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Three scenarios leading to turbulence in theory and experiment are outlined. The respective mathematical
theories are explained and compared.
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I. INTRODUCTION

Every physicist is exposed early in his career to
solvable dynamical problems, for exa, mple, the har-
monic oscillator and the Kepler problem. One also
learns that a damped pendulum reaches its equilibrium
position, and one learns how to find the exponential
functions describing the approach to this equilibrium.
Quite soon, one becomes aware that not all dynamical
problems are explicitly solvable, even allowing for
solutions in terms of the more complicated transcen-
dental functions. This situation may occur for systems
with few degrees of freedom, (i.e., few dynamical
variables), and without external noise. In addition, it
is not res tr icted to Ham iltonian problems, but appears
as well for dynamical systems with internal friction,
called dissipative dynamical systems. The reason for
this difficulty is the fact that dynamical problems uith
regula& equations may have solutions Mhich behave
irregularly in time.

We would like to understand, in the absence of ex-
plicit solutions, more about the qualitative aspects of
these irregular solutions. There is no general clas-
sification of dynamical systems which is sufficiently
fine to account for all possible types of erratic behavior
of their solutions, and even such simple systems as a

forced pendulum with friction are exceedingly hard to
analyze. One would nevertheless like to find similari-
ties among, and predictions for, various dynamical
systems.

The aim here is to present an approach to the under-
standing of irregular (or nearly irregular) phenomena,
which has been relatively successful recently. ' To
avoid any misunderstanding, I must insist that this
approach does not reach any conclusions about such
matters as the beautiful turbulences on Jupiter or the
dynamics of the Niagara falls. ' Rather, by setting more
modest aims, I describe here examples of relatively
simple, but nevertheless aperiodic behavior, and put
them in perspective. In this view, systems exhibiting
this behavior are still sufficiently irregular to be
called turbulent, and in fact some of their aspects are
found in (irregular) convection of fluids. All forms of
aperiodicity (even very weak ones) are of interest, but
the words aperiodic, erratic, chaotic, and (weakly)
turbulent-mill be used interchangeably for any of these
forms.

The approach I describe ha, s its roots in the general
study of deterministic differential equations which are
supposed to model the physical (chemical, . . . ) system
under investigation (Smale, 1967). Throughout, we
shall suppose that the system depends on an external
controllable parameter and that for some value of the
parameter its dynamical behavior is welt. understood
(e.g. , the system could have only a stable equilibrium
state, or a, stationary solution). As the parameter is
changed from this value, the qualitative behavior of the
system may change, too. After a finite or infinite suc-
cession of such changes the system may present erratic
behavior in the sense that its time evolution may be
quite unpredictable on large time scales, or it may
show broad-band spectrum or may not be periodic any
more. Some systems may show features of a stochas-
tic process, ' although no external noise source is
present in the dynamical equations.

I I. DISSIPATIVE SYSTEMS AND THEIR ATTRACTQRS

In order to describe our main topic, we need an ade-
quate language for describing deterministic evolution
equations. Typical behavior will be described in terms
of the attractors of a system. The evolution equations,
for fixed value of the parameter, will be assumed

In a way, this approach can be viewed as a concretization of
some aspects of Tham s (1972) catastrophe theory.

For a discussion of "fully developed turbulence, " see, for &

example, Monin and Yaglom (1975).
3Good expository references about these aspects are Bowen

(1975) and Lanford (1978).
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644 Eckmann: Roads to turbulence in dissipative dynamical systems

throughout to be of one of two types, namely,

, x(i) =E(x(f)),

or

x„„=F(x„).

then the flow preserves volumes locally. On the other
hand, for systems with internal friction, called dis-
siPative systems, such as the last three examples in
Table I, the flow contracts volumes, i.e.,

or (equivalently)

where x =dx/dt.
We shall deal exclusively with dissipative systems,

and we start now with the description of their attrac-
tors. Assume there is a finite volume V in state space
(R ) such that if yH V then T'y =x(y, t) is in V for all
t&0. Since the flow T' decreases volumes, the sets
T'V decrease as t- ~ to a set

TABLE I. Dynamical systems and their phase-space coordin-
ates.

System ~ Interpretation of coordinates

Hamiltonian mechanics
Particle accelerators
Hydrodynamic s

Chemical reactions
Electrical circuits

Coordinates p, q in phase space
Deviations from ideal trajectory
Fourier modes of velocity field

(not position of molecules)
Concentrations
Currents, voltages

Some introductory references are Siegel and Moser (1976),
Hagedorn (1957), Foias and Temam (1979), Nicolis and Prigo-
gine (1977), and Brayton and Moser (1964).

Here x is a vector in R „m- 1 and each of its com-
ponents describes a "mode" or a coordinate. When F
will depend on a parameter, we shall denote it by p.

and write F„.Typical examples of dynamical systems
of the form of Eq. (1}are listed in Table I.

We shall describe later how Eq. (2) appears naturally
in applications; in any case, the simple dynamical
system (discrete iteration) which is defined by

x„„=f(x„),
where x„&R, I =0, 1,2, . . . and f: R - R is continuous,
often serves as a guiding tool (Collet and Eckmann,
1980). Here, one should think of n as the (discrete)
time.

It is well known that in Hamiltonian dynamics Liou-
ville's theorem asserts that the flow i- (xt) preserves
volumes in phase space. If we denote by x(y, i) the solu-
tion of Eq. (1}with initial condition x(y, i ='0) =y, and if

T~V
t&0

(of zero volume). Thus every solution curve starting
at some y E V approaches W as t-. We can al-
ternately say that if yK V$W then y is transient and the
curve T'y will for some sufficiently large t definitively
depart from y and converge to W. This is in sharp
contrast with the situation encountered in nondissipa-
tive closed systems, where almost all curves T'y
return infinitely often arbitrarily close to their initial
state y. We shall not discuss the question of transi-
ence, although this is an interesting subject. There-
fore we consider only systems which have attained
some sort of "internal equilibrium. " In other words,
we analyze the motion on S' or on parts of W, as-
suming the orbits which tend to 5" but are not in it
behave similarly to those in S', at least after a suf-
ficient lapse of time. These parts of W will be called
attxactors, and studying attractors only amounts to
neglecting transient behavior. . Before reading the
definition of attractors, it should be kept in mind that
there is no universal agreement about what the best
definition should be [see, for example, Newhouse
(1980b}, Shub (1980}, I anford (1981)].
Definition. An attractor for the flow T' is a compact
set X satisfying

(1) Ã is invariant under T'. T'X=X'.
(2) A' has a shrinking neighborhood, i.e., there is an

open neighborhood U of X, U DX such that T'UC U
for t&G and X = ~ „OT'U.
This definition excludes repel/ops —for example, an
isolated fixed point x, &'x =x, in whose neighborhood
there:is for every c &0 a y with ly —xl «, which es-
capes away from x, i.e., I T'y —xl grows (relatively}
la.rge. A repellor, x would be in W, but not in X. We
are not interested in repellors, since from an experi-
mental point of view only attractors can play a role.
Many points behave like the points on attractors, but
only few behave like a repellor; a repellor is a gen-
eralization of an unstable equilibrium point or of a
saddle point.

A good definition of an attractor needs another in-
gredient which generalizes the description of k separate
stable equilibria to k separate attractors. This is
achieved by the following requirement.

(8) The flow T' on K is recurrent and indecomPosa-
ble. Recurrent means T is nowhere transient on. X:
If U is an open set in V and if UA V&@, then there are
a, rbitrarily large values for t such that &'x&X ~ U
when x &XA U. Indecomposable means that X cannot
be split into two nontrivial closed invariant pieces.

In the simplest dynamical systems the situation
might be as shown in Fig. 1. There are two attractors,
xI and x„which are stable fixed point s. The re ba sins of
attraction are respectively the left and right sides of the
line L. The line L is attracted by x„which is not an
attractor, since it also has an unstable direction. It is
a saddle point. With our previous definitions,
W =(x, .x,.x,j.

If X is an attractor, its basin of attraction is defined
to be the set of initial points x such that T'x approaches
Xas t-~.
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Eckmann: Roads to turbulence in dissipative dynamical systems 645

turbulent, erratic, etc. , independently of whether or
not the attractor is strange.

(2) Even simple dynamical systems may have an
infinity of distinct attractors. As an example, it has
been shown [Newhouse, 1980a; see also Levi, to
appear] that the iterative scheme of Henon

xn &n+j.~ 1 +In ax n

FIG. 1. Phase portrait illustrating two stable (x~, x2) and one
unstable (g3) fixed point.

(a)
T IV T2V

It is now time to point out some misconceptions which
could arise from the simple picture of Fig. 1.

(1) Although T' contracts volumes, it need not eon
tract lengths. If we take snapshots of T' at t =0, 1,2,
say, we may have the picture shown in Fig. 2(a) but
could also get that of Fig. 2(b) or even that of Fig. 2(c).
In particular, even if all points in V converge to a
single attractor X, one still may find that points which
are arbitrarily close initially may get macroscopically
separated on the attractor after sufficiently large time
intervals. This property is called sensitive dependence
on initial conditions. It is not excluded for area-
contracting flows, i.e., itcan, and will, occur in dis-
sipative dynamical systems. An attractor exhibiting
this property will be called a strange attractor, Strange
attractors are neither periodic points nor periodic
orbits. Observe, however, that there exists a large
variety of attractors which are neither trivial (i.e.,
they are neither periodic orbits nor fixed points) and
which are not strange attractors. All of them seem to
present more or less pronounced chaotic features. We
shall call the motion on any nontrivial attractor weakly

has an infinity of attractors at some values of a near
1.15357 and & =0.3. The attractors correspond to
periodic points of higher and higher period, which may
be numerically indistinguishable from a strange at-
tractor. Incidentally, it is believed that for some val-
ues of a and b the above system does have a strange
attractor, but this has not been proved so far.4

(3) basins of attraction may be complicated, even if
the attractors are simple. A very old example' is the
following; Consider the map

n+1 n ~ 28

defined on C ((0}. This is the Newton algorithm for
finding the roots of ~' =1. It has three stable fixed
points z = 1, exp(i2n/3), exp(-i2ii/3), with domains of
attraction X)»&»5)~. One can show that the boundary
pOintS Of R„X)2,a, COineide. SO theSe three regiOnS
must be highly interlaced.

III. THE PROBLEM OF CLASSIFYING ATTRACTORS.
SCENAR IOS

In the spirit of the preceding discussion, one should
arrive at a description of the nontransient behavior of
dynamical systems by classifying their attractors and
the motion on them. This aim is clearly felt through-
out the literature on dynamical systems. One is, how-
ever, far from any complete classification of at-
tractors, or even from a canonical choice of adequate
classification criteria. What I present here is a
more modest approach which will lead to a description
of some nontrivial attractors, which have the additional
feature that they arise as modifications of t ivial at-
tractors as an externa/ parameter is cIianged. e Thus,
instead of considering a single problem, we deal with
a one-parameter family of problems:

(b)

{c)

Tl V

TiV

T V

T2V

x(t) =F„(x(t)), x(0) =y

x/+i F/J(xg) y xQ y

The parameter p, , in the list of Table I, can be thought
of as the strength of a driving force, the amount of
friction, the amount of chemicals added per time unit,
etc. It is assumed that p, stays fixed during the whole
duration of an experiment. We are interested in the
changes of the attractors as the parameter is varied.

FIG. 2. (a) Contraction of volume in phase space. (b) Con-
traction of volume in phase space, with stretching of length.
(c) Contraction of volume, stretching of length, and folding.

A partial answer is in Misiurewicz (1980}.
5I have heard this from F. Sergeraert.
This procedure has been advocated in Huelle and Takens

(1971).
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646 Eckmann: Roads to turbulence in dissipative dynamical systems

In general, the attractor changes smoothly for small
variations of the parameter. For example, a fixed
point may move a little bit as the parameter is varied,
or a stable limit cycle may change its shape and/or the
time needed to complete a cycle (see Fig. 3).

Sometimes, however, the topological nature of the
attractor may change as the parameter crosses a point

One calls this a bifurcation point. For example„
in Fig. 4 the stable fixed point at p, changes to a stable
limit cycle at p., (plus an unstable fixed point). Quite
often a bifurcation is prompted by the crossing of eigen-
values of the linearized flow at the fixed point (or
periodic orbit) through the unit circle when the parame-
ter passes through p~.

A first bifurcation may be followed by further bi-
furcations, and we may ask what happens when a cer-
tain sequence of bifurcations has been encountered.
In principle there is an infinity of further possibilities,
but, in some sense to be specified, not all of them are
equally probable. The more likely ones will be called
scenarios, and below we shall examine three prominent
scenarios which have had theoretical and experimental
success. One should hope that further relevant scenar-
ios will be found in the future.

We are now going to look at the nature of the pre-
diction which can be made with the help of scenarios,
since this may be a somewhat unfamiliar way of
reasoning. But it appears that this kind of argument
has the most promising chances of illuminating the
nature of chaotic behavior. The statement of a scenario
always takes the form "if. . . then. . . ,

" i.e., if certain
things happen to the attractor as the parameter is var-
ied, then certain other things are likely to happen as
the parameter is varied further. The mathematical
meaning of "likely" may depend on the scenario and
will be described below for each of the scenarios. But
what does likely mean in a physical context? I do not
intend to go to any philosophical depth but, rather, take
a pragmatic stand. (I) One never knows exactly which
equation (i.e. , which F) is relevant for the description
of a given physical system. (2) When an experiment is
repeated, the equations may have slightly changed (e.g. ,
the gravitational effects change on the earth by the mo-
tion of the moon). (3) The equation under investigation
is one among several, a11 of which are very close to
each other. (4) If among these there are many which
satisfy the conclusions of the scenario, then we will
say that if we perform an actual experiment, it will be
probable that the conclusions of the scenario apply.

In general, a scenario deals with the description of a
few attractors. On the other hand, a given dynamical
system may have many attractors. Therefore, several
scenarios may evolve concurrently in different regions
ofphase space. There is thus no contradiction if
several scenarios occur in a given physical system,
depending on how the initial state of the system is pre-

FIG. 4. Phase portraits illustrating Hopf bifurcation.

pared. In addition, the relevant parameter ranges may
overlap, and while the basins of attraction for different
scenarios must be disjoint, they may be interlaced.

It is implicit in the preceding discussion that a sce-
nario does not describe its domain of applicability.
We have already stated that a scenario consists of an
"if"part and a "then" part, which should be a state-
ment that something is likely to happen. But there is
no attempt being made to say how probable the "if"
part is; such statements must be found by other,
maybe more specific, theories. Therefore, if the
hypotheses of a scenario do not apply, nothing is falsi-
fied and there is no contradiction, but no prediction is
being made. Finally it should be stressed that while
scenarios intend to describe roads to turbulence, no
claim is made that this is the only way to find turbu-
lence. Turbulence also occurs elsewhere, e.g. , in
the Niagara falls.

I et us recapitulate the main advantages and handicaps
of the procedure.

(I ) The turbulence described in the scenarios which
have been found so far is a simple form of temporal
aperiodicity, whose appearance is well under control.
It has not been possible, so far, to find scenarios
which lead to the rich spatiotemporal structure of fully
developed turbulence, but nothing excludes in principle
finding such scenarios.

(2) The theory is completely general, but it cannot
describe its domain of applicability.

(3) The main field of study for scena, rios is deter-
ministic evolution equations, leading to stochastic
behavior, whose occurrence does not need any external
noise source, Any 'external noise should be thought of
as an additional complication 7

The description of scenarios will be uniform, so that
differences and similar'ities may appear more clearly.
After a mathematical desmiPtion, the scenario will be
described in more simple-minded terms, followed by
inte~p~etation, experimental evidence, and a short
description of the influence of external noise. Since
there seems to be a general interest in such externa1.
noise, a final section will be devoted to a summary of
the known results for the various scenarios. Table II
at the end will summarize the results.

IV. THE RUELLE-TAKENS-NEWHOUSE SCENARIO

A. Description

This scenario is the oMest one, if we disregard the
Landau scenario (see below for a, discussion of why this

FIG. 3. Phase portraits illustrating stable limit cycles.
~For other formulations of this point of view, see Lanford

(1981), Ruelle (1980), or Lorenz (1963).
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TABLE II. Summary of the three scenarios discussed in this paper.

SCE,NAR lQ Rue I le —Tokens- Newhouse Fe i genbaum Pomeou-Monne ville

Typical bi furcotions Hopf Pitchfork ( inverse) Saddle-node

Bifurcation diogrom(s = stoble,
u = unstable).

Eigenvalues of lineorizotion in

complex plane as p. is varied

Main phenomenon After 3 bifurcations strange at-
tractor probable

infinite cascode of period dou- intermittent transition to chaos.
-I l 2

bl ings with universal'scaling of Pa- Laminar Phase lasts ~(P.-Pc)
-I

rometer values p, -p (4-6692)

Measurement Power s pectr um, corre lot i on &ower spectrum subharmonics

l 3.5 db below preceding level

Real-time measurements

Small noise no influence high periods disappear (noise lev-

el must go down by 6.62 to see

one more p e r i od d o ub ling )

t ime of la minority scales as

(p —p. ) &(o-&(p,—p.c) ) for
—

l /2 3/4

noise of standord deviotion o

is an inadequate scenario) (Ruelle and Takens, 1971).
In abstract mathematical terms, the situation is as

follows.

Theorem (Newhouse, Ruelle, Takens, 1978).' I et v
be a constant vector field on the torus &" = R"/z". If
n - &, every C' neighborhood of v contains a vector
field v' with a strange Axiom A. attractor. If n ~ 4, zvs

may take C" instead of C2.

For the definition of Axiom A vector fields, see Smale
(198~).

crossing the unit circle). This means that the steady
state (a constant flow or an equilibrium) becomes oscil-
latory; we may say that some mode has been de-
stabilized. Assume that this happens three times in
succession, and that the three newly created modes
are essentially independent [see Ruelle and Takens
(19'l1) for details]. Thus the '"if" part of the scenario
is as shown in Fig. 5. Under all these assumptions,
the scenario of Ruelle-Takens asserts: A. st+ange
attractor may occur. Its occurrence is "likely" in the
following sense.

B. Assumptions

It is now easy to describe an "if" for a scenario which
implies the conditions of the theorem and hence its con-

clusionn.

Assume a, system x = I"„(x)has a steady-state solution x„
for p & p, Assume further that this steady-state solu-
tion loses its stability through a IIopf bifurcation (Ruelle
and Takens, 19'71) (i.e. , a pair of complex eigenvalues
of

C. interpretation

In the space of all differential equations, some equa-
tions have strange attractors; others have none. Those
which do form a. set which contains a subset which is
open in the C' topology. The closure of this open set
contains the constant vector fields on the torus T'.

g~ (e)
V

X~ X= Xp I c~+~Pc +e ~+~+c

crosses the imaginary axis, or exp@,, has eigenvalues

BHuelle and Takens's original work (1971) needed four dimen-
sions. This was reduced to three by using an idea of Plykin

T = 3-dimensional torus3
II

+c 'e
FIG. 5. Three critical values of the parameter p~, p~, p~", and
the associated motion in phase space.
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648 Eckmann: Roads to turbulence in dissipative dynamical systems

If a property of differential equations holds in an open
set, then if we vary the coefficients of the differential
equations sufficiently little, the property continues to
hold. Thus the strangeness of the attractor is stable
under small perturbations of the dynamical system; in
other words, it is not exceptional. We can compare
this with the Landau scenario (Landau and Lifshitz,
1S59, III, Sec. 103), which assumes that the flow on the
three-torus (and in fact on all n-tori which appear after
further bifurcations) is the constant velocity flow. This
is a much more stringent requirement than the one of
the Ruelle- Takens scenario. While the latter is ful-
filled on an open set of vector fields, the former does
not hold on any open set of vector fields and is not even
generic, i.e. , it does not hold on any countable inter-
section of dense open sets (called a residual set). But
genericity is perhaps a minimal way of saying that
something is likely, and thus the Landau scenario is
not likely. (In particular, if two properties are generic,
they hold simultaneously on a residual set, and re-
sidual sets are more or less the weakest possibility
for this simultaneity property to hold. )

Returning to the Ruelle-Takens scenario, we add a
word of caution. While it is true that the set of vector
fields with strange attractor is open near the constant
vector fields, this does not mean that this set is large
in the measure theoretic sense. We can visualize the
situation in the space, of vector fields near the constant
vector fields as in Fig. 6.

D. Experimental evidence and its measurement

In order to describe how the appearance of the sce-
nario manifests itself in measurements and to show the
measurable consequences of the presence of strange
attractor, let us reformulate the scenario: If a system
undergoes three Hojf bifurcations, starting from a
stationary solution, as a parameter is varied, then
it is likely that the system possesses a strange at-
tractor with sensitivity to initial conditions after the
third bifurcation.

The pouer spect um of such a system will exhibit
one, then two, and possibly three independent basic
frequencies. When the third frequency is about to ap-
pear, simultaneously some broad-band noise will
appear if there is a strange attractor. This we inter-
pret as chaotic, turbulent evolution of the system.
Experiments have been performed on the formation of
Taylor vortices between rotating cylinders and the
Hayleigh-Benard convection (see Figs. 7 and 8; for a re-

10'-
Couette flow

10'—

10'-

10'-

10'—

10'—

10'-

frequency

FIG. 7. Power spectrum of velocity in rotating cylinders
driven at three different speeds.

convection

10 '- 2fi

10 '-

10 '-

view, from which these figures are taken, see Swinney and
Gollub, 1S78). They can be interpreted in the sense
of the Ruelle- Takens-Newhouse scenario. It should
also be stressed that measurements of time correla-

vector fields with non-
strange behavior 10 '-

open sets
of vector

fields with
strange at

y of a small
hood of v

10'—

10 '-

a cons ta nt vector field v
frequency I

0.10 0.15

FIG. 6. Measure theoretic situation for the Buelle-Yakens-
Newhouse scenario.

FIG. 8. Power spectrum of heat transport at different heating
in H.ayleigh-Benard convection.
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Eckmann: Roads to turbulence in dissipative dynamical systems

tions (measures of k-tuples x„x„„.. . , x„„,as a
function of t) are very useful indicators about flows in
general (Takens, 1980; Roux et a/. , 1980), and allow
one in some sense to reconstruct the dynamical sys-
tem.

E. The influence of noise

The Ruelle-Takens scenario is not destroyed by the
addition of small external noise to the evolution equa-
tions. This result, which is somewhat counterintuitive,
will be explained in more detail in the final section.
In effect, the chaos of the scenario is so strong that
order cannot be accidentally established by small noise
terms, much like a very attracting fixed. point is
locally not much altered by noise, and globally ther e is
at most a small probability to change stochastically
from one basin of attraction to another (Kifer, 1974;
Ventsel and Freidlin, 19'70).

V. THE FEIGENBAUM SCENARIO

A. Description

We start with the description of a general framework.
Assume we are in the presence of a one-parameter
family of vector fields v„in R (we conjecture that the
results extend to the case m =~), where p. is the pa-
rameter. Assume each u& has a periodic orbit, and
assume there is a piece of hyperplane of dimension
m —1, transversal to this periodic orbit, for which the
Poincare map P„canbe defined (Fig. 9). The scenario
will make predictions about these Poincare maps and
hence for the, corresponding flow. 9

Now fix m. Two objects, 4 and W, whose existence
is asserted by a mathematical theory, will be of funda-
mental importance in describing the scenario, namely,
there is a neighborhood D of [0, 1JX (0) ' in C ' and
on this neighborhood an analytic function 4
C '-C ' whose restriction to R ' is real. In the
space of analytic functions on D (with, for example,
the supnorm) there is an open disk W of codimension
one, containing 4 . The existence of the two objects

and ~ is assured through an extension of Feigen-
baum's original theory (Feigenbaum, 1978, . 19'T9a)
(m =2, one-dimensional maps) by Collet, Eckmann,
and Lanford (1980) and Collet, Eckmann, and Koch
(1981).

periodic orbit for v+

B. Assumptions

Tjze scenario assumes that I'„ex~ends ~o an anaty~ic
function on D and that the curve p. -P„transversally
crosses W near 4

Under these hypotheses one can assert
(1) The family P„hasan infinite sequence of period

doubling bifurcations of stable periodic orbits at pa-
rameter values p. , (period 1-2), p, (period 2-4}, . . . ,
p, ,-„(period 2'-2'") (the sequence might only start
at some high j).

(2) lim, „p,= p. exists.
(3} At p = p, , P„hasan aperiodic attractor (a stable

periodic orbit of "period 2""). The action on the at-
tractor is ergodic, but not mixing (in particular, there
is no sensitive dependence on initial conditions).

(4} There is a universal number 6 =4.66920. . . such
that

1
lim —. logl p, —p I

= —logb .
j~ oo

One even has

[ -const' ' as j-~.

C. Remarks

(1) The bifurcations of the orbit structure of P„are
pitchfork bifurcations, i.e., a stable fixed point loses
its stability and gives rise to a stable periodic orbit as
the pa, rameter is changed. This corresponds to a cross-
ing of one eigenvalue of the tangent map DI'„through
—1 (Fig. 10).

(2) One can show that any suitable property (such as
bifurcation) which can be described by a coordinate
independent codimension 1 surface in the space of func-
tions on D will double its spatial structure in phase
space in the same way as the periodic orbits, i.e.

„

it
will split in 2, 4, 8, . . . pieces. Typically, such sur-
faces are given by a single functional relation, e.g. ,
fixing the value of a derivative at a fixed point.

{3) A similar scenario exists for area-preserving
(=Hamiltonian) maps of the plane to itself, but with
8.721. . . as the universal constant instead of
6 =4.66920. . . (Collet, Eckmann, and Koch, 1980;
Greene et al. , 1981).

(4) The scenario can be somewhat extended under
the assumption of very strong friction. This has the
effect of making the situation very similar to the case
of maps of the interval to itself. Then one can show
that if the system has transitions from periods 1 to 2
and 2 to 4 at values i', and i', „respectively, . a stable
period 3 with a large basin of attraction near

FIG. 9. Phase portrait illustrating Poincare section of v„.
~These ideas were first explained in Kckmann (1980). See

also Collet and Eckmann (1980). FIG. 10. Example of a pitchfork bifurcation for a flow.
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can be expected.
(5) After the cascade of period doublings, one expects

beyond the accumulation point JU.„aninverse cascade of
noisy periods.

The physical interpretation of the Feigenbaum sce-
nario can be brought to a more appealing form than for
the Buelle- Takens scenario, because the statement
deals with all curves which cross W transversally.
On the other hand, it is only a statement about a very
small parameter range, and point (B.4) describes no-
thing more than a critical index.

D. Interpretation

In an experiment, if one observes subharmonic bi-
furcations at p„p„then, according to the scenario,
it is very probable for a further bifurcation to occur
near p ~

= p, , —(p, —p, )/5, where 5 =4.66920. . .
addition, if one has seen three bifurcations, a fourth
bifurcation becomes more probable than a third after
only two„etc. At the accumulation point, one will
observe aperiodic behavior, but no broad-band spec-
trum.

F. Measorement

In all numerical examples, the bifureations are found
by a direct analysis of the orbits and of their stability.
The experiments on liquid helium produce power spec-
tra. Feigenbaum has given a nice prediction of how the
power spectrum evolves as a function of the parameter
(see Fig. 11). At each successive bifurcation a new
frequency is born. The mean of the squares of the new
amplitudes is then expected to rise until it stops about
13.5 db below the level of its predecessors (Feigen-
baum, 1979b, 1980; Nauenberg and Budnick, 1981;
Collet, Eckmann, and Thomas, 1981).

The measured power spectrum of I ibchaber and

log Arnpl db
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I

-IO

-20

-30

ii

I

0.8
I I

0.0 0.2 0.6 i.Q
frequency

FIG. 11. Numerical prediction of the shape of the power spec-
trum.

I

Q 4

E. Experimental evidence

This scenario is extremely well tested on numerical
and physical grounds. The period doublings have by now
been observed ln most current low dimensional dy-
namical systems (Henon map, Lorenz equations, forced
oscillator with friction, etc). Experiments with liquid
helium have confirmed the predictions.

Maurer (1980)'0 for the heat transport by convection
of liquid helium, heated from below, shows a sequence
of period doubling bifurcations. The power goes down

by about 10 db per doubling, but the apparent dis-
crepancy with the prediction of the scenario may be
ascribed to not yet having reached the asymptotic
regime (Fig. 12). The prediction (5) above has recently
been seen by Libchaber (1981) [Fig. 12(c)].

G. The influence of noise {Crutchfield et al. , 1980)
Again we postpone a detailed description of the in-

fluence of noise. Since the structure of the periodic
orbit must acquire finer and finer length scales as
the parameter approaches p, it is clear that even
very small noise will eventually play a role. There
exist estimates on the relation between the noise level
and the maximal period which can be observed. This
is of course related to the power spectrum described
above.

VI. THE POIVIEAU-MANNEVILLE SCENARIO

A. Description

This scenario (Pomeau and Manneville, 1980;
Manneville and Pomeau, 1980) has been —correctly—
termed transition to turbulence thxough interrnit-
tency. Its mathematical status is somewhat less satis-
factory than that of the two other scenarios presented
here. This is because the parameter region the sce-
nario intends to describe contains an infinity of (very
long) stable periods, and because there is no mention
as to when the "turbulent" regime is reached or what
the exact nature of this turbulence is. We nevertheless
examine it here because of its esthetic and conceptual
beauty.

While the two other scenarios have been associated
with Hopf bifurcations (Ruelle- Takens) and pitchfork
bifurcations (Feigenbaum), this one is associated with
a "saddle node bifurcation, " i.e., the collision of a
stable and an unstable fixed point which then both
disappear (into complex fixed points).

The general idea is best explained for the simple
example of a one-parameter family of iterated maps
on the unit interval, x„„=f„(x„).We take f„(x)=1
—px', which for p, H [0, 2] maps [-1,1] into itself.
The function f& f„of&of&can be shown——to have a saddle
node for p. = ~~. For p &1.75, f~& has a stable periodic
orbit of period three, and an unstable one nearby. The
two collide at p =1.75, and both have then eigenvalue 1.
See Fig. 13.

For p, slightly below 1.75, the local picture near
x =0 is shown in Fig. 14. It can be shomn that if
p. —1.75 = 6 (c) then a typical orbit will need O(c '+)
iterations to cross a fixed small x interval around
x-0. As long as the orbit is in this small interval,
an observer will have the impression of seeing a
periodic orbit of period three. Once one has left the
small interval, the iterations of the map will look
rather like those of a chaotic map [a consequence of a

See Collet and Eckmann (1980), pp. 39 and 42 for a list of
tests. In particular, beautiful experiments on liquid helium
were performed by Libchaber and Maurer (1980).
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and see that the nature of chaotic systems may be
totally insensitive to small external noise. The sys-
tems most sensitive to noise seem to be deterministic
systems near transition (bifurcation) points.

This insensitivity to noise is surprising and at first
sight counterintuitive. It has been discovered by
Kifer (1974), whose work is an extension of a paper
by Ventsei and Freidlin (1970). Kifer's theorem states
that for a dynamical system with an Axiom A attractor,
which has an invariant measure v, the following is true:
Given any reasonable small noise, going to zero with 0,
consider the corresponding invariant measure v .
[Under suitable assumptions, the measures v and v
are given, for discrete mappings f as follows:

FIG. 15. Graph describing f"„{0)as a function of g in the neigh-
borhood of p, = 1.75, and indicating the existence of an inter-
mittent turbulence.

D. Experimental evidence

Pomeau and Manneville based their work on observa-
tions for the Lorenz system. . Intermittent transitions
to turbulence ean be seen in many physical experiments.
The only ones which seem to agree with the scenario
described above are those of Maurer and Libchaber
(1980), Berge et al. (1980), and Pomeau et al. (1981).
They exhibit intermittent transition to aperiodic be-
havior, but more work needs to be done to show that
these are really instances of the scenario described
above.

E. IVleasurement

We have already discussed the difficulties of detecting
the scenario. We add here only that one should not look
at power spectra in this case, but rather at real-time
measurements.

F. The influence of noise

As the parameter value at which the two fixed points
collide is a critical point, the influence of noise is
relevant. This has been first exhibited by Mayer-
Kress and Haken (1981). A more detailed analysis of
the tunneling through the region of contact shows that
certain scaling relations hold between the noise level
and the distance from the critical parameter value
(Eckmann et al. , 1981).

VII. THE INFLUENCE OF EXTERNAL NOISE ON

SCENAB IOS

It seems to be a widespread opinion that external
noise is relevant

(a) for the appearance of (even weak) turbulence and
chaotic behavior and

(b) for the form, amplitude, and spectrum of the
turbulence, once it has appeared.

The foregoing discussion of attractors and of the sce-
narios should have shown that this opinion is wrong
for case (a) ergodic behavior is po—ssible, and quite
common, for dynamical equations without e'xternal
noise. In this section, we shall examine case (b)

r n -g

dv(x)h(x) = lim —g h(f"(y))
n~~ n 0=0

J

for Lebesque-almost every y, and every continuous h. ]
The density of the measure v, given a noise with transi-
tion probability p, (x, y) [and an iteration scheme
x„+,——f(x„)+( (x„),where $, is a random variable with
density p (x„,. )] satisfies

v, (x) = .(f (y), x f(y))-v.(y)dy.

Theorem (Kifer, 19'74). v concierges zoeahly to v as
cr- 0 (i.e. , all exPectation values of bounded observables
converge).

This tells us, then, that if the noise is sufficiently
small, the corresponding probability distributions (v
and v ) are as close to each other in the weak-~
topology as we wish. This result is astonishing, be-
cause any nontrivial (strange) Axioms attractor is full
of hyperbolic points, and one could think that a small
random deviation might get amplified away from any
deterministic path. But the celebrated "shadowing
lemma" leads to a different conclusion. With high
probability, the sample paths of the problem with ex-
ternal noise follow sonze orbit of the deterministic
problem arbitrarily closely. This bounds v by v

(up to small errors). On the other hand, the central
limit theorem shows that v is bounded by v; For
every deterministic orbit, there are many sample
paths which follow it rather closely.

We next discuss the influence of noise on the Feigen-
baum scenario. It is known (Collet, Eckmann, and
I anford, 1980; Collet e& al. , 1981; Feigenbaum, 1978,
19'79a) that the smallest scales of the period 2" are of
approximate size c)(X'"), with & =.3995. . (another
universal constant). Thus it is obvious that even small
noise can wipe out the finest structures of the orbit,
and hence the orbit itself, provided n is sufficiently
large. The question then is how large the noise may
be if we want to see a period 2". Crutchfield e~ «. ,
(1980) give a heuristic a, rgument with the following
conclusion. Denote, for each k, by (~ the independent
random variables with mean zero and density p. Let
f„bea one-parameter family of maps of the interval,
with p so chosen that the accumulation of period
doublings i's at p = p =0. Consider the stochastic
iteration equation

x"i =f.(x.) + 4.
Rev. Mod. Phys. , Vol. 53, No. 4, Part t, October 1981
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and define v„~, the corresponding invariant density.
Then one has the approximate identity

X v„~,, (&x) -v~, (x),

with ~ =0.39953. . . , 5 =4.66920. . . , z =6.619.. . . In
words, in order to see twice the period, the noise
must have a variance about z times smaller. [Note
that this is very close to the ratio of the amplitudes
between a frequency and its subharmonic, which has
been estimated by Feigenbaum (1979b) to be about
8.8O. . . .j

In the Pomeau-Manneville scenario, the influence of
noise can be modeled as follows (Eckmann ef al. , 1981).
In the "laminar" region, i.e., when the iteration steps
are small, one can model the iteration scheme

with („independent stochastic variables, by the
stochastic differential equation

dx =(x'+s')dt+v'd(u,

where u is white noise, and &' =c, &' =&Exp(5 )
estimated time to cross the laminar region is then easi-
ly seen to be a stopping time for the differential equa-
tion, and an analysis of its solution shows that the
fraction of time spent in the laminar region scales
approximately as s ' T(o'/c'4), where T is a universal
function.

See Table II for a summary of these three scenarios.
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