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A review is presented of recent work related to strange attractors and chaotic motions of dynamical systems.
First, simple systems capable of displaying chaotic behavior are discussed. In order of increasing
dimensionality of the system, they are one-dimensional noninvertible maps, two-dimensional invertible maps,
and autonomous systems of three coupled ordinary differential equations. The concept of fractional
dimension of the strange attractor is stressed. Several physical examples well be reviewed, along with the
possible relevance to turbulence in systems, such as fluids or plasmas, that are described by partial differential
equations.
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I. INTRODUCTION

In this report, a review will be presented of recent
developments related to strange attractors and chaotic
motions of dynamical systems. Emphasis will be placed
on those aspects that may prove useful for physical
scientists.

At this point it might be appropriate to discuss some
of the terms used in the title. A dynamical system may
be thought of as any set of equations giving the time ev-
olution of the state of a system from a knowledge of its
previous history. Examples are Maxwell's equations,
the Navier-Stokes equations, and Newton's equations of
motion for a particle with suitably specified forces.
The adjective chaotic is used here to describe a type of
time evolution resulting from a dynamical system. In
particular, it describes motions which are commonly
thought of as "turbulent, " i.e. , motions whose time ev-
olution appears, on detailed examination, to be very
complex. For such motions, one often has the feeling
that a statistical description may be of more use than
actual knowledge of the true evolution. (A more precise
definition of the term chaotic appears in Sec. II.) At
this point I shall not attempt to define a sf~ange att act-
o~. Bather, we only note that its presence can lead to
chaotic motion. Thus, the topic under discussion in
this review is related to the occurrence of turbulent-
type motions in physical systems. More specifically,

we shall be concerned with nonconservative systems.
[Chaotic motion in Hamiltonian (conservative) systems
is not within the scope of the present review. ]

It is becoming increasingly clear that the topic of
strange attractors is one that will find abundant appli-
cations in a wide variety of physical situations. The
list of such applications is already large, including
problems in the onset of turbulence in fluids (Lorenz,
1963; McLaughlin and Martin, 1975; Buelle and Tak-
ens, 1971), chemically reacting systems (Tomita and
Ka.i, 1979), buckling beams (Holmes, 1980), nonlinear
wave interactions in plasmas (Adam, Bussac, and La-
val, 1980; Wersinger, Finn, and Qtt, 1980a, 1980b,
19'80c; Vyshkind, 1978; Vyshkind and Babinovieh,
1976; Russell and Qtt, 1980; Wang, 1980; Masui and
Wang, 1980), solid-state physics (Huberman and
Crutchfield, 1979), lasers (Haken, 1975), self-genera-
tion of the earth's magnetic field (Robbins, 1977), mag-
netohydrodynamic flow (Maschke and Saramito, 1980;
Treve and Ma, nley, 1980), etc. (The above is only a
partial listing and many other relevant references ex-
ist. )

As can be surmised from the dates of the references
just mentioned, virtually all the activity in this field
(at least when restricted to problems in the physical
sciences) has occurred since 1975. The notable excep-
tions to this statement are the papers of Lorenz (1963)
and of Ruelle and Takens (1971). These two papers,
independently and from quite different points of view,
originally suggested the relevance of strange attractors
to the onset of turbulence in fluid flows. Lorenz was
interested in explaining the presence of chaotic behav-
ior in numerical solutions of a model system of three
coupled, first-order, nonlinear, ordinary differential
equations which modeled the nonlinear evolution of the
Benard instability, i.e. , the instability which results
when a fluid layer subjected to gravity is heated suffi-
ciently strongly from below. By a combination of care-
ful analysis of the computer generated solutions and
analytical reasoning, Lorenz was able to deduce that
the solution of his equations was eventually trapped in
a region of the phase space of the system which had a
very intricate (strange) geometric structure. The now-.
recognized general implications of Lorenz's paper were
not widely appreciated until- many years after its pub-
lication. In 1971, Buelle and Takens, making use of
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then recent developments in mathematics, offered a
possible mechanism by which turbulent solutions to the
Navier-Stokes equations could appear as a parameter
is varied (e.g. , as the Reynolds number is increased).
In particular, they showed on the basis of quite general
arguments that a strange attractor could appear. It is
to be anticipated that the application of the type of con-
siderations initiated by these two papers will lead to
new insights in a variety of fields of physics. The pur-
pose of the present paper is to facilitate this process
by providing an elementary introduction designed for
researchers and students in the physical sciences.

Some previous related reviews from various points of
view are those of Treve (1978), Swinney and Gollub
(1978), Rabinovich (1978), Ruelle (1977), Sinai (1977),
Holmes (1977), Helleman (1980), Shaw (1981), and
Yorke and Yorke (1981).

We shall proceed by discussing dynamical systems of
progressively higher dimension (all of which can dis-
play chaotic behavior) [Ruelle (1977)]:

(1) One-dimensional noninvertible maps,

(2) Two-dimensional invertible maps,

(3) First-order systems of autonomous ordinary dif-
ferential equations,

dx„(t) =f,[x,(t), x,(t), . . ., x„(t)] i = 1,2, . . ., n, with n».

&x) = lim —Qx„;1

(3) The sequence is nonperiodic.

We now introduce the following two one-dimensional
maps, each of which typifies a broad class,

E,(x) -=g(1 —2lx ——,'I), 0& ~ 1

E,(x) =4tx(1-x), 0&I -1
(2.2)

(2.3)

where a and b are constants. The map E, has a sharp
peak, while the map I", has a rounded smooth maximum.
For 0& (a, b) & 1, both E, a,nd E, map the interval 0 to 1
into itself, and we shall only consider this range of x
(i.e. , initial conditions are always assumed to satisfy
1&x,&0). Both E, and E, are noninvertible, since, giv-
en x„.„one cannot solve x„„=E'(x„) for x„. (From Fig.
1 it is seen that for each value of x„„there are tmo pos-
sible values of x„.) Thus one may say that it is possible
to go forward in time but not backward in time. This
represents a basic difference with ordinary differential
equations, x =f(x), which may, in principal, be inte-
grated either forward or backward in time.

First consider I",. There are essentially two cases of
interest, 0&a& —,

' and —,
' &~ ~ 1, both illustrated in Fig.

1(a). In Fig. 1, the dashed line represents x„=x„„.
For 0&g& —,', Fig. 1(a) shows that x„„&x„,since, over

(4) Partial differential equations.

One-dimensional maps will be discussed in the next
section (Sec. II). These are relations of the form x„„
= E(x„); thus, for some initial x„a sequence, xo, x„

is generated. Surprisingly, very simple one-
dimensional maps will turn out to yield rather good
qualitative models for behavior in two-dimensional
maps (Sec. III), ordinary differential equations (Sec.
IV), and partial differential equations (Sec. V).

II. ONE-DllVlENSIONAL NONINVERTIBLE MAPS

To begin, we consider one-dimensional maps

Xn+I
JL

2a(l-a)

O«a«—
=Xn

x„„=E(x„), (2.1) (a}
where E(x) is a scalar function. [Some relevant refer-
ences on one -d imens ional maps are L i and Yorke
(1975); May (1976); Guckenheimer et al. (1977);
Feigenbaum (1978); and Guckenheimer (1979). In addi-
tion, a monograph by Coullet and Eckmann (1980) has
been published on the subject. ] We only consider the
case in which the sequence xp xl & x2» generated by
E is bounded, P&x„&Q, for all n. We will often say
that such a sequence is "chaotic" or "turbulent, "

by
which we mean that it has the following properties:
(1) sensitive dependence on initial conditions (if two
initial points x', and x,' are chosen very close to each
other, the distance between their successive images
under E initially diverges exponentially); (2) the av-
erage correlation function for a given sequence satis-
fies C(m) —0 as m —~, where

Xn-I

X

C(~) = Iim —g (x„&x))(x„„. &x&),
m=1

(b}
I IG. 1. (R) Maya, fEq. (2.a)], 3.nd (b) the map a, fEq. (2.3)].
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the entire range, E,(x„) lies below the Line x„=x„„. In
this case it is clear that ~„converges to zero as ~ in-
creases. Now, consider —,

' &z ~ 1. For any initial z, be-
tween 0 and 1, the sequence eventually becomes trapped
in the interval 2a(l —a) &x & a through which it will typ-
ically wander chaotically. To illustrate this, consider
the particularly simple ca.se & =1 for which the chaotic
interval becomes 0&&&1. In this case, we may con-
sider the map to represent two steps: (1) a uniform
stretching of the interval 0 to 1 to twice its original
length, and (2) a, folding in half of the stretched interval
so that it now has its original length. These steps are
illustrated in Fig. 2. The stretching property leads to
exponential separation of nearby points and hence, sen-
sitive dependence on initial conditions. The folding
property keeps the generated sequence bounded, but
also causes the map to be noninvertible, since it causes
two different x„points to be mapped into one ~„„point.

Conversely, for a general one-dimensional map, in
order to have the distance between nearby points sep-
arate exponentially, it is necessary for the map to be,
on the average, stretching. Qn the other hand, to have
the sequence remain bounded (confined between 0 and 1
in the case of j;), folding must take place. Thus we
conclude that in order for a one-dimensional map to ex-
hibit chaotic behavior, it must be noninvertible. Fig-
ure 3 illustrates the stretching and folding properties
of E, for a value of a less than one (—, &a&1). From Fig.
3(a) we see that after one application of E„ there are
no points in ~&x&1. From Fig. 3(b), we see that the
interval 0 to 2a(l —a) is stretched but that no points are
folded back onto it. Thus any point in 0&x&2a(l —a)
will eventually leave that interval and never return.
Thus the generated sequence is eventually trapped in
2a(l —a) &x&a. An alternative way of seeing the fact
that I, has sensitive dependence on initial conditions is
illustrated in Fig. 4 for the case a = 1. Figure 4(a)
shows ~„,versus g„obtained from two applications of

0

(a)

'I(0
I

0 I/2

(b)

2a(I- a)

2a(l - a) I/2
I I

2a(l-a)

FIG. 3. Map 5'~ for g =0.8; (a) mapping of the interval 0 to 1,
(b) 0 to g, and (c) 2g(1 —a) to a.

Xn+2

E,; that is, x„„=E,[E,(x„)]. We will use the notation
x„„=E,"'(x„) to denote E,[E,(x„)]. For x„, versus x„,
Fig. 4(a) generalizes to Fig. 4(b), x„,„=E,' '(x„). From
Fig. 4(b), one can see that if the initial condition has an
uncertainty +s, then after m In,(l/s) iterations of E'„
we will have essentially no clue as to where z lies in
the interval 0 to 1 (example: for c =—10 ", m = 40).

We now turn to a. consideration of the map E, [Eq.

Xn+I
iL

(a)

l

2
I

= Xp

I/4 I/2 5/4

I

2

STRETCHING

,
IXn+ln

FOLDING

FIG. 2. (a) I ~ map at a = 1. (b) Illustration of the stretching
and folding properties of R~ for a = 1.

Xr,
I

FIG. 4. (a) g„+f vs x„ for I'~ with a = 1. (b) g„~ vs ~„for &&
with ~ = 1 (the length along the x„axis is expanded).
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(2.3) and Fig. 1(b)], which has a smooth rounded maxi-
mum at x„=—,

' as opposed to the sharp peak in E, [Fig.
l(a)]. From Fig. 1(b) we note that the line x„=x„„
intersects the map at g„= 0 for 0&6 & —,

' and at two
points, x„=0 and x„=x*, for & &b&1, where, from
(2.3), x*=1—(4b) '. These points of intersection are
fixed points of the map; that is, if the initial point is
chosen to be a fixed point, then successive applications

- of the map leave it unmoved. It is important to discov-
er whether the fixed points are stable to small pertur-
bations. Let x be a fixed point, x= E(x), and consider
a perturbation from it, x„=x+5„. From (2.1), x+5„„
= E(x+ 5„). For 5„small, we can Taylor-series expand
E(x+ 5„) as E(x)+E'(x)5„=x+E'(x)5„, from which we
obtain

(a)

l.O

0.5

0 I.O

5„„/5„=E'(x), (2.4)

where E':—dE/Cx. Thus, if lE'(x)
l

& 1, images under E
of'points near x successively move farther away from
it, and x is unstable. For lE'(x)

l
&1, points near x

converge to it, and x is stable. (For example, for E,
given by Eq (2 2)

l
+l(x)

I

= 2a for x w —,', and thus x = 0
is stable for 0&~& —,', while zero and the second inter-
section [cf. Fig. 1(a)] are both unstable for —,

' & ~ ~ 1.)
For E„Eq. (2.3) shows that E'(0) = 4b, and E'(x*)
=2(l —2b). Thus, zero is stable for b& —,'. The fixed
point x=x* first appears at b= —,', and, simultaneously
with its appearance, the zero fixed point loses its sta-
bility. The fixed point x* = 1 —(4b) ' is stable in —,

' & 5 & —,',
since lE'(x*)

l

&1 in this range. Corresponding to these
results, it can be shown that the sequence generated by

I, converges to zero for 0 ~ b & —,
' and to g* for —,

' &b & 4.
E'(x*)= 1 at b = —,

' and decreases as b increases, be-
coming zero at b= —,', minus one at b= —,', and less than
minus one (unstable) for 5 & —,'. The question which then
arises is what happens in the range —,

' & b & 1 for which
both 0 and ~* are unstable. To begin answering this
question it is instructive to examine the map x„„
= E,"'(x„) shown in Fig. 5 for b slightly below —,

' and for
b slightly above —,'. Values of x which recur every sec-
ond iteration, i.e. , in a series e,f, e,f, e,f, . . . are
fixed points of E "', 8 = E "'(e), and f= E "'(f), w ith e
= E(f) and f= E(e). For the special case e =f, e will
also be a fixed point of E itself. Now consider the sta-
bility of the sequence e,f, e,f, . . . . Taking x„=e+6„,
x„„=e+ 5„„,we have e+ 5„„=E "'(e+ 5„)= E[E(e+6„)],
which, when Taylor-series expanded, yields

5„„/6„=E"(e)E'(f)= E""(e)= E"'(f) (2.5)

Applying (2.5) to a fixed point of E', we have E "'(x*)
=[E'(x*)]'. . Thus, when x* loses stability, the slope of
E' "' at ~* becomes greater than one. Referring, now,
to Fig. 5 for E'„ it is seen that, when this occurs, two
new intersections of E,"' with x„„=x„,e and f, simul-
taneously appear. Furthermore, when these points ap-
pear, they initially have E,"'(8)= E,"'(f ) = 1, and the
slopes decrease as his raised. Thus, the new fixed
points of P "' are initially stable, and it is found that,
when b slightly exceeds —,', the generated sequence con-
verges to an alternating one, e,f, e,f, . . . As b in-
creases further, however, E',""(e)= E,""(f)decreases;
eventually, past 9 =0.862. . ., E,""(f)becomes less
than minus one, and the e,f cycle becomes unstable.

(b)

0 0.5
FIG. 5. x„& vs x„ for I 2 with (a) &=0.678 and (b) b=0.854.
The dashed lines are the slope at x=x*. The intersections of
xn+2 xn with n+2 +2 b'n) ar

What happens next can be deduced, in an analogous way,
from the map x„„=E,"'[E,"'(x„)]= E,' '(x„). When the
e,f cycle loses stability, a stable four-point periodic
cycle simultaneously appears: g, b, i, j,g, h, i,j,g, h, . . .,
which then gives way ("bifurcates") to an eight-point
cycle, which then gives way to a 16-point cycle, etc.
Furthermore, the band of b values over which a given
2k-point cycle is stable decreases geometrically with
k, so that

bk ' -4.669 201. . .
~k+l ~k

(2 6)

for k-~, where bk is the value of b at the point where
the 2k-point cycle bifurcates to a 2 +'-point cycle. Also
bk-0. 892. . . for k-~; that is, there is an accumulation
point of an infinite number of bifurcations at b„
= 0.892. . . . Fiegenbaum (1978) has derived Eq. (2.6)
using arguments based on scale invariance near 5„,
and has also obtained other properties of the generated
sequences for 6 near 6„, These properties apply inde-
pendently of the detailed functional form of the map as
functional form of the map as long as it has a quadratic
maximum a.s does E,. Thus Eq. (2.6) applies to a wide
class of maps.

Just past b the orbit generated by I", looks like a
noisy cycle of periodicity 2~ with p-~ as b approaches
b„ from above. By a "noisy cycle of periodicity 2~"
we mean that the orbit is confined to 2 disjoint inter-
vals in 1&x&0 which it visits in a sequential order.
Thus the orbit always comes back to the same interval
after 2~ iterations. On the other hand, if one looks at
the points generated by 5'," ' with an initial condition in
one of these intervals, then the orbit looks completely
chaotic in this interval. As b increases, these inter-
vals merge in pairs so that a noisy 2~ cycle goes into
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0.5 l.O
FIG. 6. x„,3 vs x„ for b =0.975 (dashed curve) and for b =0.925
(solid curve).

a noisy 2~ ' cycle as b increases past a critical value
b~. Furthermore, b~ obeys the same scaling relation'
as in Eq. (2.6) (Coullet and Tresser, 1980). As b in-
creases past b„chaotic motion over a single connected
band emerges.

In addition to the noisy 2~ cycles, narrow windows in
b also exist within b„&b &1.0 for which the generated
sequence is exactly periodic. Generally, these periodic
sequences first appear with some period N and then go
through a sequence of period doubling bifurcations,
creating periods 2~N, with an accumulation point at k

ending the particular periodic window. The widest
such window is for 3 & 2~ periodic cycles, 0.9571&b
&0.9624. Other periodic windows are exceedingly nar-
row in b, and most of the range b„&5&1 appears to be
chaotic. As an example of how these cycles first ap-
pear, consider the onset of the N= 3 period cycle. Fig-
ure 6 shows the map x„„,versus x„[obtained from
E,"'(x„)]for values of b just below and just above that
for which the N=S cycle first appears. As b increases
past its critical value, the minimum of I'2" lowers un-
til two new intersections of E',"' with x„„=x„are
created near this minimum, one with slope greater
than one (unsta. ble) and one with slope less than one
(initially stable). This type of phenomenon, whereby a
periodic orbit appears after a region of chaotic motion,
is called a. tangent bifurcation. For values of b where
numerically generated sequences appear to be chaotic,
it is not, at present, known whether they are truly
chaotic, or whether, in fact, they are really periodic,
but with exceedingly large periods and very long transi-
ents required to settle down. Recent numerical results
do, however, strongly suggest that the sequences are
truly chaotic (Lorenz, 19'79). Figure 7 summarizes
some of the previously described results for I,.

I, X

FIG. 7. Summary diagram for some of the bifurcations of I
The scale about the period 3 X 2" cycles has been greatly ex-
panded.

II I. TWO-DIMENSIONAL INVERTIBLE MAPS

A general two-dimensional map can be written as

xn+x =A(xn~3' ) ~ 3'n+i =f2(xn~ Jn) . (3.1)

x„„=E(x„)+y„, (3.2a)

(3.2b)

where E(x) is noninvertible. For P=O, x„., =E'(x„), and
the noninvertible one-dimensional map is recovered.
However, as long as Ps 0, no matter how small it is,
the map (3.2) is invertible: x„=y„„/P and y„=x„.,
—E(y„„/P). On the other hand, if P is sufficiently
small, the variation of x is well described by the one-
dimensional map, x„., = E(x„). Furthermore, for smaQ
P, the range of variation of y„will be small compared
to that for x„[cf.Eq. (3.2b)], and thus, if the points
generated by (3.2) are plotted on the xy plane, the gen-
erated sequence will appear to lie on a line (the x axis)
with some small spread about the line. For very small
P, the spread may, in practical terms, be unmeasur-
able, so that (3.2) becomes indistinguishable from a
one-dimensional noninvertible map. (This will, indeed,
turn out to be similar to what happens in certain differ-
ential equation examples to be discussed in the next
section. )

It is of interest to compute the Jacobian of the map
(3 2),

The map is invertible if (3.1) can be solved uniquely for
x„and y„as functions of x„„and y„„, x„=g,(x„„,y„„)
and y„=g,(x„.„y„„).That is, it i.s possible to go either
backwards or forwards in time. A two-dimensional in-
vertible map can easily be constructed from a one-di-
mensional noninvertible map as follows:

The subject of the universal scaling properties of maps with
a quadratic maximum is currently a very active research top-
ic. Recent work includes the study of scaling of the I.yapunov
number past b (Chang and Wright, 1981; Huberman and Rud-
nick, 1980), the noise power spectrum past b (Huberman and
Zisook, 1981; Wolf and Swift, 1981), and scaling behavior with
the addition of random noise (Crutchfield eg al. , 1981; Shrai-
man eg ~E. , 1981). Furthermore, universal scaling properties
of conservative systems with period doubling have also recent-
ly been examined (for example, Green ef; z/. , 1981).

~X'+ g ~Xg+g

8+ 9$

~p n+1 g n+1

&n 3'n

Thus, for P &1, we see that areas will contract by
the factor P on each application of the mapping (3.2).
Thus, if the generated sequence of pairs (x„,y„) re-
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mains in a bounded region of the xy plane, then the se-
quence must asymptotically approach a subset of the
original bounded xy region which has zero area. This
subset is called an attractor. For example, if the se-
quence becomes attracted to an N-point periodic cycle,
then the attractor would be the N points plotted in the
xy plane, clearly a subset of zero area. Another possi-
ble subset of zero area that a sequence might asymptote
to is a curve. At first sight, these two possibilities, a
zero-dimensional subset (points} and a one-dimensional
subset (a curve), might appear to exhaust all possibil-
ities for zero-area attractors. This is, however, not
the case. There can be attractors which have noninte-
ger dimension (at least according to the definition of
dimension that we will use). Such attractors would be
termed strange. The relevant definition of dimension
is that due to Hausdorf' [see, for example, Mandel-
brot (1977)]:

O I/9 2/9 I/~ ~/q 7/9 8/9

C=—1
g

N= 4

FIG. 8. First few steps in the construction of an example of a
Cantor set.

d = lim 1nN (s)/in
g~ Q C

(3.3)
Thus from (3.3)

where, if the set in question is a subset of a p-dimen-
sional ordinary space, then N(c) is the number of p-
dimensional cubes of side.c needed to cover the set.
Alternatively, (3.3) implies that for small c, N(c)
=—Kc ". Thus, if one is content to know where the set
lies to within an accuracy c, then, to specify the loca-
tion of the set, we need only specify the positions of the
N(c) cubes covering the set. Hence, the dimension may
be viewed as telling us how much information is neces-
sary to specify the location of the set to within a given
accuracy. lf the set has complicated fine-scale struc-
ture, then, as a practical matter, it may be advanta-
geous to introduce some coarse-graining into the de-
scription of the set, and then c may be thought of as
specifying the degree of coarse-graining. As an ex-
ample of the application of Eq. (3.3), if the set in ques-
tion is a point, then N(s) = 1, and, according to (3.3),
the Hausdorf dimension is zero; if the set in question
is the section of the xy plane given by 0&x &1 and 0&

y &1, then N(s) = c ', and the Hausdorf dimension is
two; if the set is a straight line joining (0, 0) and (1.0),
then N(c) =c ', and the Hausdorf dimension is one.
These examples all yield the obvious results, so that
(3.3) conforms to our intuition in these cases. As an
example of a set with a noninteger dimension, consider
the following construction of a Cantor set (illustrated in
Fig. 8): take a line of unit length, 0~x ~ 1, and remove
the middle third & &x & —,'; then take the two remaining
i.ntervals between 0 and 3 and between —,

' and 1, divide
them in thirds, and remove the two middle thirds; in
the limit as this process is repeated an infinite number
of times, what is left i.s a set that has zero net length
and an uncountable number of elements. To apply (3.3)
to this set, we note the following which is evident from
Fig. 8,

c= —' N=2

x„+~ = 1 —cx„+y„~ y„„=px„. (3.4}

This mapping is essentially equivalent to Eq. (3.2) with
E given by Eq. (2.3). [A study of the map obtained
from (3.2) and (2.2) has been presented by Lozi (1978),
but will not be discussed here. j Figure 9 shows the re-
sults of plotting 10 successive points obtained by iter-
ating the map (3.4) with c = 1.4 and P = 0.3 from an in-
itial point x, = 0.631, y, = 0.189. Similarly obtained

O 4-

0.2-

d = (ln2)/(ln3) = 0.630 .
Note that the Cantor set just constructed has the prop-
erty of scale invariance. That is, by the nature of the
construction, the set between 0 and 1 will look precise-
ly the same as that. part of it between 0 and 3, if the
latter is examined under a magnifying glass which mag-
nifies by a factor of three.

As. a concrete example, we now consider a mapping
first studied by Henon (1976):

2Actually, the Hausdorf dimension has a somewhat more in-
volved definition than that given by Eq. (3.3). More precisely,
d given by (3.3) defines the "capacity" of the set. For cases of
interest to us here, however, Eq. (3.3) probably gives the same
result as would the actual Hausdorf dimension definition.

-0 4-

—1.5 —1.0 —0 5 Q. S

FIG. 9. Iterated points of the map, Eq. (3.4), 10 iterations.
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plots starting with other initial values are almost iden-
tical (except for an initial transient), suggesting that
Fig. 9 is, in fact, essentially a picture of the attractor.
That is, as the map is iterated, points come closer
and closer to the attractor and eventually become indis-
tinguishable from it on the scale of the figure. Figure
10(a) shows a blow-up of the squared region in Fig. 9;
Figs. 10(b) and 10(c) are successive blow-ups of the
squared regions in the preceding figure. Scale invari-
ant, Cantor-set-like structure transverse to the linear
structure is evident. Thus, the attractor is probably
strange with dimension between one and two. In fact,
a recent study (Russell et al. , 1980) gives d = 1.26.
Further studies of the map (3.4) have been carried out
by Feit (1978), Curry (1979), and Simo (1979), who
have explicitly verified exponential divergence of in-
itially close points. In addition, Feit (1978) and Simo
(1979) have studied how the character of the generated
sequences changes as c is varied with P fixed. It is
found that, dispersed among intervals of c where the
motion is chaotic, there are many small subintervals
where the motion is periodic. On each such subinterval,
there appear attractors of period k, 2k, 4k, . . ., 2"k, . . .,
similar to the phenomenon observed for the one-dimen-
sional map, Eq. (3.4) with p= 0 [which is equivalent to
Eq. (2.3)].

Bridges and Rowlands (1977) have given a procedure
for investigating maps of the type (3.2) essentially by
a power series in P. For example, to lowest order in
P (3.2a) gives x„„=E(x„) (as previously noted), which,
when substituted into (3.2b), yields the result that the
attractor lies in the vicinity of the curve

(3.5)

Higher-order approximations yield increasing detail to
the curve. For Henon's map, Eq. (3.4), with c=1.4 and
P = 0.3, Eq. (3.5) yields a surprisingly good first-order
approximation of the attractor.

The reader may be aware that two-dimensional maps
have been extensively utilized as models of Hamilton-
ian systems, and, in particular, to model ergodic be-
havior in Hamiltonian systems. Since Hamilton's equa-
tions conserve phase-space volume (by I iouville's the-
orem), two-dimensional maps modeling Hamiltonian
systems do not cause uniform contraction of areas, and
chaotic motions (i.e. , ergodicity) generated by such
maps generally fill up a two-dimensional area. Thus,
no strange (fractional dimensional) set is involved. If
dissipation (e.g. , friction) is added to a Hamiltonian
system, phase=space contraction may be expected to
result. Thus it is of interest to consider the relation
of ergodicity in Hamiltonian systems to the possible
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0, 191

0. 190-

0. 19,'- 0. 189-
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'~

l

0. 17- 0. 167—
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FIG. 10. (a) Enlargement of the
square in Fig. 9, 10 iterations;
{b) Enlargement of the square in
Fig. 10{a), 10 iterations; (c) En-
largement of the square in Fig.
10(b), 5 X 10 iterations.
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appearance of strange attractors when dissipation is
added to these systems (McLaughlin, 1979; Zaslavskii,
1978). Recent studies addressed to this question (Zas-
lavskii, 1978; Zaslavskii and Rachko, 1979) consider
the two-dimensional map

y„„=e r(y„+c cos2mx„),

x = x+—+ 1 —e y+ —1 —e cos2~x
0 aQ

n+1 n 2+ 2+P n n

(3.6a)

y„,~ =y„+6 cos2zx„,

0 nQ
xn+1 xn+ + yn++ cos2+xn

(3.7a.)

(3.7b)

(3.6b)
where ( ) denotes the fractional part of the argument
and K= o. EQ/2m. The Jacobian of the map (3.6) is
exp(-I'). Thus, the map contracts areas for I'& 0 and
is area preserving for I'=0. In the absence of dissi-
pation, I'=0, and (3.6) reduces to

[f, and f, are defined by Eq. (2.2)], and (x, , y, ), (x„y,),
. . ., (x„,y„) is a sequence generated by the map. Thus,
the Lyapunov numbers specify the average stretching
rate of nearby points. Say X, &A, If the map is cha-
otic, then X, must exceed unity, so that the distance
between almost all nearby points increases on succes-
sive mappings. If the map is area contracting, X,X,&1;
if it is area preserving, &,&2=1. The calculation of &,
and A., from Eq. (3.8) is fairly easy using a digital com-
puter and can then be used as a criterion for chaos,
A., & 1. An interesting conjecture concerning I yapunov
numbers has been put forward by Frederickson et aE.
(1980) [see also Kaplan and Yorke (1979a)], namely, that
the Hausdorf dimension of a strange attractor of a map
with the eigenvalues of J independent of x and y is re-
lated to its Lyapunov numbers. For a two-dimensional
map with Lyapunov numbers A.,& 1& A.2, A, X2 & 1, their
conjecture states that the dimension is given by

d = 1+ (ink, )/(in', '), (3.9)
which has been extensively studied as a basic model of
stochasticity in Hamiltonian systems (Rosenbluth et al. ,
1966; Stix, 1973; Bechester and Stix, 1976; Chirikov,
1979; Greene, 1979) (and also as a model for stochastic
magnetic field line topologies in magnetic confinement
controlled thermonuclear fusion devices). The onset of
ergodic behavior in the map (3.7) can be estimated
from Chirikov's island overlap condition which, for
small c, yields ergodicity for K= 1. By qualitative
arguments based upon the exponential divergence of
nearby chaotic orbits Zaslavskii is able to estimate the
condition for the appearance of chaotic orbits and a
strange attractor for the map (3.6), Kji ~ 1, where ii
=(1 —e )I" ', Numerical results confirm this rough
estimate.

In connection with chaotic maps a useful notion is that
of the Lyapunov numbers. An illustration of the Lyapu-
nov numbers is given in Fig. 11. For a two-dimension-
al map, the Lyapunov numbers, X, and A.» are the av-
erage principal stretching factors for a very small cir-
cular area; more formally

(X„A.,) =lim[magnitude of the eigenvalues of

For example, for the Henon map, Eq (3.4.), with c=1.4
and b =0.3, X, = 0.2, and Eq. (3.9) gives d= 1.26. Re-
cently, numerical experiments have been performed
which tend to confirm (3.9) (Russell et a/. , 1980). Fur-
thermore, we note that these numerical experiments
also tested maps for which the eigenvalues 4 are not in-
dep ndent of x and y and still obtained excellent agree-
ment with Eq. (3.9). While it is known by counterexam-
ple that Eq. (3.9) fails in general if the eigenvalues of
J depend on x and y, the results of these computer ex-
periments indicate that (3.9) still yields a, surprisingly
good approximation to the dimension in some cases.

A possible motivation for (3.9) is depicted in Fig. 12,
which considers a map of the unit square into itself.
The mapping consists of two steps. The first step is a
stretching along y by X, & 1 and a contraction along x by
A.,&1. For the second step, we assume that X, is an
integer (X, = 3 for Fig. 12), and move the stretched and
contracted area back into the unit square, as shown.
This may be represented analytically by the map

x„„=X,x„+y„—A.,'(X,y„mod 1) .
J(x„,y„)J(x„„y„,) J(x„y,)] 'i",

where J(x, y) is the Jacobian matrix of the map:

(3.8) From the construction in Fig. 12, it is clear that A., and
X, are the Lyapunov numbers of this map. If the proc-

sfi(x, y) sfi(x, y)
x

n ITERATIONS OF

THE 2D MAP I'tST P 2 STEP

FIG. 13.. yg iterations of the two-dimensional map transform a
sufficiently small circle of radius 6 approximately into an el-
lipse with major and minor radii Xfd and Xzd, where At and Az

are Lyapunov numbers, for z

X2
X

3 3
FIG. 12. Map motivating Eq. (3.9). The illustrated map may be
represented analytically as y„+& = 3&„mod ~ ~ x„+f ~2&„+g„g„+g/
3.
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ess in Fig. 12 is repeated p times, X, vertical strips of
width X~2 will be created .To apply Eq. (3.3) for the di-
mension, let c =A~2. Then, the number of squares of
side s needed to cover the strips is N=—X,X,~, and Eq.
(3.3) yields (3.9). In addition, the conjecture can be
used to predict the dimension of strange attractors for
systems of ordinary differential equations (Russell et
a/. , 1980). The map of Fig. 12 is also interesting,
since it demonstrably yields a strange attractor, while
for maps such as (3.4) and (3.6) one can only say that
numerical results suggest the presence of a strange at-
tractor.

As an example, we consider the following system of
two nonautonomous ordinary differential equations:

—=f(q) Q 5((ut —2nw) —v(P —Po),
dp
dt

where 5(9) denotes the delta function of 8. This can be
written as three autonomous equations

—=f(q) Q 5(e —2n~) —v(p —p,),dp
dt

IV. THREE-OIMENSIONAI SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS

A. Background

dq
pdt

d6)—= 4),
dt

(4.2b)

(4.2c)

Here we consider systems of three coupled, nonlin-
ear, autonomous, differential equations,

dx, (t)/dt =f,.[x.,(t), x,(t), x,(t)], i = 1, 2, 3. (4.1)

, , X2

K

~ ie~
\

I
)

FIG. 13. Poincare map of Eq. (4.1}.

The system is "autonomous" because f,. does not depend
explicitly on t but only on x, Alternatively, a nonauto-
nomous system of two coupled equations, dx, /dt
=g,(x„x„t) and dx, /dt =@2(x„x„t), can be written in
the form (4.1) by defining f, =g, (x„x„x3) f,

R2( 1 t 2t x3) %f3
Vfe now define the Poincare map of a, system like

(4.1). The Poincard map represents a reduction of a
system like (4.1) to a two-dimensional map, such as
those studied in Sec. III. Figure 13 illustrates the con-
struction of a Poincare map. Consider a particular
solution of (4.1) to generate an orbit in x, ,x„x, phase
space. We now assume that some appropriate surface
(the "surface of section") in this space has been chosen,
and we study intersections of the orbit with the chosen
surface. In Fig. 13 the chosen surface is the plane x,
=K. Every time the orbit crosses the chosen surface
in a particular direction (dx, /dt & 0 for Fig. 13) we re-
cord the crossing point, e.g. , points A and B in Fig. 13.
For Fig. 13, it is clear that point A uniquely deter-
mines point B, since the solution of (4.1) is unique.
Likewise, point B determines point A by time reversal
of (4.1). Thus the Poincare map in this illustration rep-
resents an invertible transformation of a point in the
plane x, =K into another point, i.e. , it is an invertible
two-dimensional map.

We take the surface of section to be 8 = 2m' —c, , where
s-O'. Defining (p, q ) = lim, 0, [p(t —s), q(t —c)], and

= 2m'/w, Eqs. (4.2} then yield by simple integration,
the following two-dimensional map:

y.„=e '[y. +f(q )]

q „,=q +(1 —e r)v '[y +f(q )]+2vp, /(u,

(4.3a)

(4.3b)

where I"=2mv/&u, and y =p -p, . By a suitable choice
of f(q) this two-dimensional map may be reduced to
that studied by Zaslavskii (1978) and discussed in the
preceding section.

Now, we turn to a discussion of the evolution of
phase-spa. ce volumes as governed by the system (4.1).
That is, we consider the volume ( V} enclosed by some
closed surface 5 in the x„x„x,phase space, and let
the surface evolve by having each point on the surface
follow an orbit generated by (4.1). By the divergence
theorem

dxgdx2dx3. (4 4)

In the special case where divergence of the phase-space
flow, Q', ,sf, /ex„ is a negative constant, g', ,af, /sx,
= —k, Eq. (4.4) yi.elds dV/dt = -kV, so that

V(t) = V(O) exp(-kt). (4 5)

Thus phase-space volumes shrink exponentially in
time. Many of the physical examples yielding a. system
of the form (4.1) that have been investigated for strange
attractors also happen to have a constant negative di-
vergence. We shall restrict our discussion in the re-
mainder of this section to this case. [In fact, Eqs. (4.2) .

fall in this class with the flow divergence being —v. ] In
Sec. V, more genera, l cases, without negative diver-
gence, w ill be discussed.

The special case of three ordinary autonomous differ-
ential equations with negative phase-space flow diver-
gence presents a very clear case for the necessity of
introducing the concept of a, strange attractor. Since
phase-space volume contracts to zero in the limit of
large time, it follows that any attractor must have zero
volume. A natural assumption might then be that the
attractor would have to be a surface (two dimensional),
a curve (one dimensional), or a point (zero dimension-

'
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664 Ott: Strange attractors and chaotic motions of dynamical systems

al). However, none of these allows chaotic motion. In
particular, not even the highest dimension of the above
three possibilities (two) allows chaos. For example,
for orbits within a finite section of a plane, the Poin-
care-Bendixson theorem shows that the only. possible
attractor for the orbit must be either a point, a simple
closed curve, or a self-intersectirig closed curve' (e.g. ,
a figure eight (e.g. , Hirsch and Smale, 1974). Thus if
one observes chaotic motion in the system (4.1), and if
(4.1) has negative phase-space flow divergence, then
one is faced with something of a paradox. One way out
is to realize that, attractors with zero volume need not
only have dimension zero, one, or two, but can, in
fa.ct, have noninteger dimension. In particular, chaotic
motion is possible if Eqs. (4.1) have an attractor of di-
mension greater than two but less than three (the latter
so that the volume of the attractor is zero), i.e. , a
strange attractor. We will now outline some work on
physically interesting systems exhibiting strange at-
tractors. The three examples which we will discuss
are (1) the so-called Lorentz system, which represents
a simple model of the convective motions that result
when a temperature difference is maintained across a
fluid layer which is subjected to gravity, (2) a. simple
model for the saturation of an unstable mode by cou-
pling energy through quadratic nonlinearities from the
unstable mode to damped modes, and (3) a model simi-
lar to (2) but with cubic nonlinearities (resulting, for
example, from a nonlinear Schrodinger equation).

B. Examples

The first two examples, (1) and (2), are for param-
eters such that the phase-space contraction rate is
large. This has the consequence that the attractor in
the surface of section appears to be one dimensional.
Actually, closer examination under magnif ication
would reveal thickness containing structure within the
attractor. Furthermore, the dimension in the surface
of section must be 1 & d& 2, as for any invertible two-
dimensional map with a strange attractor. Here, how-
ever, d is only slightly larger than one. This leads to
the result that the system dynamics can be well approx-
imated by a one-dimensional noninvertible map of the
types discussed in Sec. II. [Recall that, as discussed
in Sec. III, this also is true in the analogous case of the
two-dimensional map, Eq. (3.2) with P small. ] The ex-
ample in (1) yields a one-dimensional map that is like
that given by Eq. (2.2); it has a sharp (nondifferentiable)

maximum, and, in the notation of Sec. II,
~

E'(x)
~

& 1 for
all points on the chaotic orbit generated by x„„=E(x„).
The example in (2) yields a one-dimensional map that is
like that given in Eq. (2.3). As a consequence, example
(2) leads to a pattern of period doubling bifurcations,
tangent bifurcations, and chaotic orbits that is essen-
tially the same as that for the quadratic map, Eq. (2.3)
(cf. Fig. I). Example (3) will be discussed for a, range
of parameters for which the contraction rate is not
large T.hus, for example (3), non-one-dimensional
structure will be readily evident in the surface of sec-
tion. Furthermore, it will be shown that this structure
appears to have approximate scale-invariant properties
upon magnification, in analogy to the Cantor set exam-
ple of Sec. III (cf. Fig. 8) and to the Henon map (cf. Figs.
9 and 10). Thus these three examples serve to illus-
trate the relevance of essential features of one- and
two-dimensional chaotic maps to systems of ordinary
differential equations modeling physical systems.

1. Lorenz's treatment of the Benard instability

Consider two rigid plane parallel walls at z =O, L with
a fluid occupying the space in between. Gravity is in
the negative z direction, and the plate at z =0 is main-
tained at a higher temperature than the plate at z =L,
T,& T~. A possible equilibrium of this system is one in
which the fluid is at rest and heat is transported from
z =0 to z =L via thermal conduction. Lord Rayleigh
studied the linear stability of this equilibrium and
found that if (T, —T~) exceeds a, critica. l value, then the
system becomes unstable to perturbations in the form
of circulating fluid flow. The linear analysis cannot,
however, be used to specify the ultimate nonlinear state
of the fluid once instability sets in. Considering varia-
tions only in two dimensions, Saltzman (1962) derived a
set of nonlinear ordinary differential equations by ex-
panding the stream function and the temperature per-
turbation in double spatial Fourier series, with coef-
ficients functions of t alone. By substituting the series
into the original governing set of partial differential
equations and truncating the infinite sum to a finite
number of terms, he obtained a. set of ordinary differ-
entia. l equations. Lorenz (1963) further examined this
problem and added much insight. The paper by Lorenz
ha, s greatly added to the understanding of this type of
problem. Lorenz considered a truncation to only three
Fourier modes, for which the describing equations be-
come

For motion described by more than three autonomous ordin-
ary differential equations with phase-space contraction,
5~; Bf /Bx; &0, or by three autonomous equations where QBf;/
ex; is not everywhere negative, an attractor which is a toroi-
dal surface is possible. Motion on the toroidal surface is
doubly periodic; that is, the solution of (4.1) can be represen-
ted as x;(t) =l;(t, t), where /; is periodic in both variables,
lz«+T;, t+T2) =l;(t-, t), and T~/Tq is not a rational number. Al-
ternatively, if the orbit is doubly periodic, then the only fre-
quency components of the Fourier spectrum of x;(t) are (m/T~)
+(n/T~), where m and z are integers. Doubly periodic motion
in three dimensions with phase-space contraction is not pos-
sible, because the volume V enclosed by the toroidal attractor
would be time independent, contrary to Eq. (4.5). At any rate,
doubly periodic orbits are not chaotic, either.

dX/dt = -vX+ v Y,

dY/dt = -XZ+rX —Y,

dZ/dt =XY —bZ,

(4.6a)

(4.6b)

(4.6c)

where 0, x, and b are dimensionless parameters of the
system. 4 is proportional to the circulatory fluid flow
velocity, F characterizes the temperature difference
between ascending and descending fluid elements, and
Z is proportional to the distortion of the vertical tem-
perature profile from its equilibrium (which is linear
with height).

Setting dX/dt =dY/dt = dZ/dt = 0, we find that (4.6) pos-
sesses steady-state solutions, X= Y=Z=O, and if x& 1,
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A"= F=a[b(r —1)]' ', Z=r —1. The equilibrium X= I'=Z
= 0 represents the case of no fluid flow, while the two
possible equilibria for r&1 represent steady circulating
convection. Linearization of Eqs. (4.6) about these
equilibria reveals that the X= Y= Z = 0 equilibrium
looses stability when y& 1, while the steadily convecting
equilibria become unstable if

x& o((x+ b+ 3)(v —b —1) = r, (4.7)

and 0& b+1.
Lorenz numerically considered the solution of (4.6)

for a case in which (4.7) is satisfied: cr=10, b= —,', r
= 28. [Note that from (4.7) &, = 24.74 in this case. ] For
these values of the parameters he obtained a chaotic
solution and examined its properties in detail. It is in-
structive also briefly to consider the character of the
solutions of (4.6) for other parameters. In pa, rticula, r,
say 0=10, b= -', and increase ~. For x&1 all initial
conditions eventually decay to the convection-free equi-
librium. For 1&x~ 24.06 all initial conditions eventual-
ly settle into one of the two stable convective equilib-
ria. For 24.07 ~ r ~ 24.74, depending on initial condi-
tions, the solution settles into either a chaotic motion
or into one of the two stable convective equilibria. This
phenomenon of dependence upon initial conditions is
called hysteresis. For && 24.74 the eventual orbit is
chaotic for all initial conditions. [For r still larger,
say r & 50, the behavior can aga, in change (Shimzu and
Morioda, , 1978).] Even in the range r & 24.06 interesting
behavior arises, in particular, the phenomenon of
"chaotic transients" first noted by Yorke and Yorke
(1979) and by Kaplan and Yorke (1979b). These authors
find that the evolution from a given initial condition in-
itially looks very much like the time dependence of the
solution in the chaotic regime, after which the solution
quickly settles into one of the two stable equilibria.
Furthermore, they find that the time to settle into
equilibrium is sensitive to the initial condition, and
can be fairly long with its duration increasing with x.
Similar phenomena are to be expected in other cases
(e.g. , Shimzu and Morioda. , 1978) and in other systems.

We now return to a description of Lorenz's results
for r=28. Figure 14 shows a projection of the phase-
space orbit of the system onto the YZ plane. The .

points labeled C and C' are the steady convection equi-
libria points. Evidently, the orbit spirals outward

~ I

r t
C ~

4

350— '~

300 +
300 350 400 450

FIG. 15. Maxima vs subsequent maxima of Z occurring during
6000 iterations.

from one of the points C or C' until it exceeds some
cr itical d istanc e from the or ig in, at which point it
starts spiraling about the other point. If one were to
make a sequential list of the number of circuits the
solution makes around one point before it switches to
the other point, the sequence would appear to be cha-
otic. By examination of the solution, Lorenz has de-
duced that the orbit appears to be confined to a surface.
Actually this apparent "surface" must have some small
thickness, inside of which is embedded the more com-
plicated structure of the strange attractor. In fact, if
one were to pass a line through this surface normal to
it, one would find that the intersection of the line with
the surface is a set of dimension 0&d&1, i.e. , like the
Cantor set of Fig. 8. However, since the thickness of
the strange attractor is small, the presence of struc-
ture in this intersection would only be visible upon mag-
nification, and, unmagnified, it would appear to be a
point.

Figure 15 shows a plot, obtained by Lorenz, of M„,
the nth maximum of Z, versus M„„, the value of the
following maximum. It is clear that an (approximate)
one -dimensional map is generated. Furthermore,
~dM„„!dM„~& 1, which is similar to the result for Eq.

(2.2) with ~& —,'. Thus, as for Eq. (2.2), we expect this
one-dimensional map to generate a chaotic sequence.
For later comparison with the results of example (2),
note that the maxima of Z may be regarded to lie in a
surface of section, bZ = AY [put dZldt = 0 in (4.6c)].
For further discussion of the Lorenz attractor see Lan-
ford (1976), Afraymovich et zl. (1977), and Bunimovich
and Sinai (1977).

2. Instability saturation by quadratically nonlinear mode
coupling

FIG. 1$. Projections of an orbit for &=28 onto the YZ plane.
Numerals 14, 15, etc. , denote positions at iterations 1400,
1500, etc.

An important problem in plasma physics (and in other
fields as well) is that of determining the nonlinear state
resulting from a linearly unstable wave. An elemen-
tary process by which saturation can occur is that of
resonant three-wave mode coupling of energy in the lin-
early unstable wave to two other waves which are lin-
early damped. The following normalized system of
equations describes this process:

dC, /dt = C, + C,C, exp(i5t),

dC, ,~dt = —y, ,C» —C,Cf, exp(i6t),
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i =1 2, 3) are time-dependen nt complex wavewhere C,. (i =

l njugate of C, , timess C*. is the complex conjugamplitudes,
a1.ized to the grow rath rate of wave 1 (thehave been norma1. iz

wave) 5 represents e e ethe effect of ahigher frequency wav
nance and amplitudesatch in the frequency resonance, an amismate in

that the coefficients of the
r e . 7 t ducing a exp(x@,) = C„

een normalized so a
r terms are one. n rononlinear e

7 th revious system gives
and . These equationsfour real equations for a», an

readily yield
2 2d(a' a,')/dt -= -2(r.~. -~,a.02 —Q3

ecial case = a' -a' decreases ex-

h b o (V hki dthe basic equations then ecoa, = as,
Bab inov ich, 19'l 6)

dQ~/dt = Qg + Q2 Cos@,

da /dt= -a,(y+ a, cosy),2

d@/dt = -~ + Qj (2Q~ —tZ2 s W~ .

in examining isth' system, Wersinger
et al. (1980a, 19e . , 80b 1980c) chose

ns' for a range of y fromof numerical solutions or ap op
or & 3 the dampingy1ty 25. F y

enough to arre st the instability, an - e
ntl unbounded. For - y-

d' l' 't lled to a simple perio ic iitial conditions led o
t' n this limitas the surface of sec ion,Using p(t) = m/2 as e s

' t in the surface' ested as a single poin incycle was manifes e
than 8.5 a limit cy-r somewhat larger anof section. For y s

ed but the sing e ixl f' ed point in thecle is still observe,
ifested the limitn that previously mani essurface of section a

vis ited alternately.o two oints that are visi ey p o op
the single-peak-per-p

'th t lt t'5 becomes a function wifor a~y~ 8. ec
A is increased, themaxima (cf. ig .Fi s. 16 and 17~. s y is

— oint cycle (for ycle splits into a four-poino-po' y
a 11.9), which splits into an eig -p
=13.15), . . ., o of llowed by a region of y y~

lo-

0 5 lO l5
FIG. 17. a~ vs t for y=9.

I I i

20 25 30

haotic' cf. F ig. 18).ted se uence appears chaowhich the genera e seq
h — oint cycle to aa se uence f rom a three-po

th arne as that depicted i.n
c cle etc. , briefly appears. o

lo is recisely the samethe phenomeno ogy p th arne in

one-dimensional quadra ic
(2.3)! Similar resul sults for entire y i

see for example,e also been obtained see, or exsituations have a s
ke the correspondenceTomita and aiKai (1979)j. To ma e e

first consider results2.3) more concrete, firs con '

from the numeric y gricall genera e su
the chaotic regime,Fi . 19 for a value of y in e e

oints generated in the sur-=15. It is seen that the poin s geny=
ear to lie on an arc. Since i

ible thickness, it is natura o-a
proximate reduction to a one-dimensio
can be don,ne for example, by p o ing x„„——

20 lie along a curve x„„=
t ) th o -d'-s e. . ~„=—(cons -x„change of variables e.g. ,

d ide down so
that it has a smooth rounded maximum

40

20—

lo

0 5 l0 l5 2025 50 55
FIG. 18. a~ vs t for y=15.

l5 20 25 500 5 IO
' nt the solu-= 3. After an initial transien,FIG. 16. a~ vs t for p = 3. er

tion settles into a limit cycle.

f 5 time-independent equilibrium solu-For larger values o
tions of the equations exist.

has shown t a eh t the frequency power spec-
the eriod doubling bifurca-trum at the, accum ulation point of the perzo

tions of a ediff rential equation system
ties.

xe f noisy 2~ cycles studie ydbThis includes xe pthe henomenon o nois
tions on another set ofCrutchfield et al. (1980) by computations on

differential equations.
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40- Ott (1980) and references therein]. Under suitable con-
ditions on y(k) it is possible to consider E(x, t) to con-
sist of just three wave number components kp ky k2,
with 2kp=k, +k,. There then results a system of ordi-
nary differential equations for the three complex wave
amplitudes corresponding to the three wave numbers,

20-
tN

= -y(II.)E.+I[ IE, I'E.+ IE. I'E.+2E.*E,E.exp(»&f)],

10-

1.02 1.06 1.08
FIG. 19. Surface of section for y=15.

1.04

minimum). Thus we see that the one-dimensional map
generated by the particular system discussed is of the
same general character as the simple quadratic map
discussed in Sec. II, Eq. (2.3), i.e. , it is concave down
with a smooth rounded maximum.

dt
' = -y(~, )EI+'[ IE. I'E. + IE.I'E. +E:E.* exp(-2f&f)]

cN

' = y(u, )E,+I[IE.I'E, + IE, I'E, +E,'E+exp( 2iaf)],

where we assume y(k, )&0 and y(kI, )&0. As in example
(2), if y(k, ) =y(k, ), these three complex equations can
be reduced to a system of three real equations:

dip = a, + 2a,a, sing,

dQy 2

N
= -yQI —0 QI sin@

3. Instability saturation by cubicly nonlinear mode
coupling

Here we very briefly describe another study of non-
linear mode coupling saturation of an unstable plasma
wave. The physical situation, however, is somewhat
different from that considered in example (2) in that a
resonant three-wave process is precluded by the wave
dispersion relation. The physical system is assumed
to be well modeled by the following normalized, one-
dimensional, nonlinear Schroedinger equation with lin-'
ear wave growth and damping included,

z -,—, +yE +, , +[IEI' IEI;]E=o,()E 8 E

where E is the complex amplitude coefficient of the g-
directed electric field, IE Io denotes the spatial average
of IE I', and y is a. linear growth-damping operator de-
fined so that the Fourier transform of yE(x, f) is
y(k)E~(t) with E~(t) the Fourier coefficient of E and y(k)
the linear damping rate of a wave of wave number k

[ y(k) & 0 for growth]. This equation may be used to
model a situation where an eI.ectron beam with a ther-
mal spread is injected into a. plasma [cf. Russell and

dt
= -2& + 2(a,' —a,') + 2(2a,' —a,') cosp .

The above system has been examined analytically and
numerically as a function of the dimensionless param-
eters of the system (5 and y). It was found that the
model exhibits a wealth of characteristic dynamical be-
havior, including stationary equilibria, bifurcations
from stationary equilibr ia to per iod ic orb its, per iod
doubling bifurcations, chaotic solutions on a strange
attractor, tangent bifurcations from chaoti. c to periodic
solutions, transient chaos, and hysteresis. It is not
our purpose here to detail the behavior of this system.
Bather, we wish to use it as an illustration of scale in-
variant nature in a strange attractor. For a range of
the parameters 6 and y, this system exhibits chaotic
time dependence with only a moderate phase-space vol-
ume contraction rate. Thus structure of the associated
strange attractor is evident in the surface of section
(Fig. 21). Furthermore, upon magnification. it is evi-

I.20-

40
35-
30—
25

Xn+1

a0

I.OO-

IO-
0

~0
~ ty ~ y ~

I.80-

I I I I I I I

5 IO I5 20 25 3035 40
Xq

I

2.0
I

2.4
I

2.8

FIG. 20. Points x„+~ vs x„ lie approximately on a curve defining
a one-dimensional map.

FIG. 21. Surface of section for a particular set of parameters
for example (3).
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FIG. 22. (a) Magnification of the region in Fig. 21 shown in
the rectangle, and |'b) magnification of the rectangular region
indicated in Fig. 22(a), Scale invariance is evident.

dent that the structure appears to be approximately
scale invariant. This is illustrated in Fig. 22 which is
to be considered analogous to Fig. 10 for the Henon
map.

V. PARTIAL DIFFERENTIAL EQUATIONS, ORDINARY
DIFFERENTIAL EQUATIONS, AND TURBULENCE

It is natural to ask whether the phenomena revealed
by the examples of the preceding section carry over to
more complicated systems. In particular, what happens
if the restriction of phase-space volume contraction is
lifted and if the dimension of the system is larger than
three? Furthermore, the examples in Sec. IV were
meant as approximate models for phenomena whi. ch are
more exactly described only by partial differential
equations. Partial differential equations may often be
thought of as infinite systems of ordinary differential
equations; e.g. , it is frequently possible to expand the
dependent variables of a partial differential equation in
an infinite discrete set of Fourier spatial modes and to
derive an infinite set of coupled nonlinear ordinary
differential equations for the time dependence of the
Fourier coeff icients.

It seems clear that such more general systems
might display the same characteristic phenomena as
those discussed in Sec. IV, but could also reveal addi-
tional phenomena ruled out by the specific constraints
adopted in Sec. IV. For example, we have found in Sec.
IV cases where chaotic solutions occur for a strange
attractor of dimension between two and three. For
higher dimensional systems, strange attractors are
possible with higher dimensionality —e.g. , one might
have a strange attractor of dimension between five and
six if a system of pg differential equations with n~ 6
were investigated. (Such higher dimensional strange

attractors might be quite difficult to diagnose in actual
situations. ) At any rate, it seems reasonable to sup-
pose that, as a parameter which characterizes the
strength of destabilizing forces in a system described
by partial differential equations is cranked up (e.g. ,
the Reynolds number), the general (although not uni-
form) tendency'would be toward motion on attractors of
increasing dimension. For example, a stable attracting
stationary equilibrium point (zero-dimensional attract-
or) might bifurcate to a periodic orbit (one-dimensional
attractor), which then proceeds via an infinite number
of period doubling bifurcations to a strange attractor
of dimension between two and three, which then be-
comes a strange attractor with dimension between three
and four, etc. Another possible sequence might be a
stationary point (zero dimensions) that bifurcates to a
periodic orbit (one dimension), which bifurcates to a
doubly periodic orbit (a two-dimensional attractor
formed by the surface of a torus), which then bifur-
cates to a strange attractor (dimension& 2). The form-
er route to a strange attractor [cf. Fig. 23(a)] has been
demonstrated in Sec. IV.B.2. The route to a strange
attractor via transition from a doubly periodic orbit
(motion on a two-dimensional toroidal surface) is illus-
trated in Fig. 23(b) and was first discussed in apio-
neering paper by Ruelle and Takens (1971) [cf.also New-
house et al. , 1978). (Note that this route to a strange
attractor [Fig. 23(b)] is specifically ruled out for the
examples in Sec. IV, since, as previously mentioned,
doubly periodic orbits are not possible in a system of
three ordinary differential equations with phase-space
contraction. )

Ruelle and Takens (1971) conjectured that small non-
linearities would destroy triply periodic motions. They
therefore reasoned that, as the Reynolds number of a
fluid flow is increased, the sequence in Fig. 23(b) ought
to occur. In particular, they concluded that the last
step, (doubly periodic motion)-(strange attractor), is
quite likely, since doubly periodic motions cannot bi-
furcate to triply periodic motions if the latter are un-
stable. Although the reasoning leading to their con-
clusion that the onset of turbulence may be associ.ated
with a strange. attractor is indirect, this paper and that
of I orenz are the first to point out the possible rele-
vance of strange attractors in a physical context. Fur-
thermore, their picture of turbulence onset is a funda-
menta. l departure from that advocated by Landau (1941)
(cf. also Landau and Lifshitz, 1959). Landau argued
that turbulence in fluid flow may be viewed as a hier-
archy of instabilities. As the Reynolds number, A, is
increased from zero, the basic state becomes unstable
to a mode of frequency ~, which saturates in a nonlin-
ear periodic state for which dependent variables can be
written in the form Q, g, exp( —il~, t); as A is further
increased, another instability appears at w, and the
saturated state becomes doubly periodic, Q,
x exp( —ilu, t —imcu, t); further increase of R leads to the
successive appearance of more and more discrete fre-
quencies so that doubly periodic flow (~„~,) trans-
forms to triply periodic, then to quadruply periodic,
etc. Thus, as A is increased, more and more fre-
quencies are present, and the flow pattern becomes
more and more complicated. Thus in this model the
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FIG. 23. Two possible routes to a
strange attractor.
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.Fourier spectrum is always discrete and approximates
a continuum only in the case where a large number of
discrete frequencies are present. Furthermore, the
flow is never truly chaotic, since the time correlation
functions of multiply periodic functions do not tend to
zero for large argument. On the other hand, the ap-
pearance of a strange attractor (as, for example, by
the sequence of events in Fig. 23) can lead to turbulent
motions in a direct way. Recent experiments on the
onset of turbulence induced by various instabilities lend
support to the idea that turbulence onset may be due to
the appearance of a strange attractor (Swinney and
Gollub, 1978; Ahlers and Behringer, 1978; Fenster-
macher et ~/. , 1979; Walden and Donnelly, 1979;
Lashinsky, 1980; Donnelly et zl. , 1980; Moon and
Holmes, 1980).

%e now discuss some evidence that the sequence to
a strange attractor via a route something like that de-
picted in Fig. 23(b) can occur. To begin we note the
recent study by Curry (1978). ln this paper, the author
considers the same physical problem as that consid-
ered by I orenz, but includes a greater number of Fou-
rier spatial modes before truncating the series rep-
resentation of the dependent variables. The result is
a system of 14 coupled ordinary differential equations,
rather than the three studied by I orenz. The numeri-
cal results of Curry are somewhat different than those
of I orenz. In particular, he finds that chaotic time de-
pendence is preceded by doubly periodic motion on a
two-dimensional toroidal surface that is embedded in
the full 14-dimensional phase space. The existence of
the torus is found by using the surface of section tech-
nique: a surface of section x, =const was chosen (where
x, is one of the 14 variables), and another two of the
14 variables, which we denote by x, and x„were sin-
gled out. Every time the orbit crossed the surface of
section the x„x, coordinates of the crossing point were
plotted. Figure 24 shows a typical result for the case
where a doubly periodic orbit exists. As can be seen
from Fig. 24, the points lie on a closed curve. This is
the result to be expected for doubly periodic behavior,
since the intersection. of a torus with a plane (the sur-
face of section) is a closed curve. Related numerical
studies have been performed by Yahata (1978) and
Sherman and McLaughlin (1978).

Another relevant study is that of Curry and Yorke
(1978), who consider a simple two-dimensional map
that models the onset of chaos preceded by doubly peri-
odic motion. The mapping that they study is one which

may conveniently be represented as the result of two
successive transformations, the first in polar coordi-

I

nates

( p, 8) —[s ln(1 + p) „8+8O] (5.la)

and the second in rectangular coordinates

(x, y) —(x, y+x'), (5.1b)

-134
-l35-
-l36-

I I
~ ~~ ~

0
~ ~

0

~ ~

~ ~

-139 -,.;::
-l40 I

-375
I I

-37 I -367

FIG. 24. Orbit intersections with the surface of section, ob-
tained by Curry (1978).

where c ~ 0 and 8, ~ 0 are parameters to be chosen.
Note that for s & 1, the mapping p- s ln(1+ p) has two
fixed points, one of which is p= 0 and the other of which
(denoted by p, ) is the positive root of p, =s ln(l+ p, ).
For 1~ c&0, the only fixed point is p=0. Consider
first the iteration of the polar map, (p, 8)
-[s ln(1+ p), 8+8,], alone. For s&1, all points tend
asymptotically to the circle p= p, & 0. Furthermore, if
the rotation angle 8, is not 2~ times a rational number,
then the orbit fills up the entire circle p= p, . As c ap-
proaches one from above, p, -0, so that is may be con-
sidered that this map undergoes a bifurcation from a
stable fixed point to an attracting orbit on the circle p
=p ~

Thus the map (p, 8) —[s ln(1+ p), 8+ 8,] can be viewed
as modeling a surface of section for some differential
equation that undergoes a bifurcation of a stable peri-
odic orbit to a doubly periodic orbit on a torus (where
p= p, represents the intersection of this torus with the
surface of section and p= 0 represents the intersection
of the periodic orbit with the surface of section).

For c only slightly larger than one„p, «1, and the
map (x, y) —(x, y+x') is almost the identity map, since
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FIG. 25. The attractor for the map of Curry and Yorke with

e, =2 and ~=1.45.

the quadratic term, g', is comparatively small. Thus
if one considers the map resulting from the successive
application of the two above-mentioned transformations,
then for v. &l the map (x, y)-(x, y+x') introduces a non-
linearity that becomes stronger as c is increased.
Curry and Yorke have described a sequence of numeri-
cal studies of the attracting set for the composite map,
Eqs. (5.1), with 8, =2. At s= 1.01 a nearly circular loop
encircles the origin. As c increases, the loop distorts
and increases in size until c =1.28. For 1.39~m& 1.28
an attracting period three orbit is found. Immediately
after r. —= 1.3953, an apparently connected loop returns.
This apparent loop, however, actually has a compli-
cated structure and is, in fact, a strange attractor.

As c increases somewhat, the strange aspect of the
attractor becomes more apparent, as evidenced by
Fig. 25 for c =1.45. The bump containing the point P,
in Fig. 25 is mapped to P„ to P„ to P„.. . to P».
The cusplike structure at P, shows signs of being flat-
tened against the rest of the set. Each successive cusp
is more flattened and more elongated. Soon the cusps
are so flattened that they are no longer discernable.
This sequence, P, , is, however, infinite. Note, too,
that the successive elongation of the cusps represents
a stretching apart of two nearby points. As discussed
in Sec. III, such stretching should be expected to lead
to chaotic behavior, and this is in fact the case here.
Similar behavior has also been observed in a map
studied by Coullet et al. (1980).

The character of the strange attractor for the example
of Curry and Yorke appears to be that of a very coM-
plicated curve folded over on itself an infinite number
of times and with an infinite length. In this connection,
it may be of some interest to give a simple example of
an infinite length curve with Hausdorf dimension be-
tween one and two (Mandelbrot, 1977). Consider the
sequence of operations shown in Fig. 26. V7e start with
an equilateral triangle, divide each of the sides in

thirds, and erect smaller equilateral triangles on the
middle thirds on each side. The process is repeated
twice in the figure. Qn each application of the process
the length of the bounding curve increases by —,

'. In the
limit that the process is repeated an infinite number of
times, the length of the bounding curve approaches in-

FIG. 26. Illustration of the construction of a curve of dimen-
sion 1n4/ln3.

finity, although the curve remains in a bounded region
of the plane. Furthermore, it may be verified that the
Hausdorf dimension of this curve is In4/in3—= 1.26.

Vi. CONCLUSioNS

This subject matter is certain to receive much future
attention from researchers in the physical sciences and
in mathematics. It seems clear that there is a great
need for further work in order that the subject develop
to the point that theory can provide answers to many of
the most practical questions. For example, given a
system of equations, can one predict the occurrence of
a strange attractor? To what extent can properties of
the strange attractor such as its dimension, associated
distribution function, power spectra, and correlation
functions be predicted? %hat is the distribution func-
tion on a strange attractor and what is the most effi-
cient way to find it and characterize it~ Further work
w ill also certainly be done identifying physical systems
which exhibit chaotic motions associated with strange
attractors. The li.st of such systems (partially enum-
erated in the Introduction) is already impressive, and,
as it grows, it is to be expected that interest on the
part of physical scientists will also grow.
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