
Randorii-s-~matrix physics. spectrurri and strength
fluctuations

T. A. Brody

Instituto de FI'sica, Universidad Nacional Autonoma de Mexico, Mexico 20, D. F. Mexico

J. Flores

Insti tuto de Fr'sica, Universidad Nacional Autonoma de Mexico, Mexico 20, D. F. Mexico

J. B. French

Department ofPhysics and Astronomy, University ofRochester, Rochester, New York 14627

P. A. Mello

Institut de F(sica, Universidad Nacional Autonoma de Mexico Mexico 20, D. F. Mexico

A. Pandey

Department ofPhysics and Astronomy, University ofRochester, Rochester, New York 14627

S. S. M. Wong

Department ofPhysics, University of Toronto, Toronto, Canada

It now appears. that the general nature of the deviations from uniformity in the spectrum of a complicated
nucleus is essentially the same in all regions c)f the spectrum and over the entire Periodic Table. This behavior,

moreover, is describable in terms of standard Hamiltonian ensembles which could be generated on the basis of
simple information-theory concepts, and which give also a good account of fluctuation phenomena of other
kinds and, apparently, in other many-body systems besides nuclei. The main departures from simple behavior
are ascribable to the moderation of the level repulsion by effects due to symmetries and collectivities, for the
description of which more complicated ensembles are called for. One purpose of this review is to give a self-

contained account of the theory, using methods —sometimes approximate —which are consonant with the
usual theory of stochastic processes. Another purpose is to give a proper foundation for the use of ensemble

theory, to make clear the origin of the simplicities in the observable fluctuations, and to derive other general
fluctuation results. In comparing theory and gxperimept, the authors give an analysis of much of the nuclear-

energy-level data, as well as an extended discussion of observable effects in nuclear transitions and reactions
and in the low-temperature thermodynamics of aggregates of small metallic particles.
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I. GENERAL CONSIDERATIONS

A. Statistical properties

We consider in this review the properties of random-
matrix ensembles and the application of such ensem-
bles to physi;cs, partieulary to a study of the spectrum
and the transition strengths in complicated systems. It
is often taken for granted that one resorts to statistical
studies of such systems only because detailed proper--
ties —of the spectrum, for example —are not really open
to calculation. This is indeed one of the reasons but not
really the main one. Such studies, whose nature is es-
sentially differen. t from the study of individual levels,
are of interest because they reveal new features of the
system. The situation is analogous to that in statistical
mechanics, where properties such as temperature and
entropy are exhibited best by systems of many par-
ticles. Even in systems where the individual levels and
their quantum descriptions are better known than the
corresponding phase- space or related descriptions, sta-
tistical methods are often essential for a more complete
understanding.

The study of many-particle spectra, at least at low
excitation energy, has been mainly co@cerned with
properties of individual levels or short sequences of
related levels —rotational bands, for example —and with
individual transitions and sets of similarly related ones.
In contrast to that, our present purpose is to deal, at
low energies as well as high, with energy-level fluetua-
ti'ons (i.e. , departures fr'om uniformity in the spectrum)
and fluctuations in transition strengths. This represents
only one part of the old but rapidly growing field of sta-
tistical spectroscopy, but it is nonetheless a subject of
con.siderable interest in itself and one with a long his-
tory of distinguished experimental and theoretical work.
The early history of the relevant nuclear experiments
and the general ideas about nuclear structure to which
they gave rise are well reviewed by Lynn (1968), while
random- matrix methods for the detailed theoretical
analysis were introduced and considerably developed by
Wigner (1951a, 1955, 1967). For earlier reviews, sum-
maries and general discussion see Wigner (1967),
Porter (1965a), Mehta (1967), Brody et al. (1972),
Pastur (1973), Carmeli (1974), and, for recent con-
ference proceedings, Garg (1972) and Sheldon (1976).
The subject is significant, moreover, for other com-
plex systems besides nuclei —atoms, for example, and
metallic powders, whose thermodynamic properties are
linked with spectral fluctuations, as we shall discuss in
Sec. IX.

This review, though concerned mainly with nuclei (as
most analyses have been in the past), can perhaps be
regarded as an introduction to a larger subject, that of
the general properties of spectral fluctuation. s in. compli-
cated systems, of the way in which they are influenced
by the symmetries, collective modes, and other general
features, and conversely of the information which they
carry about the system. Because the concerns of this
review are different than those of earlier random-ma-
trix reviews, we do things differently: We are not so
much concerned with exact as with simple calculations
of fluctuation measures (though we do give some new
exact results as well); we pay more attention than do
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earlier reviews to the stationarity properties of the
measures (the way in which they vary over the spec-
trum); we consider the effects of collectivities and sym-
metries on the strength distributions. We consider,
moreover, the ergodic properties of the ensembles
which we are mainly concerned with, drawing on quite
recent work of Pandey (1979), which goes far toward
giving a theoretical justification for the use of random-
matrix ensembles.

We consider the energy-level fluctuations first,
leaving until later the strength fluctuations, the under-
standing of which makes use of the same concepts. The
study of both kinds of fluctuations has developed because
of the remarkable series of resonances found in the
scattering of slow neutrons on heavy nuclei. The reso-
nances are narrowed because of the strong surface re-
flection of long-wavelength neutrons, and as a conse-
quence one can often observe up to a few hundred reso-
nances, essentially all (if the target state is even-even)
with the same "exact" quantum numbers (J, w; isospin
is also good, but is usually irrelevant). These levels
occur typically at 6 to 8 MeV excitation and are sepa-
rated from the ground-state domain by a "no-man' s
land ' containing perhaps a million levels whose proper-
ties are not easily accessible to study. It is not then
surprising that there has been little attempt to recon-
cile the concepts used in the two energy regions, the
consequence being an (unnecessary) splitting of the sub-
3ect into two noncommunicating domains. In order to
span the no-man's land, and for other purposes as well,
we shall make use not only of experimental data in both
domains, but of shell-model calculations as well. We
shall see, as we proceed, that the fluctuation proper-
ties extend over the entire spectrum (in the sense that a
run of levels taken at any excitation displays almost the
same properties), and indeed over the entire Periodic
Table, a result which we regard as of real significance.
Insofar as averaged properties (as opposed to fluctua-
tions) are concerned, the barrier between high and low
excitations has been breaking down during recent years;
it. is a good thing now that the same thing is happening
for the fluctuations.

B. Level repulsion in spectra

Consider the set.of spectra shown in Figs. 1(a)—1(c),
where we have brought together runs of 50 levels taken
from three very different sources: the slow-neutron
resonance region of '87Er (I iou et al. , 1972), the neigh-
borhood of an isobaric-analogue state in 48V (Prochnow
et a/. , 1972), and a section of a large shell-model cal-
culation with a realistic interaction (Soyeur and Zuker,
1972). The levels in each spectrum have the same (8, &),
and the scales have been chosen so that the average
spacing D is the same for each.

The spectra are similar in their general nature; for
example, the number of spacings much smaller than the
average spacing is statistically the same for all three,
as we have made evident by marking those which are
smaller than D/4. The similarity of the spectra is
made more obvious in Figs. 2(a)-2(c), which give his-
tograms of the nearest-neighbor spacings for each
spectrum. They resemble each other closely enough
that we may regard the three spectra of Figs. 1(a}-1(c}

(b) (e)

as having the same nearest-neighbor spacing distribu-
tions~ UMS exhlbltlng a regulal'lty of a statistlckl na-
ture, even though the spectra themselves differ in the
three examples. The continuous curve shown in the fig-
ures (Wigner's distribution, whose theoretical basis we
discuss below) fits them quite well.

Small spacings in our examples have a small proba-
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FIG. 2. Nearest-neighbor spacing histograms for the six cases
of Fig. 1, constructed by considering all the available levels
instead of the 50 used in Fig. 1. Spacings 80 are expressed in
terms of the local spacing unit D, deriv 9 via uie unfolding op-
eration of Sec. GI.A, where necessary. The Wigner distribu-
tion, Eq. (1.5), is shown for a11 cases, and the Poisson dis-
tribution (1.4) also for the last three.

f)+' 6Er p+ T] (ds) 2'0 Poisson rl+' 'Tp

FIG. 1. Segments of complex spectra, each containing 50 lev-
els and rescaled to the same spectrum span. The first two
show experimental results for neutron and proton resonances,
while Fig. 1(c) shows the central region of a 1206-dimensional,
J» = 2', T = 0, shell-model spectrum; in these three cases all
the states have the same exact symmetries. Figure 1(d) shows
a Poisson sequence, while Figs. 1(e) and 1(f) show spectra with
mixed exact symmetries, the first an experimental spectrum
with J=3', 4' and the second a shell model spectrum with J

The arrowheads" xnark the occurrence of
pairs of levels with spacings smaller than one quarter of the
average.
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bility of occurrence, and the case is similar for large
spacings. (The relevant limiting case, in which there
are no small or large spacings, is the uniform spec-
trum, which we may describe as rigid. We shall see
that our spectra have a high degree of rigidity. ) Taking
for granted that the individual states have complicated
structures, we might have guessed that the levels
shouM form a completely random sequence, being dis-
tributed in energy as the pulses from a radioactive tar-
get are distributed in time. In that case, as we show in
Eq. (1.4) below, the spacing distribution would have
been of Poisson type, in which small spacings pre-
dominate. This is shown in the random-sequence spec-
trum and corresponding histogram [Figs. 1(d) and 2(d)],
which are seen to be very different from the examples
of Figs. 1(a)—1(c) and 2(a)—2(c), which, by comparison
with the random case, may be regarded as displaying
a level repulsion.

As we proceed, we shall see that this repulsion, which
was first discussed by von Neumann and Wigner (1929),
and whose relevance to our present subject was first
stressed by Landau and Smorodinski (1959) and by Wig-
ner (1957a, 1957b, 1959; see also Gurevich and Pevsner,
1957), dominates all the spectral fluctuations. To get
a first idea- about its origin, let us consider the Hamil-
tonian as defined, with respect to some fixed basis, by
its matrix elements which we may regard as the co-
ordinates" of H in the "matrix-element space, H then
being represented as a vector in this space. The repul-
sion may be regarded as arising from the fact that the
subspace for which the corresponding spectrum has a
degeneracy is of a dimensionality less by two than that
of the general matrix-element space, so that in some
sense a degeneracy is "unlikely. " Alternatively, if we
think of the matrix elements as functions of a parameter
X, we cannot, in general, force a crossing by varying
g but must instead take the matrix elements as functions
of at least two parameters which are independently
varied. In the one-parameter case one will find that, if
two levels approach each other as X is varied, then in-
stead of crossing they will turn away as if repelled; see,
for example Landau and Lifshitz (1965). A similar re-
pulsion for resonant states, defined by S-matrix poles,
will be described in. Sec. VIII; see also Mccoy et al.
(1967).

To get started, a simple heuristic calculation, due to
Wigner (1967), is worthwhile. For a random sequence
the probability that a level will be in the small interval
(E+S,E+ S+dS), proportional, of course, to dS, will
be independent of whether or not there is a level at E.
This will be modified if we introduce level repulsion.
Given a level at E, let the probability that the next level
(S~ 0) be in (E+ S, E+ S+dS) be P(S)dS. Then for P(S),
the nearest-neighbor spacing distribution, we have

P(S)dS=P(lc dS IOc S)P(0c S),
where P(n c S) is the probability that the interval of
length S contains n levels and P(nc dS

~

mc S) is the
conditional probability that the interval of length &S
contains n levels, when that of length S contains rn
levels. The second factor in (1.1) is J's" P(x)dx, the
probability that the spacing is larger than S, while the
first one will be dS times a function of S, r,o(S), de-

pending explicitly on the choices, 1 and 0, of the dis-
crete variables n, ~. Then

".0

P(S) = r, o(S) P(x)dx,
S

(1.2)

which we can solve easily to find

S

('(S) = Cx,.(S)x u(— x,.(x)dx)). (1.3)

The Poisson law follows if we take r&0(S) =1/D, where
D is the mean loca.l spacing so that 1/D is the density of
levels. Wigner's law follows from the assumption of a
linear repulsion, defined by r&0(S) = aS. The arbitrary
constants are determined by fP(x)dx=1, JxP(x)dx=D.
We find for the Poisson and Wigner cases, respectively,

P(S) = (1/D) exp(- S/L~), S~ 0

P(S) = (&S/2D~) exp(- 7('S2/4D~), S~ 0

(1.4)

(1.5)

the second of which displays the repulsion explicitly,
since P(0) =0, in contrast to the Poisson form, which
has a maximum at S=O. Like the Poisson, the Wigner
distribution (1.5) is a standard one in statistics (Cramer,
1946, p. 236), being that for the square root of the sum
of the squares of two independent Gaussian random vari-
ables of type' G(0, Dv'2/v), and often called a Rayleigh
distribution. "

There are two major difficulties with the derivation of
(1.5). In the first place, the (unbounded) linear form for
r&0(S) must be wrong for large S. Secondly, even for
small S, why should we assume a repulsion, r&0(S)
= ~S? Although we shall see in Sec. II that there are
some simple plausibility arguments for this form, the
result cannot be correct for every system, since we can
obviously construct an II to have any given spectrum and
hence a spacing law very different from either of the
forms (1.4) and (1.5). But evidently certain Hamiltonians
are in some sense more "likely" to occur than others; in
Wigner's derivation there are thus tacit assumptions
about the relative probability of different Hamiltonians.
In Sec. II we formalize these considerations by intro-
ducing an ensemble of Hamiltonians. A fundamental dif-
ficulty now is that there appears to be no natural and
physically significant weighting function for such an
ensemble, there being no equivalent to the Liouville
theorem which supplies such a function in classical
statistical mechanics. Many different forms are pos-
sible, depending on the quantum numbers which we take
to be exactly conserved and on the importance which,
apart from that, we attach to various features of the
Hamiltonian, such as its two-body nature.

It will follow that a Probability argument which Pays
no attention to the specific features of the Hamiltonian
cannot explain the nature, the origin, or the conse-
quences of level repulsion.

Finally, we remark that our above discussion about
level repulsion applies only for a pure sequence, i.e.,
one whose levels all have the same values of the exact
quantum numbers. Cases of mixed sequences are given
in Figs. 1(e)-1(f) which show a segment of the ~8 Ta
spectrum, derived from slow neutrons on ~8'Ta (Hacken

G(a, b) has centroid a and variance b . Thus the correspond-2

ing probability density is pb;) = (27(b ) exp[—(x —a) /2b ].
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et a/. , 1978) for which J =7/2', and a low-lying region
deriving from a ~~Cu shell-model calculation (Wong,
1970). In the first spectrum there are interwoven runs
of levels with J= (3', 4') and, in the second, with 8
= (1/2 —19/2 ). In these cases the level repulsion is
moderated by the vanishing of Hamiltonian matrix ele-
ments connecting two different J values, the spectra
have moved toward random, and the spacing distribu-
tions of Figs. 2(e)—2(f) toward Poisson.

If we regard the different 8 sequences as essentially
independent, and each described by (1.5), it is possible
(Gurevich and Pevsner, 1957; Lane, 1957; Mehta, 1967)
to calculate the resulting distribution. We could there-
fore take for granted that the fundamental problem is
that of understanding the pure sequence, since all
others may be obtained from it by superposition. An
unsolved subsidiary problem is to understand why dif-
ferent sequences should be independent, since they de-
rive, after all, from the same Hamiltonian.

C. Fluctuations and level repulsion in the ground-state
domain

l5—
QO

CU~ l0-

a
C3

CL
(A

~ 20

CL

60-

~ 40-

C3

H. 20

(a)
Level no. IO- I IO

(dsj J=2,T=0

2 3
S /D

uclear Data Table

Sing le J

2 3
S /D

Table

The spectra of Fig. 1 refer to high excitation energy.
To relate them to low-energy spectra we span the gap,
as described above, by making use of large shell-mod-
el calculations. Fig. 3(a) shows the spacing histogram
for levels 10—110 of the same (1206-dimensional) shell-
model spectrum from which levels 576-625 were used
in Fig. 1(c). It displays a level repulsion similar to that
shown in Fig. 2(c) for the entire spectrum, indicating
that the same spacing distribution applies over a wide
energy range. The same is true, in fact, for other
fluctuation properties (though certain small differences
will appea. r on detailed examination). The results have
been verified more explicitly by comparing separate
segments of the spectrum.

We cannot conclude from this that the fluctuation pat-

0
I 2 3 4

S, /0
FIG. 3. Nearest-neighbor spacing histograms: (a) for a low-
lying segment of the 1206-dimensional shell-model spectrum
used in Figs. 1(c) and 2{c); (b) for the nuclear data table, con-
sidering spacings between the ground state and the lowest ex-
cited state of the same exact symmetries; (c) for the nuclear
table con. sidering the lowest spacing irrespective of the exact
symmetries. Spacings have been renormalized by unfolding in
the first case and by assuming that a~A. in the second and
third. In the latter cases the "collective" nuclei have been ex-
cluded.

tern extends all the way to the ground state, because of
the papid secular variation of the density which sets in
at the extremes of the spectrum (shell-model examples
of this are to be seen in the first two parts of Fig. 4,

(ds) J =2, T=O d =56

g 56

(ds) J=2, T=Q d = l206
025

(ds) J = 2, T= 0 d = l206

c -lO-

a' -20-
-50-

¹I
-55—

Shell Model Smooth
Spectrum Spectrum

Shell Model
Spectrum

Smooth
Spectrum

Shell Model
Spectrum

Smooth
Spectrum

+58 I

FIG. 4. Examples of shell model spectra and the smoothed spectra derived from them by using (1.8); as illustrated in Fig. 5. The
smoothed distribution function, I (E), is calculated in terms of a few low-order spectral moments, by using a truncated Gram-
Charlier expansion (Cramer, 1946) for the eigenvalue density. The first example shows a complete 56-dimensional spectrum; the
other two show small segments of the 1206-dimensional spectrum. In all cases the level deviations are of the order of a single
spacing unit.
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other aspects of which we shall consider below). But
we can consider the ground-state fluctuations in a dif-
ferent manner (Flores and Mello, 1973; Brody et al. ,
1976) by plotting the spacings between the two lowest
levels of the same J and & for different nuclei as a. func-
tion of the mass number A. Except for the very light nu-
clei, a spacing, locally averaged in A, can now be de-
termined quite consistently; in fact, it is found to be
well represented by a 1/A law. The nuclei can be sepa-
rat. ed into two categories: There is a first group con-
sisting of the even-even. , rotational, magic, and doubly
magic nuclei (which we might roughly describe as 'col-
lective" }, for which the spacings differ only marginally
from the average; and there is a main group composed
of the other nuclei. After normalizing the data so that
the average spacing is constant, this second group
yields a spacing histogram [Fig. 3(b)] roughly of Wigner
type [compare it, for example, with Fig. 2(a)], dis-
playing the level repulsion seen in the slow-neutron-
resonance region. If, on the other hand, the normalized
spacings between ground and first-excited states are
taken irrespective of the good quantum numbers in-
volved, the spacingdistribution[Fig. 3(c)] is comparable
with Figs. 2(d)-2(f) and therefore of Poisson type.

These are surprising results. They involve a sta-
tistical property which covers the entire range of en-
ergies of the discrete nuclear spectra, but studied now,
not by examining many spacings taken from a single
spectrum, but rather by combining spacings taken one
each from the series of different nuclei. %hat we have
done here is analogous to the standard procedure in
(classical) statistical mechanics: Whenever the time
average of a function for an individual system has not
been calculable, we have constructed a large set of
(theoretical) replicas of the system and have taken the
average over this set or ensemble.

For theoretical studies on complex systems the intro-
duction of ensembles is essential, since it is out of the
question to integrate the equations of motion or, equi-
valently, in the present circumstances, to construct and
diagonalize a sufficiently extended shell-model matrix.
In each case computer calculations are possible and im-
portant, as we have stressed for the level fluctuations,
in supplementing theoretical studies; but they do not re-
place them, if only because, in the latter case, one can
never be certain that the results from relatively small
matrices are properly "asymptotic" or applicable to
very complex nuclei. The equivalence of phase and time
averaging in statistical mechanics defines the essence of
the 'ergodic ' and related problems which of course have
their counterpart in the present case. We shall have to
consider these problems later (Sec. X), but in the mean-
time we stress that nearest-neighbor spacings, at least,
have the same distribution for the main group of nuclei
when taken along an individual sjectrum a million levels
above the ground stat. e as when taken across an ensemble
at the ground state itself; and this may be taken as evi-
dence for ergodic behavior (or, more strictly, for some
combination of ergodicity and stationarity). On the other
hand, the spectra of the excluded nuclei are dominated
by collectivities or symmetries (or both) and, since
these are not effective at high excitation, the equival. ence
of the spacing l.aws found above for the main group is not

to be expected for these nuclei. In more general treat-
ments of fluctuations we should be able to take these
nuclei into a,ccount, as well.

We must mention that the type of ensemble needed is
different -from those of conventional statistical mechan-
ics (Wigner, 1955}. Its members are different Hamil-
tonians rather than different states of the same Hamil-
tonian. A second major difference is that the behavior
is studied along the energy axis rather than the time
axis. The analog of time is therefore energy, but the
analogy is not perfect, because, while thermodynamic
systems evolve along the time axis, we have at present
no way of describing mathematicaH. y the transition from
one level to the next. Moreover, it is mainly the region
of discrete energy levels (or narrow resonances) which
is of interest to us so that we can limit ourselves to
matrix representations of the Hamiltonians (exceptions
to this will come in Sec. VIII, where we deal with more
general features of nuclear reactions). Then, as de-
scribed in Appendix A, only a small low-lying part of
the spectrum can have any claim to a direct one-to-one
correspondence (as opposed to a statistical one) between
the model states and those of the physical system.

O. Spectral rigidity and the separation of fluctuations and
secular behavior

Extrapolating from the results of the preceding sec-
tion, we suspect now that fluctuation properties, always
measured in locally defined units, are the same at high
and low energies, even though the spacing unit varies by
a very large factor (by -104 for a heavy nucleus, for
which D-10 eV in the slow neutron region and -100 keV
at the ground state). In order to cross more confidently
the no-man's land separating the regions we should
understand more about the way in which the spectrum
expands as we come down in energy; in particular, me
should ask if there are random aspects to this behavior,
or if it is understandable in terms of a small number of
physically significant parameters. A tentative answer
to this comes from shell-model calculations, examples
of which, due to Chang (1970) and Soyeur and Zuker
(1972), have been given in Fig. 4. In each case a shell-
model spectrum is compared with a fluctuation-free
spectrum which is derived from it and represents by a
small number of Parameters the secular behavior of the
original eigenvalue density; a measure of the long-range
rigidity is given then by the rms deviation. , measured in
local spacing units, between the spectrum and its fluc-
tuation-free form. In the 1206-dimensional spectrum
shown p4Mg with 8=2, T=0, described via (ds)8] the
secular variation, or, equivalently, the smoothed spec-
trum itself, is described mell by four parameters; the
remarkable fact is that the smoothed spectrum deviates,
on the rms average, by only a single spacing unit from
its parent, this behavior holding over the entire spec-
trum and being found also in many other examples of
varying dimensionalities. In the central region, then,
where the secular variation is negligible, the spectrum
deviates surprisingly little from the extreme of a rigid
spectru~, the uniformly spaced or "picket-fence" spec-
trum. Fig. 4(c) gives an example. We have no reason
to doubt that this rigidity applies also to physical spec-
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tra; indeed, the forrnal analysis of Sec. IV, in which we
shall rederive and extend results of Dyson and Mehta
(1963), who first discovered the spectral rigidity, will
strongly suggest that this is true.

In giving these examples we have not indicated where
the "smoothed" or 'locally uniform" spectrum comes
from, yet, because fluctuations are defined in terms of
departure from locat. uniformity, an understanding of
this is quite essential; Sec. III, in fact, is devoted to it,
but in the meantime some simple considerations will
make things clearer. Consider the density p(x) for a
discrete spectrum (a sum of delta functions) and its
distribution function F'(x) (a staircase function, as
show'n in Fig. 6):

p(~)=d 'z &(~-&.), &(~) f=p(*)«.
The dimensionality d of the space (the total number of

levels considered) is inserted here so that Jp(x)dx =1,
p(x) then being a probability density; if we wished to
consider an unbounded spectrum we would omit the d
factor and deal thereby with the actual density of levels.
F(x) has 'discontinuities at the eigenvalues:

F(E„)= (r —1)/d, r = 1, 2, . . . , d

F(E„,) = rjd . (1.7)

(ds) J=2, T=O

d = I206

O= 92-
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FIG. 5. An exact distribution function I"(E), its smoothed ap-
proximation I (E), and the spectra E; and E; which they repre-
sent. The example shown is that of Fig. 4(b).

If we have a smoothed (i.e. , continuous) approximation
to F(x)—say, F(x) we —would define (Ratcliff, 1971) the
corresponding spectrum as the set of values E„which
satisfy

F(E,) = (r —a )/d, (l.8)

and then (E„—E„)/D, with D the local average spacing,
will be the level deviation.

The problem now is how to carry out a proper
smoothing, whereby F'(x) —I'(x), of a given spectrum.
Empirical methods for doing this, via a running average,
for example, are, for the purposes of studying the fluc-
tuations, without a physically or mathematically signifi-
cant basis. Broadly speaking, the situation is as fol-
lows: There must be some natural limiting distribution
(the same for a wide class of systems) and a correspon-,
ding expansion of the distribution function in terms of
components of varying "wavelengths" (the longest of the
order of the spectrum span and the shortest of the order
of the mean spacing) built upon the limiting distribution.
If we order the components, which we can usefully call
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FIG. 6, Partial normal-mode decomposition of a shell-model
spectrum. The spectrum, due to Soyeur and Zuker (1972, and
private communication), is for the 1206-dimensional (dk) with
J=2, T =0. Energy is measured with respect to the spectral
centroid, in units of the spectral width ("sigma units"). The
spectral histogram in the upper-left figure shows that the dis-
tribution is essentially Gaussian. The level-to-level deviations
between the true spectrum and its Gaussian version are dis-
played in the second figure ("order 2") and are large (rms
average=4. 42 spacings). Incorporating the "skewness" cor-
rection into the density ("order 3") reduces this to 0.90, and
the fourth order "excess" correction to 0.77. Corrections of
orders 5, 6 have a negligible effect'on the rms value and,
moreover, on the detailed spectrum of the deviations. Since
these deviations show -200 sign changes over the spectrum,
we can expect no further modification of the deviations until we
reach very high & values. The residual rms value for & -4 is
then a measure of the very short-range fluctuations, and there
are no fluctuations of intermediate wavelength. Numerical .

analyses of this kind were first given by Chang and Zuker
(1972), whose straightforward Gram-Charlier expansion, how-
ever, doe's not always display convergence in the sense of
(dx /D )~„nondecreasing as the order increases. This arises
from the fact that the Gram-Charlier expansion is in terms of
polynomials orthogonal with a continuous' (Gaussian) weight
function, while the t5x& spectrum is discrete. Instead of using
polynomial orthogonality, which is then approximate, the coef-
ficients in the normal-mode decomposition can .be fixed by
minimizing (5~ /D ) for each order; this much more compli-
cated procedure is used here. The present calculations are
due to Wong (unpublished} and the theory to Mon and French
(1975), as discussed in IV.F ahead.

f

excitations, " according to their wave number" by a pa-
rameter g (=1,2, 3, . . . ), the secular behavior will then
be given by truncating the expansion at some value f,
this operation introducing a local smoothing. In doing
this we are, of course, taking for granted that there is
a real separation of the secular behavior and the fluc-
tuations, and in actual cases this should be verified.

We shall see in Sec. IV how this is to be implemented,
but in the meantime an extremely instructive example
is given in Fig. 6, which deals once again with the 1206-
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dimensional shell-model spectrum, the smoothed spec-
tra derived from it, and the residual level-to-level
fluctuations. The first inset figure gives a simple histo-
gram of the spectrum and the corresponding Gaussian
density. In the other figures, which show the level-to-
level deviations, the cut-off parameter g is varied be-
tween two (which defines a Gaussian distribution) and
six; we see a very rapid convergence, the "final" rms
'value for the deviation (-0.75 local spacings} being at-
tained with /=4. It is clear, moreover, from the
figures that to reduce the deviation significantly would
require extremely high-order exeitations of the Gaus-
sian, excitations of order comparable with the dimen-
sionality or, better stated, of wavelength comparable
with the spacing.

The fluctuations in t;he spectrum dealt with in Fig. 6
thus appear to have an existence which is independent
of the secular behavior. This is completely in line with
the result deduced above from the slow-neutron and
nuclear-table data that at least the nearest-neighbor
spacing distributions survive unaltered, even when the
spacing parameter varies over a 104 range. The con-
clusion is supported by the results for other large spec-
tra which show the same rapid convergence of the den-
sity to swithin fluctuations; for example, we find for
three 839-dimensional (ds)'~ spectra ( 8Si, 4= T=O,
with three different effective interactions) that, with
&=6, the rms deviations are 0.77, 0.79, and 0.82 mean
local spacings. Since the values are similar for the
four cases, the possibility is seen that the fluctuations
for pure sequences always display the same pattern
(Dyson, 1972b). We shall be able in Sec. IV to give an
analytic treatment of this phenomenon.

E. Strength fluctuations ahd collective behavior

Besides the energy-level fluctuations we must consider
fluctuations in the strengths (or "widths" ) for the decay
modes of the excited nuclei. The basic assumption used
here is that of Porter and Thomas (1956; see also Scott,
1954) that the transition matrix elements (whose squares
are proportional to the strengths) connecting states in
one narrow energy band with those in another may be
treated as similar independent zero-centered Gaussian
random variables; one assumes further that the same
is true for the states in a wider energy band as long as
the strengths are expressed in terms of their local av-
erage. It is clear now that if we are able to take into
account the secular variations of the strengths, we have
the necessary ingredients for a theory of the strength
fluctuations.

A general discussion of this can mait until Sec. VII.
%e content ourselves now with very briefly describing
evidence for a surprising connection between statistical
and collective behavior (Draayer et a/. , 1977). This
starts with the proposition that the Porter- Thomas de-
scription of the transition amplitudes is more or less
valid even down to the ground-state domain (in corre-
spondence therefore with the behavior of the energy-
level fluctuations). This derives from inspection of a
limit;ed number of shell-model calculations and is sup-
ported by an analysis of some of the data; it mould be
predicted on the basis of ensemble calculations given in

Sec. VII (which, however, pay no attention to the pres-
ence of strong collectivities).

Consider now, not the individual strengths, but the
sum of the strengths which originate with a given starting
state, and ask how this sum varies as we vary the
starting state over an energy band. If the strength from
every starting state splits into v equal parts, we would
get a X2 distribution whose centroid b, and variance o2

are related b'y o', = 2l', / v.
It is elementary to extend this result (a,s done in Sec.

Vll) to take into account the secular variation of the
strength sum with starting-state energy, and the fact
that the strength from a given state does not split evenly
among the final states. We then find the effective num-
ber of accessible states (an analog of the effective num-
ber of open channels in reaction theory) to be

2/2
V= (1.9)

~s

where 8, and o2 are certain local averages of the
strength centroids and variances.

A small value of v, say v -1, defines a situation in
which the strength originating in the starting region is
very little fragmented, most of it. going to a single final
state. There are two different cases here; the states in
the starting region may have comparable total strengths
(but all unfragmented), or there may be a dominant
starting state, from which originates most of the strength
of the region considered. In the latter case, which is
more dramatic, there is a single very strong transition,
while in the former', there may be many fairly str~ng
ones. But each case we would recognize as displayi. ng a
strong collectivity.

Given the parameters of the model spaces and Hamil-
tonians, the trick now is in the actual evaluation of 6,
and o2, which depend, of course, on the smoothed
strength and the smoothed square of the strength. Good
methods have recently been developed (Draayer et ~E.,
1977), and tested for calculating these quantities in
terms of certain traces (or integrals) which can be
evaluated directly from the parameters of the model
space and the Hamiltonian. In conjunction with (1.9}
they then yield an explicit statistical method for pre-
dicting certain types of collective behavior. Figure 11
in Sec. VH shows two shell-model examples, for E2 and
M1 transitions in the ground-state region, in which the
test is quite successful, strong collectivity being pre-
dicted by (1.9) and found via the explicit shell-model
calculation. . It is successful also for E4 transition. s;
(1.9) predicts that there should be no significant collec-
tivity, and the calculations show none.

It is too early yet to say whether (1.9) will be generally
useful for the prediction of collectivity. It derives, after
all, 'from the Porter- Thomas law, which we might ex-
pect to be disturbed by the existence of strong collec-
tivities; it is not, then, a Priori obvious that its use in
such cases is really self-consistent. On the other hand,
the only Porter-Thomas feature which is made use of is
the relationship (1.9) between the centroid and the vari-
ance of the strength distribution; and besides that we
have exceH. ent ag'reement in the shell-model cases. So
there are good grounds for optimism.

In any case, it does seem clear that, not only do fluc-
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tuations extend to the ground state, but they carry in-
formation about phenomena which are usually regarded
as highly "nonstatistical. " Somewhat similar relation-
ships are found between statistical behavior and sym-
metries (going beyond the elementary results displayed
in Figs. 1 and 2). A general lesson is that we must not
think of separating phenomena in complicated systems
into a nonstatistical part connected with 'real" physics,
and another part connected with statistical behavior. In
some cases this separation might be appropriate, but,
in general, things are both more complicated and'a great
deal more interesting than that, and we stand to learn
a lot from the two kinds of physical behavior and from
the interplay between them.

F. Preview

In the next section, following Wigner, we introduce
ensembles of Hamilton. ians in order to deal with fluctua-
tions; we discuss the extent to which they satisfy certain
reasonable criteria for physical significance, and come
face to face with certain difficult and not fully solved
problems which arise from the fact that mathematically
tractable ensembles do not a P&io~i appear to be physi-
cally most reasonable.

Since we shall often describe fluctuations in terms of
random excitations of the smoothed eigenvalue density
we give in Sec. ID a brief account of level densities. We
shall have to consider carefully the meaning of the
characteristic density for an ensemble; our study of this
will give us a feeling for the kinds of interactions which
give departures from standard results and eventually
lead us to the important notion of ergodicity. The
Stieltjes-transform method which is used a little in. this
section is effective for a wide class of ensemble densi-
ties (and for fluctuation properties, as well).

In Sec. IV we derive the two-point correlation function
for the Gaussian orthogonaL ensemble (GOE) and go on
then to derive some basic results about the motions of
levels away from their ensemble-averaged positions.
In Sec. V we use the results of Sec. IV to derive the
standard GOE measures2 for fluctuations, most of which
have been given originally for the central region of the
spectrum by Dyson and Mehta (1963); we find new re-
lationships between them and answer some long-standing
general questions, for example, about the independence
of the measures; these results, along with the ergodicity
and stationarity described in Sec. X, go a considerable
distance toward explaining why statistical behavior is
observable in the ground-state domain. In Secs. IV and
V we also deal with Gaussian unitary and symplectic
ensembles.

In Sec. VI we discuss the analysis of the modern slow-
neutron data and of some of the proton-capture data.
We describe briefly the difficulties which arise because
of missed or wrongly identified levels and because of
the methods used to circumvent them. Values of the
standard measures are given for each spectrum. We

By "fluctuation measure" we mean "statistic, " a quantity
which can be calculated from empirical data and used for test-
ing the theory. The reader should be warned not to confuse this
with "measure" as used in integration, for which we use
"we ight. "

f

treat spectra deriving from various large shell-model
and Monte Carlo matrix calculations in the same way
and discuss the significance of the comparisons between
these results and the data. In Sec. VII we do somewhat
the same for the strengths, but we give also a more ex-
tended treatment than given above of the origins and
justification of the Porter- Thomas distribution and of
the relationships between strength fluctuations, collec-
tive behavior, and symmetries. Data analysis, on the
other hand, is considered only briefly.

In Sec. VIII we make somewhat of a diversion from the
main lines of the review, givin. g a compact discussion of
the major techniques used, and some of the results de-
rived, for fluctuations in reaction cross sections. We
do this in small part because most of the data described
earlier have been derived from reactions, so that we
should really understand how such continuum phenomena
can be described by (discrete) matrix techniques; in
fact, this can only be done to a limited extent and for
sharp resonances. It is much more important to under-
stand that the same general ideas (as opposed to meth-
ods) which we have used in the earlier sections have
their counterparts here also, in a domain which, for
example because of interest in heavy-ion reactions,
is growing rapidly in importance. We cannot claim
complete success in integrating the two subjects of
cross-section fluctuations on the one hand and energy-
level and strength fluctuations on the other, but we do
emphasize the many ways in which they are in corre-
spondence.

Section IX gives an up-to-date account of the statisti-
cal mechanics of metallic powders, a subject which is
quite active both theoretically and experimentally, and
which has already challenged some of the natural as-
sumptions which one would make in studying such a
subject. It seems fairly clear that the low-lying ex-
citation spectrum for the particles involved is a dis-
crete one, so that the essential physics at low tempera-
tures, is determined by the first few spacings. Are the
levels randomly spaced, do they exhibit a Wigner re-
pulsion, or is the spectrum of a different nature than
either of these possibilities? It is easy enough to cal-
culate the thermodynamic properties for a collection of
particles with any given type of spectrum; but there has
not developed any real agreement concerning the class
of spectra which should obtain. ; the intuitions and cal-
culations of different authors have given rise to quite
different -results. It seems, indeed, that one must not
even take for granted that there is any really appropri-
ate random-matrix ensemble, a good thing to keep in
mind when dealing with other problems.

Section X is devoted to a simple discussion of ergodi-
city. In order to justify the use of ensemble averages
for dealing with the properties of single systems it must
be shown that, with respect to the quantities being com-
pared (strength distributions, fluctuation measures, and
so forth), the ensemble has an appropriate ergodic be-
havior. Only very limited attention has been heretofore
paid to this important question; however, as the result
of recent work (Pandey, 1979, French and Pandey, to
be published); the essential results for the conventional
ensembles are now available. They show that a strong
"locally generated" ergodicity obtains and that the fluc-
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tuation measures in particular are also stationary; the
corresponding spectra are then closely analogous to the
output of an ergodic stationary random process. Some
attention is also given in Sec. X to ergodicity in reac-
tions.

In the final section we review the ways in which ran-
dom ensembles enter into physics, comment on the gen-
eral concepts and results which seem most sign. ificant,
and mention some outstanding problems and methods
which should be useful for dealing with them.

I I. RANDOIVI-AVIATRIX ENSEMBLES

A. Introduction

In this section we introduce ensembles of Hamil-
tonians, which, in contrast to the nuclear-table en-
semble, label their members by continuous parameters;
for these ensembles, moreover, physical requirements
do not specify any obvious unique weighting.

If it is found that a certain measure of the fluctuations
varies across the ensemble by only a small amount,
then that measure may be useful in studying experimen-
tal fluctuations; it certainly zeill- be useful, provided
also that (1) the ensemble-averaged value for the'mea-
sure is calculable analytically (and its variance, as
well, for otherwise we would not in general know that
the distribution of the measure is peaked sharply
enough), and (2) the ensemble contains, with a rea-
sonable" weighting, model Hamiltonians which we know
from experience to give a good description of general
features of the system.

With regard to the first condition, numerical matrix
diagonalizations are not adequate for a general under-
standing. As for the second, it is not easy to define a
reasonable weighting of satisfactory Hamiltonians,

but even if there is no such reasonable weighting in the
given. ensemble, its fluctuation results might still de-
scribe the experimental situation; if this is so for vari-
ous measures and for a number of cases which we study,
we might well be prepared to use the ensemble for
other measures and in other cases. But there would
then be a gap in our understanding, a problem to be
solved, namely, why unreasonable Hamiltonians give
proper results. We stress that this is a problem but
not necessarily'a mystery, for it is common in statisti-
cal physics that specified quantities are independent of
many of the parameters of the system. This considera-
tion is rel. evant, for we shall see that the Gaussian
orthogonal ensemble (GOE), which ha.s generated most
of our understanding of energy-level fluctuations, is
made up of quite unreasonable (multibody-intera. ction)
Hamlltonlans~ the probablllty of coming upon a rea-
sonable one being negligible and vanishing in the asymp-
totic limit usually considered, that of large model-
space dimensionality.

Our ensembles will all be of matrices; except for Sec.~I we pay no attention to the continuous spectrum,
even though, strictly speaking, most of the experimen-
tal data come from resonance states in the continuum.
Certain conditions on the matrices will be imposed by
the invariance properties of the Hamiltonian; in par-
ticular, for systems which are time-reversal invariant
and, besides that, are either rotation invariant or of

integral angular momentum, the matrices may be taken
to be real symmetric (this in fact is the most important
case). Other requirements, which for the most part
have been considered only during the past few years
(French and, Wong, 1970, 1971; Bohigas and Flores,
1971a, 1971b; Dyson, 1972b; Wong and French, 1972;
Brody et a/. , 1972), and parallel with an increase in the
quality of the slow-neutron data (Camarda et a/. , 1972,
and later. papers of the Columbia group), are much
more involved with the dynamics of the system and with
quite general conditions which should be satisfied if the
statistical description is to be appropriate. Adapted in
part from Dyson (1972b), the other requirements might
be taken as follows (though they are obviously not in-
dependent of each other)

1. Connection spith dynamics. The definition of the
en.semble should be based on the dynamics of the sys-
tem (or at least on the general principles of many-body
theory) We .may ask, moreover, that, as in conven-
tional statistical mechanics; the -ensemble dea1. in the
least biased fashion wi. th the available relevant informa-
tion.

2. Significance of nonstatistica/ parameters. Any
parameters in the definition of the ensemble should be
linked to nonstatistical properties of the system to be
described; this then allows adapting the general model,
for example, to a specific nucleus. We have seen in
Sec. I that the secular behavior depends only on a small
number of low-order moments. In some cases these
may then be taken as the nonstatistical parameters;
they are, in fact, the concern of much recent work on
spectral distributions.

3. E~godici ty. The statistical properties of individual
members of the ensemble should almost always coincide
(to within suitably narrow error bounds) with the en-
semble average. Such behavior ensures that ensemble
predictions can. be used for individual systems.

4. Phy sical relevance. The ensemble averages should
reproduce the statistical properties as observed experi-
mentally.

5. Mathematical tractability. It wouM be good if the
ensemble were mathematically tractable, so that ana-
lytical results might be obtained. There is in fact a
conflict between reasonableness of the Hamiltonians
and mathematical tractability of the ensembles, one
which has usually been resolved in favor of the latter;
thus, as indicated above, the fundamental (and tractable)
ensemble, the GOE, contains almost exclusively quite
unreasonable Hamiltonians.
Points (1), (2), and (2) are necessary for a physically

reasonable ensemble; point (4) means that it will a.iso be
successful. Point (5) is not an absolute necessity, since
one can always resort to Monte Carlo calculations, but
there are obvious shortcomings in that. As we proceed
it will be seen that considerable progress has been
made in satisfying these requirements.

We novi have basically two ways of starting. In the
first we examine the statistical behavior of a compli-
cated system as generated by its microscopic (many-
particle) structure; in the second, which is the usual
one, we ignore that to begin with, essentially Postulate
a statistical behavior by adopting a particular ensemble,
and ask later about the connection with the microscopic
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structure. We start with the first, though we shall have
to proceed quickly to the second.

H, &(m) =(m;i ~H~m; j) = g C~~'/H ~. ,
A A'

(2.1)

where the C's are "geometrical" coefficients, charac-
teristic of the system, but independent of the interac-
tion. The two-particle matrix which defines the Hamil-
tonian may then be described as "embedded" in the m-
particle matrix, in the sense that the matrix elements
of the larger system are linear combinations of those of
the smaller. The m-particle matrix breaks up into
diagonal blocks characterized by the exact symmetries;
we concentrate on a typical block. As we saw in Sec. I,
if we should take more t.han one such block, the corre-
sponding spectra —which we take to be statistically in-
dependent —may be superimposed; if there are enough
blocks then, , with none predominating, a central-limit
theorem comes into operation, which for the spacing
distribution, to take the best-studied example, yields
a Poisson distribution, whatever the single blocks show
(Leff, 1964a; some special cases are studiedby Gurevich
and Pevsner, 1957; Lane, 1957; and Mehta, 1967, Ap-
pendix A22).

The two-body random ensemble (TBHE; French and
Wong, 1970; Bohigas and Flores, 1971a) follows when
we take the H«. as real random variables, independent-
ly distributed according to the same zero-centered law.
The exact form of this law becomes unimportant when
the particle number is large, but, as we shall see be-
low, a Gaussian form is to be favored. Statistical in-
dependence of the H~~. , on the other hand, is of conse-
quence; with a natural weight in the matrix-element
space it makes equally probable all two-body interac-
tions which preserve the general symmetries we have
accepted. Note very carefully, however, that the m-
particle matrix elements (m & 2) are by no means in-
dependent; for instance, the (8=3, T =1) matrix in the
nuclear ds shell with 12 particles has a dimension of
6706, so that there are 22488 57& different matrix ele-
ments, of which only 63 are independent.

No significant progress has been made in dealing
analytically with the TBRE. Large-scale Monte Carlo
calculations have, however, been carried out, the ma-
trices being constructed, element by'element, in ac-
cordance with the distribution law, and then diagonalized
to produce the complete spectra, from which the fluctua-
tion measures are also calculated. One finds for these
ensembles, in agreement with a great variety of nuclear
shell-model calculations for "realistic" interactions
(i.e. , those whose dominant features are compatible

B. Embedded ensembles; the statistical extension of the
shell fnodel

Let us con.sider m particles in a set of orbits which
correspond to N single-particle states; then a two-body
interaction is completely defined once we have the values
of the antisymmetrized two-particle matrix elements
H«. , connecting two-particle states A, A', with the
same angular momentum and parity (and, e.g. , isospin
where it is relevant). Given the H«. , the matrix ele-
ments for the ~-particle system can be calculated by
standard techniques as

with nucleon-nucleon scattering), that the spectra are
close to Gaussian. Results for the fluctuation measures
will be discussed, along with other 'data, " in Sec. VI.
In general terms, the TBRE comes close to satisfying
the criteria for a physically satisfactory ensemble,
failing, however, in the last, that of mathematical
tractability.

The most. severe mathematical difficulties with TBRE
are due to the angular momentum constraints. 'These
difficulties are present also in an ensemble, TBRE(J,'),
studied by Ybpez (1975), in which 8, instead of J' is
conserved; but the numerical calculations are easier.
Its fluctuation properties seem to be identical to those
of the TBRE, a result no longer surprising. Another
type of ensemble (French, 1973), much closer to being
mathematically tractable, abandons the J restrictions
entirely. This eases the mathematical difficulties suf-
ficiently for a useful generalization to be possible: In-
stead of supposing simply two-body forces, as for the
TBRE, k-body forces can be considered, with k» 1.
Equation (2.1) will still apply, but now with H«. the
k-body matrix elements in any k-particle basis. If we
take them to be real symmetric and choose them from
a zero-centered Gaussian distribution with diagonal
variances twice the nondiagonal ones, we have, in the
k-particle space, what we shall call a Gaussian ortho-
gonal ensemble (GOE) and, for m-particles, an exam-
ple of an embedded GOE, or EQOE for short. For rn

=k, of course, the two ensembles coincide.
Physically, k=2 is the case of greatest interest (or

perhaps k=1 +2}, though, in fact, it seems likely that
the fluctuation measures are essentially independent of
k for k & 1 (interacting particles}. Short-range fluctua-
tion measures have not yet been analytically derived
for this EGOE, but its secular properties have been
(for m»k the characteristic spectrum is Gaussian), as
well as its long-wavelength fluctuation properties and
its ergodic behavior for the eigenvalue density. The
details will be discussed in later sections.

82 = (Hq, —H2q)2 + (2H)2)2,

whose vanishing specifies two conditions. From the

(2.2)

3The asymptotic results depend only very weakly, or not at
all, on the shape of the distribution. %'igner's semicircular
density f(3.17) below] was first derived, for the "random-sign
ensemble, " which has elements all of unit magnitude but of
randomly chosen sign.

C. The Gaussian orthogonal ensembles {GOE)

The one significant feature of the Hamiltonian which
is preserved in the EGOE but not in the QOE itself is
the fact that the &'s define k-body interactions. If we
ignore this feature (because of the mathematical diffi-
culties which it generates and because it seems to have
little effect on the fluctuations, anyway —though a pro-
found one on the density) we come to the GOE itself as
a fluctuation model.

There is a GOE for each dimensionality d. We start
with d =2. Then any ensemble of real symmetric H's
is specified by giving the joint probability distribution
for the three independent H;&. The eigenvalue spacing
S is given by
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remarks following (1.5) we see that if we form an en-
semble by taking (H« —H»)/2 =—x, and H» =-x, to be in-,

dependent random variables, with distribution identical
to that of G(0, v), we shall find the Wigner result (1.5)
for the ensemble distribution of the spacings; the av-
erage spacing D and the variances v of x&, xz are then
related by B=v'2&v . Though "derived" in Sec. I by an
argument involving a single matrix of (large) dimen-
sionality d, it is reproduced here as the distribution of
the spacings which are found, one from each matrix,
in the ensemble of two-dimensional matrices. Thus by
comparison we see that this ensemble may be regarded
as implying a linear repulsion. See Appendix B for a
more general result.

If we complete the specification of the matrices by
taking the eigenvalue centroid x3 = (H~i + H22)/2
be independent, the ensemble is isotropic, i.e., invari-
ant under orthogonal transformations of the x; basis
(since the joint density function and the volume element
dx, dx2dx3 = dH«dH22dH„are both invariant). This en-
semble is the two-dimensional Gaussian orthogonal e'n-

semble (GOE), which we can equally well describe by
stipulating that the II;& are independently chosen, the
diagonal elements as G(0, $2v ) and the off diagonal as
G(0, v); in verifying this, recall that variances add for
independent variables. The linear- repulsion factor may
be described in geometrical terms as arising from
projecting this distribution onto the (x„x2) plane which
carries the information about the spacings; specifically,
we see from (2.2) that S/2 is the radial coordinate in
the plane, so that the factor giving the linear repulsion
derives from the two-dimensional volume element
2~SdS/4. Observe also that we may take the x3 dis-
tribution to be anything we wish without changing the
spacing distribution. Thus we have a (trivial) class of
ensembles which give the same spacings.

These considerations do not at all Prove that there
should be level repulsion. A different probability
weighting for the matrices may give different results.
For example, every two-dimensional Hermitian matrix
can be written in terms of the unit matrix 1, the Pauli
matrices 0, and the real unit vector n; and its eigen-
values will be independent of n. Thus

H= +1+go'. n
nz 1

(2.3)

so that S = 2 ~q ~

is distributed as the positive half of the
marginal distribution of q. With Gaussian, for example,
small spacings predominate and we have no level repul-
sion. . This ensemble and the GOE contain the same ma-
trices but with different weights and it is this which
gives rise to the differing results.

To define the d-dimensional GOE we again take the
matrices to be real symmetric, with distinct matrix
elements independently distributed according to

Pv~~d = 1 . (2.5)

Then, for QOE we have the result (which would be
d —1+2/ P in the general case)

Tr(H~) =— [Tr(H~)J, = Q H2. + Q H2.
4 i+/

= d (d —1)v2 + 2v2d = d + 1 (2.6)

P (H) =2 ~ (2' )
'~2~~'~' "~ 'exp[- Tr(H )/4v2~]

(2.7)

and, being dependent only on a trace, it is invariant
under orthogonal transformations. We remark also that
the statistical independence of the matrix elements and
orthogonal' invariance of the ensemble are sufficient to
define the GOE (Friedrichs and Shapiro, 1957; Porter
and Hosenzweig, 1960).

Occasionally it seems to be taken for granted that the
necessary invariance of physical results under ortho-
gonal (more generally, unitary) basis transformations
implies a corresponding necessary invariance for en-
sembles, but this is not at all the case (see Appendix
C). Orthogonal invariance describes a "physical uni-
formity, " which implies that with respect to the en-
semble of H's, all basis states, and therefore all
states, behave in the same way. From a physical
standpoint, statistical independence and the uniform
treatment of the matrix elements imply the avoidance
of matrix-element correlations which would generate
special features of the Hamiltonian. From the statisti-
cal standpoint we would be led to int. roduce this kind of
uniformity if we were ignorant of all features of the
system except those defined by the underlying symmet-
ries implied by GOE. Other ensembles defined with
more restrictions would be appropriate if further in-
formation were available.

Starting from this point of view, Balian, whose work
involves an extension and more systematic treatment of
notions first used in this domain by Bronk (1965) and
Porter (1965b), has given a prescription for deriving
ensembles in terms of the standard concepts of informa-
tion theory (Baiian, 1968). The basic quantity in
Balian's formulation is the information functional

so that the ensemble- and spectral-averaged H matrix
element (i.e. , the mean-squared energy) will be (1
+1/d) 1 for large dimensionality. * It will turn out that
for large d, the (smoothed) spectrum is semicircular
(see Sec. III); and, since for a semicircle of radius R
the variance is o =R /4, it follows that the radius is
2.

The probability density for a matrix, in the space of
the independent matrix elements (volume element
= II, ,dH, ,), is now, with p = 1,

H;,. —G(0, v), i ej
H, , -G(0, M2v).

(2.4)

For the GOE normalization we take v d =1. It is con-
venient, however, to introduce the parameter P= 1,2, 4
for orthogonal, unitary, and symplectic ensembles
(Sec. II.D below) and then (with v,'= v' for GOE)

~Here and throughout, the overbar will show the ensemble
average. Owing to typesetting limitations, we use the notation
[(TrH )j interchangeably.

See also the conference report (Balian, 1969) and the especi-
ally interesting discussion which follows it.
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1(1'(H) ] = f d(H)P(H) 1n1'(H) = [)nP(H)], , (2.8) Pe(xi . ... .He)=Ca. .. , IH, -H, I-'exP —
e ~ Z H').

r& s g i

where, asdiscussedby Porter(1965b), d(H), the volume
element in the matrix space (= II,,&dH, , for real sym-
metric matrices, as given above), is defined in terms
of a metric ds = Tr(5H6H"). Then the probability dis-
tribution P(H) for a random matrix constrained to satis-
fy some given conditions is determined by a principle of
maximal randomness, namely, that the information
f(P(H)) is minimal, corresponding to the least biased
distribution. The constraints are generally expressed
by specifying the ensemble averages 6),. of some quanti-
ties f;(H) depending on the random matrices H:

s, Jd(H)P(H) .y=-(H) = e, . (2.9)

In this case minimization yields

P(H) exp(g 1=;f;(H)I (2.10)

the weight of the matrices in the new basis depends on
the P, only via the Jacobian of the transformation (H, ,j—(E„,Pj. Then we can integrate over the P, and find
the joint probability distribution in the eigenvalue sub-
space. The result of this, as carried out very simply
by Wigner (1967), is, again with P =1 for GOE, though,
just as with (2.7), the result applies for the other P
values,

where the Lagrange multipliers A. , are determined by
adjusting (2.10) to (2.9). The normalization of P(H) is,
of course, always one of the constraints; if, in the
space of real symmetric matrices, the only other con-
straint is the "strength" of the interaction, as defined
by [Tr(H )]„we obtain the GOE, in which the orthogonal
invariance is then seen to follow as a consequence of the
postulates. All tQe other ensembles that we consider
could be derived in this formalism.

Every real symmetric d-dimensional matrix is found
in the GOE, and thus every matrix is accompanied by
all of its equivalent matrices, OHO ' mith orthogonal
0; these enter with the same weight and of course have
the same spectrum. If now 4„ is the state associated
with the eigenvalue E„of Il, then 04„mill be the eigen-
state for E„of OHO ', and the complete set (04 „j, seen
as vectors in a d-dimensional space, mill uniformly
cover the unit sphere. We may call 4„a "uniform" vec-
tor; every GOE eigenvector is uniform. The uniformity
is maintained if, for example, we select from the en-
semble only those matrices for which some or all of
the eigenvalues are specified, or more generally if we
select a subset by any procedure which is independent
of the Hamiltonians themselves.

The space of the matrix elements is (f '') dimensional,
while that of the eigenvalues E, is only d dimensional.
Let us then transform from the matrix-element repre-
sentation to a diagonal" representation, defined by the
eigenvalues (E„.. . , E,) and the parameters [p„.. . ,p,
with / = (, )], which generate the orthogonal transforma-
tions. Since

1'(H) =C exp( PH;/ee-), -
i

(2.11)
In one sense this solves the entire GOE problem, since,
for example, by integrating over all the variables but
one, we find the density, over all but two, the two-
point correlation function, and so forth. But here very
difficult technical problems are encountered. These
have been solved to a considerable extent by signer,
Mehta, Dyson, and many others [see the papers collec-
ted by Porter (1965a), as well as Wigner (1967), Mehta
(1967, 1971), and Dyson (1970)j by mathematically ele-
gant methods which depend rather critically on the in-
variance properties of the ensemble. In Secs. IV and V
we shall use a simpler method, not so dependent on
these properties, to calculate approximately the fluc-
tuation measures which we shall need.

We know now that the last criterion of Sec. H. A, that
of mathematical tractability, is pretty well satisfied.
This, in fact, is the only one of these criteria which
has been considered in constructing the GOE. We shall
see in Sec. X that the ergodicity requirement is also
satisfied. The other requirements have been ignored
entirely; tQe GOE has only two free parameters, a
trivial scale factor, and the dimensionality which is
hard to connect with experiment. Nevertheless, as will
appear in Secs. V to VII, the fluctuation behavior of the
QQE agrees well with experimental observations.

The GOE, when realized in a many-particle system,
describes a situation in which all the particles interact
simultaneously, 5 the other interactions forming a sub-
set of negligible weight (zero in the limit) for large ma-
trices. Besides that, the uniformity which we have im-
'posed is incompatible with special features which char-
acterize real systems, such as, for nuclei, the im-
portance of a quadrupole-quadrupole interaction, or the
occurrence of giant-resonance states whose excitation
modes are very different from those of their neighbors.
Since these features of the GOE are a Priori unreason-
able, it is important that we understand the significance
of a comparison of GOE results with experiment. If
they are not in agreement, the natural step is to con-
struct ensembles which better satisfy the criteria listed
above. If, on the other hand, they a~e in agreement,
this implying that the fluctuations are independent of
particle rank and other. properties of H, the significant
problem is to find the reason for success and the range
over which we may expect it. Stated differently, the
problem is to find what systems give rise to GOE fluc-
tuations and to find when deviations may be expected;
these deviations, in fact, would have to be large in
order to overcome the (theoretical) variations repre-
sented by the variances of the fluctuation measures and
those arising from small sample size —small both in the

This is because the GOE ignores the constraints that II be
{k &m)-body. If the m particles are distributed over N single-
particle states, the dimensionality is d(m) = (+), and the num-
ber of independent matrix elements is [II(~)]—Hd (m); but,
sirice a k-body interaction is realizable in a k-particle space,
the number of jtg independent matrix elements is d (k)/2,
which in practical cases will be very much smaller unless k
=m I',see also Appendix D).

Rev. Mod. Phys. , Voi. 53, No. 3, July t 98't



398 T. A. Brody et al. : Random-matrix physics

number of levels accessible in a given nucleus and in the
number of nuclei for which data are available. In the
case of GOE success, we would find ourselves studying,
not properties of specific nuclei, but instead more gen-
eral laws which might well apply to very different sys-
tems.

In either case the appropriate procedure appears to be
the same, namely, to study other ensembles and to seek
simpler descriptions of the fluctuations for these ensem-
bles, as well as for the GOE.

D. Gaussian ensembles and underlying symmetries; the GUE
and the GSf

%e have commented on the underlying space-time
symmetries which, when preserved, permit us to take
the Hamiltonian matrices to be real symmetric. The
orthogonal invariance of the ensemble then follows from
the fact that the real-symmetric property is preserved
under orthogonal transformations, but under no larger
subgroup of the unitary transformations, and from the
desire to have a uniform measure for the ensemble

embers. The latter is analogous to the notion of equal
a Priori Probabi/ity in statistical mechanics. Different
ensembles result if the conditions which give rise to the
orthogonal ensemble are not satisfied. In particular, if
the Hamiltonian is not time-reversal invariant, then, ir-
respective of its behavior under rotations, the Hamil-
tonian matrices are complex and the canonical group
which generates the uniform measure for the ensemble
is the unitary group. If we have time-reversal invari-
anee, but not rotation invariance, then, for systems
with half-integral. angular momentum, the H matrices
are "quaternion real" and the ensemble is generated by
symple etic transf ormations.

These general results are due originally to Dyson
(1962a); a more detailed derivation is given by Porter
(1965b). In an elegant but difficult later paper Dyson
(1962e) establishes connections between the mathematics
of the three ensembles (which, in a sense which he de-
fines, are the fundamental "irreducible" ones; hence his
"threefold way") and other mathematical structures, and
states the theorem which gives rise to them.

Hence we have Gaussian orthogonal, unitary, and sym-
plectic ensembles, GOE, GUE, and GSE, characterized,
respectively, by p= 1. , 2, 4. For the GUE, H = H, + iH„
with Ho ——H0 ——H&~ and H& ——H& ———H&~, the two matrices
being independently constructed and their off-diagonal
matrix elements having variances ~2. For GSE we have
an ensemble of 'quaternion real" matrices

with HO=HO ——Ho, H~=H~ = —H~ for k=1, 2, 3; the four
matrices are independent and their off-diagonal matrix
elements have variances v24. Equation (2.7), with the
varying values of. P and the volume element

dH, , ~ i dH~, -,.

gives the joint probability density in all cases. Similar-

VPe sha11 often refer to them as the "standard" or "canonical"
ensemble s.

ly, the eigenvalue distribution is given by (2.11).
The asymptotic eigenvalue density and the correlation

functions of general order have been derived in all
three cases [Dyson (1970); Mehta(1971); see alsoPorter
(1965a) and Mehta (1967)]. We shall give, in Secs. IV
and 7, good approximations for the two-point functions
and fluctuation measures.

A sum of a GOE and an independent, similarly de-
fined, ensemble of Hermitian &ntisymmet~ic matrices
has been introduced to study the breaking of time-re-
versal invariance (Wigner, 1967; Favro and McDonald,
1967; Hosenzweig et al. , 1966); we come to that in Sec.
VII.F. Such an ensemble describes a GOE- GUE tran-
sition, induced by moderating the GOE constraint on the
matrix elements by increasing the magnitude of the
antisymmetric part. The transition will be seen to be
strikingly unsymmetrical due to the fact that there is
no constraint at the GUE end. A similar ensemble
would generate a GSE —GUE transition which would
also be unsymmetrical (unlike GOE —GSE, for which
there is a constraint at both ends). All three of these
are special cases of the deformed ensembles of Sec.
D.G.

f. Gaussian ensembles with limited traces

In the GOE there is an obvious factoring of the "ang-
ular" and "radial" structures, as in (2.11). The GOE
can thus be thought of in terms of shells defined by X,
~ A. ~ A., +AX, where X'= Tr(H'), so that A. defines the
"magnitude" of H; similarly for the QQE and GSE. The
fluctuations, being expressed, as always, in terms of
local spacing units, are then independent of A. , so that
each shell has the same renormalized spectra and the
same fluctuations. The fixed-trace ensemble of Hosen-
zweig (1963) deals with a single GOE shell, i.e., with a
single shell in the space of Hamiltonian matrix elements
where the GOE is defined, and is thus analogous to a
microcanonical rather than a canonical ensemble. It is
therefore equivalent to the GOE for fluctuations calcu-
lated by spectral averaging (i.e. , averaging along the
spectra of individual H's, also called "energy aver-
aging"). This does not imply exact equality for the theo-
retical fluctuations obtained by means of ensemble av-
eraging, but any departure from equality would then be
due to a failure of ergodicity in one or both of the en-
sembles (in fact, in the fixed-trace ensemble). Mehta
(1967) has shown, however, that for large dimensionality
the two ensembles give the same ensemble-averaged
results; since GOE ergodicity obtains, anyway, only for
large d, we can therefore say that, insofar as physical
applications are concerned, the fixed-trace ensemble is
identical with the GOE. The same is true for the
bounded-trace ensemble of Bronk (1964).

F. The circular ensembles

The treatment of the Hamiltonian magnitudes has been
handled in a different and very elegant way by Dyson
(1962a), who indirectly introduces a weight in which
all H's (not just those with the same renormalized spec-
tra) are treated identically. The starting point of this is
a mapping of the Hamiltonian onto a unitary matrix S,
for example, by S=e' ~. Then, as long as we consider
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domains in which the mapping has no zeros or singu-
larities (being therefore invertible), we can, by Taylor
expansion, relate the original and mapped spectra; and
these, to lowest order in the expansion, are identical
to within a scale factor. The fluctuations can then be
studied in terms of the eigenvalues of unitary matrices
which, with approprate weighting and with symmetry
restrictions, constitute the cixcufaw ensembles (circu-
lar, since the eigenvalues all lie on the unit circle).

An important general result (Dyson, 1970; Mehta,
1971}is that, in the large-. d limit, the Gaussian and
circular ensembles give the same fluctuations; this
should not be very surprising in view of the general
comments above. The fluctuation properties of the
circular ensembles are stationary by construction.
Moreover, we shall show in Sec. X that the Gaussian
ensembles have an ergodicity which is "locally gen-
erated, " so that, for large enough d, we can ensure
agreement as close as we wish between spectral and
ensemble averaging, while still averaging over an en-
ergy domain as small as we wish. Then, because of
the local mapping relationship between the ensembles,
the ergodic behavior of one class will imply that of the
other.

G. Deformed ensembles

By construction the set (Hj of operators which forms
a, GOE (or one of the other canonical ensembles} is iso-
tropic with respect to the zero operator as center. If
we know, however, that the true H has in it a large
componen. t of a particular operator K, we might ques-
tion the adequacy of J}H)«E as a model. We could then
introduce a new constrained" ensemble, in which II
varies not over the entire GOE but over the surface of
a cone within the GOE; the axis of the cone would lie
along K, and the angle of the cone would then determine
the magnitude of the K component, in H relative to that
of H itself. But the ensemble H =H+ +K, where n is a
real constant and H the GOE, achieves the same result
much more simply, since the relative magnitude of any
given component of the Hamiltonians is negligibly small
in the GOE. We shall speak of the H ensemble as a
'deformed" GOE (though "off-centered" or "centroid-

modified" might be better). See Secs. III.E and IV.G
for formal results and specific applications.

K might correspond to a weak deformation of a canoni-
cal ensemble, and, if then it does not preserve the en-
semble symmetry specified by p=1, 4, we have the
transition between canonical fluctuations, as discussed
above. If aE is 'large" compared with H, we might
be taking account of the damping of collectivities, the
aK operator representing perhaps a "schematic" Hamil-
tonian ("pairing+ quadrupole, " to take a simple exam-
ple) and the GOE those parts of the Hamiltonian which,
for the purposes at hand, need not be specified in detail.
The deformation of a partitioned ensemble, which de-
scribes the combination of independent subsystems, or
the Hamiltonian, which preserves a given model sym-
metry defined by the partitioning structure, is of ob-
vious interest in describing the subsystem interactions
or the breaking of the model symmetry; and there are,
of course, other kinds of applications.

With an infinitesimal deformation we find a simple

equation. which implicitly forms the basis for our treat-
ment of fluctuations in Sec. IV. Let M~(n) be the pth
moment of p (x), the eigenvalue density for H+ nK.
Then, with d x (G) denoting the trace of G, a convention
we shall always use,

M, (Q) =((H+ nK)') = g Q'((H' 'K'])
S

=(H&) + oP(H&-'K) + n'(fH~-'Z']) + ~ ~

(2.12)

where (]denotes the sum over all possible orderings,
(~~) of them, of H and K in the product. Recalling that

(Q) = Jp(x)Q(x)dx, we find by partial integration that
(H~ "G) is the Pth moment of

=- K(x)p(x) .as. (x)
a=0

(2.13)

The latter equation has been used, inter alia, for cal-
culating expectation values, spin- cut-off factors in level
densities, and so forth (Chang and French, 1973). Since
it is valid for an individual H, and thus for the separate
members of an ensemble, it may be combined with it-
self to give a two-point equation [(K3) of Appendix K]
which leads to the fluctuations.

H. Other ensembles

In another extension of the concepts underlying the
GOE, Dyson .(1962d; see also Wigner, 1959) writes
(2.11), with a different normalization and extended to the
three basic Gaussian ensembles, as

Ia(E&, . . . , E„)=&8exp(- PW),

where

(2.14)

d

W= g E', —g In~E, -E,
~i=i

can be interpreted as the energy of d equal line charges
at positions E; along an infinite line, the first termbeing
a harmonic oscillator that serves to confine them, and
the second their interaction potential. If now we place
the line charges at random positions along the line and
1st the system evolve under the joint action. of (2.15) to-
gether with a fluctuating and a dissipative force which
give rise to a Brownian motion, then, after equilibrium
has been reached, the positions at any instant will be
described by the Gaussian ensemble appropriate to the
value of p chosen. In the second paper Dyson (1972b)
carries the idea further and supposes instead of (2.15)
a potential of the form

(2.15)

}}'=gf w(z}}nl+ @ Idx g }nl@ @&I (2 }6}
l-1 i&&

where p(x) [-=p, (x) in the notation above] is defined by
the moments M&=—M~(0) =(H~), and G(x) =(x~G~x), the
expectation value of G in the state ~x). Using this we
have

d
p (x) =p(x) —e —[K(x)p(x)]+
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where r(A) is an otherwise arbitrary non-negative
smooth function. This leads to the same local fluctua-
tions but with r(E) as the prescribed density. Ensem-
bles with specified density have been considered also
by Balian (1968). The essential decoupling of the secu-
lar behavior and the fluctuations of the spectrum make
it far from surprising that such ensembles can be con-
structed.

The fact that the GOE spectrum has (formally) no
lower bound might be regarded as a defect; to remedy
this, Wigner (1972) proposed an ensemble of matrices
H = ReM 'M, where M is an asymmetric complex ma-
trix whose real and imaginary parts sample a Gaussian
distribution of unit variance. Dyson (1971; see also
Bohigas et al. , 1971), observing that if M=A+iB, then
H=ArA+BrB, generalized this to H=g~ &ArA, , where
T denotes the transpose, and evaluated the density,
which is found to have effectively both an upper and
lower bound. We shall give in Sec. GI.E a different
derivation of this density; as will be discussed in Sec.
Pf.G, the fluctuations are identical with GOE.

The classical mathematical treatment of the Gaussian
ensembles —in particular, the GOE (Mehta, 1967)—
depends heavily on the. properties of the Hermite poly-
nomials. The idea that other sets of orthogonal poly-
nomials might correspond to useful ensembles has been
studied by Leff (1964b) and by Fox and Kahn (1964). Of
the cases examined, which include the Jaeobi and the
Laguerre polynomials also, the Legendre polynomials
are of particular interest in that the asymptotic level
density, instead of having the highly nonphysical semi-
circular form for the GOE (which we discuss in the next
section), is concave upwards and increases rapidly.

III. THE LEVEL DENSITY

The level fluctuations may be regarded as microscop-
ic fluctuations of the level density, or equivalently as
being generated by excitations of the ensemble-aver-
aged density. It is then clear that to understand fluc-
tuations we should first learn something about the av-
eraged density itself.

A. Experimental densities

The experimental density has of course a "secular"
variation (i.e. , a long-range variation with energy)
which is a major. subject of interest in the usual level-
dens-ity studies. The earliest calculation of this was
given by Bethe (1936; see also Van Lier and Uhlenbeck,
1937). In these calculations, which have established
the general procedures used for almost all of the sub-
sequent work on level densities, the specific residual
interactions are ignored, so that the formal problem is
essentially combinatorial. As one would expect, then,
and as is characteristic of complicated fermion systems
with single-particle spectra unbounded from above, the
level density is found to increase with energy in an ex-
ponential fashion, -exp(~E"), which is in good accord
with experiment, In Bethe's paper a simple but elegant
use of the central-limit theorem gave also a (Maxwellian)
decomposition of the level density according to angular
momentum. A great deal of work has been devoted to
various extensions of Bethe's theory, to take account of

pairing effects by quasiparticle methods, to introduce
schematic interactions as Casimir operators of reason-
able groups and so forth, and to evaluate the parame-
ters of the theory. For recent reviews see Lynn (1968)
and Huizenga and Moretto (1972).

We have already encountered two general questions
connected with the secular variation.

1. Why is there apparently little or no secular varia-
tion of fluctuation patterns, i.e. , why are fluctuation
measures, expressed in terms of the local spacing unit,
apparently independent of energy? And, related to this,
what gives rise to the sharp separation between the fluc-
tuations and the secular variation which we have seen
in Fig. 6?

2. In particular, why do the patterns extend to the very
end of the spectrum in the ground-state domain? An
intuitive picture of a level position as being determined
by a, balancing of the level-repulsion "pressure" from
above and below would suggest that there could be size-
able "end" effects.

We shall be able to give reasonable, if partial, answers
to these questions.

I evel-density theory may, of course, be regarded as
simply an aspect of the study of spectra. But the con-
cepts and methods are so different from those made
use of in studying nuclear properties in the ground-
state domain that contacts between the two activities
have been disappointingly few; this applies in particular
to the neglect or very rough treatment of residual in-
teractions in the level-density theory, as contrasted
with the dominant role assigned to the residual inter-
action in the usual shell-model and related theories.

However, as we have mentioned in Sec. II, there ex-
ist by now methods, somewha. t akin to Khinchin's (1949)
procedures for statistical mechanics, by which the level
densities can be calculated for interacting particles de-
scribed by indefinitely large model spaces. These
methods are now beginning to be applied for level-den-
sity calculations (Chang et a/. , 1971; French and Chang,
1972; Ayik and Ginocchio, 1974; Wong and Lougheed,
1978; Dalton et al. , 1980); however, they give us no
access to fluctuations, as they apply only to low-order
moments. We shall not, therefore, go further into this
matter, since our present interest is not so much with
the experimental densities as with the densities appro-
priate to the models which we set up for fluctuations.
This is justified by the sharp separation implied in the
first question above.

These model densities will also have a secular varia-
tion, but unlike the "true" densities, they will for the
most'part describe a finite number of levels, therefore
spanning a finite energy range. They will not be mono-
tonically increasing with energy, usually having instead
a single maximum at or near the centroid, in the neigh-
borhood of which they may be regarded as constant.
Theoretical calculations of fluctuation measures are
usually made in the central region in order to take ad-
vantage of mathematical simplifications arising from
this constancy. We shall, however, be able to extend
our approximate GOE calculations over the entire spec- .
trum, and, beyond that, will be able to see (Pandey,
1979) that the significant fluctuation measures are in
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fact stationary (not varying over the spectrum) except
perhaps when the level repulsion is moderated at low
energies because of the existence of a conserved or al-
most conserved symmetry.

A good way to emphasize the separation between sec-
ular variations and spectral fluctuations is to introduce
a new energy variable which maps to a constant the sec-
ular ("fluctuation-free") density. We can take E- W(E)
=d f„p(x}dx, where p(x} is the smoothed density; there
are other procedures more or less equivalent to this
(and of course introducing the circular ensembles-, a.s
in Sec. II.F, does the same thing in a different way).
Such a mapping is known a,s an unfolding of the spec-
trum; it results in a fluctuation pattern which, to the
extent that the secular-fluctuation separation is valid,
is invariant, or close to it, over the whole 8' spectrum.
Such an invariance indicates that, in the sense of sto-
chastic processes, the spectra are stationary or quasi-
stationary. For the GOE. we shall understand later
(Sec. X) the origins of this beha, vior.

B. Densities, convolutions, and binary correlations for
noninteracting particles

Consider a system generated by distributing m non-
interacting particles over N single-particle states. The
blocking effects due to the Pauli principle can be ig-
nored if the system is sufficiently "dilute", i.e., if
m «N, and we shall take this to be the case. Then we
have, for the Hamiltonian in diagonal representation,
and the eigenvalue density,

H = g c,.n, , p, (x) = N-' g ~(x —c,.), (3.1)

and thus, in an abbreviated notation,

~m= ~m i ~x = ~i ~~ @ ' ' ~x ~ (3.2)

But by the central-limit theorem, and with very weak
restrictions' on. p, (x), the m-fold convolution of p, with
itself becomes Gaussian, with centroid and variances
easily seen to be

h(m) =m8(1), a2(m) =ma''(I)

8(1)=N-' g c,. o'(I) =N-' g [c.—&(I)]'

(3.3)

(3.4)

Note carefully that this is not an. ensemble result but is
valid for every individual one-body H. Thus the char-
acteristic many-particle density is Gaussian when the

For finite N (and, of course, (C;( &~&, which is the case of
interest to us, there are essentially no restrictions as long as
we can ignore the Pauli effects, so that we get close to a Gaus-
sian distribution but still have gpss «¹Otherwise, we could in
principle be foiled if the single-particle spectrum were "sing-
ular" {Sec.VII.D); but such cases are of little interest. For a
compact review of the restrictions in more general cases see
Fortet {1958).

where n,- is the number operator for the ith single-par-
ticle state. Because particles do not interact, the m-
particle density is a convolution of the (m —1)-particle
and the single-particle densities,

o (x)= fv ,(y)n, (x —))d.v,

d(m)=
(

&mj

is the model-space dimensionality, E,.(m) are the eigen-
values of H [note that E,.(1)= c,.] and, for any operator
G, Tr' ) G is its trace over the m -particle space. As
indicated in Sec. II, we write, where the last form is
used if m is not specified,

d(m) 'Tr'~'G -=d(m) '((G&&~= (G&~- (G&, (3.6)

so that (G& is the aver'age expectation value or eigen-
value of G. To evaluate M ~(m) we recall that na = n,.;
furthermore, (n,.n,.n~. . . &™is easily seen to have the
value

(m) N) '
(I)

where l is the number of different n's in the product,
and therefore grows faster with particle number the
higher the value of /. I et us now decompose the mo-
ment M ~(m) = (H~& into terms according to the parti-
tions of p; that is to say, multiply H~ out, collect the
terms with the same n,.n,.n, . . . structure, and use the
result just given; there are, for example, five terms
for p=4 and eleven for p= 6.

The general result is easily derived (Mon and French,
1975), but we content ourselves with examples. The
term a.ssociated with the partition [22] of p =4 is

-1

=3 t [N'(&c'&)'-N&c'&]
2 2

fm ) (( 2&)2

I, 2)l
(3.7)

where (c('&=N ' Z(c,.)~=M~(1). In the last step we have
dropped a term of relative order N ', including the (c'&
term, which, deriving as it does from the icj restric-
tion on the left-hand side, is a "blocking" correction.
The [4] partition gives m(c'& when N is large, and is

particles are noninteracting.
The Gaussian density has arisen as a result of multi-

ple convolution. But since the convolution result does
not apply for interacting particles (whose energies are
not additive), we rederive the density from another
point of view, as arising from the dominance of binary
Hamiltonian associations; at the same time we shall
see how fast the spectrum tends to Gaussian as we add
particles.

Consider the moments of the spectrum of the one. -body
H given by (3.1), fixing the energy zero so that S~,.c,.= 0
which assures us that the moments are in fact central
moments. For M ~(m), the pth moment of the m-particle
system, we have

M (m) = P [E.(m)]&= Tr(.)(H~) = (H&&-,1 1
d(m) . ' d(m }

(3.5)

where
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thus much sma. lier for large m than the [22] contribu-
tion. More generally, a partition, [X,X, ~ ~ ~ X ], involv-
ing s parts, gives a term proportional to

(m 1(&sag) (sQ) &sk )]
(s )

However, all partitions containing 1's (e.g. , the other
p =4 partitions, [31], [211], and [1111])vanish, since
&s)= 0; this being the case, the dominant term will be
the partition into the largest number of 2's, that is to
say, [2 '] or [32'~ ""],according as p is even or odd.
Thus, when the particle number is large, the binary
correlation terms, corresponding to the counting of
Hamiltonian pairs, are dominant.

As a further example, we find that, for p=6, seven
of the eleven terms vanish because of the vanishing of
the centroid, and then

&3

+3o &~')&~'&+ ™1&s'), (3.8) .

the terms here arising respectively from the partitions
[222], [33], [42], and [6].

When there are many particles, the dominant contri-
butions are then m&s'), 6(,)(c')', and 90(,)&c')'-m&c'),
3(m&s'))' and 15(m&s'))' for p= 2, 4, 6, respectively. The
coefficients are the number of ways of making binary
associations among p objects; for arbitrary even p = 2v
this number is (2v —1)!!,so that as m, N-~ with m/N
-0

M „(m) -(2v —1)!![M,(m)]", (3.9)

which shows the asymptotic distribution to be Gaussian
(see Appendix E).

C. Interacting particles, ensembles, and binary correlations

For interacting particles, not every H generates a
Gaussian or a close-to-Gaussian spectrum in some nat-
ural limit; nor does every H generate the same asymp-
totic spectrum. For example, if H=h', where h is a
traceless one-body operator, we easily find that the
many-particle density, appropriately scaled, is p(x)
—x '~' exp( —x/2), a y' distribution in a single variable
[h' is, of course, n'ot a pure two-body operator; but the
deviation from Gaussian is not due to a mixing of parti-
cle ranks (see Appendix F) ].

Obviously, there is then no unique characteristic spec-
trum as there is for noninteracting particles. Yet it is
a fact, borne out by very many shell-model calculations
done with a wide variety of "realistic" interactions and
yielding excellent agreement with experiment (in the
ground-state region where the results should be of di-
rect physical significance), that the spectra are very
close to Gaussian.

To understand this, consider first a set of exception-
al cases, those with H= Z, h', where f «N and the

are traceless nonsingular one-body operators, which
have the same variance and which are orthogonal in the

one-particle space, &h h~)' = c5 ~. The asymptotic
eigenvalue distribution is of X, form, which is obvious
for f =1, since the central limit theorem (CLT) gener
ates a Gaussian distribution for h, but may not be ob-
vious for l&1, since the h do not in general commute
[see French and Draayer (1979) for this case]. The
given structure for B is of formal interest as the bi-
linear Casimir operator of the l-dimensional Lie alge-
bras, and of physical interest because, for 7= 5, it
represents the quadrupole interaction, Q ~ Q, an im-
portant component of reasonable Hamiltonians. Since
y', becomes Gaussian for large l, and since realistic
H's are not dominated' by a few h' terms, it is not then
surprising that the resultant spectra-will be close to
Gaussian. Once again this behavior can be traced to the
dominance of binary associations in the moments.

An alternative procedure is to calculate an ensemble-
averaged density (along with an appropriate measure
for the deviations from average, which we come to in
Sec. IQ.F. We start with a GOE of k-body Hamiltonians.
Let o.'= o.(k) be the (second-quantized) state operator
which, acting on the vacuum, generates the k-body state
g„(k); if W ~

are' the matrix elements, then the mem-
bers of this GOE will be given by

(3.10)

We have, of course (with the bar denoting the ensemble
average), that W ~= W~, W ~=0, [W BW»],=0 if the ma-
trix elements are distinct, and f(W ~)'j, = (1+ 6 8)v'. As
in Eq. (2.5), let us normalize the GOE so that the var-
iance ~a' of the off-diagonal elements is [d(k)]-' = („) ',
the average 0-particle expectation value of H' is then
1+(~~) ' which goes to 1 in the large Nlimit. -

When the matrices of this ensemble act in the k-par-
ticle space, we get back the GOE; if they act in an m-
particle space with m & k, we obtain what we have called
the "embedded" GOE or EGOE. Observe that in either
case the odd moments vanish because of the symmetry
about zero of the W ~ distributions. In complete analogy
with the noninteracting particle ease let us now define
an associated Jlamiltoniarg pair and its ensemble aver-
age:

HH= QW 8 Wa ap'po', -

PH, =
I '~ (1+6 ~)nP'Pn'

(3.11)

As suggested above, Q ~ Q is the largest "single" component,
its squared norm being characteristically one quarter of the
total. But it has a negative coefficient so that the part of the
spectrum which deviates most from Gaussian comes harmless-
ly at high excitation.

(3.12)

where, to produce the second-last form, we have used
the elementa. ry results (Mon and French, 1975) that
)~ o. n =("„), 5~P'P = (N;"), o.a"o.o. '= no. '.

The dominant role of the binary, associations now
arises from the distribution of the W ~. Writing H ~
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= W ~nP', we have as an example with p=4, that
(H ~Ha H „H„),which on averaging gives((HH)')
—( ~)2. The fourth-order-association sequences, as,
(H ~H~ H, 8H~ ), involve restricted summations (with
only two free summation indices) and may be expected
therefore to give a vanishing relative contribution in the
limit d-~, a result borne out in the calculations of the
next section. Similarly, for higher even p values, the
binary associations give the dominant term just as in
the noninteracting particle case without ensemble aver-
aging. %e have now established a correspondence be-
tween the two cases: in the next two sections we make
clearer what this implies for the ensemble-averaged
eigenvalue densities and for the densities for individual
systems.

D. inhibited and uninhibited associations. The semicircular-
to-Gaussian transition

For noninteracting particles the dominance of binary
associations leads to a Gaussian density when there are
many particles. The same is true with interacting par-
ticles, but strictly only for the averaged density. Sup-
pose that m» k and consider the moment of fixed order
P =2v. When m» pk it is clear that in (H'") the H's,
except for the requirement of pairwise association, act
for the most part on different particles. Then an nP'
term of H in (3.10) effectively commutes with all H's,
so that "free" pairwise association is allowed, and

H'"- (HH)'x ('number of binary associations

of 2v objects}

2 v-2
~2@-2-7' A ~ 7' 0 ~2

7'-Q

(3.15)M2„, , k M~ k
7'-P

since, in the limit, Mo(k) = 1=M2(k).
We have used here the fact that the IJ' factor can have

only internal associations, for otherwise the pair which
encloses it would generate an operator of rank higher
than k which would vanish in the k-particle space. The
recursion relationship can be solved easily (Wigner,
1955) to give

/2v

kv
(3.16)

which are known as the "Catalan numbers" (Riordan,
1968; Gardner, 1976). Since the odd moments vanish,
we know all the moments of the (ensemble-averaged)
density and hence the density, which turns out to be'

are dealing with "inhibited" correlations, those which
are nested in the same way as correctly paired brack-
ets, in contrast with EGOE for which all binary associ-
ations contribute equally.

Let us now evaluate the ensemble-averaged GOE den-
sity. Since in (IV~)' the first H (on the extreme right)
can be correlated with each of the others, we have when
m=0

2 v-2

M „(k)= (H")' = P (H'" -' 'HH'H)'
'F „-p

= (2v —1)!!(HH)", Qpx) =—(4 —x')'",j.
277

(8.17)

just as with noninteracting particles. Then (Mon and
French, 1975; see also Gervois, 1972)

M, (m) -(2v —1)!![M2(m)]", M2„„(m) -0, (3.14)

so that the ensemble-averaged EGOE- density becomes
Gaussian: p- G(0, (,)'") for many particles. In our first
treatment of noninteracting particles the central-limit
theorem made its appearance via the process of multi-
ple convolution, in the second via binary associations.
In the present case the convolution is not so obvious but
we can still characterize the transition to Gaussian as
being effected by a generalization of the CLT already
used for noninteracting particles.

If, instead of m» k, we take the other extreme, m
=4, binary associations are still dominant, but now onLy
a certain subset of the fully correlated terms are con-
tributing, since for "almost all" traceless operators in
the k-particle space (including H itself) the operator
jjO@ is smaller than, HHO; indeed, the ratio goes to
zero as d(k) -~, so that terms containing HOg in an op-
erator sequence may be ignored. This derives from
the fact that, in/SO+ acting in the k-particle space, on-
ly the diagonal matrix elements, which are down in
number by a factor -d '(k) from the totality of matrix
elements, can survive the contraction (see Appendix G),
whereas no such restriction is found with PHO. We may
thus describe the GOE moments (H')' as generated by
a counting of the unlinked binary association (PHPH, and
HH HH contributing for p = 4, but not HHHH), so that we

the famous "semicircle" of Wigner (1955). Here the
characteristic form emerges only through ensemble
averaging in contrast to the case of noninteracting par-
ticles. Zhe semicircle shows up very well in Fig. 7,
which gives a histogram of the spectra for 50 members
of a (d= 294) ensemble.

As we add particles to the system, starting with the
GOE (m =k), we see that the density expands in scale
[a =(,)]; it also changes in shape from semicircular
to Gaussian, the transition being due to the gradual les-
sening of the inhibitions on binary associations; a his-
togram for an individual spectrum is to be seen in Fig.
6. This spectrum is not chosen from an EGOE but rep-
resents instead a calculation with a specific "realistic"
Hamiltonian; binary correlations are still dominant,
however, and since the 'particle number is considerably
larger than the particle rank of the interaction, a good
Gaussian emerges.

This is a good place to stress that, in the simplest
representation (a direct-product one in which particles
are a,ssigned to definite single-particle states), there
are.obvious selection rules associated with a k-body in-
teraction; only k particles can be transferred by H to
different single-particle states. Thus if rn & 4, the H
matrix has a number of zeros. However, an H with the
appropriate zeros is not necessarily k body, for, be-

BFor the exact density (i.e. , for finite d) see Mehta and Gaudin
(&960).
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sides the zeros, there are also necessary linear con-
straints on the nonvanishing matrix elements. It is easy
to see then that an ensemble which satisfies the selec-
tion rules but not the constraints is still m-body and
gives a semicircular rather than Gaussian spectrum.
This has been demonstrated by Monte Carlo calcula-
tions.

The rate at which the semicircle -Gaussian transition
occurs may be measured by the statistician's "excess"
or 'Rurtosis, " y, . It is an elementary exercise to eval-
uate this, '0 and one find's (Mon and French, 1975} 60- K=4

K=5

20

(3.18)

A departure from Gaussian chara. cterized by
l p, l

& 0.3,
say, would be recognized by the eye. This value is
reached for k = 1 to 5 with nz = 4, 12, 26, 47, 74, respec-
tively, so that, for the conventional (1+2)-body Ham-
iltonian, 6 to 10 particles should give an excellent Gau-
ssian. In practice one finds good Gaussians with fewer
particles than that. The semicircle-to-Gaussian trans-
ition can, of course, be generated by varying the par-
ticle rank of the interaction rather than the particle
number. The transition is shown very nicely in this
way by Fig. 8, taken from French and Wong (1971), in
which the spectra of k-body interactions with k = 2 to 7
are shown and compared with the corresponding semi-
circle and Gaussian. We are seeing here quite clearly
the action of a. CLT fox interacting particLes which
forces the density towards Gaussian as we add particles.
The origin of this CI T is to be found in the dominance
of binary associations for most Hamiltonians in the en-
semble. Finally, we remark that Monte Carlo calcula-

60- K=5 K=5

4Q-

20-

G I

K=7 K=7

zo.j
-2 4 0 I 2 -2 - I 0 i 2

FIG. 8. Spectral histograms for ensembles, 25 members each,
of k-body J-conserving interactions with k= 2—7, which act in

, the 50-dimensional space f with J =
2

and identical particles
(T = ~). Energies are measured in units of the spectral width.
Each spectrum is given twice, compared on the left with a
semicircular, and on the right with a Gaussian, spectrum. We
see the transition from semicircle to Gaussian as k decreases.
For details see French and Kong (1971).
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tions (French and Wong, 1970; Bohigas and Flores,
1971a; Yepez, 1975) give an essentially Gaussian den-
sity for the TBRE and TBRE-J„not surprising in view
of their close relationship to the EGOE. We have al-
ready commented in Sec. II.H on the density for the
"Legendre" ensemble (Leff, 1964b). The techniques of
Balian (1968) and Dyson (1972b), or a straightforwa, rd
Hamiltonian mapping (Appendix H), enable one to gen-
erate ensembles with any predetermined density.

l 0-
Deviation from Smooth Spectrum

E. Eigenvalue densities for deformed and other ensembles
5-

C
C A knub. a n &~.. i. . ~4 W L A re%.hhP

~ Q "' gQ&' 5V~ a ~ p' vW ' ~V'&g O0
C5
~ (n -~-

two moments
o rms = 0,76

-2 -I 0 I 2
Energy in Units of Width

FIG. 7. Spectral histogram for a 50-member GOE with d= 294
is given at the top. The bottom figure, corresponding to Fig. 6,
shows the second-order spectral deviations. The analytic
treatment is given in IV.F.

For k =1 the result follows from M4(yn), as given in Sec.
III.B and the semicircular moment of (3.16).

We have mentioned in Sec. II.G the way in which de-
formed ensembles may be used to study fluctuations in
systems with almost conserved symmetries. Another
use which we envision is for eigenvalue densities and
transition strengths; here, for example, if our interest
is in quadrupole collectivity, we would represent the
system Hamiltonian Has hQ Q+ H„where h is so chosen
that the decomposition is orthogonal, (Q Q(H —XQ ~ Q})
=0, Then, instead of dealing with the specified II„we
could represent it by an ensemble of the appropriate
norm, this being a sensible procedure when the Q ~ Q
component is large in H (i.e. , when the correlation co-
efficient between H and Q Q is large).

In this section therefore we begin by considering the
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ensemble average of P, the density for H =H+ nK,
where n is real, K is an arbitrary fixed real symmetric
matrix, and H is a GOE (we comment later on the EGOE
case); The representation for K need not be specified,
since H is orthogonally invariant. The general result,
given by Pastur (1972; see also Pastur, 1973), is

yields

x —2'
Pa( } PO( } 2 d (~ ~-1 )(4 2)l/2

+-6(x- n —n- )-1

1
p (x) =-—lmg (x),

1
g (x)= x - ~K g.(-x)

(3.19)

(3.20)

= p, (x)+d-'6(x - o —~-'),
i
n i) 1

27td (o.'+ n ' —x)(4 —x')'~p (x) = p, (x) +

= p, (x),

(3.26)

(3.21)

It is to be understood that x is endowed with a small
positive imaginary part which is taken to be zero in the
final results. It is worthwhile remarking that the re-
ciprocal (resolvent) function encountered here arises
from a standard representation of the delta function;
thus

p (x)=- +6(x-E,).1

d

= ——lm (x+ic —E,).1
7Td ' ]

1= ——Img (x)7 (3.22}

where c is positive infinitesimal.
As an example, consider the GOE itself. We have n

= 0 and then g o —ggo+ 1 = 0, which gives

Here g (x}, which is determined by the second equation,
is the ensemble average of the Stieltjes transform of
the density:

Po(x) being, of course, the semicircle (3.17); the d-'-
order correction to the semicircle serves to yield the
correct normalization of p (x). The special feature of.
the spectrum is that as the strength of the random in-
teraction is increased (i.e., as ~n

~

increases), the
isolated special state moves toward the semicircle,
disappearing into it when

~

n
~

= 1.
To derive the Pastur result, and large extensions of

it for other ensembles and for functions other than the
density, we follow recent work of Pandey (to be pub-
lished), who uses the method of binary correlations de-
scribed above. ~' We first derive the ensemble average
of

f f(l. &I=-(l.
y

=-~g )= g(L(&G)'), (3.26)

which, among its several applications, will lead us to
Pastur's result. Here I- and G are arbitrary matrices
of dimensionality 4. For simplicity of notation we
write f z instead of f(L, G); note then that fa= f(G, G).
The odd-p terms in (3.26) vanish, of course, on ensem-
ble averaging, while for even p ~ 2 we have

g,(x) = -', fx+(x' —4)' '], (3.23)
(L(HG)~)= Q (LHG(HG)"HG(HG)~' )

the negative sign being called for since the positive sign
would yield a negative density [similarly in (3.24) be-
low). From this equation, along with (3.19), we arrive
at the semicircle (3.17). By the same procedure we
can demonstrate a result, whose genesis should be
clear, namely, that if K is another (independent) GOE,
the final density is also semicircular.

As a nontrivial example, which is of interest in cer-
tain physical models, take K to be a matrix with a spec-
trum (1,0" '), i.e., a single unit eigenvalue and (d —1)
zero eigenvalues; this ("pairing") matrix will be de-
scribed in Sec. VII.D as the basic example of a "singu-
lar" matrix. The density in this case has been recently
derived in several different ways by Edwards and Jones
(1976), Jones et al. (1978), and Pandey and French
(1979). However, the result follows immediately as a
special case of (3.19) and (3.20). Thus

1 1 d —1 1
g (x)=- 1

d x- n-g (x) d x-g (x)

x —(x' 4)'" 2A j

2 d [x+ (x' —4)"' —2n j(x' —4)"

(3.24)

where the last form follows by solving the first equality
in the approximation g = 8+d-'P. Equation (3.19) now

p-2

aG" I.G JIG ~-"-' (3.27)

a generalization of (3.15). Substituting in the expansion
of f~, we find, after an interchange of summations,
that

f =(I)+f f,~= I. =),1
1-faG (3.28)

where the last form follows by using the first equality
in (3.28) applied successively for the matrices L, LG,
I G', .. . , and then summing the resultant geometric
series.

As a first application we take I = G = (x —nK) ', then

f z
——g„(x}, and (3.28) will yield the Pastur result (3.20).

With an imaginary part in x, the convergence in (3.26)

Instead of using Eqs. (3.19) and (3.20), we could in principle
construct p from its moments; and this is one of the methods
used for the special case (3.25). As described in Appendix I,
the general moment evaluation has in fact been done by using a
counting theorem (4.17) given in Sec. IV and used there for
fluctuations. However, except for some simple cases, the mo-
ment results are difficult to invert, they do not display the
simplicity of Pastur's result, and they are not easily adaptable
to more general ensembles. We remark, too, that the original
Pastur result has been very recently rederived also by Ed-
wards and Warner (1980).
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where once again G = (x —o'K)-'. Note that we may well
be interested in the V ensemble itself, for which + =0;
while G in this case is trivial, this may by no means
be true of Eq. (3.30). Recall also that (3.30) follows
from the dominance of binary correlations and may not
be valid in certain singular cases, for example, when
V has only a few matrix elements which are not identi-
cally zero.

The basic equation (3.30) is very complicated in gen-
eral. It simplifies in special cases, for example, when

v, , is separable (= v,. v,.). Another special case would be
a class of V ensembles which yield semicircular den-
sities, in particular, those which display a uniformity
with respect to the given basis states, a uniformity de-
scribed by f~ ~=d 'f~. -A third such case is the ensem-
ble of matrices with binary partitioning which repre-
sent a random interaction between two nonrandom sub-
systems; in this case (3.30) is solved via two coupled
functional equations for f~ G and f~ ~.1 2

In Sec. II.H we mentioned Dyson's (1971) ensemble,
H = )~ . , ArA. , where the A. are independent real asym-
metric Gaussian random matrices whose matrix ele-
ments have zero centroids and variances d '. We show
how the present methods give the density for this en-
semble and a functional equation which applies to a de-
formation of it, H- H =H+ oK. Redefining the function
f~ of (3.26) by f~ = (L(1 —HG) ') with G = (x —nK) ', we
have

is already assured. It will be clear, of course, from
(3.28) that taking I- = G will be the first step in dealing
with the more general quantity f~. It will be helpful to
note that I-(1 —f~G) ' = I G '(G ' —f~)-' as long as G is
invertible, as it will be in our applications. In fact, it
will usua, lly be so that G = (x —oK) ' where K is the ar-
bitrary operator introduced at the beginning.

One of the methods used in dealing with the effect of
random (GOE) interactions on the simple operator with
spectrum (1,0"-') is the Brillouin-Wigner expansion.
The application was to calculate, for ~n

~

& 1, the aver-
age position of the (isolated} level outside the semicir-
cle, and its variance. We can use the theorem of (3.28)
to deal with the behavior of isolated levels of a general
operator K, isolation here implying that the level does
not cross any of its neighbors as a result of the random
interaction. The results which emerge are that

(I.(HG)» = P(I.A ~A,(G(HG)' ')-
+ ++{LA A. G(EG)"A. A. G(HG)'-"-')

y=o

=k{LG(HG)~~) ~ {G(8G)"&{L(HG)~"~) '

(3.31)

so that, after summation, we have

f g
= {L & (1 —fg) + f G f r. + kf z,c

{L) fLG1-f~

( I —f —kG)' (3.32}

in which the second step follow's by solving the first
equality for f ~ and the last form follows just as in the

.corresponding Eq. (3.28).
For n = 0, with L = G = x ', we then obtain

(x - k+1) —[(x- k+ I)'- 4x]'~ .

2x

which, via (3.19), with g replaced by fG, gives the Dy-
son result for the nondeformed ensemble H:

[2(k+ 1)x- (k —1)2-x']'~2
po x

(~k-1)'- x- (Wk+1)'. (3.34)

We turn briefly to the unitary (GUE) and symplectic
(GSE) cases as defined in Sec. II.D. Our binary-correla-
tion method is seen to be valid in these cases also, and
thus the moments (3.15) and (3.16) and the semicircular

E= o.k+ n -'(Q(k —K)-'Q),

varE = — = —[1 —a-'{Q(k —K)-'Q)],2 gE 2
ad dk d

where E and A are the perturbed and unperturbed po-
sitions of the isolated level, and where Q is the pro-
jection operator for the (d -1)-dimensional subspace
orthogonal to the eigenstate ~k) of K. A proof may be
given by following the steps used for the simple opera-
tor (Pandey and French, 1979) and recognizing that
when one uses (3.28), the Brillouin-Wigner sums may
in fact be carried out. The expression for E, but not
the variance, also follows directly from the Pastur re-
su.lt.

We remark parenthetically that a third application
wil. l be to transition strengths, which are discussed
more conventionally in Sec. VII. For systems de-
scribed by the deformed ensemble (H+ nK) we take L
=P, G, with G=(.x —nK)-' as for the Pastur result„
where P, =

~

i){i
~

is the projection operator for a given
fixed state ~i); we see from (3.26) that the poles and the
residues of f~ are simply the eigenvalues E and the
squared amplitudes ~{i~E& ~' of the matrix H . Thus the
imaginary part of f~ ~ willbe 7t[~ {i~E) I'—p (E)]„an
extension of the Pastur result. The GOE result that

[
~

{i~E&
~ ] = d-' follows trivially, but the general result

and its extensions to the other ensem!&les discussed be-
low would seem to be useful in describing the secular
variation of the locally averaged strength.

The ensembles described above represent a deforma-
tion of the corresponding GOE by varying the matrix-
element centroids. For more general modifications of
H we should allow also for nonuniformity of the matrix-
element variances. We consider the ensemble V
=Z, , v, ,P, HP, and the corres. pond. ing deformed ensem-
ble V = V+ n~, where, of course, H is a GOE. Here
the space is divided into disjoint subspaces generated
by the projection operators P, (which could be one-dim. -
ensional, as in the third example above), and the v, ,
= v, , define the variances for the matrix elements of V.
Redefining fz of (3.26) by f~= (L(1 —VG)-'), and follow-
ing the procedure leading to (3.27) and (3.28), we obtain
in this case

1(I.&+@.~i;f,cf.=, I.
~ ~;; ~ G)=

i1'

(3.30}
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density (3.17) for all P. The semicircular density ob-
tains also if we choose different normalizations for the
II~ and H, matrices, as we do, for example, for the en-
semble introduced in Sec. II.D for studying time-re-
versal invariance. In similar fashion, we obtain the
Pastur result for the deformed versions of all three
ensembles.

For an embedded version of the first problem (H =H
+ o'K) the average eigenvalue density follows easily in
the limit of large particle number. Since different op-
erators in a trace act on different particles, and there-
fore effectively commute in this limit, we have for the
averaged moments (Pandey and French, 1979)

M~(a) =((H+ nK)~) =P~~ ~~((nK)"H~-")
"=' &xj

(3.35)

which are the moments of a convolution of the K spec-
trum and the continuous Gaussian EGOE'density p~ of
zero centroid and variance (~). For large ~o.

~

the K
spectrum is preserved, but the levels have a Gaussian
spread whose magnitude is characteristic of the EGOE
density. For small

~

n
~

the K spectrum is lost in the
background.

IV. COR R E LATIONS AND F LUCTUATIONS

A. Introduction: two-point and k-point functions

The secular behavior of a spectrum, . which is de-
scribable in terms of long-wavelength excitations of a
characteristic density, and the fluctuations, which cor-
respond to short-wavelength excitations, are in a real
sense opposite in nature. They may in fact (as is shown
in Fig. 6, and in the experimental data, as well) be said
to have an independent existence.

On the other hand, we are not so much interested in
the fluctuations themselves as in some significant mea-
sures for them; and when we take that into account, we
may ask whether there is a unified way of studying the
two behaviors and if so whether it leads to any real
simplication in understanding the fluctuations. The
answer to both questions is in the affirmative.

All of the statistical properties can be discussed in
terms of the k-point functions S„, with k =1,2, . . . ,

S»=sy, s~= p(xq), (4.1)
I

or, equivalently, in terms of the k-point cluster func-
tions (Dyson, 1962c), expressible as polynomials in the
functions S„which are homogeneous in the p's. Here
p(x,.} is the eigenvalue density evaluated at any point x,
along the energy axis. There are, of course, corre-
sponding functions with ensemble averaging replaced by
spectral ave raging.

As we shall see in the next chapter, the fluctuation
measures of interest (that is, those which can be calcu-
lated without large statistical uncertainty from the data)
are related to the density p(x} itself and to the two-point
(or covariance) function,

=fp(x)p(y))2+d '6(x -y)p(x)
and then, for Dyson's two-level cluster function Y2,

g(x)p(y)} 'S'(x, y) = [p(x)d] '6(x —y) —Y2(~,X)

=6(r) —Y (x;X)-6(x) —Y (r),

(4.3)

(4.4)

in which X =(x+y)/2 defines the center of the interval,
while r =(y —x)/D(x) measures the length of the inter-
val. in average local. spacing units. " We shall see that
for" small" intervals (i.e. , those over which the en-
semble-averaged density may be taken as constant;
with large enough d, of course, such an interval may
contain as many levels as we wish) all three of the
standard Gaussian ensembles give Y2(&,X) to be inde-
pendent of X; we accordingly write it as Y2(r), as we
have done in the last form of (4.4). This independence
defines stationarity; it tells us that all two-point fluc-
tuations, measured in terms of local spacing units, are
the same in all parts of the spectrum. By construction,
of course, the same result holds for the circular en-
sernbles. It is adequate for us to take small intervals
only; the covariance function will be seen to decrease
as an inverse power of x and becomes therefore negli-
gible when x is an appreciable fraction of d.

Just as with the two-point function S' we encounter a
term with a single 5-function singularity, so with the
k-point function we find terms with up to (k —1)-fold 6-
function products. We shall have little or no need of
these higher-order functions until we discuss ergodicity
and stationarity in Sec. X.

ln what. follows we shall calculate (4,2} or, equiva-
lently,

X

S (x,y) = dx' dy 'S'(x', y ')

=E(x)E(y ) —E(x)E(y ) (4.5)

for the QOE in the asymptotic d'-~ limit, by calculat-
ing the moments of S'(x,y) under the assumption that
the binary associations dominate when traces of opera-
tors are to be computed. The resulting expressions for
S (x,y), Eqs. (4.18)—(4.20), show the essential simplic-
ity of the two-point function. We proceed differently
from the conventional way which starts with the joint
distribution for the eigenvalues (2.11) and then by multi-
ple integrations [(d —1) of them for the density, (d —2)
for the two-point function, and so forth] produces the
desired functions. The k-point functions for the three
standard ensembles have in fact been evaluated by
Dyson (1970) and Mehta (1971); the methods used are
elegant, but the results are far from transparent;

In other words, we have essentially only "two-point"
fluctuations, and these are relatively simple in nature.
When used with a discrete spectrum, as given by (3.1},
p(x)p(y) has both a two-level part and a singular one-
level self-correlation part which we may subtract from
it to produce a "true" two-level function. Taking the
density to be p(x) =d 'Qb(x E, )—, w. e have

p(x}p(y }= Lp(x)p(y })2+(p(x)p(y ))|

S'(x,y) = P(x)P(y ) —P(x)P(y ) . (4.2)
The renormalization here is essentially equivalent to the

unfolding in Sec. III.A.
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moreover, because, in deriving the starting equation
(2.11) for the GOE, heavy use has been made of the in-
variance properties of the ensemble, it is not imme-
diately obvious to what extent the final results depend
on this property and how much they would be modified
if the exact invariance requirement were dropped,
while, of course, maintaining the symmetry properties
of the individual matrices [see Wigner (1958) for a rel-
evant discussion). It is better for us to settle for an
approximate (though surprisingly accurate) calculation,
for which we use a quite different starting point
(French et a/. , 1978a). For good measure we shall ex-
tend the results to the unitary and symplectic ensembles
and will in fact show that they are exact for the unitary
case (Pandey 1978).

B. Binary-association expansions

We begin by considering moments of the two-point
function in both its variables,

Z&
—— S x,y x y'dxdy = H~ H' — H~ H'

(4.6)
In Sec. III.D we saw that for the GOE one-point function,
the density, only unlinked binary associations need be
considered; our GOE normalization (z 2 =1) leads to
[(H )],=(HH) =1, so that the density moments simply
count the number of such associations in the corre-
sponding power of Il . For the reasons discussed there
we need consider only binary associations for Z&, ,

' but
now the two members of an associated pair may belong
to the same trace or may be found one in each; calling
the number of pairs in the latter case g, the number of
cross-associated pairs, we can group the terms in
(4.6) according to g (Mon and French; 1975); thus

rn

~p.,=+ &H')&H') m=(P V)( (4.7)
I I

Here '

&

' indicates that there are g such pairs, formed
with one H in (H~) and the other in (H'). The term with
g =0 has been cancelled by (H~)(H'). Inspection. of
(4.7) suggests that S'(x,y) can be expanded as
Z&fz(x) f&(y); but to make the sum in (4.7) break off at
m, it is necessary that the moments ff&(x)x dx should
vanish when g & p, and similarly for y. Thus the f&
must oscillate, and f should be the number of zeros in
the interval [=2, 2], the domain of the variables. We
shall see, in fact, that, with the natural choice, f~ rep-
resents a polynomial excitation of the semicircle, the
polynomials being related to those orthonormal with the
semicircular density as weight function. f becomes
then the polynomial order, thus defining a characteris-
tic wavelength for the corresponding excitation, and the
vanishing of the moment follows from the fact that &~ is
a linear superposition of polynomials of orders p and
lower.

In the factor H~ of the g term there are then (P —g)
H's occurring as (P —g)/2 "allowed" binary associa-
tions, and similarly for the (H') factor; "allowed"
here means that these pairs are unlinked among them-
selves and do not contract around any of the remaining
H's which are cross-linked between the two traces.
Since each allowed pair gives a factor of unity

((HH, ) =1), we get then, as a factor, pf, the number of
"allowed" ways of inserting (p —g) points into a lattice
containing ( points. The added B's must not contract
about any of the lattice points; on the other hand, be-
cause of the eyclie invariance of traces, they can con-
tract around the ends of the lattice, which is therefore
better thought of as ( points arranged on a circle. For
g =2, P =4, for example, we have, letting X l.abel the
lattice points, the allowed arrangements XH X, H XX,
HXXH, XXH', so that p. &

——4. Then extending the ortho-
gonal ensemble results (p =1) to the unitary (p =2) and
simplectic (P =4) cases, as well, we have

Z~ = p, g p, g H (H
I=i

m

=pd~ Z &l'~ &r
q=i

(4.8)

where we have used the first of two essential correla-
tion results, valid for fixed & when d is large, which
are derived, along with a third, in Appendix J

(4.9)

(4.10)

It should be observed that an uncorrelated B in any den-
sity moment averages to zero, because of the symmetry
about zero of the matrix-element distributions; thus the
odd moments vanish. A similar result holds for higher-
order quantities, as, for example, the covarianee of an
odd and even moment. Thus p, z~ and +p q and the simi-
lar quantities y~~, Z~, (R) encountered below, vanish un-
less p, q, & have the same parity. We remark also that
with the normalizations of the matrix-element distribu-
tions' given in Eq. (2.5) the ensemble-averaged density
is the same (semicircular) for all three cases and so
therefore will be the orthonormal pol.ynomials intro-
duced below.

To evaluate the p, ~~ we first express them in terms of
closely related quantities g~~ which count the number of
ways of inserting (p —&) points into the same linear lat-
tice of g points as before, '3 but now without allowing con-
tractions around the ends. Qf the four arrangements
above for the case g =2, p =4, IlXXH is then forbidden,
so that g2 =3. It is clear that the two kinds of counting
are closely related. Indeed, we can construct the p, ~~ by
first inserting (p —g —f) points, pairwise, into the
( —1 internal slots of the lattice, which can be done in

' ways; the remaining t points are added at the
ends, which can be done in (f + 1)Z& ways, the factor
(f + 1) accounting for the number of ways of dividing the
t points between the two ends. Summing over the possi-
ble values of t, we have

ju) = Q (f + 1)gc -2 ~0 .
t

(4.11)

Now the y~~ can be obtained from the moments of the

See Appendix K and French ep a&. (1978) for a derivation of
the two-point function in terms of a modified two-point function
(a parametric derivation of the function which we are seeking).
The A~& play the same role with respect to the modified function
as do the p&~ for the true one.
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density itself; from their definition (3.5) we have
m tn

%,., =-(a~")= g {boa')= g y~y', .
C=O C' 0

(4.12)

p
p, ~=—x~ '= =— p(x)x~ 'v (x)dxip-c I

Here the g s are relevant, rather than the p, 's, be-
cause the trace, while invariant under overall cyclic
permutations, is not so Under cyclic permutations in
one of the factors; in other words, when inserting H's
to form H~, the presence of B' forbids contractions
around the ends, and analogously for B'. From the in-
tegral definition of the moments we have an alternative
expansion,

M &, ——j)p(x)x~ dx'

p x x~y'5 x -y dxdy

= 2 JR~)~'~, (~)« fp() )) ~ () ld)
0

=pi~i; (4.13)

in the third form of which me have expanded the 5 func-
tion in orthogonal polynomials. Since both &~~ and I ~~

vanish when f &P, it is easy to see that to within a sign,
which we now fix in accord with the standard convention
for v~(x), we must have I(f=yf, which identifies /(f as
the Pth moment of a v~ excitation of the semicircie,

= ——
J( x~ —(p(x)v~. ,(x))dx,

where in the third step we have used (4.14) and in the
fourth an integration by parts. But now from (4.2),
(4.5), and (4.8) we see that

(4.17)

8 8S'(x,y) —=——S (x,y)Bx

2 8 8)/
l

p(x)p() ) ~ t' ci(tx)vc ,() )). .X

(4.18)
Since our treatment of the highest-order excitations

is not completely trustworthy, we have an unwanted
freedom in the explicit evaluation of the & sum in (4.18).
We can, for example, use a sharp cutoff, taking g,„
-d, or an exponential cutoff, where me evaluate by in-
serting an e t factor (with n -d ), replacing the sum
by an integration. Using the first procedure, along mith
(4.15) and (4.18), we find (French et a/. , 1978) that, as
long as (x,y) are separated by at least a few levels,

2(x -y)
P~2d2 4 xy [(4 x2)(4 y2)]1/2

4sin g
2 ~ln-

smaBI» -»I P7/ d I x y 1

pxx+gx, dx. (4.14)
1 4d sins)i

P7/ d~ vr I x (

(4.19)

The density p(x) now determines, by (4.14), the mt~,

and these in turn, via (4.11), give the pf which generate
the moments Z2~, (4.6), whose inversion gives the two-
point function S'(x,y) which we are seeking. In the next
section we carry out these steps explicitly.

where r, whose absolute value ~x~ gives the num-
ber of levels in the (x,y) interval, is given by
r = 2dm [g(y) —g(x)] sin g[(x +y ))/2]= 2d7/ '5g sin~(1/. For
the variance (x=y), instead of the covariance, we find,
by inserting a preliminary cutoff in the & expansion, the
result that

C. The evaluation of the two-point function S (x,x) =
2 2 ln(2d sing) =

2 2 ln[2mdp(x)]. (4.20)

For GOE the density p(x), given by Wigner's semi-
circle (3.17), defines the orthonormal polynomials as

&,(x) =U,(x/2) =(-1)' ""[(~+')~(")]
sing(x)

g+1(p"x'= X(fv, (x), /(. f=P+1(p —K )
(4.16)

if (P —g) =even, from which by evaluating the sum in
(4.11) we find (Riordan, 1968, p. 169)

g( 1)m (4.15)
m

where U~(x) is the standard Chebyshev polynomial of the
second kind defined for the range (-1,1), and g(x) is the
angle between the negative x axis and the radius vector.
The inverse of (4.14) gives [Abramowitz and Stegun
(1964); note the correction given as a footnote by
French et al. , 1978]

We find similarly for the density correlation (in which,
as indicated, we renormalize to constant local spacing),

S'(x -y) 4 4 —xy 1

P(x)p(y) Pd' (4-x'), 4-y')(x -y)' ... P~'~' '

(4.21)

We see from (4.21) that the asymptotic (large-r)
form, first given, for P =1, by Dyson (1962c) for the
central region of the spectrum, applies, in fact, over
the whole spectrum. It will, however, turn out that the
two-point function given by (4.19) and (4.20) gives a
slom variation of the spectral measures over the spec-
trum (French et al. , 1978), which would imply that the
spectrum (or, more strictly, its map to a spectrum
with constant density p) is the analog of a quasi station-
ary process. This raises the question as to whether
the (mapped) spectrum is in fact truly stationary; Sec.
X will give an affirmative ansmer, derived from the
exact two-point function. We ask therefore whether a
different cutoff in the g expansion mill. give stationary
results as derived from the aPP~oximate two-point
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e-0

, (sisiS 'ss
) (4.22)

and for S'(x,y)

p(x)p(y) 2pd sin g& sin g2 1 &

g cosg, cosgg2

4pd~ sin g1 sin g2:

function. In fact, the cutoff which does so is more nat-
ural a priori than the ones we have mentioned.

As a reasonable criterion we argue that the cutoff
method should give a stationary self-correlation (one-
level) contribution to the two-point function. Also, in
line with the usual notions of a normal-mode expansion,
we should, in order to produce the Y'2 function (4.4),
subtract out a self-correlation term separately for each
normal mode (Pandey, 1978). The procedure implied
by this will give strictly stationary results which wil. l
turn out to be exact for the unitary ensemble, P =2
(though not for p =1,4). We would be inclined to argue
that for all three cases it gives the "true" binary-asso-
ciation contribution to the two-point function.

We use a sharp cutoff with $,„=2P 'd sin g in which
the g dependence of p' will be fixed below. Then,
writing g(x) =g, , g(y) =g2, we have for the self-correla-
tion term

5(x -y) -1 ™x»n(K+1)gi»n(&+1)g2~G
dp(x) c=t& sing, sing2

1
2d sing~ sing2

&~ax

x p [cos(p + 1)(g1 —g2) —cos(g + l)(gt + ga)]

1 1 —cos m
y2 +4@

cos27TK ~ + 2r s jn2gy'F 4" 4m x+

& + cos'2m.
&6~4~4

(4.25)

These are different in their fluctuating components
from the results of (4.24); but the locally smoothed
versions, when the interval contains at least a few lev-
els, are essentially identical, so that the fluctuation
measures, which depend on integrated versions of
F2(r), will be almost identical. This is, however, not
the case for very small x, say, z«j. ; for example, the
exact forms give unity for x=O, while the approximate
(4.24) gives P/2. Thus, except for P =2, exeitations of
wavelength ~D are inadequately treated by the polynom-
ial expansion, and similarly therefore for measures of
the very short-range fluctuations, such as Q of Sec.

F
It is well known that the unitary ensemble is struc-

turally simpler than the other two (Wigner, 1962) and is
indeed "almost trivial from a mathematical point of
view" (Mehta and Dyson, 1963, p. 713). It is perhaps
not then surprising that our simple procedure produces
the exact result. On the other hand, we give in Sec. V
a general result connecting the widths of spacing distri-
butions with the variance of the number of levels in a
fixed interval; if we combine that with two general the-
orems (Dyson, 1962c; Mehta and Dyson, 1963) which
relate the statistical behavior of the three ensembles,
we can, as shown in Sec. V, derive the orthogonal. and
symplectie two-point functions from the unitary one,
ending up with results of good accuracy for all. three
cases.

"Q &[cos&(g1 —g2)+ «s&(gi+g2)]

(P ')' 1 —cosI3 '7Tr sinP '~r

P (P 'zr)2 P 'wr
{4.23)

Pmr
2 sin

1 —sosiiss 2 )
P(&r)' P(«)' (4.24)

which gives the binary-correlation part of the exact
function. Combining this with (4.4) we have the forms
for S'(x,y). The results are e~act for the unitary en-
semble (P =2) but not for P = 1,4; for these the exact
forms, given in Appendix I, , give rise to the l(r ex-
pansions

The first forms in (4.22) and (4.23) follow by using
(4.15), respectively, in the self-correlation term of
S' (4.4) and in S' itself (4.18). The final forms follow by
taking the limit g,„-~; the sums involving (g&+ g2)
vanish in the limit.

Now, using (4.4) to combine (4.22) and (4.23), we see
that, for the coefficient of the self-correlation term,
sin(p 'vr)/(p '71r), to vanish, we must have p '= p. We
thus have a natural cutoff defined by g,„=2Pd sin g.
Our final. result is then

D. Level motions

An essential feature of the spectrum, for which we
have seen evidence in Sec. I, and which dominates the
behavior of the fluctuations in a fixed region of the
spectrum, becomes apparent when we consider th'e mo-
tions of the individual levels and the correlation be-
tween the motions of two levels.

Let us agree that, when we speak of a level motion,
we have in mind the variation in the energy of a given
numbered level, the levels being ordered by energy and
the motions measured in locally-averaged spacing
units, as H moves through the ensemble; during this
motion the state vector uniformly covers the unit sphere
in the d-dimensional space. (Of course, our real inter-
est is in the way things behave when we move along the
spectrum of a given H which adequately describes the
system; the relationship between the two ways of look-
ing at things is one aspect of ergodieity. )

The essential result, which we have seen signs of in
Sec. I, is that the individual levels move by only a
small amount [-w '(lnd)'~ in the spectrum center for
large d], while the relative motion of two levels, which
are on the average yD apart, is even smaller
[-n '(1nr)'~2, independent of d for large d], so that the
motions are very highly correlated. I.et us see where
these results, first derived quite differently by Dyson
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= p(x) ——[p(x)6x], (4.26)

which defines 5x(—:5x, ) as a random variable. Integrat-
ing this gives, with D(x) = [dp(x)] ' =the average level
s pac lng,

5x
D(x)

= —[E(x) —E(x) ]d (4.27)

and then, for the mean squared level motion expressed
in local spacing units and evaluated at the spectrum
center in accordance with the discussion above,

d S (x,x) =
2 ln[2d sing(x)]

(6x)2 2 ~ 1

1 1
ln[2mdp(x)] =

2 ln2d .
pm 0 m

(4.28)

In deriving (4.28) we, have for convenience used (4.20) in
place of the marginally better result which would follow
from the procedure leading to (4.24). For d = 106 the
rms motion is 1.2 level spacings and, for d =10', only
1.7 spacings.

For the covariance of two level motions, and their
correlation coefficient C, we find similarly

(1962c) and Dyson and Mehta (1963), come from; for
more details and a justification of the last step in (4.28)
below, see French et al. , (1978). If x, , with 1~ f ~d,
is the tth eigenvalue (the ordering being by energy) and
x, its ensemble-averaged value, then with x, =x, + 6x„

p(x) =d ' g 6(x -x, —bx, ) — 6(x -x' —6x')p(x')dx'
e

motions are dominated by the long-wavelength excita-
tions [small g, as in (4.37) ahead] and these cannot dis-
tinguish two close levels.

We have now the very important result, first given by
Dyson and Mehta (1963) for the center of the spectrum,
but seen now to apply over the entire spectrum, that the
spectrum forms an almost rigid ("semicrystalline" )
system, a behavior which is unaffected by the secular
deformation of the "crystal" corresponding to the rapid
decrease in the level spacing (by a factor -10 ) as we go
from the ground-state domain to the upper limit of the
discrete spectrum (the slow-neutron region). This phe-
nomenon leads us to the view, interalia, that the
amount of information which can be extracted from
spectra, and also from strength distributions (which de-
rive by parametric derivatives on spectra) is quite
limited. We return to this later.

2g
R~ ——0, R~R~ (4.32)

E. The "ensemble density" for GOE (P = 1}

Any given spectrum can be described, as has been
done in Fig. 6, in terms of a normal-mode expansion,
the modes being labeled by the parameter g. If we re-
gard the R~, the coefficients in the expansion of the dis-
tribution function E(x), as random variables whose sta-
tistical properties are appropriately determined, the
expansion defines not just a single spectrum but a whole
ensemble of them, giving then the "ensemble density"
(a randoyn fuuction'5) p (x) and distribution function
E,(x). Thus by inspection of (4.18) we see that if we
take

exey, 1 4d=dS (x,y)- 21nD '
Pm

2 mr

C = —1 —In(mr/2)/In(2d) .
5x5y

(bx2 6y 2)1/2

(4.29)

(4.30)

(the higher-order statistical properties being, of
course, determined only by higher-order correlation
functions which we have not evaluated), then the density
and two-point function will be reproduced with

Thus, as we increase the dimensionality, the level mo-
tions grow logarithmically, but, at the same time, be-
come more highly correlated, the quantity (1 —C) going
to zero as the inverse of a logarithm. However, for
two random variables with the same variance g and
with correlation coefficient C, it is a simple standard
result that the difference of the variables has variance
2o2(l -C) and thus, for the variance of an interval
whose end-points are levels numbered t, t+y, we have'

o'(~ —1)= d'[S (x,x) +S~(y, y ) —2S~(x,y ) ]

-2d [S (x,x) —S (x,y)]- 2 In(mx/2) (4.31)

[in the second step, we have, as usual, taken for
granted that x,y are close enough that the curvature of
the density in the interval (x,y) is negligible]. Thus, as
we have indicated above, while a given (numbered) level
moves, for large d, -m '(lnd)' 2, the fluctuation in the
span of the levels is smaller and independent of d. This
comes about, of course, because the individual-level

E,(x) =E,(x) —p(x) g g 'Z, s, ,(x), (4.33)

where 2mE(x) = 2$(x) —sin2g(x). The ensemble density
follows by differentiation, with E'(x) =p(x) =m ' sing and

[p(x)v&, (x)] '= (-1)r'[2m sing(x)] ' cosgg(x),

which is essentially a Chebyshev polynomial of the
first kind.

If we make random choices on the R~, subject, of
course, to (4.32), we can, by evaluating the g sums,
construct an ensemble of sPectra which will have es-
sentially the same density and two- point correlations
as the GOE but with different higher-order fluctuations.
We see that (4.33), along with its higher-order exten-
sions, solves the GOE problem in a very different way
than does the standard procedure of generating the
joint probability distribution (2.11). "Two-point" spec-
tra have been numerically constructed using (4.33) in
order to see whether, by visual comparison with GOE

To avoid later confusion we mention that, by a very silly
convention which it is now too late to change, the variance of
the nearest-neighbor spacing distribution is 0 (0), the second-
nearest 0 2(1), etc.

From one standpoint this is simply another representation of
the density (3.1), but it is expressed now not in terms of the
eigenvalues, whose statistical properties are complicated, but
in terms of quantities R&, whose low-order statistical proper-
ties are both simple and adequate for our purpose.
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spectra, one can detect the effects of higher-order cor-
relations. One finds, in fact, that the two-point spec-
tra are much "milder, " i.e. , have far fewer small and
large spacings; but the test so far has not been conclu-
sive and we do not show the spectra.

F. EGOE fluctuations

As we have said, the embedded Gaussian orthogonal
ensemble of k-body interactions represents a Priori a
better model than the GOE, which necessarily describes
simultaneous interactions between all the particles.
The EGOE eigenvalue density is well understood (Sec.
III). There is as yet no theory for the short-range fluc-
tuations, '6 but we can. make some progress toward un-
derstanding, in general terms, why they apparently co-
incide with GOE fluctuations. Besides that, we shall be
able to understand the very sharp separation of secular
behavior and fluctuations, an example of which we have
seen in Fig. 6.

Let us proceed by evaluating the moment covariances
just as we have done with QOE. The differences are
threefold (Mon and French, 1975).

(1) Instead of a unit value, as with GOE, the basic
pair-correlated average HH, Eq. (3.12), gives („),
where mis the particle number and k is the particle
rank.

(2) Instead of the value 2g/d, Eq. (4.9), the basic
cross-correlated average becomes 2g(, ) („),where N
is the number of single-particle states so that (f) is the
GOE dimensionality [see Mon and French, (1975), Eq.
(20)]. The fact that the normalization is (g)2, rather
than the („)e which one might have guessed, gives rise
to a very strong attenuation of the mode amplitudes with
increasing f.

(3) The counting associated with the correlated H's in
the first factor of the covariance is no longer p, ~~, as in
Eqs. (4.8) and (4.17), but rather

and similarly with P -q for the second factor. Here (f )
counts the number of ways of choosing /II's to be cross-
correlated between the factors, while

(p —g —1)' '(„)'~ e' 2, the Gaussian moment of order
(P —g), counts the number of pairwise associations of
the remaining H's in the first factor, as in Eq. (3.14).
We are assuming here that m»k, the only case we
conside r.

As in the analog of Eq. (4.8), we have then

Z', ,(m)=(H') (H') -(H~) (H )

(4.34)

Now, just as with QOE in the preceding section, we ex-

Except for k = 1, which gives Poisson for m ~ 2. See Appen-
dix M.

press the ensemble density and distribution function in
terms of random variables S~, whose linear and quad-
ratic properties we know. We have

p, (x)=p (x)(l+ Q )! 's~He~[tx —8)lv!),
io

F,(x) =F,'(x) -gp, (x) Q g.' 'S,He, , [(x —8)/o],
(a~j

( m 2-e( N -2
——0; SeSe. ——2(6ee

(4.35)

1(m ' 1 m 4

x 1+—,~ + + 4 ~ 4

12
I( k 320)(

(4.36)

(and similarly of course for energies away from the
spectrum center, for which there will also be even-g
contributions). The long-range contributions to
[(5x)2], are very large (really because the number of
statistically independent matrix elements is far smaller
than the number of levels"'), but they die out rapidly as

This is formally a little better than the choice we have made
in (4.33). It is easy to see that when we consider the 5 decom-
position of (|5x), as in Eq. (4.36) ahead, the & dependence given
for 5~ 3 properly extends to f=1,2, . and similarly for & de-
compositions of other quantities.

Or, looked at from the standpoint of the GOE, because the
m-particle level spacing, which supplies the unit, is unnatural-
ly small for the GOE dimensionality and normalization.

where in p~
—= G(g, g) the centroid and variance fluctua-

tions are already included'2 (hence the explicit expan-
sion begins with & =3, rather than g =1). We have used
here the fact that o~(f )(P —g —1) ' ' is the Pth moment of
p~ (x )Hee [(x —h )/o ].

The significant aspect of (4.35) is the damping of the
higher-g (shorter wavelength) excitations, the origin of
which we have traced above to the behavior of the basic
cross-correlated trace. If the damping should persist
to the highest g, we would see no spectral fluctuations
at all, but instead would find a uniform spectrum in the
limit of large particle number. It is easy enough to
see, however, that when p om/k, different H's in a
moment trace can no longer act on different particles
and our procedure will then no longer be adequate.
Thus the results (4.35) are guaranteed valid only for
g «m/k. Let us keep this in mind as we use (4.35) to
treat the normal-mode decomposition of the level mo-
tion.

We have via (4.35) the assurance that the va. riance of
the level motion, expressed in terms of the square of
the local spacing, is (for m»k)
(6x)' 22 2 N )'
D (x),2 =2d o!,[p~(x)]

k j
m ~2e

& Z r(C ~ )
~

~

[He, !(x/~0)]
l, kj

1(N )2(N)2g, ., g —1, '(m)''
"*' ' ( m j k k j „'.;-,', l, k j

1 (N ' N )2(m)
'gm k j &kj
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the order increases and would make no contribution to
the fluctuations measured over a range containing a
small number of levels (-100 in the slow-neutron ex-
periments). The question now is whether as we in-
crease &, these fluctuations disappear well before we
reach the g -m/k limit of validity. Observing that

for

)(~) k»
r„-2(m/k) 1n(N/m)/ In(m/k),

and taking account of the g-dependent coefficient in the
summation (4.36), we have an affirmative answer to the
question and a clear prediction then that the mode "in-,
tensity" in the [(5x) ], decomposition (and hence in the
decomposition of other fluctuation measures) goes
rapidly to zero with increasing g and stays there at
least until the limit f-m/k is reached; this is exactly
as we have found and would predict. for the case of Fig.
6. Since, however, this case is not exactly EGOE, but
rather an ensemble of mixed 0=1 and 0=2 interac-
tions, and with specified J, T, a strict numerical com-
parison is not appropriate. We could regard the matrix
dimensionality' (1206) and particle number (8) as de-
fining, via (8 ) = 1206, an effective N —13; then for k = 1
and 0 =2 we would find (5x), ,/D -0.3, 4.5, respectiv'e-
ly. The observed value is in between.

We should remark that the intensity spectrum is very
different for [(5x) ], in the GOE. We have from (4.20)
and (4.27) the result that the contribution to [(5x) ], for
modes with g ~ t is

t t
(5x) 2 f . 2 2 ~ fsin r„g(x)D(x)2 x=0+ &=i

g =Odd) (t:=Odd, )

outcome of this is that fluctuations do not give a method
for detecting multiparticle interactions, and theap~ioxi
unreasonable QOE does represent the observations.
But there is no real theory yet for EGOE fluctuations,
that gap being one of the most significant ones in the
entire subject. We can now only speculate as to why
GOE and EQOE short-range fluctuations are apparently
very similar and perhaps asymptotically identical, de-
spite their very different normal-mode decompositions
of [(5x) ],. For one thing, in evaluating very high-
order moments (H~), we are tempted to introduce
K=H' as a new Hamiltonian with s large enough that H'
is dominated by its high-particle-rank components.
Then (H~) - (K~~'}, which behaves as a matrix trace,
related therefore to QOE. As another clue we can
speculate that it is not statistical independence of the
matrix elements which matters in the QOE but instead
only the fact that they are unco~~elated in low orders.
The EGOE matrix elements are, of course, not inde-
pendent, but we would expect a small correlation for
most pairs; even in the (ds)' example above, the sig-
nificant thing might then not be the (2&10 -63) reduc-
tion in degrees of freedom, but, rather, the fact that
63»1.

G. Recent developments

We briefly describe some very new methods (Pandey,
to be published) which have already been applied to
some problems, and which promise to yield more gen-
eral fluctuation results. They represent an extension to
fluctuations of the Stieltjes-transform technique intro-
duced by Pastur (1972) for dealing with the density and
desc ribe d in Sec. III.E.

For a given ensemble our interest now is in the two-
point function S'(x,y) which is to be evaluated via its
double Stieitjes. transform S~(x,y ):

7
y ln2s+ 2

— -4 +
m 6s 60s (4.37) j.S'(x,y) = —

2 [S~(x,y)+S~(x+,y +)

where s =f if f is even and (f + 1) if f is odd The.
summed result here is compatible with (4.28), derived
for t =d via an integration. The QOE intensity then falls
off slowly (as g ') but regularly, there being no sharp
separation into secular and short-range fluctuation
parts. One is inclined to believe, because of the appar-
ent identity of the QOE and EQOE fluctuations, that a
secular map (semicircle-Gaussian) of the GOE spec-
trum to EQOE wou1. d lead to the same sharp separation.
But this has not been verified.

Returning to the EQOE, we remark that the rapid at-
tentuation of long-range fluctuations as g increases is
due to the operation of a central limit theorem. The
short-range fluctuation modes, however escape the ac-
tion of the CI.T, for, as we increase particle number,
obtaining thereby a spectrum which is smoother on the
scale supplied by the spectrum variance, the spacing
unit which supplies the scale for the fluctuations rapid-
ly decreases, so that the fluctuations are not smoothed-
away.

As we shall see in Sec. VI, these fluctuations seem
more or less independent of dimensionality (over the
narrow range which can be studied) and very close to
QOE fluctuations and to those observed in nuclei. One

-S'(x+,y) -S'(x, y +)],

S'(x,y) =g(x)g( y ) -g(x)g(y )

(4.38)

S'(x', y ')

(x —x )(y —y )

(4.39)

which, by the procedure of Sec. III.E, yields

4 -xy + [(x' —4)(y' —4)]'"
Pd (x -y) [(x —4)(y —4)]' (4.40)

Recall that, when used as arguments of Stieltjes trans-
forms, x,y have small positive imaginary parts and
that, from (3.22), 2mip(x) =g*(x) —g(x). It is important
also to recall that, as in Sec. III.E, Stieltjes trans-
forms are generating functions for moments; thus the
success of the transform method is closely related to
the existence of simple moment recursion relations.
In particular, for the two-point moments of the canoni-
cal Gaussian ensembles, we have, in binary-correla-
tion approximation,

p-2

Z~, ——2 ~(M„Zq „,) + 2 Mq„2,
r=O
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Now, without any explicit evaluation of the moments,
inversion of (4.40} leads immediately to the two-point
function (4.21}.

Consider next special cases of the deformed ensem-
bles which for the present purpose it is convenient to
write as H" =R +yH, where H is one of the three canon-
ical ensembles, and the otherwise arbitrary operator
E preserves the basic underlying symmetry of H,
being, for example, representable as a real symmetric
matrix when P =1; it folJ.ows that H is characterized
by a specific value of P. We then find as a generaliza-
tion of (4.40), with g"(x) =((x H")—'}, that

S;(x,y) =-Z'(x)a "(y) -a'(x)g "(y)

~ z"&«) -P(v))
Pd Bxdy x —y

(4.41)

mhich represents in compact form the transform of the
two-point function for the deformed ensemble in terms
of the one-point transforms. '

The two-point function
and fluctuations follow from its inverse. If 8 itself is
defined statistically, an extra term is encountered in
(4.41). As a first application of (4.41) we could rede-
rive the variance (3.29) of the position of an isolated
level. Otherwise, we could treat the two-point fluctua-
tions more generally, excluding, however, spectral re-
gions in which the ensemble-averaged density is zero or
singular or otherwise not well behaved. These things
h'ave been done.

Consider the effects on the fluctuations as we increase
the random part, yH, of H". I et us agree that K and H
have comparable norms. As y increases from zero, the
fluctuations must go over from those of K to the ft.uctua-
tions of H. The remarkable result which emerges from
(4.41) is that the transition is extremely rapid, occur-
ring for y -d ' and being therefore discontinuous in
the large-d limit. In other words, the effects of K on
the fluctuations disappear rapidly as y increases and as
a consequence a very wide class of deformed ensembles
gives the same canonical fluctuations.

As a. special case of the deformed ensembles we have
the partitioned ones for which the rapid transition was
already predicted, via a Bromnian-motion argument, in
Dyson's (1962d) paper. Besides the deformed ensem-
bles, there has also been a recent study of the general
V ensembles of Sec. III.E, in which the matrix-ele-
ment variances are taken differently for different ele-
ments, and which provide a better treatment for the
transition which occurs with the partitioned ensembles.

As we have mentioned in Sec. II, symmet. ry effects on
the fluctuations can be studied in terms of deformed
and V ensembles. Once again the principal result is
that the presence of even a small symmetry-breaking
part in the interaction matrix would wash out entirely
the effect of the symmetry on the fluctuation properties.
A special case, that of the breaking of time-reversal
invariance, will be dealt with explicitly in Sec. VII.F.

%e remark finally that similar Stieltjes-transform
calculations give the two-point fluctuations of Dyson's
ensemble H (Sec. II.H) as being identical to those of
GOE. Adding to the list of these results the Monte
Carlo results for the EQOE, we begin to see the emer-
gence of a simple picture for the fluctuations, viz. ,

that the standard ensembles yield the basic fluctuation
patte ms.
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FIG. 9. Spacing histograms of various orders k for 294-di-
mensional GOE and TBBE of 50 members each (Kong and
French, 1972). The distributions are compared for k = 0-2
with theoretical GOE results (Mehta, 1960; Gaudin, 1961;
Kahn, 1963; Mehta and des Cloizeaux, 1972) and, for higher A,

values, with Gaussian forms. Note that the GOE and TBRE
distributions are essentially identical. Similar analyses have
been made, by O. Bohigas and R. U. Haq, of the slow-neutron
data for nuclei with A &100, and close agreements with GOE
predictions have been found (private communication from
R. U. Haq).

Y. FLUCTUATION IVIEASURES

A. Introduction

We have, in Sec. I, given the Wigner surmise (1.5)
for the distribution of the nearest-neighbor spacings,
and several histograms showing a comparison of Wig-
ner's equation with experiment and with shell-model re-
sults. Usually, however, it is preferable to compare
a few character istic parameters of the distributions
("statistics" or "fluctuation measures" as we have
agreed to call them), rather than the distributions
themselves. For example, it is to be expected (see
Appendix N and Fig. 9) that as d —~ the rth nearest-
neighbor spacing distributions become Gaussian for
large r. Since the centroid is necessarily (x+1)D, the
only significant measure connected with the spacing dis-
tribution for large ~ would then be the width v(r).

It will turn out that "number variances" (Dyson and
Mehta, 1963), the variances 7'(x) of the number n of
levels in a (small) interval of length x&&D located at x,
determine everything about the local two-point fluctua-
tions; thus every measure of these fluctuations is ex-
pressible in terms of the g'(x). We have, with y —x
= xD, where then r = n (if we agree that y & x), that

p(x')dx' =d[F(y) —F(x)],
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so that

= d '[S (x, x) + S ( y, y) —2S (x, y) ]

= 2 (x —r')[6(t') —Y (t')]dr', (5.2)

Z'(~) =o'(~ —1) + -', , (5.3)

this result being valid for many ensembles including the
three standard ones (though not for Poisson for which
the term —', does not appear) and for noncentral spectral
regions, as wel. l (an aspect of stationarity). There are
certain mysteries connected with (5.3), which, as we
shall see ahead, is of more consequence than might
appear; it would be good to have a better derivation and
understanding of it.

where in the last step we have used local stationarity.
We see that Z'(x) is itself stationary. The integrated
quantities S (x, x) and S (x, y) are, of course, not sep-
arately stationary, so that only the difference, as in
(5. 2), enters into the evaluation of the local measures.
Moreover, as we shall see ahead, the standard mea-
sures are dominated by the two-point function and, to
the extent that that is so, are, via (5.2), functionals of
the g'(x); thus the question of the independence of the
measures is settled. We could introduce measures for
correlations of higher than second order, though little
has been done along that line (see, however, Sec. V. C).
It is not really known whether higher-order measures,
which should require longer runs of levels, can be, de-
termined with adequate accuracy from presently avail-
able data; the answer is probably in the negative. The
variances of the measures are also important, for with-
out them we should not know how to assess the signifi-
cance of the comparison with experiment. For some
measures analytic forms have been given for ensemble
variances (Dyson and Mehta, 1963); in other cases both
ensemble and spectral variances can be determined ad-
equately by Monte Carlo calculations. Spectral vari-
ances are measures themselves and many of the stan-
dard measures are in fact variances. In principle, of
course, the variance of a A -point measure involves
correlation functions of orders up to 2k, though in at
least some cases the contributions from the higher-
order correlations appear to be very small.

There is a close relationship between the spacing var-
iances cr'(x), which, despite (5.3) below, are not pre-
cisely two-point measures, and the number variances
g2(x+1), which, by (5.1), are. The first of these, for
which r is necessarily integral, measures the mean-
square fluctuation in the length of an interval containing
a fixed number of levels; the second (for which r is not
restricted to integral values) measures the fluctuation
in the number of I.evels contained in an interval of fixed
length. At least for large x the two should then be ex-
sentially the same (if we measure the first in spacing
units, as we shall). However, if the relationship be-
tween g'(r) and o'(r —1) is considered more closely
(French et a/. , 1978), allowing for the fact that the con-
ditions at the ends of the interval are different for the
two measures, it is found that to good precision

Analytic treatments of the measures are based on en-
semble averaging. For experimental data we would,
of course, use spectral measures; in the case of g (x)
the fixed-length interval would be moved along the
spectrum, making any necessary correction for a sec-
ular variation in the eigenvalue density. It is obviously
important that the measures should be shown to be
ergodic. Analytic proofs of ergodicity and stationarity
in the GQE and in the other two standard ensembles,
as well, have been given by Pandey [(1979);see Sec. X]
for all of the A-point functions and hence for all of the
measures expressible as simple" functions of them;
for the repulsion statistic , which may or may not fit
into this class, ergodie behavior has been made plau-
sible by Monte Carlo calculations.

Finally, we stress that the discussions of this chapter
are based primarily on the GOE; this raises the ques-
tion of how far the results can be used for other en-
semb1. es. Two points can be made. First, there is
considerable evidence for certain other ensembles that
their fluctuation behavior —which the measures de-
scribed here are intended to determine —is that of the
GOE or at least close to it; for a number of ensembles
(e.g. , the circular orthogonal ensemble and Hosenz-
weig's microcanonical ensemble) this can be proved an-
alytically; for the EGOE, as discussed briefly in Sec.
IV, the major effect of embedding seems representable
as a secular map of the spectrum, which wouM leave all
fluctuation results essentially unaltered; for the closely
related TBRE, and for certain other ensembles, Monte
Carlo calculations make the conclusion plausible. Note,
however, that this fluctuation behavior is not found for
a/1 ensembles, and in particular, as we shall see ahead,
not for the unitary and simplectic ensembles, whose
underlying algebraic structures are essentially differ-
ent from that of the orthogonal ensembles. For many
of the results, in fact, we give also the extensions to
these ensembles (P=2 for unitary and P=4 for sym-
plectic). Secondly, it is possible to some extent to use
certain of the fluctuation measures to decide whether
extraneous factors such as missed or spurious levels
affect a given experimental spectrum and then use
others to confirm that the fluctuation properties of a
sufficiently "pure" spectrum are in accord with expec-
tation. But such procedures have yielded little data to
document a significant deviation from GOE behavior.

B. Correlation coefficients

Correlation coefficients between spacings yield im-
portant information about a spectrum, for example,
about the range over which a spectrum anomaly (rep-
resented, for example, by a spacing very much smaller
or larger than its local average) propagates. We first
consider correlations between spacings of various or-
ders separated by various distances (usually a small
multiple of D), or even partially overlapping, the es-
sential results for which, though derived somewhat dif-
ferently, are due to Garrison (1964; see also Bohigas
and Giannoni, 1975). We 'consider also the closely re-
lated correlations between number statistics (5.1).

Given four random variables Z, -. -Z4 we immediately
have
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1

I

covar(Z, —Zz, Z3 —Z~) = 2 [var(Z~ —Z4) + var(Z2 —Z~)

—var(Z, —Z, ) —va.r(Z, —Z, )] .

v'(r) & (x+1)'v'(0),
0 & v'(2r + 1) & 4v'(r) .

(5.10)

(5.4)

For the deviation of the tth order spacings from their
mean values we write, with t ~ 0,

Sf =D '(E,,~„—E, ) —(f+1), (5.5)

This result is valid for spectral averaging in which i
ranges over the levels of a single spectrum (and then,
for example, v'(r) =p 'Q~, (S",)'); it is also valid for en-
s emble averaging, in which for fixed ~ the energy var-
ies over the ensemble.

As a special case for separated nearest-neighbor
spacings we have (Garrison, 1964), with C(r;0, 0) = C(t')
and taking x ~ 0,

2v'(0)C(x) = v'(x+ 1) —2v'(r) + v'(y —1) . (5. 7)

Combining (5.6) for f = f' with the (approximate) result
(4. 31) for the spacing variances, we find for (r+1)'
» (t + 1)' the result (Pandey, 1979)

C(~;f, f) = C(r;t)=--(k+1)
Pw'v' t x+ I ' ' (5.8)

where the inclusion of P ' validates the result for the
standard ensembles. We see that a spacing which
spans a given energy range is essentially uncorrelated
with a similar one separated from it by a considerably
larger interval. This, of course, is an obvious re-
quirement for ergodic behavior. For t = 0 the approxi-
mation (5.8) is good for r ~ 1, giving, for GOE, -0.089
for x=1 instead of the —0.087 which follows from
Mehta's numerical evaluations of the v'(x) (Mehta,
1975) or from the analytic evaluations of French et al.
(1978), corrected as discussed in the next section.
For adjacent nearest-neighbor spacings (x=0) the cor-

relationn

coeffic ient is —0.271 .
We find similarly for &djac~nt tth-order spacings an

exact relationship

v 2)+],
C(t;t, t) —= C(t)=, —1,2v (t

(5.9)

whose value, —0.271 [=C(0)] for (=1 and —0.38 for
t = 3, approaches —

~ for targe t. Observe that adja-
cent high-order spacings are strongly anticorrelated.

Using the limits on the correlation coefficients,
I CI

~ 1, it is easy to find restrictions on the growth of the
spacing variances; in particular,

We have ignored small corrections in (5.6) and else~here
which arise from the corresponding fluctuations in spectral
averaging.

whose variance (which by stationarity we take to be in-
dependent" of i) is v (t); we define v'(s) =0 for s (0.
Now, on dividing through by v(t) v(t'), we have, for fixed
f, f', y, the general correlation coefficient C(r: t, t') be-
tween two spacings of orders t, t' whose first levels are
separated by (x+1) spacings, with r ~ —1 (x=1 then im-
plies adjacent spacings)

2v(f)v(f )c(~;f, f') = v'(I ~ —f I
—1) + v'(~+ f'+1)

-c'(I ~+f —f+1~ —1) —v'(~) . (5. 6)

-Z'(1, 3) -Z'(2, 4)], (5. 11)

where of course Z'(i, j) is the number variance (ensem-
ble or spectral as the case may be) for the interval in-
dicated. Once again, and by the same procedure, we
find an inverse-square fall-off of the correlation be-
tween the numbers in two separated intervals.

C. The number and spacing variances

Analytic forms for the number variances Z'(z) follow
from'the two-point function via (5.2). For the two-
point function of (4.24), we find

Z '(r) =,[ln Pmi + y + 1 —cos Par —C i(P7j'x) ]
P7T

2+ y 1 ——Si 7tx

2 1
[lnPmx+ y+ 1]+ 0

PvP TI' 7'
(5. 12)

which is exact, only for p=2. For the other cases the
exact results (Dyson and Mehta, 1963;Pandey, 1979),
derived from the two-point function of Dyson and Mehta
(Appendix I ), are

1 . 2 1
Z', (~) = 2Z,'(~) + +[Si(~~)J' —-Si(~~)

=—ln 2r~ +y+1-
8

+0

Z', (r) = -', Z,'(~) +,[Si(27t~)]'
4m

(5.13)

ln 4~/ +y+1+8 +0

In fact, the terms O(1/v'y) are quite small. For x=1
we find 0.0043, -0.0018, -0.0125 for P=1,2, 4 respec-
tively, while for z = 5 the corrections' are 0.0002,
-0.0001, -0.0025. Further discussion is given in Ap-
pendix L.

The test of Eq. (5.3) also works out satisfactorily.
Using Mehta's (1975) evaluations of the v (r) we find,
for y = 1—5, respectively, that [Z'(x) —v'(r —1)] is
0.161,0.167,0. 168,0.168,0.168 instead of the expec-
ted —', .

The argument that only binary associations are rel-
evant thus yields a good understanding of the closely
related v'(~) and Z2(r + 1) and hence of the two-point
fluctuations in general. Our understanding is not quite

20We note also that the asymptotic form of (5.12) is larger
than that of {5;13)by an (~-independent) constant, 0.110 for p
=1, and smaller by 0.063 for P=4.

Other restrictions of higher order may be derived sim-
ilarly. Brady (unpublished) has considered the rele-
vance of the restrictions to the "rigidity" of spectra.

Turning now to the number statistics, as in (5. 1) but
writing n, , for the number of levels in (x, , x, ), we again
make use of (5.4). The basic covariance is then

covar(n„, n„) = —,
' [Z'(l, 4) +Z'(2, 3)
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complete, because, while our g'(x) values will be ex-
act for the unitary ensemble, they differ by a sma1. 1.

constant ' (independent of r) for GOE; and similarly
then for the cr (y). This error can be eliminated
(French et a/. , 1978) by using either Mehta's value for
v'(0) (=0.286) or the "Wigner surmise" value [(4 —7T)/vr

=0.273J as a boundary condition for the cr2(r) and hence
for the g'(r), as well.

For the nearest-neighbor spacing the GOE distribu-
tion is not Gaussian, and its shape is therefore of in-
terest. In the examples given in Sec. I we have seen
that signer's distribution, which may be derived from
the two-dimensional GOE, fits the data quite satisfac-
torily. The results for the GOE of asymptotically
large dimensionality, which have been given by Mehta
(1960) and Gaudin (1961), are only very slightly differ-
ent [a graphical comparison is given in Mehta's book
(1967, Fig. 1.3)], but have in particular different slopes
at the origin. It is of some interest that this slope
(which is hardly measurable with presently available
data) involves the three-point cluster function" Y„
though only its value. at the origin; the specific form is

[—1 + 3 Y (0) —Y, (0) —Y'(r)„J
which is valid for all ensembles (Pandey, 1978). For
all three of the standard ensembles (but not, for exam.—

ple, for Poisson) the first three terms cancel when
evaluated exactly, since Y, (0) =(A —I)!, and then the
slope is simply —Y,'(0). For GOE the value is w'/6

[Wigner, as reported in Mehta (1967, p. 128)J whereas
the Wigner value from Eq. (1.5) is v/2. For P=2, 4 it
has been given as zero by Kahn (1963); a zero value
also follows for P=2 from our Eq. (4.24).

It is worth remarking that the results for the number
variance can be extended (Dyson and Mehta, 1963) to
the case where s different independent sequences of
levels are mixed, the fraction of levels belonging to
sequence i being f, (whence gf, =1). The result for an
arbitrary quasistationary ensemble is that

cr', (r) = ~~a"-„(2~+1),
o', (~) = ~~o', (2r+1) .

(5.15)

Using the v2 vs p' relationship of (5.3) we have then
(Pandey, 1978)

(5.16)
g', (~) = ~[K', (2r) + ~] .

The Eqs. (5. 16) are easily seen, via (5.12) and (5. 13),
to be asymptotically exact, and hence very close to
exact for all values of r; the very small deviations en-
countered with the exact forms must be ascribed to
small errors in (5.3). In going from (5.15) to (5.16)
we have used the result that g;„(r)= 2&,(r/2), which
follows from (5.14), and have assumed also that (5.3)
is valid for binary mixtures. It is curious that this
latter assumption, which is validated by the results,
could not, however, be valid for a many-component
mixture, since that leads to a random (Poisson) spec-
trum, for which the -', term in (5.3) disappears. Note
also that the two ensemble theorems combine with the
relatively simple unitary-ensemble results to produce
asymptotically exact two-point fluctuation measures for
all three ensembles. The real origin of the theorems
is, however, still obscure (Handelman, 1978).

Concerning the direct experimental realization of the
unitary and symplectic ensembles we see that every
QOE spectrum generates two symplectic spectra. More
interesting is that, with an odd target of angular mo-
mentum J„ the two slow-neutron-resonance sequences
(4, + ~), which are conventionally regarded as indepen-
dent, would, if their densities were equal, give directly
two realizations of the unitary spectrum. See Lynn
(1968) for good examples of each of these. Note that
the relative (Zo+ &) densities are determined by the
more or less calculable "spin cutoff" factor, so that one
may verify whether the condition for the unitary case
is in fact satisfied. For an unequal mixture of two GOE
spectra the corresponding calculation has not been done.

(5.14) D. The 6 statistics

a general. k-point extension of which (Pandey, 1979) is
given in Sec., X.C.

Finally, we mention two remarkable theorems which
relate the fluctuations of the three standard ensembles.
The simpler theorem (Mehta and Dyson, 1963) asserts
that the spectra of the symplectic ensemble may be
realized by choosing alternate eigenvalues from the
orthogonal ensemble. The content of the other theorem
(Dyson, 1962c;Gunson, 1962) is that the spectra. ' of the
unitary ensemble may be realized by choosing alternate
eigenvalues from a random superposition (mixing) of
two independent equivalent orthogonal ensembl. es. As
an immediate result of these theorems we have

x+L

b, (~) = min [F(x') —Ax' —B]'dx',
.2L w, a

(5. 17)

where 2L =yD is the interval length, dxI is the stair-
case function with unit steps, and A, B are chosen to
minimize the integral. Alternatively, we may define
(French et af. , 1978)

These measures are concerned with the departure
from uniformity (even spacing) of an observed run of
levels. Depending on whether we describe things in
terms of the distribution function or the density func-
tion, we have two natural definitions. The first (Dyson
and Mehta, 1963) is''

The numerical value depends on the method of cutoff used in
the f sum of Eq. (4.18). With a sharp g-independent cutoff the
approximate values are smaller by 0.07.

For the unitary ensemble the distribution, which has been
given by Kahn (1963), is closer to Gaussian.

7z is as.defined by Dyson (1962c); for Y&(0) all the relative
coordinates are put to zero. See Sec. X.C.

2mzn x -As —B
nD ~,a, ,

(5.18)

in which we are minimizing the (spectral-averaged)

The statistics &~, &2, also introduced by Dyson and Mehta,
are not usually employed, since their variances are signifi-
cantly larger than for &3.
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x [F(~') —F(~")]'dx'dx" . (5. 19)

Ensemble averaging, with the use of stationarity, en-
ables us to carry out one integration, giving then the
result, valid for all ensembles including Poisson,

r
&,(r) =—, (~' —2r 's+ s')g'(s)ds .

0
(5.20)

Observe now that &, is precisely a two-point measure.
Inserting the (asymptotic) P~ values of Eqs. (5. 12) and
(5. 13), we find

&, ,(~) = ~Z', (~) —4p, ,

which, combined with Eq. (5.3), expresses the essen-
tial equivalence of three measures. Equation (5.21) is
satisfied by the asymptotic forms of &, and Z2 (Dyson
and Mehta, 1963) and also by the binary-correlation ap-
proximations for these quantities, the latter agreement
confirming again the validity of the binary-correlation
calculations. The Poisson value, which derives from
(5.20) with p'(s) = s, is r)/15, , as given already by Dy-
son and Mehta.

On carrying out the minimization for &*, we find
(French et a/. , 1978)

(5.21)

mean-squared deviation of the observed levels from the
positions they would have if the spectrum were uniform.
Roughly speaking, &, assigns weights proportional to
the spacings, while &* assigns equal weight to each
level.

The obvious questions are whether these measures
carry different information —unlikely on the face of it-
and whether they are largely independent of the spacing
variances o'(k) (which has been tacitly assumed to be
the case). These questions are answered in the nega-
tive by French et al. , (1978); see also Bohigas and
Giannoni, 1975). Instead of following their derivation,
which is valid to order x ', where x is the average
number of levels in the interval, we follow Pandey
(1979, App. II) who finds, on minimization of (5.17),
-that

cf 3x —x x —x

E. The F statistic

The F statistic was introduced by Dyson (1972a) in
order to search for missing and spurious levels in an
otherwise pure sequence. It is defined by

F; = Qf(y;, ), (5.23)

x —X.j

be multivariate Gaussian, the variances of the & mea-
sures follow easily from (5. 19) and (5.22). For b3 we
find a constant value, about twice as large as that given
by Dysnn and Mehta (0.012). The approach to the
asymptotic value is, however, slow and for x=10 the
value found is less than the limiting value by about one
third. For mixed sequences &~ follows immediately
f rom (5.14) and (5.20) .

Two general remarks about these & statistics may be
helpful. The first concerns the- relationship between
&* and the rms deviations which we have encountered
in Sec. I in discussing the separation of the secular and
fluctuation parts of a spectrum. A minor difference is
that the sum in Sec. I was extended over the entire
spectrum, the linear reference spectrum (Ar+ 8) being
replaced by the spectrum derived via the low-moment
Gram-Charlier expansion. The more essential differ-
ence is that the procedure there involved no minimiza-
tion; instead, the deviations were taken between the ac-
tual position of a given numbered level and its position
in the smoothed spectrum. We can take for granted
that the measure used in Sec. I when applied to a sub-
speetrum, will for "small" d (say, d & 10"), give es-
sentially the &* value; in the large-d' limit, however,
the measure diverges logarithmically, as we see from
(4. 28), while &* becomes independent of d. This dif-
ference in behavior arises because with &* we allow the
spectrum to "slip, " no longer measuring deviations with
respect to the fixed centroid positions. , as we did earli-
er. From this example we see that caution is in order
when we attempt to infer from Monte Carlo results (al-
ways with really small d) what the asymptotic behavior
might be.

x(5,. —5,)'

(5.22)

1 + (1 y2)). /2

Y I (I 2)1/2 &

f(y)=
(

I yl .-I (5.24)

the last step being valid for the Gaussian ensembles,
but not for Poisson. We see that &*, somewhat easier
to evaluate from a given spectrum, carries the same
information as b, If we take the (5, —5„.) variables to

and the sum extends over all xj within x,. + I.. Writing
L =nD, expanding f( y) to quadratic terms, and drop-
ping terms of order n 'inn, we find (French et al. , 1978)
that

F—~ ln. .. „»,+ ~ .„2,„»2v,'. , ~ =n7/ —ln2n+ Yo8(0) —~ 1 —,. +0—
~ nm —Inn' —0.V2,
g= I.

(5.aS)

in the second step of which we have made an Euler-
Maclaurin summation. The final value agrees well with
that of Dyson (1972a), n~ —Inn~ —0.66, who gives also
the variance of F as v'(F) = In7/n. An exact integral
form for I, which shows its two-point nature, is

n + (n' —~')'/2
F= [I—Y,(x)]ln, »» dv

n q Y (~):n7T —2 dg g q 2)) /2 d
p

'
p ig

(5.26)
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If, within a pure l.evel sequence, a level is missing or
a spurious one has been introduced, locally the calcu-
lated I values should differ markedly from those given
by (5.25) with a reasonable value for n, say, 10 to 14.
As (5.24) makes clear, a missing level will cause a
drop in I", a spurious one a rise. A deviation greater
than 2v(E) has been used by the Columbia group (Liou
et al. , 1972) as an impurity indicator.

A further test may be made on the basis that the ex-
perimental set of I values can be expected to have a
Gaussian distribution for a pure sequence (Liou et al. ,
1972), while a not too large number of missing or spur-
ious levels will cause departures from a Gaussian
form. But this is by no means a satisfactory test.
First, in the presence of sufficient impurities of either
type, the Gaussian distribution of I' can be regained
whenever the impurity levels are uncorrelated, as is
indeed reasonable to suppose. Secondly, the Monte
Carlo calculations mentioned below show that the only
statistically significant effect on the distribution is to
increase its width beyond the theoretical value given by
(5.26); we may expect therefore that the ratio of the
experimental and theoretical values of the variance of
I' is a better indicator of the quality of the data than is
the shape of the distribution. We may also conclude
that, in using I' for local testing of a spectrum, as
described above, the theoretical v(E) should be used,
rather than the experimental one, as is sometimes
done.

(5.27)

but with (relatively complicated) counter terms added
in order to moderate a strong variation of Q when in-
dividual levels move as we go across the ensemble. The
summations extend over the levels in an interval which
would contain on the average n I.evels (its length there-
fore being nD), and f(x;, x,.) is a weight function, which
in practice is taken to be unity when

~
x, —x,. ~

~ rD and
zero otherwise; one takes r =2 to 4 so that the short-
range correlations are emphasized. The ensemble av-
erage and variance of Q are found to be

g~ =n[U, —(pm'2r) '],
~'(q, ) =n[c, + e(p~'~)-'),

where e = 1. Dyson (1962c) gives

(5.28)

Uz
——~ Y x ln2~x& =1 —~y —~ ln2=0. 365

for P=1 and =&(1 —y)=0. 211 for P=2. C~=~ —m2/8
=0.266 and 2 —m2/6 =0.355 for P =1, 2, respectively.
Our binary correlation results give Uz= 2(1 —y —lnP/2),
correct, of course, for P=2, but too large by 0.193 for
P=1. The latter difference, which is significant, re-
minds us that the shortest-range correlations (which

F. The energy statistic Q

This statistic, also introduced by Dyson and Mehta
(1963; see also Dyson, 1962c), derives its name from
an anal. ogy between it and the energy of the two-dimen-
sional Cou1.omb gas. It is concerned with cohort-range
correlations in the spectrum. Basically,

are emphasized in Q) are not treated well in our ap-
proximation. We note finally that Q is precisely a two-
point measure, being expressible as an integral over
,Y2.

A(~ ) =— [E{S) E*(S—)]'ds,
D o

(5.29)

where D is the average of the n spacings S. E*(S) here
is usually taken to be the integral of the Wigner distri-
bution (1.5), namely, 1 —exp(-F2/4D ), which we know
to be a close approximation to the correct distribution
function for the GOE. There is practically no theoreti-
cal background for the use of this measure. If the
spacings had the Wigner distribution but no correlation,
linear or otherwise (an unrealistic situation), the ex-
pected value of A would be 0.293. The existence of
long-range order in the l.evel sequence depresses the
actual value of A(n) to well below this and makes it a
function of n; Monahan and Rosenzweig derived its
properties from Monte Carlo calculations based on GOE
matrices of a single fixed dimensionality, so that it is
not known to what extent their results are asymptotic to
the large-d limit.

H. The repulsion parameter

Last we discuss a parameter which measures the de-
gree of level repulsion. It is based on a generalization
of Wigner's distribution (1.5) for the nearest-neighbor
spacings (Brody, 1973) and may be written

P (z) =Az" exp(-nz" ), z =—,D' (5.30)

where S is the nearest-neighbor spacing. The two par-
ameters A. and o. in (5.30) are found from the condition
that both the average of- z and the area under the curve
must be equal to unity; they turn out to be

(5.31)

The value of &u is found by fitting (5.30) to the data (or,
for that matter, to a theoretical distribution) by least
squares. The problem is nonlinear, but convergence is
usually rapid. A simple method for carrying out the fit
is, starting with an estimate ~„ to compute the values-
of n, = n(co, ) and—

@, = 1 —exp(-a. Oz", "0), (5.32)

which give the probabilities of finding spacings smaller
than z;, for all z~ in the sample; plotted in ascending
order as a function of i, the @, will be well approxi-

G. The A statistic

A fluctuation measure sometimes used to detect im-
purities, in the sense of missing or spurious levels, in
an experimental. level sequence is the A statistic devel-
oped by Monahan and Rosenzweig (1970, .1972). It com-
pares the nearest-neighbor spacing distribution with a
theoretical distribution that ideally should be the en-
semble average. Let E*(S)be this theoretical distribu-
tion function, and E(S) the experimentally found one,
which will, of course, . be a staircase function; then A
is defined as
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TABLE I. The effects on various measures of randomly deleting a number of levels from a given
spectrum, adding a number to it, or doing both. The spectra are either GOE, in which case en-
semble averages are given, or are taken from the ( SU+pz) experiment (Bahn et ~E. , 1972a). The
results in the first two rows are mostly analytical, the Poisson values heing given for comparison.

Ensemble Z (1o) C(0) 0.(p) cr(3) 0 (6) 0 (10)

GOE
Poisson
GOE —1
GOE —3
GOE —5
GOE —10
GOE+ 1
GOE+ 3
GOE+ 5
GOE+ 10
GOE'5
238U

238U+ 1p
238U 1p
238U 5-5

1.86
7.6 + 1.8
2.1+ 0.3
2.4+ 0.4
2.4+ 0.4
2.7+ 0.5
2.1+ 0.4
2.6 + 0.5
2.8+ 0.5
3.4+ 0.9

1.69

0.46
6.67
0.54
0.65
0.75
0.77
p
0.78
0.84
l.17
1.23
0.49
1.17 + 0.66
p. 87 + 0.35

34.0
153
34.7
36.6
37.6
42.1
36.3
39.3
43.0
49.7

30.3
36.1
42.0

0.95
0

0.92+ 0.06
0.89+ 0.08

0.91 + 0.07
0.84+ 0.09
0.89+ 0.08
1.21 + 0.08
1.18 + 0.12
1.22 + 0.14
1.19+ Q. 14

0.95 —0.27
3.16 0
1.00 —0.26
1.16 —0.25
1.12 —0.24
1.11 —0.19
1.15 —0.26
1.25 —0.24
1.18 —0.21
1.39 -0.19

—p. 18
-0.27

1.Q4 —0.20
1.11 —0.21

0.53
1.00
0.54
Q.55
0.56
0.58
Q.55
Q.56
0.57
0.59
0.58
0.51
0.54
0.55

0.75
2.00
0.76
0.79
0.83
0.91
Q.77
0.81
0.86
0.95
0.96
0.58
0.79
0.76

0.82
2.65 3.32
Q. 86 0.93
0.91 1.Q1

0.95 1.04
1.09 1.23
0.87 0.93
Q. 94 1.03
1.pp 1.11
1.16 1.30
1.14 1.31
1.64 1.81
Q. 98 1.22
0.89 1.10

mated by a straight line if ~0 =~; otherwise,

hued = (I +coo)(l —x5 ) (5.33)

gives an estimate of the change 5~ required to obtain
a better approximation. Here x is the number of spac-
ings x; and 5 is the extremum of a quadratic fitted to
the first differences d, = P; —@, ,

The value of w is zero for the exponential distribution
of spacings which results when the levels are statistic-
ally unrelated; for Wigner's distribution (1.5) it is un-
ity; for the GOE its value is 0.953, which can be ex-
perimentally distinguished from unity when there are
more than about 150 levels. The method we have out-
lined for its determination can also yield an estimate of
the error limits on it, which are of importance in the
appl. ication of ~ to experimental data.

There is no adequate theory underlying the repu'lsion
parameter. But it is applicable to a rather wide vari-
ety of situations, its numerical estimation yields error
limits which can to some extent make up for our ignor-
ance of its ensemble variance, and practical experience
in its use has shown that it is rather insensitive to
spectrum impurities. Moreover, its ergodicity has
been made plausible numerically (Mello et al. , 1976).
In the GOE the conditions for ergodic behavior are sa-
tisfied after unfoMing over the whole spectrum. In the
TBRE, however, a is not stationary; while in the cen-
tral region of the TBRE spectrum it has the same value
0.95 as for the GOE, it decreases towards the ground-
state region, where it is found to be about 0.82.

I. Effect of impurities on the fluctuation measures

Even in a set of experimental data of very high qual-
ity, it is not possible to eliminate completely the er-
rors represented by missing or spurious levels. We
must therefore learn about the eff ects of such errors
on the fluctuation measures.

Consider first what happens as we add 5p levels to a
GOE sequence containing p levels; let f=5p/(p+5p) be
the mixing ratio. We can agree that the spurious level. s

.are independent of the pure sequence. Then, using

(5. 14) and (5.20), as well, for b„we have for the
number variance and &3

Zmjx(&) Zoop ((I f)&):Z~p(fH f&

~, ...(~) —~.„,((1 -f)~)=~, „(f~)—, —„. (5.34)

25Observe that if we take y to span the entire sample (as ex-
perimentalists essentially always do for &3, and as is done in
Table I), then fy is the number of spurious or missing levels.

In the final forms here we have assumed (P) that the
spurious levels are themselves part of a Poisson se-
quence, as they are in the GOE tests in Table I below,
and as we would expect also in experimental cases.
Things are more complicated if we have 5p missing
levels but the same results apply for small enough f,"
say, fr~ 1. Note that in each case the measures of
(5.34) increase, corresponding to a decrease in the
level repulsion. Similar results can be derived for a
combination of spurious and missing levels, as well
as for other measures, but for the most part these
have not been explicitly worked out. Instead we give
in Table I some of our Monte Carlo simulations. But
we refer first to a recent study by Coceva and Stefanon
(1979), done as part of a thorough analysis of their own
experimental results, to which we return in Sec. VI;
see in particular their Fig. 3 for the variation of &„Q,
and oxo

The first two lines in Table/ give analytical results
for the GOE and analytical and numerical results for a
Poisson spectrum. In the rest of the table we show the
results for randomly deleting (—) or adding (+) the in-
dicated number of levels. The original spectrum is
taken either from experiment or from the center of an
unfolded 294-dimensional GOE; the final subspectrum
in each case -contains 100 levels.

To begin with, we remark that there is satisfactory
agreement with (5.34). It is found also that the distri-
bution of the I values does not deviate significantly
from a Gaussian shape in the cases tested. Beyond that
it will. be seen that the various measures have by no
means the same sensitivity to level impurities. Thus
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a 10% impurity causes only an 8/0 change in co, but a
20%%up one in cr~, however, when measured in terms of
their sampling standard deviation, &3 is the most sen-
sitive impurity test, showing a variation of about 5
times a~„while again u is very insensitive. Unfor-
tunately, the sampling variances for the o(r) and C(0)
are known only from Monte Carlo results.

These differences in the behavior of the various
statistical measures have led to the preference of some
of them as tests for impurities in an experimental level
sequence, while others have been regarded as better
suited for verifying the validity of the underlying theory.
In particular, &~, I", and Z(r) have often been used to
test for missing or spurious levels. But, as we have
seen, all these parameters, except probably ~, are
derived from the two-point function and are related to
each other; thus such a discrimination in their uses is
of dubious justification.

VI. ANALYSIS OF THE DATA ON ENERGY-LEVEL
FL UCTUATI ONS IN NUC LE I

A. Introduction

When considering the data, we shall take into account
not only the experimental results, but also those de-
rived from shell-model calculations and Monte Carlo
simulations, to which techniques developed for the
experimental results may be applied and from which
we can draw conclusions relevant to experiment. In
this section we discuss the level-spacing fluctuations;
Sec. VII will deal with the strength distributions and
related matters.

As we saw in Sec. I, most useful for the study of
energy-level fluctuations is a long sequence of states,
all with the same conserved quantum numbers (J and
wi and, for nuclei, the isospin T) and spanning a nar-
row energy range. With a long sequence we have good
statistics; in a narrow band of energy the underlying
global properties (average level density and strength)
will not change appreciably; if the states have the same
exact symmetries, we do not encounter the (inessen-
tial) complications associated with impure sequences.
These requirements, which are often too stringent, ean
sometimes be relaxed. If there is a secular variation
of the density over the region spanned by the sequence
of levels, we may be able to "unfold" the 'data, as de-
scribed in Sec. III; this is particularly useful with
Monte Carlo results, with experimental results for
proton resonances, and with the nuclear-data ensemble.
It is clear that in order for this mapping to produce the
required results it must be one-to-one and sufficiently
smooth. If necessary, we can also extend the analysis
to the case of mixed exact-symmetry subsequences.
This has its limits, because sequences of too many
admixed subsequences yield Poisson distributions
which carry no information of interest; as a practical
matter one would deal with mixtures of no more than
two pure subsequences.

Before proceeding we remark that there are also
early analyses of nearest-neighbor spacing distribu-
tions in atomic spectra [see, for example, Porter and
Rosenzweig (1960); Rosenzweig and Porter (1960);
Trees (1961)], and there are indications of renewed

interest in atomic energy-level fluctuations more
generally (J. C. Parikh, private communication;
V.K.B. Kota and V. Potbhare, unpublished).

B. Slow-neutron resonances

Most of the data which we consider below are due to
the Columbia group (Hacken et at. , 1978, and earlier
papers referred to therein); for other work see
Karzhavina et al. , (1968), Kirouac and Eiland (1975),
and Coceva and Stefanon (1979).

Slow-neutron resonances supply the most complete
data for testing the fluctuation theory, the time-of-
flight technique providing the necessary resolution for
the closely spaced resonances (for heavy nuclei D is
often as small as a few electron volts). In the re-
sonance region we ean expect compound-nuclear states
of both parities and with comparable densities; but
in general the P-wave resonances (those of higher orbi-
tal angular momentum need not be considered) will be
very much sharper, their strengths much reduced by a
barrier penetration effect. So we have basically a se-
quence of s-wave resonances with some intrinsically
strong P-wave interlopers at the higher energies which
may be mistaken for weak s-wave resonances. This
problem is least with targets in the rare-earth region
for which the ratio of P-wave and s-wave strengths is
at a minimum. Hare-earth targets with even A and Z
should then come closest to giving a pure sequence, in
this case of &' levels. The other problem, of course,
is that some weak s-wave resonances will have widths
below the detection threshold.

The observed resonance width I"„at an energy E is
related to the reduced width y2, by the penetration fac-
tor of See. VII.C below; y, is the matrix element of the
transition operator. Vfe shall see in See. VII that the
reduced neutron widths follow the Porter- Thomas dis-
tribution which we have already encountered in Sec. I,
and with the use of this we ean often make plausible
corrections for both the "weak s-wave" and "strong
P-wave" problems. For widths of the same parity, we
have

P(t, )dt, =(2~t, ) '+
pe(x— —,

' t, )dt, , t, = y', /(y', ) . (6.1)
If the number of missed levels is small, an estimate
of it ean be made by using this equation, since the ex-
perimental mean reduced strength (y2), the only pa-
rameter required in order to use it, is not adversely
affected by a small number of missing weak reson-
ances. Knowledge of the number of missed levels, as
given by (6.1), is already of value; corrections to the
set of levels can often be made by using measures
such as the E test of Dyson (1972a}, described in Sec.
V.

The question of spurious states is slightly more
complicated. Because of the different energy depen-
dence in the barrier penetration factor [y', =I'„E '~
for s wave, and y2~ =I „(k'/2MB'}E' '~ for P wave J, one
expects only s-wave resonances to be observable at
extremely low energies. At higher energies, however,
a strong P-wave resonance may produce an observable
width. If the averaged width for each partial wave is
known, a Bayesian test, based on the fact that the dis-
tribution for t, is Porter-Thomas, can be applied to
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make the distinction. Bollinger and Thomas (1968}
give the probability for an observed resonance to be
p wave as

(6.2)

where c is a constant depending on the ratio (y~)/(y,')
but independent of I'„and E. The E dependence comes
from the difference in barrier penetration factors;
the power ——,', together with the exponential factor,
follows from Eq. (6.1). For most resonances, the
Bayesian test is able to produce a probability close to
either 0 or 1, giving an indication of the most probable
E value of the observed low-energy resonance. But if
the probability is intermediate, it is better not to cor-
rect.

Recently, a much more careful analysis of the neu-
tron-resonance data aimed specifically at fluctuation
studies has been proposed by Coceva and Stefanon
(1979) and applied to their data on (n+'"Gd). Since the
purity of the sequence may greatly affect the statistics,
it may not be adequate to use the simple Bayesian test;
they argue that more reliable information can be ex-
tracted from the data by a maximum-likelihood test in-
volving the energy-dependent experimental resolving
power, as well as the number of degrees of freedom,
v, of the chi-square distribution for the neutron
strength, the average level spacing, D, and the aver-
age s- and p-wave neutron widths, (I'og and (gl"„'),where
g is the degeneracy. Once the sequence is determined,
the experimental resolving power should be taken into
account in calculating the measures and comparing with
expected values.

C. Data from fissile nuclei

The fission width of a resonance depends on the height
of the fission barrier, which is believed to be 4 de-
pendent. The Saclay group (Derrien et al. , 1967;
Michaudon, 1973; Jain and Blons, 19'?5) makes use of
this dependence to separate the neutron resonances
observed in n+' 9Pu, for which the target has angula, r-
momentum 2, into two categories according to their
fission widths, assigning & =0 and 1 to the separate
groups. For a long mixed sequence, this represents
the only presently available technique for assigning
angular momenta to all the neutron resonances.

The energy-level fluctuations (Jain and Blons, 1975}
for the J' =1 sequence (the J =0 sequence is too short
for a good analysis) and also for neutron resonances
on the neighboring fissile nucleus 24OPu (Bockhoff et al
1967) differ considerably from the fluctuations derived
from experiments with other targets (see Table II).
However, careful analysis (Michaudon, 1973) shows
that there are pronounced modulations of the fission
cross sections which may be taken as an indication of
the existence of intermediate structure in the region.
If this is indeed the case, it may be inappropriate to
consider the Pu data on the same footing as those de-
rived from pure sequences [for a different possibility,
however, see the last section of Coceva and Stefanon
(1979)J. Data on other fissile targets are available,
but none for which a claim of adequate purity has been
ma. de. Thus the data, with '"Pu and 'OPu ta, rgets form

at present a class by themselves. For further dis-
cussion see Garrison (19'72).

D. Proton-resonance data

The proton experiments have the advantage that angu-
lar distributions can be measured and therefore J val-
ues determined. On the other hand, they do not have
the energy resolution of neutron experiments. As a
result, it is only in recent years that long sequences
of energy levels have become available for light nuclei
(A. & 65) at low excitation energies (Prochnow et al. ,
1972; Wilson et aE. , 1975; Bilpuch gt g$. , 1976;
Mitchell, 1980). The larger mean spacing value, how-
ever, implies an energy span for a long sequence which
is too large for the assumption of a constant average
level spacing, and therefore gnfolding becomes neces-
sary; for this purpose the authors referred to make use
of an exponential form for the density, P(Z) -exp(Z/T).
There are uncertainties associated with the existence
of intermediate structure in the region, so that some
of the standard methods for testing the purity of a se-
quence cannot be used here. But of course the inter-
mediate structures give rise as well to features of
special interest; these we shaB comment upon in Sec.
VII.

E. The nuclear-table ensemble

The first few levels in the spectra, when considered
together for a wide class of nuclei, may be regarded
as giving a realization of an ensemble (Flores and
Mello, 1973; Cota et a/. , 1974; Brody et al., 1976).
As discussed in Sec. I.C, it is necessary to renorma-
lize the level spacings in accordance with the A. de-
pendence of the level density, D -A. '; it is also ap-
propriate to remove from consideration the class of
"collective" nuclei, especially since specific mecha-
nisms are known which give rise to their anomalous
spacing behavior. The data give rise to good nearest-
neighbor spacing distributions and values for the re-
pulsion parameter ~, but most of the fluctuation mea-
sures discussed in Sec. V cannot be applied, since the
major part of the data consists of a single spacing
from each spectrum. It has been possible to obtain
data. about spacings of orders 2, 3, 4, but from sma, lier
and smaller numbers of nuclei; moreover, there are
ambiguities in "unfolding" the data with respect to the
e ne rgy de pe nde nce.

F. Shell-model and Monte Carlo data

As we have shown in See. I, numerical random-
matrix and shell-model spectra have been of con-
siderable use in giving a general view of the behavior
of complicated systems; they have been useful, also,
in providing values for some of the fluctuation measures
which have resisted analytical treatment, in deter-
mining their varianees, and in studying their ergodie
properties. These spectra are, of course, exempt
from problems of experimental technique, of level
identification, and of missed and spurious lev'els; on
the other hand, they display the secular variation of
density, which, as discussed in Sec. III, must be re-
moved without altering the fluctuation properties be-
fore comparisons with other data can be made. In ad-
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dition, there are certain special problems which re-
quire some comments.

In the first place, the local density varies across the
ensemble. It therefore makes a difference whether
one expresses level spacings for an individual spec-
trum in terms of a unit spacing D defined by averaging
over that spectrum, or in terms of an ensemble-
averaged unit which is therefore the same for all spec-
tra in the ensemble. This may be regarded as an as-
pect of nonergodic behavior which obtains in particular
when the matrices are finite dimensional, as with
Monte Carlo calculations. With o2(r) defined by the
first procedure of spectral averaging and a', (r) by the
second one of ensemble averaging„ it is intuitively
clear that v', (r)& o', (r), the difference between them
increasing with the spacing order x. It has, in fact,
been shown by French (1973) that

2
v', (r) = a.'(r) + [a', (r) + (r +I)'j (6.3)

G. Energy-level data and their fluctuation measures

In Tables II through IV we present the values for ten
fluctuation measures calculated for a selection of spec-
tra from all the sources we have discussed. In inter-
preting the data in the tables, it must be remembered
that the measures for which we give values are closely
linked through their association with the two-point cor-
relation function (see Sec. V). These relations„how-
ever, are between the ensemble-averaged values, so
that the individual deviations (and the effects of spec-

where Z' is the ensemble variance of the spectrally
averaged D.

In the GOE, the correction implied by (6.3) is negli-
gible for the spacing orders and dimensional, ities of
interest, since here Z =d '+ and goes to zero in the
limit of infinite dimensionality, a consequence of the
GOE's strong ergodic properties. Thus the dimen-
sionality d plays here the role of the number of degrees
of freedom. But for the EGOE and the TBBE this num-
ber, the "effective dimensionality, " is given by the
(much smaller) number of independent matrix ele-
ments, and then the correction can be significant. For
EGOE its value has been given analytically (French,
1973), while for TBRE a value can be obtained from
Monte Carlo data (Wong and French, 1972). We give
this correction because at one point serious confusion
arose as to whether or not multibody interactions
might be detectable via fluctuation measures, which
would be feasible if Monte Carlo calculations were to
give different results for GOE and TBBE. In fact„ they
appeared to do so (Bohigas and Flores, 1972); the fact
that experimental results seemed to favor the GOE was
then used to argue that ensembles of the TBRE type
were invalid [see discussion at the 1971 Albany Con-
ference (Garg, 1972)]. The deviations, however, were
spurious, because the GOE-TBRE comparison was
made for o', (r) instead of v', (r), which is obviously the
appropriate measure. In several of the experimental
papers, however, arguments based on the spurious
GOE-TBBE deviations are repeated, as pointed out by
Bohigas et al. (1974).
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tral impurities) may be rather different for the dif-
ferent measures; it is for this reason that we have
grouped together those measures, like A, and Q, which
are commonly thought of as useful for verifying the
purity of the spectral data. As a guide to the quality
of the experimental data, we include in the tables the
number of levels added by the experimentalists on
the basis of the statistical tests described above, and
the number of levels deleted from the raw data as being,
with high probability, P-wave resonances. Except for
the K, and Q measures the theoretical variances are
unknown, but reasonable values have been determined
numerically for most of them; we indicate with aste-
risks the experimental measures which differ by more
than a standard deviation from the averages.

Examining the single-sequence data in Table II, in
comparison with the ensemble data of'Table IG, we will
observe, in the first place, that there are a number of
spectra, such as those of '~Er or the —,

' series for "Sc,
where the agreement between the experimental mea-
sures and the ensemble predictions for the GOE are ex-
cellent for all ten measures; there are also cases, such
as the "'Cd spectrum, where the agreement is poor
for almost all the measures. But as we noted above,
for the first two cases we have reason to believe that
the experimental conditions were very favorable, while
in the case of ' 'Cd the number of levels that the ex-
perimental group felt it necessary to add and to delete
in'itself indicates the difficulties with the data. There
are also spectra, such as '"U, and '~0Pu and ' 'Pu as
analyzed by the Saclay group, where the quality of the
data appears to be reasonable„but in which nonethe-
less there are important deviations from the ensemble
predictions. Where, however, the sequence is short
or where the data. are extensively "treated" by adding
or deleting many levels, we find that more of the ten
fluctuation measures tend to deviate significantly from
the ensemble values.

Several conclusions may be drawn.
(a) While the quality of the data is variable, the

better spectra clearly confirm that the random-
matrix theory adequately describes the fluctuation
properties, at least as far as they are captured by the
ten measures for which we give data.

(b) On the basis of these data, it is not possible to
make a clear-cut choice of one ensemble as approp-
riate. Some results slightly favor the TBHE (or a
similar type of ensemble, for example, the EGOE),
such as the tendency for the repulsion parameter ~ to
be somewhat lower than the GOE value in the ground-
state domain, and perhaps similarly for the spacing
variances: As has been indicated, the TBRE has much
thy same statistical behavior in the central region as
the GGE, but towards the ground-state region the re-
pulsion which it shows decreases.

(c) The hope that the presence of three-body inter-
actions could be detected is not borne out by the en-
semble results of Table III, since no significant dif-
ferences are found between the Monte Carlo TBHE and
GOE measures. The effects of imposing a fixed parti-
cle rank (two-body) on the interaction are therefore
small, so that the extra information specified for these
ensembles is largely -irrelevant for the fluctuations.
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(d) The possibility that the behavior of spectrum
fluctuations in the fissile nuclei is somewhat different
from that for the stable nuclei cannot be excluded. In
its favor there are the deviant values observed for the
higher-order spacing variances, the correlation coef-
ficient and the repulsion parameter for the plutonium
isotopes, and of the repulsion parameter for" U;
against it is the "well-behaved" nature of the '"Th
spectrum, and the fact that, while for plutonium the
repulsion is usually low, it is unexpectedly high for
uranium; indeed, none of the physically reasonable en-
sembles discussed in earlier chapters wouM predict
such a high value. It is a pity that other spectral se-
quences, with quality similar to that quoted for plu-
tonium, have not been measured by the fission process
used for that case; any definite conclusion must await
further data.

(e) The disagreements between experimental and
theoretical values observed for some spectra tend to
'be correlated for the various measures. This could,
however, be due to the interrelationships between the
measures or to the fact that they all show the effect of
spectrum impurities.

These conclusions are based on conventional analyses
of a broad range of data. On the other hand, Coceva
and Stefanon (1979), who ask the same questions as we
do, come to the same general answers on the basis of
a more detailed study of their own data for a single
case ("eGd+n). Their more sophisticated analysis, if
applied to further high quality data, might well result in
a better appreciation of the agreement between theory
and experiment. It may be possible also to construct
and make use of sharper (spectrally averaged) mea-
sures, as mentioned in Sec. X.C below.

For mixed-sequence spectra the measures should be
considerably different than for pure sequences [see,
for example, (5.14)j; the differences are to be ascribed
to the moderation of the level repulsion represented by
the vanishing of interactions between the subspaces.
Table IV gives values for fluctuation measures for a
selected set of spectra which contain, in roughly equal
proportions, two intermixed subsequences; as
mentioned earlier, there is little point in studying spec-
tra involving a mixture of many subsequences. Agree-
ments with theory are in general adequate; whether
the discrepancies are to be attributed to the poorer
quality of the data (shorter sequences and larger cor-
rections), or to uncertainties in the mixing ratio, or
even to a failure of statistical independence of the two
sequences is unknown.

The fact that ensemble evaluations of the theoretical
fluctuation measures agree with spectral evaluations
of the experimental ones will be seen in Sec. X to be
we ll unde rstood in te rms of a, strong e rgodic behavior.
Closely related is the fact that the fluctuations ex-
tend, essentially unchanged, into the ground-state do-
main. This, of course, is an aspect of stationarity;
it is of major importance in giving a permit for sta-
tistical studies in the ground-state domain.

The GOE has often been regarded in the past as the
"basic" ensemble, and this seems appropriate. Its
special a priori significance arises from the fact that
it specifies minimal information about the system.

Its a posteriori significance comes not only from the
good description of the data which it yieMs but from the
fact, which is now emerging (see Sec. IV.G), that a
wide class of ensembles gives essentially the same two-
point function.

The good agreement between theory and the better
quality data is significant in providing experimental
confirmation for the various general concepts intro-
duced in the preceding sections, in particular, the
statistical nature of level repulsion, the existence of
long-range correlations that manifest themselves as
spectral rigidity, the ergodic behavior of the proper-
ties studied, and the dominance of binary associations
as seen in the two-point functions and the measures
derived from it. These concepts acquire importance
because of the great generality and wide range of ap-
plicability of the theory.

Vl I I. TRANSITION STRENGTHS

A. Introduction

In discussing the analysis of the energy-level fluctua-
tions, we have referred often to the particle widths and
their distributions, quite naturally so, since it is via
these widths that the (unbound) resonance levels are de-
tected and identified. The width distributions have, of
course, a significance of their own, deriving directly
from the statistical properties of the states; and it is
this which we treat in this section, not only for particle
widths, but for widths corresponding to other kinds of
excitations or transitions, as well.

A width measures the rate at which the system makes
a transition from one state to another under the in-
fluence of some disturbance. It is expressible in terms
of the square of the matrix element of the transition op-
erator between the two states and it shows up in some
cases as an actual width of a resonance. Transitions,
of course, may take place between states in the discrete
or continuous spectrum or between one of each. In the
first of these three cases the use of matrix methods is
clearly appropr iat e and needs no specif ic justification,
but this is by no means true for the others, which we
come to in Sec. ~II. In this Section we discuss every-
thing via matrix methods.

We are interested then in the distribution of, and
correlations between, the transition amplitudes y,.&

=(4,
~

T
~
4&)—= T,&,

'~ where T is a transition operator and
i,j label H eigenvectors. The basic result is the Porter-
Thomas distribution (Porter and Thomas, 1956; see al-
so Brink, 1955; Wigner, 1967}, which gives the transi-
tion amplitudes, normalized by the square root of the
locally averaged strength, as Gaussian random va.ri-
ables, the correlations between different strengths

The y, , notation is common in nuclear reaction theory, while
T; is more appropriate in matrix theory. We shall use the
latter. We shall below use both (i

~
X) and x;z for the overlap

between the II-eigenvector 4; and the fixed basis state g&. Note
that, with the assumption that the system is time-reversal in-
variant, the x;), and the matrix elements of transition operators
may be taken as real, and we do so. We write p& z,
x2, . . .) for the joint probability density of the variables
A, B, . . .
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being, except in one important case, quite weak and
vanishing asymptotically (as d —~).

The Porter- Thomas distribution, as usually derived,
mould seem to be appropriate if the states involved have
very different structures; for example, mith a scat-
tering resonance, one. state might be describable in
terms of closed shells with a few valence particles, the
other in terms of many hole-particle excitations of this
simple structure. When this is the case, it is reason-
able to treat the excited states 4,. statistically but to re-
gard the other member of the transition pair (which, in-
stead of C~, we might then label as &I)„c defining a re-
action channel) as being fixed, not varying as H moves
across the ensemble. It is this procedure which gives
rise very simply to the Porter- Thomas distribution, as
we shall see below. Of course, if the states have very
different structures, the strength, for transition oper-
ators of interest, will be fragmented into many small
components (small compared with their theoretical
maxima) and it is reasonable then to expect general
statistical lams to apply. We shall sometimes refer to
this as the "external" case, one of the states in the
transition pair being outside the vector space of the
statistically treated states.

However, as we have mentioned in See. I, and mill de-
scribe in some detail belom, there is some evidence
that, like other statistical?aws, something like the
Porter- Thomas distribution is valid much more gen-
erally than has often been assumed. It appears to hold,
for example, with y transitions betmeen low-lying states,
when one cannot reasonably assume that the states in-'

volved have very different structures, or, equivalently,
that the strength is greatly fragmented. In this circum-
stance we should regard both states as belonging to the
"statistical space, " both therefore varying with H. We
shall consider this 'internal" case, also, and derive
forms for the strength distribution, making clear the
circumstances under mhieh they reduce to the Porter-
Thomas form.

Although from a purely technical standpoint the ran-
dom-matrix theory for transition strengths is very
much simpler than for eigenvalues, the strengths carry
much more information about the system (see, for ex-
ample, Appendix C) and therefore make far more de-
mands on the models used. The most. interesting ques-
tions concern, not si.mply how mell the GOE or a simi-
lar theory fits the data, but rather what extensions of
the simplest statistical model are called for, either as
modifications of the ensembles or, more explicitly, in
terms of direct-reaction. effects, single-particle excita-
tions, and so forth (the two are, of course, related).
Moreover, the relevant experiments, needed, in par--
ticular to study correlations between processes, are
hard to do, and the runs of data are much shorter than
in. the energy-level ease, so that the statistical errors
are large. The whole subject then is huge and compli-
cated; and though we shall comment briefly on some of
the strength data, we cannot attempt any general review
of it [see, for example, Lynn (1968); Lane (1976); Bil-

puch et al. , (1976); MacDonald (1979)]. We shall, how-
ever, study closely some formal aspects which have
been ignoied and consider also expectation values and
some effects of symmetries and collectivities.

B. The distribution of eigenvector components in the GOE

In three dimensions the corresponding probability den-
sity is found to be constant in the (—1, 1) interval,

p(;(x&(~) = 2', (7.2)

The corresponding result in d-dimensions is a stan-
dard one of d-dimensional geometry, easily derived by
introducing polar coordinates. But it mill be more effi-
cient for us to start with the joint probability distribution

P&i I&) &, &i I))2&, ..., &i l))~& (+(i +2) ~ ) +d)

=tr i )'(d/2)()(g x; —)) (7.3)

for all the components of 4;, and derive the required re-
sults by integrating over the unwanted components. The
form (7.3) follows from the facts that (1) the distribution
can depend, because of orthogonal invariance, only on
the norm, t = (P~, x',.)'/'1 of the vector and must be
proportional to the indicated 5 function because of the
normalization (so that any multiplying function of r would
reduce to a constant); and (2) for integrating a spheri-
cally symmetric function g(r) the volume element O'U is
given. by

Z'(d/2)dz = 2i&'/'r' 'dr, -

)'(d/2) f d'U))(~' —))=8~'
For the joint probability distribution for l components-

say, (i ~&, ), . .. , (i ~A., )—we simply carry out a (d- l) fold
integration on (7.3) using Cartesian coordinates, en-
countering thereby only elementary integrals. The re-
sult is

We derive in this section some basic results, which
we shall need. ahead, for the distribution of a component
of a given H eigenvector, 4;, and more generally the
joint distribution of several components and the correla-,
tions between them. Many of the results derive directly
from simple theorems of d-dimensional geometry;
others are well known, also, having been derived, in
some cases by different methods, largely by Ullah and
Porter (1963a) and Ullah (1964, 1967).

Because the GOE is an orthogonally invariant ensem-
ble, each H eigenveetor uniformly covers the d-dimen-
sional unit sphere as H moves through the ensemble.
In the two-dimensional case each vector —4;, say-
moves uniformly on a circle, so that, for the com-
ponent along a fixed axis (say, (t),), we have the prob-
ability density p~(x) = (2&() ' and therefore

j.
P(' ())& (+) P &m&)

(+)
[ e

~

(7.4)
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The density vanishes, of course, as in other equations ahead, if the normalization restriction Q;,x, ~ 1 is not sat-
isfied. It should be clear that the same form {7.4) gives the density for the same component (fixed g, ) of I different
H eigenvectors, and similarly for other equations which we give below. This result (7.4) is given without deriva-
tion in Lynn (1968), being ascribed there to Ullah (1967). The form is indeterminate for l =d, but that result, of
course, is given by (7.3).

For I =1 we find the standard result that

(x) g &/2 P(d/2)1 (1 x2) &!&-3&/2 (7.5)

of which (V.l) and (7.2) are special cases. The odd moments of this distribution vanish, while for the even moments
we find

(2 v —1)!!
2V 2v

I'(d/2) (2v —1)!!(d—2)!! (2u —1&!! 2 v) 4 (v) ( & v&

(d/2+ v)(d+2 (7.6)

The last form derives from expanding out the factorials and is an expansion in inverse powers of d; the first term of
this shows that the "standardized" variable d'/2(i

I X) becomes asymptotically a Gaussian random variable of zero
centroid and unit variance '.

pgt/2& ~

& & &(x) = G(0 1) . (V.V)

Going beyond that, we have, with ps=- G(0, o') and He„ the Hermite polynomial with weight function exp(—x /2cr'), that

(7.8)

and then, from (7.6)

a
p&,. &~ &(x)

— 1 ——He, (d t/2x) +—
2

—He, (d '/2x) + —He, (d t x) + —He4(d /2x) +... — exp(- x d/2),32 3. 2 2&
{7.9)

which gives the lower-order corrections to (7.7). The
asymptotic Gaussian form is one of the two basic re-
sults, the other, which we encounter below, being con-
cerned with correlations between amplitudes. For the
square of the amplitude, using px2 (x) =x ' ps (v'x ),
which is valid for a distribution symmetrical about zero,
we have

( )
(d/ ) x-&/2(I )

&!&-3&/2

1/2
x exp —x~ 2 (7.10)

We shall often write this as p«~z&(x)&-- =- G(0, d' ), though,
of course, the limiting distribution for (i~ X) is simply d(x)—
similarly, in other equations ahead, for example, Eq. (7.10).
XVhen confusion might arise, or when we wish to distinguish be-
tween the large-d and the (cg=~) cases, we shall use also the
notation

~
28We shall see, in fact, that there is a weaker correlation be-

tween (i~ X) and (j~ &&), with all symbols different. We use
the term "quadratic correlation" for a linear correlation be-
tween squares.

the asymptotic form of which is a Xi distribution.
Different components of the same H-eigenvector (an&i

therefore the same component of different H eigenvec-
tors) cannot be independent, since, if for no other rea-
son, a quadratic correlation between &i I)!.) and &i

I
p. )

(and between &i
I
x} and &j I)&) ) is imposed by normaliza-

tion. On the other hand, from the asymptotic form of
(7.4),

d
p«ii, &, ..., &w. ,&(xt, x&) = J.I 2

«p(- dx';/2),
i=i

(7.11)

l

which is valid when (d- I)» 1, we see that the compo-
nents are asymptotically independent, rather than mere-
ly uncorrelated. Thus for large dimensionality the cor-
relations may be characterized as "weak. " We shall see
that they may often be ignored (but not always, as, for
example, in Sec. VII.H below).

The correlations, of course, follow from (7.4), but it
is instructive to derive them rather differently. Ob-
serve first that the average of any product of amplitudes
will vanish unless every symbol i,j, . . . , X, p, occurs an
even number of times (since, for example, &i IX) takes
on plus and minus values with equal probability as 4;
moves over the unit. sphere, and similarly for products
not satisfying the stated rule). Moreover, such aver-
ages involving &i I X) and &i I p, ) will be independent of
i, X, p. and will have the same values as those involving
&i I)&.) and (j Ix); the case is similar for other averages.
These results follow immediately from the orthogonal
invariance. Now, since &tI)&) +I& Ip. ) is itself a basis
state, with norm (a2+b2)'/2, we have for the 2vth mo-
ment of the component of 4, along that state, with M2„
given by (7.6),

(a& i
I X) + f& &i I p, ) )

2" = (a2 + b 2)"(i
I

7 )2"= (a2 + b2) "1VI2„.

(7.12)

Expanding both sides and equating terms in a"b', we
have for the mixed moments the exact results

k &2i &, 2&2

= (2 v —2 &2 —1)!!(2 n —1)!!——(d —2)!!
(d + 2v —2)!!

(7.13)
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For the correlation between strengths (squares of am-
plitudes) and the corresponding correlation coefficient,
defined for two random variables in the standard way
and taking values in the interval (- 1, 1), we have then

c(&; Il &', &; Il &') =c(&iI»', &iI»')
1

(d —1)

(7.14)

It is to be understood that, in these equations, and
similarly below, i c j, A. ~ p, . Thus, for example,
[&iIX) ]„which by (7.6) is 3/d(d+2), would not be
given correctly by (7.13) or (7.14).

The procedure used here for two components works
for an arbitrary number I of them (1 ~ I ~ d). We use
multinomial expansions and find them

&i
I X, )2"~&i

I
X2)'2 ~ - ~

&2 I ~, )2"~

(v:vi) v2). . . q vl) &.
I

)2v
(2 .2 „2 , . . . , 2 , )

(7.15)

in which v = Zv;, (v; v„.. . , v, ) = v!/II; v;!, while [&i I
p, ) "],

is given by (7.6) and contains the entire dependence on

d+1
(d —1)d(d + 2)

&i I»&i l»&i I »&i I t &= —„ (7.16)

c(&'I~)', &iI! &') =
d

We remark finally that we have established in (V.15)
an implicit connection between the joint distribution
function for the components of the same H eigenvector
(determined by the moments, including the mixed ones)
and the marginal distribution for a single component.
Let us make this explicit in terms of the multidimen-
sional characteristic function, which is

the dimensionality. The corresponding case of several
(orthonormal) eigenvectors and a single basis vector is
given by the same equation.

Besides these 'one-vector" results we give also 'two-
vector" results, for different components of different
eigenvectors. These results, due originally to Ullah
and Porter (1963a), follow from the vector ortho-
normality, by ensemble averaging (+~„x;~)(P~~&„)= »nd,
(O~~x;~x»)2=0. We find

Pj2 ~ ~ o gag»

(-it) "&' (-it) & (v v v)
(2v )!... (2v )! (2v:2v --. 2V )

V() ~ ~ ~ 2 P)= 0
(v: v, v, )[(- it, )2"~. ~ . (—it, )2"&](2v)! 'M2„

=g (-1)'t'"(2v)! 'M2 =n! — 8 (t) t = g t n=(d —2)/2.2& '
t n (7 17)

This form is independent of l and, of course, identical
with the characteristic function for the single-com-
ponent distribution, but with the one-dimensional t qe-
pla, ced by the l-dimensional radial t. We may invert the
Fourier transform (7.1V) either one step at a time, in
Cartesian coordinates or more simply in l-dimensional
polar coordinates, and thereby, of course, regain the
density (7.4).

C. Strength distributions and correlations:
the external case

We are interested in the distribution of the strength
I T,, I, where T is the transition operator, and the
matrix element connects Hamiltonian eigenstates. We
rely, of course, on ergodicity, which we discuss in
Sec. X, to replace the spectral distribution (for a given
H) by the distribution over the ensemble, for which at
the beginning we assume a GOE.

As we have indicated above there are two separate
cases, in accordance with our treatment statistically
of one or both of the H eigenstates. In this section we
consider the first case. Let us agree that we have a. d'-
dimensional model space S containing a d-dimensional
subspace S(sC S), which we propose to treat statistical-
ly. Let us choose for S a basis Ii) with i=1.. .d' such

(7.18)

defined in S, is the projection operator into the statisti-
cal subspace. Except for the fact that 6'TIc) is not
normalized to unity, its squared norm being

0' = T ~ = c T (P T c (7.19)

the strength distribution is given by the results of the
last section; we note that the properties of the transi-
tion operator T enter into the strength distribution only
via the normalization (7.19). Using the elementary re-
sult that, for a random variable z and positive constant
o, p„(x) =v 'p, (x/o), we have from (7.5) that

that
I
i) with i = 1.. .d is a basis for 3; then the states

I
i) with i = d + 1, . . .d' are a basis for the "nonstatisti-

cal" subspa, ce of S. It will be appropriate to take the
states Ii) as the Hamiltonian eigenstates.

The ordinary Porter- Thomas distribution results
when we assume that one state of the transition pair-
say, Ic)—is fixed and outside of s (i.e. , is to be treated
nonstatistically). Then the transition amplitude T,, is
simply the overlap between the statistical state Ii) and
the "giant resonance" state 5'TIc), where
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I (d/2)pr (&. )= o ' 1-
d —1 C

2

C(T;„T;,.) = cos8„.= (c,.a, ) '(c'
i T'&Tie)

= (g .g )-'g 7', ,T',. (7.24)

exp —x d 20'c,
C

(7.20)

both forms of which have a variance d 'o, . For the
strength itself,

d
p~ r, , ~

2(x) = 2 exp( xd/-2o, )2&0' x

=(2 IT;.I' ) '" p(- /2IT;. I'), (7.21)

the usual Porter- Thomas (X', ) distribution. " For the
case of isolated resonance, the "observed" width I';,
incorporates a channel penetrability factor, as dis-
cussed in Sec. VHI, which usually varies slowly with the
energy

1 '~ = 2P~y =2Pe
I 'Tie I (7.22)

and then

p;, ( )=(2 I, , ~
~ xp(-~/21;, ).

~c~

For the unitary instead of the orthogonal ensemble the dis-
tribution is g2 (exponential) instead of g~. This, in fact, was
the first general form proposed, by Scott (l954), for the
strength distribution.

The finite-d forms of (7.21) and (7.23) aISo follow direc-
tly from (7.20).

It must be borne in mind that these equations give (for
GOE) the probability of finding any given value of the
strength; they have nothing to do with how the strength
varies along the spectrum of the initial or final states.
Moreover, because of the GOE uniformity discussed in
Sec. II, the distributions do not depend at all on the en-
ergy E;. When we apply the distribution to experimen-
tal data, we must, however, take account of any secula~
variation, in the strength, along the initial spectrum,
arising, for example, from the slow energy variation in
the orbital structure of the initial states. A basic as-
sumption here (common to all extensions of GOE re-
sults to more complicated situations) is that a simple
mapping of local GOE results is permissible. In the.
present case we accomplish this by renormalizing the
strength according to its local (slowly energy-varying)
average, i.e., we take

I IT;, I'], in (7.21) or I';, in (7.23)
to be local constants" rather than global ones, allowing
thereby for their secular. variation with respect to the
initial and final energies.

It should be clear that, with one exception, transition
amplitudes are uncorrelated; the exceptional case is for
amplitudes connecting the same statistical state Ii) with
two different (and therefore orthogonal) nonstatistical
ones Ic), Ic'). The correlation in this case arises from
the fact that the projections into 8 of the giant- resonant
states, T Ic) and T Ic'), are not in general orthogonal,
so that one projection contains" a multiple (given by
cos8„., the cosine of the angle between O'T Ic) and
O'Tic')) of the other. We have then, valid for all d,

with the obvious extension if the two transitions are gen-
erated by different operators, in which case we can. con-
sider c =c' in the same way.

It follows, moreover, from the asymPtotic indePen-
dence of the amplitudes that with the same exception,
which then gives a non-ngativ& correlation

C(IT,, J', iT,; I') = cos'8„. ,

the strengths are asymptotically uncorrelated. It is
elementary, but worthwhile, to derive the finite-d re-
sults which follow from (7.15) or (7.24). We find

(7.2 5)

C(I T,,

C(IT,, I', IT„.I')=-, cos'8„.——,f~j, c~ c'

(7.27)

each of which is distributed as X&, is by definition dis-
tributed as X', if the X, parameters I';, are all equal. We
can then use the relation between the X, centroid and
variance (o'2/h'=2/l) to define an effective l =l for the
case where the variables are not independent or the pa-
rameters not equal (Porter and Thomas, 1956; Draayer
et al. , 1977). Thus

SC 'lg CC

(I';)' ~ I';.)'
C

n+ a +2r
g2 Q+ A +22 (7.28)

We have already, in (1.9), used the first form of 2/l
and will return to it below. The second form derives
from (7.25); it is easy to see that 1 « l ~ l, the lower
bound being attained when the I „are completely cor-
related and the upper bound when they are uncorrelated
and the parameters equal. In the last form, e is the
ratio of the two average widths and x2 the correlation

c(IT.I' IT*. I')=
d 1

cos'8„, —d, chic . (7.26)

It is reasonable to regard these correlation results as
a part of the Porter- Thomas law, the content of which
then is that the transition amplitudes in Hamiltonian
representation are Gaussian random variables which,
except in the case of strengths connecting the same
eigenvector to two different channel states, may be
taken as independent in the usual case of large dimen-
sionality; even in the exceptional case the joint proba-
bility distribution is multivariate Gaussian. The sta-
tistical operation involved here is that of ensemble av-
eraging but, relying on ergodicity (Sec. X), we would
replace that by averaging over the spectrum. Moreover,
while the asymptotic independence of T;, and Tz, is of
major consequence, leading immediately to ergodicity,
it is the correlations between T,, and T... which are of
most interest in the data analysis.

The sum of statistically independent transition widths
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coefficient, written as positive because of (7.25). This
form is used in the analysis of mixed transitions (two
different multipolarities in y transitions, for example);
it shows that, according to the simple statistical model,
such admixtures lead in general to an increase (l & 1) in
the effective number of 'degrees of freedom. "

p$.,(x:o,.) =

d —1
(e -4)/2

2 0'.

exp(- x d/2o, ) .d
2&0'g

(7.30)

D S.trength distributions and correlations: the internal case

Tgj Tgg Xsg XJ g (7.29)

Things are considerably different if we treht statisti-
cally both members of the transition pair, which, as
we have said above, should be appropriate in certain
important cases. In particular, for a Hermitian transi-
tion operator the results depend on its spectrum (since
we consider an orthogonally invariant ensemble, all
transition operators with the same spectrum give rise
to the same distributions). The interesting questions
then are what kinds of distributions and correlations
follow for various general classes of operators and
under what circumstances the results coincide with
Porter- Thomas. We follow French and Pandey (un-
published).

%e can distinguish three general cases. In the first
the entire space is treated statistically, the transition
operator being Hermitian, T= T; similarly for the
second, but. with a non-Hermitian operator, T+ T'.
For these we have effectively d'=d and S=S. The third
case is for a non-Hermitian operator which divides the
space into two statistical Hamiltonian eigenspaces (i.e.,
subspaces invariant for the ensemble of H's), S=S, +S2.
It is natural to regard statistical variations in 8, and 32
as independent, the ensemble then being taken as two
independent (GOE) subensembles; we have here a natural
extension of the "external' case of Sec. VII.C. As an
example, consider single-particle addition, as with
neutron capture, for which T is the projection into S of
a linear combination of creation operators. Then T
g T', T2 =0 so that T is not diagonalizable, and T ef-
fectively partitions S into m-particle and (nz+ 1)-par-
ticle subspaces and acts in one direction between them.

To begin with, we consider the first two cases, in
which the space is not restricted by any symmetry of II,.
A single GOE is then adequate. T is diagonalizable in S
if it is Hermitian. In a general basis ~X), ~

p, ), . . . , we
have for the (real) matrix elements

In the second stage we allow
~ j) to vary uniformly over

the unit hypersphere, during which, of course, the
norm of the projected giant-resonance state also varies.
l,et us write the distribution of v& as p, (x). Then com-
bining the two distributions gives for the transition-
amplitude distr ibution,

n, , (~) =f~;,(~:~)p.,(*)A,

whose moments, by (7.6), are then

(7.31)

(2 v —1)!!
d"

M2„, i (T;~) =— T 2j ' i ——0 . (7.32)

Just as in (7.19), we have

o q (T ) —= (T 'T)jt —(TJ;)2 = (T 'T)t —(Tq))2

=f(T'- T;)(T- T )k;, —

„= (T'T) =(G );,
T= T (T), Gr—=—T'T, (7.33)

where T is then the traceless operator corresponding
to T and G~ is its Hermitian square. The asymptotic
form in (7.33) follows from the fact that T~J goes to
zero in "almost all" cases3', this is so because its en-
semble average is zero, while its variance, when
scaled by the spectral variance of T, is of order d
as follows from (7.29) with i =j, along with the basic
"one-vector" result (7.15); or see (7.60) below.

Now by taking powers of o2tand using (7.15), we can,
for low powers, evaluate [cr~2"], and hence, by (7.32), the
moments of the. T;z distribution. But more simply, for
asymptotic d, we can use the last form of (7.33), whose
moments, being those of an expectation value, derive
from (7.60) below. Parallel with the ensemble moments
of a matrix element (7.32) we introduce the spectral
moments of a Hermitian operator. If the eigenvalues of
Q are q„, we have

in which the random vectors ~i), ~ j) are constrained by
orthogonality and thus correlated (weakly so for large d).
%e now carry out the d-dimensional orthogonal trans-
formations in two steps. In the first we keep the H
eigenstate I j) fixed so that ~i) moves, under (d- 1)-
dimensional orthogonal transformations, in a, (d —1)-
dimensional subspace of s, orthogonal to

l j); during
this stage the giant-resonance state T

~ j) and its pro-
jection, a'«»T j j), onto the hyperplane are of course
fixed vectors, the latter with squared norm o ~2

=(j ~

T'tl'« i& T
~
j). The distributions which result from

these restricted transformations, which we write as p,
are precisely those of the external case above, but with
d- (d- 1). Thus

M, (Q)-=& '$ (~,)'=&9') . (7.34)

%e shall similarly write 9R~ for the central moments of
both distributions.

Note then that aR~(Q) = M~(Q). We find~'

This can be regarded as an aspect of ergodicity. We shall
use this concept several times in this section [Eq. (7.37), for
example ].

jiFor Hermitian T we have T; -=~),t),x;zx z where t)„are its
eigenvalnes. Then a; = g~~tzxz~ —(~qtzx&~), end

(d —1)(d+ i) (d+ 2) (d+ 4) (d+ 6)M4(T;;)
= Sd[2(d+ 2)'Jrt4(T )+ (d + sd+ 12)0!tz(T)].

Note that M„(Gz) =~2„(T) for Hermitian T.
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cg d+1 1 1

(d 1) (d 1)(d+2) &( r) (d I)(d+ 2)

3o4

M6(T, q) =.
d (d

~ —

d 3 [M~((Gr) + 6d M2(Gr)M((Gr) + 8d M3(Gr)].

(7.35)

The skewness, of course, vanishes, awhile, for the ex-
cess which measures the departure from Gaussian,

6M2(G„) 6
y2(T'g) „= dM2 (G"),;—, d [y2 (T) + 3] . (7.36)

As examples for Hermitian T, y2(T ) = 0, —1, + 12, re-
spectively, for Gaussian, semicircular, and y, dis-
tributions; then y2(T;&) = 0. These are examples of
what we shall call "nonsingular" distributions. With
operators which lead to such distributions we can ex-
pect to find Porter- Thomas for the internal transitions
just as for the external.

In contrast, the pa, iring operator K, whose spectrum
is (0~ ~, 1), is an example of a singular operator. For
large d its spectra, l excess is y2(T) —d, and then

y2(T;&) —6, so that the T;& distribution is far from
Gaussian; as we sha, ll see below, T,~ has, in fact, a,

Ko distribution (7.39).
A general criterion for a singular operator T is

easily stated in terms of the properties of its Hermitian
square Gr. When rescaled to unit average, Gr- Gr/
M, (Gr), its (v~ 2) spectral moments diverge with d asd", in contrast to a nonsingular operator for which
there is no such divergence. Singular spectra most
important for us are bimodal, with one mode carrying
all but a few of the levels and with the centroid separa-
tion -d times the width of the dominant mode. See Ap-
pendix 0 for further discussion. Observe that the GOE,
deformed by a pairing interaction (Sec. III.E), gives
for large n an excellent example of a singular opera-
tor.

A measure of the fractional variation in o& as H moves
over the ensemble is supplied by

var(o,') v,' 2 M, (Gr)
(cr2)2 (V2)~ d-~ d M2(G )

nonsingular T 0. (7.37)

we find that

pr, , (x) = G(0. d ' 'M' '(G )),
nonsingular T

(7.38)

the Porter-Thomas result. We see, on the other hand,
that a singular T does not give rise to Porter- Thomas,
since var(o2&)/[(o 2~)]~ —1.

In geometrical terms it is easy to see the distinction

We see that, for a nonsingular T, 0 ~ for large d is very
sharply peaked at its average value M, (Gr); for essen-
tially all H's in the GOE we would find closely the same
value of o &2. It follows then that, for nonsingular opera-
tors in the large-d limit, p, (x) —6(x —MP (Gr)), and
since

p'r, , (x) = G(0, d '~'o~),

ds
p, (s)p„(x/~)

dZ Xd 8 X—exp ———+- =-Z, (d ~x ~),2~, z 2 x z

(7.39)

where the second form follows if the variables are in-
dependent (Ind), and the third if, besides that, they are
Gaussian with centroid zero and variance d ', as we
are assuming. In the last form Ko is the usual modi-
fied Bessel function of the second kind; it has a loga-
rithmic singularity at x=0 and falls off exponentially
for ~x ~d» 1. The moments of a Ko distribution gen-
erated by variables g, q are, because of their indepen-
dence, simply the products of the moments of the sepa-
rate g, q distributions; thus in the present case

(2 v —1)!!
M2v d2~ ~ M2~+ g

—0 ~ (7.40)

which could have been used also to derive the Ko dis-
tribution. Note that both the Gaussian and the Ko forms
are revealed by the asymptotic T,~moments (7.35). .

Since by (7.29) T;J is given as a sum of such variables,
we see that, in strong contrast to the "external' case,
in which they are Gaussian, here the basic random vari-
ables are of Ko type. Only if enough of them, with co-
efficients T~„, which are comparable in magnitude and
more or less random in phase, combine to give the
transition amplitude, will that amplitude (by the opera-

Kp variables have also been encountered by Whitehead et al.
(1978) in a somewhat related problem.

between the two cases. If, for example, G~ has a singu-
lar spectrum (1, 0" '), then only one component of tt»

contributes, via the action of T, to the giant resonance,
and this component varies strongly as H moves over the
ensemble; this behavior is not to be expected when G ~
has a rich" spectrum. , for then, as one component de-
creases, others will take its place in generating the
giant resonance.

In the usual P—T distribution the amplitudes are Gaus-
sian random variables. By (7.38) the same is true for
the internal case when the transition operator is non-
singular. However, for the basic singular operator T
[for which Gr has a spectrum (1, 0~ ~)], T,&

—x,~x&„,
being then the product of two asymptotically independent,
identically distributed Gaussian random variables
G(0, d '~2). For a pair of operators g, q, whose joint
probability density is p~ „(x,y); we have

ds
p~..(x)—
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where o,. is the norm of the projected giant- resonance
state, as in (7.33). We find that

var(cr2) = (d —1)var(T;i)

+ (d —1)(d —2) cova.r (T;i, T,i), (7.42)

which leads to the desired correlation coefficient

This, of course, follows also from (7.36), which is easily
seen to be in agreement with Eq. (7.41) below.

tion of the CLT) be close to Gaussian and give rise to a
Porter- Thomas strength distribution. It is, in fact,
easy enough to see how fast33 the approach to Gaussian
is for T,&. If we combine s Ko variables with centroid
zero and variance d 2 (as above) we have for the cumu-
lants K2 (=variance) and K4 (= y2 x (K2) ), where y2 is
the excess" (do not confuse K„with the Bessel function)„

K2 = s/d2, K4 —6s/d i, y2
——6/s, (7.41)

the K„results following from (7.40) (for s =1) and from
the fact that the cumulants are additive under convolu-
tion of the densities (which gives the density function for
the summed variables). We have remarked above that a
departure from Qaussian corresponding to an excess
ly2 I

-0 25 is hardly detectible by eye; that would re-
quire about 25 contributing amplitudes. However, ac-
curate measurements of the distributions are not usually
feasible so that a satisfactory Qaussian might be
achieved with fewer amplitudes than that, perhaps as-
few as a dozen.

The need for a randomness in phase, which is some-
times forgotten, becomes apparent if we take T„~
= T~ T„. If the T„are themselves comparable, then. in

(7.29) we are combining a very large number of quad-
ratic amplitudes comparable in magnitude. But the
result obviously is (Q~x;~T„)(+„xi„T„),which, in a T
diagonal representation, -reduces to a single term and
gives us back our Ko distribution.

For completeness we work out the asymptotic (d —~)
strength correlations, which, as we have stressed, de-
scribe an. essential aspect of the strength distributions.
Correlations between T;& and Tz;, which are, of course,
identical for Hermitian T, seem to be of little interest
for non-Hermitian T; however, the linear and quadratic
correlations are given in Appendix P. There being no
linear correlations between any other pairs of transition
amplitudes, we are then left with two cases of correla-
tions, between disjoint strengths and between strengths
with a single state in common.

Since the random variables x» in the expansions (7.29)
of two disjoint amplitudes, T;z and T„„are asymptotical-
ly independent, we have the result that disjoint strengths
axe asymptotically uncovxelated for all transition oper
ators T.

The other significant correlations can be derived also
via (7.29). For a nicer way we consider the ensemble
average of

(d —1)o 4- (d+ 1)(a~)'
3(d= l)~g —(d+ 1)(o2)~

1 T ~4~
—3 (T2~)2

M2 (Gr)
g „3M2 (G r) + de (G r) ' (7.43)

in which we have used (7.32) and (7.35).
We find, similarly, for the related strength sequence

(i -j—0) that C(T2ii, T J„) is asymptotically given also by
(7.43). See Appendix P for nonasymptotic results.

For nonsingular oPerators these correlations also
vanish just as in the simple Porter- Thomas ease. For
singular operators, on the other hand, the correlations
are finite, taking the value C = —,

' when G~ is the simple
pairing operator. For this latter case the result is
easily verified ab initio.

Finally we turn to the two-QOE case. We have T;~
with eigenstates ~i&, ~j& varying over subspaces S„s,
of dimensionalities d„d2 and projection operators (P&, 6'2,
respectively. This can be regarded as an extension of
the external case, but now with the channel states also
belonging to an independent orthogonal ensemble. As
before, we can carry out the ensemble averaging in two
independent steps. We have

(2 v —1) I l 1"(di/2)
2" 1(d/2+ )

(2v- 1)!! I'(di/2) 2„
2" r (d,/2+ v)

where o,'= (j ~

T'O', Tj(—) and o',. = (i ~Ta—'zT'ji) are expec-
tation values in ~j& and ~i) of the operators O', T'a', Ta,
and (P, T62T 6 „respectively. Note that the operators
are Hermitian and therefore the expectation-value mo-
ments, as required in (7.44), derive from (7.60) below.
For the first few moments we have, with ((G)) the trace
as in Eq. (3.6),

(7.44)

E. Porter-Thomas distribution and experimental data

The main question is whether locally renormalized
transition amplitudes behave as independent Gaussian
random variables. For transitions between the states of
a given system, defined by a specific H, we would then
rely on the ergodic behavior in making a comparison be-
tween theoretical ensemble results and experimental
spectral ones; there is, of course, also the possibility
of combining results for several systems which may ex-

M, (T,,) = ((G)&,12
3

M4(Tip) d (d + 2)d (d ~ 2) (2&&G '&& +(&G&&') ~ ( 45)

where G stands for either of the two operator@, their
traces being equal because every strength which starts
in one subspace has its counterpart which starts in the
other. We have again a Ko distribution for T;~ if the G's
are pairinglike, whereas most operators do lead to the
usual Porter-Thomas distribution (for asymptotic d&

and d2, of course). The correlation results are also
similarly derived. In their essential forms, then, the
results are the same as in the single-QOE case.
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FIG. 10. Histogram of the reduced neutron widths for 6 Er+ pz

is compared with Porter-Thomas; good agreement is seen. A
similar comparison is made far E2 strengths for transitions
between two shell-model spaces (dg), T =1, J=0, 2. When the
strengths are locally renormalized, as called for in the theory,
the agreement is again gaod; but when this renormalization is
not carried out, the distribution has a radically different shape.
The experimental widths are from I iau eg g). (1972), and the
shell-model widths from Draayer et aE. (1977).

IO

4We are free to use a longer run of levels for testing the
strength distribution than for the energy-level fluctuations (109
levels in this case), since one may choose a method for anal-
yzing the experimental strength distribution which discounts to
some extent the small widths, which are more liable ta be
missed or wrongly interpreted. There is no simple way to do
the correspanding thing with the spectrum so that the run of
levels must be more restricted; see, however, Caceva and
Stefanan (1979).

'tend, for example, across the nuclear table. In dealing
with this question we cannot attempt any kind of detailed
review of the data; we will examine instead only a few of
the especially relevant experiments and computer cal-
culations.

One part of the question is whether the locally re-
normalized strengths have a X, (Porter-Thomas) dis-
tribution. The experience here is that the width dis-
tribution —for example, that of I „ in (n, y) reactions-
is indeed Porter-Thomas, at least as long as no
doorway states or other intermediate-state structures
are present (that case we consider in Sec. VII.G). In
fact, as we have seen in Sec. ~, many statistica, l tests
of the experimental data, for missing levels and for par-
tial identification of spin, are based on the assumption
that this is the distribution. As an example with very
high-quality data, that of the neutron widths for ' Er
+n, 174 widths~4 with neutron energy ~ 9.5 keV (Liou
et al. , 1972), we show in Fig. 10 a histogram of
the data drawn to logarithmic scale, and the cor-
responding P-T distribution. The fit is quite good.

A plot of this nature, due originally to Garrison (1964)
and reproduced in Lynn (1968), shows the same compari-
son, with about the same quality of agreement, for the
best neutron width data (144 widths) available at that
time for even targets. Once again it is clear that 'the
Porter-Thomas distribution is a good representation of
the data" (Lynn, 1968, p. 223).

One could test this further by calculating a X confi-
dence limit, or by using a maximum-likelihood pro-
cedure based on the number of degrees of freedom
(Porter and Thomas, 1956; Lynn, 1968). In the latter
procedure, more commonly used, one calculates v, the
number of degrees of freedom, assuming that the dis-
tribution itself is X„with v not necessarily an integer.
A statistically significant departure from v=1 is then
an indication of a failure of the Porter- Thomas assump-
tion. However, there is a tendency for the data to have
systematic errors which almost always result in larger
calculated v values. For example, v= 1.20+ p, 5 was
found (Wasson et al. , 1971) for 12 final states and 23
s-wave resonances with E„&600 keV in 8U(n, y)239U;

and the systematic error, due, for example, to unre-
solved components in the y-ray peaks, was estimated
to increase v by as much as 20%. It is probable that
many other known v& 1 (n, y) results may be due to the
same cause (Bollinger, 3.970). With some simple sta-
tistical assumptions on the errors Coceva et al. (1971)
have given unbiased estimates of v and find good agree-
ment with the Porter- Thomas distribution for Ml tran-
sition strengths in the ' Pd(n, y) reaction; see Corvi
and Stefanon (1974) and Stefanon and Corvi (1977) for
other examples, ~'51n(n, y) and ~'VHf(n, y). For E1 tran-
sitions the same authors report v values slightly larger
than unity, which may again be due to an inadequate
accounting of the errors.

Among other examples, y rays from nine 3 and seven
4 resonant states to a total of 41 final 2', 3,4' states
below 2600 keV in the ~Sm(n, y) reaction have been
analyzed by Becvar et al. (1974). It is found that for
transitions to the eight 2' final states there is no sig-
nificant departure from the P- T distribution. However,
whereas the maximum-likelihood tests for the thirty-
three 3' and 4 final states give results consistent with
P- T, the same tests for the lowest thirteen 3 and 4'
states (below 2196 keV) give a small departure. The
authors have made a detailed analysis- of the probable
errors; they believe that the deviation from Porter-
Thomas is a real one.

The effects of the secular variation in the strength
are best studied by means of shell-model calculations,
for which they are large. In Fig. 10 we also give the
&2 strength distribution derived from the -20 000 tran-
sitions between the J=2, T=O and J=O, T=O (ds)~
shell- model states constructed for a realistic Hamil-
tonian by Draayer ««. (1977) in connection with their
spectral- distribution studies. The strength distribution
is seen to be drastically different from Porter- Thomas.
On the other hand, when the strengths are locally re-
normalized, to eliminate the secular variation, the dis-
tribution, given also in Fig. 10, agrees beautifully with
P- T—similarly for Ml and E4 transitions 'I (&s), and
for distributions in which the strengths are taken from
restricted energy domains (which would, when suffi-
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ciently restricted, yield P- T without renormalization)„
These shell=model calculations give an excellent fur-

ther-demonstration that the fluctuations, when properly
measured, are invariant under mappings and embeddings
of the Hamiltonian. In the same connection it has been
demonstrated, by Monte Carlo calculations, that in the
restricted two-body interaction ensemble, TBRE(Z, )
of Sec. II, p&;~»(x) is well represented as a Gaussian
and the pair of random variables (i

~
A. ), ( i

~ p), as well
as the pair (i

~
X), (j ~ p), is essentially independent.

We turn to the question of strength correlations in
circuxnstances where the ordinary P- T distribution
should appl. y; we consider, in particular, the case of
"resonance correlations in whic h a statistical state,
a member of a sequence, makes transitions to two chan-
nel states. According to Eq. (7.25) the correlation co-
efficient in this case is not necessarily zero, but it is
non-negative for the ordinary statistical model.

Early experiments seemed often to show significant
correlations which in some cases disappeared with
better y-ray or neutron energy resolution. Careful
studies of the reaction U(n, y) referred to above
(Wasson et al. , 1971) have shown, except in one case,
no significant correlations. These authors examined y
transitions to 15 final states originating from each of
the 23 &-wave resonances with E„&600 keV. For each
of the 105 y-ray final-state pairs one can then determine
a correlation coefficient from the series of resonances.
A question which arises in the analysis is whether the
observed correlations may arise from finite-sample ef-
fects which are large because the resonance series is
short. This question is studied by comparing the histo-
grams of the correlations with that arising from a large
number of similar examples constructed via Monte
Carlo calculations which make use of a set. of uncoxre-
&+t«y& strength distributions. The conclusion is that
the one very large correlation coefficient (+0.81 between

y rays with energies 3991 and 3982 keV) which is ob-
served is not guaranteed to be a real effect; the case is
similar for correlations between the neutron and y-ray
widths.

On the other hand, Beer et al. (1968), in an earlier
experiment, find in the '8~Tm(n, y) reaction a large cor-
relation (+0.274) between the neutron and y-ray widths
and a smaller average y-y correlation (+0.088), which
they regard as significant, perhaps as indicating that
the excited states have a larger-than-statistical corn-
ponent of a single-particle excitation of the ground state
(Bockelman, 1959; Lane and Lynn, 1960).

In both of these experiments the correlations are
"initial state" or 'resonance" correlations, involving
a sequence of such states, in contrast to final-state
correlations, which result from averaging over the final
states for any two given initial states. Many examples
of large correlations of both types are listed by Lane
(1976, p. 533),, and in fact "there is a tendency for a
given. target and neutron partial wave to show both or
neither. "

Transition-axnplitude correlations have also been de-
termined for proton resonances —in particular, on 4 Ti
(Mitchell, 1980, and private communication). The rela-
tion between the strength and amplitude correlations as
given by (7.24) and (7.25) is not satisfied for much of the

data. No explanation has yet been given for this anomaly.
Finally, we mention some work in progress (Auger et

a/. , 1980) concerning El electromagnetic transitions in
the ground-state region of light nuclei. With the some-
what old data of Perdrisat (1966) for nuclei with A ~ 40
the renormalized widths for all nuclei belonging to the
main group of the nuclear-table ensemble fit the Porter-
Thomas distribution reasonably mell. This complements
the picture given in Secs. I and ~ for eigenvalue fluctua-
tions in the nuclear- table ensemble.

(a„') =1+d -'Z

q —= (1 —n~)/(I + n2),

(7.46)

where H is a GOE with the standard normalization (2.5)
and T is an independent ensemble of real antisymmetxic
matrices with matrix elements distributed similarly to
those of H. For e =0, 1 we have the standard COE an.d
GUE; for a = ~, which is physically uninteresting, at
least in the present context, the corresponding analytical
results have been given by Mehta and Rosenzweig (1968).
For other n values, and, in particular, therefore for
0 «a &1, which gives the physically interesting ortho-
gonal- unitary transition, only Monte Carlo results
have been previously given. We consider these results
before proceeding to an analytic treatment.

Among the. quantities consi4ered are the nearest-
neighbor spacing distribution for small spacings, the
variance-to-centroid ratio for the strength distribution,
and the value of &3 [which for the standard ensembles

.are respectively proportional to S~, equal to 2/P, and
given by (5.21)]. For small spacings Rosenzweig et al.
(1968), who use the parameter ~' = n'/(1+ n'), find a
very rapid approach to the unitary case as + increases;
in fact, for +2= 0.01, with d=20, the result is already
vex'y close to unltax'y. For the strength distribution they
find an even more rapid transition which is strongly d
dependent; in particular, a discontinuous jump. . . as
&2 varies from 0 to a small finite value is not excluded
(p. 446)." If such should be the case (and our analysis
will show that it is), the value of the "effective" dimen-
sionality would be required. This point is explicitly
made by Bosenzweig et a$. , who analyze some of the
strength data and give the results in terms of upper
limits inferred from the results with d =100 matrices.
Monte Carlo calculations have also been more recently
made by Camarda (1976) who studies strength distribu-
tions and ~, values for d =40, SO. He stresses that the
strengths supply a better test than does ~,. His cor-
responding anal, ysis of the data suggests that ~ &0.05.

F. Time-reversaI invariance

The principal question (Wigner, 1967) is whether one
can detect, in the strength and energy-level fluctuations,
the influence of that part of the Hamiltonian which is not
invariant under time reversal. The possibility of doing
this comes from the fact that the fluctuations are quite
different fox' the GOE which prescribes invariance and
the QUE, which ignores it. We therefore introduce the
ensemble (Rosenzweig et al. , 1968; Mehta and Rosen-
zweig, =1968; Favro an. d MCDonald, 1967; Camarda,
1976; McDonald, 1980)

H =(1+n') '~'(H+inT), n=n ~ 0
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Turning now to an analytical treatment we observe
first that, with the normalization (7.46), the recursion
relation (3.15) for the ensemble-a. veraged density mo-
ments applies for all e and, hence, so does the semi-
circular density (3.17). For the two-point function we
follow Sec. I&, the only difference being in the value of
the completely cross-associated trace product which
supplies the amplitude in the modal expansion. . Fol-
lowing the procedure of Appendix J we find easily that,
for large ~

which occurs is due to the release of a symmetry con-
straint near the GOE which has no counterpart near the
GUE. The first question which now arises, in deter-
mining from the data a value for the magnitude of the
symmetry-breaking interaction, concerns the adequacy
of the Hamiltonian (7.46) with its multibody interactions.
The second is how to calculate the effective dimension-
ality. Both of these have been solved (French, Kota,
and Pandey, to be published) but the analysis is not yet
completed.

(H~)(H~ ) =—
2 1+ 2

——
2 (1+q~), (7.47)

V

which, with a=0, 1, gives back the /=1, 2 results of
(4.9). Equation (7.47) ca,rries the entire n dependence
of our two-point function, which can now be constructed
by replacing 2/P by (1 + q~) inside the summation in
(4.18) and then evaluating the elementary sum anew.

With g~(x) defined by inspection of (4.18), we have the
two-point function

d

S ~ (x, X ) =g (1 + R~)Z& (x)Z& (S)
&=i

d

= So„~ (x, S) + Q q A'q (x)A'q (X) .
0=1

(7.48)

For finite but large d they display some special features,
in a small central region of the spectrum, which are not to be
found in the true unitary ensemble (or in our results).

Let us partition the range of o. by the values o.

=0(GOE), d ', 1(GUE), ~(MR), where (0, -d ') will
be seen to define the transition region, and, as indi-
cated, n~ =~ gives the ensemble of Mehta and Bosen-
zweig (1968) [see also Dyson (1962e) and Cristofori et
al. (1966)]. We ask now for the relative contribution of
the second sum. For e —d ' we see that q~ has a non-
zero value even for f-d, its maximum value; there-
fore in the first region, 0 & e~ + d ', we should carry
out the explicit summation. In the second region, as
a d becomes» 1, the damping becomes very large in
the second sum, which therefore does not contribute;
S' thus becomes the unitary two-point function. We now
see a transition from GOE to GUE which sets in at o

, well before the value a =1, which defines the
standard unitary ensemble, is reached. Moreover, as
d increases, the transition region shrinks, so that the
transition becomes very fast, discontinuous in the
limit. The range of e values which define the transi. —

tion region is in general agreement with the Monte
{ arlo calculations. We observe that the "cluster-type
calculation of Favro and McDonald (1967), which dis-
plays the changing slope of the nearest-neighbor spacing
distribution, also applies to this region. For e =~,
(7.48) gives the JOE expansion, but with odd-g terms
missing, so that we get half the GOE sum, and thereby
the CUE result. For asymptotic d this is in agreement
with the results of Mehta and Hosenzweig [(1968; their
Eqs. (22, 24)], which are, of course, exact. 35

A main conclusion from these results is that for al-
most the entire range of strengths of the symmetry-
breaking Hamiltonian, i.e. , for n ~d '~, the energy-
level fluctuations are independent of the strength and
are described by the unitary ensemble. The transition

G. Isobaric analog resonances

In high- resolution proton- resonance experiments an
isobaric analog (T&) state, which resides in a sea of
(T&) background states, is excited, it being usually
identified by its very large strength —for example, in
the (P, P) reaction —resulting from direct coupling to
the proton channel. The widths of the background states
are enhanced by a spreading of the analog due to charge-
dependent residual forces. In heavy nuclei, and also at
very high excitation energies, the background states are
very close and overlapping, and consequently the analog
state is seen as a smooth envelope which has a Breit-
Wigner shape. However, in less heavy nuclei, especial-
ly below their neutron thresholds, the states are well
resolved; they are characterized by the normal strength
fluctuations which are modified, in the vicinity of the
analog, by a strong level-to-level secular variation due
to the symmetry mixing. The only questions which we
shall consider are whether the secular variation can in
a satisfactory way be eliminated and whether the fluc-
tuations are indeed of Porter- Thomas type. We shall
by no means enter into the complexities of the data
analysis which have been much discussed in the litera-
ture, but shall merely indicate the way in which random
matrices enter and say a little about the answers to our
questions. General analyses, which have been mainly
directed toward establishing the secular trend and in-
terpreting the parameters in terms of "microscopic"
quantities, have been made by Bilpuch et al. (1976),
following Lane (1969) and Lane et al. (1974), and by
MacDonald (unpublished; see also MacDonald, 1979),
based on the original theoretical considerations of Mac-
Donald and 5/lekjian (1967) and Kerman and de Toledo
Piza (1968). Excellent accounts in a more general con-
text are given by Mahaux (1973) and Mahaux and Weiden-
mu*lier (1979).

If the strength extends far from the analog, the usual
Porter- Thomas distribution should apply; this has been
verified by Bilpuch «&l. (1971). But, as we shall see,
Porter-Thomas does not apply in the vicinity of the
analog state, at least in its usual form.

We consider a doorway state @0 at energy &o and the
background states &f& at energies & (m =1,2, . . . , d);
these are solutions of a model Hamiltonian Ho. The
background states have the same set of exact quantum
numbers, while the doorway state has one or more quan-
tum numbers different from these; for example, an
analog-state doorway differs from its background with
respect to the isospin symmetry. We have also channel
states ~c). The symmetry-breaking interaction V is
described in the @ space by a real symmetric matrix
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whose only nonvanishing elements are V p
—Vp

=(@~
~

V~ @0) with m 4 0. V has also matrix elements V,
connecting the Q states (including m =0) with the channel
states. For ~+ 0, V2, is the. internal width. The
total Hamiltonian If =Ho+ V' has eigenvalues E„(A.
=0, 1, . . . , d) given by the solutions of the secular equa-
tion

(7.49)

and the eigenvector components X„ in the P basis by

(V.50)

The states decay via the residual interaction V. Then
the reduced width y„, in the channel is given by

d 2

yacc'= V~ ——Kqp Vcp+
'

Vcm Vmp E„—c '7 51

2
Vm, V .,=W, 5

2
(7.52)

'0 =XCO,mp5

valid for ~,~'c 0. Note that & is the correlation co-
efficient between the two classes of matrix elements.

From (V.51) we see that when the internal widths are
zero, the decay widths for different channels are com-
pletely correlated. Large correlations are in fact ob-
served (Bilpuch «a&. , 1976). However, even if we
ignore the energy-level fluctuations (which seems ap-
propriate), to extract the y~2, distribution from (7.51)
appears to be a very difficult problem.

We can simplify (7.51) in the case of very weak
mixing by retaining only quadratic terms in V 0., if we
do the same for V „which is usually satisfactory, we
find, as in Lane (1969), that

V2
)lc yg .0
~0

d V2
mo

m=1 0 m

2

r~c = V~c+ Vcp ~
Vox' ~~-~0

d
2 2 ~ 2

&0, = V,o
—~ (r, —V .).

(7.53)

From the third of these equations we see that, since y„,
is given as a sum of tmo Gaussian random variables, the
ensemble distribution of the strength is Porter- Thomas.
However, the sPe&I«l distribution of the strength is not
porter-Thomas, especially in the vicinity of the door-
way, because of the strong secular dependence. Carrying
out the ensemble averaging we find, with A. c 0, that y&c
has a y2& distribution with

We now take the P with me 0 as forming a statistical
space, assuming in particular that they are chosen as
a representative set of COE eigenstates. The V, and
V p have then a multivariate Gaussian distribution with
linear and quadratic averages given by

Vmc= Vmp =0
~

2 2
2 0c Vcc 0 Vpc (7.54)

and that different strengths involving the same channel
are independent. yp, behaves differently; its mean fol-
lows from (7.54), together with the last equation of
(7.53); the quadratic and higher averages are rather
complicated in form and the distribution itself is not
simple. Because of the approximations made (7.53)
and (7.54) are of limited applicability, but, as confirmed
by inspection of Monte Carlo calculations (Brody et al. ,
1973) with the (c~) taken as an unfolded GOE spectrum,

- they do give a reasonable view of the overall picture.
For example, even when the spectrum (c„) is sym-
metrically distributed around co, they yield y„„which
is asymmetric (Hobson, 1965), the asymmetry, as we
see in (7.54), being induced by the correlation coeffi-
cient &.

It seems quite probable that the methods which we have
used in Sec. III.E mill give a better solution to the sta-
tistical problem which originates with (7.51). In fact,
these methods, in which the ensemble averaging is done
at the outset, bear a certain relationship to those of
MacDonald and Mekjian (1967) and Kerman and de
Toledo Piza (1968) which lead to the following identity
for the nonaveraged Lorentz-weighted strength function".

I 2

S(E,I)=- g
1 V2, (I' i+ 2I)

2z (E —Eo —A~)~+ '; (r~+2I)2
d V2r, (E)=2I g EE —c„+I
(E —c,„)V 0

m = i (E - '~)' + I' '

(7.55)

The last form for S(E, I) is valid for zero intrinsic
widths of the background; for V, c 0 it should contain
additional terms with some new parameters [see the
above references or Lane (1969)]. For I large enough,
the parameters r ~ and &I (and other parameters, in the
general case) become energy-independent; I ~ simply
becomes an estimator of 2&~02/D2.

The data have been successfully analyzed by Bilpuch
et al. (1976), with the proposition (Lane et a/. , 1974)
that the continuous smooth function S(E,I) can be ap-
proximated by a locally-averaged histogram strength
function. It has been pointed out recently by MacDonald
(1978, 1979) that this approximation should be good only
for the strong-coupling case, whereas most of the data
yield meak-to-intermediate coupling results. He has
carried out an analysis (MacDonald, private communica-
tion) of the data, by using the Lorentz-weighted strength
function, having shown via corresponding Monte Carlo
calculations that by choosing I properly, the investigator
can considerably reduce the statistical error. For an
exchange concerning this question see Lane et al. (1979)
and MacDonald (1980).

H. Expectation values, sum rules, and giant resonances

Expectation values in nuclear states are sometimes
measurable, for example, quadrupole moments and
single-particle occupancies, the latter by use of single-
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nucleon-transfer sum rules. Indeed, such sum rules,
which, like others, determine the expectation values in
an initial state by summing strengths to final states
(with perhaps an energy weighting or a 8 or T selec-
tion), fix the 'basic ' multipole moments of the initial
state (French, 1964, 1966; Moinester, 1967; Hansen,
1967; de 1.6pez e/ a/. , 1967; Moinester e/ a/. , 1969;
Moinester and Alford, 1970; Clement, 1973; Clement
'and Perez, 19VV, 1978), and so our two examples are
related. The more complicated &2 sum rule fixes the
expectation value of a Q. Q operator which is in some
cases closely related to an SU(3) Casimir operator.

These remarks only remind us of the obvious, name-
ly, that expectation values are of great interest. They
do not make clear' why we should be concerned with
them here, since averaging an. expectation value over a
GOE, for example, will necessarily give the same re-
sult for all states and, because of the summation over
final states, very small fluctuations (vanishing as d
—~) in most caseS. Thus to make contact with physics
we must, when dealing with the expectation value itself,
not average over an isotropic ensemble. Moreover,
while ensemble averaging, with an appropriate re-
normalization, might somehow be adequate for dealing
with local behavior, we still must ask how expectation
value fluctuations are to be observed or otherwise made
use of. It will turn out that such fluctuations will depend
very much on the microscopic structures of the states
and the excitation operator.

Let us first solve the simplest formal problem, that
of the GOE distribution of the expectation values of an
operator G in the Hamiltonian eigenstates. There are
two main cases of interest: (1) G =T= T', in which the
off-diagonal elements of G might be transition ampli-
tudes, as, for example, with G the quadrupole moment
operator, Q„. (2) G = T "T, in which G (= Gr of Sec. VII.D)

might be a sum-rule operator. Note from the initial re-
marks that there will not always be a clear distinction
between the two cases. But in both, G is Hermitian,
and, without loss of generality, we can subtract out its
trace; thus

G=G', (G) =0. (7.56)

&x X-~ ' (V.57)

It is straightforward, in fact, and instructive, to derive
the general moment of G;;. Using (7.57), along with the
standard result for the power of a polynomial (Abramo-
witz and Stegun, 1964; Biordan, 1968), we have

(G;;)" =
s' {v)

Xgp Xgy ~ ~ ~ y X)
{X~A X2 '8 X~ )

I

2&g 2&p 2v~ &g v)
6~yxg) x~)„' ' xq) )g) ' ' g)

(7.58)
(v: vg' ' v))

II (&u, !)

m, =number of /'s in the partition &. The &(v) are the
(unordered) partitions of v- (v„v„.. . , v, ), and
(v: v, v, ) is the multinomial coefficient of (7.15).
Using (7'. l5) to eva, luate the ensemble average, we have

Our interest is in the ensemble distribution of G;;
=(&

~

G
~
&); we consider this in terms of its moments

[G";;],=3R„(G;,), which, just as with T;z, must be homo-
geneous polynomials of the spectral moments 3R~(G).
follows then that OR, (G, , ) =G;;=0. It should be clear also
that 9R2(G;;) -d '3R2(G), this because, in the representa-
tions defined by "most" H's in the ensemble, G is highly
nondiagonal, so that the span of its centroid spectrum is
small compared with its eigenvalue spectrum. These
results are easily verified by writing G;; in the repre-
sentation in which G (with eigenvalues g~) is diagonal,

(2v- 1)!!(d—2)l! ~ (v: v, . v, )2 1
(d+2v —2)!! ~&„& (2v;2v&. 2v, ) II(z, !)

Otg 0 A. p
''8 JL ))

Vf Pg
(V.59)

in which, as in (7.6), the first factor is simply the 2vth
moment of x;„. Special cases of (7.59) have been given
by Hosenzweig and Porter (1961);see also Ullah and
Porter (1963b).

The restricted eigenvalue summation encountered here
defines a pth-order symmetric function of the eigen-
values of G, which by a standard theorem on symmetric
functions may be expanded as a sum of homogeneous
products of the spectral moments gg„of G. In the nota-
tion of Kendall and Stuart (1969) the restricted sums are
the augmented symmetric functions, while the spec-
tral moments, when multiplied by &, are the power
sums, " s„=dwatt„(G). For very low orders —say, v

=2, 3—the expansion is quite simple. For general order
a useful explicit form is not available, but there are
tables (David e/ a/. , 1966; Kendall and Stuart, 1969),
the results given in the latter reference being more than
adequate for us. Using these, we have

K((G;;}= 0,
OR~(G, ;) =2(d + 2) 6R~(G),

9R3 (G, , ) =
8 [ (d + 2) (d + 4) ] igR3 (G),

~4 (G;;) = 12 [(d + 2) (d + 4) (d + 6)] i

x [4OR, {G)+ d(m, (G))'],

OR, (G, ;) = [(d+2)(d +4)(d+6)(d+8)]
&& [384om5(G) + 160dOR3(G)OR2(G)],

(7.60)

1/2 3R (G) 2 3/2(;;), „=
—

[ (')] = — ()
12 3R~(G) 12r(;;), „- d [ (G)] =d h'( )+3].

(7.61)

These results indicate that, for nons/ngu/ax operators G,
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the j5R2(G)] ™term is dominant in 5R2, so that

OR& (G;;) —(2 v —1)!![20R2(G)/d]

whereas the odd moments are down by order d
Thus the expectation value distribution should become
asymptotically Gaussian

( 2 1/2

Pg, , (&) ~ „=G~ 0: d &(G)
~

(for nonsingular G),

(7.62)

while a simple calculation using (7.57) and (7.15) tells
us that expectation values in different eigenstates are
only weakly correlated,

C(G. ..G,, ) = —(d —1) '. (7.63)

Now take G= 7 and observe that, by Eqs. (7.38) and
(7.62), the matrix elements of a nonsingular Hermitian
operator G, in Hamiltonian representation, are dis-
tributed as zero-centered Gaussians, the G;; variance
being twice that of the G;&, just as with the matrix ele-
ments of H in a fixed basis. Thus these matrices gen-
erate an asymptotic GOE, modified, for finite d, by the
weak correlations (of order d ' and d 2) between the ma-
trix elements, whose spectrum can be given, by a choice
of G, any preassigned form consistent with uniformity.

That the expectation value should be Gaussian was
mentioned long ago by Porter (1965b), the proof being
ascribed to H. Bobbins. The result, however, is not
valid for a. singular G, as we see from (7.61), using the
facts that y&(G)-d ~, y2(G) d. For the prototypical
case, the pairing operator, we know from Eqs. (7.56)
and (7.57) that G;; =x,', —d ~, whose asymptotic dis-
tribution is (off-centered) yf. For this we have y, (G;, )
=2~2, y2(G;;) =12, which may be checked by using

sR~(G) = (d —1)d '~ ' "[(d—1)~ ~+ (—1)~]

in (7.61).
Two-point measures for GOE expectation value fluc-

tuations are easily calculated in terms of the two-point
function S~(x,y) given in Appendix K, but they are not
very interesting. For nonsingular sum-rule operators,
G= T' T (and these are the ones of most interest to us;
the results, however, are easily extended to more gen-
eral G), the expectation value fluctuations are small,
the distribution of G;; being narrow when measured in
terms of the spectral width v(G); this comes about be-
cause, for almost all II's in the GOE, many essentially
independent components contribute to the strength ex-
pansion of G. But in practice one finds collectivities,
even for many nonsingular operators, which result in
some states having very much larger strength sums than
any in their neighborhood. Another (related) point of
disagreement between GOE and observation is that the
GOE measures are necessarily independent of the en-
ergy, whereas, for example, one manifestation of strong
quadrupole collectivity in nuclei is that the Q ~ Q expecta-
tion value is very large near the ground state (giving rise
to large &2 sums) and falls off at higher energies. This

That this is indeed the case is easily verified from Eq.
{7.58); it will be seen also that, as always, Gaussian behavior
arises fram the dominance af binary associations {i.e., fram
the partition 2p [2"]) in the moment traces.

behavior arises from the large negative (spectral) cor-
relation between Q Q and 0, which, of course, is not to
be found in the GOE. Since secular and fluctuation be-
havior might well be decoupled, this wouM not, how-
ever, rule out a GOE description for the fluctuations.

A Monte Carlo study of these phenomena for one-par-
ticle one- hole excitations of a closed-shell nucleus has
been made by Touchard et al. (1977). They deal spe-
cifically with Gamow- Teller transitions between Bi
and ~ Pb, representing the model space in terms of 16
hole-particle excitations. In a basis in which the tran-
sition amplitudes connecting these states to the closed
shell are all positive, the Hamiltonian is Ho, defined by
a set of single-particle energies taken from experiment,
supplemented by a GOE-type interaction ensemble in
which, however, the matrix-element distributions have
the same nonzero centroids. This ensemble is a COE
deformed by an operator K, the sum of the one-body IIO

and the pairing Hamiltonian of Sec. III.E. It represents
a generalization of the schematic (separable) Hamil-
tonian which, when added to Ho, generates, for a strong
enough interaction, one collective state well separated
in energy from the others and carrying a large fraction
of the total strength. In the specific basis the separable
interaction has matrix elements all of the same sign.
For the ensemble, on the other hand, there is a prob-
ability P, deter'mined by the centroid and variance of
the distribution, that a minor fraction of the matrix
elements will have a sign different from that of the
majority. - Touchard ef; &l. determine the values of P
for a number of the standard interactions, finding for
all of them except the separable surface-delta inter-
action a value quite close to p =0.2. By studying the
properties of the strength distribution as a function of
P, considering, in particular, the locat;ion of the collec-
tive state and the fraction of the strength which it car-
ries, they show, inte~ alia, that the existence of a
giant resonance is governed by t.he value of the pa-
rameter P and that for the interactions considered a
giant. resonance is indeed to be expected.

The Stieltjes-transform method of Sec. III.E gives a
formal solution to the problem of Touchard et al. but
we are not yet in a position to extract numerical re-
sults from the equations given there [in particula, r
(3.28)]. We turn instead to another aspect of collec-
tivity (Draayer et al. , 1977) mentioned in Sec. I.E and
used in Sec. ~.c, in which we combine the secular
variation. of the strength sum with an &ssumed Porter-
Thomas description of the local strength fluctuations.

As above, we take G = T'T, the Hermitian square of
the excitation operator T, and we consider the ensemble
variance of the summed strength,

which originates with the B eigenvector 4;. Taking for
granted that strengths are uncorrelated, we have

8(S;)=—S;=Q R;g,

(7.64)
o 2(S,) =—S2 —(S;)2=Q [R2~ —(R;~) ] .

Now, labeling the states by their energies ~ —
~

W'),
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j —~z), introducing the final-space eigenvalue density,
d' x p'(z) (where then d' is the final-space dimensiOn-
ality), and writing R;; —R(z, W), we find

2h'(S, ) 2d'[J' p'(z) R(z, W)dz] '
o (S,) Jp (z)/R'(z, W) —[R(z, W)]2) dz

d'[jp'(z)R(z, W)dz]'
fp'(z) R(z, W)'dz (7.65)

where the last step follows from the y~ form of the R
distribution, and as discussed above [(1.9) and (7.28)],
v may be interpreted as the effective number of ac-
cessible states. A small value of v will indicate a high
degree of collectivity in the region with energy —W.
The special feature of (7.65) is that we can plausibly
assume an ergodic behavior and replace the ensemble
average by a spectral one. This, moreover, may be
calculated by truncating the formally exact expansion,

R(z, W) = [p'(z)p(W)d'] '(T'6(H —z)T6(H W))"-
= (dd') i g (T'P'„(H)TP„(H)) P' (z)P„(W),

are given in Fig. 11. The procedure used here is in-
teresting, in general terms, because of the connection
established between statistical and collective behavior.
One practical use wouId appear to be in the predic-
tion of such collectivities, given the model space and
the operators a, T.

Finally, we have a comment about a symmetry 'aspect
of expectation value fluctuations. The level- to- level
fluctuations in the expectation value of 6 will be small
if G is closely correla. ted (or anticorrela. ted) with H,
for they must vanish in the extreme case of complete
correlation in which G is effectively a multiple of H.
Since Q. Q is strongly correla. ted with H, the summed
E2 strength for 0' —2' transitions in a many-particle
nucleus should then be weakly fluctuating, whereas
that for the inverse transitions, O' —0', should be
strongly so, since for these the sum-rule operator is
not Q Q, but Q (P(0 )Q, with ~ an angular-momentum
projection operator. 'See Draayer et al. (1977) for
shell- model examples and further discussion.

W, v= P

(7.66)
V I I I. THE STATISTICAL THEOR Y OF NUC LFAR
R EACTIONS

which in a many-particle system is strongly convergent.
Here () denotes an average over the W space, while
P„', (z), P„(W) a.re sets of orthonormal polynomials with
p'(z) and p(W) as weight functions. Truncation of the
expansion defines the smoothing (a, "global' one) which
is called for. By spectral-distribution methods it is
possible to construct the smoothed R(z, zo) expansion
and hence to evaluate v. Two shell-model examples

A. Introduction

In the previous sections we have discussed ensembles
of Hamiltonians constructed in a discrete (matrix) rep-
resentation, even though the results are for the most
part compared with experimental data on nuclear res-
onances in the continuum. Is this a consistent proce-
dure? As far as the levels are concerned, there is no
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real problem in justifying it, for we could imagine that
a very slight increase in the average potential-well
depth would bind the observed states (which at least in
the slow-neutron case span a very narrow energy
range), and we can take for granted that this would in-
volve no significant change in the spacings. However,
we shall apply matrix results also to the widths them-
selves, and here some further justification is neces-
sary. The question is: How do the widths arise from
a description in which the continuum never appears'? To
answer this we can think, for instance, that the prob-
lem is posed in R-matrix language (Lane and Thomas,
1958). Here one considers the Schrodinger equation in
the "internal" region subject to boundary conditions on
its surface. This problem gives rise to discrete eigen-
values E,. only; these are the poles of the R matrix. On
the other hand, the residues of the A„, matrix element
are connected w ith the eigenvector associated with lev-
el i and are given by y, ,y... where y,.„the reduced.
amplitude of level i into channel c, is given by an inte-
gral over the (multidimensional) surface S, correspond-
ing to an appropriate channel radius ~,

y, ,= C, ,*dS, .
2M g,

(8.1)

a result already used in Sec. VII. Here P„ the pene-
trability in channel c, is usually a slowly varying func-
tion of the energy.

Alternatively, one could adopt the point of view of
Feshbach's (1958, 1962; see also Lowdin, 1966) for-
malism of nuclear reactions, in which one divides Hil-
bert space into two orthogonal parts with the projection
operators P and Q, P corresponding to the incident
particle plus the target in the ground state, or any oth-
er state giving rise to an open channel, and Q corre-
sponding to the rest. The operator Q&Q will then have
discrete eigenvalues only; here the states acquire a
width through the coupling Qff~of the Q space to the
continuum; the square of the matrix element associated
with this coupling is proportional to the width of the
level. In this case we can think that the Hamiltonian

Here g, is the channel wave function which we can re-
gard as given, 4,. is the Hamiltonian (matrix) eigen-
function, and M, is the reduced mass for channel c.

When one connects the '-'internal" to the "external"
region and calculates the S matrix (needed to compute
cross sections) in terms of the R matrix, the poles of
the former will be complex, the real part being the po-
sition of the resonances and the imaginary part the
han-width. A case of particular importance is that of
levels. very narrow compared with their separation, be-
cause one can extract cleanly the properties of these
levels from experiment (which is not feasible for over-
lapping resonances). In this case one can relate in a
simple fashion the parameters of the 8 matrix to those
of the R matrix. For a suitable choice of the boundary
conditions, the real parts of the poles of 3 coincide
with the poles of R and their partial widths 1,, (whose
sum over the various channels is the total width, or
twice the imaginary part of the pole) are related to the
R-matrix reduced width by

(8.2)

matrix we have been talking about in the previous sec-
tions is the matrix representation of QHQ.

In this chapter we shall go much beyond the case of
isolated resonances by using random-matrix theory to
describe the discrete aspects of the problem, i.e. , the
eigenvalues and eigenvectors of H in the internal region
if we use the R-matrix formalism, or those of QHQ in
Feshbach's formalism. The S matrix associated with
the problem is constructed therefrom for isolated as
well as for overlapping resonances.

Historically, it was indeed in connection with the
quantum theory of collisions that the earliest refer-
ences to the statistical theory of spectra are found
(Wigner, 1951a, 1951b). The concept of a statistical
A function with a definite distribution of poles and resi-
dues is introduced there for the first time, and classes
of A functions are studied, whose members have essen-
tially the same statistical properties; thus also the
ergodic problem makes its appearance.

There. is, however, in these investigations no clue
concerning the form of the distribution functions for
poles and residues, which were studied only later as
the distributions of eigenvalues and eigenvectors of an
ensemble 'of random matrices. This study started
properly with a paper by Wigner (1955) and was then
followed by a host of papers quoted throughout this re-
view article.

The relevance of these distribution laws in the theory
of average neutron reaction cross sections in the reso-
nance region and, later on, in the continuum region of
overlapping resonances, was soon recognized. The no-
tion of a statistica. l S matrix, an extension of that of
Wigner's statistical A function, enabled Moldauer
(1964a) to find a generalization of the Hauser-Feshbach
(1952) model for the compound-nucleus cross section.
The problem of deriving the Hauser-Feshbach formula,
both with and without the presence of direct reactions,
has since then been the subject of many investigations.

The ide'a of constructing a statistical theory of nuclear
reactions, using as basic ingredients random interac-
tion-matrix elements which preserve the two-body se-
lection rules, was taken up by Agassi et al. (19V5),
who developed a formalism in which the existence of a
hierarchy of states (Griffin, 1966) with increasing com-
plexity (the two-body interaction connecting only closer
members of the hierarchy) can be taken into account
explicitly. In this theory particle emission may occur
before the more complex states of the hierarchy have
been reached. This provides a theory of preequilibrium
emission, a special case of which leads to the usual
Hauser-Feshbach model; an alternative treatment of
this problem has been given by Feshbach et ~l. (1980).
The idea is to give a theoretical basis to the mostly in-
tuitive formulations of precompound processes that
have normally been used to describe the experimental
data.

The discovery that the randomness of the 3-matrix
residues would lead, in the continuum region of over-
lapping resonances, to a cross section which, instead
of being smooth, would show random fluctuations led
Ericson (1963) to study moments of the cross section
higher than the first one (the average cross section) and
eventually the whole distribution. The study of the
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B. The statistical R function

In the scattering of particles with an energy low
enough that only elastic scattering occurs, one can in-
clude all the information concerning the short-range
nuclear interaction in the inverse of the logarithmic
derivative of the radial wave function evaluated at the
nuclear radius, r= a. This is known as the Wigner-
Eisenbud R function (Wigner and Eisenbud, 1947), and
can be expanded as

E„'vt, = real. (8.3)

In order to obtain the scattering at angular momen-
tum I, one first forms the expression

autocorrelation function of the cross section at two dif-
ferent energies has proved to be a very powerful tool
for extracting the widths of the levels in the region of
overlapping resonances. In what follows, we shall give
a more detailed description of the topics we have just
m entioned.

R (E)=(R'-R')+ Q " + Q —„,'„, (8.6)E
called a "uniform statistical R function", which coin-
cides with the true R well inside I, but is now station-
ary, having the same statistical properties everywhere.
In a different language we might call this an R function
"tangent" to the true one. It plays a role similar to
that of the "unfolded" spectra considered above.

The surm is e, which is not proved but made very
plausible, is-that the distribution of level spacings
e~„, —e~, Eq. (8.4), is the same as the distribution of
the (E~„—E~), Eq. (8.3). In other words, the statistical
properties of the level spacings are independent of the
long-range interaction. A similar statement applies to
the level widths; the distribution of the M~, if mea-
sured in terms of their average, is the same as the
distribution of the y~ if these are measured in units of
their average. These relations are expected to be valid
for "most statistical distributions of poles and spac-
ings, just as the ergodic hypothesis in statistical me-
chanics is valid for most Hamiltonians" (Wigner,
1951b, p. 797).

An important fractional transformation is the ortho-
gonal one,

where I" and G are the regular and irregular solutions
for angular momentum l outside the nuclear radius r
= a. Q(E) is thus influenced by the long-range interac-
tion. The cross section 0, then becomes

aR+ b
Q= —, with a'+b'=1

-bR+ a'
which can also be written as

R cos@ + sing R+ tan@
-R sin@+ cos@ 1 -R tan@

(8.7)

(8.8)

cr, = —,(2I + 1)
4m Q'

(8 5)

In an energy region where the density of resonances
is very large, one can consider an interval wide enough
to contain many resonances but narrow enough that the
average properties do not change appreciably through-
out it; I' and G can thus be considered practically con-
stant. Equation (8.4) then rel'ates R and Q through a
bilinear (or, as Wigner calls it a "fractional*') trans-
formation. The influence of the long-range interaction
on the statistical properties of the resonances can thus
be considered by asking how a fractional transformation
affects the distribution of poles and residues.

The very useful concept of a "uniform statistical R
function" is introduced (Wigner, 1951a, 1951b) with the
properties that the densities of residues and poles are
constant and that the distribution of residues and dis-
tances between nearest-neighbor poles does not depend
on energy, so that it can be extended to all energies,
-~&E&~. In a case of physical interest, this cannot
be accomplished without changing R quite drastically
everywhere, except in the energy interval I under
study. This is done as follows: Given R, we retain
those resonances that are contained in I; for energies
well within I, the outside resonances contribute to R
practically as a constant R'. We substitute for them a
new infinite set of outside resonances having the same
statistical properties as those inside; adding these new
resonances and subtracting the almost constant value
R' which they contribute to the inside of I, we are led
to a new R function

(8.9)

except that, for different transforms, the lower limit
c, is different. The poles of R are so pl3, ced that the
area below f ' which is between two successive poles is
m; see Fig. 12. Thus, starting from one pole E„one
can locate the next pole E, by determining the abscissa
E, so that the area under f' between E, and E, is just

the corresponding y' is equal to 1/f'(E, ). The levels
and widths of the orthogonal transforms of R can.be ob-
tained by a similar construction, starting, however, at
another abscissa and thus altering c. It seems reason-
able that, unless f '(E) has a very special structure,
the chance of hitting on a given value of f'(E) will be in
the long run the same, no matter at which abscissa one
started originally, thus givi. ng the same statistical
properties to R and its orthogonal transforms. This
reminds us of the arguments invoked in classical sta-
tistical mechanics, where one expects the chance of
occupying a certain volume in phase space to be inde-
pendent, in the long run, of the initial conditions. This
probability is proportional to the volume in question;
even this point has an analog in our present problem,
for if we define g, = 1/y,', then (Wigner, 1952) the prob-
ability G( g) 5g that g be between g and g+ 5g is propor-
tional to the total length of the domains in which f '(E)

If we write R=tanf, we see that Q= tan(f+g). Then
the transformation (8.8) replaces f by f+ @ and leaves
df/dE= f' invarian—t. Hence f'=R'(1 R+') ' will be called
the invariant derivative. It follows that R and its ortho-
gonal transforms have the same form

&=tan ' E dE,
E
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Eo E~ E4 E5 E6

FIG. 12. Construction to obtain the position of the poles E~, E2, 83, . . . and the reciprocals of the corresponding residues y~, y2,
y3, . . . of an g function from its invariant derivative f'=g'/(1+A ). The area of the shaded regions is z, the ordinates which
border them give the positions of the poles and their length is equal to the reciprocal of the corresponding residues (with opposite
sign). The f curve is common to all g functions of a family (8.8). If the construction is started from a different Eo, the poles and

residues of another member of the family will be obtained. [After signer (1951a).]

is between g and g+ 6g, multiplied by the ordinate f'=g
in these domains. A statement similar to this can be
made concerning the spacing distribution.

In the case of a random distribution for the poles of
the invariant derivative f (E), it is possible (Wigner,
1952) to reduce to (luadratures both the pole and the
spacing distribution for R, but it is not known what the
result of the integration is. It might be interesting to
evaluate the integrals numerically to find explicitly
these two distributions. How much further the analogy
with statistical mechanics can be pursued is not known
at present but might well be worth exploring.

C. Average cross sections

Since the notion of a compound nucleus was proposed
(Bohr, 1936) the calculation of the cross section for a
reaction proceeding through a compound system has
been the subject of many investigations. The equation
proposed by Bethe (1937) for the average cross sec-
tion,

numbers of the excited levels. When there is the possi-
bility of a direct reaction, the HF formula (8.11) is as-
sumed to reproduce the "fluctuation" or compound-nu-
cleus cross section in the separation

(8.12)

This is associated with a separation of the S matrix into
an energy-averaged part &S„,&, the optical S matrix,
slowly varying with energy, and a fluctuating part S~,',

s„,= &s„,&+ s,",, , (8.13)

so that, in units of (2t+ 1)nk',

(8.14)

Much effort has been devoted to providing a proof and
extensions of the HF formula. We shall discuss here
the following main lines of approach to the problem,
namely those of (1) Moldauer (1964a), (2) Hofmann et
al. (1975), (3) Agassi et at. (1975), (4) Kawai et al.
(1973), and (5) Mello (1979).

)
2m &r~&&r„&

cc' D
Cll

(8.10)
D. IVloldauer's method

incorporates the idea of independence of formation and
decay of the compound nucleus and is valid in the limit
of small width-to-spacing ratio (I'/D «1). Here &a&

means an energy average and &I"~,& is an average over
the levels X. What is known as the Hauser-Feshbach
(HF) formula (Wolfenstein, 1951; Hauser and Fesh-
bach, 1952),

C

(8.11)

is expressed in terms of "transmission coefficients"
(Blatt and Weisskopf, 1952) which have to be calculated
in some model, like the continuum model or the optical
model (Feshbach et a/. , 1954). The HF formula for the
average compound-nucleus cross section is computa-
tionally quite simple. With the incorporation of the ap-
propriate vector-addition coefficients to take into ac-
count the angular momenta involved in the problem, it
has become a powerful tool for extracting the quantum

Using energy averages and the expansion of the 3 ma-
trix (Lane and Thomas, 1958)

g = 4" + YACC gC C + ~ ~ o

CC P

c"
(8.15)

2 ~x&xc'
QCC

E~-E —il „/2
'

Moldauer (1961) has been able to give, in the small I', /
D limit, an expansion of the energy-averaged cross
section

(~..&= lC. ~*+("""(~--'(~..+~AC+" ~ ('«
roc

a

which takes into account the statistical distribution of
levels and widths.

Here
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27tp g
7Xc (8.1V)

I. . a "W~
(8.18)

where W(s) is the density of resonances at an energy
c measured from some fixed reference level. The
leading resonant term in (8.16) differs from what one
would find in a HF formula by the so called "width
fluctuation" factor found earlier (Lane and Lynn, 1957)

&xcrkc' 7 xc 7 xc' (8.19)

S~'(S~')* = 6 6 « ~~ Wab cd ac bd ~ abc (8.20)

Here P is Satchler's penetration matrix

P=1-ss =s"(s"), (8.21)

which gives, in a simple two-channel case, —,
' for c t c'

and —,
' for c= c', assuming independent and identical

Porter-Thomas distributions for y„and y„, (see Sec.
VII.C). '

It is found that the expansion converges rapidly only
when total and channel widths are not too large. The
method can apparently be used fairly safely for (7,)
&1.5, about half the value for which the expansion con-
verges. The correction terms have magnitudes which,
in the range of rapid convergence, go up to 50% and
can therefore be comparable in importance to the fluc-
tuation correction. The results were applied success-
fully to describe the inelastic scattering of neutrons
from "Zr (Moldauer, 1961).

In the absence of direct reactions one can obtain a
relation (Moldauer, 1963) between the optical S matrix
(S„,) and the parameters of the R matrix, such as
6.~,). This is valid for arbitrary values of (y~), but its
relation to the fluctuation cross section (~S~,',

~

') is not
specified there; it is discussed later in this chapter.

Deviations from the HF formula (8.11) can be ex-
pected also in the continuum region (Satchler, 1963),
where the average total width I" is much larger than the
average spacing D and where the compound-nucleus
levels strongly overlap. Using a model in which the
residues g~, g~, , of S„,are random numbers uncorre-
lated with the poles, and which have no level-level or
channel-channel correlations, one arrives at the result

same correction required when averaging over dis-
crete resonances, Eq. (8.19). In the limit of very many
open channels, W, ~=G, G~/(G, G~) =1 if &ca and =2 if
b = g, where we have assumed that the g„, have a Gaus-
sian distribution with the same dispersion for the real
and imaginary parts.

If there are direct reactions, these results are valid
in an "eigenchannel" representation. The transforma-
tion that takes us back to the physi. cal channels will
then, in general, produce a result which is not factor-
izable in the simple way described by HF.

Moldauer (1964a) found it very advantageous to avoid
the series expansion of Eq. (8.16) by expressing his re-
sults in terms of averages over the resulting 3-matrix
paramete rs. A considerable improvement in the treat-
ment of the problem is achieved via the statistical col-
lision matrix. In terms of the statistical properties of
S(E) in the neighborhood of any E, we define a station-
ary random matrix function (Yaglom, 1962) of E. If an
appropriate ergodicity obtains, we may then (as in Sec.
X) replace energy averages by ensemble averages
One can derive this statistical collision matrix from a
resonance formalism by expanding the wave function in
terms of the eigenfunctions of a boundary-value prob-
lem with complex boundary conditions. If one chooses
the logar ithm ic der ivativ e of the wave functions to co-
incide with that of the outgoing wave for that channel at
the energy E= E„one obtains the Kapur-Peierls (1938}
collision matrix

S= II[1+2iP" '+P" 2]n (8.25)

where 0 and P are the usual diagonal matrices (Lane
and Thomas, 1958) containing the Coulomb and hard-
sphere phase-shifts and the penetrability factors, re-
spectively, and the complex (R matrix can be expanded
as

~Xc~) c
E E ir/2 (8.26}.

For energies different from Eo, the boundary conditions
change, and by expanding 8 in the vicinity of E, one can
estimate the size of the interval g within which (8.25) is
a good approximation to the collision matrix. It is next
assumed that for all resonances in the interval, the
values of 8~„ I'~ and E~ constitute a proper sample
from the appropriate stationary ensemble of resonance
parameters. With the same device used in connection
with Eg. (8.6) to define the uniform statistical A func-
tion, one now obtains the statistical collision matrix

which is diagonal in this case and given by S:.,(E, E,) = S,', ,(E,) -iP
)I&

(8.27)

P.„=—(G.G/r) 5., (8.22)

W, b is again a fluctuation factor,

(G,G,/r)(G'/r)
(G.G/r)(G„G/r)

(8.23)

where

G. = /g. f', G=g G. . (8.24)

In the special case G, = G and G= 1', this becomes the

where all 0, and P, are evaluated at E„ the g„are
connected to the 9~, of (8.26) by the penetrability fac-
tors of (8.25). S' is a good approximation to S in ~,
but has stationary statistical properties for all ener-
gies (-~ & E & ~).

There is, however, a great drawback in this analysis,
since the statistical properties of states defined with
complex boundary conditions have not yet been studied.
One can instead propose a definition in terms of the
eigenvalues and eigenfunctions of the Wigner-Eisenbud
R-matrix theory (Wigner and Eisenbud, 1947; Lane and
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Thomas, 1958). The eigenvalues Eo and the reduced
amplitudes y„are now real, so that the real H matrix
becomes

&&cY)ic
cc ~E0 (8.28)

Separating out the part B,', , containing those resonances
that lie outside g and calling S„,its contribution to the
3 matrix, we have

where

(8.29)

C

(8.30)

I '„ is the difference between the logarithmic derivative
of the outgoing wave and that of the eigenfunctions in the
internal region, at the surface associated with channel
c. The "level matrix" A is defined as

A = (e —E —g)-',

where

(8.31)

(8.32)

[D(e —g)D ']~„=(E~ —i r~/2) 6,

we can write

6'~. ~) C

XC I-'C'

(8.33)

(8 34)

where the complex amplitudes H„are

XC DXg +PC ' (8.35)

Introducing (8.34) into (8.29) we obta, in again a Kapur-
Peierls type expansion. Adding as before the appropri-
ate resonances outside the interval g in order to real-
ize stationarity, we obtain the statistical S matrix of Eq.
(8.27), with the following important relations between
the residues and the imaginary part of the poles:

Ig„ I

' 2I'C I 8„i
'

gc & QC
C

(8.36)

We shall find it convenient to define the quantities

2~ lg,.j
' 2~j."„

C

(8.37)

Moldauer (1964a) estimates that, when the ratio of the
average total width to the average resonance spacing
is small compared to v'n/2, where n is the number of
important competing open channels, one can diagonal-

CC

Supposing that at the energy E, we diagonalize the com-
plex symmetric matrix e —g (assuming it has distinct
roots) by means of the complex orthogonal transforma-
tion D (Lane and Thomas, 1958)

(r.).=6.40, P u, (y'.,).=6.37
C

(8.38)

The channel parameters ~g„~', I'„, 6„,of Eqs.
(8.36) and (8.37) were found to have quite similar dis-
tributions, resembling the Porter-Thomas law of the
y'„, but somewhat deficient in small values. This is
shown in Figs. 16 and 17, where the distributions of the
e„., and the I"„for 25 channels in one of the cases are
compared with the X' distributions with one and two de-
grees of freedom, corresponding to the Porter-Thomas
and exponential distribution laws, respectively.

Going back to the expansion (8.27) of the S matrix,
one can prove (Moldauer, 1964a,) that its ensemble av-
erage is given by

ize A of (8.31) by perturbation theory, so that to lowest
order 8,= n„and N =1. In this case, the statistical
distributions of the E and 8„,are approximately the
same as those of the E and n „which in turn follow
from the considerations of earlier, chapters. For over-
lapping resonances, however, even if B' were zero, so
that a„,=y„, would be a real Gaussian variable, the
fact that the matrix D~ of (8.35} is orthogonal and com-
plex (no longer approximately equal to the unit matrix
as for isolated resonances) introduces an extra degree
of freedom in the 8~, that was not present before, i.e. ,
an imaginary part. For overlapping resonances there
is no analytical treatment available at present for the
distribution of the S-matrix parameters, but one can
resort to Monte Carlo calculations. Moldauer (1964b)
generated the R matrix by producing random uncorre-
lated and normally distributed real amplitudes y„, with
zero mean and unit standard deviation; for the E0 a
Wigner "anticorrelated" distribution was chosen, cen-
tered about E= 0 and having unit average spacing; it
was generated by drawing at random alternately from

. the upper and lower halves of a Wigner distribution of
spacings, to simulate the effect of the negative corre-
lation of spacings actually present in a random-matrix
model. The case of 100 competing channels, each with
transmission coefficient equal to unity and boundary
conditions adjusted so that all energy shifts (Lane and
Thomas, 1958) vanished, was studied most thoroughly.
Diagonal. ization of the level matrix A.~, was performed
for dimensionalities up to 50.

Fig. 13 shows the distribution of poles E„—ir„/2 for
one such collision matrix. Notice that (I')/D= 6.4 and
v n/2= 5, so that the perturbation expansion mentioned
above would not be applicable.

The nearest-neighbor spacing distribution of the E„
is compared in F ig. 14 with W igner s distr ibution, Eq.
(1.5}, which characterizes the spacings of the E' and
with Poisson's distribution (1.4) which one would have
for random uncorrelated levels. It is clear that the
level repulsion present in the E', is markedly reduced
in the E . However, small spacings are less common
than in the Poisson case.

In Fig. 15 the distribution of the total widths is
shown to be slightly broader than the X' distribution
with 100 degrees of freedom, which would characterize
the distribution of the quantities 2+, P,y2, ; this is the
case even though the average values of the two quanti-
ties do not differ appreciably:
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FIG. 13. Distribution of fifty poles of a collision matrix having 100 channels with random uneorrelated g-matrix amplitudes and
&-matrix pole spacings selected from the signer distribution with anticorrelated neighboring spacings. The transmission coeffi-
cients of all channels are unity. [After Moldauer {1964b).j

~cc' ~cc' ~ gyc+pc' (8.39)

$„,describes the direct contribution to the process c
—c', the second term of (8.39), which is independent
of p because the ensemble is stationary, is the contri-
bution to that direct process from those resonances
near the energy in question. It is indeed the covari-
ance of the corresponding R-matrix quantity y„,y„,.
that was studied in the previous section.

The fluctuation cross section, defined as

(8.40}

z.=1 Is,.I'= T," +I „, (8.43)

where the Satchler penetration matrix element P„of
Eq. (8.21) is now given by

Here again, M„, is independent of p and p because of
stationarity. The function 4 was defined in (8.18) in
terms of the resonance spacing distribution; it goes to
unity for large values of the argument and it is identi-
cally unity for correlated level. s.

The transmission coefficient can be split into a direct
and a compound contribution as

in units of (2I+ l}vX', can be written in terms of the
B„of(8.3V) as

C

(8.44)

fi BPcBlle'bi

where

(8.41) A few years ago an important simplification was dis-
covered (Moldauer, 1975a, 1975b, 19'l6, 19V8). In the
exact expression for the fluctuation cross section, be-
sides a Hauser-Feshbach term there are terms which
depend on resonance-resonance correlations of various
kinds, terms which depend on channel-channel correla-
tions, and non-HF terms that remain important in the
absence of all correlations. Moldauer finds numerical
evidence that all these different kinds of terms cancel.
to leave a remainder that is generally quite close to the
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FIG. 14. Distribution of the energy spacings compared with the
signer and Poisson {exponential) distributions. [After Moldau-
er {1964b).]

l

FIG. 15. Distribution of the total widths {twice the imaginary
parts) of the poles of Fig. 13 compared with the chi-squared
distribution with 100 degrees of freedom. [After Moldauer
{1964b~.~
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140 actions, satisfies
120—

100
A$ (8.48)

Difficulties encountered in trying to prove this inequal-
ity are discussed by Moldauer (1969) and Feshbach and
Mello (1972).

40

20

I I

0.2 0.4

EXPONENTIAL
~as g~

I I I

0.6 0.8 1.0 1.2 1.4 1.6 l.8 2.0

eye

Hauser-Feshbach prediction. We write (8.41) as

FIG. 16. Combined distributions of the e„of 25 of the chan-
nels of one of the collision matrices of Fig. 13 compared with

the Porter-Thomas (y~) and exponential (y~) distributions.
IAfter Moldauer (1964b).]

E. The Hofmann, Richert, Tepel, and Iteidenmoller
(HRTW) method

The basic element of this approach is the Engel-
brecht-Weidenmuller (1973) transformation, which re-
duces the general problem to one without direct reac-
tions.

By its very definition, the penetration matrix P of
Eq. (8.21) is Hermitian and can be diagonalized by a
unitary transformation Q, so that"

(8.49)

fg PCGQC0„,= 8;,, -M„.,
e~

(8.45)
with

Q~( p «( (8.50)

where the width fluctuation factor 8"„,is given by

QC WC PC PC (8.46)

The important observation of Engelbrecht and %eiden-
miiller is that, with U given by (8.49) and T denoting
transposition,

Consider now the case of pz equivalent open channels.
By this we mean that all P„,e„„A;appearing in (8.44)
are independent of c. We can then write (8.45) as

USU~ = diagonal . (8.51)

This suggests the introduction of the new scattering
matr ix

P X
n " n

(8.47) 3=USU (8.52)

The specific cancellation we referred to above i~ that
the term in brackets in (8.47) vanishes; this is a non-
trivial consequence of unitarity which has been called
M cancellation; as a result of it we are left with a
Hauser-Feshbach formula with a width fluctuation fac-
tor.

Finally, we refer to remarks in the literature (Blatt
and Weisskopf, 1952; Feshbach, 1958) that the ratio
r, /D, appearing in statistical theories of nuclear re-

l80
I%i
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EXPONENTIAL
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0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

r'qc

FIG. 17. Combined distribution of the partial widths of 25 of
the channels of one of the collision matrices of Fig. 13 com-
pared with the Porter-Thomas (X~) and exponential (g2) distri-
butions. [After Mold auer (1964b).]

which is again symmetric and unitary. Its average is
diagonal, so that direct reactions vanish in this new

representation.
The analysis is carried out (Hofmann, Bichert,

Tepel, and Weidenmiiller, 1975) by writing the S ma-
tr ix

S =(1+zK)(1-~K) ' (8.53)

in terms of a E matrix, which in turn is written as the
sum of a background K"' and a resonant part K'" con-
taining N resonances

K = K"'+K'- (8.54)
N

y pay gbE-E' (8.55) '

~ah y gay pb ~
(8.56)

where the bar indicates again an ensemble average.
The matrix so constructed is another example of a

37Here and below a, 5, c, . . . denote channel indices.

The dimensionality of the matrices is z, the number of
open channels.

The E„and y, are taken from a Gaussian orthogonal
ensemble, ' so that they are uncorrelated with each other
and the y„, are normally distributed with zero mean
(see Sec. VII). For p4 p, the y„, and y„» are uncorre-
lated, and the distribution of the y„„y„» . . . is inde-
pendent of p and is therefore stationary. The statisti-
cal behavior of the y„, is thus determined by the ma-
tr 1x
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statistical K matrix, and the corresponding 8 matrix
(8.53) another example of a statistical S matrix. They
will depend on the two real symmetric matrices K' '

and C and therefore upon n(n+1) input parameters.
In the absence of direct reactions, both K "' and C

must be diagonal, since 8 is. The corresponding sta-
tistical S matrix depends only upon 2n parameters. If
the S defined by Eq. (8.52) is, indeed, free of direct
reactions, then the transformation U converts a statis-
tical 3 matrix with nondiagonal K"' and nondiagonal C
into a statistical 8 matrix, S, for which the associated
matrices K"' and C are both diagonal. To be more
precise, let us write S in the form

-1+iK
1 -iK (8.57)

where S and S are related as in Eq. (8.52), U being for
the moment an arbitrary unitary matrix. K and K can
be shown to be related by a linear fractional transfor-
mation, as in the relation (8.4) between Q and R, and
K can be shown to be of the form

K, = K(P) (8.58)

where the E„and the y„, are real and independent of
E. Moreover, it can also be shown (Hofmann, Richert,
Tepel, and Weidermuller, 1975) that if the original E„
and y, arise from a GOE, the new E and y, also
arise from a GOE in the limit N» yg. As we saw be-
fore, Wigner (195la) constructed a, special class of
functi. ons whose pole and spacing distributions were
shown to remain invariant under an orthogonal frac-
tional transformation. Here we have the corresponding
theorem for more than one open channel and for an en-
semble which is of more physical interest.

Since the average of 8 is diagonal, K,"b' and C„
= [y„,y„,], are both diagonal; hence S has all the prop-
erties of a statistical S matrix without direct reac-
tions. This result was first found in Monte Carlo cal-
culations.

It is possible to show that [S~~~(S~~~)*],vanishes unless
a = c, b =d, or a= 5, c =d; this can be proved (Hofmann,
Richert, Tepel, and Weidenmuller, 1975) without re-
sorting to a pole expansion of the S matrix, the result
being then true for arbitrary values of the transmission
coefficients. Therefore in the evaluation of

4mc. /D
(I. + ~c,/D)'+ (k (o))2 ~ (8.60)

The curve p, = constant is an ellipse in the (c„k,' ')
plane; it is certainly not obvious a priori that all points

(8.59)
efgh

only quantities like [ jS~t j'], and [S~,'(S~,')*],will enter.
These, in turn, can be shown to depend, except for a
trivial phase factor, only upon the transmission coeffi-
cient p, =1 —jS„j . This result is nontrivial, since the
S matrix contains the diagonal background matrix K,"b'
= 6,bk,"' and the diagonal covariance matrix C„=6„c„
thus depending upon togo parameters, k,"' and c„per
channel. These are related to-the transmission coef-
ficient p, by the formula

Sf~(Sf!�)!Ice-2j

@~+2jcly —
Xaa bb a b& (8.62)

W,"~ being a factor that enhances the elastic cross
section. One has the following unitarity requirement

V2
p y + & (grHRTw 1)a a g a

As shown by Tepel et al. (1974), this equation deter-
mines uniquely the quantities V, in terms of TV,"" and
the set of p, . There remains the problem of f inding the
dependence of W,"" and y, on the transmission coef-
ficients p, . Monte Carlo calculations can be performed
and curves fitted to these results. Numerically it is
found that W,""~~=2 for p, = 1; for p, = 0 the curves
were fitted to a value of 3, although it has to be noted
that the error bars of the Monte Carlo calculation are
quite large in this low-absorption limit. It is found that
X, = 0 for p, = 0 and p, = 1, showing a maximum for some
intermediate p.

There is unfortunately no analytical treatment for the
dependence of the averages [ jS~t j'], and [S~,'(S~~t)*], on
the transmission factors: What is found by Tepel eg gE.
(1974), Hofmann, Richert, Tepel, and Weidenmuller
(1975), and Hofmann, Richert, and Tepel (1975) must
be viewed as simple parametrizations which reproduce
the numerically generated cross sections in a statis-
tically satisfactory fashion. We shall see, however, in
the next section, that the method of Agassi et al. (1975)
provides a framework for the calculation of these and
other quantities, in the limit I'» D.

(8.63)

F. The Agassi, WeidanmLiller, and IVlantzouranis (AWM}

method

This method is appropriate in the case of overlapping
resonances (I'» D), where it provides a framework for
dealing analytically with all concepts of physical inter-
est, Hauser-Feshbach theory, Ericson fluctuations,
distribution of 8 matrix elements, influence of direct
reactions, correlations between amplitudes, presence
of doorway states, etc. The theory also provides a
unified microscopic statistical description of preequi-
librium and equilibrium processes, appropriate for
mass numbers A. & 40 and incident projectiles A & 4.

In the analysis of the previous sections, it was taken
for granted that the compound system reaches internal
statistical equilibrium before it decays. It turns out
that the deviations from this model, observed even at
excitation energies several tens of MeV above neutron
threshold, are amenable to a statistical interpretation.

on this ellipse should, aside from a phase factor, yield
the same values for [S~t(sf~)*],.

As for the specific dependence upon the p, 's, we
know that, for weak absorption in all channels (Engel-
brecht and Weidenmuller, 1973; Weidenmiiller, 1974),
the inelastic cross sections in the absence of direct re-
actions factorize, giving independence of formation and
decay of the compound nucleus. Outside this regime
the factorization hypothesis was tested numerically by
writing

2

jS"j'= ' ', a~i; jS j'= ' W '" (8 61)
V, , V,
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gE»(r', I')» D. (8.66)

The largest of the ratios D/I" t, D/I'i, I' t /AE, 1 ilb, E
defines a small dimensionless parameter y, which can
be considered as the expansion parameter of the theory.

The description of preequilibr ium processes is car-
ried out in terms of the shell model and, accordingly,
classes of shell-model states with m "excitons" (m be-
ing the number of particles plus the number of holes)
are introduced (Griffin, 1966). It is assumed that the
interaction among the states of a given class is strong
enough to produce a rapid equilibration within each
class, much faster than the decay from one class to a
more complicated one. The bound states in the contin-
uum are thus grouped into classes of m excitons; it is
assumed that the Hamiltonian II has been diagonalized
within the states of a given class m, giving eigenfunc-
tions @,and eigenvalues E „where it is a running
index in class m. The specific distribution law for the
resulting eigenvalues E is actually not needed in the
analysis. In this new basis, the matrix elements of the
Hamiltonian H are given by

(@,~a~@„„&=6„„6„„E„,+(1 6 )(y,
~
V~@„„&,

~7t &@,(a(y, '&-=y', , (8.67)

&X. (~)X.".&= 6..6{E-E')E.&X.') V)X.'&,
where y~ is the wave function associated with channel
c, and V denotes the residual interaction. The quanti-
ties y' and (@

~
V~@„„&,mon, are taken as zero-

centered Gaussian random variables; their distribu-
tions are thus completely specified in terms of the sec-
ond moments, which are assumed to be

Iy,y .-6,.,6,5,„,(y.),

At such energies the decay time td„of the compound
nucleus becomes comparable to the time t it takes the
compound system to reach statisti. cal equilibrium, and
a fraction of the particles emitted thus correspond to
"preequilibrium" of "precompound" emission (Griffin,
1966; Biann, 1975). The description of Agassi et tel.
(1975) is supposed to apply if the condition

(8.64)
(

is met. Here t„, is the duration of a nucleon-nucleon
collision and t „=5/D is'an estimate of a natural "re-
currence" time. In terms of the associated energi. es

gE=e/t, .„, ri =a/t, I' =m/t... D=a/t. .. (8.-65)

the condition is

~S,", ~'=(I+6,„)g7"„Ii„T'„. (8.69)

Here, T' is the transmission coefficient for the popu-
lation of states with m excitons from the channel ~ and
II „can be interpreted as the relative probability of
reaching class n from class m. The symmetric prob-
ability matrix 11 is found to obey the probability bal-
ance-etluation (see also Norenberg and Weidenmiiller,
1976)

2mI'„

n
(8.70)

The flux of probability between classes is generated by
the coefficient T „=T„, defined in terms of the appro-
priate transition matrix elements. The loss of prob-
ability in one class m due to transitions into other
classes and into the channels is described by the widthI', while D is the average spacing of levels in class
Pl 0

As a special case, suppose that only a single class of
levels contributes to the reaction. %'e may then omit
the label m and the x.esult is

Tarb
~S~' ~'= {1+5.,) (8.71)

which is the Hauser-Feshbach formula, including an
elastic enhancement factor of 2, as expected for over-
lapping resonances.

In the presence of direct reactions and only one class
of states, the result

as with the GOE itself, we shall have simultaneous
interactions of all the particles. For a true two-body
interaction a large number of linear constraints on the
matrix elements must also be satisfied, but these are
ignored by Agassi et al. However, satisfying the selec-
tion rules alone is sufficient to produce significant de-
viations (supported by the experimental evidence) from
the standard Hauser-Feshbach result, which one would
recover by assuming a single class of states only or,
presumably, several classes, all of them connected
through an interaction of GQE type. It is not known,
however, what modifications would result from the use
of the full TBRE.

The central result' for the avarage cross section,
evaluated to leading order in the small parameter y
mentioned above, has the form (direct reactions not
occurring at all or having been eliminated by the Engel-
brecht-Weidenmuller transformation)

(8.68)
Sfj(Sy()g PacPM + PadPbc

cb ccrc T P (8.72)

(y .( v [y„„&(y„,, (
v (@ .&

= (6. ,5,.6„„.6„„.

The two-body character of the interaction t/' implies
that the matrix elements (g

~
V~g„,& vanish" unless

~m —n
~

= 2; however, as discussed in Sec. IILD, sim-
ply satisfying these selection rules does not at all en-
sure that we have a two-body Hamiltonian; in fact, just

( m —n( =4, although possible, is energetically not favored.
This case is therefore neglected.

is obtained, where S~~~ and (S~„')* are evaluated at the
same energy. For the autocovariance function of Sfb
one obtains

S.",(E)S.",*(E+s) = . C(O), (8.78)

where I"'"'=TrP/(2itp) is the correlation length, P is
the penetration matrix (8.21), and p is the level density;
C(0) ls given by

C(0) =
~

S~t
~

' = (P„P + P,„P„,)/ Tr P.
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Equations (8.71) and (8.72) give analytic expressions,
valid for 1 »D, for the quantities calculated only nu-
merically in the HBTW method of the preceding sec-
tion. Terms of higher order in y, correcting the Haus-
er-Feshbach formula, can be calculated in the absence
of direct reactions and with only a single class of
states. The result is in agreement with the formulas
suggested on the basis of numerical studies (Tepel et
~l. , 1974; Hofmann, Bichert, Tepel, and Weidenmul-
ler, 1975), where, by letting W,""Tw=2, for all a, Eq.
(8.63), one finds V, in terms of the transmission factor
Ta

G. The Kawai, Kerman, and McVoy (KKM) method

The usual -representation of the S„,matrix element

Here X,~ is a Hermitian matrix in channel space defined
as

X„=&g g,*b&, =Xb*. (8.81)

a,nd related to the penetration matrix P of Eq. (8.21) by

P,b= [X',b TrX+(X'),b]ab (8.82)

and hence can be obtained from a know ledge of the com-
plete open-channel optical 5 matrix. For example, if
the number pz of directly coupled open channels is large,
Eq. (8.80) can be approximated up to order 1/z by

Tr(P')
ogb = PCCPbb+ PCbPba + ~ )2 PCCPbb~I', (TrP

C

A A

(E) S{0)(E) ~ g g))c g))c (8.74)
P )P ) ..+I'*„„(P')..

)TrP (8.83)

is replaced in this treatment (Kawai et a/. , 1973)
by an alternative but equivalent expression

(8.75)

where the background is chosen to be the optical 8 ma-
trix. The average of the second term is then zero. It
is proved that the phases of the "partial-width ampli-
tudes" g„(E) exhibit a slow q dependence across the
energy-averaging interval I, which causes the reso-
nance sum in (8.75) to average to zero. The use of this
"optical-background representation" for S„,(E) con-
siderably simplifies the statistical arguments em-
ployed in the discussion of overlapping resonances and
fluctuations.

In Feshbach's (1958, 1962) reaction formalism, us-
ing the projection operators P and Q=1 —P, where P
projects onto all open channels, g~, can be written as

g,.=02 ()t. Ia, I~&, a, -=PaQ

and the g„of (8.'l5) as

g,.=v'2~/:" Iv, (E) Iq&,

(8.76)

(8.'l7)

where g;" is now an optical-model wave function and

i(1/2)
~ (E —Hq~+ I(II'2) (8.78)

The states Iq& result from the diagonalization of the
matrix

j.
Eo6ao + &Q

I
I'a~ E ~., I'~o

I
Q'& (8.79)

(8.80)

where $C~~ is the many-channel optical Hamiltonian,
which gives rise to the optical. S matrix (S„,&. In (8.78),
IQ& represents an eigenstate of Hoo with eigenvalue E~.
I et us consider the limit l'» D. It is argued that the
potential term in (8.79) is a complex matrix with phases
which vary randomly from one element to the next be-
cause of the complexity of the multiparticle bound states
IQ&. It is then assumed that the resulting g„have
random phases and are uncorrelated for different q's.

In the presence of direct reactions one finds in this
limit the result

For grab, the leading term in this expression is the
Hauser-Feshbach one, and it does dominate in the
large yz lim-it. For compound elastic scattering (@=b),
however, the first and second terms are equal and
dominate as yg- ~, giving a result which is twice the
Hauser -Feshbach prediction.

In principle one could calculate, within this formal-
ism, other quantities of physical interest, such as
Ericson fluctuations, the distribution of the elements
of the 3 matrix, etc. It would be interesting to com-
pare the results with the predictions of the formalism
of Agassi et al. (1975).

H. Ericson fluctuations

(8.84)p~(~) = e ", A = o.(8)/(v(8)&.
I

Several experiments on statistical cross sections rep-
resented by one single amplitude have cross-section
probability distributions well described by Eq. (8.84).
A typical example with unusually good statistics is
shown in Fig. 18, taken from Halbert et ~i. (1965).

Ericson's analysis (1963) is equivalent to taking, as
a simple model for the reaction amplitude, the expres-

sionn

s -s
E —E +i I'/2 (8.85)

with the assumption that the total width I", which is
composed of many partial widths, does not fluctuate

At energies where the total width 1 of the levels is
larger than the mean spacing D, the cross section is
simultaneously dominated by a large number of reso-
nances, the amplitudes of which interfere strongly.
The cross section will then show fluctuations (Ericson,
1963) on an energy scale -I'.

As a simple guess, it was assumed by Ericson and
Mayer-Kuckuk (1966), and only later proved for I'»D
by Agassi et al. (1975), tha-t the real and imaginary
parts of the complex amplitude f= $+irt are distributed
as independent Gaussians with zero mean and the same
width; the cross section, which is proportional to If I,
will then be distributed according to a X' distribution
w ith two degrees of freedom, which is simply an expo-
nential
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1.0

o.e—
c" (o",a, ) Mg"
e=o
E s,. 28 = 25.6-55.5 MeV

this case the magnitude of the fluctuation effects is re-
duced, since the observed cross section is the sum of
several partial cross sections. One then defines the
effective number n of channels (Brink and Stephen,
1963), so that

1v=- (1 -y'),
n

(8.93)

0.4—

0.2—

0
0 0.5

I

i.0

X=—6'

i

|.5
I

2.0

very much around its average and can thus be replaced
by a constant l". Assume also that the G„,b and the E„
are not correlated. %riting

fl
Gp, ,ab Gtt, ab p, ,ab ~

we can express S,b as

(8.86)

(8.87),

' FIG. 18. Probability distribution of the differential cross sec-
tion for C( O, cv5) Mg for the o.5 group leading to the 6.00
MeV excited state in Mg. The excitation energy in the com-
pound nucleus Si is about 30 MeV. [After Halbert et a$.
(1965), - reprinted by Ericson and Mayer-Kuckuk (1966)]. Re-
produced with permission from Annual Reviews of Nuclear
Science (Annual Reviews, Inc. ), Vol. 16, 1966.

provided the relative amount of direct interactions is
the same in each channel.

Equation (8.91) for the autocovariance function has
been very useful in extracting I [which we shall now
call I""", in view of the exact result (8.73)] and,
through a relation of the type

T, = 2ml, /D, (8.94}

in replacing the sum of transmission coefficients P, T,
which occurs iri the denom inator of the HF formula by
Eberhard et al. (1969)

2g+corr
Tc D

~

C

(8.95)

We refer the reader to Agassi et al. (1975) for a, com-
plete analytical treatment of the autocorrelation func-
tion in the limiting case of overlapping resonances and
even in the presence of direct reactions but with only
one class of levels (i.e. , without precompound decay).
A similar treatment could also be done with the frame-
work of KKM.

It is known (Moldauer, 1969; Feshba, ch and Mello,
1972) that (8.94) is not appropriate when I'» D. A more
adequate expression would be (Moldauer, 1975a)

Assuming that the Q ', b for different levels are uncor-
related,

1 2~r (8.96)

s"(z)s"*(E+c)= ~s" ~' (8.89)

which agrees with the correct result (8.73) only if I /
(nD) «1, where n is the number of open channels
(Moldauer, 1975a; Bauer et al. , 1979}. For the covari-
ance of the cross section

C.,(s) -=[o„(E+c) —o,„][a.,(E) —o„],
one finds

2

@2+l 2

(8.90)

(8.91)

(8.88)

one easily finds that the autocovariance of S,b is given
by

Nevertheless, the use of Eq. (8.95) in conjunction with
the HF formula has generally led to consistent results.
In order to understand this, Moldauer (1975a) has done
some illustrative Monte Carlo calculations. Figure 19
shows a typical midth distribution histogram for the
case of 20 open channels with all T, = 0.91. The hypoth-
esis that all the widths are equal is seen to be wrong:
The distribution is very broad and very skewed; there
are no very small widths at all. A peak in the distri-
bution occurs near the minimum width (-I'/3) and a
long tail extends to several times the average width I'.
The average width l agrees reasonably mell with the
prediction of (8.96}, whereas the correlation width I""'
predicted by (8.95) lies lower, at the peak of the dis-
tribution. On the other hand, fitting the numerically
computed autocovar iance function with the Lorentzian

The Lorentzian factor is due to the fact that the inter-
mediate compound system decays exponentially at a
rate h/I'. This leads to a normalized variance

(rcorr)2
C(s) 2 ( e C(0) (8.97)

dir j-
~ab +ab ~ +ab

(8.92)

In most nuclear reactions, several amplitudes con-
tribute simultaneously, owing to the additional freedom
associated with the spins of the particles involved. In

produces a I'""which is in good agreement with that
predicted by (8.95).

In conclusion, l"'"' is not related to the average
wjdth I", but rather to the minimum width. Moreover,
whereas I satisfies (8.96), I""'satisfies (8.95), and
it is this last combination that has been used to fit the
experimental data in quite a satisfactory way.
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FIG. 19. Histogram of the number z of statistically computed widths falling within each width interval for the case of 20 statisti-
cally equivalent channels, each having T~=0.91. The points show the average of statistically computed cross-section autocorrela-
tion functions for the same case. [After Moldauer (1975a).J

I. Comparison of the different methods described above

The HBTW and the KKM approaches are compared by
Hofmann, Richert, Tepel, and Weidenmiiller (1975).
It is found" that the KKM result is recover ed when we
put the parameter WaaT" of (8.61) equal to 2 and the
X, equal to zero for all p. This case is realized only in
the limit of strong absorption in all channels. The con-
dition of validity of the KKM results is thus not merely
I'»D, but the more restrictive condition p, =1 for all
a, where the p, (8.49) are the eigenvalues of the trans-
missi. on matrix P.

The properties that the 8„,matrix element should
have in order to reach this strong-absorption limit
have been recently investigated (McVoy and Mello,
1979) in terms of the poles and zeros of 8„,. In a sta-
tistical model, with assumptions similar to those used
in KKM, they find that the density of the upper-plane
zeros plays an important role in certain aspects of the
scattering, particularly in determining the ratio o d,"/
0.,~ and the time delay of the wave packets. %hen the
imaginary parts -I'~/2 of the poles are chosen to be all
equal to -1/2, it is found that the ensemble-averaged
density of zeros is symmetric about the line of poles
and has a width of about o~~/od,"(see Fig. 20). Inci-
dentally, one can also show (Bauer et al. , 1.979) that
for a packet consisting of an incoherent superposition
of plane waves, the centroid in time, 7;~, that is to
say, the time delay, of the scattered packet, satisfies
y, ~

= 2m/D„, where D, is the mean horizontal separation
of the upper-half plane zeros. Increasing o.~~~/a~~' de-
creases D, and so increases the time delay; the exact
relation for this model is found to be

Notice again that the formulas that were tested only numeri-
cally in HRTW can be calculated analytically in the limit of I'
»D (Agassi eg ~g. , 1975).

(8.98)

Moldauer (1975b) has investigated the effects upon
compound cross sections of direct amplitudes that
couple each channel with at most one other channel.
Three theoretical formulas for the inelastic fluctuation
cross-section enhancements were compared with the
results of computer experiments. Both the M-cancel-
lation formula (Moldauer, 1975a, 1976) and our Eq.
(8.61), taken from Hofmann, Richert, Tepel, and
Weidenmuller (1975), give a good account of the com-
puter results. The M-cancellation formula is some-
what simpler to apply and gives slightly better agree-
ment. The KKM formula (Kawai et al. , 1973) yields
correct results in its domain of validity, namely, the
strong -absorption 1im it.

An attempt has been made (Kerman and Sevgen, 1976)
to present a general formalism in which the various
theories appear as particular cases. In a background-

0 0 0
0 0

0 0 o o 0 0 0
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0 0 00 0 0 Q 0
0 0 0 o 0

density

ot zeros

f ydlr
ab

FIG. 20. Poles and zeros of an $ ~, matrix element with ran-
dom residues statistically independent of the poles, the latter
having all the same imaginary part. The ensemble-averaged
density of zeros is symmetric about the line of poles and has a
width -I 0~'/0 ' . See Mc Voy and Mello (1979).
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plus-pole expansion of the 5 matrix

(8.99)

The freedom obtained by relaxing analytic unitarity al-
lows a representation with no level-level correlations.

The matrix (S) has three components

(S)=S'+Z -V,

a& ~+gagubgE )2 +
(8.101)

ab ~(E s )2+ I2 D ~Agakgb)i

and ean also be written as

(S)=(1-P)'i'M, (8.102)

where P is the transmission matrix and M is unitary.
One can recover Moldauer's (1964a) results by putting

B(E+iI)=0, Z=O (8.103)

and those of Englebrecht and Weidenmuller (1973) by

B(E+fl)=0, S'(S') =l. . (8.104)

Qn the other hand, the KKM formalism corresponds to .

neglecting level-level correlations and putting
Z= Y=O (8.105)

so that

B(E+iI)=P,
S'= &S&=(1-X)"2M.

(8.106)

It is argued that a decrease in the correlations of the
parameters is achieved in this way.

It remains, of course, to be seen what the physical
significance is of this violation of unitarity, which is
the new ingredient of the theory. One might think of the
analogy with energy being conserved only on the average
in the canonical ensemble or with particle number in
the grand canonical ensemble. However, in these cases
this is not just a computational device but represents
the interaction with the surrounding medium. In the
scattering problem, one has indeed the interesting case
of covering many thresholds with the incident beam, but
when this is not the case it is not clear if any physical
interpretation can be given to this flux nonconserva-

the approximation is made of neglecting the energy var-
iation of the. various quantities involved; moreover, the
dimension of the S matrix is taken as fixed, ind. ependent
of energy, whereas the realistic situation is that a.

number of channels may be opening, over the averaging
interval I used to define the average (S). Since the
form itself is approximate for the above reasons, Ker-
man and Sevgen (1976) argue that one need not demand
exact analytic unitarity. They therefore propose an S
matrix with the familiar expansion, which should be
nearly unitary on the real-energy axis and which should
be unitary on the average, i.e. ,

S(E)S (E)= 1. —B(E),
(8.100)

tion, however useful it is as a mathematical device.
In the statistical theories of nuclear reactions re-

viewed so far in this section, the 8 matrix is written in
terms of mici.oscopi c quantities (like the poles and re-
sidues of the 8 or of the K matrix, or the matrix ele- .

ments of the underlying Hamiltonian), for which a sta-
tistical law is assumed and used to calculate the fluc-
tuation cross section a~,'-[~S~,'~ 'J,. We have seen that,
if the compound system has reached equilibrium, g ~,'

ean be expressed entirely in terms of the rnacroseopic
quantities S,~, i.e. , the optical S matrix elements, as
in the familiar Hauser-Feshbaeh theory, in which a ~~

is calculated in terms of the transmission factors,
computed from the optical. model for each channel.

Thus, at least in the case of o ~~, the microscopic
quantities play the role of a scaffolding, which is elim-
inated at the end in favor of the macroscopic quantities
S,~. It is natural to ask whether the scaffolding can be
eliminated from the very beginning, by proposing a
trial statistical law directly for the 8 matrix elements,
the input to the problem being the exact expectation val-
ues S,~ [see Mello (1979J. This question will be consid-
ered in, the next section.

J. A statistical theory of nuclear reactions
based on a variational principle

In this section we shall construct an ensemble of 5
matrices such that the quantities that are physically
relevant in the case of equilibrium, i.e. , the optical 8
matrix elements, are introduced from the very begin-
ning (Nello, 1979). The ensemble averages will then

be expressed in terms of 3.
A convenient measure (Krieger, 1967; Mello, 1979)

for unitary symmetric matrices 8, as given by Dyson
(1962a), is p(dS), defined uniquely by the property of
remaining invariant under the transformation S-USU
(U being any unitary matrix), which in turn preserves
the property of unitarity and symmetry. In a simple
one-channel problem [S= exp(i8) J, p(dS) = d8.

In the case of complete absorption, 3= 0, we shall
make the assumption that the frequency of occurrence
of 8 in a subspace of the space of unitary symmetric
matr ices is proportional to Dyson's measur e for that
subspace. The results obtained in this limit for the av-
erage and variance (Mello, 1979; Mello and Seligman,
1980) of the elastic and inelastic cross sections agree
with those obtained by HBTW, KKM, and Moldauer
(1976a).

For the general case 3c 0, one can propose a trial
probability density for 3, containing a suitably chosen
number, k, of functions f,.(S), and k parameters; the
latter can be varied so as to give the "best" trial prob-
ability density, in the sense of a variational principle
(Levine and Bernstein, 1976; Alhassid and Levine,
1978); essentially, one finds the best upper bound to
the statistical entropy of the exact distribution, and
when this is reached, the expectation values of the

f,.(S) associated with the exact and trial probability den-
sities coincide. If we reach the epact entropy, then the
trial and exact disA ibutions would coincide. In our
case the functions f,.(S) are chosen as the real and

imaginary parts of the various matrix elements S,~;

Rev. Mod. Phys. , Vol. 53, No. 3, July '1981



T. A. Brody et al. : Random-matrix physics

then we have k = 2 n(n+ 1), and we fix the expectation
value 3, i..e. , the optical 3 matrix. The trial distribu-
tion is then (Mello, 1979)

(8.107)

TABLE V. The factor E described in the text for the present
approach (Mello and Seligrnan, 1980) and that of Hofmann,
Richert, Tepel, and Vleidenmuller (HRT%, 1975).

1

Var iational method HRTW

3
5

10

0.60
0 44
0.30
0.16

0.53
0.40
0.30
0.23

P(dS = exp(-Re TrPS) p(dS)
J' exp(-Re TrPg)p(dS)

'

where the matrix P has to be fixed so that S has the re-
quired value.

When 5Q but is small, one can expand the exponen-
tial in (8.107) in a power series and keep the lowest-
order terms. We shall restrict the discussion to the
case of 3 diagonal and real, the most general 3 being
obtainable by an Engelbrecht-Weidenmiiller (1973)
transformation. In this strong -absorption regime,
[

~

S~~
~ ]„ for a e b, factorizes as (,g~; for a = 5 we can

define an elastic enhancement factor W, as in Eq.
(8.61). Then the $, are determined entirely (Hofmann,
Richert, Tepel, and Weidenmiiller, 1975) by unitarity
and the values of the 8"s. The latter can be written
(Mello and Seligman, 1980) as W, = 2+K ~S„~'+
The factors K from the present formalism and from
HBTW are compared in Table V, in which n indicates
the number of channels. The agreement is seen to be
very reasonable.

The cross average tSf,'S~»'*], is, in this regime, iden-
tically zero for KKM, whereas the present method and
that of HRTW give a result proportional to $gyS22& the
factor of proportionality (Mello and Seligman, 1980) is
compared in Table &I, which shows a very good agree-
ment.

Away from the strong-absorption regime, a simple
two-equivalent-channel case has been considered
(Mello, 1979). The elastic enhancement starts with two
for complete absorption, it increases as in HRTW, but
then it goes back to two for weak absorption, in dis-
agreementwiththe results of Moldauer (1975a) and Hof-
mann, Richert, Tepel, and Weidenmiiller (HRTW,
1975), in which, despite the error bars in the Monte
Carlo calculations, an increase in S" from about two
to about three can be seen, as we go from strong to
weak absorption. There is, however, a restriction
which we have so far not taken into account. From the
analytic structure of S, taken to be ergodic (French
et a/. , 1978b), one can prove (Mello and Seligman,
1980) that the average of products of S matrix elements
(involving only S but not S~) must coincide with the
product of the averages of the vari. ous factors. One
can prove that this condition is exactly fulfi. lied for
Dyson's measure p(dS), but is gradually spoiled as we
go away from this extreme. However, it can be in-
corporated as a set of new restrictions by means of
Lagrange multipliers. This has been done (de los

TABLE VI. The ratio fSgg S~& j~/S~~S22 for the present ap-
proach (Mello and Seligman, 1980) and that of Hofmann,
Bichert, Tepel, and Weidenrniiller (HRTW, 1975).

Variational method

0.200
0.050
0.015

0.197
0.055
0.015

A. Introduction

In our discussion of spectrum fluctuations so far,
we have mostly considered applications to nuclei; but
level fluctuations are also relevant when studying other
systems which show a discrete spectrum. In this sec-
tion we shall be interested in the thermodynamic prop-
erties of small particles for which the electronic level
spectrum is discrete, with a mean level spacing D. In
what follows we shall always assume that a free quasi-
electron picture is as good an approximation for de-
scribing valence electrons in a small metallic particle
as it is for describing valence electrons in the bulk
metal. In other words, all the results quoted below
should have as a natural limit the ones obtai. ned for the
free-electron picture of metals in bulk, when D tends
to zero and the spectrum becomes quasicontinuous.

When D is of the order of other relevant energy pa-
rameters, such as the thermal energy kT or the quan-
tum energy 5~ associated with an oscillatory mode of
frequency co, it is clear that small particles will ex-
hibit an anomalous thermodynamic behavior; there are
three different reasons for this (Kubo, 1962, 1969,
1977). Firstly, in such cases only a few electrons will
be excited above the Fermi level, and, as a conse-
quence, D will have a direct influence in determining
the partition function Z and all properties derived from
it. This is referred to as the "quantum size effect".

Secondly, for particles of characteristic radius ~,
when

Reyes et &E , 1.980) for quadratic combinations of S
matrix elements in the two-channel problem mentioned
above, and the results i~deed go in the right direction.

One can also calculate the variance of the cross sec-
tion (Mello and Seligman, 1980) for any number n of
channels in the region of strong absorption. If pz»1,
varo, ~=(cr,~)' as in Ericson's theory (Ericson, 1963),
meaning essentially that BeS„and ImS, ~ become Gaus-
sian for yg» 1. For arbitrary pg, corrections to this
result are -predicted.

We may summarize by saying that, starting from the
statistical. ansatz for p(dS), and including successively
known physical constraints, it is possible to obtain a
satisfactory theory for the domain of strong absorp-
tion; the two-channel example gives indications of how
this theory can be completed for the general case.

IX. SPECTRUM FLUCTUATIONS AND THE
THERMODYNAMIC PROPERTIES OF SMALL
ViETALLIC PARTICLES

D=kT (9.1)
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and the temperature is low enough, there might not be
enough energy to ionize the particle, so that the number
of electrons remains fixed in each particle and the
Fermi-Dirac distribution does not apply. In fact, the
ionization energy is of the order of e'/2a 10 ' eV for
a -60 A; on the other hand, D-10 ' eV for particles of
this size, so that charge fluctuations are strongly sup-
pressed. This implies that we must deal with the can-
onical rather than with the grand canonical ensemble of
statistical mechanics.

Finally, since the shape and size of the small parti-
cles cannot be controlled beyond certain limits, the
discrete spectrum will show fluctuations, i.e. , devia-
tions from uniformity (equal spacings). This will also
have an influence on the values of the partition function
and therefore on the thermodynamic properties of the
powder of small metallic particles. It is precisely at
this point that contact is made with the discussion of
previous sections.

The history of the quantum size effect dates back to
four decades ago when Frohlich (1937) calculated the
specific heat at constant volume, C„, assuming that the
electronic spectrum in the small particles is an equally
spaced one. He naturally obtained an exponential de-
pendence of C„on 1/T at low temperature.

Later on, Kubo (1962) argued that, due to the irreg-
ularities of the particle surface, any systematic prop-
erty of the electron spectrum would have disappeared;
as a consequence, the spectrum would be a completely
random one with a Poisson spacing distribution. In
such a case, a linear T dependence of C„obtains in the
limit of very low temperature.

A few years later, Gor kov'and Eliashberg (1965)
pointed out that, since the electrons in the small par-
ticle have a wavelength of the order of atomic dimen-
sions, surface irregularities of atomic size induce ran-
dom interactions of the electrons with the walls which
determine the quasiparticle levels. According to these
authors the situation is then analogous to that en-
countered in determining the distribution of nuclear
levels at high excitation, so that random-matrix theory
should be applicable.

One might make this assumption reasonable in the
following way (Mehta, 1967). The electronic energies
are the eigenvalues of a fixed Hamiltonian, but with
random boundary conditions which may be incorporated
into a random matrix through the use of fictitious po-
tentials. The appropriate ensemble of random ma-
trices to be used depends on the particular conditions
of the powder: (a) if the number of electrons is even~'
and there is no magnetic field, the GOE is applicable,
since the system is time-reversal invariant; (b) when
the number of electrons is odd and there is no mag-
netic field, the symplectic ensemble applies; and (c)
when there is a magnetic field, the Hamiltonian is no
longer- invariant under time reversal and a suitable en-
semble of random matrices should be of unitary type.

In any case, and independently of which of these ran-
dom-matrix ensembles is used, there will be level re-

The GOE does not apply when the number of electrons is
odd, since the Hamiltonian is not invariant under rotations due
to the surface irregularities (see Sec. II).

pulsion. Thi.s affects the T dependence of C„at low
temperatures. For GOE C„varies as T', for the sym-
plectic ensemble a T' variation is obtained, and for the
unitary ease C„ is proportional to T . However, the
important thing to notice is that the arguments of Kubo
and of Gor'kov and Eliashberg are qualitative, no real
justification for the relevance of any of the spacing dis-
tributions being given. We shall further discuss this
matter in Sec. IX.D.

In what follows we shall indicate how the thermody-
namic and electromagnetic properties of small metallic
particles can be calculated; we then compare the theo-
retical predictions with experimental results, classify-
ing the latter in such a way that they inform us about
the existence of the quantum size effect, the charge
neutrality and the appropriate spacing distribution to be
used. We finally comment on some recent theoretical
work concerning the appropriateness of random-matrix
theory for the problem of small metallic particles.

B. Calculation of the properties of small metallic particles

The numerical calculation of both thermodynamic
and electromagneti. c properties of a powder of small
metallic particles can be easily performed for low
temperatures within the free-electron picture, once
the discrete electron spectrum is known. The calcu-
lation is simple, since, due to the presence of the
Boltzmann factor, only a few states around the Fermi
level determine the partition function Z when (9.1)
holds. From Z the thermodynamic properties follow;
for example, for a powder containing N small particles
the heat capacity C„ is given by

where

] g(a)s(a) ($(a&)2

(aT)' ~ (S& &)' (9.2)

(9.3)

Here E(~ ' and g~("& are the energy and the (spin) degen-
eracy of the level A. of the ath particle which contains
yg' ' independent fermions; the canonical ensemble has
been used.

In Fig. 21 we present the values of C„as a function of
8= kT/D for three different cases (Blaisten et al. ,
1977): when the electron spectrum is a completely
random sequence of levels, when it is a GOE spectrum,
and when it is equally-spaced; all three spectra have
the same level density. The calculation is restricted
to values of 8& 0.2, since for larger values the detailed
properties of the spectrum are smeared out; for 8& 1
the values of C, no longer depend on the spectrum fluc-
tuations, and for 8» 1 the spectra appear to be quasi-
continuous and the bulk values follow.

One can see from Fig. 21 that C„ is largest for the
Poisson case and smallest for the picket-fence spec-
trum. This follows immediately from the action of the
Boltzmann factor at low temperatures, since small
spacings are more likely to appear for a completely
random spectrum than for the GOE case, while there
are no small spacings for the uniform system.
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FIG. 21. Values of C„/Nk versus O=kT/D for a Poisson (P), a
GOE, and a uniform (PE) spectrum. The values correspond to
an average over an odd number and an even number of elec-
trons, and the error bars are due to the finite sampling of 2000
spectra. Taken from Blaisten et al. (1977).

8
FIG. 22. Comparison of the C„/Nk values of Fig. 21 with those
calculated by Denton et al, . (1971, 1973) indicated by broken
lines (PD, GOED) for two different types of spectra: Poisson
and GOE. The result obtained by Kubo (1962) for the Poisson
spectra (PE) is also shown. Taken from Blaisten et al. (1977).

A widely used approximation to a calculation of the
above type was first proposed 'by Denton et al. (1971,
19'l3). The authors first obtain an analytic expression
for the partition function corresponding to an equa1. ly
spaced spectrum. This represents a zero-order ap-
proximation. The influence of the level fluctuations is
then taken into account by modifying the spectrum so
that the first few electronic levels above the Fermi
state belong'to the spectrum of the appropriate en-
semble.

It is clear therefore that the approximation of Denton
et gl. will be better the more uniform the spectrum is;
it should provide better values for the GOE than for the
Poisson case. This turns out to be true, as can be
seen in Fig. 22, where the specific heat values obtained
by Denton et g$. are compared with the "exact" ones of
Fig. 21.

The magnetic susceptibility X„was also obtained by
Denton et gl. vithi. n the same approximation. The val-
ues of X„ for both the GOE and the Poisson spectra are
given as functions of 8 in Fig. 23. In the odd-electron
case (for which, strictly speaking, GOE is not applic-
able) both types of spectra show the same Curie law
behavior" at low values of 8. For the even-electron
case we find very different behaviors. When there is
level repulsion, as with GQE, g& is proportional to ~

This comes about because of the unpaired electron and con-
trasts with what happens with the metal in bulk, where the T
behavior of y& is suppressed because only a fraction T/T& of
the electrons can be excited, this leading to Pauli susceptibil-
ity; here T& is the Fermi temperature. See, for example,
Kittel (1976).

for small 6I, while with a random distribution which
emphasizes small spacings, X„does not vanish, but
instead increases as 8-0.

With respect to the electric properties of small me-
tallic particles, we focus our attention on the far-in-
frared absorption, for which both measurements and

5.0
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2.0—

1.0—

~
W

0 I I

0 0.1

I I I I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
8

FIG. 23. Magnetic susceptibility X, in units of the Pauli value
X&, as a function of O=kT/D for GOE and Poisson spectra.
Taken from Denton et al. (1973).
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interesting theoretical calculations have been per-
formed. We comment on the theoretical calculation of
Tanner et a/. (1975), which revises the original one
performed by Gor'kov and Eliashberg (1965), in which
a large electric polarizability (as compared with the
bulk value) was predicted for small metallic particles.

According to Tanner et a/. (1975), the problem of
finding the absorption coefficient for small particles di-
vides into three parts, the first two being of essentially
electrostatic nature: (1) to calculate the effective di-
electric constant; (2) to find the relation between the
internal and applied fields, including depolarization
effects, originally not taken into account properly by
Gor'kov and Eliashberg (see Strassler et a/. , 1972);
and (3) to calculate the linear response to the electric
field of a system with discrete energy levels which obey
a given spacing dis'tribution. The resulting expression
for the dielectri. c Susceptibility X~ is

]39 82

40@ Da 1200 ' hu
(9.4)

where the first term is the static one and the second
depends on the frequency in a way determined through
A(cu) by the spacing distribution assumed. In (9.4) g is
the particle radius and z~ is the Fermi velocity. The
resulting X~ as a function of co shows large variations
when the simplectic ensemble is used and a much
smoother variation when the GOE is assumed; no ex-
plicit value for A(~) in the case of a Poisson spectrum
is given.

C. Experimental evidence

It was not until five years after the appear ance of
Kubo's original paper that Taupin (1967) published the
results of the first NMR and EPR measurements on
small particles. of lithium. Since then a whole set of
these experiments measuring X~ in small particles have
been performed on aluminum (Kobayashi et a/. , 1970,
1971, 19'/4; Fujita et a/. , 1970; Granquist et a/. , 1976),
gold (Dupree et a/. , 1967; Monot e/ a/. , 1971), lithium
(Charvolin et a/. , 1966, 1967; Fujita et a/. , 1977;
Borel and Millet, 1977), silver (Monot et c/. , 1974),
tin (Kobayashi et a/. , 1974), platinum (Marzke et a/. ,
1976; Gordon et a/. , 1977), and copper (Kobayashi e/
a/. , 1972; Yee and Knight, 1975; Kobayashi, 1977).
Typ ical data are shown in Fig. 24 where y„ is given for
silver (Monot et a/. , 1974). The appearance of the
Curie-type law X~- T ' for the temperature dependence
of X~ has been interpreted by most of the above-men-
tioned authors as conclusive evidence that the electron-
ic spectrum is discrete in small metallic particles,
i.e. , that the quantum size effect exists.

There are some experimental results in apparent
disagreement with the above cbnclusion. Thus in mea-
suring the nuclear spin-lattice relaxation time in small
superconductors in a magnetic field, Kobayashi et zl.
(1975) found the experimental results to be in agreement
with the theory of Sone (1976) in which a continuous
spectrum is assumed. A plausible explanation for this
has been given by Simanek (1977); he shows that the
electron energy Levels are broadened because the small
particles in actual samples tend to form clusters, so
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FIG. 24. Magnetic susceptibility Z, in units of the Pauli value
g&, as a function'of 8=AT/D for slnall particles of silver.
Taken from Monot and Millet (1976).

that there is intergrain electron tunneling in small
super conductors.

Another type of measurement not in agreement with
the quantum size effect is that of the opti. cal constants
and their temperature dependence (Kreibig, 1974).
Kawabata and Kubo (1966) discussed the plasma-reso-
nance light absorption, which takes place via the plas-
ma-osciLLation modes of conduction electrons in the
small particles which are coupled to the transverse
electromagnetic field through the existence of the par-
ticle surface. In a quantum-mechanical treatment the
surface produces the discreteness of the electron en-
ergy levels through the appropriate boundary conditions.
In a classical description, on the other hand, the par-
ticle surface is regarded as scattering the conduction
electrons, and so affecting their mean free path. The
two ways of dealing with the problem lead to different
size dependences of the optical plasma-resonance ab-
sorption and of its temperature variation. For silver
particles (Kreibig, 1974) the classical theory seems to
agree better, the predicti. ons of Kawabata and Kubo
(1966) being off by a factor of two. However, more re-
cent measurements in gold particles by the same author
(Kreibig, 1977) point in the direction of the quantum
size effect. In summary, the weight of all the experi-
mental evidence together supports the existence of this
effect.

Consider next the postulate that we have a f ixed num-
ber of electrons. The. evidence comes mainly from
comparing the magnetic susceptibility calculated using
the canonical ensemble with that using the grand can-
onical ensemble. At very low values of 8, the values of

X» obtained with the canonical ensemble are larger than
those obtained assuming a variable number of electrons
in each small particle. For an equally spaced spec-
trum the results are shown in Fig. 26, where they are
compared with experimental values for platinum
(Marzke et a/. , 1976). It is clear that the canonical en-
semble is favored for this spectrum (and similarly for
other spectra).

, Finally, the appropriate spacing distribution to be
used is more difficult to establish. If one considers
the magnetic susceptibility y„as a function of 8, he
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FIG. 25. Difference between the magnetic susceptibility cal-
culated using a canonical and a grand canonical ensemble. In
both cases an equally spaced spectrum was used. 6=AT/D.
The dots correspond to experimental values for small parti-
cles of platinum. Reprinted with permission from Marzke,
et al. (1976), Solid State Commun. 18, 1025 (Pergamon, New
York).

Besides the difficulties appearing in the 'experiments
with g„, there are further ones when dealing with the
electric polarizability. According to the theory of
Gor'kov and Eliashberg (1965), the electric polariza-
bility should be greatly enhanced over the bulk value
for very small metallic particles obeying one of the
spacing distributions predicted by random-matrix the-
ory. This enhancement has not been found for silver
(Dupree and Smithard, 1972), for gold (Meier and
Wyder, 1972), or for aluminum (Grantlvist et al. ,
1976, 1977). Tanner et al. (1975), who performed the
first measurements for the far-infrared absorption in
small metallic particles (that is, absorption at fre-
quencies comparable with the mean energy spacing),
suggest that the modified theory of Gor'kov and Eliash-
berg leading to (9.4) gives a good description of the
data. However, this is too optimistic, as can be seen
from Fig. 27 which gives results for Cu and Al. Neith-
er the GOE nor the symplectic ensemble provides a
satisfactory explanation of the data. Unfortunately, the
corresponding absorption coefficient versus frequency
curves are not given for the Poisson case.

An alternative explanation for these results comes

sees that the various level distributions give approxi-
mately the same order of agreement; for example, for
platinum, the Poisson distribution fits best at large
values of 8 and the random-matrix ensembles give a
somewhat better agreement at low values of 8, as can
be seen from Fig. 26. However, when the differing
susceptibilities of particles having an even or odd num-
ber of atoms have been deduced, as for copper by Yee
and Knight (1975), it has been observed that particles
with an even number of electrons "tend" to have a zero
spin susceptibility; one might conclude then that the
symplectic or the orthogonal ensembles are more real-
istic than the Poisson distribution. However, the pre-
cision of the current measurements and the existence
of a particle-size distribution in the sample does not
at present really permit a distinction to be made be-
tween the different possibilities for the spacing distri-
butions.
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FIG. 26. Magnetic susceptibility as a function of 6=AT/D for
Poisson, GOE, and equally spaced spectra. The experimental
points, indicated by dots, correspond to small particles of
platinum. Reprinted with permission from Marzke et al.
(1976), Solid State Commun. 18, 1025 (Pergamon, New York).
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FIG. '27. Far-infrared absorption coefficient for Cu and Al as
a function of frequency. Two different samples, of diameters
-70 A and 270 A, are used for Cu. Predicted values for GOE
and for the symplectic ensemble GSE are also shown. Taken
from Tanner et al. (1975).
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from including the electron-electron interaction. This
was done for the static case by Lushnikov and Simonov
(1973), and for ~ a 0 by Monsivais and Flores (unpub-
lished). The enhancement of the electric polarizability
predicted by Gor'kov and Eliashberg (1965) no longer
appears, and a better agreement with the experiments
of Tanner et gl. (1975) is obtained.

As a resume of the actua1. experimental situation one
could say the following: The effects of discrete spectra
seem to be well established; it also seems that the de-
scription with a canonical ensemble, appropriate to
systems with a fixed number of electrons, is the more
reali, stie; but distinguishing among the different spacing
distributions is extremely difficult, so none is definite-
ly established. These conclusions are well justified
when no supereonductive transition is involved. Dealing
with superconductive small particles seems to be rath-
er complicated, no good theory existing up to now.
This is unfortunate, because for superconducting vana-
dium particles the specif ic heat has been measured
(Comsa et al. , 1976), as well as the magnetic suscep-
tibility for several materials (Novotny and Meincke,
1973; Matsuo et g/. , 1974). From these measurements
the transition temperature T„ from the supercondue-
tive to the normal state, can be obtained for particles
of different sizes. On the other hand, by explicitly con-
sidering the discrete nature of the electron spectrum in
the equations appropriate for strong-coupling super-
conductors (Eliashberg, 1960), an expression can be
obtained for T, as a function of D and for spectra with
different fluctuation properties (Barojas et al. , 1980).
Comparison of these results with the experimental ones
for small particles of lead show that a completely ran-
dom spectrum is appropriate, while an equally spaced
one is not. For weak-coupling superconductors, such
as Al, BCS theory should be applicable for not too
small particles. Then it is simple to obtain T, for
discrete spectra, with different fluctuation properties.
Again, a Poisson spectrum fits the Al data better than
a GOE or equally spaced spectrum (Barojas ef al. ,
1979).

D. Recent theoretical considerations

Up to now we have briefly described the early theo-
retical considerations, and have given a short account
of the re1.evant experimental results, which, however,
do not make clear the nature of the single-electron
spectra. %e now turn to a more detai. led consideration
of that.

In what follows we shall first give evidence that the
problem cannot be formulated in a strai ghtforuard zoay
in terms of matrix ensembles. We present first a
qualitative argument and then reinforce it by analyzing
a one-dimensional example (Barojas et aE. , 1977a).
These arguments show that the problem of perturbing

the boundary, when Dirichlet conditions are imposed,
leads to infinite matrix elements. %e then turn to the
recent formulation of Tavel et al. (1979; see also Tavel,
1978). At the end of this section we shall present nu-
merical results which are in disagreement with each
other, showing that a elearcut solution to this prob1. em
has not yet been obtained.

Let us assume a free-electron model. Then the prob-
lem of perturbing the boundary shape can be formu-
lated in the following way. Take a region R' in which
the solution to Schrodinger's equation

(p'+ k„')p„= 0 (9.5)

(~' —V+ g'„)g = 0,
with

V(r) = V„re R', r 4 B
=0, r(=R,

(9 6)

(9.7)

and such that

g (r)=0, rcS. (9.8)

It is clear that when Vo increases', g will decrease ex-
ponentially in the region between S and S' and that g
will become zero on S only in the limit V0- ~. Since
P„ is not necessarily zero on S, the matrix elements of
V with respect to the unperturbed basis diverge.

This argument does not apply for Neumann boundary
conditions. Our problem can indeed be formulated in
matrix language in this case, using p„as a basis.
This, together with the analysis of convergence, is
done, for example, in the book by Morse and Fesh-
bach (1953).

In the one-dimensional case, when R' is the interval
(0, 1) and B is the interval (0, 1 —5], we obtain, for
Dirichlet boundary conditions, the following expres-
sion for the Hamiltonian matrix elements,

is known, with g„obeying given boundary conditions on
S', the boundary of R'. Ne then perturb S' to obtain a
new region R with boundary S. The problem is to de-
termine new eigenvalues e2 and new eigenfunctions r/r

which satisfy the same boundary conditions as P„, but
now on the surface S.

For small metallic particles, as we already men-
tioned, the number of electrons remains fixed; that is,
the sma1.1 particle behaves as if it had impenetrable
walls at low temperatures; therefore Dirichlet condi-
tions should be appropriate and we can see qualitatively
that difficulties ari.se in casti.ng the problem of boundary
perturbations in matrix form usi. ng the unperturbed
wave functions @„asa basis. They are similar to the
problems encountered in many-body theory when deal-
ing with a hard-core potential using an uncorrelated
basis.

Indeed, consider the equation

(p„jH j@,) =4(1 —6) ' sin[a'r(l —6)]sin[vs(1 —6)]g m'[m'- (1 —6)'r']. '[m'-(1 —6) s'] ',
m=1

and, for the case of Neumann boundary conditions,

(9 9)

(y„jH jy,) =4(1 —6)rs sin[a'r(1 —6)]sin[n's(l —6)]Q m'[m'-(1 —5) r'] '[m' —(1 —6) s'j ', (9.10)
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H( ') = J ' '(r')H[r(r')]J' '(r') (9.11)

which has the same eigenvalues g' in the simple do-
main R' as the original (simple) Hamiltonian H has in
the complicated domain R. If one now expands r'(r) as
a power series in the deformation parameter" A. ,
(S.ll) can be used to obtain a perturbation series in X.
For example, the first order correction to the eigen-
values is

(9.12)

where

(9.13)

b.J being equal to (&J/6X)~, . All this can be worked out
explicitly once the function r'(r) is known, as we shall
indicate towards the end of this section.

We turn now to the results of several numerical cal-
culations, in which the nearest-neighbor spacing dis-
tribution of the perturbed spectrum is obtained, Con-
sider first an assembly of small platelets (i.e. , two-
dimensional systems) in which platelet 5 is a rectangle
of sides (1 —5) a.nd 1, 5 being a random variable that
generates the assembly (Barojas et al. , 1977b). The
exact perturbed eigenvalues are then

(9.14)

where, for convenience, 1 and 1 —5 are assumed to be
incommensurable. In Eq. (9.9) each term in the series
approaches a constant and the series does not converge,
whereas in Eq. (S.10) no problems arise, since each
term of the series goes as 1/m' in the large-m limit.

We see then that the problem of boundary perturba-
tions with Dirichlet conditions cannot be formulated as
a straightforward matrix problem, leading us to sus-
pect that a random-matrix description of the small '

metallic particle might be questionable. In the method
of Tavel et al. (1979) an equivalence is established be-
tween the eigenvalue problem for a simpler operator
(i.e. , the kinetic energy) in a complicated domain (i.e. ,
the perturbed region R bounded by 8) and that of a com-
plicated operator in the simple domain A'. The com-
plicated operator can be expressed in terms of the
simple one plus a sum of terms of first and higher or-
ders in the surface deformation parameter.

These authors assume the existence of a mapping r
—r' = r'(r) which is one-to-one, has an inverse, and
maps A into Q' in a continuous fashion. The Jacobian

Br;
Br&

characterizes the mapping. The (Hermitian) trans-
formed operator is then

electrons, and the next level"; we again obtain a Pois-
son distribution, the value of co now being 0.003+ 0.05.
These results indicate that the spacing di.stributions
for this case are erg odic, but diff ere nt from those pre-
dicted by random-matrix theory; in particular, per-
turbing the boundary does not induce level repulsion in
the spectrum.

A completely different result is obtained by Tavel et
al. (1979), who use Eq. (9.11) and assume a slightly de-
formed spherical region, so that

1+1 ~, Yg + Y*, +ib, Y, —Y*,
Em

(9.15)

Here r, is the average radius and X is the parameter
that adjusts the height of the deformation; the real co-
efficients g, and b, are varied at random to generate
the assembly of deformed surfaces. When the calcula-
tion is restricted to a single degenerate L, state, "and
when all a, and b, have the same random distribution,
the perturbed ei'genvalues (up to first order in A) are
such that a nearest-neighbor distribution of the Wigner
type is obtained. This corresponds to what the authors
call the surface of maximum roughness. When coef-
ficients with larger values of l are less and less im-
portant (i.e. , the surface is smoother) the distribution
is no longer of the Wigner form, nor is it Poisson; but
in this case the distributions are no longer ergodic.

Finally, we compute the spacing distributions from
"realistic" calculations of electronic energy levels in
small clusters of atoms. The electronic spectrum has
been obtained in two cases for the purpose of studying
the catalytic properties of small clusters. The first
example refers to the electronic structure of a face-
centered truncated octahedron, which has six square
faces and eight hexagonal ones, all having equal edges.
The eigenergies of d electrons, in the framework of the
tight-bind'ng approximation, have been obtained by
Cyrot-Lackmann (1977). Using these eigenvalues, one
can again obtain the spacing distribution, and a Poisson
law fo"lows. The second example emerges from the
study of the complex TiCI~C,H, (catalyst+C, H, ) in the
context of a Zieglar-Natta —type reaction (Novaro et zl. ,
1978). The ob initio all-electron calculation was done
w ithin a linear -combination-of -atom ic-orbitals -self—
consistent-field (LCAO-SCF) approximation with a min-
imal basis set. Again the spacing distribution is of the
Poisson type.

It is clear from all of these calculations that the ap-
propriate theoretical spacing distribution has not been
established. It might even be that the nature of the sta-
tistical behavior in complicated single-particle sys-
tems is so different from that generated in many-par-
ticles systems that the usual random-matrix considera-
tions are not appropriate. In that case it could turn
out, for example, that the recent studies [Balian and

where nz, i.s the electron mass and ~„yg, are non-nega-
tive integers. Let us now consider a single platelet,
that is, a fixed 5. The resulting spectral spacing dis-
tribution approaches closely a Poisson distribution,
the value of the repulsion parameter being co= 0.023
+0.035. We then vary 5 at random, and consider the
spacing between the Fermi level corresponding to yz"'

42In the numerical calculation the Fermi level of the particle
containing pz electrons was determined, assuming a constant
electron density.

3Assuming rather small particles (g 0- 16 A), the authors
estimate that the splitting of the (2L+ 1)-degenerate levels is
smaller than the separation between the L levels in the perfect-
ly spherical surface. This might not be the case when yo is
larger, as frequently occurs in actual experiments.
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Bloch (1974) and earlier papers referred to therein] of
the Helmholtz equation in a cavity ('V(feyi's problem" )
might lead to theoretical results which can more con-
fidently be compared with those of the beautiful experi-
ments which we have referred to and others which are
now promised or in progress.

X. ERGODIC PROPERTIES OF RANDOM-MATRIX

ENSEMBLES

A. Introduction

8+-,' {AE)
&f(E, 4)&,= ~E f(E', 4)dE'

8-~2 (4E)
P/2

f(E+ rD, ()d~,
-n/2

&f(E, $)&,=- Z f(E;, (),
Qf EEE

(10.1)

(10.2)

In the preceding sections we have repeatedly men-
tioned that an ensemble should have certain ergodic
properties. We shall here examine what these proper-
ties are and how far they apply to the random-matrix
ensembles we have discussed. Ergodic problems in
conventional statistical mechanics have been extensively
studied [see, for example, Khinchin (1949); Miinster
(1959)]. A clear exposition of the basic concepts will
be found in Balescu (1975), and Lebowitz and Penrose
(1973). For ergodicity in random processes, which is
much more relevant for us, see, for example, Yaglom
(1962) or Cramer and Leadbetter (1967).

Consider a quantity f(E, 8), defined for H', a mem-
ber44 of the ensemble, and dependent on the details of
(i.e., a functional of) the spectrum in the neighborhood
of E', say, within the measuring intervaL (E+25E); for
example, with A, (n) we have that 5E=nD(E). f has a
spectral average over an averaging interval AE at E .

where 4 ($) is the distribution function for the ensemble;
the corresponding density is P(H), given for GOE by
(2.7).

We could take the averaging interval &E to span the
entire spectrum; in that case we would have p =d.
Ergodicity could then be defined as the equality of the
two averages

&f(&)&=5(E) (10.4)

&f(h)&=f, =f (E), (10.5)

the second of which defines stationarity, while the first
implies that the chosen H' is a '*characteristic" mem-
ber of the ensemble. Note that fo=&f&. It should be
clear that Eqs. (10.4) and (10.5) could hold almost aL-
svays at best, since there mill be exceptional members
in the ensemble and exceptional regions in the spectra.

However, averagirig over the complete spectrum is
not appropriate for our purposes, nor is it necessary.
Only small segments of the spectrum are available ex-
perimentally so that we must really study the results
of local instead of global spectral averaging. The defi-
nition of ergodicity, Eq. (10.4), is now given in the li-
mit p ~, following d-~ (so that p/d-0). In practice
we would have d»P» 5E/D. In most cases of interest,
though not with proton resonances, the ave~aging inter-
val ~ will be small enough that, even without unfold-
ing, the density can be taken as constant.

Our main ergodicity requirement is the first equality
of (10.5), which we restate as follows:

in the d-~ limit (which enters here just as does the in-
finite-time limit in statistical mechanics). Now (10.4)
could not hold unless each side is equal to a constant,
fo, say, since they have different and independent ar-
guments. Hence (10.4) separates into two conditions:

where the integral applies to a function defined for all
points on the energy axis, the sum for one which exists
only at the levels E,. of the II' matrix. 'The subscript p
gives essentially the number of levels in ~E; the pre-
cise definition will depend on the kind of averaging used
and the nature of the measure. In the last form of
(10.1) we assume where necessary that the spectrum
has been unfolded. " The function f also possesses an
ensemble average given by

where var&,
&

denotes the ensemble variance. " We may
speak of the ergodicity obtained via (10.6) as "locally
generated;" this only stresses the fact that the averag-
ing interval can be a negligible fraction of the spec-
trum span. Qn the other hand, the experimental data
are available in the form of finite samples, and it be-
comes then imperative to know not only that the vari-
ance vanishes in the limit but also its magnitude as a,

function of p.
As for the second equality of (10.5), viz. , stationarity

over the averaging interval, we stress that this is in-
cluded in the definition of ergodicity merely to facilitate
an easy interpretation of the physically important quan-
tity fo, to which the spectral average converges in the
limit. In more general terms we may omit it and pro-
ceed with (10.6) to verify ergodicity. Except for "p-de-

We have explicitly used the label ( to emphasize that the
quantities. are defined for a particular member of the ensemble.
We shall often drop the label for brevity as we have done in all
the previous sections. Triangular brackets will denote spec-
tral averaging. D{E) will denote the ensemble-averaged local
spacing at 8, which, as discussed in the next section, we can
replace by a spectral-averaged local spacing. A spectral
average is implied in the definition of some measures, as in
the spacing variances. This is not so, for example, with &3{n)
when n covers the total observed spectrum; on the other hand,
for much smaller n an experimental evaluation of the spectral
average {10.1) may be carried out. This freedom, in fact, may
be used to define sharper measures, as we shall see in Sec.
X.C.

Alternatively, one could, for local averaging, introduce the
notation of a "tangent ensemble. "

6In the integral of Eq. {10.1) it is to be understood that the
measuring interval t5E moves continuously over the averaging
interval. It is sometimes convenient to approximate the inte-
gral as a sum over a number, &Ej6E, of contiguous nonover-
lapping domains. The conditions given below for ergodic be-
havior apply equally well in both cases. The approximate pro-
cedure {which really involves a new definition of spectral aver-
aging) gives a variance {10.6) larger than the integral method,
but the difference is negligible when the number of intervals is
large. The case is similar for Eq. (10.2).

f(~)=f f(&, ()&@(()=fy(&()P(H'), da', (,1Q.B),

Rev. Mod. Phys. , Vol. 53, No. 3, July 'l 981



462 T. A. Brody et al. : Random-matrix physics

2
(P h)S'(h—)dh,

0

var„, (f(E)) = —, g S (E,-,E )
1

@i'BEE+E

=2' S~(0)
P p

(10.8)

(10.9)

where we have integrated (or summed) over the center-
of-mass variable. Since S determines the binary fluc-
tuations of f (i.e. , fixes all its two-'point measures), we
see that the fluctuations of f and its ergodic behavior
are intimately related.

We can now use (10.8) and (10.9), either for a direct
evaluation of the variance or for inferring the asympto-

/

tic form of the variance from that of S~. Since we al-
ready know S~ for the one-point functions, we shall, in
Sec. X.B, study their ergodicity by the first procedure.
In other cases the explicit evaluation of the variance
could be a formidable problem, and for these we would
use the second procedure.

A widely used result, , giving a sufficient condition for
the vanishing of the variance, is Slutsky's theorem
(Slutsky, 1938; see also Yaglom, 1962),

1
S~(h)dh = 0,

P 0 phoo

~
P-I-P S&(h) — 0.
&=1 P ~oo

(10.10)

(10.11)

A variant of the theorem, which is adequate for our
purpose, is that the variance vanishes if S~(h) vanishes
in the limit of large jh

~

I or ts a,symptotica, lly a sinu-
soidal function of x. The theorems are valid for finite
S~(0). It will turn out in some cases that S~(h) has del-
ta-function singularities at x= 0; in these cases we shall
evaluate the integral over the singular part separately.

We may also encounter functions which are anomal-
ous in that the variance given by (10.6) vanishes for all

The term autocorrelation function, commonly used, is best
restricted to the autocovariance function of the standardized
function, f/(var f), as Bartlett (1966) suggests, since this
is dimensionless and within the range —1 to 1.

pendent" quantities, an example of which is given
toward the end of the next section, we can assume what
we may refer to as "local" stationarity; this is trivially
achieved by local unfolding. Note carefully that the lo-
cal stationarity does not at all require or imply the
global stationarity discussed in Secs. I.C and IV.A.

We introduce the autocovariance function" for f
S'(E„E,) =f(E,)f(E.) -f (E,)f (E.) . (10.7)

As we have discussed above, we can usually take S~ to
be locally stationary, and therefore write it as a func-
tion of the relative coordinate r only. In the first case
(10.1) we have h= (E, -E,)/D, and in the second case
(10.2) h is the number of levels in (E, ,E', ) with one of
the ends included. S~(h) is an even function of h and its
absolute value is bounded by S~(0). We have now, for
(10.1) and (10,2), respectively,

P/2

var&, &(f(E))~=—, Sf(E+ h,D, E+ h, D)Ch, Ch,
-p/2

p. 'This is really an indication of an improper normali-
zation of f. For example, if f(E) has a proper ergodici-
ty (i.e. , an ergodicity generated by taking P large
enough), then d 'f(E) is such an anomalous function and
its ergodicity is of no interest.

When the autocovariance function vanishes for all y
4 0 (as it does for transition strengths, discussed in
Sec. X.D below), the spectral average becomes a
Gaussian random variable for large enough p, this by
an application of the simple CLT. We have already re-
ferred, in Appendix N to a theorem (Diananda, 1953)
which leads to the same result when the autocovariance
function vanishes for all r&xo, a fixed number; we have
relied on a plausible extension of this to argue that the
kth-order spacing becomes Gaussian for large enough
k. The same argument leads us to expect that most of
the ergodic measures should become Gaussian under
spectral averaging for large enough p. 'Then, for large
but finite p, the variance properly measures the statis-
tical error. " Unfortunately, the variance has not been
calculated for most of the spectral-averaged two-point
fluctuation measures so that the final comparisons in
Sec. VI between theory and experiment are rather
vague .

In the next section we demonstrate ergodicity for
one-point measures, and in Sec. X.C for the two-point
and higher-order correlation functions which leads to
ergodic behavior for more complicated measures. It
will turn out that these functions, when calculated for
the unfolded spectra, are globally stationary, in the
sense of Etl. (10.5). As we have seen, this very strong
property is not necessary for ergodic behavior, but it
goes a long way toward explaining the experimentally
observed stationarity (Sec. I.C). In Sec. X.D we consid-
er ergodicity and stationarity for transition strengths,
and in Sec. X.E for an S-matrix ensemble.

B. Levet density and other one-point measures

Ergodic behavior of the leve l dens ity has been d is-
cussed by several authors. Grenander (1963) proved
that, for ensembles whose matrix elements have dis-
tributions symmetric about zero, with identical vari-
ances and uniformly bounded moments of-all finite or-
der, the moments of the level density for almost all
ensemble members go over, in the large-d limit, to
those of Wigner's semicircle (3.17), in the sense that
their variances about these values tend to zero. Gren-
ander's results. extended to the other canonical en-
sembles, follow from our Etl. (4.8) above. Somewhat
stronger results, with fewer restrictions on the dis-
tributions of the matrix elements, were later obtained
by Arnold (1967) and Olson and Uppuluri (1972). By
means of binary-association expansions, described in
Sec. III and IV, Mon and French (1975) were able to
derive ergodicity also for the EGOE. No explicit spec-
tral averaging appears in these calculations, but there

48When the distribution of (f)& is known, we can calculate
confidence limits —say, the probability that an observed value
lies in the range f + e(var( f ) p) - . It is in this sense that we
refer to (var(f)P as the statistical error of the estimation
procedure. For nonzero f we shall also refer to the "relative
error" (var(f) p)

~ /f, whose square is the "figure of merit"
as used by Dyson and Mehta (1963).
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is an implicit one in that results valid for moments of
order «d are extended to all orders, this generating a
spectral smoothing which plays the same role.

Let us now return to the methods of the first section.
We are interested in Eq. (10.1) with f= p. Since

I.'+ (x/234 E
dx p(E')dE'

s -(x/2)48

counts the number of levels in &E, its variance is Z'
(p), already given formally by Eq. (5.2) and explicitly
for the standard ensembles by Eqs. (5.12) and (5.13).
Then (Pandey, 1979)

v» .,(P(E)&,= d, ~E,~'(J ) = [P(E)]'~'(P)/P', (1o 12)
1

which vanishes as p 'lnp for the Gaussian ensembles,
and as P ' for the Poisson case [for which Z'(P) =P],
yielding an ergodic behavior of the level density in all
cases. Observe that, because of the level repulsion,
the convergence is faster for thy Gaussian cases. In
deriving ergodicity we have used here the direct evalu-
ation of the relevant variance instead of the general
argument of Sec. X.A. See Appendix Q for the alterna-
tive derivation.

Ergodicity can similarly be shown for the number
statistic, n(E), the number of levels in an interval of
fixed length nD at E It is .found (Pandey, 1979) that

var(, )(n(E)), =6.'Z'(p)/p' (10.13)
as long as spectral averaging is done with p/n contigu-

ous nonoverlapping domains. Note that the figure of
merit for (n(E)) is independent of n, and therefore
identical with that for (p(E)) itself, as we see from
(10.12) and (10.13), or could have predicted from the
fact that n is an additive statistic. By the same pro-
cedure (Pandey, 1979; Bohigas and Giannoni, unpub-
lished) the figure of merit for the spectral-averaged
kth-order spacing'~ (k&p) is a'(p -1)/p', which via Eq.
(5.3) differs only trivially from that for (p) and (n) for
the Gaussian ensembles (and not at all for Poisson);
the resultant ergodicity would follow also from Eq. (5.8).

"She practical use of the one-point measures lies in
estimating D. For example, D can be estimated in the
obvious way (from the spectral-averaged spacings) with
a fractional error P 'o(p —1), which, for P = 100, . is
10% for Poisson, but only 1.2% 0 9%, a. nd 0.7% for the
P = 1,2, 4 ensembles. D can be estimated in other ways,
also —for example, as the spacing parameter for the
"best" uniform spectrum, whose derivation is the es-
sential feature in evaluating 4, or A*. Thus from (5.18)
the estimator for D turns out to be

P2 ' &' —(Z';=i&)'

(10.14)

where the E, are .the energy levels (p of them) in aE.
We have easily that A . =D and

72D', p+ 1 p+ 1

(-P + 3P'k —2k'+P —k)o'(k —1) (10.15)

E'+ (+2368 P/2 p(E+ rD)
M (E)=— E"= E'"p(E')dE' = — (E+ xD)"

~ E;Fbp, ~ 8-(x/232 8 -a/2 p(E+ rD)

whose variances, for v~ 1, diverge for asymptotic p. Thus for v=1, M, (E)=E and from Eqs. (4.4), (5.2), and
(10.16)

(10.16)

the last form being valid for the Gaussian ensembles. Its variance being-p ' instead of p 'lnp, this estimator is
asymp«tic»ly better than the»mpler ones above. Its variance indeed is quite close to that (8D'/n'p') of the opti-
mal estimator for GOE given by Dyson and Mehta (1963), involving a spectral averaging with a "semicircular"
weighting which also pays little attention to the ends of the spectrum. For P = 100, however, the improvement, over
the simpler estimator is negligible, 1.0% instead of 1.2% for GOE.

Finally, we str'ess that not all one-point measures are ergodic. For example, the levels in the fixed interval
DE define moments

g/2

var„,M, (E)=— (E+x,D)(E+y D)[6(x, -g, )-Y (x, r, )]dr dh, -
-n/2

p2D2 p&D2 ~2D2

p 12 6 6(p r) E'+ -— — [b(r) Y(r)]dr-2

~g2(~)d~P' 4 P' (10.17)

where the second step follows after integrating out the
center-of-mass variable, and the third step after two
partial integrations; the first term in the last form is
of order lop for the Gaussian ensembles and is of order
p for the Poisson case —similarly for the higher mo-
ments. 'These nonergodic results are not surprising,
'however, since the levels remain highly correlated,
Eq. (4.30), even for large separations.

C. Two-point and higher-order functions

We know that a 0-point fluctuation measure can be ex-
pressed in terms of the k-point and lower-order cor-
relation functions defined in (4.1). As can be seen from
(10.7), the corresponding autocovariance function in-

4~We have (p+1) levels in this case and the spectral averag-
ing is over p/Q+ 1) contiguous nonoverlapping Ath spacings.
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volves the 2k-point function. The one-point measures
could be dealt with as in the preceding section because
the properties of the two-point function are well under-
stood; not so for the higher-order functions. It is only
recently (Pandey, 1979) that the ergodicity of a general
k-point function has been established; from this follows
the ergodicity of the fluctuation measures of Sec. V.

Following (4.1) we define

T»= P(x,. ) S»= [P(x,)/P(x;)], (10.18)

x, R~ (x, with t in G&),

(10.19)

where & stands for any division of the indices
(1,2, . . . , k) into unordered subsets (G, ,G„.. . , G„).
Thus 1', = 1 and Y, is given by (4.4). The inverse of
(10.19) is

R»(x, ,x„.. . ,x») = Q (-1)»
G

x YG (x, with t in G&) .
j-j.

(10.20)

Now, let us take the k points (x,.) to be defined in a
small segment of the spectrum. We write x,. =x+ r, D(x)
where x is the centroid, so thatZ», r, =0. The func-
tions Y, are well defined and finite everywhere, being
functions of the r, and x. Moreover, the Y» (and hence
the T» and the R») are globally stationary if they are
independent of x, being a function then of the relative
coordinates r;z—= (r, -rj) on. ly. The Poisson ensemble,
which does not display any level repulsion, is by con-
struction stationary for its cluster functions; in fact,
Y»= 0 for all k& 1. Dyson (1970) has evaluated the Y»
for the circular ensembles, and Mehta (1971) for the
Gaussian ones, in each case of arbitrary dimensionali-
ty; in the large-d limit the Gaussian ensembles give
Y~ which are identical at the center of the semicircle
with those for the circular ensembles.

The circular ensembles are, of course, stationary by
construction. They are inadequate, however, for deal-
ing with the physical problem of global stationarity dis-
cussed, for example in Sec. I.C, for which the signifi-
cant question is whether such stationarity obtains even
when there is a large secular variation in the density.
It becomes then of consequence to know whether the

For a spectral realization of these functions see below.

which are the k-point functions for unfolded spectra.
Just as in (4.4), T» has delta-function singularities due
to self-correlation of the levels, having a, product of at
most (k —1) delta functions in any term; T, is, of
course, unity. By ignoring all the self-correlation
terms, we get k-level correlation functions" A~, which
are simply the joint-probability densities for k levels.
Dyson's (1962c) k-level cluster functions Y» are ob-
tained by subtracting out lower-order correlation ef-
fects from R„. Formally,

Y,(x„x„.. . .x, ) =. Q (-1)' (m —1)!

S'(r), = 0(r ), (10.22)

where & = 2 for the orthogonal and unitary ensembles
and & = 1 for the symplectic one. 'These considerations,
as worked out more explicitly in Appendix R for k= 1,
yield the ergodic behavior of any k-point function.

I et us now briefly consider bounds for the errors in-
volved in replacing one kind of average by the other in
the standard (ergodic) fluctuation measures. Suppose
that for a, quantity f our sample gives p contiguous non-
overlapping measuring intervals, e.g. , p =p/n for Z'
(n). Then ft is plausible that

(f) ~ v ar (8)fvar (e) (10.23)

where the spectral averaging is done over the p non-
overlapping intervals. " The upper bound follows by
ignoring the correlations (assumed to be negative) be-
tween the values of f in distinct measuring intervals;
since (10.23) is an equality for the Poisson case, we
shall refer to the bound as the Poisson estimate. 'The
inequality can be made plausible (though a rigorous
proof is lacking except for the one-point mea. sures)
either by considering the asymptotic behavior of S~,
Eq. (10.22), as done by Pandey (1979), or by using the

Ideally, of course, we should make use of an embedded en-
semble, but, since that is not tractable, we must continue to
rely on the assumption that embedding is equivalent to a map-
ping which does not affect the fluctuation behavior. In view of
the apparent nonstationary behavior of the ~-statistic, dis-
cussed in Sec. V.H, there is room for caution here.

%e have already agreed that the averaging over overlap'ping
domains results in a smaller var& &(f)&.

Gaussian ensembles" give stationary results. This
question has been dealt with by Pandey [(1979);see also
Mehta, as reported by Dyson (1972b)], who has shown
that, in the large-d limit, global stationarity does, in
fact, obtain. See Appendix R for the Y~ forms, and
Sec. IV for Y, . From the stationarity of the Y~ follows
that of all fluctuation measures, except those, such as
the moment variances in (10.17), in which a secular
energy dependence is built into the definition.

Let us turn now to ergodicity. Consider the spectral
average (10.1) with f= s», as defined in (4.1); the dum-
my variable is the center-of-mass coordinate, x, in
s~. For this we have the autocovariance function

S,'(r) = s»(x—; r„.. . , r»)s, (x+ rD; r„.. . ,r, )

—s»(x; r„.. . ,r»)s»(x +rD; r„.. . ,r»), (10.21)

in which the singularities, due to self-correlation of the
levels, result from a product of at most (2k —1) delta
functions. However, as we shall see below in an ex-
ample, the "observable'" quantities are not s~, but at
least a (k —1)-fold integral over s». This leaves us with
only one delta function involving x in S~~, which contri-
butes a. P ' order term to the variance in (10.8). On the
other hand, since the (k& 1) cluster functions vanish
whenever one of the relative coordinates x, , is in-
creased indefinitely, the continuous part of the S'„,
which is bounded, vanishes for all k in the limit of
large r. In fact (Pandey, 1979),
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general notion that the spectral rigidity follows from
negative correlations. Thus for the number statistic
the last form of (10.13) is smaller than the Poisson es-
timate n Z'(n)/P, by a factor n/P which in practical
cases can be quite small.

The number variance Z' is calculated from a given
spectrum as ((n -(n))2). The Poisson estimate for the
mean-square error in this case is (n/p) var&, &[(n -(n))'],
which, with a Gaussian assumption for n, gives the
figure of merit (2n/P)~'. Similarly for o'(0) we find a
Poisson figure of merit [2((&,+ I)/P]~'.

The ensemble variances for the & measures, and for
Q, E, have been given by Dyson and Mehta, as in Sec.
V. To take account of a further averaging over a set
of measuring intervals, the same Poisson formula
(10.23) can be applied. For A, , in particular, it is
worth remarking that, whereas the standard experi-
mental analysis makes use of the entire available spec-
trum as a measuring interval [thereby giving A, (p)],
an alternative procedure would use a smaller measur-
ing interval followed by an average over the intervals.
The Poisson estimate for (&,(n)) gives then a figure of
merit which can be minimized with respect to n, for
example, in GOE by solving &,(n)= 2/&!', giving n-8,
independent of p. The general use of this kind of thing
would be in seeking the best possible measures for

comparing experiment with theory. Whether Poisson
estimation is sufficiently accurate and whether the op-
timal &, is better than other measures are presently
unknown.

No Poisson or other estimate is known for the ~ and
A statistics, but a numerical study (Mello et al. , 1976)
for ~ favors ergodic behavior, and indicates that ~
has a Gaussian ensemble distribution with variance
close to P i.

Since most of the standard fluctuation measures fol-
low from the two-point function, one might also ask if
the function itself can be estimated from the data and,
if so, with what accuracy. In fact, this has been done
by Ideno and Ohkubo (1971, p. 620; see also Ideno,
1974) in order to search for "non-random distributions
of neutron-resonance levels. " While we do not yet un-
derstand the full implications of their results, " and
therefore do not discuss them here, we do consider the
essential parts of their procedure, extending it to the
general k-point case.

We start with a level at E,. and consider small inter-
vals of length cD around (k —1) points at distances r &D,
j=1,2, . . . , k —1, from E, 'The quantity of interest,
say, R«(E, ;r, ,r.„.. . ,r«, ), is the product of the number
of levels in each interval. We calculate A„ for each
level in the sample and define the spectral average"

(10.24)

1
(R,(E;r„r„.. . ,r, ,)),= — ~ R„(E,; r„r„.. . ,r, , )

E- in&E

de -1 (rg+C/2) D

p (E!+ y g )dy ~
Z~ jII b, E j=1 (rg"&/2)D

1
0-1

p(E+xD)ch I p(E+xD+e&D)ch&,
fY r "C/2

where we shall take ~rz~& z and ~rz -r, ~& c for all i j . We shall also take c to be small enough so that the last
form in (10.25) below is a good approximation, but at the same time large enough so that the figure of merit, re-
sulting from (10.26) below, is within a reasonable limit. Typically, c = 0.1. We have then

r~+C /2

(R (E;,, „.. . , ,)) =
rg ~+6/2

~ ~ ~ R,(E; r,', r,', . . . ,r,', )dr,' ~ ~ ~ dr,',
rp j.-C/2

= r.' 'R„(E; r „r„.. . , r, ,), (10.25)

so that c «"(R«) gives a spectral realization of R„. It is
easy to see that, for evaluating var&, &(R«) to lowest or-
der in c, , we must use the term with the maximum
number of delta functions (I! of them in this case, with
the above restrictions on the r;) in the autocovariance
function of A~. We find then that

var(, &(R«(E)),-P 'c« 'R, (E; r„r„.. . ,r, ,), (10.26)

with the obvious ergodic property. 'The relative error
in the estimation procedure is (pc« 'R«) +', which, for
a given P, increases as )&, increases (because of its c
dependence), making plausible the proposition of Sec.
V that a higher-than-two-point measure is not observa-
ble with any reasonable accuracy from the data.

The ergodic properties derived here for the three
Gaussian ensembles are for energy levels with the
same set of exact quantum numbers. Following Pandey
(1979) we show below that the ergodic properties ex-
tend to the mixed spectra also. For a superposition of

L independent ensembles, the cluster functions are

Y«(E; r, ,r, , . . . , r«) =g (f,.)'I'«, (E;f, r„f,r„.... ,f; r.„),
(10.27)

where the 1 ~,. are the functions for the ith-component
ensemble, contributing on the average a fraction f,of.
the energy levels to the mixed spectrum (g!,f,. = 1).
Thus (5.14) follows from (5.2) and (10.27) with 0= 2.
The nonsingular part of the autocovariance function,
Eq. (10.21), is a linear combination of the correspond-
ing functions of the component ensembles. Thus, if
all the component ensembles are ergodic for the k-

They find stronger long-range correlations, resulting from
periodic behavior in the spectrum. Their papers were brought
to the authors' attention very recently by M. L. Mehta.

Note that, because of trivial end effects, we cannot make
use of the complete averaging interval fso that we should really
write Eq. |'10.24) for p &p levels], nor can we permit any of the
w; to increase indefinitely.
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point functions, the superposed ensemble is also ergo-
dlc.

It is clear that the convergence (as P-~) to ergodic
results will in general be slower than the individual
convergences. In fact, with f, -/ 'we have from (10.27)
for k& 1 that Y~-0 as l-~, establishing thereby the
Poisson ensemble as a limiting ensemble. Our Eq.
(10.23) can be regarded as yet another demonstration
of this well-known result.

D. Ergodic behavior for the GOE strength distribution

The Porter-Thomas distribution (7.21) in its finite'
(or asymptotic) form is an exact (or asymptotically ex-
act) ensemble-averaged result. The question is whether
or not the ensemble average equals or approaches the
often measurable spectral average.

Ergodicity for eigenvector components was first con-
sidered by Brady and Mello (1971; see also Mello and
Brody, 1972), who exploited a mathematical analogy
between this problem and that of the ideal gas whose
ergodic properties, connected with fluctuations about
the Mmvvell-Boltzmann law, had been already derived
by Khinchin (1949). We shall proceed here quite differ-
ently, in order to be able to deal with more general
aspects of strength ergodicity (French and Pandey, to
be published).

Suppose, for example, "that the quantity of interest
reduces to x',.~ whose ensemble average, by (7.6), is
d '. But since Z;x';„= 1, we see that its spech"al aver-
age is also d '. We have, moreover, from (7.19)
above, that, in the GOE treatment of the (external)
Porter-Thomas distribution, a change of basis reduces
the strength to the x',-„ form; thus for that function we
have a strict ergodicity, the two averages being exactly
equal for every value of d. Fr om the standpoint of the
strength distributions this merely tells us that the
centroid can be calculated either as an ensemble or
spectral average.

This strict equality does not, of course, hold for
higher moments. Consider, for example, x',.~. Its en-
semble average by (7.6) is 3/[d(d+ 2)]. But if g„ is an
H eigenfunction (being then identical with some +,.), the
spectral average is d ' [one state carrying unit
"strength" and (d —1) states carrying zero], which 'is

the largest possible value of x4,„. If instead the g~ in
question were a uniform sum of all the H eigenvectors,
we would find that x',.„would be d ' for every i, so that
the spectral average of x',.~ would be d ', which is its
sma/lest possible value; the ensemble average must,
of course, lie between the two limits. Each of these
states is quite "special, " but the second, in which the
strength is uniformly distributed, should be much less

so than the first, in which it is completely concentra-
ted. This is borne out by the fact that, for large d,
the spectral value in the first case "misses" (is larger
than) the ensemble value, 3/d', by a factor d/3, while
in the second it misses (is smaller than) the ensemble
value only by a factor of 3.

We consider, as a characteristic case, adequate for
discussing the Porter-Thomas distribution, that the
quantity of interest is a function, say, Q(x,.~), of only a
single component. We do not restrict ourselves to
averaging over the complete spectrum (d levels), but
over a subset p of them, "as we have done for other
quantities. Let us label the subset by i = 1,2, . . . ,p,
not necessarily implying any energy ordering by this
labeling. 'The spectral average is now

&«), =p 'g«(x, ,).
c=l

(10.28)

The superscript g, which we usually do not write, re-
minds us that the value specifically depends on the H~

matrix. The question now is whether {&)~ for most
members of the ensemble approaches the ensemble-
averaged value .

We know that the components are stationary, i.e. ,
the ensemble distribution of x,„, and therefore Q(x,-~),
do not depend on i (or &). Thus {Q)~=A and the only
condition that remains to be satisfied for ergodicity is
the equivalent of (10.6), namely, that

var&, &(Q)~ =p ' var &,&&(x,.~)

+ (1 -p ~) covar& &[0(x,z), Q(x&z)]
—0

where covar denotes the covariance of the two random
variables in the argument; here the first. step follows
from (10.9) and the fact that the variance is the same
for all i, as is the covariance for all pairs i4 j.

Clearly (10.29) is satisfied if and only if the covari-
ance appearing in it vanishes. If var&, & also vanishes
the (p-independent) ergodicity thus generated would be
trivial, as discussed in Sec. X.A. Let us limit our-
selves to the case where Q is a polynomial function.
We know from Eq. (7.13) that var &,&(x~~)-d ~, while
covar(„(x~„,x',.~) vanishes identically unless p, v are.
both even, in which case it is of order d' ~"'"'"' '. To
demonstrate nontrivial ergodicity we now renormalize
the variables by taking

(10.29)

(10.30)

and deal with Q(y, „), where Q(y) is independent of d.
Specifically, we find, with c„=0,1, according as p, is
odd or even, that"

(10.31)

which, term by term, corresponds to (10.29). Since the second term vanishes as d-~, we find that var&, &{A(y,.~))&-p ', so that we have an ergodic behavior. This will follow similarly for polynomials in several components of

' The notation is the same as in Sec. VII, j indicating the
eigenvector, while A, indicates a basis vector in the statistical
space; both j and A. run from 1 to d. In the absence of any an-
alytic results for the EGOE we continue to deal with the GOE.
%"e suspect, however, that once again GOE results are relevant
for EGOE.

Alternatively, we can fix z and average over A.. The results
would be the same.

For p= va slightly simpler form (asymptotically p ) emer-
ges if we renormalize each moment by its standard derivation.
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the same or different vectors.
In Sec. X.B we remarked that ergodicity of the spectral moments leads to. that of a spectrally smoothed density

function, the need for smoothing arising from the discrete nature of the Hamiltonian spectrum. The same behavior
is found with the y,.~ distribution. For a specified H we have the spectral density function for the renormalized amp-
litude y,-~

g(y)=P 'g 5(y -y;, ).
f=1

(10.32)

Since the ensemble average for 5(y -y, ~) is pe(y), a Gaussian density of zero centroid and unit variance, so also
g(y)= p~(y). For the two-point function it follows then —for example, from (10.31)—that

cov»&.)[g(y, ) g(y, )]=P '[6(y, -y.)p~(y, ) - p&(y, )p~(y, )]+ o(d '), (10.33)

which, for integrated versions of g(y) —say, a histogram —yields the expected P -order variance. The case is
similar for strengths, i.e. , the y,.~ distribution.

In the data analysis one usually resorts to the maximum-likelihood procedure and, in order to test the Porter-
Thomas distribution, stimates the number of degrees of freedom, v~, from a sample of size p. It is a property
of such estimators as v~ that, for large p, they become Gaussian, with a variance which vanishes in the limit; for
the general result see Kendall and Stuart (1967) and for the specific v~ result Porter and Thomas (1956). We could
have predicted this from (10.33), also.

Ergodicity extends also to the internal case discussed in Sec. VII We .have Q(T, &), a polynomial function of the
transition amplitude T,;. We cons. ider the two-GQE case, for which the states ~i) and

~
j) belong to two disjoint

statistical spaces; the single GOE case is equally easy to deal with and gives essentially the same results. Let us
agree that the T, , have been renormalized so that var&, )Q is a nonzero finite number in the limit of large dimension-
alities. Our sample has p, and p2 states in the two spaces; this implies a double spectral averaging

(1o.34)
z= g=l

whose ensemble average is simply Q(T, ,) and whose variance is given by

P1P2 Pl P2

+
* v r&o„&o[Qo( ~), DT(T.,)) r —v' ,

'
) ro„o,v)Qo)T, , ), B(T, , )),

P'a ~2 P 1~2
(10.35)

in which i 4i' and j4 j'. It follows from Sec.VII.D that in
the limit of large dimensionalities the fourth term on the
right-hand side of (10.35) vanishes. We have then the
ergodicity of 0 in the double limit (P„P2)-~. As in
(10.33) the ergodicity of the T, , distribution follows in
turn from this.

E. Ergodicity of the 8-matrix ensembles

As we saw in Sec. VIII, the statistical theory of nuc-
lear reactions commonly makes use of an ensemble of
8 matrices; this implies the appearance of an ergodic
problem, which has so far been treated along two dif-
ferent lines. Richert and Weidenmuller (1977) suc-
ceeded in reducing the ergodicity of quantities such as
S~(E)S,*~(E), in the notation of Sec. VIII, to that of the
widths and energy levels in the underlying ensemble of
Hamiltonians; the ergodicity of these quantities they
took for granted. We report here the work of French
et al. (1978b).

We do not propose to examine exhaustively the ergo-
dic properties of the quantities involved in each of the
models described in Sec. VIII; indeed, in such cases as
the uncorrelated model used for Eq. (8.20) this would
be pointless. We shall concentrate on the formalism of
Agassi et al. [(1975); see section VIII.F], which is valid
in the limit I'»D.

The energy levels and widths are obtained by these
authors from the eigenvalues and eigenvectors of ma-

trices belonging to the GOE; for these, as we have
seen, we essentially have stationarity. 'The A matrices
of (8.55) and the corresponding S matrices (8.53) are
then "statistical" matrices in the sense discussed in
connection with Eqs. (8.6) and (8.27); they constitute
ensembles which have locally the same behavior as the
"real" S matrix or A matrix over the interval bE=pD.

We can now apply the results of Sec. X.A to the ele-
ments of the S matrix considered as functions of the
energy. The appropriate autocovariance functions, "
viz. , [S~~)(E)S~~*(E+c)]„ is already evaluated in Eqs.
(8.72) and (8.73); the function is finite for c = 0 and van-
ishes for asymptotic c, establishing thereby the ergo-
dic behavior of S~(E). Similar conclusions could be
drawn already for the simple model of (8.85) under the
assumptions stated after that equation, as is shown in
(8.89); but it is not evident that the conclusions remain
valid when the simplifying assumptions are abandoned,
so that the explicit derivation leading to Eqs. (8.72)
and (8.73) is essential. The method of Sec. X.A also
allows us to obtain the ensemble variance from (10.8);

We use the complex conjugate of S~(E+p} as the natural ex-
tension of the definition (10.7} to complex quantities [see, for
example, Prohorov and Hozanov {1969},p. 119]; note that using
$' ' rather than S itself avoids the need to subtract the second
term in {10.7}. Note also that the autocovariance functions de-
fined here, as in Sec. VIII, and in Eq. {10.38) below, are com-
plex conjugates of the C{g}functions in the paper referred to.
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we find tha, t

ICOSI
var(, )(S~)~s = ~S~~

~

' . (10.36)

elements. For instance, let

G =S,~(E)S*«(E) . (10.37)

This result ean be extended to products of matrix
Then an argument along similar lines yields for the
autocovarianee function of G,

zI'
~

—
~,

P„P«+P«P«5
& + &P Corr ab Tl p

„„S.

il""* —,P..P„+P~P„(I'"")' (P..P„+P~P„)(P„P„+P«P~,)'+
~ (Trp)' (10.38)

Again, this is finite for c = 0 and goes to zero when c
-~, satisfying the criterion for ergodicity. As above,
we derive the variance of G and find

COIT

var ( )(G )ps =
i

G —G
~

(10.39)

in complete analogy to (10.36). This particular result
has a further interest in that G becomes the cross sec-
tion o.~ for the process a- b, when a=c, b=d; we have
then

&pcorr
var(, )(o„)~s= var(, )cr~. , (10.40)

so that for such cross sections ergodicity holds; the
variance of o~ itself in the ensemble is, of course,
finite in view of the physical meaning of this quantity.
Ergodicity of higher powers of S„follows easily from
the fact (Agassi et al. , 1975) that, in the limit of suf-
ficiently high channel number, 8 is a normally distri-
buted matrix variate.

XI. CONCLUSION

Since we have given a preview in the first section, we
need not attempt a summary but can instead conclude
with some general remarks.

A random-matrix ensemble supplies a model for the
behavior of complicated systems. Averaging over the
ensemble is used, together with an assumption of an
appropriate ergodic behavior, to take account of pari or
all of the interaction, producing thereby the statistical-
ly-averaged eigenvalue density as well as measures
for the fluctuations and correlations in eigenvalues,
strengths and other related quantities. Among the kinds
of problems to which in turn these results may be ap-
plied we mention the study of the directly measurable
fluctuations, the effects on observable quantities (e.g. ,
cross sections) of fluctuations which are not directly
measurable, symmetry effects such as those generated
by the breaking of an underlying fundamental symmetry
(time-reversal invariance, in particular) or connected
with a model symmetry, the broadening of collective
excitations, and other such effects produced by those
parts of the interaction not included in the collective
Hamiltonian.

Among the ensembles we mention first the three
standard ones, orthogonal, unitary, and symplectic,
which, while taking account of the basic rotational and
time-reversal symmetries, give a realization of the
doctrine of equal a priori probabilities, important in
statistical mechanics more generally; when we calcu-

late a. particular quantity in such an ensemble, we are
taking for granted that its value is almost completely
determined by "statistical" behavior. As further en-
sembles we may consider a function of the matrices de-
fined by a standard ensemble; this ensemble has as-
ymptotically (d- ~) the same local fluctuations as long
as the function is invertible and defined independently of
d; a sum of independent ensembles, which is trivial if
they are identical but not in general (such a sum has
been used in Sec. VII.F for studying time-reversal in-
variance); a sum of functions of random matrices, as
in the ensemble H =+A, A, yf Sec. II.H; various kinds
of partitioned ensembles, which may be used for de-
scribing random interactions between subsystems. Any
of these ensembles may be supplemented by the addition
of an operator K whose role might be (1) to take account
of a component of the Hamiltonian, which we believe to .

be especially significant for the purpose at hand; if this
is the case, the quantity being calculated will of course,
carry "non-statistical" information; (2) to test the re-
sponse of the system as the Hamiltonian varies along
the line (II+ &K), with varying o, in the operator space,
this giving one way of treating fluctuations; or (3) to
break a symmetry preserved by the original ensem-
ble. Adding A to an ensemble amounts to changing
the centroids of the matrix-element distributions.
A modification of the variances leads also to en-
sembles of interest, in particular, to the partitioned
ensembles.

All of the preceding ensembles have matrices with
elements chosen independently. The major examples of
ensembles which do not have this property are gener-
ated by embedding any of the above, i.e., by construct-
ing an "independent" ensemble in a k-particle space and
allowing it to operate in an (m &Iz)-particle one. These
ensembles carry one piece of important information,
namely, that the interaction is of k-body type, in con-
trast to ensembles such as. the GOE which describe
simultaneous interactions between all particles. Sine e
one takes for granted that most Hamiltonians in real
life are (1+2)-body, there is an a Prio~ favoring of the
embedded ensembles. Though embedding of a standard
ensemble has, via the central limit theorem, a marked
effect on the eigenvalue density, there is good evidence,
both from Monte Carlo calculations and from the fact
that GOE results agree well with experiment, that it
has little or no effect on the local fluctuations. In view
of the decoupling betw'een the secular variation of the
EGOE density and fluctuations (Secs. I.E and IV.F) this
is no longer surprising; alternati'vely, one might be
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tempted to argue that fluctuation measures described by
low-order correlation functions should not depend on
high-order correlations between the defining matrix
elements. Finally, we remark that, with some obvious
exceptions (mapping by a noninvertible map, such as
A = H', for example, in which two essentially indepen-
dent parts of the H are superimposed, or embedding the
sum of two ensembles of different particle rank), the
stability of the local fluctuation measures seems to ex-
tend also to other ensembles and other mappings.

The most straightforward use of random ensembles
is as a model for the directly measurable fluctuations,
especially as they appear in the energy level (or reso-
nance) spectra of complex nuclei. Eigenvalue fluctua-
tions are in principle complicated; but, although runs
containing up to a few hundred levels are available, it
appears that only the relatively simple two-point mea-
sures can be determined with reasonable accuracy.
These can, of course, be written as integrals over the
two-point function, or, equivalently, over Z'(s), which
measures the ensemble variance of the number of lev-
els in an interval which contains s levels on the aver-
age; examples of these forms are given by Eqs. (5.20)
and (5.26). When one writes things in this way, it be-
comes clear that the measures which have been intro-
duced during the development of the subject are not all
"independent" and a fortiori do not form an optimal set.

Experimentalists have made quite sophisticated anal-
yses of the data and comparisons with theory; the
agreement is in general quite good. It could be, as
mentioned in Sec. X.C, that sharper measures can be
constructed; if this is the case, then, once their aver-
ages and variances are known, they could be used to
say more about the quality of the agreement.

There is considerable evidence that the pattern of the
nuclear energy-level fluctuations is the same over the
entire spectrum and over the whole range of nuclei, as
long as energy intervals are measured in local spacing
units and proper allowance is made for symmetry ef-
fects and collective effects more generally. In cases
where symmetry effects can be ignored, it appears that
spectra supply realizations of a quasistationary discrete
stochastic process, and that spectral fluctuations carry
very little information; this is compatible with the fact
that experimental fluctuation measures agree well with
those given by the GOE, which, as discussed in Sec.
II.C, is that ensemble which carries minimal informa-
tion beyond the specification of the fundamental under-
lying symmetries. The paucity of the information is
connected with the remarkable Dyson-Mehta spectral
rigidity (Sec. IV.D) by which a spectrum appears as a
highly correlated structure as far as the levels are con-
cerned (though weakly correlated for the spacings). It
should not be taken for granted that a minimal-informa-
tion law is devoid of interest; on the contrary, it is of
fundamental interest, precisely because it is essential-
ly parameter free. An analog in another domain would
be the exponential law of radioactive decay which de-
rives from the fundamental principles of quantum me-
chanics; the present results, of course, derive from
simpler statistical laws.

Since these statistical laws allow for exceptional
cases, we are, of course, left with the question wheth-

er ensemble predictions, which we have proved to be
valid for "most" members of the ensemble, actually ap-
ply to a given physical system. The question here has
been recently stated by Mahaux and Weidenmuller
(1979), p. 28 as follows: Perhaps the most fundament-
al Pxoblem concenzs the foundations of both CN [com-
pound nucleus] theory and the statistical theory of nu
clear sjecha: Which PxoPerties of the nucleon nuc-leon
interaction justify the use of random-matrix models for
the nuclear Ilamiltonian? For the smoothed features of
spectra and related distributions we are pretty well
able to answer this question. No answer which is at all
complete is available for the fluctuations, but from ex-
perience, we believe" that the requirements on H are
mild ones. There must be interactions, for, as we
have seen, the Hamiltonian for noninteracting particles
in a given many-particle model space leads only to the
trivial Poisson fluctuations (this is not meant, however,
to rule out the H's used for small-particle thermody-
namics, for there a new random element enters via the
boundary conditions). The Hamiltonian should not have
a singular spectrum, as it would, for example, if the
interaction were essentially a separable one. If other-
wise it shou1d result in degeneracies or in preserving
symmetries, this should be taken account of in the en-
semble. Apart from these restrictions "most, " or per-
haps all, Hamiltonians in many-particle spaces might
well give rise to canonical fluctuations, this applying in
particular to the standard Hamiltonians of nuclear phys-
ics. Parenthetically, it should be clear that, because
of the limited amount of information contained in the
fluctuations, highly detailed level-to-level calculations,
as often carried out especially for nuclei, should in
many cases not be worth the great labor involved in
making them.

Some of these conclusions will be modified by symme-
try effects. We have distinguished two kinds of symme-
tries, the basic underlying symmetries, which are rep-
resented by the three standard ensembles, and the less
fundamental model symmetries. Different basic sym-
metries give rise to quite different values of the fluctu-
ation measures (represented by the three values of P in
many of the equations of Sec. IV). The striking effects
of good model symmetries are visible when we have an
inter' eaning of symmetries, giving rise to a modera-
tion of the level repulsion and a corresponding change,
toward the Poisson values, in the fluctuation measures.
These effects do, of course, carry information. The
effects of a weak symmetry breaking, for either class
of symmetries, appear to be quite dramatic, since it
seems that small admixtures are adequate to destroy
the moderating effects of the symmetry; for large ma-
trices this gives rise, as the admixing parameter is
"turned on, " to an almost discontinuous change in the
measures, as we have discussed in Sec. IV.G and dern-
onstrated explicitly for time-reversal invariance in
Sec. VII.F. Thus a measurement (as opposed to setting
an upper limit) of a weak symmetry breaking would be

With a "good" symmetry each H eigenfunction belongs to a
single irreducible representation; not so for a "broken" sym-
metry. We have symmetry "interweaving" when the symmetry
is good, but close-lying states belong to different representa-
tions.
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possible only when the admixing parameter is confined
to a narrow region of small values. With the possible
exceptions of isospin and parity (which in a different
cataloging are not model symmetries at all), any model
symmetries are either good or are broken to such an
extent that they are irrelevant for fluctuations.

The discussion of "small-particle thermodynamics"
. in Sec. IX centers not on directly measurable fluctua-
tions but on indirect effects generated by fluctuations in
the ground-state region. Special interest centers on
this subject because of the possibility of realizing all
three standard ensembles, orthogonal, unitary, and
symplectic, in experiments on small metallic particles.
On the other hand, it is not clear that these ensembles,
or any close relatives of them, supply adequate models
for eigenvalue fluctuations in the single-particle sys-
tems which describe the states of low excitation in
small particles. There is need for further theoretical
study of this question.

The review in Sec. VIII of ensembles in nuclear-reac-
tion theory also concerns the "indirect" effects to which
they give rise, e.g. , in generating departures from the
Hauser-Feshbach formula. Here the effects of a stand-
ard ensemble are superimposed on those which would
be generated by a simpler reaction theory. The prob-
lems encountered here are difficult and different ways
of dealing with them lead to competing reaction theo-
ries, including one (Sec. VIII.J), not yet fully devel-
oped, which is especially compatible with the notion of
defining ensembles by their information content. A
second domain in which indirect effects are prominent
is in generating widths for giant resonances, and other
deviations from the results of simple "schematic" the-
ories. For example, the Hamiltonian of the old "pair-
ing+quadrupole" nuclear model, which shows that the
competition between these two effects is responsible
for some striking results in heavier nuclei, may be
supplemented by a random Hamiltonian ensemble and
would then go very much further. The parameters in
the extended model can be calculated by spectral-aver-
aging methods from a microscopic Hamiltonian, while
the solution to the equations of motion for the resulting
"deformed ensemble" can be sought by the methods of
Sec. III.E.

To the extent that transitions can be regarded as
occurring between a fixed giant-resonance state and a
set of eigenfunctions of H, a member of a GOE (which
form a "statistical space"), the essential result for
transitions is that the transition amplitude is a Gaus-
sian random variable, no matter what the nature of the
transition operator. The same embedding which gener-
ates the more realistic Gaussian eigenvalue density
from the GOE semicircle (and which is well understood)
gives the same basic (Porter- Thomas) result for local-
ly renormalized transition amplitudes; the formal pro-
cess which does this, and the fluctuations for embedded
ensembles in general, are not yet completely under-
stood, though the results are no longer surprising. The
statistical model used in deriving the Porter-Thomas

60See also two papers by Bloch (&968) with the illuminating
title "Statistical theory of nuclear reactions as a communica-
tion problem. "

result is not obviously adequate for transitions between
low-lying states. With a more general model the basic
amplitude is not a Gaussian, but rather a Ko random
variable; and the resulting transition amplitude, given
as a sum of such variables, depends on the nature of
the transition operator (specifically, on the spectrum of
its Hermitian square), becoming Gaussian again when
the spectrum has a nonsingular character. It is unclear
whether the indicated departures from Porter-Thomas

/

could be detected.
With regard to the methods of calculation, we have

not made use of the classical methods which rely on
the invariance properties of the basic ensembles to pro-
duce the joint eigenvalue distribution. Instead we have
called upon the simple idea used by. Wigner in his origi-
nal derivation of the semicircle (and extended to fluctu-
ations by Mon and one of the present authors), namely,
that the eigenvalue densities (and the two-point func-
tions) for a wide class of ensembles are calculable in
terms of their moments by considering binary Hamil-
tonian correlations only. Moment methods, applied in
the most straightforward way, are, however, often
complicated, and it is good that Stieltjes transforms
(Secs. III.E and IV.G) are easier to deal with and re-
sult in forms from which more general features can be
discerned. These have led already to new results, for
example, exhibiting wide classes of ensembles which
give the canonical fluctuations. This appears to bring
us closer to confirming that the three standard ensem-
bles really define the essential patterns of the fluctua-
tions to be expected for complicated systems, and to a
more general understanding about the classes of opera-
tors which give rise to particular kinds of spectral fluc-
tuations. Besides that, these methods should also make
possible new ways of studying the properties of compli-
cated systems.

Note added in proof. In very recent. work, Bohigas,
Haq, and Pandey (to be published) determine distribution
and correlation function for the significant measure,
and used them in a much more thorough analysis of the
combined energy-level data than is given in Sec. VI. An
important outcome of this work is a demonstration that,
when sample size and the related effects are properly
taken account of, a remarkably close agreement is
found between experiment and theory.
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APP END IC ES

We identify the section in which each appendix is re-
ferred to for the first time.

APPENDIX A: MODEL SPECTRUM VERSUS TRUE
SPECTRUM (SEC. I.C)

The eigenvalue spectrum of the matrix has a high-en-
ergy cutoff, while that for most systems of interest is
monotonically increasing. If we realize the matrices
by distributing m particles over a set of & single-par-
ticle states, the cutoff will be imposedby restricting the
single-particle spectrum. Since (for m «cV/2) the spec-
trum span for such. systems increases rapidly with par-
ticle number, it follows that the higher states, which
would have contributions from single-particle states
above the cutoff, are improperly described.

APPENDIX B: LEVEL REPULSION IN TWO
DIMENSIONS (SEC. I I.C)

For two-dimensional real symmetric matrices with
2x, = (H» —H») and x, =H», as in Sec. II.C, the general
spacing distribution is

P(S) = —S x i (1-x) 'i p( —'MxS, —'v'1-x S)dx (B1)

where p(y, s) is the (marginal) joint probability density
function for the variables x„x,.
APPENDIX C: ORTHOGONAL INVARIANCE (SEC. II.C)

Given an ensemble (H), we can convert it into an en-
semble which is orthogonally invariant in a trivial sense
and which has exactly the same spectra (and therefore
spectral fluctuations) as (H) itself. We need only, for
every II in (H), add in all of its orthogonal transforms
0 HO, with the proper weighting as defined by the @-
dimensional rotation group, and then make a proper H-
or spectrum-dependent adjustment of the relative
weights for inequivalent H's; if (H) is already ortho-
gona. lly invariant, it is unaffected by this opera, tion. We
do see from this that orthogonal invariance cannot be
detected from the spectra alone. However, the opera-
tion is founded on transforms generated by basis
changes, as a consequence of which different ensemble
members are specified with respect to different bases.
The "physical" orthogonal invariance which is of con-
cern to us implies that all the matrix transforms of any
member, H, are found in the ensemble, properly
weighted and constructed alki@. the same basis; that is a
property which we cannot affect by purely formal trans-
formations; it has major consequences for the strength
distributions.

APPENDIX D: UNITARY DECOMPOSITION OF NORMS
(SEC. I I.C)

Formally, when the GOB is realized in an m-particle
space, its operators decompose into -sets of operators
labeled by a parameter v (=0, 1, . . . , m); the trace of

H, whose square root (the Euclidean norm) gives a
proper measure of the size of H, decomposes (French,
1973) according to

d- (m)(T. H)=(H &-,( l g "-2v+'~~+'~

(H2&m P (m I/vl)2 ~2(v-m) (D1)

The decomposition here is according to the representa-
tions of the unitary group U(N), whose (column) struc-
ture xs [K—v, v]. The parameter v is the ' unitary
rank, " which for large N is essentially identical with the
particle rank (a v-body interaction has particle rank v).
We see thorn explicitly the rapid increase with v of the
norm of the v-body part of H.

APPENDIX E: GAUSSIAN BEHAVIOR FOR
NONINTERACTING PARTICLES (SEC. III.B)

The first corrections to the even moment of order 2p
are seen to arise from partitions (3', 2' ') and (4, 2" ),
both being of relative order m '. For the Gaussian
limit, of course, the odd moments must also be
"small;" specifically, the odd-order cumuzants, scaled
by the appropriate power of o(m), must vanish asymp-
totically (i.e., for large particle number m). We find
that

M„„(m) = —,'v(2v+1) t Io" '(m) M, (m),
ISI'ge m

so that the skewness y, (the lowest-order reduced cum-
ulant)

-m '~'(s'&/((e, '&)'~'=m "'y, (1).
This is, in fact, an exact result in the d- limit which
we have assumed. We find a corresponding decrease to
zero with increasing m for the higher-order rescaled
odd cumulants.

APPENDIX F: h AND ITS EQUIVALENT TWO-BODY
OPERATOR (SEC. III.C)

h' is a (1+2)-body operator. Separate it into its two
parts and, before recombining, multiply the one-body
part by (n —1)/(m- 1), where n is the operator for the
total particle number (=P„.). The result is a two-body
operator which for any fixed m has the same matrix
elements as h .
APPENDIX 6: FORBIDDEN CONTRACTIONS (SEC. II I.D)

A better argument uses the fact that a natural mea-
sure for an operator in a 0-particle space is
((&'G&)", so that we should compare (HOHHO'H&" with
(HHO'OH'. More formally (Mon and French, 1975),
the criterion involves the way in which 0 transf orms
under the group of unitary transformations in the ~-di-
mensional single-particle space; only the unitary-scal-
ar part of 0 survives the correlation operation NOH in
the k-particle space. Since the scalar representation is
one-dimensional, while the total operator space is (~)'
dimensional, the result follows. Moreover, BB is it-
self unitarily scalar; thus contractions about a corre-
lated pair are fully contributing and the binary correla-
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tions which contribute to the GOE are all those in which
8's correlate only across pairs already correlated.

APPENDIX H: MAPPING {SEC.I II.D)

See also Sec. II.F. For every member of the given
ensemble take a new Hamiltonian f(H); the density, of
course, is fixed by f. Allow the dimensionality to in-
crease while continually rescaling the spectrum to a
fixed variance. Then, in closed regions of the energy
in which f is single-valued and without zeros or singu'-
larities, the f fluctuations, measured in units defined
by the local spacing and spanning a fixed number of lev-
els (and hence a smaller and smaller energy domain),
will, for large enough d, be as close as we wish to
those of H. Alternatively, we remark that the cluster
functions of Secs. IV and X, which describe the fluctua-
tions, are invariant under such maps.

APPENDIX I: MOMENTS FOR DEFORMED ENSEMBLES
{SEC. I II.E)

To evaluate the ensemble average of the moments
M~(o') = ((H+ o'K)~), we make use of two counting theo-
rems, the first of which we come to below, while the
second gives the polynomial moments p, ~&, Eq. (4.17),
as the number of allowed ways of inserting (P —K)/2
correlated pairs of H's into a lattice containing g bar-
riers over which contractions are forbidden. Since HHK
= (1+d ')K- K while HKH= d '(K+ Tr K) -(K), we see
that the singular operator discussed in the text, for
which (K)=d ', is such a barrier, and, since K~=K for
6=1,2, . . . , so also are its powers. The moments in
this case are (Pandey and French, 1979)

M, (n)= g l ~((~K)')

P

=M (0)+d 'Q (»)
0=x

which can be inverted via. the polynomials in (4.15) and
(4.17) and yield the results (3.25) in the text.

However, contractions around an arbitrary operator
K and its powers do not in general give values which
vanish in the-large-d limit and must therefore be specific-
ally evaluated —for example [(K~&HK~2H)], —(K~&) (K~2),
this generating a term p~&, , (K~')(K~2) for the pth mo-
ment. As above, we have terms with gA's and

(P —K)H's, where then K=0, 1, . . . ,p. Consider a core"
involving fK's and r-correlated pairs of H's such that
(i) each correlation line encloses at least one K (but not
all of them, since, because of circular symmetry, that
would be equivalent to none); (ii) the lines do not cross
each other; and (iii) they partition the H's into exactly
l - f parts. Note carefully that, for /=0, 1, we have
necessarily r=0 but, for /&1, we have r~ l —1.

The theorem which does this very complicated r-
counting (the first one referred to above) has not been
rigorously derived, but has been made plausible by con-
sideing various l terms. Next, the remaining [(p —6)/
2-w]-correlated pairs of H's are inserted into this lat-
tice of (f+2&) barriers, the number of ways of doing
this yielding the factor p, ~& 2„by the second counting the-
orem. With a final r summation we arrive at the result
(Pandey, unpublished) that

itf, (n) = g g 'K„~
l / +1

2

where K~, is the coefficient of q~ in +„,'9"(K"))
~ o»

equivalently,

(I2)

is the coefficient of q~ in

(p q w))"

APPENDIX J: EVALUATION OF BASIC
CROSS-CORRELATED TRACES (SEC. IV.B)

The third equation referred to in the text is

(KH')(KH') = 2 (K2)
I I

for a traceless &.
Consider first P =1. For (4.9) we write (Mon and

French, 1975) (H~) =d 'ZH„H, „H„;e. nsemble aver-
aging over the product of the two correlated traces
gives d (since H, &H, , =d ' and since there are g Ham-
iltonian pairs), while summing over the 6 free indices
gives d; a factor 2 comes because H, , correlates with
either H;, or Hz, (so that, since . the index sequence is
determined in one "ring, " we can choose that order or
its inverse for the second); the factor 5 comes from the
cyclic invariance whereby the second ring may be ro-
tated with respect to the first. The other two equations
(4.10) and (J1) follow in the same way. The significant
difference between (4.9) and (Jl) is that a cyclic rota-
tion is permitted in the second ring in [(H )(H )]„but
not in [(KH )(KH )],.

For P =2 we note that, while
(for i& j). Therefore the ring in one trace can correlate
only with its inverse in the other. Hence there is no
factor 2 in (4.9) and (J1).

For P =4 (see Sec. III.E), while the ring in one trace
can correlate with either kind in. the other, a different
kind of inhibition comes into play, reducing the number
by a factor —,'; this new restriction is that the product of
the Pauli matrices in the ring must also have a nonvan-
ishing trace. For correlations in the same trace, as in
(4.1o),

H,. H, , = (4d) '[1+(-io') ~ (-icr)*]=d '1.
For cross correlations we note that all even powers of
e,. and the triple product o,o,o, can give a nonvanishing
trace; the total number of such terms (1 or —1) in
(1 —i Err )~ is 4~ '. Corresponding to each term we have
either the same product or its Hermitian adjoint in the
other trace, and therefore the final result contains all
positive terms. Since the variance of H», , is (4d)
we have, for (4.9),

2 x 4 ' x f x (4d) x d~ && d ' = f/2d'

similarly for the second and third. We remark finally
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that, while the above derivations of (4.9) are valid for
f&2, the result is valid for &=1, 2, also, as can be
verified by a direct evaluation of the variances of (II&
and &II'&.

APPENDIX K: THE TWO-POINT FUNCTION VIA
PARAMETRIC DIFFERENTIATION {SEC.IV.B)

For a derivation of S (x,y) via parametric differentia-
tion we introduce

px(x) = (x lK lx)p(x) -=K(x)p (x),
SK(x y) pK( x) pK( y) pE(x) pE(y)

S'(x, y) =2(K)(a —1) ~(d+2) [5(x—y) p(x) —p(x) p(y)]
-y)P( )-P( ) p(y)]

= 2d '(K'& p(x) p(y) Q v, (x)v, (y),

where, in proceeding to the second form, we have
dropped a d ' fluctuation term and, in'the last, the vz
are given by (4.15). The results, of course, are written
for GOE, but the forms extend immediately to P =2, 4.

APPENDIX L: EXACT FORMS FOR Y2 s {SEC.IV.C)

The exact functions, as given by Dyson (1962c, 1970)
and Mehta (1967, 1971),: are

where K is an arbitrary fixed traeeless operator; note
that px(x), the density weighted by the A' expectation
value, is not a proper density function (since it is not
non-negative definite), but that need not concern us.
Writing & as the distribution function for H+&A, we
have

S,(,y)=—F ( )F,(y)-F ( ) F, (y) = S (,y),
(K2)

(K3)

Y, , (r ) = [s(r)]'-Js(r) Lis(r),

Y, ,(r) = [s(r)]',
Y2, (r) = [s(2r)] -Is(2r) Ds(2r),

where

sin (7ir)
my'

( )
ds(r)

dg

(L1)

We see that S~p(x, y) defines the function which, with re-
spect to o', P variations, is tangent to Sr~(x, y) at the
(o', p) origin. S„'(x,y) is easily calculated and thus the
question is whether the tangent function adequately de-
termines S itself. The answer is that it does, to the
extent that binary associations are dominant.

To evaluate S» we borrow from (7.60) and (7.63) the
result that

K Kii ii ii ii (d 1)(d+ 2) ij

Js(r) =Is(r) —&(r),
s(r)=-2, r&0

=0, ~=O

Dyson and Mehta deal mainly with the tivo-level form
factor, which is the Fourier transform of the Y2 func-
tion

Since the A, , and the eigenvalues E,. are independently
distributed, we have for the (P, q) moment of Sr~ i (~)= I i'*ieie"'"ae. (L3)

p,', (K) = m, (K)M.(K) Iif, (K)m. (K) For example, the number variance Z (5.2), is given
(Dyson and Mehta, 1963) as

EP~~
iJ
2(K')

(d -1)(d+2)

) (M, . m, Xi,) — (

(K5)

Z'(r)=,, [1 b(t)] dt . —

For our Y, (4.24), we have

lal -P/2
b, (u) =

o, la l p/2,

(L4)

(L5)

Here the second form follows by writing M~(K)
=d 'gK, , E'~i (~M~(K) = (K)I@~= 0), the third form by us-
ing (K4). The final form, which makes use of (4.12),
gives the moments of S~ in a form analogous to that giv-
en by (4.8) for S' itself. By exploiting the counting the-
orem (4.11) we can, in fact, show that th)=(P/r)A~~ '„
moreover, the amplitudes in the g expansions (4.8) and
(K5) can be related by (Jl). Thus we are able to deter-
mine S' in terms of S~z, thereby "solving" Eq. (K3). in-
cidentally, the moments (K5) fix the auxiliary two-poi'nt
function as

whereas, for the exact functions, we have

1-2I& I+ I& I
»(1+2II I),

b, (u) =

l, -ie/~/in(„„, ', ), /a/=i,
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APPENDIX IVl:FLUCTUATIONS FOR NONINTERACTINQ
PARTIC LES (SEC. IV.F)

For noninteracting particles the (m ~ 2)-particle
KGOF density is essentially an. m-fold co.nvolution of the
GOE density. Thus every m-particle fluctuation domain
receives contributions from very different regions of
the single-particle spectrum, which are asymptotically
independent and give rise therefore to Poisson. fluctua-
tions; see, for example, Bloch (1969). Alternatively,
without inter actions there are many preserved unitary
symmetries, these being defined by an additive decom-
position of the U(K) algebra of transformations in the
single-particle space. This argument, in fact, yields
Poisson fluctuations also for some interacting-particle
cases.

APPENDIX N: THE DISTRIBUTION OF HIGH-ORDER
SPACINGS {SEC.V.A)

t

The question is whether the correlations between
nearest-neighbor spacings S,. [the S,. of (5.5)] modify the
asymptotic Gaussian distribution which, in their ab-
sence, would result for large 0 (via the central limit
theorem) from the fact that a 0th order spacing is a
sum of (k+ 1) identically distributed S, The correla-
tion coefficients between the S,. (5.8) are small, except
for adjacent spacings, and since, for separated spac-
ings, C(S, , S,)-Ii -j

~

', we may regard S, , S~ as uneor-
related when

~

i —j l- m (where, for the accuracy of in-
terest to us, a, reasonable value would be m-5). We
may describe the 8,. as forming an "nz-co+related"
stationary sequence. The Diananda theorem (1953; see
also Hannan, 1960) would assert, inter alia, that a. kth-
order spacing generated from a corresponding m-de-
pendent sequence has a Gaussian distribution for large

In light of results about higher-order correlation
functions which are discussed in Sec. X, we have little
trouble in believing that well-separated nearest-neigh-
bor spacings are not only uncorrelated but also inde-
pendent, and then the Gaussian form for the spacing
distribution follows.

APPENDIX P". FURTHER TRANSITION-AMPLITUDE
CORRELATIONS {SEC.VII.D}

The correlations between T,.&
and Tz,. are not unity for

non-Hermitian T's. Indeed, since, for real constants
a, b, (aT, ~+bT, ,)~ (aT+bT'), &, we ha. ve, using (7.32),

which gives back (7.32) for T =T'. Thus, from (&1) and
(7.35), we find for the linear and quadratic correlations

CT T~) g--M (G )1 T

M, (G,) +mt, (T) +m, ,(T) +d~,'(T)
3M g (Gr ) +dMg (Gr )

nonsingular r gg g(T)
M, (G,)

where OR „(T)= (T"T'"). —

Moreover, since

(P2)

which defines the pairing spectrum, for which

P~ g
„= d'~ "t'. Solutions of (Ol) with d&«dgive ggval-

ues with the same d dependence, these forming the sin-
gular spectra, of which the pairing spectrum is the bas-
ic example. At the other extreme, for solutions with
d&-d/2, the P~ are d independent for large d, as they
are also for spectra such as semicircular, Gaussian,
X,'. We can thus classify spectra (and thereby opera-
tors), including nonextremal ones, according to the d
dependence of p. ,„(restri'cting ourselves to even order,
since odd-order moments may vanish by a symmetry).
Note that the square of a Hermitian operator belongs to
the same-class as the operator itself.

APPENDIX 0: SINGULAR AND NONSINGULAR
SPECTRA (SEC. Vl I.D)

Consider the reduced central spectral moments, p, ~

=Oft~/'Jill~~',

of a Hermitian operator G whose eigenval-
ues are x, We standardize the spectrum by y,. = (x,.
—(G))/OR,'~', so that the g~ are the moments of
the y,. distribution. We seek the p~, the extrema of p, ~
with respect to variations of the x,. (i.e., of G). For i
=1, 2, . . . , d we have the derivatives

g Tg
q Wy PWy

= (d —1) T,', T,', + (d —1)(d .—2) T,', T,', ,

we have, using (P2) and (7.43),

C(T,', , T,'„=C(T'. . T,',)+ (d. 2)-'[1 C(T', , T,',)].
, , „= C(T,'.„T'„},

as stated in the text.
8

, ' = (~.d) 'p (y', ' —u, , —y,- I,), (Ol)

which are identically zero for p =0, 1, 2. For extrema
&p~/&x,.=0, with p ~ 3. It is easy to see that these de-
fine degenerate spectra for which the y,. can attain only
two distinct values, y, and yg, say. There are (d —1)
solutions, with standardized spectra (y,i, y, ), where
d~=1, 2, . . . , d —1, y~=[(d —d~)/d] ~ = —yg~. Note that,
since the results are independent of p, we have simul-
taneous extrema, for all p.

The absolute maxima are given by (d„d —d, )&=—d&—- 1,

APPENDIX Q: ALTERNATIVE PROOF OF ERGODICITY
FOR ONE-POINT MEASURES {SEC.X.B}

The autocovariance function, Eq.' (10.7), for p has al-
ready been given by the last form of Eq. (4.4); we see
via Eqs. (4.24) and (4.25) that, for all three P values,
S'(r) „- 0, as r ' for P =1, 2 and as cos2mr/r for P =4;
the delta function in S'(r), when inserted into the last
form of Eq. (10.9), contributes a term of order p ' to
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var&, &(p)~. We see then that, by the criterion given
after Eq. (10.11), the variance vanishes for large p and
we have the resultant ergodicity of the density for all
three ensembles, as well as for the Poisson case for
which Y2(r) is identically zero.

APPENDIX R: THE FORMS FOR Yq p (SEC X C)

Dyson (1970) and Mehta (1971) give

o,(r) =s(r), (lI2)

s (2r) Ds (2r) )
&74 r

Is(2r) s(2r) f
with s(r), Ds(r), Is(r), and Js(r) defined as in Appen-

dix L. For P = 1, 4 the operation (2 Tr) should be in-
serted before the cyclic product in (Rl).
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