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This review is devoted to the problem of critical state stability in hard superconductors and superconducting
normal composites. An introduction is given to the properties of hard and composite superconductors, and to
the qualitative nature of the physical processes that occur in these materials in the critical state. The dynamics
of the development of instabilities of various kinds are treated in detail. Stability criteria are obtained and
discussed, and theory is compared with experiment. The interaction between flux jumps and plastic strain
jerks and the training phenomenon in superconductors are also covered.
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I; (NTRGDUCT ION

Ever since Kamerlingh Onnes discovered supercon-
ductivity in 1911, continuous research has been going
on aimed at producing superconducting materials fea-
turing the maximum possible critical parameters, such
as the critical temperature T„ the superconducting
current density j„and the upper critical magnetic
field H . While high-temperature superconductivity
research has not as yet been successful, the discovery
by Kunzler et al. (1961a, 1961b) of superconductivity in
Nb, Sn started the ever growing list of superconducting
alloys featuring high critical current densities
(10' A cm ' and higher) and upper critical fields of
K, =- 100 kOe. Subsequent studies have shown the high
values of critical current in Nb, Sn and in other, later
discovered, alloys (Nb-Zr, Nb-Ti, V~Ga, MoRe, etc. )
to be associated with the pinning effect, i.e., the at-
tachment of Abrikosov (195'7) vortex lines to crystal
lattice defects (for more detail, see Saint-James et al. ,
1969; Campbell and Evetts, 19'72). Type-II super-
conductors featuring a strong interaction between the
vortex structure and crystal lattice are usually referred
to as hard superconductors. The hard superconductors
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developed up to now are characterized by critical
current densities of up to about 10~ A cm ' and II, val-
ues of up to 1, 000 kOe. The characteristic values of
T, are in the range from 10 K (Nb- Ti, Nb-Zr) to about
IS K (Nb, Sn), 23.2 K (Nb, AlGe).

The unusual phys ical properties of hard supercon-
ductors have aroused great interest. Studies of these
properties, moreover, have been promoted by the con-
siderable promise that they hold for practical applica-
tions (see, Brechna„19'73).

However, in spite of considerable critical current
densities and high values for the upper critical field,
the magnetic field difference (and, consequently, the
value of transport current) in a hard superconductor
sample cannot exceed a certain value that is usually
much lower than H, . This is due to instabilities, so-

2
called magnetic flux jumps, occurring in hard super-
conductors.

The present review is devoted to a study of the prob-
lems associated with the emergence of such insta-
bilities. It is arranged as follows.

Section II contains a brief summary of the physical
properties of hard superconductors that are essential
for further discussion. The concept of the critical
state is formulated, on the basis of which a study is
made of the macroscopic properties of hard supereon-
ductors„ including magnetic flux jumps. Supe rcon-
ducting composites are described, i.e., materials
containing a combination of normal and superconducting
materials. Section III describes the qualitative theory
of magnetic-flux jumps and the closely associated oscil-
lation effects, and analyzes the interaction of thermo-
magnetic (flux jump) and thermomechanical (plastic
strain jerk} instabilities. Section IV contains a mathe-
matical formulation of the problem of superconducting
state stability in hard superconductors and supercon-
ducting composites. On the assumption that the critical
current density is independent of the local value of
magnetic field, criteria for critical state stability are
obtained and the dynamics of perturbation development
are studied for some specific cases. In Sec. V, the
above listed methods have been generalized for the
case of superconductors with properties varying over
the cross-sectional area, in particular, with regard
to the dependence of critical current density upon the
local value of magnetic field. Section VI examines
the effect of time-dependent boundary conditions upon
stabilify and contains a more detailed comparison of
theory with experiment than the other chapters. Sec-
tion VII is concerned with the study of electric field and
temperature oscillations in hard superconductors, oc-
curring near the threshold of instability. Section VIII
is devoted to studying the influence of transverse
thermomagnetic effects (Nernst and Ettingshausen
effects) upon stability and the dynamics of perturbation
development in hard superconductors. Section IX is
concerned with the superconducting state stability in
superconductors subjected to high mechanical stresses
causing plastic yieM of the material. The relationship
between the thermomagnetome chanical instability,
observed under such conditions and the training effect,
i.e.„ the dependence of superconducting current density
upon the number of on-off cycles of 'transport current

is discussed. Section X contains a brief discussion of
some possibilities for further studies.

F = —(i
1

(2.1)

where j is the current density, and Q, = @,B/B. Under
the effect of this force, the vortices begin to move,
energy dissipation occurs, and the superconductor
undergoes transition to the resistive state (Anderson,
1962; Gorter, 1962a, 1962b; Kim et al. , 1963a, -

1963b, 1964, 1965; Huebener„1974; Gorkov and
Kopnin, 1975).

However, in the presence of structural defects in the

supe rconduc tor, the vortice s may be attached to such
defects (pinning effect) and form a metastable configura-
tion of the magnetic flux (Saint-James et al. , 1969;
Campbell and Evetts, 1972). The force of the vortex-
defect interaction (pinning force) is a function of tem-
perature T inasmuch as the energy and configuration
of vortex lines depend considerably on temperature.
The mutual repulsion of the vortices (Abrikosov, 1957;
DeGennes„1966; Saint-James et a/. , 1969; Campbell
and Evetts, 1972}causes the dependence of F~ upon the
density of vortices, i.e., upon magnetic induction &.
Owing to pinning, the resistive state in a Type-II super-
conductor occurs only if F~ &F~(T, B), where F~(T, B)
can be conveniently written in the form

(2.2)

and where j,=j,(T, B) is the critical current density.
Under conditions of a strong bond between the magnetic
flux (Abrikosov vortex lattice) and metal lattice, as is
the case in hard superconductors, j, can attain very
high values. h. series of typical dependencies of j,
upon T and & are shown in Fig. 1.

Therefore, if j &j,(T, B)„persistent currents can
exist in a hard superconductor. In the case j &j,(T, B),
a viscous flux flow mode of vortex lines begins in the
superconductor, in which

E~ —I' p+qv,

where gv is the force of viscous friction, q is the vis-
cosity, and v is the velocity of motion of the vortex
structure. Equations (2.1) and (2.2) imply that

VC
2g+ 9 (2.3)

The relationship between v and the electric field E
arising from the magnetic flux motion can be easily

II. PHYSICAL PROPERTIES OF HARD SUPER-
CONDUCTORS. THE CRITICAL STATE. SUPER—
CONDUCTING COMPOSITES

In the equilibrium state, the vortex lines in a Type-II
superconductor form a lattice having a mean density
of n =B/$0, where B is the magnetic induction and

Qo = v5c/e = 2 x 10 ' G cm' is the magnetic flux quantum
(Abrikosov, 1957; DeGennes, 1966). If a transport
current is passed through a Type-II superconductor,
the interaction of the current with a vortex leads to the
emergence of the so-called Lorentz force acting on each
one of the vortices (see Campbell and Evetts, 1972):
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FIG. 2. Current-vo1tage characteristic of a hard superconduc-
tor.

H/Hc

FIG. 1. Characteristic form of the dependence of j~ upon T (a)
and a (b).

derived from the continuity equation for the vortex
flux

&n/& f =- div(nv)

and the Maxwell equation

88curlE = ——
c ~t (2.4}

It follows from the latter two equations that

v = —(E xB).C
Q2

Therefore,

(2.5)

where crz qc'/Bgo=- v„J——I, /B (here, o„ is the con-
ductivity of the sample in the normal state). It should
be stressed that Eq. (2.5) is only true if E wO. Other-
wise, ' j is an independent pa, rameter.

The relationship gz ~ gg is well supported experi-
mentally and derived from the microscopic theory
(Lynton, 1969; Campbell and Evetts, 1972; Huebener,
1974; Gorkov and Kopnin, 1975). For hard super-
conductors, o&-10'8II, /B s '. Even in fields with
B'-IJ, , this value is substantially smaller than the
conductivity of pure metals. A typical current-voltage
characteristic of a hard superconductor is shown in
Fig. 2. The nonlinear portion of curve j(E) at E&E~
is caused by a number of factors such as inhomogeneity
of the pinning centers, structural defects of the vortex
lattice, thermal activation of vortices from the pinning
centers, etc. The E &ED region is often referred to in

the literature as the region of magnetic-flux creep.
The value of Eo apparently depends upon T and &. In
hard superconductors, however, the size of the non-
linear portion of the current-voltage characteristic
is usually small compared to the electric field value,
so that j,»o&EO and dj/dE» oz at E &Eo(T, B). In
addition, it can be assumed for all a, ctual values of the
electric field that j,» o(E}E. It follows, then, that a
current density close to the critical value is set up in a
hard superconductor in response to any electric field. '

This concept of critical state was suggested (and de-
veloped in the course of further research) by Bean
(1962, 1964}, London (1963), and Kim et al. (1963a,
1963b). It has been repeatedly tested experimentally
(see Campbell and Evetts, 1972; Grasmehr and Finzi,
1966; Bean et ai. , 1966; Coffey, 1967}and describes
well the phenomena occurring in bard superconductors.
Note further that the relationship j(E) can, for a number
of purposes, be approximated by Eq. (2.5).

The equation of the critical state j,=j,(T, B) has been
studied in a, great number of experimental and theoreti-
cal papers, and it has been shown that the Kim-Ander-
son (1964}model provides a good approximation in
numerous cases in the region of fields substantially
less than II, :

j.(T)B.(T)
B+B (T)

where the value of Bo(T) is usually on the order of
several hundred Oe. In the case of fields compa, rable
with II, , the relationship j,(B) may have a more com-2'
plex form and varies considerably depending on the
type of'superconducting alloy and the nature of its
treatment. Observed in this region, in particular, is
the so-called peak effect [see Saint-James e/ al. ,

1969; Campbell and Evetts, 1972; and Fig. 1(b), curve
2]. For estimations in the present review the value of
j, will be approximated in the range of fields 1-B/8, ,« I by the simplest dependence:
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Analogously, for estimation purposes one can assume
that j,(T),j,(T) 1 T-/T. .

If the changes in induction in the sample are small
compared with the characteristic scale of variation of
the function j,(B), the equation of the critical state can
be written in the form j,=j,(T, B,), where B, is the ex-
ternal field [Bean's model (Bean, 1962, 1964)]. Such
conditions are quite often realized in the course of ex-perimentss.

In the presence of temperature gradients in the
sample, temperature stresses apparently occur in the
vortex lattice. In so doing, each line is affected by an
additional force E~. The expression for I" ~ has the
form

F~ = —S~VT» (2.6}

where S*=S*(T,B) is the transport entropy of a vortex
line whose existence is associated with the presence of
1.ow-energy electron states localized in the core of the
vortex (Caroli et a/. , 1964; Mints and Rakhmanov,
1975). The function S~(T,B) has been studied in many
papers (see Solomon and Otter, 1967; Lowell et al. ,

1969; Maki, 1971; Kopnin, 1975). A good approxima-
tion for S*(T) is S*=SO*(T/T,)(1 —T/T, ). The value of
S* can be estimated from the local density of states
v, found by Caroli et al. (1964):

m3/mal& g2m~ 6+
e 8 @3 B

where cz is the Fermi energy, &~ is Boltzmann's con-
stant, and g is the coherence length. For characteris-
tic parameter values at & =4 K, S*-10~erg cm ' K ',
which is in good agreement with experimental data.

Using Eq. (2.6), by analogy with (2.5), one can easily
derive

S
j = j, +o&E ~ —(Bx&7'), (2.7)

ST= —«VT + (E x 13) .B (2.8}

Here, K is the heat conductivity of the superconductor
(which, in the case of hard superconductors, is on the
order of 10'—104 ergcm 's ' K '). Equation (2.8) is
supported by the microscopic theory as well.

Note further that from the concept of a crxtzcal state
there apparently follows the condition of "irreversi-
bility, " i.e., the current and electric field are always
parallel and, consequently, (j E)&0 at ENO. Thus it
can be readily seen that the current vector j is related
to the vector E by j =j,E/I lEit' E&0.

In many applications, hard superconductors are used
in combination with normal metals (the so-called su-
perconducting composites). Therefore, the present
review will also include a discussion of such hetero-
geneous media.

where S =cS*/Qo. Note that Eq. (2.7), like (2.5), is
only true in the case E40.

The transfer of transport entropy S* by a vortex line
results in a corresponding contribution to the heat flux
q. From Eq. (2.7) and the symmetry principle of kinetic
coefficients (Landau and Lifshits, 1976), one can de-
rive

= «„(1 —x',+), o, = u„(1 —x',+) . (2.10)

It is worthy of note that, as a result, the electric and
heat conductivities of composites for typical values of
x, turn out to be on the order of their respective values
in the normal metal, i.e.»

two to four orders of magni-
tude higher than in hard superconductors.

In this review, we shall be concerned with the case of
sufficiently high magnetic fields B» II, . As is known
(DeGennes, 1966), the induction B in this case can be
assumed equal to the magnetic field intensity II.

III. QUALITATIVE THEORY OF FLUX JUMPS

By reference to the concept of the critical state, one
can readily understand the physical nature of the flux
jump. I et us consider the simplest example. Imagine
a plane, semi-infinite plate in an external field parallel
to its surface (Fig. 3}. At the initial moment of time,
the magnetic field is uniform and equal to Ho, after
which the external field rises to some value H, . With
an increase of the external field, the magnetic flux
penetrates the sample. The flux motion causes an elec-
tric field which generates persistent currents near the

The currently existing composites can be divided
into three types, namely, (1) multifilament com-
posites, consisting of a matrix of normal metal with a
regular structure of superconducting wires embedded
in it; (2) ribbon composites, consisting of layers of
superconductor and normal metal in the form of wide
ribbons; and (3) colnposites manufactured from normal
and superconducting metal powders. The matrix of
normal metal contains metals of good conductivity
(Cu, Al, etc. ) or alloys of lower conductivity (CuNi,
etc. ), or their combinations.

Of most interest in applications are composites
consisting of a great number of normal and supercon-
ducting elements N»1. In a number of cases, such
materials can be regarded as an effective homogeneous
anisotropic medium (Hart, 1969; Carr, 1974, 1975a,
1975b; Duchateau and Turk, 1975a, l975b; Kremlev et
al. , 1976a, 1977). The parameters ot' such a medium are
found by averaging their local values over a region
containing a rather high number of elements of the
composite structure. For example, in the case of a
multifilament composite, the heat capacity v, the
mean critical current density j„ the electric con-
ductivity Oll, and the heat conductivity K ll longitudinal
relative to the filaments, are calculated quite readily
as

V = Xs Vs +X~V„js=Xs j~ »

(2.9)
Kll = Ks Xs + K„X„» 0 ll =X„&„+Xzos~

Here, x„and x, are relative concentrations of the nor-
mal and superconducting metals, respectively
(x„+x,=1); v„«„and u, are, respectively, heat
capacity, heat conductivity, and electric conductivity
in the resistive superconducting mode; v„, K„, and 0„
are the respective parameters of the normal metal.

Finding the mean values of transverse conductivities
o, and K presents a rather more complicated problem.
However, if K„»~, and o„»o„while x„-x„one can
probably assume, for estimation purposes
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Accordingly, fast heating of a composite occurs under
conditions of frozen-inmagnetic flux.

0

FIG. 3. Magnetic field distribution in a plane, semi-infinite
sample.

superconductor surface, having, in accordance with the
concept of the critical state, a density j,. As a result„
a magnetic field diffe rence ~H = H, —Hp exists in the
plate in the region 0& x& /, while &H/sx ~ j,. Now, if
the temperature in the plate -increases as a result of
some perturbation, j, decreases. With a decrease of
j„ the magnetic flux penetrates the sample more
deeply, more heat is released by the flux motion, and
so on. Under certain conditions, such a perturbation
may increase in an avalanche manner and bring about
a collapse of the superconducting state.

Obviously, no instability may occur if ej,/BT & 0
(peak effect). Livingston (1966) was the first to point
this out. The validity of this assertion is reliably
supported by a whole series of experiments (Livingston,
1966; Hart and Livingston, 1968; Wipf, 1968;
Kroeger, 1969; Scanlan and Livingston„1 972; Onish i
and Miura, 1973; Bethoux and Schumacher, 1973).

As ean be readily seen, the normal current
j« =vE ~ sH/St occurring with the movement of the
magnetic flux compensates for the drop ofj,(T) and
thereby impedes the magnetic-flux movement inside
the sample (an analog of viscous friction). As a
result, the critical state stability increases with super-
conductor conductivity o.

Therefore, a flux jump presents temperature and
electromagnetic field perturbations increasing in a
correlated manner. Each one of these processes is
characterized by its respective diffusion coefficient„
namely, the thermal diffusion coefficient D, = «/v
(v is usually of the order of 10»—10' erg cm ~ K ')
and the magnetic diffusion coefficient D = c /4wo as-
sociated with normal currents in the resistive state.
Characteristic values of D, and D in hard supercon-
ductors are as follows: D, =1—10 cm's ',
D =102—10» cm s ~ (T =4 K, H-10 —10 Oe, o'=o ).

Let us introduce the parameter 7.:

Here we have taken into account that o&E «j, (note that
hard superconductors provide an example of a system
wherein heat release depends linearly upon E over a
wide range of parameters). Inasmuch as the heating is
adiabatic (r«1), the new equilibrium temperature
value can be found using the law of conservation of
energy in the form

vb, T =Qo+Q, = v&To+Q, .
To estimate the value of Q„we use the Maxwell

equation

4nBj
c 2gt

(3,2)

(3.3)

and Bean's equation of the critical state, j,=j,(T). Then
aj,/et =(dj,/dT)T. The quantity IV'El is of the order of
E/b2, where b is some characteristic dimension (for
instance, in the case shown in Fig. 3, 0 =l). Then we
derive from Eq. (3.3)

4&b2 dj, '

c dT,

and, accordingly,

1 4nb2j, dj, '

P
Q = — ' ' n. T = —vn. T,

y c2 dT y

where p is a number of the order of unity which de-
pends on the geometry of the problem, while

4 wb2j, dj,
c v dT (3.4)

The quantity P characterizes the spontaneous heating
of superconductor caused by a small external perturba-
tion. By substituting the expression for Q, into Eq.
(3.2), we find that

A. Hard superconductors

Let us now consider qualitatively the development of
a small perturbation in a superconductor where 7 «1.
Assume that a fluctuation in some superconductor reg-
ion causes the temperature to rise by the value A&p.
This means that a "priming" heat Qo = vnT0 has been ap-
plied to this spot. With such heating, the value j, de-
creases and the magnetic flux starts to travel within the
sample. As a result, additional heat Q, is released,
which is equal to

Q, = fi.E»t.

~ =D,/D. =
C2V (3.1)

For hard superconductars, v'« I (usually even in fields
H-H, ). This means that the magnetic flux diffusionl
is considerably faster than that of the heat flux and that
the heating of hard supt rconductors with a rapid
variation of magnetic flux is adiabatic.

The inverse limiting case v»1 can be realized in
superconducting composites with the characteristic
values of D =10 '-10 ' cmas ' and D, =10'-10 em's '.

One can see from the latter relationship that, at
P- y, the temperature becomes unstable and b, T in-
creases indefinitely for any value of the "priming"
fluctuation A&p Consequently the critical state is
only stable if

(3.6)

Note that the criterion expressed by Eq. (3.5) is often
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4n .curlH = —j,
C

(3.6)

called the "adiabatic stability criterion. " It was first
derived for a plane, semi-infiniie sample (Fig. 3) by
Hancox (1965) on the basis of similar qualitative argu
ments. In this case, from the Maxwell equation

I &I »1. In so doing, Ima coincides with the oscillation
frequency and ReA, with the growth increment (damping
decrement) of the eigensolutions.

The dependences of ~, =Im~ and ~, =Re~ upon P are
shown in Fig. .4. The value of P„at which the eigen-
value of ~ first appears so that ~, =0 and ~, & 0, is found
from the condition &&/&P =~, whence

assuming that j =j„we derive

a(x) = '
(E x)+a-, .4mj,

C

p, = y(1 +27»)
Z =~, =y/&»2

(3.i 1)

Hence, l =c(II, —H2)/4&j, . On substituting this expres-
sion into the criterion (3.5), we find

477 pj
a 0 ~ dj dT (3.7)

Using the criteria (3.5) and (3.7), one can easily
estimate that the maximum sample thickness is on the
order of 10 '—10 ' cm, while the maximum stable
magnetic field difference in the sample &H=H, . is on
the order of 1—3 kOe. Both these estimates are in
agreement with experimental data (Neuringer and
Shapira, 1966; Shiiki and Kudo, 1974}.

Let us analyze the dynamics of the perturbation.
Assume that the perturbations of T and E of interest

' to us vary over a characteristic time t~:

E, aT ~ exp(t/t, ). .

I et us write t, in the form. t, =t, /X where t, =6 /D, is
the characteristic time of heat diffusion, Rnd ~ is the
eigenvalue of the problem to be found. The nearly
adiabatic nature of heating in hard superconductors
(7«1) implies that I~I »1. On the other hand, as will
be shown below, t, »t =52/D or I

~.l ~«1.
We now use the equation of heat conductivity:

At

P. = &(I +3(T/&)»),

(y/T)2/2
(3 .12)

at 0=Po=r; it follows from (3.10) that &2 =0 and
As it is seen from Eq. (3.11}, the conditions

j X (- A, » 1 and ) A. ( T —A.,T «1 are satisfied for the fluc-
tuations of interest as assumed.

In the derivation of Eq. (3.10)„ the characteristic
space scale of variation of I'-' and AT perturbations is
independent of ~. As can be demonstrated, this is only
true if the sample is thermally insulated. Accordingly,
Eqs. (3.11) relate to the case of adiabatic thermal
boundary conditions. In the ease when the sample sur-
face is cooled intensely (isothermal boundary con-
ditions), it should be taken into consideration that no
perturbation arises in a layer having a thickness of
about b/I~I». Then„by substituting b(l —I/&'+) for b,
we find, by analogy with (3.10),

Pl& =1+2/~'+ +»/r.
The eigenvalue spectrum &(P) =&2(P) +i&, (P) has an
RppeRrRnce similRr to thRt shown in Fig. 4. For p,
and ~ we derive

VT =KV T +j~E ~ (3.6)

Following its time integration and after estimating
O2T as —AT/b2, one can easily derive

v(ET —ATO) = j,Edt —y
vAT

(3.9)

From the Maxwell equation (3.3) for E, with due regard
for the normal current j~=o&E, we find

E —,„' T(i —»/y),

whence

j.Edt =(P »)-f vAT

y

and, from (3.9), we obtain

&Tn
I +~/~+~. /r P/~-

One can see from this that for ~ =&(P, ~) satisfying the
dispersion equation

(3.10)
the final temperature deviation &T may turn out to be
considerable for a small initial perturbation 4TO.
Thus Eq. (3.10) describes the spectrum of eigenvalues
of perturbation "frequencies" in the critical state for

A. =i~„where ~, =2' '~,.
As would be expected, at T«1 the heat transfer con-

ditions have little effect upon the stability criterion.
A corresponding estimate for the variation of H,- at
T =4 K yields no more than 5 —10/0 difference, which is
in agreement with experimental data (see Irie et al. ,

1977). At the same time, the dynamical evolution of
the perturbations varies appreciably. The correction
to the adiabatic stability criterion (3.5}associated
with the nonzero value of 7 may be appreciable, reach-
ing tens of percent, even if T «1, due to the one-third

~0 &C P
FIG. 4. Qualitative appearance of the eigenvalue spectrum of
x(p).
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power. Note that near- isothermal conditions are
characteristic of liquid-helium-cooI. ed hard supercon-
ductors.

B. Composite superconductors

In the case of superconducting composites, one has
r'» 1, and one can assume that Bj /Bt =0 upon rapid
heating. Then, using for simplicity Bean's equation
of the critical state, we obtain

Bj/Bt =aE+ T =0,dj,

whence

From the foregoing discussion, one can readily
understand the influence of the normal current j~ex-
cited in the conductor upon the development of insta-
bility. A temperature increase causes j, to drop; how-
ever, this drop is compensated for by an increase of
j„, whereby the magnetic flux is damped (an analog of
viscous friction) and the heat release decreases ac-
cordingly.

Let us now consider the dynamics of the perturbation.
Assume, as in Sec. III.A, that f, =f„/&. Then the
condition Bj/Bt=0 means that t,.«t and l&1»&1. On
the other hand, instability develops slowly as compared
with the diffusion of heat, i.e., t, » t, and l&l «1 (all
of these assumptions are confirmed by the results of
thorough calculation in Sec. IV).

%e write the energy balance equation
The power released per unit volume is

Q g T

The critical state is stable if Q does not exceed heat
removal due to heat conductivity, q:

~ A. g
vT = —

2 ET =j,E +gV~T,

whence

(3.16)

(3.1V)

q=vV T& AT d
0 4T

Inasmuch as (V'TI -&T/b',

b'j, dj. '

(3.14)

Let us assume ideal heat removal, for the sake of
simplicity. By analogy with the case T«1, at
t, » t„, no pertuibation is present in the layer of thick-
ness b/(I &la)'~«b and, in Eq. (3.17), b[l —I/(&~)'~']
should be substituted for b, thus leading to

or, in terms of magnetic fieM difference

goj
c ' )dj /dTj

Here z, is a number of the order of unity, which de-
pends upon details of temperature distribution.

Equation (3.14) was derived on the assumption of
ideal cooling of the sample boundaries. If the external
cooling is weak, the released power should not be
allowed to exceed that transferred to the outside, i.e.,

j,bAT dj, '

where 8'o&T is the heat flux from the sample surface,
while y2-i. depends on the ratio of the sample volume
to the surface being cooled and details of temperature
distribution. Thus the stability criterion has the form

(3.15}

Qr, in terms of AII,

4~@, W,o
c ldj, /dTI

'

Note that, as will be shown below, the condition of
applicability of the criterion (3.15}has the form
Wob/a«1, which is usuaQy the case in liquid-helium-
cooled composites (WD& 107 ergcm 2s ' K ',
a~10~ ergcm 's 'K ', b-10 ' cm). Using Eq. (3.15),
one can evaluate the maximum field difference in the
sample and thickness b: AH& 1.0 kOe, b-10 ' em.
The stability criteria (3.14) and (3.15) were first ob-
tained by Hart (1968, 1969) and are often referred to
as the "dynamic stability criteria, ."

The dependences of ~, and &, upon P have the form
shown in Fig. 4. Now, however, l&l «1. For P„&„P„»dXQ,), we derive

P, = y, ~(1 +3 (y 7) '~')

y2/sl
c 1/37

Note that the correction to the stability criterion for
the nonzero value of 7 ' may be substantial because of
the, power, even in the case of relatively high T.

C. Nonlinear portion of the current-voltage characteristic
and instability delay

It follows from the foregoing discussion that, upon
violation of the stabiiity criteria (3.5) (v«1) or (3.14),
(3.15) (7»1), instability can only occur under condi-
tions in which the perturbation covers a considerable
portion of the bulk of the superconductor (in the case
shown in Fig. 3, this bulk should have a volume of
about l&&L, LX„w erhe L„I.,» L). Moreover, the
"priming" perturbation should be rather strong.

Indeed, the current-voltage characteristic of hard
superconductors at E, -0 is nonlinear (Fig. 2). Ac-
cordingly, if E &Eo, then 0(E) & o, . Hence the parameter

r(E) =4no(E)~/c'v& v = 47rgq g
C V

It follows from the results presented in Secs. III.A and
III.B that stability increases with an increase of o.
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Thus, if the electric field is less than Eo, instability
does not occur even if the stability criterion (3.5) has
been violated. A flux jump will develop with greater
field difference in the sample depending on the value
of o(E). Inasmuch as, at E «Eo, o(E)» oz, such a flux
jump delay may turn out to be quite substantial. This
circumstance helps one to understand, for example,
the scatter of the experimental values of II,. when the
instability was not intentionally initiated in the course
of experiment. Another effect associated with the de-
lay in the flux jump is the dependence of the stability
threshold upon the rate of external field variation,
which has been observed in numerous experiments
(see Sec. VI). The variable external field H, (t) induces
in the sample ari electric field &, o= JJ, . An increase of
E, causes a decrease of a(E) and, consequently, an in-
crease of II, is accompanied by a decrease of the mag-
netic field difference in the sample upon which a flux
jump occurs (Mints and Rakhmanov, 1979b).

An analogous effect is likely to take place in super-
conducting composites as well. In the ease of low
electric fields, the current-voltage characteristic of
the composite is nonlinear (Kaido, et a/. , 1976;
Dorofeev et a/. , 1980). Accordingly, the effective
conductivity of the composite for E-0 may increase
considerably over the electrical conductivity of the
normal matr ix.

D. Oscillation effects

It follows from the results presented in Secs. III.A
and III.B above that temperature and electric field
oscillations may arise in the critical state for a certain
range of parameters (Mints, 1978). Assume, for ex-
ample, that we increase the external magnetic field
(Fig. 3). At some value of H„ the parameter P reaches
the value Po. Upon a further field increase, the pa-
rameter P enters the region Po& P&P, where Im&&0 and
Be~» 0 and oscillations may be observed in the sam-
ple. Then, after H, reaches the value of IIO+H, .

(P =P,), a flux jump occurs. It is just such a pattern
that has been observed in a great number of experi-
ments (as we shall discuss in more detail below).

Note that the magnitude of the electric field in the
sample has a considerable effect. Indeed, let
Po&P&P, at E&E„ i.e. , at o=o~. Then, if the field
in the sample is not supported by an external source,

E ~e p(&x, t//, ) cos(~, ///, )

and the electric field will decrease during a time
/-/, /+, such that the condition E &Eo will certainly
be met and the perturbation attenuated inasmuch as
this is accompanied by an increase in conductivity 0
and, consequently, in the values Po(7) and P,(r). Thus
the initial fluctuation rise with an increment &,//,
will bring about an increase of magnetic flux in the
sample by a finite value. Accordingly„ there can be
experimentally observed limited flux jumps with an
amplitude proportional to the value of initial perturba-
tion (however, at an adequately high initial fluctuation,
such instability may also terminate in the transition of
the sample to normal state in the region of fluctuation
growth).

If a "background" electric field E, induced by an ex-

ternal source (for instance, by a variable external
magnetic field) exists in the sample, electric field (and
temperature) oscillations with an amplitude less than
E, may be observed in the superconductor. In par-
ticular, if there are oscillations in the flux flow, their
amplitude should be less than the difference E, —Eo.
Inasmuch as the rate of variation of the external field
II, is, as a rule, much less than the rate of magnetic
field variation in the sample upon flux jump, the num-
ber N of oscillations preceding the instability can be
readily estimated. Indeed, P ~ (H, —H, )' (see Fig. 3).
Oscillations may be observed in the range AP =P,
—Po«P, . The corresponding magnetic field range r H,
is equal to r H, =AP(&P/&H, ) ' =(bP/2P, )H, . The time
during which H, is within this range equals at- aH, /H, .
Then,

~/~, /», - ~H. ~, /H. /„

and N~ 1 if

H. &~H.~, //„-z PH, ~, /P, /, .
If P, &P, the critical state is certainly unstable at

least in the linear approximation. Therefore, we shall
denote as the stability boundary a line in the parameter
space of the problem, on which there first appears a
positive real value of the increment of instability rise.
Note further that, if ~,e0 at P =P„oscillations may
be observed prior to flux jurnp. In this case, indeed,
the derivative &&/&P in the vicinity of P =P, becomes
infinite and ~ may be represented as

&=~, 1+a

where a is some real number. Thus, for P&P„
Im&~ O.

E. Flux jumps and training of superconductors

As is known (Saint-James e/ a/. , 1969; Brechna,
1973), a training effect occurs in hard superconductors
and superconducting composites, i.e. , the critical
current depends on the sample history. For example,
if the current is increased up to the disappearance of
superconductivity and then disconnected, with subse-
quent repetition of the process, the following transi-
tion to the resistive state will occur at a higher cur-
rent value. By repeating this process several times,
one finally attains the maximum transport current
density. Note that other methods of training are pos-
sible (Saint- James et a/. , 1969).

Training occurs both in coils and in short samples
of superconductors in the presence of stresses which
cause plastic deformation of the material (Anashkin
et al. , 1975, 1977, 1979; Schmidt, 1976; Pasztor and
Schmidt, 1978, 1979). From qualitative considerations,
we shall discuss here the critical state stability in
short s upe reonduc ting sample s in the presence of
plastic yield of the material. From the obtained cri-
terion of stability relative to thermomagneto-
mechanical instability it will be shown that plastic
yield may lead to training in short samples.

We shall first discuss the stability of plastic yield
in normal metals in which plastic strain (stress) jerks
are known to exist„causing the so-called discontinuous
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flow mode (Basinski. , 1957). Appropriate criteria for
plastic yield stability have been obtained both from
studying the dynamics of dislocation motion {Malyghin,
1975) and from the macroscopic approach (Petukhov
and Estrin, 1975; Petukhov, 1977; Mints and Petukhov,
1.980). We shall now derive, from qualitative con-
siderations, the criterion obtained by Petukhov and
Estrin (1975)..

The additional release of heat due to the work as-
sociated with plastic Strain amounts to Ou, where o
is the applied stress, ic =u(T, o', u) is the rate of plastic
strain, and u is the value of plastic strain. In the case
when only part of the work is released as heat, ap-
propriate changes can be introduced with the aid of a
suitable factor.

Assume that a temperature fluctuation ~7.' occurs in
the sample„causing heat to be released due to plastic
strain:

Q, =e bT.Q

The plastic yield is stable if Q, does not exceed the
heat transferred to the outside q =Won. T. (Wob/a is as-
sumed to be small. ) Then, the stability criterion of
interest to us has the appearance

-u b
C yOT S'

0
(3.18)

where y~-l. A strain (stress) jerk occurs slowly as
compared with heat diffusion. Indeed, from the equa-
tion of heat conductivity one can readily derive

&gal

b20 8'Ob

3T K K

Q, =Q, + b, T in the regions where j=j,.0

The critical state is stable if the released heat has had
time to be removed from the sample, In the case of,

where &, as usual, denotes the characteristic time of
instability t, =t„/&. Henc. e the stability criterion has
the form of Eq. (3.18) and & =0 at the stability threshold.

Consider now the case when a mechanical stress
causing plastic deformation is applied to a supercon-
ductor in the critical state. If the characteristic times
for development of the flux jump and the plastic strain
jerk are of the same order of magnitude, both insta-
bilities appear to be interacting strongly and initiating
each other. Consequently, a significant variation of the
stability criterion is to be expected if the flux jump
occurs slowly, i.e., I ~l «1. It is precisely this case
that i.s observed in superconducting composites and,
as will be shown below, in hard superconductors as
well, under conditions of very low surface cooling, or
if the value of transport current I in the sample is
close to I,=j,8, where 8 is the cross-sectional area
of the conductor.

Let us now derive the stability criterion from quali-
tative considerations. The summary power of heat
release per unit volume is now equal to

3Q
Q, =a AT in the regions where j =0,

say, weak external cooling, one can readily derive
from these considerations the stabi1. ity criterion in the
form

(3.19)

The ratio I/I, included in (3.19) is indicative of the
fact that heat release associated with the redistribution
of magnetic flux occurs in only part of the sample.

The criterion (3.19) leads one to understand the
training effect as successive strain hardening of the
superconductor stimulated by thermomagnetomechani-
cal instability. Indeed, if condition (3.19) is violated,
a magnetic flux jump occurs accompanied by a plastic
strain jerk and heating of the sample. As is known,
a strain jerk leads to strain hardening of the ma-
terial, i.e., the value of Bu/BT for given o decreases
And, as follows from Eq. {3.19), the limiting value of I
grows upon subsequent introduction of current into the
sample. If the applied stress & is not too high, train-
ing may help attain the limiting value of supercon-
ducting current corresponding to the given sample in
the absence of mechanical stresses.

Note that strain hardening is associated with the
separation of weakly pinned dislocations. Following a
strain jerk, the structure of dislocations in the sample
takes a more stable configuration. In view of this, the
inhomogeneity of the physical properties of the sample,
in particular, of its mechanical properties, may be of
essential importance in the development of thermo-
magnetomechanical instabilities. In this case, insta-
bilities will develop in the "weak" links of the super-
conductor and training will depend upon the strain
hardening of such links.

The value of sic/&T characteristic of metals is ap-
proximately equal to 3X10 2 cm ' K '. From (3.18)
we determine that the o value at which serration yieM
occurs is of the order of 10 to 30 kgmm 2. Inasmuch
as in this region the characteristic value of the ratio

is approximately equal to unity, the presence of cur-
rent in the sample may result in a considerable reduc-
tion of the stress at which a thermomagnetomechanical
instability occurs as compared with the stressat which
serration yield occurs in the absence of a current.

IV. THEORY OF CRITICAL STATE STABILITY

A. Basic eqUBtloAs

The study of the critical state stability and the dy-
namics of perturbation'development is carried out by
means of linear analysis of the stability of the solu-
tions of the Maxwell and heat equations (Hart, 1968;
Kremlev, 1973, 1974; Duchateau and Turk, 1975a,
1975b; Mints and Rakhmanov, 1975b). We shall
briefly describe this method below.

Obviously, for the present purposes, it is sufficient
to consider only those of the initial perturbations which
constitute the biggest threat to stability. It is clear
from the qualitative treatment contained in Sec. QI
that these are perturbations covering the maximum
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(possible under given geometric conditions) volume.
In so doing, heat transfer to the unperturbed region of
the sample volume is minimal and, consequently, the
stability is minimal. In this chapter, we shall use
Bean's model [j,=j,(T)] as the equation of the critical
state.

The development of temperature and electric field
perturbations in a superconductor is described by a
system of electromagnetic (Maxwell) and heat equa-
tions. In a linear approximation, this system has the
form

constants C, . By substituting these solutions in the
boundary conditions, we shall derive a homogeneous
linear system of equations for C,. :

gA, ,C, =0,

det
/ [ A„.) /

= 0. (4.5)

where A, , =A, , (&, T, P, Wo, . . . ). It is the condition of
existence of a nontrivial set of Cz that defines the spec-
trum of eigenvalues of ~. Thus the dispersion equation
for finding ~ has the form:

4m Bjcurl curlE = ——
c~ &t ' (4.1)

j=j,+OE,

where v, a, j„o represent either the values of respective
quantities in a hard superconductor or the averaged
values of these parameters in a composite. We now
write AT and E as

B. Plane plate in a parallai external magnetic field (r(( 1)

Consider now by way of example the critical state
stability in a plane plate of a hard superconductor (Fig.
5). In the case of plane geometry (Fig. 5), one should
apparently cons ider perturbations covering large spaces
a.long the axes 01', OZ (the limit being provided by the
entire sample). Then, by virtue of the homogeneity of
the plate, &8/&x»&8/&y, s8/sz, and Eqs. (4.3) with
their boundary conditions can be written as

T = T, 8(x/b) e xp(&t /t, ),
(4.2)

8"" —A.(1 +v)8" —A. (P —A.v )8 =0, c =A. 8 —8"

m8(+I)+ 8'(+1) =0,
A8'(+I) —8"(+I) =0, gg = Wob/g.

(4.6}

(4.V)

where ~ is the eigenvalue of the problem to be found.
One can easily derive from the original equations

curl curls = &Pe 8 —&v.s „

(4.3)

where e is a unit vector in the direction of c.
Boundary conditions should be imposed on Eqs. (4.3).

The thermal boundary conditions in a linear approxi-
mation have the form

It can be shown that taking into consideration the size
of the perturbations in the directions OI (Lz) and
OZ(Lr} leads to corrections in the stability criterion
on the order of b'/(Lr2+L~2) « l.

As can be seen from Fig. 5, two different cases of
magnetic field distribution are possible in the sample.
In the first case, the critical state occurs in the entire
volume of the sample. The magnetic field difference
4H is maximal at the given j, and &:

WO8 —
b

(n' V8) =0, (4.4)

where n is normal to the sample surface.
To determine the electrodynamic boundary condi-

tions, one should, generally speaking, solve Maxwell
equations outside the superconductor:

curlH =0,

This case will be further referred to as "complete
penetration of the magnetic field. " Referred to as
"incomplete penetration of the magnetic field" is the
case when ~H&Hp and the critical state occurs only in
the region [x[ & t. In the region I x[ & I we apparently
have for 6 and 0:

divH =0 „

with the boundary condition of H, =H, (t) as Ixl ~™.
Then the solutions are joined along the continuity of E
and H on the sample surface. Note further than, in
the linear problem under consideration, the spectrum
of eigenvalues & = &(P, r, Wo, . . . ) cannot depend ex-
plicitly on H, (t). Therefore it can be assumed that
H, =0. The dependence of the stability criterion upon
H, (t) occurs only if the variable external field affects
considerably the unperturbed state of the system, for
example if it affects the conductivity value o(E) or
causes inhomogeneous heating.

Therefore, after the equations and boundary condi-
tions have been written down„ the finding of the spec-
trum of eigenvalues of ~ is straightforward. The so-
lution of Eqs. (4.3) depends upon a set of arbitrary

c =0, ~0 —6" =0.

Hg

H

—

Ho {H~-HO=Hp)

FIG. 5. Magnetic field distribution in a plane plate.

(4.8)

Rev. Mod. Phys. , Vol. 53, No. 3, July 1981



R. G. Mints and A. L. Rakhmanov: Critical state stability in type-I I superconductors

If AH=H~, the vector j changes its direction abruptly
at x =0, i.e., there is a singularity inthe coefficients
of the original equations. Therefore Eqs. (4.6) should
be solved independently to the left and right of the
plane x =0 and, at x=0, natural joining conditions should
be imposed: 8=C e"l" +C e "l"+C e'~2" +C e "2" x&05 6 7 8 (4.1o)

I et us first consider the simpler case when the mag-
netic field fully penetrates the sample. The solution
of Eqs. (4.6) has the form

8=C,e&" +C e l" +C e'~2" +C e "2" x&0

8(0) =0,
e(+o}= e(-o},e'(+o) = e'(-o).

(4.8}
A2(1 —y}

le2
hsa

&(1 + 7')

Analogously, if AH& H~, the solutions of Eqs. (4.6) and
(4.8) should be |oined at ) x[ = f by the continuity of
8, 8', c.

Then, with the aid of the boundary conditions, we de-
rive the dispersion equation having the form

b =4, +mA,.

L, = —16ik, k, (k~ +k~2) [k, (&+k~~) sinhk, cosk, +k~(& —k2) coshk, sink~], (4.11)

b, =16i(2k, k, {&+k~2)(&—k~) —k,k, [(&+k~2} +(& —k2} ]coshk, cosk, +(k', —k22)(& —km)(&+k,') sinhk, sink, ).
One can readily solve Eq. (4.11)numerically and make certain that the eigenvalue spectrum has the appearance
shown in Fig. 4. Presented in Fig. 6 is the numerically derived dependence P,(v} at T 1 and different xv.

We shall now derive an analytical solution to the problem for the limiting case of 7 «1 (hard superconductor).
As already noted, at sufficiently low 7, &,»1. Then, upon series expansion of Eq. (4.11)at [ &(»1, we obtain

7 g gP 1T lT gg~+~ g»+ — p» g+ p~& y»+ —~+
T 2 7 2 27 8j (4.12)

For m» ()&[)'+, Eq. (4.12) coincides with Eq. (3.12)
if z=n'2/4 (isothermal limit), and at m«1 —with Eq.
(3.10) {adiabatic limit). .An analytical solution to Eq.
{4.12) can be obtained in two cases, namely,
m» ()A()~+ and w«((&[) k. In the former case, the
values of P„&„P 0&(|30}are found from the expressions
(3.12), assuming that y=v'/4. In the latter case,

w2
I 8'

P = —1+2 1+C r2

&+

(a)

p, = m'/4,

x(p ) =i&„

(4.13)

which, at w -0, coincides with the expressions (3.11}
at y=~'/4.

Curves of &=&(P) for J3 & P, are shown qualitatively in
Fig. 7 at different 7 and so. With an increase of r, the

(b)

l2

c

l

I.O0.8
l l l

0 0.2 0.4 0.6

FIG. 6. Value of P~ as a function of y at &&1: Curve 1, zg»1;
curve 2, pe=1.

0
FIG. 7. Evolution of the eigenvalue spectrum of A, (p) in the re-
gion P» P~ with an increase of v: (a) for w&0; (b) for go=0.
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curves for &(P) shift to the right and are deformed so
that ~, decreases. One can readily understand such
behavior by remembering that the increase of v is
accompanied by the growth of the damping function of
the normal current j~ =aE ~Xv and that perturbations
with high ~ are damped more strongly with an increase
of v. As to perturbations with low ~, these are af-
fected more strongly by heat transfer. And, at m =0,
there exists a point P. =0, P(0)j whose position is not
affected by the value of 7.. If v & 7, = 2„ then, at m =0,
the parameter P, equals P(G) and ceases to depend on 7
(Kremlev, 1973}. For the case of a plane geometry,
P(0) =3.

At &-0, we derive from Eq. (4.11}
1.2(7 —~,)&'+ (P —3)&+3m =0

from which it follows readily (Maksimov and Mints,
19'79) that

P, =S+$.8M'+(7' —r F~, A, =1.6(

P =3, A(P ) =iA,

If zv «7.—T„ then ~,«1.
Analogous results can be obtained in the case of in-

complete penetration of the magnetic field into the
sample (Maksimov and Mints, 1980}. The essential
distinction between the cases ~II =II~ and AII&H~ be-
comes apparent at w «i. Thus, at I =0, the curve
of &(P) for P&P, has the same appearance as that
shown in Fig. '7(b); however, the value of r, now depends
on the ratio b/(b —l):

5 6 9 6 1
6 b —l 7 5 —g 2

C. Stability at low v.

1. Simplified theory

The fact that at low v the loss of stability is caused
by "rapid" (&,»1) perturbations makes for a marked
simplification of the problem of determining the sta-
bility criterion (Wipf, 1967; Swartz and Bean, 1968;
Mints and Rakhmanov, 1975b). As follows from the
foregoing results, the nonzero value of the ratio be-
tween the thermal and magnetic diffusion coefficients
does not have an excessively strong effect upon the sta-
bility criterion, and it can be assumed in the main ap-
proximation that 7 =0. However, the dynamics of the
process depend upon the value of ~. In particular, the
coupled nature of the rise of temperature and electro-
magnetic field perturbation leads to the inequality

«t,-«t„. It follows from the condition t,.« t„ that
the magnetic flux jump develops nearly adiabatically
and, in the main approximation, the heat conduction
term can be omitted from Eqs. (4.1). Upon eliminating
aT from the system of differential equations (4.1), we
obtain

Since we have neglected the redistribution of heat while
deriving Eq. (4.14), only the electrodynamic boundary
conditions should be imposed on the equation. Stability
is lost if there exists a nontrivial solution to Eq. (4.14).
Note further that Eq. (4.14) can be derived from Eqs.
(4.3) by passage to the limit [&[—~, r-0, (A[a 0-.

Inasmuch as in the approximation under consideration
7 =0, the values of P, and Po coincide. No oscillation
frequencies or perturbation rise increments can be
found within the bounds of the simplified theory, and
one can only find the critical state stability criteria.

Consider now the plane plate case already discussed
above (Fig. 5). Here, Eq. (4.14) and its boundary con-
ditions have the form

s" +Pr. =0,
s'(+1) =0.

(4.1 5)

The conditions at the boundaries where the current
changes direction or turns to zero are identical and
have the form of & =0. By solving Eq (4.15.}, we ob-
tain in each continuity region of j

s =C, cosa' x+C, sin~Px .
In the case of complete penetration of the magnetic

field into the sample, we have c(0) =0. Then a non-
trivial set of constants C,. exists if cosWP=G. Hence,
P, = n 2/4.

Inasmuch as c = 0 at the boundaries of regions with
differing directions of superconducting current, the
instability develops independently in each one of those
regions. The interaction between them only occurs
owing to heat transfer, i.e., upon taking into account
the nonzero value of v.

2. The effect of transport current upon stability

Consider now a plane sample carrying a transport
current I. Depending on the values of I, LII, and on
the order of sequence in which the current and external
fields are varied, different magnetic-flux distributions
can be set up in the plate. Examples of such distribu-
tions are shown in Fig. 8. Any one of such distributions

.consists of a number of regions differing from each
other by the direction or value (j, or 0) of the current.
In the approximation 7 =0, the stability in each layer is
disturbed independently. For the two external regions,
the boundary conditions on Eq. (4.15) have the form
c'(+1) =0 and c =0 at the internal boundaries. Accord-
ingly, P (wb/2l, },where l; is the size of the ith region,
or

(4.16)

carded. Then, in dimensionless coordinates, we have

curl curlE(x/b} = PE(x/b),
(4.14)

E 4&0 BEcurl curlE =P —,—
C

Inas much as ~j ~~p the second te rm on the right-hand
side is of the order of t~/l, b'«I.'/b2 and can be dis-

where AII; is the magnetic field difference in the ith
region. In the internal regions, E =0 at both bounda-
ries. In this case,

AH; & 2H-.
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(b) (c'j
H 3. The contact of a hard superconductor with a normal metal

I

I b
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Ie)
H

FIG. 8. Examples of different magnetic field distributions in a
plane plate.

The overall critical state stability in the sample is de-
termined by the least stable region.

It is worthy of note that the stability of the magnetic-
flux distributions shown in Fig. 8(e) and 8(d) differs
considerably. Thus, in the former case, the critical.
thickness of the sample is greater by a factor of -2;
consequently the maximum transport current in the
sample is higher by a factor of -2.

I et us now address the simplest illustrative example
presented in Fig. 8(a) (complete penetration, the mag-
netic flux distributed asymmetrically relative to the
0Ã axis). Using the criterion (4.16), one can readily
derive (Mints and Rakhmanov, 19"I5b)

]7

4(1 +~a[/I.) ' (4.1V)

where I, =2bj, is the critical current per unit length of
the sample, and I =26&j, is the transport current per
unit length of the plate.

If I-I„ the planes where ~ =0 and F' =0 converge.
Therefore the case of I =I, calls for special considera-
tion, and it would be wrong to assume I =I, in the cri-
terion (4.17). At I =I„ the currents throughout the
sample flow in the same direction. The boundary con-
ditions of Eq. (4.15) have the form E'(+1) =0, and a
nontrivial solution exists in the case sine'P =0. Hence
P, =O. One can readily understand what causes such a
sharp drop in stability. If no flux jump occurs upon the
erne rgence of a perturbation, a new state of equilibrium
with a temperature 70+~7 is set up in the sample. In-
asmuch as 6 =I/I, (T) the boundary of regions with dif-
ferent directions of current shifts.

If 5 =1, no new equilibrium position is set up since
the system has lost a degree of freedom essential for
stability. In the 7 =0 approximation, stability drops to
zero at I =I,. If one takes into consideration that 7 &0
the degree of freedom essential for stability is not
lost because the drop of j, is compensated for by the
normal current. However, at T«1, this fact leads to
only a slight increase of stability p, -7'«1. At I =I„
the increment of perturbation rise decreases sharply.

. It can be shown that P, = 3~ T/(3 + m) and &, =0 for any w
and r«1. ln this case, p, ~ po and the oscillations
preceding the instability are absent. Nonzero values
of ~, and, consequently, oscillations, only occur at
~~ 1.

As already noted, in technical materials a hard
superconductor, as a rule, maintains contact (thermal
and electric) with a normal metal. Therefore the ef-
fect of a normal metal cladding upon the critical state
stability in a hard superconductor has been subjected
to extensive experimental and theoretical study. We
shall now examine this problem using the methods
described above.

In the case under consideration, the equations for
field and temperature in the normal state should be
added to Eqs. (4.3) describing the development of a
small perturbation in the superconductor, and these
should then be joined with solutions for perturbations
in the continuity of E, H, 7 and heat fluxes at the
normal metal-superconductor interface. Selecting E
and b, T to be the same as before [Eq. (4.2)j, we use the
Maxwell and heat equations in a linear approximation
to derive, for a normal metal„

curl curls = —~7,c (4.18)

where 7', =Ter„/a, . The subscripts n and s denote pa-
rameters in the normal metal and in the superconductor,
respectively. The subsequent procedure for deter-
mining the stability criteria and spectrum of eigen-
values of ~ remains unchanged.

We shall assume below that e„»a,„o„»o,„which
corresponds to coatings of metals with good conduc-
tivity (Cu, Al). This case is of particular interest since
this is where the effect of cladding upon the stability
and dynamics of the critical state is most essential.
In addition, v„«v, as a rule. The case of x„~ ~„
o.„&o, can be investigated using the same methods.

I et us first look at the problem qualitatively
(Kremlev, 19'73; Onishi, 1974; Mints and Rakhmanov,
1976a, 197'lb; Maksimov and Mints, 19'l9). For T«1,
instability in an uncoated superconductor develops
"rapidly": ~,» i. On the other hand, a variable ex-
ternal field only penetrates a normal metal to a depth
on the order of the skin depth: 6,„=c/(2~0„&u)'~ By.
substituting co - t,. ' for estimation, we obtain
5,~/b-(A. ,7', ) '+, where v, » v. If &,r, »1 the magnetic
flux cannot enter the sample at a rate corresponding
to that of flux jump propagation in an uncoated sample
as early as at a normal cladding thickness of d«b.
Thus screening currents occurring in the coating damp
"rapid" perturbations. In the region of low values of ~
("heat" branch of the spectrum), the effect of normal
cladding is less pronounced. Indeed, the heat propa-
gates rapidly over the coating (K„» K,), the heat ca-
pacity of the latter at d& b is low, and the heat boundary
conditions actually realized on the superconductor sur-
face correspond to cooling by an external coolant
(Kremlev, 19'l3; Mints and Rakhmanov, 197"tb).

Presented by way of illustration in Fig. 9 are curves
&(P) for P ~ P, at different d and w. Thus, under con-
ditions of adiabatic insulation of the sample„an in-
crease of the cladding thickness affects only the sta-
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two stages: first, a rapid redistribution of magnetic
field in the superconductor under conditions of constant
magnetic flux in the bulk, and then a @low entry of the
magnetic flux into the sample over a time depending
on the time of magnetic diffusion in the cladding. This
pattern of instability development was observed ex-
perimentally by Onishi (1974), who monitored the
evolution of magnetic field distribution in the sample
upon ft.ux jump.

Evidently, an increase in the coating thickness can
affect the critical state stability only so long as d is
less than d,—the skin depth corresponding to the char-
acteristic time for a flux jump to develop under con-
ditions of fixed magnetic flux.

For d&d„one can make use of simplified theory,
i.e., Eqs. (4.14), for determining the stability cri-
terion mainly in the v «1 approximation. The boundary
conditions on the superconductor surface now have the
form E(+1)=0, which is evidently equivalent to the con-
dition of preservation of frozen-in flux. For example,
it can be readily found for a plane sample at I=0,
XII =Hp that

c" +Ps =0, r.(~1)=c(0) =0.

0

FIG. 9. Evolution of the eigenvalue spectrum of A. |'p) in the re-
gion p~ p~ with an increase of the cladding thickness d: (a) for
w &0; (b) for zg=o.

bility while d&d, (Fig. 9b). For d&d„&,=0, and the
effect of coating upon stability is low in proportion to
v„d«v, h (Kremlev, 1973; Maksimov and Mints, 1979).
For se»1, the stability increase is more significant.
However, in this case it is likewise limited [Fig. 9(a}].
The point is that the flux jump may occur owing to
redistribution of the magnetic flux already in the ma-
terial without the arrival of magnetic flux fromm the out-
side. When this happens, the instability develops in

Hence P, =))', i.e., at d&d, the parameter P, has in-
creased by a factor of 4 (accordingly, the maximum
values of ~H or of the superconductor thickness have
doubled).

It can be readily demonstrated that no sharp drop
in stability occurs at d &d, if I-I,. Normal currents
excited in the cladding compensate for the drop in j,
due to heating„and the degree of freedom essential
to stability is retained.

In order to find the values of d, and d„one should
know the spectrum of eigenvaalues of ~, to which end the
problem is to be solved with due regard for the re-
distribution of heat throughout the sample. Thus, in
the simplest case of plane geometry and in the case
I =0, AH=Hp, the dispersion equation has the form
(Mints and Maksimov, 1979)

W„Z,(k,'+k', )(k,' tank, +k,' tanhk, ) +Z, [(kf —k,') tanhk, tank, +2k,'k,'(1 —1/coshk, cosk, )J

t

+kk (k, +k )(k tankk, —k tank )+ta, ' '
+k)k (k, +k )+kk (k, —k )tankk, lank

)
=0,

cosh@~ cosk2 (4.19)

ilk )lk

n

~s &s
n n

The solution to this equation can be found numerically, and, in the limiting cases of ) A( «1, »1, analytically as
well. An analysis of the dependence of ~ on p and d/b made with the aid of Eq. (4.19) confirms the results derived
from the qualitative theory (Fig. 9}. Accordingly, the value of d, at which &, turns to zero is equal to

8b
6

~n3 11 " +105rx
V-

lf d —d, «d„ then &,«1. In this case, ~, (k-l —d/d, . If d«d„ the instability and oscillations occur at
) &)»1(7'& r,). Then we derive from Eq. (4.19), within the desired accuracy,
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+ n y + 0

whence

g2
p, = 1+2 T 1+2 "-, A.,=4, ~~&

~

' ' 4
~ 2

o
o,b

p, =, z(p, ) =fr, .
D 4

In the case of m»1, a spontaneous. perturbation
growth at I&I «1 is only possible for P»1. There-
fore, with the aid of cladding, the parameter P, can be
increased up to &2. If v «1, &27~»1 then the problem
of determining the value of d, can be solved analytical-
ly. Thus, in the 7 =0, ~'T, »1, d&d, approximation in
the region of I ~l »1, the dispersion equation has the
form

A.{rr 2 —P) —2x2 — +m» =0,
1

whence

find the maximum wire radius R at which the critical
state in the wire is stable for any external field @.
For determining B, it is quite sufficient to consider
the case of complete penetration of the magnetic fieM
into the wire, for it is in this particular case that the
fieM difference in the wire is maximum and, conse-
quent1y, the stability is minimum. In this case,

AH =H, —HO=Hp=Sj, R/c,
where H, is the field at r- and Ho is the field on the
mire axis.

It follows from symmetry that, for purposes of de-
termining the stability criterion, it is enough to con-
sider perturbations of an electric field which only has
a component along the wire axis. Inasmuch as at
y=0, z =0,

s =so(x) sing,

so + —so+(p —1/r')so =0,

A 4&A y, dg,
~ ~

c v d, T

P, = n 2(1 —1/v'v;),

P =m'2(1 —2/v2v;), A.(P ) = ~iA,

By defining d, as 6,~(&,) one can easily derive

dc 2

(4.20)
where r, rp are polar coordinates [see Fig. 10(a)], and
where x is normalized for R. A nonsingular solution of
this equation is s, = CJ, (WPr') At H. ,=0, the solution
of the Maxwell equations outside of the wire has the
form

8 80„=-—,cosy H~ = —,sony .
Assuming that&, =1 cm's ', a„=10'o s ', b =10 ~ cm,
one can find d, -10 ' cm, which is in agreement with
experimental estimates (see. Lasarev and Goridov,
1972).

4. The effect of geometry upon cpiticaI state stabiIity

(cylindrical samples)

Using an example of cylindrical samples (Fig. 10),
we shall now demonstrate the effect of geometry upon
the critical state stability in hard superconductors.
In order to isolate qualitative phenomena associated
with this effect, it suffices to restrict oneself to an
"adiabatic" approximation, i.e., to assume that 7 =0.

a. SVre in a transverse fieId

In numerous cases, stability experiments are con-
ducted using a wire placed in an external magnetic
field transverse to its axis [Fig. 10{a)]. We shall now

FIG. 10. Cylindrical samples: (a) wire in a transverse exter-
nal magnetic field H~ &H&, I=0; (b) wire with preset transport
current.

Here H„and H„are the y and cp components of the mag-
netic fieM. By using the continuity condition on E and
II at r =1 and the existence of nonzero values of & and
C, we derive the equation for P,: J'0(VP,) =0, whence
vP, =2.4, and for R„we have

where Ro lies in the range of from 10 ~ cm {j,-].0'
A cm ) to 10 ' cm (j,-10 A cm ~). To within an
order of magnitude, R agrees with the experimental
data available from the literature (see Shiiki and Kudo,
19V4; Irie et al. , 19'I'7).

If the wire is clad with normal metal to a thickness
d &d„ the boundary condition to the equation for co has
the form co(1) =0. Accordingly, for p, we derive
Z, (vP, ) =0, whence

R = 3.8R

Thus a normal cladding leads to a radius increase by a
factor of 1.6, as distinct from the case of plane geome-
try where the maximum thickness doubled. Note fur-
ther that the ratio R„/Ro is independent of temperature.

b. Quenching current of a superconductirIg wire

I et us now find the maximum quenching transport
current I of a superconducting wire having a radius R
(lVlints and Rakhmanov, 1976a) [Fig. 10(b)]. In so doing,
we shall assume that the external transverse field (if
any) is included in the problem as a j;defining pa-
rameter, but it should not affect the current distribu-
tion in the sample.

The equation for the perturbations of interest has
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the form

6 + —6 +Pe =0
~

where P =(R/ROP (c has only a z component and is in-
dependent of y). The boundary condition for s is
s'(1) =s(6) =0, where 6 =(1 —I/I, )'+, I,=))R'j,. Then,
in order to determine P„we obtain

iv, (WP.)z, (6OP, ) ~,(GAWP, )z, (MP, ) =0, (4.21)

where J„and N, are the Bessel and Neumann functions,
respectively. The critical value of the transport cur-
rent I is found from the condition (R/Ro)' =P,(I ). The
ratio I /I, found with the aid of Eq. (4.21) is presented
in Fig. 11 (curve I) as a function of the ratio R/Ra. At
I «I„ the stability criterion for the wire coincides
naturally with the results obtained for the case of a
plane geometry.

It follows from Fig. 11 that in the 7=0 approxima-
tion I is always smaller than I,. The reason for this
is the same as in the case of a plane geometry, i.e.,
at I =I, the system loses the degree of freedom essen-
tial to stability. With due regard for the nonzero value
of 7, one can derive that I =I, if

Z/2

It. &R, = Bee v'
It.', «A, .4+ se

If the wire is clad with a normal metaI. layerhaving
a thickness d &d„ then at x =1 the boundary condition
s'(1) =0 is replaced with c(1)=0. Accordingly, we have
instead of Eq. (4.21)

K,(v P.)Z, (5MP, ) X,(5WP-.)Z, (WP,) = 0 .
The dependence of I /I, upon R/Ro is shown in Fig. 11
(curve 2). Plotted in the same figure are the experi-
mental points obta. ined by Lange and Verges (1974); no
fitting parameters were used. As distinct from the
case of uncoated wire, at I =I„ the value of R,/R,
stays on the order of unity: I =I, if R&R, =2.4RO. Thus
for d&d, the maximum radius of a wire with current
I, is 1.6 times less than in the case shown in Fig. 10(a)
(I =o).

~' '-~' '~[(p/7)' ' ~/2]+~'/2&' '=0
whence

8, =,'w'v(1+2. 2w ' '), ),=
(
— 7'

P, = -,'~'~(1+ 0.9~ "'), a(P, ) = 1.26iX, . (4.22)

(2) z ' «~ «1; the dispersion equation has the form

:7 —(p —B)7)X +W7 = 0 ~

whence

»l3
p = w7 [1+1 9(w7) ' ']

(4.23)
)8, = w7 [1+0.8(wy) '~'], x(P,) = i1.26X, .

Note that it is this particular case that is characteristic

D. Stability at high v.

1. Plane plate in an external parallel magnetic field

We sh@ll now continue to study the simplest example,
that of a plane plate with I =0 (see Fig. 5). The disper-
sion equation for the case ~H= H~ has already been de-
rived above [Eq. (4.11)]. As in the case y«1, it can
be solved numerically. Shown in Fig. 12 is the depen-
dence of P, upon ~ at different ge, found with the aid of
numerical solution of this equation (curves A„B,)
(Kremlev et al. , 1977). For y»1 the solution to the
problem can be obtained analytically (Kremlev et al. ,
1977; Maksimov and Mints, 1979).

As already noted in Sec. III, for &»1 the values of
X at which instabilities (flux jumps, oscillations) de-
velop are such that ~X

~

«1. Moreover, if the external
heat removal is not too low (gvy» 1), then jX ~~» l.
This conclusion is supported by an analysis of Eq.
(4.11). In the case ~i- «1 (adiabatic limit), ~X ~y «1.
Accordingly, as follows from the results presented in
Sec. IV B, if ~& 7-, «1 then P, - 3, X, -0.

For Ig» 1 an analytical. solution to the problem can
be obtai. ned in two cases:

(1) w» 1 (ideal cooling limit); the dispersion equa-
tion for A. has the form

A)

200

l60

~ 05—
E

P, t20

80

40

8)
oBp

0
I 1 I I t I I I

'

I

IO 0 IQ 20 50 40 50
R/R,

I IG. 11. Maximum transport current in the wire as a function
of 'the ratio g/go. . Curve 1, uncoated wire; curve 2, wire clad
with normal metal to a thickness of d&d~. . The points show
experimental data from Lange and Verges (1974).

T
FIG. 12. P~ as a function of y at high 7.: Curves A, ge»1;
curves B, u =1; A~, B~, numerical calculation; A2, B2, calcu-
lated from Eqs. (4.22) and (4.23), respectively; A3, BS, "dy-
namic" approximation (Hart, 1968).
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of liquid-helium-cooled superconducting composites.
The dependences P, for (4.22) and (4.23) are shown in

Fig. 12 (curves A~ and B2). As seen from the figure,
their accuracy is within 20% as early as g= 10. Also
plotted in the figure are the values of P, corresponding
to the "dynamic criterion" approximation [see Eqs.
(3.14) and (3.15)], i.e. , p, =(w'/4)y (w» 1), p, =wy (w
«1). In this approximation, the value of p, differs
from the exact value by a factor of about. two, even at
7. = 50. One can analogously investigate the case of in-
complete penetration of the magnetic flux into the sam-
ple (Maksimov and Mints, 1980).

OA

I

IO 20

l6 =—————————————————
/2

I

25
I

50

2. Simplified theory

Inasmuch as for y» 1 and go7» 1 the values of A., are
such that X, «1 and X,7- » 1, the characteristic time of
the flux jurnp lies in the range of t„«t& «t . This fact
helps considerably to simplify the procedure for deter-
mining the stability criterion. The condition of tz «t
implies that the instability rises under conditions of
frozen-in magnetic flux (see Sec. III.B). In this case,
the local current density does not vary: ej/Bt= 0; hence
the relationship between field and temperature pertur-
bations has the form of Eq. (3.13). By substituting into
the heat equation and using dimensionless variables,
one can- readily derive

~~8+ (P/y —X)9= 0. (4.24)

This equation was derived from qualitative considera-
tions by Hart (1968). Thermal boundary conditions
should apparently be imposed on Eq. (4.24). The exis-
tence of eigensolutions to such a problem with A. & 0
would mean a loss of stability. Equation (4.24) can also
be obtained directly from (4.3) by passage to the limit
X-O,

Consider now the case of a plane sample with trans-
port current I (Fig. 8). When this case is used as an
example, it reveals a number of common properties of
a developing instability at y» 1. %e shall first study
the case of complete penetration [Figs. 8(a), 8(b), 8(d)-
8(f)]. Then, making use of the solution of Eq. (4.24)
and arbitrary thermal boundary conditions, one can
readily derive for P, :

tan —' = ge (4.25)

Note that, inasmuch as 8 and 8' are continuous on the
surfaces of discontinuity of j while P= const, there is
no need here to solve Eq. (4.24} independently in each
continuity region. In Fig 13, 4P, /. 7 is plotted versus w.
Thus, using the given approximation, we find the sta-
bility criterion in the main approximation in y» 1
(dynamic criterion). Accordingly, P, = P„and the per-
turbation spectrum cannot be studied in this approxima-
tion.

It follows from Eq. (4.25) that the parameter p, is in
dependent of transport current. In the case ~ «1, the
instability develops independently in each of the super-
conducting regions differing in the direction of the cur-
rent. For y» 1 the instability develops instantly
throughout the entire sample inasmuch as t&» t„and
heat contact is established between the different re-

Dependence of the ratio gp /y upon zg.

gions of the superconductor. Therefore, in the main
approximation with respect to ~» 1, the stability de-
pends only upon the full size of the regions where j0
and, consequently, heat release takes place upon the
emergence of perturbation (Kremlev et a/. , 1976a,
1977).

The dependence of the stability criterion on transport
current becomes clear when one takes into account the
terms of the next order with respect to 7. Thus, in the
case of a plane plate, one can. readily derive with the
aid of the fourth-order Eq. (4.6) (at I = I, and z ' «w
«1)

P.=w7.(1+ 2/V7 ), X, =w/v g,
po= wy, X(po) =i X

On comparing the latter expression with Eq. (4.23), one
can easily see that the ratio of the P, values in these
two cases equals -1+1.9/(wy)'~' (since w «1). I et w
= 0.1. and y= 10', then the P, values differ from each
other by about 100k. On the other hand, in the case
under consideration, the critical thickness of the sam-
ple or its maximum field difference is proportional to
P, /w7. Then the difference between these values may
reach approximately 100%%uo. This difference becomes
less pronounced only at ~& j.0'. Therefore, ' for liquid-
helium-cooled composites, the criterion of "dynamic
stabilization" may only be a good approximation if 7-

&10 .
Within the bounds of the simplified theory, the sta-

bility criterion for the case of incomplete penetration
has the form:

p&p, ,

where

Equation (4.25) reduces to the above if the half-thick-
ness of the sample, b, in Eq. (4.25} is replaced by the
size of the region with current (b- 5 ~ I/I, ).

3. Adiabatically heat-insulated samples

The case of m= 0 deserves to be discussed separately
because, in this limit, w7 =0 and the ~X ~7»1 approxi-
mation is inapplicable. Consider a plane sample in an
external field. If ~H= H~, the problem has already been
solved above: for 7) —', X,=O, p, =3, i.e. , in the ~»1

Rev. IVlod. Phys. , Vol. 53, No. 3, July 198't



568 R. G. Mints and A. L. Rakhrnanov. Critical state stability in type-II superconductors

limit, P,/y= 3/y-0 which, in the main approximation,
corresponds to the "dynamic criterion" at I) = 0.

If gH&H~, heat transfer inside the sample becomes
substantial. In the approximations of the simplified
theory this heat transfer is equal to zero. Therefore,
in order to get the correct answer, one should consider
the dynamics of the perturbations. Appropriate results
have been obtained by Maksimov and Mints (1980). If
~ & 7, = -'(I,!I)'—-'(I, /I) + -', , the X, = 0 and P, = 3(I,/I)'.
If the sample is sufficiently thick such that 7 «z„ the
appropriate calculation yields:

P,/r= 3.8w '~'(I, /I)', &, = 2.5I,'/I v.
Let us now evaluate (P,/y)'~' numerically. Let I,/I

=10 and ~=100&y,. Then (P,/y)'~'=6 at mr=0. If the
same sample is cooled with liquid helium (go = 0.1) then,
using the simplified theory, we obtain the estiInate
(P,/~)'~'= 10, i.e. , a value of the same order of magni-
tude as at st=0.

4. Cylindrical samples

Using Eq. (4.24), one can study the stability of cylin-
dric'al samples. In the case of a wire with preset cur-
rent [Fig. 10(b)], Eq. (4.24) may be written (r & 6)

61"+ —e'+ —9= 0.1, P

Its solution,

e= c,e.[r(P/ )'~']+ c,X,[r(P/~)"'],
should be joined w ith the solution for 8 in the region of
y& 5, using the continuity of 8 and 8'

1e'+- 8= 0,r
and substituted in the thermal boundary conditions. On
so determining the parameter P„one can find, for ex-
ample, the maximum (quenching} transport current in
the wire, I . The equation for I has the form (Krem-
lev et al. , 1977)

X,(R6 /R, ) [~Z,(R/R, ) -(R/R, )~,(R/R, )]

= Ji(RG /Ro) [wNo(R/Ro) —(R/Ro)Ni(R/Ro) ]

6.= 1 I. p

where I,= mR'j„(R/R, )' = p/v. The R/R, depen-
dence of I /I, for ge» 1 is shown in Fig. 14.

At R&R, (see Fig. 14), the stability is not disturbed
even if I = I,. At I —I„D—0. Then, by passage to the
limit 6 —0 from Eq. (4.26) we obtain (Kremlev et gl. ,
1977)

10---

0.8—

-06—
E 04

0.2—

0 5
1 I

10 15

R/R,

m/Ic as a function of R/R() for ag» l.

20

Rc

P.O

1.5

effective medium model (see Secs. II and III). We shall
now discuss the limits of applicability of such an ap-
proach to stability studies, as well as some specific
problems associated with the superconducting state
stability in composites.

For the effective medium model to describe adequate-
ly the properties of the composite, the following stan-
dard conditions must be met:

(1) The total number of individual superconducting
elements, N, should be large, i.e. , N»1;

(2) The instability rise time I, should be mu. ch great-
er than the corresponding relaxation times in a single
element of the structure;

(3} The variables (8, c, etc. ) should not vary strongly
on a scale comparable with the dimensions of a unit
element of the structure.

Let us now write conditions (2) and (3) in algebraic
form, for example, in application to multif ilament
composites (Kremlev et al. , 1976a, 1977). The smal-
lest scale on which, for y» 1, the solutions to Eqs.
(4.3) vary, is about equal to L/( ~A. ~z)'~', where I. is
some characteristic dimension of the sample (for ex-
ample, its thickness, radius, or the like). Inasmuch
as in the region of parameters of interest to us ~X

~

—X„
while the characteristic dimension of a unit structural
element is -I./(N)'~', the inequality I/(N)'~'» I/(A. ,v)'~'
should be satisf ied, or

(4.28)

gg J (R,/R ) —(R,/R, )J,(R,/R ) = 0 . (4.27)

The w dependence of R,/R, is shown in Fig. 15. R,/R,-0 at w-0 and R,/R, =2.4 at go»1. The accuracy of
these results is the same as in the case of a plane ge-
ometry, -(go~) '~'.

I.O

0.5—

5. Superconducting composites

As has already been noted, the limit y» 1 is realized
when describing superconducting composites using the

lO

1

l5
1

20 W

FIG. &5. Ratio R~/R() as a function of gy.
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(4.29)

Therefore the stability of a superconducting compo-
site can be studied with the aid of averaged equations if
K» 1 and the conditions (4.28) and (4.29) are met. In
particular, for the case of a plane plate discussed
above, these conditions take the form [see Eqs. (4.22)
and (4.23}]

N» 7, N» — T (w» 1)
K p (4.30}

ZV'&"' K V XN»(w~) i, A'» —
i

— (w«1, w~»1).
K P

In a single element of the structure, there are two
different magnetic diffusion times and two thermal re-
laxation times, namely, t „and t —the characteristic
times for magnetic diffusion in a normal metal and in a
superconductor, respectively, on the scale of I/)'~',
and t„„and t„,—the characteristic times for thermal
diffusion on the same scale. Accordingly t „»t and

As can be readily seen, the value of L/(X, 7')' '
is of the order of the skin depth at a frequency -t&'.
Therefore, the condition (4.28) is equivalent to the re-
quirement that P&» I; „. In order to fully satisfy the
third condition, it is necessary that t, » t„,—o, x,b'/z, Ã,
or

curs as a collective effect throughout the entire system
of filaments even if each one of the filaments taken sep-
arately is stable. It is to this case that the results ob-
tained above correspond. Consider nom a twisted wire
in an external variable magnetic field transverse to
the wire axis [see the geometry shown in Fig. 10(a)j.
Owing to symmetry, there are two regions in the wire,
differing from each other by the direction of current,
namely, y& 0 and y(0. As the current moves along the
axis of the wire, a filament goes alternately from one
region to the other. As a result, the current cannot
flow in the superconductor above but flows from fila-
ment to filament through the normal matrix. As can
be readily understood, the amount of screening in a
twisted conductor at a low rate of external field varia-
tion is much smaller than in a nontwisted one. Ac-
cordingly, the magnetic flux is distributed over the
cross-sectional area almost uniformly, i.e. , H= const
= H, (t), while the magnetic field difference occurs only
in single filaments:

t H-r, j,/c,
where ~, is the filament radius. No collective instabil-
ity occurs. In order to ensure stability, it is sufficient
to use adequately small filaments (Wilson et al. , 1970).

However, if a current I- I, floms in the sample, or
the external field varies rapidly (Wilson et al. , 1970),

Here N is the-number of filaments in a b & b square.
At goy-0 and ~»1, the effective medium model is al-
ways applicable because X, —0.

Let us now estimate the right-hagd sides of inequali-
ties (4.30) for the case of a liquid-helium-cooled com-
posite. In this case, one can assume that gg = 0.1, y
=10', o,~,/o- 1, g„/g, =10'. Then it follows from
(4.30) that K»10.

The material from which the minding of a modern
superconducting system is manufactured has a rather
complex structure. A detailed description of such ma-
terials can be. found, for example, in the book by
Brechna (19"l3) and in the specialized literature. The
primary element of a composite material is a super-
conducting mire including, as a rule, a normal-metal
matrix and several hundred or thousand superconduct-
ing filaments embedded in it and having a diameter of
from several microns to several dozens of mierons.
The wire diameter d is, as a rule, on the order of 1
mm. The wire is twisted about its axis at some tmist-
ing pitch 1.~ which, for technological reasons, is al-
ways greater than the wire perimeter md. Several
wires make up a structural unit, and so on. In a num-
ber of cases, for increasing thermal stability, channels
are provided in the composite material via which liquid
helium is supplied to the sample volume. Depending on
the purpose of the magnet system, composite material
of one or another structure is selected for its manu-
facture.

Consider first the stability of a single multifilament
mire. In a nontmisted composite the magnetic-flux dis-
tribution is the same as in a solid hard superconductor
(provided we neglect inessential details of flux distri-
bution in a single filament). All filaments act collect-
ively to screen the magnetic field. An instability oc-

twisting does not lead to the elimination of collective
screening of the external field and, consequently, of a
collective instability. Since, in actual conditions, a
composite is always loaded mith the current I - I, while
2'/L~ «1, the foregoing results for r»1 are applic-
able to the study of stability in twisted multifilament
composites.

The stability criteria obtained in Secs. IV.D. l and
IV.D.2 of this section help us to find restrictions on
the current density in the composite associated with its
dimensions, as well as the critical number of filaments,
N„at which the composite is unstable as a whole. For
example, using Eq. (4.23), we find for N, (Kremlev et
al. , 197"t):

WP, T, '/' . dj. -'

b

~

~ (4.31)

For characteristic values of the parameters, j,~ 10'

N, =0.2rw —' [1+1.9(wy) ' 'j, 7. «w «1.—

&s X ro

Here,

r.= 2.4c[v, /4', ~dj,(T)/dT ~]"'
is the critical radius of a single filament. Let us take
for the purpose of estimation y = 10', zg = 0.1, p, g,Ip

=1; then we find for N, : N, -1 (0r, r/)'0. Note that,
inasmuch as I ccNyo a reduction in the filament radius
ro does not result in an increased current density (how-
ever, the use of very fine filaments may turn out to be
useful for reducing losses in the composite).

From the condition Ply(zg, we write the restriction
on the current density:
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Aem '.
After the transition to the next structural level, one

can again make use of stability criteria such as those
found in Secs. IV.D.I and IV.D.2. The only require-
ment is that one replace the appropriate averaged pa-
rameters. If a superconducting material is provided
with channels for internal helium cooling, the stability
criterion assumes, in the main approximation 7. » 1,
the form (Mints and Ilakhmanov, 1980)

pig & K'+ EOq q (4.32)

woo)[ T] (4.33)

Since usually 0.
~,

- cr„, a-10 ' cm, j, does not exceed
104-105 A cm '.

However, the foregoing rigid restrictions upon j, are
not obligatory for successful operation of a supercon-
ducting system. Indeed, as already pointed out in Sec.
III, for the instability under consideration to occur, an
initial perturbation is required covering the entire
cross section of the sample and having a longitudinal
dimension bigger than the transverse one. On the other
hand, all of the estimates have been made for the region
of the linear curr ent-voltage character istic of the com-
posite where v„-v„. In the region of low fields E, the
effective conductivity e„may turn out to be considerably
higher than 0„. If we have in mind a scale. on the order
of the dimensions of a single f ilament, such perturba-
tions are hard to eliminate, while sufficiently fine fila-
ments should be used for stabilization without loss in
current density. There are considerably fewer reasons
for perturbations to occur on the scale of an entire
winding or considerable portion thereof, and such
perturbations are technically easier to eliminate.
Nonetheless stabilization of the entire winding appears
impractical because, in order to reach even the limit
(4.33), helium must be pumped through at a compara-
tively fast rate. Indeed, since p~—- 10' erg cm 'K ',
V, —L,s, while L, is the length of cable in the winding,
i.e. , dozens of meters In the ca.se V& V„Eq. (4.33)
will be replaced with the restriction (4.31), where b is
the characteristic dimension of the winding. If b - 10
cm, j, decreases by an order of magnitude. For these
reasons, in practice one must totally stabilize the
superconducting structural element, say, of the radius
A and preclude the possibility of strong perturbations
of the scale larger than A.

where m,. =W, (2x„b /a~a), a is the radius of the cooling
channels, and xH is the fraction of the cross-sectional
area taken by these channels (x„+x,+x„=1). In deriving
the criterion (4.32), the rate of helium movement in the
channels was assumed to be adequately high: V» V,
= WOL, /v„a, where pH is the heat capacity of helium and

L, is the longitudinal (along the velocity) dimension of
perturbed region. If V«V„ the internal cooling chan-
nels fail to ensure an increase in stability relative to
collective perturbations. It is easy to obtain (Mints and
Hakhmanov, 1980) an optimum value of x„-0.5. Then,
inasmuch as b/a»1, we have the following restriction
for j,:

( )
4mb &j,

( )
4mb'j, Bj,

8H' c p eT

(5.1)

with the boundary conditions of Eq. (5.1) being obvious-
ly s'(+I) = 0 and c = 0 at points where j= 0. The stability
criterion is found as usual.

Now we transform Eq. (5.1) to a more convenient
form. The dependence H(x) is found from the equation

dH 4mb .
( )

d
(5.2)

whence

cd
4~bj.(H)

Let us introduce a new variable,

H. H(x) (5.3)

where gH is the magnetic field difference in the given
region. Using Eqs. (5.2) and (5.3), one can readily de-
rive from Eq. (5.1)

V. THE MAGNETIC FIELD DEPENDENCE OF THE
CRITICAL CURB ENT DENSITY AND STABILITY
C RI TER ION

The magnetic field dependence of the critical current
density may affect the stability criterion in two ways.
First, the dependence of j, upon the local value of the
magnetic field may turn out to be substantial. This
case cannot be reduced to those considered above and
must be discussed separately. However, as will be
shown below, this possibility is only realized in a lim-
ited range of magnetic fields. Second, even if the de-
pendence of j, upon the local value of H i.s insubstantial,
the external magnetic field value H, is incorporated as
a parameter in the stability criteria obtained above.
This ease lends itself to a rather simple analysis.

%'hen j, is a function of the local field H, the coeffi-
cients of linear equations for zT and E perturbations
become functions of coordinates. One cannot find their
exact solutions in the general case even if use is made
of the 7. = 0 or 7 = approximations. There are two
possible ways of carrying out a stability study: (1) by
presetting a specific model dependence j,(H) and solv-
ing, by one method or another, the equations for small
perturbations (see Wipf, 1967; Yamafuji et al. , 1969;
Takeo, 1971; Morton and Darby, 1973; Kremlev et aE. ,
1976b) or, (2) by trying, under some general assump-
tions, to find an approximate solution in the case when
the function j,(H) has arbitrary form (Mints and
Bakhmanov, 1976b, 1977a, b). We shall take the latter
approach.

We derive the equation for the perturbation of the
electric field E in the y= 0 approximation for the case
of plane geometry. Taking into account the dependence
of j, upon H, the derivative sj,/St is written as

jc ~jc T ejc H
&t T 8H

Using the Maxwell equation curl E= -H/c analogously
with Eq. (4.14), we derive for s(x):
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d's/dy'+ ps = 0,

where

4m pT, (H) ' '
~ ej,/8T i

The boundary conditions for s(y) are now written as

(5.4) conducting materials (Leblanc and Vernon, 1964;
Borovik et a/. , 1965; I ange, 1965; Neuringer and
Shapira, 1966) and confirmed repeatedly in more recent
papers.

If the sample size is less than some critical size

4 I sj,(T)/sT I

s(+1)=0, — =0.dc
dg

(5.5)

In order to solve Eq. (5.4) in the more general case
use can be made of the WKBJ method. Using the stan-
dard procedure (see Heading, 1962), one can readily
derive the stability criterion in the form

J. H

J P ~ dy=(4' ) T (H)dH
p Hp

Note here that ifj,(T, H) has the form j,=j,(T) f(H),
T, does not depend on H and, consequently, does not
depend on y. Equation (5.4) may then be solved exactly
and the stability criterion has, as before, the form

gH&H, =(m @TED).
i

In many cases, the dependencej, (H) may be represented
asj, =n(T)/[Bo(T)+ H]" or j,=j,(T)(1 —H/H, ) . If H
» Bo or H«H, , then j, is writ'ten as the product j (T)

(H}.

no flux jump occurs in the sample, i.e. , for b&b, the
maximum field difference H~ is less than H&. Obvious-
ly, b,"(j,~8j,(T)/BT ~)'~' may depend quite strongly on
H, . For example, in one and the same sample flux
jumps may occur in the low field region and disappear
in high fields. This fact has been observed repeatedly
in experiments (see Zebouni et al. , 1964). It is worthy
of note that flux jumps may again occur at H-H, be-
cause of the growth of Sj,/ST

~

~(1 —H/H, ,) '.
Consider now the case r» 1 in the "dynamic" approx-

imation. Here, the equation for temperature perturba-
tion 8 remains unchanged, X, =0, but the parameter P
is a function of the coordinates. In the plane geometry
case under consideration we derive

e-.p() e=o.

When solving this equation by the WKBJ method, one
finds that the stability criterion has the form [~H=H~;
see Eq. (4.25)]:

12[P(x)]'~'dx &
2r/u

(5.6) tan — dx

(it is assumed here that the current flows in a single
direction at l/b&x&1).

The accuracy of the derived criterion can be esti-
mated as

For Eq. (5.6) to be applicable s must satisfy the condi-
tion c «1. This condition is observed throughout the
entire range of magnetic fields, with the exception of
the immediate vicinity of the upper critical field H, .C2
Indeed, for H«H, , T,'BT,/BH-H, '. If H=H„, then

j, can be represented as

j,=j (T) 1—H)
H,

(5.7)

Then T, -T,(1 —H/H, ) and s —(I/w')[H/Q, -H)]'. Thus
s-I only if H, , —H, H/~-I kOe.-For the dependence
j,(H) having the form of Eq. (5.7), the problem has an
exact solution (Kremlev et a/. , 1976b).

Therefore, with the exception of a limited vicinity
near H, , the stability criterion can be obtained either
in Bean s model or by the WKBJ method. A simple
qualitative analysis of these criteria shows that, ' in the
case of near-planar geometry in the range of fields not
too close to H, , the dependence of jI& on j, and, conse-
quently, on H, is small. The paper by Hancox (1965}
contains a convincing experimental proof of this asser-
tion. It has been shown that upon a threefold decrease
ofj, (H, varying from 5 to 30 kOe) the value of H,. only
varied by 5%. The same result was obtained by a num-
ber of authors in experiments involving other super-

The accuracy of this approximation

gH 1 BT~

i.s the same as in the case y«j. .
A comparison of the stability criteria obtained in

Bean's model and by the WKBJ method shows that, at
least for a qualitative analysis of the situation, use
can be made of the approximation j,=j,(H, ), or it can
be assumed thatj, =j,(T) f(H).

It should also be noted that one can solve the problem
of critical state stability analogously when the nonuni-
formity of the superconductor properties is due to other
reasons (nonuniformity of the sample material, non-
uniform temperature background, etc. ).

VI. COIVlPARISON OF THEORY AND EXPERIMENT

A. General comments

Quite a few papers have been devoted to the experi-
mental study of flux jumps. The time dependence of
the magnetization, voltage, temperature, ultrasonic
attenuation, and other characteristics of the sample
'were determined in the course of the experiments. In
some papers, several quantities were measured simul-
taneously (Claiborne and Einspruch, 1966; Neuringer
and Shapira, 1966). Various measuring techniques
were used. However, we shall not dwell in the present
review on experimental details.

An experiment involving the study of flux jumps is
usually staged in the following manner. A supercon-
ductor is placed in an external magnetic field whose
value rises (decreases) or oscillates at some ampli-
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tude about a preset value of II,. When some external
field value is reached, instability occurs in the super-
conductor. Accordingly, the temperature and electric
field rise in an avalanche manner, the magnetization
jumps as well as ultrasonic attenuation, etc. "Shown in
Fig. 16 are characteristic time dependences for the
aforementioned quantities, taken from the literature
[Claiborne and Einspruch, 1966, Fig. 16(a); Neuringer
and Shapira, 1966, Fig. 16(b); Chikaba, 1970, Fig.
16(c)]. In Fig. 16(b) and 16(c), one can see clearly the
electric field and temperature oscillations preceding a
magnetic-flux jump. Shown in Fig. 17 is the dependence
of hysteresis losses q„ in Nb-Ti-Zr wires of various
diameters d on the amplitude of the external magnetic
field H(t)=H cos(~t). If H &HI, q„ccH", where n 3--4.
At H & H, , flux jumps occur in the sample and q„ in-
creases sharply. U the wire diameter is sufficiently
small that H~&H, , no instability occurs, as well as no
sharp increase of losses (see bottom curve in Fig. 17).
As can be seen from the foregoing data, the presence
of instability is reliably registered in the course of an

(a)
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I"IG. 17. Hysteresis losses in Nb-Zr-Ti wires of different
diameters as a function of the amplitude of the variable mag-
netic field at a frequency of 35 Hz (Shiiki and Kudo, 1974):
Curve 1, wire diameter of 508 pm; curve 2, wire diameter of
250 pm; curve 3, w ire diameter of 101 pm; curve 4, wire dia-
meter of 45 pm.

9-
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FIG. 16. Time dependences of physical quantities during a
Aux jump. (a}: 1, sound absorption coefficient; 2, tern. pera-
ture; 3, magnetic flux exclusion (Claiborne and Einspruch,
1966). (b) temperature and electric field (Neuringer and
Shapira, 1966). (c) temperature (Chikaba, 1970).

experiment by sharp variations in a whole series of
macroscopic parameters of the superconductor.

A number of authors (Goodman and Wertheimer,
1965; Keyston and Wertheimer, 1966; Wertheimer and
Gilchrist, 1967; Harrison eI; ~l. , 1973, 1974, 19V5;
Harrison and Wright, 1974) have studied flux jumps by
way of "visual" observation using the Faraday effect
and high-speed filming.

However, in spite of the availability of numerous ex-
perimental papers, most of these papers do not lend
themselves to quantitative comparison with theory or
with each other. In our opinion, there are two rea-
sons for this. First, there is a delay in the emergence
of instability, due to the nonlinear portion, of the cur-
rent-voltage characteristic (this effect has already
been discussed above in Sec. III. C and will be studied
in detail below). In order to find the value of H& (or P,)
corresponding to 0 =v&, one should initiate instability in
the course of the experiment. VYhen the value of the
initiating influence is insufficient to cause transition to
the flux flow mode, the occurrence of a flux jump will
depend upon the value of this influence. Most authors
fail to take this into account so that an instability in
their experiments is caused either by uncontrolled per-
turbations or by variable external field, current, tem-
perature, or the like. However, even in cases when
flux jumps are purposely initiated [for example, by
mechanical vibrations (Evetts et a/. , 1964) or by rapid
heating (Sutton, 1973)], we are often unable to say with
certainty that the measured value of H~ corresponds to
o = v& since we do not know whether the external influ-
ence upon the critical state was sufficiently strong.
Thus, according to Sutton (1973), flux jumps were ex-
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4

cited in a Nb-50% Ti sample by heating at a rate of T,
=0.2-0.3 Ks '. According to our estimates (see, Sec.
VI. 8) based on the data of Wipf and Lubell (1965) for
a Nb-25% Zr alloy (quite close to Nb-Ti from the view-
point of stability), this heating rate is close to the or-
der of magnitude required for the transition of a super-
conductor to the flux flow mode T&-1 K s '. In order to
find the value of T~ more accurately, one should knom
the current-voltage characteristic of the superconduc-
tor in the region of low fields or the dependence H,.(T,).
The flux flow mode is attained in a region mhere H&

ceases to depend on To (assuming uniform heating of the
sample).

Another reason for the difficulties resides in the ab-
sence of an adequate set of data on the properties of
the samples being investigated. In order to determine
the stability criterion and tUQe chal acterlstl. cs of flux
jumps and oscillations in the flux flow mode, one
should know the following parameters: j,(T, H), az, p,

R'„b, as mell as the corresponding characteristics
of normal cladding, if any. As far as we know, no one
has ever conducted such comprehensive studies of
sample parameters concurrently with a study of the
desired level of excitation of flux jumps. As a rule,
one finds in experimental papers only data on the ge-
ometric characteristics of the samples and their chem-
ical composition; critical current density values are
sometimes provided for a single temperature value.
The use of data obtained in other samples for the pur-
poses of comparing theory mith experiment canriot
guarantee a high accuracy, inasmuch as characteris-
tics of a material'depend, some to a greater ( j„oz,E,)
and some to a lesser (p) extent, on the pretreatment
and history of the material. Further, the dynamics of
instability development (and, to a lesser degree, the
stability criterion for hard superconductors) depend on
the value of the surface heat removal coefficient W, .
It is practically impossible, however, to evaluate this
parameter from the data provided in most experimen-
tal papers. On analyzing and comparing the available
literature on the parameters of hard superconductors,
one concludes that the maximum accuracy to which
characteristics such as H&, maximum sample thick-
ness, or transport current can be calculated does not
exceed several tens of percent. Dynamic characteris-
tics can only be estimated w ithin an order of magni-
tude. Therefore, when comparing theory and experi-
ment, we shall only refer to the terms of the main ap-
proximation in the appropriate expressions.

%e cite but one example for the sake of illustration.
The papers by Neuringer and Shapira (1966) and Shiiki
and Kudo (1974) contain measured values of H, for Nb-.
Ti, Nb-Zr, and Nb-Ti-Zr samples. These values are
in the 1.5-2.5 kOe range. At the same time, according
to Sutton (1973) (single-layer samples), measured val-
ues of H,. are in the 5-8 kQe range. Based on the data
provided in these papers, one cannot state with assur-
ance the reasons for such a marked diff erence in the
results.

Vfe shall discuss experiments related to oscillation
effects in the critical state, as well as to the effect of
mechanical processes on stability, in full in the appro-
priate sections (Secs. Vll and IX).

B. Hard superconductors

1. The effect of variable external conditions

H (x) = H, — = H, (1 -x/l) .8w o.'(T)x (6.1)

Hence, using the equation BE/Bx= (I/e)H(x), one can

As noted above, flux jumps are often studied in a
variable external magnetic field. In so doing, numer-
ous authors have observed a regular dependence of the
field difference before the flux jump, gH„upon the
rate of external field variation, H, (Rothward et al. ,
1968; Corsan, 1964; Wipf and Lubell, 1965; Benaroga
and Mogenson, 1966; Gandolfo et g/. , 1966, 1969; Wat-
son, 1966, 1967; %ertheimer and Gilchrist, 1967;
Cbjkaba et al. , 1968; McIntruff, 1968; Kwasnitza,
1973; Shimamoto, 1974; Shiiki and Kudo, 1974; Shiiki
and Aihara, 1974; Sgbramangam and Chopra, 1975;
Irie et al. , 1977). At low H. , gH, drops to assume a
constant value at H, —10'—10 Oe s ' (see Figs. 18 and
19 below). "Disrupt:ions" characterized by a regular
dependence of gH, upon H, are often observed: some-
times a flux jump occurs at a lower value of H, (see
Fig. 18). Moreover, some authors (Neuringer and
Shapira, 1966; Harrison et al. , 1975) noted the absence
of a regular dependence of zH, on H, . Shimamoto
(1974) also observed this effect in a number of cases.
Marked quantitative deviations have been observed in
measured dependences gH, (H, ) in seemingly similar
samples. Since the condition H, t~ «gH, is certain to
be met under experimental conditions, the above men-
tioned deviations cannot be attributed to a difference in.

the moment of registering the emergence of the flux
jump.

All these facts, which appear to be conflicting, find
a natural interpretation mithin the assumption that a
variable external magnetic field serves as an instabil-
ity-initiating perturbation. Indeed, stability grows with
an increase of the sample conductivity a. The conduc-
tivity of a hard superconductor decreases with the
growth of E and reaches the minimum crz (see Fig. 2).
A variable external field induces in the sample a back-
ground electric field E,~H, and, thereby, the sample
conductivity o becomes a function of H, . For this rea-
son, the field difference before the flux jump, gH„de-
creases with increasing H, (in this discussion, HJ will
denote the field difference at v= vz). If the sample is
affected by strong irregular perturbations in the course
of experiment, "disruptions" may appear on smooth
curves of ~H, (H, ) and, at a higher repetition rate of
such perturbations, the regular dependence gH, (H, )
may disappear.

Based on the foregoing considerations, one can de-
velop a simple semiquantitative theory for finding the
dependence of ~H, on H, (Mints and Rakhmanov, 1979b).
Consider a plane hard superconductor sample in an ex-
ternal magnetic field (Fig. 3). Let us find the distri-
bution- in this sample of the electric field E, caused by
a variable extern', l magnetic field H, . Inasmuch as we
are interested in the field region 0, «II «H, , we shall.
take j, in the form j,= a(T)/H (Kim-Anderson model,
1964). Then, using the appropriate Maxwell equation,
we derive for H(x) ( j= j,):
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readily find

2H.H(~)I
a (6.2)

is rather weak. Then, by using Eqs. (6.5) and (6.6),
one can readily derive that the stability criterion has
the following form, depending on the rate of external
field variation:

Expressions (6.1) and (6.2) have been derived under the
assumption that heating of the sample due to the vari-
able magnetic field is low: T To«T Tp. As can be
readily seen, the following conditions must be met for
this purpose:

H, «(Bv)'~(T, —T,)( a/o)'H, ',
H. «(Bw)'W, (T, —T,)(a/c)H. (6.3)

Using the characteristic values at T = 4 K T To 10
K, x = 10' erg cm ' K ', %'0= 10' erg cm ' s ' K ', H, = 3
& 10' Oe, j,= 10' A cm, we obtain H, «10 Oe s '.

The portion of the superconductor contained in the
volume 0&x&x& is in the flux flow mode (E&E,). The
value of ~z is found from the condition E,(x&)=E,:

c2E2.,=i {i 4H.2i'

By introducing tbe notation H(xz) =Hz, we find that the
magnetic field difference in the region where E& E, is
equal to

H. -H, =H. 1—
2H, /

(6.4)

Let us introduce, in the sample region where E+Ep,
some averaged value of y equal to 7, & ~ (oz) = y~. As-
sume that q-, » g &

and y, » 1. At y «1, a flux jump de-
velops rapidly, t,. «t„. However, at »&1 such rapid
perturbations are suppressed by the normal current
j~. Then, in the first approximation in 7., » 1 and y~
«1, the presence in the superconductor of a region
where E&E, leads to an effective reduction of the vol-
ume in which "rapid" perturbations may develop. Con-
sequently, in the absence of "priming" effects other
than the variable external field, instability develops in
the region 0&x&xf. A portion of the magnetic field dif-
ference in the sample, H, -H&, must be stabilized
rather than the overall difference, H, -H, . According-
ly, the stability criterion has the form

H, -H~&H, (6.5)

In the paper by Mints and Rakhmanov (1979b), this
statement has been rigorously proven for a plane sam-
ple at zv» 1, gH = H&, 7 &

«1, and y, » 1.
The flux flow mode is attained at a current density

j~= j,+ o&E„where j,-j,—jz. Then E, can be conven-
iently written as

E = =K(T, H)—
(Xf 0'f

where K(T, H) «1. Using the dependence j,(H) = a(T)/H
and vf ——o„H, /H, we fi.nally derive

C2

T) (6.6)
O.„H, T

The coefficient K(T, H) characterizes the initial stage
of the magnetic flux motion and inhomogeneity of pinning
centers. It is natural to assume that, in the field re-
gion H„«H «H... the magnetic field dependence of K

H, H,' X(T) '~'
gH&gH, =—+ —J+

2 4 (6.7)

(6.8)

Qualitatively, the form of the dependence of zH, on T,
is the same as the form of its H, dependence. For To
»A(T) a(T)/

~

a'(T) ~H,'. , gH, reaches the value -HJ.
In deriving Eq. (6.8), it was assumed that the heating

was sufficiently slow for a homogeneous temperature to
become established in the sample. It can be readily
shown that for this to be the case it is necessary that
To «gTO/pl' or, for characteristic values of the param-
eters, T, «10 Ks

Shown in Fig. 18 are experimental values of ~H, de-
pending on To at different H, obtained by Watson (1967)
in porous glass samples with indium pressed into the
pores (sample with T, =4.04 K). Figure 19 contains
data from the paper by Wipf and Lubell (1965) (Nb-Zr
sample at T,= 2.5 and 4.2 K). Calculated curves ob-
tained with tbe aid of Eq. (6.7) are shown in tbe figures.
The value of A(T) in the case of each T, was selected
such that the calculated curves should not lie below the
experimental points. The value of H,. was estimated by
Watson from the known. experimental T, data and from
the heat capacity of his samples (see solid curve in
Fig. 18). As can be seen from Figs. 18 and 19, the
agreement of theory with experiment deteriorates at
low H, (H, & 2 kOe min in Fig. 18 and H, & 50 Oe s ' in
Fig. 19), where zH, is probably close to the maximum.
In the region of high H„ the agreement of theory with
experiment found by Watson somewhat deteriorates as

where

4~K(T) a'(T)
o„H, (T)

gH, reaches the lower limit of H& at H, »A( T)/ H,
'..

As follows from Eq. (6.7), at H, - 0, zH, -~. Actual-
ly, th latter value is known to be restricted and
reaches some value H at H, = O. The value of H can-
not be found from general considerations since it de-
pends on (1) the portion of current-voltage characteri. s-
tic at E-O, which has not yet been sufficiently studied,
and (2) uncontrolled perturbations that. are always pres-
ent in the course of experiment. Equation (6.7) could
be modified in order to take into account the arrival of
gH, at the limit H at H, -O. However, we shall not do
this because it would mean introducing and additional
fitting parameter into the theory Th.e function gH, (H, )
depends naturally on the specific form of the dependence
j,(H); however, its qualitative appearance remains un-
changed.

By analogous reasoning, one can find the stability
criterion under other types of external influence, for
example, external heating of the sample. Thus, in the
foregoing case, the dependence of the field difference
ZH, before the flux jump on the heating rate To is found
from the equation (Mints and Rakhmanov, 1979b)
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FIG. 20. A, as a function of T for the curves shown in Fig. 18.
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FIG. 18. ~~ as a function of T'p. Experimental data from
Watson, 1967 (symbols) and theory (dashed curves). The solid
line corresponds to the value of H&(T) found by Watson +967):
Curve 1 and data marked with x, & =2 kOemin ~. 2 demin; curve 2 and

, 3 kOe min; curve 3 and ~, 4 kOe min; curve 4 ao,d ~, 6
kOemin; curve 5 and v, 10 kOemin ~; curve 6 and+, 15
kOemin; curve 7 and&, 30 kOemin ~; curve 8 and ~, 58.5
kOemin ~; curve 9, 103 kOemin ~.

well. , because the accuracy of the value of H& known to
us is still inadequate. Plotted in Fig. 20 is the depen-
dence A(T) obtained with the aid of Eq. (6.7) and the ex-
perimental points of Fig. 18. In the vicinity of T„ the
upper critical field FI„~(1 —T/T, ) (see DeGennes

47o o

0
I0l

H~{Oes ')

FIC. 19. Experimental data from Wipf and Lubell, 1965 (sym-
ls) and theory (solid lines): Curve 1 and v T =4.2 K;v, p= .2 K; curve

2 and o, a, two different samples at T =2.5 K.0

1966). In the same region, o.a:(1 —T/T, ). If K(T) has
no singularity at T= T„A(T)~(1 —T/T, )-0, at T
—T,. Indeed, as can be seen from Fig. 20, A(T) drops
sharply at To& 2.5 K.

In plotting the theoretical curves shown in Fig. 19,
use was made of two fitting parameters A, and Hjy
sauce the value of Hz had not been determined in the pa-
per (Wipf and Lubell, 1965). Accordingly, the values
f A and Hy used in the plotting of theoretical

Fig. 19 were 4 && 10' Oe' s ' and 5 kOe at T,= 4.2 K, and
0.8p & %0 Qe s and 4 kQe at To= 2.5 K. Expressions
(6.6) and (6.7) enable one to estimate the value of Eo.
Let ~ = 4 x 10' Oe' s ', ~(T ) = n, (1 —T /T ) o = 8 x 10'
Acm 'Oe, T=4 K, and T, =10 K. Then &,-10 ' V
cm '. Usi.ng the characteristic values of H and & from
Eq. (6.8), it is readily seen that for samples of the Nb-
Zr, Nb-Ti type one should expect a marked effect of

T, on. gH, at T,=1.o'-1o' Ks' At T -1 Ks' H
=H

O
— ~ 0

gP

Some authors have observed an increase in gH, (H, )
in the region of high values for H, (H, & 10' Oe s ' at T,
=4 K for liquid-helium-cooled samples) (Rothwarf et
al. , 1968; Chikaba et al. , 1968}. These authors attri-
bute such an increase in stability to strong heating of
the sample by a variable external magnetic field (on
the T dependence of Hz, see Sec. VI.B.2 below). As
noted by Rothwarf et al. (1968), the start of the in-
crease in gH, coincides w ith the transition from the
nucleate boiling mode of liquid helium on the sample
surface to the film boiling mode. Accordingly, the
value of 8'0 drops by an order of magnitude. Estimates
show, however, that a uniform heating of the sam le
may prove insufficient (by a factor of two or more} for
quantitative interpretation of the observed growth of
gH, . It can be shown that nonuniform heating may lead
to a somewhat more rapid rise in stability than uni-
form heating. No quantitative description of this effect
has been provided, and the causes of the growth

' H
at high H, remain to be explained.
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We have been discussing throughout this section the
magnetic field difference in a superconductor before
the flux jump. In many experiments, the authors ob-
serve series of flux jumps in an increasing (decreasing)
external magnetic field [see Fig. 16(b}]. For these
cases, H& is assumed to be the difference between ex-
ternal fields pH, upon successive jumps. This is only
correct in the case of complete flux jumps, i.e. , with
a uniform field distribution in the sample as a result of
instability (Neuringer and Shapira, 1966). If this is not
the case, one can readily understand that pH, &H, The
value of IJ, may affect considerably the "degree of com-
pleteness" of the instability and, consequently, the
difference gH, . Such nonlinear effects have not been
studied as yet.

2. Field differences in the sample before the flux jump—
temperature dependence

The parameter measured most frequently in the
course of experimental studies is the magnetic field
difference in the sample before the flux jump. For y
«1 we have, for the case of a plane geometry

gH~H = [~'v(T) j.(T)/l(aj. /sT) I]"'
(sample without normal cladding)

gH & 2H,.

(sample with a d& d, cladding).
It is natural to assume that the ratio j,/j,'(T) depends

only slightly on the value of j, (and, consequently, on
pretreatment). This statement has been supported ex-
perimentally (Hancox, 1965).

Experiments (Goldsmid and Corsan, 1964; Swartz et
al. , 1964; Corsan, 1964; Hancox, 1965; Carden,
1965; Lange, 1965) carried out in porous Nb, Sn sam-
ples have demonstrated the effect of heat capacity upon
critical state stability. Upon penetration of liquid
helium into the pores, the effective heat capacity of
the sample increases owing to heat transfer between
the helium and the superconductor. The experiments
serve to confirm qualitatively the dependence H,.~ p' '.

In a fairly wide temperature range, the values of p(T)
and j,(T) can be approximated to a good accuracy as
v(T) = aT' and j,(T) =j,(1 —T/T, ), respectively. Then
we derive for H, (Swartz and Be.an, 1968)

H = ~"'(T/T )"' "'(T )(1 —T/T )"' (6.9)

The H~(T) curve is shown in Fig. 21. Plotted in the
same figure are experimental points taken from the
paper by Irie et al. (1977). Theory and experiment are
in qualitative agreement. A more accurate comparison
appears difficult in vi.ew of the fact that the experiment
was carried out in wires in an external transverse field
at pH&H~. Thus the analytical solution to this problem
tends to be complicated. The current distribution in
the case under consideration was calculated numerical-
ly by Ashkin (1979) and Zenkevitch et al. (1980). The
current and magnetic field distribution and, conse-
quently, the value of H, (T) (the maximum f.ield differ-
ence}, depend on the ratio H, /H&(T), where H& 8j,(T)A/—-
c. Instead of Eq. (6.9), we derive for H,~: H, ,(T)
=A(R, T)H&(T), where A(R, T)-1 is some function to be
determ ined.

Hp

O

I

0

If H,. &H~, as already noted, no flux jumps will occur
(at a given value of H, or some other "priming" influ-
ence). This statement has been experimentally sup-
ported by Shiiki and Kudo (1974) and Irie et al. (1977)
(see Figs. 17 and 22). As can be seen from Fig. 17, in
a wire with H~&H, , 2.5-3 kOe the region where losses
increase sharply due to flux jumps disappears. Figure
22 shows the dependence H~(T) and H, (T) as me.asured
by Irie et al. (1977). When the equality H~=H& is
reached, the instabilities disappear.

If H» = H~, the value of H,.~ is readily found analitical-
ly (see Sec. IV. C.4.a). Proceeding from the value of

P, found in that section for a normal metal-clad wire,
one can easily derive

52j 2' ( 3 8 (T)~ TS .c dT

A corresponding dependence was found experimentally
by Lange and Verges (1974) for Nb-Ti samples (see
Fig. 23). The theoretical curve is plotted as a solid
line. Corresponding to this curve is the heat capacity
p(T) = 4.6 x 10'T' erg cm ' K

Apart from the papers mentioned above, the value of
H& has been measured in numerous pther experiments
which are not listed here for lack of space. The agree-
ment of theory with experiment is within 30-40%, at
least when one can assume that instability has been in-
itiated with adequate intensity and that Eq. (6.9} is ap-
plicable.

CD

O
2

~ ~ ~
~ + + ~ + Jb

~ ~

I i t i I i I

2 4 6 S

FIG. 22. Experixnental values of H& (o) and H& (a) depending on
temperature, for Nb-Ti-Zr samples (Irie et a$. , 1977).

0.5
T/T,

FIG. 21. H as a function of T'/T~, plotted from Eq. (6.9). Ex-
perimental data from Irie eg ag. (jl.977).
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(Lange and Verges, 1974}. Theory and experimental data for
different samples.

3. Samples with normal-metal cladding

As shown in Sec. IV, a normal-metal cladding affects
considerably both the dynamics of instability develop-
ment and the stability criterion. We have already dis-
cussed in Sec. IV. C.S the experiments (Onishi, 1974)
designed to study the time variation of the magnetic
flux during a flux jump in a normal metal-clad super-
conductor.

Lange and Verges (1974) have measured the temper-
ature dependence of the maximum transport current
density in a copper-clad Nb-Ti wire. From their re
suits, one can find the value of R,/R, at which flux
jumps start to occur. As derived in Sec. IV, R,/R,
=2.4. Then, on determining the value of B, from ex-
periment, one can find the dependence of I„/I, on R/R,
without resorting to fitting parameters. The corre-
sponding points are plotted in Fig. 11. They are in
good quantitative agreement with theory.

Lazarev and Goridov (1972) have determined the ef-
fect of copper cladding on the maximum transport cur-
rent density in a superconducting wire. The results of
this experiment are shown in Fig. 24. As can be seen
in the figure, starting at d&d, =10 ' cm, the transport
current in the wire does not depend on the cladding
thickness d. The value of d, is actually independent of
the external magnetic field. In Sec. IV, d, was esti. -
mated at

Bd,/BH= 0, in virtue of smallness of the derivative
B(p,/z, a„)!BH, which is in agreement with the experi-
mental result. It follows from Fig. 24 that the ratio of
transport currents in clad and unclad samples, I~ andI, respectively, decreases with an increase in the ex-
ternal field. This is owing to the fact that the ratio R/
Ra drops with an increase of H, (see Fig. 11). For ex-
ample, if j,= j (T)(1 —H/H, ,), R/R —1 H/H,

& R &R, =2.4RO, the ratio I,/'I is not too high (about
1.2 or less), which coincides with the experimental re-
sults.

The growth of stability in normal-metal-clad samples
has been studied by Shiiki and Kudo (1974) and Irie et
al. (1977), as well as in some earlier papers (see the
review by Wilson et al. , 1970).

4. Brief review of some other experimental papers

We shall briefly discuss here three more groups of
experimental papers of interest from the standpoint of
processes accompanying the development of an insta-
bility.

In the papers by Shiiki and Kudo (1974), Shimamoto
(1974), Harrison et al. (1974) and Irie et al. (1977), as
well as in some other papers, the effect of external
cooling upon the critical state stability is studied. In
accordance with theory, in the case of a hard super-
conductor (y «1), the value of H, increases sl.ightly
(within about 10%) at T= 4 K with an increase in sur-
face cooling. The importance of surface cooling grows
with y. Inasmuch as q-ccrc/p~ T~ where p&0, the effect
of cooling grows at low temperatures, reaching about
20% at T = 2 K (Irie et al. , 197)7.

The dependence of the stability criterion on the pres-
ence of transport current in the sample was demon-
strated by McIntruff (1968). In the samples used by
McIntruff, flux jumps disappeared at H,.&H only to re-
appear upon the passage of a sufficiently high transport
current through the sample.

The time of instability development has been mea-
sured in the course of numerous experiments (Swartz
and Hosner, 1962; I ubell et ~g. , 1964; Goedemoed et
al. , 1965; Borovik et g/. , 1965; Neuringer and Shapira,
1966; Harrison et al. , 1973, 1974, 1975; Onishi,
1974). Depending on sample properties, cladding, and
environmental conditions, the mea, sured value lies in
the range of from 10 to 10 4 s; this order of magni-
tude is in agreement with the theoretical estimate of t,
It should be stressed, however, that t&' is the incre-
ment of the initial increase in instability. Accordingly,
the time t,. cannot coincide with the time of full pertur-
bation increase, whose value is subject to nonli. near ef-
fects.
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C. Composite superconductors

All of the difficulties involved in the comparison of
theory with experiment in hard superconductors have
as much (if not more) bearing on the case of supercon-
ducting composites. In addition, other difficulties
arise in the course of interpreting experimental data
for such materials. For example, most experiments
involve coil samples, in which it is difficult to separate
the effects due to the interaction (thermal, electrical,
mechanical) of the turns with each other from phenom-
ena due to the properties of the material as such. If it
is known that at some current value I the coil passes to
a resistive mode, a special study is required to find
out whether this transition is due to thermomagnetic
instability or to some other reason (for example, to
movement of the winding turns). On the other hand, as
noted in Sec. III.E, flux jumps in superconducting com-
posites may interact strongly with mechanical insta-
bilities such as plastic strain jerk. For thi. s reason,
we are unable to provide any reliable comparison of
theory and experiment in this particular case.

Vll. OSCILLATIONS IN THE CRITICAL STATE.
LIMITED FLUX JUMPS

We shall now discuss in more detail the electric field
and temperature oscillations occurring in a supercon-
ductor in the critical state near the stability threshold
As has already been noted in Sec. III, the existence of a
background electric field E, is essential for observing
such oscillations. The field E, should be induced by an
external source. Depending on the source, oscillation
effects can be divided into two groups, namely, oscil-
lations which occur under nonstationary external con-
ditions and those which occur under steady conditions.
Note that only oscillations of the former type have been
observed experimentally, with the field E, being induced
by a variable external field H, (t).

A. Oscillations and limited flux jumps occurring under
nonstationary external conditions

Consider a plane hard superconductor sample in a
variable external magnetic field H, (t). We assume that
I = 0, ~H, H,-&H~, while the sample surface is either
well cooled or the value of z is sufficiently small —7.

&7., (see Sec. IV.B). Under such conditions, as shown
above, A.,CO and the emergence of temperature and
electric field .oscillations is possible near the threshold
of critical state stability.

Let the external field be absent at the initial moment
of time. With an increase of H, (t), the magnetic field
difference zH grows in the sample and, consequently,
the parameter P is proportional to t,H'. At some value
of gH=H„P= P„while in the eigenvalue spectrum
there appear values of A. = iA, + A2 with a nonzero imag-
inary part and X,&0 (see Fig. 4}. If the amplitude of a
variable electric field

E(t) = E, exp(X, t/t„) cos(X,t/t„)

is less than E„electric field and temperature oscilla-
tions occur in the sample. The value of ~H grows with
H, and, at gH= H, , a flux jump occurs in the supercon-
ductor. The formula for the number of oscillations,

where &u= lt, /t„, was derived in Sec. III.D. Therefore,
the number and frequency of oscillations depend on the
sample properties„as well as on the external thermal
and electrodynam ic conditions.

If the amplitude of the electric field oscillations be-
comes higher than E„ limited flux jumps will probably
be observed in the sample.

A flux jump results in the heating of the sample and
a consequent decrease in the field difference. Follow-
ing the flux jump, the sample cools down to T= T, and,
on subsequent increase of the external field, the effect
is repeated. A similar pattern of oscillations preceding
the instability has been observed experimentally by nu-
merous authors (Zebouni et al. , 1964; Neuringer and
Shapira, 1964, 1966; Goedemoed et al. , 1965;
Deloastillo and Gswald, 1968; Chikaba, 1970; Shima-
moto, 1974). Deloastillo and Oswald (1968) have
demonstrated that in Nb, Sn samples both oscillations
and limited flux jumps can occur, depending on the
conditions (Fig. 25). It is worthy of note that these
authors observed a series of correlated limited jumps
(see Fig. 25, curves B and C). The nature of such cor-
relation has not been revealed.

With an increase in H„ the value of the field at which
one gets complete penetration of magnetic flux into the
sample drops because H~cc j,(H). Therefore, at a cer-
tain value of H„ it may turn out that H& & H~ and that os-
cillations and instabilities disappear in the region of
high external fields. However, inasmuch as the value
of j, varies only slightly with the field variation by the
value of H&, the probability is high that, following the
last flux jump, a magnetic field difference of H, &gH
&H,. sets up in the sample and a series of oscillations
are observed which are not accompanied by a flux
jump. The value of gH drops with an increase in H,
and, at gH= Ho, oscillations start to decay and disap-
pear. A similar effect was observed by Zebouni ef; al.
(1964}. It can be readily seen that the number N, of
such oscillations may turn out to be much higher than
the number N of oscillations before the flux jump esti-
mated above.

As follows from theory, the oscillation frequency may
vary, depending on the conditions, - in the range of from
0 to t„'z 't' (see Sec. IV). By using z= 10 ' and t„= 10~

FIG. 25. Oscillattons and limited flux jumps in Nb3sn strips
(Deloastillo and Osmald, 1968).
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s, we derive for co, 0&~&10' s '. Accordingly, one
can readily find for the number of oscillations: 0&N
&(H, lH. ) 10' s.

The qualitative results obtained above are applicable
to some degree of accuracy if the sample conductivity
is independent of coordinates and time. Thi.s approxi-
mation is only true if the greater part of the sample
bulk in the critical state has undeigone a transition to
the flux flow mode. For this to happen, it is necessary
that E, & E, or H, & cE,/L Assuming that E,= 10 ' V cm
and 3=10 ' cm, we obtain H, &10' Oes '. If this is not
the case, the qualitative pattern of oscillations appar-
ently stays unchanged. However, the numerical values
of frequencies and rise increments may differ consid-
erably from the formulas provided in the present re-
view.

In order to calculate the oscillation amplitude, one
should solve the equation for small perturbations in the
critical state, taking into account the initial and in-
homogeneous boundary conditions. In the case of II~
&H, (oscilla. tions before successive flux jumps), the
solution of such a problem encounters serious compu-
tational difficulties. These difficulties are due to the
presence of the boundary of the critical state region
where the superconducting current density abruptly
turns to zero. The position of this boundary is a func-
tion of time. Not solution to the problem is available
in this case for any situation of practical interest.

If H, &H~&H, (the last s. eries of oscillations unaccom-
panied by a flux jump), the foregoing difficulty is re-
moved. The corresponding Iinearized equations (4.1)
are solved with the aid of a Laplace transform. We
give below their solution for the case of a plane plate
at I = 0. Following the procedure of Mints and Hakh-
manov (1979a), one can readily derive (cut »1):

b'
T= To+ ~6' ResH, ~(0)+ a(x) ~H, ~(ice) ~er' cos(at+ g)),6cK

(7.1)
E= —ResH„(0)+ b(x) ~H, „(i~)

~

e"' cos~t),c

where H, „(z) is the Laplace transform from H, at X= @,

H~= — H, t exp Xt t, dt,
K P

ResH, &(0) is the residue of this function at z= 0, and
b ResH, ~(0)lc = ,E. [H,(t) is assumed to vary mono-
tonically. ] The values of ~, 1, a(x), b(x) depend on the
value of y and external cooling. Consider now a series
of limiting cases describing roughly possible experi-
mental situations.

Let zp»1 and y«1, which corresponds to the case of
a hard superconductor at E, & Ep cooled with liquid
helium. For this case,

W4/' 7/ ~ n

28/3 2/3 K 0 2 K

(7.2)

a(x), b(x) co-. (—).
(7.4)

In the latter two cases [cf. Eqs. (7.3) and (7.4)],
"slow" oscillations are observed, i.e. , ~t„«1. Note
that in the case of fast oscillations the electric field
amplitude contains a high factor y . In addition, the
amplitude of "fast" oscillations grows substantially
with time since I'CCT ' [see Eq. (7.2)]. Therefore,
after a relati. vely small number of oscillations their
amplitude gets to be higher than E, and the series of
oscillations appear to cease. It is believed, therefore,
that fast oscillations are relatively harder to reveal
than "slow" ones. Indeed, the papers listed at the be-
ginning of this section contain reference only to exper-
imentally observed low-frequency oscillations (at zo «1,
as a rule, when their amplitude is sufficiently high).
The only paper reporting the observation of high-fre-
quency oscillations of electric field and temperature is
that by Shimamoto (1974).

As is known, DeGennes and Matricon (1964) predicted
the possibility of Abrikosov vortex lattice oscillations
in Type-II superconductors. It would appear that this
mechanism could provide an alternative interpretation
to the E and T oscillations observed in the course of
'experiment. However, Zebouni et al. (1964) have shown
that such an interpretation is inconsistent with the ex-
perimentally measured strong temperature dependence
of the oscillation period in Nb-Zr samples (see, Fig.
26). At the same time, this dependence finds a natural
interpretation within the framework of the present the-
ory. The data provided by Zebouni et al. (1964) are,
unfortunately, insufficient to show which one of the
above-discussed approximations is closest to their ex-
perimental situation. It is clear, however, that slow
oscillations were observed. As can be readily shown
from the results presented in Sec. IV, the period of
slow oscillations grows rapidly with temperature for
the approximations natural to the low-temperature re-
gion.

C3
CP
lA

O

(D
CL 4

e ~
~ ~

If E, «E„ the situation can be simulated by assuming
7» 1. Then

-1/3t -1
K

0.6 7j.~
a(x) =2cos —,b(x) = cos —.

2 ' 7 2
I

0.2
f

0.4

The case of a helium-gas-cooled sample can be de-
scribed assuming zg «1. Then

a, b= const, g= 0.

Tc

FIG. 26. Experimentally measured period of oscillations in
Nb-Zr (a) and Nb (~) samples as a function of temperature
(Zebouni et al. , 1964).

Rev. Mod. Phys. , Vol. 53, No. 3, Juty 198'I



580 R. Q. Mints and A. L. Rakhmanov: Critical state stability in type-I l superconductors

Note further that the oscillation effects described
above may occur both in normal-metal-clad supercon-
duetors and in composite superconductors (Maksimov
an™n"s,1979, 1980).

B. OsciIIations occurring under stationary external conditions

1. Calculation of the oscillation amplitude in a linear
approximation

A stationary background electric field E, can be gen-
erated in the sample by passing through it a current I
higher than the critical current I,. When this is done,
the field E, induced by external emf is on the order of
(I —I,)/Sa, where S is the cross-sectional area of the
conductor and cr is the conductivity. If a small incre-
ment of perturbation rise is ensured by proper selec-
tion of sample parameters and external conditions, a
series of many E and T oscillations will be observed
in the sample. Whether this series turns to a flux
jump, starts to decay, or arrives at a stationary lim-
iting cycle depends upon nonlinear effects (see next
section).

In the case of q & 1, no oscillations occur in the per-
turbation spectrum at I ~ I, in the P &P, region (see
Sec. 1V). In the case of I ~ I„oscillations occur only
at sufficiently high values of 7, uy, which is charac-
teristic of liquid-helium-cooled supercondueting com-
posites. Nonzero eigenfrequencies are present in the
spectrum of eigenvalues of A. at I ~ I, in the case of
hard superconductors clad with a normal-metal layer
d exceeding some value d, . We shall confine ourselves
to the consideration of a hard superconductor with
cladding.

Let a sample present a plaoe plate of a hard super-
conductor having a thickness of 2b, clad on both sides
with normal metal to a thickness d, with the, transport
current I & I,= 2bj,. We shall assume the difference I
—I, to be sufficiently great for the plate to be in the
flux flow mode. As to the material of the cladding, it
is assumed that 0„»O„K„»K„p„&p„and z, » 1.
This case corresponds, for example, to a cladding of
adequately pure (a„~ 10" s ') copper. We shall consid-
er here only the case of good external cooling, u» 1.

The spectrum of eigenfrequencies of T and E pertur-
bations, as well as the stability criterion, ean be found
by the methods described in Sec. IV. Calculations are
facilitated by the fact that for the conditions under con-
sideration thermal processes in the cladding are ines-
sential.

The appropriate expressions for oscillation frequen-
cies and values of P„P, have the simplest appearance
in the limiting ease ~~~, «1. In this case, ~, P„and
P, depend only on the value of z, . The stability criter-
ion has the form P&P, (q-„d). The perturbation rise
increment X, turns to zero at P= P, (~„d). If d~ d,
= 0.7b[(1+ 2.3/. ,)' ' —t1], then Po& P„and in the region
Po&P&P, oscillations occur with a frequency co=& t '.
The dependence of the parameters ~, po, and p upon,
d is shown qualitatively in Figs. 27 and 28' where

2 -m' 1
u) =3v, t ', P, = ——— P =———.c 1~~ p 4 & c 4

The oscillation amplitude is readily found with the

FIG. 27. Oscillation frequency ~ as a function of normal clad-
ding thickness.

aid of the Laplace transformation of the appropriate
linear system of differential equations, which has the
form of Eq. (4.1) for superconducting material and the
form of curl curl E = 4m@„E/e' for normal metal. For
example, let the current I(t) increase monotomeally
from I, to I = I,+ gI. In this case, the solutions of
T(t) and E(t) at ~t»1 have the form (Mints and Rakh-
manov, 1979a)

T, + gT, 1 -x'-ae" cos—eos~g, g &1

(7.6)

E=E,(1-f(x)e"'cos(~t+ q)),
where

3gI 2Ks+Tp
2bIdj, /dTl(3„d/b —1) ' ' j b'

In deriving Eq. (7.5), itwa. s assumedthatl «~. The
values of f(x), a, and p depend considerably on the
oscillation frequency co. In the region d —dp «dp (d

"(d —do)/do. For a sufficiently small difference d —do,
the oseillations are slow: cut, «1. Here f(x)=const
—1, y = 0, ~ —1 to the main approximation in (df, «1.

With an increase in the frequency cu, the relative os-
cillation amplitude decreases while the inhomogeneity
of the electric field grows, reaching the maximum at
~= &u, . The expressions for f(x), a, and p at ~= ~, to
the main approximation in ~t„» 1 have the form

rx1 6~acos —, ~xi &b

f(x) =
3a exp[(b -x)/do] lx I'b

a= 16', exp( -d/d. ), q'= 2, I'= —'
[t1 P.('.)j-Inl((o,)1,w (o,

Pg, PO
a (&)~c

~c

0 do

FIG. 28. go(d) and gc(d) curves.
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Let us now estimate the maximum values of the oscil-
lation amplitude E and frequency co,. In so doing, we
shall proceed from the ratio between E~ and gT(0)
(temperature variation in the sample center). Inas-
much as E~&E, assuming that gT(0)=1 K [gT(1)«1
K for the case of ut„»1], then, on using the standard
values for the parameters involved, gl/I, =10 ', j,
= 10'-10 A cm ', z = 10 erg cm ' K ' s, p, = 10' erg
cm 'K, y, =1-10, one has E -10 '-10 'Vcm ', do
—(I —0.1)f,.

In addition to electric field and temperature oscilla-
tions under conditions of fixed transport current, there
may apparently exist T and I oscillations under condi-
tions of fixed voltage at the sample ends. However,
this problem is essentially two dimensional.

As can readily be seen, it is more difficult to detect
oscillations under stationary conditions than under
variable ones. Indeed, in the latter case, the external
field variation causes the parameter P to vary contin-
uously from zero to P, and is sure to get into the Po
&P&P, range (if Pa& P,). In the case of stationary ex-
ternal conditions, the values of P, P„and P, should
vary owing to variation of some additional parameter
(external magnetic field, temperature, external cool-
ing, thickness of normal cladding', and the like). In so
doing, P should get into the narrow region near P,. In
the case considered above, this region is on the order
of

2. Nonlinear effects

As can be seen from the foregoing, in the linear the-
ory stationary oscillations are only possible at the
point P= Po, i.e. , this mode is unstable in the linear
theory. Clearly, at ReA. &0, the behavior of oscilla-
tions over large times depends on nonlinear effects.
These effects may turn out to be substantial even in the
region of low-amplitude oscillations following a suffi-
ciently large number of cycles due to accumulation of
small nonlinear perturbation (see Bogoliubov and
Mitropolskii, 1974).

A qualitative analysis of nonlinear oscillations, pro-
vides certain arguments in favor of the conclusion that
as t -~ oscillations lend. to a stationary solution inde-
pendent of the initial conditions, i.e. , a limiting cycle.

For a more rigorous analysis of the effect of nonlin-
earity, one has to solve a nonlinearized system of heat
and Mmovell equations for a hard superconductor. If
8 and s «1 (low-amplitude oscillations), the solution of
the nonlinear equations can be found analytically. We
have not succeeded, however, in finding a case where
a limiting cycle of lom amplitude would exist at the
temperature dependences actually possible for the
sample parameters. Rather exotic dependences p(T),
j,(T) are required for the existence of such a cycle.
The problem of the behavior of c and 8 solutions at
other than low oscillation amplitude calls for further
study.

BS = —dlvq + jBt (8.1)

where q is the heat flux density. The transport en-
tropy S~ of the vortex lines is associated with the pres-
ence of excitations localized in the vortex core (Caroli
et al. , 1964). Therefore, one can a,ssume that the
transport entropy of the entire vortex lattice is addi-
tive up to II-H, , where the cores of the vortex lines
start overlapping. Thus, S =So+nS*, where 80 is the
entropy density neglecting the transport entropy of the
vortices.

In the case of a plane geometry (see Fig. 5), using
Eqs. (8.1) and (3.3) and the expression for S, we derive

VI I I. THE INFLUENCE OF THERMOMAGNETIC
EFFECTS UPON THE CRITICAL STATE STABILITY
AND DYNAMICS

A. Derivation of basic equations

This section mill be devoted to a discussion of the
influence exerted upon the critical state stability and
dynamics by transverse thermomagnetic Nernst and
Ettingshausen effects (Gurevich and Mints, 1979, 1981).
The inclusion of these effects causes the emergence
of terms proportional to V& and &, respectively, in the
expressions for electric current density and heat flux.
These terms may prove significant owing to high-tem-
perature gradients occurring with a magnetic flux jump
and the relatively low heat conductivity of hard super-
conductors.

The physical processes caused by transverse ther-
momagnetic effects have already been discussed brief-
ly in Sec. II, The term in Eq. (2.7) for current den-
sity, proportional to 8*V'T, results from thermoelas-
tic stresses in the vortex lattice. These stresses are
capable of either increasing or decreasing the value of
j when an appropriate fluctuation occurs. The term in
the heat flux density, proportional to E [see Eq. (2.8)]
is associated with the transfer of entropy by vortex
lines. For the sake of illustration, it can be rewritten
as S*nvT, where v = cE/H is the rate of vortex move-
ment and n is the vortex density. Also associated with
this term is the additiona1 heat released as a result of
variation in the length of the vortex bnes in the course
of their movement. For example, in a current-carry-
ing wire [Fig. 10(b) ], the heat produced in the volume
d V = 2 ~x A dz per unit time amounts to 2m qqCh dz
= 2mTS~nv dr dz, inasmuch as 2~&~n dr dz is the total
variation of the length of all the vortices passing
through the volume dV per unit time. Therefore, the
additional (apart from jE) heat released qq is equal to
STE/r. In the case of a plane geometry, the length of
the vortex lines does not vary with their movement and
qy ——0.

I et us now derive the equation for small perturba-
tions taking into account these thermomagnetic effects.
As usual, we consider Bean's model of the critical
state for the sake pf simplicity. The equations of in-
terest can be readily derived from the Maxwell equa-
tion (3.3) and the balance equation for the entropy den-
sity:
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c"=-X(P 8 + 2 p 8') + X7 c, (8.2)
X8= 9"+ c,

where p. =2mSbj, /c v, and the time dependence of AT
and F. is selected in the form of Eq. (4.2). In deriving
Eqs. (8.2), we have also used the Maxwell equatipn
curlE =-(1/c)H which serves as the continuity equation
for the vortex lines. By eliminating c from the system
of equations (8.2), we derive (Gurevieh and Mints,
(1979)

8'" —X(1 +~)8"—2 p X8' —A (p —X7.) 8 = 0 . (8.8)

In determining the eigenvalue spectrum of &, appro-
priate boundary conditions should be imposed on Eq.
(8.3). The electrodynamic conditions, as well as the
conditions on the surfaces of discontinuity of the cur-
rent density j, remain unchanged (see Sec. IV). The
surface cooling condition now has the form

~8(~1)~ 8'(~I) = n, [X8(~I) 8 "(~I)], (8.4)

where nq =ST/j, b. The term on the right-hand side of
Eq. (8.4), equal to —nqc(+I), is associated with the
term proportional to & in the expressipn fpr the heat
flux density.

s= X8,

s" +2ps'+ pc=0.
(8.5)

The problem of the boundary condition for Eq. (8.5)
deserves special attention. In the limiting case of
interest to us, the current distribution in the sample
tp within an accuracy of up to

~

& ~«& 1 depends on the
temperature distribution. As already noted in Sec. III,
in the discussion of the qualitative theory of flux jumps,
for zo» 1. a sharp temperature drop occurs over a dis-
tance on the order of a "thermal" length /r -b/~ A.

~

Accordingly, the current density increases near the. ,

surface, which can be interpreted as the emer ence of
surface current having a density pf j~- sj, /BT AT
Then, the value of I~= J~~, j~dx is of the order of

The presence of this surface current results in a vari-
ation pf the derivative &' in a layer of thickness E~
near the sample surface. Therefore, Eq. (8.5) is pnly
true in the re'gion ~1 —x

~

~ ~&~
' . From the Maxwell

equations it follows that, at p. =0,

&'(I) —~'(I —I /b) = c' at

Inasmuch as E, '(I) =0,

(8.8)

B. Simplified theory

In the general case, the equatipn for & turns out tp be
rather complicated and can only be splved with the aid
of a computer. An appropriate numerical analysis
shows that in the range of parameters characteristic
of hard supereonductors (7', nq, p «1) the instability
develops rapidly. ~, » &, however, &,«& &. The con-
dition of

~
&

~

» 1 helps reduce the basic equation (8.&)

to second order. Indeed, at ~&~ »1, we derive from
Eq. (8.2) to the desired accuracy

Z'(I —rgb) —,'I, —PZ~~~-' '«E
c'vb

Thus, at 8 = 0, both the electric field and its derivative
vary only slightly near the sample surface, and the
boundary condition for Eq. (8.5) at p. =0 has the form
&'(+I) =0 cited in Sec. IV.

However, if S & 0, one should take intp account the
variation of the boundary condition, inasmuch as this
variation makes a contributipn to the stability criterion
of the same prder of magnitude as the term pc' in Eq.
(8.5). A corresponding boundary condition can be
shown to have the form (Gurevieh and Mints, 1981)

nqP(1 + w/n~ X)(I + 2pr ~&/P)
&+zoyI&l '" (s.7)

W+
2 +00, (8.8)

where p, o
—pP '~' and where allowance is made for the

fact tha.t p. «~.
If re=0, analogous reasoning leads to the boundary

condition c'(I)j&(l) =—nqp. The stability criterion has
the form

m + no —&o~2
(8.9)

where no n, P
' 'and——nq, p, «1.

With good surface cooling, as seen from the criteri-
on (8.8), the thermomagnetic effects enhance the criti-
cal state stability, which is due to the presence near
the sample surface of a "heat barrier" precluding the
entry of new vortices into the superconductor bulk upon
develppment of a perturbation. With poor cooling, as
seen from Eq. (8.9), the thermomagnetic effects may
either increase or decrease the stability, depending on
the ratio between n, (defining the heat barrier on the
surface) and Vo [which defines, as follows from Eq.
(2.7), the decrease of current density in the bulk of the
sample].

I.et us now estimate the values of &q and p, . Select-
ing the temperatur e dependence of the parameters v,

and j, in the form v = v, (T/T, ),
S = S.(T/T, )(1 T/T. ), —

and j = jo(1 —T/T, ), we find

where p is a number on the order of unity.
I et us npw find the stability criterion for a plane

sample in the simplest case pf I=O, ~=Hp The
solution of Eq. (8.5), satisfying the boundary condition
c(0) =0, has the form

s=Ae "sin~x.
If zo is so great that zo» nz

~

& ~, r ~

&
~

we derive from
Eq. (s.7)

~'(1)
~ (1+2v. r~&IP) = 2v .-

Then, on substituting the solution s(x) into the bound-
ary condition, we find that the stability criterion has
the form
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where

C. Dynamics of instability development

Consider now the dynamics of instability development
(with due regard for thermomagnetic effects) for per-
turbations with ~&~ »1, based on the exact dispersion
equation for A. We shall seek a solution to Eq, . (8.8)
in the form

A)d ~",

where the k& are found from the equation

8 —~I'(1+~) —2q~I - ~(P —~~) =0.
At

~

&
~

» 1 the dispersion equation can be expanded in a
series in the small parameter ~X~

' . As a result, we
obtain

w(v X —p. ) + X(1 —2 o.g p) + v X(2 p, —o.gP)
w(p~X+p') +2o.,pX'~'+ X(o.qP —p)

p' =P —x~ —P'/~.

From the conditions {aX/ep)~ = ~, w»/X„and o„p,
«1 we derive

13w + X,(2 p. —oqP) —A, (w~ + 4oi p) =0 . (8.11)

It follows from Eq. (8.11) that, at w»1, X, is deter-
mined by thermomagnetic effects if

(8.12)1 «w «w» - o.'OSLO/7'.

The characteristic value of sv for liquid helium cooling
is 10—10'. At helium temperatures, &ppp ~ 10" . The
influence of thermomagnetic effects upon the dynamics

a = —'(mT. /v, )'~'.
C

The temperature dependence H&(T) obtained with due
regard for &p and p, () is shown in Fig. 29. As can be
seen from the figure, thermomagnetic effects influence
the stability most strongly at low temperatures. For
typical values of Sp, v„and T„ the value of the param-
eter a turns out to be of the order of 10 ' —10 '. The
influence of thermomagnetic effects on the stability is
pronounced at T/T, ~ cF, where p, 0-1. The only ex-
ception can be made in cases when the stability cri-
terion is defined by a small parameter v (for example,
a wire with transport current I=I„where P, -7).

of instability development may be considerable if T

~10 '. In such cases,

ff the condition (8.12) is not satisfied, thermomagnetic
effects upon the dynamics and stability of the critical
state are significant only if pp —1.

With weak cooling (w «1), thermomagnetic effects
upon the dynamics of instability development are ob-
servable over a wider range of parameters. Thus, if
v ' «o.'Op, «1, it can be easily found from Eq. (8.11)
that

&~ =P /(2 o'0 k 0)

It is apparent, therefore, that transverse thermo-
magnetic effects, while relatively weakly affecting the
critical state stability (if P -1), can determine the
characteristic time of magnetic flux jumps.

D. Wire with transport current I = I,
I.et us consider now the case of I=I,. In so doing,

we shall omit the details of cumbersome calculations.
Thus, for a wire with current I=I, [see Fig. 10(b) ],
the equation for the maximum wire radius R at zo»1
has the form (Gurevich and Mints, 1981)

where
g p 4go„g H~2 2mRpj

Ao= T
4m' (dg, ldTI ' c'v HI ' ' c

(we believe the sample to be in the flux flow mode),
and, as usual, o.=o„H/H, . H & «p, o, the critical

c2
state stability largely depends on thermomagnetic ef-
fects. Thus at &p» pp one can readily find R =6pp&p.

Assuming that the self-magnetic field of the current,
H„ is much lower than the external field transverse to
the wire axis (but I=I„w»1), the expression for R
can be found in the general form (Gurevich and Mints,
1981)

R =~87 1+—HI a
m H 6

With the growth of &„ the importance of thermomag-
netic effects decreases.

I.O

0)
O—0.5

0 0.5
/Tc

I.O

FIG. 29. H&(T) dependence for T=0, &(T~) =10 ergcm K ':
curve 1, S0 ——0 curve 2, SO=2 &10 ~ curve 3, So ——10 6

erg cm K

IX. THERIVIOMAGNETOIVlECHANICAL INSTABILITY IN

SUPERCONDUCTORS AND THE TRAINING
PHENOMENON

We shall now study, in more detail than in Sec. IH.E,
the critical state stability in superconductors in the
presence of high stresses causing plastic yield of the
material. Unlike the thermomagnetic instability dis-
cussed in the preceding chapters, mechanical effects
in the critical state have not been studied until recent-
ly. At the same time, they present nowadays one of
the most urgent problems related to the development of
largb magnets. Indeed, in a magnet a superconductor
is affected by high mechanical stresses due to ponder-
omotive interaction of a high-density current (10 to
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10' Acm ') and a magnetic field (10 to 10' Oe). This
is accompanied by the emergence of stresses of up to
10' dyn cm ' which are of the order of the yield point
for appropriate materials and, consequently, cause
marked plastic strain. Associated with the presence
of high mechanical stresses is a phenomenon undesir-
able in magnets, namely training, which has been ob-
served in numerous experiments in both short samples
and superconducting cpils. The relationship between
plastic strain and training of short samples has been
reliably proven experimentally. Training in coils may
have various causes. The presence of mechanical
stresses causes additional dissipation pf energy in the
system owing, fpr instance, to movement of winding
turns in the magnetic field, cracking of the material
used to impregnate the windings, etc. (see Wilson
et a/. , 1970; Edwards et al. , 1975; Smith and Coyler,
1975; Kuroda, 1975; Anashkin et a/. , 1977; Schmidt
and Turk, 1977). The heat evolving in this case may
prove sufficient for local heating of the superconductor
up to T»„or it may serve as a "primer" for the
emergence of a flux jurnp. We do npt discuss here
problems related to magnet manufacturing technology.
However, in many cases, the training of coils is caus-
ed by the training of the superconducting material pro-
per.

v —(ET) = KV (DT}+j,Z+ a«,
4m aj
e at'

(9.1)

in the region of current flow, and

v —(aT) = ~v'(zT) + 0«at (9.2)

A. Thermomagnetomechanical instability theory

1. Basic equations

In this section, we derive equations describing the
development of small perturbations of temperature and
electric field in the critical state, in the presence of
mechanical stresses causing a plastic yield of the ma-
terial (Mints, 1980; Maksimov and Mints, 1981). The
instabilities pf interest present a plastic strain jerk
and a magnetic flux jump, developing jointly. Both
hard and composite supereonductors will be cpnsidered
below. Here, as before, a superconducting composite
is regarded as a homogeneous anisptropic supercon-
ducting material. The physical and mechanical prop-
erties of such a medium depend on the lpcal properties
of the superconductor and the normal matrix, averaged
over the composite cross section.

Inasmuch as the instability under discussion is as-
sociated with macroscopic strain jerks, we shall pro-
ceed from the phenomenolpgical description of plastic
yield, in which the plastic strain rate u is a function of
temperature T, of stress 0 (or elastic strain u, related
to the latter by Hooke's law), and of plastic strain u,
i. e. , u=u(T, 0, u). Then, in a linear approximation
(in perturbations of temperature, electric field, and
plastic strain 5u) the equations have the form (Mints,
1980)

a au au a—&u = —~T + ——6u ~

at aT at au at (9.8)

The solutions for ~T and & will be sought, as usual, in
the form of Eq. (4.2). Analogously, «= &«0(x/&)
&&exp(&t/t„). Then, on eliminating «o from Eqs. (9.2)-
(9.3), we derive

zg=~ I9+~+ 8,
A. + A.„

v s= Av s —Ape8,
(9.4)

in the region of current flow, and

X8=V 8+ 8,X+ A.„
(9.5)

in the region where there is no current. The notations
used are

au—t„,
au

(9.8)

Estimates show that in the materials of interest tp us
the values of &„are such that 0 & ~„«&.

The eigenvalue spectrum & is found from the condi-
tion that nontrivial solutions exist to the system pf Eqs.
(9.4) and (9.5) with appropriate thermal and electrody-
namic boundary conditions.

Note further that in the presence of plastic yield a
superconductor is already nonuniformly heated in the
unperturbed state. Therefore, when deriving the lin-
earized equations (9.1) and (9.2), one should, general-
ly speaking, take into account the coordinate depen-
dence of the initial temperature.

Of principal interest for further discussion, however,
are situations in which the characteristic time for
magnetic flux jumps tp develop and that for plastic
strain jerks to develop are of the same order of mag-
nitude. In this case, the interaction between them ap-

in the sample region where the current is absent;
When deriving Eqs. (9.1) and (9.2), the fluctuations of
the stress g included in these equations is disregarded
because u involves a considerably stronger dependence
on o.. In addition, it is assumed for simplicity that
the sample is only strained in one direction. Note the
omission from the derived equations pf any heat re-
lease due to an electric field induced upon the sample
movement in the magnetic field. This term, as can
be readily shown, is small in proportion to H /4mo «1
as compared with an analogous term directly describ-
ing strain losses a&u.

Equations (9.1) and (9.2) must be complemented by
an equation describing the evolution of total strain 5(u
+u,}. However, as shown by Mints and Petukhov
(1980), for characteristic values of the parameters the
inclusion of elastic strain fluctuations leads only to
insignificant corrections of the obtained results.

Therefore, the system of Eqs. (9.1) and (9.2), at a.

preset dependence of critical current density and rate
of plastic strain upon T, H, 0, and u, helps us to study
the critical state stability in relation to thermomag-
netomechanical instability. It is assumed that Bj,/Bu,
Bj,/Bo =0. In addition, Bean's model of the critical
state is used for simplicity. Then,
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pears maximum. As has been shown in a number of
papers (see Sec. III), the time for development of plas-
tic strain jerk, t~, is great —t~» t„. We have already
discussed corresponding cases when t&»t„. This is
true primarily of composite superconductors and hard
superconductors in which so «& and 7 &7, .

In the case of superconducting composites, even those
which are liquid-helium-cooled, one can assume that

As can be readily shown, at ze «& and with a
heat release uniform over the crpss section, the de-
pendence of the unperturbed sample temperature on the
coordinates may be neglected.

2. Critical state stability in a plane plate

Consider by way of example the critical state stabil-
ity in a plane plate of a hard or composite superconduc-
tor with transpprt current I=il, and H, =O, in the
presence pf plastic yield of the material. External
heat transfer will be assumed tp be weak, i. e. , zv «&.
Note that in the case of a plate in an external field &,
& 0 parallel to the plate surface, the stability criteria
can be derived from those found below by simple sub-
stitution of c(II, -H~)/4wbj, for I/I, .

In the case pf a plane geometry, on eliminating c
from Eqs. (9.4), we derive

e"" (~~+X)e"—~(p- x~)8=0,

a. Adiabatic boundary conditions

In this case, the dispersion equation has the form

5 (&+0 ) tanh(k i) + k (&—k ) tan(rP,'i)
+ (~)'~(IP, + a,') tanh[(~)'~(1- z)] = O. (9.10)

It will be recalled that at u =0 in the absence of plas-
tic yield, depending on the value of &, two types of &(P)
spectrum are possible. At ~ &7,(i), &, & 0, while at
~ &~,(i), &, =0, where

gl 1
~,(i) = —~ ———. +-

Gi Vi 2

(Maksimov and Mints, 1979).
Consider first the case of small ~: ~ «1, v & ~,(i).

The evolution of the eigenvalue spectrum of &(P), de-
pending on the variation pf the parameter &&, found
with the aid of numerical calculations, is shown in Fig.
30. Naturally, the dependence &(P) suffers the most
pronounced variation in theregion of slow (&«1) per-
turbations.

Up to o'r = o2 (curve 5 in Fig. 30), the critical state
stability depends pn rapid perturbations. In this region
of parameters, while expanding Eq. (9.10), one can
derive for P(&)

7l
2 2

P = ., —o.r + X7 + ., —o.„4i 4g

4mb'j.
'

dj,
cv dT

(9.7) whence

m' t 4~'a„ln')'"
A. 4z'

8'(~1) + we(~1) =o,

~e (+1) e" (~1)=o,

Xe[+b(l —z)] 8-[~ b(1 —z)]=0.

(9.8)

For convenience, we have now defined P in such a man-
ner that this parameter is independent of I/I, .

The boundary conditions and the conditions for join-
ing solutions at ~x

~

= b(1 —I/I, ) take the form

P, = P, = ., (1 + 2 Mr) —o.4i' (9.11)

Inasmuch as ~n the region of parameters of interest &&
& X„«1 it follows from Eq. (9.11) that the characteris-
tics pf the eigenvalue spectrum in the region of high &

vary only slightly. The heat release asspciated with
plastic yield has no time tp substantially affect the dy-
namics of such perturbations.

Let us now study the region of low ~. By expanding
the dispersion equation (9.10) at &«1, one can derive

In addition, 8 and 8' are continuous at x=+ b(1 —I/I, ).
The equation for temperature in the region ~x

~

& b(l
—I/I, ) has the form 8"—Re =0, and its solution (which
is symmetrical with respect to the Ox axis) is 8
=& cosh[(A)'I'x].

The solution to Eq. (9.7) in each one of the two re-
gions can be written as

8 = C1 cosh(K1x) + C2 sinh(T&1x)

+ C3 cos(K2x) + C4 sin(T42x),

where

(i ~~)' '~ ~+~7
AP + (9.9)

0
Pz Pe

The dispersion equation for A. is derived from the con-
dition that the determinant of the appropriate linear
system of equations relative tp C; vanish.

FIG. 30. Evolution of the &(8) spectrum at g &P, upon variation
of the parameter nz for re=0 and «T, (i): Curve 1, nz =0;
curve 2, 0&a&& nj,. curve 3, n&=&&,. curve 4, aj & a&& n&,.
curve 5, ~g=a2, curve 6, &p
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the value of P at which & vanishes. It is
n~'tP=pi=~

Z )
(9.12)

consideration is equal to

1 —1.3~7'/'
" 1-0.25'„g'T'~' '

The value of ~ = &2 at which the value of &, varies
from X, »1 to &, =0 stems from the equality pq =P2,
whence

Analogously, one can find && ——&~ at which the nature
of the spectrum varies in the region & «1 (see curve
3 in Fig. 30): uq =0 4i .[~,(i) —~]&„«&„. On comparing
oq and o.'2, it is clear that o.'q/o'2 «1. In virtue of this,
X, =O in the region & —o'2 and the stability criterion has
the form

The value of Pz at which X=O is defined by Eq. (9.12)
for any ~. We now derive for the curve separating
the regions of stability and instability on the (P, o'r)
plane

(a,v'i'/l. 3)+p = 3.8W~/i', o.r & n,
~, /&„+Pi'/3=1, ar & o,

The separating curve P(or) has qualitatively the same
appearance as that shown in Fig. 31.

At v & ~,(i) for any values of o'r, the parameter &, =0.
As a result, the equation for the curve bounding the
stability region on the plane (P, or} has the form

P &pa. (9.13)

For && -&„, the interaction of plastic strain jerks and
flux jumps considerably decreases the critical state
stability criterion.

Thus the equation of the curve describing the bound-
ary of critical state and plastic yield stability on the
plane of parameters (P, or} follows from Eqs. (9.11) and
and (9.13) and can be written as

nr+P=, (1+2M~), o.r & n,4i

The corresponding curve is shown in Fig. 31.
Consider now composite superconductors (7' » 1). In

the range of parameters ~ & ~,(i) the curves A(P, or) be-
have qualitatively like those for the case of «& 1 (see
Fig. 30). Calculations analogous with those performed
above yield

( —:;)
where Q =2 5/i & is. the value of X, at o'r = 0 (see Sec.
IVD3). Inasmuch as o'r~i «1 for characteristic val-
ues of the parameters, the interaction between plastic
strain jerks and flux jumps affects the stability cri-
terion only slightly. The value of &2 in the case under

(9.14)

This curve is shown in Fig. 32. Thus, for 7»1, the
portion of the P(o.r) curve parallel to the ~ axis first
appears under condition &,(i) =v. Note further that, at
& & ~,(i), the interaction between flux jumps and plastic
strain jerks has a more substantial effect on the stabi-
lity criterion.

1/i 7' «X «w,

one can derive (A„«w)

X~+(w- or)7 —iP+ . =0,(w- nr)W7.
A.

(9.15)

b. Weak external cooling (X„«w« 1)

%'e shall discuss here only the limiting case of &» 1,
when slow perturbations are characteristic. With a
view to applying the obtained results to the case of
liquid-helium-cooled superconducting composites, we
shall regard the value of i to be not too small so that
v (i) «v, w7'i »1.

The curves &(P, nr) in this situation have the appea-
rance shown in Fig. 33. Numerical calculations are
required for finding the stability criterion in the gen-
eral case. However, in a number of limiting cases it
is possible to obtain analytical results.

We shall now demonstrate how the stability criterion
varies with an increase in &&. From the dispersion
equation in the approximation

U a

FIG. 31. Boundary of the stable region in the {P,az) plane for
m = 0 and v & r~(i).

FIG. 32. Boundary of the stable region in the g, o.'&) plane for
an 7 &e(i) .
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~3
—2(0 4.i (w —nr )[~, —7,(i)]].' ' =1, 0 & P7. (g) —nr ) «1

0

FIG. 33. Evolution of ~(p) curves with a variation of n~ (~
&0), r &7 (i): curve j., n &

——0; curve 2, n& & 2, curve 3, n &

=n2, curve 4, ng &n2.

whence

(w- nr)7
1

1.9
2

Wl/3 Z/Q l/3 ~

(9.16)

whence

p, = ~(I +2/0 4i'(w —. or)[~ —v, (i)]]'~).
Z

And, finally, for && & zo, &„should be taken into con-
sideration. For sufficiently large values of &~, where
it can be assumed that

(
o., ' 0.4p~'„[~ 7.(f)]

M) 20

we derive the following relationship for finding ~:

1 —PP/8+wl&- a, /(&+ X„)=0

from which we obtain

~M

(o.r/w)'~' —1
'

For both inequalities (9.15) to be valid at ~ » 1 it is
necessary and sufficient that 1 «X,i & or (w —o'r)i 7

With an increase in ~T, this inequality is dis-
turbed and, in the case of 0 & (zo —ur)i w & 1, the depen-
dence &(P, or) is found from the equation

3

0.4i'[r —~.(i)]i' — ——1)x+w —u =0,

This curve is shown in Fig. 34. Note further that Eq.
(9.17) for the limiting value of or ——o.', is true for any
zg«]. .

One can study analogously the case of quasi-adiabatic
cooling 0 & m «&„(Maksimov and Mints, 1981).

Thus we have shown that flux jumps and plastic strain
jerks interact strongly with each other if the charac-
teristic time for the development of each instability is
of the same order. Accordingly, the criterion for
thermomagnetomechanical instability may turn out to
be lower than the criterion for each of the instabilities
developing separately [compare the results presented
in this section with those of Secs. III and IV, as well as
with the criterion for plastic strain jerk found, for in-
stance, by Malyghin (1975), Petukhov a.nd Estrin (1975),
Petukhov (1977), Mints and Petukhov (1980)]. This cir-
cumstance, as already noted in Sec. IIIE, helps us to
interpret the training phenomenon as successive strain
hardening of the superconductor stimulated by the heat
emerging from the development of an instability. As a
result, upon subsequent cycling of the current in the
sample, the instability occurs at a higher value of cur-
rent (or of applied mechanical stress). If the mechani-
cal stress is not too high, training may apparently help
attain the limiting value of current, where the critical
state is stable with respect to magnetic flux jumps.

A method analogous to that used in the case of a plane
geometry for se «1 may be used to study cylindrical
samples (Maksimov and Mints, 1981). Note further
that all of the stability criteria obtained here included
as a parameter the sample temperature at the moment
when instability emerged Tq = Tq(&, w, I) & To. Conse-
quently, in order to determine, say, the maximum per-
missible mechanical stress at a preset value of trans-
port current, one should first calculate T'y on the basis
of the known dependence u=u(u, T,o).

B. Simplified theory

An analytical study of the critical state stability un-
der conditions of plastic yield of the material can only
be performed at zv « 1 when the temperature in the un-
perturbed state is practically uniform. Even in this

WT
I

Solving for o'» we find ur = o.', (P), where

A.„1— + (9.17)

On combining the results obtained in this section, we
find that on the plane (p, o'r) the stability region is re-
stricted by a curve:

ip + =1, 1 «i v (zo —nr)
ZO

0 W- —Wac aT
I

Y
FEG. 34. Boundary of the stable region in the (9,nz) plane for
Q« gg« g 7 &T (j).
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~,aT dg

g dTi
(9.18)

The corresponding term for heat release associated
with plastic strain is

case, however, considerable calculational difficulties
arise. It is therefore desirable that simpler methods
be found for studying stability, for example, methods
analogous to those used in Sec. IV.C.1 for T «1 or in
Sec. IV.D.2 for T»1. 'The development of such a theory
for the case of 7, ~ » & presents no special problems.
Indeed, as follows from the results presented in the
prec eding section, ~„«&,«&, &,&» I. . Ther efor e one
can assume that the instability develops with frozen-in
magnetic flux and that &j /Bt =0. The latter condition
permits us to reduce, as we did before, the system of
differential equations (9.4) being studied from fourth
order to second order.

In the approximation under consideration, the rela-
tionship between the electric field and the temperature
perturbations is defined by Eq. (3.13). Accordingly, in
a linear approximation, the heat released during per-
turbation development and associated with the electric
field is equal to

df (To)
Tp

0

After that, we derive

cP + &08 =0

(9.24)

(9.26}

where &o —o'~(To); the boundary condition on Eq. (9.25)
has the form

(q'~wq}„- „=0. (9.26)

The solution of Eq. (9.25), satisfying the bounda. ry con-
dition (9.26) and symmetrical to the 0~ axis, is

p=ln ——cos& (Ax)),
2A

Ap
(9.27)

It follows from Eqs. (9.27) and (9.28) that q -1 since
o'o & 1. Consequently, A ~1, and eq -1/f' -f(To) «l.

On substituting the initial temperature distribution,
found above, in Eq. (9.22), we derive a solution which
is symmetric with respect to the 0~ axis:

where the constant A is found from the relationship

2A A tanhA (9.28)

~D
gZT (9.19) e = Ck(~/ )'" -s[(~/ )'"-]

—A sin[(P/~)'~x] tanh(Ax)) .
In the case under discussion the only manifest effect of
plastic yield of the materiaL upon the critical state
stability is the release of additional heat.

If M «1 and the temperature T~ is practically uni-
form, we readily find

v'e+(p/~+ ~,), e=o. (9.20)

Using this equation, one can, for example, obtain the
stability criterion (3.19) and define the parameter y,
for different situations. In particular, for the case of
a plane geometry this criterion naturally coincides, in
the main (7' » 1) approximation, with Eq. (9.16), the
value of yo in this case being equal to w/i.

If tQe heating due to stationary plastic yield is low,
i.e. , Tq(x) = To[1+ eq(x)], where eq «1, the coordinate
dependence of heat conductivity and critical current
density may be neglected and they can both be regarded
as functions of Tp = const.

In numerous materials at low temperatures the tem-
perature dependence of u is exponential in nature.

By substituting the latter solution into the boundary
condition, we find that the stability criterion has the
fol m

P&P„
where P, is defined by the equation

}/g

tan( ) +A( ) tanhA+ (v
cosh'A

=ze ~ —A tan ~ tanhA (9.29)

0 1 ~c
p

c (9.30)

while the parameters A and &0 are related to each other
by Eq. (9.28).

For w «1, we obtain from Eq. (9.29) 2A = w —P/~
to the desired degree of accuracy. On substituting this
expression into Eq. (9.28), we derive

u = uo exp[f (T)], (9.21)

(9.22)

Let us consider the simplest case of a plane plate
having a thickness of 2b with transport current 1=1,.
We first find the initial temperature distribution. As-
sume Tq = To[1 + eq(x)], where eq «1 but [df(To)/
dTolToei —1. Then

8,"+a axP f(Ta)+ To&i)=o.
- &up df {To)

Tp d T()

Denote the function

(9.23)

where uo ——const, and f(T)» 1. Then the dependence
of ur upon eq(x) cannot be neglected. The equation for
a. small perturbation e [Eq. (9.20)] assumes the form

V'e+[p/~+ o.,(x)]e=o.

where a, =w/e.

C. Experimental studies of thermomagnetomechanical
instability and training

The training phenomenon in superconducting coils
was discovered in the early sixties (Leblanc, 1961).
However, the possibility that training was related to the
inherent properties of superconducting materials
(namely, to plastic yield instability) was first proposed
by Evans in 1973 [for a review of the literature see
Pasztor and Schmidt (1978)]. And it was only in the
mid-seventies that studies of training were begun in
short superconductor samples, under the effect of high
mechanical loads. Indeed, it was under such condi-
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FIG. 35. Dependence of o~ upon n for a liquid-helium-cooled
Nb-Ti wire, at different values of the I/I, ratio (Pasztor and
Schmidt, 1978).
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FIG. 37. The value of oq{n) for a superconducting composite
under different conditions of external cooling, I/I~=95%: 0,
sample placed in liquid helium. ; o, sample under vacuum;
heat-insulated sample in liquid helium (Pasztor and Schmidt,
1978).

tions that training was discovered (Anashkin et al. ,
1975; Schmidt, 1978; Schmidt and Pasztor, 1977).
Further studies confirmed the relationship between
training and plastic yield of the material, in particular,
plastic strain jerks (Pasztor and Schmidt, 1978;
Anushkin et al. , 1977, 1979).

Shpwn in Figs. 35 and 36 is the dependence of stress
o@ at which the transition to normal state occurs upon
the number of lpading cycles e for a hard superconduc-
tor (Fig. 35) and a superconducting composite (Fig. 36)
at different I/I, ratios. (Pasztor and Schmidt, 1978).
As follows from theory, the higher the current the low-
er the stress corresponding to quench. Accordingly,
an increase in mechanical stress is accompanied with
a decrease in the current at which the instability oc-
curs.

Figure 37 plots the values of ob (n) taken from the
same paper for a superconducting composite under dif-
ferent external cooling conditions. As can be seen
from the figure, the stability increases appreciably
with increased external heat transfer, which is in
agr cement with theoretical results. An analpgous ef-
fect is pbserved in the case of hard superconductors.

As is known, preloading of the sample leads tp mech-
anical hardening. The value of o+ at which a plastic
stra, in jerk occurs increases accordingly. Such a hard-
ening effect should naturally pccur in the case of ther-
momagnetomechanical instability as well. Indeed, it
was pbserved in the papers cited above by Schmidt,
Schmidt and Pasztpr, and Keilin and co-workers. The
respective values of oo(n) obtained by Pasztor and
Schmidt (1978) prior to and after preloading are pre-
sente 1 in Fig. 38(b) for a hard superconductor and in
Fig. 38(a) for a superconducting composite.

The study of sound emissions has proven to be an
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interesting method of investigating the dynamics of in-
stability development in the critical state, both in the
presence (Pasztor and Schmidt, 1978) and in the ab-
sence (Pasztor and Schmidt, 1979) of plastic yield.
Plotted in Fig. 39 as a function pf cr are the number of
surges pf spund activity exceeding a certain power
level (in the present case, 92 dB) at a frequency of
100-300 Hz fpr a number of cycles of mechanical load-
ing of a Nb-Ti sample (Pasztor and Schmidt, 1978).
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FIG. 36. Maximum applied stress 0@ at different values of I/I
as a function of the number of on-off cycles for a supercon-
ducting composite {Pasztor and Schmidt, 1978). The sample
was under vacuum.

0 IQ 20

FIG. 38. Effect of prestrain upon training and stability (Pasz-
tor and Schmidt, 1978). (a) superconducting composite, with
the bottom points obtained for a sample without prestrain and
the top points after five cycles of loading from 3.6 &10 Nm
to 12 &10 Nm; (b) Nb-Ti, with the hatched area containing
training curves for samples that have not been prestrained
while the top points are for a sample after five loading cycles.
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C. Instability development in time
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FIG. 39. Intensity of acoustic emission from Nb-Yi virire as a
function of stress after several loading cycles (Pasztor and
Schmidt, 1978).

As follows from the figure, a marked increase in emis-
sign occurs at 6 values corresponding to the quench
in the preceding cycle.

X. CGNCLUSIGNS

En this section, we shall briefly discuss a series of
problems associated with the study of critical state
stability in a number of superconducting materials.

B. Ultrasonic emission and attenuation

As already noted, sound emission and variation in
ultrasonic attenuatipn have been observed while study-
ing the development of magnetic flux jumps and the
training phenomenon in superconductors. One can ex-
pect that further acoustic studi es pf super conductors
in the critical state will provide additional information
on the development of perturbations of a diverse physi-
cal nature (Pasztor and Schmidt, 1978, 1979; Nomura
et a/. , 1980). Such papers hold considerable applied
interest as well (Nomura. et al. , 1977, 1980; Pasztor
and Schmidt, 1978). For example, in large supercon-
ducting systems ultrasonic diagnostic techniques may
prove cpnvenient for determining the stability thresh-
old. Up to now, ultrasonic attenuation in hard super-
eonductprs has been studied gnly in the absence of in-
stabilities (Neuringer and Shapira, 1966, 1967; Mis-
sell et at. , 1976a, b; Missell, 1979), while ultrasonic
emission has not thus far been studied.

A. Interaction of thermomagnetic and thermomechanical
instabilities

The theoretical and experimental study of this prob-
lem has in fact begun only recently. A quantitative
epmparisgn of the available experimental and thegreti-
cal results, followed with a study intp possible interac-
tion mechanisms of magnetic flux jumps and plastic
strain jerks, would be of considerable interest here.
For example, Gurber (1977), Bupp (1977), and Ziegler
(1978) have shown experimentally that plastic strain
affects considerably both the value of j and the shape
gf the current-voltage characteristic. Naturally, it
should alsg affect the development of thermomagneto-
rnechanical perturbations.

The present review discusses gnly the initial stages
of development of various instabilities, when perturba-
tipns may be regarded as small. In such discussigns,
naturally, one cannot determine the final state tg which
the superconductor will pass as a result of instability.
The only exception is the case of small Limited magnet-
ic flux jumps when perturbations decrease due to the
oscillatory nature of the eigenvalue spectrum (see Sec..

VD).
Theoretical studies of the time evolution of instability

m~st deal with several evident difficulties. Since one
has tp solve a system pf twg nonlinear diffusion equa-
tions, analytic results are difficult to obtain. Note that
analogous problems arise in other fields gf physics
and chemistry, such as the theory gf combustion,
chemical kinetics, biophysics, ete.

The statement of a nonlinear problem immediately
gives rise to the question (Neuringer and Shapira, , 1966;
Wipf, 1967) of whether slight nonlinearity leads to sta-
bilizatipn of the critical state if the stability criterion
fpund in a linear approximation is violated or, in pther
words, whether only a minor shift gf the magnetic flux
occurs upon violation of the stability criterion. This
problem has been studied both experimentally and the-
oretically. The experimental study in this case is
rendered difficult by the fact that the magnetic flux en-
ters a hard superconductor in the form of bundles con-
taining a large number (up to 10'—10') of vortices (And-
erson and Kim, 1964). As a result, it appears rather
difficult to draw a bne between the movement of large
bundles pf vortex lines and small flux jumps. How-
ever, at Least under certain conditions, no such minor
shifts of magnetic flux occur (Urban, 1970).

Wipf (1967) made an attempt at obtaining an analytical
criterion for determining the amplitude of a flux jump.
According tp his result, both large and small flux
jumps may occur. However, in order to simplify the
calculations, he made a number of assumptions whose
applicability range is unclear.

Wipf and Lubell (1965) and Swartz and &can (1968)
have assumed that a flux jump can take place until al-
most complete disappearance of superconductivity,
provided the energy of the superconducting currents
is sufficient for heating the sample up to T ~ T, . It
should be noted that this assertion lacks adequate prggf
in the papers cited above.

In a series of papers by Morton (1968a, b) and Mor-
ton and Darby (1973), nonbnear electrodynamic and
heat equations for the case of hard superconductors in
the critical state were solved numerically. Unfortu-
nately, it is hard tg derive any general conclusions
from these papers because of the small number of
cases calculated and the absence of analytical results.

Naturally, in the experiments the development pf a
flux jump is traced from its beginning to its end. Rel-
atively few papers, however, study the effect of ex-
perimental conditions on the final state to which the
superconductor passes. In practice, flux jumps ac-
companied by a complete disappearance of supercon-
dueting current and partial flux jumps when the super-
condueting current drops in value but does not disap-
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pear have both been experimentally observed (Urban,
1970; McFarlane and Deer-Hughes, 1970; Boyer et aE. ,
1971). Boyer et al. (1971) found the magnitude of par-
tial flux jumps to increase with the deterioration of
cooling. According to Chikaba et al. (1968) and Urban
(1970), the number of limited flux jumps in a given ex-
ternal magnetic field range grows, while their magni-
tude drops, with an increase in the rate of variation of
the external field 0,. It should be noted that the reason
for such effects in these experiments is not yet clear.

D. Heat solitans

The development of one or another instability in the
critical state is accompanied by intensive local heat
release. This makes possible the formation and sub-
sequent propagation (or localization) of normal phase
regions of finite dimensions —resistive domairis (Vol-
kov and Kogan, 1974; Skocpol et aE. , 1974; Mints,
1979; Gurevich and Mints, 1980; 1981). Experimen-
tally, this problem has not yet been properly studied.
There exist only indications of the possible existence
of resistive domains and per iodic resistive structures
(Iwasa and Williams, 1968; Wipf and Soel, 1972).
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