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This article is a summary of what is know rigorously about Thomas-Fermi (TF) theory with and without the
Dirac and von Weizsacker corrections. It is also shown that TF theory agrees asymptotically, in a certain
sense, with nonrelativistic quantum theory as the nuclear charge z tends to infinity. The von Weizsacker
correction is shown to correct certain undesirable features of TF theory and to yield a theory in much better
agreement with what is believed (but as yet unproved) to be the structure of real atoms. Many open problems
in the theory are presented.
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Physics held at Erice in June, 1980, edited by G. Velo and A. S.
Wightman, and published by Plenum Corporation. The pres-
ent Bev. Mod. Phys. version contains corrections of some
errors in the Plenum version.

I. INTRODUCTION

In recent years some of the properties of the Thomas-
Fermi (TF) and related theories for the ground states
of nonrelativistic atoms and molecules with fixed nuclei
have been established in a mathematically rigorous way.
The aim of these notes is to summarize that work to
date —at least as far as the author's knowledge of the
subject goes. In addition, some open problems in the
subject will be stated.

TF theory was invented independently by Thomas
(1927) and Fermi (1927). The exchange correction was
introduced by Dirac (1930), and the gradient correction
to the kinetic energy by von Weizsacker (1935).

No attempt will be made to summarize the voluminous
subject of TF theory. Such a summary would have to in-
clude many varied applications, many formulations of
related theories (e.g. , relativistic corrections to TF
theory, nonzero temperature TF theory) and reams of
data and computations. Some reviews exist (March,
1957; Gombks, 1949; Torrens, 1972), but they are
either not complete or not up to date.

We shall concentrate on nonrelativistic TF and re-
lated theories for the ground state with the following
goals in mind:

(1) The definition of TF and related theories (i.e. , the
von Weizsacker and Dirac corrections). The main
question here is whether the theories are well defined
mathematically and whether the equations to which they
give rise have (unique) solutions.

(2) Properties of TF and related theories. It turns
out that, unlike the correct Schrodinger, quantum (Q)
theory, the TF and related theories have many inter-
esting physical properties that can be deduced without
computation. Some of these properties are physically
realistic and some are not, e.g. , Teller's no-binding
theorem. As will be seen, however, the no-binding re-
sult is natural and correct if TF theory is placed in its
correct physical context as a large-Z (= nuclear-charge)
theory.

(3) The relation of TF theory to Q theory. The main
result will be that TF theory is exact in the large-Z
(nuclea. r- charge) limit. For this reason, TF theory
should be taken seriously as one of the cornerstones of
atomic physics. The only other regime in which it is
possible to make simple, exact statements is the one-
electron hydrogenic atom. The natural open question is
to find the leading correction, in Z, beyond TF theory.
This will lead to a discussion of the Scott correction
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(Scott, 1952) which, while it is very plausible, has not
yet been proved. It turns out that Thomas-Fermi —von
Weizsacker (TFW) theory has precisely the properties
that Scott predicts for Q theory. Moreover, TFW
theory remedies some defects of TF theory: It displays
atomic binding, it gives exponential falloff of the density
at large distances, it yields a finite density at the nu-
cleus, and negative ions are sta.ble (i.e. , bound).

The work reported here originated in articles by Lieb
and Simon, 1973 and 1977 (hereafter LS). Subsequently,
the ideas were developed by, and in collaboration with,
Benguria and Brezis. I am deeply indebted to these co-
workers.

Since many. unsolved problems remain, these notes
are more in the nature of a progress report than a text-
book, The proofs of many theorems are sketchy, or
even absent, but it. is hoped that the interested reader
can fill in the details with the help of the references.
Unless clearly stated otherwise, however, everything
presented here is meant to be rigorous.

made:

x, [x- R, [-'-f dm(y)/x-R, +y/-', (2.3)

where

C(g,f)= ffg(x)f(y)lx —yl dxdy.

(2.5)

All integrals are three dimensional.
y is an arbitrary positive constant, but to establish

contact with Q theory we must choose

x;x, ~R; —R~~
' —f dm(y)d, .m;(m)~y —m —R;+R,

~

(2.4)
where m, is a positive measure (not necessarily
spherically symmetric) of mass z;.

The functional for TF theory is

g(p)=-'r J p(x)"'« J(-p) x(p) xd+x(C, p)p+(y,

I I. THOlVIAS-F ERIVII THEORY
&, = (6~')'»e '(2m''»)-', (2.6)

The theories will be stated in this section purely as
mathematical problems. Their physical motivation from
Q theory will be explained in Sec. V. In order to present
the basic ideas as clearly as possible, only TF theory
will be treated in this section; the variants will be treated
in Secs. VI, VII and VIII. However, the basic definitions
of all the theories will be given in Sec. II.A, and there
will be some mention of Thomas-Fermi-Dirac (TFD)
theory in Sec. II.B and Sec. III.

A. The definitions of Thomas-Fermi and related theories

where h=h/2&, h =Planck's constant, and m is the elec-
tron mass. q is the number of spin states (=2 for elec-
trons).

U appears in 8 as a constant, p-independent term. It
is unimportant for the problem of minimizing 8 with re-
spect to p. Nevertheless U will be very important when
we 'consider how the minimum depends on the R;, e.g. ,
in the no-binding theorem (Sec. III.C).

For the Thomas-Fermi-Dira, c (TFD) theory

g (p) g(p) —, C, J=p(x) ) dx, (2.7)

All the theories we shall be concerned with start with
some energy functional S(p), where p is a, non-negative
function on three-space, 83. p is called a density and
physically is supposed to be the electron density in an
atom or molecule.

The functionals will involve the following function V
and constant U:

with C, a positive constant. In the original theory
(Dirac, 1930), the value C, = (6/vq)'y 3 was used for rea-
sons which will be explained in Sec. VI. This value is
not sacrosanct, however, and it is best to leave C, as
an adjustable constant.

The Thomas —Fermi-von Weizsacker theory (TFW) is
given by (von Weizsacker, 1935)

V(x) = z,. ~

x —Z,.
~

-', (2.1) g""(p) = g(p)+ P f (& ('p)(x)] 'dx, (2.8)

U= z;z~ R; —R;
f&f(g+ k

(2.2)

V(x) is the electrostatic potential of k nuclei of charges
(in units in which the electron charge e = —1) z &, . . .zR

& 0, and located at R&, . . . , B~(= O'. The B; are distinct.
The positivity of the z; is important for many of the
theorems; while TF theory makes mathematical sense
when some z; & 0, it has not been investigated very much
in that case. U is the repulsive electrostatic energy of
the nuclei.

TF-type theories can, of course, be defined for poten-
tials that are not Cou1.ombic, but many of the interesting
properties presented here rely on potential theory and
hence mill not hold for non-Coulombic potentials. This
is discussed in Sec. III. There is, however, one gen-
eralization of Eqs. (2.1) and (2.2) that can be made with-
out spoiling the theory, namely, that the nuclei can be
"smeared out, " i.e. , the following replacements can be

+~ p'~' x 'dx. (2.9)

The first question to face is the following.

B. Domain of definition of the energy functional

Since p is supposed to be the electron density we re-
quire p(x) ~ 0 and

p (x)dx = A = electron number (2.10)

with 5=AS '/2m, and A an adjustable constant. Original-
ly, A was taken to be unity, but in Sec. VII.D it will be
seen that A =0.186 is optimum from one point of view.

The most complicated, and least analyzed, case is the
combination of all three (Sec. VIII):
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is finite. In addition we require p e L in order that
the first term in g(p) (called the kinetic energy term)
be finite. X is not necessarily an integer.

Definition. A function f is said to be in L~ if

[f ~f( ) ~'d ]' '-=llfll, is fin~«, 1 ~p&~. Ilfll
=ess sup}f (x)

~
(see Theorem 3.12).

If fa L~ 0 L' with P cq then fe L ' for all P & t & q.
II f II, - II f II ~~ IIf II', ", where Xp '+ (1 —x)q

' = t '

Proposition 2.1. If p (=LSI3(0 L' then all the terms in g
and g T"D are finite. If Jp ~ X then g(p) and gT"'D (p) are
bounded belou) by some constant C(A). Iurth'ermore,
for all X, g (p) & C & —~ for some fixed C.

Proof. The first part is an easy application of Young's
and Holder's inequalities. The second part requires a
slightly more refined estimate of the Coulomb energies
(cf. LS). ~
Remark. Although 8T~~ will be seen to be also bounded
below by a constant independent of X, neither 8T"'D nor
ST~0~ is so bounded. This fact leads to an amusing un-
physical consequence of the D theories which will be
mentioned later.

any c & 0. Equation (2.13) is a simple consequence of
the monotonicity of e(A) and E(X). (cf. LS). ~

Equation (2.13) has an important advantage over (2.11),
as Theorem 2.4 shows.

lim infg(p'"') ~ g(p) .
Since p'") —p weakly in L~I3 we have (by the Hahn-
Banach theorem, for example) that

(2.14)

Theorem 2.4. There exists a unique p that minimizes
g(p) on the set J p ~ X.

Note. Uniqueness means, of course, that p is deter-
mined only almost everywhere (a.e.).
Proof. (See LS.) Since g(p) is strictly convex, a mini-
mum, if there is one, must be unique. Let p'"' be a
minimizing sequence for g, namely g(p'"') —E(X) and

fp'"' ~ X. It is easy to see that f(p("))5~3 & c, where c
is some constant; this ln fact comes out of the simple
estimates used in the proof of Prop. 2.1. We should like
to extract a convergent subsequence from the given p'"'.
This cannot be done a priori in the strong topology, but
the Banach-Alaoglu theorem tells us that a L'~' weakly
convergent subsequence can be found; this will be de-
noted by p'"'. We should like to prove

A very important fact (which, incidentally, is not
true for Hartree- Fock theory) is the following.

lim inf p'"' '~'~ p"',
lim inf D(p '",p

"
) ~ D(p, p) .

(2.15)

(2.16)

C. Minimization of the energy functional

The central problem is to compute

& ()) = (n(I)i(p)
~ p c r '~' n L', I p = z}.(2.11)

e(X) =E(Z) —U. (2.12)

E(&) is the TF energy for a given electron number,
and e(X) is the electronic contribution to the energy.
The "inf" in Eq. (2.11) is important because, as we
shall see, the minimum is not always achieved, al-
though the inf always exists by Prop. 2.1.
Theorem 2.3. e(X) is convex, negative if X& 0, nonin
creasing and bounded belong. Puxthexmo~e,

p() ) = )n(
I 8

(pl
~
p p I.'&' n I', I p i}.

Proof. The first part follows from Prop. 2.2 together
with the observation that V(x) —0 as ~x ~- ~. This
means that if A. increases we can add some 6p arbitrar-
ily far from the origin so that g(p+ bp) —g(p) &s for

(2.13)

Proposition 2.2. p —g(p) i»«i«ly «n«x, i e. i

g(gp&+'(1 —g)p2) &gg (p&) + (1 —X)g (p2) for 0 &X & 1
and p&g p2.

Proof. p~ is strictly convex for p& 1. J Vp is linear in
p and hence convex. D(p, p) is strictly convex since the
Coulomb kernel ~x —y ~

is positive definite. S
Rema~k. 8TF~ is also strictly convex, but the func-
tionals 8 ~D and gT" ~ are not convex because of the
—fp ' term. However, g T" can be "convexified" in a
manner to be described in Sec. VI.

The term —f p'p requires slightly more delicate treat-
ment. Write ~x —R~ '=f(x)+g(x), wheref(x) = ~x —Rj
for }x—R

~

~ I and f {x)=0 otherwise. f (= I 5I2 and Jfp'"'
—ffp by weak convergence. On the other hand, g(= L3''
for all c & 0. p'"' is bounded in L5~3 and in L' (by A), so
it is bounded in all L 'with 1 &q ~

—,
' and therefore p'"'

—p weakly. in I 'as well as in L' '. Fix &z&0 and
let q be dual to 3+ s. Then fgp'"' —fgp This .proves
Eq. (2.14) which, since E(X) = lim infg(p '"') and E(X)
-.= g (p), implies that p is minimizingprovided we can show

f p. & X. This follows from the fact that if f p&X then
there is a bounded set A such that f p & X. If c( is the
characteristic function of A then e(= L'I' and X~ f o.p'"'
f o.'p by weak L'I' convergence.

Remap'. The proof of Theorem 2.4 can be considerably
shortened by using Mazur's (1933) theorem. p —g(p) is
obviously norm continuous and hence norm lower semi-
continuous. Mazur's theorem says that the convexity of
g(p) then automatically implies weak lower semicon-
tinuity since norm closed convex sets are automatically
weakly closed. The proof given above has the virtue of
an explicit demonstration of the weak lower semicon-
tinuity.
Aemaxk. The analogous proof in TFD theory will be
harder, since p'~ —p

' is not convex, monotone, or
positive; hence we cannot say that

lim inf p'"»t — p'"' !~ p I —p

However, in TFW theory a different strategy, using
Fatou's lemma, will be employed to deal with these
terms. The strategy also works for TFDW theory.
Thus the introduction of the W term (2.8) makes part of
the proof easier. It would be desirable to know how to

Rev. Mod. Phys. , Vol. 53, No. 4, Part I, October 1981



606 Elliott Lieb: Thomas-Fermi and related theories

I

I

I

I

electron
number

no minimizing jo

FIG. 1. "The electronic part" of the TF energy, E —U, is sho~n
schematically as a. function of the "electron number", jj.= fp
For X &A~ there is a unique p that minimizes the TF energy
g(p). For X &X there is no such p. In TF theory X,=Z=+.jiiz,
=total nuclear charge. E —U is constant for X~X,. These
features are different for TF, TFD, and TFDW theories (see
text).

use Fatou's lemma (which does not ~eq~ire convexity) in
the. TF and TFD proofs.

Since E(X) is nonincrea. sing, bounded, and convex (and
hence continuous) we can make the following definition in
TF theory.

Definition. )j.„ the critical )j., is the largest ij. with the
property that for all ij' & A., E(A.') & E()~). Equivalently,
if E(~)=lim„„E(X) then 1,= inf{X|E(X)=E(~)}. In prin-
ciple X, could be + ~, but this will not be the case. In
TFD and TFDW theories E()j) is not bounded and the
above definition has 'to be generalized. X, is the largest
X with the property that 2E(X) & E(X —c) + E(A+ c) for all
0(z &X. In other words, E(X) = E(X,)+(const)(X —X,) for
X~ X,. The j model in TFD theory is bounded, so the
first definition is applicable to that model. A., will be
shown to be Z=O~z, . in TF and TFD theory, Theorem
3.18. In TFW theory, X,&Z (Theorem 7.19).

Theorems 2.3, 2.4, and Proposition 2.2 yield the fol-
lowing picture of the minimization problem in TF theory.

Theorem 2.5. I'ox A. ~ X, theme exists a unique mini-
mizing p with Jp= A.. On the set [0, A.,], E(A) is strictly
convex and monotone decreasing. Pox ~& A., the~e is no
minimizing p with J p =)j., and E(A) =E(A.,); the mini
mizing p in Theo+em 2.4 is the p fox )j,

Proof. For ij. & A., use the p given by Theorem 2.4 and
note that if A.'= fp &)j, then E(X') = g(p) =E()j). The
strict convexity is trivial: if A. =axt+ (1 —a))j2 use ap,
+ (1 —a)p, as a trial function for X. On the other hand,
for )j.& X, the p given by Theorem 2.4 will have fp = A.,
because if a minimum existed with f p = X' & A., then p-=(p+ p, )/2 (with p, being the p for X,) would satisfy X,
&fp = (X'+ ij.,) & X' but, by strict convexity,

g(p) &[g(p)+g(p, )]/2=E(~, ),
which is a contradiction. 0

The general situation is shown in Fig. 1. There Z
is shown as less than A.,; while that is the case for
TFW theory, in TF and TFD theory A.,=Z. The
straight portion to the right of A., is horizontal for TF
and TFW, but has a negative slope for TFD and TFDW.
The slope at the origin is infinite for TF and TFD but
finite for TFW and TFDW.

D. The Thomas-Fermi equation and properties of the
density

The variational derivative of g(p} is 5g/5p = yp2)~(x)
—Q, (x) where

w. j*)=v(~)- I n(~jl~-vl '&~. (2.17)

A Lagrange multiplier p, shouM be added to 5g/5p to in-
sure that fp = X. It is then expected that tjg/op+ p, =0
if p(x) & 0, but 5g/5p+ p, & 0 if p(x) =0 because negative
variations of p(x) are not allowed. The two situations
can be written as

yp ) (x) = ma.x[ @,(x) —ii, 0] —= [ @,(x) —p ] (2.18)

P«of. The convexity and boundedness of g(p) is used.
(See LS, Theorem 1I.10 and Lemma II.27.) ~

It will be noted. that we have not used the fact that V
is Coulombic, only that it vanishes at ~. Likewise, the
only property of the kernel ~x —y ~

', that was used was
its positive definiteness. In Sec. III we shall exploit the
fact that ~x —y ~

' is Coulombic and, to a lesser extent,
the fact that V is superharmonic. Also, it will be shown
that A. = Z=gtz~.
Definition. A function f(x) defined on an open set Qw R'
is supexhaxmonic on 0 if, for almost all xc= Q and for
almost all spheres centered at x, but contained in 0,
f(x) & (the average of f on the sphere), i.e. , f(x) & (47j) '

fj ~j -+f(x+ y}dy. This is the same as Af ~ 0 ( in the

This is the TF equation. (Note that the [ ] is very im-
portant. ) This formal manipulation is, indeed, correct.

Theorem 2.6. If p minimizes g(p) with Jp = ij. ~ A., then

p satisfies Eq. (2.I8) foy some (unique) ti(X). Converse
ly if p, p. satisfy Eq. (Z.I8) and p c L' 0 L5)3 then p mini
mizes g(p) fox X= fp Hen. ce (Z.I8) can have at most
one solution p, ii with Jp=X. If ij.=ij, then p, =0.

P«of. The first part is standard in the calculus of
variations. Now let p, , ii, , i = I, 2, satisfy Eq. (2.18)
with the same X. Let E';(h) =(3y/5)fh5I~ —f p;h. It is
easy to check that E', (h) has a uniq. ue minimum, P, , on
the set f h = X, h & 0; the minimizing h, is p, However,
E,(p2) + E~(p, ) —P, + Ep —D(p, —p2, p, —p2). This is a
contradiction unless p, =p2 (and hence p, , = p. ,). The last
part (i.e. , ii =0) follows by considering the absolute
minimum of g(p), in which case no p. is necessary. But
this is equivalent to setting p, =o. This minimum occurs
for A. ~ A., but as we have shown, only at A., is there a
minimizing p (cf. LS). ~
Remarks. In Sec. III a proof of the uniqueness part of
Theorem 2.6 which uses only potential theory will be
given. It should be noted that we arrived at the existence
of a, solution to Eq. (2.18) by first considering the mini-
mization problem. A direct atta. ck on (2.18) is rather
difficult. Such a direct approach was carried out by
Hille (1969) in the atomic case, but even in that case he
did not prove that the spherically symmetric solution is
the only one; our uniqueness result guarantees that.

Theorem 2.7. E(X) is continuously differentiable and
dE/dA= —p, (X) if ij. ~ ij., d. E/dX=0 if A& )j., Thus —p, (y)
is the chemical potential.

Rev. Mod. Phys. , Vol. 53, No. 4, Part I, October 1981
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sense of distributions) in O. f is subharrnonic if -f is
superharmonic. f is harmonic if it is both subharmonic
and superharmonie. I

In Sec. III potential theory will shed considerable light
on the solution to Eq. (2.18). Here we shall concentrate
on some other aspects of (2.18).

Let us assume that U(x) =Re,. Ix —R~ I
. @ denotes

Q, for the solution to Eq. (2.18). In Sec. III we show
@(x)& 0. As a distribution,

—&P(x)/4zz=g z~b(x —R;) —p(x)

= g zjb(x —Rz}—y zIz(@(x)—
Zz }zlz.

(2.19)

This is the TF differential equation and is equivalent to
Eq. (2.18). It involves @ alone. Since pc Lzlz B L', p is
continuous away from the R,. (Lemma 3.1) and goes to
zero as jxj-~. The fa.ct that @ goes to zero at infinity
is understood as a boundary condition in Eq. (2.19).

Theorem 2.8 (LS Theorem IV.5).
(a) Near each R&

p (x) = (e, /'y)'I '
I
x —R,. I

-'I '+ o(
I
x —R, I

-'I ')

(b) p(x) —0 as lxl
(c) p and P are real analytic On A =[x Ix gRz all j,

p(x) & 0).
(d) In the neutral case (tz = 0) p(x) & 0, all x.
(e) In the ionic case (X & 2', p, & 0) p has compact suP

Port and p and P are C' away from the R;.
Proof. (a) and (b) follow directly from Eq. (2.18).
continuous m p continuous away from the R,.~ P is

everywhere. Then p is C' away from the R, . [Note
(@—p)' is C' if Q is C']. By a bootstrap argument p
is C" on A. By Theorem 5.8.6 in Morrey (1966), Q is
real analytic away from the Rz and where @ & p, , namely

Finally, since @(x)—0 as Ix I
—~, p has compact

support when p. & 0. The positivity of &f& is established
in Sec. III, so p & 0 in the neutral case. ~

In the ionic case (X &Z) the set 0=[x Ip(x) & 0} is
bounded. What can be said about its boundary, BQ? In
the atomic case BA is, of course, a sphere. In the gen-
eral case, the TF equation (2.19) is a "free boundary
problem" about which Caffarelli and Friedman (1979)
have proved the following result among others.

Theorem 2.9. Considex the generali ged T+ pxoblem
geith

3
replaced by p and —,

' ~p ~ 2. There axe at nzost
a finite number of open C' curves I'z, . . . , I', such that
8flg[UI zi';J is a Cz' manifold with o= (2 —p)/(p —1).

The riext question to consider is the asymptotics of p,
in the neutral case (p. =0), as Ix I

—~. This involves
finding universal bounds on p. The function g(x) =y'(3/
~}'jxj'»tisfiesEq (2 19)«r jxj&0andx«f Itis the.
only "power law" that does so. This was noted by Sommer-
feld, who concluded that g(x) is the asymptotic form of

Hille (1969), who was possibly the first to make a
serious mathematical study of the TF equation, proved
this asymptotic law in the atomic case. It is remarkable
that P, the asymptotic form of P, is indePendent of z,
and it is just as remarkable that the same form holds

even in the molecular case.

Theorem 2.10 (LS Sec .V.2). Suppose p, =0 and IR,. I

&R, for all j and some R. For r =
I
x

I
& R let @,(r)

(resp @ (r)) be the max (resp. min) of @(x) on Ix I=r
and C, (r) =&(,(r)/g(r) with P(r) =yz(3/zzrz)z. Then C, (r)—1 as r —~. Furthermore, if R & r then

(i) C, (R) & 1~ C,(r) & C,(R),
(ii} C, (R) & 1~ C,(r) &1,
(iii) C (R) & I~ C (r}& C (R),
(iv) C (R) & I~ C (r) & 1.

Proof. If f,g are continuous, positive functions on Ix I

& R which go to zero as Ix I
—~, and if yzI'sf & 4zzf'I',

y I &g - 4zzg I for Ix I
& R, and if f (x) & g (x) for

I
x

I
=R,

then f (x) & g(x) for all jx I
& R. This is easily proved by

a "maximum argument" as in Sec. III. Q is of this type.
with yztzE@ =4zz@zIz. If C,(R) & 1, compare @(x) with
C,(R)g(x). Then C, (r) & C,(R), all r & R. This proves (i)
and similarly (iii). To prove (ii) and (iv) compare P
with g. It remains to show that C, (r) —1. C, is con-
tinuous. We shall show that limsupC, (r) & 1; by a simi-
lar argument lim infC (r) & 1. This will complete the
proof. If C, (R) & 1, let R, = sup f'r IC, (r) & I] whence
C, (r) & 1 for R& r &Ro and C, (r) & 1 for r& Ro. It is then
only necessary to consider R, = ~. Then, since C, (r)
is decreasing, C(~) =limC, (r) exists. Assume C(~) & 1.
Pick c& 0 and choose Rz so that C, (Rz) &C(~)+z. ('on-
sider

f (x) = y'(3/~)'(I+ 2b/3)'(Ix
I

—bRz) '

f» lx & R, and b& 1. y"'&f & 4'�"'.Choose b&1 such
that (I+2b/3)z=C, (Rz)(1 —b)4. Then f &

&f& for lxj &Rz
since f & @ when Ix I=R,. But this means C(~) & (1+2b/
3) =[C(~)+s]{1—b)4. Since b & B & 0 satisfying (1+2B/
3)z=C(~)(l —B)z, and c is arbitrary, C(~) &1. For the
C problem use g(x) = y (3/zz) (1 —2b/3) (Ix I+bRz) 4. ~

There are some interesting facts about the possible
singularities of TF-type differential equations in a ball.
These are related to and complement Theorem 2.10.

Theorem 2.11. Let B=[xj0& lxj &R] and suppose Q
satisfies AP(x) = G(g(x)) in the sense of distributions on

B, and Q is O'. Then
(a) If P e L"„,(B) and G satisfzes G(t) & stz as t —~,

G(t) &rtz as t ——~, c & 0, there exists a Cz function on
0 & lx I & R which agrees with @ a.e. in B. Any singu
larity is thus removable In par.ticular —b, &f& + @z = 5(x)
has no solution in B' =(x IO & x & R'I.

(b) If pe C (B), p&0, and G(t)=t', 1 &q & 3, one of
the following is true:

(i) Q has a Cz extension on B'.
(ji) @(x)-C jx I

' as lx I

—0, C & 0 arbitrary
(iii) @(x) llx

I

' as Ix -I —0 uith a = 2/(q —1), l'
=a(a —1). This is called the "strong singularity. "

(c) Le«= 1 and B'=Jxj0- lxl &R]. «t @~Li-(B')
'satisfy 6@=

I @ I' '@ in B' in the sense of distributions.
There is a universal constant C, & ~ such that

I p(0) I

& C, R z " ". This implies that if @ ~ L„,(B) satisfies
this equation in B, then j@(x) I C, jxj z~" "for 2 jx I

A stronger bound than this is given by Ueron (I979)
and Brezis and Ueron (1980) for 1 &q &3.

Proof. (a) is given in Brezis and Veron, 1980, and {b)
and (c) are given in Veron, 1979. (c) was given earlier
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for q= —,
' in Brezis and Lieb, 1979. R

There are other theorems of this type in Veron, 1979
and Brezis and Lieb, 1979.

See Sec. IV.C for an application of the strong singu-
larity.

There is another property of p which can be derived
directly from the va, riational principle, namely,

Theorem 2.12. 1n the atoniic case p(x) is a symmetric,
decreasing function.

Proof. Assume the nucleus is at the origin and let p"
be the symmetric, decreasing rearrangement of p (for
a definition see Lieb, 1977). We claim that if p w p~

then $(p*) & $(p), thereby proving the theorem. f ( p")~

= fp~, all P. For the Coulomb terms note that when

fp ~z thenf (x) =z jx~
' —

~

x
~

'+ (p ) is a symmetric,
decreasing function; hence ffp ~ ffp~. Thus P(p)
=—D(p, p) —fVp =D(p —p", p —p") —fpf D(p*,-p") and
thus P(p) &P(p*) if pc p". ~
1)totation. f *g denotes convolution, namely (f+g)(x)
=- ff(x y)g(y)d-y.

remarks. (i) The same theorem (and proof) holds for
the TFD, TFW, and TFDW theories provided A. = fp ~z.
The only additional fact needed for the TV theories is
that f (Vg)2~ f(&g")2 (see Lieb, 1977, appendix). In

fact, Theorem 2.12 holds for all X in TFW theory
(Theorem 7.26).

(ii) The spherically symmetric (but not the decreasing)
property of p also follows from the uniqueness of p
which, in turn, follows from the strict convexity of $.
The decreasing property also follows from Eq. (2.18)
since @ is decreasing by Newton's theorem.

E. The virial and related theorems

Let us generalize the TF functional 8 by multiplying
the term D(p, p) in Eq. (2.5) by a parameter p & 0. e(A)
=E(A) —U in Eq. (2.12) is then a function of y, ~)z, ), and
P. Define

3I'=K+ E& 0 for neutral molecules. (2.22)

For non-neutral molecules, a sharpening of Theorem
4.7 into a strict inequality for the derivative would
suffice to show the absence of local minima.

For a neutral atom, (a) and (b) combine to give the
foll. owing simple ratios:

AX. —ed=1337 (2.23)

The energy of a neutral atom is

e = E = —3.678 74z'1 '/y.

I thank D. Liberman for this numerical value.

Scaling. Suppose the nuclear coordinates R; are re-
placed by lR; with l & 0. If z, A denote the nuclear
charges and coordinates, and if E(z, A., lA), —p. (z, A. , lB),
p(z, A. , lR;x), and @(z, A., lR;x) denote the TF energy,
chemical potential, density, and potential with fp = X,
then

E(z, X, /R) =l-'E(l'z, l'~, 1l),

and integrate. Alternatively, note that p minimizes
G(p) =g(p)+ p, fp on all of L5till L'. Therefore f (t)
= G(p, ), with p, (x) =tp(x), has its minimum at t=1. But
df /dt = 0 gives (a).

(b) Here, scaling is essential. Consider p, (x) =t ~p(tx),
so that fp, = A. Then f (t) = $(p, ) has its minimum at
t= 1 and df/dt=0 gives (b). ~
Remark. (b) is called the Virial theorem. A priori
there is an analog of (b) for a molecule. Suppose that,
with X fixed, e is stationary with respect to all R~, i.e.,
V~,.e =0. Then, by the same scaling argument together
with R, —tR, , one would conclude that 2K=A —R —U,
equivalently K+ E =0. See Fock, 1932 and Jensen, 1933.
The difficulty with this is that these axe no stationary
points for k ~ 2. The no-binding Theorem 3.23 shows
that there are no global minima, and the positivity of
the pressure proved in Sec. IV.B shows that there are
no local minima (at least for neutral molecules). There
it will be shown that for k& 2, the pressure P satisfies

(2.20)

with p being the minimizing p for fp=A with y~ y [Hy
scaling, A, (p) = A, (p = I)/p. ]

p. (z, A, lR) =l 4p, (13m, 13K, R),
p(z A lR x) =l ~p(13z liA. 8 l 'x)

&f&(z, X, lR;x) =l ~@(l3z, l3A. , R;I 'x).

(2.24)

Theorem 2.13. e(A., y, fz,.), p) is a C' function of its
k+3 arguments (assuming all are & 0, except for p
u)hick is ~ 0, and A. ~ A.,). e is convex in A. and jointly
concave in (y, (z,.j, P). Moreover, Be/By =K/y, Be/BP
=1l/p, Be/B~= ti Be/Bz-,. =- fp(x) (x- 1t,. )-'dx. rais
implies

BE/Bz,. =Iim E @(x) (2.21)

Proof. See LS. The proof uses the convexity of p —g(p).
The concavity in the parameters is a trivial consequence
of the variational principle and the linearity of 8 in the
parameters. /

Now we return to P = 1

Theorem 2.14. (a) 5K/3 =A —2A —p&,
(b) for an atom (k= 1), 2K=A —A .

Proof. (a) Simply multiply the TF equation (2.18) by p

This is a trivial consequence of the scaling properties
of $(p).

F. The Thomas-Fermi theory of solids

A solid is viewed as a large molecule with the nuclei
arranged periodically. For simplicity, but not neces-
sity, let us suppose that there is one nucleus of charge
z per unit cell located on the points of Z'c R'. (Z' con-
sists of the points with integer coordinates. ) If A is a.

finite subset of Z we want to know if, as A —~ in a
suitable sense, the energy/unit volume ~A

~

'E~ has a
limit E, and p~ has a limit p, which is a periodic func-
tion. Here, ~A

~

is the volume of A. If so, the equation
for p and an expression for E in terms of p is required.
Naturally, it is necessary to consider only neutral sys-
tems, for otherwise ~A

~

'E~ —~. Everything works out
as expected except for one mildly surprising thing; a
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quantity $0 appears in the equation for p which, while it
looks like a chemical potential, and is often assumed to
be one, is not a chemical potential. )t, is the average
electric potential in the solid. All of this is proved in
LS, Sec. Vr.

Definition. A sequence of domains fA,j in Z' is said to
tend to infinity (denoted by A-~) if

(i) U"; (A;= Z, (ii) A;, q&A;, (iii) A";C Z is the
set of points not in A;, but whose distance to A; is less
than b. Then IA";I/'IA;

I
—0 for each h. &0. I"=&x(=—R'llx'I

& —,') is the elementary cube centered at the origin.

Theorem 2.15. As A —~ the follouing limits exist and
are indePendent of the sequence A,.:

(i) @(x) = lim @~ (x) .
g~ e)

(t) is Periodic, yp(x)2/3—= @(x), and lke convergence is
uniform on comPacts in R3.

(ii) (t)(x) =lim IAI ' P (l)~(x+y),

(iii) lima@(x) —z Ix I
'=lim IAI ' g lim@~(x) —z

xIx-y I-',

(iz) f p=lim p„=z,
r &" I

(v)
I Q~ce

R

(vi) E=lim
I AI 'E

Definition. G(x) is the Periodic Coulomb Potential. It
is defined up to an unimportant additive constant in I"

by —AG/4m=5(x) —1. A specific choice is

zb{x) —p(x). Therefore if

@(x)—= Q g(x —y),
yG 23

with

g(z)=alai '- f p(z)Ilz-z I
'gz,

I"

it might be expected that Q = @. The correct statement
is that Q{x)= @(x)+ d and d «0 in general. One can show
that J~(t) = 27) Jr x2p(x)dx (see I S). The fact that d «0,
precludes having a simple expression for $0. Why is
d«0, i.e. , why is Q «Q '? The rea, son is that the charge
density in the cell centered at y c= Z3 is zb(x —y) —p(x —y)
only in the limit A —~. For any finite A there are cells
near the surface of A that do not yet. have this charge
distribution. Thus d~0 essentially because of a neutral
double layer of charge on the surface.

In LS asymptotic formulas as z -0 and ~ are given
for the various quantities.

Theorems 2.15 and 2.16 will not be proved here.
Teller's lemma, which implies that (l)~(x) is monotone
increasing in A, is used repeatedly. Apart from this,
the analysis is reasonably straightforward.

G. The Thomas-Fermi theory of screening

Another interesting solid-state problem is to calculate
the potential generated by one impurity nucleus, the
other nuclei being smeared out into a uniform positive
background (jellium model). If A is any bounded, mea-
surable set in R3, and if ps = (const) & 0 is the charge
density of the positive background in A, and if the im-
purity nucleus has charge z & 0 and is located at 0, then
the potential is

G(x)=v ' Q Ik 2exp[2)Tik. x] .
kE 23
k40

v, (z)=zIlzII-'+p, f Iz-, l-'g,
A

(2.27)

Theorem 2.16. (j), p and E satisfy
The TF energy functional, without the nuclear repul-
sion, and with y= 1, is

(i) E= (y/10) p / + (z/2) limf(t)(x) —z Ix I
'), (2.25)

I' x 0 g (p) =-' f p"'- f v p a( t)pp) . (2.28)

('i) p( )=*G( ) —f G( —z)p(J)z t)
r

for som e (t)o. Alternatively,

—~@(x)/4~= Z z5(x-y) —p(x),
y C Z~

(2.26a)

(2.26b)

The integrals are over R3, not A. Let p x be the neu-
tral minimizing p (zn that fp =z+p Itt ).
Definition. A sequence of domains A in R'is said to tend to
infinity weakly if every bounded subset of R' is even-
tually contained in A.

(iii) gt) and p are real analytic on R'XZ'.
(iv) There is a unique pair p, (t), that satisfies Eq.

(2.26) with yp'/'= (t) and fp=z (cf. Theorem 2.6).

Formula (2.25) may appear strange but it is obtained
simply from the TF equation; an analogous formula also
holds for a finite molecule.

Equation (2.26), together with yp2/3=@, is the periodic
TE equation. go is not a chemical potential. The chemi-
cal potential, —p, , is zero because p~ is zero for every
finite system. If (2.26) is integrated over 1 we find,
since Jp=z, that (t)0= J r=(t)vaer gae electric potential.
It might be thought that $0 could be calculated in the
same way that the Madelung potential is calculated: In
each cubic cell there is (in the limit) a charge density

Remark. This is an extremely weak notion of A —~.
It is intuitively clear that if A —~ weakly and z =0

then p~(x) —ps. For z «0, p~(x) —ps is expected to ap-
proach some function which looks like a Yukawa poten-
tial for large Ix I. This is stated in many textbooks and
is correct except for one thing: The coefficient of the
Yukaw'a potential is not z but. is some smaller number.
In TF- theory there is ovex-scxeeninf because of the
nonlinear ities.

Theorem 2.17. Let A —~ weakly and z =0. Then @~(x)
—p2s 3 uniformly on compacts in R3.

The theorem is another example of the effects of sur-
face charge Since p~ —. ps and @~=p~~/3, the result is
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natural. But it means that the average poteritia1. is not
zero. If, on the other hand, the integrals in Eq. (2.28)
are restricted to A then p~{x)= ps for all A and x c A,
and ct&~(x) =0.
Theorem 2.18. Let A- ~ seeably and z & 0. Let

f (x) =lim(f)~(x) —p2s)3

and

g(x) = lim p~(x) —ps.

(i) these limits exist uniformly on compacts,
(ii) g (= L ' 0 L 5 ~~,

(iii) 0 ~f (x) ~ (t&
"' (x),

(iv) f and g are strictly positive and real analytic
au&ay fi om x=0,

(v) f(x) is monotone increasing in z,
(vi) These limits satisfy the TF equation

f(~&=*i~i '- f l~-&
I

'&:(v&~&,

[ps '+f(x)]'"- ps=g(x),

(2.29)

(2.30)

(2.3 1)

H. The Firsov variational principle

The problem of minimizing g(p) is a convex minimiza, —

tion problem. It has a dual which we now explore. The
advantage of the dual problem is that it gives a loner
bound to E'. The principle was first given and applied
in (Firsov, 1957) in the neutral case (p. =0) and was
first rigorously justified in that case by Benguria (1979).
Here we shall also state and prove the principle for
non-neutral systems; furthermore, in the neutral case
our (and Benguria s) principle will contain a slight im-
provement over Firsov's.

The dual functional to be considered is

(2.32)

(vii) Assuming only that g c L' & L5 ~ and f (x) ~ —ps
there is only one solution to Eqs. (2.29) and (&.30) [Ivith
out assuming (2.3I)].

There is a scaling relation:

f(x z)= p ~F(p'~8 jx j; p I~2z)

g(x; z) =psG(psI~6 jx j; ps'~'z) .
Let us write F(r; z ) =q(r; z) I'(r) where Y(r) = (1/r)
x exp( —(6II) I& 2r} is the Yukawa potential.

Theorem 2.19. (i) q(r;z) is monotone decreasing in r
and increasing in z;

(ii) q(0;z) =z;
{iii) Q(z) =lim„„q(r; z) exists. 0 (Q(z) (z and Q is

monotone increasing. lim sup, „Q(z)(bz)
= 1.039.

LS contains graphical plots of Q(z) and q(r; 53.7). An
asymptotic formula, for Q(z) has not been given. In the
linearized approximations found in textbooks, Q(z) =z,
but we see that this is false.

where JL{, is a real parameter. The domain of F„ is B
=jf j&fcL, jf (x) j «jxj ' for some c & and for jxj
& R for some A}. V is assumed to go to zero at ~ and
is such that the TF problem has a minimum for that V,
and the minimizing p (with Jp & A) satisfies the TF
equation (2.18) (for all A). We define

E (p, ) =sup(&. (f) j«B} (2.33)

(-:){V-f-p)"'~ —(5)(V-f„-V)""
+ (V f p, ) (V f „— p—) ~ —. —

But (V-f—p), ~ V —f—p. , so 5'„{f)~ E„+h(f) where

&(f&= —(8 "&
' f (Vf &'+ f fp„—D(p„p„&,

By standard methods (e.g. , Fourier transforms), h(f)
«0. Furthermore, h(f) =0 only for f=f„, which shows
once again that the maximizing f is uniquely f„.~

It should be noted that E~(p, ) is the Legendre transform
of E(A). Namely &(. E( (.) ls &coIIvex alld

E"(p. ) =inf [E(A)+ Xp, ], all p, (= R . (2.35)

This shows that Ez(p, ) is concave in p, . On the other
hand, Theorem 2.20 displays E (p, ) as the supremum
(not infimum) of a family of concave functions. Further-
more, since E(A) is convex and bounded it is its own
double Legendre transform, viz.

Ep.) = sup [Er(p. ) —p. X) .

Theorem 2.21. Fix A. ~ 0. Then fby Eq. (2.3t&)]

sup(5. „(f)—
GAIA. j fc=B, p, c: R }=E(-A.).

(2.36)

(2.37)

Remark. In Theorem 2.20 we refer to the unique p„
satisfying Eq. (2.18) for p, ~ 0. This requires some ex-
planation. If V(x) is unbounded (e.g. , point nuclei), then
as (u goes from ~ to 0, A. goes from 0 to X, and p„(A)
minimizes Son fp=A. . If esssupV(x)=v &~, then p„
—= 0 [and Er(tI) =0] for ~) p, ~ v. In this range A. (lI) =0.
Then, as p. goes from v to 0, A. goes from 0 to A.„and
p („& minimizes h on fp= X. (ess sup is defined in
Theorem 3.12).

Rem«k. +%en p, =0, Firsov imposed the additional
constraint V~ f. This, as we shall see, is unnecessary
provided [ ]', ' is used as in Eq. (2.32).

Theorem 2.20. If p, ~0 then Er(p)= —
, ~. If p, ~ 0 then

there is a unique maximizing f for 5„. This f is f„
—= jxj 'wp u&here p„ is the unique solution to Eq. (Z. ZB).
If X=fp„ then (see remarh belou&)

E (p) =E(A.) + p, X. (2.34)

Proof. Suppose p, &0. Since U and any f B—0 as —jx j

the second term in (2.32) is —~. Suppose p, ~ 0.
Let E„=right side of (2.34). Clearly &&„(f„)=E, by the
TF equation (2.18). f- F„(f) is strictly concave because
f (Vlf) is strictly convex. Thus there can be at most
one maximizing f, and we therefore must show that if
fc f„then F„(f)~E„. By Minkowski's inequality (jab j- 2

j
a

j

' '/5+ 3 j
b

j

' '/5) we have
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(((» f(«(x=))"x- f )'(x)»~)~" +))()», (3.1)

where j is a. C' convex function with j(0) =j'(0) =0. Note
that in this section (only) S(p) does not contain U. This
is done partly for convenience, but mainly for the rea-
son that since V is not necessarily Coulombic the defini-
tion of U would have no clear meaning.

The Euler-Lagrange equation for (3.1) and p(x) & 0 is
(with @,= V —~x

~

' ~ p):

@,(x) —p, =j'(p(x)) a.e. when p(x) &0,
(3.2)

& 0 a.e. when p(x) =0.
Any solution to (3.2) is determined only almost every-
where (a.e.}.

We could, in fact, allow more general j's of the form
j(p, x) [and lj(p(x), x)dx in 4] with j(,x) having the
above properties for all x, but we shall not do so. An

annoying case we must consider, however, is j'(p) =0
for 0 «p «p, and j'(p) & 0 for p p, . This is discussed
in some detail in Sec. III.C and is needed for TFD theory
(Sec. VI}. If j'(p) & 0, all p 0, as it is in TF theory

wt ih(jp) =yp ~, then Eq. (3.2) can be written as

(@ (x) —p), =—max[ @,(x) —p, 0] =j'( p(x)), (3.2')

but otherwise (3.2) is stronger than (3.2').
One aim of this section is to study solutions of Eq.

(3.2) without considering whether or not (3.2) truly
comes from minimizing (3.1) or assuming uniqueness.

definition. e=(p~p(x) 0, pcI. , and yp(y)(x-y(-&dy

III. THE "NO-BINDING" AND REI ATED
POTENTI AL- THEORETIC THEOREIVlS

The no-binding theorem was discovered by Teller
(1962) and is one of the most important facts about the
TF and TFD theories of atoms and molecules. It ex-
plained" the absence of binding found numerically by
Sheldon (1955). That this crucial theorem was not
proved until 1962—after 35 years of intensive study of
TF theory —is remarkable. It can be considered to be
a prime example of the fact that pure analysis can some-
times be superior to numerical studies.

While Teller's ideas were correct, his proof was
questioned on grounds of rigor. Balazs (1967) found a
different proof for the special case of the symmetric
diatomic molecule. A rigorous transcription of Teller' s
ideas was given in LS. In any case, all proofs of the
theorem rely heavily on the fact that the potential is
Coulombi c.

There are really two kinds of theorems. An example
of the first kind is 'Teller's lemma, " which states that
the potential increases when nuclear charge is added.
The second, Teller's theorem' is the no-binding
Theorem 3.23. The second, but not the first, requires
the nuclear repulsion U. If U is dropped then the theo-
rem goes the other way. The proof of Teller's theorem
given in LS is complicated in the non-neutral case, but
recently Baxter (1980) found a much nicer proof —one
which actually produces a variational p that lowers the
energy for separated molecules. Baxter's proposition
(proposition 3.24) will appear again in Lemma 7.22.

In this section we shall consider general V and as-
sume that

is a bounded, continuous function which goes to zero asx- }.
We shall be concerned only with solutions to (3.2) in

C.
The following lemma (LS, II.25) is useful, in the

cases of interest, to guarantee that p c c.
Lemma 3.1. Iffc L~,gcL~, I/P+I/P'=I, P,P'»
then f+g is a bounded, continuous function which goes
to zero as x goes to infinity. In Particular, if p c L3I2"
6 L then pc L3/ '' 8 I3I2 '. Since ~x~ ~c L ''+L3
Pc+.

It will always be assumed that V(x) —0 as ~x
~

—~
(this always means uniformly with respect to direction).
Hence p. cannot be negative in Eq. (3.2), for otherwise
pgI. '

A. Some variational principles and Teller's lemma

At first it wiH. not be assumed that V is Coulombic.

Theorem 3.2. Eix A &0 and suPPose that p„, p,„satisfy
Eq. t'3.2) with fp„=X. Let P„=@, and assume that p~
c(3. Then, for all x,
(a) (' (x) —lr =supI@, (x) —ply (y) —4,

) (p(y}) a.e. )Jp- &,,, ) E:eI,

(b) 4 '(~) - ) = (p Ie.(x) - ) I @.(» -
)

& j'(p(y)) a.e. y when

p(y)~Q, I )3-), peal
(c) 4g(x)=sup(4. (x)l@p(y)- u, &i'(p(y)), a e y, pct'-}

P

(d) Q„(x) =inf(g, (x) ~Q, (y) —p, , & j'(p(y)). a e yw. he. n

p(y)&0, pce}
Eurthermore, in (a) [resp. (b)] there is no psatisfying
the conditions on the right when p, « t(, » [resp. p, & p, „).
Mote that in (a) and (b) p, is arbitrary (including P «0)
and p is constrained, while in (c) and (d) the oPPosite is
true (except, of course, p(x) & 0].

In the following, a statement such as «f&/4n =p is al-
ways meant in the distributional sense. We shall need
Lemma II.26 from LS.

Lemma 3.3. Let p„p, c L'with p,.(x) & Oandtf, = ~x
~

'*p, .
If (I),(x) ~ g, (x), all x, then gp, & fp,

Proof. Suppose f p, —p, =4s&0. There exists a ball,
B, of radius R, such that f p, (1 —e)(c and J p, (l 6)
«z, where e(x)=1 for x&R and zero otherwise. Com-
pute the spherical a.verage of P, —Q, on the sphere of
radius R, ; it cannot be positive. The contribution from
inside B is, by Newton's theorem, R '

J (p, —p, )6 & 2c/R.
The contribution from outside B is at least —R '

J p, (1
g) & c/R. Adding these gives a contradiction. ~

Remark. Even if (t), (x) &(l),(x) for all x, we cannot con-
clude that fp, & fp,
Proof of Theorem 3.2. (a) will be proved here; (b), (c),
and (d) follow similarly. Since p„gives equality,
—p, , & sup( }. We have to show that if ((II), —p), &j '(p)
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a.e. and if fp & x then

(I) 4»(x)- g, -@,(x)- t,
(ii) u - tg, .
First suppose p, & tg~ and let g(x) = @,(x) —Q~(x)+ tg„—p. .
Let B=( x~ tt(x) & 0]. B is open since g is continuous.
As a distribution —(4gg) b, P(x) =p„(x)—p(x) & 0 a.e. on
B since j'(p) & @,—p, , j'(p~) = @~—tg~ when p~ & 0 and
j' is nondecreasing. Hence g is subharmonic on B and
takes its maximum on BB, the boundary of B, or at ~.
/=0 on BB A. t ~, P= p, ~

—}g & 0. Hence B is empty and
(i) is proved. Suppose now that p, ~

—p, =b&0. Then
j'(p) - @,—p. & p, —p, ~ and, by the previous proof (applied
to p, = p, ~), &f&~(x) ~ @,(x). By Lemma 3.3, fp~ 1 p„=X.
Hence Jp=A. . At this point there are two possible
strategies.

(i) if we assume tha, t h(p) has a minimum that satis-
fies Eq. (3.2) for all p. & 0, then we can use the fact
[which follows from the strict convexity of h(p)J that
p, ~ is a continuous decreasing function of A.. Then there
exists y& A. with p.,& tg„& p, . Sincej (p') & p, —tg„, Jp
= y by what we just proved. But this is a contradiction.

(ii) There is a purely potential theoretic argument
without invoking Eq. (3.1). There is a (not necessa, rily
unique) f which satisfies j (f (x)) = [@,(x) —gg/2 —p,,/2]
and f(x) =0 when [ ] =0. Hence f (x) &p(x) a.e. when
p(x)& 0, and f(x) =0 when p(x) =0. Thus fc g. Since
fp=X& 0, ff &X. Let g= (1 —c)p+sf, 0 &a&1. Since
x~ ~ p (and hence ~x~ '+f) are bounded, @~(x) & P, (x)

+cC for some constant C. Choose c &0 so that e«6/2.
Then j'(g) & j'(f) ~ @, —tg, . Since Jg & X, g satisfies the
condition jn (a) with tg = p, ~ but, as we have seen, this
implies fg= x. ~

Teller's lemma (Theorem 3.4) is closely related to
Theorem 3.2.

Defingtion. We say Vcx) if VNO and V is superhar-
monic, vanishing at ~ (and hence V& 0). Moreover,
the set (x

~
V(x) =~].= S» (called the singularities of V)

is closed, V is continuous on the complement of S~, and
V(x) —~ as x —Sr.
Theorem 3.4. Suppose Vis replaced by V'= V+ Wwith
IVc e (In the .case of interest IV=z jx —R~ ', which
means that we add, or increase, a nuclear charge. )
SuPPose that for some common p, there are solutions to
Eq. (3.2) 0 & p, p'cg. with Vand gvith V'. Then @'(x)
& @(x) all x and, if j' is strictly monotone or if Q —@'
U H (l.e., @—@ and gts fgrst two dergvatgv8s ar8 gn L )
agvay from S~, then p'(x) & p(x), a.e.

Proof. Let g= Q' —P and B =(x
~
g(x) &0].. Clearly

B A S~=@ so B is open. As a, distribution, Ag/4gg & p'
—p &0, so g is superharmonic on B. Thus B is empty
and @'& Q. The proof that p'» p is trickier. If j' is
strictly monotone it is obvious. Otherwise it can be
shown (see Benguria, 1979) that for suitable V, IV, and
j', pcHg away from S~. Assuming gcH, if p'(x) &p(x)
then xcC=(x~|t(x)=0]. On C, A/=0, a.e. (see
Benguria, 1979, Theorems 2.19 and 3.3). Let D
= C A (x

~
p'(x) & p (x)) . On D, 0 =&g/4gg & p' —p & 0 a.e. ,

so D has zero measure. S
Remark. If j'(s) is strictly monotone and Wo0 then
@'(x)& @(x) for all xgS~.

A similar proof yields

Theorem 3.5. If Vc& then @~(x)& 0. Consequently if
V(x) = fdM(y) ~x —y ~

g, dM& 0, and JdM=g, then there
is no solution if A. & & because then Q„(x) &0 for some
large x. Cf. Theorem 6. 7.

There are many easy, but important corollaries of
Theorem 3.2. We stress that V need not be Coulombic;
the important ingredient is that the electron-electron
repulsion is Coulombic.

Definition. j is said to be subadditive if j (pg+ pg)
& j'(pg) +j'(p, ). j' is subadditive in the TF case.

Corollary 3.6. Suppose V= Vg+ Vg and p, is fixed. L,et
@, gag, @g be solutions to Eq. (3.2) for this tg with V, Vg, Vg,
resPectively. SuPPose Q,. & 0 (e.g. , V,. cu) and suPPose
j' is subadditive. Then p(x) & p, (x) + @g(x), all x.
Proof. Use Theorem 3.2 (d) with pg+ pg on the right
side. Q

Corollary 3.7. Let A. & O. The~e can be at most one
Pair p, tg satisfying Eq. (3.Z) with p c= p (in Particular
for pc L5)gled Lg) and jp=A..
Proof. If pg, p, are two solutions, use Theorem 3.2(a)
twice with p, and pg to deduce @,—egg ——Qg —tgg. This im-
plies p, g egg a——nd hence Q, =Qg. But then 0=&(@g—@g)
=«(pg pg). ~-

This uniqueness result. was proved earlier, Theorem
2.6, using the strict convexity of h(p).

Corollary 3.8. If 0 & A.
' & A. then

(i)@g &4,
(ii) tg, - tg,

Proof. For (iii) use Theorem 3.2(b) with p~, p, „as trial
function for the A. problem. (iii) ~ (ii). For (i) use (c)
with p~ as variational function for the A.

' problem. ~

Corollary 3.9. SuPPose p„p, and pg, p, (same p, ) are two
solutions to Eq. (3.2) with Jp„jp g0&. Then &f&, =Qg and

pg
—

pg a.e. Therefore, by Corollary 3.8, whenever Xg

& Xg then p, g & p, , (i.e., p, g
——p, , cannot occur).

Proof. Using Theorem 3.2(d), Qg ——Q,. Then

0 = a(@,—@,)/4 gg =p, —p, a..e. ~
Corollary 3.10. SuPPose j', (p) &jg(p), all p. Let p,', tg„'

and p„, p, ~ be coxxespondzng solutions to Eq. (3.Z) edith
fixed g, and p', p solutions with fixed p, . Q&'~&(x) are the
coxxesjonding Potential s. Then

(g) 4i
(ii)»-t',
(iii) Q' & @ .

Proof. For (i) use Theorem 3.2(a) with p„', tg~g as trial
function for the 2 problem. (i}»(ii). For (iii) use (d)
with p& as trial function for the 1 problem. Q

Lemma 3.11. When p, ~ O, p has compact support.

Rema&@. As will be seen in Sec. VI, p has compact
support in TFD theory even when p, =O. See Theorem
6.6.

Among the most important consequences of Theorem
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p~=inf T p pc+, p ~A

pal=sup S p pcs, p» I

(3.4)

(3.5)

Corollary 3.13. If j'(p) is concave (as in TF theozy
with j'= p2Iz) then }Z~ and p,„-Q~(x), fox each x, az e

jointly convex functions of V and A..
Corollary 3.14. If }(.is fixed and Uz(x) & Vz(x), atl x,
then tz~(1) & }z~(2).

By Corollaries 3,9 and 3.14 we know that increasing
V increases p, while increasing A. decreases p.. What,
happens if V and A. are both increased, in particular if
we scale up the size of a molecule by V- aV, X- G. A. ?
A partial answer is given by the following two corol-
laries.

Corollary 3.15. X,et V&, V2&~ and V= V&+ V2. Assume
j' is subadditive and suppose Eq. (3.2) has solutions to
the thz'ee Pz obl e ms (V„X,), (Vz, }(z), (V, }() with }( = }(.

&
+ Xz.

Then }z & min(p, z, p, 2).

Proof. In general, if WcX) and p is a solution to (3.2)
with W then Q, (x}—j'(p(x)) = }z a.e. if p(x) & 0 and & 0
a.e. if p(x) =0 (Theorem 3.5). From this remark it fol-
lows that S~(p, +p, ) & min(p, „}z,). [Here, S~(p) refers
to Eq. (3.3) with V.] ~
Corollary 3.16. Let n & 1 and suPPose Eq. (3.Z) has
solutions with (V, }(., y) and (o V', o}(,p, (o)). Assume j'
satisfies j'(ot) ~ czj'(t), alt t (this holds in TF theory).
Then p, (n) & c(p, .
Pzoof. If p is the solution to (V, }(., p, ) then S~(p) = p. .
But S ~(c(p) ~ aS~(p). ~
Corollary 3.17. Supjose thez e is a soLution to Eq. (3.2)
for all }(.(= (a, b) with a &b. Then p, „ is continuous on this
interval.

Pzoof. Let }(.z=A. , +s. By Corollary 3.9, }z&& p, z. Let
p=p&+c}(' with f}t=1, 0 & }((x)& b for some b, X(x) =0
if p, (x)=0, and }((x)=0if pz(x)&a for some a. Then
}('(=8. Since j' is continuous, S(p) & p, z

—Q(c) where
Q (c ) 0 0 as c 0 0. ~
Theorem 3.18. Let V(=&, V(x) = fdM(y)

~ y —x~
& 0, fdM=Z& 0. Suppose that foz laz ge t, j'(t)
& ct(zIz' ', with c, c & 0. By a simPle modification of
the method of Theoz ems 2.4, 2.G, and 2.6, g(p) has a
unique minimum on the set 8 with fp ~ X. This p satis-
fies Eq. (3.2) and fp = a if }(.~ X„whez eas fp = }(., if X

Now assume, in addition, that j'(t) &dt" zIz, c & 0,
fox small t (this is tyue in alt cases of interest). Then
~, =Z.

3.2 are the vaziational Pz. inci jles foz the chemical Po-
tential [LS].
Theorem 3.12. Define the functionals

T(p) =ess sup[/, (x) —j'(p(x))},x (3.3)
S ( p) = es s inf @,(x) —j'( p (x) )}.

(ess sup means supremum modulo sets of measuz e geyo).
Then, whenevez thez'e is a solution to (3.2) with fp
=A.) 0,

holds for X small (LS, Theorem II.31). For }(. near Z
LS (Theorems IV.11, 12) find upper and lower bounds
for p~ of the form o.,(Z —X)'I' with Z=Zzz. Brezis and
Beni'.an (unpublished) have shown that

o = lim p, ,(Z- }() 'I' exists
Qz

(3.7)

and is given. by solving some differential equation.
is independent of the number of nuclei and their in-
dividual coordinates and charges. '

Equation (3.7) implies that there is a well defined
ionization potential I in TF theory (although it probably
has nothing to do with the true Schrodinger ionization
energy). First observe that if we start with Qz, = 1
and then replace zj by Zz&, R& by Z '~3R&, and X by
ZX, then by scaling Eq. (2.24),

Proof. If }I.& Z there is no solution by Theorem 3.5.
Now suppose p, =0; we claim X» Z, and hence that A. = g.
If so, we are done because h(p) has an absolute mini-
mum. This minimum corresponds to p. =0 and has A.

=X„.but. p, =0 implies A, =Z. gow, to prove that A. » g,
let @ be the solution. If }(.=Z- 35, let X be the charac-
teristic function of a ball centered at the origin such
that J y dM & Z —5. Then

4(«)&('(«)=f I«(«)d«f(«)-a(«(d«( I«-«I '.

For /x/ & some R, g(x) &2Z/x/ '. Also [@(x)]=(spheri-
cal average of g) & 25 fx f

-' for x& R. For a given /x J

=z'& R let Q, (z') be the proportion of the sphere of radius
z' such that 2Z& z'g(x) & 5, and let 0 (r) be the comple-
ment. Then 25 «[g(x)] &2ZQ, +50 =5+ (2Z —6)Q..
Thus Q, (z') & 5/(2Z —5) for all z'. On Q„p "I ' ' & 5 ~x

~

for large ~x~, and therefore p QI-' if 5& 0. ~

Brezis and Benilan (Brezis, 1978, 1980) have gen-
eralized this. Even if j(p) —p "I" ' for large p there is
a solution to Eq. (3.2) if }(.~ Z, and no solution other-
wise. This is noteworthy, since if j(p) -p' for large p
with a ~ —', then $(p) has no lower bound for point nuclei.
There are similar results for other potentials, V, in
I.S, Theorem II.18.

There is also an energetic, ' as distinct from poten-
tial theoretic, reason that. there is no solution if A. & g.
A solution to Eq. (3.2) implies a minimum for the func-
tional (zl(p), by strict convexity. If X= fp& Z then @, is
negative in some set A of positive measure. Then it iS
easy to see that if p is decreased slightly in A to p, then
$(p) &S(p). But fp &X and E(X) is nonincreasing.

In the variational principle, Theorem 3.12, p~ gives
equality, i.e. , T(p~) = S(p~) = p, ~. Is this the only p with
this proper'ty? If A. & Z there are many p's with T(p)
=0 and no p with S(p) =0 (cf. LS). In Brezis, 1980, Sec.
4, it is shown that if j' is concave (as in TF theory) and
V has suitable properties (satisfied for V(=X)) then when
}(.& Z only p~ satisfies either T(p) = p, ~ or S (p) = p, „. If
A. = Z this uniqueness is lost. in general)

Asymptotics of the chemical potential.
Theorem 3.12 can be used to obtain bounds on p, „. In

the TF case with point nuclei, the asymptotic formula

(3.6)
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Therefore, by Eq. (3.7), if we let )(.=Z —s with c & 0
fixed, and let Z-~, then

1&mp, ~=A+ ~
~Z~~

The ionization potential is defined to be

I=E() =Z —1) —E()(=Z).

(3.9)

(3.10)

By integrating (3.9), and appea. ling to dominated con-
vergence,

I-3o/7 as Z- (3.11)

Another implication of Eq. (3.7) is that an ionized
atom has a well defined radius as Z —~. This question
wa, s raised by Dyson. Suppose V'(x) =Z~x~ ' and X=Z

The density p will have support in a ball of radius
R(Z, s). At ~x~=R, (t (x) =p. But since p is spherically
symmetric, R@(x)=Z —)(.=c by Newton's theorem.
Thus the atomic radius satisfies

b@,=0 a.e. on B .But b@,/4m= p —dm/dx. ~
Remarh. Since a solution to Eq. (3.2) is determined only
a.e. , p (x) can be chosen g F for all x c A.

Corollary 3.20. Consider the TED problem (3.14) with
V(x) =gz; ~x —R&

~

'. Then any solution to (3.2) can be
modified on a set of measure zero so that p(x) g (0, p„]
for all x.
C. No-binding theorems

Henceforth it will be assumed, as in Theorem 3.18,
that j is such that Eq. (3.1) has a minimum for X ~ )(.,
which satisfies Eq. (3.2). We shall be interested in
comparing three (nonzero) potentials, V„V2, and V&2
= V&+ V2 with V; {=X). At first we shall consider what
happens when the repulsion U is absent. As usual we
define e, (X) =—infS, (p) with A. = Jp and 8, having V,. There
is no U term in S„Eq. (3.1). Define

R = s/g for all atoms (3.12) be(X) =e&2()() — min e({)(()+e2()(2).
)t&+ X2= iL

(3.16)

and, by Eq. (3.9),

lim R(Z, z) = (os'I )
g~OO

(3.13)

Definition. If be &0 (resp &0.) we say that in the ab
sence of the rePulsion U there is binding (resp. no

binding).
There are other ways in which TF theory yields a well
defined atomic radius. See Sec. V.C (6).

j '(p) = 0, o - p - p = (5C, /6r)'

=yp —C, p' +15C, /4 y, pa~ p. (3.14)

j satisfies all necessary conditions. It is neither con-
cave nor subadditive, however. Let us consider V of
the form

v(x( =f dm(y) ~x —y ~
(3.15)

with m being a measure that is not necessarily positive.
In the primary case of interest, dm(x) =gz&6(x —R~).

The question we address here (and which will be im-
portant in Sec. VI) is this: Does p(x) [the solution to
Eq. (3.2)] take values in (0, po) '? It may or may not,
depending on m and A..
ExamPle. Suppose dm(x) =g(x)dx with g(x) (= (0, po) and
Jg=Z & ~. Then p(x) =g(x) satisfies Eq. (3.2) with A.

= Z, and thus p(x) (= (0, p~). This p also clearly mini-
mizes & (p) in Eq. (3. 1) .

Nevertheless, in some circumstances p (t. (0, po).

Theorem 3.19. SuPPose j'(p) = c(=constant for p c I'
= (p„p,] uith 0 & p, & p, & ~, and j'(p) & cp "I"'' for
large p. Let V be given by Eq. (3.15) and let A be a
bounded oPen set such that as distributions on A either
podx &dm & (pa+const)dx or dm & p,dx. Let p(=g satisfy
Eq. (3.2). Then p(x) f Fa.e. (with respect . to Lebesgue
measure) on A.

B. The case of flat j' (TFD)

In TFD theory, as will be seen in Sec. VI, we have to
consider

Theorem 3.21. Suppose j satisfies

j(a+b) ~ j(a)+j(b) +aj'(b) +bj '(a), a, b & Q. (3.17)

[Ifj is subadditive then Eq. (3.17) is satisfied. j(t)
= t5? satisfies (3.17).] Then be &0.

Proof. For i =1,2 let X; minimize in Eq (3.16) and let
p; be the minimizing p for 8; with Jp; & )(.;. Recall e, ()()
is monotone nonincreasing. Let p =—p&+ p2 be a trial func-
tion for e&2 in 8» and use the variational equations (3.2)
for p; and the fact that P;(x) & 0. ~
Rem«h. The condition (3.17) is satisfied in TF theory
but not in TFD theory.

Theorem 3.21 says we can [and do, if j satisfies Eq.
(3.17)] have binding if the repulsion U is absent. The
no-binding theorem, which we turn to now, relies on the
addition of Uwhich, by itself without 8, obviously has
the no-binding property.

Proposition 3.22. Ifj is convex and j(Q) =Q, then j has
the superadditivity property: j(a+b) & j(a)+j(b). Ifj
is strictly monotone, then the foregoing inequality is
strict &chen a, b gQ.

Note We assumed that j is convex in all cases There-
fore Theorem 3.23 holds in all cases.

Definition. Let

1
V, ,

~

+ m, (m; a measure)
~X

be in 33„Then

D(m„m2) —= JI dm&(x)dm2(y) (x —y ~

Theorem 3.23 (no binding). Let m„ i = 1, 2 be non-
negative measures offinite mass z; & 0 and V; (= X). Then

Proof. Cf Benguria, 1979, Lemmas 2.19, 3.2. First,
it can be shown that @,c H (A) (Sobolev space). Let B
=lx

~
p(x) c E)9 A. On B, (I(, —p, = a. and since @,(= H2(A),

bE(&) =-«()(.) + 2D(m„m, ) o 0.
Ifj is strictly superadditive then & Q holds.

(3.18)
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Remarks. Obviously &E(A) is the energy difference when and
the repulsion U is included. Binding never occurs.
particular, if Be„/Ba =—

Thus

then

ntf —— z~5 x —R~, z~6 x- R;
Q+

Jn TFD theory j is not strictly superadditive. As we
shall see in Sec. IV.C, it is possible to have a neutral
diatomic molecule for which equality holds in Eq. (3.18).
Proof. We give two proofs. The LS proof in the neutral
case A. =zf+z2 is the following: Clearly Xf ——z»
=zz, p, f

——p. 2= p. f2
——0. Consider mf - o.m f A, f 'Qz f,

0 & e &1. By Theorem 2.13 we have

&(~q~ —&q+ 2Dtam&, I))/Ba f dm, {~)[@,(z) @,~x~]

But pt2(x) ~ Q, (x), all x (Theorem 3.4 and following re-
mark). When o=0, DE=0, so this proves the theorem.
In the non. -neutral case the p., c0 and it is necessary to
take into account the change of p., with n. This is corn-
plicated (see LS).

The second proof is due to Baxter (1980). For any p, 2
with fp» ——X we can, by Prop. 3.24, find g, 0 &g(x)
& p»(x), and h(x) —=

p &2(x) —g(x) such that P~(x) = Q, (x)
= V, (x) a.e. when h(x) & 0, and g, (x) & V, (x) a.e. when
h(x) =0.

Let a = fg, b = fh Th. en

min (e, (X,) + e, (X,) l x, + A.,= X$ e, (a) + e, (b ) - S,(g) + 8, (h)

- e„(~)+2D(m„m, ). (3.19)

The third inequality uses the superadditivity of j. If j'
is strictly nionotone this superadditivity is strict (and
so is the final inequality) provided gv p„. If g= p&2 a.e.
then g, &~,

& V, and hence X &z& must hold. Choose ~&
——X,

X,=O and note that (e&) & $,(p„) because p„does not
satisfy Eq. (3.2) since V, wO. Equation (3.19) then gives
strict inequality. R

Proposition 3.24 (Baxter, 1980). Let Vc ~ and let p(x)
~ 0 be a given function with lxl '~ p —= g, c:m. Assume
p c L~ for some P & —', and D(p, p) & ~. Then there exists
g with 0 g(x) p(x) such that P~= lx l

'~g satisfies g~(x)
= V(x) a.e. when p(x) —g(x) ~ 0 and g, (x) =. V(x) ae.
Proof. Baxter proves this when p and g are measures.
We give a simpler proof for functions. Consider g(g)
=D(g, g) —fVg and E = inf ($(g) l

0 & g(x) & p (x) ) . Let
g"be a minimizing sequence. There exists a subsequence
that conver ges weakly in L~ to some g and, by Mazur's
theorem (1933), there exists a sequence h" of convex
combinations of the g" that converges strongly to g in
L~. Then a subsequence of the h" converges a.e. to g.
Clearly, 0 & h" (x) & p(x). Since S(.) is convex (this is
crucial) g(h") —E but, by dominated convergence, g(h)—h(g). So g minimizes and satisfies (a.e.): V(x) = g~(x)
when 0 &g(x) & p(x); (,(x) & V(x) when g(x) =p(x) and p(x)
& 0; g~(x) ~ V(x) when g(x) =0 and p(x) & 0. We have to
eliminate the possibility P~(x) —V(x) —= f(x) & 0 when g(x)
=0. We claim P~c. X) and hence f is continuous and goes
to zero at ~. Since g & p, P~ & (, so g~

—0 at infinity. To
examine the continuity at x =0, write P~= h+ (g~ —h)
with h= lxl '+(yg) and x is the characteristic function
of the ball lx l & I. Clearly q~&, —h is continuous at x=0.
Moreover, Xgc L~ 8 L' so h c50 by Lemma 3.1. (It is

here that p~-', is used. ) Now, since fez), B =/xi f (x)
& Oj. is open and, since x cB~ g(x) =0, f is subhar-
monic on B. But f vanishes on the bounda, ry of B and at
infinity, so B is empty.

IV. DEPENDENCE OF THE THOMAS-FERMI ENERGY
ON THE NUCLEAR COORDINATES

In the previous sections TF theory was analyzed when
the nuclear coordinates fR, ) are held fixed. The one
exception was Teller's theorem (Theorem 3.23) which
states that the TF energy is greater than the TF energy
for isolated atoms (which is the same as the energy
when the R, are infinitely far apart). Here, more de-
tailed information about the dependence of E on the R,-
is reviewed.

Note that in this section (and henceforth) E refers to
the total energy, [Eq. (2.11)], including the repulsion
U. This is crucial.

Although several unsolved problems remain, a fairly
complete picture will emerge. The principal open
problem is to prove the positivity of the pressure (Sec.
IV.B) for subneutral molecules, and to prove it for de-
formations more general than uniform dilation. The
results of this section have been proved only for TF
theory, and it is not known which ones extend to the
variants (see the discussion of TFD theory in Sec. IV.C).

A. The many-body potentials

The results here are from Benguria and Lieb, 1978a.
As usual, the two-body atomic energy is defined to be
the difference between the energy of a diatomic mole-
cule (with nuclear separation R) and the energy of iso-
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lated atoms. Teller's theorem states that this is al-
ways positive. %e shall now investigate the k-body en-
ergy which can be defined similarly. The three-body
energy will be shown to be negative, the four-body posi-
tive, etc. In all cases, only neutral systems will be
considered; in this case there is a unique way to appor-
tion the electron charge among the isolated atoms,
namely, make them all neutral. An interesting problem
is to treat the k-body energy for subneutral systems.

Definitions. When c =fc„c2,. .. , c~} is a finite subset
of the positive integers with le j

= h elements, E(c)
denotes the TF energy for a neutral molecule consisting
of nuclear charges z, , ) 0 located R,, Q(c, x) denotes
the TF potential for this molecule. The z's can all be
diff erent.

1)II I
+ I c IE (b ) (4.1)

b~g

is the lc I
body energy for this molecule. Thus, if c

=f 1, 2}, j
c

j

= 2 and the two-body energy is c (1, 2)
=E(l, 2) —E(1)—E(2) a,s expla. ined above. If c =(1,2, 3},
lcl=3 and the three-body energy is

c (1, 2., 3) =E(l, 2, 3) —[E(1,2) + E(1,3) + E(2, 3)]
+ E (1) + E(2) + E (3) .

E(l), E(2), E(3) are atomic energies, of course. From
Eq. (4.1)

over the terms smaller than P bo-dy, the sign of the
' error is the sign of the first omitted terms.

Theorem 4.3 (Monotonicity of the many-body potential).
Suppose that bC c and jb j» 2. Then

(- 1) ~ 'z (b) ) (- 1)"E(c) .
Theorems 4.1 and 4.3 imply, for example,

0 ) c (1,2, 3))—min [c (1,2), c (1,3), c (2, 3)] .
Theorem 4.4. If b C c and c is not empty

y(b, c, x) —= Q (—1)"'" y(a, x) (0.
QC:gC:g

Partial Proof. Basically Theorems 4.1, 4.2, and 4.3
are corollaries of Theorem 4.4 through the relation, for
j(=c,

BE(c) =lim [Q(c,x) —z,. jx —R, j }, (Theorem 2.13).
Bz ~ & Rg

As an illustration we shall prove here that c(l, 2, 3)
&0; surprisingly, the proof is much more compli-
cated when jc j

&3. The proof for
j
c l= 3 only uses

that the function (j') ' is convex [cf. Eq. (3.1)]. The
proof for jc j

) 3 requires that j(p) = p" with —', & h ~ 2.

First note that c(1,2, 3) =0 when z3=0. Thus it suffices
to prove that Bc(1,2, 3)/'Bz3 ——E(R3) &0, where

5'(x) —= &f& (1, 2, 3, x) —Q (1,3, x) —Q (2, 3,x) + @(3, x) .
E(c) = Q c(b).

QC"
(4.2) Now

It is worth remarking that the many-body energies
(4.1) are defined in terms of the total energy E It is.
equally possible to use e =E —U on the right side of Eq.
(4.1). e is the electronic contribution to E, so the cor-
responding c's would be the electronic

contribution

to
the many-body Potential. However, note that U contains
only two-body pieces, z,z; jR; —R, '. Therefore the
two sets of c's agree whenever jc» 3, i.e. , the three-
and higher-body c's are entirely electronic. As far as
the two-body energy is concerned, z(1, 2) „,) 0 (Teller)
but

c (1, 2)„„=c (1, 2) „,—U(1, 2) & 0

(Theorem 3.21).
In the following b ~ c means b is a subset of c and

bg c.
Theorem 4.1 (Sign of the many-body potential). If «s
'fEot 8mPfy

(—1) "c(c))0.
More gene~ally, if b C c and esther jcgb j

2 or else
jb j=0 and lc j) 0

E'(b, c) = g (- 1) ' ' E(a)) 0.

Theorem 4.2 (Remainder Theorem). If 2 ~ p& lc j
then

the sign of

E'(c) — Q z(b)
bCc

I&l& 8

is (—1)8. In other words, if, in Eq. (4.2), we sum only

b.R= 4v [p (1, 2, 3, x) —p (1, 3, x) —p (2, 3,x) + p (3, x)]

and p= (Q(y)' '. LetB =(x jE(x) & 0}. E is continuous, so
B is open. We claim I' is subharmonic on B, which im-
plies & is empty. What is needed is the fact that a —b
—c+d ~ O~ ~'~'- b'~'- c'f'+ d'~'~ O under the condi-
tions that a» b» d» 0 and a» c» d» 0 (Theorem 3.4).
But this is an elementary exercise in convex analysis.
Finally, as in the strong form of Theorem 3.4, one can
prove that I" is strictly negative. ~

It is noteworthy that al/ the many-body potentials fall
off at the same rate, R . This will be shown in Sec.
IV.C.

B. The positivity of the pressure

Teller's theorem (Theorem 3.23) suggests that the
nuclear repulsion dominates the electronic attraction
and therefore a molecule in TF theory should be un-
stable under local as well as global dilations.

Let us fix the nuclear charges z =fz&, . . . , z~} and
move the R; keeping A. fixed. Under whi ch def ormations
does & decrease? We can also ask when e =E —U, th&
electronic cont ibufion fo the energy, decreases. A
natural conjecture is the fol1.owing: Suppose R; —R,'
with lR,' —R, j- jR'., —R, lfor eve. ry pair i,j. Then

(i) E decreases and e increases.
(ii) Furthermore, if A. , &A, then the decrease (in-

crease) in E(e) is smaller (larger) for X, than for X,.
There is one case in which this conjecture can be
proved; it is given in Theorem 4.7 due to Benguria
(1981).

One interesting case is that of uniform dilation in
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P(/) = —(3l2) 'dE'(/)/dl

= —(l/3)dP(l )/dl,

(4.3)

(4.4)

which each R; —lR;. For this case we define the pres-s'.e and xeciPxocal comP&essibilzjy to be x-R; x,—R; 3p x dx
Ix-B j) g

=-»m ~.&e(x)+(., / )'&'(16~/3) lx-R,. I»2].

(4.7a)

(4.7b)

v,.(&)=I dm,. (v)
l

v —x~ (4.5)

and with m; a positive measure of mass z;. Take

V(x)=g V, (x-R,.).

Then e is a C' function of the R; and

V'~e= VU,. x-R,. p x dx= — dm, . y V y+R, ,

(4.6)

with g= lxl '~ p. Equation (4.6) is clearly true, and
easy to prove if the m; are suitably bounded. Benguria
(unpublished) proved (4.6) when V;(x) =z; lxl ' for lxl
& a and V;(x) =z;a ' for lx I

& a, with a & 0, i.e., dm;(y)
=z;(const)&(ly I

—a). In this case, the last equality in
Eq. (4.6) follows from LS, Lemma IV.4.

For point nuclei, on the other hand, (4.6) has not been
proved; indeed, the quantities in (4.6) are not even well
defined. We conjecture that the following is true when
V;(x) =z; lxl '. e is a &' function of the R, on the set
where R;gR,-, for all igj, and

where E(l) is the energy. This definition comes from
thinking of the "volume" as proportional to / . If K(l)
is the kinetic energy [Eq. (2.20)] then

3/ P (l ) = E(l ) + K(l ) .
To see this, define E(y, l). to be the energy with the pa-
rameter y thought of as a variable (but with A fixed).
Then, by setting p(x, l) =l ~p(x//, /), one easily sees that
E'(y, l) =/ E(y/l, 1) and K(y, l) =/ K(y//, 1). Equation
(4.4) follows from this and Theorem 2.13.

Note that Eq. (4.4) is true (for the same reason) in
Q theory and also in TFD, TFW, and TFDW theories

.provided K is interpreted as Eq. (2.20) in TFD and as
(2.20) +bf [Vp'~2] 2 in TFDW and TFW.

That e=E —U increases under dilation has also been
conjectured to hold in Q theory when X» Z. It is known
to hold for one electron, but an arbitrary number of nu-
clei (Lieb and Simon, 1978). There is one simple state-
ment that can be made {in all theories): The (unique)
minimum of e occurs when / =0 (for any X & 0), i.e. , all
the nuclei are at one. point. To prove this, assume
R&, .. . , R~ are not all identical and let p be the mini-
mizing solution. Let g= lx I

'~ p. p has a maximum at
some point Rp ~ Now place all the nuclei at Ro and use
the same p as a variational p for this problem. Then,
trivially, e(R„.. . , Ro) & e(R„.. . , R~), with the strict
inequality being implied by the fact that this p does not
satisfy the variational equation for Ro, . . . , Ro.

It is useful to have a formula for the variation of e
with R;. A natural extension of Theorem 2.13 (a
"Feynman-Hellman"-type theorem) would be the follow-
ing: Suppose V&, . . . , U„cm with

Equation (4.7a) makes sense because, by Theorem 2.8,

p(x)=(z. /y)"'Ix-R*l "'+o(lx-R
I

"')
near R;; the angular integration over the first term
vanishes. This leading term in p implies that near R;,
g(x) = (const) —(z, /y)'I'(16~/3) lx —R; I

'I'. The nondif-
ferentiable, but spherically symmetric term in g is sub-
tracted in Eq. (4.7b).

The following theorems have been proved so far.
(Theorems 4.5 and 4.6 are in Benguria, and Lieb, 1978b;
Theorem 4.7 is in Benguria, 1981.)
Theorem 4.5 (Uniform dilation). ReP/ace each R,. by
/R,. and call the energy E(X, l). If A. = g then E(A, , l) is
strictly monotone dec+easing and convex in l. In pax-
tzculay, the pressure and compressibility axe positive.

Remarks. (i) If A =0 the conclusion is obviously also
true. In Benguria and Lich (1978b) it is conjectured
that this theorem holds for all X. That e =E —U is
monotone incxeaszng is also conjectured there.

(ii) In Benguria and Lieb (1978b) several interesting
subadditivity and convexity properties of the energy and
potential are also proved.

Theorem 4.6 (Molecule with planar symmetry). Suppose
the molecule is symmetric zenith respect to the plane P
=f(x', x, x ) Ix'=0 j and suppose no nucleus lies in the
plane. Meum'alzty is not assumed. I et R,'. denote the 1
coordinate of nucleus i and, for all i, reP/ace R,'. by R,'

with + if R~» 0, and l ~ 0. Then for all fixed X & Z,
E zs decreasing in l.
Rem«k. For a homopolar diatomic molecule the dila-
tions in Theorems 4.5 and 4.6 are the same. Balazs
(1967) first proved Theorem 4.6 in this case. For a
general diatomic molecule, Benguria's Theorem 4.7 is
the strongest theorem.

Theorem 4.7. Suppose theme exists a plane P containing
R&, . . . , R„and suck that all the other R& (with j= m + 1,
. . . , k) are on one (oPen) side of P (call this side P').
Assume the nuclei at R&, . . . , R axe point nuclei, but
the nuclei at R, &, . . . , R, axe anything in & and given by
Eq. (4.5) with the suPPorts of m, c P' (this includes Point
nuclei). Let n be the normal to P Pointing away from
P'. Let /&, . . . , l ~ 0 be given and let R,. —R,. +l,.n for
i = I, . . . , m. Let E(g, l) denote the energy for fixed g & &
and let zE(X, l) =E(X, l) —E(X, O) denote the change in en
ergy. Likewise define Le(X, l) =~E(A, l) —b. U. Then.

(i) ae(x, /)~ 0,
(ii) &E(z, l) & 0,
(iii) aE(y„l) &&E(y„l) if x, & Z„
(iv) ae(z„l) & &e(z„l) if x, & z,.
To prove Theorem 4.7 the following Lemma 4.8, which

is of independent interest, is needed.
I

gemma 4.8. Assume the plane P, goith R„.. . , R in P
and R &, . . . , R~ in P' as in Theo&em 4.7. Hozoevex,
point nuclei axe not assumed. Instead, assume each U,.
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(= D and given by Eq. (4.5), wzth m; required to be spher
really symmetric for i=1, . . . , m. This includes Point
nuclei. Assume also that the support of m; C P' for i
=m+1, . . . , h. If xc= P' then x* is defined to be the re-
flection of x through P. Let Q be the potential. I'or
x(=P", let @ (x)=@(x ) and f(x) =@(x)—(t) (x). Then

(i) f(x)&0 for xcP'.
(ii) Eor each x(= P', f (x) strictly decreases when X

incxeas es.
(zii) p(x) —p(x )» 0 for x (= P'.

Question. Is it true that p(x) —p(x ) is a monotone in-
creasing function of A. ?

Proof. (i) Clearly f (x) =0 on BP'=P and a,t ~. Let B
=fx(= P'~ f(x) &0). Since each V, (x) is symmetric de-
creasing the singularities of V are not in B. Thus B is
open. On B, —&f(x)/41z» —p(x)+ p(x ) & 0. Thus f is
superharmonic on B so B is empty. By the strong maxi-
mum principle f (x) & 0, in fa.ct, for x (= P'.

(ii) Let A.
' &X with corresponding f' and f. We want to

p~ove B=(xcP'If(x) —f'(x) &0) is empty. B is open
and f-f ' = 0 on P and at ~. ~ (f-f ')/4 zz = ap 2 —b 2 ~ 2

+d2~2=—h, where a=(p —p, , b =(t)' —Zz', c=(p —p, ,
By (i) and Corollary 3.8, a» b ) d and a) c

~ d for all xcP'. In 8, a+d~ 5+c. Thus h~ O in B,
whence f f' is subha—rmonic on B and hence B is empty.
Again, one can prove the stronger result that f-f' &0
for x(=P . Trivially, (i)~ (iii) through the TF equa, —

tion. 0
Proof of Theorem 4.7. We may assume all the l,. are
equal to some common l, for otherwise if l& ~ l~ & ~ . . & l
we could first move all the I nuclei by l „ then move

by l2 —l&, etc. Next, replace all the point
nuclei at R&, . . . , A by smeared potentials given by Eq.
(4.5) with dm, .(x) =z;g'"'(x)dx where g'"'(x) (= Co and g '"'

is symmetric decreasing and with sufficiently small
support such that the supports of dm, . (i =1, . . . , m) a.re
pairwise disjoint and also disjoint from the supports of
dm; (z = m + 1, . . . , h). Under these conditions, e is C'
in R&, . . . , A in some neighborhood of the original
R„.. . , R„with derivatives given by Eq. (4.6). We shall
prove

(i)' n .
Vzz .e-

(zi)' n V,. E & 0,
and that (iiz') and (iv) hold for these derivatives. Then the
theorem is proved because the original point potentials
z; jx

~
can be approximated in L5 2 norm by these

smeared potentials z,. ~x ~

' g'"', and the energies e'"'
and &'"' converge to e and E by LS, Theorem II.15. If
(i)' holds for e '"', then (d/dl)e(")(A, l)» 0 with R; —R,
+ln, i=1, . .. , m, and, by integration, (i) holds for e~).
Then, when n —~, (i) holds for e. The same applies to
(ii)-(iv). Henceforth the superscript (n) will be sup-
pressed.

Assume n = (1, 0, 0), P = f x
~

x' = 0], and thus (R,.)' = 0
for i = I, . . . , m. Since g is symmetric decreasing,

(Sg/ax'}(x', x', x') = —x'h(x', x', x')

with h(x)» 0 and

h(x', x', x') =h(-x', x', x') .
Likewise,

(SV,./ax )(x,~, x ) = z,.xP(x', x, x'),
and P has the same properties as h. To prove (i)' use
Eq. (4.6) whence

x x„x/x,'= —.f .x'), (x —));)X(x)dx

p x —A,. p x —p x x'dx~ 0
x -o

by Lemma 4.8, To prove (ii)' use the second integral
in Eq. (4.6), whence

B;=—n &, E= dm, . yn ~ V y+g.

where (p is the potential. [Note: V,.(x —R,. ) 1s sym-
metric in x about R;, so the term )(' V,. (x —R, ) does not
contribute to this integral. ] Since V; is C" it is ea.sy to
see that @ is also C near R, . Now integrate by parts:

Vg y y+P; dy

y'& y x+&; dy

y'h( y)[@( y+R)- @ (y+R;)]-0
y ~0

by Lemma 4.8. To prove (iii) note that the last quantity
[ ] decreases when X increa. ses by Lemma 4.8. Clearly
(iii) is equivalent to (iv). ~
Proof of Theorem 4.6. Let p(x) be the density when l =0.
For l & 0 use the variational p given by p(x', x, xz)
=p(x'wl, xz, xz) if x'««l and p(x) =0 otherwise. Then all
terms in the energy S(p) remain the same except for the
Coulomb interaction of the two charge distributions on
either side of the plane I'. This term is of the form

)x())=r d'xd'xf(x)f(x)
x', y&=O

[( 1.+ 1+ 2l)2 + (
2 y2)2 ~ (xz yz)2] —1/2

where f (x) = —p(x) +5~ z, b(x —R,.) and the 5~ is over
those R; with R,'& 0. Since the {oulomb potential is re-
flection positive (Benguria and Lieb, 1978, Lemma B.2),
IV(l) is a decreasing, log convex function of l. ~
Proof of Theorem 4.5. Let z = (z1, . . . , z~) and write
E(z), A(z), A(z), and R(z) for the energy and its com-
ponents (cf. Sec. II.E) of a neutral molecule. These
functions are defined on R ~. For an atom 3P=E+K=o
(Theorem 2.14). By Theorem 3.23, E»g~zE (z&) and,
by Theorem 4.10, K»p", K'' (z,.). This shows P» 0.
Likewise, by Theorem 4.12, zc '» 0 and E(z, l) is convex
in l (equivalently l P is decreasing in l). ~
Definition. Let f be a real valued function on R~ and
z„z„z,c=R", . Then f is-

(i) weakly superaddhtive (WSA) ~f (z1+z2)» f (z1)
+f (z2) whenever (z,);(z2); =0, all 2,

(ii) superadditive (SA)~ f (z1+z2)»f (z1) +f (z2),
(izi) strongly superadditzve (SSA)~f (z1+ z2+zz)

+f (z1)»f (z1+z2)+f (z1+zz).
Theorems 4.9—4.12 are for neutral molecules.

Theorem 4.9. As a function of z c- R~, for each fixed
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xe R~, ,

(i) —@(z,x) is SSA, convex, and decreasing (the
latteris Teller's lemma),

(ii) @(z,x) e C'(R~) and ~ C2(R~QQ),
{ili) @;(z,x) is decreasing in z and ~ Q,

(»»s«&pt i denotes B/Bz, .)
{iv) @;q(z, x) ~ 0 (all i,j) and is negative semidefinite

as a kx k matrix.

Remarh. It is easy to prove that when f e C'(R~) then
SSA is equivalent to f,.&- 0 for all i,j S. ee Benguria and
Lieb, 1978b, for this and similar equivalences.

Theorem 4.10. K(z) c C'(R', ) and c C'(R', $0)
k

(i) K,.(z)=31im 4(z, x) —P 'z&P&(z, x)I,5=2

(ii) K;~(z) = —3 Q z~@;~(z, Rr),

(iii) K{z), R(z), and A(z) are SSA and SA and convex,
(iv) E(z) is gSA (Teller's theorem).

Definition. X(z) —= 3K(z) —g; q z; K; (z).

Theorem 4.11. X(z) is SA and SSA and ray convex
t.e. , X(u, + (1 —X)z,) & XX(z,)+(1—Z)X(z,), 0& &-1,
cohen z&, z&e R. and eithe~ z& —z& o~ z&- z2c= R, .
Theorem 4.12. (i) 3l3P=E+K,

(ii) 9l'a '=6l'P+2E+SX,
(iii) P and z ' are gSA and non negative, -
(iv) l P is decreasing in l. Equivalently, E is convex

in E. EquivaEentry, 2E+SX~ 0
[note: B(l'P)/Bl =2lP- Sl~ '= —(—', )(2E+SX)].
Proof of (iv). 2E+SX=Q for an atom. By Theorem
4.10, 2E+SX 0. a

The proofs of Theorems 4.9-4.12 are complicated.
However, if all necessary derivatives are assumed to
exist, then an easy heuristic proof can be given (see
Benguria and Lieb, 1978b). We illustrate this for K
being SSA, which is equivalent to K,.&~ 0, all i, j. This
will then prove P ~ 0, since K(0) = 0. First we show @;&
~ 0 and then Theorem 4.10 (ii).

Differentiate the TF differential equation [b.Q/4w
= —Pz&&(x —RJ) + (Q/y)3~2, which holds for any neutral
system] with respect to z; and then z;:

L(f&; = 5(x —R;), (4.8)

~ e;, =- (3/4y"')e (4.9)

with 2 = —4/47I'+ (Sy 3~ /2)@(x)'~2. The kernel for g
is a positive function, so @;~0. Likewise @;~ &0 and

@;& is a negative semidefinite matrix.
Next, K= (Sy '~'/5)f @'t', so

Using Eq. (4.9) and integrating by parts,

x, =3

= —3 Q zr Q;q (R~) ~ 0 .

k

Em01 (4.10)

For large l it is reasonable to consider only neutral.
molecules, for otherwise AE = E

' because of the un-
screened Coulomb interaction. In the neutral, case b E
= l r, as proved by Brezis and Lieb (1979). This result
(l ~) is not easy to ascertain numerically (Lee, Long-
mire, and Rosenbluth, 1974), so once again the impor-
tance of pure analysis in the field is demonstrated.
Some heuristic remarks about the result are given at
the end of this section.

A surprising result is that all the many-body poten-
tials are = l . Thus in TF theory it is not true that the
interaction of atoms may be approximated purely by
pair potentials at large distances.

An interesting open problem is to find the long-range
interaction of polyatomic molecules of fixed shape. pre-
sumably this is also = l

Theorem 4.13. Ior a neutral molecule, let the nuclear
coordinates be lR, with (R;,z; j= (R, z) fixed and z,. & Q.
Then

b E(l, z, R) —= l 7C (l, z, R),

where C is increasing in l and has a finite limit, I'(R)
&0 as l-~. I is independent of z. Eurthermore, if
A denotes a subset of the nuclei (with coordinates R~),
and s(A) is the many body potential of-Eq. (4.2), then,
by {4.I~, for IAI~2

i7c(A) Q ( 1) IAI-I sl Zs(R ) (4.11)

and the right side of Eq. (4.11) is strictly Positive (nega
tive) if IAI is even (odd).

Proof of first Part. By scaling, Eq. (2.24), we find that

~E{i,z, R) =I-'(E(i'z, R)- g E"' (I'z, )}.

Therefore, C increasing is equivalent to f=E
pE"' in-creasing in z. But Bf/Bz~ =lim„.s&4

'
(x)

(x), and this is positive by Teller's lemma. All
that has to be checked is that C is bounded above. This
is done by means of a variational p for E ". Let B; be
a ball of radius l&& centered at lR;; the ~,- are chosen so
that the B, are disjoint. Let p;(x) =p' (x —lR;) be the
TF atomic densities for z;, and let p(x) =p;{x) in B; and
p(x) =0 otherwise. Of course fp & Qz~ but this is im-
material for a variational calculation, since the mini-
mum molecular energy occurs when fp=Qz&. It is
easy to.check that f & (const)l-7. Finally, since f is
monotone in each z, , lim, „fmust b'e independent of
the z~. ~

.C. The long-range interaction of atoms

In Sec. IV.B it was shown that the energy of a mole-
cule decreases monotonically under dilation (at least for
neutral molecules). If the R, —lR; then, for small l, E
is dominated by U, so E = l '. To complete the picture
it is necessary to know what happens for large E. We
define
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620 E lliott Lieb: Thomas-Fermi and related theories

Remarks. (i) The variational calculation shows clearly
why I' is independent of the z&. The long-range interac-
tion comes, in some sense, from the tails of the atomic
p's, but these tails are independent of z, namely p(x)
= (3y/&)3 ~x

~

~. (See Theorem 2.10.)
(ii) At first sight it might appear counterintuitive that

the interaction is +l ' and not —l 6, as would be obtained
from a dipole-dipole interaction. The following heuristic
remark might be useful in this respect. Consider two
neutral atoms separated by a large distance R. In the
quantum theory, as in all the theories discussed in this
paper, there is almost no static polarization of the atoms;
i.e. , there is nopolarization of the single-particle density
p. TF theory is therefore correct as far as the density
is concerned. The reason there is no polarization is
that the formation of a dipole moment d increases the
atomic energy by + nd ~ with n & 0. The dipole-dipole
energy gain is —(const)d'R-'. Hence, if R is large
enough, the formation of dipoles does not decrease the
energy. In quantum theory there is, in fact, a —R 8

dipolar energy, but this effect is a correlation, and not
a static effect. There are two ways to view it. In
second-order perturbation theory there are virtual tran-
sitions to excited, polarized states. Alternatively, the
electrons in each atom are correlated so that they go
around their respective atoms in phase, but spherically
symmetrically. This correlated motion increases the
internal atomic energy only by ed, not d . In short, the
—R interaction arises from the fact that the density p
is not that of a structureless "fluid" but is the average
density of many separate particles which can be corre-
lated. This fact poses a serious problem for any den-
sity functional approach. ', It is necessary to predicta

dipolar interaction, yet predict essentially zero
static polarization.

An explicit formula for I"(R) does not seem to be easy
to obtain. Two not very explicit formulas are given in
Brezis and Lieb, 1979. One is simply to integrate the
formula for Bf/M =3l gz,.Bf/Bz,. given in the above proof.
Another is obtained by noting that I' is related to @ in the
limit z —~. This limiting @ can be defined, and satisfies
the TF differential equation, but with a strong singu-
lm'ify at R; instead of the usual z ~x —R,

~

singularity.
As we saw in Theorem 2.11, the only other singularity
allowed for the TF equation is P(x) =y~(3/&)2~x —R;

~

Therefore that peculiar solution to the TF equation does
have physical interest; it is related to the asymptotic
behavior of the interatomic interaction.

TFD theory. Here the interaction for large l is pre-
cisely zero and not l '. To be precise, ~E=0 when the
spacing between each pair ~R; —R,

~

exceeds a critical
length, L(z;) +L(z~). The same is a fortiori true for
the many-body potentials c.

The reason is the following. In TFD theory an atomic
p has compact support, namely a ball of radius L(z).
See Theorem 6.6. When IR; —R~ ~

& L(z;) + L(z,.), then
p(x) =g~ p(x —R,.;zz) where p(; ) is the TFD atomic p.
Since each atom is neutral, there is then no residual
interaction, by Newton's theorem. One may question
whether the p just defined ls correct. It is tr1vial to
check that it satisfies the TFD equation and, since the
solution is unique, this must be the correct p.

V. THOlVlAS-F ERIVII THEORY AS THE Z ~ ~ LIMIT
OF QUANTUIVI THEORY

Our goal in this section is to show that TF theory is
the Z —~ limit of Q theory and that it correctly de-
scribes the cores of heavy atoms. This is the perspec-
tive from which to view TF theory, and in this light it
is seen to be a cornerstone of many-body theory, just
as the theory of the hydrogen atom is an opposite corner-
stone useful for thinking about light atoms. We shall not
review the stability of matter question here (see Lich,
1976).

In units in which A /2m = 1 and
~

e
~

=1 the Hamiltonian
for N ele.ctrons is

II~= —&+ Vx; + x; —x~ +U. 5 1
$& jgfwg

E„, p~(x), and iL will denote the TF energy, p and p,

corresponding to this problem with A. =N electrons if

N& g= g].
1=1

Of course, y is taken to be y~ [see Eq. (2.6)]. If N& Z
then these quantities are defined to be the correspon-
ding TF quantities for N=Z. E~@ denotes the ground-
state energy of H„(defined to be inf specHN) on the
physical Hilbert space K„=n~&L2(R 3; C ') (antisymmetric
tensor product). q is the number of spin states (=2 for
electrons), but it is convenient to have it a.rbitrary, but
fixed. The TF quantities also depend on q through y~.

A. The Z ~ ~ limit for the energy and density

Let us first concentrate on the energy; later on we
shall investigate the meaning of p(x). For simplicity
the number of nuclei is fixed to be k; it is possible to
derive theorems similar to the following if 4'- ~ in a
suitable way (e.g. , a solid with periodically arranged
nuclei), but we shall not do so here. In TF theory the
relevant scale length is Z '~3 and therefore we shall
consider the following limit.

Fix (zo, Ro)=(zo&, R&0),', and X& 0. For each N
=1, 2, . . . , define &~ by Aa~=N, and in H„, rep1.ace z&

by &„zo and R,. by a„'~3R&~. Thus A. = Z'N/Z, and a„ is
the scale parameter. The TF quantities scale as [Eq.
(2.24)]:

(/ 0 ~-1j3RO) ~7 3E (zo RO)
(5.2)

p„,(a '~x, az, a ~~3K)=a2p (x, z, R).
In this limit the nuclear spacing decreases as &~'~3

' 3-Z '/3. This should be viewed as a refinement
rather than as a necessity. If instead the R,. are fixed
=R, , then in the limit one has isolated atoms. All that
really matters are the limits N'~3~R; —R,

Theorem 5.1 (I S Sec. III). With N= Aa„as above

lima„'~3Eg(a„z, a~'~3R ) =E~(z, R ) .
The proof is via upper and lower bounds for E~. The

upper bound is greater than the Hartree-Fock energy,
which therefore proves that Hartree- Fock theory is
correct to the order we are considering, namely N ~3.
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j (x) =g(x- r)exp[ip x] (5.5)

K(),)')=r, (2m) 'f d) «){(x—~) ( ')~x) M{@,r)

x exp[iP. (x —x')]. (5.6)

I, is the identity operator in spin space. It is easy to
check that TrK=N and that for any normalized @ in
I.2, ((II), KP) & 1 by using Parseval's theorem and the
properties of g and M. Thus K is admissible.

We choose [with p=p;„{») in Eqs. (5.7)-(5.26)]

M(P, r) = 8 (yq p(r) I —P ), (5.7)

where 8(t) =1 if t~ 0 and 8(t) =0 otherwise. y~ is given
in Eq. (2.6). One easily computes

K(y, y) =0 'I, pg(x), .

T~(-~)~=(&r~/ )f o(~5)"'«+~f ~~);(x)~'d»,

(5.8)

(5.9)

1. Upper bound for EN

The original I,S proof used a variational calculation
with a determinantal wave function; this i.s cumbersome.
Baumgartner (1976) gave a simpler proof (both upper
and lower bounds) which intrinsically relied on the same
Dirichlet-Neumann bracketing ideas as in I S. Here, we
give a new upper bound (Lieb, 1981a) that uses coherent
states; these will also be very useful for obtaining a
lower bound.

Let y = (x, a) denote a single space-spin pair and

f dy= g; & fdx L. et K(y, y') be any admissible single
particle density matrix for X fermions, namely 0 ~ K& I
[as an operator on I.2(R~; C')] and TrK=N. Let h be the
single-particle operator —A + V(x). Then (Lieb, 1981a)

ES - E~' - E (K) (5.3)

with

E(R) = TrKh+ ff d) d) '~~x —x'i

&& {K(y,y)K(y', y') —IK(y, y') I') .
(5.4)

In Eq. (5.3), Es is the Hartree-Fock energy. Since
~x —x'

~

' is positive we can drop the "exchange term, "
—~K~, in Eq. (5.4) for the purposes of an upper bound.

First, suppose ¹ Z. To construct K, let g(x) by any
function on R such that f ~ g~ 2=1 and let M(p, r) be any
function on R3x R~ such that 0 & M(p, r) & 1 and (27)') 3

x f Mdpdr=N/q. Then the coherent states in I.2(R~)

which we shall use are

The electron-electron interaction term in Eq. (5.4) is
less than D(p, p) because, as an operator (and function),

To see this, use Fourier transforms. Thus

E~~& E (K) & EN + )T2N ')' 5Z2

+ Vx —V~x p x dx. (5.12)

x -'~'dx =B~R'~'=8~~'»Z -'~'.
1& I - &

If N ~ Z, we have established an adequate upper bound,
namely,

Es —EN & (const)N 'IGZ2. (5.13)

Since g =X, this error is =N "~~, and this is small com-
pared to E, which is =N "~3.

If Nv Z we use K=K'+K" where K' is given above
(with N= Z) and K" is a density matrix (really, a se-
quence of density matrices) whose trace is Ã —Z and
whose support is a distance d arbitrarily far away from
the origin. K" does not contribute to @'(K) in the limit
d~oo Q

2. Lower bound for ENQ

In I S a lower bound was constructed by decomposing
R into boxes and using Neumann boundary conditions on
these boxes. However, control of the singularities of V
caused unpleasant problems. Here we use coherent
states again (cf. Thirring, 198'1).

Let $(x), . . . , x))(, Gg, . . . , 0'))() be any normalized function
in BC,~ and let

p„(x) =N g f ~ ( (x, x„.. . , x; a„.. . , cr„)
~

'dx, ~ ~«.
(5.14)

E& = (0, II~I) (5.15)

(5.16)

To bound the last term in Eq. (5.12) note that, by New-

thermore, with the scaling we have employed, ~R; —R~
~

& 2R for all isj and I{t large enough. Since y~ p'~'(x)
& V(x), then for sufficiently large%and for ~x —R,

~

&R we
haye y~ p(x) t3 & 2z; ~x —R;

~

'. Thus the last integral in
Eq. (5.12) is bounded above for large N by

3~-3 j2 g z5/2~
j=1

with

TrVK= Vg x p x dx, (5.10)
It is known that (Lieb, 1979; Lieb and Oxford, 1981)

where p = ig i
+ p and V~ = V+ ig i

For g(x) we choose

(5.11)

for ~x
~

R, and g=0 otherwise, and with R=N t5Z
Then

~Vg['= m'/R'= w'Z'W-'I'.

I~ —— , x; —x;
i & j

(5.17)D(ps ps) —().{)())f os(x-)' '"~ ~

I

Choose any p(x) ~ 0 and @ = V —~x
~

'+ p. Since &(p~
—p, p~ —p) ~ 0, we have for any 0 & c (1
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with

h) +U-D p p — 168 p~/ +cT
i =1

(5.18)

Therefore we can ignore this piece in e, . V —V is
bounded above, as bef or e, by

z~ x —R- ~& R — x —B~

h = —(1 —c)4 —P(x) (5.19)
For large N, ~R, —R, (& 2R and, using Holder's in-
equality,

being a single-particle operat:or.
We shall choose p to be the TF density for the problem

with y~ replaced by (1 —c)yP, and with the same X

=min(N, Z). —P and E are the corresponding chemical
potential and energy.

Let fP„be the coherent states in I- (R') given by Eq.
(5.5) and v&„——(projection onto fP„)(jj) I, . For any function
m(y) = m(x, c) in L'( R ~; C ') we easily compute:

(m, m)= (2e) e f dPde(m, eem), ,

—( . ) f lP«(. ) l'd. .
2

~m~ep, (e)de=(2e) e f dpde p(e)(me„m), (6 , 20)

with @«= ~@~22 Q.
Write @ = Q~+ (@ —@~) and h«= —(1 —c)D —Q«(x). Let

us first concentrate on e, =infe, ((t)), where

ei(P)=(P Z 6'2).

Since gh« is a sum of single-particle operators we
need only consider (t)'s which are determinants of N
orthonormal single-particle functions. If m&, . . . , m~
are such, then

jib(P, x) = g (m, , m, „m,.)

»/5
e2~ —

II pgllg, , 8nR"' Q z5d"

- —
II p, tl, q ( (8~)"'R"'Z] . (5.23)

The negative term e2 is controlled by the r. T& term
through an inequality of Lich and Thirring (1975 and
1976; see also Lich, 1976):

T o I, p, x '~'ax, (5.24)

with I.= —,'(3n/2q)'~'. Furthermore, by the Schwarz in-
equality, J'p4~3 &IN Jp~5 3)'~. 2. If we write fp~5d'3=X
then 82& —X3~5D, with D=() in Eq; (5.23), and

e, + 6 T, —(1.66 ) f pe»
I

«=(2(( — )6/ 6) Tf p"'.
Choose c =Z 'P (this is not optimum). For large Z,
c c 2 and it is easy to see that K & (const)Z7~3 for all
N, g. Thus

0 & & —E & —(const)Z'd 3Z ') (5.26)

Choose R = Z '~2, which is a different choice from
the upper bound calculation. Then D = &~~' and

~ min —D2P '+cLW (1.68)N-'d'X'd'-=I . (5.25)X) 0

Equation (5.22) contains E instead of E; we must bound
the difference. Using p as a trial function for E, E
~ E + [ c/(I —c)]K, where

has the property that 0 ~ M(P, r) ~ q and I'~ —(const)Z'1'Z 'i (5.27)

(2 ) 'f dPd M(P, ) «=
Therefore

e, (P)=(2e) e ff dpde((1 —e)P' —p( ))M(T, )PT

«f (P«('-. (5.21)

e, -))(p, p)+
,

- ()f6«~)ed«f'. (5.22)

Next, let us consider the missing piece 8,= —f (P
—@ )p„The second pie.ce of p, namely —(t) = —~x

~

2 p, has the property that Q- ~gI 2*(t)~ 0 since (j) is
superharmonic and ~g~ is spherically symmetric.

The minimum of the right side of Eq. (5.21) over all
M with the stated properties is given as follows:

jjf(p, &) =a~(4 (~) —(1 —c)P'- V)

for some g~ 0. p, is the smallest p, such that (2p)-3
&& fM(&, ~) ~N. Since &f is the TF potential [for (I c}y ]
we see that p. = p, and

Clearly there is room for a great deal of improve-
ment, for it is believed that E- E& 0 as explained in
Sec. Q.B. But first let us turn to the correlation func-
tions.

3. Correlation functions

In analogy with Eq. (5.14) we define

k&1
'

x 6xg» (5.28)

We wish to obtain a limit theorem for p~~when (t) is a
ground state of H~. But there may be no ground state
(inf specH~ may not be an eigenvalue) or there may be

[It is easy to see that the term —(1.68)N'PIC'2 2 is
negligible as long as N/Z is fixed. ]

Finally —N J ~Vg~ = —NR 2=Z2. Combining all these
bounds, we f ind

&„—& & —(const)Z d'

which is the desired result.
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several. In any case, it is intuitively clear that the
limit of p~~ should not depend upon (I) being exactly a
ground state, but only upon g being "nearly" a ground
state.

Definition. Let P„g„.. . be a sequence of normal. ized
functions with $„(=X„for N particles. This sequence
is called an approximate ground state if

I $„,II„g„)
—Esc Ias'I'-0 as N ~ H. „alw ays has k nuclei.

Theorem 5.2. I.et fg„) be an approximate ground state
goith the scaling given before Eq. (g g), and let p& (x} be
given by Eq. (5.28) u)ith PN, and

5 I -i/3 -X/3
p()(~ ~ ~ ~ ~ xij =a))( p)))pN xg, ~ ~ ~, a. xg) ~

Let p (x~, ~ ~ . , xz) =p(x~) '.p(x,.) u)ith p being the solu
tion to the TF problem for X and {z&~,R&~). (Note that y

=N/Z is nou) fixed. ) Then

('« -p ) ( )x '('- »f X-(x)'"dx

Vxt ~ Q~ ~ ~, pQ,

((. g I.; —.
~~l

'(.).—."'-~(x,x).

Moreover, p~s(x) —p~(x) in the sense that if 0 is any
bounded set in R ~ then

If A. ~ Z=gz, , the restriction that fl be bounded can be
droPPed and p~~- p~ in the creak l, ~ sense.

Proof. The reader is referred to LS, Theorem III.5 for
details. The basic idea is to consider a function
U(x&, . . . , x,.) (=Co"(R 3') and add o fp'Uda'x to the TF
functional, h(p). On the other hand, the potential

AQ~~ pa~~ g- . . . a~~ g ~

t)~~~ t ~

unequal

is added to II~. By the aforementioned methods the en-
ergies are shown to converge on the scale of Q„3. But
BE/6+I~ 0= fp~U. By concavity of E(n) the derivatives
and the limits Q„-~ can be interchanged. Thus, for all
such U, f p~„U- fp~U ~.

One of the assertions of Theorem 5.2 is that, as N- ~,
correlations among any finite number of electrons dis-
appear. A Posteriori this is the justification for re-
placing the electron-electron repulsion Q Ix; —x& I

' by
D(p, p} in TF theory.

B. The Scott conjecture for the leading correction
x'

We have seen that E ' = —CgYI'3 under the assumption
that the nuclear coordinates Rz and charges z; scale as
Z 'I3R&0 and Zz,'. , Qzo& ——1, and A. =N/Z& 0 is fixed. C
depends on A., zo, R . What is the next correction to the
energy? While this question takes us to some extent
outside TF theory, we should like to mention briefly the
interesting conjecture of Scott (1952) and a generaliza-
tion of that conjecture. None of these conjectures have
been proved.

The basic idea of Scott is that in the Bohr atom (no

(5.29)

and

Eo =E TF + aE + o(Z') . (5.30)

Of course E» depends on whether electron repulsion
is present or not, but ~E supposedly does not change,
To calculate D let us first calculate E "' for an atom
without repulsion. The general theory goes through as
before, but now the TF equation is yp ~ = (V—p, )„V(x)
=z/Ix I, fp=N, and p, ) 0, even when N=z. It is found
(Lieb, 1976, p, 560) that p, =z/R, R=3y(4N/7r ) /Sz,
and ET"„=—3z2N' 3(7)'2/4)~ 3/y. Using y~,

ETr — z)I~(3N/z)»(2mq I /h ~)/4
Bohr

The quantum energy is computed by adding up the Bohr
levels. For each principal quantum number n, the en-
ergy is e„=m/2h n~ and it is qn2-fold degenerate. The
result (Lieb, 1976) is

Eq =E Tr +qz'/6+ O(zs~'), (5.3 1)

D=qz //8 (5.3 2)

in the Scott conjecture. Scott's (1952) derivation was
slightly different from the above, but his basic idea
was the sa,me.

The Scott conjecture about the energy ca.n be supple-
mented by the following about the density. Let f„, (z, x)
be the normalized bound-state eigenfunctions for the
hydrogenic atom with nuclear charge z, and define

p"(z, )=qg If...(z, x}l'. (5.33)

This sum converges and represents the quantum density
for a Bohr atom with infinitely many electrons. It is
being tabulated and studied by Heilmann and Lieb. It is
monotone decreasing and a graphical plot of p~ shows
that it has almost no discernible shell structure. Clearly
p (z, x) =z p (1,zx) and is spherically symmetric. By
our previous analysis of the z —~ limit (which strictly
speaking is not applicable when N= ~, but which can be
suitably modified)

z 'p"(z z "ax) —z 'p "'
(z z ' 'x)

Bohr (5.34)

electron repulsion) the electrons close to the nuclei each
have an energy -- Z2. This should also be true in some
sense, even with electron repulsion. Since TF theory
cannot yield exactly the right energy near the singulari-
ties of V, the leading correction shoul'd be O(Z').

The leading correction should have three properties.
(i) It is the same with or without electron repulsion

because the repulsive part of @(x), namely Ix '~ p, is
O(Z4I') for aII x.

(ii) It is independent of N/Z, provided N/Z & 0 and
fixed. This is so because the correction comes from the
core electrons whose distance from the nucleus is
O(Z '). The number of electrons thus involved is small
compared to Z.

(iii) It should be additive over a molecule. If the cor-
rection is Dz for an atom then the total leading correc-
tion should be

Rev. Mod. Phys. , Vol. 53, No. 4, Part I, October 1981



624 Elliott Lieb: Thomas-Fermi and related theories

as z —~. But

p- (z, x)=(z/y, IxI)' '

when p, =0, as we have just seen. Thus

p "(I,s) —
(y& I x I) '~' (5.3 5)

a 'p (a~' 'x)-p'"(x) (5.36)

where p T~ is the TF density for A. , z', , Rz. On the other
hand, for all fixed y,

0po(a 1/0+0+ad)'(z0)0ps(]z0@)
Equation (5.36) has already been proved in Sec. V.A.

(5.37)

TFW Theory. It is a remarkable fact that the TFW cor
reaction, which has no strong a Priori justification, has,
as its chief effect, precisely the kind of correction (i),
(ii), (iii) above predicted by Scott. If 5 is chosen cor
rectly in Eq. (2.8), even the constant D in Eq. (5.32) can
be duplicated. This will be elucidated in Sec. VII. TFW
theory also (accidentally?) improves TF theory in two
other ways: negative ions can be supported and binding
occurs.

C. A picture of. a heavy atom

With the real and imagined information at our disposal
we can view the energy and density profile of a heavy,
neutral. , nonrelativistic atom as being composed of
seven regions.

(2) The inner core. Distances are O(z ') and p is
O(z ). For la.rge v', the number of electrons out to R
=vtz is -v0~2, while the energy -z2v'~2. If 1«zr
«z' 0, p(r) is well approximated by (z/year)0 2. p(r) is
infinity on a scale of z which is the appropriate scale
for the next, or TF region. The leading corrections,
beyond TF theory, come from this region. None of this
has been proved.

(2) The core. Distances a,re O(z ~0) and p is O(z ).
TF theory is exact to leading order. ,The energy is- —z' 3 and almost all the electrons are in this re-
gion. This is proved.

(8) The core mantle. Distances are of order oz
with v»1. p(r) = (3y0/v)0r 0, the Sommerfeld asymp-
totic formula. p is still O(z ). This is proved.

(4) A transition region to the outer' shel/. This region
may or may not exist.

(5) The outer shell. In the Bohr theory, z'~ shells
are filled. The outer shell, if it can be defined, would

as y —~. Equation (5.35) is not obvious, but it can be
directly proved from (5.33).

Thus p" (z, x), whose scale length is z ', agrees nicely
with p» (z, x), whose scale length is z 'l0, in the over-
lap region z '« Ix I«z '~0. This is true even when elec-
tron repulsion is included in p» because of Theorem
2.8(a). The common value is p(z, x) = (z/y0 Ixl)0~ . Be-
cause of this we are led to the following.

Conjecture. Suppose the sequence f g„l c ~ „is an ap-
proximate ground state for a. molecule (with repulsion)
in the strong sense that

I (g~~ H~'4) Epr Iaaf —0 as iV —~

I et pg(x) be given by Eq. (5.14). Recall that R, =a„' i&0, .0
Fix X=K/Z&0 and x&R01, all j. Then, as N —~,

P(r)

cale

ransition
region

outer exponential
shel I fal Ioff

z 2/3
surface

chemistry )'

life /
e

z-t z-"3

FIG. 2. Schematic plot of the electron density p(~) in a neutral
heavy atom of c;harge z. The inner core extends to distances of
order z-~; the core to order z-~~3; the mantle to z-~~3 times a
large number. The. core and its mantle are correctly described
by TF theory. The outer shell extends to distances of order
z~ where p is near zero. Finally. , thereis the surface, and then
the region of exponential falloff. The surface thickness is not
shown.

presumably contain O(z0)0) electrons and each electron
in the shell would see" an effective nuclear charge of
order z2) ~. This picture would give a radius unity for
the last shell and an &ventage density -z ~ in the shell.
Qn the same basis the ave~age electron energy would be
O(z l ) and thus the energy in the shell would be O(z i ).
All this is conjectural, for reliable estimates are diffi-
cult to obtain.

(6) The surface. Here the potential is presumably
O(1), and so is the energy of each electron. Chemistry
takes place here.

TF theory, which is unreliable in this region, never-
theless predicts a surface radius of O(1). We thank J.
Morgan for this remark. His idea is that if the surface
radius R, is defined to be such that outside B, there is
one unit of electron charge, then R, =O(1) because the
TF density is p(r) =(3y0/11)'r ', independent of z, for
large r. Likewise, if Ro is defined such that between
Ro and R, there are z '~3 electrons, then the average
TF density in this "outer shell" is z ) in conformity
with (5). Finally, the energy needed to remove one elec-
tron is O(1) as Eq. (3.11) shows. The radius of this
ionized atom is also O(1) as Eq. (3.13) shows.

In no sense is it being claimed that TF theory is reli-
able at the surface, or even that the existence of the
surface, as described, is proved. We are only citing an
amusing coincidence. It is quite likely that the surface
radius of a large atom has a weak dependence on z.

(7) The region of exponential falloff. p(r) -K
xexp[ —2(2me/4')'t'(r —A)j, where e is the ionization po-
tential, K is the de'nsity at the surface, and R is the sur-
face radius. An upper bound for p of this kind has been
proved by many people, of whom the first was O'Connor
(1973). See also Deift, Hunziker, Simon, and Vock, 1978,
and M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof,
R. Ahlrichs, and J.Morgan, 1980, for recent develop-
ments and bibliographies of earlier work.

The density profile of a heavy atom, as described
above, is. shown schematically in Fig. 2.
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V I. THOMAS-F ERMI-Dl RAG THEORY

The previous sections contain most of the mathemati-
cal tools for the analysis of this model; the main new
mathematical idea to be introduced here will be the j
model and its relation to TFD theory.

The TFD functional is

&.())=&(o)+~J ~

o. = 15C2(64y)

This amounts to replacing J by

(6.7)

(6.(})

(( " (p)= f Z(p(x))dg —f )'p+D(p, p)+U, (6.1)
d. (p) =~(p) + c p.

Note tha. t d (p) ~ 0 and

(6.9)

(6.10)~ (po)=o=d'(po)
for p, =(5C,/8y)'. —n and po are the minimum value
and the minimum point of the function J'(p)/p. Corre-
spondingly, introduce

E.(~)=(n(I4.(p)~ J ~ )=
Theorem 6.2. E (X) is nonincreasing in X and &as a
lower bound, independent of X. Moreover,

g(p) ~ p5/3 3 C p4/3 (6.2}

The term —D= —(3C, /4) Jp4 3 was suggested by Dirac
(1930}to account for the "exchange" energy. The true
electron repulsion I in (5.17) is expected to be less than
D(p, p) because the electrons are correlated. For an
ideal Fermi gas at constant density, I is computed to be
D(p, p) —D with C, = (6/&q)' . There is, however, no
fundamental justification for the Qirac approximation;
it can even lead to unphysical results, as will be seen
shortly. In particular, I is always positive but D(p, p)
—D can be arbitrarily negative. As remarked in (5.17),
there is a lower bound of this form D(p, p) —D (Lieb,
1979; Lieb and Oxford, 1981) with 3C, /4=1. 68 (indepen-
dent of q). In any event, it should be remembered that
Dis Part of the Coulomb energy even though it is mathe-
matically convenient to combine it with the kinetic ener-
gy as in Eq. (6.2).

For simplicity we assume

(6.11)

(6.12)E (X) =E(X) + ok

E(x) = (n(,I
4 ( 0) ( J p - 1, p e

NI
. (6.13)

e (A)
—= E (A) —U=e(A. ) + nA. &0 when X& 0, and e„(X)

—inf, e (&) =e (~) as X-~.
Proof. Again the proof is the same as for Proposition
2.1 and Theorem 2.3. Here, however, J'(0) & 0; the
fact that 8 (po) =J'(p, ) =0 is used instead. The fact
that J ~ 0 is responsible for the lower bound. ~

V(x)= P V, (x —R, ), (6.3)

with V; cu: V; = ~x~ '+ m,. (with m; a non-negative mea-
sure) and ~m,. ~=e, .

Henceforth the superscript TFD will be omitted. All
quantities in this section refer to TFD, and not TF,
theory, unless otherwise stated.

A. The TFD minimization problem

The function space is the same as for TF theory,
namely

g=(p~ pcL, 'nl»', p(x)~Oj. (6.4)

The energy is

E(X)=inf 8(p)
~

p=X, pcd (6.5)

Theorem 6.1~ E(x) is finite, nonincreasing in X, and

x(x)= in( {g(p)~f p- x, pc ))I . B. The g model
6.6

Remark One .consequence of Theorem 6.2 is that dE(A)/
dX~ —n (if the derivative exists). Another is that when
X is large enough so that e (X) =e (~) then e(X) =e (~)

As will be seen, this happens when X~ X, =Z
=Zz~. Thus the graph of e (X) is similar to that for
e T'(X) in Fig. 1. e(X) then has a negative slope, —o(,
at X, and afterwards e(X) has the same constant negative
slope. This is a highly unphysical feature of TFD theory
which arises from the fact that one can have spatiaHy
small "clumps" of density in which p =po, arbitrarily
far apart, These clumps" have an energy approxi-
mately —np, (volume) and are physically nonsensical
because the —p term, which causes this effect, is a
gross underestimate of the positive electron repulsion
which it is meant to represent. There is no minimizing

p for these "clumps" because for no p is the energy ex-
actly —np, ~ (volume). The "inf" inEq. (6.5) is crucial.

Moreover, e(X) —= E(X) —U &0 when X& 0.

Proof. Same as Proposition 2.1 and Theorem 2.3. The
crucial fact to note is that J(0) =J'(0) =0, which permits
us to place surplus charge density" at infinity.

It is not immediately obvious that E(X) is convex be-
cause J is not convex. The proof of convexity is com-
plicated and will be given later (Theorem 6.9}.

A second difficulty is that E(X) is not bounded below
for all X. This is so because J is not positive. This
latter difficulty can be dealt with in the following way.
Introduce

Now we must deal with the fact that J is not convex.
To this end we follow Henguria (1979), who introduced
the "convexified" j model. With its aid, Benguria was
the first to place the TFD theory on a rigorous basis for
a, certain class of amenable potentials in Eq. (6.3), which
is defined in Sec. VI.C. This class includes the point
nuclei. It will turn out that the j model also permits us
to analyze TFD theory for all potentials, not just the
amenable class. However, for nonamenable potentials,
the analysis is complicated and the final result has an
unexpected feature, namely, that a minimizing p for E
may not exist, even if X &X . The j model is explored in
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=0, 0~p~p (6.14)

The derivative of this convex function is given in Eq.
(3.14). S,.(p) is given by Eq. (6.1) with J replaced by j.
E, (A) is defined by Eq. (6.5) with 8 replaced by 8,

By the Inethods of Secs. II and III the j model has many
of the same properties as TF theory.

Theorem 6.3. If Vis given by Eq. (5.3) and if gis re
Placed by g~, E by E, , and e by e,. =E& —U, then the
following results of TF theory hold for the j model
(they also hold for TF theory, of course, with this V) .
(Ignore any mention of TFD and TFDW theory in the
cited theorems. ):

PxoPositions 2.2 and 2.2; Theorems +.3 and 2.4; the
definition of A.,; Theorem 2.5; Theorem 2.5 [with Eq.
(2.18) rePlaced by (3.2)]; Theorem 2.7; Theorem 2.12
(for a Point nucleus); Theorem 2.13 without the y de
pendence (for point nuclei; the last two equations in this
theorem have an obvious generalization for non point-
nuclei. ); Theorem 2.14 (for point nuclei) is changed to
(a) 5K/3 =A —2R —p, A. —nA +4D/3, (b) 2K=A —R+D
for an atom, with D = (3C, /4) fp4/z (note that Theorem
3.19 must be used in the Proof); Equation (2.22); Theo
rem 3.2; Theorems 3.4, 3.5 [Benguria (1979) has shozvn
that if Wis the Potential of Point nuclei then Q'- @ cIIz
away from S~]; Corollaries 3.7, 3.8, 3.9, and 3.10
(note, in Particula~, that PrF & @~ "'"""' for fixed lz);
Lemma 3.12; Theorem g.gg, Corollaries 3.&4 and g.g 7;
Theorem 3.18 (i.e. , X, = Z); Equation (3.5); Sec. III.B;
Theorem 3.23 (but note that equality can occur. See
remark at the end of Sec. IV.C).

Remarks. (i) Theorem 2.8(a) holds in the sense that
P(x) = (zz/y)z/2~x —R&

~

z/z near Rz.
(ii) There is no simple scaling for the j model, as in

Eq. (2.24) for TF theory.
(iii) We emphasize tha. t a minimizing p exists if and

only if A. ~Z. This p is unique and satisfies the Thomas-
Fermi Dirac e-quation (3.2).

(iv) Question. Under what conditions do the conclu-
sions of Corollaries 3.13, 3.15, and 3.16 and Theorem
3.21 hold for the j model '? Question. To what extent do
the results of Sec. IV ca.rry over to the j model?

(v) To prove the analogue of Eq. (2.15), Mazur's theo-
rem can be used, as in the proof of Proposition 3.24.

There are some useful additional facts about the j
model not mentioned in Theorem 6.3.
Theorem 6.4. If C, increases then (i) @(x)—p, (X) de
creases and tz(A} zncreases, for fixed X; (ii) @(x) de-
creases for fixed p, .
Proof. By Corollary 3.10, since j'(p) decreases with C,
for fixed p. ~

Theorem 6.5. For all X, E»(g) & Ez(A) & E(A) since
J(p) &j (p) &3yp5/z/5. On the other hand, suppose Vis

detail here because, as will be seen in Sec. VI.C, its
energy is the same as E (A) for the TFD model. More
over, for amenable potentials the density p of the two
models is also the same.

Definition.

1(p) =~.(p), p - po = (5C. /8y)'

the Potential of k Point nuclei as in Eq. (2.1). Then for
A. & A.,=Z,

E" ())-E (~) —»+ (3C, /4)) ' '((5cz/2y)Z' '] ' '

+ 27C,'Z/(10y), (6.15)

zvhere —s, zs the TF energy for a neutral atom with
z=1 [see Eq. (7.15)].
Remarks. (i) When A. & Z then (ET' — E)(y) = (ET'
—Eg) (Z).

(ii) Clearly Eq. (6.15) can be improved. But it does
show that the effect of the Dirac term is to decrease the
energy by O(Z~/z) for large Z. (Note: by Theorem 6,8,
E, —n A=. E.).
Proof. Let p be the minimizing density for E, , and p"'
that for E ~. Use p as a trial function for E '. Noting
that p(x) y (0, po] a.e. (Theorem 3.19), we have ET"
& 8 '(p) = E, —nX+ (3C, /'4) fp4/z By. Theorem 3.19,
ypz/z —C, p'/z+ n=Q —p. when p& 0. But by Corollary

10 Q p & QTI tz
TI" & y(p TF)z/z Thus pz/z & (p Tl )z/3

+C,/y) p"'. Squaring this and using J (pT~ )"'p'/' & A.

(Holder). and fp" ' & X(p ) "', and f(p ~''T)'~'

& P. f(pT') "]"',we obtain Eq. (6.15), but with
5KT' /3y in place of f]. By Theorem 2.14(a), 2K" ~ /3
& -e T' and by the remark preceding Eq. (4.5), e'~
& eT~' (al. l nuclei at one point) .~

The next theorem states that p always has compact
support, even when A. =A, When A. &A., this is also true
in TF theory (Lemma 3.11). The proof we give seems
unnecessarily complicated; a simpler one must be pos-
sible.

Theorem 6.6. Suppose V= ~x
~

'~ m ca, with m a non
negative measure of compact support and fdm = Z. Let
p be the minimizing j model density for A. &A,, =Z. Then p
has compact support. Moreover, suppose supp(m)
CBs, the ball of radius R centered at 0. Then supp(p)
C B„for some r depending on R and Z, but independent
of A.. r & 2R+ tZ(po Rz) ' for some universal constant t,
independent of all parameters.

Proof. The strategy is to construct a function f such
that supp(p}C supp(f). Let Ss=BB„be the sphere of
radius R. There exists a function (surface charge dis-
tribution) v on Szs such that V„ the potential of v out-
side B», is t/', i.e.,

V(x) = V, (x) =—4tl(2B) J dntr(D) ~x —Mn~

for ~x ~& 2R, where Q denotes a point on Sz and fdQ=1.
It is easy to see that cr is a bounded, continuous function
since pspu( )Cm:B asnd ~v(Q) ~&sZR z for some uni-
versal constant s. Let Z(Q)= —v(Q)+sZR zo 0, and
let

dM(x) =dm(x) + Z (x/2R)6(jx
~

—2R)dx.

If V„= ~x ~
'~M, we see that V„(x) & V(x), all x, and

V„( ) =Qjxi fo
i i & 2R, with 0- Q- (1+16 s)Z.

Vu —V is a bounded function in I). Now let f (x) = po for
2R & jx

~

& r and f (x) =0 otherwise, with ff= Q. Let g= (x)-'*p, g = )x (-'~f, @= V- y, h= V„-g where p
satisfies Eq. (3.2). We claim u(x) —= h(x) —Q(x)+ p, & 0. If
not, let B=(x~u(x) &0]. B is open since h —@ is con-
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tinuous. —&u/4gg& -f+p. But f& p onB since, for
lx l

~ 2R, f (x) =0; for lxl & 2R, p(x) is either 0 or & po
a.e. by Theorem 3.19. If p(x) =0 then @—)g ~ 0 by (3.2)
and h(x) is clearly & 0, so x)g. B; if p(x) & po, p f &—0.
Thus u is super harmonic on B and, since u = 0 on BB
and u= p, » 0 at infinity, B is empty. Now consider A
=fx I« lx I }.In A. +u =4ggp& 0 and u ~ 0 on 3A and
at infinity. Therefore either (i) p=0 a.e. in A or (ii)
u& 0 everywhere in A. In case (ii), @ & p, in A because
h= 0 in A. But then, by Eq. (3.2), p =0 a.e. in A. The
bound for r is obtained by 4gg(r —2R)(2R) & (4gg/3)[r
—(2R)'] = Qj po. ~
Remark. For an atom with nucleus located at the origin,
R can be chosen to be any positive number. If the in-
equality for r is minimized then we find p(x) =0 for
l

Io3(t2'/p)"'.
Theorem 6.7. Suppose Vc Q and p(= e are such that the
second line of Eq. (3.2) holds with p, =0, in the sense
that @,(x) & 0 a.e. when p(x) = 0 and p(x) =0 a.e. when rf&, (x)
&0. Let A be the comPlement of the suPPort of p. Then

Q
—= 0 on A, the closure of A.

Remm k. Theorem 6.7 does not mention j. However,
the theorem is meaningful only if supp(p) is not all of
R'. This does not happen in TF theory when p. =0, but
it does happen for the j model if the hypothesis of
Theorem 6.6 holds. The significance of Theorem 6.7
is that there is total shieldhng in TFD theory. This is
in contrast to TF theory, where there is under-screening
in the neutral case in the sense that the potential falls
off only with a power law. One consequence of Theorem
6.7 is that two or more molecules, each of fixed shape,
do not interact when their supports are disjoint. See the
remark at the end of Sec. IV.

P«of. Let B =(x
l Q(x) & 0 }. Clearly the singularities

of V are not in B, so B is open. On B, AQ ~ 0 since
p=0 a.e. in B. But /=0 on BB and at infinity so B is
empty. Therefore Q & 0 everywhere. Let D=[x lp(x)
=0}. @ ~0 a.e. on D. Since AC D is open, and Q is
continuous on [x l p(x) & 1},Q -=0 on A, and hence on A.
Q

C. The relation of the j model to TFD theory

We shall show that the energy of the j model is exactly
E (A) =E(A) + nA. for the TFD problem. Thus all the facts
about the energy in Theorems 6.3 and 6.5 hold for TFD
theory. However, the densities may be differentl

Let us start with the simplest case studied by Bengu-
ria (1979).

Definition. A (non-negative) measure m is said to be
amenable if

dm(x) = P z;b(x —R;)dx+g(x)dx

with z; & 0 and g satisfies: (i) g.- 0, (ii) gc L,"„, (iii) If
A=(x lg(x) =0} and -A is its complement then R'g
[Interior(A) LJ Interior (-A)] has zero Lebesgue mea-
sure, (iv) g(x) & p, for x/A. (v) V= lxl '~men. m is
strongly amenable if g(x) & p, for x r,' A.

Remark. This amenable class is more restrictive than

necessary for Theorem 6.8. Technicalities aside, (iv)
is the crucial point. 6 measures (corresponding to point
nuclei) are strongly amenable.

Theorem 6.8. SuPPose that inE'q. (6 I) V= lxl "m
and m is amenable. Then E (X) = E(A) + cy A. for the TED
problem equals Eg(X) for the j model. Moreover, there
is a minimizing p for the TED Problem gf and only if A,

& X,=P= fdm. This pis unique andis the same as the

p for the j model. It satisfies Eq. (3.Z).

Proof. Clearly E & Ez since J' (p) & j(p). First suppose
A. ~ X,= Z and let p be the unique minimum for the j prob-
lem. By Theorem 3.19, p(x))g (0, po) so E (X) ~ h (p)
=S,.(p)=Eg(A, ). Thus E (A)=Eg(A.). Let p satisfy fp=A.
and g (p) =E' (A). Then since g (p) & g,.(p) & E,.(A) we
conclude that p minimizes Sg(p). But there is only one
such p. Next, suppose X& X,. Then E&(A)=Eg(A.,)=E (A.,).
But E (A) ~E (X,) by Theorem 6.2, and E (A.) & Eg(X).
Hence E (A) =Eg(X). By the above argument, any mini-
mizing p for 8 would have to minimize g, , but no such
p exists. ~
Rem«k. By Theorem 3.19, p(x) p (0, p, ) a.e. if m is
amenable, and p(x) epo a.e. if m is strongly amenable.
If p is merely amenable, p(x) can be po with positive
measure. An example is dm(x) =poBs(x)dx, with Bs
being the characteristic function of a ball of radius R
centered at 0. Then p„(x) =poB„(x) with 4ggpor3/3 = X for
A. ~),=4ggpoRg/3 This. p, is easily seen to satisfy Eq.
(3.2).

If m is not amenable the situation is much more com-
plicated, but more amusing mathematically. First let
us consider the energy.

Theorem 6.9. If V= lxl '~mc. K), then E (A) =E,.(X)
for all X. In Particgdar, X,= g= fdm and E is convex
in X. If there is a minimizing p for E(X), it is unique
and it is the p for the j model.

A, number of lemmas are needed for the proof.

Lemma 6.10. Let A. &R3 be a measurable set and let p
be a function in L' with 0 ~ p(x) ~ 1 for x c A, and p(x) =0
for xg A. (This implies pcL~, all p. ) Then there exists
a sequence of functions f"c L' such that (i) f"—p weakly
in every L~ gvith 1 &P & ~; (ii) f"is the characteristic
function of some measurable set E"CA; (iii) ff"=fp

Proof: For 6& 0 and y cZg let B( , 6)=yItxcR gl —5/2
&x' —by' ~ 6/2} be the elementary cubes of side 5. Let
C(b, y) =A BB(b,y). Partition C(b, y) into two disloint
measurable sets, C' and C, such that

l
C'(b, y)

fB(b, y)p. Let Eg= U, ~zgC'(b, y), and let f' be the
characteristic function of Eg. Clearly f' c L~ with norm
(fp) ~~, and f~ satisfies (ii) and (iii). Let 1/P+ 1/q =1.
Since C„ the continuous functions of compact support,
are dense in L', and [)f' [P~ =constant, it suffices to
prove that I(b, g) =fg(f' —p) —0 as 6 —0 for every
p c: Cp, But g is unif ormly continuous, so for any
c&0, lg(x) —g(by)l&c (uniformly) for xc B(5,y) when 6
is small enough. Since

J 1f'-o)=&, I&(~, z)I«a J ~. ~
B (6r y)

Lemma 6.11. SuPPose p L-8 and
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A(p) =fx i0 & p(x) &p0) (6.16)

Vll. THOVAS-FERMl-VOW WElZSAeKER THEORY

TFW theory was originally suggested by von Weiz-
sa, cker (1935) with 5= 6, =h /2m in Eq. (2.8). There is
no fundamental justification for TFW theory in the sense
that there is for TF theory, i.e. , there is no theorem
that the correction to the energy or density caused by
the Weizsacker term with &= && agrees with the real
quantum problem. We shall see, however, that if 6
= (0.186)5, then the energy correction proposed by Scott
(Sec. V.B), but not the density correction conjectured
in Eq. (5.37), is realized in TFWtheory. If Scott is
correct then & p&+te&i«s TFW theory has some funda-
mental meaning for atoms and molecules.

We were able to make a great deal of progress with
TF and TFD theories essentially because of the point-

has Positive measure .Then there exists peg satisfying
(i) g(p) & g(p); (ii) A(p) is emPty; (iii) p(x) =p(x) if x
@A(p); {iv) fP =Jp
Proof. Apply Lemma 6.10 to the function h(x) = p(x)/po
if xcA(p), h(x)=0 otherwise. Let p"(x)=p,f"(x) if
xcA(p), p"(x) =p(x) otherwise. Then fp"= Jp and

fJ (p") —JJ (p) = —K with K& 0 and independent of n

[since J' (t) & 0 for 0 &t & po, and 0=J (0) =J (po)].
Now, as in the proof of Theorem 2.4, JVp" —JVp.
lim&(p", p") = D(p, p) (easy proof). Hence for any c & 0
there is some n such that fVp" & J Vp —c and D(p", p")
«D(p, p) +c.~

The following is a corollary of Lemma 6.11.
Theorem 6.12. {a) If pc if minimizes g(p) on fp=A. ,
then measure JA(p))=0. (b) Even if there is no mini
mizing p, a minimizing sequence for E(X) zenith jp= X

can be chosen such that A(p") is emPty for all n.

Theorem 6.13. Let p minimize g~ for Jp=h. . A(p) may
not be emPty, but for any c & 0 there exists a p such that

fp = X, A ( p) is emPty, and gz ( p) & Ez (X) + z.
Proof. Aga. in, use Lemma 6.10 and mimic the proof of
Theorem 6.11. ~
Proof of Theorem 6.9. That E (A) =E,.(X) follows from
Theorem 6.13 and an imitation of the argument in Theo-
rem 6.8. By Theorem 6.12 any minimizing p has A(p)
empty and thus minimizes g,.(p). There can be only one
such p, since the minimizing p for 8& is unique. 0

In summary: Ep.) =E, (A) —oA. alwa. ys, but a mini-
mizing p may or may not exist for the TFD problem. It
exists if and only if the minimizing p for the j model
(which always exists when A. ~ A.,) satisfies p(x) p. (0, p, )
a.e. A sufficient condition on V for this to occur is that
V be amenable; a necessary condition seems to be diffi-
cult to find. The example of Sec. III.B illustrates the
nonexistence phenomenon: If dm(x) =g(x)dx with g(x)
c (0, po) and gc I.', then p;(x) =g(x) in the neutral case,
y=X, = fg But g.(x) does not minimize g(p). A sequence
of minimizing p's for g(p) are functions which on the
average locally imitate g but which oscillate rapidly be-
tween the two values 0 and pp.

wise relation between @(x) and p(x). In TFW theory this
relation is lost, and therefore TFW theory is much
more difficult mathematically. However, the physical
consequences of TFW theory are much richer and quali-
tatively more nearly parallel the physics of real atoms
and molecules. In addition to the above mentioned Z2

energy correction, TFW theory remedies three defects
of TF (and TFD) theory:

(i) p will be finite at thy nuclei.
(ii) binding of atoms occurs and negative ions are

stable (i.e. , A., & Z). These two facts are closely related.
(iii) p has exponential falloff if A. & A.„e.g. , for neutral

atoms and molecules.
The theory presented here was begun by Benguria

(1979) and then further developed by Benguria, Brezis,
and Lieb (1981) (BBL), to which we shall refer for tech-
nical details. Some newer results wall also be given,
especially that A.,& Z for molecules, the Z2 correction
to the energy (Sec. VII.D), and the binding of equal
atoms. Many interesting problems are still open, how-
ever.

The TFW energy functional (see Note (iv) below) is

g(n)=& f [~o"'(")I'«+ h/u) f o(~)'d~

Vx pxdx+D p, p +U. (7.1)

This agrees with Eq. (2.8) in units in which h 2//2m =1.
A closely related functional, obtained by writing g =p,
ls

(7.2)

A. The TFNI minimization problem

The function space is

G'=(P~Vgc I.2, gc L8 n L2~ D($2 g') &

We say p c G~ if p(x) ~ 0 and p'/2c Gt. G~ contains

E'' = G' fl L' = f g ~

& g c I.' g c L' A I '~ 0 L' j (7.4)

Even though we are interested in p c L' (or gc L2), the
larger space G~ is used for technical reasons in order

Note. (i) In this section all quantities refer to TFW
theory unless otherwise stated.

(ii) Equation (7.1) is defined for p(x) ~ 0 while in Eq.
(7.2) t/r( )xonly has to be real.

(iii) As in Sec. VI, we shall assume for simplicity that
V is given by Eq. (6.3) et seq. Later on a slightly
stronger hypothesis (7.12) will be used.

(iv) P ~ 1 is a parameter; it will not be indicated ex-
plicitly unless necessary. Recall that & " was finite for
point nuclei only if p & —,'. & is finite in TFW theory for
all p ~ 0. We need p ~ 1 for Theorems 7.1 and V.2, among
other reasons. Even though we are interested in P = ~»

we allow P to be arbitrary because the dependence on P
is interesting. It will turn out that P=3, the case of
physical interest, is special —at least it is so for the
proof that A.,~ Z.
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z(i ) = )nf {()(p) ~
p c F„f p = ) I,

&'(~) = in( ("(()
~
t) c I, , f (' iI=

Theorem 7.1. g(p) is strictly convex in p.

(7.5)

Proof. The only term that has to be checked is J {Vp'I2) .
If (t); =p,'I', i =1,2, and (t)= (Pn~p;)'I', Zo(,'=I, then

(I)Vg= g (o',.$,.)(™,V(t),.)

((')4)'-i(p ~',(;)(p ~ O'())').'

Assuming g(x) &0 everywhere, we are done. Otherwise,
the result follows by approximation. 0
Remark. 8'(P) is not convex in (l) because of the —J V/2
term.

Theorem 7.2. Ior all finite X

(i) E(A) =E'(X);

((() E () ) = )nf {(!(p) ( p c F„J~p —iI:
and similarly for E'(X);

(iii) E(X) is convex and monotone nonincreasing in A..
P«of. (i) Given p, we can always construct Q= p'~', so
E'(&) ~ E(&). Conversely, given (I) let f = ~P~. But Vf
= {V(l))(sgn(l)) so f(Vf)2= f(V&)2. Thus g'{f)=g'(g).
Choosing p=f', E(X) ~E'(X). (ii) As before, "excess
charge" can be put at 'infinity. " Here P & 1 is essen-
tial. (iii) g(p) is convex so E(x) is convex. Monotonicity
is implied by (ii). ~
Remar k. (i) relates the 'two problems defined by Eqs.
(7.1) and (7.2). To obtain the convexity {iii), g and
Theorem 7.1 were used. We shall use 8' to obtain the
existence of a minimum, and then the TFW equation for
t.his minimum.

Lemma 7.3. Let V= ~x~ '~m, with m a measure and
~m ~=Z & ~. Let p(x) & 0. Then there exists a constant
C independent of m and p such that for every r, ~ 0

Proof. By regarding R3 as the union of balls of unit
radius centered on the points of (';)za it suffices to as-
sume supp{m) C:B&, where Bs Ix II x

t
~ R }——and Xs is the

characteristic function of B„. In the following, irrele-
vant constants will be suppressed. Write V= V + V,

to prove that A., & ~; in other words, we shall eventually
find that all p's of interest are in S~ (defined analogously
to G~).

Rem«k. By Sobolev's inequality, IIV(II 2& Lll(t II& with
L=3 {7)'/2) I (cf. Lieb, 1976) when (t)c L~, 1 ~(I(~.
Thus when g(= F~ the restrictions that P(= L6 and $(=L2~
(if P ~ 3) are unnecessary .In short, F~ =H'n L2~, where
H'={(l jV(t and (cL2}.

As usual,

ET 't)i
(Q y X) ~ E F(Ty +AL& —2/3 X) (7.7)

In Particular, for an atom with a Point nucleus, ETF (y, &)
—y

i whence, for an atom,

E'""(~,y, x) y(y+&Lx-»»-'E'"(y, x). (7.8)

2~ L - 10/3

See I ieb, 1976. 0
Remark. The right side of Eq. . (7.8) has two properties:
(i) Its slope'at X=O is finite. (ii) It is strictly monotone
decreasing for all X. To some extent, E " will, be seen
to mimic this: E ' has a finite slope at A. =o and is
strictly decreasing up to A.,& Z.

Theorem 7.6. (i) g'(g) has a minimum on the set Pc F~
and f(l'& x.

(ii) g'(g) has a minimum on G~.
(iii) The same is true for g(p) on E&(fp ~ X) and G&.

Furthermore p and (t) are related by p{x}= ${x}2. The
minimizing p is unique.

Proof. The proof we give is different from the proof of
Theorem 2.4 because Fatou's lemma will be used, as
stated in the remark after Theorem 2.4. Let P" be a
minimizing sequence. By Corollary 7.4 all quantities in
Eq. (7.6) are bounded. By passing to a subsequence we
can demand, by the Banach-Alaoglu theorem, that V$"
—f weakly in L2 and p" p weakly in L3 and in L~ [where

where V = VX2 and similarly for p. First consider
=f V p . By Young's inequality (and writing Ix —yl

=
]
x —y )

'x, (x —y) f» x, y (=- B,) II v II, - z. Thus

I ~zllp II, ~zllpll&~I'Ilp IIII'

- z[llpll3+Ilp lli} ~

But

D(» P) - D(p, P ) - IIP

»nce ~x —y
~

'&k in B2. Now, outside B2, V(x) &2Z/
Ixl-=~(x). «t @=4X,bethe constant charge distribu-
tion such tha. t lx I

"q= W(x) outside B2. Then I,
- »(Q, p. ) - 2D(Q 9)"D(p P, )"' Bu. t D(q, q) =Z'.
Therefore (on the whole of R 3) I~ z lip ll3+zCD(p, p)~».

replace p(x) by s p(sx) and dm(x) by s dm(sx),
dpi=i, ~ zc2IIP II3+ zcriI2D(p, p). ~

From the Sobolev inequality, the following is obtained:

Corollary 7.4. There axe constants a and b & p such
that for every (t (= G~

g'((t) - a[IIV& II', + Ilp Ii) + lip ll3+ D(p, p)]+ l7 —b, (7.6)

u)ith p=(t2. In particular, g' is bounded below on Gt
and E(A.) is bounded below

It is obvious tha. t E(X) ~ E "(A.), with the same p. If
p & —', , E (x) is fini'te for point nuclei. The following
illustrates the sort of lower bound for E(X) that can be
obtained with the Sobolev inequality.

Theorem 7.6. Let p=,—. I.et ETr'~(A, y, h) denote the
TFg energy and ET (y, X) den'ote the TF'energy. . Let
L = 9.578. Then
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[—A&+ W„(x)] g(x) = —p, g(x),

cohere

and

tp, = V —Ixj '+ p with p=p .

(7.9)

(7.10)

(ii) If P minimizes g'(g) on G~, then g satisfies Eq.
(7.9) with p, =0.

(iii) E(X) is continuously differentiable and —p =dE/dX
for A. & )t,„while Q=dE/dX for x& )t., In particular, p,

o 0
(iv) If p c G~ satisfies Eq. (7.9) and Jp = A, (possibly ~),

then p minimizes g ( ~ ) on the set J'p & A..
(v) Fix A,. There can be at most one pair p, p [with

p(x) & Q] that satisfies Eq. (7.9) with Jp = A..
Proof. (i) and (ii) are standard. Just consider g+sf
with fc Co and (f, g) =0 and set dg/dk =0. For the ab-
solute minimum we do not require (f, g) =0. The proof
of (iii) is as in Theorem 2.7 (cf. LS Theorem II.10 and
Lemma II.27). The proof of (iv) and (v) imitates that of
Theorem 2.6. 0

We shall eventually prove that the minimizing g is

p"= (p)2]. Furthermore, for any bounded ball B,
c L2(B) since gc L8(B). Moreover, H'(B) is relatively
(norm) compact in L2(B). Thus, by passing to a further
subsequence, we may assume tP —g strongly in L2(B)
for every B and pointwise a.e. Then it is clear that p

and f=&/. As before, lim inf II'qt/r" II 2& IIg7QII 2. From
the pointwise convergence and Fatou's lemma,
lim infD(p", p") & D(p, p) and lim inf II p" II&

&
II p II,.

the V term we write m=~&+~, with m, =mx and
choose tt targe enough so that ~m,

~

& h tstnoe Im
~

=g
). If V2=m2g' jx I

~ then f V2jp —p"
I
«5(const) by

Lemma 7.3 (with c =1). Next, write V&
——V + V, with

V = V, }t„. If r& 2R, V, (x) «2Z/Ixj. Let Q„be the uni-
form charge distribution inside B„so that Q„g* Ix I

=2Z/Ixj outside B„. Then J V, Ip- p" I-D(q„, q„)'I'D(jp
—p" I, jp —p" I)'I'. Choose r large enough so that
D(Q„, Q„) «O'. V cL'I', so J V (p —p") —0. Since 5

was arbitrary, f V(p —p") -0. Combining all this,
liminfS'(P') & 8'(g). Finally, if Jp" &X then fp & X as in
the proof of Theorem 2.4 (but using L3). As remarked
in the proof of Theorem 7.2, we can choose g"(x) & 0
everywhere; hence g(x)& 0 and p(x) =$(x)2 minimizes
S(p). The uniqueness of p follows from the strict con-
vexity of $(p). ~
Definition. A., can be defined as in Sec. II, namely, A.,
= sup( A,

I E(X) = lim„„E(X)j. A simple variational cal-
culation, which exploits the fact that V(x) = —Z/Ixj for
large Ixj, shows that A.,&0.

Theorem 7.7. There is a minimizing p on F~ with Jp
= X if and only if A. & A, The minimizing p in Theorem
7.6 when )t. & X, is the p for X,. E(A) is strictly convex
on [0, )t].
Proof. Same as for Theorem 2.5. ~
Theorem 7.8. (i) Any minimizing Qc F~ for 8'(g) on
the set J f2 & X satisfies the TFW equation (in the sense
of distributions):

unique (we already know that p, and hence g' is unique),
but Theorem 7.9 is needed first. %e also want to prove
that )t., « ~, i.e. , the g that satisfies Eq. (7.9) with p, =0
satisfies' Jg~ « ~. This will be done in Sec. VII.B.
Theorem 7.9. If pc G~ satisfies Eq. (7.9) (as a distrubu
tion) and P(x) & 0 for all x, then (i) g is continuous. More
precisely, geCO' for every n «I [i e ., .for every
bounded ball B

I g(x) g(y) I
«Mjx y I

—for some M
and all x, y cB]. (ii) If Vis C" on some open set fl,
then /is C" on Q. For point nuclei, Q=R g[R,.]. (iii)
Either (—= 0 or p(x) & 0 everywhere (i.v) W„c L, for
every g & 0.
Proof. Clearly Vc L3„,z (all c & 0) and, since gc I.6,
—A4g &f with f = Vg eI 2„, (all c & 0). Choosing c «z,
we can apply a result of Stampacchia (1965, Theorem
5.2) to conclude gc L~„and hence f2~ 'cL3„„. (all c & Q).
Now, g= Ix I

'~ p cL~ [since &g= —4&p ~I~llgll82- f(V'g)'
=8mD(p, p)]. Therefore —b, Pc L3„, (all c & 0). Then
(Adams, 1975, p. 98) gc C ~ . (ii) follows by a bootstrap
argument as in Theorem 2.8. For (iii) we note that —Ag
=bg and b c L'„, , q& 2. The conclusion follows from
Harnack's inequality (Gilbarg and Trudinger, 1977). ~

We know that p'~'& 0 satisfies Eq. (7.9), so p'I enjoys
the above properties. Since p is unique we shall hence-
forth denote Eq. (7.10) simply by W. We shall also use
the notation

(7.11)

Theorem 7.10. The minimizing i/t is unique uP to a sign
which is fixed by g(x) =p(x)'I2& 0 everywhere. g is also
the unique ground state eigenfun-ction of H= A6+ W'(x)—

and p, is its I,round-state eigenvalue.

Proof. If g is minimizing then t/i =p and H are uniquely
determined. f = p'I' satisfies Hf = pf. Since f is n—on-
negative, it is the ground state of H, and the ground
state of H is unique up to sign (cf. Reed and Simon, 1978,
Sec. XIII.12). ~
Remarks. (i) It is not claimed that the TFW equation
(7.9) and (7.10) has no solution other than the positive
one. Infinitely many other solutions probably exist.
They have been found for certain nonlinear equations
which have some resemblance to the TFW equation
(Berestycki and Lions, 1980), but the TFW equation
itself has not been analyzed in this regard. These other
solutions correspond, in some vague sense, to "excited
states. "

(ii) The interplay between 8'(P) and $(p) should be
noted. Apart from the somewhat pedantic question of the
uniqueness of g, g was used to get the uniqueness of p
=$2 and the convexity of E(X). 8' was used to get the
TFWequation in which it is not necessary to distinguish
between p(x) & 0 and p(x) =0 as in the TF equation (2.18).
The p of interest automatically turns out to be positive.
For purposes of comparison, the TF equation is (W+ p)g
=0 if $&0, and (W+ g)& 0 if /=0. The TFW equation is
(W+ p)t/i=A&/ everywhere

(iii) Note that there is a solution even for tU, =0. For
this p, H = —A~ + 8 has zero as its ground- state eigen-
value with an I.2 eigenfunction, g (Theorem 7.12). This
is unusual. Zero is also the bottom of the essential
spectrum of H.
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B. Properties of the density and X

Our main concern here will be to estimate X,. For
energetic reasons, it is intuitively clear that A.,» Z for
large enough p because otherwise the energy could al-
ways be lowered by adding some additional charge far
out. Benguria (1979) proved this for P» 3. We shall
also see that A.,~ Z for P» 3.

What is far from obvious, however, is that A., is
finite. There is no energetic reason why E(A) could not
steadily decrease (and be bounded, of course). It is
easy to construct a p(x) with fp =~ so that all the terms
in the energy and also @(x), except at the nuclei, are
finite. p(x) = (1+x ) 3I2 is an example. That X, & ~ is a
subtle fact.. The same question arises in quantum theory,
and it has only recently been proved there that X, is
finite. Ruskai (1981) proved this when the "electrons"
are bosons. I. M. Sigal later found a proof (by a differ-
ent method) for fermions (paper in preparation).

In the following, tt always means + p'I'. For siinplicity
we shall henceforth assume the following condition in ad-
dition to 1/" cX):

V(x) C/ lx l (7.12)

for some C & ~ and for all lxl & some R. The fact that
V= lxl '~m and lm l=Z does not guarantee Eq. (7.12).
If, however, m has compact support, then (7.12) holds.

Theorem 7.12. X, & ~ for all p & 1.
Proof. Let p give the absolute minimum of g(p) on G~.
tt satisfies Eq. (7.9) with p. =0. We shall prove that this
p has X= fp & ~, thereby proving that E(X) has an abso-
lute minimum at A. , and hence that X, =A.. Assume A.

Then for lx l
» some R [which is bigger than the

»n Eq (7»)], lxl "p=2C/
—Atilt ~ —Cg/lx l. Now we use a comparison argument.
Let

f (x) =M exp(- 2[C lx I/A] "']
with M& 0. f satisfies —At f » —Cf/ lx l, for lx l gO, so
—Ati(tl' f)- —C(4 f)/I'l »x -Mbyf(x)-—&(x) f» lxl
=R. If we knew that |t(x) —0 as lx l

—~ we could con-
clude, from the maximum principle, that g & f for lx l

» R. This implies that Q c L2. Unfortunately, we. only
know that P(x) —0 in a weak sense (namely, L ). This, it

To complete the picture of E(X) we have to know how

E(X) behaves for small X. Since p, is a decreasing func-
tion of X (by convexity of E), g has its maximum at X=0.

Theorem 7.11. p, (X=O) = —eo gohere eo &0 is the ground-
state energy of the Hamiltonian H0 =—Ab. —V(x). In par-
ticular, for a Point nucleus p, (A. =O) =z2/(4A).

Proof. ti(0) =Iim~ OE(0) —E(X). E(0) = U. Let f be the
normalized ground state of H0. Hof=eof. Let p=&f'.

g(p) = ye, + U+a(Z), since p&1. On the other
hand, for any p with Jp=h. , $(p)» Aeo+ U. ~

In Sec. VQ. B we shall see that Z & A., & ~. Therefore
the behavior of E(X) can be summarized as follows:

e(X) = E(A) —U in TFW theory looks like Fig. 1 with two
important changes: (i) X, & Z {at least for p» ). e(X) is
strictly convex for 0 & A. ~ X,. (ii) The slope at A. =O is
finite. [In TF theory e(A) = A. 'I3. ]

turns out, is good enough. See BBL for details. 0
Now that we know Jp & ~, even for the absolute mini-

mum (ti=O), we can prove

Theorem 7.13. g is bounded on R3 and g(x) —0 as lx l

A/so, pc H2 (i.e., g, &g and tigc L2).

Proof. —Abg & Vg so (—A&+1)g ~ (V+1)g. Since
(V+ 1)g c L, g ~ (—AE+ 1) '[(V+ 1)p] and this is
bounded and goes to zero as lx l

—~ (Lemma 3.1).
Finally, |t2~ '~dg for some d, and g= lxl '*p
cL~ together with t/)c L6 imply gee L . Hence Agc L2.
0
Theorem 7.14. Ifp» —', then, for all x,

yp (x) ' ' ~ V(x) .
In Particular, if P =, p(x) & [V(x)/y]"'.

(7.13)

Proof. The essential point is that since V is super-
harmonic, so is V' for t ~ 1. Let f= p —{V/y)' with t
=1/(2P —2). Let B =(xl f(x) & Oj. Since g and V are
continuous on B, B is open. On B, W& 0 so —tf &0.
f=0 at ~ and on BB, so B is empty. Ql

Remarh. The bound in Eq. (7.13) also holds trivially in
TF theory from Eq. (2.18).

Theorem 7.15. If p»,'- then X, » Z.

Proof. Suppose A.,=Z —c. Since H= —A~+ W has zero
as its ground-state energy, (f, Hf)» 0 for any fc Co".

Let f, (x) v0 be spherically symmetric with support in
1- lx l- 2, f~(x) & 1, and f„(x)=f(x/n). Then ff ~&

=Jf2[@], where [@], is the spherical average of Q.
It is easy to see that for lx l» some R, [@]»c/2 lx l

since Jp = Z —c. Therefore Jf~@» (const)n2 for large
J{vtf„) = (const)n. The crucial quantity is D„

= Jf„p . If P» 2, D„~ (const) fp If p «. 2 use Holder's
inequality: D„~X~ 'Y2 ~, where &„=Jf 2p and Y„
= Jf„. Clearly 2C„—0 as n —~ since p c L'. Y„
= (const)n~. Now let n —~, whence (f„,Hf„) ——~. ~
Remarks. (i) The basic reason that p»,'- is needed
in the proof of Theorem 7.15 is that we want to be able
to ignore the p~ ' term in TV and thereby obtain a nega-
tive-energy bound state for II when A. z Z. However, if
p c L' then (essentially) p(x) - lx l f (x), where f (x) can
be slowly decreasing. Hence we can be certain t.hat p~
is small compared to lx l

' only if 3(P —1) - 1.
(ii) In Theorems 7.16 and 7.19 we prove that X, & Z.

The underlying idea is that to have a zero- energy L2
bound state, W(x) has to be positive for large lxl. Es-
sentially, W(x) has to be as big as lxl ', this require-
ment is clear if we assume g(x)- lxl ' for large lxl. If
x, =Z, then @ is (essentially) positive for large lx l, so
the repulsion has to come from p~ '. But if p —1»

3
then p~ ' cannot be sufficiently big since p c I.'. The
theorem that X, ~ Z when p»

3
was proved for an atom in

BBL. We give that proof first in Theorem 7.16 in order
to clarify the ideas. Then, after Lemma 7.18, we give a
proof (which is not in BBL) of the general case in Theo-
rem 7.19. Some condition on p really is needed to have
~, ~'Z. In BBL it is proved that if p= —, , @=1, V is
given by Eq. (2.1), and A ~ I/16m, then A.,=Z.
Theorem 7 ~ 16. Suppose p» 1~ and suppose V= lx l

'~ m
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gvhere m is a non- neg. ative measure that satisfies the
followgng conditions: (i) m is spherically symmetric;
(ii) the suppor't of m is contained in some ball, Bz
=Ex] IxI «R). Then ~.&Z.

Proof. Assume that A., «Z. By Newton's theorem, @(x)
& 0 for ~x ~& R. Then when X=A„—4g& —yg ~ ' for
~x~&R. P is spherically symmetric and g(R) &0. Let
f (x) =C~x( '/', which satisfies —A&/& —yg'~ ' for ~x

~

& R provided 0 «C «D with Dg~ g= (3A/4y)Rg~ g. Let C
= min [D, g(R)]. Then p(x) & f(x) for all ~x ~& R, because
—AA(P f) & ——y(gg~ '- f g~ g), which would imply that
g- f is superharmonic on the set where P f «0.—Since
g and f go to zero at infinity, and P f & 0 a—t jx ~=R,
this is impossible. Hence pe-'L', which contradicts
II @II,&z. ~

In the foregoing we used a comparison argument which,
in turn, relied on the fact that the positive part of W',

namely p~, was simply related to g. In the proof of
Theorem 7.19 we shall not have that luxury, and so the
more powerful, Lemma 7.18 is needed.

Lemma 7.17. I.et S„denote the sphere(x~ IxI=R) and
let dQ be the no~nzalized, invariant, spherical measure
on S&. For any function h, let [h] (r) = fh(r, n)dn be the
sPherical average of h. Now suPPose ttI(x) & 0 is Cgin a
neighborhood of Ss. Let f(r)=exp([ln(] (r)). Then, for
all r in some neighborhood of R,

[Sy/0] (r}o (tf/f)(r)

=ILdgf/drg+ (2/r)df/dr)/f(r) .
Proof. Let g(x) =In/(x). Then &g/g=&g+ (&g)'. Clear-
ly [&g]=&[g]. Moreover, (Vg)g& ILBg(r, I7)/Br) g, and
[(Bg/Br)g] & (d[g]/dr)g by the Schwarz inequality. Thus
[&4/4j - &[gj+ F[g] )'= &f/f. ~
Lemma 7.18, Suppose |t(x) & 0 is a Cg function in a
neighborhood of the domain D=tx II x

I
& R]and g satis.

fi es [—A4+W(x)) g(x) & 0 on D. Let [ W] be the spherical
average of Wand write [W]= [W], —[W] with [W], (x)
= max[[W](x), 0]. Suppose [W], c L' '(D). Then ( c/L'(D).
(Note: no hypothesis is made about [W] .) See note
added in proof below

Remarhs. Simon (1981, Appendix 3) proves a similar
theorem for D= R', except that [W]=[W], —[W] is re-
placed by W= W, —W with W, = max(W, 0). Simon does not
require the technical restrictions that t/r(x) &0 and $ is C'.
Simon's theorem will be used in our proof. Lemma 7.18
improves Simon's result in two ways: (i) it is sufficient
to consider D and not all of R g. (ii) It is only necessary
that [ W], , and not W, , be in Lg/'; the latter distinction
is important. As an example, suppose that for large ~x~
the potential Wis that of a dipole, i.e. , W(x&, xg, x,}
=xg~x~ . W p Lg/ but, since [ W], =0, Lemma 7.18
says that this W cannot have a zero-energy I. bound
state.

Proof. I et f= ex(p[ (I]n) as in Lemma 7.17. Then
—A&f/f+ [W]& [—Ah|tI/g+ W]& 0. By Jensen's inequality
ff & f g, so if f gL' then-pc/-- L'. Therefore it suffices
to consider f —AA + [ W] (x))f - 0 and to prove f - I '
under the stated condition on

I W]. First, suppose D
=R . Then this is just Simon's (1981) theorem. (How-

ever, since we are now dealing with spherically sym-
metric [ W] and f, it is likely that a direct, ordinary
differential equation proof can be found to replace Simon's
proof. ) Next, suppose R&0. Let g(x) &0 be any C'func-
tion defined in R g such, that g (x) =f (x) for ~x

~

& R. Then
(—A& + U(x))g& 0 on R g where U= [ W] for ~x ~& R and
Uis bounded for ~x~«R. Clearly f W], cL (D) if and
only if U, c Lg/g(Rg). Apply Simon's theorem to U. ~
Note added in proof. H. Brezis (private communication)
has found a direct ordinary differential equation proof.
Moreover, under the hypotheses of Lemma 7.18,
gL' for all c&0.

Theorem 7.19. L,et the hypothesis be the same as in
Theorem 7.16 except that (i) is omitted. (In other words,
a molecule is now being considered )T.hen X, & Z.

Proof. For ~x
~
& R, V(x) is C" so g(x) & 0 and Q c: Cg by

Theorem 7.9. Assume A., ~ Z. The hypotheses of Lemma
7.18 are satisfied with [ —AA+ W(x)) /=0. To obtain a
contradiction we have to show [ W], c Lg/g. Consider Q.
Even if @ is negative somewhere, [Q] (r) & 0 in D by
Newton's theorem. Therefore it suffices to show
[p~ ] c Lg/g. If p& gg then p —1&

g
and [p~ '] (r)

«C[pg/g] (r), since p is bounded. But [p /g] (r)
«([p] (r)) '/' by Holder, and f[p] " ""/"=fp « ~. ~

We know that A., & Z in the physically interesting case
p=&3. Ho+ Ea~geis A.,—Z? In other words, how nega-
tive can ions be& This seems to be a very diff icult
question, even for an atom. To obtain qualitative agree-
ment with quantum theory, it would be desirable if A.,-Z - 1, at least for Z up to 100, say. The only
available bound, at present, is Theorem 7.2J. First
Lemmas 7.20, 7.21, and 7.22 are needed. The lemmas
were inspired by the work of H. Benguria (private com-
munication), who proved the lemmas and Theorem 7.23
in the spherically symmetric case (which corresponds
to the atom in TFW theory).

Lemma 7.20. Let g and f be two real valued functgons
on R which satisfy —b g =f in the sense of distributions.
Let r denote the function ~x ~. Suppose (cLg, fc Lg,
and ref c L'. Then, for any constant d& 0,

x '+d '~' x x dx& 0.

Proof. Using dominated convergence, it is sufficient
to consider only d& 0. Let R= (rg+d)'/'c C". We have
bR=2R g+dR g and

~
(R/r)VR~ g=1. Suppose Q c Co"

(infinitely differentiable functions of compact support}.
We claim I= fR@&P—& 0. To see this, integrate by
parts: I= A +B with A = J (V@)gR and

8= V .VP= V -VP Px r R,

By Schwarz, and ((&@ &R)(R/r)) ~ (V&]&), we have Bg
&AC with

2C =2

However,

2B = V VR=- &R,
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and hence IB I

& A, which proves the lemma. Now, sup-
pose g and f7' Co have compact support. Given c& 0
there exists g c Co" such that Il(t'- gl[ 2 & c, IIV(t'- Vg ll 2 &c,
and II&&-&gll, &c .(Note: since pand t)(t cL', so is
V(t). ) Then gRc Co" and

J );))f=-J );))~(-=-J (~()));)

gA gi',g —M = — Rg&g —M,

with M= f (y g-)~(~) I.t suffices to show that M-0 as
c —0 because fgRf- f)tRf. But

M = —g g&R + 2&g. ~R + R&g

We can assume supp(g) is in some fixed ball, indepen-
dent of c. Since g, &g, and &g are uniformly L2

bounded, M-0. For the general case, let h c Co" satisfy
1» h» 0, (Vh) (0) = 0, h (0) = 1, h (x) = 0 for

I
x

I

& 1. Let
h„(x) =h(x/n) and (j)„=h„(t). Then, as a distribution,

b.t/r„= h„f——2Vh„~ V g —/ah„:—K„.
By the previous result, T„= fR(t)„K„»0. But fh„gfR—fgfR by dominated convergence. Rh„Eh„=n 'P„(x/n)
with

P„(x)=(lxl'+dn-')'/'(h~h)(x) &a,

so fRe„g h„-0, since g c L . Similarly, RV h2 —= L„ is
uniformly bounded and converges pointwise to zero.
Since (t) and Vgc L2, f /VS„—0 by dominated con-
vergence. R

Remarhs. (i) Lemma 7.20 is useful for L2 solutions to
the Schrodinger equation [- &+ W(x)] g= —p, g. Then
fg2(W + tj, )r &0 under some mild conditions on W [e.g. ,
W(x) &c/r for large r, WcL2„, and r(2c L' if t(, g 0].

(ii) The essential properties of R that were used were
R& 0 and Rb R ~ 2(VR)2. Therefore Lemma 7.20 will
hold for functions other than (r2+d)'/2 having these
properties. Formally, this means that if R(x) =1/V(x)
then we require V& 0 and & V&0. %e state this as
Lemma 7.21, whose proof imitates the proof of Lemma
7.20.

Lemma 7.21. Suppose V= lxl '~m, with m a nonnega-
tive measure, lm I=Z & ~, and V satisfies Eq. (7.12).
Then if g and f satisfy the hyPotheses of Lemma 7,20,

dx x x Vx ~Q.

Lemma 7.22. Let p(x)~ 0, fp=x& ~, and V= lxl ' m
where m is any non negative measure with-lm I=Z & ~.
Then

I=— p x p y x-y 'Vx 'dxdy~ ~' 2Z.

so on ad infinitum. Then

Now let c,—Q. 0
Remarh. Benguria proved Lemma 7.22 when V=1/r
In this case one can simply use the fact that (~x ~

+
I
yl)lx-yl "-1.

Theorem 7..23. Assume V satisfies Eq. 7.I2. Then

A, & 2Z, for all P & 1.
Proof. We know X, & ~. Let P be the minimizing solu-
tion of Eq. (7.9) with t(. =0. Then, by Theorem 7.13,
and f= (yp~ ' —@)g satisfy the hypotheses of Lemma. 7.21.
Thus 0 & fpP/'V= 1,—Iwithi = fHp/V and H
But I~ X, /2Z. ~

Remark. This bound does not involve the value of A in
Eq. (7.1). It also does not utilize the yp~ ' term in W.
There is considerable room for improvement.

The next two theorems are about the asymptotics of (t).

Theorem 7.24. Let p be the positive solution to Eq. (7.9),
for any p.

(i) Let p. & 0. Then for every t & p, there exists a con
stant M such that

P (x) & M exp [ —(t/A) '/ 2
I
x

I ] .
(ii) Le t p, = 0 (i.e. , A. = A.,), and assume A.,& Z, as is

certainly the case zghen P~ —', . Assume also that m has
compact support. Then for every t & A, —Z there is a
constant M such that

g(x) & M exp[ —2(t lx I/A)" '] .
Proof. (i) is standard. Since ( and V-0 as lx I

—~, we
have (t)= —(-At +t) (W+ p, —t)g. For lxl& some R,
W+ u —t» 0. Therefore, since (t)& 0,

I'(x- y) [ W(y) + p —t ] 4(y)dy,

where

I'()=(4 Al I)
' p[-(t/A)"'I I].

The proof of (ii) is the same as the proof of Theorem
7.12. It is only necessary to note that, since m has com-
pact support (in Bs, say), V(x) &Z/(Ix

I
R) for

and this is & (Z+c)/Ix
I

for lx I
large enough. ~

The next theorem is the well known cusp condition
(Kato, 1957).

Theorem 7.25. Let V(x) =Q zz lx —R& I

' be the Potential
of Point nuclei. Then at each RJ

Proof. Take Z=1 and let 0 &c &1. By proposition
3.24, p =p&+ p2 with p» pz& 0, and H; = lx I

~ + p,. satis-
fies H, & sA V and,H= XcVwhen p2& 0. Clearly, fp,
& cA. by Lemma 3.3. Then fp2& (1 —c)X and

) p2II, +~, V-~ 1 —~ g'+ p ~, V.

where dQ is the normalized uniform measure on the
sPhere. This holds for any X. In Particular, for an
atom with nuclear charge z located at the origin, g is
sPhexically symmetric and

z(t(0) = —2A lim (dg/dr)(r) .

Repeat the argument with p, [using fp2» (1 —c)X], and Proof. Recall that, by Theorem 7.9, g is C" away from

Rev. Mod. Phys. , Vol. 53, No. '4, Part I, October 1981



E lliott Lieb: Thomas-Fermi and related theories

the R, and g is Holder continuous everywhere. The theo-
rem is proved by integrating Eq. (7.9) in a small ball
B„and then integrating by parts. The spherical sym-
metry in the atomic case is implied by uniqueness.

Theorem 7.26. Iet V(x) =z/ ~x ~

be the potential of an
atom saith a Point nucleus. Then, for any X, g(r) is a
strictly decreasing function of r.
Proof. In Theorem 2.12 a.nd the remark following it we
proved this for X& z by using rearrangement inequali-
ties. Here we give a different proof for A. & z which ex-
tends to A. &z. Recal. l that P is continuous and positive
and that g is C" for r& 0. Also, p ~0. Let Q(r) = Jy, p
be the electronic charge inside the ball B„. By Newton's
theorem, the potential @ satisfies:

(I) 0 (r) - [z —Q(r)]/r.
(ii) Q = [Q(r) —z]/r~ (dots denote d/dr).
(iii) If X & z, @(r)~ 0 and @(r) is decreasing.
(iv) If A. & z there is a unique R & 0 such that P(r) & 0

and decreasing for r & R, and @(r) &0 for r& R. Q(R)
(ze
A. ~ z: By Theorem 7.24 g(r) &0 near r=0. If p is not
monotone, then since tfr(r) —0 as r —~, there are two
points 0 &r, & r, such that g(r, ) & P(r2), |I (r, ) & 0, g', (r,)
~ 0, and g(r&) =$(r2) =0. Since g does not have compact
support, Q(r) &z, all r. Hence W(r2) & W(r, ). Since

4(ri)=[W(ri)+ p]4(ri)-o
we have W(r,)+ p~ 0. But then

F(r2) = [ W(r2) + p ] 4(r2)

is impossible.

X&-z: There is an c & 0 such that W(r) & 0 for r& R —c.
Let D„=( ex. R 3~,

~ x~ & r). Take r& R —z. On D„, —&P
&0. Since g& 0 is subharmonic on D„, g has its unique
maximum on BD„, namely, ~x~=r. This proves the
theorem on the domain [r ~r & R —c ] . To prove tPe
theorem on the domain (r ~0 ~ r &R j the argument in the
X & z case can be used, since Q(r) &z in this domain. ~
Conj ecture. In the point nucleus, atomic case g is con-
vex, possibly even log convex.

C. Binding in TFW theory

In TF theory binding never occurs when the repulsion
U is included. In TFW theory binding is a common phe-
nomenon. We, conjecture that every neutral system
(molecule or atom) binds to every other neutral system.
In the following, the occurrence of binding will be proved
in enough cases to render the conjecture plausible. It
will also be seen that binding in TFW theory is intimate-
ly connected with the existence of negative ions, i.e. , A.,
& Z. We shall assume here that X, & Z for all the sys-
tems under consideration. P~

3 guarantees this, but no
requirement on P other than A.,w Z will be made. V
= jx

~

'+ m, with m a non-negative measure of compact
support [so that Eq. (7.12) is satisfied], ~m ~=Z, and
m spherically symmetric in the atomic case.

First, let us define what binding means. Suppose we
have two systems (not necessarily atoms) with potentials
V, and V2 and a combined system with V(x) = V, (x)
+ V'2(x —R) for some vector R. The combined system is

neutral, i..e., A. =Z—= Z, +Z~. Let E(R) denote the energy
of the combined system and E,.(X) denote the energies of
the subsystems with arbitrary electron charge A. and

E, =.E,. (X= Z,.) (note the difference in notation). Then

E(~) =— min E, (X) + E2(Z —X) . (7.14)

I.et p, ; be the chemical potentials of the subsystems
when they are neutral, i.e. , A.; = Z;. We know that p, ;
& 0. If p, , = p, 2 then E(~) =E~+E,. Otherwise, E(~)
&E, +E2. In general, A. in Eq. (7.14) is determined by
p, , (X) = p2(Z —X) if this equation has a solution for 0 ~X
~ Z; otherwise, A. =O if p, , (0) ~ p, 2(Z) and X = Z if
p, ,(0) ~ p, ,(Z). (Reca, ll tha, t p, (X) is monotone. )

If p, &
g p. 2 then the subsystems spontaneously ionize

when they are infinitely far apart. This is not consid-
ered to be binding. For real atoms the phenomenon of
spontaneous ionization apparently never occurs, because
it seems to be the case that the lowest ionization poten-
tial among all atoms is less than the largest electron
affinity. (I thank J. Morgan III for pointing this out to
me. ) In real atoms, X and Z —X in Eq. (7.14) are re-
stricted to be integral, but no such restriction occurs
in TFW theory. In TF theory the phenomenon never oc-
curs because p, , is always zero.

In TFW theory it is possible for A. to be zero in Eq.
(7.14), i.e. , one subsystem is completely stripped of
electrons. Let V; =z;/r with z2»z&. If .p, &(X=O) & p2(X
=z, +z2), then X=O in Eq. (7.14). By Theorem 7.11,
p, (X) ~ p, , (0) =z, /4A. Since X,(2) &z2 and p, 2&0, the
above inequality will hold for any fixed zz if zq is chosen
small enough. This case was cited in BBI as an exam-
ple where binding occurs (see Theorem 7.27).

Definition. Binding is said to occur if E(R) &E(~) for
some R.

Theorem 7.27. Suppose the chemical potentials of the
neutral subsystems are unequal, i.e., p. &

p p, &. Then
binding occurs. (This holds for all P & 1, even if A.,=Z
for one or more of the three systems ).
Proof. Suppose A. &Z, in Eq. (7.14). Then when R=~
subsystem 1 is positively charged (with charge Q =Z~
—X) and subsystem 2 has charge —Q. Let p,. be the TFW
densities (with X and Z —X, respectively). By Theorem
7.24, p; has exponential falloff. For the combined sys-
tem (at R) consider the variational p defined by p(x)
=p, (x)+p2(x —R). The first term in Eq. (7.1) is sub-
additive (by convexity). For large R the total Coulomb
energy decreases essentially by —Q2/R because of the
exponential falloff of each p;. .The Jp~ term is super-
additive, but it increases only by a term of order
exp[ —(const)R] for large R. We omit the easy proof of
these last two assertions. Thus for large enough, but
finite, R, E(R) &E(~). ~

The difficult case is p, ,= p, 2. Henceforth we confine
our attention to atoms.

Conjecture. If z, &z, for two atoms with point nuclei,
then p, ,(X= bz, ) & p, ,(X= bz, ) for all b & 1. In pa. rticula. r

Moreover, A,(1) —z, & A.,(2) —z, .
If this conjecture is correct then only the homopolar

case has to be considered for point nuclei. In Theorem
'7.28 we prove binding for the homopolar molecule, even
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for "smeared" nuclei. However, we have already shown
that binding occurs if z, «z„so it is likely that binding
always occurs, even if the conjecture is wrong.

Theorem 7.28. Binding occurs for tzoo equal atoms for
any nuclear charge z and for any P & 1 Provided X, & z
for the atom.

Proof. We shall construct a variational p for the com-
bined system, with Jp=2z, such that 8(p) for the com-
bined system at some R is less than E(~) =2E,. First,
consider the atom with the nucleus at the origin and with
X=z+c, where z &A. &X,. Let p be the TFW density.
Denote E& by E and p. & by p, . Center the nucleus at the
point (- R, 0, 0), where R & 0, depending on c, is such
that Jy p=z, with y being the characteristic functions
of the half space, H=f( x„x,2x)3fx, ~ 0). Assume, for
the moment, that the nuclear m has support in B»&, i.e. ,
the displaced m has support in fx, ~ —R/2). Center the
second atom at (R, O, O). Its corresponding density is p",
where the asterisk means reflection through the plane
x&

——0. Choose the variational p= p +p with p =y p.
Clearly p is continuous across the plane x&

——0, and Jp
=2z, so it is a valid variational function. In the follow-
ing bookkeeping of 8(p) we use the terminology energy
gain" (resp. 'loss" ) to mean that the contribution to
$(p) is negative (resp. positive) relative to 2E. Before
the y cutoff, we start with 2E, (X) ~ 2E —(2c)(p/2) if c is
small enough, so we have gained c p. . This linear term in
6 is the crucial point; it exists because A.,)z. After the
cutoff we gain the kinetic energy [first two terms in Eq.
(7.1)] contributions from the missing pieces of p and p
Next, we lose on the —JVp term (for each atom sepa-
rately) because of the missing pieces. Each missing
charge is c and its distance to its atomic origin is R.
Since the atomic .V(r) & z/r, the energy loss is at most
2(cz/R). Clearly we gain on the missing atomic repul-
sion, D(p, p) term. Finally, if dM(x) =drn(x+R)
—p (x)dx is the total charge density in H, we lose the
atom-atom intera, ction b. =2D(M, M ). By reflection
positivity, a~0. (See Benguria and Lieb (1978b), Lem-
ma B.2.) On balance, the net energy gain is at lea.st
c(p —2z/R) —b..

Now we cia, im two things: (i) As c —0, R —~. (ii) b.

&Czc/R for some constant C. [Actually, it is possible
to prove b. &o{c)z/R. t Using (i) and (ii) we are done,
because for sufficiently small c the gain is positive and
the assumption on supp(m) is justified.

Proof of (i). Let p„be the atomic density for X=z+c„,
with c„-0. As in the proof of Theorem 7.6, we can. find
a weakly convergent subsequence, p„—p, so that E
=IimS(p„) & g(p). 13ut J p ~ z, so p must be p, , the
atomic density with A. =z. If R„does not tend to ~ then,
for large enough n, JX p„~z by the weak convergence,
which is a contradiction.

Proof of (ii). This is messy. Let B„be the ball of
radius r centered at (- R, 0, 0) and let X, be its charac-
teristic function. '@Trite p =p'+ p, where p'= X3~&2p.
By elementary geometry, d Jp'~ fp' with d & 1. Since

f r'(~- x ) «, f ~'«/(&-&).

Let t =d/(1 —d). The contribution of p to & is

4—D(p', M") —2D(p', p' ")~ —4D(p', M ) ~ 4D(p', p )

- 4D(~ n', ) h(f ~')

since the potential of p~ is everywhere less than (3R/
2) ' Jp~ .Henceforth we can assume p =p' and z
& fp' &z —ts. This assumption changes M to M'. Let
dM(x) =dm(x+ R) —p'(x)dx. [Note: supp(M) extends
outside H, but is inside fx~&R/2). ] P—= fx f

'~M' is
subharmonic on supp(M) and harmonic on supp(m) so

o(M, m") (f-&~) a(n, M"),

where 5 is a delta function at (- R, O, O). This is

dM z R&tcz R,

D. The Z correction and the behavior near the nuclei

Here we consider point nuclei with potential given by
Eq. (2.1). The question we address is what is the princi-
pal correction to the TF energy and density caused by
the first term in Eq. (7.1)? This term, A J(Vp'/2)2, will
hencefort. h be denoted by T. For simplicity we confine
our attention to P = &, the physical value of P.

TF'E -g'~'. In particular, for a neutral atom,

E = —3.678 74z 7/3/y (7.15)

{Ithank D. Liberman for this numerical value). At first
sight, it might be thought that the leading energy correc-
tion is O(z / ). If p

'

(z, r) =z p
'

(I, z'/ r) is inserted
into T, then, by scaling, T(z) =z5/3T(z =1). But T(z= 1)
=~ since pTF -x 3~2 for small r. Thus, for point nu-

clei, T cannot be regarded as a small perturbation.
The actual correction is + O(z ) and bounds of this

form can easily be found. The following bounds are for
an atom, and can obviously be generalized for mole-
cules.

Uppe~ bound: Use a variational p TF for TF% of
the form p(r) = pT (r) for r '1/z and p(r) = p' (1/z) for
r = 1/z.

I ower bound: Let b &0 and write V(r) = V(r)+H(r),
where H(r) =z/r —z'/b for zr &b and H(r) = 0 other-
wise. For small enough b, -A~+H&0, since

/f„H,
—b Now V =.

)
x

f

' *m, with m ~ 0 and
f
m

f

=z.
Let p minimize & (V, p) with energy E''(V). Then
E ' ' '" ~ E ' '

( V) . But E ( V) ~ 8 ' ' ( V, p) = E ' ' ( V) —J pH
It is not hard to prove, from the TF equation with V,
that this last integral is O(z').

The foregoing calculations show that the main correc-

since the distance of supp(M' ) to (—R, 0, 0) is R. Final-
ly,

D(1VI' —M, M' ) =D(p' —p', M' ) ~ D(p' —p~, m )

=D(p' —p', zb") ~ 2cz/R

since Jp' —p' ~ c and the distance of supp(p') to (R, 0, 0)
is R/2. ~

I thank J. Morgan III for valuable discussions about
Theorem 7.28. Balazs (1967) gave a heuristic argument
for the binding of two equal atoms with point nuclear
charges.
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tion in TFW theory comes from distances of order z
near the nuclei. The calculations, if carried out for
arbitrary A., also show that the correction is essentially
independent of X. We now show how this correction can
be exactly computed to leading order in z, namely,
O(z').

Let us begin by considering the atom without electron-
electron repulsion. The TF theory of such an atom was
presented in Sec. V.B following Eq. (5.30). The analogous
TFW equation {with 5 =AN 2/2m and h 2/2m =1) is

[-A&+ II'(x)14=- pl, (7.16)

with W(x) =yp(x) /2 —z/Ix I, and p = g2. The absolute
minimum, which corresponds to X =~, has p, =0, name-
ly,

(7.17)

The first task is to analyze Eq. (7.17). By simple
scaling, any solution scales with A, y, and z as

P(z, y, A; x) = (z 2/Ay)5/4$(1, 1, 1;zx/A) . (7.18)

Up to Eq. (7.28) we take z = y=A = 1. Consider the func-
tional

&'(0) = T(0) + I'M'), (7.19}

(7.20)

k{& x) =3 I&
I"'"/5+ 2 Ix I

"'/5- I&I'Ix
I

'.
Note that k & 0 and, for each x, k has a minimum at P
= Ix I

4. The function space for 5" is

I'(0) & ~]' ~ (7.22)

G' is not convex since 0 @O'. Clearly, Eq. (7.17) is the
variational equation for F'. We can also define G

=f p Ip - 0, p' c G'] and F(p) =F'(p'/2). G is convex
and p —F(p) is convex.

Theorem 7.29. 6"(() has a minimum on G . This mini

mizing /is unique, except for sign, and satisfies: (i) g
&0. (ii) /is sPherically symmetric. (iii) g satisfies
Eq. (7.I7). (iv) Q is the only non negative solution -to

Eq. (7.17) in G'. (v) /is C" for IxI &0. (vi) g satisfies
the cusp condition 2(dp/dr)(0) = —g(0). (vii) for large r

Q has the asymPtotic exPansion [which can be

formally deduced from Eq. (7.27)],

q(r) r-5/4 9 r-?/4 3 (24)2 -11/4+ O(r-&5/4) (7 23)

p(r) —r 2/2 9 r-5/2 (621/211)r-v(2+ O(r-9/2) {7 24)

(viii) Any solution f to Eq. (7.I7) in G satisfies If (x)
I

IxI 5/4. (ix) By (viii), /is superharmonic, and thus
g(r) is decreasing.

The proof of Theorem 7.29 follows the methods of
Secs. VII.A and VII.B, and is given in Lieb, 198Ib. The
following numerical values, together with a tabulation
of g, are in Liberman and Lich, 1981. p=|t2.

g{0)= 0.970 133 0,
2= 8, 583 8]9 7

From'Eq. (7.17) one has I, +I5=I2. By dilating Q(r)-t / g{tr) in Eq. (7.19), a 'virial theorem" is obtained:
5I~ + 3I2 ——5IS. Thus

Ig . I2 .I3 ——1:5:4,
&E =6'($) = I) —3I2/5+ I2 ——2I).

If the parameters are reintroduced

l, (z, y, A)=Sf (Vg)'=z'4'~'y '~'1

(7.26)

(7.27)

. (7.28)

(i) E (N)=E (1V)+DQ z42+0(a2), (7.29)

gpsth D= 2A. '~' -'f'I

(ii) a 4/2p,
'

(N) —p, '(X, z5, R5).
(iii) Fix x. Then

(7.30)

a-'p"" (N, z, R; a-'/'x) —p" P., z', R', x),
with convergence in the sense of weakly in L' if X ~ g
and weakly in L,2„ if A. & Z.

(iv) Fix y. For each j

(7.31)

z,. 5p~F (iV, z, R;R,. +z4'y) —(Ay) 2 2/2(y/A), (7.32)

where g is the solution to Eq (7.27) wit.h A=z =y=1
given by Theorem 7.29. The convergence is pointgvise
and in L, , A refinement of Eq. (7.32) is given in Theo
gems 7.32-7.35.

Before proving Theorem 7.30 let us comment on its
signif ican ce.

(i) Equation (7.29) states that the energy correction in
TFW theory is exactly of the form of the quantum cor-
rection conjectured by Scott [ Eq. (5.29)] . In particular,
since y3/ -q ', the q dependence is the same. In order
to obtain the conjectured coefficient —, of Eq. (5.32), with
y= y&, we must choose

A =q yq [ 16I)] = 0.185 909 19 . (7.33)

Let us denote the p we have just obtained in Theorem
7.29 [with the parameters reintroduced according to
Eq. (7.18)] by p„. The scale length of p„ is z ' and, for
large r, p„(r) agrees to leading order with p "{r)for
sm~ll r (on a scale of z '/'), namely, (z/yr)2/2. ~e
claim that p„can be spliced together with p

" in the
overlap region, r = O(z 2/2), and the 2esult is p~"~ to
leading order in z. The splicing is independent of A.

provided X/z & (const) &0. The change in energy for an
atom is then, to leading order, 4E of Eq. (7.27), and is
independent of A.. An analogous situation holds for a
molecule; near each nucleus p~F is spliced together with
p„ for the appropriate zz. This is formalized in the fol-
lowing theorem.

Theorem 7.30.. Let V(x) =Qzj Ix —R~I '. Consider the
g —~ limit with the scaling given before Eq. (5.2), ex
cePt that the electron charge N is not restricted to be
integral. +=ti/Z& 0 is fixed. z4 =az4, R4 =a R~/,

zenith aA. =N. Then, as N- ~,

I,= ~-»'- p»' =42.92,

I3 — ~ 3~ —p x=34.34.

(7.25) This number was mentioned after Eq. (2.8).
Yonei and Tomishima (1965}also realized that A = 1/5

is a good choice. They analyzed the TFW atom without
electron repulsion, namely Fq. (7.16), and compared the
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q 'z, zp
'

(x=R&) —0.19827149. (7.34)

On the other hand, p" in Eq. (5.33) can be evaluated at
x=0, since only 8 waves contribute. At x=0, f„»(0)z
=(8rrn') '. Thus Eq. (5.37), if correct, would state that

q 'z& zp~(x=R&) —g(3)/8n =0.047828325. (7.3 5)

To prove Theorem 7.30, Theorems 7.32—7.35, which
are independently interesting, are needed. To prove
them we need the following comparison theorem which
was proved by Morgan (1978) in the spherically sym-
metric case and by T. Hoffmann-Ostenhof (1980) in the
general. case.

Lemma 7.31. Let B C Rz be open, and let f and g be con
tinuous functions on the closure of B that satisfy bf and
&g c L z(B) and f(x) and g(x) —0 as Ix I

—~ if B is un
bounded. Assume hf & Ef and hg~ Gg as distrzbutions
on B, where E, G are functions satisfying E (x) &G(x)'
a.e. in B. Assume f(x) & 0 in B and f(x) & g(x) for all
xc BB. Then f(x) & g(x) for all xcB.
Theorem V.32. Let V=z/Ix I, and let g„be the Positive
solution to Eq. (7.17)given in Theorem (7,29). Let g
be the positive solution to the TE'W equation, (7.9), for
some p. & 0 and p= z. Then, for all x, tp(x) ~ g„(x).

Proof. Let B=(x
I ~/(x) —q„(x) & 0 j. Take f= y and g

= Q in Lemma 7.31. Since f and g are continuous and,
by Theorem 7.24, g(x) &f (x) for large Ix I, B is open
and bounded Hence b.f and hgc L'(B). On B, Ab'f
=Ef, AEg& Gg with E=—V+f'I'y and G= —V+g'I'y.
Since E&G in B and f=g on BB, f &g in B. Therefore,
B is empty. ~

For a molecule, an upper bound to g, which is not as
ni:ce as Theorem 7.32 but which is sufficient for Theo-
rem 7.30, can also be obtained. We always assume P

TFW energy with the quantum Bohr energy, Eq. (5.31),
for neutral atoms with z up to 100. They did not seem to
notice that this choice for A is valid even if X=N/z& 1.
Yonei (1971) analyzed TFDW theory with electron re-
pulsion and again advocated A= 1/5. This is not sur-
prising since Theorem 7.30 says that the electron re-
pulsion does not affect ~ to O(z') and Theorem 6.5 (suit-
ably modified) says that the Dirac correction changes
the energy to O(z" '). Yonei (1971) claims that the dis-
sociation energy and the equilibrium internuclear dis-
tance for the nitrogen molecule, calculated with this
TFDW theory, are in good agreement with experiment.

(ii) The density, on a length scale Z 'I agrees with
quantum (and TF) theory, Theorem 5.2.

(iii) On a length scale z ' near each nucleus, Eq.
(7.32) states that p'"'" converges to a universal func-
tion. This phenomenon is the same as we conjectured
in Eq. (5.37) for quantum theory. The universal func-
tions are not exactly the same, but they are very close.
For large values of the argument they agree, namely,
(y~ y) I, independent of A. Since the convergence in
Eq. (7.32) is pointwise, itmak. es sense to ask what
happens at y =0. Using y~ and A given by Eq. (7.33), the
right side of (7.32) is obtained from (7.18) and (7.25) as

Theorem V.33. I-et Vbe asin Theorem 7.30zoith the scal-
ing gzven there. Let /be thepositive solution to the TEW
equation for zz ~ 0 and let Bbe the bali fxIZ 'I' &

I
x —R, lf.

Then, for sufficiently large a,

g(x) ~ g„(x—R,) for xcB
where g„ is the Positive solution to Eq. (7.17) with

~ =~, +dZ'~'

and

d = 1 + 2(Z0) ' Iz/min g R',. —R',
I I

1 = 2, .. . , h j .

(7.36)

Proof. For (i) we use Theorem 7.14 together with the
fact that Jp =ah. For any x, let B be the ball of radius

centered at x. The contribution to h from X~ p is
bounded by (const)(ZO)ztzazIz. The contribution from
(1 —Xrr) p is bounded by a'Iz fp For .(ii), since p, is de-
creasing in A, p, ~ —e(N)/¹ However, e(N) &e "(N).
But —e "(N) scales as aztzf(X) and f(X) ~ (const)A. 'Iz by
Eq. (3.6). ~
Theorem 7.35. Assume the same hyPothesis as in
Theorem 7.33. Then, for sufficiently large a,

P(x) & P (x —R))0'(x —Rz) for all x, (7.37)

where g„ is the positive solution to Eq. (7.17) with z
=z —4ta2/3A and

o(x) = [1-a'" t lx I] exp(- a"'t lx I)

Here, Atz=d(1+X ztz) with d given in Theorem 7.34.

Proof. Let f=g and g=right side of Eq. (7.37). We
have to verify (7.37) only in B=(x

I

a'I' t Ix —R, I & 1) be-
cause g~0 otherwise. Since, by Theorem 7.29, both
g„and cr are symmetric decreasing, Ag& oAg„+ g„d cr.
But

(zzr)(x) = (a4Iztz —4a Izt/Ix l)o

and $4Iz& g4Iz since o ~ 1. Therefore, to imitate the
proof of Theorem 7.32, it is only necessary to verify
that a4IzAtz & h(x) + Zz, but this is clearly true. ~
Proof of Theorem 7.30. (iv) is a trivial consequence of
Theorems 7.33 and 7.35. (iii) is proved in the same way
as Theorem 5.2 if we note that the energy can be con-
trolled to O(zztz) by the variational upper bound given in
the paragraph after Eq. (7.15). (ii) is proved by noting

Proof. By Theorem 7.14 and Eq. (7.24), we can choose
a large enough so that/ (x —R,) &g(x) when xc BBandso
that R2, . . . , R~ fB. The proof is then the same as for-
Theorem 7.32, with f= t/r„and g= g, provided we can
verify that M(x) =—z Ix —R, l

' —V(x) &0 when xcB. But
M, being superharmonic in B, has its minimum on BB.
This minimum is positive for large enough a. 0

To obtain a lower bound to g, the following is needed.

Theorem 7.34. Assume the hypothesis of Theorem y.30
with A. & 0 and let g be the Positive solution to the TE'W
equation. Then there is a constant d, indePendent of A,
such that

(i) h(x) -=Ix
I

'~ p &dazIz.
(ii) p, &da4I'y-'I'.
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that, by the proof of (iii) just given,

a 7~3E (a, N=ag) —E (a= 1, A.).
The limit of the derivative of a, sequence of convex (in A.)
functions is the derivative of the limit function.

The proof of (i) is complicated. Upper and lower
bounds to E of the desired accuracy, O(Z'), are needed.
First, let us make a remark. Consider E as a function
of A. By standard arguments used earlier, E(A) is
monotone increasing, concave, and hence differentiable
almost everywhere for A & 0. dE/dA = T/A a.e. , and
E —E =f"(T/A)dA. If we can find a lower and
upper bound to T/A of the form

T/A=A '~ y I,g z,. + (lower order)

then Eq. (7.29) will be proved. We can, indeed, find a
lower bound of this form, and hence a lower bound to E.
We cannot find an upper bound of this -form and therefore
must resort to a direct variational calculation to obtain
an upper bound to E.

Upper bound. By the monotonicity of E in N, it is only
necessary that Jp ~ Ã. There are several ways to con-
struct a variational p, which we call f. The details of
the calculation of g(f) are left to the reader. One con-
struction is to define B =Lx

~ p (x) & Z5~2] . For large
a, B is the union of k connected components which are
approximately spheres centered at R, . Call these Bz.
Let g„,. be the solution to Eq. (7.17) centered at R,. and
with z =z, —ta2~3. Let C,. =fx~(„,. & Z'~4). For large
enough, but fixed t, C,-C B,. for large a. The variational
f is defined by f(x) = pT" (x) for x g B, f(x) = Z5~ for x
cB~QC~, and f(x) =)t„,.(x)' for x c C,

Louver bound. We construct a lower bound to T/A.
Suppose I'„.. . , P„are orthogonal, vector valued func-
tions. Then T/A ~ Q,L2/J P2, where L, =f&g P, . .We
take P, (x) =&)t„,(x))i., (x), where X,. is the characteristic
function of D, =(x

~
~x —R,. ~

&tz, ~3j, and t is some fixed
constant. For large a, the D; are disjoint so the P~ are
orthogonal. Clearly, fP&~ —JV )l)„', + o(Z'). Now multiply
Eq. (7.17) for g„, by g and integrate over D, Then

V „& nds.

By the bound (7.37), the first integral is (T„;/A)+ o(Z').
It is not difficult to show that the second integral is
o(Z'). This can be done by using Eq. (7.24), whence,
for some tc[,1], dg„,. /dr& —10z3)'4r 't~ at r =tz,. 2t3.
R

V I I I. THOMAS-F ER IVII-D I RAC-VON WE I ZSAC K E8
THEORY I

This theory has not been as extensively studied as the
other theories. The results presented here are from un-
published work by Benguria, Brezis, and Lieb done in
connection with their 1981 paper.

The energy functional is

(8.2)J(p) = (y/P) p ' —(3C, /4) p

For convenience we assume p & 4 (not p z 1). g(p)
—= g'(p't2). The function space for g is the same as for
TFW theory, namely, G' of Eq. (7.3). Note that g(p) is
not convex because of the —fp4~3 term.

As in TFD theory Eqs. (6.7)—(6.10), we introduce

&.(p) =~(p) + op, (8.3)

and o. is chosen so that j (p) ~ 0 and J (po) =0=J'(po)
for some po, namely,

p' "'=C.P[4y(& —1)] '

o = (3P —4)[4(P —1)] 'p,'t'C, .
The necessity of P ) — for this construction is obvious.
g' and g are defined by using J in Eq. (8.1).

The energy for A. ~ 0 is

(8.4)

E z))=. in I)8(p)~pcG„p=&I, (8.5)

E(~) =E'(~) =E.(~) - o~=E' (~) —o~. (8.6)

(ii) E is finite.
(iii) p minimizes g(p) on fp = x if and only if )l) =p't

minimizes g'(g) on J)l)2=1. This p and g also obviously
minimize g and g'.
Proof. The same as for Theorems 2.1, 6.2, and 7.2.
Note that [ fp'~']'~ ~ [ Jp]3' fp~(by Holder). ~
Theorem 8.2. Let )t minimize g'(g) on the set f$2= y.
Then Q satisfies the T FDW equation:

[—Ab, + W(x)) )l) = —tL)l),

in tbe sense of distributions, u)ith

(8.7)

W=yp' ' —C, p'~' @+-
@= p'- ~x

~

'~ p, and p= g2. APart from a sign, g(x) ) 0
for all x, and, g satisfies the conclusions of Theorem
7.9. )l) is the unique ground state of H= —Ar) + W(x) and
p, is its ground state eigenvalue-. E is differentiable at
A. and p, = —dE /d& = —dE/d& —o' ~ —&. p = 0if E (&) has an
absolute minimum at this X.

(8.8)

Proof. The proof is basically the same as for Theo-
rems 7.8—7.10. Although it is not known that p= g2 is
unique, this is not really necessary. By considering
the variation of g'()t), )l) satisfies Eqs. (8.7) and (8.8).
If )l) is minimizing, then so is ~g~ (cf. Theorem 7.2).
Hence ~g~ satisfies Eq. (8.7) with the same W. But, as
in Theorem 7.10, the ground state of II= -AA+ TV is
unique and non-negative and therefore )l) may be taken
to be ~ 0 for all x. The rest follows by the methods of
Theorem 7.9. (Note: p'~3(c L3 since (cL6 A L2.) ~

and similarly for E (X) and E'(A), E'(A) using h '. If the
condition fp=A. is omitted in (8.5) we obtain E, E, E,
Qf

Theorem 8.1~ (i) The four functions E(&), E (&), E'(&),
and E' (X) axe finite, continuous, and satisfy

))-'()')=& p))'+ f z()')

2+/) 2 2 +U
in units in which 0 2/2m =1.

(8.1)

Remm"k. As in Sec. VQ, the role of g', as distinct
from g, is solely to prove Eq. (8.7), in which no ex-
plicit reference to p~ 0 is made.

Remark. Theorem 8.2 does not assert the existence of
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E(x)=in}{))(p)~pc G„f p

E= inf E (A,) =—~ .

(8.10)

~e conjecture that E(X) is convex. Unfortunately, the
"convexification" trick of Sec. VI, in which 0 is re-
placed by j, is not helpful. Because of the gradient
term, any minimizing P will be continuous, and there-
fore g cannot omit the values (0, po), even for point nu-

clei. While the energy for j is, indeed, convex, it is
strictly smaller than E (X) for all X.

Theorem 8.5 states that E and E have absolute mini-
ma at some common, finite A.. For all we know, there
may be several such A. , but all these X are bounded.
Furthermore, for every A. there is a minimizing p for
E (A). Unfortunately, for no X are we able to infer that
j'p = X.

Theorem 8 ~ 5. (i) The~e exists a minimizing p for g (p)
onG&, and g=p, ~ minimizes g'()l)). Every such pcI ',
and fp & some constant which is independent of p.

(ii) There exists a minimizing p for g (p) on the set
p&A..

Remark. It is not claimed (but it is conjectured) that
the mminim}izing p is unique.

Proof. The proofs of (i) and (ii) are the same, so we
concentrate on (i). The proof merely imitates the proof
of Theorem 7.6. The only new point is that pc: I.'. Each
term in g(p) is finite and, in particular, I= jJ (p) & ~.
But J' (p) & hp when 0 & p & p for some h, p & 0. If y is
the characteristic function of {x~p(x)- PJ, h f})p & ~.
On the other hand, p~(l —}t)p & p, so p2 f(1 —X) p
& fp' & ~ since pc I3. It is easy to see from Eq. (7.6)
that the bound on jp is independent of p. ~
Remark. It is surprising that the fact that X ~ ~ for

a minimizing )l) with f )l)'= X.

Now we turn to a difficult and serious problem. We
do not know that E (X) is monotone nonincreasing.
Therefore, if we define

R (h) = in) {)) (p} ~ p c G„f p - zI, (8)})

we do not know that E (X) =E (X). By definition, E (X)
is monotone nonincreasing. The source of the difficulty
is this: Although 4 (po) =J'(p, ) =0 (as in TFD theory),
we cannot simply add small clumps of charge, of ampli-
tude po, at ~. This is so because sbch a clump would
then have f(&)l))2=~. Nevertheless, we can add clumps
with h energy strictly less than n fp, as the following
theorem shows.

Theorem 8.3. Set V=O in g'. There are C" functions
of compact support such that g'(g) &0.

Proof. Let f be any function in Co and let P(x) =h f(hx).
For some sufficiently s~all, but positive h, g'(g) &0.
To see this, note that f(V&)' scales as h', fp'i' as
5 "i', D(p, p) as 5', while fp4t3 scales as b't' ~.

As a corollary we have the following.

Theorem 8.4. E(A) is strictly monotone decreasing zn

Hence

any absolute minimum is obtained so easily. Recall that
in TFW theory the proof of this fact (Theorem 7.12) re-
quired analysis of the TFW equation.

An important question is whether A, , for an absolute
minimum, always satisfies X» g. A few things can. be
said about the properties of any minimizing p on fp = X.

Theorem 8.6. In the atomic case, V(r) =z/r, any mini-
mizing g is symmetric decreasing u)hen x «z. (Con-
j ecture: this also holds for all X.)

Proof. The rearrangement inequality proof of Theorem
2.12 is applicable. 0
Theorem 8.7. The conclusions of Theo~em 7.13 hold
for any minimizing (. Moreover, for every t & p, + n
there exists a constant M such that

)t)(x) - M exp[ —(t~A) lx !1 ~

Proof. Same as for Theorems 7.13 and 7.24. ~
Theorem 8.8. Every minimizing g satisfies Theorem 7.25.

Plainly, TFDW theory is not in a satisfactory state
from the mathematical point of view. In TFD theory
we were able to deal with the lack of convexity by means
of the J trick. In TFW theory, the presence of the
gradient term does not spoil the general theory because
8 is convex. When taken together, however, the two diffi-
culties present an unsolved mathematical problem.
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L/R refer to left/right column

R, 636L

638L

admissible density matrix, 621L
amenable potential, 625R, 627L
asymptotics, 607L, 607R, 613R, 633R, 639R
atomic radius, 614L, 624R
atomic surface (see surface, atomic)
Baxter's theorem, 615L
Banach-Alaoglu theorem, 605R, 629R
Benguria's theorem, 617R
binding, 604L, . 614R-615L, 628B, 634L—635R
Bohr atom, 623L, 623R
boundary, 607L
chemical potential, 606R, 613L, 631L
chemical potential (asymptotics), 613R, 631L
compressibility, 617L
convexification, 605L, 625R
convexity, 605L
Coulomb potential, 604L, 612R, 625L
core, atomic, 624L
critical density, 606L, 612R, 626L, 631L—633R
density, 604L
density matrix, admissible single particle, 621L
dilation, 616R—618L, 619B
dipole-dipole interaction, 620L
Dirac correction, 604R, 625L
domain of the energy functional, 604R, 625L, 628
double layer, 609B
electronic contribution, 605L, 616L
electron number, 604R, 620R
energy functional, 604L, 604R, 611L, 625L, 628R
exponential falloff, 604L, 624B, 633R, 639R
Fatou's lemma, 605R, 629R
Firsov's principle, 610L, 610R
free boundary problem, 607I
ground state, approximate, 623I, 624L
harmonic, 607L
heavy atom, 624L, 624R
inner core, 624L
infinite atom, 623R, 636L
ions, negative, 604I, 628R, 632R, 634L
ionization potential, 613R, 624R
ionization, spontaneous, 634B
j model, 614L, 625B
kinetic energy, 608L, 617L, 625L
L~ space, 605L
long range interaction, 619R, 620L
many-body potentials, 615R, 619R

Mazur's theorem, 605R, 615L, 626L
minimization, 605L, 606L, 625L, 628R, 638R
minimizing density, 606L, 626L, 629R, 639L
no-binding theorem, 603R, 611L, 614R
nuclear charge, 604L
nuclear coordinates, 604L
nuclear potential, 604L ~

nuclear repulsion, 604L
outer shell, 624L
over-screening, 609R
periodic Coulomb potential, 609L
periodic Thomas- Fermi equation, 609L
potential theory, 606R, Sec. III
pressure, 608R, 617L
quantum theory, 603B, 617L, 620R
repulsive electrostatic energy, 604L, 621B, 625L
scaling, 608R, 610L, 619R, 620R
Scott cor r ec tion, 603R, 623L- 624L, 636R
screening, 609B, 627L
singularities, 607R, 612L, 620L
Sobolev inequality, 629L, 629R
solids, 608R—609R
spin state number (q), 604R, 620R, 636B
strong singularity, 607R, 620L
subadditive, 612R, 614R
subharmonic, 607L
superadditive, 614R, 618B, 619L
superharmonic, 606R
surface, atomic, 614L, 624R
surface charge, 609B
symmetric decreasing function, 608L, 634L, 639R
Teller"'s lemma, 611L, 612L
Teller's theorem, 611L, 614R
Thomas- Fermi energy, 605L
Thomas- Fermi equation, 606R
Thomas- Fermi equation (generalized), 611L
Thomas- Fermi differential equation, 607L
Thomas-Fermi-Dirac equation, 611L, 626L

~ 0

Thomas —Fermi-von Weizsacker equation, 630L
~ ~Thomas- Fermi-Dirac —von Weizsacker equation, 6

Thomas- Fermi potential, 606R—608R, 611L-612R,
total shielding, 627L
under- sc reening, 627L
variational principle, 608L, 613L
Virial theorem, 608L, 608R
von Weizsacker correction, 604R, Sec. VII
Z2 correction in TFW theory (see Scott correction)
638L
Z ~ limit, 620R

38R
616R

635R—
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