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This article is a summary of what is know rigorously about Thomas-Fermi (TF) theory with and without the
Dirac and von Weizsicker corrections. It is also shown that TF theory agrees asymptotically, in a certain
sense, with nonrelativistic quantum theory as the nuclear charge z tends to infinity. The von Weizsicker
correction is shown to correct certain undesirable features of TF theory and to yield a theory in much better
agreement with what is believed (but as yet unproved) to be the structure of real atoms. Many open problems

in the theory are presented.
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I. INTRODUCTION

In recent years some of the properties of the Thomas-
Fermi (TF) and related theories for the ground states
of nonrelativistic atoms and molecules with fixed nuclei
have been established in a mathematically rigorous way.
The aim of these notes is to summarize that work to
date—at least as far asthe author’s knowledge of the
subject goes. In addition, some open problems in the
subject will be stated.

TF theory was invented independently by Thomas
(1927) and Fermi (1927). The exchange correction was
introduced by Dirac (1930), and the gradient correction
to the kinetic energy by von Weizsicker (1935).

No attempt will be made to summarize the voluminous
subject of TF theory. Such a summary would have to in-
clude many varied applications, many formulations of
related theories (e.g., relativistic corrections to TF
theory, nonzero temperature TF theory) and reams of
data and computations. Some reviews exist (March,
1957; Gomb4ds, 1949; Torrens, 1972), but they are
either not complete or not up to date.

We shall concentrate on nonrelativistic TF and re-
lated theories for the ground state with the following
goals in mind:

(1) The definition of TF and related theories (i.e., the
von Weizsidcker and Dirac corrections), The main
question here is whether the theories are well defined
mathematically and whether the equations to which they
give rise have (unique) solutions.

(2) Properties of TF and related theories. It turns
out that, unlike the correct Schrdodinger, quantum (Q)
theory, the TF and related theories have many inter-
esting physical properties that can be deduced without
computation, Some of these properties are physically
realistic and some are not, e.g., Teller’s no-binding
theorem, As will be seen, however, the no-binding re-
sult is natural and correct if TF theory is placed in its
correct physical context as a large-Z (=nuclear- charge)
theory.

(3) The relation of TF theory to @ theory. The main
result will be that TF theory is exact in the large-Z
(nuclear-charge) limit, For this reason, TF theory
should be taken seriously as one of the cornerstones of
atomic physics. The only other regime in which it is
possible to make simple, exact statements is the one-
electron hydrogenic atom. The natural open question is
to find the leading correction, in Z, beyond TF theory.
This will lead to a discussion of the Scott correction
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* (Scott, 1952) which, while it is very plausible, has not
yet been proved. It turns out that Thomas— Fermi-von
Weizsacker (TFW) theory has precisely the properties
that Scott predicts for @ theory. Moreover, TFW
theory remedies some defects of TF theory: It displays
atomic binding, it gives exponential falloff of the density
at large distances, it yields a finite density at the nu-
cleus, and negative ions are stable (i.e., bound).

The work reported here originated in articles by Lieb
and Simon, 1973 and 1977 (hereafter LS). Subsequently,
the ideas were developed by, and in collaboration with,
Benguria and Brezis. I am deeply indebted to these co-
workers,

Since many, unsolved problems remain, these notes
are more in the nature of a progress report than a text-
book, The proofs of many theorems are sketchy, or
even absent, but it is hoped that the interested reader
can fill in the details with the help of the references.
Unless clearly stated otherwise, however, everything
presented here is meant to be rigorous.

Il. THOMAS-FERMI THEORY

The theories will be stated in this section purely as
mathematical problems., Their physical motivation from
Q@ theory will be explained in Sec. V. In order to present
the basic ideas as clearly as possible, only TF theory
will be treated in this section; the variants will be treated
in Secs. VI, VII and VIII. However, the basic definitions
of all the theories will be given in Sec. II.A, and there
will be some mention of Thomas- Fermi-Dirac (TFD)
theory in Sec. II.B and Sec. IIl.

A. The definitions of Thomas-Fermi and related theories

All the theories we shall be concerned with start with
some enevgy functional 8(p), where p is a non-negative
function on three-space, R p is called a density and
physically is supposed to be the electron density in an
atom or molecule,

The functionals will involve the following function V
and constant U:

V("):il z;|x - Ry,

i=

(2.1)

U= z:z;| Ry - By |1,
1<idj<k

(2.2)

V(x) is the electrostatic potential of # nuclei of charges
(in units in which the electron charge e=-1) z4,...2,
>0, and located at Ry,...,R,c R’. The R; are distinct,
The positivity of the z; is important for many of the
theorems; while TF theory makes mathematical sense
when some z; < 0, it has not been investigated very much
in that case. U is the repulsive electrostatic energy of
the nuclei, )
TF-type theories can, of course, be defined for poten-
tials that are not Coulombic, but many of the interesting
properties presented here rely on potential theory and
hence will not hold for non-Coulombic potentials. This
is discussed in Sec, IIl. There is, however, one gen-
eralization of Egs. (2.1) and (2.2) that can be made with-
out spoiling the theory, namely, that the nuclei can be
“smeared out,” i.e., the following replacements can be
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made:

ZJ"“Rfl_i"fdmf(y)lx—R1+yl—1: (2.3)

z;2;|Ri— Ry |~1— fdm,-(y)dm,(w) ly—w- R, +R;|™1,
(2.4)
where m; is a positive measure (not necessarily
spherically symmetric) of mass z;.
The functional for TF theory is

8=ty [ p¥/%x- [ p@IVeIdx + D(p,p) + U,

(2.5)

where

D(g,f)=3 ffg(x)f(y) |x—y|taxdy.

All integrals are three dimensional,
v is an arbitrary positive constant, but to establish
contact with @ theory we must choose

v = 6723 2 (2mq?/3)1, (2.6)

where Z="h/27, h="Planck’s constant, and m is the elec-
tron mass. ¢q is the number of spin states (=2 for elec-
trons), ’

U appears in § as a constant, p-independent term. It
is unimportant for the problem of minimizing & with re-
spect to p. Nevertheless U will be very important when
we ‘consider how the minimum depends on the R;, e.g.,
in the no-binding theorem (Sec. III.C).

For the Thomas-Fermi-Dirac (TFD) theory

8T':D(p)=<‘a’(p)—%cefp(x)4/3dx, (2.7
with C, a positive constant. In the original theory
(Dirac, 1930), the value C,= (6/7¢)!/3 was used for rea-
sons which will be explained in Sec. VI. This value is
not sacrosanct, however, and it is best to leave C, as
an adjustable constant.

The Thomas— Fermi-von Weizsdcker theory (TFW) is
given by (von Weizsidcker, 1935)

87 (o) =8(p) +0 [ (V01w U, (2.8)
with 6=A7%/2m, and A an adjustable constant. Original-
ly, A was taken to be unity, but in Sec. VILD it will be
seen that A=0.186 is optimum from one point of view.

The most complicated, and least analyzed, case is the
combination of all three (Sec. VIII):

8T (p)=8(p)-3C, [ pC0)*/3dx

+6f [(Vp!/3)(x)] %dx . (2.9)

The first question to face is the following,

B. Domain of definition of the energy functional
Since p is supposed to be the electron density we re-

quire p(x)= 0 and

f p(x)dx == electron number (2.10)
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is finite, In addition we require p € L5/3 in order that
the first term in §(p) (called the kinetic energy term)
be finite. X is not necessarily an integer.

Definition. A function f is said to be in L? if
[f If ) |Pax] /o = Fll, is finite, 1 <p<w. |[fll,
=esssup|f (x) | (see Theorem 3.12).

If fe L N L with p <q then fe L* for all p <t <gq.
WA <UANRANL™, where ap™ '+ (1 =g =¢7,

Proposition 2,1, If pe L5/3n L! then all the tevms in §
and 8P are finite, Iffps X then §(p) and §TFP (p) are
bounded below by some constant C(\). Furthermore,
Sor all x, §(p)>C > — = for some fixed C,

Proof. The first part is an easy application of Young’s
and HOlder’s inequalities. The second part requires a

slightly more refined estimate of the Coulomb energies
(cf. LS). m

Remark, Although 8™V will be seen to be also bounded
below by a constant independent of A, neither & nor
&TFDV is so bounded. This fact leads to an amusing un-
physical consequence of the D theories which will be
mentioned later, )

A very important fact (which, incidentally, is not
true for Hartree- Fock theory) is the following.

Proposition 2.2, p— §(p) is sivictly convex, i.e.,
3(7\914' (1- Apy) <A (py)+(1- M8 (py) for 0 <a <1
and p+ p,.

Proof. p? is strictly convex for p>1. [ Vp is linear in
p and hence convex, D(p,p) is strictly convex since the
Coulomb kernel [x-y|~!is positive definite. M

Remark, 8™V is also strictly convex, but the func-
tionals TP and §™PY are not convex because of the

- [p%/3 term. However, & T can be “convexified” in a
manner to be described in Sec. VI.

C. Minimization of the energy functional

The central problem is to compute

E(x):inf{g(p)]peLan‘,f p=7x} (2.11)

and

e\ =EQMN)-U. (2.12)

E(X) is the TF energy for a given electron number, A
and e(}) is the electvonic contribution to the enevgy.
The “inf” in Eq. (2.11) is important because, as we
shall see, the minimum is not always achieved, al-
though the inf always exists by Prop. 2.1.

’

Theorem 2,3, e(\) is convex, negative if A> 0, nonin-
creasing and bounded below, Fuvthevmove,

E(\)=inf {8(p)]peL5/3ﬂL1,fp< x}. (2.13)
Proof, The first part follows from Prop, 2.2 together
with the observation that V(x)—~0 as |x|— . This

means that if X increases we can add some 8p arbitrar-
ily far from the origin so that §(p + 6p) — 8(p) <¢ for
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any € > 0. Equation (2.13) is a simple consequence of
the monotonicity of e(A) and E(A). (cf. LS). m

Equation (2.13) has an important advantage over (2.11),
as Theorem 2.4 shows,

Theorem 2.4, Theve exists a unique p that minimizes
8(p) on the set [p <.

Note. Uniqueness means, of course, that p is deter-
mined only almost everywhere (a.e.).

Proof. (See LS.) Since &(p) is stvictly convex, a mini-
mum, if there is one, must be unique. Let p™ be a
minimizing sequence for 8, namely 8(p ™) — E() and
Jp™ < 1tis easy to see that [(p™)5/*<¢c, where ¢
is some constant; this in fact comes out of the simple
estimates used in the proof of Prop. 2.1. We should like
to extract a convergent subsequence from the given p .
This cannot be done a priori in the strong topology, but
the Banach-Alaoglu theorem tells us that a L5/% weakly
convergent subsequence can be found; this will be de-
noted by p ™), We should like to prove

lim inf&(p ™) > &(p). 2.14)
Since p™ — p weakly in L5/3 we have (by the Hahn-
Banach theorem, for example) that

limint [ [p®]5/55 [ 053, (2.15)

liminfD(p ™, p™) > D(p, p). (2.16)

The term — [ Vp requires slightly more delicate treat-
ment. Write |x- R|"!=f(x) +g(x), where f(x)= |x- R|™!
for |x— R|<1 and f(x)=0 otherwise. fe L5 2 and S
- ffp by weak convergence. On the other hand, g L3*°
for all £>0. p® is bounded in L%/3 and in L! (by 1), so
it is bounded in all L¢ with 1 <g < 2 and therefore p "’
—p weakly in L?as well as in L33, Fix« >g>0 and

let ¢ be dual to 3+&. Then [gp ™ — [gp. This proves
Eq. (2.14) which, since E(X)=1lim inf&§(p ’) and E(})

<& (p), implies that pis minimizing provided we can show
fp<X. This follows from the fact that if [p>X then
there is a bounded set A such that [,p>X. If a is the
characteristic function of A then a € L5/2 and A> fozp ()
—-fozp by weak L5/? convergence. B '

Remark. The proof of Theorem 2.4 can be considerably
shortened by using Mazur’s (1933) theorem. p—&(p) is
obviously norm continuous and hence norm lower semi-
continuous. Mazur’s theorem says that the convexity of
&(p) then automatically implies weak lower semicon-
tinuity since norm closed convex sets are automatically
weakly closed. The proof given above has the virtue of
an explicit demonstration of the weak lower semicon-
tinuity.

Remark. The analogous proof in TFD theory will be
harder, since p®/®— p*/? is not convex, monotone, or
positive; hence we cannot say that

liminff[p(ﬂ)]s/s_[pw]us?fps/a_p4/3o

However, in TFW theory a different strategy, using
Fatou’s lemma, will be employed to deal with these
terms, The strategy also works for TFDW theory.
Thus the introduction of the W term (2.8) makes part of
the proof easier. It would be desirable to know how to
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use Fatou’s lemma (which does not require convexity) in
the TF and TFD proofs.

Since E()\) is nonincreasing, bounded, and convex (and
hence continuous) we can make the following definition in
TF theory. )

Definition. X, the cvitical ), is the largest X with the
property that for all M <, E(X')> E(\). Equivalently,
if E(w)=1im,_,E(}) then A, =inf{X| E(X)= E(=)}. In prin-
ciple A, could be +, but this will not be the case. In
TFD and TFDW theories E()) is not bounded and the
above definition has ‘'to be generalized. X, is the largest
) with the property that 2E(A\) < E(A — €) + E(A + €) for all
0<g<x. In other words, E(X)=E(),)+(const)(x -2, for
A= X, The j'model in TFD theory is bounded, so the
first definition is applicable to that model. A, will be
shown to be Z=Z‘,zj in TF and TFD theory, Theorem
3.18. In TFW theory, A,>Z (Theorem 7.19).

Theorems 2.3, 2.4, and Proposition 2,2 yield the fol-

lowing picture of the minimization problem in TF theory.

Theorem 2.5, For X< ), theve exists a unique mini-
mizing p with [p=2X. On the set [0,),], E(\) is strictly
convex and monotone decveasing, Fov \> X\, theve is no
minimizing p with [p=2x, and E(\)=E(\,); the mini-
mizing p in Theovem 2.4 is the p for X,

Proof, For A<, use the p given by Theorem 2.4 and
note that if \’= [p <A then E(\")=&(p)=E(\). The
strict convexity is trivial: if A=ax;+ (1 - a)x, use ap;
+ (1 - a)p, as a trial function for A, On the other hand,
for A> X, the p given by Theorem 2.4 will have [p=1,
because if a minimum existed with fp =X"> ), then p
=(p +p,)/2 (with p, being the p for A,) would satisfy X,
< [P=%5(+2x,) <)\’ but, by strict convexity,

&(P) <[8(p) +8(p)]/2=ER,),
which is a contradiction. =

The general situation is shown in Fig. 1. There Z
is shown as less than A, while that is the case for
TFW theory, in TF and TFD theory x,=Z. The
straight portion to the right of A, is horizontal for TF
and TFW, but has a negative slope for TFD and TFDW,
The slope at the origin is infinite for TF and TFD but
finite for TFW and TFDW.

>\
lect
(‘umber )

F——\C minimizing p—= no minimizing p
|

!
E-U-

FIG. 1. “The electronic part” of the TF energy, E ~U, is shown
schematically as a function of the ¢ electron number”, A= fp.
For A s}, there is a unique p that minimizes the TF energy
&(p). For A >, there is no such p. In TF theory 7\0=Z=Z>jk=12j
=total nuclear charge. E-U is constant for A=}A,. These
features are different for TF, TFD, and TFDW theories (see
text).
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D. The Thomas-Fermi equation and properties of the
density )

The variational derivative of &(p) is 68/6p =yp%/3(x)

- ¢,(x) where
0,6)=V() - [ p(3) x| ay. (2.17)

A Lagrange multiplier u should be added to 8/6p to in-
sure that fp:)\. It is then expected that 6&/6p + u =0
if p(x)>0, but 68/6p + 1 = 0 if p(x) =0 because negative
variations of p(x) are not allowed. The two situations
can be written as

y02/3(x) =max[ ¢,(x) — 1, 0]=[ d,()— 1]

This is the TF equation. (Note that the [ ] is very im-
portant.) This formal manipulation is, indeed, correct.

(2.18)

Theorem 2.6, If p minimizes 8(p) wilh [p=x<Xx, then
p satisfies Eq. (2.18) for some (unique) u(\). Converse-
1y if p, u satisfy Eq. (2.18) and pc LN L5/3 then p mini-
mizes 8(p) for x:fp_ Hence (2.18) can have atl most
one solution p, U with fp:h. If x=2x, then un=0.

Proof. The first part is standard in the calculus of
variations, Now let p;, u;,¢2=1,2, satisfy Eq. (2.18)
with the same X, Let F;(k)= (3y/5)[h%/3>~ [¢;h. 1t is
easy to check that F;(k) has a unique minimum, F;, on
the set [ =X, k> 0; the minimizing &, is p;. However,
Fy(py) + Fy(py)=Fy+ Fy— D(py—py,p1— Py). Thisis a
contradiction unless p;=p, (and hence p;=pu,). The last
part (i.e., pu=0) follows by considering the absolute
minimum of &(p), in which case no p is necessary. But
this is equivalent to setting © =0, This minimum occurs
for A= A, but as we have shown, only at A, is there a
minimizing p (cf. LS). m

Remarks. In Sec. III a proof of the uniqueness part of
Theorem 2.6 which uses only potential theory will be
given, It should be noted that we arrived at the existence
of a solution to Eq. (2.18) by first considering the mini-
mization problem, A direct attack on (2.18) is rather
difficult. Such a direct approach was carried out by
Hille (1969) in the atomic case, but even in that case he
did not prove that the spherically symmetric solution is
the only one; our uniqueness result guarantees that.

Theorem 2,7. E(A) is continuously diffeventiable and
dE/drx=— u(\) if X< A,. dE/dA=0if x2 X,. Thus — p(\)
is the chemical potential.

Proof, The convexity and boundedness of §(p) is used.
(See LS, Theorem II.10 and Lemma I1.27.) m

It will be noted that we have not used the fact that Vv
is Coulombic; only that it vanishes at «, Likewise, the
only property of the kernel |x—y|~!that was used was
its positive definiteness. In Sec. III we shall exploit the
fact that |x—y|~!is Coulombic and, to a lesser extent,
the fact that V is superharmonic, Also, it will be shown
that A, = Zzziz,.

Definition. A function f(x) defined on an open set QcC R?
is supevharmonic on Q if, for almost all x € © and for
almost all spheres centered at x, but contained in €,
f(x) = (the average of f on the sphere), i.e., f(x)= (4m™
X figi=gf(x+9)dy. This is the same as Af <0 (in the
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sense of distributions) in Q. f is subharmonic if —f is
superharmonic. f is harmonic if it is both subharmonic
and superharmonic.

In Sec. III potential theory will shed considerable light
on the solution to Eq. (2.18). Here we shall concentrate
on some other aspects of (2.18).

Let us assume that V(x)=2z;|x - R;|~!. ¢ denotes
¢, for the solution to Eq, (2.18). In Sec. IIl we show
¢(x)>0. As a distribution,

~ApW)/4m=7 2;6(x = R;) = p(x)

= 2,8~ Ry) =y 3/ 2(p(x) - pn)3/2,
(2.19)

This is the TF differential equation and is equivalent to
Eq. (2.18). It involves ¢ alone. Since pe L5/3NLY ¢ is
continuous away from the R; (Lemma 3.1) and goes to
Zero as |x]~—°°. The fact that ¢ goes to zero at infinity
is understood as a boundary condition in Eq. (2.19).

Theorem 2.8 (LS Theorem 1V.,5).
(@) Near each R;

px)= (2, /7’)3/219“ R; l “3/24 O([x-— le-1/2)

() p(x) =0 as |x|—co,

(c) p and ¢ are veal analytic on A:{x]x#R, all j,
p(x)>0}.

(d) In the neutval case (u=0) p(x)>0, all x,

(e) In the ionic case (X <Z, . > 0) p has compact sup-
povt and p and ¢ ave C! away from the R,.

Proof, (a) and (b) follow directly from Eq. (2.18). ¢
continuous = p continuous away from the R;= ¢ is

C! everywhere. Then p is C!away from the R;. [Note
(- u)?'2is Clif ¢ is C']. By a bootstrap argument p
is C* on A, By Theorem 5.8.6 in Morrey (1966), ¢ is
real analytic away from the R; and where ¢ > u, namely
A. Finally, since ¢(x)—0 as |x|—-, p has compact
support when > 0. The positivity of ¢ is established
in Sec. III, so p> 0 in the neutral case. m

In the ionic case (A < Z) the set @={x|p(x)>0} is
bounded. What can be said about its boundary, 9Q2? In
the atomic case 9Q is, of course, a sphere. In the gen-
eral case, the TF equation (2.19) is a “free boundary
problem” about which Caffarelli and Friedman (1979)
have proved the following result among others.

Theorem 2,9, Consider the genevalized TF problem
wilh § replaced by p and 3 <p <2. There are at most

a finite number of open C! curves I'y,..., I'; such that
an\{u§=,i} is a C* ® manifold with a=(2- p)/(p-1).

The next question to consider is the asymptotics of p,
in the neutral case (4 =0), as |x|—, This involves
finding universal bounds on p. The function ¥(x) =33/
m)? [x["’ satisfies Eq. (2.19) for |x|> Oandx#R; Itisthe
only “power law” that does so. This was noted by Sommer-
feld, who concluded that ¥(x) is the asymptotic form of
¢. Hille (1969), who was possibly the first to make a
serious mathematical study of the TF equation, proved
this asymptotic law in the atomic case. It is remarkable
that ¥, the asymptotic form of ¢, is independent of z,
and it is just as remarkable that the same form holds
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even in the molecular case,

Theorem 2,10 (LS Sec. V.2). Suppose p=0 and |R,|
<R, for all j and some R, Fov v= le >R let ¢,(7r)
(resp. ¢_(v)) be the max (resp. min) of ¢(x) on Ix |:r
and C, (v) = ¢,()/Y(r) with () =+*(3/m?)% Then C,(»)
—~1 as v— «, Furvthermove, if R < v then

i) C.(R)= 1= C,(r) < C.(R),

(ii) C,(R)s1= C,(r)< 1,

(iii) C_(R)< 1= C_(r)=C_(R),

(iv) C_L(R)=1= C_(n)=1.

Proof. If f,g are continuous, positive functions on |x |
> R which go to zero as |x|—, and if y3/2Af< 47f3/2,
Y /20g = 4ng®/? for |x| >R, and if f(x)> g(x) for |x|=R,
then f (x) = g(x) for all |x|>R. This is easily proved by
a “maximum argument” as in Sec. III. ¢ is of this type
with 4%/%A¢ =4m¢3/2, If C,(R)> 1, compare ¢ (x) with
C.(R)Y(x). Then C,(»)s<C,(R), all » > R, This proves (i)
and similarly (iii). To prove (ii) and (iv) compare ¢
with ¥, It remains to show that C,(»)— 1. C, is con-
tinuous, We shall show that lim supC,(*) < 1; by a simi-
lar argument lim infC_(»)> 1, This will complete the
proof. If C,(R)>1, let R,=sup{»|C,(»)= 1} whence
C.w)=1for Rsv<Rjand C,(»)<1for >R, It is then
only necessary to consider R;=, Then, since C,(r)

is decreasing, C(«x)=1imC,(») exists, Assume C(x»)>1,
Pick £> 0 and choose R, so that C,(R,) <C(~)+¢€. Con-
sider )

Fx)=*(3/m(1 +2b/3)%(|x| - bRy~

for |x| =R, and b<1. ¥3/2Af<4nf?/%. Choose b<1 such
that (1+2b/3)2=C,(R)(L - b)%. Thenf= ¢ for |x|> R,
since f > ¢ when |x|=R;. But this means C(»)< (1 +2b/
3)2=[C(») +&] (1 - D)4 Since b> B > 0 satisfying (1+2B/
3)2=C(x)(1 - B), and ¢ is arbitrary, C(x)<1, For the
C_ problem use g(x)=+*@3/m*1 - 2b/3)%(|x|+bR) ™% m

There are some interesting facts about the possible
singularities of TF-type differential equations in a ball.
These are related to and complement Theorem 2.10.

Theorem 2,11, Let B={x|0 < |x| <R} and suppose ¢
satisfies A (x) =G(¢p(x)) in the sense of distributions on
B, and G is C', Then

@) If p €Ly, (B) and G satisfies G(t)>et® as t — «,
G@t) <etd as t—~, £>0, theve exists a C? function on
0< [x[ < R which agrees with ¢ a.e. in B, Any singu-
larity is thus vemovable, In particular — Ad + ¢°=5(x)
has no solution in B'={x|0< x <R}.

O)If $cC¥B), ¢>0, and G()=1t% 1<q <3, one of
the following is true:

(i) ¢ has a C? extension on B’.

(i) ¢(x)~C|x|"tas |x| =0, C>0 arbitrary

(iii) o) ~I|x|"% as |x|— 0 with a=2/(g- 1), 1°~!
=a(a-1). This is called the ‘“strong singularity.”

() Let g>1and B'={x|0< |x| <R}. Let ¢ € L}.(B")
'satisfy Ap = |¢ | ¢ in B’ in the sense of distvibutions.
Theve is a univevsal constant C,<w such that |¢(0)|
<C,R~%“=V This implies that if ¢ € L. (B) satisfies
this equation in B, then |¢(x)| <C,|x|~% @~? for 2|x|
< R. A strongev bound than this is given by Vevon (1979)
and Brezis and Vevon (1980) for 1 <q <3.

Proof. (a) is given in Brezis and Veron, 1980, and (b)
and (c) are given in Veron, 1979. (c) was given earlier
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for g =% in Brezis and Lieb, 1979, m

There are other theorems of this type in Veron, 1979
and Brezis and Lieb, 1979,

See Sec. IV.C for an application of the strong singu-
larity.

There is another property of p which can be derived
directly from the variational principle, namely,

Theorem 2,12, In the atomic case p(x) is a symmeltric,
decveasing function.

Proof. Assume the nucleus is at the origin and let p*
be the symmetric, decreasing rearrangement of p (for
a definition see Lieb, 1977). We claim that if p # p*
then &(p*) < 8(p), thereby proving the theorem, f(p*)"
:fp", all p. For the Coulomb terms note that when
Jfp <z then f(x)=z|x|~1=|x|~1x (p*) is a symmetric,
decreasing function; hence ffp < ffp*_ Thus P(p)
=D(p,p)~ [Vp=D(p-p*,p-p*)~ [pf- D(p*,p*) and
thus P(p)>P(p*) if p#p*. m

Notation. f *g denotes convolution, namely (f*g)(x)
= [f(x - p)g(»)dy.

Remarks, (i) The same theorem (and proof) holds for
the TFD, TFW, and TFDW theories provided x= [p < z.
The only additional fact needed for the W theories is
that [(vy)?> [(vy*)? (see Lieb, 1977, appendix). In
fact, Theorem 2.12 holds for all x in TFW theory
(Theorem 17.26).

(ii) The spherically symmetric (but not the decreasing)
property of p also follows from the uniqueness of p
which, in turn, follows from the strict convexity of &,
The decreasing property also follows from Eq. (2.18)
since ¢ is decreasing by Newton’s theorem,

E. The virial and related theorems

Let us generalize the TF functional § by multiplying
the term D(p,p) in Eq. (2.5) by a parameter 8>0, e(\)
=E(\) - U in Eq. (2.12) is then a function of y, {z,;}, and
B. Define

K:%yfpm, R=BD(p,p), A:pr, (2.20)
with p being the minimizing p for [p=2x with A<2x,. [By
scaling, X, (8)=X(B=1)/8.]

Theorem 2,13, e(x,y,{z;}, B) is a C?! function of its
k +3 avguments (assuming all ave >0, except for B
which is 20, and X< )\,), e is convex in X and jointly
concave in (v,{z,}, B). Moveover, de/dy=K/v,de/3p
=R/B,8e/or=—p ae/az., =-— fp(x) Jx— R, l “ldx. This
implies

aE/az,=£§11?{¢(x)-z,.|x—R,|-1}. (2.21)

Proof. See LS. The proof uses the convexity of p —~ &(p).
The concavity in the parameters is a trivial consequence
of the variational principle and the linearity of § in the
parameters. m

Now we return to 8=1,

Theorem 2.14. (a) 5K/3=A —2R — u),
(b) for an atom (k=1), 2K=A —R.

Proof, (a) Simply multiply the TF equation (2.18) by p
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and integrate. Alternatively, note that p minimizes
G(p)=8(p)+ 1 [p on all of L5/3N L', Therefore f(f)
=G(p,), with p,(x)=1p(x), has its minimum at £=1, But
df/dt=0 gives (a).

(o) Here, scaling is essential, Consider p,(x)=#3p (i),
so that [p,=A. Then f(t)=&(p,) has its minimum at
t=1 and df/dt=0 gives (b). m

Remark. (b) is called the Vivial theovem. A priovi
there is an analog of (b) for a molecule. Suppose that,
with A fixed, e is stationary with respect to all R;, i.e,,
Vgse=0. Then, by the same scaling argument together
with R; —~ {R;, one would conclude that 2K=A - R- U,
equivalently K+ E =0, See Fock, 1932 and Jensen, 1933.
The difficulty with this is that theve are no stationary
points for k= 2, The no-binding Theorem 3,23 shows

“that there are no global minima, and the positivity of

the pressure proved in Sec. IV.B shows that there are
no local minima (at least for neutral molecules). There
it will be shown that for 2= 2, the pressure P satisfies

3P=K+E>0 for neutral molecules. (2.22)

For non-neutral molecules, a sharpening of Theorem
4.7 into a strict inequality for the derivative would
suffice to show the absence of local minima,

For a neutral atom, (a) and (b) combine to give the
following simple ratios:

R:K:—-e:A=1:3:3:7. (2.23)
The energy of a neutral atom is

e=E=-3.67814z"/3/y.
I thank D. Liberman for this numerical value.

Scaling. Suppose the nuclear coordinates R; are re-
placed by /R; with 7> 0. If z, R denote the nuclear
charges and coordinates, and if E(z,A,lR), - u(z,,lR),
p(z,\,IR;x), and ¢(z, A, IR; x) denote the TF energy,
chemical potential, density, and potential with [p=1,
then ‘ :

E(z,),1R)=1""E(@®z,1°\, R),

iz, M IR =170 (%, I\ B),

p(2, N, IR; x)=1"% (%2, 1°\, R;1 ),

(2, \,1R; %) =170 (%2, 1%\, R; 17 Yx) .

(2.24)

This is a trivial consequence of the scaling properties
of &(p).

F. The Thomas-Fermi theory of solids

A solid is viewed as a large molecule with the nuclei
arranged periodically. For simplicity, but not neces-
sity, let us suppose that there is one nucleus of charge
z per unit cell located on the points of z3c R, (2% con-
sists of the points with integer coordinates.) If A is a
finite subset of z3 we want to know if, as A— in a
suitable sense, the energy/unit volume |A|~'E, has a
limit E, and p, has a limit p, which is a periodic func-
tion. Here, |A| is the volume of A. If so, the equation
for p and an expression for E in terms of p is required.
Naturally, it is necessary to consider only neutral sys-
tems, for otherwise |A|~1E, — «, Everything works out
as expected except for one mildly surprising thing; a
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quantity ¥, appears in the equation for p which, while it
looks like a chemical potential, and is often assumed to
be one, is not a chemical potential. Y, is the average
electric potential in the solid. All of this is proved in
LS, Sec. VI.

Definition. A sequence of domains {A} in z? is said to
tend to infinity (denoted by A —) if

1) UT. A =28 (1) A;.(2A;, (i) A'c z®is the
set of points not in A;, but whose distance to A; is less
than 7. Then [A%[/[A;|—0 for each 2>0. I'={re RYx|
< é} is the elementary cube centered at the origin,

Theorem 2,15. As A —« the following limits exist and
arve independent of the sequence A;:

(1) ¢ ) z}\iﬂ Pplx).

¢ is peviodic, yp(x)?/3=¢(x), and the convergence is
uniform on compacts in R3,

@) ¢ =1im [A[71] o6 +y),
yeEA

cesy 7 _ -1__1s -1 2 -
(111)£-1‘r51¢(x) z|x| _%gxilA] y;\}grqub,\(x) z

Xlx—yl—i,
(iv)fp:limf pPA=2,
r A= Jp

@ [ ooi=ym ]~ [ o3,
(vi) E=1im [al-1E,.

Definition. G(x) is the periodic Coulomb potential, It
is defined up to an unimportant additive constant in T
by — AG/471=056(x)- 1. A specific choice is '

Gx)=1"1 E |2 |~2exp[2mik- x] .
reE 23
R0
Theorem 2,16, ¢, p and E satisfy

(i)E=(y/10)frp5/3+(z/z)ligl{zp(x)—zlx]-l}, (2.25)

(i) ¢ (x) =2G(x) - f Glr— )P (¥) + Uy (2.26a)
for some Y,. Alternatively,
— 8¢ ()/ar= 25 28(x—) - p(x), (2.26b)
y € Z° .

(iii) ¢ and p are real analytic on RA\Z°.
(iv) There is a unique paiv p, Y, that satisfies Eq.
(2.26) with vp*/3=¢ and [p=z (cf. Theovem 2.6).

Formula (2.25) may appear strange but it is obtained
simply from the TF equation; an analogous formula also
holds for a finite molecule.

Equation (2.26), together with yp?/3=¢, is the periodic
TF equation. Y, is not a chemical potential. The chemi-
cal potential, — u, is zero because u, is zero for every
finite system. If (2.26) is integrated over I' we find,
since [p=z, that = [r ¢ =average electric potential.
It might be thought that ¥, could be calculated in the
same way that the Madelung potential is calculated: In
each cubic cell there is (in the limit) a charge density
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20(x) - p(x). Therefore if

G0= 22 gle-y),

yEZ

with
gw)=z|x|"1- f; p(y) |x=-y|-ldy,

it might be expected that ¢-> =¢. The correct statement
is that ¢ (x) = ¢(x) +d and d #0 in general. One can show
that [¢ =27 [.x% (x)dx (see LS). The fact that d+0,
precludes having a simple expression for ¥, Why is
d+0, i.e., why is ¢ #+$ ? The reason is that the charge
density in the cell centered at y € z3 is 26(x — y)— p(x - y)
For any finite A there are cells
near the surface of A that do not yet have this charge
distribution. Thus d #0 essentially because of a neutral
double layer of charge on the surface.

In LS asymptotic formulas as z — 0 and « are given
for the various quantities.

Theorems 2.15 and 2,16 will not be proved here,
Teller’s lemma, which implies that ¢, (x) is monotone
increasing in A, is used repeatedly. Apart from this,
the analysis is reasonably straightforward.

G. The Thomas-Fermi theory of screening

Another interesting solid-state problem is to calculate
the potential generated by one impurity nucleus, the
other nuclei being smeared out into a uniform positive
background (jellium model), If A is any bounded, mea-
surable set in R3, and if pg=(const)> 0 is the charge
density of the positive background in A, and if the im-
purity nucleus has charge z >0 and is located at 0, then
the potential is

Vit =z x|~ 10, [ x-y|ay. 2.21)
- A
The TF energy functional, without the nuclear repul-
sion, and with y=1, is '
S (p)=1% fpm—f Vap+D(p,p). (2.28)
The integrals are over R3, not A. Let p,(x) be the neu-
tral minimizing p (so that [p, =z +pg|A]).

Definition. A sequence of domains A in R°®is said totendto
infinity weakly if every bounded subset of R®is even-
tually contained in A.

Remavrk. This is an extremely weak notion of A — =,

It is intuitively clear that if A — o« weakly and 2=0
then p, (x) —pg. For z#0, p,(x) - py is expected to ap-
proach some function which looks like a Yukawa poten-
tial for large |x|. This is stated in many textbooks and
is correct except for one thing: The coefficient of the
Yukawa potential is not z but is some smaller number,
In TF theory there is over-scveening because of the
nonlinearities.

Theorem 2,17, Let A — weakly and z=0, Then ¢ ,(x)
—p¥/? uniformly on compacts in R3,

The theorem is another example of the effects of “sur-

face charge.” Since p, —~pp and ¢,=p%/3 the result is
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natural., But it means that the average potential is not
zero, If, on the other hand, the integrals in Eq. (2.28)
are restricted to A then p,(x)=p, for all A and x € A,

and ¢, (x)=0,

Theorem 2,18, Let A — « weakly and z>0, Let
f@)=1im ¢, (x) - p}/*

and
g)=1imp,(x) = pp.

(i) these limits exist uniformly on compacts,

(i) ge LN L5/3,

(iii) 0 <f(x) < & ™™ (x),

(iv) f and g are strictly positive and veal analytic
away from x=0,

(v) f(x) is monotone increasing in z,

(vi) These limits satisfy the TF equation

f(x):zlxl‘i—f lx—y| g(»ay, (2.29)
[pY3+f ()] 2= pp=g(x), (2.30)
fg=z, (2.31)

(vii) Assuming only that g < LN L5/3 and f (x)= - p¥/3
theve is only one solution to Eqs. (2.29) and (2.30) [with-
out assuming (2.31)].

There is a scaling relation:
fles2) =¥ F(pY | |;03" %)
glv;2)=pxG(pY|x|;05'%).

Let us write F(»;z)=q(r;2)Y(#) where Y(r)= (1/7)
x exp{ - (6m)!/%} is the Yukawa potential.

Theorem 2,19, (i) g(7;z) is monotone decveasing in v
and incrveasing in z;

(i) ¢(0;2)=z2

(iii) Q(z):hm,_.wq(af z) exists. 0<Qz) <z and Q is
monotone incveasing. lim sup,h,e,,,Q(z)(bz)‘2/3 <1 with b
=1.039,

LS contains graphical plots of @(z) and ¢(7; 53.7).
asymptotic formula for @(z) has not been given, In the
linearized approximations found in textbooks, @(z)=z,
but we see that this is false,

H. The Firsov variational principle

The problem of minimizing §(p) is a convex minimiza-
tion problem. It has a dual which we now explore, The
advantage of the dual problem is that it gives a lower
bound to E. The principle was first given and applied
in (Firsov, 1957) in the neutral case (1 =0) and was

first rigorously justified in that case by Benguria (1979).

Here we shall also state and prove the principle for
non-neutral systems; furthermore, in the neutral case
our (and Benguria’s) principle will contain a slight im-
provement over Firsov’s,

The dual functional to be considered is

§,(F)=- @m [ [V7(x)|%x

-2 “3/2f[V(x) —fx)=-u]¥%ax+U, (2.32)
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where u is a real parameter. The domain of §, is B
={f|VfeL? |f(x)|<c|x|~!for some ¢ <= and for [x|
> R for some R}. V is assumed to go to zero at « and
is such that the TF problem has a minimum for that V,
and the minimizing p (with [p <2) satisfies the TF
equation (2.18) (for all A). We define

EF(u)=sup{F,(f)|feB}

Remark, When p =0, Firsov imposed the additional
constraint V= f, This, as we shall see, is unnecessary
provided [ ]3/2 is used as in Eq. (2.32).

Theorem 2,20, If u <0 then EF (u)=—c, If u=0 then
theve is a unique maximizing f for §,. This f is f,

= |x]|- txp, wheve p, is the unique solutzon to Eq. (2.18).
Ifx= fpu then (see remark below)

EF(u)=EM) +px.

(2.33)

(2.34)

Proof, Suppose p <0. Since V and any fe B—0 as ]x[
_the second term in (2.32) is — «. Suppose u = 0.
Let E, =right side of (2.34). Clearly &,(f,)=E, by the
TF equatlon (2.18). f—=&,(f)is str1ct1y concave because
J(Vf)?is strictly convex. Thus there can be at most
one maximizing f, and we therefore must show that if
f#f,then &, (f) <E By Minkowski’s inequality (fab]
<2fa| 5/2/5+3]b l5/3/5) we have

—_
@,

V= =Wz - )NV~ - n)?

H(V=f= ) (V=f,=n)?/2

But (V—-f-p), > V-f-u, soF,(f)<E, +h(f) where
w()=- @0t [ @2+ [ fou-Dip,,p.).

By standard methods (e.g., Fourier transforms), k(f)
<0. Furthermore, 2(f)=0 only for f=f,, which shows
once again that the maximizing f is uniquely f,. m

It should be noted that E¥ (i) is the Legendre transform
of E(A\). Namely x — E()) is convex and
EF(u) =inf [EQ) +2p],

all peR. (2.35)

This shows that E¥ (u) is concave in u. On the other
hand, Theorem 2.20 displays Ef(u) as the supremum
(not infimum) of a family of concave functions. Further-
more, since E()) is convex and bounded it is its own
double Legendre transform, viz.

E(\)=sup[EF(u)- ur]. (2.36)
'3
Theorem 2.21. Fix x>0. Then [by Eq. (2.36)]
sup{F,(f)- ur|feB,nc R} =EM). (2.37)

Rewmark, In Theorem 2,20 we refer to the unique p,
satisfying Eq. (2.18) for ©> 0. This requires some ex-
planation, If V(x) is unbounded (e.g., point nuclei), then
as p goes from « to 0, A goes from 0 to A, and p,(A)
minimizes & on fp A I esssupV(x)=v <, thenp,
=0 [and EF(u)=0] for > p>v. In this range A(u)=0.
Then, as p goes from v to 0, A goes from 0 to ., and
Puc, minimizes § on [p=X. (ess sup is defined in
Theorem 3.12).
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fif. THE “NO-BINDING” AND RELATED
POTENTIAL-THEORETIC THEOREMS

The no-binding theorem was discovered by Teller
(1962) and is one of the most important facts about the
TF and TFD theories of atoms and molecules. It “ex-
plained” the absence of binding found numerically by
Sheldon (1955). That this crucial theorem was not
proved until 1962—after 35 years of intensive study of
TF theory—is remarkable. It can be considered to be
a prime example of the fact that pure analysis can some-
times be superior to numerical studies.

While Teller’s ideas were correct, his proof was
questioned on grounds of rigor. Balizs (1967) found a
different proof for the special case of the symmetric
diatomic molecule. A rigorous transcription of Teller’s
ideas was given in LS. In any case, all proofs of the
theorem rely heavily on the fact that the potential is
Coulombic.

There are really two kinds of theorems, An example
of the first kind is “Teller’s lemma,” which states that
the potential increases when nuclear charge is added.
The second, “Teller’s theorem” is the no-binding
Theorem 3.23. The second, but not the first, requires
the nuclear repulsion U, If U is dropped then the theo-
rem goes the other way. The proof of Teller’s theorem
given in LS is complicated in the non-neutral case, but
recently Baxter (1980) found a much nicer proof—one
which actually produces a variational p that lowers the
energy for separated molecules. Baxter’s proposition
(proposition 3.24) will appear again in Lemma 7,22,

In this section we shall consider general V and as-
sume that

&)= [ ipe)ax- [ vepwax+D(o,p),

where j is a C! convex function with j(0)=3’(0)=0. Note
that in this section (only) &(p) does not contain U, This
is done partly for convenience, but mainly for the rea-
son that since V is not necessarily Coulombic the defini-
tion of U would have no clear meaning.,

The Euler-Lagrange equation for (3.1) and p(x)= 0 is
(with ¢,= V- |x| " 1xp):

¢,(x) - u=7"(p(¥) a.e. when p(x)>0, 5.2)

<0 a.e. when p(x)=0.

Any solution to (3.2) is determined only almost every-
where (a.e.).

We could, in fact, allow more general j’s of the form
7(p,x) [and [i(p(x),x)dx in §] withj(-, ) having the
above properties for all x, but we shall not do so. An
annoying case we must consider, however, is j’(p)=0
for 0 <p <p; and j'(p) >0 for p > p,. This is discussed
in some detail in Sec. IIL.C and is needed for TFD theory
(Sec. VI). K j'(p)>0, all p>0, as it is in TF theory
with j*(p) =yp?/3, then Eq. (3.2) can be written as

(Polx) — u), =max| ¢,(x)— u, 0]=4j"(p(x)),

but otherwise (3.2) is stronger than (3.2%).

One aim of this section is to study solutions of Eq.
(3.2) without considering whether or not (3,2) truly
comes from minimizing (3.1) or assuming uniqueness.

(3.2%)

Definition. € ={p|p(x)=0, pe L', and [p(y)|x-y| 'dy
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is a bounded, continuous function which goes to zero as
x — oo},

. We shall be concerned only with solutions to (3.2) in
[N '
The following lemma (LS, II.25) is useful, in the
cases of interest, to guarantee that pee.

Lemma 3,1, IffeL?,gcL?, 1/p+1/p'=1, p,p'>1
then f*g is a bounded, continuous function which goes

to zevo as x goes to infinity, In particular, if pe L3/2*°
NL'then pe L3/2** N L3/2, Since |x| leLd*®+L3"",
pee,

It will always be assumed that V(x) ~0 as |x|—
(this always means uniformly with respect to direction).
Hence u cannot be negative in Eq. (3.2), for otherwise
p& L.

A. Some variational principles and Teller’s lemma
At first it will not be assumed that V is Coulombic.

Theorem 3.2, Fix A>0 and suppose that p,, ., satisfy
Eq. (3.2) with [p,=x. Let ¢r=0,, and assume that p,
€ @. Then, for all x,
@ 930 - u,:sgp{mx)— B16,()-

<j'(p(y)) a.e. y, fps A, pee},

() $206) = py =inf {0, () = [, (9) - 1
=j'(p(y) a.e. y when

p(y)>0, fpah, pse

(c) ¢x(x)=51:p{¢,(x)l¢,(y)— ur<i’(p(y)), a.e.y, pce}
@ ¢,(x) =inf{ ¢,(x) [$o(9)= 1y=3'(p(¥). a.e. y when
p(y)>0, pce}.

Furthermove, in () [vesp. (b)] theve is no p satisfying
the conditions on the vight when u < U, [resp. u> p,].
Note that in @) and (b) U is arbitvary (including Kk <0)
and p is consivained, while in (c) and (d) the opposite is
true [except, of course, p(x)=0].

In the following, a statement such as A¢/4r=p is al-
ways meant in the distributional sense. We shall need
Lemma II.26 from LS. B

Lemma 3.3, Letp,, p,c L* Withpi(x) > 0andy, = !x |-1 ;-
If ¥y(x) = ¥,(x), all x, then [p,> [p,.

Proof. Suppose [ p,-p,=4c>0. There exists a ball,

B, of radius R, such that fpl(l —-©)<g and fp2(~1 -0)
<e, where ©(x)=1 for x <R and zero otherwise. Com-
pute the spherical average of ¥, — 3, on the sphere of
radius R; it cannot be positive. The contribution from
inside B is, by Newton’s theorem, R~ [ (p, - p,)©>2¢/R.
The contribution from outside B is at least —-R™* [ p,(1
—6)>—-g/R. Adding these gives a contradiction. B

Remark. Even if §,(x) >,(x) for all x, we cannot con-
clude that [p,> [p,.

Proof of Theovem 3.2. (a) will be proved here; (b), (c),
and (d) follow similarly. Since p, gives equality, ¢,
- uyssup{}. We have to show that if (¢,~ p),<j’(p)
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a.e, and if fps A then

(@) $rl0) = 1y > b,0x) = 1,

(i1) p= w,.

First suppose u = u, and let P(x) =, (x) — ¢, (x) + u, = p.
Let B={x|¢(x)>0}. B is open since ¥ is continuous,
As a distribution — (47)!AP(x) =p,(x) - p(¥) <0 a.e. on
B since j'(p)= ¢,— u, j'(p,) =¢,— u, when p, >0 and

j’ is nondecreasing. Hence ¥ is subharmonic on B and
takes its maximum on 9B, the boundary of B, or at =,
$=0o0noB, At «, y=u,— u<0. Hence B is empty and
(i) is proved. Suppose now that p,— u=06>0. Then
i'(p) = ¢, — > @, — u, and, by the previous proof (applied
to n=p,), ¢\(x)=¢(x). By Lemma 3.3, [p=> [p,=x.
Hence fp=>x. At this point there are two possible
strategies. : ’

(i) If we assume that §(p) has a minimum that satis-
fies Eq. (3.2) for all u >0, then we can use the fact
[which follows from the strict convexity of &§(p)] that
Uy is a continuous decreasing function of A, Then there
exists y> A with p,> u,> u. Sincej’(p)= ¢,- u,, [p
=17 by what we just proved. But this is a contradiction,

(ii) There is a purely potential theoretic argument
without invoking Eq. (3.1). There is a (not necessarily
unique) f which satisfies j'(f (x)) =[¢,(x) - u/2— u,/2].
and f(x)=0 when [ ] =0. Hence f(x) <p(x) a.e. when
p(x)>0, and f(x)=0 when p(x)=0. Thus fe . Since

p=1>0, ff <A Letg=(@1-¢)p+¢&f, 0<e<l, Since
x|~1xp (and hence |x|~!*f) are bounded, ¢,(r)< ¢, (x)

+¢C for some constant C, Choose ¢ >0 so that ¢C < 5/2,

Then j’(g)>j'(f)> ¢, — 1. Since [g <), g satisfies the
condition in (a) with u = u, but, as we have seen, this
implies fg:)\. ]

Teller’s lemma (Theorem 3.4) is closely related to
Theorem 3.2,

Definition, We say Ve if V+0 and V is superhar-
monic, vanishing at « (and hence V> 0). Moreover,

the set {x|V(x)=»}=S, (called the singularities of V)
is closed, V is continuous on the complement of S,, and
Vix)—~=asx—~S,.

Theorem 3.4, Suppose Vis veplaced by V'=7V+ W with
We®D. (Inthe case of intevest W=z |x - R|~!, which
means that we add, ov incvease, a nuclear chavge.)
Suppose that for some common y, theve ave solutions to
Eq. (3.2)0<p, p’'ce with V and with V'. Then ¢’(x)

= ¢ (x) all x and, if j' is strictly monotone ov if ¢ — ¢’

c H? (i.e., ¢ — ¢’ and its first two devivatives are in L2
away from Sy, then p’(x)=p(x), a.e.

Proof., Let p=¢’~ ¢ and B={x|(x) <0}. Clearly

BN S,=g so B is open. As a distribution, Ay/47<p’
- p <0, so ¥ is superharmonic on B, Thus B is empty
and ¢’> ¢. The proof that p’ = p is trickier., If j’ is
strictly monotone it is obvious. Otherwise it can be
shown (see Benguria, 1979) that for suitable V, W, and
j'y v H?away from S,. Assuming € H?, if p’(x) <p(x)
then xeC={x|P(x)=0}. On C, AYp=0, a.e. (see
Benguria, 1979, Theorems 2.19 and 3.3). Let D
=Cn{x|p’(x) <p(x)}. On D, 0=Ay/4m<p’-p <0 a.e.,
so D has zero measure, B

Remark, X j'(s) is strictly monotone and W #0 then
¢’ (x)> ¢ (x) for all x ¢S,,.
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A similar proof yields

Theorem 3.5, If Ve D then ¢,(x)=0. Consequently if
V)= [dM(y)|x-v|~!, dM=>0, and [dM=Z, then there
is no solution if > Z because then ¢,(x) <0 for some
lavge x, Cf, Theovem 6.7,

There are many easy, but important corollaries of
Theorem 3.2, We stress that V need not be Coulombic;
the important ingredient is that the electron-electron
repulsion is Coulombic.

Definition. j' is said to be subadditive if j'(p,+p,)
<j’(py) +3’(py). j’ is subadditive in the TF case.

Corollary 3.6. Suppose V=V;+ V,and | is fixed. Let
b, by, ¢, be solutions to Eq. (3.2) for this u with V, Vi, V,,
vespectively, Suppose ¢;=0 (e,g., V;€D) and suppose
j' is subadditive, Then ¢(x)< ¢((x)+ ¢y(x), all x.

Proof, Use Theorem 3.2 (d) with p;+p, on the right
side. m

Corollary 3.7, Let A>0. Theve can be at most one
paiv p, u satisfying Eq. (3.2) with pc e (in particular
Sfor pe L33n LY and [p=nx.

Proof, I py,p,are two solutions, use Theorem 3.2(a)
twice with p, and p, to deduce ¢;— pu;=¢,~ p, This im-
plies uy= i, and hence ¢;=¢,. But then 0=A(¢p - ¢,)
=471(py—py). W

This uniqueness result was proved earlier, Theorem
2.6, using the strict convexity of &(p).

Corollary 3.8. If 0 <A’ <A then

(i) ¢x’ = ¢1

(1) pye =y

(iii) ¢),' = Ky < ¢)L" Mye
Proof. For (iii) use Theorem 3.2(b) with p,, i, as trial
function for the X’ problem, (iii) = (ii). For (i) use (c)
with p, as variational function for the A’ problem, B

Corollary 3.9, Suppose py, u and p,, . (same ) are two
solutions to Eq. (3.2) with [p;, [p,>0. Then ¢,=¢, and
p1=p, a.e. Therefore, by Covollary 3.8, whenever X,

> Ny then pg <y (i.e., Wy=pqcannot occur).

Proof, Using Theorem 3.2(d), ¢;=¢, Then
0=A(¢,— ¢,)/4m=p,;-p,a.c. W

Corollary 3,10, Suppose ji(p) <j4(p), all p. -Lel p}, u}
and pf, p.,% be corvesponding solutions to Eq. (3.2) with
fixed N, and pl, p? solutions with fixed w. &, (x) ave the
corvesponding potentials, Then

(@) ¢a— pa< pi- ui,

() pi=

(iii) ¢l< @2
Proof. For (i) use Theorem 3.2(a) with p}, u} as trial
function for the 2 problem, (i)= (ii). For (iii) use (d)

with p, as trial function for the 1 problem, m
Lemma 3,11, When u> 0, p has compact support,

Remark. As will be seen in Sec. VI, p has compact
support in TFD theory even when y=0. See Theorem
6.6. '

Among the most important consequences of Theorem



Elliott Lieb: Thomas-Fermi and related theories 613

3.2 are the vaviational principles for the chemical po-
tential [LS).

Theorem 3,12, Define the functionals
T(p) =ess sup{p,(x) = 7' (p(x))},
S(p)=essinf ¢,(x)=j'(p(x))}.

(3.3)

(ess sup means supremum modulo sets of measure zero),

Then, whenever theve is a solution to (3.2) with [p
=1>0,

ux:inf{T(p)lpee,f psA} (3.4)

“x:SUP{S(P)IPEG,f p= A}.~ (3.5)
Corollary 3.13, If j'(p) is concave (as in TF theory
with j' =p?/3) then y, and p, - ¢, (), for each x, ave
jointly convex functions of V and X,

Corollary 3.14., If A is fixed and V(x)= V,(x), all x,
then p,(1)= u,(2).

By Corollaries 3,9 and 3.14 we know that increasing
V increases p while increasing A decreases u. What
happens if V and A are both increased, in particular if
we scale up the size of a molecule by V—aV, Ax—ax?
A partial answer is given by the following two corol-
laries.

Corollary 3.15, Let V,, V,e® and V=V,+V, Assume
j' is subadditive and suppose Eq. (3.2) has solutions to
the three problems (Vi, Ny), (Vg Xy), (V, X) with A= X{+ X,
Then 1= min(Wy, Uy).

Proof. In general, if We®D and p is a solution to (3.2)
with Withen ¢,(x)-j'(o(x))=u a.e. if p(x)>0and =0
a.e. if p(x)=0 (Theorem 3.5). From this remark it fol-
lows that S,(p;+p,) > min(uy, u,y). [Here, S,(p) refers
to Eq. (3.3) with V.] m

Corollary 3.16, Let a>1 and suppose Eq, (3.2) has
solutions with (V, x, u) and (aV, ax, u(a)). Assume j'
satisfies j'(at) < aj’(t), all t (this holds in TF theory).
Then p(a)= au,

Proof. X p is the solution to (V, A, u) then S, (p)=p.
But S, (ap)= aS,(p). A

Corollary 3,17, Suppose theve is a solution to Eq. (3.2)
Jor all xe (a,b) with a <b. Then , is continuous on this
interval,

Proof, Let \y=\;+&. By Corollary 3.9, p;> u, Let
p=py+ex with [x=1, 0<x(x)<b for some b, x(x)=0
if p4(x)=0, and x(x)=0 if p;(x) > a for some @, Then
X€e€. Since j’ is continuous, S(p)= u;- Q) where
QE)¥0asev0. W

Theorem 3.18, Let Ve®, V()= fdM(y)|y—-x|~!, am
=0, fdM:Z> 0. Suppose that fov large t, j'(t)

> ct YD with c,e >0, By a simple modification of
the method of Theorems 2.4, 2.5, and 2.6, 8(p) has a
unique minimum on the set @ with [p <. This p satis-
fies Eq. (3.2) and fp:?x if As ), wheveas fp:hc if A

> A,. Now assume, in addition, that j'(t) <dt**1/3 £>0,
for small ¢ (this is true in all cases of intevest), Then
A =Z.
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Proof., If A> Z there is no solution by Theorem 3.5.
Now suppose p=0; we claim A> Z, and hence that A=Z,
If so, we are done because §(p) has an absolute mini-
mum, This minimum corresponds to 4 =0 and has A
=2,; but u =0 implies A=Z. Now, to prove that A= Z,
let ¢ be the solution. ¥ Ax=Z- 36, let x be the charac-
teristic function of a ball centered at the origin such
that [xdM> Z- 6. Then

00> v = [ [x(AM() - p(p)dy] [x =]

For |x|>some R, ¥(x) <2Z|x|~'. Also [#(x)]= (spheri-
cal average of ¥)> 25 |x|~!for x> R. For a given |x
=7> R let Q,(7) be the proportion of the sphere of radius
7 such that 2Z > »¥(x) > 6, and let Q_(7) be the comple-
ment, Then 26 <7[¥(x)] <2ZQ,+0Q_=06+(2Z- 6)Q..
Thus Q,()> 6/(2Z—-6) for all ¥, On Q,, pY/¥*¢> 5|x|?
for large |x|, and therefore p # L' if 6>0. W

Brezis and Benilan (Brezis, 1978, 1980) have gen-
eralized this, Even if j(p)~p“/®" ¢ for large p there is
a solution to Eq. (3.2) if A< Z, and no solution other-
wise. This is noteworthy, since if j(p)~p® for large p
with @ < £ then &(p) has no lower bound for point nuclei.
There are similar results for other potentials, V, in
LS, Theorem 11,18,

There is also an “energetic,” as distinct from poten-
tial theoretic, reason that there is no solution if A> Z.
A solution to Eq. (3.2) implies a minimum for the func-
tional &(p), by strict convexity. I x= [p> Z then ¢, is
negative in some set A of positive measure. Then it is
easy to see that if p is decreased slightly in A to j, then
&(p) <8(p). But [p<rand E(\) is nonincreasing,.

In the variational principle, Theorem 3.12, p, gives
equality, i.e., T(p,)=S(p,)=H,. Is this the only p with
this property ? If A> Z there are many p’s with T'(p)
=0 and no p with S(p)=0 (cf. LS). In Brezis, 1980, Sec.
4, it is shown that if j* is concave (as in TF theory) and
V has suitable properties (satisfied for VD) then when
A< Z only p, satisfies either T(p)=u, or S(p)=u,. ¥
A= Z this uniquenesg is lost in general]

Asymptotics of the chemical potential.

Theorem 3.12 can be used to obtain bounds on u,. In
the TF case with point nuclei, the asymptotic formula

by~ Y T2 /N8 (3.6)

holds for X small (LS, Theorem II.31). For XA near Z
LS (Theorems IV.11,12) find upper and lower bounds
for u, of the form a,(Z - \)*/3 with Z=27z, Brezis and
Benilan (unpublished) have shown that

a=lim p,(Z - 2)"Y/3 exists (3.7
Az

and is given by solving some differential equation, «

is independent of the number of nuclei and their in-

dividual coordinates and charges!

Equation (3.7) implies that there is a well defined
ionization potential I in TF theory (although it probably
has nothing to do with the true Schrdédinger ionization
energy). First observe that if we start with 27z;=1
and then replace z; by Zz;, R; by Z~!/3R;, and X by
ZX, then by scaling Eq. (2.24),

Bp=Z*3u, . (3.8)
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Therefore, by Eq. (3.7), if we let A=Z~-¢ withe >0
fixed, and let Z — «, then

limulz_:zas“”. (3.9)
ZQQ

The ionization potential is defined to be
I=E(\=2Z-1)-E(X=2). (3.10)

By integrating (3.9), and appealing to dominated con-
vergence,

I—+-3a/7 as Z—, (3.11)

Another implication of Eq. (3.7) is that an ionized
atom has a well defined radius as Z — «, This question
was raised by Dyson. Suppose V(x)=Z|x| !and x=2
—¢. The density p will have support in a ball of radius
R(Z,e). At |x|=R, ¢(x)=u. But since p is spherically
symmetric, Rp(x)=Z - r=¢ by Newton’s theorem,
Thus the atomic radius satisfies

R=¢/u for all atoms 3.12)
and, by Eq. (3.9),

limR(Z,&)=(ac!/%"1, (3.13)

Z o

There are other ways in which TF theory yields a well
defined atomic radius. See Sec. V.C (6).

B. The case of flat /' (TFD)

In- TFD theory, as will be seen in Sec. VI, we have to
consider

i"(M=0, 0<p=p,=(5C,/8)°

=yp¥/3-C,p'/3+15C2 /4%y, py<p. (3.14)

j’ satisfies all necessary conditions, It is neither con-
- cave nor subadditive, however. Let us consider V of
the form

v = J am(y)|v-y|t, (3.15)

with 7 being a measure that is not necessarily positive.
In the primary case of interest, dm(x)=2.z,;8(x— R;).

The question we address here (and which will be im-
portant in Sec. VI) is this: Does p(x) [the solution to
Eq. (3.2)] take values in (0,p,) ? It may or may not,
depending on m and A,

Example, Suppose dm(x)=g(x)dx with g(x) < (0, p,) and
fg—-—Z < o, Then p(x)=g(x) satisfies Eq. (3.2) with x
=Z, and thus p(x) € (0,p;). This p also clearly mini-
mizes 8(p) in Eq. (3.1).

Nevertheless, in some circumstances p & (0, py).

Theorem 3.19, Suppose j'(p)= a=constant for pc F

= (p,, po] with 0<p < p, <, andj'(p)>cpt/?* ¢ for
lavge p, Let V be given by Eq. (3.15) and let A be a
bounded open set such that as distvibutions on A either
podx <dm < (py +const)dx ov dm <pdx. Letpee satisfy
Eq. (3.2). Then p(x) ¢ F a.e. (with vespect to Lebesgue
measure) on A,

Proof, Cf Benguria, 1979, Lemmas 2,19, 3.2, First,
it can be shown that ¢, H%(A) (Sobolev space). Let B
={x|px)e F}NA. OnB, ¢,- u=oa and since ¢,< H}(A),
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Ad,=0a.e, on B, But A¢,/4n=p-dm/dx. m

Remark, Since a solution to Eq. (3.2) is determined only
a.e., p(x) can be chosen ¢ F for all x € A,

Corollary 3.20. Consider the TFD problem (3.14) with
Vx)=23z;|x— Ry |~\. Then any solution to (3.2) can be
modified on a set of measure zevo so that p(x) £ (0, p,]
for all x,

C. No-binding theorems

Henceforth it will be assumed, as in Theorem 3.18,
that j is such that Eq. (3.1) has a minimum for x< X,
which satisfies Eq. (3.2). We shall be interested in
comparing three (nonzero) potentials, Vi, V,, and Vy,
=V;+ V,with V;eD, At first we shall consider what
happens when the repulsion U is absent. As usual we
define e,(\) =inf§,(p) with A= [p and &, having V,. There
is no Uterm in §,, Eq. (3.1). Define

Ae() =€) - min e, +ey(hy). (3.16)

X{+thg=2A
Definition. T Ae <0 (resp. = 0) we say that in the ab-
sence of the vepulsion U there is binding (resp. no
binding).

Theorem 3.21, Suppose j satisfies

jla+db)<j@) +j@)+a’(®)+bj'(@), a,bz0. (3.17)

[If §' is subadditive then Eq. (3.17) is salisfied. j(t)
=15/3 satisfies (3.17).] Then e <0,

Proof, For i=1,2 let x; minimize in Eq (3.16) and let

p; be the minimizing p for &§; with fp,. < ;. Recall e,(2)
is monotone nonincreasing. Let p=p,;+p, be a trial func-
tion for e, in &;, and use the variational equations (3.2)
for p; and the fact that ¢;(x)=0., =

Remark, The condition (3.17) is satisfied in TF theory
but not in TFD theory,

Theorem 3.21 says we can [and do, if j satisfies Eq.
(3.17)] have binding if the repulsion U is absent, The
no-binding theorem, which we turn to now, relies on the
addition of U which, by itself without & obviously has
the no-binding property.

Proposition 3.22, Ifj is convex and j(0)=0, then j has
the supevadditivity propervty: ja+bd)=j@)+3i®). Ifj’
is strictly monotone, then the foregoing inequality is
strict when a,b #0,

Note, We assumed that j is convex in all cases,
fore Theorem 3,23 holds in all cases,

There-

Definition, Let
1
V,-:m * m; (m; a measure)
be in ®. Then
Dony,my=4 [ dmydmy(y)|x- |-,

Theorem 3.23 (no binding)., Let m,;, i=1,2 be non-
negative measuves of finite mass z;>0 and V,€ D, Then

AE(\) =Ae()) +2D(my, my) 0. (3.18)
If j is strictly supevadditive then > 0 holds,
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Remarks, Obviously AE()A) is the energy difference when and

the repulsion U'is included. Binding never occurs, In
particular, if

n
V1=j2:1 z;|x - Ryl

R
Vo= glzflx-R;l'I
then

n k
m1=z z2;6(x— R;), my= Ziz,G(x—R,).
i=1 j=n+
In TFD theory j is not strictly superadditive. As we
shall see in Sec. IV.C, it is possible to have a neutral
diatomic molecule for which equality holds in Eq, (3.18).

Proof, We give two proofs. The LS proof in the neutral
case A=z, +2z,is the following: Clearly A;=2z4, A,

=2Zg Mi=My=l1,=0, Consider m,— am,;, A — azy,
0sa<1, By Theorem 2,13 we have

861/8(1——*- f V1p1

J

aelz/aaz_ f Vipy,.

Thus
6(812— ei+2D(am1,m2))/aOl :f dml(x)[¢1z(x)"' ¢1(x)] °

But ¢4,(x)= ¢4(x), all x (Theorem 3.4 and following re-
mark). When a=0, AE=0, so this proves the theorem.
In the non-neutral case the u,#0 and it is necessary to
take into account the change of u, with a. This is com-
plicated (see LS).

The second proof is due to Baxter (1980). For any p,,
with fpmzh we can, by Prop. 3.24, find g, 0<g(x)
< pip(x), and h(x)=pyy(x) — g(x) such that P, (x)= Dy ()
= V,(x) a.e. when h(x) >0, and ¥,(x) < V(x) a.e. when
h(x)=0,

Let a= [g, b= [h. Then

min {e400) +e,009) |2 + A= A} <ey(@) +e,b)< 8i(g) + &)

< 812(P1) +2D(my, my) + f R(Vi— Pg)dx — f (Vi— dddm,

< eg(A) +2D(m,,m,).

The third inequality uses the superadditivity of j. If j’
is strictly monotone this superadditivity is strict (and
so is the final inequality) provided g+ py,. If g=py, a.e.
then ¥p15< V; and hence X <z; must hold. Choose x;=21,
A,=0 and note that e;(A) < §;(py,) because p;, does not
satisfy Eq. (3.2) since V,#0. Equation (3.19) then gives
strict inequality. m

Proposition 3,24 (Baxter, 1980). Let Ve D and let p(x)
20 be a given function with |x| 'xp=¢,eD. Assume
pe L? for some p >3 and D(p,p) <». Then there exists
g with 0 <g(x) < p(x) such that P,= ]x ‘ ~lx g satisfies Pg(x)
=V(x) a.e, when p(x) - g(x)> 0 and P (x) < V(x) a.e.

Proof., Baxter proves this when p and g are measures,
We give a simpler proof for functions. Consider &(g)
=D(g,g)- [Vg and E=inf{8(g)|0<g(x)<p(x)}. Let
g"beaminimizing sequence. There existsa subsequence
that converges weakly in L? to some g and, by Mazur’s
theorem (1933), there exists a sequence A" of convex
combinations of the g" that converges strongly to g in
L?, Then a subsequence of the %' converges a.e, to g.
Clearly, 0<n"(x)<p(x). Since &(-) is convex (this is
crucial) (k") — E but, by dominated convergence, &)
— 8(g). So g minimizes and satisfies (a.e.): V(x)=,(x)
when 0 <g(x) <p(x); ¥,(x) < V(x) when g(x)=p(x) and p(x)
> 0; ¥.(x)= V(x) when g(x) =0 and p(x) > 0. We have to
eliminate the possibility ¥,(x) — V(x) = f(x) > 0 when g(x)
=0. We claim D and hence f is continuous and goes
to zero at «, Since g<p, P,<y, so $,— 0 at infinity. To
examine the continuity at x =0, write y,=h+ (Y- )
with k= |x|~1*(xg) and x is the characteristic function
of the ball |x|<1, Clearly ,— % is continuous at x =0,
Moreover, xge LN L' so he® by Lemma 3,1, (It is
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(3.19)

|

here that p> % is used.) Now, since feD, B={x|fx)
>0} is open and, since x € B= g(x)=0, f is subhar-
monic on B, But f vanishes on the boundary of B and at
infinity, so B is empty. m

1V. DEPENDENCE OF THE THOMAS-FERMI ENERGY
ON THE NUCLEAR COORDINATES

In the previous sections TF theory was analyzed when
the nuclear coordinates {R;} are held fixed. The one
exception was Teller’s theorem (Theorem 3,23) which
states that the TF energy is greater than the TF energy
for isolated atoms (which is the same as the energy
when the R; are infinitely far apart). Here, more de-
tailed information about the dependence of E on the R;
is reviewed.

Note that in this section (and henceforth) F refers to
the total energy, [ Eq. (2.11)], including the repulsion
U. This is crucial. .

‘ Although several unsolved problems remain, a fairly
complete picture will emerge. The principal open
problem is to prove the positivity of the pressure (Sec.
1V.B) for subneutral molecules, and to prove it for de-
formations more general than uniform dilation. The
results of this section have been proved only for TF
theory, and it is not known which ones extend to the
variants (see the discussion of TFD theory in Sec. IV.C).

A. The many-body potentials

The results here are from Benguria and Lieb, 1978a.
As usual, the two-body atomic energy is defined to be
the difference between the energy of a diatomic mole-
cule (with nuclear separation R) and the energy of iso-
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lated atoms., Teller’s theorem states that this is al-
ways positive, We shall now investigate the 2-body en-
ergy which can be defined similarly, The three-body
energy will be shown to be negative, the four-body posi-
tive, etc. In all cases, only neutral systems will be
considered; in this case there is a unique way to appor-
tion the electron charge among the isolated atoms,
namely, make them all neutral. An interesting problem
is to treat the £-body energy for subneutral systems.,

Definitions, When ¢ ={c,,c,y,...,C,} is a finite subset
of the positive integers with |c |=% elements, E(c)
denotes the TF energy for a neutral molecule consisting
of nuclear charges z.; >0 located R;;. ¢(c,x) denotes
the TF potential for this molecule. The z’s can all be
different. :

glc)=2, (- 1)*I*IIEp) (4.1)

bCe
is the |c| body energy for this molecule., Thus, if ¢
={1,2}, |c|=2 and the two-body energy is £(1, 2)
=E(1,2)- E(1) - E(2) as explained above, I c={1,2,3},
|c|=3 and the three-body energy is

8(1’ 2w 3):E(1’ 2’ 3)_ [E(1, 2) +E(1’ 3) +E(25 3)]
+E(1)+E(2)+E@3).
EQ1),E(2),E@3) are atomic energies, of course, From
Eq. (4.1) '

E@€)=2 £0). (4.2)

bC e

It is worth remarking that the many-body energies
(4.1) are defined in terms of the total energy E. 1t is
equally possible to use e =F — U on the right side of Eq.
(4.1). e is the electronic contribution to E, so the cor-
responding £’s would be the electronic contvibution to
the many-body potential, However, note that U contains
only two-body pieces, z;z;|R;— R;|~!. Therefore the
two sets of ¢’s agree whenever ]c ]2 3, i.e., the three-
and higher-body ¢’s are entirely electronic. As far as
the two-body energy is concerned, &£(1,2) >0 (Teller)
but

5(1, 2)elec :8(1’ 2)101 - U(l, 2) <0

(Theorem 3.21).
In the following b C ¢ means b is a subset of ¢ and
b+c,

Theorem 4.1 (Sign of the many-body potential). If ¢ is
not empty
(-=D'e(c)>0.

Move genevally, if bC c and eithey ‘c\b ia 2 ov else
[6|=0and |¢|>0
E®,c)= Y. (-1)"®* " 1kiE@) >0,
b&aCe

Theorem 4.2 (Remainder Theorem), If 2 < < |c| then
the sign of :

E@)- ) &)
bCc
1bIK B

is (=1)%, In other words, if, in Eq, (4.2), we sum only
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over the terms smallev than B-body, the sign of the

" ervov is the sign of the fivst omitted terms,

Theorem 4.3 (Monotonicity of the many-body potential).
Suppose that bC c and ]b Iz 2, Then

=DPe®)> (- D'iele(c).
Theorems 4.1 and 4.3 imply, for example,
0>¢(1,2,3)>-min[e(1,2),e(1,3),e(2,3)] .
Theorem 4.4. If bCc and c is not empty
$0,c,00= 25 (1) Plo@,x) <0,
bCaCe

Partial Proof. Basically Theorems 4.1, 4.2, and 4.3

are corollaries of Theorem 4.4 through the relation, for

jec,
9E(c)

=lim {¢(c,x)-z;|x—R;|"!'}, (Theorem 2.13).
sz x = Rj

As an illustration we shall prove here that (1,2, 3)
<0; surprisingly, the proof is much more compli-
cated when |c|>3. The proof for |c|=3 only uses
that the function (j’)~!is convex [cf. Eq. (3.1)]. The
proof for |c|> 3 requires that j(p)=p* with 3 <k <2,

First note that €(1,2,3)=0 when z;=0. Thus it suffices
to prove that 9¢ (1, 2,3)/9z;= F(R;) <0, where

Fl)=¢(1,2,3,x) - ¢(1,3,x) - $(2,3,x) +(3,x).
Now

AF=4m[p(1,2,3,x)-p(1,3,x)-p(2,3,x) +p(3,x)]
and p= (¢ /7)*/2, LetB ={x |F(x)>0}. F is continuous, so

" B is open, We claim F is subharmonic on B, which im-

plies B is empty. What is needed is the fact that a - b
—c+d=0=a%/2-p3/2_¢3/24 @3/2> 0 under the condi-
tions that a=b>d=> 0 and @> c> d=> 0 (Theorem 3.4),
But this is an elementary exercise in convex analysis.
Finally, as in the strong form of Theorem 3.4, one can
prove that F is strictly negative, m

It is noteworthy that all the many-body potentials fall
off at the same rate, R~7, This will be shown in Sec.
IV.C.

B. The positivity of the pressure

Teller’s theorem (Theorem 3.23) suggests that the
nuclear repulsion dominates the electronic attraction
and therefore a molecule in TF theory should be un-
stable under local as well as global dilations.

Let us fix the nuclear charges z={z,...,2,} and
move the R; keeping A fixed, Under which deformations
does E decrease? We can also ask when e=E - U, lhe
electrvonic contvibulion to the energy, decreases. A
natural conjeclure is the following: Suppose R; — R}
with |R! - R} > |R; - R,-] for every pair 7,j. Then

(i) E decreases and ¢ increases.

(ii) Furthermore, if x; <X, then the decrease (in-
crease) in E(e) is smaller (larger) for A, than for A,
There is one case in which this conjecture can be
proved; it is given in Theorem 4.7 due to Benguria
(1981).

'One interesting case is that of uniform dilation in
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which each R; ~IR;. For this case we define the pres-
sure and reciprocal compressibilily to be

P()=- (31)~dEQ)/dl
k= l=— (/3)dPQ)/dl ,

(4.3)
(4.4)

where E(l) is the energy. This definition comes from
thinking of the “volume” as proportional to I3, If k(1)
is the kinetic energy [Eq. (2.20)] then

3P =E() +K().

To see this, define E(y,l) to be the energy with the pa-
rameter y thought of as a variable (but with X fixed).,
Then, by setting p(x,1)=1"3p(x/1,1), one easily sees that
E(y,1)=1"'E(y/1,1) and K(y,1)=1"'K(y/1,1). Equation
(4.4) follows from this and Theorem 2.13.

Note that Eq. (4.4) is true (for the same reason) in
@ theory and also in TFD, TFW, and TFDW theories
provided K is interpreted as Eq. (2.20) in TFD and as
(2.20)+ 6 [Vp!/2]% in TFDW and TFW.

That e=E - U increases under dilation has also been
conjectured to hold in @ theory when A< Z. It is known
to hold for one electron, but an arbitrary number of nu-
clei (Lieb and Simon, 1978). There is one simple state-
ment that can be made (in all theories): The (unique)
minimum of e occurs when I =0 (for any x> 0), i.e., all
the nuclei are at one point. To prove this, assume
Ry, ...,R, are not all identical and let p be the mini-
mizing solution, Let = |x|~'+p, ¥ has a maximum at
some point R,, Now place all the nuclei at R, and use
the same p as a variational p for this problem, Then,
trivially, e(Ry,...,R,) <€(Ry,...,R,), with the strict
inequality being implied by the fact that this p does not
satisfy the variational equation for R,,...,R,. .

It is useful to have a formula for the variation of e
with R;. A natural extension of Theorem 2.13 (a
“Feynman-Hellman”-type theorem) would be the follow-
ing: Suppose V..., V,€D with

Vi = [ dm(3)]y-x|"! (4.5)

and with m; a positive measure of mass z;. Take
k
Vix)= }; Vix-R;).
Then e is a C! function of the R; and

Vgie:f VVi(x—R,-)p(x)dxz—fdmi(y)vlll(y-FR,-),
(4.6)

with $= |x|~!x p. Equation (4.6) is clearly true, and
easy to prove if the m; are suitably bounded. Benguria
(unpublished) proved (4.6) when V;(x)=z; |x|~! for |x|
>a and V;(x)=z,a ! for |x|<a, witha>0, i.e., dm,(y)
=z,-(const)6(]y J— a), In this case, the last equality in
Eq. (4.6) follows from LS, Lemma IV.4,

For point nuclei, on the other hand, (4.6) has not been
proved; indeed, the quantities in (4.6) are not even well
defined. We conjecture that the following is true when
Vi(x)=z;|x|~% e is a C!function of the R, on the set
where R; #R;, for all ¢#j, and
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Vg =-2;lim f (=R |x-R;|Pp(x)dx  (4.72)

ato “ix-R;i>a
== 1im V{900 + @i /9)*167/3) [~ B, [/2} .
(4.70)
Equation (4.7a) makes sense because, by Theorem 2.8,
Pl)=(2;/v)*/*|x = R; |73/ + O(|x - R;|~1/?)

near R;; the angular integration over the first term
vanishes. This leading term in p implies that near R;,
P(x) = (const) — (z;/)%/*(167/3) |x — R;| /% The nondif-
ferentiable, but spherically symmetric term in ¥ is sub-
tracted in Eq. (4.7b).

The following theorems have been proved so far,
(Theorems 4.5 and 4.6 are in Benguria and Lieb, 1978b;
Theorem 4.7 is in Benguria, 1981,)

Theorem 4.5 (Uniform dilation). Replace each R; by
IR; and call the enevgy E(\,1). If \=Z then E(\,1) is
strictly monotone decveasing and convex inl, In pav-
ticular, the pressure and compressibility ave positive,

Remarks. (i) If x=0 the conclusion is obviously also
true. In Benguria and Lieb (1978b) it is conjectured
that this theorem holds for all A. That e=E ~ U is
monotone increasing is also conjectured there.

(ii) In Benguria and Lieb (1978b) several interesting
subadditivity and convexity properties of the energy and
potential are also proved.

Theorem 4.6 (Molecule with planar symmetry)., Suppose
the molecule is symmetrvic with vespect to the plane P
={(x!, x% x%) ]x‘:O} and suppose no nucleus lies in the
plane, Neutrvality is not assumed, Let R} denote the 1
coordinate of nucleus i and, for all i, veplace R} by R}
£, with + if R}Z0, and 1= 0, Then for all fixed »< Z
E is decveasing in 1,

b

Remark, For a homopolar diatomic molecule the dila-
tions in Theorems 4.5 and 4.6 are the same. Balazs
(1967) first proved Theorem 4.6 in this case. For a
general diatomic molecule, Benguria’s Theorem 4.7 is
the strongest theorem.

Theorem 4,7, Suppose theve exists a plane P containing
Ry, ..., R, and such that all the other R; (withj=m+1,
... ,R) arve on one (open) side of P (call this side P"),
Assume the nuclei at Ry, ..., R, ave point nuclei, but
the nuclei at R, y, ..., R, ave anything in ® and given by
Eq. (4.5) with the supports of m;c P* (this includes point
nuclei), Let n be the normal to P pointing away from
P*, Letly...,l,>0 be given and let R;—~ R; +I;n for
i=1,...,m. Let E(\,!) denote the enevrgy fov fixed »< Z
and let AE(\,1)=E(\,1)- E(\,0) denote the change in en-
evgy. Likewise define Ae(\,l)=AE(\,l)- AU, Then

(@) ae(r,l)=0, :

(@) AE(\ 1)< 0,

((id) AE(Ny, 1) < AE(Np, 1) if A < Ay,

(Fv) Ae(ny, 1)< Ae(hy, 1) if A < A,

To prove Theorem 4.7 the following Lemma 4.8, which
is of independent interest, is needed.

Lemma 4.8, Assume the plane P, with Ry,...,R,, in P
and Ry, ..., R, in P’ as in Theovem 4.7. However,
point nuclei ave not assumed, Instead, assume each V;
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€ D and given by Eq. (4.5), with m; vequived to be spher-
ically symmetric for i=1,...,m. This includes point
nuclei, Assuwme also that the support of m;C P" for i
=m+1,...,k Ifxc P then x* is defined to be the re-
flection of x thvough P, Let ¢ be the potential, For
xe P, let ¢_(x)=¢ (™) and f (x) = (x) - ¢_(x). Then

(@) fx)>0 for xc P,

(é) For each x € P*, f(x) stvictly decreases when )
increases.

(#i) px)-pE™)=0 for xc P°,

Question. Is it true that p(x)— p(x*) is a monotone in-
creasing function of A ?

Proof, (i) Clearly f(x)=0 on o0P*=P and at «, Let B
={xe P*|f(x)<0}. Since each V;(x) is symmetric de-
creasing the singularities of V are not in B, Thus B is
open. On B, — Af(x)/4m> —p(x) +p(x*)>0. Thus f is
superharmonic on B so B is empty. By the strong maxi-
mum principle f(x)> 0, in fact, for x e P*.

(ii) Let A’ <X with corresponding f’ and f. We want to
prove B={x& P*|f(x)- f'(x)>0} is empty. B is open
and f-f'=0on Pand at w, A(f-f')/4n=a%/2_p3/2
—Cz/z"'dg/ZEh: where a:(P_ [J,,b:(f)'— “”c:(p-—' My
d=¢’ - u’, By (i) and Corollary 3.8, a=b>dand a>c
2dforallxeP'. InB, a+d>b+c, Thus 2>0 in B,
whence f— f’ is subharmonic on B and hence B is empty.
Again, one can prove the stronger result that f—f’ <0
for xcP'. Trivially, ()= (iii) through the TF equa-
tion.

Proof of Theovem 4,7. We may assume all the /; are
equal to some common /, for otherwise if I ;<lys+-- <1
we could first move all the m nuclei by /,, then move
Ry ...,R, by ly—1,, etc. Next, replace all the point
nuclei at Ry, ..., R, by smeared potentials given by Eq.
(4.5) with dm;(x) =z,;g"™ (x)dx where g™ (x) € C; and g™
is symmetric decreasing and with sufficiently small
support such that the supports of dm; (i=1,...,m) are
pairwise disjoint and also disjoint from the supports of
dm; i=m+1,...,k). Under these conditions, ¢ is C!
in Ry,..., R, in some neighborhood of the original
Ry,... We shall
prove

(z) n.VRiQBO s

(@3)' n- Vg, E<O,
and that (¢2¢) and (¢v) hold for these derivatives. Then the
theorem is proved because the original point potentials
z;|x|~! can be approximated in L5/2 norm by these
smeared potentials z; |x | ~1* g™, and the energies ¢ ™’
and E™ converge to ¢ and E by LS, Theorem IL.15, If
()’ holds for e ™, then (d/dl)e ™ (x,1)> 0 with R; — R;
+In, i=1,...,m, and, by integration, ({) holds for e ™,
Then, when n— o, (Z) holds for e, The same applies to
(#4)- (fv). Henceforth the superscript (z) will be sup-
pressed.

Assume n=(1,0,0), P={x|x*=0}, and thus (R,)*=0
for i=1,...,m. Since g is symmetric decreasing,

(8g/0x*) (", 22, x°) = —x'h(x*, 22, %°)
with Z(x)> 0 and

m

, R,, with derivatives given by Eq. (4.6).

R(xt, o2, %) = h(=-x*, %2, %5) .

Likewise,
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(8V,/0x") (o, 2, x°) = =z, x'p(x*, 2%, 2%,

and p has the same properties as k. To prove (i)’
Eq. (4.6) whence

use

n. VR,-e/Zi: - f x'plx — R;) p(x)dx

plx=R)[p(x)-p™)]x'dx>0

x <0
by Lemma 4.8. To prove (iZ)’ use the second integral
in Eq. (4.6), whence

B;=nV, E= f dm(y)n-Vé(y+R,),
where ¢ is the potential, [Note: V,(x- R;) is sym-
metric in x about R;, so the term VV,(x— R;) does not

contribute to this integral.] Since V; is C” it is easy to
see that ¢ is also C* near R;. Now integrate by parts:

i=- [ n Vg (v +RYdy

=f y'r(9) ¢ (y +R;)dy

by Lemma 4.8. To prove (ii¢) note that the last quantity

[ ] decreases when A increases by Lemma 4.8, Clearly
(7%7) is equivalent to (v). m

VR Gy +R)~-¢_(y+Ry)]<0

Proof of Theorem 4.6, Let p(x) be the density when [ =0,
For I> 0 use the variational p given by 5(x 1, x?, x3)
=p(l¥l, x% x% if x'=1 and p(x) =0 otherwise. Then all
terms in the energy §(p) remain the same except for the
Coulomb interaction of the two charge distributions on
either side of the plane P, This term is of the form

wo-

Odaxd%)f(x)f(y)

et +yt+20)% + (6= yB)P+ (P - 98] 12,
where f(x) =-p(x) +2, z,8(x - R;) and the 2 is over
those R; with R}> 0, Since the Coulomb potential is re-
flection positive (Benguria and Lieb, 1978, Lemma B.2),

W() is a decreasing, log convex function of I, B

Proof of Theovem 4.5. Let z=(z4,...,z,) and write
Ef(z), K(z), A(z), and R(z) for the energy and its com-
ponents (cf, Sec. IL.E) of a neutral molecule. These
functions are defined on R*, For an atom 3P=E +K=0
(Theorem 2.14). By Theorem 3.23, E=Y4E“™(z,) and,
by Theorem 4,10, K>37%K“°"(z,). This shows P> 0,
Likewise, by Theorem 4.12, lc‘1> 0 and E(z,1) is convex
in? (equwalently 1?P is decreasing in 7). ®

Definition. Let f be a real valued function on R* and
21,25, 23€R%. Then f is

(i) weakly superadditive (WSA) s f (1+z9)2f(zy)
+7(z,) whenever (z,);(z,); =0, all 7,

(ii) supevadditive (SA)<= Fit+z)=2 () +1(zy),

(i) strongly supervadditive (SSA)e= f(z4+2z,+23)
+fz)=27@1+z) +(21+23).

Theorems 4.9-4.12 are for neutral molecules.

Theorem 4.9. As a function of z € R%, for each fixed
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x & R3,

(i) - ¢(z,x)is SSA, convex, and decveasing (the
latter is Teller’s lemma),

(ii) ¢(z,x) e CY(R}) and  C}(RX\0),

(i) ¢,(z,x) is decreasing in z and >0,
(A subscript i denotes 8/3z,.)

Qv) ¢4;(z,x)<0 (all i,j) and is negative semidefinite
as a kx k matrix,

Remark. 1t is easy to prove that when f € C*(R%) then
SSA is equivalent to f;;= 0 for all 7,j. See Benguria and
Lieb, 1978b, for this and similar equivalences.

Theorem 4,10, K(z) e C!(R*) and  C%(R¥\0)

R

.3
(ii) K,-,<z)=—32 2,042, R,),

(iii) K(z), R(2), and A(z) are SSA and SA and convex,
(iv) E(z) is WSA (Teller’s theorem).

Definition, X(2)=3K(z) —E:= 12; K;(2).

Theorem 4,11, X(z) s SA and SSA and vay convex,
Le,, X(xzy+ (1-2)zy) S AX(zy) + (1~ A)X(2y), O0s A<,
when z,2,€ R and eithev z -z, 07 z,— z,€ RY,

Theorem 4,12, ({) 31°P=E +K,

(#i) 9l%«~'=613P +2E +3X,

(iti) P and k~! are WSA and non- negatwe

(fv) 12P is decveasing in l. Equivalently, E is convex
inl. Equivalently, 2E +3X=0
[note: 3(@*P)/al=2IP-3lk~'=- (3)(2E +3X)].

Proof of (iv). .ZE +3X=0 for an atom. By Theorem
4,10, 2E+3X=>0. W

The proofs of Theorems 4.9-4,12 are complicated.
However, if all necessary derivatives are assumed to
exist, then an easy heuristic proof can be given (see
Benguria and Lieb, 1978b). We illustrate this for K
being SSA, which is equivalent to K,,>0, all4,j. This
will then prove P> 0, since K(0)=0. First we show ¢,
< 0 and then Theorem 4,10 (ii).

Differentiate the TF differential equation [A¢/47
=-22,;6(x—- R;) + (¢/7)*/2, which holds for any neutral
system] with respect to z; and then z;:

L= 5(x R)), (4.8)
Loy=- /0N 2,0,, (4.9)

with £ =~ a/4n+ (3y~3/2/2)¢ (x)!/% The kernel for £-1
is a positive function, so ¢;> 0. Likewise ¢;;<0 and
¢;; is a negative semidefinite matrix,

Next, K= (3y~%/%/5)[ $5/2, so

K= (3y’/’2/2){f 0", +% [ ¢“2¢i¢,}.
Using Eq. (4.9) and integrating by parts,

Kiy=3 [ ¢, [a0/47~ (¢/7)"/?]
3
=- 3‘; 2,03;(R,)= 0.
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C. The long-range interaction of atoms

In Sec. IV.B it was shown that the energy of a mole-
cule decreases monotonically under dilation (at least for
neutral molecules). If the R; —IR; then, for smalll, E
is dominated by U, so E=[~!, To complete the picture
it is necessary to know what happens for large I, We
define

AE:EmDI— Eatom
i=1

(4.10)

For large ! it is reasonable to consider only neutral
molecules, for otherwise AE ~[~!because of the un-
screened Coulomb interaction. In the neutral case AE
~1~7, as proved by Brezis and Lieb (1979). This result
(-7 is not easy to ascertain numerically (Lee, Long- ,
mire, and Rosenbluth, 1974), so once again the impor-
tance of pure analysis in the field is demonstrated.
Some heuristic remarks about the result are given at
the end of this section.

A surprising result is that all the many-body poten-
tials are =I~7, Thus in TF theory it is not true that the
interaction of atoms may be approximated purely by
pair potentials at large distances.

An interesting open problem is to find the long-range
interaction of polyatomic molecules of fixed shape. Pre-
sumably this is also ~ 177,

Theorem 4,13, Fov a neutval molecule, let the nuclear
coovdinates be IR; with { R;,z;}= (R, z) fixed and z;> 0.
Then

AEQ,z,R)=1""C(,z,R),

where C is incrveasing in l and has a finite limit, I'(R)

>0 asl—w, I isindependent of z. Furthermore, z_f
A denotes a subset of the nuclei (with coordinates RA),
and g (A) is the many-body potential of Eq, (4.1), then,
by @.1), for |Al=2

l7C(A)—’ Z (- 1)l4l-1 81 F(Ea)

BCA

(4.11)

and the vight side of Eq. (4.11) is strictly positive (nega-
tive) if |A| is even (odd).

Proof of first part, By scaling, Eq. (2.24), we find that

AE(,z,R)=1""{E(@%,R)~ Zj: E™™@3%2,)} .

Therefore, C increasing is equivalent to f=E™"

-2JE™" increasing in z. But af/az,-—hm,‘nfi)ml(

¢ ™™ (x), and this is positive by Teller’s lemma, All

that has to be checked is that C is bounded above. This
is done by means of a variational p for E™', Let B, be
a ball of radius I7; centered at IR;; the 7; are chosen so
that the B, are disjoint, Let p;(x) =p*°™ (v - IR;) be the
TF atomic densities for z;, and let p(x) =p;(x) in B; and
p(x)=0 otherwise. Of course [p < 2z, but this is im-
material for a variational calculation, since the mini-
mum molecular energy occurs when [p=2)z,. Itis
easy to check that f < (const)?"?. Finally, since f is
monotone in each z;, lim,..f must be independent of

the z;,. m
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Remavks. (i) The variational calculation shows clearly
why I' is independent of the z;. The long-range interac-
tion comes, in some sense, from the tails of the atomic
p’s, but these tails are independent of z, namely p(x)

= (3y/m3|x| €. (See Theorem 2.10.)

(ii) At first sight it might appear counterintuitive that
the interaction is +!~7 and not — 7%, as would be obtained
from a dipole-dipole interaction. The following heuristic
remark might be useful in this respect. Consider two
neutral atoms separated by a large distance R. In the
quantum theory, as in all the theories discussed in this
paper, there isalmostno static polarization of the atoms;
i.e., there isnopolarization of the single-particle density
p. TF theory is therefore correct as far as the density
is concerned. The reason there is no polarization is
that the formation of a dipole moment d increases the
atomic energy by + ad ? with o >0. The dipole-dipole
energy gain is — (const)d®?R3. Hence, if R is large
enough, the formation of dipoles does not decrease the
energy. In quantum theory there is, in fact, a — R~®
dipolar energy, but this effect is a correlation, and not
a static effect. There are two ways to view it, In
second-order perturbation theory there are virvtual tran-
sitions to excited, polarized states. Alternatively, the
electrons in each atom are correlated so that they go
around their respective atoms in phase, but spherically
symmetrically., This correlated motion increases the
internal atomic energy only by ad?, not d2, In short, the
— R™® interaction arises from the fact that the density p
is not that of a structureless “fluid” but is the average
density of many separate particles which can be corre-
lated. This fact poses a serious problem for any “den-
sity functional approach.”. It is necessary to predicta
~R™%dipolar interaction, yet predict essentially zero
static polarization.

An explicit formula for I'(R) does not seem to be easy
to obtain, Two not very explicit formulas are given in
Brezis and Lieb, 1979, One is simply to integrate the
formula for 9f/dl :SZZEzjaf/azj given in the above proof.
Another is obtained by noting that I" is related to ¢ in the
limit z — «, This limiting ¢ can be defined, and satisfies
the TF differential equation, but with a strong singu-
lavity at R; instead of the usual z ]x— R; ‘I‘i singularity,
As we saw in Theorem 2,11, the only other singularity
allowed for the TF equation is ¢ (x) ~+*3/m?2|x - R;| 4.
Therefore that peculiar solution to the TF equation does
have physical interest; it is related to the asymptotic
behavior of the interatomic interaction.

TFD theory. Here the interaction for large ! is pre-
cisely zevo and not =7, To be precise, AE=0 when the
spacing between each pair ]Ri - R; ] exceeds a critical
length, L(z;)+L(z;). The same is a fortiovi true for
the many-body potentials €.

The reason is the following. In TFD theory an atomic
p has compact support, namely a ball of radius L (z).
See Theorem 6.6, When |R;— R;|> L(z;)+ L(z;), then
px)=23,plx— R;;z;) where p(- ;) is the TFD atomic p.
Since each atom is neutral, there is then no residual
interaction, by Newton’s theorem. One may question
whether the p just defined is correct. It is trivial to
check that it satisfies the TFD equation and, since the
solution is unique, this must be the correct p.
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V. THOMAS-FERMI THEORY AS THE Z - o LIMIT
OF QUANTUM THEORY

Our goal in this section is to show that TF theory is
the Z — « limit of @ theory and that it correctly de-
scribes the cores of heavy atoms. This is the perspec-
tive from which to view TF theory, and in this light it
is seen to be a cornerstone of many-body theory, just
as the theory of the hydrogen atom is an opposite corner-
stone useful for thinking about light atoms. We shall not
review the stability of matter question here (see Lieb,
1976).

In units in which #%/2m =1 and |e|=1 the Hamiltonian
for N electrons is .

2

1sisj<N

HN=215 {-a,+ V) + |%;—x;|"1+U. (5.1)

i=1
Ey, py(x), and u will denote the TF energy, p and u
corresponding to this problem with A= N electrons if

R
N< Z = Zj .
i=1

Of course, v is taken to be y, [see Eq. (2.6)]. If N> Z
then these quantities are defined to be the correspon-
ding TF quantities for N=Z2. EJ denotes the ground-
state energy of H, (defined to be inf specH,) on the
physical Hilbert space 3¢y=AYL%R3;C 9 (antisymmetric
tensor product). ¢ is the number of spin states (=2 for
electrons), but it is convenient to have it arbitrary, but
fixed. The TF quantities also depend on g through y,.

A. The Z — < limit for the energy and density

Let us first concentrate on the energy; later on we
shall investigate the meaning of p(x). For simplicity
the number of nuclei is fixed to be &; it is possible to
derive theorems similar to the following if 2 —«~ in a
suitable way (e.g., a solid with periodically arranged
nuclei), but we shall not do so here. In TF theory the
relevant scale length is Z~1/3 and therefore we shall
consider the following limit. ‘

Fix {2°, R°}={2% R}}% ;and A>0. For each N
=1,2,..., define ay by xay=N, and in Hy, replace z;
by ayz) and R, by az!/?R). Thus A=Z°N/Z, and a, is
the scale parameter. The TF quantities scale as [Eq.
(2.24)] :

Em(aéo,a—1/3£0):a7/3Eh(€0’§0)’ (5 2)
an(a_1/3xy aio, a‘1/31'_?°) =a2p,k(x,§°,§°) .

In this limit the nuclear spacing decreases as a;,1/3
~N ~1/3~ z-1/3  This should be viewed as a refinement
rather than as a necessity. If instead the R; are fixed
=RY, then in the limit one has isolated atoms. All that -
really matters are the limits N'/3|R, - R; |.

Theorem 5.1 (LS Sec. III). With N=2Xay as above

]ivi}gal\_f'{/gEg(aNéoy a;i/3§0) :EX(EU’EO) .

The proof is via upper and lower bounds for Ef\',. The
upper bound is greater than the Hartree-Fock energy,
which therefore proves that Hartree- Fock theory is
correct to the order we are considering, namely N 7/3,
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1. Upper bound for £2

The original LS proof used a variational calculation
with a determinantal wave function; this is cumbersome,
Baumgartner (1976) gave a simpler proof (both upper
and lower bounds) which intrinsically relied on the same
Dirichlet-Neumann bracketing ideas as in LS. Here, we
give a new upper bound (Lieb, 1981a) that uses coherent
states; these will also be very useful for obtaining a
lower bound. ‘

Let y = (x, 0) denote a single space-spin pair and
Jay=232.[dx. Let K(y,y’) be any admissible single-
particle density matrix for N fermions, namely 0 < K<7
[as an operator on L%(R3 c%] and TrK=N. Let % be the

single-particle operator — A + V(x). Then (Lieb, 1981a)
E§<E) <E(K), (5.3)

with

E‘(K):TrKh+§ff dydy’|x—x"|"1

x {K(y,9)K(y",9")~ |K(v,9)|?}.

(5.4)

In Eq. (5.3), E5" is the Hartree- Fock energy. Since
|x—x’|~1 is positive we can drop the “exchange term,”
- |K|? in Eq. (5.4) for the purposes of an upper bound.
First, suppose N< Z, To construct K, let g(x) by any
function on R® such that [|g|?=1 and let M(p,7) be any
function on R¥x R3 such that 0 < M(p,7)< 1 and (2m)~3
X [ Mdpdr=N/q. Then the coherent states in L(R?
which we shall use are

Jorlx) =g — v) exp[ip - x] (5.5)

and
K(y,y'):l,(Zn)"sfdpd'rg(x—V)g(x’—r)*M(-p,Y)
(5.6)

I, is the identity operator in spin space. It is easy to
check that TrK=N and that for any normalized ¢ in
L% (¢,K¢) <1 by using Parseval’s theorem and the
properties of g and M, Thus K is admissible,

We choose [with p=p s w,z in Egs. (5.7)-(5.26)]

M(p,7)=06(y,p)2/3-p?), (5.7)

where 6(¢)=1 if />0 and 6(f) =0 otherwise. ¢, is given
in Eq. (2.6). One easily computes

x explip- (x—x')].

K(y,9)=q"1,p ), (5.8)

Tr(- A)K=(3-yp/5)fp(x)5/3dx+Nf |Vg) | %dx ,

(5.9)
TrVK:f Ve(x)p(x)dx, (5.10)
where p,= |g|? *p and V,= Vx|g|2%
For g(x) we choose
gl)= (27R)~Y/?|x|~!sin(7|x|/R) (5.11)

for |x|<R, and g=0 otherwise, and with R=N?/5Z"1,
Then '

f lvgl2=ﬂ2/R2:1TZZZN—4/5.
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The electron-electron interaction term in Eq. (5.4) is
less than D(p,p) because, as an operator (and function),

Ulg el =t lg [ e =2 < fa =21
To see this, use Fourier transforms, Thus

E9<EK)<E,+mN1/5z2
+ f [ V) = V()] plx)dx . (5.12)

To bound the last term in Eq. (5.12) note that, by New-

- ton’s theorem, |x|~!-|g|?* |x|~!=0 for x> R. Fur-

thermore, with the scaling we have employed, |R;- R,|
> 2R for all i#j and N large enough. Since v, p?/3(x)

< V(x), then for sufficiently large N and for Ix -R,; | <sRwe

have v, p(x)?/3 <2z;|x— R;|~'. Thus the last integral in

Eq. (5.12) is bounded above for large N by

R
-3/2 2
3y, 3/ ;zﬁ/A

with

.

IxIs R

|| =3/ %dx = 8nR'/?=8uN /37 ~1/2,

If N<_Z, we have established an adequate upper bound,
namely,

EJ-E, < (const)N /572, (5.13)

Since Z =N, this error is N !1/5 and this is small com-
pared to E, which is ~N /3,

If N> Z we use K=K!+K* where K!is given above
(with N=2Z) and K~ is a density matrix (really, a se-
quence of density matrices) whose trace is N- Z and
whose support is a distance d arbitrarily far away from
the origin. K= does not contribute to E(X) in the limit
d—o,

2. Lower bound for £2

In LS a lower bound was constructed by decomposing
R? into boxes and using Neumann boundary conditions on
these boxes., However, control of the singularities of V
caused unpleasant problems, Here we use coherent
states again (cf. Thirring, 1981),

Let ¥(xyy...,X5;0¢...,0,) be any normalized function
in 3¢y and let

q
pu;(x):NZ f llp(xaxb--- ’xN;al’---;ON)lzde..'de
o=

(5.14)
E,= Y, Hy)) (5.15)
T, =(¢,— 3> A,-zﬁ). (5.16)

It is known that (Lieb, 1979; Lieb and Oxford, 1981)
Iw=<¢’ Z !xi"xfl—iz/)>
. i<j

>D(py, py) = (1.68) [ pyx)*/2ax. (5.17)

Choose any p(x)= 0 and ¢=V- |« |~1xp. Since D(p,
-p,p,—p)=0, we have for any O0<¢ <1



N
E,> (z/), E hizp> +U~-D(p,p) - (1.68)f piP+eT,,
(5.18)
with
h=-(1-£)A- $()

being a single-particle operator,

We shall choose p to be the TF density for the problem
with y, replaced by (1 -¢€)y,, and with the same A
=min(N, Z). - {1 and E are the corresponding chemical
potential and energy.

Let f,, be the coherent states in L%(R*) given by Eq.
(5.5) and m,, = (projection onto f,,)® I,. For any function
m(y)=m(x,0) in L%(R% C 9 we easily compute:

(5.19)

(m,m)= (27r)“3f dp dv(m, m,,m),
f |Vm‘2dz=(27r)“3f dpd'rpz(m, T, M)

— onym) [ |Vew)|ax,
J‘ 'm!zég(x)dz:(ZW)*f dpdré;(v)(m,ﬂ,,,m), (5.20)

with ¢, = - g | 2% é. )
Write ¢> ¢>g+ (¢ gbg and 2f=— (1-¢)A - ¢, (x). Let
us first concentrate on e;=infe,(¥), where

£ ).

i=

ex=(3,

Since 2 k¢ is a sum of single-particle operators we
need only consider ¥’s which are determinants of N
orthonormal single-particle functions. If my,...,my
are such, then

N

M(p,7)= D (my, mym,)

i=1

has the property that 0 < M(p, )< q and

(21'7)j3f dpdv M(p,v)=N
Therefore

ex)=@n [ [ apar{a-e)p-
—Nf Ivel2.

The minimum of the right side of Eq. (5.21) over all
M with the stated properties is given as follows:
M(p,7)=q0($(r)~ (L—e)p?~ 1)

for some pu=>0. u is the smallest u such that 2m)—3
X fM(p,'r) <N. Since ¢ is the TY¥ potential [for (1 - s)'y,,]
we see that pu= [ and

b @)} M(p,7)

(5.21)

- D(3,5) + U= E- N[ |vgl|2. (5.22)
Next, let us consider the mlssmg piece €y=- f(qb

- $,)p,. The second piece of ¢, namely — =- |x |~

*p, has the property that — |g|%* = 0 since ¥ is

superharmonic and lg| is spherically symmetric.
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Therefore we can ignore this piece in e,.
bounded above, as before, by

V- V,is

szlx"Ril_?g(R‘ Ix—le)'

For large N, |R;- R;|> 2R and, using Holder’s in-
equality,

' 275
ez~ |l pwuﬁ/a[sm“zZ) z?”]
=~ || pylls 5] (8M)2/5RYV5Z} (5.23)

The negative term e, is controlled by the £ T, term
through an inequality of Lieb and Thirring (1975 and
1976; see also Lieb, 1976):

T,> L f Py )3/ 3dx

with L =2(37/2¢)?/%, Furthermore, by the Schwarz in-
equality, [pl/®<{N [p}/3}1/2, If we write Jp§P=x
then e,> - X°/°D, with D={} in Eq. (5.23), and

(5.24)

ertely— (1.68) f p/?

> min- Dx3/5+¢Lx - (1.68)NV/2x!/2=y (5.25)

Equatmn (5.22) contains E instead of E; we must bound
the difference, Using p as a trial functlon for E, E
<E+[e/(1-¢)]K, where

K=[3(1-¢)/5]v f p*/?

Choose £ = z~1/% (this is not optimum), For large Z,
€ < % and it is easy to see that K < (const)Z"/3 for all

N, Z. Thus
0> E~E> — (const)z"/3z-1/% (5.26)

Choose R=Z"'/2, which is a different choice from

the upper bound calculation, Then D=~ z°/1 and
Y= — (const)z"/3z-1/% (5.27)

[ 1t is easy to see that the term — (1,68)N!1/2x1/2 jg
negligible as long as N/Z is fixed.]

Finally - N [ [Vg|?~- NR-?~Z% Combining all these
bounds, we find

EQ - E> ~ (const)Z7/3-1/%
which is the desired result, &

Clearly there is room for a great deal of improve-
ment, for it is believed that E9— E> 0 as explained in
Sec. V.B. But first let us turn to the correlation func-
tions. /

3. Correlation functions

In analogy with Eq. (5.14) we define

' (N
p%(x1,...,x,):11< >§ f [0t e e s X305 ees 00 |2
j o

(5.28)

We wish to obtain a limit theorem for p] when ¢ is a
ground state of H,. But there may be no ground state
(inf specH, may not be an eigenvalue) or there may be

Xdxg,q*cdxy.
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several. In any case, it is intuitively clear that the
limit of pj should not depend upon ¥ being exactly a
ground state, but only upon ¥ being “nearly” a ground
state.

Definition. Let ,,9,,. . . be a sequence of normalized
functions with iy €3Cy for N particles. This sequence
is called an approximate ground state if |y, Hydy)
-EQ ja;7/3-— 0 as N—. Hy always has % nuclei.

Theorem 5.2, Let {yy} be an approximate ground state
with the scaling given before Eq. (5.2), and let pl(x) be
given by Eq. (5.28) with ¥, and

piv(xlyc--,xj) aN pN(aNifaxl’ °-’a;l/3xj)-

Let p'(xq,...,x,) =pley)*+* plx,;) with p being the solu-
tion to the TF problem for x and {z%,R}}. (Note that
=N/Z is now fixed.) Then

(Iwa’—Z Aisz>a;7/3" %y”f p(x)5/3dx s
(4 T veou)ai s~ [ ov,

<¢N’ }: lxi = x,' -Id)}v)a;/”s - D(p, p).

Moveover, ph(x)—p’(x) in the sense that if Q is any
bounded set in R™ then

f Pl (x)d¥x — f P’ (x)d¥x
Q Q

Ifx<Z=2z,, the vestriction thalt Q be bounded can be
dvopped and pl,— p’ in the weak L' sense,

Proof. The reader is referred to LS, Theorem III.5 for
details. The basic idea is to consider a function
Ulyy... %) €C(RY) and add o [p/Ud¥x to the TF
functional, &(p). On the other hand, the potential

3 Z 1/3
aa4j/ U(aN x11>°'-’aN/ xil)
i
unequal

is added to Hy. By the aforementioned methods the en-
ergies are shown to converge on the scale of a}/s. But
3E/3a| o= [p’U. By concavity of E(a) the derivatives
and the limits @y — < can be interchanged. Thus, for all
such U, [phU~ [p'U. ®

One of the assertions of Theorem 5.2 is that, as N— o,

correlations among any finite number of electrons dis-
appear, A posteriori this is the justification for re-
placing the electron-electron repulsion 2 |x; - x;|~! by
D(p,p) in TF theory.

B. The Scott conjecture for the leading correction

We have seen that ETF =~ CZ"/3 under the assumption
that the nuclear coordinates R; and charges z; scale as
z 1R} and 2z}, 202=1, and A=N/Z >0 is fixed. C
depends on 1,z% R’. What is the next correction to the
energy ? While this question takes us to some extent
outside TF theory, we should like to mention briefly the
interesting conjecture of Scott (1952) and a generaliza-
tion of that conjecture, None of these conjectures have
been proved.

The basic idea of Scott is that in the Boh» atom (no
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electron repulsion) the electrons close to the nuclei each
have an energy ~- Z2 This should also be true in some
sense even with electron repulsion. Since TF theory
cannot yield exactly the right energy near the singulari-
ties of V, the leading correction should be 0(Z?).

The leading correction should have three properties.

(i) It is the same with or without electron repulsion
because the repulsive part of ¢(x), namely Ix ]‘1* p, is
0(Z4/3) for all «.

(ii) It is independent of N/Z, provided N/Z> 0 and
fixed. This is so because the correction comes from the
core electrons whose distance from the nucleus is
0(Z~Y). The number of electrons thus involved is small
compared to Z,

(iii) It should be additive over a molecule. If the cor-
rection is Dz? for an atom then the total leading correc-
tion should be

AE:DXk: Z,z-

i=1

(5.29)

and

ER=ETF + AE +0(Z?). (5.30)

Of course ETF depends on whether electron repulsion
is present or not, but AE supposedly does not change.
To calculate D let us first calculate ETF for an atom
without repulsion. The general theory goes through as
before, but now the TF equation is yp?/3= (V- u),, V(x)
=z/[x(, fp:N, and p >0, even when N=z, It is found
(Lieb, 1976, p. 560) that u=z/R, R=3y(4N/m%?%/3/5z,
and BT =- 3z N'/3(n/4)2/3/,. Using v,,

2"/3@BN/2)13(2mq? 3/ n /4.

TF —
Bohr

'~ The quantum energy is computed by adding up the Bohr

levels, For each principal quantum number 7, the en-
ergy is e,=m/2f %% and it is gn’fold degenerate. The
result (Lieb, 1976) is

EQ =E[N +qz%/8+0(%?), (5.31)
thus
D=qz?%/8 (5.32)

in the Scott conjecture, Scott’s (1952) derivation was
slightly different from the above, but his basic idea
was the same.

The Scott conjecture about the energy can be supple-
mented by the following about the density. Let f,,,(z,x)
be the normalized bound-state eigenfunctions for the
hydrogenic atom with nuclear charge z, and define

p"(z,x)zq‘; | Fuim@, )| 2. (5.33)
This sum converges and represents the quantum density
for a Bohr atom with infinitely many electvons. 1t is
being tabulated and studied by Heilmann and Lieb. It is
monotone decreasing and a graphical plot of p# shows
that ithasalmostno discernible shell structure. Clearly
p#(z,x)=2%"(1, 2x) and is spherically symmetric, By
our previous analysis of the z — « limit (which strictly
speaking is not applicable when N =, but which can be
suitably modified)

27f(, 27 %) ~ 2" b (2,271 %) (5.34)
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as z —~ -, But
— 3/2
PIF (2,2)= (/% |x])*
when u =0, as we have just seen. Thus

P, 9) = (v, |y ])73/2

as y — o, Equation (5.35) is not obvious, but it can be
directly proved from (5.33).

Thus p?(z,x), whose scale length is z~!, agrees nicely
with pTF (z,x), whose scale length is z~1/3, in the over-
lap region 27!« |x|<«2z~1/3, This is true even when elec-
tron repulsion is included in p TF because of Theorem
2.8(a). The common value is p(z,x) = (z/v, |x|)3/% Be-
cause of this we are led to the following.

(5.35)

Conjecture, Suppose the sequence { ¥, } € 3¢ y is an ap-
proximate ground state for a molecule (with repulsion)
in the strong sense that

I_(ZPN,HN‘J)N)' El?/lat_vz"o as N—,

Let pR(x) be given by Eq. (5.14). Recall that R, =az!/3RY,

Fix A=N/Z>0 and x#R{, all j. Then, as N— o,
ag’pRaz'/*) ~p ™), (5.36)

where pTF is the TF density for A,z, R}. On the other
hand, for all fixed y, ‘

(5.37)
Equation (5.36) has already been proved in Sec. V.A.

ay’pRaz'PR) +azly)y— (29)%%(1,23y).

TFW Theory. It is a remarkable fact that the TFW cor-
reaction, which has no strong a priori justification, has,
as its chief effect, precisely the kind of correction (i),
(ii), (iii) above predicted by Scott. If 6 is chosen cor-
rectly in Eq. (2.8), even the constant D in Eq. (5.32) can
be duplicated. This will be elucidated in Sec. VII. TFW
theory also (accidentally ?) improves TF theory in two
other ways: negative ions can be supported and binding
occurs,

C. A picture of a heavy atom

With the real and imagined information at our disposal
we can view the energy and density profile of a heavy,
neutral, nonrelativistic atom as being composed of
seven regions,

(1) The inner cove, Distances are O(z~1) and p is
O(z%). For large 0, the number of electrons out to R
=0/z is ~0%/2, while the energy ~z% /% If 1< zv
«z%3, p(r) is well approximated by (z/y,7)%/% p@) is
infinity on a scale of z? which is the appropriate scale
for the next, or TF region, The leading corrections,
beyond TF theory, come from this region. None of this
has been proved.

(2) The cove, Distances are O(z~!/%) and p is 0(z?.
TF theory is exact to leading order. The energy is
ETF~_ 27/3 and almost all the electrons are in this re-
gion, This is proved. )

(3) The cove mantle, Distances are of order oz~ 1/3
with 0>>1, p@)=(3y,/7)% %, the Sommerfeld asymp-
totic formula. p is still O(z%. This is proved.

(4) A transition vegion to the outev shell, This region

~may or may not exist,

(5) The outer shell. In the Bohr theory, z!/3 shells
are filled, The outer shell, if it can be defined, would
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“presumably contain O(z2/3) electrons and each electron

in the shell would “see” an effective nuclear charge of
order z?/3, This picture would give a radius unity for
the last shell and an average density ~z2/3 in the shell.
On the same basis the average electron energy would be
O(2%/%) and thus the energy in the shell would be O(z%/3).
All this is conjectural, for reliable estimates are diffi-

"cult to obtain,

(6) The suvface, Here the potential is presumably
O(1), and so is the energy of each electron. Chemistry
takes place here, )

TF theory, which is unreliable in this region, never-
theless predicts a surface radius of O(1), We thank J.
Morgan for this remark. His idea is that if the surface
radius R is defined to be such that outside R, there is
one unit of electron charge, then R,= O(1) because the
TF density is p(*) =3y, /m)3°, independent of z, for
large 7. Likewise, if R, is defined such that between
R, and R, there are z2/? electrons, then the average
TF density in this “outer shell” is z2/3 in conformity
with (5). Finally, the energy needed to remove one elec-
tron is O(1) as Eq. (3.11) shows, The radius of this
ionized atom is also O(1) as Eq. (3.13) shows.

In no sense is it being claimed that TF theory is reli-
able at the surface, or even that the existence of the
surface, as described, is proved., We are only citing an
amusing coincidence. It is quite likely that the surface
radius of a large atom has a weak dependence on z.

(7) The vegion of exponential falloff. p(r)~K
xexp| - 2(2me M2 /2(r —R)], where e is the ionization po-
tential, K is the density at the surface, and R is the sur-
face radius. An upper bound for p of this kind has been
proved by many people, of whom the first was O’Connor
(1973). See also Deift, Hunziker, Simon, and Vock, 1978,
and M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof,

R. Ahlrichs, andJ. Morgan, 1980, for recent develop-
ments and bibliographies of earlier work.

The density profile of a heavy atom, as described
above, is shown schematically in Fig. 2.

P(r)
N 23
not to scale
(2/)3/2
core transition outer exponential
core mantle region shell falloff
surface
inner r6xz2 z2/3 (chemistry /)
core life / -
| N T
N
71 7173 10z-V/3 1 r

FIG. 2. Schematic plot of the electron density p(») in a neutral
heavy atom of charge z. The inner core extends to distances of
order z-!; the core to order z-!/3; the mantle to z-1/3 times a
large number. The core and its mantle are correctly described
by TF theory. The outer shell extends to distances of order

z? where p is near zero. Finally, there isthe surface, and then
the region of exponential falloff. The surface thickness is not
shown.
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VI. THOMAS-FERMI-DIRAC THEORY

The previous sections contain most of the mathemati-
cal tools for the analysis of this model; the main new
mathematical idea to be introduced here will be the j
model and its relation to TFD theory.

The TFD functional is

gwo(0)= [ Toendx- [ Vo+Dlo,p)+U, 1)

and

J(p)=% yp®/3-3C,pt/3, 6.2)

The term — D=— (3C, /4) [p*/3 was suggested by Dirac

(1930) to account for the “exchange” energy. The true
electron repulsion 7 in (5.17) is expected to be less than
D(p,p) because the electrons are correlated. For an
ideal Fermi gas at constant density, I is computed to be
D(p,p)- D with C,=(6/7g)!/3. There is, however, no
fundamental justification for the Dirac approximation;
it can even lead to unphysical results, as will be seen
shortly. In particular, I is always positive but D(p,p)
— D can be arbitrarily negative. As remarked in (5.17),
there is a lower bound of this form D(p,p)— D (Lieb,
1979; Lieb and Oxford, 1981) with 3C,/4=1.68 (indepen-
dent of ¢). In any event, it should be remembered that
D is part of the Coulomb energy even though it is mathe-
matically convenient to combine it with the kinetic ener-
gy as in Eq. (6.2).

For simplicity we assume

R
V)= Vilx-R)),

i=1

(6.3)

with V;€®d: V;= fx]“* m; (with m; a non-negative mea-
sure) and |m;|=z,.

Henceforth the superscript TFD will be omitted. All
quantities in this section refer to TFD, and not TF,
theory, unless otherwise stated.

A. The TFD minimization problem

The function space is the same as for TF theory,
namely

g={plpeLinL?3,px)=0}. 6.4)
The energy is
E(\)=inf 8(0)1[ pzh,pes}. (6.5)

Theorem 6.1, E()\) ¢s finite, nonincrveasing in \, and

E(A):inf{é’(p)lfps A pE g}. (6.6)

Moveover, e(\)=E(\) - U <0 when x> 0.

Proof, Same as Proposition 2.1 and Theorem 2.3. The
crucial fact to note is that J(0) =J’(0) =0, which permits
us to place “surplus charge density” at infinity. ®

It is not immediately obvious that E(\) is convex be-
cause J is not convex. The proof of convexity is com-
plicated and will be given later (Theorem 6.9).

A second difficulty is that E()) is not bounded below
for all A, This is so because J is not positive. This
latter difficulty can be dealt with in the following way.
Introduce
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8 =8 +a [ p 6.7)
‘with

a=15C%(64y)"!. 6.8)
This amounts to replacing J by

Je(p)=J(p) +ap. (6.9)
Note that J (p) = 0 and

I o(Pg) =0=J5(p,) (6.10)

for p,=(5C,/87)°. —a and p, are the minimum value
and the minimum point of the function J(p)/p. Corre-
spondingly, introduce

EQ(A):inf{&,(pﬂf p:k,peg}. (6.11)

Theorem 6.2. E_ () is nonincveasing in x and has a

lower bound, independent of . Moreover,
E,W=EQX)+ax (6.12)

and
Ea<x>:mf{&,(p>lf p<x,pes}.

e,M=E,(\)- U=e(\) +ax <0 when x>0, and e (\)
—inf,e (A) =e () as A—o.

(6.13)

Proof, Again the proof is the same as for Proposition
2.1 and Theorem 2.3, Here, however, J/(0)> 0; the
fact that J,(py) =J4(py) =0 is used instead. The fact
that J,> 0 is responsible for the lower bound. &

Remark. One consequence of Theorem 6.2 is that dE(\)/
dx< - a (if the derivative exists). Another is that when
A is large enough so that e (A) =e (=) then e(A) =¢ (=)

— o). As will be seen, this happens when x>\ =2
=2z;. Thus the graph of e,()) is similar to that for
eTr()) in Fig. 1. e(\) then has a negative slope, — a,

at 2, and afterwards ¢(1) has the same constant negative
slope. This is a highly unphysical feature of TFD theory
which arises from the fact that one can have spatially
small “clumps” of density in which p =p,, arbitrarily
far apart, These “clumps” have an energy approxi-
mately —ap, - (volume) and are physically nonsensical
because the — p?/3 term, which causes this effect, is a
gross underestimate of the positive electron repulsion
which it is meant to represent, There is no minimizing
p for these “clumps” because for no p is the energy ex-
actly —ap, » (volume). The “inf” in Eq. (6.5) is crucial.

B. The/ model

Now we must deal with the fact that J, is not convex,
To this end we follow Benguria (1979), who introduced
the “convexified” j model. With its aid, Benguria was
the first to place the TFD theory on a rigorous basis for
a certain class of amenable potentials in Eq. (6.3), which
is defined in Sec. VI.C. This class includes the point
nuclei, It will turn out that the j model also permits us
to analyze TFD theory for all potentials, not just the
amenable class. However, for nonamenable potentials,
the analysis is complicated and the final result has an
unexpected feature, namely, that a minimizing p for E
may not exist, even if A <A_,. The j model is explored in
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detail here because, as will be seen in Sec. VI.C, its
energy is the same as E,(\) for the TFD model, More-
over, for amenable potentials the density p of the two
models is also the same,

Definition,
J(P)=d(p), p=py=(5C,/8%)*

=0, 0<p<p,. (6.14)

The derivative of this convex function is given in Eq,
(8.14). &;(p) is given by Eq. (6.1) with J replaced by j.
E;(7) is defined by Eq. (6.5) with § replaced by &;.

By the methods of Secs. II and III the j model has many
of the same properties as TF theory.

Theorem 6.3, If Vis given by Eq, (6.3) and if §is re-
placed by &;, E by E;, and e by e;=E; - U, then the
following vesults of TF theory hold for the j model
(they also hold fov TF theovy, of course, with this V) .
(Ignove any mention of TFD and TFDW theory in the
cited theovems.):

Propositions 2.1 and 2.2; Theovems 2.3 and 2.4; the
definition of \,; Theovem 2.5; Theovem 2.6 [with Eq.
(2.18) veplaced by (3.2)]; Theorem 2.7; Theovem 2.12
(for a point nucleus); Theorem 2.13 without the v de-
pendence (for point nuclei; the last two equations in this
theorem have an obvious generalizatioh for non-point
nuclei,); Theovem 2.14 (for point nuclei) is changed to
(@) 5K/3=A—- 2R~ ur- ax+4D/3, (b) 2K=A—-R+D
for an atom, with D= (3C,/4)[p*/® (note that Theorem
3.19 must be used in the proof); Equation (2.22); Theo-
rem 3.2; Theorems 3.4, 3.5 [Benguvia (1979) has shown
that if W is the potential of point nuclei then ¢' - ¢ € H?
away from Sy]; Corollavies 3.7, 3.8, 3.9, and 3.10
(note, in pavticular, that ¢ TF > ¢! ™% for fixed u);
Lemma 3.11; Theovem 3.12, Covollaries 3.14 and 3.17;
Theovem 3.18 (i.e., A\, = Z); Equation (3.6); Sec, III.B;
Theovem 3.23 (but note that equality can occur. See
remark at the end of Sec, IV,C),

Remarks, (i) Theorem 2.8(a) holds in the sense that
p)=(z;/v)*/%|x - R;|"3/2 near R;.

(ii) There is no simple scaling for the j model, as in
Eq. (2.24) for TF theory.

(iii) We emphasize that a minimizing p exists if and
only if A< Z. This p is unique and satisfies the Thomas-
Fermi-Dirac equation (3.2).

(iv) Question. Under what conditions do the conclu-
sions of Corollaries 3.13, 3.15, and 3.16 and Theorem
3.21 hold for the j model ? Question, To what extent do
the results of Sec. IV carry over to the j model ?

(v) To prove the analogue of Eq. (2.15), Mazur’s theo-
rem can be used, as in the proof of Proposition 3.24,

There are some useful additional facts about the j
model not mentioned in Theorem 6.3,

Theorem 6.4, If C, increases then (i) ¢ (x)— pu()) de-
creases and u(\) increases, fov fixed \; (ii) ¢(x) de-
creases for fixed (.

Proof., By Corollary 3.10, since j’(p) decreases with C,
for fixed p. m

Theorem 6.5. For all x, ETF(\)> E;(\)> E(\) since
J(p) <j(p) <3yp%/3/5. On the other hand, suppose Vis
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the potential of k point nuclei as in Eq, (2.1).
ASA =2,

ET(\) < E;(\) - ax+ (3C, /a2 (5e,/2y)2"/3} 1/?
+27C2A/(10y), (6.15)

Then for

wheve — g is the TF energy for a neutval atom with
z=1 [see Eq. (7.15)].

Remarks. (i) When x> Z then (E™ - E))(\)=(E™
- E;)(Z).

(ii) Clearly Eq. (6.15) can be improved, But it does
show that the effect of the Dirac term is to decrease the
energy by O(z%/%) for large Z. (Note: by Theorem 6.8,
E;—ax=E.)

Proof. Let p be the minimizing density for E;, and p™"
that for ETF, Use p as a trial function for E™, Noting
that p(x) # (0,p,] a.e. (Theorem 3.19), we have ET"
<8™(p)=E, - ax+(3C,/4) [p*/3. By Theorem 3.19,
0?3~ C,p!*+ a=¢ — u when p>0. But by Corollary
3.10, ¢ — p< T — uTF < o(pT)¥3  Thus p?/3 < (p)%/3
+C,/v)p*/?. Squaring this and using [(pT)2/3p*/3 <
(Holder), and [p*'*<Xpy)™/?, and [(p™)i/?

< [x [(p™)3/21/2, we obtain Eq. (6.15), but with

5K /3y in place of {}. By Theorem 2.14(a), 2K""/3
<—=eT | and by the remark preceding Eq. (4.5), eT"
>eTF (all nuclei at one point). R

The next theorem states that p always has compact
support, even when A=2x,. When X <, this is also true
in TF theory (Lemma 3,11), The proof we give seems
unnecessarily complicated; a simpler one must be pos-
sible,

Theorem 6.6, Suppose V= |x|~1x meD, with m a non-
negative measuve of compact support and fdm =Z. Let
p be the minimizing j model density for 1 <A =Z. Then p
has compact support, Moreover, suppose supp(m)

C By, the ball of vadius R centeved at 0. Then supp(p)
C B, for some v depending on R and Z, but independent
of .. ¥<2R+tZ(p, R~ for some universal constant t,
independent of all parameters,

Proof, The strategy is to construct a function f such
that supp(p)C supp(f). Let Sz=0Bj be the sphere of
radius R, There exists a function (surface charge dis-
tribution) o on S,, such that V,, the potential of ¢ out-
side B,y is V, i.e.,

V)= V,,(x)E41T(2R)2f dQoe(Q) |x - 2RQ |1

for |x|> 2R, where Q denotes a point on S, and fdQ=1,
It is easy to see that o is a bounded, continuous function
since supp(m)C Bp, and IU(Q) ]s sZR~? for some uni-
versal constant s, Let Z(Q)=-0¢(Q)+sZR~2>0, and
let

AM(x)=dm (x) + = (x/2R)5(|x |- 2R)dx .

K V,=|x|~1x M, we see that V,(x)> V(x), all x, and
V,®)=@Q|x |1 for |x|> 2R, with 0< @< (1 +167s)Z,
Vy— V is a bounded function in ®, Now let f (x) =p, for
2R < [x|<7 and f (x) =0 otherwise, with [f=@Q. Let §

= |x|"txp, g=|x|"1xf, ¢=V-9, h=V,- g where p
satisfies Eq. (3.2). We claim u(x)=hk(x)- ¢ (x)+u=0, If
not, let B={x|u(x) <0}. B is open since k- ¢ is con-
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tinuous, — Au/47> — f+p. But f<p on B since, for

|x |< 2R, f(x)=0; for |x|> 2R, p(x) is either 0 or > p,
a.e. by Theorem 3.19, If p(x)=0 then ¢ — u <0 by (3.2)
and 2(x) is clearly =0, so x¢ B; if p(x)=py, p—f=0.
Thus « is superharmonic on B and, since #=0 on 0B
and = =0 at infinity, B is empty. Now consider A
={x|r<|x|}. mA, —Au=47mp>0 andu>0 on 34 and
at infinity. Therefore either (i) p=0 a.e. in A or (ii)
u> 0 everywhere in A, In case (ii), ¢ <pu in A because
h=0 in A. But then, by Eq. (3.2), p=0 a.e, in A, The
bound for 7 is obtamed by 47 (r — 212)(21?,)2 (4m/3)[»3

- (2R)*]1=Q/ py.

Remark, For an atom with nucleus located at the origin,
R can be chosen to be any positive number, If the in-
equality for 7 is minimized then we find p(x) =0 for
|x|>3¢z/py) 15

Theorem 6,7. Suppose Ve D and pc e are such that the
second line of Eq. (3.2) holds with =0, in the sense
that ¢,(x) <0 a.e. when p(x)=0 and p(x)=0 a.e. when ¢,(x)
<0, Let A be the complement of the support of p. Then
¢=0 on A, the closure of A,

Remark, Theorem 6.7 does not mention j. However,
the theorem is meaningful only if supp(p) is not all of
R3, This does not happen in TF theory when =0, but
it does happen for the j model if the hypothesis of
Theorem 6.6 holds. The significance of Theorem 6.7

is that there is fotal shielding in TFD theory. This is
in contrast to TF theory, where there is under-screening
in the neutral case in the sense that the potential falls
off only with a power law. One consequence of Theorem
6.7 is that two or more molecules, each of fixed shape,
do not interact when their supports are disjoint. See the
remark at the end of Sec. IV,

Proof. Let B={x|¢(x)<0}. Clearly the singularities
of Vare not in B, so B is open. On B, A¢ <0 since
p=0a.e, in B, But ¢ =0 on 9B and at infinity so B is
empty, Therefore ¢ = 0 everywhere. Let D={x|p(x)
=0}. ¢<0a.e, onD, Since ACD is open, and ¢ is
continuous on {x |¢ () <1}, $=0on A, and hence on 4.
|

C. The relation of the / model to TFD theory

We shall show that the energy of the j model is exactly
E_ (A)=E(\) + ax for the TFD problem. Thus all the facts
about the energy in Theorems 6.3 and 6.5 hold for TFD
theory. However, the densities may be different!

Let us start with the simplest case studied by Bengu-
ria (1979).

Definition, A (non-negative) measure m is said to be
amenable if

k
dm(x) = Z z;6(x — R;)dx + g (x)dx
i=1
with z;> 0 and g satisfies: (i) g=0, (ii) g< L., (ii) If
A={x|gx)=0} and ~A is its complement then R\
[ Interior(A) U Interior (~A)] has zero Lebesgue mea-
sure, (iv) g(x)=p, for x7/ A. (v) V=|x|"1xmeD>. m is
strongly amenabdle if g(x)> p, for x ¢ A,

Remark,. This amenable class is more restrictive than
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necessary for Theorem 6.8. Technicalities aside, (iv)
is the crucial point. & measures (corresponding to point
nuclei) are strongly amenable.

Theorem 6.8, Suppose that in Eq. (6.1) V= |x| 1xm
and m is amenable, Then E _(\)=E()\)+ ax for the TFD
problem equals E;(\) for the j model, Moveovey, theve
tS a minimizing p fov the TFD problem if and only if X
SA=Z= fdm This p is unique and is the same as the
pfor the j model, It satisfies Eq. (3.2).

Proof. Clearly E_ > E; since J,(p)=>j(p). First suppose
A<2A,=Z and let p be the unique minimum for the j prob-
lem. By Theorem 3.19, p(x)¢ (0,p,) so E_(A) < 8,(p)
=&(p)=E;(\). Thus E,(\)=E;(). Let p satisfy [p=»x
and 8,(p)=E_,(A). Then since 8,(p)= &;(p)= E;(1) we
conclude that p minimizes &;(p). But there is only one
such p, Next, suppose A> .. Then E;(\)=E;(x)=E_ ().
But E,(\) < E_(x,) by Theorem 6.2, and E (A)=> E; (7).
Hence E (A\)=E, (A\). By the above argument, any mini-
mizing p for §, would have to minimize &§;, but no such
p exists., W

Remark. By Theorem 3.19, p(x) ¢ (0, py) a.e. if m is
amenable, and p(x)#p, a.e. if m is strongly amenable,
If p is merely amenable, p(x) can be p, with positive
measure, An example is dm(x)=p,Bg(x)dx, with By
being the characteristic function of a ball of radius R
centered at 0, Then p,(x)=p,B,(x) with 47p,»3/3 = x for
X< A,=47mp, R®/3. This p, is easily seen to satisfy Eq.
(3.2).

If m is not amenable the situation is much more com-
plicated, but more amusing mathematically. First let
us consider the energy.

Theorem 6.9, If V= |x|"'xmecD, then E ,(\)=E;(\)
for all X, In particular, \,=Z= fdm and E , is convex
in A. If there is a minimizing p for E()\), zt iS unique
and it is the p for the j model,

A number of lemmas are needed for the proof.

Lemma 6,10, Let ACR? be a measurable set and let p
be a function in L' with 0<p(x)<1 for x € A, and p(x) =0
for x# A. (This implies pc L?, all p.) Then theve exists
a sequence of functions f"< L' such that (i) f" — p weakly
in every L? with 1 <p <o (id) f" is the charactevistic
Sfunction of some measuvable set F"CA; (iii) ff”:fp_

Proof: For 6>0 and ycz®let B(5,y)={xecRr?|-5/2
<x?-8y?<5/2} be the elementary cubes of side 5, Let
C(5,y)=ANB(5,v). Partition C(3,y) into two disjoint
measurable sets, C* and C~, such that |C*(5,y)|

= [B(5,y)p. Let Fﬁ_umsc (8,v), and let f° be the
characteristic function of F®, Clearly f® < L? with norm
(fp)!/*, and f° satisfies (ii) and (iii). Let 1/p+1/g=1,
Since C;, the continuous functions of compact support,
are dense in L% and || f° |} =constant, it suffices to
prove that I(5, g)—fg(fﬁ— p)—0 as 6—0 for every
geC;. But g is uniformly continuous, so for any

£>0, Ig(jc) - g(8y)|<¢ (uniformly) for x< B(8, ) when &
is small enough. Since

f (fo-p)=

B (5, )

,|1(5,g)|<28fp.n

Lemma 6,11, Suppose pc9 and
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A(p)={x|0<px) <p,} (6.16)

has positive measuve, Then theve exists p<cd satisfying
() 8(P) < &(p); (i) A(P).is emply; (iii) p(x) =p(x) if x
#Ap); @v) [6=[p.

Proof, Apply Lemma 6.10 to the function r(x)=p)/p,
if x € A(p), h(x)=0 otherwise. Let p"(x)=p,f"(x) if

x € A(p), p"(x)=p(x) otherwise, Then fﬁ":fp and
JIa(B™) = [J4(p)=- K with K> 0 and independent of n
[since J,(#) >0 for 0 <t <p,, and 0=J,(0)=J,(0,)].
Now, as in the proof of Theorem 2.4, [V5"— [ Vp.
1imD(p", p") = D(p, p) (easy proof). Hence for any £ >0
there is some 7 such that [V5"> [Vp—-¢ and D(5",p")
<D(p,p)+e. M

The following is a corollary of Lemma 6,11,

Theorem 6,12, (a) If p € 9 minimizes §(p) on [p=21,
then measure { A(p)}=0. (b) Even if theve is no mini-
mizing p, a minimizing sequence for E(\) with [p=2x
can be chosen such that A(p™) is empty for all n,

Theorem 6,13, Let p minimize & for [p=x. A(p) may
not be empty, but for any € >0 theve exists a p such that
[B=x, A(DP) is empty, and §(p) <E;(\) +e.

Proof. Again, use Lemma 6,10 and mimic the proof of
Theorem 6.11. W

Proof of Theovem 6.9, That E_ (A)=E;(x) follows from
Theorem 6.13 and an imitation of the argument in Theo-
rem 6.8. By Theorem 6.12 any minimizing p has A(p)
empty and thus minimizes § (p). There can be only one
such p, since the minimizing p for &; is unique, B

In summary: E(A)=E;(A) - aX always, but a mini-
mizing p may or may not exist for the TFD problem, It
exists if and only if the minimizing p for the j model
(which always exists when A< 1) satisfies p(x) # (0, p,)
a.e. A sufficient condition on V for this to occur is that
V be amenable; a necessary condition seems to be diffi-
cult to find. The example of Sec, IIL.B illustrates the
nonexistence phenomenon: If dm(x)=g(x)dx with g(x)
€ (0,py) and g L, then p;(x)=g(x) in the neutral case,
)\::Ac:fg. But g(x) does not minimize §(p). A sequence
of minimizing p’s for &(p) are functions which on the
average locally imitate g but which oscillate rapidly be-
tween the two values 0 and p,.

Vil. THOMAS-FERMI-VON WEIZSACKER THEORY

TFW theory was originally suggested by von Weiz-
sicker (1935) with 6=06,=%%/2m in Eq. (2.8). There is
no fundamental justification for TFW theory in the sense
that there is for TF theory, i.e., there is no theorem
that the correction to the energy or density caused by
the Weizsicker term with 6 =06, agrees with the real
quantum problem, We shall see, however, that if o
=(0.186) 6, then the energy correction proposed by Scott
(See. V.B), but not the density correction conjectured
in Eq. (5.37), is realized in TFWtheory. If Scott is
correct then a posteviori TFW theory has some funda-
mental meaning for atoms and molecules,

We were able to make a great deal of progress with
TF and TFD theories essentially because of the point-
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wise relation between ¢(x) and p(x). In TFW theory this
relation is lost, and therefore TFW theory is much
more difficult mathematically. However, the physical
consequences of TFW theory are much richer and quali-
tatively more nearly parallel the physics of real atoms

_and molecules. In addition to the above mentioned Z2

energy correction, TFW theory remedies three defects
of TF (and TFD) theory:

(i) p will be finite at the nuclei.

(ii) binding of atoms occurs and negative ions are
stable (i.e., A,> Z). These two facts are closely related.

(iii) p has exponential falloff if A <A_, e.g., for neutral
atoms and molecules.

The theory presented here was begun by Benguria
(1979) and then further developed by Benguria, Brezis,
and Lieb (1981) (BBL), to-which we shall refer for tech-
nical details. Some newer results will also be given,
especially that A,> Z for molecules, the Z? correction
to the energy (Sec. VIL.D), and the binding of equal
atoms, Many interesting problems are still open, how-
ever, .

The TFW energy functional (see Note (iv) below) is

8oy =4 [ (Vo1 dx+ (/p) | plpas

- | v+ pio, )+ 0. r.1)
This agrees with Eq. (2.8) in units in which #%/2m =1,
A closely related functional, obtained by writing ¥?=p,
is

sw=af cwr+om [ v

- f Vi + D %) + U. (7.2)
Note, (i) In this section all quantities refer to TFW
theory unless otherwise stated.

(ii) Equation (7.1) is defined for p(x) = 0 while in Eq.
(7.2) ¥(x) only has to be real.

(iii) As in Sec. VI, we shall assume for simplicity that
V is given by Eq. (6.3) ef seq. Later on a slightly
stronger hypothesis (7.12) will be used.

(iv) p>1 is a parameter; it will not be indicated ex-
plicitly unless necessary. Recall that E™ was finite for
point nuclei only if p>3. E is finite in TFW theory for
all p>0, We need p>1 for Theorems 7.1 and 7.2, among
other reasons, Even though we are interested in p =3,
we allow p to be arbitrary because the dependence on p
is interesting. It will turn out that p =3, the case of
physical interest, is special—at least it is so for the
proof that A,> Z.

A. The TFW minimization problem

The function space is

Gy ={v|Vye L%, pe LN L2, D% y?) <=} . (7.3)
We say p e G, if p(x)= 0 and p!/%?c GJ. G} contains
Fl=G,NL*={y|Vyec Lt pe LN L N L2}, (7.4)

Even though we are interested in pe L! (or < L?), the
larger space Gj is used for technical reasons in order
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to prove that A, < «; in other words, we shall eventually
find that all p’s of interest are in F, (defined analogously

to G,).

Remark, By Sobolev’s inequality, [[Vll,= L||9]lg with
L=3Y2%(1/2)2/3 (cf, Lieb, 1976) when e L9, 1<g <,
Thus when Y€ F} the restrictions that ¢ € L% and y € L?*
(if p<3) are unnecessary. In short, F;=H!N L%, where
H'={p|Vy and v & L2},

As usual,

E(h):inf{é’(}p)]pef‘b,fp:)\},
‘ (7.5)
E'(x):inf{g’(zp)ld)ef;,f wzzx}.

Theorem 7.1, &(p) is strictly convex iri p.

Proof. The only term that has to be checked is [ (Vp!/3)2
It ;=pl/% i=1,2, and v= (D a?p;)!/? 2 al=1, then

W= (@) (V)

and

(ww)zs(Z a%zp%)(}: a%’(%)z)-

Assuming ¥(x) >0 everywhere, we are done. Otherwise,
‘the result follows by approximation. B

Remark. §'(Y) is not convex in P because of the — | Vy?
term,

Theorem 7.2, Fov all finite X
@) EM)=E"(M);

(id) E()\):inf{g(p) |pe F,, fps 7\}

and similarly for E'(M);
(227) E(\) is convex and mbnotone nonincveasing in i,

Proof, (i) Given p, we can always construct ¥y=p!/% so
E’(\)< E(A). Conversely, given ¥ let f = |¢|. But Vf

= (V¥)(sgny) so [ (V)= [ (V§)%. Thus 8'(f)=8"(¥).
Choosing p=f%, E(A\) < E’(A). (ii) As before, “excess
charge” can be put at “infinity.” Here p> 1 is essen-
tial. (iii) 8(p) is convex so E(A) is convex. Monotonicity
is implied by (ii). m

Remark, (i) relates the two problems defined by Egs.
(7.1) and (7.2). To obtain the convexity (iii), & and
Theorem 7,1 were used. We shall use &’ to obtain the
existence of a minimum, and then the TFW equation for
this minimum,

Lemma 7.3. Let V= |x|~'xm, with m a measure and
|m|=2z <. Let px)>0. Then there exists a constant
- C independent of m and p such that for every € >0

Jve<eziplly+ze=1/%cD(p, )2,

Proof, By regarding R3 as the union of balls of unit
radius centered on the points of (3)z? it suffices to as-
sume supp(m)C B,, where Bp={x|lx|<R} and x is the
characteristic function of B, In the following, irrele-
vant constants will be suppressed. Write V=V_+V,
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where V_= VY, and similarly for p, First consider
I_=[V_p_. By Young’s inequality (and writing |x—y|~!
= |x = 9| X(x - 9) for x,ye B,) IV_ll, < Z. Thus

I_<zllp_lly,<zlipll3/“llp- 11174
<Z{llolig+lip-lls} .
But

D(p,p)=D(p_,p_)=llp_II}

since |x—y|~!>% in B, Now, outside B,, V(x)<2Z/
|x|= W(x). Let @ =gy, be the constant charge distribu-
tion such that |x|~!* Q= W(x) outside B, Then I,
<2D(Q,p.)<2D(Q,Q)/%D(p.,p,)’% But D(Q,Q)=2%
Therefore (on the whole of R 3) I<Zllplls +zcu(p,p)1/2,
Now replace p(x) by £%o(ex) and dm (x) by e3dm(ex). Then
el=1I. < zel|lpll;+ 2zCe'/?D(p,p). m

From the Sobolev inequality, the following is obtained:

Corollary 7.4, Thevre are constants a and b > 0 such
that for every p € G}

E'W=alllvy liz+lipli; +liplly+ D(p,p)] + U-b, (7.8)

with p=y% In particular, 8’ is bounded below on G}
and E(\) is bounded below,

It is obvious that E(\)= ETF (1), with the same p, If
p>%, E™()) is finite for point nuclei. The following
illustrates the sort of lower bound for E(A) that can be
obtained with the Sobolev inequality.

Theorem 7,5, Let p=3, Let ET™™W(A,y, ) denote the

TFW enevrgy and E™ (y,\) denote the TF enevgy. Let
=9.578, Then

E™™ (4,7,2)> E™ (y +ALX7/3,))., (7.7)

In particular, for an atom with a point nucleus, E™ (y, 1)
~y~t whence, for an atom,

E™V (A, y,0) = y(y +ALA2/3)=1ETF (o, 3},
Prodf,

f |V'¢12>Z<f Wm/s)(f lz/)|2>'2/3_

See Lieb, 1976. m

(7.8)

Remark, The right side of Eq.. (7.8) has two properties:
(i) Its slope*at A=0 is finite, (ii) It is strictly monotone
decreasing for all A, To some extent, ETVY will be seen
to mimic this: E™VY has a finite slope at A=0 and is
strictly decreasing up to A,> Z,

Theorem 7.6. (i) 8'(}) has a minimum on the set pe F}
and [$P< 2,

(é2) &' () has a minimum on G,

(#ii) The same is true for §(p) on F,([p <)) and G,.
Furthermorve p and 3 are rvelated by p(x)=1(x)%. The
minimizing p iS unique,

Proof, The proof we give is different from the proof of
Theorem 2.4 because Fatou’s lemma will be used, as
stated in the remark after Theorem 2,4, Let " be a
minimizing sequence., By Corollary 7.4 all quantities in
Eq. (7.6) are bounded. By passing to a subsequence we
can demand, by the Banach-Alaoglu theorem, that V"
—f weakly in L% and p" —p weakly in L® and in L? [where
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p"= (¥")?. Furthermore, for any bounded ball B, ¥

€ L¥B) since y< L8(B). Moreover, H!(B) is relatively
(norm) compact in L3(B). Thus, by passing to a further
subsequence, we may assume " — 3 strongly in L%B)
for every B and pointwise a.e., Then it is clear that p
=y%and f=Vy. As before, liminf|[Vy"||,=|[Vy[l,, From
the pointwise convergence and Fatou’s lemma,

lim inf D(p", p") = D(p, p) and liminf [[p" ||, = llp||,. For

the Vterm we write m =m, +m, with m,;=mY; and
choose R large enough so that |m,| <& (since Tm |=z

< ). ¥ Vy=m,* |x| 'then [ V,|p-p"|<d(const) by
Lemma 7.3 (with € =1). Next, write V;=V_+ V, with
V_=VX. If7r>2R, V,(x)<2Z/|x|. Let @, be the uni-
form charge distribution inside B, so that @, * |x|~!
=22/|x| outside B,. Then [V, |p-p"|<D(Q,,Q,)/?D(|p
-p"|, |p-p")1/% Choose 7 large enough so that
D(@Q,,Q,) <b% V_eL*? so [V_(p-p")—~0. Since b
was arbitrary, [ V(p-p")—0. Combining all this,
liminf8’(¥")> 8’(¥). Finally, if [p" <X then [p<xasin
the proof of Theorem 2.4 (but using L%. As remarked
in the proof of Theorem 7.2, we can choose ¥"(x) >0
everywhere; hence ¥(x) = 0 and p(x) = P(x)? minimizes
8(p). The uniqueness of p follows from the strict con-
vexity of 8(p). m '

Definition, A, can be defined as in Sec. II, namely, A,
=sup{A|EQM)=1im, . _E(\)}. A simple variational cal-
culation, which exploits the fact that V(x) ~- z/|x| for
large |x|, shows that x>0,

Theorem 7.7, Theve is a minimizing p on F} with [p
=\ if and only if X< X,. The minimizing p in Theorem
7.6 when x> X, is the p for A,. E(X)is strictly convex
on [0,1].

Proof., Same as for Theorem 2.5, W

Theorem 7.8, (i) Any minimizing p< F; for §'(d)on
the set [y?< X satisfies the TFW equation (in the sense
of distributions):

[AD+ W ()] P(x) == pix), (7.9)
wheve

W,y () = yh(x)?* =2~ ¢, (x) (7.10)
and

G,=V- |x|"txp with p=142.

(£3) If ¥ minimizes 8'(p) on G}, then Y satisfies Eq,
(7.9) with u=0,

@i5) E(\) is continuously diffeventiable and - i =dE/dA
for A< ), while 0=dE/d\ for x> \,. In particular, u
=0.

(iv) If p € G, satisfies Eq. (7.9) and [p =\ (possibly ),
then p minimizes &§(+) on the set [p <X,

(v) Fix A, There can be at most one paiv p, ju. [with
p(x)= 0] that satisfies Eq. (7.9) with [p=2X,

Proof, (i) and (ii) are standard. Just consider ¥ +¢f
with fe Cy and (f, %) =0 and set d§/de =0. For the ab-
solute minimum we do not require (f, ¥)=0. The proof
of (iii) is as in Theorem 2.7 (cf. LS Theorem II.10 and
Lemma II1.27). The proof of (iv) and (v) imitates that of
Theorem 2.6, B

We shall eventually prove that the minimizing ¥ is
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unique (we already know that p, and hence ¥? is unique),
but Theorem 7.9 is needed first. We also want to prove
that A, < «, i.e., the ¥ that satisfies Eq. (7.9) with p =0
satisfies' (9% < «, This will be done in Sec. VIL.B.

Theorem 7.9. If ¥ € G satisfies Eq. (7.9) (as a distrubu-
tion) and P(x)= 0 for all x, then (i) ¥ is continuous, Movre
precisely, peC»* for every a <1 [i.e., for every
bounded ball B, |(x)- (y)| <M|x-y|® for some M
and all x,y € B]. (i) If Vis C* on some open set Q,
then P is C” on Q. For point nuclei, Q=R3\{R;}. (@)
Either =0 or P(x)> 0 everywhere, (iv) W, € Ly for
every € >0,

Proof. Clearly Ve L3-F (all £ >0) and, since < L&,

loc

—-Aap<f withf=Vp e L%E (all e >0). Choosing ¢ < },
we can apply a result of Stampacchia (1965, Theorem
5.2) to conclude ¥ € L5 and hence ¥?* ~1e L37€ (all € > 0).
Now, g=|x|=1xpeL®[since ag=-4m =Kllglii< [(Vg)?
=87mD(p,p)]. Therefore - Apec L3:E (all £ >0). Then
(Adams, 1975, p. 98) pe C™<, (ii) follows by a bootstrap
argument as in Theorem 2.8, For (iii) we note that — Ay
=bypand be L] , g> £. The conclusion follows from
Harnack’s inequality (Gilbarg and Trudinger, 1977). B

We know that p/?> 0 satisfies Eq. (7.9), so p!/? enjoys
the above properties. Since p is unique we shall hence-
forth denote Eq. (7.10) simply by W. We shall also use

the notation

H=—AM+W. (7.11)

Theorem 7,10. The minimizing  is unique up to a sign
which is fixed by P(x)=p(x)!/?> 0 everywhere, ¥ is also
the unique ground- state eigenfunction of H=— AA + W(x)
and | is its ground-state eigenvalue.

Proof. I ¥ is minimizing then ¥?=p and H are uniquely
determined. f=p'/? satisfies Hf = —uf. Since f is non-
negative, it is the ground state of H, and the ground
state of H is unique up to sign (cf. Reed and Simon, 1978,

~ Sec. XIIL.12). m

Remavrks, (i) It is not claimed that the TFW equation
(7.9) and (7.10) has no solution other than the positive
one. Infinitely many other solutions probably exist.
They have been found for certain nonlinear equations
which have some resemblance to the TFW equation
(Berestycki and Lions, 1980), but the TFW equation
itself has not been analyzed in this regard. These other
solutions correspond, in some vague sense, to “excited
states.”

(ii) The interplay between &’(¥) and &(p) should be
noted. Apart from the somewhat pedantic question of the
uniqueness of ¥, § was used to get the uniqueness of p
=% and the convexity of E(A). 8’ was used to get the
TFW equation in which it is not necessary to distinguish
between p(x) >0 and p(x) =0 as in the TF equation (2,18).
The ¥ of interest automatically turns out to be positive.
For purposes of comparison, the TF equation is (W+ u)y
=0if >0, and (W+ u)=0 if y=0. The TFW equation is
(W+ n)p=AAyp everywhere,

(iii) Note that there is a solution even for ©=0. For
this p, H=- AA + W has zero as its ground-state eigen-
value with an L2 eigenfunction, ¥ (Theorem 7.12). This
is unusual. Zero is also the bottom of the essential
spectrum of H,
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To complete the picture of E(\) we have to know how
E (M) behaves for small A, Since u is a decreasing func-
tion of X (by convexity of E), u has its maximum at A=0.

Theorem 7.11, p(A=0)=- ¢, where e; <0 is the ground-
state enevgy of the Hamiltonian Hy=- AA — V(x). In par-
ticular, for a point nucleus u(A=0)=2z%/(44).

Proof. n(0)=lim, _ ,E@O)- E(M). EQ)=U. Let f be the
normalized ground state of Hy: Hyf=e,f. Let p= />
Clearly, &(p)=nre,+ U+o0(r), since p>1. On the other
hand, for any p with fp:h, E(p)=re,+U, W

In Sec. VII.B we shall see that Z <A, < «. Therefore
the behavior of E()) can be summarized as follows:

e(\)=E(A)- U in TFW theory looks like Fig. 1 with two
important changes: (i) A,> Z (at least for p=2). e(d) is
strictly convex for 0 <A<, (ii) The slope at A=0 is
finite. [In TF theory e(x)~ x!/3,]

B. Properties of the density and \

Our main concern here will be to estimate A,. For
energetic reasons, it is intuitively clear that A, = Z for
large enough p because otherwise the energy could al-
ways be lowered by adding some additional charge far
out. Benguria (1979) proved this for p = § We shall
also see that x> Z for p=> 5.

What is far from obvious, however, is that A, is
finite, There is no energetic reason why E(A) could not
steadily decrease (and be bounded, of course)., It is
easy to construct a p(x) with [p=c so that all the terms
in the energy and also ¢(x), except at the nuclei, are
finite. p(x)=(1+x%"%/%is an example, That A < « is a
subtle fact. The same question arises in quantum theory,
and it has only recently been proved there that A, is
finite. Ruskai (1981) proved this when the “electrons”
are bosons. I. M. Sigal later found a proof (by a differ-
ent method) for fermions (paper in preparation).

In the following, @ always means +p'/2, For simplicity
we shall henceforth assume the following condition in ad-
dition to Ve®D:

Vix)<C/|x] (7.12)

for some C < « and for all |x|>some R. The fact that
V= |x|~'xm and |[m|=Z does not guarantee Eq. (7.12).
If, however, m has compact support, then (7.12) holds.

Theorem 7,12, A, < « for all p>1,

Proof. Let p give the absolute minimum of §(p) on G,.
Y satisfies Eq. (7.9) with . =0. We shall prove that this
p has A:fp < o, thereby proving that E(\) has an abso-
lute minimum at A, and hence that A,=2A. Assume )
=, Then for |x|> some R [which is bigger than the

R in Eq. (7.12)], |x|~'*p>2C/|x|. Thus, for |x|> R,
—Adyp<—-Cy/ lx [ Now we use a comparison argument,
Let

Fl)=Mexp{-2[Cl|x|/A]1/?}

with M> 0, f satisfies - AAf = - Cf/ |x|, for |x|#0, so
- AA@~-f)<s-C@-f)/|x|. Fix M by f(x)= (x) for |«|
=R. If we knew that $(x) —~0 as |x|— we could con-
clude, from the maximum principle, that ¥ < f for ]x[

= R. This implies that € L% Unfortunately, we only
know that P(x) — 0 in a weak sense (namely, L%). This, it
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turns out, is good enough, See BBL for details, B

Now that we know [p < «, even for the absolute mini-
mum (p=0), we can prove

Theorem 7.13. ¥ is bounded on R3 and y(x)—~ 0 as |x|
—~w, Also, e H? (i.e., ¥,V and DY L),

Proof. — AAY < VY so (- AA+1)p< (V+1)yY. Since
(V+1)peL? < (- Aa+1)~[(V+1)p] and this is
bounded and goes to zero as |x|— « (Lemma 3,1),
Finally, $**~!<dy for some d, and g= |x|~1*p

< L® together with ¥ L8 imply g < L% Hence Aype L2
| ]

Theorem 7.14, If p= % then, for all x,

yp(x)"'isV(x). (7.13)

In particular, if p=2, plx) <[V(x)/v]P/2.

Proof. The essential point is that since V is super-
harmonic, so is V*for <1, Let f=¢— (V/y)! with ¢ -
=1/(2p-2). Let B={x|f(x)>0}. Since ¢ and V are
continuous on B, B is open. On B, W>0 so - Af <0,
f=0 at « and on 9B, so B is empty, &

Remark, The bound in Eq. (7.13) also holds trivially in
TF theory from Eq. (2.18).

Theorem 7.15. If p=5 then A\ = Z.

Proof, Suppose \,=Z-¢. Since H=— AA + W has zero
as its ground-state energy, (f,Hf)=0 for any fe Cy.
Let fi(x)#0 be spherically symmetric with support in
1< |x|<2, filx)<1, and f,(x)=f(x/n). Then [fZp

= [72[¢], where [¢], is the spherical average of ¢.
It is easy to see that for |x |2 some R, [¢]=¢/2 |x|
since [p=2Z-¢. Therefore [flp > (const)n’for large
n. f(Vf,,)zz (const)rz, The crucial quantity is-D,
=ff3p““. If p=2, D, < (const) fp. If p <2 use Holder’s
inequality: D,<Xx%~'Y??  where X,=[f!p and ¥,
=[f%L Clearly X,—~0as n—« sincepe Ll ¥,

= (const)n®. Now let n—, whence (f,, Hf,) ~ - <. R

Remarks. (i) The basic reason that p>% is needed
in the proof of Theorem 7,15 is that we want to be able
to ignore the p®~! term in W and thereby obtain a nega-
tive-energy bound state for H when X < Z. However, if
p < L! then (essentially) p(x)~ lx|'3f (x), where f(x) can
be slowly decreasing. Hence we can be certain that p?~!
is small compared to |x|~!only if 3(p—1)=1.

(ii) In Theorems 7.16 and 7.19 we prove that x> Z.
The underlying idea is that to have a zero-energy L?
bound state, W(x) has to be positive for large |x|. Es-
sentially, W(x) has to be as big as |x|~%; this require-
ment is clear if we assume P(x)~ |x |~ for large ]xl It
X\,=Z, then ¢ is (essentially) positive for large |x|, so
the repulsion has to come from p?-1 Butif p-1= ;%
then p?~! cannot be sufficiently big since p e L, The
theorem that \,> Z when p > § was proved for an atom in
BBL. We give that proof first in Theorem 7.16 in order
to clarify the ideas. Then, after Lemma 7.18, we give a
proof (which is not in BBL) of the general case in Theo-
rem 7,19, Some condition on p really is needed to have
A,>Z. In BBL it is proved that if p=3, y=1, Vis
given by Eq. (2.1), and A <1/167, then A\,= Z.

Theorem 7.16, Suppose p>§ and suppose V= |x|"txm
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wheve m is a non-negative measure that satisfies the
Sollowing conditions: (i) m is sphevically symmetric;
(i) the support of m is contained in some ball, Bg
={x| |x| <R}. Then x,>Z.

Proof. Assume that A < Z. By Newton’s theorem, ¢ (x)
>0 for |x|>R. Then when A— A, — DAY — 2t ! for
!x|> R. ¥ is spherically symmetric and ¥(R) >0. Let

F&)=C|x|=3/%, which satisfies —AAP> —yy?*~! for |x |
= R provided 0 < C < D with D?*~2= (34/4y)R**~5, Let C
=min[D, $(R)]. Then ¥(x)= f(x) for all |x|> R, because
- AA@D - f)= - y@**~1- £22-1) which would imply that
Y- f is superharmonic on the set where ¥ —f <0. Since
$ and f go to zero at infinity, and $—fF =0 at |x|=R
this is impossible. Hence ¥ ¢ L%, which contradicts
Hpll,<z. =

In the foregoing we used a comparison argument which,
in turn, relied on the fact that the positive part of W,
namely p?~!, was simply related to . In the proof of
Theorem 7.19 we shall not have that luxury, and so the
more powerful Lemma 7,18 is needed.

Lemma 7,17, Let Sy, denote the spheve{x| |x|=R} and
let dQ be the novmalized, invarviant, sphevical measuve
on Sy, For any function h, let (k] ()= [h(r, Q)dSQ be the
spherical avervage of h, Now suppose P(x)>0is C¥ina
neighborhood of S, Let f (r)=exp{[1ny] )}. Then, for
all v in some neighborhood of R,

[ay/4] )= (&F/F) )
={d% /dr®+ 2/r)af /ar}/f(r).

Proof. Let g(x)=1n¥(x). Then Ay/Pp=Ag+ (Vg)’. Clear-
ly [Ag]=A[ g]. Moreover, (Vg)={dg(r,Q)/a7}?, and
[(2g/37) ] = (d[ g] /dv) by the Schwarz inequality. Thus
[ay/y]=alg]l+ (V[g])i=ar/f. ®

Lemma 7,18, Suppose P(x)> 0 is a C? function in a
neighbovhood of the domain D={x||x | > R} and § salis-
fies {-AM+W(x)} ¥(x)= 0 on D. Let [ W] be the spherical
average of W and wvite [W]=[W], - [W]_ with [W], (x)
=max[[W](x), 0]. Suppose[W], € L3/%(D). Thenp & LA(D).
(Note: no hypothesis is made about [W]..) See note
added in proof below.

Remarks. Simon (1981, Appendix 3) proves a similar
theorem for D= R®, except that [W]=[W]. - [W]_ is re-
placedby W= W, — W_with W, =max(W, 0). Simon does not
require the technical restrictions that (x) >0and i is C2.
Simon’s theorem will be used in our proof. Lemma 7,18
improves Simon’s result in two ways: (i) It is sufficient
to consider D and not all of R3, (ii) It is only necessary
that [ W]., and not W,, be in L3/% the latter distinction
is important.” As an example, suppose that for large ]x[
the potential W is that of a dipole, i.e., W(xy,xy,x3)
=x4|x|"% W, # L% ?put, since [ W], =0, Lemma 7.18
says that this W cannot have a zero-energy L? vound
state.

Proof., Let f=exp{[Inp]} as in Lemma 7.17. Then
—AAf/f+[W]= [-AAy/P+ W]= 0. By Jensen’s inequality
ff2<fz,b2 so if f ¢ L? then ¢ # L®. Therefore it suffices
to consider {— AA +[ W] (x)}f = 0 and to prove f » L?
under the stated condition on [ W]. First, suppose D
=R3, Then this is just Simon’s (1981) theorem. (How-
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ever, since we are now dealing with spherically sym-
metric [ W] and f, it is likely that a direct, ordinary
differential equation proof can be found to replace Simon’s
proof.) Next, suppose R>0. Let g(x)>0 be any C2 func-
tion defined in R® such.that g(x)=f (x) for |x|> R, Then
{-AAr+U(x)}g=>0 on R? where U=[ W] for |x|> R and

U is bounded for |x|<R. Clearly [ W], € L3/%(D) if and
only if U, e L3/%(R%. Apply Simon’s theorem to U, W

Note added in proof. H. Brezis (private communication)
has found a direct ordinary differential equation proof.
Moreover, under the hypotheses of Lemma 7.18,

Z L3 for all £>0.

Theorem 7.19, Let the hypothesis be the same as in
Theovem 7.16 except that (i) is omitted. (In other wovds,
a molecule is now being consideved.) Then \,> Z.

Proof. For |x|>R, V(x)is C* so ¢(x)>0 and d C? by
Theorem 7.9, Assume A, < Z. The hypotheses of Lemma
7.18 are satisfied with [ - AA + W(x)]¥=0. To obtain a
contradiction we have to show [ W], L%/2 Consider ¢.
Even if ¢ is negative somewhere, [¢] (»)> 0 in D by
Newton’s theorem, Therefore it suffices to show
p?~eL®? I p=%thenp-1=¢and [p*~1] ()
<C[p?3] (#), since p is bounded. But [p?/3] (»)
<{[p] @)}?/3, by Hilder, and [[p] ¥/PE/2= [p o, m

We know that x_> Z in the physically interesting case
p=2. How large is A\,~ Z? In other words, how nega-
tive can ions be? This seems to be a very difficult
question, even for an atom. To obtain qualitative agree-
ment with quantum theory, it would be desirable if Ao
—-Z~1, at least for Z up to 100, say. The only
available bound, at present, is Theorem 7.23, First
Lemmas 7,20, 7.21, and 7.22 are needed. The lemmas
were inspired by the work of R. Benguria (private com-
munication), who proved the lemmas and Theorem 7,23
in the spherically symmetric case (which corresponds
to the atom in TFW theory). -

Lemma 7.20, Let i and f be two veal valued functions
on R® which satisfy — Ay = f in the sense of distvibutions.
Let v denote the function |x|. Suppose < L? feL?,
and ryfe L', Then, for any constant d= 0,

f (’x|2+d)1/2¢(x)f(x)dx>0.

Proof. Using dominated convergence, it is sufficient
to consider only d>~0, Let R=(#%+d)!/2c C*, We have
AR=2R"!'+dR™3 =1, Suppose ¢ € Cy
(infinitely differentiable functions of compact support),
We claimI=— [RpA¢p=>0. To see this, integrate by
parts: I=A+B with A= [(V$)?R and

B= [ 694 VR= [ Fo- YRI®R/NG/R)S

By Schwarz, and {(V¢* VR)(R/%)} < (V¢)? we have B2
< AC with

2c:2f ¢272R“k3SI ¢?AR.

However,

za:f v¢2-VR:—f¢2AR,
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and hence |B|<A, which proves the lemma. Now, sup-
pose ¥ and f¢ C; have compact support. Given € >0
there exists g € Cy such that ||y - gll,<g, [IVP-Vgll,<¢,
and ||aY— Agll,<e. (Note: since ¥ and Ape L? so is
V#.) Then gRe Cy and

ngf=-ngAszff YA (Rg)
=-ng(Rg)—M=—ngAg—M,

with M= [ (- g)A(Rg). 1t suffices to show that M —0 as
¢ — 0 because ngf—— fz/JRf. But

M= f @-g){gAR+2Vg- VR+RAg} .

We can assume supp(g) is in some fixed ball, indepen-
dent of £. Since g, Vg, and Ag are uniformly L2
bounded, M —0. For the general case, let ke C; satisfy
1=h=0, (VA)(0)=0, h(0)=1, h(x)=0 for |x|>1. Let
h,(x)=h(x/n) and ¢, =h,¥. Then, as a distribution,

—Ad)n :hnf_ 2th' Vd)— l[)Ah"E Kn-

By the previous result, 7,= [Ry,K,>0. But [h2JfR
— [YfR by dominated convergence. Rh,Ah,=n"'P,(x/n)
with

P,(x) = (|x|*+an=)2(hah) (x) <a,

so [Ry,yAh,—0, since p< L2 Similarly, RVA2=L, is
uniformly bounded and converges pointwise to zero.
Since ¥ and VY e L% [yVyL, 0 by dominated con-
vergence. B

Remarks, (i) Lemma 7.20 is useful for L2 solutions to
the Schrddinger equation [- A + W(x)]$=—- uy. Then
J¥*(W + )7 <0 under some mild conditions on W[ e.g.,
W(x) <c/7 for large », We L% and »p?c L' if p+0].

(ii) The essential properties of R that were used were
R>0and RAR> 2(VR)% Therefore Lemma 7.20 will
hold for functions other than (»%+d)!/? having these
properties. Formally, this means that if R(x)=1/V(x)
then we require V>0 and AV <0, We state this as
Lemma 7.21, whose proof imitates the proof of Lemma
7.20.

Lemma 7.21. Suppose V= |x|~'xm, with m a nonnega-
tive measure, |m|=Z < «, and V satisfies Eq. (7.12).
Then if 3 and f satisfy the hypotheses of Lemma 7.20,

[ ax 06/ vin=o.
Lemma 7.22. Let p(x)> 0, Jp=r<w, and V= |x|"1*m

wheve m is any non-negative measuve with fm |=z <=,
Then

I= fp(x)p(y) |x= 9|~ Vx)-ldxdy > 2¥/2z.
Proof, Take Z=1 and let 0 <¢ <1, By Proposition
3.24, p=p;+p, with p;,p,=>0, and H;= ]x]‘l* p; satis-
fies Hy<eXV and H;=¢)AV when p,> 0. Clearly, [p,
<gX by Lemma 3.3, Then [p,> (1-¢)x and

I= fpz(H1+H2)/V> s(l—a)x2+fp2H2/V.
Repeat the argument with p, [using [p,> (1-¢)A], and
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s0 on ad infinitum, Then
Iz e(1-8) P, (1-e)¥=x(1-¢)/(2-¢).
i=0 i

Now let e—~0. B

Remark. Benguria proved Lemma 7.22 when V= 1/7.
In this case one can simply use the fact that (|x|
+yDlx-y| =1,

Theorem 7.23. Assume V satisfies Eq. 7.12. Then
A <2Z, for all p>1,

Proof. We know ), < »=, Let § be the minimizing solu-
tion of Eq. (7.9) with =0, Then, by Theorem 7.13, ¥
and f= (yp?~!— ¢)¥ satisfy the hypotheses of Lemma 7.21,
Thus 0 < [p¢/V=2,~ I with I= [Hp/V and H= |x|~1=p.
But I=22/2Z, ®m

Remark, This bound does not involve the value of A in
Eq. (7.1). It also does not utilize the yp®~! term in W.
There is considerable room for improvement,

The next two theorems are about the asymptotics of ¥.

Theorem 7.24, Let P be the positive solution to Eq. (7.9),
fov any p.

() Let u.>0. Then for every t < | theve exists a con-
stant M such that .

P(x) < Mexp[ - (t/A)I/ZIxH .

(é7) Let u=0 (.e., x=21,), and assume \,>Z, as is
cevtainly the case when p=+4. Assume also that m has
compact support, Then for every t <\ ,— Z theve is a
constant M such that

D(x) < Mexp[ - 2(t|x|/A)1/2] .

Pyoof. (i) is standard. Since y and V—0 as |x|— e, we
have p=— (- AA +¢)"Y(W+ u - )y, For ]x|> some R,
W+ u—-1t>0, Therefore, since >0,

Plx) < f

Ivl<p

Y- W) +u-t]o(y)dy,

where
Y(x)=(47A|x ) Texp[ - (¢/A)"/?|x|] .

The proof of (ii) is the same as the proof of Theorem
7.12, 1t is only necessary to note that, since m has com-
pact support (in By, say), V(x)<z/(|x|- R) for |x|> R,
and this is < (Z +¢)/|x| for |x| large enough. m

The next theorem is the well known cusp condition
(Kato, 1957).

Theorem 7.25, Let V(x)=2J z;|x - R;|~! be the potential
of point nuclei. Then at each R;

2;0(R;) =— 2Alim

R R;): Vi(x)dQ,
ri0 Ix=Rjl=r

wheve dQ is the novymalized uniform measuve on the
spheve, This holds for any \. In pavticular, for an
atom with nuclear chavge z located at the ovigin, ¥ is
sphevically symmetric and

2(0) =~ 2ALim (@y/dr)(r).

Proof. Recall that, by Theorem 7.9, ¢ is C* away from

'
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the R; and ¢ is HOlder continuous everywhere. The theo-
rem is proved by integrating Eq. (7.9) in a small ball
B, and then integrating by parts. The spherical sym-
metry in the atomic case is implied by uniqueness., &

Theorem 7.26. Let V(x)=z/|x| be the potential of an
atom with a point nucleus. Then, for any X, Y(¥).is a
strictly decveasing function of v. '

Proof. In Theorem 2.12 and the remark following it we
proved this for A< z by using rearrangement inequali-
ties. Here we give a different proof for A< z which ex-
tends to A>2z. Recall that ¥ is continuous and positive
and that ¢ is C* for »>0. Also, u=>0. Let Q)= [x,p
be the electronic charge inside the ball B,. By Newton’s
theorem, the potential ¢ satisfies:

Do) <[z-QM)]/7.

(ii) $=[Q) - z]/7® (dots denote d/dv),

(iii) f A<z, ¢(»)=> 0 and ¢(») is decreasing.

(iv) If A> z there is a unique R > 0 such that ¢(»)> 0
and decreasing for »< R, and ¢(») <0 for > R. Q(R)
<z.

A<z: By Theorem 7.24 zZ)('r) <0 near =0, If ¥ is not
monotone, then since ¥(¥)— 0 as » — «, there are two
points 0 <7, <7, such that ¥(r,) < p(r,), ¥(r)=0, §(ry)
<0, and zﬁ(ri):z'p('rz)zo. Since ¥ does not have compact
support, @(») <z, all ». Hence W(r,) > W(»,;). Since

li;("’i) =[W)+ulpery)=0,
we have W(r;) +u=0. But then

0= §(ry) =[ Wory) + u]d(ry)
is impossible,

A>z: There is an £ >0 such that W(»)>0 for > R-¢.
Let D,={xeR®||x|>»}. Taker>R-g. On D,, - AP
<0. Since >0 is subharmonic on D,, ¥ has its unique
maximum on 3D,, namely, |x|=7. This proves the
theorem on the domain {#|¥>R-¢}. To prove the
theorem on the domain {7 |0 <7 <R} the argument in the
A<z case can be used, since Q(7) <z in this domain. ®

Conjecture. In the point nucleus, atomic case ¢ is con-
vex, possibly even log convex,

C. Binding in TFW theory

In TF theory binding never occurs when the repulsion
U is included. In TFW theory binding is a common phe-
nomenon, We.conjecture that every neutral system
(molecule or atom) binds to every other neutral system.
In the following, the occurrence of binding will be proved
in enough cases to render the conjecture plausible. It
will also be seen that binding in TFW theory is intimate-
ly connected with the existence of negative ions, i.e., A
> Z. We shall assume here that x_,> Z for all the sys-
tems under consideration. p>§ guarantees this, but no
requirement on p other than A,> Z will be made. V
= 'xl‘i* m, with m a non-negative measure of compact
support [ so that Eq. (7.12) is satisfied], |m|=Z, and
m spherically symmetric in the atomic case.

First, let us define what binding means. Suppose we
have two systems (not necessarily atoms) with potentials
V;and V, and a combined system with V(x)= Vy(x)

+ V,(x — R) for some vector R, The combined system is

c
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neutral, i.e., A=Z=2;+Z, Let E(R) denote the energy
of the combined system and E;()) denote the energies of
the subsystems with arbitrary electron charge X and
E,=E;(A=2;) (note the difference in notation), Then
E(»)= OminEi(kHEz(Z-A). (7.14)
sAsZ

Let u; be the chemical potentials of the subsystems
when they are neutral, i.e., \;=Z;. We know that u;
>0. If uy=p,then E(x)=E;+E, Otherwise, E(x)
<E{+E, Ingeneral, X in Eq. (7.14) is determined by
KAy = y(Z - 1) if this equation has a solution for 0 <x
< Z; otherwise, x=0 if u{(0) < py(Z2) and x=Z if
1o(0) < 1, (Z). (Recall that u,()) is monotone.)

If py# U, then the subsystems spontaneously ionize
when they are infinitely far apart. This is not consid-
ered to be binding. For real atoms the phenomenon of
spontaneous ionization apparently never occurs, because
it seems to be the case that the lowest ionization poten-
tial among all atoms is less than the largest electron
affinity. (I thank J, Morgan III for pointing this out to
me,) In real atoms, x and Z - X in Eq. (7.14) are re-
stricted to be integral, but no such restriction occurs
in TFW theory. In TF theory the phenomenon never oc-
curs because p; is always zero.

In TFW theory it is possible for X to be zero in Eq.
(7.14), i.e., one subsystem is completely stripped of
electrons. Let V;=z;/7 with z,>>z,. I u;(A=0)< u,(x
=z,+2z,), then A=0 in Eq. (7.14). By Theorem 7.11,
wi\) < uy(0)=23/4A. Since 1,(2) >z, and p,>0, the
above inequality will hold for any fixed z, if z; is chosen
small enough, This case was cited in BBL as an exam-
ple where binding occurs (see Theorem 7,27),

Definition, Binding is said to occur if E(R) < E(«) for
some R.

Theorem 7.27. Suppose the chemical potentials of the
Then
binding occurs. (This holds fov all p>1, even if \,=2
for one or move of the thvee systems.)

Proof. Suppose A <Z,in Eq. (7.14). Then when R=w
subsystem 1 is positively charged (with charge @ =2,
— A) and subsystem 2 has charge — @. Let p; be the TFW
densities (with A and Z - A, respectively). By Theorem
7.24, p; has exponential falloff, For the combined sys-
tem (at R) consider the variational p defined by p(x)
=py(x) +py(x — R). The first term in Eq. (7.1) is sub-
additive (by convexity). For large R the total Coulomb
energy decreases essentially by — @% R because of the
exponential falloff of each p;. The f p? term is super-
additive, but it increases only by a term of order
exp[ — (const)R] for large R. We omit the easy proof of
these last two assertions, Thus for large enough, but
finite, R, E(R) <E(»). W

The difficult case is uy=u, Henceforth we confine
our attention to atoms,

Conjecture. If z, <z, for two atoms with point nuclei,
then u;(X=bz,) < u,(X=bz,) for all b<1. In particular
Ky <M, Moreover, X (1) -z, <2 (2)-2z,.

If this conjecture is correct then only the homopolar
case has to be considered for point nuclei. In Theorem
7.28 we prove binding for the homopolar molecule, even
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for “smeared” nuclei. However, we have already shown
that binding occurs if 2, < z,, so it is likely that binding
always occurs, even if the conjecture is wrong.

Theorem 7,28, Binding occurs fov two equal atoms for
any nuclear chavge z and for any p>1 provided )\, > z
for the atom,

Proof., We shall construct a variational p for the com-
bined system, with [p=2z, such that §(p) for the com-
bined system at some R is less than E(»)=2E,;, First,
consider the atom with the nucleus at the origin and with
A=z +¢, where z <X <A,. Let p be the TFW density.
Denote E, by E and pq by p. Center the nucleus at the
point (- R,0,0), where R> 0, depending on ¢, is such
that [x_p =z, with x_ being the characteristic functions
of the half space, H={(x,xs x3)|x,<0}. Assume, for
the moment, that the nuclear m has support in By, i.e.,
the displaced m has support in {x,;< - R/2}. Center the
second atom at (R,0,0). Its corresponding density is p*,
where the asterisk means reflection through the plane
x1=0. Choose the variational p=p_+p* with p_=yx_p.
Clearly p is continuous across the plane x;=0, and [j
=2z, so it is a valid variational function. In the follow-
ing bookkeeping of §(p) we use the terminology “energy
gain” (resp. “loss”) to mean that the contribution to

&8(p) is negative (resp. positive) relative to 2E., Before
the y_ cutoff, we start with 2E;(0) < 2E -~ (2e)(n/2) if ¢ is
small enough, so we have gained ¢, This linear term in
¢ is the crucial point; it exists because A > z. After the
cutoff we gain the kinetic energy [first two terms in Eq.
(7.1)] contributions from the missing pieces of p and p*.
Next, we lose on the - pr term (for each atom sepa-
rately) because of the missing pieces. Each missing
charge is ¢ and its distance to its atomic origin is R.
Since the atomic V() < z/7, the energy loss is at most
2(ez/R). Clearly we gain on the missing atomic repul-
sion, D(p,p) term, Finally, if dM(x)=dm (x + R)

— p_(x)dx is the total charge density in H, we lose the
atom-atom interaction A =2D(M, M*). By reflection
positivity, A= 0. (See Benguria and Lieb (1978b), Lem-
ma B.2.) On balance, the net energy gain is at least
e(u~2z/R) - A.

Now we claim two things: (i) Ase—0, R—x, (ii) A
<Cze/R for some constant C. [ Actually, it is possible
to prove A<o(g)z/R.] Using (i) and (ii) we are done,
because for sufficiently small € the gain is positive and
the assumption on supp() is justified.

Proof of (). Let p, be the atomic density for A=z +¢,,
with €,— 0. As in the proof of Theorem 7.6, we can find
a weakly convergent subsequence, p,—p, so that E
=1im&(p,) = &(p). But fﬁsz, so p must be p,, the
atomic density with A=z, If R, does not tend to « then,
for large enough n, fx_ p, <z by the weak convergence,
which is a contradiction,

Proof of (ii). This is messy. Let B, be the ball of
radius 7 centered at (- R,0,0) and let y, be its charac-
teristic function, Write p =p® +p?, where p%= Xar/2P-
By elementary geometry, d [p®> [p® withd < 1. Since

fp"(l—x_)<e, fp”<8/(1—d).

Let t=d/(1 —d). The contribution of p° to A is
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—4D(p%, M*) - 2D(p%, p**) < —4D(p%, M *) < 4D(p, p*)

< 4D(p®, p¥) < zZ(f p">/R,

since the potential of p® is everywhere less than (3R/
2)‘1fp". Henceforth we can assume p_=p?% and z

> [p2 >z - fe. This assumption changes M to M Let
dM(x) =dm(x + R) - p®(x)dx. [Note: supp(M) extends
outside H, but is inside {x;<R/2}.] ¢=|x|1x M is
subharmonic on supp (M) and harmonic on supp () so

D(M,M“*)s(f dl\71> D6, M),

where 6 is a delta function at (- R,0,0). This is

fdM

since the distance of supp(M ) to (- R, 0,0) is R. Final-
ly,
DM®= M, M*")=D(p" - p*, M**) < D(p® - p®, m*)
=D(p®-p*,206%)<2ez/R

<

z/R<tez/R,

since fp" - p% <¢ and the distance of supp(p?) to (R, 0,0)
is R/2. &

I thank J, Morgan III for valuable discussions about
Theorem 7.28. Baldzs (1967) gave a heuristic argument
for the binding of two equal atoms with point nuclear
charges.

D. The Z2 correction and the behavior near the nuclei

Here we consider point nuclei with potential given by
Eq. (2.1). The question we address is what is the princi-
pal correction to the TF energy and density caused by
the first term in Eq. (7.1)? This term, A [(Vp!/?)?, will
henceforth be denoted by 7. For simplicity we confine
our attention to p=£, the physical value of p.

E™ ~Zz"/3, In particular, for a neutral atom,

E™ =-3.678742"/3/ (7.15)

(I thank D. Liberman for this numerical value). At first
sight, it might be thought that the leading energy correc-
tion is 0O(z5/%). It p™ (z,7)=2%"" (1, 2!1/%) is inserted
into T, then, by scaling, T(z)=z%/3T(z=1). But T(z=1)
= gince p"F ~»~3/2 for small ». Thus, for point nu-
clei, T cannot be regarded as a small perturbation,

The actual correction is + O(z?) and bounds of this
form can easily be found. The following bounds are for
an atom, and can obviously be generalized for mole-
cules.

Upper bound: Use a variational p., for TFW of
the form p(7) =pT™ (#) for » >1/z and p(») =p™(1/2) for
r<1/z.

Lowey bound: Let b>0 and write V(»)= V(»)+H(r),
where H(»)=z/v —2%/b for zr<b and H(»)=0 other-
wise. For small enough b, -AA+H>0, since
llH]l;,,~b. Now V=|x|™"«m, withm >0 and |m|=z.
Let p minimize 8 ™ (V, p) with energy E'“(V). Then
E"W=ET(V). But E*(V)< 8" (V,p) =E" (V) - [pH.

It is not hard to prove, from the TF equation with 17,
that this last integral is O(z?%).
The foregoing calculations show that the main correc-
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tion in TFW theory comes from distances of order z~!

near the nuclei. The calculations, if carried out for
arbitrary A, also show that the correction is essentially
independent of A, We now show how this correction can
be exactly computed to leading order in z, namely,
o@z?. '

Let us begin by considering the atom without electron-
electron repulsion, The TF theory of such an atom was
presented in Sec. V.B following Eq. (5.30), The analogous
TFW equation (with 6=A%%/2m and #%/2m=1) is

[=Aa+ W)=~ uyp, (7.16)

with W(x)=yp(x)2/®~2z/|x|, and p =92 The absolute
minimum, which corresponds to A=, has y =0, name-
1y,

(- Aa+y| 9|43 -z |x| " Hy=0. (7.17)

The first task is to analyze Eq. (7.17). By simple
scaling, any solution scales with A, y, and z as

Wz, v, A;x) = YAy (A, 1,1;2x/4).

Up to Eq. (7.28) we take z=y=A=1. Consider the func-
tional

(7.18)

F'W)=T@E +P@), (7.19)
T(¢)=f V)2, P(y) = fk(w(x),x)dx, (7.20)
k@, x)=3|p|0/3/5+2|x|5/%/5- |p|*|x|"t.  (7.21)

Note that 2> 0 and, for each x,% has a minimum at
= |x|=3/4. The function space for §' is

G’ ={v|Vye L P@)<=}.

G' is not convex since 0 &€ G’. Clearly, Eq. (7.17) is the
variational equation for F’/. We can also define G
={p|p=>0,p/2c G’} and F(p)=F'(p!/?}. G is convex
and p — F(p) is convex.

(7.22)

Theorem 7.29. F'(¥) has a minimum on G'. This mini-
mizing Y is unique, except for sign, and satisfies: (i) ¢
> 0. (i) ¥ is sphevically symmetvic, (iii) ¢ satisfies
Eq. (7.17). (iv) ¥ is the only non-negative solution to
Eq. (7.17) in G'. (v) ¥ is C* for |x|>0. (i) § satisfies
the cusp condition 2(dy/dr)(0)=—- $(0). (vii) for lavge v
= |x|, ¥ has the asymptotic expansion [ which can be
formally deduced from Eq. (7.17)],

o) =73 A 3 (B A 00, (7.28)
pr)=7r3/2= Zy=5/2(621/21)9" 72+ O(r/2) . (1.24)

(viii) Any solution f to Eq. (7.17) in G' satisfies |f ()|
< |x|'3/4. (ix) By (viii), Y is supevhavmonic, and thus
Y(r) is decreasing,

The proof of Theorem 7,29 follows the methods of
Secs. VIL.A and VII.B, and is given in Lieb, 1981b. The
following numerical values, together with a tabulation
of ¥, are in Liberman and Lieb, 1981, p=3?

$(0)=0.9701330,
11:_[ (V)?=8,583819 7,
zzzf {#=8/2- p5/3} = 42,92,

13_—_f [7~3/2-p]/r=34.34.

(7.25)
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From' Eq. (7.17) one has I, +I;=1I, By dilating y(»)
-~ t3/%(tr) in Eq. (7.19), a “virial theorem” is obtained:
51;+3I,=5I,, Thus

Ii:L:l,=1:5:4, (7.26)

AE=F@¥)=1,-3L,/5+L=2I,. (7.27)
If the parameters are reintroduced

L, v A)=A [ (u)i=ztal/n-s/,, - (7.28)

Let us denote the p we have just obtained in Theorem
7.29 [with the parameters reintroduced according to
Eq. (7.18)] by p.. The scale length of p,, is z~! and, for
lavge v, p.(r) agrees to leading order with p™F (») for
small r (on a scale of z~1/3), namely, (z/7)*/% We
claim that p, can be spliced together with p™ in the
overlap region, ¥ =0(z~%/3), and the result is p™¥ to
leading order in z. The splicing is independent of A
provided A/z > (const) >0. The change in energy for an
atom is then, to leading order, AE of Eq. (7.27), and is
independent of A, An analogous situation holds for a
molecule; near each nucleus p™' is spliced together with
P for the appropriate z;. This is formalized in the fol-
lowing theorem,

Theorem 7,30, Let V(x)=2,2;|x— R;|~\. Consider the
Z — » limit with the scaling given befove Eq. (5.2), ex-
cept that the electrvon charge N is not vestricted to be
integral. A=N/Z>0 is fixed. z,=az}, R;=a~'/3R),
with ax=N, Then, as N— «,

R
@ E™W)=E""W)+DD_ z2+0(a?, (7.29)
i=1
with D=2AY%,~3/2
@) a=4/3™™ (V) = 1™ (1, 2%, RY). (7.30)
(i43) Fix x. Then
a—szl-‘W (N,E,_Ij;a‘“"’x) ___pTF ()\, éO’E();x) s (7.31)

with convevgence in the sense of weakly in L1 if A< Z
and weakly in LY if x> Z.

loc

(iv) Fix y. Fov each j
273%™ (N, 2, R; R; +27'y) = (AY) "%/ %P (y/A),

wheve P is the solution to Eq, (7.17) with A=z=y=1
given by Theovem 7.29. The convergence is pointwise
and in Ll . A vefinement of Eq. (7.32) is given in Theo-

rems 7.32-7.35.

(7.32)

Before proving Theorem 7.30 let us comment on its
significance.

(i) Equation (7,29) states that the energy correction in
TFW theory is exactly of the form of the quantum cor-
rection conjectured by Scott [ Eq. (5.29)]. In particular,
since 3/2~g~1, the g dependence is the same, In order
to obtain the conjectured coefficient 3 of Eq. (5.32), with
Y=1%,, We must choose '

A=qg%}[161,]7%=0.18590919, (7.33)

This number was mentioned after Eq. (2.8).

Yonei and Tomishima (1965) also realized that A=1/5
is a good choice. They analyzed the TFW atom without
electron repulsion, namely Eq. (7.16), and compared the
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TFW energy with the quantum Bohr energy, Eq. (5.31),
for neutral atoms with z up to 100. They did not seem to
notice that this choice for A is valid even if A=N/z<1.
Yonei (1971) analyzed TFDW theory with electron re-

" pulsion and again advocated A=1/5. This is not sur-
prising since Theorem 7.30 says that the electron re-
pulsion does not affect AE to O(z2) and Theorem 6.5 (suit-
ably modified) says that the Dirac correction changes
the energy to 0(z%/3). Yonei (1971) claims that the dis-
sociation energy and the equilibrium internuclear dis-
tance for the nitrogen molecule, calculated with this
TFDW theory, are in good agreement with experiment.

(ii) The density, on a length scale Z~!/% agrees with
quantum (and TF) theory, Theorem 5.2.

(iii) On a length scale z~! near each nucleus, Eq.
(7.32) states that p™" converges to a universal func-
tion, This phenomenon is the same as we conjectured
in Eq. (5.37) for quantum theory. The universal func-
tions are not exactly the same, but they are very close.
For large values of the argument they agree, namely,
(v, ¥)73/%, independent of A, Since the convergence in
Eq. (7.32) is pointwise, it makes sense to ask what
happens at y=0. Using y, and A given by Eq. (7.33), the
right side of (7.32) is obtained from (7.18) and (7.25) as

q 277%™ (x=R,)—0.198 271 49, (7.34)

On the other hand, p” in Eq. (5.33) can be evaluated at
x=0, since only S waves contribute. At x=0, f,,(0)2
=(8mn%)~!, Thus Eq. (5.37), if correct, would state that

a~127% % =R,) — £(3)/87=0.047 828 325, (7.35)

To prove Theorem 7.30, Theorems 7.32-7.35, which
are independently intereét‘mg, are needed. To prove
them we need the following comparison theorem which
was proved by Morgan (1978) in the spherically sym-
metric case and by T. Hoffmann-Ostenhof (1980) in the
general case.

Lemma 7.31, Let B C R® be open, and let f and g be con-
tinuous functions on the closure of B that satisfy Af and
Age LY(B) and f(x) and g(x)—~ 0 as |x|— = if B is un-
bounded, Assume Af< Ff and Ag= Gg as distributions
on B, wheve F, G are functions satisfying F(x) <G(x)
a.e, in B, Assume f(x)>0 in B and f(x)> g(x) for all

x € 0B, Then f(x)= g(x) for all x&B.

Theorem 7.32. Let V=2z/|x|, and let y, be the positive
solution to Eq. (7.17) given in Theovem (7.29). Let ¢

be the positive solution to the TFW equation, (7.9), for
some p=0and p=2. Then, for all x, P(x)< ¥o(x).

Proof. Let B={x|9(x)- ¢.(x)>0}. Take f=4, and g
=1 in Lemma 7.31. Since f and g are continuous and,
by Theorem 7.24, g(x) <f(x) for large |x|, B is open
and bounded. Hencé Af and Age LY(B). On B, Aaf
=Ff, AAg> Gg with F=~ V+f%/3y and G=- V+g%/3%,.
Since F<G in B and f=g on 9B, f =g in B, Therefore,
B is empty. m

For a molecule, an upper bound to ¥, which is not as
nice as Theorem 7.32 but which is sufficient for Theo-
rem 7.30, can also be obtained. We always assume p
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Theorem 7.33. Let Vbeasin Theovem 7.30with the scal-
ing giventheve. Letpbethepositive solutiontothe TFW
equation for 1= 0 and let Bbe the ball {x|Z72/°> |x - R, |}.
Then, for sufficiently large a,

Px) < Yo(x— Ry) for xeB
wheve Y, is the positive solution to Eq. (7.17) with

(7.36)

2=z, +dZ2/3
and
d=1+2(2")""3/min{|R}-R}||j=2,...,k}.

Proof. By Theorem 7,14 and Eq. (7.24), we can choose
alarge enough sothaty_(x — R,) >¥(x) when x € 8B and so
that Ry, ..., R, #B. The proof is then the same as for

"Theorem 7,32, with f=9, and g=19, provided we can

verify that M(x)=z |x— R;|~!- V(x)>0 when x € B. But
M, being superharmonic in B, has its minimum on 9B,
This minimum is positive for large enough a, B

To obtain a lower bound to ¥, the following is needed.

Theorem 7.34, Assume the hypothesis of Theorvem 7,30
with x>0 and let ¥ be the positive solution to the TFW
equation, Then theve is a constant d, independent of 1,
such that

(@) h(x) = |x |~ 1% p <da®/3.

(i3) p <dal/3x\-2/3,

Proof, For (i) we use Theorem 7.14 together with the
fact that fp =a), For any x, let B be the ball of radius
a~1'/3 centered at x. The contribution to % from y,p is
bounded by (const)(z°)3/%a%/3, The contribution from
(1- xp)p is bounded by a!/? [p. For (ii), since u is de-
creasing in \, u<-e(N)/N. However, e(N)>e'™ (N).
But - ™ (V) scales as a’/3f(2) and f(A) < (const)r!/3 by
Eq. (3.6).

Theorem 7.35. Assume the same hypothesis as in
Theovem 7.33. Then, for sufficiently lavge a,

Px) = Yol — Ry)o(x — Ry) for all x, (7.37)

wheve Y, is the positive solution to Eq. (7.17) with z
=z~ 4ta%/3A and

ox)=[1-a®3¢t|x|] exp(- a®/3¢t|x]).
Heve, At*=d(1+\"%/3) with d given in Theovem 7.34.

Proof, Let f=1 and g=right side of Eq. (7.37). We
have to verify (7.37) only in B={x|a%/3¢|x - R,| <1} be-
cause g < 0 otherwise. Since, by Theorem 7.29, both

¥, and 0 are symmetric decreasing, Ag> A}, + P, AT,
But

(a0) (x) = (@*/3 %~ 4a2/3¢/ |x |)o,

and ¥&/3> g4/3 gince o< 1. Therefore, to imitate the
proof of Theorem 7.32, it is only necessary to verify
that a?/3A#*> h(x) + u, but this is clearly true, ®

Proof of Theovem 7.30. (iv) is a trivial consequence of
Theorems 7,33 and 7.35, (iii) is proved in the same way
as Theorem 5.2 if we note that the energy can be con-
trolled to O(z"/?%) by the variational upper bound given in
the paragraph after Eq. (7.15). (ii) is proved by noting
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that, by the proof of (iii) just given,

a._'[/gETFW —’ETF (azl,)\).

(@, N=ax)

The limit of the derivative of a sequence of convex (in )
functions is the derivative of the limit function.

The proof of (i) is complicated. Upper and lower
bounds to E of the desired accuracy, O(Z?%), are needed.
First, let us make a remark, Consider E as a function
of A, By standard arguments used earlier, E(A) is
monotone increasing, concave, and hence differentiable
almost everywhere for A> 0. dE/dA T/A a.e., and
E™Y _ = [A(T/A)dA. If we can find a lower and
upper bound to T/A of the form

T/A=A""2%73/21, 3~ 2! + (lower order)

then Eq. (7.29) will be proved. We can, indeed, find a
lower bound of this form, and hence a lower bound to E,
We cannot find an upper bound of this form and therefore
must resort to a direct variational calculation to obtain
an upper bound to E,

Upper bound. By the monotonicity of E in N, it is only
necessary that fp < N. There are several ways to con-
struct a variational p, which we call f. The details of
the calculation of &(f) are left to the reader. One con-
struction is to define B={x |p™ (x)> Z%/2}. For large
a, B is the union of # connected components which are
approximately spheres centered at R;. Call these B;.
Let ¥.; be the solution to Eq. (7.17) centered at R; and
with z =z, - ta®/?, Let C;={x|¢.;> Z%/*}. For large
enough, but fixed ¢, C;C B for large a. The variational
f is defined by f(x)=p e (x) for x ¢ B, flx)=2%?%for x
eBN\C;, and f(x) = Pu; (x) Zfor x e C,.

Lower bound, We construct a lower bound to T/A.
Suppose Py,..., P, are orthogonal, vector valued func-
tions. Then T/A>E,L§/j %, where L, = [Vy- P;. We
take P;(x) =Vi,;(x)x;(x), where y; is the characteristic
function of D; ={x||x —R,| <tz;%/%}, and ¢ is some fixed
constant, For large a, the D; are disjoint so the P; are
orthogonal. Clearly, fPZ—‘/Vz/)w +0(Z%. Now multlply
Eq. (7.17) for ¥.; by ¥ and integrate over D;. Then

L;=-A"" f WeiluiPX; +f WV, nds.

By the bound (7.37), the first integral is (7.;/A)+o(Z?).
It is not difficult to show that the second integral is
0(Z?). This can be done by using Eq. (7.24), whence,
for some te [ },1], di.;/dr>— 10z} "4 at r=1z;2/3,
n

VIll. THOMAS-FERMI-DIRAC-VON WEIZSACKER
THEORY -

This theory has not been as extensively studied as the
other theories. The results presented here are from un-
published work by Benguria, Brezis, and Lieb done in
connection with their 1981 paper.

The energy functional is

gw=a [ owr+ [ s

- [ wr+ D@t uh +u 8.1)

in units in which 7 %/2m =1,
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J(p)=(v/p)p® - (3C,/4)p*/3.

For convenience we assume » >
— é’ (p1/2)
TFW theory, namely, G, of Eq. (7.3).
not convex because of the - [p*/3 term,
As in TFD theory Egs. (6.7)-(6.10), we introduce

Jo(P)=dJ(p)+ap, (8.3)

and « is chosen so that J,(p)= 0 and J,(py) =0=J,(p,)
for some p,, namely,

=C,p[ay(p- 1]~
p- 1]}, .

(8.2)

(not p>1). 8(p)
The function space for P is the same as for
Note that &(p) is

pP 4/3 _

(8.4)
=@3p - 4)[4(
The necessity of p> for this construction is obvious,
&% and &, are defmed by using J, in Eq. (8.1).
The energy for A= 0 is
E(A):inf{é’(p)|pecp,f p:A}, (8.5)
and similarly for E_(A) and E’()\) EJ2) using §’. If the
condition fp=2 is omitted in (8.5) we obtain E, E,, E’,
El
Theorem 8,1, (i) The four functions E(X), E_(A), E'(N),
and E',(\) are finite, continuous, and satisfy

EQN)=E'MN=E,A)- ax=E,(d) -
(ii) E, is finite,
(ii7) p minimizes 8(p) on fp X if and only if y=p!/

minimizes 8' () on [Y*=\. This p and P also obvzously
minimize 8, and 8.

(8.6)

Proof. The same as for Theorems 2.1, 6.2, and 7.2.
Note that [ [p?/3]%=3<[ [p]*~4[p? (by HOlder). m

Theorem 8.2, Let § minimize &' (Y) on the set [$?=2.
Then ¥ satisfies the TFDW equation:

[-Aa+wW)] Y=~ pp, (8.7)
in the sense of distributions, with

W=yp? - C,p'3 - ¢ +a, (8.8)
d=V- |x|"txp, and p=y?: Apart from a sign, ¥(x)>0

for all x, and ) satisfies the conclusions of Theovem
7.9. ¥ is the unique gvound state of H=- A& + W(x) and
W is its ground- state eigenvalue. E is diffeventiable at
Nand =—dE /d\=~dE/d\ - a> —a. p=0if E (}) has an
absolute minimum at this . ’

Proof. The proof is basically the same as for Theo-
rems 7.8—7.10. Although it is not known that p=? is
unique, this is not really necessary. By considering
the variation of §’(y), ¢ satisfies Eqgs. (8.7) and (8.8).
If ¥ is minimizing, then so is |¢| (cf. Theorem 7.2).
Hence |y| satisfies Eq. (8.7) with the same W. But, as
in Theorem 7.10, the ground state of H=-AA+ W is
unique and non-negative and therefore ¥ may be taken
to be = 0 for all x., The rest follows by the methods of
Theorem 7.9, (Note: p'/3)ec L3 since yc L’ NL%) W

Remavk, As in Sec. VII, the role of §’, as distinct
from &, is solely to prove Eq. (8.7), in which no ex-
plicit reference to p= 0 is made.

Remark. Theorem 8.2 does not assert the existence of
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a minimizing § with [#?=2

Now we turn to a difficult and serious problem., We
do not know that E_()\) is monotone nonincreasing.
Therefore, if we define

Ea(x)zinf{é",(p)Ipecp,fpsx},

we do not know that E,(A\)=E _(\). By definition, E_ (1)
is monotone nonincreasing. The source of the difficulty
is this: Although J,(p,)=J.(py) =0 (as in TFD theory),
we cannot simply add small clumps of charge, of ampli-
tude p,, at =, This is so because such a clump would
then have f (Vz/))2 =, Nevertheless, we can add clumps_
with §, energy strictly less than afp, as the following
theorem shows.

8.9)

Theorem 8.3, Set V=0 in 8'. There are C* functions
of compact support such that 8’ ) <0.

Proof. Let fbe any function in Cy and let ¥(x) =b2f(bx).
For some sufficiently small, but posmve b, 8'(y)<0.
To see this, note that f(Vzp)2 scales as b3, jp5/3 as
b11/3) D(p,p) as b?, while [p*/3 scales as b"/3, W

As a corollary we have the following.

Theorem 8.4. E(\) is strictly monotone decreasing in
A. Hence

E()=int {&p) e, [ o=

E=infE(\)=-
2

)\}. (8.10)

We conjecture that E(A) is convex, Unfortunately, the
“convexification” trick of Sec, VI, in which J, is re-
placed by j, is not helpful. Because of the gradient
term, any minimizing ¥ will be continuous, and there-
fore ¥ cannot omit the values (0, p,), even for point nu-
clei. While the energy for j is, indeed, convex, it is
strictly smaller than E_ ()) for all A.

Theorem 8.5 states that E, and E , have absolute mini-
ma at some common, finite A, For all we know, there
may be several such A, but all these X are bounded.
Furthermore, for every A there is a minimizing p for
E‘“()\). Unfortunately, for no X are we able to infer that
Jo=x

Theorem 8.5, (i) Theve exists a minimizing p for &,(p)
on G,, and p=p'/? minimizes 8,(). Every such pelLl,
and [p < some constant which is independent of p.

(i2) Theve exists a minimizing p for 8,(p) on the set

Jo<a

Remark, 1t is not claimed (but it is conjectured) that
the minimizing p is unique,

Proof, The proofs of (i) and (ii) are the same, so we
concentrate on (i). The proof merely imitates the proof
of Theorem 7.6, The only new point is that pe L1, Each
term in &(p) is finite and, in particular, I:fJ,,(P) < oo,
But J,(p)=kp when 0<p< B for some &, 5>0. If x is
the characteristic function of {x ]p(x)S BY, k [xp < .
On the other hand, B%(1-x)p<p?, so B2 [(1-x)p

fp < « since pe L% It is easy to see from Eq. (7 6)
that the bound on [p is independent of p. m

Remark, 1t is surprising that the fact that X < « for
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any absolute minimum is obtained so easily. Recall that
in TFW theory the proof of this fact (Theorem 7.12) re-
quired analysis of the TFW equation,

An important question is whether A, for an absolute
minimum, always satisfies A= Z. A few things can be
said about the properties of any minimizing p on fp =

Theorem 8,6, In the atomic case, V(¥)=z/v, any mini-
mizing P is symmetric decveasing when A<z, (Con-
jecture: this also holds for all A.)

Proof, The rearrangement inequality proof of Theorem
2.12 is applicable. ®

Theorem 8.7, The conclusions of Theovem 7.13 hold
Jor any minimizing . Moveover, for every t <y + a
theve exists a constant M such that

Y(x) < Mexp[ - (¢t/A)?|x]] .
Proof., Same as for Theorems 7.13 and 7.24, W
Theorem 8.8. Every minimizing i satisfies Theorvem 7.25.

Plainly, TFDW theory is not in a satisfactory state
from the mathematical point of view. In TFD theory
we were able to deal with the lack of convexity by means
of the J, trick. In TFW theory, the presence of the -
gradient term does not spoil the general theory because
&8 is convex. When taken together, however, the two diffi-
culties present an unsolved mathematical problem.
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INDEX
L/R refer to left/right column

admissible density matrix, 621L

amenable potential, 625R, 627L

asymptotics, 607L, 607R, 613R, 633R, 639R
atomic radius, 614L, 624R

atomic surface (see surface, atomic)

Baxter’s theorem, 615L

Banach-Alaoglu theorem, 605R, 629R
Benguria’s theorem, 617R

binding, 604L, 614R-615L, 628R, 634L—635R
Bohr atom, 623L, 623R

boundary, 607L

chemical potential, 606R, 613L, 631L
chemical potential (asymptotics), 613R, 631L
compressibility, 617L

convexification, 605L, 625R

convexity, 605L

Coulomb potential, 604L, 612R, 625L

core, atomic, 624L

critical density, 606L, 612R, 626L, 631L-633R
density, ‘604L

density matrix, admissible single particle, 621L
dilation, 616R—618L, 619R

dipole-dipole interaction, 620L

Dirac cor}'ection, 604R, 625L

domain of the energy functional, 604R, 625L, 628R, 636L
double layer, 609R

electronic contribution, 605L, 616L

electron number, 604R, 620R

energy functional, 604L, 604R, 611L, 625L, 628R, 638L
exponential falloff, 604L, 624R, 633R, 639R
Fatou’s lemma, 605R, 629R

Firsov’s principle, 610L, 610R

free boundary problem, 607L

ground state, approximate, 623L, 624L
harmonic, 607L

heavy atom, 624L, 624R

inner core, 624L

infinite atom, 623R, 636L

ions, negative, 604L, 628R, 632R, 634L
ionization potential, 613R, 624R

ionization, spontaneous, 634R

j model, 614L, 625R

kinetic energy, 608L, 617L, 625L

L? space, 605L

long range interaction, 619R, 620L
many-body potentials, 615R, 619R
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Mazur’s theorem, 605R, 615L, 626L
minimization, 605L, 606L, 625L, 628R, 638R
minimizing density, 606L, 626L, 629R, 639L
no-binding theorem, 603R, 611L, 614R

nuclear charge, 604L

nuclear coordinates, 604L

nuclear potential, 604L-

nuclear repulsion, 604L

outer shell, 624L

over-screening, 609R

periodic Coulomb potential, 609L

periodic Thomas-Fermi equation, 609L

potential theory, 606R, Sec. III

pressure, 608R, 617L

quantum theory, 603R, 617L, 620R

repulsive electrostatic energy, 604L, 621R, 625L
scaling, 608R, 610L, 619R, 620R

Scott correction, 603R, 623L—624L, 636R
screening, 609R, 627L

singularities, 607R, 612L, 620L

Sobolev inequality, 629L, 629R

solids, 608R—609R

spin state number (g), 604R, 620R, 636R

strong singularity, 607R, 620L

subadditive, 612R, 614R

subharmonic, 607L

superadditive, 614R, 618R, 619L

superharmonic, 606R

surface, atomic, 614L, 624R

surface charge, 609R

symmetric decreasing function, 608L, 634L, 639R
Teller’s lemma, 611L, 612L

Teller’s theorem, 611L, 614R

Thomas- Fermi energy, 605L

Thomas-Fermi equation, 606R

Thomas-Fermi equation (generalized), 611L
Thomas- Fermi differential equation, 607L
Thomas- Fermi-Dirac equation, 611L, 626L
Thomas— Fermi—von Weizsacker equation, 630L
Thomas— Fermi-—Dirac—von Weizsacker equation, 638R
Thomas- Fermi potential, 606R—608R, 611L—-612R, 616R
total shielding, 627L

under-screening, 627L

variational principle, 608L, 613L

Virial theorem, 608L, 608R

von Weizsacker correction, 604R, Sec. VII

Z? correction in TFW theory (see Scott correction), 635R—
638L

Z —~ limit, 620R
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