@. (8)

We shall substitute Eq. (7) and Eq. (8) into Eq. (5) and
use Eq. (6). Noting further that P(k, k') does not depend
on @ due to symmetry, we obtain

/

where 0 is the crystal volume. .For a nondegenerate
electron distribution, f « I, so that the quantities
[1—f (k)] and [1—f (k')] in Eq. (3) may be replaced by
unity. We shall, however, retain these terms to see
the effects of degeneracy. Detailed balance under
thermal equilibrium gives

P(k', k) fo(E') [1 —f,(E)]= P(k, k') f,(E)[1 —f0(E')], (4)

where E' is the energy for wave vector k'.
Substituting Eq. (2) in Eq. (3), using Eq. (4), and re-

taining the terms up to the first order in 8, we obtain

Bf n each

( kcosG P(k, k') 0 4 (E) ——z4 (E') 0 k'2dk'dz,
8 coll 4 a' ~= —1 0

(9)

where z = cosP, and the range of integration over k'
must be determined from energy conservation.

We are here concerned with scattering by ionized im-
purity centers. These centers are massive and are
considered fixed in a scattering event. Furthermore the
scattering is considered perfectly elastic, so that ~' =~.
Equation (4) then gives P(k, k') =P(k', k); also, Eq. (9)

~The equation was originally given by Boltzmann (1872) for a
dilute gas. A good discussion of this equation may be found in
the books by Ferziger and Kaper (1972) and Ziman (1960).

can be written as

f (k) —f0(E)

where

n +

(1 ~)P(k ki)kr2dkr d
4m~

Equation (10) indicates that when the external forces
setting up the distribution function f(k) are suddenly
removed, the perturbation in the distribution function
decays exponentially with the time coristant 7. Hence 7-
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J (I/h)&kEf(k)dk
8 Jf(k)dk

f I 2du ='&'&
w p

(16)

where the angular brackets represent an average given
by

(q) = f q —(— ' )k'dk f f k'dk.

The Hall mobility p.„is given by

(17)

""=m"
&&&

. (18)

X

FIG. 2. Spherical coordinate system for k .

is known as the relaxation time for the scattering. It is
noteworthy that the dependence of 7. on the degeneracy
of the electron distribution, if any, enters through the
function P(k, k ). For ionized impurity scattering, we
shall see that P(k, k') is influenced by degeneracy
through the screening effect of the free carriers. The
relaxation time for ionized impurity scattering is there-
foie also affected by degeneracy if free-carrier
screening is included. It must be stressed, however,
that the mobility which involves an average of 7. over
the carrier distribution is affected by degeneracy even
in the absence of screening [see Eqs. (16) and (18)
below].

The probability that an electron in the state k is scat-
tered in a time interval dt is dt/7. We may also intro-
duce here the expression for the scattering cross sec-
tion o, (Schiff, 1968; Seeger, 1973). If N is the number
density of the scattering centers, each with cross sec-
tion a„and v is the velocity of the electron, the proba-
bility that the electron is scattered in a time interval
dt is ¹',v dt. Since I) = (I/h)(BE/Bk), we have

rN(BE/Bk)
+

(1 —z)P(k, k')k'2'' dz .
"k' z= -1

(12)

It is clear that p, and il„ involve f0 and are hence af-
fected by the degeneracy of the electron distribution.

There are methods which obtain mobilities without
going through the Boltzmann equation treatment. I uong
and Shaw (1971) use the Kubo formula, . Another method
has been proposed by Gerlach (1974). He first calcu-
lates the energy loss which arises when a scattering
center moves through the electrons at rest, and then ob-
tains the energy loss by Joule heating. A (static or
frequency-dependent) resistivity results. The dielec-
tric function of the solid is needed; it can be used so as
to include screening and plasmon effects automatically.
The results agree with those of the Boltzmann formal-
ism; see Farvaque and Gerlach (1976). Scattering on
paj.rs and clusters of impurities has also been treated
by means of this technique (Gerlach and Harbecke,
1980), as has the anisotropic mobility due to disloca-
tloIls lI1 A Bcompou-nds (Booyells k Vermaakk alld
Proto, 1978).

I I I. THE BORN APPROXIMATION APPROACH

The det. ermination of mobility, as seen above, re-
duces to the problem of evaluating the transition proba-
bility P(k, k ) for ionized impurity scattering. The task
is relatively simple if P(k, k') is evaluated in the Born
approximation, i.e. , to the first order in the interac-
tion potential between the particle and the scattering
center. The Born approximation is good if the scat-
tering potential falls off rapidly at large distances, and
if the carrier energy or the temperature is high (Born,
1926; see also the textbook by Messiah, 1970). In this
approximation, time-dependent perturbation theory gives
for a parabolic band (Schiff, 1968; Rode, 1975)

o, is related to the differential scattering cross section
o(P) by

2r Ne2
P(k, k') =—

~
V(q)

~

5(E' —E), (19)

o, =2II Jt a(P)(1 —z)dz.

Comparing Eq. (13) with Eq. (12), we have

(13) where the Dirac delta function indicates the elastic
nature of the scattering event. The randomly located
N centers per unit. volume are assumed to scatter in-
dependently, q =k' —k is taken to be much smaller than
a reciprocal lattice vector, and V(q) is related to the
Fourier transform of an impurity potential V(r):

Substituting Eq. (10) in the Boltzmann equation (1),
using Eq. (2), and retaining only the terms linear in 8,
we obtain.

V(q)= I V(v) exp(- (q. r)dv. (20)

k'k ( kk ) '

The drift mobility p, is given by

(15)
The relaxation time or the scattering cross section for
ionized impurity scattering has been obtained by various
workers by making different approximations to the form
of the potential V(r). These will be discussed now. We
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V(r) = ge(4npr) (21)

where z is the static permittivity of the material, and
the SI system of units is used. The potential in ques-
tion is the difference between the potential in the actual
crystal and that in an ideal crystal and is represented
by Eq. (21) except for values of r smaller than the lat-
tice parameter a. Here we treat the electron as a
classical particle with a well-defined position or tra-
jectory and take the use of Eq. (21) as a, good approxi-
mation. This assumption will hold at low impurity den-
sities for the following reasons. To the extent that the
electron has a well-defined k value, it is delocalized in
real-space (Ax4k ~l). The classical or semiclassical
picture can be justified in terms of wave packets of
Bloch functions, and the spatial extent of the wave
packet may be much less than the interimpurity dis-
tances if the impurity concentration is not high. Also,
in such cases, the distances of closest approach to the
impurity in Coulomb scattering are ordinarily larger than
the lattice parameter a.

Substituting Eq. (21) in Eq. (20) we have

ge gF OQ 7r

~
V(q)

~

= dQ rdr exp(—tqrcosn) sinndn
0 0

=&e(q'c) '. (22)

If we employ this expression in Eqs. (19) and (11), we
obtain

1 Ng2e E ~2 '' dg
16~2 wg~m"'~~

&
1 —z

where we have used the relation
E=e 'k'/(2m~)

for a parabolic band structure.

(23)

(24)

The integral in Eq. (23) diverges for a =1, i.e. , for
P =0 (zero-angle scattering). This corresponds to elec-
trons passing very far from the scattering center. . At
such distances the electron is more likely to be scat-
tered by other centers than by the particular center in
question. Conwell and Weisskopf (1950) assumed that
the electron is scattered at any time only by the center
to which it is closest. Thus the electron is deflected by
a particular center only when it comes within a distance
5 =d/2 of that center, where d=N '~3, the average dis-
tance between the impurities. This implies that the im-
Pact Parameter (which is the perpendicular distance be-
tween the scattering center and the projection of the
initial line of approach of the electron) is cut off at d/2.
The divergence of the integral in Eq. (23) is thus re-
solved'by setting the upper limit of integration equal to
cos po, where (Conwell and Weisskopf, 1950)

(c,)
ze'N "'

(25)

start with the early foundations, as these are frequently
used in analyzing experimental results.

h

A. Conwell-Weisskopf approximation

Here the potential V(r) due to an impurity atom with
charge ge is taken as a Coulomb potential (Conwell and
Weisskopf, 1950)

One then obtains from Eq. (23) the relaxation time 7

1 Ng 2e4E P
~ g~ 2ln cosec

ln 1+Ng2e4
3g2 16m' 2E2

16W2mc'I"~' Z'e4nr'~') ' (26)

Neglecting the variation of the logarithm, we observe
that the mobility due to ionized impurity scattering is
approximately proportional to T3/2 and to m~ ~~ . De-
viations from. the T3~ dependence on temperature may,
however, occur in practical situations because of the
log term (see, for example, Shockley, 1950). If the re-
laxation time were proportional to E3, the Hall-to-
drift. mobility ratio for a nondegenerate distribution
would be p. „/p, =315~/512=1.93.

The CW treatment has been criticized for the artifi-
ciality of the way in which the small-ang1. e scattering
was cut off (Sclar, 1956). Also, the effect on the poten-
tial of the distribution of space charges around the im-
purity was not taken into account. The space-charge
distribution around the impurity produces screening so
as to weaken the Coulomb potential at large distances.
The problem has been considered by Dingle (1955),
Mansfield (1956), and Brooks and Herring (Brooks,
1951, 1955), and is discussed in the following subsec-
tion.

B. Dingle and Brooks-Herring approximations

For simplicity, we assume for the present that only
the electrons contribute to screening. The modifica-
tions due to screening by other charges will be con-
sidered later in this section.

The electron concentration n(r) at a distance r from
an ionized impurity is given by (Dingle, 1955)

2The case of a degenerate electron gas is considered by
Johnson and Lark-Horovitz (1947). We also refer the reader
to Shockley (1950) for a discussion of degenerate sexniconduc-
tors.

where the subscript CW indicates that this formula is
due to Conwell and Weisskopf. Equation (16) then yields
for a nondegenerate electron gas2

64~2 m ~ s " Es exp(—E/k~T)dE
Pcw 3ms1/2(g T)5t 9+2 2e3 ]n(1 + ]6~2s2E2/g2e4+21&)

(27)

The integral in Eq. (27) cannot be evaluated analytical-
ly. However, since the logarithm is a slowly varying
function, a good approximation to the value of the inte-
gral is obtained by assuming that the logarithm has a
constant value which is equal to the value it attains at
the maximum of the function in the numerator. This
maximum occurs at E=SA~T. Evaluating the simplified
integral, we obtain

128M2 tr'~'c'(k T)' ' 1 4~4'r. 'O'
'T)

ILL cw — ~~ t/'2Ng2e3
B ln 1+

Z2e 4N2/3
B

~Pl

(28)
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where q=E~(SENT) ', X~ being the Fermi energy, and
6',. is the Fermi-Dirac integral of order j (Blakemore,
1962):

1' " y'dy
I'(j+ 1) 0 1+exp(y —yo)

' (29')

V(&} is the impurity potential to be determined from
Poisson's equation

V2V(x) = e[n(x) —n] /c, (30)

V(~) = exp( —P,r ),ge
4m'~ (31)

where n is the uniform electron concentration and is
derived from Eq. (29) by putting V(r) =0.

Equation (29) is now used in Eq. (30), and eV(x}/ksT
is assumed to be small compared with q. One may then
linearize Eq. (30) by expanding the function F,&~ in a
Taylor series and retaining only the terms up to the
first order in eV(x}/k~T. Using the boundary conditions
V(& —0) = Ze (4&sx) ' and V(x —~) = 0, one obtains the
"screened Coulomb potential"

where P, is the inverse screening length or the inverse
screening radius:

ii2(n)
ckBT Pg)2(g)

(3 2)

The form of the potential given by Eq. (31) occurs in
many branches of physics. In nuclear physics it is
known as the "Yukawa potential"; in physics of electro-
lytes it is familiar as the Debye-Huckel potential. "
The screening length is generally termed the "Thomas-
Fermi" or Debye-Huckel" screening length, depending
on whether the carriers obey the Fermi-Dirac or the
classical distribution.

Equation (31) is used in the theory of ionized impurity
scattering by assuming that the screening length is
much larger than the de Broglie wavelength, or more
adequately that 402/P,' » 1. This condition is satisfied
for low carrier concentrations and high temperatures
and is incorporated in the Born approximation which we
conveniently use in describing the scattering (Rode,
1975).

Substituting Eq. (31) in Eq. (20), we have

z 2' OO ge Ze
~
V(q)

~

= d@ ed~ exp[—x(P, +iq cosa)] sino do = exp(—rP, ) sinqrdr =
4~~ s(q +P. )

' (33)

Using this in Eqs. (19) and (11), we obtain the Brooks-
Herring formula:

1 Ng e4 b

642 &c m
E ln(l + 5)—1+b (34)

where

4k' 8m E
p2 12p2 (3 5)

The Born approximation presupposes3 that b» 1, so
that the quantity within the bra. cket in Eq. (34) may be
replaced by lnb. This condition is usually satisfied for
nondegenerate materials: For example, for GaAs at
room temperature 5 = 3.3 x 10'8/n[cm 3] and is thus
larger than unity for reasonably small concentrations,
n.

screening considerations.
Neglecting the energy dependence of the terms within

the large parenthesis in Eq. (34), one finds, as in the
CWmodel, that the Hall-to-drift mobility ratio is a
constant, namely, 1.93. More exact treatments show,
however, that this ratio is less than 1.93 and depends
on temperature and carrier concentration (Blatt, 1957c;
Chattopadhyay, 198la). It is further seen that if the
temperature dependence of the screening radius is con-
sidered, the temperature dependence of mobility will
be different from T j . Let us first consider the case
in which the carrier concentration does not change with
temperature. In this case, the screening radius clear-
ly increases with temperature. As a result, the aver-
age relaxation time (v) increases less rapidly with tem-

The mobility is then calculated for a nondegenerate
electron gas as in the CW theory: The logarithm is
taken outside the integral, replacing E in it by 30~T at
w hich the r est of the integrand is a maximum. The r e-
sult is

t M22v8'~'c'(0 T I'~' 24m e(k Tl')'
m~ '~2ug2e' ln . (36)ne2h 2

The Brooks-Herring (BH) mobility [Eq. (36}]has the
same form as the CW result [Eq. (28)] except for the
differing logarithmic factor. In the BH analysis the
low-angle scattering is automatically limited by

3The same condition for the validity of the BH treatment also
follows from a solution of the perturbation problem in a uni-
form electron gas (March and Murray, 1962).

4A formal bridge between the CW and the BH formula has
recently been provided by Bidley (1977). He observes that
both theories consider a characteristic length defining the
range of the scattering potential —screening length in the case
of BH, half the average distance between centers in the case
of CW. Also, both theories assume that within the character-
istic length only one center is present, only that center scat-
ters, and all other centers are ineffective. Bidley (1977)
quantifies the assumption that only one center is operative by
introducing the probability that another center does not inter-
fere. This is done by weighing the differential scattering cross
section o(P) by the probability P'(b) that there is no scattering
center with impact parameter less than b, where b is the im-
pact parameter for the angle P. This procedure ensures a
rapidly decreasing scattering probability at large impact
parameters and removes the divergence problem of the CW
treatment. Furthermore, a smooth transition from the
screened limit '(BH) to the unscreened limit {CW) is obtained.
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perature than it would if the temperature variation of
the screening radius were ignored (Blatt, 1957a). This
would make the mobility increase with temperature less
rapidly than T3 . An additional temperature depen-
dence of the screening radius will have to be incorpo-
rated if the carrier concentration also varies with tem-
perature. This may occur in the temperature range of
partial ionization, or in the intrinsic range which may
be important in narrow-gap semiconductors at modest
temperatures, or for medium-gap semiconductors at
high temperatures.

Equation (36) is appropriate when only one kind of
impurity (donor) is present and the impurity concentra-
tion N equals the carrier concentration n. In a comPen-
sat&d semiconductor both donors and acceptors are
present, and the neighboring ionized impurities also
contribute to screening (Brooks, 1955; Falicov and
Cuevas, 1967). This contribution has been accounted for
by Brooks and Herring on the basis of a linearized pois-
son's equation: only the terms up to the first order in
e V(r)/ksT and in the departure of the local impurity
densities from the average values are considered, and
a random distribution of impurities is assumed (Falicov
and Cuevas, 1967). One then finds that the relaxation
time is given by Eq. (34) with N equal to (N' +N ), and
with P2 given by Eq. (32) with the term (e'/cksT)(Nn

—n)(n +N )/ND added to the right-hand side. Here
N+ and N are t.he ionized donor and acceptor concen-
trations, respectively, and ND is the total donor con-
centration. This extra term in P, is, however, insig-
nificant at sufficiently high temperatures when all the
donors are ionized. It is important at low temperatures
when carrier freeze-out occurs, and the ionized im-
purity concentration N largely exceeds the electron con-
centration n.

lV. PROBLEMS AND REF!NEMENTS WiTHiN THE
BOR N APP ROX IMAT ION

where

ge
c[q +H(k)] '

e' g f(&), ,) —f(&~)
&~-a —&~

(37)

(38)

f (E„)being the distribution function of electrons with
energy E„. Writing Eq. (37) as

~
V(q) I

=&e(q'c, ) ', (39)

we have for the q-dependent dielectric function

s, =c + cH(k)q (40)

E(()= x exp(- x ) ln dx
1 "

2 x+g
0

(42)

= h2q 2(6m" k s T) ' .

The corresponding mobility is given by (Takimoto,
1959)

64@'2v E'(ksT)~~2 "
q03 exp(—q, )d7),

3m" 'I'Ne'Z' J (~q )

where

(43)

(45)

y =ne'k (Bcm*) '(k T) '

A comparison of Eq. (37) with Eq. (33) shows that the
screening parameter is modified to H(k). When q —0,
H(k) reduces to P2, and the polarization effect is neg-
ligible. For larger q, however, the screening param-
eter II(k) deviates from P2. For a nondegenerate elec-
tron gas, one has (Takimoto, 1959; Hall, 1962)

H(k) = P2I'($),

where

The BH theory has on the whole been preferred over
the CW theory. Several attempts have been made to im-
prove the BH treatment by removing one or more of its
simplifying assumptions or by allowing for effects
neglected by it. Table I gives a summary of these phe-
nomena with a schematic explanation of the effects,
their treatments, and their ranges of significance. We
shall now discuss these refinements in detail.

A. Wave-vector-dependent dielectric fonction

1. Polarization due to the colliding electron

In the BH analysis, V(~) is treated as the potential
for the colliding electron, and no deformation of the
screening cloud in the field of the colliding electron is
taken into account. Actually, the colliding electron will
be screened by the other electrons with a hole scooped
out by itself, i.e. , the screening cloud will be polarized
by the colliding electron. The effect of the screening
will thus be somewhat less than that predicted by Brooks
and Herring. This problem is dealt with by Takimoto
(1959), who shows that the transformed potential in-
corporating the polarization effect is given by

qo ——E(k~ T)

Takimoto (1959) simplified the integral in Eq. (44) by
replacing J„(v qo ) by J„(M3), since the rest of the inte-
gral peaks at pp:3 This approach is consistent with
the CW or BH approximations. Hall (1962) gave
suitable forms of the function E(F) for an accurate
evaluation of the integral in Eq. (44).

It ls interesting at this point to compare the CW, BH,
and Takimoto results. In the CW approximation E(g)
=0, and in the BH theory 5'(() =1. In the Takimoto
model, &(() is unity at ( = 0 and monotonicallydecrea. ses
to zero with increasing ( (Takimoto, 1959). This is the
expected result, since the polarization of the screening
electron is less for small q and also for large T when
the thermal agitation causes less accumulation of elec-
trons around the impurity. At low concentrations, the
CW, BH, and Takimoto values of electron mobility are
nearly the same. As the carrier concentration in-
creases, however, the three results are different: The
CWvalue of mobility is smaller than the BH value, and
the Takimoto value is intermediate between them.
Takimoto has shown that for the simple case N=n, the

Rev. Mod. Phys. , Vol. 53, No. 4, Part I, October 1981



752 D. Chattopadhyay and H. J. Queisser: ionized impurity scattering

~ 'IH

&u o

o
E

Z&o pE

o

o

~ W

o

E u o

K.

o
Q

c8
~ ~
~ f+I

a5

o
~ &

oo

C/0
~ tel

c8

c5
2

aS

V$
~ Wo

o c o
~ W

'I

o
c ~

~ 'Pt ~ ~ ~

~ ~o o
g

&D

m" ~ E

co

o
~ 1+&I

U'

c5
G

o

t-

o o
~ W ~g
c5

~ ~ o

O

, o a5
gj o

&u

V5
o

I
~ TH

E
M

o
oo

a5 2o

R

cA

~ ~

2

cj

g5 ~ ~
Clj

~ W
CA

I (g

~- 6
~ ~

CA

TH

CJ

E o
~ W
~ %~+I

bQ

'C

oo

o

o ~
o ~ ~

M

o

C4

th)

g O oo

o
~ W

o
43

o

g5 O

~ Wo
~ W

o

cf

Co

o
go 9

~ H ~ gal

ce

U

Rev. Mod. Phys. , Vol. 53, No. 4, Part 1, October 1981



D. Chattopadhyay and H. J. Queisser: Ionized impurity scattering 753

CCI

~CO

E ~ac
Q
Q

w E
~ ~"2~QE

E

0
bQ
at

0 E
0 0

0 ~ oEw~~

~Q

0

E w

0 cn

0

0

I
~Q
O

at

E w

E

S g o0~ EE o

C8

E

cA
et&

~ m

0
o

s

0

0
C4

g

S4 ~
cn

0
(/)c bQ ~

0 ato 0

0at

0
0

oo

cct

bQ

U P

Ch

g

g

E0 W +'g
ccI

p oC g

I
~ W

E

~ ~ o
~ ~

0
Q

at

«0

0
Q
o

FQ

~ ~

"C
bQ at

aI~ E 0

'pH

E

'I %H

CA.

g

Pg

bQ 0
E w

bQ

0

E

E
bQ bQ bQ

cA

M

E
CA

bQ

g

0
Z cA

bG

Q P

at

0
~ W
at
E

~ W
K0

0
S
at

0 v 0o o

0
~ ~

~ ~
CAs~ TH

Q,
~ ~

M

0

g

O00

Q
Ch ce

at

O
oo

bQ

bQ ~
P
0 ~

at

0
cl)

Rev. Mod. Phys. , Vol. 53, No. 4, Part 1, October 1981



D. Chattopadhyay and H. J. Queisser: ionized impurity scattering

differences between the three results become signifi-
cant for concentrations above 10' cm 3 for the following
set of parameters: T=80 K, g/so=16. 1, and m"
=0.25mo (see Fig. 3). The result is explained as fol-
lows. At low carrier concentrations, screening is less,
ance the potential is nearly Coulombic. Forward scat-
tering predominates here, and so the polarization ef-
fect is small. At large concentrations the screening is
important, and large-angle scattering makes the po-
larization effec t signif icant.

2. Valence dielectric screening

The dielectric response of the valence electrons to
the field of the ionized impurity is taken to be described
by the static dielectric constant of the material in both
the CW and BH theories. In recent years considerable
attention has been paid to more realistic valence di-
electric screening (Penn, 1962; Srinivasan, 1969;
Grimes and Cowley, 1975; Hesta, 1977; Cornolti and
Resta, 1978). Attempts were made by Csavinszky
(1976a,, 1978) to incorporate in the impurity ion poten-
tial the dispersive screening of the dielectric medium
beyond that carried by the static dielectric constant.
The impurity ion potentials derived by him were also
used by others to calculate the ionized impurity scat-
tering mobilities (Paesler, 1978; Richardson and Scar-
fone, 1978, 1979; Theodorou and Queisser, 1979). Un-
fortunately these impurity ion potentials were shown to
be incorrect and corrected subsequently (Csavinszky
and Morrow, 1979; Meyer 1979).

Following an approach different from Csavinszky's.
Resta (1979) developed a. screening theory in a doped
semiconductor at nonzero temperature. The theory
was later applied by Resta, and Resca (1979) to calculate
the ionized impurity scattering mobility. Essentially,
the theory gives a Fourier transform of the screened

( ARB.
UNITS )

Np

I—

Q3

C)

Q
2

impurity ion potential in the form

l&(q)I =(2'elq')[s(q)+q '~~.'J (47)

where c(q) is the wave-vector-dependent dielectric
function (Resta, 1979}. The effective dielectric function
of the doped semiconductor is thus

~.~f(q) =~(q)+~q '&,'. (48)

This result actually means a summation of the suscepti-
bilities due to the valence electrons and due to the free
carriers. As q —0, c(q) —c, the static permittivity,
and z(q) decreases at larger q (Resta, 1977; Cornolti
and Resta, , 1978). The inverse Fourier transform of
Eq. (47) shows that the corresponding potential is the
simple screened Coulomb potential [Eq. (31)j for dis-
tances & larger than R, where R is very close to the
nearest-neighbor distarice in the crystal (Resta, 1979).
For x ~R, the potential is larger than the standard
screened Coulomb potential. Since R is much less than
any realistic value of P, , carrier screening clearly
acts over a much larger distance scale than the dis-
persive valence screening. As the scattering potential
is enhanced by the dispersive valence screening, one
expects a reduction in mobility from the BH value. 'The
effect is expected to assume importance at high tem-
peratures, for then the carriers, due to their enhanced
kinetic energy, are able to come closer to the impuri-
ty ion and feel the influence of dispersive valence
screening. Calculations of Resta and Resca (1979), who
also give an analytic expression for mobility, corrobo-
rate this expectation. They give numerical results for
silicon over the concentration range 10" to 10 ' cm
The departure from the Brooks-Herring result tends to
zero at both high and low concentration limits. At in-
termediate concentrations (-10'8—10" cm 3) the de-
parture is a. maximum but is not more than 5%at 300
K. It should be mentioned that Resta. and Resca (1979}
use classical statistics in their analysis. Using Fermi-
Dirac statistics, Scarfone and Richardson (1980) get
slightly different results. They find that. the dispersive
valence screening effects at 300 K are negligible for
concentrations below 10 cm 3 for Si and Ge, and for
concentrations below 10'~ cm 3 for GaAs. With in-
creasing doping above these values, the mobility de-
creases monotonically from the BH value. However,
the effect is not large, being less than 10/o for concen-
trations as high as 10'~ cm '. A recent discussion by
Csavinszky and Morrow (1981) and Scarfone and Rich-
ardson (1981) concerns the problem of boundary condi-
tions for the potential.

C3
LLI

D
I I I I

~o'3
~

o'~ ~o'5
~

p' ]g ~o'

CARRIER CONCENTRATION n(cm )

FIG. 3. Comparison of Brooks-Herring {curve a}, Takimoto
(curve b), and Conwell-Weisskopf (curve c) values of electron
mobility, multiplied by impurity density N, for the following
parameters: tlat = 0.25~p T = 80 K 6/Gp= 16.1 (after Taki-
moto, 1959).

B. Considerations in the low-temperature limit

The conventional Debye-Huckel screening length
vanishes at a temperature of absolute zero; as a result,
the BH form of the potential breaks down at very low
temperatures. Alfred (1977) showed that this difficulty
can be overcome by considering the dielectric response
formulation of localized point-charge screening in a
noninteracting el.ectron gas. For a nondegenerate elec-
tron distribution he obtains the following analytic ex-
pression for the screened impurity potential:
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r {r)= exp{- per ) —Meecrerfc{per) r " exp{le ) er{{te)exp{-p,r) r exp{te )L{{ccp,„r)), (49)

{62= p (E) dE,df
C

(52)

where f is the distribution function. It is assumed that
the level broadening is small compared with the energy

-gap between the donor level and the conduction band
edge. Equations (50) through (52) must be solved self-
consistently for P, and (U2) „ taking account of the
condition

x'JQ

N~ —N~ = p(E)f (E)dE, (53)

where k~~ —2m ksT/m2, &u= p, /2k3, p(ko, p„x) =exp(p, r)
x erfc(k~r+{d) —exp(- Pp') erfc(kp' —ur); erf and erfc are
error functions. At ordinary temperatures when P, /
240 «1, there is no significant deviation from the
Brooks-Herring potential at large distances. As T- 0,
and p, —~, V(2) approaches the form Ze(4mc2")
x exp( —kov ) and problems with the vanishing screening
length do not arise.

Stern (1974) has argued that the breakdown of the
screening length at absolute zero occurs from the as-
sumption of discrete impurity levels. He considers the
potentzal fluctuations due to the Coulomb poten-
tials associated with the ionized impurities. The mean-
square value of such potential fluctuations for randomly
distributed impurities is

(50)

The donor level is consequently broadened into a band
with a density of states given by

p(E) = [N„/(2v(U )2,)' /]2exp[ (E —E—D)2/2(U2), ],
(51)

where E~ is the center of the broadened donor level.
When (U2) '/2 is greater than k~T, the level broadening
becomes important, and the inverse screening length
{6, is given by

I

first and then computing the scattering. The correct
procedure would be to average the scattering from the
different charge configurations which give the average
potential. Further work is needed to investigate
whether the two procedures are equivalent in any physi-
cal situation.

Fujita et al. (1976) considered that the lifetime of an
electron in a quantum state is finite due to the presence
of other impurities. This results in a replacement of
the 6 function in Eq. (19) by n 'D(q; k) where D(q; k) is
the Lorentzian function:

D(q, k) = mr/[(E„„—E„)'+m'I'],
T' being the relaxation rate. The constraint of energy
conservation is thus relaxed, and this causes an en-
hancement of the relaxation time. In the limit of small
I', however, the I.orentzian function reduces to r times
the 6 function. For a very pure semiconductor with a
low carrier concentration, an unscreened Coulomb po-
tential can be used. A finite relaxation rate is found in
this case by Fujita et {2l. (1976) without introducing an
artificial cutoff as in the CW theory. Zubarev et al.
(1977) performed a numerical calculation and showed
that for Qe below liquid helium temperature with lowest
concentrations (n '&10~' cm 3) the mobility behaves like

c ~ 2(k T)3/2~-3N —1~p' —1/21n[c r 2mp'1/2(k T)3/2({p4mN) —
&]

For concentrations between 1.0' and &0' cm, the
mobility is p=c3m'/ c(ksT)'/4e N '/ m /; here p,

ls proportional to T ~i'4N-~/2m*-3/4 in contrast with the
CW result. For higher concentrations (10~3 cm 3 and

above), one must use 3. screened Coulomb potential.
The replacement of D(q; k) by ~6(E„„—E„) is justified
in this case, yielding the Brooks-Herring formula
(Fujita et {2l., 1976; Zubarev et al. , 1977). Further dis-
cussion of this work is relegated to Sec. IX, where
theory is compared with experiment (see also Capek,
1980).

which determines the Fermi level. Here N~ and N„are
the donor and acceptor concentrations. A finite value of
p, at absolute zero can be obtained in this way. A tran-
sition to the conventional result is expected when kBT
is of the order of (U2)'/2. Thus again the problems as
T —0 are avoided.

The low-temperature screening was earlier con-
sidered by Morgan (1965). He used a self-consistent
theory but introduced an additional length parameter
a3= [3/4w(N~+N~)] '/3. We observe that although low-
temperature screening has been considered by several
authors, calculations of mobility with the associated
potentials have not attracted attention.

Larsen (1975) has shown that at low temperatures
when most of the carriers are not free but are localized
on impurities, the screened Coulomb potential repre-
sents an average potential and not an actual physical
potential around an impurity. The use of a screened
Coulomb potential in ionized impurity scattering calcu-
lations therefore amounts to averaging the potential

C. Consideration of band-structure details

The mobility theory given above is developed for a
simple isotropic parabolic band structure. In the case
of narrow-gap semiconductors (e.g. , InSb), conduction-
band nonPaxaboli ci ty nec essitates mod ifications of the
mobility expressions. Such modifications of the BH
mobility introduced by nonparabolicity have been con-
sidered by Barrie (1956), and more recently by
Askerov (1970), Rode and Knight (1971), Rode (1975),
Nag (1980), and Neumann, Tsipivka, and Unger (1981).
In a nonparabolic band the density of states is larger
than that in a parabolic band, which alters the screening
length given by Eq. (32). This enhancement of the den-
sity of states decreases the mobility, but the effect is
slightly offset by the admixture of P-type valence-band
wave functions. Also, recent calculations of mobility
employ numerical evaluation of the integral in Eq. (16)
without making approximations (Rode, 1975; Nag, 1980).

The screening problem in a band structure consisting

Rev. Mod. Phys. , Vol. 53, No. 4, Part I, October 1'981



756 D. Chattopadhyay and H. J. Queisser: ionized impurity scattering

of a central minimum at the I' point and a number of
subsidiary higher-lying minima at other points in the
Brillouin zone was tackled by Robinson and Rodriguez
(1964, 1965}. The particular case of GaSb was con-
sidered, and the subsidiary minima were characterized
by an isotropic spherical effective mass. Since the ef-
fective mass in the subsidiary minima is much larger
than that in the central minimum, the transport proper-
ties a.re largely those of the central-valley electrons.
At liquid nitrogen temperatures for carrier concentra-
tions of 10'8—10~9 cm, the central-valley electrons
were taken to be completely degenerate, but the subsi-
diary-valley electrons w ere taken to be incompletely
so. Dielectric screening was incorporated. The key
feature is that since the subsidiary minima have a much
larger density of states than the central minimum, when
the subsidiary valleys are occupied the carriers in them
dominate the screening of the Coulomb potential of the
charged impurities.

The influence of the spheroidal energy surfaces, as in
germanium and silicon, on ionized impurity scattering
has been discussed by Brooks (1955). He observes that
small-angle scattering contributes predominantly to the
relaxation time. Assuming that a relaxation time exists
for an anisotropic configuration, one would expect from
this observation that the relaxation times for impurity
scattering along the two principal axes of the energy
spheroids of a single minimum will be different because
of the difference in effective masses. Ham (1955) cal-
culated the relaxation times along the principal spheroid
directions assuming small-angle scatt. ering. For Ge,
the relaxation time along the major axis was found to be
about 12 times that along an axis perpendicular to it.
For Si, the same quantity is about four. Ito (1963) has
noted that electron screening reduces the importance of
small-angle scattering, demanding a more careful
analysis. He used the Herring- &ogt transformation
(Herri. ng and Vogt, 1956, 1957}and terminated a spheri-
cal harmonic expansion of the electron distribution func-
tion after the l =1 term to obtain the relaxation time
tensor. The procedure is justified for small anisotropy
in the relaxation times. Ito, however, finds the oppo-
site results for Ge at low temperatures and so his re-
sults are questionable. Similar results have been re-
ported by Samoilovich et al. (1961a), working with
terminated expansions.

Brooks (1955) points out that even when the relaxation
times along the principal spheroid directions are known,
it is not certain how they should be averaged over all
directions to obtain a mobility. Some plausible av-
eragings indicate that an isotropic effective mass can
be used with some success in mobility calculations.
Such average effective masses were used by other
workers in treating ionized impurity scattering in
anisotropic band structures (Long and Myers, 1959;
Paige, 1964).

The problem of ionized impurity scattering in aniso-
tropic band structures also received the attention of
Boiko (1959), Samoilovich et al. (1961b), Andrianov et
al. (1964), Dakhovski (1963), and Eagles and Edwards
(1965). For a review of work on anisotropic band struc-
tures we refer the reader of Baranski et al. (1977).

Elaborate calculations of ionized impurity scattering

in degenerate materials with anisotropic band struc-
tures were performed by Krieger and his co-workers
(Krieger et al. , 1971, 1972, 1974; Krieger and Meeks,
1973}. For saturation-stressed, degenerately doped n-
type Ge they obtained upper and lower bounds to the
transverse resistivity predicted by BH scattering by
exactly solving the Boltzmann equation including the
mass anisotropy for two different scattering rates
which either overestimate or underestimate the BH
scattering rate. The variational principle was also em-
ployed to obtain an upper bound for the transverse and
longitudinal resistivity for BH scattering (Krieger et
al. , 1971, 1972). In later publications Krieger et al.
observed that the use of dielectric screening [Eq. (37)]
instead of that due to Thomas-Fermi IEq. (33)] causes
a significant decrease in the intervalley contribution to
the screening in unstressed many-valley semiconduc-
tors with strongly anisotropic band structures (Krieger
and Meeks, 1973; Krieger et al. , 1974).

Scattering of holes from impurity potentials is recent-
ly dealt with by Ralph (1977). In his treatment mass
anisotropy is neglected, but the effects of degeneracy
and spin-orbit splitting are included.

09—

0.7—

0.6—

0.5—
I

2
I

10

FIG. 4. Plot of the quantity C„by which the electron-electron
scattering reduces the ionized impurity scattering mobility,
as a function of the reduced Fermi energy q (after Bate et al. ,
1965).

D. Electron-electron scattering

Electron-electron scattering tends to equalize the en-
ergy among the electrons and thus modifies the mobility
(Spitzer and Ha. rm, 1953). For nondegenerate materials
with electron concentration n equal to the ionized im-
purity concentration N, Appel (1961) finds on using a
variational principle that electron-electron scattering
lowers the mobility below the Brooks-Herring value by
a factor of 0.573, independent of temperature. Working
with the Kubo formula, Luong and Shaw (1971) have re-
vised this factor to 0.632, also temperature-indepen-
dent. For extremely degenerate materials, however,
electron-electron scattering does not contribute be-
cause conservation of momentum and energy near the
Fermi surface implies conservation of total electron
velocity. Thus electron-electron scattering decreases
the mobility by a factor which rises from about 0.6 at
low electron concentrations to unity at very high elec-
tron concentrations. This factor C, for arbitrary de-
generacy has been approximately calculated by Bate
et al. (1965) (see Fig. 4).
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The problem of electron-electron scattering in many-
anisotropic- valley semiconductors has been discussed
by Morgan (1963, 1965), Price and Krieger (1966), and
Meeks and Krieger (1969). In this case, electron-elec-
tron collisions affect the mobility even if the material
is degenerate because electrons in different valleys can
scatter, remaining in their respective valleys, and in-
fluence the resistivity due. to the anisotropy.

&3 =8m (ND —N„), (54)

where ND and N„are the donor and the acceptor concen-
trations.

Attempts have also been made to improve on the sim-
ple screened Coulomb potential by retaining higher-
order terms in eV(r)/kBT in the Taylor series expan-
sion of 5'«, in Eq. (29). A method is suggested in which
the nonlinear Poisson's equation [Eq. (30)] is solved as
a linear combination of screened Coulomb potentials
with coefficients to be determined by the variational
principle (Csavinszky, 1976b). A variational solution
of the nonlinear Poisson's equation including valence di-
electric screening has been proposed recently (Brown-
stein, 1980). A numerical solution to the nonlinear
Poisson's equation has also been performed (Meyer,
1979). An analytic expression for the impurity potential
keeping terms up to the second order in eV(r)/k~T in
Eq. (29) has been obtained by Csavinszky (1964) and
Adawi (1966). This expression reads

E. Nonlinear screening

The linearization of Poisson's equation [Eq. (30)] by
retaining only terms up to the first order in eV(r)/&~T
is unsatisfactory at low temperatures. Falicov and
Cuevas (1967) tried to get around the problem by solving
Poisson's equation without resorting to an expansion in
a series of eV(r)/k~T. They considered a compensated
semiconductor with the carrier and the impurity ion
distributions 'frozen" in the state of minimum potential
energy. The static screening of the individual charges
was accounted for by considering the mutual statistical
correlation between them. The exact forms of the cor-
relation functions are not known, and there is evidence
that they are complicated (Falicov and Cuevas, 1967).
Falicov and Cuevas made some simplifications by as-
suming that charge distributions of the same species
are uncorrelated, and the number of electrons are
small, and by using a temperature-independent exponen-
tial correlation function between acceptors and donors.
They then obtai. ned a relaxation time 7. which differs
from Eq. (34) only in that the sign of the last term with-
in large parentheses is positive and that the tempera-
ture-dependent inverse screening length P, is replaced
by the static temperature-independent inverse cow~ela-
tion length a, :

and Ei(—g) is the exponential integral

—Ei(—4)=J x 'exp( —x)dx (57)

Equation (55) is a satisfactory solution to the nonlinear
Poisson's equation when n, «1 (Adawi, 1966). The ap-
proximate calculations of Adawi (1966) as well as the
exact numerical solutions of Meyer (1979) show that in
the nonlinear theory the screening charge is increased
in the vicinity of the impurity ion but is decreased at
large distances. The scattering potential is therefore
weaker than the standard screened { oulomb potential,
resulting in a corresponding enhancement of mobility
over the BH value. This result is confirmed by de-
tailed calculations of mobility in GaAs (Chattopadhyay,
1981a) (see Fig. 5). The departure from the BH mobility
is found to be most important at intermediate carrier
concentrations, since at such concentrations the depar-
ture from the conventional screened Coulomb potential
is most significant (Csavinszky, 1964).
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F. IVlultiple scattering and impurity dressing

The BH mobility is based on the assumption that the
carrier is scattered separately and incoherently by the
impurity ions. When the electron interacts with several
ionized impurities simultaneously, multiple scattering
takes place. The perturbing or "dressing" effects of the
impurities on the electron energy levels and wave func-
tions are also neglected in the BH theory.

Rode (1975) has suggested that multiple scattering oc-
curs if the electron deflection time 7.

D in the impurity
potential is greater than the mean time between colli-
sions, 7-. Taking the deflection time 7~ to be approxi-
mately that required by the electron to travel v 2 x
(screening length), this implies that p2 &g/ mn for a
nondegenerate material. Since the mobility p, for
ionized impurity scattering decreases at low tempera-
tures, multiple-scattering corrections due to this cri-
terion need attention at low temperatures.

Multiple- scattering as well as dressing corrections

V,„(r)= V(r) (I+ n, [exp(2rp, ) Ei(—3rP, )

—Ei(- r P,) —in3]], (55)

6'-3 r ~ (O)
167TCk T 5'" ~g2(g)

(56)

where V(r) is the standard screened Coulomb potential
given by Eq. (31),

1.0
1P15 1P]9156 10'7 1P18

CARRIER CONCENTRATION (cm 3)

FIG. 5. Batio of the electron drift mobility in the nonlinear
screening model to that in the linear screening (Brooks-
Herring) model as a function of carrier concentration at two
different temperatures for n-type GaAs (after Chattopadhyay,
198la).
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have been calculated by, Moore a.nd Ehrenreich (1966)
and by Moore (1967). They denoted these corrections
by &~(k) and &~(k), respectively. For isotropic semi-
conductors the 6's are functions of 0, i.e. , of the en-
ergy E only. When the 6's are less than unity, 1+6~(k)
+ 5~(k) will be a slowly varying function of energy. The
corrected mobility can then be expressed as

p = ps„[I + 6~(k~) + 6~(k~)'j (58)

when p.~„ is the Brooks-Herring mobility and k~ is the
value of k at which E3f0-(E) is a maximum. For singly
ionized impurities, Moore and Ehrenreich (1966)
showed that

X~2a3 47t 2a 2"("'-4.a2d 3 ~~ (59)

A.
6D(k~) = 1 —(A~a3/16za2sd3) 1+—~,

4Tr'a'
—1, '

(60)

where A is the electron wavelength (=2m/k~), a„ is the
potential ra.nge (a„/2=screening length), as is the ef-
fective Bohr radius (as=4nN2sm ~e 2), and d is the
mean distance between impurities (d = N ~ ). For
4w'a2/A~& 10, where deviations from the Born approxi-
mation are not large, Q„ is slowly varying and ranges
in value between 1.6 to 1. Under this condition the
multiple-scattering correction would be small when A~

or a„ is small compared with d. Moore and Ehrenreich
(1966) and Moore (1967) gave numerical value of 5„ for
uncompensated n- type GaAs. At higher temperatures
when the Boltzmann statistics apply, a„cc T'~ n ' 2 and
A CC T '~2. Therefore 5~O- T'~ n ' '. Multiple scat-
tering is thus more important at higher temperatures
and at low impurity concentrations. The underlying
reason for this apparently unexpected result is that at
high temperatures and low impurity concentrations the
screening length increases, and the electron may feel
the influence of more than one impurity at a time. This
result conflicts with the result of the Rode criterion
mentioned before. Moore and Ehrenreich (1966) and
Moore (1967) have further shown that the dressing cor-
rection 5~ is typically 30—50%%uq of 6„ in the region
where 4~2a,'/X'& 10.

The results of Moore and Ehrenreich were applied to
the case of anisotropic band structures under conditions
of degeneracy by Krieger et al. (1971, 1972). Their
findings will be discussed in Sec. IX, where we com-
pare theory with experiments.

V. CORRECTIONS DUE TO DEPARTURE FROM THE
BORN APPROXIMATION

The Born approximation used in the BH derivation is
valid when 4k2/P2» 1, i.e., at high temperatures. The
validity of results based on the Born approximation is
therefore questionable when the temperature is lowered.
Moore and Ehrenreich (1966) and Moore (1967) have ob-
tained corrections to the Born approximation by con-
sidering higher-order terms in the scattering rate. For
an isotropic semiconductor this correction factor 6~ is
a function of the electron energy only. Assuming that
5~«1, the mobility incorporating corrections due to
higher-order Born approximations, multiple scattering,

and dressing effects is expressed as (Moore, 1967)

p = gs„[1+6s(kq) + 6~(kq) + 6~(k~)] (61)

where k~ has the same significance as in Eq. (58). For
singly ionized impurities,

4v2a~
(62)

where the symbols are explained following Eqs. (59)
and (60). Moore (1967) considered the case of uncom-
pensated n-type GaAs and showed that Qs is a. slowly
varying function between values of 0.6 and 1.0 when
4w2a2/A~& 10. In this situation the main temperature
and concentration dependence of 6~ arises from the fac-
tor A~(&2a,as) '. lf the temperature is high enough for
Boltzmann statistics to apply, a„~ T'~ n ~~2 and A

~ T and so &s(k~) ~ T 3~ n'~ . Thus the correction
to the Born approximation assumes importance as the
temperature decreases. Also with decreasing tempera-
ture the electron gas becomes degenerate, and so 6~ be-
comes less dependent on temperature at very low tem-
peratures. The concentration dependence of the factor
(g/71'a„ae) also changes to n '~' in the degenerate re-
&ion (Moore, 1967). The results obtained by Moore
(1967) on 6s were applied to the anisotropic-mass ma-
terials under degenerate statistics by Krieger et al.
(1971, 1972).

A different approach avoiding the Born approximation
has also been pursued by several workers. This is the
phase-shift analysis, discussed in Sec. VII. Before in-
troducing the phase-shift method, however, it is worth-
while to examine the relative importance of the various
refinements of the BH treatment discussed so far. This
is done in the following section.

Vl. RELATIVE IMPORTANCE OF THE REFINEMENTS
OF THE BROOKS-HERRING THEORY

Incorporation of the various refinements of BH analy-
sis in estimating mobilities depends on the material of
interest, the temperature and the doping level involved,
and the desired accuracy of the result. Nevertheless,
it is useful to frame some general guidelines as to the
relative importance of the refinements in a typical
situation. (See the survey in Table I.)

The effects due to band nonparabolicity and wave-func-
tion admixture are important for a narrow-gap semi-
conductor like InSb; they are less significant for a large-
gap material like GaAs (Bode, 1975; Nag, 1980).

Electron-electron scattering is important for an iso-
tropic material at low concentrations where the electron
gas is nondegenerate; it reduces the BH mobility by
about 40%%uq at all temperatures (Bate et al. , 1965). At
high concentrations where the electron gas is degener-
ate, the influence of electron-electron scattering is
negligible.

Takimoto screening is important at low temperatures
and high concentrations; for the parameter values of
Fig. 3 at 80 K and a concentration of 10' cm 3 it re-
duces the BH mobility by a factor of about 1.8. At room
temperature, however, Takimoto screening is insignifi-
cant even at 10 cm for the same choice of para-
meters (Takimoto, 1959). In degenerately doped many-
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valley semiconductors with highly anisotropic band
structure, Takimoto screening is significantly important
because of a strong reduction in the intervalley con-
tribution to screening (Krieger and Meeks, 1973).
Valence dielectric screening, however, appears not to
affect the mobility significantly and may generally be
neglected in practical cases of interest.

Multiple-scattering corrections are found to dominate
over Born and dressing corrections for n-type Gahs
above concentrations of about 10' cm ~, the correction
factor 5„ in Eq. (61) being typically 0.35 while the cor-
rection factors 6~ and 6~ lie in the range 0.1-0.2
(Moore, 1967). For lower concentrations, Moore (1967)
also gives the values of the correction factors. How-
ever, as Moore himself admits, these results are ques-
tionable due to the failure of the perturbation approach
at lower concentrations. Reliab1. e estimates of the rela-
tive importance of the corrections for such concentra-
tion regimes are lacking in the literature.

B. Phase shifts and the Born approximation

In the Born approximation the phase shifts 6, are
much less than unity and are given by (Schiff, 1968;
Messiah, 1970)

5{a= 2 j ~2(kr) V(x)x2dh,
2m~k e

0

(66)

e 2m
{k T')'~'p, g, {q)f v{~)~'d~ z, =I 0

If V(x) is a screened Coulomb potential, i.e. ,

(67)

where the superscript B indicates that the Born approxi-
mation is used, and j, (k~) is a spherical Bessel func-
tion. The magnitudes of the phase shifts decrease with
increasing l (Csavinszky, 1963). Using Eq. (66) in Eq.
(63) and noting that P, (2l + 1)j~2(x) = 1, we find that the
sum rule imposes the following condition on the poten-
tial:

Vl I. PHASE-SHI FT ANAL YSIS

A. General

V(x) = exp (—x/I, ),ge
4m'gr

then Eq. (67) gives

(68)

where E is the energy of the scattered electron, f (E)
is the Fermi-Dirac distribution function, 6, (E) is the
phase shift introduced by the ionized impurity into the
lth partial wave, and Z is the valence of an impurity
atom minus the valence of a host atom in the crystal.
The left-hand side of Eq. (63) represents the total num-
ber of electrons displaced from the vicinity of the im-
purity center, which must balance the excess valency
g of the scatterer.

To obtain the phase shift of the lth partial wave it is
necessary to solve the radial portion of the reduced
Schrodinger wave equation

d X, 2 2m l(l+1)
d~2 + ~'-

N2 «(&) —
2 x =0, (64)

where V(~) is the potential characteristic of the scat-
tering. The relaxation time z without making use of the
Born approximation is given by (Sclar, 1956)

1 NaE
o, = ~& N P (l +1)sin2(5, —5„,) . (65)

4

The drift and the Hall mobilities are then computed
using Eqs. (16) and (18).

For carrier scattering by spherically symmetric po-
tentials falling off rapidly at large distances, the scat-
tering cross section can be expressed in terms of the
phase shifts of the partial waves of the free-electron
system (Schiff, 1968). Friedel (1954, 1958) showed that
the phase shifts also give the number of electrons at-
tracted to, or repelled from, the vicinity of the ionized
center. The fact that the center is effectively screened
so as to appear neutral at large distances imposes a
condition on the phase shifts. This condition is known
as the Priedel sum xule, which for conduction electrons
in a semiconductor with spherical energy surfaces can
be written as (Stern, 1967; Boardman and Henry, 1973)

—p {a{+{{I „ f{~{m=z, {6s{

2 I 2 e 2(4~3/2c) —1(2~+//@2) 3/2(P T) 1/2P (~)

(69)

which agrees with the solution of the Poisson equation
for linearized screening [Eq. (32)]. Thus if the Born
approximation is valid, then the phase shifts for the
conventional screened Coulomb potential obey the Frie-
del sum rule. This result was pointed out by Stern
(1967) and also by Krieger and Strauss (1968).

If the scattering potential differs from the conven-
tional screened Coulomb one, then it must be adjusted
to satisfy the Friedel sum rule in the Born approxima-
tion, i.e. , to satisfy Eq. (67). This approach was used
by Chattopadhyay (1981b), who took the form of Eq. (55)
as a phenomenological model potential and adjusted 0.,
and p, to satisfy Eq. (67). The adjusted potential is
closer to the conventional screened Coulomb potential
than the unadjusted potential is. The result is a
lowering of the mobility ratios depicted in Fig. 5; for
example, the maximum of the 77 K curve is now re-
duced to 1.47. This modified value is, however, still
quite sizable and raises the question of using the simple
screened Coulomb potential at intermediate carrier
concentrations.

Equation (67) has another important implication. It
shows that if the Born approximation, does not hold, and
the scattering potential is of the form shown in Eq. (68),
then the screening length L as derived from the Pois-
son's equation is incorrect. This point was examined
by Krieger and Strauss (1968) and by Boardman and
Henry (1973), who used Eq. (68) as a model potential
and adjusted L to satisfy the Friedel sum rule. Their
numerical results indicate that the exact results are
quite close to the Born results for large L and k, which
just reflects the criterion 4k L2»1 for the validity of
the Born approximation. At low temperatures the self-
consistent screening radii for donors (Z=+1) and for
acceptors (Z= —1), satisfying the Friedel sum rule,
differ. The quantity for donors is smaller, and that for
acceptors j.s larger, than the conventional scret„ning
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radius. Typically, this occurs below about 40 K for
germanium. Thus the phase-shift analysis distinguishes
between the two types of scattering centers; the Born
approximation does not. Boardman and Henry (1978)
have further shown that when the self-consistent
screening length L satisfying the Friedel sum rule is
used, the cross section of electron-donor scattering is
less than that when the conventional length L ~ is used
(see Fig. 6).

Assuming that only the zeroth-order partial-wave
phase shift is important, Kuchar et al. (1976) obtained
an expression relating the actual scattering cross sec-
tion 0, to the Born approximation cross section 0, .
This expression is

m~ e2 ' o~k'
(70)

where the positive sign is for a repulsive potential and
the negative sign is for an attractive potential. The
quantity P~ equals P, and 1.19k, respectively, for k/
P, & 2n' and k/P, & 2n. Interestingly, if m e2(4n'c P~h2)
= l. , a scattering ~eson~nee occurs. Resonance scat-
tering has also been discussed by Sclar (1956) and Blatt
(1957b).

Meyer and Bartoli (1981) have recently provided a
treatment with results in approximate analytic form
for electroris and holes in Ge, Si, and GaAs in com-
parison with the Born approximation.
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FIG. 6. Variation of the cross section (normalized by the
square of the effective Bohr radius) of electron-donor scatter-
ing with the wave vector {normalized by the effective Bohr
radius a&). The quantity Lz is the conventional screening
length given by Kq. (69); L& is the adjusted screening length
satisfying the Friedel sum rule (after Boardman and Henry,
1973).

C. Impurity core potential considerations

Using the phase shifts of the partial waves, Ralph et
al. (1975) examined the central-cell correction to the
impurity potential, which had been ignored in the BH
treatment. They employed a potential determined em-
pirically from the bound-state energies of the donor,
and found a reduction in mobility at high impurity den-
sities. An enhancement of the scattering cross section
due to impurity central-cell effects was also reported
by Grinberg (1978). El-Ghanem and Ridley (1980) con-
sidered the impurity core potential, assuming a square-
well potential followed by a Coulomb tail. They con-

sidered the screening to be weak, and invoked the Con-
well-Weisskopf cutoff. Only the zeroth-order phase
shift was retained, and the l = 0 component of the in-
ternal wave function was fitted to the / =0 component
of the external wave function-. The neutral part of the
scattering was found to be weak for a deep-level im-
purity and strong for a shallow level. Also, the scat-
tering cross section was found to be larger for a posi-
tively charged- than for a negatively charged center, a
result in agreement with Blatt (1957b). For positively
charged centers the electron is drawn closer to the cen-
ter and hence scattered more. The opposite occurs for
negatively charged centers. El-Ghanem and Ridley
(1980) show that resonance scattering, if the resonance
is sharp, has only a weak influence on mobility, but a
significantly large effect on the ratio of Hall and drift
mobilities. The latter may reach a value of 3.7 for
sharp resonance, and hence may be a sensitive detec-
tor of resonance seat:tering.

VI I I. THE HEAVY-DOPING REGIME

The particular effects occurring in heavily doped
semiconductors have been reviewed by Bonch- Bruevich
(1966), Fistul (1969), and more recently by Abram et
al. (1978). This regime is of practical interest in view
of the current use of high impurity concentrations in
semiconductor devices. If the doping is very high, the
simple picture of individual impurity states no longer
holds. The effects of the fluctuating potential arising
from randomly spaced impurities assume importance.
Wave functions on impurities overlap and generate an
impurity band which has a low-energy tail of states
bound to deep potential fluctuations from close impurity
clusters. At higher impurity concentrations the im-
purity band merges with the conduction band and we have
a tail of localized states attached to the conduction band
of extended states. The doping concentrations over
which these regimes take place are determined by the
extent to which the impurities are on the average sepa-
rated relative to the effective Bohr radius.

In the region of heavy doping, the extra carriers cause
a change of the band structure also. The band gap is
reduced due to the exchange energy with the extra car-
riers and the modified screening of the valence electron
exchange energy. The band-edge effective mass is also
changed slightly (Abram et a/. , 1978), and heavy doping
may produce vacancies or vacancy complexes and struc-
tural disorder in the materia]. .

Transport calculations in heavily doped semiconduc-
tors are beset with difficulties. Localized states occur
3t the bottom of the band, and perturbation calculations
fail. Contributions to conductivity from localized states
come through phonon excitation to extended states or
through phonon excitation to another localized state,
i.e., through hopping. We shall not consider these pro-
cesses any further, but refer the reader to Mott and
Davis (1971).

When the relevant carriers are above the band tail,
the mobility theory described in the previous sections
works satisfactorily. In a recent paper Yanchev &t «.
(1979) considered some modifications peculiar to the
heavily doped region in the Boltzmann equation for-
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malism. We shall describe this work here in view of
the good agreement they obtained with experiments in
liquid-phase-epitaxy (LPE)-grown n-type GaAs at 77 K
with concentrations in tIle range 5 & ~0 —10 cm

Yanchev ef al. (1979) calculated the mobility due to
electron scattering in. a smooth potential caused by
fluctuations in the impurity concentration rather than
in individual impurity potentials. This potential energy
V(&) in the heavily doped case obeys Gaussian statistics
and is characterized by its pair correlation function
W(w —r') =(V(r) V(x')). Here the brackets denote av-
eraging over position. s of impurities. The relaxation
time v is

'= n, y2(kk~LqE~)

where k~= (3v'n)'~' is the Fermi wave number, E~ is
the Fermi energy, L~ is the correlation length of the
potential, and y its rms value such that V(r) changes by
an amount y over a distance L~. The factor n, can be
expressed in terms of the pair correlation function TV.

Using the pair correlation function for a random im-
purity distribution, Yanchev et al. (1979) got results
close to those predicted by the BH theory but differing
significantly from experimental results. They then
used the correlation in the impurity distribution due to
Coulomb repulsion between ionized donors in the melt
prior to the solidification of the material. They ob-
tained a weak dependence of mobility on electron con-
centration agreeing with experiment. The correlated
impurity distribution produces an ionic screening given
by the Debye length L, = (ok~TO/%82)'~ 2. This, together
with the electron screening described by the length
= P, ', where P, is given by Eq. (32), characterizes a
plasma. consisting of the ionized impurities and free
carriers which existed at the freezing temperature T,.
The total correlation length L~ therefore satisfies the
relation L~ 2=L 2+L, 2.

The quantity y and the numerical factor e, were ob-
tained from the Fourier transform of the pair correla-
tion function. There was a problem of divergence of
the integral involved in the determination of y at small
wave numbers. Yanchev ef al. (1979) avoided the di-
vergence by cutting off the integral at L ', the argu-
ment behind this step being that the long- range fluctua-
tions causing the divergence should be screened at dis-
tances of the order of L. The electron mobility was
finally determined from p, =e7/m".

In their calculation Yanchev et al. (1979) corrected
the free-electron Fermi energy &~ =52(3v~n) ~3/2m

taking account of finite temperature, electron-electron
exchange, and band tailing. The change in effec tive
mass due to many-body interactions was also incorpo-
rated. Their calculated results in relation to experi-
ments will be discussed in the following section.

(71)

lX. COIVIPARlSON OF THEORY WlTH EXPERIMENT

A direct analysis of the experimental data on electron
mobilities in the light of theories of ionized impurity
scattering is often complicated due to the presence of
other scattering mechanisms. Addition of reciprocal
mobility contributions is a poor approximation, and a
more careful treatment is necessary (Debye and Con-
well, 1954; Rode, 1975; Nag, 1980; Debney and Jay,

I

1980). Uncertainties in the contributions of the other
scattering mechanisms also make it difficult to assess
exactly the contribution of the ionized impurity scat-
tering. At low temperatures the mobility is mostly lim-
ited by ionized impurity scattering. But at such tem-
peratures freeze out of carriers often generates a
strong temperature dependence of the concentrations
of ionized impurities and carriers, thereby hampering
analysis of the data. Attention to some of these diffi-
culties has, however, been paid by some investigators,
and estimates of the ionized impurity scattering contri-
bution are obtained in several cases. We summarize
below the information gathered in the cases of elemental
and compound semiconductors.

A. The elemental semiconductors: Ge and Si

Debye and Conwell (1954) obtained experimental data
on ionized impurity scattering limited mobility for
electrons in Ge. 'They found that the mobility increases
with temperature as T' where s lies between 1.0 and
1.5. An approximate T' ' law for the mobility is pre-
dicted both by the CW and by the BH formulas. Blatt
(1957a) pointed out that the temperature dependence
of the screening radius could predict a less rapid in-
crease of mobility with temperature, in agreement with
the data of Debye and Conwell. Brooks (1955) suggested
that the departure from the T' ' law may also be caused
by the impurity cell effects. The impurity eel.l would
tend to increase the magnitude of the scattering and
make it less strongly dependent on energy. Csavinsky
(1963) remarked that an additional temperature depen-
dence is introduced by dipole scattering which is as-
sociated with the ionized impurity scattering. 'The
thermal motion of the impurity creates a dipole, since
the screening cloud around the ion does not rigidly fol-
low the motion of the impurity atom. This should in-
troduce a temperature dependence, since the rms dis-
placement, of the ion is a function of temperature.

Long and Myers (1959) have measured electron mo-
bility in n-type Si samples of varying impurity content
in the range 3.5x 10' —7.8&& 10'5 cm ~ between 30 and
100 K. They admit that there is an appreciable error
in the measurement of donor and acceptor concentra-
tions, but they also show that the BH formula gives
higher values of mobility than those measured. Brown
and Bray (1962) find that for holes in P-type Ge, the
BH formula describes the ionized impurity scattering
satisfactorily from 30 to 300 K for impurity conceritra-
tions less than 10'~ cm 3. The formula, however, over-
estimates the mobility for higher impurity concentra-
tions or lower temperatures. Li (1977) summarizes
the results on Si and notes the overestimation of mo-
bility- by the BH model. He suggests carrier-carrier
scattering and scattering anisotropy to account for the
lower experimental mobilities. Norton and Levinstein
(1972) have made a mobility analysis of Ge and found
good agreement with the BH theory. They, however,
fit the data with several adjustable parameters.

Including corrections in the BH formula originally
treated by Moore and Ehrenreich (1966) and by Moore
(1967), Krieger et al. (1971, 1972) have found good
agreement with the experiments for both the transverse
and longitudinal resistivity of saturation- stressed de-
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generately doped Ge at very low temperatures. For un-
stressed Ge, however, the experimental isotropic re-
sistivity was found to be 5 to 7 times larger than the
theoretical estimate (Krieger and Meeks, 1973). The
Moore-Ehrenreich corrections to the BH theory were
not sufficient to explain the discrepancy between theory
and experiment in this case. However, use of dielectric
screening led to a significant increase in the predicted
resistivity of many-valley materials with anisotropic
energy bands, and gave good agreement with experi-
ment both for Ge (Krieger and Meeks, 1973) and for Si
(Krieger et al. , 1974) (see Figs. 7 and 8).

The experimental result that the mobilities of P-doped
Si are smaller than those of As- and Sb-doped Si has
been attributed to central-cell effects by Ralph et «.
(1975). The effects are large at high impurity densities,
being about 22/g in Si with 10'8 cm 3 doping with P at
300 K. Inclusion of central-cell effects brought the re-
sults into closer agreement with experiment (see Fig.
9). The central-cell correction in Si is found to be
smaller for Sb donors than for As, P, and Bi donors.
Similar results are found for Ge also, in agreement
with the observations of Furukawa (1960) and Cuttr'iss
(1961).

Experimental results on compensated materials are
not convincingly explained. Attempts have been made
by Falicov and Cuevas (1967) to explain the observations
of Cuevas (1967) on the basis of their correlation
theory. In a highly compensated material, the number
of free carriers is negligible, and screening is pri-
ma. rily due to impurities. The Falicov-Cuevas (FC) cal-
culation predicts a correlation between charges which
gives a static screening. At higher concentrations of
the major impurities, an increase of their number im-
proves the screening but alters only slightly the number

10-2

10-2

O

I—
10 3—

I—
l/)
(/)
LU

1P I I I I I I &LI 1 I I I I I

1p18 1019

CARRIER CONCENTRATION (em 3)
1020

FIG. 8. Resistivity of unstressed degenerately doped n-type
Si as a function of carrier concentration. Curve a represents
results predicted by Brooks-Herring scattering. Curve b
gives results including dielectric screening. Points are ex-
perimental results at 4.2 K (after Krieger et al. , 1974).

B. Compound semiconductors

Experiments in the ionized impurity scattering con-
duction regime have also been performed for compound

of ionized scattering centers. This is consistent with
the experimental results of Cuevas (1967) on n-type Ge.
He found that at higher concentrations of majority im-
purities it is possible to get larger mobilities. The
theory did not represent exactly the experimental mo-
bility (see Fig. 10), which might indicate that the pair
correlation function was much more complicated than
conjectured. Stern (1974), however, shows that the
experimental results of Cuevas (1967) at very low tem-
peratures may possibly be explained from level-broad-
ening considerations without explicitly introducing the
exponential correlation theory.
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FIG. 9. Hall mobility at 300 K as a function of electron con-
centration for uncompensated n-type Si. Curve a represents
the combined effects of phonon and Coulomb scattering in
anisotropic bands. Curve b includes the central-cell scatter-
ing calculated for phosphorus. Points are experimental data
(after Ralph et al. , 1975).
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sents those for a different correlation function. Points are
experimental results (after Falicov and Cuevas, 1967).

semiconductors. Emel'yanenko et al. (1976) carried out
measurements of electrical conductivity and the Hall ef-
fect in n-type GaAs and found the screening of the im-
purities to be of Debye nature from an analysis of the
data. Evidence of the screening of ionized impurities
due to free carriers was obtained in optical experiments
on GaAs (Bludau et al. , 1976; Paesler and Queisser,
1977, 1978; Queisser and Theodorou, 1979). Illumina-
tion of the semiconductor sample created photocarriers
which enhanced the screening of the impurity ions and
hence the mobility. These experiments were conducted
at low temperatures where ionized impurity scattering
predominates. .

The Hall mobility and the Shubnikov —de Haas effect
in degenerate samples of GaSb at low temperatures have
been experim'entally investigated by Sagar (1960),
Strauss (1961), Becker et al. (1961), and Becker and
Fan (1963). These observations are explained by Robin-
son and Rodriguez (1964, 1965) on the basis of their two-
band screening model. In the experiments, as the con-
centration of the conduction electrons is increased be-
yond a critical value n„ the Hall mobility and the ampli-
tude of the Shubnikov —de Haas oscillations exhibit
abrupt increases. This behavior is explained when the
band structure of GaSb is considered in treating the
screening. As the carrier concentration is increased
through a small range about n, the subsidiary valleys
are populated. The screening length decreases and,
despite the onset of intervalley scattering, causes an
increase in the lifetime and mobility of the light elec-
trons.

Bate ef al. (1965) analyzed electron mobility data in
InSb at 80 K over a wide range of ionized donor con-
centrations (I x 10"-3x 10"cm '). They accounted for
the ionized impurity scattering using the BH theory mod-
ified to include band nonparabolicity, the Takimoto
screening term, and electron- electron scattering. The
contribution of polar optic phonon scattering was also
incorporated: Combination of the two scattering pro-
cesses gave mobility values slightly higher than the
measured ones (see Fig. 11). Mathur et al. (1980) also
found that the simple BH formula overestimates the
mobility in InSb. Wolfe et al. (1970) found good agree-
ment between theory and experiment in high-purity

FIG. 11. Electron mobility versus concentration for pre-
sumably uncompensated n-type InSb at 80 K. The curve repre-
sents the calculated combined mobility due to polar optic and
ionized impurity scattering using the Brooks-Herring theory
with the inclusion of band nonparabolicity, Takimoto screen-
ing, and electron-electron scattering. Points are experimental
data (after Bate et al. , 1965).

GaAs using the BH formula. Bode observed that the BH
theory overestimates slightly the mobility in GaAs
(Rode, 1975), and also probably in GaP (Rode, 1972).
Similar conclusions were drawn by Neumann and Nam
(1978) in connection with holes in GaAs.

Nuclear reactions following irradiation by thermal
neutrons, have been used by several workers to dope
semiconductor samples, both elements and compounds.
Starting with a relatively pure material one can calcu-
late the doping and compensation introduced by neutron
transmutation (Davis ef &/. , 1948). Experiments in this
direction for Ge have been done by Fritzsche and Cuevas
(1960), and by Thomas and Covington (1975). Similar
experiments for InSb have been reported by Mirianash-
vili et al. (1965). More recently, Kuchar et al. (1974,
1976) have used neutron transmutation doping to study
ionized impurity scattering in InSb. The nuclear reac-
tions produce mainly Sn and a smaller amount of Te im-
purities, both of which act as donors in InSb. The im-
purities so created are randomly distributed because
of the random distribution of the neutrons in the thermal
pile of the nuclear reactor. The number of additional
impurities &N produced by the nuclear reactions is
determined from the total flux of thermal neutrons. The
Hall effect is used to give the number of additional car-
riers, i.e., the number of additional donors &N pro-
duced by thermal neutrons. Also, the BH formula is
used and N is adjusted to fit the measured mobility in
the region where ionized impurity scattering predomi-
nates. This gives a third method of determining &N.
All three values of &N are found to be in good agree-
ment. .

Moore and Ehrenreich (1966) and Moore (1967) have
obtained good agreement with the experimental mobili-
ties in n-type GaAs over impurity concentrations in the
range 10 '-IO'~ cm 3 at 77 K and also at 300 K by in-
corporating corrections due to higher Born approxima-
tions for incoherent scattering, and those due to multi-
ple scattering and impurity dressing in the Brooks-
Herring formula. The effect of polar optic phonons is
also considered in their analysis. The riature of the
agreement obtained by Moore with the experimental data
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FIG. 12. Electron mobility of n-type GaAs versus concentra-
tion at 77 K. Curve a represents the results of the- Brooks-
Herring theory; curve b gives the theoretical values including
corrections due to higher Born approximations, multiple
scattering, and impurity dressing. The dash-dotted curve and
the points represent experiinental results (after Moore, 1967).

at 77 K is depicted in Fig. 12. Interestingly, over a
similar range of concentrations Yanchev et al. (1979)
find that correlated impurity distribution is important
in. describing the experimental data of Arnaudov et al.
(1977), which are weakly dependent on concentration.
There is a small discrepancy at the highest impurity
concentrations (see Fig. 13); Yanchev et al. attribute
this discrepancy to the band nonparabolicity, which
they do not include in their analysis.

The Falicov-Cuevas (FC) formula has been found by
some investigators to describe the behavior in compen-
sated semiconductors. For example, Kranzer and
Gornik (1971) obtain good agreement with experiments
for strongly compensated n-type InSb using the correla-
tion theory of Falicov and Cuevas (1967). Voronova
(1978) also shows that the nature of electron mobility
variation in compensated GaAs in the temperature range
20-100 K generally agrees with the FC formula.

Electrical evidence for the pairing Of impurities in

CdS and CdTe was deduced from anomalously high mo-
bilities by Woodbury (1974). Similar phenomena were
suspected for GaN by Vesely et al. (1974). Such dipole
scattering has been treated by Stratton (1962) and by
Fukuda and Fukai (1967) as well as by Boardman (1965).

An interesting effect of the short-range central-cell
part of the impurity potential is found in degenerate n-
type PbTe at low temperatures (Morita, 1963; Shimizu,
1963). Since the static dielectric constant in PbTe is
very large (s/s, =400), the Coulombic potential e'/4mcr
is very small when ~ exceeds the nearest-neighbor ionic
distance &;. If the carrier concentration is large
(-10~8 cm 3), the Fermi energy of the electrons is
much larger than e'/4~ca, . Hence the very weak Cou-
lomb tail may be neglected and the impurity scattering
arises from the short-range central-cell part alone.
This leads to a mobility dependent on the carrier con-
centration n as n 4~, which has been experimentally ob-
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FIG. 13. Electron mobility versus carrier concentration in
heavily doped GaAs at 77 K. The solid line represents the
calculated results for correlated impurity distributions.
Points are experimental results for liquid-phase epitaxial
layers (after Yanchev et al. , 1979).

served (Kanai et al. , 1961). When n &10'8 cm ~, the
Coulomb tail cannot be neglected, and must be con-
sidered to explain the experimental data of Kanai et al.
(1961).

The lifetime broadening effect considered by Fujita
et al. (1976) predicted the mobility to be inversely pro-
portional to the square root of the impurity concentra-
tion for very pure semiconductors. Although data for a
quantitative check with their theory are not available at
present, the lifetime broadening effect is manifested in
the cyclotron resonance width; here experiment and
theory support v N dependence for very pure Ge and
InSb (N 10'2 cm-3) (Fujita et al. , 1976; Zubarev et al. ,
1977).

X. CONCLUSlONS

We have outlined the regions where various correc-
tions to the BH theory are important. When the Born
approximation fails or when the scattering potential
deviates from the conventional screened Coulomb form,
it is desirable to perform phase-shift calculations to
analyze the experimental data. As already mentioned,
the former situation occurs at low temperatures and
high concentrations and the latter when impurity cell
effects are included. At present, the computational
labor often precludes the performance of a full phase-
shift analysis. An area which future investigations may
probe is the modification of the phase- shif t treatments
to include wave-vector-dependent dielectric functions,
influence of electron-electron scattering, and multiple-
scattering effects. The problem of nonlinear screening
Bt low temperatures and intermediate carrier concen-
trations, also needs attention.

There are also problems at present with compensated
semiconductors. The exponential correlation theory of
Falicov and Cuevas (1967) is not always satisfactory for
a quantitative agreement with experiments. Usually,
the departure of the experimental mobility from the
phonon-scattering limited value is attributed to ionized
impurity scattering which is described by the BH for-
mula (Bode, 1975). Such an analysis in essence lumps
together all mobility-depressing mechanisms, thus
attributing the total to the compensating acceptors,
whose number is therefore overestimated. Very large
compensation ratios are thus often quoted for semicon-

ductorss.
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As a check on this problem, compensation ratios have
been measured independently by temperature-dependent
photoluminescence involving donor-acceptor pairs in
GaAs (Wagner et a/. , 197V; Kamiya and Wagner, 19VV).
values of compensation ratio obtained for five liquid-
phase epitaxial samples were markedly lower than
those derived from mobility analysis. A substantial
portion of this disparity may be ascribed to nonuni-
formity of the layers but there still remains a factor of
between 1.5 and 3.5 which is most likely due to inade-
quacy of the mobility analysis. Chemical analysis of
Sn-doped GaAs by secondary ion mass spectroscopy
(Maier et a/. , 1980) also shows that the amphoteric Sn
cannot be made responsible for the very high compensa-
tion which would result from mobility data.

In compensated materials there may be additional
scattering mechanisms like space- charge scattering
(Weisberg, 1962). In an n-type material, inhomogeneous
distribution of donors or acceptors would produce small
P-type regions, each surrounded by a space-charge re-
gion. The mobility expression due to scattering at such
space-charge regions has been worked out (Conwell and
Vasseli, 1968). In some cases there may also be scat-
tering at local potentials introduced by certain impuri-
ties; such scattering may even be more important than
space-charge scattering (Chattopadhyay ~t a/. , 1980).
Inclusion of these additional processes in mobility
analysis causes a significant reduction in the theoreti-
cally estimated compensation ratio. Proper considera-
tion of the additional scattering processes, coupled with
refined treatment of impurity scattering and develop-
ments of alternative methods for the determination of
compensation ratios, would thus lead to improved ma-
terial characterization and a deeper understanding of
carrier mobilities in compensated materials in the
future. A promising but not-much-explored way to study
ionized impurity scattering seems to be neutron trans-,
mutation doping (Fritzsche and Cuevas, 1960; Kuchar
et a/. , 1976), provided one can solve annealing and
radiation damage problems.

Transport in heavily doped semiconductors is also not
well understood at present. The Brooks-Herring theory
gives room-temperature mobilities significantly higher
than the measured values in Si with dopant concentration
in the range 10"-10"cm 3 (Finetti e/ a/. , 1979; Thurber
et a/. , 1980). Slight improvement can be obtained by
considering enhanced donor and electron interactions
(Finetti e/ a/. , 1979). In a recent work, Saso and
Kasuya (1980a) have considered the self-consistency be-
tween the screening and the scattering of electrons in
degenerate semiconductors. They use the Friedel sum
rule to determine the screening parameter and phase-
shift analysis to include higher-order Born scattering
terms. In a subsequent publication, Saso and Kasuya
(1980b) have calculated the resistivity of unstressed and
uniaxially saturation- stressed degenerately doped Ge,
taking account of the anisotropic effects in the solution
of the Boltzmann equation. Many-body and multiple-
scattering effects have been incorporated as enhance-
ment factors. Agreement with experiment is obtained
for concentrations higher than 10'8 cm 3. The authors
attribute the disagreement with experiment for lower
concentrations to scattering from strongly correlated

impurity clusters, but no detailed treatment is given.
Some experimental data on n-type GaAs at 77 K over the
range 5x 10' to 10'~ cm were explained by Moore
(1967) by introducing Born, multiple-scattering, and
dressing corrections in the BH formula. Other data
over the same range showing less dependence on con-
centrations were, on the contrary, explained by Yan-
chev et a/. (1979) on the basis of electron scattering .

in a Gaussian potential due to a correlated impurity
distribution. Problems also arise when carriers are
located in the band tail (Qoronova, 1978). Information
on the merging of the impurity band with the host band

- can be obtained from the Hall coefficient (Mott and
Davis, 19V1; Mott, 1974). Evidence of band tailing in
heavily doped germanium has been found from the
change of resistivity with uniaxial compression along
[111j (Fritzsche and Cuevas, 1962; Cuevas and
Fritzsche, 1965; Katz, 1965). Band-tail states may
also be studied by moving the Fermi level into the tail
by compensation. This approach is used by Hedfield
(1975), who has investigated electron conductivity in
heavily doped closely compensated GaAs. Redfield's re-
sults qualitatively agree with the concept of conduction
in a tail of localized states. At low fields and low tem-
peratures, however, the conductivity behaves in a man-
ner not expected from the variable-range hopping de-
pendence on temperature. This is attributed by Mott
(1976) to possible correlation effects. A better under-
standing of behavior in the heavily doped regime re-
mains a goal for future work.

XI. OUTLOOK

This review has shown that our understanding of the
seemingly simple process of impurity scattering is stiH,
unsatisfactory. Although the basic physics is clear,
there are theoretical details which are difficult to cal-
culate and problematic to test against experimental
data. The main reasons for the shortcomings of mo-
bility analysis lie in the superposition of several scat-
tering mechanisms and in-the multiple averaging of
atomistic events.

The trend towards improved materials control and
refined structuring techniques of semiconductors will
demand and facilitate developments in this fieM of im-
purity scattering. What would be desirable is the devel-
opment of observational methods towards a selective
study of scattering from known centers instead of the
averaged mobility measurements. Such techniques
would have to provide sharply defined energies and mo-
menta of the probing carriers and would have to have
high resolution to detect the resultant response.

A more precise method of determining impurity scat-
tering would be beneficial in several ways. First, ex-
perimental checks could distinguish between the various
theories discussed in this review, for example, con-
cerning dielectric screening, multiple scattering,
validity of the Born approximation, and other questions
of basic importance. Second, the crystal grower and
the materials user would obtain much needed informa-
tion on the vital but as yet unresolved problem of com-
pensation and impurity distribution. Third, a whole set
of new phenomena might be tackled which remain buried
today under the unspecificity of the data.
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Among these new phenomena to be studied by scatter-
ing of carriers are features of the spatial distributionof
ionized impurities. There are also the problems of di-
pole scattering from closely spaced centers of unlike
charge (Stratton, 1962; Fukuda and Fukai, 1967; Dimi-
trov, 1976, 1977) and scattering by charges on defects
such as dislocation lines (Read, 1955; Mantovani et al. ,
1980). Scattering by neutral impurities is another sub-
ject calling for attention (Blakemore, 1980). In spite
of many attempts to unravel these effects from other
mobility-determining phenomena, little basic infor-
mation is currently available. The spatial separation
of carrier-donating dopant ions and the carriers them-
selves has recently attracted much attention; this modu-
lation doPing (Dingle et al. , 1978) is potentially useful
for achieving enhanced mobilities in ion-free conduc-
tance channels and accordingly higher device speeds.

Improvements in experimental techniques would be
desirable for gathering information on the scattering
centers. One obvious case is the distinction between
impurities of different chemical species through the
differences in the central-cell potential, for which in-
dications have so far been seen only at high doping
levels (Ralph et al. , 1975). Completely ignored thus
far, the magnetic moments of the scattering centers
ought to provide effects similar to the anomalous Hall
effect of metallic specimens with magnetically active
impurities (for a review, see Bergmann, 1979). Another
fascinating prospect has been offered recently by the
suggestion that we search for fractional elementary
charge in semiconductors (Chaudhuri et al. , 1980). A

different suggestion results from abandoning our as-
sumption of a fixed lattice position of the impurity;
inelastic phenomena arise, such as the resonant ex-
citation of localized vibrational modes, which have thus
far been seen only optically (Spitzer, 1971).

These few remarks should indicate that the topic of
electron scattering by ionized impurities in semicon-
ductors holds new challenges for investigators, as well
as opportunities in theory and experiment.
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