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The current understanding of the behavior of quantum chromodynamics at finite temperature is presented.
Perturbative methods are used to explore the high-temperature dynamics. At sufficiently high temperatures

the plasma of thermal excitations screens all color electric fields and quarks are unconfined. It is believed that
the high-temperature theory develops a dynamical mass gap. However in perturbation theory the infrared
behavior of magnetic fluctuations is so singular that beyond some order the perturbative expansion breaks
down. The topological classification of finite-energy, periodic fields is presented and the classical solutions
which minimize the action in each topological sector are examined. These include periodic instantons and
magnetic monopoles. At suAiciently high temperature only fields with integral topological charge can
contribute to the functional integral. Electric screening completely suppresses the contribution of fields with

nonintegral topological charge. Consequently the 0 dependence of the free energy at high temperature is
dominated by the contribution of instantons. The complete temperature dependence of the instanton density
is explicitly computed and large-scale instantons are found to be suppressed. Therefore the effects of
instantons may be reliably calculated at sufficiently high temperature. The behavior of the theory in the
vicinity of the transition from the high-temperature quark phase to the low-temperature hadronic phase
cannot be accurately computed. However, at least in the absence of light quarks, semiclassical techniques and
lattice methods may be combined to yield a simple picture of the dynamics valid for both high and low

temperature, and to estimate the transition temperature.
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It is widely believed that the strong interactions are
generated by a non-Abelian [SU(3)] gauge theory of co-
lored quarks and gluons which are permanently confined
in color singlet hadronic bound states (Gross and Wilc-
zek, 1973b; S. Weinberg, 1973). This theory is called
quantum chromodynamics (QCD). ' It is described by
the Lagrangi. an density

Ng

2 = —~w „9'~"+g g,.(zP —m,.)g, ,

where I';, is the SU(3) field strength and g,. are quark
fields of various types (flavors). The theory is pa-
rametrized by one coupling constant and the quark mass
parameters m, In terms of these it purports to ex-
plain all the properties of hadrons.

Much of the support for QCD derives from its ability
(unique among four-dimensional field theories) to pro-
duce the almost noninteracting behavior of quarks at
short distances (Gross and Wilczek, 1973b; Politzer,
1973; Coleman and Gross, 1973). This feature of the
theory, known as asymptotic freedom, explains the ap-
proximate scaling observed in the deep inelastic scat-
tering of leptons off hadrons and leads to many quanti-
tative predictions of scaling deviations at high energy
(Gross and Wilczek, 1973a, 1974; Georgi and Politzer,
1974). The success of these predictions, as well as
many other confirmations of the predictions of pertur-

*Current address'. 452-48, Department of Physics, Cali-
fornia Institute of Technology, Pasadena, California 91125.

For an overall review of @CD see, for example, Marciano
and Pagels (1978).
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.bative QCD at short distances' (e.g. , narrow charm-
anticharm bound states, quark and gluon jets, etc. ),
has greatly increased our confidence in the theory.

QCD also appears to be consistent with much of the
successful phenomenology of the strong interactions-
the observed symmetry patterns of hadrons, the notion
of confinement of color, approximate chiral symmetry,
and the bag and string models of hadrons. Recently,
much progress has been made toward an understanding
of the dynamical basis for color confinement using
either semicla, ssical approximations (Cal. lan, Dashen,
and Gross, 1979b, 1980) or lattice approximations
(Creutz, 1980) to the theory. The semiclassical treat-
ment has also given indications of how dynamical chiral
symmetry breaking might occur and how the bag model
might emerge (Callan, Dashen, and Gross, 1978,
1979a).

Now that we possess a theory of the strong interac-
tions it is natural to explore the properties of hadronic
matter in unusual environments, in particular at high
temperature or high baryon density. There are many
reasons for such an investigation. First one might hope
to find or to produce in nature such extreme conditions
and thereby test the theory in a new domain. There are
three places where one might look for the effects of high
temperature and/or large baryon density on the struc-
ture of hadronic matter. Qne is in the interior of neu-
tron stars, where the density is significantly greater
than nuclear density. Another is during the collision
of heavy ions at very high energy per nucleon, in which
states of high density and temperature might be pro-
duced. Finally the standard cosmological models allow
one to extrapolate back to about 10 ' sec after the big
bang when the universe as a whole was at temperatures
comparable to nucleon rest energies. In all of these
cases an understanding of the physics requires know-
ledge of the equation of state and the nature of the
phases of hadronic matter. If, as we shall argue is
likely, phase transitions occur when the temperature
and/or the density are increased, then one might hope
to observe qualitatively striking phenomena.

There are, in addition, purely theoretical reasons
for exploring the thermodynamics of hadrons. Pre-
sented with a new theory involving novel and unfamiliar
physical mechanisms, it is of great value to explore its
properties in as wide a set of circumstances as pos-
sible. It is particularly important to try to extend the
theory to explain phenomena which are far removed
from the observations that originally motivated the theo-
ry. This effort can test the consistency and reasonable-
ness of the theory, increase confidence in its predic-
tive power, and deepen one's understanding of its struc-
ture.

Thus, shortly after the unified gauge theory of weak
and electromagnetic interactions was proposed (S. Wein-
berg, 1967; Salam, 1968), investigations of spontan-
eous symmetry breaking at finite temperature were car-
ried out (Kirzhnits, 1972; Kirzhnits and Linde, 1972,
1975). These studies used the analogy between super-

conductivity and the spontaneous symmetry breaking
(or Higgs mechanism) in gauge theories to argue that
at high temperature a transition occurs to a phase in
which the condensate of Higgs particles (or Cooper
pairs) disappears and the original symmetry is re-
stored. The perturbative methods devel. oped by Ber-
nard (1974), Weinberg (1974), and Dola. n and Jackiw
(1974) to study gauge theories at finite temperature al-
low one to compute the critical temperature and other
thermal properties of any phase of a gauge theory which
does not contain unbroken, non-Abelian subgroups. '

In the case of QCD it is of even greater importance
to extend the theory to unusual environments, since
the physics of confinement is much less understood.
Furthermore, one might hope that QCD would be easier
to solve at high temperature or density. We shall see
below to what extent this is true.

The questions that can be asked, and partially an-
swered, about QCD at, for example, finite temperature
are many. First of all one is interested in qualitative
issues: Does confinement persist at high temperatures,
or is there a phase transition to a nonconfined phase?
If there is a phase transition, what is the nature of the
high-temperature phase? What collective excitations
exist in this phase? Is there a mass ga.p? Quantitative-
ly one would like to calculate the equation of state of
hadronic matter at finite temperature, evaluate the
temperature dependence of the quark interactions, de-
duce the nature of possible phase transitions, and cal-
culate the value of the critical temperature. Before
turning to these issues let us briefly review the existing
literature in this area.

One of the first attempts to explore the properties of
hadrons at high terr. peratures was carried out by Hage-
dorn (1965; Hagedorn and Ranft 1968). On the basis of
a statistical bootstrap hypothesis he found that the den-
sity of hadronic states increases exponentially with
energy, and argued that this implies the existence of a
limiting temperature, above which hadronic matter can-
not exist. The Qenez iano model of had ronic scattering
amplitudes, and later the dual string model, bolstered
this notion since they produced an exponentially in-
creasing number of (narrow) hadronic resonances
(Fubini and Veneziano 1969; Huang and S. Weinberg,
1970). However, the arguments for a limiting tempera-
ture are suspect once the temperature is greater than
the width of the resonances. If indeed hadrons are not
"elementary" particles, but rather bound states of con-
stituents, then the exponential increase of the density
of resonances might equally well indicate a phase tran-
sition to a state composed of free constituents. Cabbibo
and Parisi (1975) argued, in the framework of quark
models of hadrons where quarks are permanently con-
fined in hadrons, that the exponentially increasing den-
sity of states simply means that above some critical
temperature quarks are liberated. We shall see in this
paper that QCD supports this notion.

Another argument for a quark-liberating phase transi-
tion appeared shortly after the discovery of asymptotic
freedom and the focus on QCD as the theory of the

For a review of the applications of pertorbative @CD see
Frazer and Henyey, eds. (1979) and Mahanthappa and Banda,
eds. (1979).

3For a comprehensive review of these results see Linde
(1979).
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strong interactions. Collins and Perry (1975) showed,
using renormalization group arguments, that as the
baryon density increases perturbation theory becomes
more reliable. In the absence of infrared singularities,
physical observables could be expanded, at sufficiently
high density or temperature, in powers of an effective
coupling which becomes arbitraril. y small. Collins and
Perry argued, furthermore, that at finite density the
plasmon effect, i.e. , the screening by the medium of
colored electric fields, eliminates infrared divergences
and that the Fermi momentum plays the role of an infra-
red cutoff. Thus they claimed that the equation of
state at large density could be perturbatively calcu-
lated and that it approaches that of an ideal. relativistic
gas of quarks and gluons. Similar arguments may be
applied when the temperature (or both temperature and
density) is large. This suggests the possibility that
any physical observable could be calculated using an
asymptotic expansion in an effective coupling which de-
creases as the temperature or density is raised.

Further work on the properties of QCD at finite tem-
perature and density was carried out by Kisslinger and
Morley (1976a, 1976b), who stressed the role of
screening at finite temperature. Freedman and McLer-
ran (1977b), and Baluni (1978) have studied perturbative
QCD at finite density and ha. ve computed the thermo-
dynamic potential to O(g~). Kapusta (1979a) has eval-
uated the thermodynamic potential at finite temperature
and density to O(g'). Although these explicit low-order
computations yielded sensible, infrared finite results,
screening has not been shown to remove infrared di-
vergences in higher orders. This has been discussed by
Linde (1979), who pointed out that finite temperature
may not provide a genuine infrared cutoff. We shall ex-
amine this issue in much greater detail below.

All of these authors have stressed the fact that zero-
temperature renormalization prescriptions suffice to
eliminate all ultraviolet divergences, i.e. , no new tem-
perature or density dependent infinities appear. This
ha, s been shown explicitly in one-loop (S. Weinberg,
1974) and two-loop (Kisslinger and Morley, 1976a,
1976b; Morley and Kisslinger, 1979) orders; for a
more general treatment see Taylor (1980).

Several. of the above authors4 have attempted to use
these perturbative results in astrophysical applications,
such as neutron star calculations. In addition there
have been other attempts' to use perturbation theory
at finite temperature or density to actually calculate
the value of the phase temperature (or density). These

See Collins and Perry (1975); Morley and Kisslinger (1979);
and Freedman and McLerran (1978). See also Bayrn and Chin
(1976) and Keister and Kisslinger (1976).

5See, for example, Morley and Kisslinger (1979), Kalashni-
kov and Klimov (1979), and Shuryak (1979,1980). Several authors
(e.g. , Kalashnikov and Klimov, 1979, and Kapusta, 1979a)
have also claimed that a phase transition will be signaled if the
pressure passes through zero. However, even if perturbative
calculations were reliable, this is not a valid criterion for a
phase transition. The pressure is normally defined by sub-
tracting the perturbative vacuum energy; nonperturbative con-
tributions will then make the zero-temperature, zero-density
pressure positive. Consequently, the pressure should never
vanish, even at a phase transition.

calculations typically employ perturbation theory in a
region where the coupling is strong, and they are there-
fore unreliable. In fact, unless the temperature is un-
reasonably low, the higher-order corrections to the
equation of state (at least through the low orders which
have been calculated) are small, and there are no sub-
stantial deviations from ideal gas behavior. In order to
establish the existence of a transition from a perturba-
tive phase to a confining phase one clearly requires a
nonperturbative treatment which is capable of producing
confinement.

Lattice gauge theories (Wilson, 1974; Kogut and Suss-
kind, 1975) provide a model of QCD which in the un-
physical limit of strong coupling can be easily solved,
and which exhibits in this limit linear confinement.
Polyakov (1978) and Susskind (1979) have studied the
temperature dependence of the strong coupling lattice
gauge theory. They have given convincing arguments
that, as the temperature is increased, these theories
undergo a phase transition to an unconfined phase. This
important result illustrates how a confining theory can
lose confinement. For strong coupling, the energy
eigenstates are closed strings of electric flux whose
energy is proportional to their length. Free quarks
cannot exist at low temperature since the infinitely long
strings (required by flux conservation) which are at-
tached to them have infinite energy. However, as the
temperature is raised the probability of finding closed
loops of flux increases. Since the number of such closed
loops inc rea. ses exponentiaily with their length (a la
Hagedorn), above some critical temperature entropy
overwhelms energy and a condensate of strings is
formed. One can then have free colored sources, since
the addition of one more flux string does not substan-
tially change the free energy. [This heuristic descrip-
tion of the work of Polyakov and Susskind is essential. ly
the same as that given by Banks and Rabinovici (1979).]
Polyakov and Susskind argue that this mechanism per-
sists as one approaches the continuum limit by letting
the coupling vanish; however, they are unable to deal,
in a qualitative fashion, with this limit.

In this paper we shall discuss in detail the properties
of QCD at finite temperature from the point of view of
perturbation theory, semiclassical methods (instantons),
and effective lattice gauge theories. Most of the results
presented below are new, especially those relating to
the effects of instantons. ' The resulting physical pic-
ture, however, substantially agrees with previous dis-
cussions. The basic scenario which emerges is as fol-

lowss.

At sufficiently high temperature QCD definitely loses
confinement. Thermal excitations produce a plasma of
quarks and gluons which screens all (col.or) electric
flux. This is reflected in the behavior of the correla-
tion function of the timelike component of the gauge

Many authors (Harrington and Shepard, 1978; Shuryak, 1978,
1980; Kapusta, 1979b; KUllmap, 1979; Bilic and Miller, 1979,
1980) have attempted to estimate the contribution of instantons
at finite temperature or density. None of these papers actually
calculates the temperature or chemical potential dependence
of the instanton density, and in fact previous treatments have
seriously overestimated the finite-temperature instanton den-
sity. (See Sec. VL.)
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field,

(&~(x)AO(y)) —exp —gag „)x —y j
.

The electric screening length m, ~ is perturbatively cal-
culable and is of order (gT) ', where g is the running
coupling (g —1/jnT). The heavy quark potential con-
tains only a screened, short-range interaction, V(A)
—(exp —m„R)/A. However, this electric screening does
not remove all long-range correlations. In fact, the
infrared behavior of the theory is controlled by the dy-
namics of the spatial gauge field A, . For high tempera-
ture, this infrared behavior is equivalent to that of a
three-dimensional pure gauge- theory with coupling g 'T.
Three-dhpensional gauge theories are believed to de-
ve1op dynamically a mass gap proportional to the (di-
mensional) coupling. However, this cannot be com-
puted, perturbatively. Beyond a certain order, high-
temperature perturbation theory actually breaks down
due to the singular perturbative infrared behavior of
the spatial gauge fields. Thus, for sufficiently high
temperature, QCD yields an unconfined phase with a
computable electric screening length of order (gT) '
and a (perturbatively) uncomputable mass gap of order
(a' T).

Topological charge is not automatically quantized at
finite temperature; finite action configurations exist
with any value of topological charge. However, due to
the dynamical effects of electric screening, only con-
figurations with integral. topological charge actually con-
tribute to the functional integral. Consequently, the 6
dependence of the theory may be reliably computed by
expanding about instantons (which exist at any tempera-
ture). Large-scale instantons are suppressed, essen-
tially due to the electric screening, so that one obtains
a well. defined, unambiguous contribution. The instan-
ton contribution to the free energy is negligible com-
pared to the perturbative corrections at any tempera-
ture where both ealeulations are reliable.

As the temperature is lowered, there must clearly be
a phase transition to a confined phase (a.ssuming that
zero-temperature QCD confines). Such a transition,
from a low-temperature confining phase to a high-tem-
perature color screening phase, is consistent with the
picture, gleaned from strong coupling lattice gauge
theories, of a condensation of electric flux tubes as
the temperature increases. The transition temperature
cannot be reliably computed using either perturbative
or strong coupling lattice methods alone, and it is not
even clear whether the transition is of first or second
order. jn quarkless QCD one can estimate the transition
temperature by combining semiclassical and lattic'e
techniques and constructing an effective 1.attiee gauge
theory which summarizes the large-distance dynamics.
This yields a crude, but consistent, picture of the be-
havior of QCD at any temperature.

The remainder of this paper is largely devoted to de-
veloping and supporting this scenario in detail. The
outline of the discussion is as follows.

In See. II we discuss how to express the partition
function as a functional. integral. over periodic fields.
Particular attention is paid to the relation between the
spatial boundary conditions and the definition of a phy-
sical state. The physical observables we shall be con-

sidering are then introduced and discussed.
In Sec. III we give a topological. classification of ihe

smooth, finite-energy gauge fields which may contri-
bute to the functional integral. A complete classification
of periodic gauge fields, satisfying a weak asymptotic
condition that ensures finite energy, is given in terms
of three sets of invariants. Two of these are the famil-
iar Pontryagin index v and the values of the quantized
magnetic charges q . The third is related to the asymp-
totic spatial behavior of the observable

))(x)=)'exp f d)d (),x), l3=1/ ))
0

which may be thought of as a closed, periodic timelike
Wilson loop. Its eigenvalues are gauge invariant and at
spatial infinity approach constant vat. ues, X". Any
finite-energy gauge field is classified by A.", q, and
v, in terms of which the topological charge

is given by

g = v+ P q (1n&")/2@i.

This is a generalization of a previously derived result
of Christ and Jackiw (1980). Many of the details of
our derivation are presented in Appendix B.

We expect that there exists a solution of the classical
Yang-Mills equations corresponding to the minimal.
action field for each of these parameters. These clas-
sical fields are of interest in semiclassical approxima-
tions to the functional integral, and consist of vacuum
fields, periodic instantons, and magnetic monopoles.
In the remainder of this section we discuss the proper-
ties of the known solutions.

Section IV is devoted to a study of perturbation theory
at high temperature. We first review the calculation of
the free energy to O(g'). (Odd powers of g arise due to
the presence of electric screening, which forces one to
resum perturbation theory so as to include the electric
mass m„ in the gluon propagator. ) The one-loop gluon
propagator is discussed in detail here and in Appendix
C. We carefully continue the periodic Euclidean propaga-
tor backto Minkowski spaeeand show that even though
electric fields are screened by the plasma of excita-
tions, static magnetic fields are unscreened to this
order. Higher-order contributions are then analyzed
using simple power counting arguments. Perturbation
theory is found to break down, and in fact only the first
five terms of the free energy [to O(g')j are perturba-
tively calculable. A "magnetic" mass of order (g'T)
should be generated; however, a reliable calculation
requires a complete solution of the three-dimensional
pure gauge theory. These effects may be heuristically
understood as a consequence of the presence of topo-
logically unstable magnetic monopoles.

In Sec. V we discuss the 8 dependence at finite tem-
perature, which arises due to the possibility of adding
the surface integral igg -iB f j'E to the Yang —Mills
action. At finite temperature it is not immediately
clear that the 8 dependence should be periodic, since
one can construct finite action fields with nonintegral
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topological charge Q. Such a field must have Q(x) 01
as x- ~. We show that the contribution of such "infi-
nite-range" fields vanishes in the infinite volume limit.
An explicit illustration of this phenomenon is exhibited
by calculating the contribution of inequivalent vacuum
fields with A =constant. (Details are presented in Ap-
pendix D.) The basic reason for this dynamical quanti-
zation of topological charge is once again the presence
of electric screening. We compute the l.eading high-
temperature behavior of the effective action and show
that the contribution of any gauge field is suppressed by
a factor of

exp — — g3x trm2 T2 Q

Therefore, only fields for which Q(x) -1 at infinity, and
hence which have Q = integer, contribute. Consequently,
the functional iritegral may be expanded about the mini-
mal action configuration in each topological charge sec-
tor. These fields are precisely the periodic instantons.
Large scale instantons are also suppressed by the elec-
tric screening so that the semiclassical approximation
is increasingly reliable as the temperature rises.

The precise contribution of instantons to the partition
function is evaluated in Sec. VI. Here we generalize
't Hooft's calculation of the fluctuations about an instan-
ton. field to finite temperature. The instanton deter-
minants are computed for an SU(N) gauge theory (de-
tails are given in Appendix E), yielding the complete,
temperature-dependent, instanton density.

In Sec. VII the actual phase transition is discussed.
We first examine the behavior of the free energy. We
find that there are no substantial. deviations from ideal
gas behavior, even when instanton effects are included,
until the temperature is so low that these calculations
become untrustworthy. We then construct, for the
quarkless theory, a crude effective lattice Lagrangian,
using semiclassical methods to evaluate the lattice
coupling as a function of lattice spacing and tempera-
ture. At zero temperature this yields an abrupt tran-
sition from weak to strong coupling behavior, and an
estimate of the string tension in terms of the renormal-
ization scale parameter in good agreement with nu-
merical lattice calculations. We find that as the tem-
perature increases the same picture persists for a
while, although the value of the string tension decreases
slowly. However, a substantial. change is found when
T= 8~a, where o is the value of the zero-temperature
string tension. Beyond this point instantons are greatly
suppressed, and one is in a simple perturbative phase.
Thus we have a global, albeit crude, picture of quark-
less QCD, valid for all distances and temperatures,
which undergoes a phase transition at T,= 8~o. If this
were the real world T, would then equal = 200 MeV. W' e
then discuss the problems of extending this discussion
to include dynamical, light quarks.

Section VIII contains some remarks concerning appli-
cations of this work, a list of open problems, and sug-
gestions for future research. Our notation is summar-
ized in, Appendix A.

Each section has been written in as self-contained a
fashion as possible. Therefore, readers who are pri-
marily interested in a'single topic, such as perturba-

tion theory, are encouraged to turn directly to the rele-
vant section.

dp' = Tr(e 8») (2.1)

and the thermal expectations of physical observables,

«) =—Tr(e-&»n).z (2.2)

P= T ' is the inverse temperature (ks=—1).
In the standard fashion one may derive functional, in-

tegral representations for these quantities (Feynman
and Hibbs, 1965). For gauge theories, one finds (Aber s
and Lee, 1973; Fadeev, 1976)

g = K)Q $) $) exp ——
2 S A. q (2.3)

where

S= dt(8+8 „„,),
0

d'x tr&„„E,„,

(See Appendix A for a review of our notation. ) Owing
to the (Hilbert space) trace in the definition of Z, the
functional integral is restricted to fields satisfying the
periodicity conditions, 7

A (P, x) = A (0, x),
p(p, x) =-)j'(0,x), )J)(p, x) =-T))(o,x) . (2.4)

We should like to sketch the derivation of this result in
order to exhibit the relation between the choice of bound-
ary conditions and the physical. definition of the partition
function. It wil. l be convenient to work in A.,= 0 gauge.
The matter fiel.ds will be ignored for simplicity; they
cause no change in the following procedure.

One begins with the quantum Hamiltonian,

tt= d'x — d*(8')*+—(8')*)1
2 g 2

and a Hilbert space of states spanned by ((A(x))). E.'(x)
and A'(x) are canonically conjugate. One may write
e ~»as lim» „(e 8")», s —= P/N, and repeatedly use the
completeness relations to find

&A'(x) le s»)Att(x))

8A(tx) exP —lid , dt d x —,tr(A*+ 8 ))',

where A(P, x) =A'(x) and A(0, x) =A "(x) are fixed. The

7The antiperiodicity condition satisfied by Q and g is a simple
consequence of the anticommuting coherent state representa-
tion of an operator trace.

II. FORMAL PROPERTIES OF F INITEee

TEMPERATURE FUNCTIONAL INTEGRALS

The finite-temperature behavior of any theory is spe-
cified by the partition function

Rev. Mod. Phys. , Vol. 53, No. 1, January 1981
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trace of e ~~ in the full Hilbert space,

X)Ax Ax e ~" Ax

could now be represented as a functional integral over
periodic gauge fields, A(P, x)'=A(O, x). This answer,
however, would not be the physical partition function.
The difficulty is simply that Gauss's law has not been
imposed and, consequently, the full Hilbert space con-
tains many unphysical states. Physical. states must
satisfy

for all A(x) =A'(x)T' with compact support. Since Q(U)
=—exp —i J (DA ~ E) is the unitary operator which imple-
ments the (time-independent) gauge transformation
U=e~, Eq. (2.6) shows that the imposition of Gauss's
law is equivalent to the requirement that physical states
remain invariant under all gauge transformations whose
generators A(x) vanish at infinity. Just such states may
be sel. ected by inserting the projection operator

P = mA n(e~)
A (~)=0

D ~ E(x)~(j)„„„,) =0 for all x, (2.5)

which expresses the conservation of electric flux. (This
constraint commutes with the Hamiltonian. ) In order to
satisfy Eq. (2.5) it is sufficient to require

P exp —i d'xtr ]34 x ~ E x
A (~)=0

(2.7)

exp -i d'xtr DA I ~ E (2.6)
into the functional integral. Since (A ~Q(U) =(AU~ (where
A~= U(8+A)U~), one finds the correct representation,

Z = Tr(Pe '")= " nAnA(A ~~e '"jA)
A (~)=0

0
ett)(x) xtd(t, x) exp ——, . dt de —,'tr(A +)) )) .

A (~)=0 A(B,x) = A (o,z) 0
(2.8)

This exhibits Z as a functional integral over fields which are periodic up to a "twist. " To derive the strictly period-
ic form [Eq. (2.3)] one may redundantly insert the projection operator P more than once and define

0
Z = )tm Tr(t e 'e)" = f etA(t, x)xttr(t, x) exp ——, dt d'x —,

' tr[(A —Dt))'+8'))
Al~ ~ 0

dee

md. (t, x)exp —,, 'dt d &ted~.„)=4+ (0 4g 2 (2.9)

Here A(t, x) has been renamed Ao(t, x) and A„(t, x) is
now strictly periodic. Ao(t, x) must vanish at spatial
infinity.

This form for the partition function contains an infi-
nite factor of the volume of the local gauge group. This
may be removed by applying the standard Faddeev-
Popov gauge-fixing procedure (Abers and Lee 1973;
Faddeev, 1976; Faddeev and Popov, 1967). It is im-
portant to note, however, that the local gauge group
is now composed of gauge transformations which are
periodic in time, U(P, x) = U(O, x). Consequently the
Faddeev-Popov determinant must be defined on the
space of periodic functions. Equivalently, the ghost
fields which are used to represent this determinant
must be anticommuting but periodic (Bernard, 1974).
(There has been some confusion in the l.iterature about
this point. ')

This derivation shows that if all states which satisfy
Gauss's law are to contribute to the partition function,
then Ao(t, x) must vanish at spatial infinity. Relaxing
this boundary condition is equivalent to redefining the
projection operator I' so as to further restrict the de-
finition of a physical state. For example, allowing
fields where A0 —constant as x- ~ to contribute to the

See, for example, Baluni (1978).

t

functional integral corresponds to including a projection
onto global color charge zero states,

dA'e xp(i AQ )d, Qd = t d'S ~ E'.
~(x(

Such a projection would prevent charged states from
contributing to the partition function. Since high tem-
perature may cause nonconfinement, physical charged
states may be present and presumably should not be
excluded from the theory. This will be discussed fur-
ther in Sec. V. Similarly, different Q sectors may be
separated by allowing the appropriate behavior for A. .
See Sec. V for detail. s.

We would now 1ike to review the various observables
which are of interest in studying finite-temperature
QCD. All thermodynamic quantities follow from the
free energy density,

S(T) = —(InZ)/PV. (2.10)

(V is the spatial volume. ) The pressure P(T) is simply
equal to minus the free energy density. The entropy
density s = &P/BT and the specific heat c„=T(ss/ST).
Note that the entropy and the specific heat must be posi-
tive; therefore, the pressure must be concave upward.
The pressure must be continuous across any phase
transition.

When using perturbation theory it is of course natural
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to study the behavior of the gluon and quark propagators.
Although these are not gauge invariant and hence not
physical observables, the propagators contain a wealth
of information about correlations in the theory. In or-
der to study correlations in the gauge field in a gauge-
invariant fashion, one may use the Wilson loop (Wilson,
1974),

)P[C]=tePexp "de' A ),
C

(2.11)

where C is any closed contour and Q denotes path order-
ing.

The Wilson loop is also the standard confinement cri-
terion used in zero-temperature, quarkless QCD x It
may be interpreted as the amplitude for an infinitely
heavy quark-antiquark pair to propagate around the
loop. If one considers a rectangular loop C of width R
and length t, then the expectation of the Wilson loop
yields the static quark-antiquark potential. ,

V(R) = lim —(In(W[C] ))/t .
g ~22O

V(A) is the minimal energy of a state containing a static
quark-antiquark pair separated by a distance R.

One is not interested in the minimal energy of the
quark pair at finite temperature, but rather in the aver-
age over the thermal ensemble of the energy of the
quark and antiquark. In other words, one wishes to
compute the trace of e ~" over all. states containing an
external source and sink of color electric flux, separ-
ated by the distance R. This is given by the expecta-
tion of "Wilson strings, "

r~
t)(x)—= Pexp dtA, (t, x)) . . (2.12)

0

owing to the periodic boundary conditions, Q(x) may be
considered as a closed, timelike Wilson loop. One
easily finds that

(tr[Q(x)] tr[Qt(0)]) = exp[-PV( )x (, P)] (2.13)

where V(R, p) is the finite-temperature static quark
potential.

Note that spacel. ike Wil. son l.oops do not function a,s
confinement criteria at finite temperature. They are
not related to the static quark potential (2.13), and
should simply be thought of as measuring correlations
in the spatial gauge field A(x).

III. PERIODIC FIELDS AND CLASSICAL SOLUTIONS
A. Classification

We should now like to discuss the different types of
gauge fields which may contribute to the functional in-
tegral (2.3). In order to do so, we must assume that the
functional measure [K)Ae ] is concentrated on fields
which are small fluctuations about smooth, finite-ener-
gy (that is 8& ~) configurations. Therefore we shall

This assumption is certainly required for any type of semi-
classical approximation. Whether or not it remains true in
the full theory is an open question. It could be that infinite
energy, or at zero temperature infinite action, configurations
contribute in a theory like @CD where the infrared coupling
can be arbitrarily large. There is a well known example of
such a phenomenon in the two-dimensional x-y model, where
infinite energy vortices can exist at sufficiently high tempera-
ture (which is analogous to our strong coupling).

Therefore, for any integer n,

ntr(Q" DQ) =Btr(Q") =o ~ (3.3)
t

This shows that the eigenvalues ]X}of Q(x) approach a.

limit ]X }, independent of direction, as ~x
~

-~. Thus
Q(x) may be considered as providing a mapping from
the sphere at spatial infinity into the equivalence class
of Z". Consequently, the topology of B(x) for ~x~ -~ is
classified by the winding of this mapping within the
equivalence class of g". This winding is in fact charac-
terized by the quantized magnetic charges,

q = lim . d S'tr(P B).
R ~ +~ {I xI=&]

(3.4)

[P (x) is a, projection onto an eigenspace of Q(x). The
magnetic charges ]q }arise as winding numbers of the
mapping of S2 onto the coset space C'/H, where B is the
isotropy subgroup of y".]

One further integer is required to characterize the
remaining topology of Q. This is the well known
Pontryagin index v. [The index v is the winding number
for mappings of S3 onto the full group C. After any
"twist" of 0 at infinity associated with the magnetic
charges ]q }is removed by a (singular) gauge trans-
formation, the resulting field may be regarded as a
mapping of compactified three space (or S3) onto the
group G, leading to the familiar Pontryagin index. ]

Thus all periodic gauge fields may be classified by
the asymptotic eigenvalues fX"}of 0, the magnetic
charges]q }, and the Pontryagin index v. We show in
Appendix B that the topological charge,

32 2 dt d'xtrE. .E
7T p

examine the topological classification of smooth, finite-
energy, periodic gauge fields. Only the results of the
analysis are presented here; for details see Appendix B.

In order to ensure finite energy,

g —— tr E2 +B2 ( 00

we assume that tr(E +B ) =O(l/r ")as x= ~x
~

-~, or

E =DpA Gap =0»'
(3.1)

B =(8+A)XA=o'"

[o —= O(l/v
' ), etc.]. This is a sufficient, but not

necessary, condition for finite energy. It is not known
if finite energy alone is sufficient for the following
classification. No other spatial boundary conditions
need be used.

The essential ingredient in our classification is an
examination of the behavior of the matrix

(t))x= P e pxdt At(t, x)) .
p

Under any proper (i.e. , periodic) gauge transformation
U(t, x),

Q(x) —U(O, x)Q(x)U '(O, x).
Thus the eigenvalues of 0 are gauge invariant and hence
are physical observables at finite temperature.

Using Eqs. (3.1) and (2.4) one easily finds

D(A(O, x))Q(x) =BR(x)+[A(O,x), Q(x)] =o i . (3.2)
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r

Note that these topological quantities ($y"I, q, v) re-
main invariant under any continuous local deformation
of the gauge field. Consequently, one might hope to
find the classical solution corresponding to the minimal
action field for any given values of these parameters.
Since the gauge field action is bounded by the topologi-
cal charge,

S=-,' E E~ —,
' E E =8m' (3 6)

one might expect the classical solutions to saturate this
inequality. In other words, one expects an exact self-
dual (E„„=E„„)or anti-self-dual (E„,= E,„) c—lassical
solution for every possible value of the classification
parameters (X"), q, and v. In the remaining parts of
this section we shall discuss the properties of these
classical solutions.

B. Vacuum fields

The simplest classical solution is of course pure vac-
uum, E,„=O. However, at finite temperature all such
solutions are not gauge equivalent (under proper, peri-
odic gauge transformations) (Batakis and Lazarides,
1978). Instead, the eigenvalues (A.")of 0 distinguish
inequivalent vacuum fields. Representatives of these
field's are clearly given by

A(t, x) =0, /IAO(t, x) =o, (3.7)

where 0 may be taken to be constant, diagonal, and
traceless. Obviously v =q =0 and g" = expo.

C. Periodic instantons

Next we consider solutions with zero magnetic charge
and nonzero Pontryagin index. Such solutions describe
periodic instantons. We shall see how such periodic
solutions may be constructed from the zero-tempera-
ture multiple-instanton solutions.

The general SU(N)- multi-instanton solution with
Pontryagin index R contains 4NR parameters (Atiyah
et a/. , 1978; Christ et a/. , 1978; Corrigan et a/. , 1978).
This solution is believed to describe K instantons with
independent positions, sizes, and group orientations.
Assuming that this is the case, then a periodic instanton
may be constructed from the multi-instanton solution
which describes an infinite string of instantons located
at x =0 and xo nP, n c 7, with ——identical sizes and with
gauge orientations given by (&u) ", ~ c:G. (That is, the
gauge orientation rotates by between any two nearest-
neighbor instantons. ) This self-dual solution has one
unit of topological charge in the physical strip,
0 ~ x„~P, and is periodic up to a gauge transformation

A(t + P, x) = (~ ~A(/, x)~ .
Furthermore, &(x) —1 as ~x

~

-~ since the instanton

' A simplified version of this result has been derived by
Christ and Jackiw (1980). These authors considered only
static fields with integer topological charge and imposed
several unnecessarily strict boundary conditions.

is given by'0

@=V+g q =V+
q fd 8'tr[(lnQ)B]. (35)

fields are well localized. Consequently, if one applies
the (improper) gauge transformation U(t, x) = &u' ~ ~, then
a strictly periodic field with Q(x) —~z as ~x

~

-~ will be
obtained. (w for n K Z is defined by choosing any one
parameter subgroup which interpolates between ~ and
1. &u may be taken diagonal without loss of generality. )
This field will describe a single periodic instanton with

Q =+ 1, S =Bw, and g" =~.
Periodic multiple-instanton solutions may be similar-

ly constructed from zero-temperature solutions with
several different strings of instantons. Anti-instanton
solutions may obviously be constructed in an identical
manner. These solutions will describe any number of
periodic instantons (or anti-instantons), each with an
independent position, size, and orientation. It should
be stressed that raising the temperature does not in-
crease the classical action of an instanton. Hence
classically the temperature does not provide a cutoff
on the scale size of an instanton. This is unlike the be-
havior in scale-noninvariant theories, where the action
of a periodic instanton increases with increasing tem-

peraturee.

We should now like to examine the behavior of the
fields of the periodic instantons. Unfortunately, explicit
parametrization of the zero-temperature multi-instan-
ton solutions are available only when all instantons have
identical gauge orientations. As a result, we shall only
be able to present explicit expressions for solutions
with p" = 1. Fortunately, we shall be able to argue later
(Sec. V) that only fields with X" = 1 actually contribute
to the functional integral.

We may use the convenient 't Hooft solution (1976;
see Jackiw, Nohl, and Rebbi, 1977) to describe aligned
instantons,

n 'a'rr=o,

A~ = Iig'„„(7'/2i) B„II

E „= IIT ' BY) (7 /22)T ' VII

Explic itly,

(3.8)

11(x)=I+ P p'„/(x-z„)'
n=i

describes K instantons with positions (z„) and sizes
fp„I. Taking p„=p and z„=npeo, n c Z, one finds the
periodic single instanton (Harrington and Shepard,
1978a)

II(/, x) =1+ sinh—7Tp . 2'
Pr -P

2m 2'cosh —r —cos—/ . (3.9)
p p

II(x) = (1+ 3y') + p'/x'+y'O(x'/P'), (3.10)

where Z -=wp/P. If we let p' =p /(1+ —,'X ), then

(r—= ~x ~.) Note that this exhibits the periodic instanton
in a "singular" gauge where A„has a pure gauge singu-
larity at x=t =0. This gauge singularity may be re-
moved by a periodic gauge transformation. (For ex-
ample, transforming to axial gauge results in an every-
where regular, periodic solution. ) Note that (in any
periodic gauge) Q(x) =P exp( j,'A, ) equals —1 at x=0 and
approaches +1 as ~x

~

-~.
For distances

~

x
~

«p
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Q oaf j
~'(1+~/&p) ' ' r'(1+r/&p) ' (3.11)

E',. =B,. ——[x'x' (r,iz—p)(n" ~' —3x'x')]/r'(1+ ~/Xp)' .
If x»yp then

E', =B', —
yp. (5" —3x'x'/r )/x

and the solution may be characterized as a three-di-
mensional dipole field. If P «r«p, p (which requires
p» P), then

E',. =B',- ——x'x' jr
and the fields describe a dyon with unit electric and
magnetic charges. See Fig. 1 for a schematic picture
of these regions.

The periodic instanton obviously has several different
length scales associated with it, including p ', P, and
gp. In discussing the behavior of instantons at finite
temperature it will obviously be essential to identify
the relevant scale for each physical effect. For ex-
ample, most of the action density,

,'tr E„„F„„=——'3 (3„lnII)

is concentrated in a region of size p
' about the center

of the instanton. Note that 0 & p' & 3(P/m) and that

—' t r F
~
„p - —(2'�/P )

Thus at nonzero temperature the field strengths do not
spread over an increasingly large region as p-~.

Aligned multiple periodic instantons may obviously be

a

2)2I I~ +o(x /

where I,=-5, —2x x, /x . Thus, viewed on scales
much less than P, the finite-temperature instanton is
identical to a zero-temperature instanton with a renor-
malized size p' = p /(1+ —,X ). If p « ~x

~

«p (which re-
quires p«P), then the instanton may be characterized
as a four-dimensional self-dual dipole.

For distances ~x
~

= r» |3,

II(x) =1+Xp/&+0(e " ),

con structed sim ilarly. Specifically,

7Tp~ . 27T 2m 277
II(t, x) =1+ ' sinh —&, cosh —~, —cos—t„

ug P&u P P

D. IVlagnetic monopolies

%e now turn to solutions with nonzero magnetic
charge. Naturally, these will be referred to as mag-
netic monopole solutions. It should be emphasized that
these are gauge field configurations with Ao taking the
place of the conventional (adjoint) Higgs field.

The simplest solution is the original Prasad —Sommer-
field (PS) magnetic monopole (Prasad and Sommerfield,
1975). This static, self-dual solution has the form

Ao(x) =(pr cothpr —l)x'/x,

A;(x) =(prcsch, p.x —1)&;„x"/r . (3.13)

The solution has an energy 8 =8m (p. /2m). Asymptot-
ically,

A'- p. —— ', A',. — „,.x~ v,

E'; =B', ——x'x'/x

Note that A„(x) is everywhere regular and vanishes at
the origin. Unlike the case of the instanton, the energy
depends on the scale of the solution, p. . However,
lim, „Ao = p.x'c0 (as required of any regular field with
nonzero topological charge ), and thus the value of p.

may be considered as a boundary condition for the solu-
tion. The energy is a minimum for any local deforma-
tion of the fields. To obtain an anti-self-dual solution
one simply changes the sign of Ap.

The existence of this solution is at first sight rather
surprising, since all axially symmetric self-dual solu-
tions were explicitly constructed by Witten (1977) and
were found to describe multiple-instanton configura-
tions. The resolution of this apparent paradox is that
the Prasad-Sommerfield monopole is simply a gauge
transform of the p -- limit of the periodic instanton.
Rossi (1979) found that

A.""=U(a„+A„"')U '

where

U(x, t) = exp[-(~ x/2i)8(r, t)],

(3.12)

(where ~„—= ~x —z„~ and t„=t —7~) describes IC periodic
instantons located at (v„,z,). Further examination of the
fields proceeds exactly as above.

Discussion of the classical interaction of instantons
with anti-instantons, or with general background fields,
will be deferred until Sec. VII.

sinhp. x sing, t
coshjU, x cosy. t —1„'

(3.14)

FIG. 1. (a) Small instanton p«P. I: core region x- p, II:
four-dimensional dipole region p «x «P, III: three-dimen-
sional dipole region P «x. (b) Large instanton P «p. I:
core region x- P, II: dyon region P«x «A. p, III: three-di-
mensional dipole region X p «x.

A„' ' = —f„;(v'/2i)3, 1 [(nsinhpr/px)/( sco@he —cosset)] .
[The p -~ limit simply serves to eliminate the 1 in Eq.
(3.9), resulting in the conformal invariant superpoten-

~~This is shown in Appendix B.
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tial (Jackiw, Nohl, and Rebbi, 1977). It is known that
the conformal solution possesses a residual gauge free-
dom which, if the instanton positions lie on a circle (or
line), corresponds to rotating the instanton positions
around the circle. This is why the p -~ limit of the
periodic instanton is actually static up to a gauge trans-
formation. ~ ]

The static (PS) monopole obviously may be considered
as a finite-temperature field for any period P. Note that

f7,(x) - exp[P p(T .x/2f)]

as ~x~ -~ and Q(0) =1. Thus the (PS) monopole pro-
vide s finite-tern perature solution s with

i.& i 2 -i Bv i 2
~

q =(+1,—lj, v = [pp/2m], and @=Pp./2v. If we choose
P =2m/p. so that @=1, then the gauge transformation
[Eq. (3.14)] which takes the p-~ periodic instanton into
the static monopole is not periodic, but rather anti-
periodic.

We have found (or at least described) exact solutions
with any values for ]X"Jand v, and with zero or one
unit of magnetic charge. The existence of-multiply
charged solutions remains an open problem. Static
multimonopole solutions are believed to exist, have a
known number of parameters (E. Weinberg, 1979a), and
may be approximately constructed for large separation
(Manton, 1977). However, attempts to find an explicit
construction have so far proved unsuccessful (Adler,
1979; E. Weinberg, 1979b). Unfortunately, such multi-
monopole solutions cannot be constructed as a limit of
the explicit multi-instanton solutions [Eq. (3.12)].
Taking the limit p„-~ (or dropping the 1) simply yields
a periodic solution with E';=A,'- —x'x'/r and 0-1 as
x -~. These solutions may not be gauge transformed
into static fields. Perhaps multimonopole solutions
may be obtained from appropriate limits of the general
periodic instanton with g" t 1. However, explicit para-
metrizations of the general multi-inst3nton solution ap-
pear necessary to verify this conjecture.

IV. PERTURBATION THEORY IN HIGH- TEMPERATURE QCD

In this section we shall study QCD at high temperatures by examining the perturbative behavior of the theory.
Since the running coupling g(T) vanishes as T -~, one might hope that perturbation theory would be reliable at suf-
ficiently high temperature. We shall see below to what extent this expectation is true.

We shall apply standard perturbative expansions to the functional integral (2.3). However, one is immediately
confronted with the problem of deciding which of the inequivalent cia.ssical vacuua. (3.7) to expand about. We shall
temporarily assume that the traditional choice, A.„=O, is correct and shall carefully justify this choice in Sec. V.

We choose to work in Feynman (n = 1) gauge and hence write

Z= X)A„X) a g)cf)cexp — g x —,"A', -8 0"5,„A.,'+, , +c' -8 0"c"+2,„, A.„
(4 1)

A. Free energy

The lowest-order contribution to Z is obtained by
simply dropping &,„, and performing the resulting
Gaussian integ rais. Thus,

Z = det, ' ~'(-3'5, „5")det, ( —3'5") det~J (p)

=det, '(-8 5")det ~ (P) . (4.2)

For convenience, we have specialized to the chirally
symmetric limit, m; =0. A, has been rescaled to gA, .
The coupling g should be understood to be the renor-
malized coupling defined at a scale which we may
choose to be T. [Counterterms are not explicitly indi-
cated in (4.1).]

I

F = —InZ/PV, is given by

m2Z4
F() ——— (N —1 + NNy) . — (4.3)

This is, of course, simply the free energy of a gas of
noninteracting, massless particles.

The perturbative corrections to this result may be
evaluated by expanding Eq. (4.1) in powers of 2„, and
computing the resulting Feynman diagrams. Zero-
temperature renormalization prescriptions eliminate
all ultraviolet divergences; no temperature-dependent
infinities remain (S. Wei.nberg, 1974; Morley and
Kisslinger, 1979). Kapusta (1979a) has evaluated the
first two corrections to Eq. (4.3). He finds

The subscripts + or —indicate that the determinant is
to be evaluated on &he space of periodic or antiperiodic
functions, respectively. These determinants may be
easily calculated (see Appendix D). One finds

g2745= Po+ (N —1)(N+ 4
—Ny)

3T4
(N —1)[3(N +N~/2)] ~ +O(g ) . (4.4)

ln det, (-32)=- m'y 1 (1 ~1)

Thus the leading contribution to the free energy density,

H. Jackiw is thanked for reminding the authors of this
point.

The first O(g2) correction comes from the two-loop
graphs shown in Fig. 2. The O(g ) term is the leading
contribution from the sum of ring diagrams shown in
Fig. 3. These diagrams are increasingly infrared di-
vergent and must be resummed to form 2 Trin(X)„„/~ „).
G,„ is the full gluon propagator. [This is the first term
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construct four independent, symmetric, O(3) covariant
tensors depending on a single vector k. For example,

A „=5~,(5;„.—krak, /k )5,.„,
B~„=(5~ o

—k ko/k )k /k (5,o
—k„ko/k2),

FIG. 2. O(g2) contributions to the free energy.

in the skeleton expansion of the free energy in terms of
full propagators and proper vertices (Freedman and
McLerran, 19VVa) and will be discussed further below. ]
The presence of this nonperturbative (i.e. , nonanalytic
in g ) term in the free energy is a consequence of color
screening. To understand this phenomenon it is much
more instructive to consider directly correlation func-
tions such as the gluon propagator. We consider this
topic next.

B. Gluon self-energy

The full gluon propagator I)'„',(x) =(A', (x)A„'(0)) may be
expressed in terms of the one-particle irreducible self-
energy, II"„(c,, k),

X)'„„(&u„,k) =[(u)„+ k )5' 5 „+ 11' „(u „,k)]

[Remember that X),„(t,x) is periodic in time; conse-
quently its Fourier transform involves a sum over the
discrete frequencies ko = ~ „—= (2v/P)n. ] The timelike
direction eo is physically distinguished at finite temper-
ature due to the finite period P. As a result one may

I

(&„o —k, ko/k')k, / ik i
+ k, / ik i(5„o —k„k,/k'),

II',„=O' II,„=(aA,+PB,„+yC~„+5D~„)5' (4.5)

a,„satisfies a Ward identity, which imp1ies that
k~k„X)„„=e =—1. At zero temperature this condition plus
Euclidean inyariance implies that k„lI„=O, or

I1„„=-', ll..(5„„-k.k„/k') .
However, at finite temperature this merely provides
one relation among the above coefficients, namely,

5 =-'~'/(k'+ I~) . (4.6)

Note that at zero frequency y(~ =0, k) must vanish due
to (Euclidean) time reversal invariance. Consequently,
the static self-energy II,„(~=0, k) is always transverse.

To O(g2), the self-energy is given by the one-loop
diagrams in Fig. 3(b). Explicitly, these yield

D,„=k, k„/k

Note that

A~„+B,„=5„„—k, k„/k

Thus the self-energy (which is always diagonal in color)
may be decomposed as

2 d4
II .(k) =—2&"N, „',tr[~.(k+dh. el/~'(k+~)'

gg5~ d 9 2k k 4 k +@ @ 4@ I +@ + 2g (4.V)

Note that to one-loop order, H, „ is transverse for any
frequency.

To study the screening caused by thermal fluctuations
we should like to examine II „(& ~, k) for low spatial mo-
mentum, k —0. We show in Appendix C that as k —0,

and

II~„((»„=O,k) —,'g T (N +Nq/2)5, o—5„o (4 6)

11,(u, „WO, k) [og T (N +Nq-/2) +f(u)„)]—,5~;5„; . (4.9)

f See Appendix C for the explicit form of f(~~„). It will
be unnecessary for our discussion. ]

nz„= lioo(~~& =0,k=0) = og T (N +N&/2) . (4.10)

Note that both quark and gluon fluctuations contribute to
the mass. The possibility of this electric mass is a
direct consequence of the fact that at finite temperature
the only way to approach zero (four) momentum, k= 0,
is to first set ko ——~g =0 and then let k-0. Hence
11»(&u =O, k) is unconstrained by the transversality of
the self-energy and so need not vanish at k =0.

The result (4.8) shows that A, develops a one-loop
mass due to the thermal fluctuations. This mass, which
we shall call the "electric" mass m„, is given by

+
FIG. 3. (a) O(g ) contribu-
tion to the free energy. (b)
O(g2) gluon self-energy.

+~ r +

Rev. Mod. Phys. , Vol. 53, No. 1, January 1981



Gross, Pisarski, and Yaffe: QCD and instantons at finite temperature

However, the static spatial self-energy Il;, (&v=0, k)
must be transverse; k;II;, (&u = 0) = 0. Consequently,

11,.„(~=O, k) = ,'(-5„-k,.k,./k')II„„(~ =O, k) . (4.11)

showing that heavy quarks are unconfined at high tem-
peratures. This lack of confinement is caused, by the
screening of the (color) charge of the heavy quarks due
to the thermal fluctuations. (We shall discuss the re-
gion of validity of this result below. )

So far we have discussed the behavior of the gluon
propagator in Euclidean space. This is the relevant
domain for considering the perturbative behavior of the
theory (see Sec. IV.C). However, one may choose to
examine the Minkowski space behavior of the propaga-
tor; that is,

D„„(x)—= Tr]e T fA, (x)A„(0)]}/Z,

where A, (t, x) =e'"'A, (O, x)e '"' is a genuine Heisenberg
field operator. This is the appropriate correlation
function for use in examining the real-time (linear) re-
sponse of the system to perturbations which displace it
f rom thermal equilibrium.

The Minkowski space propagator is simply the analy-
tic continuation of the Euclidean propagator, D&„(t,x)
=gO, „(it,x). However, the Fourier transform of the
Minkowski propagator, D,„(ko,k), is not just the con-
tinuation of X)„„(~z„,k) (Kadanoff and Baym, 1962; Dolan
and Jackiw, 1S74). Rather, one must first continue
X)„,(~~. „,k) to arbitrary (Euclidean) energy &d. This con-
tinuation X),„(~u, k) is uniquely defined by the require-
ment that it not have an essential singularity at t& = ~
(Baym and Mermin, 1S61). The resulting n, „(c,k) is
analytic in the right and left ~ half-planes. Across the
imaginary axis it will have some discontinuity

p„„(ko,k) =X) „(iko —c,k) —e,„(iko + c, k).

p„(ko, k) is the spectral density; it defines the possible
energies for an excitation of momentum k. )In fact,

p..(k) = fd'xe "*([A, (x),A,(0)]) .1

If II;;(k =0) is nonzero, then the two transverse com-
ponents of A wil. l have developed a "magnetic" mass,
m „=-,'II, , (&u =O, k=O). The one-loop self-energy (4.7)
is insufficiently divergent as k-0 to develop the direc-
tional singularity (4.11) required for a. magnetic mass
(see Appendix C). Consequently, to one-loop order the
spatial components of the gauge field A remain mass-
less.

The electric mass (4.8) implies that

&& ( )& (y)&-

as ~x —y
~

-~. (The nonzero frequency correlations
fall off much more rapidly, as e ""* ' .) Thus Ao ac-
quires a finite correlation length of (m„) . (See below,
however. ) Provided that higher-order corrections re-
main unim po rtant, thi s result implies that

(trQ(x) trQ(0) ) —1+g'O(e ei I * I) (4.12)

[The one gluon exchange term, of order g' exp( —m, i ~ x ~ ),
vanishes due to the separate traces in (4.12).]
Consequently, the heavy quark potential behaves as

k v0 v0 + u4 vi
vv( k2 + m2 ( 2/k2) k2 + j [m2 +f(k )](k2/k2)

as k -0. If we take k - 0 for ko c 0, then

&.0&.oR,„(k wO, k=0) =„2,
(

o „]+ . (4.13)

We show in Appendix C that f(k, ) vanishes as ko-O.
Consequently, the continued propagator (4.13) has a
pole at ko = ——,'m„+O(g ). Thus the spectral density
equals

p, „(ko,k =0) =27ic(ko) [5„5„,5(ko ——,'m„) + 5,o5„o5(ko)] .
(4.14)

This shows that the transverse, zero-momentum ex-
citations have an energy of m„/V 3. This is the analog
of the usual plasmon (Pines, 1964). One might be
tempted to conclude from this that all transverse gluons
have acquired a mass m„/M3, that all color fluctua-
tions are screened, and that no long-range forces exist
at finite temperature (Kisslinger and Morley, 1976a,
1976b). However, this is wrong. The problem is that
X),„(k) is not analytic about k=0. So, for example, the
limits ko -0 and k-0 do not commute. In fact, if we
first set k o

= 0 and then let k -0, we find

0) uo vo + xi vi
(k'+m' ) k'

and p„,(ko ——O, k-O) =0.
Since, for a static electric field

(E(x)E(x')) =(SAo(x)BAo(x')) + (higher orders),

(4.15)

Eq. (4.15) may be interpreted as showing that a static
external electric field is screened by the plasma of
thermal excitations. (m „) is the electric screening
length. However, for a static magnetic field

I

(B(x)B(x )) =(8 xA(x)8x A(x')) + {h.o.) .
Consequently, Eq. (4.15) shows that a static external
magnetic field is unscreened and so penetrates the
plasma. . Thus (to one-loop order) the plasma of ther-
mal excitations acts like a conductor but not a super-
conductor. [This same behavior is found in a finite-
density, zero-temperature quark gas (Freedman and
McLerran, 1977b).]

This discussion has been slightly oversimplified at

3Naturally, one may also consider the one-loop quark propa-
gator and its continuation back to Minkowski space. One finds
(for massless quarks) that S(p) -p/(p2+m2 ) for p —0 vrith

rn, = ~ (N —1/2N)g T /8. This chirally invariant "massr'
physically reflects the presence of a coherent polarization
cloud which surrounds the quark.

The Minkowski space propagator D„,(k) may now be re-
constructed as (Dolan and Jackiw, 1974)

dko (k k) 1 +f(ko) f(ko)
J„2

=u„.(i(k, +is), k) +f(k, )p.„(k).
Here f(ko) = I/(e s" —I).

Applying this procedure to the one-loop results (4.8)
and (4.9), we find (in Feynman gauge) that
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two points which will now be clarified. First, although
IIoo (~~ =0, k =0) is nonvani shing, the explicit one -loop
expression (4.7) is not analytic in k about the origin.
Thus the Fourier transform

d ke'"' k + GOD k

which occurs in K)00(t, x) does not in fact decay exponen-
tially with a correlation length of (m„) '. Second, the
pole in

C. Higher orders

At sufficiently high temperature one might expect the
lowest-order results to yield an increasingly accurate
representation of the free energy. Standard renormal-
ization group arguments yield

&(T,g, &) =(T/T. )'S(T„g(T),&), (4.16)

where A is the renormalization point and g'(T) is the
effective coupling which vanishes (as 1/lnT) for large
T. Thus if the free energy has a simple power series
asymptotic expansion for small g', then, F(T) could be
calculated to arbitrary precision for large enough tem-
perature. Unfortunately this is not the case. The sing-
ular infrared behavior of the Green's functions vitiates
a naive expansion in powers of g'.

One source of infrared divergences arises from mul-
tiple insertions of the one-loop gluon self-energy. For
example, consider the contribution to the free energy
of the graphs in Fig. 3(a), in which a timelike gluon
circulates around the loop. These terms behave as

1
d n —[rr (~=o, k)/k ]" (n-2).

n

They are infrared divergent due to the generation of an
electric mass [II«(0,k=0)OO]. Clearly these diver-
gences reflect the need to reexpress the perturbative
expansion in terms of the full propagators instead of
bare massless propagators. This may be achieved quite
simply by adding the full self-energy, ~A"II „A.", to the
free Lagrangian and subtracting it from the interaction

&;;{iko,k =0) —( -@05,, + II, ,((y, k 0))
(which determines the plasmon mass) is not precisely at
kz ——+m„/v 3 but rather is shifted by an imaginary
amount of order g T (into the physical sheet) S.ee Ap-
pendix C for the explicit expression. Fortunately, these
difficulties with the analytic structure of lI„„are simply
artifacts of our failure to do a fully self-consistent cal-
culation. Specifically, the internal -gluon propagators
in Eq. (4.7) represent the bare massless gluons,
Higher-order corrections mill include terms which re-
place these bare propagators with full propagators. Re-
summing these terms will yield a self-consistent in-

, tegral equation for the self-energy which is an approxi-
mation to the full Schwinger —Dyson equations. (This
will be discussed further in the next subsection. ) Since
II,„ is O(g ) the only relevant effect of this procedure
will be to correct the analyticity properties of the gluon
propagator. This improved propagator will then yield a
finite static correlation length of (m„) and a real
plasmon mass equal to m„/M3 (up to higher-order cor-
rections).

terms. ' This yields an improved expansion using full
propagators, Vuhich eliminates the above infrared di-
vergences. The leading term in the free energy will
now contain -~lndet(S „) in place of the free gluon de-
terminant in Eq. {4.2). This includes the zero-frequen-
cy contribution

d3k
, tr fin [1+ II'~„(0,k)/k'] —II'„',(0, k)/k'](¹—1)T m'„+O(g'),

which [using Eq. (4.10)] immediately yields the O(g )
term in (4.4). Similarly, order g4 corrections to m„
will induce O(g') corrections in!y, etc. A systematic
expansion of this sort requires that we determine the
self- ener gy from the Schwinger-Dyson equations and
insert it into a skeleton expansion of the free energy.
(For details of the skeleton expansion for P see Freed-
man and McLerran, 1977a.)

We shall now discuss the behavior of this improved
expansion. If we were dealing with QED, instead of
QCD, the above procedure would eliminate all infrared
divergences, and the free energy could be expanded to
arbitrary order in powers of e. The timelike photons
acquire in lowest order a static electric mass of order
eT, and thus their propagators are finite at zero mo-
menta. This is not the case for spacelike photons,
which remain massless. However, since their only
static interaction is with electrons, whose energy can
never vanish due to the antiperiodic boundary conditions
[i.e., ~ =(2n+ 1)m/P], all diagrams containing electron
loops are infrared finite and can be expanded in the ex-
ternal momenta. Consequently, each term in the im-
proved expansion is infrared finite. [In fact, as we
shall discuss below, the behavior of QED for low mo-
menta, q~ eT, is equivalent to a three (space-time)-
dimensional theory of free photons (i.e., A) and a neu-
tral scalar field (i.e., Ao) of mass -eT, with a quartic
coupling of order e'T. ] The only surprising feature is
that the perturbative expansion is a series in e instead
of e'.

Unfortunately, the infrared behavior of QCD is much
more singular due to the self-interactions of the gluons.
Consider the contribution to + of an arbitrary n-loop
diagram consisting of spatial gluons with zero energy.
The contribution that arises from the region where all
spatial momenta are of order q will behave as

[g'T(q')/(q') ]" ' = ( g'T/q)" '
for small q. (Note that each new loop contributes a fac-
tor of g, a factor 'of &q from phase space, and a fac-
tor of 1/q~ from the new vertices and propagators. )
Thus due to the self-coupling of the massless spacelike
gluons, higher-order corrections to p are increasingly
divergent.

Fortunately, the remedy for this disastrous situation
may be found in these very singularities& The singu-
larities arise because the spatial gluons were assumed
to be massless. This is true to lowest order, since the
one-loop self-energy (4.7) was not sufficiently infrared
singular to produce the directional singularity (4.11) re-

The ghost propagator should be similarly resummed.
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quired to generate a magnetic mass. However, higher
orders, starting with the two-loop self-energy, are
singular enough to potentially generate a magnetic mass
m of order g T. After resuming the perturbation ex-
pMsion so as to replace bare with full propagators, all
infrared divergences will be removed by such a mass,
since the momenta flowing through spacelike gluon lines
will be cut off at q=m „.The contribution of the low-
momentum region, q~ m „, for an n-loop graph will
then be of order (g'T/m „)"', which is finite.

If the infrared divergences are cured in the above
fashion, does this mean that one can calculate the
expansion of p in powers of g? The answer, unfortu-
nately, is no (Linde, 1979). Since the magnetic mass is
at most of order g'T, beyond some point increasingly
complex graphs will be of the same order in g'.

Thus at some point in the expansion of p, or in the
expansion of Green's functions for external moment q
~ m, , we lose perturbative calculability. For the free
energy one finds that this occurs first at order g', and
therefore while the first five terms of P are perturba-
tively calculable, beyond this point an infinite number
of diagrams contribute to order g'. The value of rn' „
itself is incalculable, since it receives contributions
from n-loop graphs of order (g'T)"/(g'T)" '=g'T2. (For
that reason we have not attempted to calculate the two-
loop contribution to m „.)

Clearly, perturbation theory breaks down. At best
we may assume that P is expandable to order g' and that
the coefficient of g is finite, although incalculable. If
m „vanishes, then the expansion of p would actually
diverge. Although this result is a straightforward con-
sequence of the infrared power counting arguments, one
may feel that a simple physical picture is missing. In
other words, why must the magnetic mass be 0(g'T)
instead of, for example, 0(g'T)? Why is the free en-
ergy incalculable at 0(g') instead of 0(g')? [By con-
trast, the fact that the one-loop electric mass is 0(gT)
is easy to understand. It foj.lows from noting that ex-
ternal electric fields are screened by the charged par-
ticles in the thermally excited plasma. The average
separation between. particles is -1/T (since the density
of gluons or quark-antiquark pairs is -T') and their
coupling to the electric field is -g. Consequently, the
screening length is -(gT) '.]

We should like to argue that the above results should
have been expected. First, since the infrared diver-
gences treated above arise from regions where all in-
ternal energies vanish, the singularities are the same
as would arise in a three-dimensional gauge theory. In
general the infrared behavior at high temperature
of a d'-dimensional theory is given by an equivalent
(d —1)-dimensional theory. Here the equivalent theory
is a three-dimensional gauge theory, whose coupling is
g'T. The static component of Ap behaves like a scalar
(Higgs) field in the, adjoint representation, whose mass
is ~„-'gT. The quarks and the nonstatic components
of the gauge field all behave as massive particles with
mass -T. Since these are much larger than the funda-
mental scale of the theory, i.e., g'7.', one expects +p,
the quarks, and all nonstatic fields to decouple as &

The decoupling theorem (Applequist and Carra
zone, 1975) assures us that this is true up to correc-

tions of order g'T/m„-g or g'T/T-g', and up to a
renormalization of the coupling (g'T) due to the heavy
particles. Since the three-dimensional pure gauge the-

, ory is not merely renormalizable, but actually super-
renormalizable, these renormalization effects should
be fully computable. In fact, one may explicitly exam-
ine all superficially ultraviolet divergent graphs and
see that the heavy particles induce no effects which are
not suppressed by powers of g. (The electric mass for
Ap and the first five terms of the free energy could be
considered as such renormalization effects since they
are sensitive to momentum q» g'7.'. These explicitly
calculable terms have already been taken into account
and, consequently, may be disregarded now. )

So, we learn that the leading infrared behavior of
high-temperature QCD is the same as a three-dimen-
sional pure gauge theory at a coupling g T." The three-
dimensional theory is completely finite. The only mass
scale which appears is the coupling g'T. Consequently,
the mass gap (i.e., m „)can only be a pure number
(possibly zero) times g'T. Similarly, the three-dimen-
sional free energy is a constant times (g'T)'. Pertur-
bation theory is obviously useless for computing the
infrared properties of the three-dimensional theory;
there is no small, dimensionless parameter. Thus the
previous breakdown of perturbation theory is simply re-
flecting the (perturbative) incomputability of three-di-
mensional non-Abelian gauge theories. '

However, one does believe that non-Abelian gauge
theories are confining and possess a mass gap in any
dimension less than or equal to four. Consequently,
one expects a nonzero magnetic mass of order I 'T.
(Similarly, one expects spacelike Wilson loops to ex-
hibit area law behavior. Remember that this three-di-
mensional "confinement" has nothing to do with the be-
havior of real heavy quarks. )

This shows why the magnetic mass was 0(g'T) and
why the 0(g') terms in the free energy were incalcula-
ble. W'e also learn slightly more from this approach.
In our previous power counting arguments we did not
bother to worry about possible factors of in@'. How-
ever, the fact that the heavy particles induce no re-
normalization effects which are not suppressed by pow-
ers of g shows that, for example, no such logs appear
in the 0(g'T) magnetic mass. (Factors of 1ng could ap-
pear in the terms which are down by powers of g. In
principle such logs could sum up to form g". If y & -1
we would have a nonperturbative breakdown of the de-
coupling theorem; we can only assume that this does
not occur. )

~5This shows that the high-temperature limit of the quantum
partition function reduces to the classical partition function.
For a recent discussion of this point see Dolan and Kiskis
(1979).

One may have entertained the notion that all the infrared
divergences, indicated by the power counting analysis, might
miraculously cancel among themselves, so that the theory
would remain perturbatively calculable. However, this pos-
sibility is equivalent to the assumption that the sum of all n-
loop diagrams (pz ~ 2) of the three-dimensional pure gauge
theory identically vanish. This would imply that the three-di-
mensional theory is trivial, which is absurd. Hence perturba-
tion theory must break down.
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dRd'x exp —c g'R+ 3 lnRR (4.17)

The 3 lnR clearly represents the entropy associated
with the three translational degrees of freedom. Since
the energy favors increasing the monopole size, while
the entropy opposes this, there mill be an optimal size
which maximizes the contribution. This occurs at R
=c/ g3' .TFactors of g' may be simply scaled out of the
integral [Eq. (4.17)] and we learn that these monopoles
give a contribution of order (g'T~) to the free energy.
This does not have the typical e ' form characteristic
of a topologically stable configuration. Rather, we see
that these unstable monopoles are indistinguishable
from perturbative fluctuations about the vacuum. Since
A(x)-O(1/g ~x~) we may estimate the monopole contri-
bution to the gluon propagator (AA ) by averaging A(x)
A(y) over all monopole positions and multiplying by the
density [Eq. (4.17)]. In momentum space, we find (as
k-0)

6 (A A )-g ~T'/k' .
This looks just like a mass insertion of an O(g T) mag-
netic mass.

Thus we see hom a magnetic mass of order g T can
arise from magnetic screening due to a finite density of
topologically unstable magnetic monopoles. Note that
we are not claiming to be able to do a reliable semi-
classical calculation by expanding around these mono-
poles. This is impossible precisely because the un-
stable monopoles are in fact indistinguishable from per-
turbative fluctuations. However, they provide a very
intuitive picture of how the magnetic mass can arise.

This description is very similar to Polyakov s treat-

Finally, we should like to present an extremely intui-
tive picture of the mechanism producing this magnetic
mass. We shall argue that it is due to magnetic screen-
ing by topologically unstable magnetic monopoles.

Among the many fluctuations contributing to the origi-
nal functional integral, let us consider the effects of
spatial magnetic monopoles. By this we mean fields
with long-range magnetic fields, B-I/r', and with
Q(x)-1 for x-~. For example, we may consider a
static field with A.,=0 and where A describes a Wu-
Yang monopole (Wu and Yang, 1969). From Sec. III we
know that such fields will not possess topologically con-
served magnetic charge and hence will be unstable.
Such a field will be characterized by an arbitrary spa-
tial scale size R. As R -~, the energy of the field may
be made arbitrarily small. However, the field may be
made a constrained solution subject to a single con-
straint which fixes the scale size R. Owing to the I/r'
Long-range behavior of the magnetic field, the minimal
energy will be 8 =c/g'R for some constant c. (The I/g'
appears because A-I/g. ) Let us imagine expanding the
functional integral about these unstable monopoles. We
shall have to treat the position and size of the monopole
as collective coordinates (Polyakov, 1977). Consequent-
ly, their contribution to the functional integral mill
(suppressing irrelevant factors) behave like

6Z—,exp(-cP/g'R)dR d'x

ment of three-dimensional compact QED. The only dif-
ference is that the Abelian monopoles in compact QED
are topologically stable and therefore have a minimal
action of O(l/g'). Consequently, the monopoles are
very dilute and only generate a mass gap of order
e-' ~(Polyakov, 1977).

The overall picture of the high-temperature phase of
QCD is that of an electrically screening phase with a
correlation length (m„) '- I/gT and a, magnetic mass
gap m „-g'T. Owing to Debye screening heavy quarks
are not confined. Although the electric mass may be
reliably calculated in lowest-order perturbation theory,
a genuine calculation of the magnetic mass appears to
require the complete solution of the three-dimensional
pure gauge theory. In Sec. VII me shall discuss the ex-
pected behavior of QCD as the temperature is lowered

V. 0 DEPENDENCE AT HIGH TEIVIPERATURE

Owing to dimensional transmutation, it would appear
that quarkless QCD has no free parameters. However,
one may add to the action [Eq. (2.3)] the surface inte-
gral

(~'e/32m') fd 'x trt. „J.„=ieQ,

thereby apparently introducing an adjustable parameter
8.

On the other hand, as noted in Sec. II, Ao(t, x) must
vanish at spatial infinity if all states satisfying Gauss's
law are to contribute to the partition function. This im-
plies that the topological charge Q is always zero (see
Appendix B). Consequently, no 8 dependence can arise,
since nontrivial dependence requires that field configur-
ations with Q c 0 contribute to the functional integral.

Should one allow fields with nonzero Q to contribute?
Consider the contribution of fields satisfying Q(x) —1 as
x —~, for which Q is always an integer (see Sec. II).
The effect of the e'~ term in the functional integral is
to project out states —8 states —which transform as ) g) e
—e' "eI g) ~ under any gauge transformation which is con
stant at infinity and has winding number n (Jackiw and
Rebbi, 1976). Thus by relaxing the boundary conditions
on A, at spatial infinity one can restrict the theory to a
smaller subspace of physical states. [Note that the
above projection is consistent with Gauss's law (2. 6),
since a regular gauge transformation whose generator
vanishes at infinity has winding number zero. ] Con-
versely, imposing the boundary condition A, (t, ~) = 0
means that one is summing over pll physical states, in-
cluding all 8 states, in the partition function.

What is one to do? Since one can show that no physi-
cal operator can connect states with different values of
6), it follows that 8 labels completely disjoint sectors of
the theory. In particular, a complete physical theory
may be built on each 8 vacuum (Callan, Dashen, and
Gross, 1976; Jackiw and Rebbi, 1976). It will be shown
belowthatdifferent 0 worlds have different physical
properties. Therefore, in order to calculate the ex-
pectation values of observables in a pure state, not in
a mixture, one must project onto a single 8 sector.

One might now wonder whether additional physically
distinct sectors will be revealed if fields with A(~) c 1
are included. However, this does not appear to be the
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case. For exampl. e, including fields where Ao is con-
stant as x —~ is equival, ent to inserting a projection on-
to global color charge zero states. Thus one is separ-
ating color charge superselection sectors. However,
different charge sectors should not yield physically in-
equivalent theories. Thus there appears to be no for-
mal reason for including "infinite range" fields with
Q(~) x l.

As further confirmation of this idea, we shall next
argue that for sufficiently high temperature, even if
such infinite-range fields are included in the functional
integral, their relative contribution to the partition
function vanishes in the thermodynamic (V —~) limit.
(This behavior is analogous to that of a Coulomb gas.
One need only include configurations which satisfy
charge neutrality in the partition function. If this con-
straint is relaxed then one finds that typical fluctuations
in the average charge density are of order V-'
Hence the contribution of configurations with an imbal-
anced charge density vanishes in the thermodynamic
limit. )

A. Infinite-range fields

%e shall argue in several steps that infinite-range
fields do not contribute to the functional integral for
large T. First let us consider the contribution to the
partition function that arises from expanding about an
infinite-range exact, or constrained, classical solution.
The simplest of these is a classical vacuum, A, =con-
stant. Let A = g, +gA, where a =—0&„,and for con-
venience choose background gauge,

D„(a)A = [8, + a, ,A, ] = 0 .

Expanding the functional integral in powers of A yields
the contribution

I(cr) = det-, "'[-D(a)'5„„]det,[—D(a)']

&det "~[@(a)][1+ O(g')]
= det, '(D2~, )det "&(P,„, )[1 + O(g2)] .

These determinants are computed in Appendix D. Using
Eqs. (D4) and (D5) we find

I(g) = exp n' ——(N' —1) —2NN ) +—~ tr [1 —(InQ'"" /mi)2]'
I33 45 f 12

1
6

——tr[(Infra~'/mi)(Infra~'/2m' —1)]'+O(g') . (5.1)

(Here 0 = e is represented in either the fundamental or
adjoint representations. )

Assuming-that the temperature is sufficiently large so
that the O(g') corrections are small, we see that this
contribution is maximized when Q(X) =1 or A, =0. The
contribution from any sector with Q(x) w1 is suppressed
by a factor of exp[ —(cV/p')], for some c& 0, relative to
the leading (A. =0) contribution. This becomes com-
plete suppression in the thermodynamic (V—~, P fixed)
limit. Thus, for sufficiently high temperature, the free
energy density

6 = 1im( —InZ)/ p V

receives no contribution from small fluctuations about

0= constant~1 fields.
This same conclusion will be valid if we expand about

any other exact or constrained solution with Q(~) c l.
As shown in Appendix B, any finite-energy field may
be transformed to a gauge where Q(x) goes to a, constant
as x —~. Consequently, the determinants in the back-
ground field will yield the same large-distance behavior
as Eq. (5.1) multiplied by finite volume independent fac-
tors. Hence such fieMs will make no contribution to the
free energy density.

Finally, to verify that this conclusion is not an arti-
fact of expanding about classical solutions, we shall de-
termine the leading high-temperature behavior of the
quantum effective action and show that the same result
emerges.

The effective action 8[A ] is a functional of a periodic
gauge field, A, (t, x). To define the high-temperature
limit we take

A. ,(f, x) = a, (27rf/P, x), (5.2)

where a, (T, x) is periodic in ~ with period 2w. The an-
alysis of 8 [a,] essentially follows from Weinberg's
classic analysis of symmetry restoration at high tem-
perature (S. Weinberg, 1974). The effective action is
the generating functional of all proper vertices; it may
be expanded in a sum over all 1PI graphs with a, in-
serted on the external legs. Consider an arbitrary
graph contributing to 8[a„]with superficial ultraviolet
degree of divergence D. It yields a contribution of the
form

'x tr(A. ~-„'~„)+ O((T)') . (5.3)

Using the previous results for Il„(co„,p) (Sec. IV.B) this
becomes

' The free energy PVS, which is the leading term in 5[A„),
has been omitted since it is independent of A ~.

d'k, , . . . , d'k„ ai, (n, , k), . . . , a, (n„,k„)
n1 y

~ ~ ~

gnat

Q k,) l, „((o„,, k, ;. . . ;ra„,k ) .
i

If we rescale all internal momenta by T we find

I((u;, k;) = T~ I(2mn, , k, !T).
Consequently, the contribution will be of order (TD ')
provided I(w;, k;) has a finite limit as all external spa-
tial momenta vanish. However, due to the increasingly
singular infrared behavior, I(&u, , k;) does not in general
have a smooth zero-momentum limit. Fortunately, we
were able to argue in the last section that in the high-
temperature phase Ao acquires an "electric" mass of
order gT and A acquires "magnetic" mass of order g2T.
Consequently, if the expansion for 8[a ] is resummed to
produce full propagators, then no such infrared diver-
gence wil. l occur and we will be able to scale T out of
the integrand.

This shows that the leading high-temperature behavior
of the effective action is controlled by the terms with
the largest superficial degree of divergence. These are
simply the gluon self-energy graphs. Therefore we
fj.nd"
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o o

8 [A„]-—J d3xtr T dt E' +m 2, T d])A,
0 0

up to terms suppressed by powers of g' or P. Recall
that the electric mass

finds

n(p) —exp( —S[A'])
—exp[ —[8w 2/g 2 + —' (2N + Nf ) (pp T )2j) . (5.5)

m~„=II~,((o = O, p = 0) = ', g'—T'(N+ N~/2).

This result may be written in the manifestly gauge-in-
variant form

I (A ] ——,f d'xtr ],'F'„+-,'-m'„T'(0 —()'] . (5.4)

(Here g has been scaled back out of A„.) The important
feature here is the appearance of the term

This provides a mass for the static component of Ao and
clearly will cause the effective action of any field with'
Q(~) c 1 to diverge. Naturally, if Ao is taken to be a
constant, then this result agrees with the O(T) term in
Eq. (5.1).

Therefore, we conclude that for sufficiently high tem-
perature only fields with Q(~) =1 contribute to the func-
tional integral. The topological charge Q is "dynamic-
ally" quantized due to the screening behavior of the
thermal fluctuations. Consequently, for sufficiently
high temperature, the theory will be periodic in 0 with
period 2g.

One may question the applicability of Eq. (5.4) to an instan-
ton, since the chosen high-temperature limit {5.2) does not
preserve the precise form of the instanton. However, one
may easily show that only the large-distance, static part of
the instanton field contributes to the leading behavior IEq.
(5 5)l.

B. Instantons

Nontrivial 0 dependence ean only arise due to the con-
tribution of fields with topological charge Q =n4 0. To
compute the 6) dependence we may try to expand the
functional integral in the sector with Q =n about the
minimal action field with topological charge n. These
fields are precisely the periodic instantons discussed in
Sec. III.

At zero temperature one cannot reliably compute the 0

dependence semiclassically. In the expansion about in-
stantons the difficulty appears as the absence of any
large-distance cutoff on the instanton scale size p (Cal-
lan, Dashen, and Gross, 1978, 1979a). However, at
finite temperature one expects the temp'erature T to
provide a physical scale which may serve as a cutoff.
Classically, this does not happen; the classical action
of an instanton is 8m /'g independent of its scale size.
Fortunately, quantum effects can produce this cutoff.
Any field with nonzero topological charge must have a
background electric field. But thermal (=quantum)
fluctuations will screen this electric field (see Sec. IV.
B) and consequently will suppress the contribution of
such fields.

To see this suppression explicitly we may simply in-
sert the instanton field A'„' [Eq. (3.8)] into the quantum
effective action [Eq. (5.4)].',This will yield the high-
temperature behavior of the instanton density. One

This shows that large-scale instantons, p»P, will be
exponentially suppressed. (The complete temperature
dependence of the instanton'density will be computed in
the next section. )

Consequently, one may reliably calculate the one-loop
contribution of instantons to the functional integral.
The 6I dependence of the free energy will have the char-
acteristic instanton form

95 = (sin&) dpn(p)-(sin6)T'exp[ —[8m'/g'(T)]).

(5. 6)

This will be computed in detail in the following section.
This semiclassical expansion about an instanton will

have precisely the same reliability for high temperature
as the perturbative expansion about A. =0. Specifical-
ly, the first few corrections will be directly calculable;
however, due to the necessity of a self-consistent treat-
ment of magnetic screening, beyond a certain point all
succeeding corrections will be perturbatively incalcul-
able (see Sec. IV.C).

The overall picture presented here is completely an-
al.ogous to the behavior found by Aff leek in the two-
dimensional CP~ model. In both QCD and the CP"
model the quantization of topological charge is a. dy-
namical consequence of electric screening. 0 depen-
dence may be rel. iably calculated at high temperature
and has the characteristic exponentially small form
(5. 6) indicative of instantons. [Of course, in two di-
mensions the absence of transverse degrees of freedom
eliminates all difficulties with magnetic fluctuations.
Furthermore, one may use a 1/N expansion to inde-
pendently confirm the instanton results (Aff leek,
1980a, b). ]

By now it should be clear that 8 is a genuine, physic-
ally relevant, periodic parameter of high-temperature
@CD." Surely 8 remains a physically relevant para-
meter of QCD even at T = 0, as naive semiclassical ar-
guments would indicate. Whether 8 remains periodic,
with period 2m, and whether further nonperturbative
parameters appear at low temperature is an open dy-
namical question depending on the contribution of field
configurations with Q(~) el.

Vl. THE INSTANTON DENSITY

The one-loop contribution to the partition function
from fluctuations about single instantons is given (for
8=0) by

Z, d xdpnp,

where Z, is the perturbative result, and the instanton

'~Faced with the problem of assuring the naturalness of the
choice 0= 0 for the strong interactions, in the presence of CP
violating weak interactions, some authors (e.g., Linde, 1980)
have argued that 6 is not a real, adjustable parameter in
@CD. Our results confirm the reality of 0.
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density n(p) is equal to ('t Hooft, 1976)

pg(p) =v[det J] / [det'( —D 6 —2j' ),]-'/
n(p, 7 =0)=,"(4w'/&, ")', , (Pm)exp( B-v /&'; )',

t

(6.4)

E~

x [det( —D'), j [det(I)!+m,.),„„,]«p( —8m'/g', ) .
(6.1)

Here D, = B, +A, , where A, (t, x) is the classical field
describing an instanton of the given size. Al. L quantum
fluctuation determinants are understood to be normal-
ized by the corresponding vacuum determinants. det'
indicates that zero modes are to be omitted in the de-
terminant; they are removed by the collective coordin-
ate procedure. The instanton group volume v equals the
volume of SU(N) divided by the volume of the little group
of the instanton. J is the collective coordinate Jaco-
bian, given by

(6.2)

Let jz ) denote the various collective coordinates of the
instanton (the position, scale size, and group orien-
tation). (t& is the deformation of the instanton field,
{B/Bs )A, , placed in background gauge, D, (t&,

' =-0.
[Hence (t, is a zero mode of the gauge field determin-
ant. ] p, is the Pauli —Villars regulator mass. (The
factors of &((/Wm come from the omission of the zero
modes in the regulator determinant. 2')

We shall restrict our discussion to the case of van-
ishingly small fermion masses, rn; =0. In this limit,

det(P +m, ) (m;/ p.)det'(P)

due to the presence of a zero mode of I/I (see below).
For any self-dual field, '

det'{—D'6,„—2F,„)~,= [det( —D')~, ]

det'(p), „.,= [det( —D'),„„,j'.
Furthermore, since the instanton .is contained in an
SU(2) subgroup,

det(-D'), =det( —D') [det( —D')», ]2(" "

det( —D'),„, = det( —D'), /, .

[Here the subscripts 1/2 and 1 indicate the isospin of
the SU(2) subgroup. ] Thus

n(p) = v(det Z)" '[det( —D'), ]-'[det(-D'), (,]-"""

where g is the one-loop renormalized coupling defined
at the scale p,

8m '/g2 = 87('/g 2 —
3 (11N —2N&) lnp)(L,

8=1.33876, and C~=(0.260156)g ' '/(N —1)!(N —2)! .
To find the temperature dependence of the instanton

density, we must reevaluate the determinants of Eq.
(6.3) for the periodic instanton field (3.9). Due to the
basic periodicity conditions (2.4) the gluon and ghost
determinants must. be evaluated on the space of periodic
fluctuations, and the fermion determinant over anti-
periodic fluctuations.

A. Zero modes

Gauge field zero modes, (t&,
' ', must be periodic;

must lead to self-dual perturbations of the field
strength, q', D, (t&, =0; and must be in background
gauge, D, (f&, =0 (Brown, Carlitz, and Lee, 1977).
Explicit expressions for the 4N instanton zero modes
at any. temperature are as follows.

Dilatation zero mode,

(0) B 2
A, = —q'„,B„rl-'(~'/2f) .

Translation zero modes,

= -'II7 B&I (~'/2i)~' BII-'

Isospin-1 global gauge zero modes,

e."'= (D.),11-'("/2 )

=-(B 116 ~+s &z B 11)11-'( /2f).
Isospin--,' global gauge modes,

@.'~" = (D„)„,II-'/'(u~/2i) —h.c.
= '7 ' B11 ' ' 7'~ u'/2 i —h .c .

Here q=3, . . . ,N; j = +1, *2, and the matrixu, ' is given

The fact that II-'O'II =0 (for any 't Hooft solution) al-
lows one to reduce the normalization integrals of all
zero modes to surface integrals at spatial infinity.
These surface integrals may be immediately evaluated
using the asymptotic form of II [Eq. (3.11)j and re-
markably one finds that the values are completely tem-
perature independent. For example, the norm of the
dilatation mode is

"(t&e&(-»'&„.)'"i(, (I;/rr&) e
i

(6.3)

Evaluating these determinants at zero temperature, one
finds the zero-temperature instanton density ('t Hooft,
1976a; Yaffe, 1978; Bernard, 1979),

For a unified treatment of gauge fixing and collective co-
ordinates, see Yaffe (1979).

2~see 't Hooft (1976); Bashilov and Pokrovsky (1978); Brown
et al. (1978).

Similarly, fd4xtrg' '(t&„' equals 8m ' for the translation
modes, 4m p' for the isospin-1 modes, and 2p p for
the isospin- 2 modes. All off-diagonal overlaps vanish.

Thus the collective coordinate Jacobian [det J]'/' is
identically equal to its zero-temperature value, 2'p '
(~p p/g)'".

The normalized fermion zero mode. ))& is given by
(Grossman, 1977)
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y, (x)P(y)=, ,11'~'(x)[~ B@(x)/11(x)]g'
1 I 2 , (1+y,)

B @(y)/& (y)]ll' "(y)

where

@(x)= g {-1)"p'/(x -nPu, )'= (n -1)

)t),(t,x) is antiperiodic in time and decreases as
0(e ""~'/r) as ~-

B. Determinants

We must now evaluate the temperature dependence of
the determinant of (-D2/ —B2) (for both isospin —,

' and 1).
To do so, we write

x tr [[(B~ A „)Dq
+ D „(BxiA p ~]b, (xi y) I = .~g) .

(6.8)

Note that only the n=0 term of this sum involves the
(x -y) ' singularity of the scalar propagator; all n&0
terms are manifestly finite.

Let us first apply this for isospin 2. In this case,

&(x,y) = F(x, y)/[47)~(x —y)'ll(x)" 'H(y)]'~ & (6.9)

where

F(x, y) =1+Q p' 7 (x —w„)~'. {y —w„)/{x —w„)'{y —w„)'
n

ln det( —D'/ —B')
) r = ln det( —D'j—B') (, .+ 6,

where

~
adT', Tr ln(-D'/-B') ],

0

(6. 5) The n=0 term of Eq. (6.8) has been computed previ-
ously by Brown and Creamer (1978). For the periodic
instanton, their result becomes the contribution

(6. 10)
The first term is the known zero-temperature deter-
minant. The temperature-dependent correction 5 must
now be computed.

At this point it is important to recognize that

T, ln det( —D2I —B')
9 1

is a dimensionless function of the single variable
g = gpT. Thus

6 = dA.', Tr ln( —D'/-B')az'

8

RA. ~dX'Tr ( D& —bD—) .ax'
0

(6. 6)

D'&(x, y)= Q (+—1)"6'(x —y+nPt),

with boundary conditions of regularity at infinity. Con-
sequently, the correct finite-temperature propagators
are given by

Here n, is the scalar propagator (—D') '.
This form is helpful due to the fact that explicit ex-

pressions for the propagators in the field of the general
't Hooft solution are known (Brown et at. , 1978). How-
ever these propagators are appropriate for multiple in-
stantons in infinite Euclidean space and do not satisfy
the required periodicity conditions. Fortunately, the
correct propagators may be easily constructed by noting
that the solution to D'&(x, y) = 5'(x ——y) with periodic or
antiperiodic boundary conditions in time is equivalent to
the solution of

= -', q~' (6.11)

where q =+ 1 for periodic, and ——, for antiperiodic
boundary conditions ~ The derivation of this result is
contained in Appendix E.

So, for isospin —,
' we find

6„,= -', @~~+A(~) . (6. 12)

The analogous calculation for isospin 1 is consider-
ably more involved. We defer the lengthy details to Ap-
pendix E and merely quote the simple result (for peri-
odic boundary conditions),

6, = —,X' + 1 6A (A) . (6. 13)

Now, A(l() behaves as ——', ink as X- ~, and as —X'/36 as
A —0. Unfortunately, we have been unable to compute
the complete integral analytically. It may, however, be
reduced to a two-dimensional integral which we have
carefully evaluated numerically. We find that A(A) may
be fitted extremely well by the expression

Here ll, (x) = 1+p'jx' describes a single zero-tempera-
ture instanton. The first integral ranges over a physi-
cal strip, —P/2 & t ~ P/2, while the second integral cov-
ers all Euclidean space, (Note that the singularities in
the two integrands cancel. ) A remarkably simple al-
ternative derivation of this result is sketched in Appen-
dix E.

The remaining n $0 terms of (6.9) may be directly
computed using the explicit expression (6.9). Surpris-
ingly, the only nonzero contribution is the surface term

adA' g (al)" d'x —,'tr~ B ~', B, in[1 b{x,x+npt)
0 n

A(A) = ——' ln (1 + X'/3) + o.'(1 + yg ') ', (6.14)
~'(x, y) = g (+1)"t),(x, y+nPt),

where A(x, y) is the aperiodic scalar propagator of
Brown et at. (1978). Using this result, we have

(6.7)
where n = 0.012 897 64 and y = 0.158 58. This expres-
sion has a maximum absolute error of 5&&10 '. [Note
that an absolute error in lndet( —D') becomes a relative
error in the instanton density. ]
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C. ResuIts

Combining the above, we find the complete instanton density,

=n(p, 0) exp( —(&)(.'(2N+ N&) +12A()])[1+ ', (N ——N&)] j).
f

(6.15)

This result may be independently checked in both as-
ymptotic limits, X- 0 and A. —~. If A, —0, then the
separation between the individual "bare" instantons
which form the periodic instanton becomes arbitrarily
large. Consequently, in this limit, we need not bother
with the details of the exact 't Hooft solution; we could
instead use a pure superposition of zero-temperature
instantons (in singular gauge) to form an approximate
periodic solution. Properties of such an approximate
solution may be computed in a power series in the in-
verse separation between instantons. In particular, it
is known that if N& ——0 then all corrections to the instan-
ton density are of order (inverse separation)~, or in our
case O(X~) (Levine and Yaffe, 1979). This is easily
seen to agree with our result (6. 15) by noting that

d]o & (p, T ) =dp n(p ', 0') [1 + 0 (X')], (6.16)

and recalling that p' =p!(1+YX')')" is the size of the
zero-temperature instanton whose superposition most
nearly agrees with the exact periodic instanton of scale
p. [This result (6.16) is also valid for the instanton-
anti-instanton density in the presence of massless
quarks. ]

If T —~ then, as explained in Sec. V, perturbation
theory may be used to calculate the leading high-tem-
perature behavior. The high-temperature limit of (6.15)
agrees with the expected exp(-p'T2) cutoff in Eq. (5.5) .

Finally, we may use the renormalization group to jus-
tify replacing the Pauli-Villars coupling g' with the re-
normalization group improved running coupling (Gross
and Wilczek, 1973b; Politzer, 1973; Caswell, 1974;
Jones, 1974).

47T
'

=~ (11N —2N&) ln1/pA
P

1 [17N —Ng(13N —3)/2N]
2 (11N —2N~)

(6.17)

Here, the Pauli-Villars renormalization scale A is de-
fined precisely so as to absorb all O(1) terms in (6.17).
If a different renormalization scale, A', is used, then
the coefficient of the instanton density (6.15) must be
redefined as

V I I. THE PHASE TRANSITION

In this section we shall explore the nature of the
phase transition from a confined to an unconfined phase,
using all the tools available to us —perturbation theory,
semiclassical methods, and strong coupling lattice
gauge theory expansions. For the most part we shall
discuss quarkless QCD. We will return to a discussion
of the real world at the end of the section.

A. Perturbation theory

In the previous sections we have argued that, at high
temperature, QCD can be treated using ordinary per-
turbation theory. The high-temperature phase is that of
a nonconfining plasma in which heavy quarks experience
a short-range, screen d Coulomb interaction, timelike
gluons acquire an electric mass of order gT, and
spacelike gluons a magnetic mass of order g T. All ob-
servables can be expanded in an asymptotic expansion
in powers of the effective coupling g'(7'), whose coeffi-
cients are calculable up to some finite order. Thus the
free energy per unit volume P, which is equal to minus
the pressure P, is calculable up to order g' and given
by (Kapusta, 1979a)

0.08—

0.06—

0.0 4—

0.02—
(Az) C, (~/Pt)(ll 2Ny)))/)3 (6.16)

The resulting instanton density is plotted in Fig. 4 for
several temperatures. Shown is the dimensionl, ess den-
sity, d(p) =—p'n(p), for N=2 and N~=0. Note how the
density as a function of p decreases and broadens as the
temperature rises. The instanton contribution to the
free energy density may be immediately computed. It
will be discussed further in the next section.

O. 3 0.2 0.5 0.4 0.5 0.6

FIG. 4. Instanton density d(p) =—p n, (p) for N =2 and Nf= 0.
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where

g2(T)N 1 (17/22)ln lnT/A ( 1
4v' (ll/6)lnT/!g [(11/6)lnT/Ap ),lnT/A

(V.2)
To the calculated order in g' the above result is inde-
pendent of our renormalization procedure. In other
words, a redefinition of g' according to g' =g'+ cg is
equivalent, for small g'(T/A), to a rescaling of A, i.e.,

where

A' 24@2
ln p I~ c ~

But this only affects the yet uncalculated terms of order
g in lF(T). These do indeed depend on A or, equiva-
lently, on the way in which the coupling constant is de-
fi@ed.

The resulting value of the pressure is plotted in Fig.
5. What do we learn from this perturbative calculation'P
First, note the large contribution of the g' term, which
overwhelms the g' term for g'(T)N/4m' ~ 1'/20 or T/A
- 4 x 10 . This, however, is probably not an indication
of the precocious breakdown of perturbation theory,
since the g term should be regarded as a correction to
the ideal gas pressure due to the nonvanishing electric
mass, and need not be indicative of the magnitude of
higher-order terms. A more reasonabje. estimate of the

I'„,,(7')=2 fdpn(pT) . , (V.3)

For T =0 such a calculation requires a knowledge of the
value of the cutoff on the integration over the instanton
scale size p. However, for large T the integration is
exponentially cut off for p= 1/7)'T. Thus as long as T is
sufficiently large the calculation is reliable, and yields
for large T

lnTy'A

(7.4)

This result is again independent of our definition of g'
or the value of A, as long as T/A is sufficiently large,
since

point at which perturbation theory breaks down is when
the corrections to the ideal gas behavior are of order 1,
namely when g 'N/4m'= —, ——,', or T/A =10-4 and the cor-
rections are 25-70%, respectively. Thus while it is of
interest that the perturbative corrections, once g2N/4w2
«~», tend to increase the pressure or decrease the free
energy, one certainly cannot trust these results for
T/A = 1.8 where the entropy density S = BP/BT vanishes.
Therefore the fact that the positivity of the entropy is
apparently violated below this point can hardly be used
to estimate a transition temperature. Similarly, if one
neglects the O(g3) term in the pressure, then the fact
that the resulting curve crosses zero has no signifi-
cance. Not only is the perturbative calculation com-
pletely unrel. iabl. e, the zero of the pressure is also ir-
relevant. We have a,rbitrarily defined the free energy
so that all perturbative contributions vanish at zero
temperature; however, nonperturbative contributions
will cause the zero-temperature pressure to be non-
vanishing.

The contribution of instantons to the pressure is easi-
ly calculable in the dilute gas approximation, using the
density of instantons derived above. For 9 =0, the- in-
stanton plus anti-instanton contribution is

2.5

l. 5

0.5

0.5
T/h

2.5

FIG. 5. Pressure versus temperature for SU(2). Po= ideal
gas contribution, P2-—O(g ) contribution, PS=0(g ) contribu-
tion.

The actual numerical value of P„„(T)is plotted [for
SU(2)] in Fig. 6, from which we see that it yields an
exceedingly small correction to P„„(T).

A more important correction due to instantons is the
coupling constant renormalization that they induce.
This effect will be discussed below. For the present
discussion this simply means that the perturbative anal-
ysis breaks down slightly sooner than we would other-
wise expect.

It is hardly surprising that we cannot explore the
transition, as the temperature is lowered, from the un-
confined to the confined phase using solely weak cou-
pling techniques. After all, once the thermal cutoff 1/T
is larger than the characteristic confinement length
scale, these techniques are unable to describe the
strong coupling infrared behavior of the theory. The
above calculations simply support the claim that the
high-temperature phase is nonconfining, and yield a
crude estimate of the region in which perturbation the-
ory is reliable.
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600— Po Pz P~ Po (Ir )= fdU, c' ' U
I ooy

dU, e ' s)

500-

400-

(7.7)

[For SU(2) I/Ngs should be replaced with I/gs. ] This
yields a linear heavy quark-antiquark poteritial, with a
slope

1
0 =——lnNg

Q

200-

100—

In the Hamiltonian version one neglects the magnetic"
term in &, for large g~, and then finds that the lowest
state with a quark and antiquark source separated by a
distant A has energy

0

FIG. 6. Instanton pressure Pl 2fdp n(-—p) for SU(2).

It is much more informative to approach the phase
transition using an approximate description of the the-
ory which should be valid for large-distance phenomena
and which can describe color confinement. Such a de-
scription is provided by the strong coupling lattice
gauge theory.

B. The strong coupling lattice model

One of the most useful approaches to the study of the
large-scale structure of non-Abelian gauge theories is
via. the lattice formulation introduced by Wilson (1974),
or its Hamiltonian form as introduced by Kogut and
Susskind (1975). In the former approach the dynamical
variables are special unitary matrices, U„associated
with links on a four-dimensional lattice. The action is
defined to be

S (U) = —,— tr
( U, + (t.c.) (7.5)

where the sum runs over all plaquettes on the lattice.
In the latter approach the theory is described by a Ham-
iltonian (in A, =0 gauge),

H=St P S', — P tr "U, +C.c.),2a g~Q 6 J
P ap

(7.8)

where the dynamical variables are special unitary ma-
trices U, on the links of a spatial 'lattice (of size a), and
E, (the electric flux operators) are the conjugate mo-
menta to U, . These two versions of lattice gauge theory
are closely related, and for small g s (i.e., in the con-
tinuum limit) one can derive Eq. (7.6) from Eq. (7.5)
(Creutz, 1977).

The latticized gauge theory is simplest in the limit of
strong coupling, where, for T =0, it exhibits linear
confinement. This can be seen in the Lagrangian form
by expanding the expectation value' of a Wilson loop
(with rectangular dimensions R && t) in powers of 1/gss:

In both cases one sees that in the strong coupling limit
external colored sources are connected by strings (flux
tubes), whose energy per unit length is nonzero.

Polyakov (1978) and Susskind (1979) have given con-
vincing arguments that, as the temperature is in-
creased, these theories undergo a phase transition to
an unconfined phase. A simple, intuitive, and crude
version of their argument can be given (Banks and
Rabinovici, 1979), if we ignore the fact that in a non-
Abelian theory strings can split. In that case the spec-
trum of &, for large coupling, is that of closed non-
backtracking strings of length L and energy oI. . The
number of such strings grows, for large I., as 5~ ~' (5

, is simply the number of directions in which a nonback-
tracking string can grow on a three-dimensional spatial
lattice). Thus the partition function, Z-Q 5 r's s~,
has a singularity at P =ln5/oa indicating that the criti-
cal temperature T, is less than

oa N2 —1 g2

ln5 2N (]n5) g
(7.8)

(Above T, neglected interaction effects stabilize the
free energy. ) One can argue that the inclusion of the
magnetic terms in 0 should lower this transition tem-
perature, since they tend to deconfine color. For Abe-
lian theories these arguments can be made precise; for
non-Abelian theories they are reasonable, although the
estimate given by E(I. (7.8) should not be taken too seri-
ously.

This is an important result, since it shows that a con-
fining theory can lose confinement at high temperature.
Furthermore, it yields a pretty picture of the nature of
the phase transition as a condensation of strings. Thus
at low temperature free quarks cannot exist, since the
infinitely long strings attracted to them would cost in-
finite energy, but at high' temperature the addition of
one more flux tube does not substantially change the
free energy of the condensate of fluctuating flux tubes.

The above picture is totally consistent with the phase
transition one expects from perturbative arguments at
large temperature; however, it too cannot really be
used to estimate T, or to study the nature of the phase
transition. In this approach it is even difficult to see
electric screening in the high-temperature phase. In
fact, in order to recover continuum QCD from the lat-
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tice theory, one must let g' approach zero [as 1/ln(l/
aA)] as a vanishes. One would then have to include cor-
rections (to all orders) in the strong coupling expan-
sion, and argue that in this limit [where 0(T =0) is kept
fixed as g and a approach zero] T, has a finite value.
Such a calculation would be even more difficult than es-
tablishing confinement at & =0, i.e., showing that con-
finement persists in the continuum limit.

Lattice gauge theories can also be used in a different
manner as a way to construct an approximate descrip-
tion of the dynamics of QCD valid for large-distance
phenomenon. Here one imagines constructing a lattice
action which will correctly describe the physics of QCD
for distances greater than a chosen lattice spacing a,
by integrating out all degrees of freedom involving dis-
tances less than a. - Recently Callan, Dashen, and
Gross (1979b, 1980) have argued that a crude effective
lattice action of this sort can be constructed using
semiclassical techniques, and used to calculate the
string tension o in terms of the continuum renormaliz-
ation scale parameter A. We shall extend their methods
to finite temperature, construct for T+ 0 such an effec-
tive action, and argue that for T ~ &, it undergoes a
Polyakov-Susskind phase transition. This will allow us
to estimate T, in terms of A.

C. The semiclassical effective Lagrangian

If one were to derive an exact effective lattice action
for QCD, it would necessarily be much more compli-
cated than the simple Wilson action [Eq. (V.5)]. How-
ever, it is not unreasonable that such a term alone
could provide an adequate description of the behavior of
certain observ3, bles, in particular planar Wilson loops.
Making this assumption, one may attempt to calculate
g~2 as a function of the lattice spacing a and the renor-
malization scale parameter A using semiclassical tech-
niques. One may then evaluate the string tension by ap-
plying strong coupling techniques to the resulting Wilson
action, if the two methods have overlapping domains of
validity. This is the approach recently explored by
Callan, Dashen, and Gross (19V9b, 1980).

To evaluate g~(aA) they note that the Wilson term in
the effective action dominates for weak, slowly varying
fields (U, = 1), and that the coupling renormalization
due to fluctuations on scales less than a can be deter-
mined by semiclassical methods as long as g2~(aA)/8ii'
is sufficiently small. This coupling renormalization re-
ceives contributions from ordinary perturbative (Gaus-
sian) fluctuations and from instantons of size p~ a. The
contribution of instantons can be thought of as producing
a. vacuum permeability p, , as if the instantons mere a
gas of paramagnetic four-dimensional magnetic dipoles
with density n(p) and dipole moment proportional to p'
(Callan, Dashen, and Gross, 1978, 1979a). The result-
ing lattice coupling is given by

(7.9)

Here g„'~(pAi, ) is the effective coupling as determined by
ordinary perturbation theory, i.e., Eq. (V.2), and a,(a)
is a cutoff on the instanton scale size representing the
fact that only fluctuations on scales less than the lattice
spacing have been integrated out. The constant C„(A~)
depends on the precise value of the lattice renormaliza-
tion point as (A, )

"'" ' [see Eq. (6.18)]. For SU(2)
C,(A~) = 1.58&& 10', since,

~~ =(2.86) exp

(Hasenfratz and Hasenfratz, 1980) and the best estimate
for a, is 2a/3.

Given the above one may evaluate the quantity o.

=lng2~(aA~)/a for a range of lattice spacing a. If the
effective lattice theory is in the strong coupling domain
then this quantity will be independent of a and in fact
will equal the physical string tension o. Thus the be-
havior of cr(a) may be used (1) to check the consistency
of the basic assumption that semiclassical fluctuations
alone are sufficient to drive one to the region where
strong coupling expansions may be applied; (2) to calcu-
late the string tension o in terms of Ai, ; and (3) to com-
pare with numerical lattice gauge theory results.

The comparison with Creutz's recent Monte Carlo
evaluation of g~(a) is quite impressive (Creutz, 1980;
Kogut, Pearson, and Shigemitsu, 1979). Both treat-
ments yield a sharp transition from weak to strong cou-
pling behavior at g2= 2 and predict [for SU(2)] v cr = (70-
100)Ai ." Note that Ai, is much smaller than the A' s
commonly employed in conventional renormalization
schemes such as the Pauli-Villars scheme used above,
or the dimensional regularization (MS) scheme; for
SU(2) A~ =A p~/21. 55 =A~~ /20. 74. Hence, in terms of,
for example, the previous Pauli-Villars scheme, v o
—(3.5-5)A~„.

We shall now extend these methods to construct an
effective lattice gauge theory for finite temperature. It
is quite straightforward to extend the calculation of the
coupling renormalization to finite &. First, one must
use the density of instantons as calculated for finite
temperature; i.e., n(p, T) as given by Eq. (6.15). Sec-
ond, one must ask whether periodic instantons continue
to renormalize the coupling as if they were four-dimen-
sional magnetic dipoles.

To answer this question we must consider the re-
sponse of a dilute gas of instantons, for finite T, to a
slowly varying background field. This is most simply
done by evaluating the gauge field propagator in the di-
lute gas approximation. Following the discussion of
Callan, Dashen, and Gross (1978, 1979a), one finds the
contribution to the propagator from instantons of size p,

P, (a) =il(a)+ [1+q(a)']' ' Callan, Dashen, and Gross (1979b, 1980) and Creutz
(1980) both neglected to include the effects of the second-order
term in the P function. This produces roughly a factor of two
change in +0/A.
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TABLE I. Critical temperature estimated from effective lat-
tice theory at temperature T. a(T} equals the distance at which
the transition from weak to strong coupling behavior occurs.

F((,T)= fd' xe'~'* 8' )ntt(x),

and II(x) is the 't Hooft potential for the instanton field
[Eq. (3.9)]. However, for small momenta F(p, T) re-
duces to a surface integral independent of T,

0
10
20
30

I
- (~))1 /2yA

70
67
62

~50

0.0116
0.0118
0.0123

-0.013

39
38
37
36

F(0, T) =() Jd'Z (all)B) = Jd a I=('4 '

loO—

120—

80-

lO 20

g2
Flo. 7. O.=lnIgz(aAL, )/a j vs gz(aA&) for SU(2).

Therefore, the coupling constant renorrnalization, for
the small momenta which are relevant for slowly vary-
ing background fields, is given by the same formulas as
for T =0, except that n(p) is replaced by n(p, T). (Natu-
rally, one may reach this same conclusion by a direct
calculation of the interaction of an instanton with a
slowly varying background field. )

We now proceed to construct an effective lattice action
for a lattice of sizg a at temperature T. As long as aT
«1 one can ignore the fact that the lattice is periodic in
the time direction. Once again we calculate g~(aA~) as
a function of the lattice spacing a, and examine the be-
havior of the would-be string tension, e(a). The tem-
perature dependence is illustrated in Fig. 7, from which
we learn the following [for SU(2) j:

(1) At zero temperature there is an abrupt transition
from weak to strong coupling behavior. Beyond g'-2,
a(a) remains constant to —

+5%%uo. The region 2(g'&25
corresponds roughly to one doubling in the lattice spac-
ing. This transition from weak to strong coupling be-
havior occurs at a very weak coupling, g'/87)'-1/40,
well within the region where semiclassical methods
should be valid.

(2) As T increases, the value of the string tension de-
creases.

g o(0) = VOA, Eo(IOA ) = 6'lA, v' o(20Az) = 62Ai, etc.

(3) When T = (30-40)Az one no longer finds an abrupt
transition from weak to strong coupling behavior, and
Ing'(a)/a does not approach a constant value for large
a. The instantons, which gave rise to the sharp transi-
tion for T =0, are almost totally suppressed for &
~ 40A~.

This suggests perhaps that a phase transition is taking
place at about T,=(30-40) A~=~so. It is not surprising
that for T ~ 30A~ the calculated 0 tends to fall with in-
creasing lattice spacing, since one would expect for
this temperature that the corrections to the strong
coupling relation between 0 and g would be important.
After all, it is these temperature-dependent correc-
tions which lead to the phase transition of the strong
coupling lattice theory.

Another estimate of T can be obtained directly from
the strong coupling lattice theory. As explained above,
one finds a simple estimate, or upper bound on the
transition temperature, T, ~ aa/In5. Although this es-
timate was based on a Hamiltonian calculation, it is
equally valid for the Euclidean theory since (by defini-
tion) both methods yield the same value of O'. We may
therefore calculate &, as a function of the lattice spac-
ing for a given temperature, and take as our estimate
the minimum value of o'(a)a/ln5. These results are ex-
hibited in Table I. The best estimate of T, occurs for a
lattice spacing about equal to the value a where the
transition from weak to strong coupling occurs. We
find T, '"=(40-35)Az. This is consistent with our pre-
vious estimates. If we translate this estimate of T, into
units more suitable for discussing ordinary continuum
perturbation theory (say, minimal subtraction), it cor-
responds to T, —(1-1.5)A—„~, which indeed is in the re-
gion where, in the calculation of &(T), we found large
deviations from ideal gas behavior.

In summary we have constructed a very crude effec-
tive lattice action for quarkless @CD whose coupling
g~(a, T) is a function of a and T. For small temperature,
T ~ 30&~, we see an abrupt transition from weak to
strong coupling behavior at a distance a(T). This action
describes a confining phase with flux tubes of radius
=a(T) connecting external colored sources. As T in-
creases, g2(a, T) decreases, leading to a smaller value
of the string tension v(T) and a larger flux tube radius.
For T ~ A~ the instantons responsible for the abrupt
phase transition are absent, and the action describes an
unconfined phase. The value of the critical temperature

,T-(3 -04)0Aazgrees with the estimate of the critical
temperature for flux tube condensation. '3

2~The quoted numbers are all for the SU(2) theory. For
SU(3) Wo. - llOAL and 7' —50AI.
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What is unclear from the above simple treatment is
the exact nature of the phase transition. We are unable
to establish whether it is first or second order, or
equivalently whether the string tension v(T) remains
finite or vanishes at T,.
D. The real world

We should now like to examine how the above scenario
is modified by the presence of dynamical quarks.
Clearly, one can still imagine the possibility of two dif-
ferent phases —a confined phase where physical states
are colorless bound states of quarks, and an unconfined
phase with free quarks and color screening. However,
one no longer has a simple order parameter which dis-
tinguishes these phases. For example, a Wilson loop,
or string [i.e., (Q(0)Q~(R))] is always screened, by a
single quark-antiquark pair in the confined pha. se, or
by a polarization cloud of gluons and quarks in the un-
confined phase. Similarly, both phases have a mass
gap (provided the quarks are not massless). Of course,
the two phases are distinguished by completely differ-
ent structures of the physical Hilbert space. This is
reflected in, for example, whether or not multiparticle
cuts exist in correlation functions of local gauge-invari-
ant operators, which cannot be accounted for by the
single particles produced by any local, gauge-invariant
operator.

If the quarks are massless then one must also consid-
er chiral properties. The low-temperature phase is be-
lieved to be chirally asymmetric with gP acquiring a
nonzero expectation value. However, the high-temper-
ature phase is surely chirally symmetric. Dynamical
quarks do not affect the reliability of high-temperature
perturbation theory (provided there are not so many
that they destroy asymptotic freedom), and such a per-
turbative phase is manifestly chirally symmetric. In
fact, all correlations between quarks decay as
exp(-vT ~x ~) at large distances, clearly preventing any
dynamical symmetry breaking.

Thus there must be a chiral phase transition at some
temperature. It may either be separate from the con-
fining phase transition, or there may be a single com-
bined transition. Unfortunately, we have even less in-
formation Rbout the trRnsltlon region thRn previously.
As before, perturbation theory is unable to describe
both phases, and certainly cannot be used to find a
phase transition. Furthermore, in the presence of
dynamical quarks, one is unable to' construct even a
simple lattice model of the relevant physics. Merely
inserting quarks in a lattice theory without destroying
the chiral symmetry is a major problem. One can still
study the effects of instantons in the presence of dynam-
ical quarks; however, it is considerably more involved.
Massless quarks cause instantons and anti-instantons
to become bound into pairs. Each pair now acts as a
four-dimensional dipole, just like a single instanton,
and additionally different pairs can exchange massless
quarks. One can construct a model of chiral symmetry
breaking at zero temperature which yields dynamical
quark mass generation due to instanton mediated inter-
actions (Callan, Dashen, and Gross, 1978, 1979a;
Caldi, 1977). As the temperature increases, the in-
stanton density decreases, which weakens the effective

interactions between quarks. At some point the pion
will become unbound and one will lose the chiral sym-
metry breaking. However, using instantons alone, one
cannot adequately treat the long-distance color dynam-
ics needed to understand the interplay between the con-
finement and chiral aspects of the phase transition.

Giving up on an honest treatment of the phase transi-
tion, we would like to mention how the overall picture
of a transition to an unconfined phase may be seen in a
simple phenomenological model, the bag model (Chodos
et a/. , 1974). This provides a nice description of low-
lying hadrons as little pockets of "perturbative" vacuum
immersed in the "true" vacuum. The true vacuum has
an energy density which is less than the perturbative
vacuum by an amount , the bag constant, and it expels
all color electric flux. Consequently the flux generated
by the quarks is confined within the bag. The inward
pressure due to the bag constant must be balanced by
the outward pressure due to the electric flux, as well as
the quark kinetic pressure; this determines the size of
the bag. An important ingredient of the bag model for
light quarks is the chiral properties of the "true" vacu-
um. Outside the bag quarks behave as if they have a
large, dynamically generated mass (which is actually
infinite in the simple MIT bag model). This also serves
to confine light quarks inside the bag.

If we now examine this model at finite temperature,
three different effects can appear. First, the bag con-
stant (8 may depend on temperature. After all, in QCD
some of the nonperturbative fluctuations which lower
the energy of the vacuum (such as instantons) will be
suppressed at high temperature. Hence, if the bag
model is intended to mimic QCD, then (8 should de-
crease with increasing temperature. Second, the chiral
properties of the "true" vacuum might be temperature
dependent. Third, thermal fluctuations will create a
gas of bags whose density increases with increasing
temperature. All of these effects lead to nonconfine-
ment at high temperature. Since the expected radius
of a bag behaves a.s di ' 4, as $(T) decreases the bags
will grow. Clearly, if -0 then we shall have lost con-
finement. However, even before that point dramatic
-effects will occur. Specifically, as the density of ther-
mally excited bags grows, the bags will begin to over-
lap and join. At some point, quarks will be able to per-
colate through a network of bags extending throughout
space. In other words, the bags will have condensed,
producing nonconfinement (Cabbibo and Parisi, 1975).
Also, if the chiral phase transition occurs at low tem-
perature, then the nature of the hadronic bags might
change radically even before confinement breaks down.

Vl.l I. CONCLUSIONS

Since the introduction contained a summary of the
overall picture of high-temperature QCD, we shall
confine our concluding discussion to a few remarks
about the many outstanding problems. Clearly much
work remains to be done. Perhaps the most straight-
forward problem is that of extending the perturbative
analysis of the free energy to O(g') and O(g'). This
requires calculating all three-loop vacuum graphs. At
this order the results depend on the specific scheme
used to define the coupling. To go beyond this order,
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as discussed in Sec. IV, one must be able to complete-
ly solve the three-dimensional pure gauge theory. This
is likely to be an open problem for quite some time;
as always, proving the existence of a mass gap in gauge
theories appears to be the most fundamental problem.

In the lattice approach, one would like to be able to
calculate the transition temperature of the pure gauge
theory, T„as a. function of the coupling g'. Series
extrapolation techniques do not seem very promising
here since, even for arbitrarily strong coupling, the
transition is associated with a breakdown of the strong
coupling expansion. However, the Monte Carlo methods
which have recently been applied to gauge theories ap-
pear to be well suited for this application. It should be
possible to numerically compute expectations for a
sufficiently large lattice so that clear indications of
a phase transition could be seen. The heavy quark po-
tential, or (Q(A)Q (0)), is a natural order parameter
for the transition; one must be able to distinguish be-
tween the exponential falloff exp-oA jT of the confining
phase and the screened form 1 +0(exp(-m„R)) of the
unconfined phase. If possible, one would like to be able
to extract the electric mass rn„and compare it with
the perturbative prediction. No doubt results of this
nature will be avai. lable soon. '4

Clearly, improvements can be made in the semi-
classical derivation of effective lattice theories. A
more careful treatment of how the constraints which
are inserted cut off instantons would be particularly
welcome. However, it must be remembered that all
of the previous methods were developed for a fake
theory —quarkless QCD. Therefore, the most pressing
problem must surely be the development of nonpertur-
bative methods which can adequately treat dynamical
quarks. In particular, genuine calculational methods
for quarks are totally lacking.

Finally, after spending all this time on the theory
itself, we should like to add a few words concerning
the possible applications of high-temperature QCD.
Since interesting effects require a temperature of order
some typical strong interaction scale, say 100 MeV or
10" K, the most immediate application of high-tem-
perature QCD is to cosmology. Within the standard
big bang model, the universe expands and the temper-
ature steadily drops and, at a time around 10 ' sec,
hadronic temperatures of order 1 GeV are reached. In
particular, we have seen that QCD clearly predicts a
phase transition from an unconfined quark phase to a
confined hadronic phase. This is, in fact, the last
phase transition to occur, and therefore presumably
the most accessible experimentally. (Earlier phase
transitions may be associated with weak interactions
at -10' GeV, technicolor interactions at 10-100 TeV,
or grand unified interactions around 10" GeV. ) Pos-
sible effects associated with this transition which one
might contemplate include (1) creation of the fluctua-
tions in the baryon density which are needed to form
galaxies and clusters of galaxies, (2) effects of a
strongly first-order transition, such as the generation

24Recent Monte Carlo, ' studies of SU(2) Yang-Mills theory at
finite temperature (McLerran and Svetitsky, 1980; Kuti,
Polonyi, and Szlachanyi, 1980) yield good evidence for a phase
transition at temperature T = 1/2~o.

of additional entropy and increased expansion in the
supercooled phase due to the latent heat, and (8) per-
turbations in the photon spectrum due to recombination
radiation emitted when hadrons are first formed. Un-
fortunately, observing any such effect appears to be
hopeless. Although we are unable to compute realiably
the transition temperature, latent heat, etc. , it seems
inevitable that in QCD (a theory with no small parame-
ter) any such dimensional quantity will be of typical
hadronic size. Thus, for example, if the transition is
first order, then surely the nucleation rate is closer
to hadronic rates of 10" sec ' than to the global expan-
sion rate at that time of -10' sec '." But this makes
it impossible for any dramatic supercooling effects to
occur. Similarly, recombination energies cannot be
many orders greater than the prevailing thermal en-
ergies, and any increase in entropy cannot be by a
factor much greater than order one. Finally, any dis-
cussion of fluctuations immediately confronts the fact
that at T -10"K the baryon number inside the particle
horizon (i.e. , within the causally connected portion of
the universe) is much less than a solar mass, far too
small to nucleate galaxies.

Other possible applications of high-temperature QCD
typically also involve large baryon density. These in-
clude topics such as quark stars (Collins and Perry,
1975; Freedman and McLerran, 1978; Baym and Chin,
1976; Keister and Kisslinger, 1976) and statistical
treatments of heavy-ion collisions (Schroeder, 1980).
Consequently, it is of interest to include a chemical po-
tential for quarks in QCD and to study the combined
(T, p)-phase diagram. Perturbative calculations may
be easily extended to include a chemical potential and
have been performed through O(g ) (Kapusta, 1979a) for
T o 0 and O(g ) at T =0 (Freedman and McLerran,
1979b; Baluni, 1978). However, at higher orders one
should encounter exactly the same breakdown of pertur-
bation theory due to gluonic infrared divergences dis-
cussed previously (Sec. IV). Even the (p c 0, T =0) cal-
culations appear suspect (Linde, 1979), since a careful
treatment inevitably seems to require a limit from non-
zero temperature (Baluni, 1978). Therefore much fur-
ther work will surely be required before this area of
QCD is fully understood.
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Recent].y, G. Lasher (1979) has discussed the cosmological
implications of a strongly first-order phase transition from
quark to hadronic matter. He argues that this transition might
have a big effect on the history of the universe and might lead
to galaxy formation. However this is based on an assumed
nucleation rate which we feel is too small by many orders of
magnitude ~

For a recent review of possible applications of QCD in this
area, see Shuryak (1980).
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APPENDIX A: NOTATION

We work in Euclidean space throughout this paper,
with metric g, „=&„„,cp», =—+1, and Hermitian gamma
matrices satisfying (&,&„].= 25„.

The color gauge group G will be taken to be SU(N).
The gauge field A„(x) is an element of the Lie algebra
of G, and may be represented as&„=A''E', where
(T'] are representations of the generators of the Lie
algebra; [T', T'] =f'"T'. Unless otherwise specified
we shall take & to be in the fundamental representa-
tion. Thus A„=A.'(A.'/2i) is an arbitrary traceless,
N-dimensional, anti-Hermitean matrix. The fundamen-
tal representation generator s (V/2i] are normalized
so that

tr [(x'/2i)(x'/2i)] -=—2 tr [(x'/2i)(y'/2i)] = &'" .
The completeness of the A, 's is expressed by

d4p d'p 1

J, (2 )
-

~ (2 ) P ~
and P, only takes on the discrete values (d'„depending
on the periodicity of f(x). It is frequently convenient
to reexpress these frequency sums in terms of contour
integrals, as follows:

1 f(~+) d& f(&)(ei()zlb + e-i(iz/2)/(eii z/2 ~ e-ii z/2)1
p „"4(r

00 dz—f(e) w —[f(a) +f(-z)]/(e '~' v1) .
()o 2 + «oo+ ~ 2~

(A1)

(The contour C encloses the real axis counterclockwise. )
This formula is valid for any function f(z) which is an-
alytic in a neighborhood of the real axis.

APPENDIX 8: TOPOLOGICAL CLASSIFICATION

The adjoint representation generators are given by
(T: )~„.=f ".

The covariant derivative &, =—8„+&„and the field
strength

Let A„(t,x) be a smooth gauge field satisfying the
conditions

E B=0(1/x' ' ) —= 0 ' as ixi —~

E„„=-[D„D„]=8 „A„-8„A„+[A.„,A.„].
is taken in whichever representation the covariant

derivative is to act upon. We shall frequently split
space and time components and hence define the elec-
tric field E. =+0 and the magnetic field B,- =&~r jI,I"j
The dual field strength +,„=—&e „~E z. This inter-
changes electric and magnetic fields.

For dealing with classical solutions, it is very con-
venient to use the matrices &, =-(-i, v') and vi —= (i, v').

[(v',}are the ordinary Pauli matrices. (v„/2i'~ may be
considered as generators of any fixed SU(2) subgroup
of G. ] These matrices satisfy the relations

A „(P, x) =A, (0, x) .
B =o' ' implies that A =g8g ' +o' ' for some g (x) c G.
We may gauge transform by g ' and consequently as-
sume without loss of generality that

(B3)

Now

Q(x) =5'exp dt's„(t, x))
dp

C onsequently,
8 t'

8Q(x) = dt' P exp Ao 8AO(t', x) P exp A,
0 0

where il'„„and ii'„„are 't Hooft's eta symbols. il(q)
projects out self-dual (anti-self-dual) tensors and
satisfies various identities listed in 't Hooft, 1976.

All of our fields are defined on a slice of Euclidean
space, x cart= (x~0&x, & p—'/. Thus we write

GPx= d += dt dx ~

Owing to the periodicity conditions (2.4), the time de-
pendence of all fields may be represented by a fourier
sum over discrete frequencies,

A „(t,x) =—QA„((d „,x)e'"'"' co"„=-2n)T/P

"0
P exp

/8
xA(t', x) P exp A, +o'

«

= [Q, A(0, x)]+o'/'.

(B4)8 tr(Q") =o n for any integer n.
Let (/(] be the set of eigenvalues of Q(x). Equation
(B4) shows that this set of eigenvalues approaches a
limit ) /("), independent of direction, a.s ~x~ -~. Let

, o. =0, . . . , /i be the eigenvalues of (X"] with multi-
plicities /n . We may label the eigenvalues (/() of Q(x)
as (/(. , (x), i =1, . . . ,I; o. =0, . . . , /i] so that X,.(x) is
everywhere continuous and

Here we used 8A, =D, A+o'/' and A(p, x) =A(0, x). This
establishes Eq. (3.2). DQ=o3/2 implies

g(t, x) = —Q g((u„, x)e'~~ ', ~„=(2n+1)///p.
I

In general, we write

z,. (x) =i) +o'/', 8/(, (x) =o'/' as ~xI —~.
Thus

Q (x) = V(x)/(.
"

V '(x) + o'/'.

(B5)

d'p
f(x) =

2 ,f(P)e"", —

where

(A is considered as a diagonal matrix here. ) Note that
V(x) is only defined up to right multiplication by any
element of G which commutes with A.". That is, Vc G/H
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where H =G~ is the isotropy group of A". (G „
=[zc G lg')&"a ' =)&"]..) So Q(x) for

l
xl =H - ~ may be

regarded as a mapping of S, into the equivalence class
of &". E&luivalently, . Q provides a mapping of S2- G/H.
These mappings fall into topologically distinct homotopy
classes labeled by )),(G/H). Now ))', (G/H) = n', (H) since
))', (G) and )),(G) are trivial. CLearly

H = [U(1)]"[(8 SU(m. )]

and )), (H) =(Z)" since n, [U(1)]=Z. ()&+1 is the number
of une&luaL eigenvalues of A. .) These integers are in
fact just the quantized magnetic flux,

q =lim . d S ~ tr(P B). (H
B-~ 4 ~ s={xl I xl =R]

Here P (x) is a projection operator onto the subspace
spanned by eigenvectors of Q(x) with eigenvalues &&,. (x),
i =1, . . . , )))„). [P (x) is continuously defined in the
region

=(x cI"
l x,. (x) w q,.(x) v p pp n, v i,j) .

In the first step we noted that the only part of A' which
contributes in the A' & A' is the part which does not
commute with &. However, this part falls off as o' ',
too rapidly to contribute to the surface integral. Next,
we used the fa.ct that tr(p A) is continuous across P
so that only the derivative term in A' can contribute
to the infinitesimal line integral around I'. In the last
step we diagonalized i&f =um u ', m, , =5,,.e')'d ~ . [(t

is the angle of polar coordinates (on S) centered at P.]
The last line is clearly the integer winding number
which measures the twist of rn on an infinitesimal
loop around &. This shows that the quantized magnetic
charges {q ] label the different homotopy classes of
z, (H) =)),(G/H) and thus characterize the winding of
Q(x) at infinity.

Next, we should like to relate the "topological charge"
Q to the values of magnetic charge. We have

Q= 2 dXf12C „g E „I'= 1 1

32772

E&luation (H5) impLies that % contains the region
lxl & d for some radius d&~.] Note that 2, q =0 since
tr(B) =0.

To see that q defines a topological integer, we

diagonalize Q(x) on the two-sphere S. Thus

Q(x) = V(x))&(x)V-'(x) .
Columns of V are the eigenvectors (i), (x) of Q.

P (x) = Q g (x)&i';(x).

p, vo8d'x 8, try „8(A„l'~ ——,A„A „A~)

d x&8, tr(A ~ B ——'.A ~ A x A)
16m

+8 tr[Ax E -A, (8 xA)]f.

For a, periodic gauge field satisfying conditions (Bl)
and (B3), this becomes

8
dt O'S .tr (8A, x A).16m'

(B9)

Now, even though Q(x) and P (x) are continuous every-
where on S, it may be impossible to continuously define
Vc G everywhere on S. [V(x) is uniquely defined only
a.s an element of the coset space G/G, &„).] We may,
however, remove a point I' from the surface S and
define V(x) continuously on SQP. As x -x, = Pwe must—
have V(x) = v(x, )h(x), h(x) c G,&„). [h, )((x,) ] =0 implies
that h is block diagonal, i.e. , h&,- &&~»

= 6 ~ M, ,. I et

A = V(8 +A') V ' for xc S jP.
Ther efore,

DQ = V{8~+[A, )]]V '=o'"-
so that

This shows that any periodic field where &, vanishes
rapidly at infinity will have zero topological charge.
However, this expression is not the most useful for
relating Q to the topology of Q. For that, it is con-
venient to transform temporarily to A. , =0 gauge. Thus
A' =U(8 +A )U ' where

t
U(t, x)=perp dtpt„(t', x)) .

0

In this gauge&0 =0 and

A'(P, x) =Q(x)[8 +A'(O, x)]Q '(x),
E' ( I3, x) = Q(x)E' (0, x)Q '(x) .

[A', &] =o'" or A' =a+o'", (B'i) Now, from (B9),

where a c G„. The projection I' becomes I' = VP V

where Q = d'~ tr[A'. (B' —,'A' xA )]l~
16&P 0

P = e&,. ) met„,. ) =r(pt 'ett)e —,fd xii tr(tt 'crt xA(x, p)), (B(0)

[p, h] =0 & hc G~.

We now compute the magnetic charge (H6):

where

r(d)=- —,fd'x l&r(d dxd) (B11)

q = . O'S ~ tr[p„(8 x A'+A'x A')]
2vi st&

—1 O'S. 8 x tr(p„A') = . dl tr(p V '8V)~ =1
sh 2vri

. .tr(i&i~ '8i&d ) = g—[f,. (2))) —f,". (0)]c Z .2)&i,. 2&) ' '
(H8)

The surface term in E&L. (H10) would vanish if 8Q wa. s
o '. In this case, Q would approach a constant at
infinity and hence could be regarded as a mapping of
S3 —G. Such mappings are classified by the homotopy
group )),(G) =Z. &d(Q 8Q) is precisely this integer—
valued winding number.

In general, if BQ@o' ' then we need to separate in
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(B10) the effect of the winding of Q at infinity. To do so,
we extend the definition of V(x) introduced previously
so that

Q(x) =V(x)co(x)V(x) '. (B12)
We require that &0(x) be. continuous throughout IR', and
that V(x) be continuously defined on IR'gfLj for some set
of strings (L].. We may choose V(x) so that

8(u(x) =o' ' and (u(x) —&&" +o'i'. (B13)
Let

A' = V '(8+A) V.= V '8V+o'~'

Equations (B13) and (3.2) imply that [A', &u] =o'~2 or
A' =a+o'~' where [a, cu] =0.

As x approaches some x, c(L), we must have
V(x) —v(xo)k(x) where h(x) c G„&„&. [Otherwise &u(x)
could not be continuous at x,.] A' —V '8 V and [V '8 V, u ]
are bounded as x-x, &=(Lj. We show how to construct
such a V(x) below.

Inserting this decomposition into (B10), one finds

1
Q = v(&o '8&L&) + 6~' ]R'i(L)

= v(u) 8~) +
1

e(R X(g))

&f'x 8 tr[&u '8(o x A' +(D'~)~-' x V-'BV)

d Z trL(&d '8&d +8&d&d '+ [A', ~]~ ') xA'j

1
=v(&d '8&d)+, , &PZ tr(&d '8&dxA').

~(R X(r. ))
(B14)

= v(&d 'Bur ) +Q . .q
lnp (B15)

Since 8~ =o'~', co(x) may be regarded as a mapping of
S3-G, and v(&d '8&L&) is just the integer-valued Pontrya. -
gin index. [The branch of Inp must be appropriately
chosen so that v contributes the correct integer part
to Q. This branch is determined by the requirements
above which imply that when two eigenvalues of A.(x)
become degenerate on fL} so must the eigenvalues of
Ink(x). ] This establishes the quoted relation (3.5).

To show that it is always possible to transform the
fields into the "asymptotically Abelian" form used
above, let us first consider the basic ease of a field
where A.

" has two different eigenvalues, p, and p, . Let
81 be the region where no two eigenvalues of A(x) in dif-
ferent blocks cross. If q' = -q'+ 0 then the complement
of &II must be nonvanishing [otherwise &(x) could not
be continuous]. Let y be some point on the boundary of
&g where &&„. = A, , for some i and j. Choose a. string
L cS, running from y to . We may choose a gauge
transformation V(x) continuous onR3%L, which obeys

limV(x, +ax) = V(x, +ex')[1+$„&t&ot;(e" ' —1)
0

lg+4„4&;(e*'' -1)]
for xo & L, x and x' orthogonal to I, and x x' = cos8.
V may be chosen, for example, to block diagonalize
A in the region + and otherwise may be filled in an
arbitrary, continuous manner. This leaves = V 'QV
continuous across L, and topologically trivial at infin-
ity. All boundedness and asymptotic conditions above
are satisfied. Finally, ~ =ilnco must be chosen so that
($„., 8$„.) =($,&, 8$,~) at y. This implies [8(x),G &,&]=0
for x c8(R'gL).

In these steps we used the above conditions to eliminate
terms which fall off too rapidly at infinity to give a sur-
face term, or are bounded as one crosses a string in

On 8(R'g(L].) we may represent ~ a,s &d(x)
=exp[- i8(x)] with 8(x) continuous and [8(x),A'] bounded
and o '. C onsequently

1 6
Q =v(u '8&d) + d'Z ir —8'

8(R X{L)) 2Tr

General. izing this procedure to the case of an arbi-
trary set of magnetic charges is straightforward. One
simply successively considers points where eigenvalues
in different blocks cross, introduces strings running
from these points to infinity, and iteratively constructs
a gauge transformation V which removes all winding
at infinity.

APPENDIX C: GLUON SELF-ENE RG Y

The one-loop gluon self-energy, in I eynman gauge,
is given by

( ) 2~ t
'q &L ( p q)» {27&)' q'(p+ q)'

where

d'q I,„(p,q)+ J'„,(p)
, (27&)' q'(p+ q)' (Cl)

1..(p q)=2(p+q). q.+2q. (p+q). — 5((p+q)' q+'-p')

At zero temperature one may evaluate II„„using stan-
dard techniques (e.g. , dimensional regularization). One
f lnds

1 2

II„„(p)
~

= —
( )

(5N —2N&)(5„„p' -p p„) Inp2/I&, 2,

(C2)

where p, is the renormalization point.
At finite temperature, II„,(p) has in general three in-

dependent components (see Sec. IV.B). However, since
the one-loop expression (Cl) is transverse for any en-
ergy, this reduces the number of components to two
(for example, II» and II,,). Furthermore, we shall re-
strict our evaluation of II „(p„p) to the limit of low
spatial momentum, p-0. In this limit the one-loop
self-energy has only one independent component.

To see this, consider first the case of nonzero ex-
ternal energy. '

When poW 0, the denominator of (Cl) may
be expanded in powers of p without causing any infrared
divergence. Consequently, II„„(p,v 0, p) has a finite
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asymptotic expansion in powers of p. The transversali-
ty of II„then implies

Ii.,(p, =o, p)-[11 (P, =O, p=O)]5.,5 +O(p). (c4)

11., (p, ~ o, p) —-'[ll (p„p= o)]5„,. 5„,. + o(p) . (c3)
On the other hand, at zero external energy, D „may be
decomposed as

ri.„(p.= O, p) = [11„(p,= 0, p)]5.,5

+ —,'[11,,(p, = O, p)]5„,(5;;—p; p;/p )5,.
II, ,(po, p=0} cari be nonvanishing only if II,,(po= 0, p)
has a directional singularity at p = 0. However, the only
part of (Cl) which cannot be expanded in powers of p
when p0=0 is the contribution from the region where q0
=0 and q-0(p). This contribution is of order ~p~'p'/p'
-O{p) and hence vanishes at zero momentum. Con-
sequently, II, , ( P =0) = 0 so that

Thus we need only compute the trace of the one-loop
self-energy at zero spatial momentum. Equation (C1)
yields

( ), d'q [(p+q)'+q' —p']
~u P —-g~y (2)4 o(p )o

d'q [(p+q}'+q' -(5/2)p'1
, (2~)' q'(P+q)'

Equation (A1) may now be used to extract the temper-
ature-dependent part,

511„.(p) -=11„.(p) II,.{p)~, ,
We find

d4q
511"{Po p=o}=2g'

( ).—[N/(e 'o'o' -1)+N /(e '~o" + 1)]
q

2

o + 2 [5N/(e'o'o" -1)+2N /(e '8'o"+ 1)]q' (P+q)' (P-q}' f

I ql
[NI(e8 I+I 1)~N /(col+I + I)]f

2g
7T 0

dq q [N/(e ' 1)+ N /(e —+ 1)]—,', , [5N/(e" —1)+ 2N /(eo'+ 1)]

2gT (N+N-~/2) —
o (5N+ 2N~) Inppo/4~ —g ppo

0

+ p,'(2N )»pp, /27t —p4m' ~ 27j pp,
2 2

'g'T'(N+ N~-/2) — ', (5N —2N~) 1n( ppo/4m)'

+ 5N —+ g — —2N 2$(n) —g — —In4
g2p2 ]

f

Here Po =27tn/P and g(z) = I"(z)/I'(z).
Note that the poo lnpo term in (C5) precisely cancels the

p'lnp2 zero-temperature term (C2). As po- ~,

511„.(P„p=O) ———,
' g'T N. 2

AS P0-0,
511»(Po, P = 0) —-', g 'T'(N+ Nz/2).

These results may be inserted into (C3} and (C4) to find
the quoted behavior for llo, (po=0, p=o) and

II*~(po ~0, p= o).

APPENDIX D: CONSTANT FIELD DETERIVIINANTS

where q is diagonal, real, and traceless,

(q}ga-=q'5~o ~

The fundamental representation ferm ion determinant
may obviously be expressed as

lndet (Q,„„~)= g ln det (/+ q'g)

= 2 Q lndet [-(& +q'(, )'],

where $=—(w/Pi)e, . Similarly, the adjoint representation
gauge field determinant becomes

Indet, (-Do~&) = g lndet, f- [9„+(q~ qo)f ) ]
j, O

—ln det, (-&') .
This follows from noting that

(D [ ]); =(s v+ [&,v]); =(~ +(q' —q')5 ),
and that each component of v = v'X'/2i except its trace
may be regarded as independent. [Here we are choosing
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I

to regard an arbitrary adjoint representation field as a
traceless, X-dimensional, anti Hermitian matrix, e,
in place of the equivalent (N' —1)-dimensional vector,
v' = tr(v]('/2i). ]

Thus we must evaluate lndet[-(B„+qg~)'] for either
periodic or antiperiodic boundary conditions. Using
(Al) we find

indet, [-(B„+qg„)]= P V 4 ln (d„'—,—+k2dk

4 ln ko +k + ln ko+~ +

The regulated, zero-temperature determinant is inde-
pendent of q and defined to equal one. Hence

d4k
lndet, [-(B„+qg„)] =+ 2p VRe 4 ink'/(e '~ () '"v 1)

2VBe ln(1 w e ~]s]"")d3k

(2 7])'

——,Re dkk' +e ~"""n7T' 0 n=l

2. V——,—,g (+1)"cosn]]q/n'
m P

2 V 1 1—~'————(1 —[q]')',P' 45 24

where [q],= [(q) mod2] —1, and [q] = [(q+ 1}mod2] —1.
Hence -1 ~ [q], &1.

Thus me find

lndet (P,„„~)= -27]'—,Q ———(1 —[q']')'~V 1 1

j=l

= -2 e'————tr[1 —(tntt
'"" /rt)*]'}P' 45 24

(D4)

(lnQ'""" and lnQ' ' refer to the logarithm of the matrix
representing 0 in the given representation. In the fun-
damental representation the eigenvalues of lnQ must
lie within [-7n, ]n], while in the adjoint representation
the eigenvalues are to be chosen in the internal [0, 2)Ti].)

APPENDIX E: INSTANTON DETERMINANTS

1. Isospin 1/2

The temperature-dependent part of the isospin-& de-
terminant may be expressed in terms of the scalar
propagator,

5 ln det, (-D2/-B)~/, = dA Tr —(-D')
0

where

&,(x, y) = Q (+1)"&(x,y+nPt),

22 (x, y) = I'(x, y)/47]'(x —y)'ll (x)'/'n (y)'/'

F(x, y) = 1+Q p'& x &' ~ y /x' y' .

N

react, ( D,I,)= —I — —— ——(1 —[2' —2 ].) }—
aa- j k=1 I

——tr[( lnQ'"'/]n), VN' 1 1
p' 45 6

x(1 —tntt '/2 1)]') .

(x —= x —mPt, etc. ) Since

~„=—,'(y„y~ z„v~)f, (f,=s„lnIT),

we have

(—D') = —,
'

(B f') ——,'v B~t B„f+—,'v B~f7t B.

(D5} Thus

tanae(t- D / )a=rt( )+] dr+' (+1)'-(f atrr[-(a„/)n'+-, 'r ',2,/I' Lan at'. 2r, /]['
0 n

~here

X(~)= d](Tr —(-D') ~
Bg J

—!trt a[I': a, /1 (x, rex()t]},

This term has been previously examined by Brown and Creamer (1978). Their result is given in Eq. (6.10). The
remaining terms above are easily evaluated using the relations
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and,

So

&I'(x, y)/(x —y)' = —27' (x —y)II(x)/(x —y)'

F(x, y)/(x —y)'~ ~ 8 = —2II(y)w ~ (x -y) /(x —y) .

iflndet (—Il I—8*)„,=A(X)+ dt's (+1)"
J distr('(8, f )I —,'r e, i—T'~ fi —,'Lv is~ —8 f

0 n

(x-y) ~ (x-y)
(~-w)' (x-v)' ' ) '=*'""

where

q, = 3+ (+1)"/~ n = (1 for +; ——', for —) .

This verifies Eil. (6.12).
We should also like to sketch a rather elegant alterna-

tive derivation of this result which requires no know-
ledge of the exact instanton propagators. This deriva-
tion is based on the approach of Callias and Taubes
(1919).

The isospin-~ operator -D(A)2, for any 't Hooft solu-
tion, may be expressed in the factorized form

H, = —[ln—II, H,] or H'„= ——[[lnII, H„],H„],
8 p 8

where

(I 03

( 0 —I)
a.nd ly, H„)= 0.

Now, since

&n aA=J —(8 "—e -)
0 S

-D = -D 7 BIT 7' ~ BII ~ (E3)
we may define the finite Pauli —pillars regulated de-
terminant to be

Following Callias we generalize this factorization, de-
fining

I, =n'~'~~. err "~' L, '=rr '~ s~' eV'~'.
V V

Therefore, —O'=I-, L ~. Now let

0 L) (LLt 0)H'
Lt" 0~ 4 0 L, L

I

and observe that

ln det( —D'/ —8') = Tr — e, (e ""o ~i' e ""i'"i')
(1+ y) "ds

2 o g '=-0

Here e, = (—1)', m, = 0, and m„. .. , m s —~. The regu-
lator masses are chosen so that

R

P e,. =0, ge,.m',. =0, and ge,. m',. In m2=0.

Thus

lndet( —D'/ —& ) = dv Tr (1+ y) ds s („»)
S

f
r

dv Tr —
~' ds g e,. —[[lnII, H„],H„]e """

0 0

J
1 1

dv Tr ylnii e, H', /(H', +m2) = — dv Tr ylnil g e,. m', /(H„+m2).
0 0

r
1

dv Tr lnrl Q e. m~[(LtL„+n".2) ~ —(L„Lt+m2) '].
0 i

(E5)

This remarkable result (due to Callias and Taubes)
expresses the regulated determinant solely in terms of
the regulator propagators. All dependence on the ori-
ginal massless field has been eliminated. [At this point,
Callias and Taubes rewrite the propagators in expon-
ential form and attempt to calculate the small t expan-
sion of exp[ —t(L„Lt)]. We shall deal instead with the

'f

propagators directly. ]
Now.

(LtL„+m') '= [(—s'+m') —V,] '

(L „Lt+m') '= [(—s'+m') —V ] ',
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I

where

For arbitrarily large mass we expect to be able to ex-
pand (I-L +m') ' in powers of V. Inserting this ex-
pansion in (E5) yields a series of one-loop diagrams
with free massive propagators, vertices V„and one
insertion of lnG. All but the first few terms of this ex-
pansion should vanish as powers of (1/m) as m -~. In
fact, only the diagrams shown in Fig. 8 need be com-
puted. Expanding in external momenta and dropping all
terms of O(1/m2}, one easily finds that graphs (a) —(d)
yield, respectively,

4 4

(4.)'""'-"' -' (4.)'""'
d4

lnll( "
)f fs, nnd ——' Jd'nlnllf

Integrating by parts a few times, the sum of these
terms becomes

(a) (b)
FIG. 8. Nonvanishing contributions for the isospin-~ deter-
minant.

This expression is logarithmically singular at the posi-
tion of each instanton. This is due to the fact that our
expansion of the propagators was only valid in the re-
gion where lnII varied slowly on the scale of m,.'. This
is true everywhere except in a tiny region about the
center of each instanton. (Within this region all terms
in the expansion contribute. ) However, if we merely
calculate the difference between the multi-instanton de-
terminant and the corresponding sum of single instan-
ton determ inants, then the contr ibutions of the near re-
gions cancel, and we find

ln det(-D'/-8') —Q ln det(-D'/-8') = —' d4x eP. ' d4x eU,.
~(4rr)' Il g (47r)',. lI,-

For the finite-temperature instanton, this is precisely the term A(X). However, we have lost the X surface term
in (E2). Fortunately, it may be easily found. In the manipulations leading to (E5) we repeatedly used the cyclic
property of the trace. This actually involves integration by parts. For the finite-temperature instanton, one of
these integrations yields a surface term. This happens in the step between the second and third equalities of (E5).
The surface term is easily found to be

d Z„~tr &~7'~ ~ e, -8 +m; x, x

At zero temperature, the regulated propagator, i.e. ,

eg - +ply~ x~g

simply vanishes as x-y since

g e,.= g e; m', = g e, m ', lnm2 =—0.

However, at finite temperature there is an extra finite contribution from the terms which make (-8 +m, ), periodic
(or antiper iodic). Thus

g e,.(-82+m', ),'(x, x) =g (+I)"g e,(-8'+m', ) '(x, x+nPt) =P (+I)"/4rr'(nP)'+ O(e ™I').
n i

Therefore, the surface term becomes

d g ~ fq 12P

which agrees with (E2}.
Unfortunately, this direct approach to calculating the

instanton determinant does not seem to generalize to
the isospin-1 case. The isospin-1 scalar operator,

D2b, may be expres—sed as b tr(v'L, I 2t~b) with 1,2 given
by (E4). If we consider I-2I-t as acting on the space of
2 x 2 matrices, then this shows that -D,~ is equivalent

to I2I.2 restricted to the subspace of traceless ma-
trices. This extra projection makes it difficult to gen-
eralize the previous approach. For this reason, we are
forced to resort to the tedious analysis of the exact
periodic propagator presented next.

2. Isospin 1

Following Brown et al. (1978) and Eq. (5.3), the peri-
odic isospin-1 scalar propagator is given by

tbab(X ~) tbab+ gab+ tbab
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where

mob(x, y) = —,
' tr[7'F(x, y)rbF(y, x)]/4)t2(x —y)'II(x)II(y),

L b(x, y) =Q ,' tr—[~'F(x,y )~"F(y„,x)]/4}t'(x—y„)'II(x)II(y), I,= 4A(X),

where A(X) is given in Eq. (6.10).
The analysis of P, is much more involved. Let

E(x, y) = E,(x, y)+i~'F. (x, y),
where

(Ev)

by Brown and Creamer (19'l8). They found that this
term is simply four times the corresponding isospin-~
result,

The function C"(x,y ) will be exhibited shortly
We must compute

tlnaet( —c'/ —& ), = f dl Tr([& ( —D')](& +&, +& }]
0

—= Po+P~+P2.

and

F()(x, y) = 1+p Q x, y, /x, y,

Fa(xt 3) P IucZx tyt/x tyt
L

Note that

( D2)ab 2(S f2)g ab 2+abc ~c (S f )S

The contribution of 40 has been previously computed

Then

Pj —P~ +Pj~+Pj.

g [3F',(x, x.) —F'.(x, x„)]/m',

dX ', , ', 'g F,(x, x )E.(x, x )/m',,

t' tf'x 4e,f.

4
"",' a„f„g' e„[F,(x, y )F.(x, y„)],„/m'.

0

Now

E,(x, x ) =1+2r'p'I, (m), F,(x, x )=x'mPp'I, (m),

S„Fb(x,y) ~, „=p2[(m p" —x")Io(m)+ p"I, (m)+ 2m(x'pt —x p) J(bm) +2mp(p "t —px')J, (m)]

S„F(x,y)
~

„=p [tI'„,(x —mP)'I (m) —q'„,P I (m) —2x'x mPJ (m)+2x'P'mPJ (m)].
Here,

and we have defined

I,(m) = g 1/x', x', .= 2(11 —1)/p'(m'P'+ 4r')

I,(m) = QI/x', x', .„=(ll —1)(2t —mP)/P p'(m'P'+ 4r2)

(m) =g 1/xax2, = (11 —1)(m2p2+ 12r')/2r'p2( p' 4 )
tt [2r sins sinhz —m p(1 —cosh@ cosr)1

P'mr (m P +4r2)(cosh' —cos7)2

J,(m) = Q &/x', x', „„=(ll —1)[t(m'P'+ 12r') —4m]3r')]/2P p2r'2(m2P2+ 4g 2)'
l

2[(tm p + 2r ')(1 —cosh@ cosa) + r(m p —2t) sin7 sinhz]
m P4r '(m'P'+ 4r ') (cosh' —cos7.)'

These and all following sums may be easily evaluated using Eq. (Al). For later convenience, define

Sa, , = g' I/[m'*(m'P'+ 4r ') ],
and let f, = &, Inli, f,= &, lnII, and f„' ~ =f,'+f', . Plugging in, we find
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f2 6P2z2 2P4z4 P4z2
dX d'zdT ',"' 2m, ,+, (11 —1)sn, ,+, (Il —1)'m, ,—,(11 —1)'m. . .

xm

8

ha

(E8)

(E9)

and &y &y ~+&y 8+&y /+PE $ where

I 2I,.„=,'f,dx f d' x', "g' ', [(x"—ml)")I, (m) —d" (I)m]E, ( , xx)

2

1*, ~= —,f dx fd'x, 'Q —x (Id„(m') —dd (m)]S,(x, x )

s)z. , ( p'z'd'x dx, ' d*(II —1)]XII, ,+, (II —1)XI(, ,)
, (1 —coshz cosT) & P'z'

coshz —cosa '
E
" w'

(E10)

(E11)

P„&—— , dA. d'x ",'g, [mi, (m)+I, (m) —2mr'J, (m)]P, ( ,xx)r' II nz

2 z z
dA. d z dw ' (II —1) DR —A. P (II —1)ORo, i,27T'

(E12)

1'„,= ., f dx fd'x"*'Z —(x'd(m)d(x, x.) —(Id (m) —I)d(m)lx & (xx.)}',
p' & qzf, X' sins sinhz P'z'
2r' II' coshz —cosT ' 7r' (E12)

Before evaluating these sums, we turn to the contribution of

(x, y) = Q C"(x, y )/4v'll (x)II (y) .

C"(x, y) is given by

) ~ 2C:.(x)@!.(X) g g p'C „'.(x) C',.(X)
[P(r s)]' „„-. ,„„[P(r s)]' [p(t --u)]' "'"'

where

C'„,(x) = p')I'„x~x",/x'„x', = p'p(r —s)x'/x'„x',

since q, p
= Q„. and

~...~u=fd. fdd+&rd -f"-
with f„,a particular constant matrix. Owing to the periodicity of the finite-. temperature instanton, f„, is translation-
ally invariant, f„,=f(„„o. Consequently, when we compute Q C'~(x, y ), the second term involving h„, , „drops out.
Therefore we find

P, =
] d& ] d'x[s, (—D')"] Q 4~'ll(x) ll(y)

4 t

= —,*J~ dX d'x[(s,f')x'+2(B x f)] g [I,(m)/II]'

dXd zdr(2s zf +z sQ, ) - — gg
rr —1 '

4~' z 0,2 '

Now we must evaluate the sums

SR, , =g m "(m'p'+4r') '.
Qne finds

cothz 1

g4 cothz 1 - 2
SR0 2 4 +

2P z z sinh'z z'
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3 cothz 3 2z coshz 8+. 2+ . 3 28P'z z sinh'z sinh z z

1 p0 3

g4 1 1 cothz~l 1 p2 2 3 2

2 4 3 cothz 1Ã +2I3's' 3 s' s sinh's)

Finally, adding up the contributions (EV)—(E14), we find

31 dst( Df 3*),—=44—(X)s -, dl J(d's dell '
((3 f„*,)B(h, s, t')+2(3 ef )C(l, s, t')

8m

4&R [—&Rf, (1 —coshz cos7') + 92f, sins sinhz]-
z (coshz —cosa )'

where

B(h, he, t) =—,3)l, + 3(tl —I) 33, , + (II —I)* 33,+ RR, )
1 1 cothz, 5 4 cothz 1= 1 + 6(II —1) —+—,— —+ (II —1)' 1 +—,—
3 z2 z z z sinh z

C(h, s, t)=(tl —I) —,(3)I, , —2333, ,)+(rl —I)*—, 23)t+—,33,, ,,,—,3R, , ,)

(E16)

(II —1) 1 2 cothz 3 1 1 z coshz
z' 3 z z' sinh'z z' sinh'z

and

Z2p2 . ZP
, D(hs, t) =,, 33, , + (II —l)ll* —,RR, , —33,)

1 1 cothz 1 2 cothz 1 3
sinh'z .

z'
Lastly, we nlay. explicitly evaluate the integral over A. by recalling that Il(X, Z, l) =1+3.'h(z, l). The following inte-
grals are helpful:

2

dX S~,',[o. + P(11 —1) +y(rl —1)']/ll' = ",' [a(3+2II + ii') + P(3+ 11)(il —1) +3@(ri —1)']
0

dh S,v j(rI —1)[n+p(ri —1)]/II'= „, [o.(1+-,'ll)+p(II —1)].v f (ri-1)
0

Hence, we find the final result,

ln det( —D'/ —8'), = M(X) + E(A) + C(A) + D(A),

where

(E16)

B(i) = d's dt' R*+ 4(II —I) —,— —(II —I)' — + . )
1, JI ', 1 cothz, 3 cothz .7 1

8m II g z' z z 2z 2 sinh'z

C( )=, (d' d ('-„';")(—"-,') .(-. '-'"', ,', , '„, ), (ll —I)(—,—,)
[(-S,II)(1—cosh cost') + (S,tl) s' t s'nh ] I coth 3 coths 7 2

)DA. =—, d'zdl— II+3 —,— — ll —1 ——+
127( z II (coshz —cos T) z' z z z' sinh'z . '

and d4(A) is given in Eq. (6.10).

3. Computations

We have evaluated the above integrals numerically.
One must be particularly careful to treat correctly the
contributions from both large and small distances. For

z» 1, one may use the asymptotic form

II = 1+2X'/z+X'O(e ')

and evaluate the resulting integrals analytically. For
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very short distances, z + T «1, one must expand the
integrand in a Taylor series, since, although the com-
pt. ete integrand is finite at the origin, rriany cancel. la-
tions between singular terms are occurring. -

A. (A) was found to agree with the simple expression
(6.14) for ali values of X to within the quoted error.
B(X)+C(X)+D(X)was found to equal 12K(A) + 4X' to within
our nuinerical accuracy of -10 '. We are embarrassed
to say that we have not been able to establish this ana-
lytic aIly.
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