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This review deals with quantitative descriptions of electronic transitions in atom-atom and ion-atom
collisions. In one type of description, the nuclear motion is treated classically or semiclassically, and a wave
function for the electrons satisfies a tim. e-dependent Schrodinger equation. Expansion of this wave function in
a suitable basis leads to time-dependent coupled equations. The role played by electron-translation factors in
this expansion is noted, and their effects upon transition amplitudes are discussed. In a fully quantum-
mechanical framework there is a wave function describing the motion of electrons and nuc1ei. Expansion of
this wave function in a basis which spans the space of electron variables leads to quantum-mechanical close-
coupled equations. In the conventional formulation, known as perturbed-stationary-states theory, certain
diAiculties arise because scattering boundary conditions cannot be exactly satisfied within a finite basis. These
difficulties are examined, and a theory is developed which surmounts them. This theory is based upon an
intersecting-curved-eave picture. The use of rotating or space-fixed electronic basis sets is discussed. Various
bases are classified by Hund s cases (a)-(e). For rotating basis sets, the angular motion of the nuclei is best
described using symmetric-top eigenfunctions, and an example of partial-wave analysis in such functions is
developed. Definitions of adiabatic and diabatic representations are given, and rules for choosing a good
representation are presented. Finally, representations and excitation mechanisms for specific systems are
reviewed. Processes discussed include spin-flip transitions, rotational coupling transitions, inner-shell
excitations, covalent-ionic transitions, resonant and near-resonant charge exchange, fine-structure transitions,
and collisional autoionization and electron detachment.
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GLOSSARY OF SYMBOLS
The symbols used in this review are listed below with an in-

dication of where they first appear in text.

K,E

k„,k„

k, kA, kB

Lx L y»z

Also a label for chan-
nels, J=A, B

Total angular momen-
tum exclusive of spin,
K=J—'8

Wave-vectors in scat-
tering boundary con-
ditions

General labels for mole-
cular or atomic states

Operators representing
electronic orbital angu-
lar momentum

(3.6)

(2.40)
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+n»+n» n

g
M~, MB
M

Rl 0» 1Ã» R2~ » RZ B

mg» mB

Pl+» PZB

12(» fL~ » Ny

0 0 0 0
CM» CMN» A» RB

R
&= IRI
R

S
S(v)

s„,(~; ~)
sk(r; R)

Electronic -angular-mo-
mentum quantum number

Corrected angular-mo-
mentum operators

A Lagrangian density
Nuclear masses
Component of electronic

spin on space-fixed z'
axis .

Coxnponent of N, K,J on
space-fixed z axles

Electronic mass and re-
cfuced masses

Labels for atomic states
(like ~„,~, or ~~, uB)

Nuclear orbital angular
momentum operator,
and the corresponding
quantum number

A general label, or,
for hydrogenic states,
the principal quantum
number

Labels for atomic states
Quantum numbers for
prolate spheroidal co-
ordinates

Matrix of total change
of electronic basis
functions with R

Matrix of electronic
momentum operator

Quantum angular. -coup-
ling matrix

Positions relative to la-
boratory origin

Internuclear vector
Internucle ar distance
Common numerical val-
ues of g 's

Crossing point

Vector coordinate of
electron relative to
center-of-mass of
nuclei, with compo-
nents b, ",y', g') de-
fined relative to a
space-fixed frame

Same, with compo-
nents (x, y, g) defined
relative to rotating
molecular frame

Electron coordinate rel-
ative to nucleus A or B

Electron coordinate rela-
tive to geometric center
of molecule

Overlap matrix
Velocity-dependent
overlap matrix S
=s(v= o)

Total electronic spin
angular momentum
quantum number

Sturrnian function
Part of exponent in
electron-translation-
factor, or displace-
ment in intersecting-

(4.15)

Table III

above

(4.49)
(3.41)
(2.6o),
(3.17)

Table IV
(2.64)

(A12a)

Fig. 3,
(2.1), (2.2)
(2.4)

(3.6o}

(Sec.
IV.A.4)

(2.9)

Fig. 5

(2.33)
(2.52),
{2.53)
(3.37),
(3.38)

g
T
Tn
T(R)

U

KNk(R )

VA VB

V =—Unuc

V~» VB

vel

W

I

X»g» Z

X, Y, Z.

I ab abn»~n

k~» kB

E» En~» nB

~LZ» ~RZD

curved-waves theory
Reduced coupling

strength parameter
. Quantum g-matrix
Kinetic energy
Nuclear kinetic energy
Reduced energy-gap

function
Transformation matrix
Ungerade (see 7t.)
Nuclear radial wave
functions

Total potential energy of
all electrons and nuclei

Potential energy of inter-
action of electron(s) with
nucleus A. or B

Matrix representing all
"potential" coupling s

Internuclear veloc ity,
spherical components
v~, ve, v~

Velocity of nucleus
AorB

Typical velocity of elec-
tron in a bound state

Trunc ated transforma-
tion matrix

Electron-transport-
veloc ity

Components of electron
position vector r(= r ')
in molecular frame

Components of electron
position vector r ' (= r)
in space-fixed frame

Cartesian components
of R ln space-fmed
frame

Spherical harmonic
(phase conventions as
in Edmonds's book)

Charge of nuclei A, B
Parameter in ETF

Effective nuclear charge
parameter

Parameter in ETF

Momentum-tr ansfer
matrix

Energy-gap function,
V22 {R)—Vgg (R)

Energy of an electronic
state, usually a func-
tion of R

Energies of atomic
states

Energies of atomic states
Pa,rameter (like or-
bital exponent) in qb(r;B)

I andau-Zener or
Ro sen- Z ener-Demkov
parameter s

Part of y
Angle defining orienta-
tation of internuclear
axis

(4.43a)

(A13)
(3-2)
(1.12)
(4.35)

(4.2)-(4.4)

(Ag)

(3.3)

(4.25)

(1.1O), (2.6)

(2.17)

(4.3o)

(4.21)

below
(4.14)
(2.33)

below
(4.14)
(3.45)
(2.62)

(4.41)

(1.1o)

below
(2.17)
{3.12)

(4.42),
(4.43)

(2.63)
Figs. 4, 5

(2.46),
{AGc)
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PA~ PB
g„(r';a)

-+kA' 'kBy 0'

Co@served component
of electronic angular
momentum on inter-
nuclear axis

(m„—m )/(MA+u )
Nuclear reduced mass

A B ( A B)
Channel reduced masses
Coordinate in Intersect-

ing-Curved-Waves
theory

Corrected vector non-
adi.abatic coupling

Electronic parity sym-
metry (gerade or un-
gerade). Symmetry
of electronic state on
inversion of all elec-
trons through the geo-
metric center of the nu-
clei

Positions of nuclei rela-
tive to CMN

Electron dens ity
Component of electron

spin on internuclear
axis

Cross-section for tran-
sition to kA or kB state,
also denoted 0„„,BnB

Correction to S
Wave function for elec-
trons in classical tra-
jectory framework

Angle defining orienta-
tion of internuclear
axis

An electronic state
defined for fixed
nuclei, expressed
in rotating' molec-
ular frame

Table III
(3.37)

Table IV

(2.3)

(4.21)

(2 21),
(2.22)

(2.57)
(1.14)

F lg

I. INTRODUCTION
The quantum theory of atomic collisions is practically

as old as quantum mechanics itself. Despite its age,
however, the subject has undergone a vigorous expan-
sion in the past decade: Many conceptual diff iculties
inherent in the theory have finally been resolved, and
a host of calculations on specific systems has provided
concrete substance to the abstract formalism. The
purpose of this review is to integrate recent develop-
ments with older work to give a unified framework for
the theory of slow atomic collisions.

A. Processes and energy range

I et us begin by specifying more precisely the proc-
esses of interest to us. We shall consider binary colli-
sions involving neutral atoms or positive or negative
atomic ions. We shall not generally be concerned with
the additional complexities that arise in three-atom
systems, as in ion-molecule reactions; although many
of the methods discussed here can also be applied to
such systems, we shall focus our attention on two-atom
systems (which by themselves are sufficiently challeng-
ing).

Such atomic collisions may be purely elastic. The
electrons may remain in (say) the ground state through-
out the collision, and the atoms then bounce off each
other elastically. Such collisions are now quite well
understood, and they are not the primary subject of
this work. We are concerned with the real and virtual
inelastic processes that occur in binary collisions of
atoms or atomic ions. Among them are:

Resonant charge exchange. The simplest example
ls

H'+ H(ls) —H(ls) + H'.

2. Direct or exchange excitation, in homonuclear
systems, such as

&kA @kB

Same state reexpressed
in space-fixed frame

An A —or B-atomic elec-
tronic state. These
may be either rotating
or space-fixed

(2.17) or
(2.32)

H'+ H(ls) —H'+ H(2p), direct

—H(2p) + H', exchange

or, in heteronuclear systems, such as

He'+ N e(2p') —He'+ Ne*(2p'3s) .

(l.2)

These differ from Qk,
because of the

electronic reduced
mass in the Hamil-
tonian

State displaced onto
surface of constant $

Nuclear wave functions

Full wave function for
electrons and nuclei

Component of total elec-
tronic angular Inomen-
tum on internuclear
axis, Q =A+ p

Angle in a 2 x 2 matrix
U

Spin orbit precession
frequency (Appendix)

Symmetry with respect
.to reflection in a plane
containing the nuclei

(3.1a) or
(3.39)

(1-11)

(4.34)

(2.28) and
Fig. 6

(a process that is sometimes called "chemi-ioniza-
tion"), and the reverse process, neutralization, as in

H + H' - H(nl) + H(n'f ') .
The theory of processes like these is the main subject
of this review.

Ionszatson or detachment, as 1.n

H + He —H+ He+ e, detachment

He+ He —He'+ He+ e, ionization

—He, + e, associative ionization

He(ls2s) + Ar —He+ Ar'+ e Penning ionization.

(1.6)

(1.7)

(1.8)

(l.9)

These processes (some of which have also been called

This category also includes nonresonant charge trans-
fer, as in

Na+ C l —Na'+ C 1

Rev. Mod. Phys. , Vol. 53, No. 2, April 1981
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"chemi-ionization") are somewhat more complicated
than processes (1.1)-(1.5). Transitions between dis-
crete bound electronic states can usually be described
by coupling within a small manifold of states, but tran-
sitions to states in which an electron is free involve the
interaction of one or more bound states with a contin-
uum. Because of this higher level of mathematical
complexity, the theory of ionization and detachment is
less fully developed than is the theory of discrete tran-
sitions (though it is now an active subject of research}.
Accordingly, our discussion of these processes will be
comparatively brief.

We shall be concerned primarily with slow collisions:
collisions for which the nuclear speed v is much less
than typical electron speeds. For valence-shell excita-
tions, the electron speed can be taken to be about 1
atomic unit (-2 x 10' m/sec); then if the nuclear re-
duced mass is M times the proton mass, the nuclear
velocity exceeds the electron velocity only if the rela-
tive collision energy exceeds 25M KeV. For inner-shell
excitations, the electron velocity in atomic units is given
by Z/n, where Z is the nuclear charge and n the prin-
cipal quantum number. Hence the nuclear velocity ex-
ceeds the inner-electron velocity only if the relative
collision energy is greater than 25 MZ'/n' KeV. Ac-
cordingly, the theory developed here applies to colli-
sions with energy varying from the thermal to the
multi-KeV range. This energy range contains essen-
tially all collisions of interest in chemistry, and in a
broad area of atomic physics.

B. General characteristics of electronic transitions in slow
atomic collisions

(b.ed, /hv) «1, (1.10)

where 6& is the spacing between the energy levels dp

is the range of the interaction (usually taken to be about
1 go), and v is again the relative velocity of the collid-
ing atoms. The Massey criterion is a statement of the
Heisenberg uncertainty principle as applied to atomic
collisions. If Lt= d, /v is the time of interaction of the
atoms, then in this time, the internal (i.e. , electronic)
energy is defined only to within be-I/At. Transi-
tions to states having energies within this range of the
energy of the initial state may occur with a high proba-
bility, but transitions to other states will be unlikely.

In an early paper discussing this general principle,
Hasted (1952) used the asymptotic atomic energies to
calculate Ae. Although he successfully accounted for a
number of observations this way, such a usage is not
always appropriate, because the energies of electronic
states can change substantially with internuclear dis-
tance, and two states that have quite different energies
at infinite separations may become practically degen-
erate at finite R or in the limit as R —0. Accordingly,
the degeneracies or near degeneracies that mediate the

It is a general property of transitions in slow colli-
sions that they are very improbable unless at some
point the energies of the two electronic states are near-
ly degenerate. The Massey adiabatic criterion (Massey,
1949}states this more precisely: Transitions are im-
probable unless

important transitions in slow collisions fall into three
categories: (i} those associated with a symmetry of
the united atom (R -0); (ii) those associated with the
separated atoms (R -~); (iii} those that occur at some
finite R, - as happens, for example, in curve crossings
(Fig. 1). In any of these cases there is at ieast a local
violation of the adiabatic criterion within the nearly de-
generate manifold, and a strong coupling problem may
then arise. However, such problems are tractable
essentially because we can adequately describe the be-
havior of the electron system by an expansion in a
small set of discrete electronic states. Except with re-
spect to specified and limited degeneracies, the system
otherwise behaves adiabatically, and transitions to
states outside the l.imited degenerate manifold have
small probability.

Thus it follows that in slow collisions the important
transitions tend to be highly specific. For example, the
cross, . section for 3p excitation of hydrogen by slow pro-
tons is orders of magnitude smaller than the cross sec-
tion for 2p excitation. The latter transition is mediated
by a deg eneracy between 2p(T„and 2pm „states as the
internuclear separation R goes to zero [as in Fig. 1(a)j;
however, for the former, there is no mediating degen
cracy.

The improbable, nonspecific processes that are not
mediated by a degeneracy may be called "direct impact
processes. " These processes have rarely been consid-
ered in slow collisions because their cross sections are
small. On the other hand, as the collision velocity in-
creases, so that the nuclear velocity and the electron
velocity become comparable, degeneracies become
less important, and direct impact processes become
more important. Hence, in this intermediate velocity
range, transitions may occur to a broad spectrum of
final states, and many channels may become strongly
coupled. Despite this fact, certain calculations in this
intermediate velocity range have been performed with
considerable success by expanding the wave function in
a small but carefully chosen basis set. Such calcula-
tions are in some ways very similar to low-velocity
calculations, and w e shall dis eus s them in Sec. II. B.

In slow collisions, the relevant finite manifold can
often be spanned by the Born-Oppenheimer molecular
electronic states, and an expansion in such states is the
backbone of the theory. Certain complications have to
be considered carefully: (i) The conventional expan-
sion does not give a proper account of scattering bound-
ary conditions, and (ii) frequently it is possible to find
some other basis set that is more convenient than the
Born-Oppenheimer set. (Some such basis sets have

FIG. 1. Electronic energies, here denoted E(R), as a function
of internuclear distance Q, illustrating three types of.degen-
eracy that mediate transitions in a slav atomic collision. De-
generacy or near-degeneracy occurs I,a) in the limit as & 0,
(b) at finite R, and {c) in the limit as &
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been called "diabatic, " to suggest that they do not have
the "adiabatic" behavior of the Born-Oppenheimer elec-
tronic states. The problem is to give precise definition
to these states and to show when they may be useful).
After these two problems are resolved, the problem is
reduced to that of solving a set of coupled equations.
If we are concerned only about the specific transitions
that are mediated by degeneracies, and if we can ignore
the much less probable nonspecific direct impact pro-
cesses, then we commonly find that the system can be
described by a small set of coupled equations. The
formulation and solution of such finite sets of coupled
equations are the main subject of this work.

H(R, r') = T„+h(r', R),
where

T„=(-8 'l2 p)V'

and, for a one-electron system,

I(r', R)=( a'l2m)v2, + V(r', R)+I...
= h~o+ h„,,

(1.12)

(1.13a)

(1.13b)

with V(r', R) being the total potential energy of intera. c-
tion of the electron and both nuclei, and h.„,being the
"magnetic" Hamiltonian, which includes spin-orbit
coupling and other smaller magnetic effects.

A much simpler description of atomic collisions {the
classical trajectory description) is obtained if the nu-
clei are assumed to move classically along some
path; then the electrons feel an intrinsically time-de-
pendent force field because of the motion of the nuclei,
and the electronic wave function T(r', t) must satisfy a
time-dependent Schrodinger equation,

a( r', R(f))V(r', f)=N —„r(r',f) .8 (1.14)

If the classical path is taken to be rectilinear, with
constant velocity, this approach is known as the "im-
pact parameter method. "

D. Outline of complete quantum treatment

We now wish to outline the conceptual framework
within whi. ch the full Schrodinger equation is reduced
to a tractable form, solved, and finally compared with
experiments.

l. Expansion in a discrete basis

The process begins with the expansion of the wave
function + in a discrete basis that spans the electronic

C. Quantum and classical descriptions

There are two different theoretical descriptions of
atomic collisions, both of which will be discussed in de-
tail later. In the most rigorous description, the elec-
tronic and the nuclear degrees of freedom are both de-
scribed by quantum mechanics; the system is described
by the full stationary Schrodinger equation,

H(R, r')e(R, r') = Ze(R, r')

subject to the usual scattering boundary conditions.
The full Hamiltonian is

space. The basis which is most commonly used is the
set of Born-Oppenheimer functions, which are solu-
tions to the electronic part of the Schrodinger equation
with the nuclei held fixed:

r „(r',R)y„(r',R) = «„(Z)@„(r';R)
and the expansion of + has the form

+(R, r') =g X„(R)@„(r',R) .
n

(1.16)

This yields "close-coupled" equations for the nuclear
wave functions (y„(R)),and those equations constitute
the original quantum-mechanical form of "perturbed-
stationary-states" (PSS) theory.

For many years it has been known that this approach
has a number of deficiencies. All of them are related
to the fact that individual terms in the expansion {1.16)
do not describe the motion of the electrons as they are
carried along with the nuclei. As a consequence, the
coupled equations contain several types of "fictitious"
couplings, some of which are of infinite range.

In this article we shall show how the original form of
the PSS theory must be modified to eliminate the ficti-
tious couplings. We shall show that the modification
leads to additional terms in the close-coupled equa-
tions, , which cancel infinite-range couplings and all
other couplings that really represent only the displace-
ment of the electronic basis functions with the moving
atomic nuclei. We shall also define diabatic and adia-
batic representations, and show their relationship to
the Born-Oppenheimer representation. A properly
formulated set of close-coupled equations is the essen-
tial result of this article.

The present article stops at this point, but there is
much more to the theory. Perhaps someday another
article will be written to review the further develop-
ment of the theory, as briefly sketched below.

3. Models and approximation methods for solving
the classical trajectory equations

If there is only a small number of interacting states,
the classical trajectory equations can be numerically
integrated without difficulty. Nevertheless, it is useful
to study certain simplified models and approximation
methods because they give simple, approximate formu-
las for the transition probability on a given trajectory.

4. Co I I isiona I spectroscopy

From the approximate formulas, or from the numer-
ical solution to the classical trajectory equations or to

2. Semiclassical approximations and the relationship
between quantum and classical descriptions

Although in the present article the quantum and clas-
sical trajectory descriptions are developed as separate
frameworks, the relationship between the two ap-
proaches has been studied in detail. The quantum-me-
chanical form of the coupled equations can be reduced
to the classical trajectory form by the systematic use
of semiclassical approximations. These approxima-
tions define the strength and the limitations of the clas-
sical trajectory method.
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(Part II)

Classical-Tr+ ectory Formulat ion

hT=ifi &T/ St

expansion

Close-Coupled Equations

xad/dt d=[h~. (P A y)]d

(Part III)
Quantum Formulation

expans ion

Close-Coupled Equations

{(2p) [(-ice) +(P+A+y). (-M)+B]
+h+I-E)'X=O

1

(Part IV)

Representations
(Appendix A)

An~ar Aspects of Representations
n ' n

Partial Wave Analysis

Description of Specific Systems
FIG. 2. Structure of this article.

the close-coupled equations in either the PSS or the
corrected form, it is straightforward to obtain theo-
retical cross sections, either by exact numerical sum-
mation over partial waves or by using stationary phase
approximations. The resulting cross sections show a
great deal of interesting structure that is also found
in experimental measurements. Collisional spectro-
scopy is the study and interpretation of these effects.
This- is where the theory and the experiments finally
come together.

E. How to read this article

The logical structure of this article is indicated in
Fig. 2. One way to read it is to start at the beginning
and proceed to the end. However, there are other
possibilities.

Mo'st of Sec. II. B (intermediate-velocity collisions) is
independent of the rest of the article, so it can be
skipped (though II. B.2 is helpful for understanding later
developments).

The reader who is not interested in the full quantum-
mechanica1. theory can omit all of Sec. III and go di-
rectly from Sec. II to Sec. IV.

In principle, it is also possible to omit Sec. II (clas-
sical trajectory theory) and begin with the quantum-
mechanical formulation in Sec. III. In a logical hier-
archy, this quantum framework is the first principle,
and the classical trajectory framework is an approxi-
mation that holds in a special, limiting case. How-
ever, it may be difficult to understand the quantum
framework (especially the modifications to PSS theory)
unless the classical trajectory theory is already under-
stood. So although cognoscenti can begin with Sec. III,
novitiates would do better to read Sec. II first.

Section III. C contains some new material. It is the
final version of an approach developed by W.R. Thorson
and the present author in order to correct the defects
of PSS theory, and thereby to obtain an improved quan-
tum close-coupling method. Although the derivation is
not short, it leads to a very powerful formulation,
which encompasses a great range of atomic collision
phenomena. Readers who already know about recent

developments may peruse Sec. III. C, glance through
Sec. IV.A. 2, and throw the rest of the article away.
Finally, those who are already familiar with formal as-
pects of diabatics and adiabatics (Delos and Thorson,
1979) may skip most of Sec. IV,A.

It is assumed that the reader has a reasonable gener-
al background in atomic and molecular structure, and
in elementary collision theory, including elastic .atom-
atom collisions. At various points in the text, refer-
ences are given to appropriate sections of Condon and
Shortley (1959), Herzberg (1950), and Slater (1963).
Elastic atomic collisions are covered very adequately
in the treatise by Mott and Massey (1965) and in the ex-
cellent book by Child (1974). However, since there
were fundamental deficiencies in the theory of inelastic
atomic collisions, we present this theory "from the be-
g inning. '"

I I. CLASSICAL TRAJECTORY THEORY

We develop here the most general aspects of the
classical trajectory description of atomic collisions.
As explained earlier, in this approach the nuclei are
assumed to move on a classical path, and the electrons
satisfy a time-dependent Schrodinger equation. Basic
definitions of coordinates, the Schrodinger equation
and boundary conditions, and the development of
coupled equations are presented in Sec. II.A; although
there is nothing new in this section, and the ideas are
quite elementary, we make a point of displaying expli-
citly all the assumptions that are usually hidden when
the time-dependent SchrMinger equation is written
down. We then review some calculations on interme-
diate-velocity collisions in Sec. II.B, and present sim-
plifications applicable to slow collisions in Sec. II.C.

This article is based on lectures given mainly for advanced
graduate students at William and Mary and at FOM. In con-
nection with those lectures, the author wrote a set of exercises
and problems that may be helpful for teachers and students of
this subject. Some of them are scattered through the text,
identified by the words "one can show. . . ." A complete set
can be obtained from the author, on request.
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A. General framework

1. Coordinate systems for describing the electron motion

There are several different frames of reference
which are convenient for describing the motion of the
electron(s) in a collision. They are (i) the laboratory
frame, (ii) a "space-fixed" frame with origin at the
center of mass of the nuclei, (iii) a rotating molecular
frame, and (iv)-(vii) space-fixed and rotating frames
centered on the two nuclei. Tge relationships among
these frames, of reference are important in both classi-
cal trajectory and quantum-mechanical theories of
atomic collisions.

The laboratory is assumed to provide an inertial
frame in which the positions of nuclei A and B and of
the electron are denoted by R„,Rs, r' (Fig. 3). The po-
sition of the center of mass of the system- is of course

RcM= (M„R~o+MsRs+ m, r )/(M~+M~+ rno) . (2.1)

To describe the motion of the nuclei in the laboratory,
we consider the center of mass of the nuclei (CMN):

RcM„=(M„R„'+MsRso)/(M„+ M~)

and their positions relative to their center of mass

(2.2)

~P- ~R-R Mc=N2 (-I +&)R,

p = R' —R „=—'(1+ X)R,

R= R~ —R~,
where

~ = (M„-M,)/(M„+M, ) .
The relative nuclear velocity is

(2.3a)

(2.3b)

(2.4)

(2 5)

All of the formalism developed here is applicable to an
arbitrary system of two nuclei and any number of elec-
trons. However, to keep the ideas and equations as
simple as possible, we shall explicitly discuss only
one-electron systems; then, in Sec. II.D, we shall show
that the generalization to many-electron systems intro-
duces no new conceptual difficulties.

and, following standard convention, we take the Carte-
sian axes (X', I', Z) of the laboratory frame such that the
Z axis coincides with the initial direction of v.

In principle, to fully specify the paths followed by the
nuclei, we have to give the time dependence of R«„(t)
and R(t) [as well as RcM(t)]. However, implicit in the
classical trajectory framework is the idea that the nu-
clei are much heavier than the electrons, so the dis-
tinction between the CMN and the center of mass of the
whole system is usually neglected. In that case, the
CMN moves on a straight line at constant velocity rela-
tive to the laboratory, and the trajectory is specified
by the time dependence of R(t). In the impact param-
eter method the nuclei themselves are assumed to move
rectilinearly, and

R(t) = b+ vt, (2.7)

zt

where v is the (constant) internuclear velocity and b is
a vector perpendicular to v w ith length equal to the im-
pact parameter. More generally, the nuclear trajec-
tory might be given in terms of some average potential
energy of interaction of the two atoms. In any case, the
vector R(t) is conveniently specified in terms of its
length ~(t) andtwo spherical-polar angles, B(t),4 (t), that
are defined relative to the orientation of the laboratory
frame (Fig. 4). Since the angle B(t) is defined relative
to the positive Z axis (the initia. l direction of v), it fol-
lows that as f - -~, B (t )- w; if the trajectory is rec-
tilinear, then as t-+~, B(t)-0, but if it is not recti-
linear, the final value of B(f) depends on the impact pa-
rameter, and it is called B(g), the deflection function.
Normally the potential energy defining the nuclear tra-
jectory is independent of p, the nuclear trajectory
stays in a. plane, the azimuthal angle C(t) is a constant,
and it defines the collision plane. In that case, we can
simplify many of the equations by taking @=0.

To describe the position of the electron, we may de-
fine a so-called "space-fixed frame" with origin at the
CMN and orientation coinciding with the orientation of

v= dR/dt (2.6)

R~-
4 ' ~CV

4

/
/

4

r

0
FIG. 3. Coordinates for the general Inolecular system A. , B,e.
Vectors with superscript zero are measured from an external
origin O. r~ is the vector to e from the geometric center;
CMN is the center of mass of the nuclei and is the origin for r.

X

FIG. 4. Space-fixed and molecule-fixed reference frames for
the molecular electron. (x', y', g') denote space-fixed axes,
and (x, y, z) molecule-fixed axes. They are related via rota-
tions by angles (0, Q) as shown.

Rev. Mod. Phys. , Vol. 53, No. 2, April 1981



John B. Delos: Electronic transitions in slow collisions

the laboratory axes. The position of the electron rela-
tive to the CMN is

0
CMN &

(2.8)

and its components along the Cartesian axes of the
space-fixed frame are denoted {x',y', z').

The electron position could also be specified relative
to nucleus A. or B, and we define

r„'=r' —p„=r'+ —,'(1 —X)R,

rs = r' —p~ = r' ——,'(1+x)R.

(2.9a)

(2.9b)

"Space-fixed atomic frames" are coordinate systems
centered on nucleus A or B and translating but not ro-
tating relative to the space-fixed frame at the CMN.
The components of r„' and r~ in these respective frames
are denoted (x„',y„',z~) and (xs, y~, zs).

The electron position can also be described by giving
the components of r' in a "rotating molecular frame. "
This rotating frame is defined relative to the instantan-
eous position of the internuclear vector by using the po-
lar angles e(t), @(t) as Euler angles defining two rota-
tions: Starting from the space-fixed frame we rotate
the coordinates by @ about the z' axis, then. by 8 about
the new y axis (Fig. 4). Hence the components (x, y, g)
of the vector r' in the rotating molecular frame are re-
lated to the components {x'y'z') in the space-fixed
frame by

g =x'cose cos4 + j' cose sin4 —z' sine,
y= -x sin4 + y cos@,

z =x sine cosy + y sl,ne Sln4 +z' cose .
(2.10)

The vector r is used to denote these collective compo-
nents (x, y, z, ); r is geometrically the same vector as
r', both being r'-RcM„, but the prime means that com-
ponents in the space-fixed frame are to be considered,
while no prime means that components in the rotating
molecular frame are to be considered.

Rotating atomic frames of reference may also be de-
fined; these are centered on nuclei Q or B, but oriented
in the same way as the rotating molecular frame.
Components of the vectors r„,r~, . representing the po-
sition of the electron relative to the respective nuclei,
are given by

electrostatic terms (which we like to call the "Born-
'Oppenheimer electronic Hamiltonian") and magnetic
terms, of which the most important is spin-orbit cou-
pling:

h= h~o+ h„,. (2.13)

but after the nuclear trajectory is specified, the inter-
nuclear potential energy term P„Pse'/B is just a (time-
dependent) constant parameter in this Hamiltonian, and
it can be eliminated by adjusting the phase of the wave
function by the factor

I, va

z'
I

)8 z

XB

One of the electrostatic terms is the electron kinetic
energy, (-8 '/2nz, )V'. This kinetic energy contains the
"rest mass" m, of the electron, but since the nuclei are
much heavier than the electron we ignore the distinc-
tion between this rest mass and the atomic or molecu-
lar reduced mass. V' contains derivatives with respect
to electronic coordinates referred to any inertial frame;
then 9/st must be taken holding the electron coordinates
fixed in this same frame of reference. One of the fun-
damental results of elementary quantum mechanics is
that the probability density ~V

~

is invariant under Gal-
ilean transformations of the reference frame (Schiff,
1955, p. 40, problem 2; Gottfried, 1966, Vol. I, p. 246 ff).
In the present context, this general invariance princi-
ple implies that the coupled equations are independent
of the origin of coordinates, provided that certain phase
factors ("electron-translation factors") are properly
included; this specific invariance will be displayed
more explicitly below. If, as mentioned earlier, we
neglect the difference between the center of mass of the
nuclei and the center of mass of the whole system, then
the space-fixed frame with origin at the CMN is an in-
ertial frame, and we can take V = V'„,and
&/6t = (6/6t); .

The Born-Oppenheimer Hamiltonian also includes
the full potential energy,

A A A A

+Be +A+Be
+

X~=~a=3' ~

~„=z+ —,'(1 -~)Z,

z, =z --,'(1+ ~)Z.

(2.11)

For the special case 4 =0, these coordinate systems
are shown in Fig. 5.

hY=i5 8Y (2.12)

As in Eq. (1.13b), the electronic Hamiltonian h contains

2. Time-dependent Schrodinger equation

The wave function for the electron in the moving field
of the nuclei satisfies the time-dependent Schrodinger
equation

l

4)i

p '~- X~

XA

FIG. 5. Rotating and nonrotating frames of reference for elec-
tronic coordinates for the special case /=0. The y and y' axes
are into the page.
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exp -i Z„ZBe' A t' dt' 8
0

The Hamiltonian for spin-orbit coupling is given ex-
plicitly later. (Sec. IV.B.1). However, since for atoms
of low Z, spin-orbit coupling is small, it is frequently
possible to neglect it, and we shall ignore it for now,
reinstating it later. when it is necessary. Hence for the
purpose of this section it is sufficient to take the Ham-
iltonian to be

canceled by a term that arises when k& acts on the ETF.
In the present context, the ETF's have never been a source

of confusion. Since the earliest formulations of the theory
of charge exchange (such as that of Brinkman and Kramers,
1930), ETF's have always been incorporated in calculations
based on atomic representation. However, not until much
later was it recognized that ETF's also have to be included
in calculations based upon molecular representations, and
that they also have to be incorporated somehow into quantum-
mechanical formulations of collision theory.

Zge ZBeh=h, =——
2Pl Jg

T. +yo+V

3. Boundary conditions

a. Asymptotic form of wave function

(2.14)

6. Cross secti ons

(2.19)

(i) Total cross sections. Suppose for the incident
beam the electronic state is the jth state of atom A.;
this is represented by the traveling atomic orbital
P,.~(r'), so

lim (q,. ~T&=1.

To describe the electron wave function. in the limit as
t-+~, when the nuclei are far apart, it is convenient
to define atomic partitions of h, :

h„'=T,+y, ,

hB=T, ~VO s

h —h~+ P'0 —hB + +0

(2.15a)

(2.15b)

(2.15c)

The asymptotic states are explicitly time-dependent
solutions to one of the "free" atomic Schrodinger equa-
tions,

C~a

hap„=i@8/„ / Bt .
(2.16a)

(2.16b)

Solutions to these equations, as expressed in the
space-fixed frame, are not simply stationary atomic
orbitals reexpressed in moving coordinates. The cor-
rect asymptotic states contain also an "electron-trans-
lation factor" (ETF), which represents the momentum
and kinetic energy of the electron as it rides on nu-
cleus A or E:

q„„=I„(r',t)y„(r„')e x(p-i&,„t/))t,
5'„(r',t) = exp[i(mv„.r' —mv~2t/2)/)t j,

v„=dp„/dt= —,'(-1+a)v.

(2.17a,)

(2.17b)

(2.17c)

(2.17d)

@„(r~)is an ordinary atomic orbital for atom Q, ande„„is its energy. Expressing the orbital as |))„„(r'
—p„(t)), it is easy to show that Ec(. (2.17) satisfies the
free SchrMinger equation (2.16a) while @„(r—p„(t)}
by itself does not. Similar formulas hold for g~ .

The proof of this assertion is straightforward . Applying
Eq. (2.16a) to (2.17), we have

[(hz-is slat)gaz exp[(i/ji)( eq&t——+mv~ r' —mvzt—/. 2)1

([b~(f&a~+vz. ( i@&„,)4 pj, + (mv~-/2) @a~1

+ [—&&~4~~ —( ~/2m)vA~ —@v~'&~~%a~])»

(2.18)

where the first bracket arises from hz and the second from
-i6 8/Bt). It is clear that the terms cancel exactly.

Note in particular that the last term in Kq. (2.18) represents
the change with time of @q& that results from the displace-
ment of this orbital with the moving nucleus. This term is

After the collision the electron may be bound to A or
R, or it may be free. As B-~, bound states of A be-
come orthogonal to those of J3, and therefore the prob-
ability for finding the electron in the 0th bound elec-
tronic state on A or B' is

Pm / &y, fT&J'=I„„,
lim /(i(„fT&f'=I', . (2.20)

The total cross section for scattering into states k~ or
ks is the integral of the transition probability over all
impact parameters:

cr~ = 2m' P„bbdb,

cr~ = 2m P» (b)bdb.
B B

(2.21)

(ii) Differential cross sections. Classical differen-
tial cross sections may be calculated by obtaining the
deflection function e(b) and the corresponding cross
section g„(e,E) = b db/sine de, employing some reason-
able effective potential for describing the nuclear mo-
tion. The differential cross section for a given transi-
tion would then be given by

e, (e,E)=a„(e,Z)I, ,

o„(e,E)=o„(e,E)I, . (2.22)

Alternately, even if the trajectories were taken to be
rectilinear, differential "cross sections could be calcu-
lated from an integral formula based upon an eikonal
approximation (Wi'lets and Wallace, 1968; Glauber,
1959; see also Bransden, 1970, p. 79).

(iii) Ionization n oss sections. The calculation of
cross sections for ionization requires care because
free particle states of A and E form an overcomplete
and nonorthogonal set, even as R-~. In spite of this
formal redundance, however, it can be shown that very
similar formulas to those for bound states also hold
for the continuum. In particular, the existence of pro-
nounced forward scattering peaks in the differential
ionization cross section in such collisions can be sim-
ply explained by an appropriate use of the joint continua
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of both target and projectile atoms &ms &Band 19'14; see
also Macek, 1970)

4. Coupled equations

the Schrodinger equation (2.12) is an insepar-Since e c r"
st four vari-able artial differential equation in at leas

a es i i ' solve dir ectly.ables it is practically impossible to
The standard method for solving i il i it involves an expan-
sion in a care u y cf 11 chosen set of basis functions

nic coordinates. Forthat span the space of the electronic coordinates. or
llision problems, each basis funct'co ision p

n-translationbe mu ip ielt l d by an appropriate electron- r
will be s e-factor I„.eThe basis functions and ETF s wi p-

e sim l writecified more fully later; for now we simply wri e

dI t+a n. (2.23)

0 crating on ob th sides of this equation with (h-
b ~*I *. and integrating over elee-iRB/Bt), multiplying by ~&

ron variables leads tot

[F'(h -iSajBt.) [Y)=g(@,[FJE„[y„-Nd )i
k

+d, &@, IF;(.a @8./ef-)F, I@„&=0

This is a set o coup et f led first-order differential equa-
tions for the coefficients d„(t); in matrix notation

S(u)ih —d(t) = LC(t )d(t)dt— (2.25a)

or

gi d(t) =—S(v) 'K(u)d(f),dt— (2.25b)

with

SiI,(v) (~s IF&Fa I@a& ~

x„(~)= (y, IF,'(a - tee/ef)F„
I
y„&. (2.26b)

ETF's& formed a com-If the basis functions (inciudmg ET
piete set, t en e sh the solution to these coupled differential

ould be exactly equivalent to the solution oequations wou e ex c
h S h "dinger equation. Since, o course,

used in actual calculations are far from comp, g
care is neede in e cd th hoice of functions and ETF's.

(2.26a)

gg —,(T IT&= fff d'S(v)d-
dt dt ——

d= dt[K-mt+ i@—S(v)]d= 0,dt—

a. Probabili ty conservation

eneral basis set, S(u) is not diagonal and K(t)
is not necessarily a Hermitian matrix. A ou
matrix represen a ion ot t f ft is Hermitian (provided that
the basis functions are square integrabrable& the matrix
representing -z-tjgb/Bt need not be Hermitian. As a re-
sult, probability conservation is not manifest in Eqs.

~ Q Id (f)I' need not be conserved.
However, the total probability is not given by this ex-
pression but yb (T IT&. hence the condition for probabil-
ity conservation is (Green, 1965)

mmetr selection rule. TheF y y
tion of the two nuclei defines the col ' '

pmotion o e
lane ' = 0. With respect to reflectionhere taken to be the plane y =

2, and 2, states have symh + mmetry,through this plane, the 2p„, an
etr . Hence 2p~& —p&,while the 2p~, state has —symmetry.

2pz' & 2px' ~ 2py'

which holds if

dX SC'-+ gf S(—~) = 0dt— (2.2"f)

to show that this condition is satisfied for
any ini e ' h the basis func-any finite discrete basis set for whic e
tions are square integrable. '

+ ~+ ~ ~ ~ + (2.28)

An illustration of this rule is given in Fig. 6.
if the two nuclei have equal charge (symmetric sys-

tem en eg th the electronic Hamiltonian isis invariant under
throu h the geometric center of the mmolecule.inversion throug e

This is the parity or (gexade ungexade -symme r
electronic sta es, ant d for such systems we have the
selection rule

(2.29)g~gq ZC 14 q g+ Q ~

e of these symmetries of the Hamiltonian, theBecause o ese s
reduced if the basisnum ero cb f coupled channels can be reduce i

r — or or gg~states an d ETF's) are made to have + or —, g
symmetry.

4and atomic states are +, whi e p~For example, g, p„,an ~ a
m toH there are no transitions from g ostates are —.Hence er

1 e.lear trajectory is confined to a p an .states so long as the nuc ear
Similarly, for symmetric system,s functions such as

(2.30)+BI&B +A@&A

symmetry and there will be no K(v) orhave either g oru symm
S(v) matrix elements connecting them.

l ork on charge exchange e.g. , ppor . . Ha andIn some ear y wor
art 1964; and1962 Bates, Johnston, and Stewart,francis,

nsure conserva-others) the Eqs.s. (2.25) were symmetrized to ensu
' n of~~ ~'d ~ instead of conservation of (T(T&; owe

h lead to significant errorsGreen (1965) has shown that this can ea
mmetr ized forms.and that it is better to use the unsymme

b. Symmetry and select/on rules

of the colliding system can be emp yem lo ed to
re uced the number of coupled equations i

nian is invari-1966). The electronic Hamtltonian '
Gallaher,

ion lane, and thisder reflection through the collision p anant un er re
In articular,implies a conservation law. pinvariance im
mmetric underif the ini ia st' l tate is symmetric or antisymm

this reflection, then e inth final state must have the same
mmetrIn molecular spectroscopy this symme rysymmetry. mo

oted + as inro er~~ of the electronic states is deno eproper o
and for collisions we have ee the selection rule
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B. Intermediate-velocity collisions

1. Basis sets

a. Traveling atomic orbitals (TAO sj'
Since the boundary conditions [Eqs. (2.17)] involve

atomic eigenstates, it is natural to use these same
states as the basis functions in tbe expansion (2.23).
Thus

(2.31a)a"d +a('ka

where the latter are defined in (2.17). If all of the
(bound and free) atomic states, @k, @k were included,

A
then each of the sets (@k J, Q&k }would be complete, so
the wave function could be expanded in either an A- or
B-atomic basis as

A4 kg
k~

kg

In practice, however, these expansions are rarely use-
ful, because it is practically impossible to represent
accurately a charge-exchange state (such as Ea@k ) in

Bterms of' states based on the original center (E„pk ).A k~
A much more useful expansion is obtained by selecting
a small set of both A and B states, and expanding the
wave function as

Y= dk F~ k + dk~F~ (2.31b)

Many calculations have been performed with some suc-
cess by using such an expansion. However, this expan-
sion also leads to some difficulties. (1) The set of all

and @k is nonorthogonal (this is a property of allkg
the atomic bases considered) and formally overcom-
plete. The nonorthogonalities are not a problem in the
classical trajectory method, provided that overlap
integrals are explicitly included in the coupled equa-
tions (Bates, 1958). (However, in the quantum-me-
chanical Born approximation, these nonorthogonalities
led to some confusing early results for charge ex-

We review here some calculations dealing with colli-
sions of protons with hydrogen atoms at velocities
around one atomic unit. The purpose of this section is
mainly to show the physical meaning behind the mathe-
matical equations (2.25). In so doing, we also sum-
marize the progress that has been made in this area,
and point out some problems that still remain.

Two simplifications are important in this intermedi-
ate-velocity region. First, except for collisions ai very
small impact parameters, the nuclei move past each
other practically on a straight line at constant velocity.
Second, if the internuclear velocity is greater than the
average velocity of the electron, then the electronic
wave function does not have time to adjust to the chang-
ing potential field. Accordingly, Y is best described by
means of an expansion in basis states which are closely
zelated to the states of the separated atoms. Some ex-
amples are given below.

change cross sections; see Brinkman and Kramers,
1933; Bates and Dalgarno, 1952; Jackson and Schiff,
1953; Brandsden, 1970, Chapter 8; Band, 19'73; and
I.in, Soong, and Tunnell, 1978). (2) Convergence of the
expansion using atomic eigenfunctions may be poor, or
it may converge to an incorrect result. The discrete
(bound) hydrogenic states are not a complete set. Fur-
thermore, for large n they are functions with maximum
density far from the nuclei (high Rydberg states); how-
ever, important deformations of T(i', t) probably occur
only close to the nuclei. Similar defects of hydrogenic
expansions are familiar to valence theorists. To im-
prove convergence by explicit inclusion of continuum
states would create an almost intractable problem for
the coefficients and also increase the problems due to
nonorthogonality and overcompleteness.

4k~ 9 n~l~( A) t~m~( Ar AA) ' (2.32)

Tbe states differ from those of Eq. (2.17c) in that the
angles 8„,p„specifying the electronic coordinate r„
are defined relative to the rotating atomic frame, while
8„',P„'are defined relative to a. space-fixed atomic
frame.

At low velocities (small 8), the wave function Y tends
to follow the internuclear axis, so this basis is pref-
erable. However, in the rotating frame the system ex-
periences angular couplings wb, ich increase with in-
creasing velocities and which can be said to decouple
the electronic wave function from the internuclear axis,
so, at high velocities, the wave function tends to main-
tain its space-fixe/ orientation. , and the space-fixed
atomic basis set is preferable.

Rotating atomic basis sets have the same orthogonal-
ity-completeness properties as do space-fixed basis
sets, and the associated difficulties again arise.

c. StU/ mian fUnctlons

To improve convergence of the expansion, Gallaher
and Wilets (1968) suggested tbe use of Sturmian radial
functions; these are solutions to the hydrogenic radial
equation,

(
d' l(l + 1) o'ng(e) S )2' dr 2yygr r

= &S„,(r; &) (2.33)

but z is an assigned (arbitrary) parameter and n„,(&) is
the eigenvalue. For what value of nuclear charge n„,is
the binding energy of the level equal to q? The relation
is (atomic units) o.„,(g) =~(-2q)'~', and the Sturmian
functions are thus just scaled hydrogenic functions,

s„,(r; &) = jo.'„,(k)]' 'A„,(n„,(a)r). (2.34)

b. Rotating traveling atomic orb/~tais

Instead of the TAO's, which are oriented in a space-
fixed frame, it may be convenient to use a set of atom-
ic functions that follow the rotating molecular frame
(Wilets and Gallaher, 1966). An example of such a ro-
tating basis function is a 2p, = 2p, state, which has its
lobes aligned along the internuclear axis. Such func-
tions can be written
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The arbitrary parameter g can be selected to give use-
ful scalings; Gallaher and Wilets used c = —[2(l+ 1)'] ~

so that o.„,= n/(l+ 1). The Sturmian functions form an en-
tirely discrete complete set and have most of their den-
sity in a more compact region than do the hydrogenic
states. On the other hand, because they are not eigen-
states of the atomic Hamiltonians, the expansion coef-
ficients ~d„~ for a Sturmian basis do not approach def-
inite limits as t-+~, but oscillate. Transition ampli-
tudes are obtained by finding the projection of the wave
function as t- onto the hydrogenic TAO's. However,
since the TAO's cannot be exactly reconstructed from
a Pnite set of Sturmian functions, the resulting transi-
tion amplitudes also oscillate indefinitely. Gallaher
and Wilets solved this problem by explicitly evaluating
and neglecting the oscillatory terms.

Later Shakeshaft (1975, 1976) further developed the
Sturmian function method, presenting a new way to
evaluate exchange matrix elements and an alternative
method for projecting the scattering amplitudes. The
Gallaher and Wilets calculation made use of rotating
spherical harmonics for the angular parts of the atomic
orbitals, while Shakeshaft's calculation used nonrotat-
ing orbitals.

d. "Pseudastates"

Cheshire, Gallaher, and Taylor (1970) took the point
of view that formal completeness of an expansion is a
property whose virtue is seldom effective, since for
practical reasons any expansion is truncated after (say)
five to ten terms. Therefore if one is limited by com-
putational considerations to a truncated expansion, it
is important that the terms taken represent the physi-
cal wave function as closely as possible, and much less
important that they be members of a formally complete
set; accuracy at N= 5 is much more important than
convergence as N-~. (This viewpoint has also pre-
vailed for a long time in valence theory calculations,
where the Rayleigh-Ritz principle provides some-cri-
terion of success).

Accordingly, these authors chose basis states as fol-
lows: (1) To avoid the problem of poor asymptotic be-
havior (as with the Sturmian functions), they included
some unmodified hydrogenic orbitals (ls, 2s, 2p), one
for each of the final stat'es for which they wished to
compute cross sections. (2) To this set they added
some additional functions chosen to overlap well with
states such a,s the (united-atom) wave functions of He',
i.e. , functions having most of their density at small x;
(3) a third consideration was computational conven-
ience, especially for the exchange (A-B) integrals.
They used states of the form

~-~"w„,{r)r, (e, @),
where orbital exponents were chosen to meet the above
criteria and W„,(w) are polynomials such that these
pseudostates are orthogonal to the hydrogenic states
used. When only transitions to the hydrogenic final
states are computed, no projection problems then arise.
2. Matrix elements

Important physical insight is gained by examining
the matrix elements (2.26) in more detail. Following

the same development as was given in Eq. (2.18), it is
easy to obtain the following.

a. Direct ezem eats.

s =( ~ )J~k~ 0 j~ l9 k~ (2.35)

(2.36)

b. Fxckange ezements.

(2.37)

(2.39)

is the electron coordinate measured from the geomet-
ric center of the molecule. The same factor appears
in the exchange elements 3C~ ~ . At low velocities, this
factor approaches unity and becomes insignificant, but
at high velocities the momentum-transfer factor great-
ly reduces the exchange matrix elements and the prob-
ability of charge exchange.

The K-matrix elements obviously involve the elec-
tronic Hamiltonian, which contains the changing poten-
tial fields that induce transitions from one state to
another. Except in the momentum-transfer factor,
these matrix elements do not involve the collision ve-
locity, and they could be called "static" or "potential"
coupling s.

The other terms in could be called "dynamic" or
"velocity-dependent" couplings. The term (S/St)

= (&/Ut), . means the total rate of change of
~ &f&„„)as seen

in the inertial frame of reference, which we took to
be the space-fixed frame with origin at the center of
mass of the nuclei. This total rate of change can come
from several sources: (i) p~ changes in the space-

%~
fixed frame because it is moving with nucleus A; (ii)
functions that rotate with the molecular axis are seen
to change in the space-fixed frame because of this ro-
tation; (iii) sometimes basis functions are taken to have
orbital exponents, coefficients, or other parameters
that vary with internuclear separation, and (&/&t) ~@~ )k~
also involves the rate of change of such parameters.

(2.38)

Direct matrix elements for B-centered states S. ~,&B~B
K,. „areobtained by replacing A by B in Eqs. (2.35)gg kg
and (2.36); A Be-xchange elements S,. ~,K,. „areob-
tained by interchanging A. and B in Eqs. (2.37) and
(2.38).

The direct overlap element S,. ~ is just the overlap
~A A

integral between two A. -centered states. In the basis
sets considered above, states on the same center were
taken to be orthogonal, so S,. ~

= &,.„.The exchange
element S, , involves the overlap between states on&a~x
two different centers. These overlaps go to zero as
A-~, but they become large at 'small A. This element
also contains the momentum-transfer factor E~E„;
when this factor is evaluated using Eq. (2.7) and the
time derivatives of (2.3) it becomes exp( imv ~ —r'/0 ),
where

Rev. Mod. Phys. , Vol. 53, No. 2, April 1981



John B. Delos: E lectronic transitions in slow collisions

(2.40)
where ge, go are the angular components of the internu-
clear velocity pe and & sineC . Usually ve = 0, and the
angular coupling matrix elements become

direct:
(2.41a)~-'v'&y

exchange:
''&y, ~F.*F„-L,~y„&

More discussion of these terms will be give~. in con-
nection with slow collisions; for now we only note that
since the A. -atomic functions are rotating about the y~
axis (assuming v~ = 0) the operator that appears here is
the generator of that rotation. In classical mechanics,

eI. is also the Hamiltonian in a frame that rotates
about the a axis, and the corresponding equations of
motion contain Coriolis and centrifugal "forces." An-
gular couplings are the quantum-mechanical analogs of
these classical effects of a rotating frame of reference.

(2.4lb)

3. Some calculations on the H+-H system

We now summarize some illustrative calculations on
H -H(ls) collisions, using atomic representation in the

(None of the basis functions described above contain
such varying parameters, but basis functions used for
slow collisions usually contain them).

The quantity -v~ V„,@» represents that part of the
total rate of change of ~g„)that arises from the dis-
placement of @» with the A nucleus, and (9/st

A
+v~ V„,)@» represents the total change minus the dis-
placement'change; hence it is the net rate of change of

as seen in the (nonrotating) A-atomic frame of ref-k~
~ ~ ~ ~erence. The formulas are telling us the intuitively ob-

vious fact that only this net change, not including dis-
placement, leads to velocity-dependent couplings that
cause electronic transitions.

One can also verify that the same matrix elements
(2.37) would be obtained, independently of the original
frame of reference. (The fact that they are independent
of X is necessary and sufficient. ) This is a special case
of the general invariance principle mentioned in Sec.
II.A. 2.

a. AI&gular coupli ngs

We have already mentioned that basis functions that
rotate with the molecular frame lead to angular eou-
plings, which we now evaluate explicitly. Consider a
rotating atomic basis function g» (r„).Following the
above discussion, we are supposed to evaluate the rate
of change of this function as seen in the space-fixed 4-
atomic frame of reference [8$» (r~)/Bt]„.Now rotat-
ing atomic coordinates are obtained from space-fixed
atomic coordinates by the same two rotations that were
shown in Fig. 4, so the relationship between them is
also given by Eq. (2.10), with (x~y„z„)appearing on the
left- and (x„'y„'z„')on the right-hand side of this equa-
tion. Hence straightforward differentiation and a little
manipulation lead directly to

[-ih&@„(r„)/et],, =[-eL, + C (sineL„—coseL. )]y„
=R '[-v L, +v (L —coteL, )] @

P~~ = sin' K~~ v -S~~ v K» v 1 —S~~ v dt

(2.42)

(McCarroll, 1961). Here the matrix elements involve
1s orbitals as indexed (A, B). The total charge ex-
change cross section is obtained by putting this into Eq.
(2.21) and integrating over b. Results of McCa.rroll's
numerical calculation are shown in Fig. 7.

So far the only approximations that have been made
a,re (i) approximations inherent in the impact param-
eter method, and (ii) truncation of the expansion (2.23)
to two atomic states, 1s„,1s~. Now let us consider an
additional approximation, the neglect of the momen-
tum-transfer factor E~~F„. If the nuclear velocity ~ is
sufficiently small, then exp(-imvz'/0) will be slowly
varying over a distance of la„and this factor will not
significantly affect the values of matrix elements. The
result of setting this factor to unity is also shown in
Fig. 7; at 1 keV it leads to &3% error, at 10 keV about
15%%uo error, and at higher velocities it leads to poor re-
sults, greatly overestimating the charge exchange
cross section. One can see that the rapid decrease in
the exchange cross section at energies above 25 keV is
a direct consequence of the momentum-transfer factor.
A kind of first-order calculation, which approximates
the sin by its argument in Eq. (2.42), is also shown in
Fig. V.

100

10 2

(mao) (mao )

0
10 100 &000

E (keV)
FIG. 7. Total cross section for H'+ H(1s) —H(ls) + H' versus
energy. E: exact "one-state" (lg&, ls&) result; FO: "first-
order"; NMT: neglect momentum transfer factors (F~&=1);
BK: Brinkman and Kramers; JS: Jackson and Schiff,

region 1-100 keV.

a. "One-state" approp Imatjon

Because the (g, u) symmetry effectively halves the
number of coupled equations to be integrated, the use
of an expansion consisting of one state on each atom,
E~g„(r„)and Fs@„(rs),may be called a "one-state"
approximation.

Both states are spherically symmetric, so angular
coupling matrix eleme'nts vanish, aiid there are no
other velocity-dependent couplings. By combining the
ba, sis functions into states of g and u parity [as in Eq.
(2.30)], two uncoupled equations are obtained, and the
solution to these equations subject to the earlier-dis-
cussed boundary conditions leads directly to a simple
formula for the charge exchange probability: assuming
1s„is the initial state,
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There are no experiments that directly measure the
1s„-1s~charge exchange cross section, but several
experiments have measured the tot&I, exchange cross
section, which primarily consists of exchange into the
ground state. Bransden (1970, p. 329) compares these
with calculations, and it is found that the "one-state"
calculation of McCarroll is in good agreement with ex-
perimental data below 100 keV, though it may be some-
what too large at higher energies.

b. Multistate approx/ mations

Calculations on H -H collisions are summarized in
Table I. We have listed only calculations that are based
on the impact parameter method and atomic represen-
tations, and which obtain exact numerical solutions to
the coupled etluations. (There are also many calcula-
tions based on Born, eikonal, or distorted-wave meth-
ods, or upon first-order or Magnus approximations for
the solution to the coupled equations, but such calcula-
tions are likely to be less accurate in general because
the H'-H system has strong coupling between the 1s and
2p, states. ) Of the listed calculations, besides the one-
state calculations of McCarroll (1961), the most impor-
tant are those of Rapp and Dinwiddie (1972), Cheshire,
Gallaher, and Taylor (1970), and Shakeshaft (1976).
(The first four listed calculations cannot give cross
sections for excitations;- apparently the calculations of

Gallaher and Wilets contained numerical errors in the
evaluation of matrix elements, and some of the results
of Happ, Dinwiddie, Storm, and Sharp were in error
because of the neglect of long-range coupling between
2s and 2p states. }

First, let us consider charge transfer to the 1s state.
On the scale of Fig. 7, differences between two-state
and many-state calculations are only barely visible, so
we do not reproduce them in this figure. One finds that
the inclusion of additional states increases the calcu-
lated 1s- 1s charge transfe. ";. cross section by a few
percent over most of the energy range. The Cheshire,
Gallaher, and Taylor (CGT-7) calculation gives the
largest result, which is at most 20/~ above the two-
state calculation (at E= 1 keV) and usually much closer
to it.

Results for exchange excitation to the 2s state are
shown in Fig. 8. The Rapp and Dinwiddie (RD-4) and
CGT-4 calculations are based on the same atomic or-
bital expansion and so they are supposed to be identi-
cal; in fact, they agree to within a few percent. We
have shown only the RD-4 calculation. It. peaks at about
25 keV (when the proton velocity is equal to the ls
electron orbital velocity), has a shoulder at about 10
keV, and has a second peak at 2 keV. The BD-7 calcu-
lation is also shown, and it differs only slightly from
RD-4; this suggests that the atomic orbital expansion

TABLE I. Close-coupled calculations of proton-hydrogen collisions based on atomic repre-
sentations.

Hef er ence Radial functions

Rotating (R) or
nonrotating (NR)
angular functions

ZD-4
gD-7

Ccr -4
CGT-7

Mc Carrell (1961)

Cheshire (1968); McCarroll,
Piacentini and Salin (1970)

Lovell and McElroy
(1965)

Fulton and Mittleman
(1965)

Flannery (1969)

Wilets and Gallaher
(1966)

Gallaher and Wilets
(1968)

Rapp, Dinwiddie,
Storm, and Sharp (1972)

Rapp and Dinwiddie
(1972)

Cheshire, Gallaher,
and Taylor (1970)

Sullivan, Coleman,
and Bransden (1972)

Shakeshaft (1976)

1s atomic

1s atomic, varying
orbital exponent

1s~2s~2sz and other
combinations

1s atomic, including
antitravel ing orbitals

1s&2s~2p„z 2p~& (no
exchange)

1s2s 2p„2p~atomic

1s2s 2p„2p Sturm ian

1s2s 2p„2p~ atomic

1s2s2p„2p~ atomic
1s2s 2p„2pPssp„Sp~ atomic

1s2s2p„2p~ atomic
1s2s2px pzss3px3p
atomic and pseudostate

1s&2s &2p„2p + clo sure
(no exchange)

~IV

1s-6s, 2p-4p Sturml. an

Results presented in this section have little direct bearing on slow collisions, so this section can be skipped without loss
of continuity.
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FIG. 8. Total cross section for H++ H(ls) H(2s) + H'.
experiment of Hayfield (1969).

has rapid convergence (Wh.ether it converges to the
correct result is a separate question that we shall dis-
cuss below. )

The CGT-7 (pseudostate) and S (Sturmian) expansions
involve a more compact set of functions than the atomic
orbitals, so they should allow a better approximation
to Y in the important region close to the nuclei. The
two calculations are in reasonable agreement with each
other, both giving peaks at about 22.5 keV; both are
slightly higher than the RD results, and within about
10/p of each other.

At lower energies the CGT-7 calculation shows no
shoulder near 10 keV, and the second peak of the RD
calculation has been rounded out to a shoulder. (The
S calculation was not extended to lower energies. )

Experimental data has been obtained by Bayfield
(1969) and is labeled X in Fig. 8. On the whole, the
shape of the experimental curve is quite similar to that
of the calculations; particuLarly good agreement is
found between all theoretical calculations and experi-
ment above 4 keV. Near 20 keV, where the cross sec-
tion is largest, the experiments lie slightly below the
calculations, but the difference is less than the overall
uncertainty in the experimental curves, which Hayfield
estimates at 35/~. At lower energies, some discrep-
ancies appear between theory and experiment: The exper-
imental curve has no shoulder, and shows no sign of a sec-
ond peak. Despite large experimental uncertainties in this
region (some of Bayfield's error bars are reproduced in
Fig. 8) it appears that the CGT-7 calculation is significant-
Ly too large at E = 4 keV. The RD-4 and RD-7 calculations
are more problematic. -Certainly, for E'~ 4 keV they
are in fair agreement with the experiments, with dis-
crepancies of generally less than 50/0. Below 4 keV,
while the data do not show a second peak, they do not
rule it out either, there being only one published data
point that clearly disagrees with the RD-7 curve. [Hay-
field (1969, Fig. 5) compared his data with the then-
available calculation of Gallaher and Wilets (1968),
which definitely does not agree with the experiments. ]
It would not be surprising if the calculations were in-
correct at low' energies, for in that case the electrons

0.4-

0.2-

0
1 10

E(keV)
l00

FIG. 9. Total cross section for H++ H{1s) H + H{n= 2). X:
experiment of Park et ~l. (1975).

tend to adjust adiabatically to the instantaneous posi-
tions of the nuclei, and simple atomic orbital expan-
sions can not sufficiently allow for this. But it is also
possible that the calculations are correct in this re-
gion.

In a more recent experiment, Park, Aldag, and
George (1975) obtained the total cross section for di-
rect excitation of the n= 2 level and compared their re-
sults with theoretical calculations. (Absolute cross-
sections were obtained by normalizing to the Born ap-
proximation at 200 keV. ) We show the results of RD-
7, COT-V, and 8 calculations in Fig. 9. It is seen that
the Sturmian and atomic orbital calculations are in
good agreement with the experiments, but that the
pseudostate calculation gives a peak that is some 40/o
higher than the experiment at 50 keV. This result is
somewhat surprising, because it was thought that the
pseudostate calculation should be quite accurate, and
certainly no worse than the atomic-orbital expansion.

A possible explanation of the discrepancy was sug-
gested by Shakeshaft. Since the pseudostates replace
the complete set of hydrogenic discrete and continuum
states, the calculated amplitude for transitions into
pseudostates at least partly corresponds to real transi-'
tions into the continuum (i.e. , ionization). Now an ion-
ized electron quickly escapes, but electronic amplitude
in a pseudostate can reappear in the real states, giving
a spurious contribution to the cross section. Shakeshaft
says that this is less likely to occur in the Sturmian
basis, because it is somewhat less compact than the
CGT pseudostates. Whatever the explanation, it is
clear that there is more to be learned about ionizing
transitions and their effect on the discrete transitions.

In this connection, the method of Sullivan, Coleman,
and Bransden (1972) is particularly interesting (see
also Bransden and Coleman, 1972, and Bransden,
Coleman, and Sullivan, 1972). Instead of using pseudo-
states, they used a closure approximation to obtain a
kind of optical potential to simulate the effects of high
discrete and ionizing transitions. Though they neg-
lected the effects of exchange, their calculation is in
good agreement with the data of Park eg g$. for energies
greater than 60 keV.

I

Rev. Mod. Phys. , Vol. 53, No. 2, April 1981



John B. Delos: Electronic transitions in slow collisions 303

Although this problem is interesting in itself, we do
not discuss it further because, as we shall explain in
the next section, it does not arise in slow collisions.

4. Concloding remarks, on intermediate-velocity collisions

At the beginning of this section we mentioned the two
approximations that simplify the theory of intermedi-
ate-velocity coLLisions: rectilinear motion of the nuclei
and expansion in a basis set that has atomic character
(i.e. , a ba, sis in which each function is propagating with
one or the other nucleus). With these simplifications,
there is no ambiguity about the electron-translation
factor that must be associated with each state; it can
only be p'„orFs, as defined in Eq. (2.17). However,
the choice of specific basis functions is still a problem.

There are some theoretical objections to the use of an
expansion in simple atomic orbitals, as in Eq. (2.31):
If the basis only includes bound states, then this set is
not complete, and the states of increasing n (principal
quantum number) seem to be too diffuse to give a good
representation of the wave function close to the nuclei.
Nevertheless, this expansion gives reasonable agree-
ment with most of the available experimental results.
Pseudostates were invented to answer the theoretical
objections to the atomic orbital basis, but the calcula-
tion using this basis disagrees with at least one experi-
ment. The Sturmian basis also answers the theoretical
objections to the atomic basis, and so far calculations
using this basis are in good agreement with experi-
ments on the H'-H system.

These calculations leave open a significant concep-
tual problem. The essential difficulty of intermediate-
velocity collisions is that many states (including also
continuum states) are strongly coupled. Neverthe-
less, we see that it is possible to calculate cross
sections for tx'ansitions among the lowest states by
expansion in a small set of carefully chosen func-
tions. On the other hand, transitions to higher discrete
and continuous levels probably cannot be treated in this
way because of practical limits on the size of the basis.
For example, it is not yet known whether or not reli-
able calculations of ionization cross sections can be
made using expansions in a discrete basis. New ideas
and alternative calculational methods would be very
interesting.

Slow collisions are somewhat simpler in this one re-
spect, . Since the electrons behave more nearly adiabat-
ically in a slow collision, the expansion in Born-Oppen-
heimer eigenfunctions (or related functions) frequently
leads to equations in which only a small set of states
are strongly coupled. Transitions to states outside this
set are improbable, and can usually be neglected (or, if
necessary, their probabilities can be calculated by-a
form of first-order perturbation theory). In such a
case, the problems associated with strong coupling of
many states do not arise.

4A much more complete listing of theoretical calculations and
experimental measurements on the H'-H system (and others)
has been compiled by Takayanagi and Suzuki (1978). Theory
and experiments on collisions of multiply-chaiged ions with
hydrogen atoms are reviewed by de Beer {1979).

Y= d„„r',R I; (2.43)

There are two apparently compelling arguments to jus-
tify this expansion. (1) Molecular eigenfunctions form
a complete set, so any function (including T) has a
forma. l expansion of this type. (2) Furthermore, as v
—0, the factors I~ —1. In fact, however, coupled
equations that arise from this expansion have a number
of defects (listed in Sec. III.B) which make the equations
unsuitable for describing general slow collisions.
Bates and McCarroll (1958) were the first to point out
that it is essential to retain ETF's to describe transi-
tions even in an arbitrarily slow collision.

Therefore we continue to use the general framework
and the coupled equations developed in Sec. II.A. The
major questions that have to be answered are (i) What
sort of basis functions best describe a collision in a
given range of velocities? (ii) Given a basis function,
what sort of electron-translation factor should be as-
sociated with it? (iii) What approximations can be
used to put the coupled equations into the simplest pos-
sible form? In this section we give only the'most gen-
eral answers to these questions; specific representa-
tions for particular processes are considered later.

Basis states and translation factors

The wave function Y(r', t) is expanded in a basis as
in Eq. (2.23). In many calculations, the @„'sare taken
to be eigenfunctions of the electronic Hamiltonian [cf.
Eq. (1.15)], but frequently it is more convenient to use
some other set. For now we make only the'most gen-
eral assumptions about the basis functions.

(1) We assume they can be written as functions
p„(r',R) in which the internuclear vector is a param-
eter. (2) We assume that these basis functions are

C. Slow collisions

We return to the main subject of this article, the de-
scription of slow collisions. The main physical idea
that distinguishes slow collisions from the intermedi-
ate -to -fast collisions descr ibed in the preceding section
is the net -aChabatic approximation. If the nuclei are
moving slowly, then the electrons have time to adjust
to the changing molecular field. For an extremely slow
collision, the electrons behave adiabatically, staying
always in a continuously adjusting eigenstate'of the
electronic Hamiltonian; in that case, no transitions
take place in the collision. As the nuclear velocity in-
creases, the electrons can only imperfectly adjust, and
transitions occur that can be described by expanding Y
in terms of a small set of adiabatic eigenfunctions.
However, as the collision velocity increases further,
Y is better described in terms of a "stiffer" basis set,
which adjusts less completely to the changing fields.
Ultimately, around v- t. , the adiabatic picture entirely
fails, and the collision must be described in terms of
states of atomic character, many of which are strongly
coupled.

In the original form of perturbed-stationary-states
(PSS) theory for slow collisions (Mott, 1933), T was
expanded in molecular eigenfunctions, and translation
factors were omitted:
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square integrable, representing bound electronic
states, and for simplicity we take them to be real. (3)
We assume that as &-~ at least some of the basis
states correspond to atomic eigenstates representing
the open channels of interest. (4) We assume that these
functions can be expressed in the rotating molecular
frame as P,(r, R) independent of the nuclear angles g,
@, i.e. , the basis consists. of rotating atomic or molec-
ular functions reexpressed in the space-fixed frame.

The functions @~(r', R) and g„(r;R)are different func-
tions of different variables, but they represent the
same electronic state. Hence the two functions are
equal whenever (r', R) and (r;R) designate the same
position of the electron relative to the nuclei, i.e. ,

(2.44)

where the respective components of r' and r are re-
lated by Eq. (2.10). From these equations one can
show that

~SI

5'„=exp (imih) w r' ——,
' w'dt' (2.4V)

b Va.riable one cent-er (class VJ states

States in class V may have additional parameters,
such as orbital exponents, that are allowed to vary
smoothly with A, but like the class E states these
states can be associated with a specific center with
which they propagate. Class V states can be written in
the form

y, (x, y, z —x,R; k, (R) ' ' f~(R)) (2.48)

where g„.. ., f~ are parameters (e.g. , orbital expo-
nents) which may vary slowly with R. Since these func-
tions also are associated with a definite center and they
propagate with a definite velocity, E~ can again be taken
to have the form (2.4V). (A more precise mathematical
definition of class V states is given in footnote 19 of
Delos and Thorson, 1979.)

(2.45a)
c. Molecular (class Mj states

—ih ——@~(r',R) = -L,@~(r;R), (2.45b) Class M states are distinguished from the previous
two classes in that they are essentially molecular in

a. Fixed one center (class FJ-states

A basis function @„(r;R) is said to be in class F if
there exists a constant x~ such that (t)~(r; R) depends
upon A only as

@,(r; R) = y,(x, y, z —x, R) . (2.46)

Class E includes all basis functions that rotate with the
molecular frame and are carried along with some cen-
ter (a nucleus, or tbe geometric center, or center of
mass) but otherwise have no change whatever. We may
say that they have no "intrinsic" B dependence, but
only the "extrinsic" R dependence implied by Eq. (2.46).
Usually only class E states centered on a nucleus are
considered, and @~=a —,'(1+X). (The rotating basis func-
tions considered in Sec. lLB were all in class E.)

There is no ambiguity about the ETF that should be
associated with a class E state. Since the whole func-
tion is moving with a definite velocity, w= mr, we can
take'

a-i,h (()„(r',R)= (sinBL„—coseL, )&p (r;R), (2.45c)
8@,

where derivatives with respect to nuclear coordinates
are evaluated holding r' fixed on the left-hand side of
this equation, and holding r fixed on the right.

The expansion (2.23) also contains electron-transla. —

tion factors (ETF's). The translation factor that should
be associated with an atomic state is unambiguous, but
translation factors for general molecular states cannot
be uniquely specified a priori. To define the factors
E~ it is convenient to define three classes of basis
states (all having the very general properties listed
above).

character; the electron is shared by the two nuclei,
and there is no single center with which the electron
can be said to be propagating. Examples of such states
are the g and u molecular orbitals for the Born-Qppen-
heimer states of a homonuclear diatomic system, and
the valence electron orbitals for such heteronuclear
systems as (Li-Na)', which are intrtnsically molecular
for R a 10 a.u. Class M also includes molecular states
which need not be eigenstates of any particular Hamil-
tonian; the only essential property is their two-center
character.

For such states, single-center ETF's of the form
{2.47) Rre not appropriate because R class M orbital as
a whole does not have any single velocity of propagation.
Instead, the ETF for class M states is constructed us-
ing a local propagation velocity for an electron in such
an orbital (Scbneiderman and Russek, 1969). This is
done by defining a switching function f„(r;R), which
varies smoothly as a function of electron position r;
typically it may approach -1 near nucleus A and +1
near nucleus B', and these limiting values must hold
as A-~. Like the basis functions, the switching func-
tion is defined in the rotating molecular frame, but can
be reexpressed in space-fixed variables as in Eq.
(2.44):

(2.49)

Using the switching function, we define a local propaga-
tion velocity for an electron in orbital 0:

(2.50)

Then one possible form for the ETF is

(2.51)

Equation (2.18) proves that this is appropriate if w is con-
stant. Schmid (1977) gives a rather formal demonstration that
the above form for 5'z is suitable if w is not constant. [His
Eqs. (37) and (38) are almost the same as (2.47).]

This is not the only possible form, however. The
question of what is the best form for the ETF asso-
ciated with a given molecular state does not yet have a
general answer (though much progress has been made
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toward an answer). However, any ETF can be written
as

F„=exp[imv s,(r', R)/0] (2.52)

and this general form is sufficient for the purposes of
this section.

In choosing a specific form for s~(r', R) we are guided
by the following general principles. (i) For a class E
basis function, if the relative velocity is constant, then
E~ must be given by Eq. (2.17b), and in any case, it
must reduce to such a form asymptotically. (ii) If the
relative velocity is not constant, or if the basis func-
tion is not in class I, then none of the above-mentioned
specific forms for E~p„gives an exact solution to a
Schrodinger equation; hence there is more flexibility
in the choice of E~. (iii) We prefer s„to be an explicit
function of r' (or r) and R (not, for example, a function
that can only be expressed as an integral). (iv) For
slow collisions, the kinetic energy term, which is
proportional to v', is less important than the momen-
tum term, which is proportional to v. (v) The resulting
coupled equations for the coefficients should be as
simple as possible and should preserve as many of the
molecular symmetries as possible.

From these principles, careful examination has re-
vealed that a useful form for s„(r',R) is

s,(r', R) = —,
' [f,(r', R)+ x]r,' ——,

' (1 —X')R. (2.53)

2. Coupled equations for slow collisions

We have already derived the general set of coupled
equa. tions (2.25) using the expansion (2.23) in the
Schrodinger equation (2.12). Let us now simplify these
equations by making approximations that are valid for
most slow collisions. First we rewrite K,.~(v) [Eq.
(2.26b)] in the form

zc,„(o)= &@, IF,*F,(I -ins/8t) I@,&

+ &@,. IF;. [I,F„]-insF, /st Iy„&.
Now (i) we neglect the acceleration dv/dt that arises
from BF„/Bt; (ii) we expand the momentum-transfer
factors I,*. I~ in powers of v, and neglect all terms of
order v' and higher. For example, in the overlap inte-
gral S(v), we take

(2.54)

S(v) =S+v.o, (2.55)

The resulting ETF reduces to Eq. (2.17b) if f~(r', R)
=+I and R= b+ vt, and it differs from (2.51) only in the
kinetic energy term. The switching function f„is still
undefined, and various ways of specifying it will be
considered later.

In some cases it may be possible to use the same switching
functions for all of the states in a class M basis. When this
is possible, it is very convenient, because then 9'. I&——j. for
all j and k in the set. However, such an assumption is not
always appropriate (for one thing, it eliminates the momen-
tum-transfer factors that are known to be important in the
atomic representation at intermediate-to-high velocities),
so we shall not assume that all switching functions are
necessarily the same.

We maynote also that since the second term in Eq. (2.53) de-
pends only on H, which is a function of t, its effect is only
to modify the phases of the coefficients d&(t); hence it is not
really important and it can be omitted.

where

s,,=&@,. Iy,&,

o„=(im/n) &@,. Is„-s,. I@„&.

Consistent with this neglect of terms of order v', we
take

(2.56)

(2.57)

[S(v) ] ' = S ' —S 'v oS ',
and by a straightforward analysis we then obtain

(2.58)

m- —d=S-'[t+v (P+A+7)]d, (2.59)

where S,.~ and o,.„aregiven above, and

P,.„=&@,.
I

—iav I@„&,

A,.„=(m/e)&@,
I
[a, s, ] I@,&

y=g —o S 'h,

q,„=(im/e) &@,. I(s, —s,.)l
I y „&.

(2.60)

(2.61)

(2.62)

(2.63)

Equations (2.59) are.the basic coupled equations de-
scribing slow collisions in the classical trajectory
framework.

3. Interpretation of terms

Each of the terms in Eq. (2.59) will be discussed
more fully in connection with specific applications, and
here we give only a brief explanation of the meaning of
each.

(a) S is of course the ordinary overlap matrix, and
it is equal to a unit matrix if the basis functions are
orthonor mal.

(b) h is the matrix of the electronic Hamiltonian. It
can be made diagonal, and its elements are then &,.(R),
the electronic energy eigenvalues. In other represen-
tations its off-diagonal elements cause transitions be-
tween the states (cf. Sec. II.B).

(c) P is the matrix representing the total change of
the basis functions with R. It contains rotation, dis-
tortion, polarization, and change of character of the
basis functions, and all of these can lead to transitions.
However P also contains that part of the change of the
basis functions that only represents displacement of the
states with the moving nuclei. These displacement ef-
fects in P have "strange" properties. Some of them are
of infinite range, others decrease only as R ', all of
them are origin dependent, and many lead to couplings
that are not in accord with physical intuition (see Sec.
III.B).

In the earlier formulations of slow collision theory,
in which ETF's were entirely neglected, the only ma-
trices to appear in the coupled equations were S, k,
and P. The displacement effects contained in P were
responsible for the defects implicit in those theories.

(d) A arises from the action of h on the electron-
translation factor ~~. It is related to the term
ihv„V„.P,

„

in Eq-s. (2.18) and (2.38). Its effect is to
identify and cancel that part of P that only represents
displaceme~t. In particular, it cancels the infinite-
range and long-range couplings, cancels fictitious ori-
gin-dependent couplings, restores translational invari-
ance, and brings the theory back into accord with phys-
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or
A=pS 'I(, (2.64b)

where p is the matrix representing the electronic mo-
mentum,

ical intuition.
The effect of A can be seen more clearly by consid-

ering a special case. Assume f, is a constant, as is
suitable for a class I" (or cia,ss V) basis function.
Evaluation of Eq. (2.61) using (2.53) then leads directly
to

does not by itself justify retaining one term but not the other.
The defects of the original form of PSS theory arise from such
inconsistency.

The argument that molecular eigenfunctions form a complete
set is correct, but unhelpful. Equation (2.43) is formally
valid, but truncation of the expansion leads to inaccuracy.
Some parts of the terms retained in the PSS theory are mani-
festations of the error of truncation of the expansion, and not
of the physics of the collision. Incorporation of KTF's
changes the expansion from a formally valid ansatz to a good
one: Truncation error is reduced, and all of the retained
terms have physical significance.

4. Separation of radial from angular couplings, and other
properties of the coupled equations

Pk„—— *„r;B —j%V„„r;R dr,

and g is the matrix whose elements are defined

&». = &0'»I &.I 0"&
= S».&n ~

It follows that

(2.64c)

(2.64d)

If the nuclear momentum operator in the P matrix
(2.60) is expressed in spherical coordinates (R, B, 4)
then the angular parts of the gradient can be evaluated
using Eqs. (2.45); this separates so-.called "radial"
from "angular" terms in the coupled equations:

(@) v (p+A), =&4;Iv. (& + .&, )IO, &

—+ gkv V (2.65)

which involves the rate of change of @» as seen in a
frame of reference moving at a velocity zkv relative to
the CMN. This now corresponds directly to Eq. (2.38).

For a more general, class M function, it would not
be appropriate to take f» constant, and neither (2.64)
nor (2.65) would be correct (except in the limit as R
-~), because A would also involve derivatives of f».
Nevertheless, the more complicated A would have
comparable effects and the same physical meaning.

(e) The meaning of o is completely contained in Eq.
(2.55). The velocity-dependent overlap matrix S(v)
differs from the ordinary (zero-velocity) overlap ma-
trix S in that the former contains the momentum-trans-
fer factors I j Ek; o is the first-order-in-velocity cor-
rection to the overlap integral that results from this
factor. o- vanishes asymptotically, since in that limit
(s„—s,.) -0 for states on a common center, and it van-
ishes identically if the same ETF is used for all states.

The matrix g bears the same relation to k that ~
bears to S: q is the first-order-in-velocity correction
to the electronic Hamiltonian matrix that results from
the momentum-transfer factor. I,ike o it vanishes
asymptotically, and it vanishes identically if the same
ETF- is used for all basis states. Also the combination

y=g —oS 'h

vanishes if the basis states are eigenfunctions of h.
Further, if the basis states are such that all but a
small part of h is diagonal, then it may be possible to
neglect y. More generally, however, it is not possible
to prove that y is negligible, and it must become more
important as the velocity increases and momentum-
transfer effects become significant.

At this point, we can see what is wrong with the two argu-
ments given at the beginning of Sec. II.C to justify the neglect
of translation factors. If we set I"k= 1 at the beginning, then
we retain P, but not A or p. But all of these terms are mul-
tiplied by v to the first power. The argument that fv( is small

A g A e A

jk R jk jk 4 jk (2.66a)

where e~, ee, e~ are unit vectors for spherical coordi-
nates and

e",,= &y,. f

—es/sR f@,&,

a,'„=-R-'&@,. fL, f@„&,

coteI

(2.66b)

(2.66c)

(2.66d)

A. =e~A". + e A. +e~A~jk jk jk jk~

A„=(tm/e)&y,.
f
[I, s'„7f@„&,

A„=(tm/e)&y,
I
[~, s»]

A,'.„=(tm/g)&y,. f[It, s,'] f@„&,

(2.67a)

(2.67b)

(2.6Vc)

(2.67d)

and a similar decomposition holds for q, g, and y. In
most applications, the nuclear trajectory is assumed
to be in a plane @=constant, so v~=0, and the g com-
ponents of these matrices can be ignored. The coupled
equations, therefore, take the form

ih —d=S [It+ v (P +A +y")

+ ~'(-L, IR+A'+ y')]d.
There are some differences between the angular

couplings that appear here and those in Eq. (2.40). In
the atomic representation, the basis states may be ro-
tating about the y~ or y~ axes, which pass through one
or the other nucleus; accordingly the operator L, ap-
pears in Eq. (2.40). Molecular states, however, are
assumed to rotate about the center of mass of the nu-
,clei; hence the operator L, appears in Eq. (2.68).
However, these two descriptions must be related, and,
for the special case f»= +1, one can show that

(2.68)

-L„+AeR = —I, or —I, (2.69)

This can be regarded as the angular part of Eq. (2.65).
(2.65).

Two other properties of the coupled equations (2.59)

Corresponding components of A are obtained by consid-
ering the components of sk in the rotating molecular
frame:
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may be mentioned here. One can show that they con-
serve probability to order v, i.e. , that ihdldt(T

~

V) is
comparable to terms of order v' which were neglected
in the derivation of (2.59). Also using the closure re-
lation for nonorthogonal states,

1=g I@ &S,'(@~
j

(2.70)

one can show that the coupled equations can also be
written in the form

N—d=S' '[8+v (P+C )jd (2.71)

C, = (im/e-)(a S-'s —s S-'I ), (2.72)

(2.73)

This form has the advantage over Eq. (2.59) that the ef-
fects of both A and y are contained in the one matrix
s», however, Eqs. (2.59) and (2.71) are related only
through the closure relation (2.70), so the two forms
are not necessarily equivalent within a truncated man-
ifold.

Then g can be expanded in terms of antisymmetrized
products, 8E„F'~Q„Q„,where 8 is the antisymmetriz-
er. All of the matrix elements involving antisym-
metrized states can be reduced to matrix elements in-
volving unsymmetrized products E„E~@,@„,and each
of these can be reduced to a sum of terms having the
same form as Eq. (2.38). Hence, although the resulting
matrix elements are much more complicated than for

D. IVlultielectron systems

The formulas given in the above development of the
theory referred to one-electron systems. However,
the ideas involved can also be applied to systems having
more than one electron', and most of the formulas given
above can be generalized without difficulty.

Many multielectron systems can be reduced to one-
electron systems by reasonable approximations. For
example, if the system has one electron outside of
closed shells (the Li-Na' system is a good example)
then the inner electrons may be undisturbed or they
may behave adiabatically in collisions at moderate ve-
locities. They then provide only an effective potential
that determines the eigenstates and energies for the
outer electron. Once such an effective potential is
known, the formalism developed above describes col-
lisional transitions involving that outer electron. Not
all systems can be described so simply, however.

In general, basis states suitable for intermediate-to-
fast collisions can be built up from states having atom-
ic character, i.e. , centered on and propagating with
nucleus A or E, as

@n (rl rE ) @n +(lt lyl 1 A+t 't+8 yN NA A A A A A

(2.74)

For such states there is no ambiguity about the appro-
priate ETF:

S'„=exp((imfh) [z„v'(r,' + ' ' '+ r'„)—,'N~z„'v't j)I. (2.75)—

the one-electron case, at least the ETF's present no
conceptual difficulty.

On the other hand, the specific choice of basis func-
tions (g„,@„)is even more problematic than in the
one-electron case. Calculations must begin with simple
but reasonably accurate atomic eigenfunctions. Even-
tually, some sort of pseudostates might be incorpo-
rated, but this has not yet been done for multielectron
systems in intermediate-velocity collisions.

For sufficiently slow collisions, Born-Oppenheimer
eigenfunctions provide a well-defined basis set that is
almost always a reasonable starting point. Then there
are two ways to incorporate ETF's into the descrip-
tion. Molecular states are normally given either as an
expansion in atomic states or as combinations of prod-
uct states in which each electron occupies a one-parti-
cle molecular orbital. In the former case, atomic
ETF's like those given in Eq. (2.75) can be appended.
In the latter case, the ETF would be a product of fac-
tors like (2.52) and (2.53), with a switching function for
each molecular orbital, so Y would be expanded in
terms of states of the form

a F,(r„')Q, (r,', R).
k=1

Again, the matrix elements are rather complicated,
but they can all be reduced to combinations of elements
like those given in Eqs. (2.55) to (2.63).

Thus it appears that multielectron systems introduce
challenging problems of implementation, but problems
of a type that are familiar to quantum chemists.

E. Closing

Two questions have been left unanswered relating to
the theory of slow collisions. First, what should we
take for the basis functions p„(r;A)? Born-Oppen-
heimer eigenfunctions are one possibility, but other
possibilities are also available. Second, assuming we
take an ETF of the form (2.52), what should we take for
the switching function f„(r;R) '?

These questions constitute the representation prob-
lem, and they will be considered in Sec. IV. First,
however, in Sec. ID we develop a fully quantum-me-
chanical theory of slow collisions. '
I I I. QUANTUIVl-MECHANICAL FORMULATION

We turn now to the quantum-mechanical formulation
of slow collision theory. The classical trajectory
theory developed above successfully accounts for a
great variety of collision phenomena„but there are
many situations in which superposition, interference,
tunneling, or diffraction play a role, and for these a
fully quantum-mechanical picture is needed.

In Sec, III.A below we give basic definitions, the
Schrodinger equation, and boundary conditions for a
collision of two atoms. Then in Sec. III.B we consider
the expansion of the full wave function 4'(r;R) in terms

6The reader who is not interested in the fully quantum-me-
chanical formulation may skip Sec. III and go directly to Sec.
IV without significant loss of continuity. A very brief summary
of the results of Sec. III, and thin relationship to the classi-
cal trajectory formu1ation is given by De)os, 1981b.
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of molecular eigenfunctions. It is shown that the
or ig ina 1 for m of th is expans ion has a numbe r of de-
fects, related to neglect of the motion of the electron
as it is carried with a nucleus. Finally, Sec. III.C
gives a fairly heavy mathematical development of a
more satisfactory approach. The final result is a set
of coupled equations that give a fully quantum-mechani-
cal description of atomic collisions. Again, to keep the
equations simple, we develop them explicitly only for
the one-electron case, and briefly discuss the many-
electron case afterwards.

A. System description

't. Coordinate systems

We consider a system having one electron of mass
mo, and two nuclei with masses ~~, MB. Their coordi-
nates relative to a fixed laboratory origin, r', R~, RB
were indicated in Fig. 3. Now that we are considering
the full dynamics of this three-body system, our de-
scription of the nuclear motion is inextricably linked
to our description of the electron motion. In either
quantum or classical theories of three-body systems,
there are three standard Jacobi coordinate systems
that are normally used (Messiah, 1965; Pars, 1965).
These are shown in Fig. 10 and their relationships are
given in Tables II and III.

In each case, one coordinate connects a pair of parti-
cles, and the second coordinate connects the third
particle to the center of mass of the pair. Capital
letters denote heavy-particle coordinates and lower
case letters denote electron coordinates.

Components of the vector representing the position
of the electron can be given in a space-fixed or a ro-
tating frame. The rotating molecular frame is defined
relative to the internuclear vector R, as in Fig. 4.
Hence the molecule-fixed z axis points along the inter-
nuclear vector R; the x axis is perpendicular to the z
axis and lies in the plane formed by R and the space-
fixed z' axis, and the y axis is perpendicular to the x
and z axes. As before, the components of the vector
representing the position of the electron relative to the

TABLE II. Relations of coordinates.

A. = (+~—MB)/(M~+MB)

MA MA MB)»( ) MB A MB

r=r + —AR

r&=r + —R=r+ —(1 —A,)R

rB=r, —&R=r —2(1+~)R

RB=

Mg+ ~mp mp r
M~+ mp M ~+ mp

M„+—,'(1+ X)mo 8- ' rM~+ mp M~+mp
1MB+ —,mp mpR+ rgMB+mo MB+mo

M B+—,{1—A.)mo m pR+ r
MB+ mp B+mo

2. Schrodinger equation

After separation of the motion of the center of mass
of the whole system, the SchrMinger equation describ-
ing relative, motion is

CMN are denoted (x', y', z') =-r' or (x, y, z) =r in space-
fixed and rotating frames, respectively. Also we write
~~ =Ir„l=lr„'I, etc

Channels are the regions of configuration space cor-
responding to initial and final states of the system,
when the A. and & subsystems are separated: e.g. , the
A. channel is the region in which the electron is close
to nucleus A and both are far from &; obviously the
system configuration is then most simply described
using (r~, R„)as coordinates. The molecular region
is the part of configuration space in which all three
particles are close together and the electron interacts
with both centers; in this region the molecular coordi-
nates (r', R) are evidently convenient. In defining these
regions we do not wish to imply that any sharp boundary
can be drawn which separates them; indeed, the chan-
nels can be regarded as asymptotic portions of the
molecular region.

M~ *Me
H4' =(T + V+A„,)4 =E4'. (3.1)

In the various Jacobi coordinates, T is represented by

A2 52
2 22~„&2m~

(3.2a)

&MA

A

CM

A
k'

2PB
k'
2p

V
2mB

~ -e'
V~ — V„.2m

(3.2b)

(3.2c)

A

FIG. 10. Three Jacobi coordinate systems for relative coor-
dinates of two heavy particles A, E, and an electron e, for

qual masses Ma=llfa and f r unequal ma es ~x ~MB

In fact, the Jacobi coordinates were defined such that
the kinetic energy would contain no cross terms like
V„V. It is possible to specify the relative positions
of electron and nuclei using mixed coordinates, like
(r„',R), for example, but in that case the kinetic energy
would have cross terms. V is the frill potentia1. energy
of interaction of electrons and nuclei [see below Eq.
(2.13)] and h„,represents spin-orbit interactions and,
if necessary, other magnetic effects.
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TABLE III. Reduced masses corresponding to coordinates.

Coordinate Reduced mass

rp

0

RB0

RcM
0

mp

M~=MA+MB+mp

m„=moM„/(ma+a„)
pA= (m p+M A)M J3/M ~

m&= m 0M&/(mp+M &)

»= (m, +M,&M„/M,

m = m 0(MA+MB)/M~

&=MAM, /(MA+M, )

Rest mass of electron

Rest mass of A nucleus

Rest mass of B nucleus

Total mass of system

Electron reduced mass, channel A.

Nuclear reduced mass, channel A

Electron reduced mass, channel B

Nuclear reduced Inass, channel B

Molecular electron reduced mass

Molecular nuclear reduced mass

V- V,"(r'„},
gghile in channel B (as R~- ~ holding r~ fixed),

v- v~(r', ).
We may then define the channel Hamiltonians,

A2

2m.
„

(3.3a)

(3.3b)

(S.4a)

3. Scattering boundary conditions

The wave function 4 satisfies the usual scattering
boundary conditions (Newton, 1966; Mott and Massey,
1965}: in one channel there is a plane wave with the
electron in the initial electronic eigenstate and a set of
outgoing spherical waves associated with the electronic
states for this channel, while in the other channel there
ar.e only outgoing spherically scattered waves as-
sociated with various electronic states foi that channel.

Channel eigenstates may be defined as follows. The
potential V is assumed to have properties such that
in channel A (as R~- ~ holding r~ fixed),

e-@' (r ~)ex p(ih.„Z„)
+ P y„(r'„)f„.(e~, c )exp(ih. R&)/R&.,

A

gghile at large Re, finite r~,

(s.sa)

@0 (r~)f„(e~,4 ~) exp(ih„R~}/R~. (3.6b)
nB

It should be noted that even when the heavy particles
are electrically identical, i.e., the channel potentials
Vo and Vo are identical functions of their respective
arguments, the channel eigenstates and eigenvalues
will still not be identical if MA& ~B, because ~A and
m~ will differ slightly (see Table III). It may also be
noted that h, differs from h„ofSec. II because of the
difference between the rest mass of the electron and
its atomic reduced mass. Likewise, the channel wave
numbers will differ slightly, not only because

but also because p,„cp, B. No approximations
nA nB~ .

have been made here.

A2

mB
(3.4b) 4. Definition and properties of Born-Oppenheimer states

and their electronic eigenfunctions and eigenvalues,
o &0 ohodn„= .„4.„~

ho%' =",4.,
(3.5a)

(s.5b)

Channel wave numbers kn, k„aregiven by the rela-
tions

(S.Sa)

(3.6b)

(&~I'~Z~) or (R~8~@'~),

,R-(X, ZI, ) or (R,e,c,),
R (XY'Z) or (RBC ) .

(3.'la)

(s.n )

(3.'r c}
We can now write down the boundary conditions for a
scattering problem. For example, if A. is the incident
channel, then at large R» finite r„,

„'h„ /p2„+e'„„=E,

h'h' /2p +6 =E
nB B nB ~

Let us further define explicit Cartesian and spherical
components for each of the heavy particle coordinates:

h (r;R)@„(r;R)=e„(R)g„(r;R),
where

k'
h o(r;R) = — V2 + V.

2m

(s.9)

(3.10)

These functions can be reexpressed in terms of space-,
fixed variables (r', R); the corresponding function of
these new variables is designated @„(r';R},and it
represents the same molecular eigenstate tumbling in
space with the moving nuclei.

For reasons that wQl be explained later, we deliberately
omit spin-orbit coupling from the Born-Oppenheimer Hamil-

Born-Oppenheimer eigenfunctions have been men-
tioned several times already, but it is now necessary
to specify their properties more precisely. We define
them to be eigenfunctions of the electrostatic part of
the molecular electronic Hamiltonian. In the molecular
frame, in which the nuclei lie on the z axis, these func-
tions are denoted Q„(r;R)and they satisfy the electronic
Schrodinger equation
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310 John B. Delos: Electronic transitions in slow collisions

tonian, and we say that the full electronic Hamiltonian is the
sum of the Born-Oppenheimer (electrostatic) part and the spin-
orbit (magnetic) part,

the full wave function + could simply be expanded in
terms of Born-Oppenheimer states as

h =~so+h (3.11) 4'(R, r ') = Q y „(R)'P„(r'; R) . (3.15)
This is a convenient nomenclature, but it is not essential, and
it is not universally followed in the literature.

The molecular Hamiltonian A differs from the atomic
(channel) Hamiltonians ho~, &os. (i) It contains the full
potential V(r;R), not just an asymptotic projection of
it; (ii) the molecular electronic reduced mass m ap-
pears in the kinetic energy term. At large R, however,
there is an approximate equality between the Born-
Oppenheimer eigenstates and the atomic eigenstates.

We say a system is symmetric if the two atomic po-
tentials V,",Vo~ are identical functions of their respec-
tive arguments. .In this case, the Born-Oppenheimer
eigenfunctions are also parity eigenfunctions (g, u). If '

in addition ~~ =M~, we say the system is homonuclear
(otherwise it is heteronuclear).

In the asymmetric case, each Born-Oppenheimer
function is uniquely correlated to an atomic eigenfunc-
tion in one channel or the other (assuming no accidental
asymptotic degene racy); e ithe r

(3.12a)

with

(3.12b)

or else

(3.13a)

with

More generally, the basis functions @„couldbe any
linear combinations of Born-Oppenheimer states or
other related functions; in what follows we shall only
assume that they are orthonormal. Putting Eq. (3.15)
into (3.1), using the form (3.2c), and taking scalar
products with @ (r'; R), one obtains a system of
coupled equations for y„(R),which we write in matrix
notation,

((2P ) '[(—iX V)'+ 2P. ( i5—V)+B']+h —E]y(R) =0,
(3.16)

where

(3.17)

(3.18)

(3.19)

It is understood that the operator VR is a derivative
with respect to the nuclear coordinate holding the elec-
tron coordinate fixed in the space-fixed frame, i.e.,
holding r' fixed. (Later we shall transform to the ro-
tating molecular frame and write P in terms of spheri-
cal components. This will separate "radial" and
"angular" couplings [cf. Eqs. (2.40), (2.45), and (2.66)j,
but for the moment all such couplings are left implicit
in the vector P.)

Equations (3.j.6) can also be written in an alternative form.
Using an identity which is valid for a complete set,

(3.13b)
J3 = —iS'TR ~ P+ P -P (3.20)

The correspondences between P„„and@o and between
and Qo are approxima. te rather than exact because~B

the molecular electron mass m differs from the atomic
ones m~, ms (cf. Table III).

For the symmetric case (whether or not it is homo-
nuclear} the Born-Oppenheimer eigenfunctions corre-
late to g and u linear combinations of (approximate)
atomic orbitals (LCAO}:

(3.14a)

lim e„(R)=-c„(~)= e„'„=eo
R~~

(3.14b)

B. Perturbed-stationary-states theory and its problems

Because of the success of the Born-Oppenheimer
approximation (Herzberg, 1950; Slater, 1963) for
describing bound states of molecules, it is natural to
expect that a simple generalization of this method will
suffice for atomic collisions. In the original form of
perturbed-stationary-states (PSS) theory (Mott and
Massey, 1965, p. 429, Eq. 93) it was thought that

For both parities, n~ and ~~ denote the same index, and

B can be eliminated in favor of P, and Eqs. (3.16) become

t(2V) '(—~@&+P)'+@-EJX(~)=0. (3.21)

In a finite set of states, Eq. (3.20) is not exact, but it should
be sufficiently accurate for most purposes.

Coupled equations of the form (3.16) or (3.21) are
still used in many calculations of cross sections for
slow atomic collisions. And, since the set of Born-
Oppenheimer functions is formally complete, the ex-
pansion (3.15) would appear to be rigorous. But it is
now known that truncation of this expansion, leading
to a finite set of coupled equations, leads to errors that
are comparable to the terms retained in these equa-
tions. In particular, we find in calculations that P-
matrix elements typically have more or less sharp
peaks superimposed on a smaller, smoothly varying
background. The error in truncation of Eq. (3.15)
is comparable to this smooth background; hence for
any calculation involving that level of accuracy, a
better approach is needed.

Among the problems implicit in Eqs. (3.16) are the
following.

(a) Individual teams in the expansion (3.15) do not
satisfy the scattering boundary conditions. As indicated
by Eq. (3.8a) a possible form for the wave function in
the A cha, nnel is (k =1)
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exp(ip„vZ„)go„(r„') =exp(ip vZ) exp[ —im ~(l —A)vz']

&& 4n (r~ }s

whereas the corresponding term of (3.15) would be

(3.22)

exp(i pvZ)@„(r';R) —exp(i p vZ)@„(r'„}. (3.23)

Even if there were no differences between Q„„(r„')and
po(r„'},the second factor in Eq. (3.22) would still be
missing from (3.23). That is the electron-translation
factor (ETF). Since it depends on both the electron
coordinate and the nuclear velocity, there is no trivial
modification of Eq. (3.15}that can allow it to be in-
corporated.

Furthermore, as discussed earlier, the Born-
Oppenheimer eigenfunctions do not exactly agree with
the atomic states even in the channels because of the
difference between the molecular reduced mass m and
the atomic reduced masses m~, m~. However, this is a
tiny discrepancy that is insignificant except at ex-
tremely low energies (E ~0.1 eV).

(b) As a consequence, Ne P matrix contains couPlings
of infinite range. Calculations of the radia, l component
of this matrix

CMN as R changes.
A scattering theory in which coupling matrix ele-

ments do not vanish asymptotically is obviously not
well formulated, since no one could suggest that atoms
somehow perturb each other at infinite range. These
difficulties occur in the theory because the asymptotic
wave function does not satisfy the asymptotic Schro-
dinger equation. [When the angular part of P is ex-
amined, it is found that there are couplings that fall
off as R ~ (Bates and Spreyak, 1971); these also are
fictitious, and are eliminated in a proper theory. ]

(c) P contains some fictitious "origin-dependent"
couplings. Consider symmetric heteronuclear systems
such as HD'. The Born-Oppenheimer eigenfunctions
have (g, u) parity, and the electronic Hamiltonian does
not couple g to ~ states. In any such systems, we ex-
pect to find tiny (g, u) couplings that are proportional
to the difference between m& and m~. However, the &
matrix also contains a much larger (g, u} coupling
which arises because the center of mass of the nuclei
is not at the geometric center of the molecule:

Pmn(R) = i@ &m &tl ~~n( ) ~m(R)~ ~

Bh
m (3.25)

This form incidentally shows the characteristic conditions for
violation of adiabatic behavior, namely that P (R) becomes
large in a case of near-degeneracy, ~„-e . (Note, however,
that P+„doesnot become singular because eigenvalues of h can
cross [e„(R„)—e~(R„)= 0] only if the matrix element of Bh/BR
a1.so vanishes at R„).

Jepsen and Hirschfelder found that certain of the
matrix elements P „(R)do not tend to zero, but to con-
stants, as R -~. Using Eq. (3.25) this behavior be-
comes apparent: For H, ', one can show that

~h —. e 2 zg (3.25}

The infinite-range couplings arise because r is held
fixed with respect to CMN rather than to either nucleus
during differentiation. Evidently, as A —~, where
linear combinations of atomic orbitals represent the

atomic orbitals which are connected by the mole-
cule axis (z) component of the dipole operator will also
be connected by (&h/&R). This iS what Jepsen and
Hirschfelder found, e.g. , the matrix element
(o~lsl S/SRI o„2P)(separated-atom notation) tends to a
constant as B —~. Physically this just represents the
displacement of the atomic orbitals relative to the

(3.24}
/

were first made for the H,
' system by Jepsen and

Hirschfelder (1960}, who computed the P matrix ele-
ments for several low-lying discrete states. They
computed these by direct differentiation, using both
exact and approximate H,

' wave functions.
For evaluation of such matrix elements, a form of the Hell-

man-Feynman theorem is simpler to use, and in this case
gives more accurate results with approximate wave functions
than direct differentation. By differentation of Eq. (3.9) with
respect to R, and taking matrix elements, we obtain

(3.2'1 )

(3.28)

This matrix element vanishes within the manifold of a
degenerate (g, u) pair as R —~, but it has finite values
at finite R; for HD' it is about 0.1A/ao as R -0. Note
further that it does not depend on the atomic isotope
splittings, which are proportional to (m„—ms}; in-
stead it is proportional directly to & = (M„—Ms)/
(M„+Ms), which remains finite in the limit M„,Ms-~, mo fixed. This coupling is also an artifact of the
inappropriate formulation of the theory.

A related problem is found in calculations of &-
matrix elements for charge exchange at large inter-
nuclear distances. For example, Melius and Goddard
(19"l2) calculated (among other things) the radial com-
ponent of P for the system

Li'+Na = Li+Na'.

They found that if they took (&/BR) holding r N, fixed,
the result was very different from that obtained by
holding r„';fixed. It might appear from the PSS theory
that the derivative should be evaluated holding r' fixed
(relative to CMN), but, as the HD' example shows,
this is not necessarily best. To get a result that is
invariant to the origin of coordinates, it is necessary
to account for the displacement of the orbitals with the
moving nuclei.

The word "fictitious" here has somewhat the same meaning
that it has in classical mechanics whenwe speakof "fictitious
forces in an accelerating frame": such forces are real
enough in the accelerating frame, but there is a frame in
which they do not appear. Likewise the "fictitious ' infinite-
range and origin-dependent couplings are a perfectly rig-
orous consequence of the PSS framework, and if the expan-
sion (3.15) could include a complete set, the theory would
give correct results. However, we shall show that there
is another framework in which such couplings do not appear.
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He**(2p')- He(ls) +e (3.29)

If the atom is in motion, then the measured electron
energy spectrum will show a Doppler shift associated
with this motion. A similar Doppler shift has been
observed in measurements of collisionally autoionized
electrons in the system

He'+Ca —(HeCa)'- He +Ca,"+e (3.30)

(Hultzsch et a/. , 1979). In this case, the "source" of
electrons is presumably the molecular ion (HeCa') that
is formed momentarily in the collision. The Doppler
shift is related to the motion of this source, and the
theoretical description of the Doppler shift involves
momentum-transfer factors.

In the PSS theory, these factors are completely
absent from all the matrix elements, so such Doppler
shifts cannot be described. In addition, without mo-
mentum-transfer factors, the coupled equations cannot
go over to the correct classical limit, formulated in
Sec. II. This is another manifestation of the fact that
the theory is not well formulated.

(e) The couplings represented by the P matrix do
not give a proper account of direct impact processes.
Thorson and his collaborators (Thorson and Levy,
1969; Levy and Thorson, 1969; Lebeda, Thorson, and
Levy, 19'71; SethuRaman, Thorson, and Lebeda, 1973;
Rankin and Thorson, 1979; Knudson, Kimura, and
Thorson, 1979)have considered the impact ionization
process

H' +H(1 s) —2H' +e

in the energy range 50-500 eV. Because the transition
is not mediated by a degeneracy, the cross section in
this energy range is very small. The I'-matrix ele-
ments, however, are not only disturbingly large, but
they are far too unselective: They are significant for
as many as 40 to 50 partial waves of the electronic
continuum, and they extend out to R =30 to 40 bohrs.
When ETF's were included, Thorson et a/. found that
these unrealistic matrix elements were canceled to
very high accuracy, leaving a much smaller residual
coupling.

(f) Within the above framezoorh, there is no ac-
cePtable format definition of diabatic states. This will
be discussed at length later.

Implicit is the idea that the latter framework is better; it is
more in accord with physical intuition, and truncation gives a
smaller error.

(d) The matrix elements in this formulation do not
contain momentum tra-nsfer factors. We saw in Sec. II
that the momentum-transfer factors exp(+imvz/h) in
the exchange matrix elements become very important
when the nuclear velocity exceeds the electron velocity;
these factors cause the sharp decrease in charge
transfer cross sections at high velocities. At low ve-
locities they are much less important, but they still
lead to some observable effects. Consider for example
the problem of calculating the angular and energy dis-
tribution of electrons autoionized from an atom, such
as

All of the above problems have one common source.
The I' matrix represents the total change of the basis
functions Q„with changing R. This total change is made
up of two kinds of change: (i) the rotation, distortion,
polarization, and change of character of Q„,and (ii)
simple displacement of Q„along with the atomic nuclei.
Nonadiabatic transitions can occur as a result of the
first kind of change of the basis functions, but as we
saw in Sec. II, the part of P that only represents dis-
placement does not give real coupling between the
states —this part must be canceled by the ETF's or
their quantum analogs. In fact, one can show that
all of these defects zoould also arise in the classical
traj ectory formulation if ETF's were omitted from
the theory.

This makes the problem clear. We somehow have to
incorporate the effects of ETF's into a fully quantum-
mechanical formulation of atomic collision theory. But
the ETF's given in Eqs. (2.17) or (2.52) contain the
nuclear velocity, so they intrinsically involve a clas-
sical picture of the collision. Hence the ETF concept
cannot be taken over directly, and the development of
a better formulation involves careful reexamination of
the fundamental ideas underlying the PSS framework.

In the following sections we shall develop a quantum-
mechanical formulation which eliminates the defects
discussed above. We shall show that the same cor-
rections, which arise in the classical trajectory formu-
lation as a consequence of ETF's, also arise in an
improved quantum-mechanical formulation. In par-
ticular, the matrices A and y will again appear as cor-
rections to P, and very similar modifications will be
made to Ilo. (Recall that the matrix A cancels the dis-
placement part of P, and y comes from the low-ve-
locity limit of momentum-transfer factors). In ad-
dition, a new matrix I arises, which contains elec-
tronic-reduced-mass corrections ("isotopic energy
shifts"). This formulation resolves all of the above-
mentioned defects of the unmodified PSS theory.

However, before launching our little boat into the
waves of this new formulation, a parting remark about
the PSS theory is appropriate. In presenting the long
list of defects above, we might be giving the impression
thai the PSS theory [Eq. (3.15)J can only lead to dis-
aster. This is not true. The above form of the theory
would not have been used for so long if it did not suc-
cessfully account for a great variety of slow collision
processes.

One reason for its success has already been men-
tioned: The radial part of P commonly has sharp peaks
near degeneracies, representing sudden change of
character of the basis functions; these peaks are rela-
tively easy to describe by using simple models, and
they usually dominate the behavior of the transition
amplitude. It is the smaller, more slowly varying part
of P that causes problems, and calculations are now
reaching the level of accuracy that these problems must
be addressed. However, when this "background" in P
is negligible, or ineffective in causing transitions, then
the theoretical modifications developed below will
usually become computationally unimportant, and the
system will be successfully described by the simpler
unmodified PSS theory.
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1. Mass-scaled-coordinate picture

I et us begin by presenting some pictures that show
very clearly the essential defect in the original form
of PSS theory. These pictures are based upon mass-
scaled coordinates, which have been used for many
years to study reactive scattering, especially collinear
atom-diatom collisions (Glasstone, Laidler, and
Eyring, 1941, p. 106; Pars, 1965, p. 537}.

Mass-scaled coordinates are defined by

(coordinate) = (associated mass)'~' x (coordinate),

-I

CMB B

FIG. 11. Coordinates for collinear collision picture.

C. An improved formulation

The purpose of this section is to develop a more sat-
isfactory quantum theory of slow atomic collisions. We
shall show that the problems in the original formulation
of PSS theory arise directly from the fact that the
heavy-particle wave functions y„were taken to be func-
tions of R. A better representation of 4 is obtained if
the heavy-particle coordinates are taken differently.
We give a definition of appropriate coordinates, pro-'

pose a new ansatz for 4, and then derive. a set of
coupled integro-differential equations, which provide
a new foundation for the theory. Using approximations
that are generally applicable for slow collisions, these
integro-differential equations are reduced to differen-
tial equations, which replace Eqs. (3.16) as the basic
equations of the theory of slow collisions.

(3.31)

where the associated masses were given in Table III;
thus r~=m& r&, R& ——p'„R„,and so on. The conjugate
momenta are transformed contragrediently, i.e., if P&
is conjugate to R„,then P„=(p„)''P„,and so on; the
transformation between scaled and unscaled coordinates
is then canonical. From Eqs. (3.2), the transformed
kinetic energy operators are given by

T = ——,'5'(v -'„+v „-'„)= ——,'h '(v g, + v „-' ) = ——',5'(v -' + v „-')

(3.32)

so that we may now think of the collision as the motion
of a single particle (of unit mass} on a six-dimensional
potential surface.

We form an intuitive picture with a two-dimensional
model. Consider the collinear cut of the potential sur-
face, and think about the motion in the (z, Z) plane
(Fig. 11). We imagine that the electron may ~ss the
nuclei, but the nuclei may not pass each other; hence
Z ~ 0, but z~, 2~, and 2 may be positive or negative.
In Fig. 12 are depicted the equipotential lines for this
two-dimensional cut of the potential surface as a func-
tion of mass-scaled molecular coordinates, (Z, z):
each heavy line is a line of constant

&=—Iz„I ' —Iz I '+IZI '.
The straight solid lines correspond to z~ =0 or z~ =0;
these lines become the centers of the channels, which
are the regions at large IZI bounded by Iz + —,'Zl -a few

Act

Z

FIG. 12. Equipotential curves in mass-scaled coordinates.
The axes are mass-scaled molecular coordinates, ™gZ. Dotted
lines are lines of constant z~, Z&, z&, or Z&. Clearly, atomic
mass-scaled coordinates provide two orthogonal grids related
by rotations to molecular coordinates. Heavy lines are equi-
potentials, V =-1,—~, -1, marking centers and approximate
width of the channels. Masses M&=M&=X, mo=l for this
picture.
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FEG. 13. Same as Fig. 12, but for M~=.18, M~=6, m=1. The
line bisecting the channels is the geometric center of the nu-
clei.
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exp(ikZ}[exp( —
I z„l) +exp( —

I z sl )] . (3.33)

The nodal lines of the real part of such a function are
shown in Fig. 14(a), superimposed on a pair of equi-
potential curves from Fig. 12. Immediately we can see
that there is something wrong about this picture.
Schrodinger waves do not look like that. The nodal
lines associated with a free traveling wave are sup-
posed to be perpendicular to the direction of propaga-

o To draw this picture, we have taken M~ =M~=9,
ma=I; for a real molecule, with nuclear masses
-2000mo, the- angle between the channels will be very
tiny, of order (m/p, }''. Since the figure is drawn with
(z, Z) orthogonal, one can show that (z~, Z~) and
(Zz, Zs) are also orthogonal, and these coordinates are
represented by the dotted lines in the channels.

The situation for a symmetric but not homonuclear
system is depicted in Fig. 13. The potentials are the
same as those of the previous case, but the masses
are now M~=18, M~=6, rn0=1. The picture is skewed
off axis because z is measured not from the geometric
center but from the center of mass of the nuclei (CMN).
Again, however, atomic and molecular mass-scaled
coordinates form orthogonal pairs which are related
to each other by simple rotations.

Analogous pictures would be obtained from other cuts
of the potential surface, apd, though these figures are
necessarily restricted to two dimensions, they provide
insights applicable to the full six-dimensional problem.
As mentioned earlier, the pictures are useful because
they allow us to imagine the collision to be an elastic
scattering process on a single potential surface. In
classical mechanics we could imagine a particle os-
cillating back and forth in the A channel, between
2„=+I, and slowly approaching the molecular region.
Here the other potential well becomes effective, and
the particle's orbit is disturbed in some complicated
way; eventually, however, it leaves the molecular
region, oscillating out the & channel (charge exchange)
or the A channel (no exchange). In quantum mechanics
we may imagine a wave entering the A. channel: on a
line Z~ =constant it looks like an exponential wave,
mainly confined to the region between z„=+I, while
on a line Z„=constant it looks like a plane traveling
wave approaching the molecular region. Upon reaching
the molecular region the wave fronts are distorted in a
complicated way, as the wave undergoes refraction,
reflection, and diffraction in the double-well potential.
Post-collision waves propagate back out both channels,
representing the probability amplitudes for direct and
exchange collis ions.

Now let us examine the relationship between the basic
ansatz of PSS theory, Eq. (3.15), and this picture.
Consider a single term in that expansion, yo(R)po(r'; R),
and suppose @0 is the lowest molecular state of gerade
symmetry. The function yo(R) must become some com-
bination of plane waves

exp(haik

R) in the channels, and
it must be more complicated in the molecular inter-
action region, but at the moment its precise form does
not matter; all that matters is that it is a function only
of R. In the present two-dimensional picture, this term
becomes yo(Z}@,(z;Z). To be more specific, we might
consider the function

x(R)P(r R)

t

(b)

x(R

FIG. 14. (a): PSS ansatz. Nodal lines of a single term in a
PSS-type ansatz are lines of constant A. In mass-scaled co-
ordinates these are vertical lines. But Schrodinger waves
don't look like this. The nodal lines are supposed to be per-
pendicular to the direction of propagation. (b): Curved-wave
ansatz. If the. nuclear wave function y is taken to be a function
of a curvilinear coordinate g, we get a picture like this. Now
the nodal curves bend so that they can be properly aligned
with the direction of propagation. (c): Intersecting-wave an-
satz. A wave function of this form describes two intersecting
wave trains. (Not shown): Intersecting-curved waves. The
most general ansatz allows waves to be curved and to inter-
sect.

tion of the wave. However, our ansatz requires that
the nodal lines of each individual term, y„Q„,be lines
of constant Z, which are vertical, while the channels
go off at an angle. '

We can now see ways of modifying the PSS ansatz to
get a better description. One way is to use an ex-
pansion of the form

+ = Q X. (R )4.„(' ) + Q X.,(R )4.,(
' ), (3.34a)

A 8
where @„,&f&„arestates of atomic character centered
on nucleus A or &. In the two-dimensional mass-scaled
coordinate picture, such an ansatz might reduce to a
function like

exp(ik „Z„)exp( —Iz„l) +exp(ik zZs}exp(-IX~I). (3.34b)

Such a function represents two intersecting wave trains
[Fig. 14(c)j. Each wave train is oscillatory and propa-

In this figure, the relative nuclear momentum would be
horizontal, and the electron momentum would be vertical.
Therefore, the fact that the nodal lines are not properly
oriented with the channels is directly related to the fact that
individual terms in the PSS ansatz do not describe the momen-
turn of the electron as it is carried along with a nucleus.
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(3.35a)

where the functions Q„(r';() represent some sort of
molecular electronic basis states defined on surfaces
of constant g. When expressed in mass-scaled coordi-
nates, individual terms in Eq. (3.35a) would involve
functions like

exp I (ifr ()[exp(—
I z„l) +exp( —

I 2 ~l )]j. (3.35b}

The nodal lines of this function are lines of constant (;
they curve in such a way that they give the right geome-
try in the channels [Fig. 14(b)]. We can see that these
curved waves also provide a reasonable and intuitively
pleasing picture.

Such a description of slow atomic collisions has also

gating in a particular direction (toward increasing
Z„orZs) but each is a localized exponential wave in
the perpendicular direction (z„or2~). Now the geo-
metry of the nodal lines is compatible with the
geometry of the channels.

A theory of slow collisions based upon an ansatz like
Eq. (3.34a) was developed recently (Delos, 1981a). It
has several obvious advantages over the earlier formu-
lation. (i) The boundary conditions can be satisfied
automatically by choosing some of the Q„'sto corres-
pond to the relevant asymptotic atomic states; hence
the infinite-range couplings will not appear. This is
intuitively clear in the mass-scaled picture because the
coordinates are appropriately aligned with the chan-
nels. (ii) Molecular Born-Oppenheimer states often
are known only in terms of states having atomic charac-
ter (cf. the I CAO approximation); in this approach we
circumvent the problems of PSS theory by refusing to
make (or at lea'st deferring) the transformation to mole-
cular representation. (iii) Under appropriate restric-
tions on the atomic states, &-matrix couplings can be
canceled exactly or made negligibly small.

There is an important limitation to this approach,
however. It requires that the elementary electronic
basis states @„,Q„have "single-center" character;
each must be associated with, and propagating with,
some specific center in the molecule: one or the other
of the nuclei, the geometric center, the center of mass
of the nuclei, - etc. The theory also allows the basis
states to be arbitrary linear combinations of single-
center states, .but in any case the decomposition of each
basis function into single-center states must be
available. Now, because of the near-adiabatic nature
of slow atomic collisions, it is normally desirable to
describe 4 in terms of molecular electronic states
(Born-Oppenheimer eigenfunctions, for example}.
Such states do not, in general, have single-center
character, and the decomposition of such states into
states of single-center character may be ambiguous,
or it might simply not be available. In that -case the
ideas based on the intersecting, wave-train picture can-
not be used directly.

A different approach is more appropriate for this
situation. Suppose we define a curvilinear heavy-
particle coordinate f(R, r') such that $-R„in channel
A, and $-R~ in channel &. Consider the ansatz

been fully developed (Thorson and Delos, 1978b), and it
was found that it resolved most of the problems of PSS
theory: scattering boundary conditions were .satisfied,
infinite-range couplings removed, and fictitious
"origin-dependent" couplings eliminated. For most
slow collision problems, therefore, this description
was shown to be suitable.

Nevertheless, there was one significant restriction on
the method as it was developed in that paper. Only one
curvilinear coordinate was defined, and it was assumed
that the same heavy-particle coordinate g(R, r') was
appropriate for every term in the expression (3.35a}.
As a consequence of this assumption, momentum-
transfer factors did not appear in the matrix elements,
variational techniques were somewhat restricted, and
the formal definition of diabatic states was not fully
encompassed by this approach.

There is an obvious generalization that combines the
advantages of both of the above approaches. I et us
consider the ansatz

(3.36)
n

Here the functions g„(r';(„)represent electronic basis
states, each of which may'have either atomic (one-
center), or molecular (two-center) character. The set
(g„=g„(R,r')} is a set of heavy-particle coordinates.
There is one for each basis state I@„).If I&„)is an&-
atomic state, then g„may be R„ora constant times R~
(and likewise for B-atomic states); on the other hand,
if ( &f&„) is a two-center, molecular state, then g„is a
curvilinear coordinate. This generalization permits
different heavy-particle coordinates for different elec-
tronic basis states, and it permits some or all of the
coordinates to be curved. By suitable restrictions, it
can be reduced to either the intersecting-wave or the
curved-wave picture, so this generalization might be
called the intersecting-curved-wave picture. This is
the picture that will be developed into a theory in the
following sections.

Equation (3.36) provides the basic ansatz for the cal-
culation of 4, and there are three questions that have
to be answered.

(1) How do we choose the set of basis functions

(2) How do we choose the corresponding set of
heavy-particle coordinates (g„}~

(3) What are the coupled equations for the functions
x.((.}'
It is the third question that we shall answer first. We
shall show:

(a) that the functions y„(g„)obey coupled integro-
differential equations (3.42);

(b) that by very general approximations (suitable for
slow colLisions), these integro-differential equations
can be reduced to coupled three-dimensional differen-
tial equations (3.61);
and finally

(c) that partial-wave expansion reduces these three-
dimensional equations to radial equations (A10).

Mittleman was the first to recognize that an ansatz like
(3.35a) could improve upon the PSS theory (Mittleman, 1969,
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316 John B. Delos: Electronic transitions in slow collisions

1974b; Mittleman and Tai, 1973). However, his definition of
$ was not quite adequate. It led to an implausible coupling
between g and z states for isotopic systems (Mittleman,
1974a). Later, the introduction- of mass-scaled-coordinate
pictures (Thorson and Delos, 1978b) led to a better formula-
tion. Related work has been done by Green (1981).

Mass-scaled coordinates were also used by Stechel, Schmalz,
and Light (1979; see also Schmalz, Stechel, and Light, 1979).
In their ansatz, they took atomic basis functions, as in (3.34a),
but they took ()(„)to be functions of R. Delos (198ls) criticized
this last point, saying that each term in such an ansatz still
has the behavior of the top diagram in Fig. 14.

Certain aspects of the theory of Chen and Watson (1968) are
somewhat similar to the approach taken here. They also noted
the incompatibility of PSS expansions with scattering boundary
conditions, and their ansatz (which was never stated very
clearly) involves molecular basis functions p„times functions
X„(R~),j=A, B. Intrinsic to their formulation is an eikonal
approximation to y„(R,), whereas no such approximation is
made in the method developed here. See also Hatton et al.
(1975).

Recently a curved-wave picture has also been used to de-
scribe proton exchange (Babamov and Marcus, 1981).

b. Heavy-particle coordinates

For each basis state I @„),we define a heavy-particle
scattering coordinate („=g„(r';R), in accordance with
the discussion in Sec. ID.C.&. Let us write-

g (r' R) =R+ —s„(r';R) (3.37)
4

and choose the function s„(r';R)such that g„has the
desired properties. The general principles concerning
the choice of s„(r';R)are

(1) as stated earlier, if I @„)is an A- or R-atomic
state, then g„should be proportional to R„orRs, while
if IQ„)has two-center character, g„should be a curvi-
linear coordinate;

(2) the resulting coupled equations should be as sim-
ple as possible, and preserve as many of the molecular
symmetries as possible;

(3) the coupled equations should go to the correct
classical limit, i.e., they should correspond to one of
the sets of coupled equations formulated in Sec. II.

One of the forms for s„(r';R}that is consistent with
these principles is

s„(r';R) =- —', [f„(r';R)+ A]r,' ——,
' (1 —X'}R, (3.38)

where f„(r';R) can be taken either to be +I (for states
of atomic character} or to be a smooth switching func-

2. Coupled equations for heavy-particle motion

a. General properties of electronic basi s states

We begin with a, set of electronic basis states I @„),
which are assumed to have the same properties that
were listed above Eq. (2.44): they are not necessa, rily
eigensta, tes of any particular Hamiltonian, but they are
assumed to be rotating, square-integrable states, of
which a subset corresponds asymptotically to the im-
portant initial and final atomic states. As before, each
state I @„)is represented by either of two distinct func-
tions, Q„(r;R)or @„(r';R),according to whether the
electronic coordinates are referred to the internuclear
axis or to the space-fixed frame.

tion (for states of molecular character). With this
definition of s„,the coordinate g„goes approximately
to (pz/p)'+RJ (J =A, II) in the channels.

There are many possible definitions of a corres-
ponding scattering coordinate for the electron. The
only requirement is that each (vector} value of the
electron coordinate must specify a unique point on a
surface of constant g in the configuration space. Other-
wise, since in any case we will eventually integrate
over electronic coordinates, the specific choice of
these coordinates is not very important. It is easiest
to continue to use r' (or r) to describe the position of
the electron. )In the mass-scaled-coordinate picture,
the coordinates (r', g „)are not orthogonal, but no great
difficulty is caused thereby. j

The reader may have noticed that Eq. (3.38) is iden-
tical to (2.53). Obviously, this is not an accident. The
same physical effects, which in the classical trajectory
framework are described by electron-translation fac-
tors, are described in quantum mechanics by the
intersecting —curved-waves pictures. Therefore we
set up the equations such that the correspondence is as
clear as possible.

c. Oisplacing the basis states onto surfaces of constant f
The electronic basis states I Q„)were represented by

functions P„(r';R),which a.re of course defined on sur-
faces of constant R. However, for each state I &jb„), we
have chosen a new scattering coordinate g„,so we need
to have basis functions which are defined on surfaces
of consta. nt g. Therefore let us pick up eachof our original
basis states I @„)and move it from one surface to the
other. In the mass-scaled-coordinate picture, we are
starting with a function defined on a particular (vertical)
surface of constant Z, and mapping it, (or displacing
it) onto a surface of constant („.The displaced state
is denoted I Q„),and it is represented by a function
&f&„(r';g„).Algebraically, the mapping or displacement
can be carried out simply by replacing R by g„in the
functional form. The new function Qgr'; g„)is not
necessarily equal to the original function P„(r';R)at
any point in configura. tion space. However, exp&essed
in terms of the new variable g„,it has the same func-
tional form as did the original, undisplaced function
expressed in terms of the old variable R.

As an example, consider a system with the charge of nu-
cleus B equal to unity. If we were to use a purely atomic-
state expansion, as in Eq. (3.34), we would use the basis
function

s(rs.,Rs) = exp(™s Irs I )

This function happens to be independent of R~, but for the
collision problem we would think of it as being defined on a set
of surfaces of constant R~. For a molecular expansion, one
of the basis functions that might be considered is

g,s(rPt) = exp[-m Ir —s(l+ X)R
I }.

This differs from pfg~ in having a different electronic reduced
mass, but more significant is the different way this function
is used: We implicitly think of it as being defined on surfaces
of constant R. For example, overlap integrals would be de-
fined on surfaces of constant R (not of constant R~), and if we
were to use a variable orbital exponent it would be regarded
as a function of R (not R&). For the purposes of quantum
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d. Expansion of 4'

Now that each basis function @„(r';R)is mapped onto
its own set of surfaces of constant g„,the full wave
function is expanded as in Eq. (3.36),

)(„(g„)j„(r';g„), (3.39)

representing a superposition of wave trains, which may
be intersecting and which may be curved. The Schro-
dinger equation is, of course„

(3.40)

and there are two ways to develop it. Either we can
reexpresseachtermasafunctionof(r', R) and act on it
with H expressed. in the same coordinates, or else
we can transform H to the new coordinates (r', g„}for
action on each term. The latter course is more con-
venient for our purposes.

e. Coupled equations for (X„($„)j
In principle the partial differential equation (3.40) .

specifies )(„((„),but the electronic coordinates must
first be eliminated. In the PSS theory this is done by

chemistry, such things are done automatically, and it may be
hard to imagine any other way of handling this function. How-
ever, we have seen that for collision problems, we Inust use
basis func tions defined on dif ferent surf ac es.

In this case a possible choice is g =R~. The mapping is
done by ~eplac~ng R by R~, so the displaced function is

f&q, (r;g) = exp [-m
~
r —~2(1 + X) t'

) ]

=exp[-m ~r ——,(1+X)HJt.
Using Tables II and III this simplifies to

(r'; f ) = exp( m-B
~ rB ~ ) = @g (rB,.HB),

i.e., the displacement has converted it back to the original
atomic st tet

This example shows that if we were to use a basis of
atomic states defined in atomic coordinates, the mapping
step would be unnecessary (because it is already accomp-
lished). However, since we usually have to use a molecular
representation, in which states are defined on surfaces of
constant R, some sort of displacement is necessary. Fur-
thermore, if the basis fgnction has a "two-center" character,
then a curvilinear coordinate will be necessary, and the re-
sult of displacement will be less simple.

taking scalar products with (Q ~, but now we have to
pay attention to the fact that different states are ex-
pressed in different coordinates. Hence for each m,
zve reexpress Eq. (3.40) zn terms of (r', g„),multiply
by @ (r', g ), integrate over all r' holding g fixed,
and set the result to zero. That gives a set of coupled
integro-differential equations that must be satisfied
by the functions )(„(g) .

To translate these statements into equations„ let us
define 6 as

(3.41a)

is a sum of terms, 8„,each of which is represented
by a function of the configuration-space variables
(r', g„):

(3.41b)

Moreover, each term, or the whole sum, can be ex-
pressed as a function of any pair of variables (r', g ),
so we write

(3.41c)

The quantities 0„(r',g„)and 0„(r',g ) are different func-
tions of different variables, but they represent the
same physical quantity, namely the nth term in Eq.
(3.41a), so the two functions are equal at corresponding
points in configuration space. [Analogous notation was
used in Eq. (2.44)].

If the ansatz (3.39}is a good one, then 8 should be
small everywhere. Hlnce it is reasonable to impose
the requirement that*

&f)*(r'; g )&(r'; g )dr'=0.
&ixcd g~

This is the set of coupled integro-differential equations
for fX„(g„)).

To see this more explicitly, suppose we have

@„=pq» ——exp( mB I rB-I)

@~=@)~~=exp( —m~ )r~ (),

&m=Ra

Then one of the terms in Eg. (3.42) is

-Ejjf (rB)Xf,„(H~)@g,„(r~)drB. (3.4a~)

Using Tables II and III, the integrand is reexpressed as a func-
tion of z~ and R~,

PPl f) o rn OMg
p(—mB~rB) e p —mg 1 — + rB +HB )(g~ I 1 — HB — 'rB drB (3.43b)

and the integral is to be evaluated at fixed B~. Equations of
this type appear in Mott and Massey (1965, p. 424-8).
It is believed that these coupled integro-differential

equations provide an adequate foundation for the quan-
tum theory of discrete electronic transitions in atom-
atom collisions.

f. Transformati on of Hami/ton/lan

To evaluate each term o„(r',g„)we need to express H

in terms of these variables. Denoting components of any
vector p by p' (a = x ', y', z' or ~, F, Z), we have for any
function &(r', g„),

(aF/art ),, =(ag„'/a&'),.(as'/a5„').. . (3.44)

I"'„=I"„(r';R) = (as„/aR'),
y" = y "(r';R) = (as%r")„,

(3.45a)

(3.45b)
*The Jacobian could be included in Eq. {3.42) but it is not

really essential.

(az/ar")„=(az/ar"), +(a tt/ar")a. (aJ'/a g), .

(summation over repeated indices implied). Taking
the kinetic energy in the form (3.2c), applying (3.37)
and using the notation
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p' = —i&(a/a~")»,
P' = —ih(8/a (»).. .

(3.45c)

then a straightforward but tedious derivation leads to

k2 A2
II(r', R) =- v'„.— v' +V =H(r', g„)

1 P»P» + V+ P»P» +2y ~»P P» iN(ay&»/&)P'~}P»+ —[(y«r&» +2Z'~»)P ~P» i@(aZ'&»/a+&}P»]+ Z «Z ~»PaP»1 ~ m m
2m 2p, g

(3.46)

This expression is exact provided that the following
interpretations are noted. V, I"„',and y'„'are origi-
nally given in terms of (r', R) and they have to be re-
expressed as functions of $„sothat the whole operator
is finally expressed in terms of (r', g„). Likewise the
drivative (ay„"/a&")is taken at fixed R and then is re-
expressed in terms of (r', g„).
3. Approximations suitable for slow atomic collisions

I

Except for the expansion of + in a necessarily finite
set of terms, no approximations have been made in the
above development, so the coupled integro-differential
equations (3.42) may be called "exact." Direct numeri-
cal solution of these equations would be quite difficult,
however, so simplifying approximations should be
sought. "First- order" and "semiclassical" approxi-
mations, which should be applicable to fast collisions,
have been briefly examined by Mott and Massey (1965)
and Delos (1981). Here we con'sider approximations that
should be generally valid for slow atomic collisions.

As discussed earlier, a collision is slow if the heavy-
particle speed is much less than the typical electron
speed, and the ratio of these speeds may be taken to
be the small parameter. If we regard the total elec-
tronic energy and the nuclear kinetic energy as being
comparable in size, it follows that (v„„,/v„)-(m/p)'

Consider the action of (I/2p )(P'P') on the product
Three terms result: the one in which both P's

act on y is of order p v„2„„the one in which one & acts
on X and one on @ is of order mv„„,v„;and the one in
which both P's act on Q is of order (m'v2, /p. ). These
terms may be considered to be of zeroth order, first
order, and second order in v„„,/v„. In a similar way,
every term in H(r'; E„)produces terms of various
orders depending on whether P acts on &f& or on X.

The development below is based on the following ap-
proximations. All terms of zeroth order and first order
in v„„,/v„are retained, and all terms of third order
and higher are neglected. Most of the terms of second
order in (v„„,/v„)are neglected, but we will retain a
few of the more familiar of these terms. In par-
ticular, we wiG retain the second-order terms that
appear in II unless they are also proportional to
derivatives of, or differences between, functions f„
(Eq. 3.38). Second-order terms that are neglected
include those which contain derivatives of switching
functions or the related factor (f —1), and those
(arising below) which are proportional to some power

. of (s„—s ).
These approximations lead to immediate simplifica-

tions: the term (2p) '(m/p. )'I"„I'„"P'P'can be dropped,

I

as well as

and this can further be simplified by defining

Da ~a + +hapl

Then to the same level of accuracy, we have

11= (21 )-'[D'„D'„-N(a y„"/ax")D„j+h„',
h„' = (2m) '[p'p' —(m/g)y„"y„"p"p'] + V,

and when this acts on X„l@„),we obtain

o„=(2V)'(I @„&D&„'X„+2[D'„I@.&]D:X„

(3.48}

(3.49a)

(3.49b)

+ [D„'D„'I@„)JX„—i@(ar„"/a~")I@„)D»Xg

+(I; —E)I 4.)X. . (3.50)

Now, as stated earlier, this term is represented by
a function of the variables (r', g„),and it has to be re-
expressed as a function of (r', g ). For all of the func-
tions that are given in advance, such as Q„,s„,V, etc. ,
this reexpression can in principle be done analytically,
using the defined relationships between g„and g . How-
ever, the reexpression cannot be done analytically for
X„(g„)or its derivatives, because these functions are
not known until after the equations are solved. Hence,
for X„(g„},we use the approximation

X.(4.) =X.[5.+(m/V)(s. —s )j

=X„(g)+(m/g)(s„—s ) &» X„(4 ),
&»„X(~„)=V» X)4 )+(m P/)[ {„s—s„,) V» JV, X„((),

(3.51b)

and so on. When this approximation is used for y„,it
is found that in every case the neglected terms are
proportional at least to (v„„,/v„)' and powers of
(s„—s ).

To see the effect of this approximation upon the form
of the coupled equations, consider the last term in Eq.
(3.50):

-Ej.( ';&.)X.(~.) =-E~.(.'; ~.)X.(f..)

+(m/p. )(s„—s )4)„(r';g )V„X„(g) .

{3.52a)

(2V ) '(min) [(r„''r'„'+21"„'"}P'P'—i@(ar'„»/m'}P»j,

since we find from Eqs. (3.38) and (3.44) that these
latter terms are at most of order (v„„,/v„)2(f'„—1).
The remaining terms in Eq. (3.46) are

H= (2m) "p'p'+ V+(2p. ) '[P'P'+2y„"P'p'
—ik(a y „"/ar")P'], (3.47)
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As in our earlier notation [cf. Eq. (3.41c)J, &f&„(r';g )
is a new function of new variables, obtained by re-
expressing Q„(r';(„)in terms of (r', g„).In contrast,
by virtue of the Taylor expansion (3.51), y„($ ) is not a
new function, but the old function g„(g„)evaluated at a
new point, g„.We can now multiply (3.52a) by
Q*(r'; g ), and integrate over r' (holding g fixed), to
obtain

(S.52b)
—(m/u)z fj (r ;& )('s.-s„)4„(r';()a~'v„x.(( ).

Continuing in this way for all terms in (3.50), dis-
carding all new terms that are second order in
(v„„,/v„), and noting that &'„acting on li„isjust
—i@ Vy„, we find that the coupled integro-differential
equations (3.42} are reduced to coupled differential
equations, which we write in matrix form as

(2V)-'QS —(i'll )o v&.J(- i~ v&.)'

+2II (-Nv~ )+Bjy (g )

+I h ' —(ih/p)g v, ,

-z[R —(ih/p. )o v, ]jx(g.}=O, (3.53)

where

s „=f p"(„dr'

= f ((~);( )0 (~ ;( ')(~. '

lt„„(/ir)~fm()'(=8 —s„)(„dr'„,
I~mn =

m Dg —a~@~&fI

h '„= *h„' „dr',

&f&*(s„—s )h„'@„dr'.

(3.54a)

(S.54b)

(3.54c)

(S.54d)

(S.54e)

(3.54f)

Each matrix element is evaluated according to the
above discussion, and each is a function of $ .

Because of the term (2p) '(-ibad'' V)(—ihV}, these
equations are of third order. Nevertheless, they can
be reduced to second order by an approximation that
is consistent with neglect of new terms of order
(v„„,/v„)'. We take

S(S —zh/p, b V) ' = I + (ih/p, )v VS ' . (3.55)

When Eq. (3.53) is multiplied on the left by (3.55), the
factor [g—(ih/p, )0. VJ is replaced by S, and only one
significant new term is produced,

(N/p. )e vs 'h'x (N/l )-es 'h——vq-

((2)((,) ~[S( ih Vt )2+2(1I+y) (-ihv& )+IIJ+h' —SZj
~~.(4.) =o, (3.56)

Thus we obtain coupled second-order differential equa-
tions,

with

y=g-e S 'h (3.5v)

h„=—(h'/2m)(v'„)~ +V„
V = —e'I r —g„/2I

' —8'I r + g„/21 ' + e'I g„l
We can also define

= —(2y, ) 'y'„'y„"p'p'+v —v„
=-(-/~}02-)- &(f."}]p p -. vvj.

(s.58}

(3.59a. )

(3.59b}

The latter two expressions are derived using Eqs.
(3.49b), (3.45b), (3.45c), (3.3'?), and (3.-38). Matrix
elements of h„' in the coupled equations are then re-
placed by those of h„plus those of I„.

Finally, let us look at the independent variables in
Eqs. (3.56). These equations can be written more ab-
stractly as

g M .(g )x..(g ) =o, (S.6Oa)

where M „contains functions of g and derivatives with
respect to $ . In the development up to this point, the
various heavy-particle coordinates are all distinct.
However, for the purpose of integrating these equations
they all play the same role: they are dummy integra-
tion variables, and to integrate the equations, we would
set them numerically equal to each other. In other
words, Eqs. (3.60a) are equivalent to

M „(R)l(„(R)=0, (3.60b)

where R denotes the common numerical value of the
coordinates ( . [If more explanation of this step is
needed, see Delos (1981) Appendix C. ]

With these two modifications, we obtain the final
form for the three-dimensional coupled equations for
slow atomic collisions:

f(2P. )-'[S(- ih vq)'+2(il +y) ~ ( ih v„-)+a-J+h+g —SZj
x X(R) =o, (s.61)

where each matrix is now a function of R. In this
equation we have omitted the carets: For example,
h should correctly be h. The reason for dropping
these decorations will be clear in a moment.

4. Coupling matrices

Most of the matrices in the coupled equations (3.61)
can be related to quantities that appeared in the clas-

It is now convenient to define a "displaced" or
"mapped" electronic Hamiltonian k„,which bears the
same relationship to h that @„(r';$„)bears to @„(r';R).
Expressed in terms of (r'; g„),h„has the same func-
tional form as does h expressed in terms of (r'; R).
Thus, for the H' —H system, for which spin-orbit
coupling is negligible, and

h-h„o= —(h'/2m)(v'„. )~+V,
V= —e'Ir —R/2I ' —e'Ir+R/2I '+8'IRI '

the "mapped" electronic Hamiltonian is
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sical trajectory formulation, and were discussed in
See. II.C.3. Let us examine these matrices and their
ele ments.

a. Overlap matrix, S

Referring to Eq. (3.54a), the matrix element S
represents the overlap between two displaced elec-
tronic basis states. According to the discussion in
Sec. III.C.2.c, the function Q„(r';g„)has the same
functional form as does P„(r';R). It follows that if
g„and $„areidentica, l (call them both g), then

y*(r'; 4}@„(r';4)dr'

Q*(r'; R)P„(r';R)dr'

c. Corrected nonadiabatic coupling matri x, 0
From Eqs. (3.54) and (3.48), we have

Ii'„„=(j„~a'+y „"p'-,
'i—hay�

„"'/&r"~@„).
The first term is just the ath component of the P
matrix,

P.„=(@„~-tv y„),
and the other two terms give the matrix called A
[Eq. (2.61)j, for

y„"P'——,'ilz&y „"/&y"= (im/h) [h, s'„],
Hence,

II =P+A.

(3.64a)

(3.64b)

(3.65}

Smrl y (3.62)

h „= 4 +(r'; g„)h„j„(r';4„}r'd

y*(r'; & }[(—k'/2m)(v'„') q + V(r'; g„)]y„(r';g„)dr'

Q*(r'; R)[(—k~/2m)(V '„)R+ V(r'; R)]y„(r';R)dr'

+O[(m/p, )(s„—s )]
=h „+O[(m/p.)(s„—s )], (3.63)

where again the corrections are proportional to
(v„„,/v„) x(s„—s ). The same argument applies to all
of the other matrices, and it is implicit in the following
evaluations.

i.e., the overlap between the states mapped onto a
surface of constant g is the same as the overlap be-
tween the original, unmapped states. (In fact, we de-
fined the mapping such that these overlaps would be
invariant. )

If, on the other hand, g is not identical to $„,then S
must be evaluated following the procedure given below
Eq. (3.50): the function p„(r';g„)ha. s to be reexpressed
in terms of the new variables (r'; g ) before integration
is carried out. However, using a Taylor expression,
we find that the correction resulting from this re-
expression is proportional to

(m/u)(s„—s ).V, P„(r';(„).
Hence this correction is of order (v„„,/v„)'x(s„—s„),
i.e., it is as small as quantities that have already been
neglected.

Within the accuracy of the. present theory, therefore,
the mapping of the basis states onto various surfaces
of constant $„doesnot affect these matrix elements, so
they can be evaluated as if they were integrals involving
ordinary electronic basis functions defined on surfaces
of constant R. For this reason, we no longer have to
distinguish between S and S.
6. Electronic Hami Itonian mafnx, h

By the same arguments, the matrix h is the same as
the matrix h, which represents the original electronic
Hamiltonian acting on the original basis functions. For
example, from Eq. (3.58) we have

Recall that in the classical trajectory framework, we
found that nonadiabatic couplings were represented by
P if electron-translation factors were neglected, but
by P+A if these factors were included. To our delight,
we now find tha. t in quantum mechanics, this theory,
based upon the intersecting-curved-waves picture,
leads to exactly the same correction to P t

d. Second-deri vati ve matrix, B

In the PSS the ory, the re appeared a sec ond-de rivative
matrix & o„=(Q I

—h'v &@„). In the present approach
we obtain a matrix & (capital Beta), which differs from
B in almost the same way that II differs from P. From
Eqs. (3.54d) and (3.48),

(3.66a)

(3.66b)

neglecting derivatives of f„(r';R). Like P, the matrix
involved the total change of the basis functions with

internuclear distance. In B, there appears the total
change minus the part that only represents displace-
ment of the basis functions with the moving nuclei.

e. Afomentum-transfer matrix, y

Looking at Eq. (3.57), we see that the matrix y ap-
pearing there is practically the same as the matrix y
appearing in Eq. (2.62), but the new y involves h„'
instead of h. However, in our approximation scheme,
the term (2p. ) 'y (—ik V)y is of order (v„„,/v„), and h„'
differs from h by terms that are of order (m/p. )
=(v„„,/v„)', so the modification is of order (v„„,/v„)',
and is smaller than terms already neglected. Thus we
find again that this quantum framework gives results
that are directly analogous to those obtained in Sec.
II.C.

/

f. Electron-reduced-mass matrix, I

The matrix I contains effects related to the reduced
mass of the electron ("isotopic eouplings"). As was
noted earlier, the Born-Oppenheimer Hamiltonian con-
tains the molecular electronic reduced mass,
m =m, (M„+M~)/(mo+M„+Ma), while the channel
Hamiltonians h&, h~ contain ~tom jc reduced masses,
m„=moM„/(mo+M„).The matrix I is proportional to
the difference between these reduced masses. Ac-
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TABLE IV. Matrices appearing in the close-coupled equations. (i) Formulas here assume that basis states rotate with internu-
clear axis. (ii) Other forms for s„arealso possible. (iii) y has no relationship to y. n

S „=Q ~f„) Jg 1;R)0„|r;Jlld

pa. = &e~l ~I'vlf&n&

I „"„=&@,f —isa/()of y„)

I f„=&y„fl.„—cote', f @„)/Z
A, „=(im/n) &y, f [I,s„Jf y„)

~„'„=(zm/a) &y Jq„"p' za—e q„"/8~'f@„&

+ah &b/&a

b component: g g, 6 x, y -—y

Overlap

Electronic Hamiltonian

Total change of &If&„

(Displacement part)

Vector nonadiabatic coupling

"Radial" nonadiabatic coupling

y=g —gS k

(7„„=(2m/I) &@,f(s„—s,) f y„&

Momentum-transfer coupling

Eq. (3.59)

s„=-,'(f„+~)r, --,' p. —X')H

Second-derivative matrix

Corrected second-derivative matrix

Electron-reduced-mass correction matrix ("Isotopic coupling" )

cordingly, it is very tiny, and can be ignored except
at ve ry low ene rgies.

In the PSS theory, these reduced-mass effects are contained
in the matrix B, but it is difficult to distinguish them from
fictitious infinite-range coupling. In the present theory, B
goes to zero' asymptotically, and reduced-mass effects are
contained in I.

These matrices, which represent the various
mechanisms for coupling between electronic states
in slow atomic collisions, are summarized in Table
IV. Lest the reader should quail before the sight of
this table, we must emphasize that in most problems
it is not necessa, ry to consider all of these matrices.
S, h, and P are generally the most important; A is
significant because it corrects the defects in P . y and
I are likely to be important only in special circum-
stances and in certain representations. Most of the
rest of the ma, trices in the table are just convenient
combinations of the basic ones. On the other hand, it
must also be recognized that some of the terms that
have been neglected can become significant at higher
velocities. However, in that regime a full quantum
treatment is not usually necessary (fortunately!).

5. Reduction to radial equations

Equations (3.61) are proposed as a theoretical
starting point for quantum-mechanical calculations
dealing with discrete electronic transitions in slow
atomic collisions. For actual computations, however,
these equations are difficult to use because the inde-
pendent variable is a three-dimensional vector, R.
The equations can, however, be reduced to a com-

putationally tractable set of one-dimensional, ra, dial
equations by expansion in any convenient set of angular
functions. There are at least half-a-dozen distinct
ways to do this; In the appendix, we display the choices
tha. t are available, and we carry out the required ma-
nipulations for one possible choice.

The result is that if )&(R) is expanded in symmetric-
top eigenfunctions, coupled radial equations have the
form of Eq. (A10). Also, if in addition the initial state
is spherically symmetric, then scattering amplitudes
and cross sections are given by (A20) and (A21).

6. Generalization to multielectron systems

At the beginning of this chapter, the discussion was
simplified by considering only one electron. However,
all of the same considerations apply to multielectron
systems. Although multielectron systems introduce
well-known computational problems, there are no new
conceptual problems.

The electronic coordinate r' (or r) must be regarded
as a collective coordinate representing the positions
of all the electrons, &P„(r;R)is a multielectron state,
and 4'(r'; R) is the wave function for all electrons and
nuclei. The mass-scaled-coordinate picture is
generalized in a straightforward way. The coordinates
for each electron can be chosen such that-the kinetic
energy has a separable form, and these coordinates
can be scaled by the associated reduced masses to give
a form like Eq. (3.32). For a collinear collision in-
volving two electrons, Figs. 11 and 12 would be drawn
in three dimensions, and there would be four channels.
Curvilinear heavy-particle coordinates g„would be de-
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fined as in Eq. (3.3'I), where s„would be a function of the
positions of all of the electrons.

Given appropriate s„,the rest of the formalism fol-
lows directly: h is a multielectron Hamiltonian, L
is a total angular momentum operator for all electrons,
and the final result is again Eqs. (3.42) or (3.61) or
(A10), with t he matrices given in Table IV. Thus, all
the same formalism still holds. Of course, the prob-
lems of specifically defining and computing the basis
functions and S„become much more difficult as the
number of active electrons increases, but we have de-
ferred discussion of those problems to later sections.

In this framework, those corrections arise as a con-
sequence of the intersecting-curved-wa. ves ansatz.
(This ansatz also provides related corrections to the
second-derivative matrix, and it leads to a new ma-
trix I; neither of these matrices arise in the classical
trajectory framework. )

The relationship between classical and quantum
formulations might be more transparent if we note that
the quantum-mechanical ansatz is a.pproximately the
same as

4' = g E„jt„(R)g„(r';R),

7. Summary and closing

The mass-scaled-coordinate picture shows that the
problems associated with the original form of PSS
theory can be solved by modifying the coordinate used
to describe the heavy-pa, rticle motion. For.a com-,
pletely satisfactory solution it is necessary to use dif-
ferent curvilinear coordinates for different states.
Each electronic basis function g„(r';R)is mapped onto
a new surface of constant g„,and the wave function is
expanded as in Eq. (3.39). The one critical point is that
the heavy-particle wave function X„is taken to be a func-
tion not of R but of g„.For each term it is necessary
to reexpress the Hamiltonian in the new coordinates
(r'; g„).But then for each m, the whole sum is re-,
expressed in terms of (r'; g„),multiplied on the left
by Q*(r'; g ), and integrated over all r' at fixed g

This gives a set of coupled integro-differential equa-
tions for the heavy-particle wave functions (3.42). Ap-
proximations suitable for slow collisions lead to the
truncated three-dimensional close- coupled equations
(3.61), which replace the PSS equations (3.16). Par-
tial-wave analysis leads to one-dimensional close-
coupled equations (Appendix).

In closing, let us review the relationship between the
cia, ssical trajectory framework developed in Sec. II
and the quantum-mechanical framework developed here.
In the former, coupled equations for coefficients b„(t)
were derived from the ansatz

with the ETF E'„being given by

F„=exp(imv s„/h) .
In the latter, coupled equations for heavy-particle
wave functions y„were derived from the ansatz

with the coordinate g„given by

(„=R+(m/p.)s„.
The same basis functions and the same vector quantity
s„appear in both descriptions, so both sets of coupled
equations conta. in the same matrices 8, A, P, A, y.

%e have therefore shown that the very same co+sec-
tions to &, sehich arise in the classical trajectory
framezoorh as a consequence of ETF's, should also be
incorporated into the quantum -mechani cat framemorh

with

P „=exp[(i/h)(m/p, )(s„ihv—s)] .
Here we see that the displacement operator which
(approximately) converts R to g„has the same form as
the ETF, but with the cia.ssical nuclear velocity v
replaced by the corresponding quantum operator
(-ihVs/p) This. shows why s„has to be the same
quantity in both a,pproaches.

IV. THE REPRESENTATION PROBLEM AND THE
DESCRIPTION OF SPECIFIC SYSTEMS

In Secs. II and III of this article, formalisms were
developed for the description of atomic collisions
in classical trajectory or fully quantum-mechanical
frameworks. The formalisms were very general: Only
a few assumptions were made about the basis functions
and about the quantity s„,which specifies the ETF or
the heavy-particle scattering coordinate. Except for
noting that an atomic representation is better for fast
collisions, and a molecular representation is better for
slow collisions, we carefully deferred all questions
about how to choose basis functions and s„'sto describe
specific collision systems.

In this section, we consider what basis functions (P„)
might be chosen, what relationships exist among various
representations, and how the quantities s„might be spe-
cified. The questions to be answered include the fol-
lowing. (1) Besides atomic eigenstates and Born-Oppen-
heimer molecular eigenstates, what choices are avail-
able for the basis set fP„)? (2) How should we select a
specific set for describing a particular collision pro-
cess? (3) In particular, should the basis functions be
defined such that they rotate, following the internuclear
axis, or should they be space-fixed? (4) Given a basis
function Q„,how should one chose the corresponding s„?

These questions are all inextricably linked with each
other, and it is not possible to answer any one of them in
isolation from the others. General principles governing
the choice of representations are considered in Sec.
IV.A, where we also discuss the calculation of switching
functions and s„.Then the description of specific sys-
tems is taken up in Sec. IV.B. Through most of the text,
we shall assume that the electronic basis functions ro-
tate with the internuclear axis. The problem of rotating
versus nonrotating electronic states, and other aspects
that are too angular to fit with the rest of the text, are
relegated t.o an appendix.
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A. General principles

Obviously, the problems of choosing a representation.
would all be irrelevant if it were possible to make cal-
culations using a complete set, . Since this is not possi-
ble, it is necessary to seek a truncated set of functions
and associated coordinates that will describe the colli=
sion in the most convenient and accurate way.

A calculation within a small manifold can be accurate
only if couplings to states outside that manifold are neg-
ligible. This provides one criterion for optimizing the
scattering coordinate: Given a basis set (@„)(usually
adiabatic), the corresponding set (s„}may be chosen
such that nonspecific couplings (i.e. , couplings to states
outside a small manifold) are systematically minimized.
This approach has been applied successfully to one-elec-
tron problems, but it is not easy to use. A second ap-
proach is much simpler. T-he purpose of A is to identify
and cancel the displacement part of P; but mhat part of
the change of a molecular state with 8 actually repre-
sents displacement? One way to answer this is to re-
solve the molecular state into atomic states, for which
the displacement part is unambiguous. We shall show
that for any molecular state that can be resolved into
atomic states, there is a special definition of s„that
identif ies the displacement part of P through this reso-
lution. Furthermore, since it has been found that a
large part of the nonspecific couplings are "fictitious"
effects of displacement, this method of identifying and
eliminating displacement also reduces nonspecific
couplings and increases the accuracy of truncation to a
small manifold. A third approach to the calculation of
s„is presently under investigation. Given a reasonable
guess about the form of s„,one can optimize param-
eters withi~ that form by the use of a variational princi-
ple. To some extent, this method can also be used to
optimize the form of s„.Results of these mays of cal-
culating s„will be reviewed in the first half of this sec-
tion.

Once the set of P„'sand s„'shas been chosen, and the
basis truncated to the smallest set that will give ac-
curate results, further changes of representation will
not in general improve the accuracy of the calculation.
In some cases, however, a change of representation
within a small manifold can lead to further simplifying
approximations or physical insight. . For example, al-
though for slow collisions truncation of the basis is
usually most accurate if the states are adiabatic, many-
processes are much more easily described in some
sort of "diabatic" representation.

The concept of adiabatic states is generally under-
stood, but it is helpful to give a more precise definition,
and we do so in Sec. IV.3.

The intuitive idea of a diabatic representation is a
very old one, dating back at least to Zener's classic
paper of 1932 on the curve crossing problem; in that
paper he assumed that the basis functions being used
were approximate eigenfunctions of the molecular elec-
tronic Hamiltonian, but that they did not have the sudden
rapid change of character" that is typical of exact mo-
lecular eigenstates near a crossing or avoided crossing.
The word diabatic" may have first appeared in a paper
by Hellmann and Syrkin (1935), the word being chosen

to suggest that the states do not adiabatically adjust to
the instantaneous position of the nuclei. More recently
l, ichten (1963) and others have emphasized the impor-
tance of this concept for slow collision theory, and such
states have been constructed and used to study a great
variety of processes.

To understand the concept of diabatic states, we first
have to consider the meaning of 'nonadiabatic" transi. —

tions. Adiabatic electronic basis states adjust con-
tinuously to the changing molecular field; transitions
between such states are produced, in a quantum de-.

scription, by the nuclear kinetic energy operator (or,
in a classical trajectory description, by the time-de-
rivative operator iM/Bt =Nv. V„).'Under appropriate
conditions (Messiah, 1965, vol. II, p. 747) transition
probabilities induced by the R dependence of adiabatic
states must tend to zero at low velocities, and the sys-
tem then actuaQy follows the adiabatic behavior de=
scribed by the adiabatic states. At higher velocities,
however, the electrons do not have time to adjust to the
changing molecular potential, and, in a sudden collision,
the actual electronic wave function of the system may
remain nearly fixed in character. Described in terms
of changing adiabatic basis states, this "nonchange" of
the system wave function appears as a transition.

A diabatic basis state is one that does not fully adjust
to the changing molecular field. It may remain entirely
fixed in character, or it may vary somewhat with R,
but it, is not permitted to have any sudden change of
character. Such basis states are sought because they
correspond more closely to the actual behavior of the
system than do the fully adiabatic states. Typically
such states are not eigenfunctions of the molecular
electronic Hamiltonian, so the h matrix is not neces-
sarily diagonal in a diabatic representation; however
the nonadiabatic couplings II~ (or more generally the
"velocity-dependent" couplings II +y ) in such a repre-
sentation are assumed to be negligible. Atomic states
have these properties, but they do not usually provide a.

satisfactory representation for a slow collision. Ac-
ceptable diabatic basis states must be slowly varying
with A, such that they partially accommodate to the
changing molecular environment, but such that "veloc-
ity-dependent" couplings can be neglected. There has
never been any difficulty with this intuitive concept, and
in any given situation it has always been possible to
construct such states by physical reasoning.

On the other hand, a general formal definition of
diabatic states has been more elusive. An attempt at
such a definition was made earlier by Smith (1969): For
radial coupling problems, he proposed that a diabatic
basis is one in which &" vanishes. This definition is
almost correct, but it has a seemingly serious formal
defect [Andreson and Nielson (1971); Gabriel and Taulb-
jerg (1974)]: If, for a given j, the scalar product of
d@~(r; R)/dR with @; vanishes for all i in a complete
set, then (d@z/dR) must itself be zero. If every matrix
element P;&(R) vanishes for a complete set, then every
state in that set must be completely independent of R.
Not only do such basis states have none of the distortion,
polarization, and change of character with changing R
that is typical of molecular electronic states, but. also
they do not even translate along with the nuclei.
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The formal theory presented earlier helps to point the
way out of this difficulty. Since it is the change in char-
acter of adiabatic states with R which is responsible for
the "transitions, " then, if such change of character were
represented by the d/dR operator, we could indeed con-
struct suitable diabatic representations by making ma-
trix elements of d(dR zero or negligibly small. In fact,
however, I'" represents not only the effects of any
change of character of basis functions, but also the ef-
fects of their simple translation with the moving nu-
clear centers. Since we want diabatic states to move
along with the nuclei, we need a representation in which
at most that portion of I' representing polarization, dis-
tortion, and change of character of basis functions is
made to vanish; but since A identifies and-cancels the
displacement of part of I', (P+A) is that relevant part
of I' that really is responsible for nonadiabatic transi-
tions. Therefore an appropriate formal definition of
diabatic states can be given by a relation of the form

(4.1)

In Sec. XV, 3 below this definition is stated more pre-
cisely, its implications are considered, and various
ways to construct a diabatic representation are dis-
cussed.

After a precise definition is given to diabatic and
adiabatic representations, we take up the question of
which type of representation is most convenient for a
given collision problem. This requires a discussion of
elementary degeneracy- mediated transitions, which we
give in Sec. IQ.A.4.

We conclude with a set of rules or guidelines for
choosing a good representation, and then proceed to the
discussion of specific systems.

1. Changes of representation

Transformation theory (the theory of changes of
representation) is a. standard part of all quantum me-
chanics textbooks. However, certain minor modifica-
tions of the conventional treatment are made here. We
want to separate the "static" parts of the calculation.
(the construction of molecular states using the ma-
chinery of quantum chemistry) from the dynamic"
parts (the definition of s„and the calculation of its ma-
trix elements). Hence we define transformations in-
volving only the basis functions (Q„][Eq. (4.2), below].
This leads us to treat s„asone of the operators. How-
ever, each s„is originally defined in connection with a
specific Q„,from which it can never be fully separated
Hence we have operators which depend upon the func-
tions on which they are acting. Furthermore, the oper-
ators necessarily refer back to an original representa-
tion in which they were defined.

A general change of representation. may be defined
in the following way. Suppose we have two sets of basis
functions (P„'(r;R)], ($2.(r; R)] defined on surfaces of

constant R. Such states may be related to each other by
a transformation matrix U:

Q2 (r; R) =g U„„Q„'(r;R). (4.2)

Other matrices which appear in the theory (i.e. , A, q, o)
are not composed of matrix elements of operators de-
finable in a representation-independent way, since the
scattering coordinates and s„'sare always defined in
connection with some particular representation [in this
case, the basis (Q„'(r;R)]. These matrices may never
theless be transformed according to Eq. (4.3) as well.
Finally, if we also define transformations of the func-
tions ~ according to

(4.5)

then under such invertible transformations the form of
the couP/ed equations (2.59), (3.61), or (A10) remains
invariant.

The fact that the form of the coupled equations is invariant under
the above transformation does not imply that atomic and mo-
lecular representations of a collision process must be equiva-
lent. The coupled equations have been formulated using atomic
states @„andatomic s„'sand also using molecular states p
and corresponding "molecular" s~'s. However, even if there
is a relationship of the form (4.2) between atomic and molecu-
lar states, there is not necessarily any relationship between
atomic s„'sand molecular s„'s.The s~'s in a molecular de-
scription may still be chosen quite arbitrarily.

2. Calculation of s and associated matrices

We now consider the problem of specifying the set of
functions (s„].Research on this problem is very active
at present, and several calculations involving various
schemes for defining s„arein progress. Unfortunately,
there are at the moment only a few published results
available. One expects that much more will be known
about this problem within a few years, but for the pres-
ent, we can only summarize the ideas that have been
proposed and the few calculations that have been made.

a. Method of Bates and McCarroll

The first method for defining s„for a molecular state
was proposed by Bates and McCarroll (1958). Their

proposal, reexpressed j.n the present notation, is to
associate with each molecular state an atomic ETF,
in which the &-dependent part of s is just

(U is not necessarily unitary, but is certainly inverti-
ble, and may be a function of R.) Then it follows that
matrices like S, h, L, etc. which consist of matrix ele-
ments of operators that are defined a P~io~i, indepen-
dent of representation, transform as

(4.3)

except for I', which obeys the rule

(4.4)

The format of the present discussion follows that of Delos
and Thorson (1979), who corrected and extended the ideas of
Smith (j.969). However, their developments were given only in
the classical trajectory framework, whereas in the present
article it is seen that the same discussion applies in either
classical or quantum frameworks.

where

Ic„=~ (f„+X),f„=+1.
They take f„=—1 if the molecular state correlates

(4.6a)

(4.6b)
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b. Oecompositloni nto atomic states

Another way of specifying s„'sis to decompose the
molecular state into single-center states, and construct
the molecular s„'sin terms of single-center s„'s.

Suppose we have an arbitrary set of class M electron-
ic basis states [Q"„},and this is related to a set of
class I' basis states fpF }by an invertible transforma, —

tion U:

(4.7)

Now suppose further that we associate with the basis
state @"„a"special" coordinate 8"„orETF F"„suchthat

s"„P„"=gD'„„s~@~. (4.8)

Since s~ is unambiguously defined by Eq. (2.53)or (3.38)
with f„=+I,

s„'=,'- (~ 1+~)r,'- -', (1 —~')H, (4.9)

it follows that s„is also defined, given the matrix U.
In the classical trajectory framework, the full wave
function was expanded as [Eq. (2.23)]

Y = d~F~ (4.10a)

asymptotically to an A- atomic state, and f„=+1if it
correlates asymptotically to a B-atomic state. (A re-
lated prescription is given for symmetric systems, for
which molecular states correlate to linear combinations
of atomic states. )

One criterion for choosing s„is simplicity, and Eq.
(4.6) is certainly the simplest possible s„(exceptfor
s„=0, which is the PSS theory).

Furthermore, (4.6) is a very good choice if the mo-
lecular state @„retains single-center character at all
internuclear distances. On the other hand, if p„should
change its character significantly as R changes (for
example, if an electron is transferred from A to B, or
shared approximately equally by the two nuclei), then
(4.6) is not so reasonable. It describes an electron
propagating always with velocity K„'0, while the velocity
of a shared or transferred electron may be quite dif-
ferent. ~

(i~/I) (@M
~

(skf sM ) ~
~ht)

The same result holds for A +q,

Ae+ g~= U (AF+g~)U,

(4.12b)

(4.12c)

(4.13)

but not pa~ A and g sePa~ately. The mixing implied by (4.13)
again emphasizes that we must distinguish between matrices
A& and matrices Az and never assume that one goes into the
other under any transformation.

A further result applies if the transformation U is such that
the states @~ are eigenfunctions of h. In that case, we proved
that

g=ge- o'~S h= 0;1

hence if we use the special switching functions (4.8) we obtain

A~= U' (A„+y~)U.

These 'special" s"'s defined by Eq. (4.8) provide a
very specific identification of the "displacement part"
of the R dependence of molecular states by resolving the
molecular state into atomic states, for which the dis-
placement part, is unambiguous. Atomic and molecular
descriptions are equivalent if arid only if s"„'sare
chosen in this way.

This method is not much more difficult to implement
than the method of Bates and McCarroll, and it should
give better results. One problem with this method is
that decomposition into atomic states is not unique, and
can be quite ambiguous at small R. On the other hand,
molecular states are often known only in terms of some
sort of LCAO expansion; in that case this approach
might be as good as any. At the moment, no calcula-
tions using this method are available (though some
are in progress}.

If we choose s~ according to the special prescription
(4.8) then it is easy to show, by expanding in powers of
(m/p) and neglecting terms of order m/p&f and
smaller, that Y~= Y~ and that 4~=4„,i.e. , the wave
function is invariant to the transformation (4.6) to the
stated accuracy.

Smce (4.6) xmpbes the matrix transformation (4.3) xt follows
that

(4.12a)

or as
I

g dNyAI@Af (4.10b)

In the quantum- mechanical framework, the correspon-
ding expansions are

(4.11a)

Af N rs. Af (4.11b)

Crothers and Hughes (1978) have extended this approach by
taking K@ to be a function of &. (Unfortunately, this paper con-
tains a completely incorrect remark to the effect that the use
of switching functions depending on r is a violation of the Heis-
enberg uncertainty principle. Reply to this was given by
Ponce, 1979).

c. M/ nimIzation of nonspecific coupIIngs

This method evolved in connection with the study of a
specific process, and it is the method for which the
most detailed calculations are presently available.
Some years ago Thorson recognized that unmodified
PSS matrix elements I'" for impact ionization

H'+ H(ls) —2H'+ e
were unrealistically large, and he recognized that
these matrix elements were artifacts of the improper
formulation —that they really represent displacement of
the orbitals with the moving nuclei:. He and his co-
workers then began to develop a more satisfactory de-
scription (Thorson and Levy, 1969; Levy and Thorson,
1969a, 1969b; Lebeda, Thorson, and Levy, 1971; Sethu-
Raman, Thorson, and Lebeda, 1973; Rankin and Thor-
son, 1979).
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If the matrix elements in question really represent
displacement, then certain patterns of behavior should
follow. Since A" is supposed to identify and cancel the
effect of displacement in P~, we would then expect that
for each bound molecular state there should exist a
choice of s„such that all 'fictitious" couplings would
simultaneously be reduced. They took

s =-'[f (r R)+X]r' (4.14)

and tried various forms for the switching function. (Of
course, it was essential that the f's be restricted to
slosv/y taxying, weal functions; otherwise they would not
represent only the effects of electron translation. )

Consider the matrix element of P~+A~ between the
ground Born-Qppenheimer state of H2' and the continuum
states of 2H'+e. Since the electronic Schrodinger equa-
tion is separable in prolate spheroidal coordinates, the
continuum states are labeled by three quantum numbers:
A. =(L, )/R', n„, corresponding to the 'angular" electronic

d t (p' —r )/R and e, the continuum state ener-
r for thegy, which can be regarded as a quantum number or e

"radial" electronic coordinate (x~ + rs)/R. The matrix
elements were written as, for example,

(e, n„,y =0, (g)iH'„else(g)),
where H'„is the operator whose matrix representation xs
PR +AR.

&I = —i@[&/BR+ &,zf(r; R). &, + ,'&', zf(r;R—)].

The switching function that led to the best results was

f (r; R) = exp[ —(r„+re)/p, ] tanh[P (R)(x~ —xs)],

10 3

Gi4-
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where x, and P (R) are parameters to be determined by
minimizing the problematic matrix elements. In the
calculations, &, was found to be unimportant, and the
first factor was replaced by 1.

Figure 15 shows calculated matrix elements versus P
10.at R=12.4ao, &=0.1 hartree, with +„=0,

&t is seen that a value of p around 0.45 systematically
reduces by orders of magnitude all except, n„=0and 2
matrix elements; the same value of P also reduces the
matrix elements for ~=1 hartree. This shows that most
of the large and long-range matrix elements were indeed

titiou " ffects of displacement, and only those for
=0 2 represented real nonadiabatic coupling.g

++Similar results were obtained for the HeH system
[Rankin and Thorson (1979)]. For this case the switching
function was taken to be

] ooo
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I
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FIG 15(a). For the H2 system, logarithms of absolute values
of matrix elements (enpa(g)~ H'ip~ 1sa(g)) vs P for R =12.4Qp,
e =0;1 hartrees, and nz =0, 2, 4, . . . , 10. One finds that there
is a value of P that dramatically reduces most of these matrix
elements. From Lebeda, Thorson, and Levy (1971).

FIG. 15(b). Corresponding matrix elements between ground
and continuum states for the HeH" system for e= 0.5, n„=0,
1,2. Sol d l I which includes "fictitious" displacement
coupling. Dot-dash line: P++A+ with switching function equal
to a constant, as in Bates-Mc Carroll method. Dash line:
optimized P++A.+ From Rankin and Thorson t'1979).
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—(K/2i) (g*(t/ —g(t'*) —g* Vg,
/

and this variational principle states that the exact solu-
tion to the Schrodinger equation is such that

(4.15)

I= dt dr g
t(

(4.16)

is an extremum (t, and t2 are arbitrary initial and final
times). In using this principle, one considers only
variations 5$ that vanish at the boundaries (t=t, or t2

and ~r
~

—~). If we restrict ourselves to functions that
are square integrable for all time and normalized to
unity a.t t= t& and t2, then I in Eq. (4.16) is equal to

I=— df dr A —X@B

tg

If one could find the extremum of I with respect to
arbitrary variations 5$, then one would have the exact
solution to the Schrodinger equation. That is obviously
not possible in general, and one can only consider re-
stricted variations.

As an example, suppose we consider all possible
functions of the form

(4.17)

P = (t) (r', t) exp[imv. s(r t)/h] . (4.18)

Here (t) is some given real square-integrable electronic
basis function, and the exponential factor is the ETF.

tanh[ p (Z„+Z s) (r„—ra) + (Z„—Zs)R] + n R lnZs/Z„,
where Z„',Zs are the nuclear charges and o and p were
varied. In Fig. 15(b) are shown uncorrected (Pa) and
optimized corrected (P +A ) matrix elements between
the ground state and continuum states. Clearly the
elimination of displacement gives a substantial and sys-
tematic reduction in these matrix elements.

In this case the ground-state wave function is essentially
atomic in character and it is possible to account approximately
for effects of displacement by taking f= constant, as in the
Bates and Mc Carroll method. Hesults of such a calculation
are shown as the dot-dash line in Fig. 15b; they are not far
from the optimized results. However there are other bound
states of HeH+'which have a two-center molecular character,
and for which a constant-f approximation is quite unsatisfac-
tory (Rankin and Thorson, 1979, Figs. 8, 10,11).

Switching functions optimized in this way can be used
for calculating all other matrix elements. This optimi-
zation procedure is difficult to apply in general, be-
cause continuum states used in the calculation are not
readily available, and have only been obtained for these
separable one-electron systems. However, the results
of this method are the best ones available in the fol-
lowing sense: Insofar as this method minimizes non-
specific coupling matrix elements, it should also mimi-
mize the error inherent in truncation of the coupled
equations to a small set.

d. Euler-Lagrange varIat/ onal princIple

Hiley and Green (1971) suggested that the Euler-La-
grange variational principle could be used to specify
ETF's in the classical trajectory framework. The La-
grangian density for the one-electron Schrodinger equa-
tion is (Morse and Feshbach, 1953, p. 314)

We allow s to be any real function, and we ask: What
condition must s satisfy in order that I be an extre-
mum? Writing

g=mv. s/h,
one finds

5I= dt dr j gg e '& h —i@3 Bt e'~

—i[Pe "(h —ihB/Bt)@e" 5g]), (4.19a)

and integration by parts leads to

«dr ~i 5gIm e '~ h —&h~ ~« '~ . 4.19b

The extremum is obtained with respect to arbitrary
(real) variation in g when

1m[Pe "(h —ihB/Bt)@e "]=0
or

h(2m) '(2QVQ ~ Vg+ y'V'g)+@B@/Bt =0. (4.20)

This is the equation that must be satisfied by g. If we
write

w = hV/gm= V(v ~ s),

then Eq. (4.20) becomes

V ~ (wp) + Bp/Bt=0.

(4.21)

(4.22)

8
w, (z) p(x, y, z;R)dxdy+ p (x, y, z; R)dx dy = 0

or

w, (z) =
d'/dt f dz(8/aa)

l p(x, y-, z;R)dxdy
0

p(x, y, z, R)dxdy
(4.23)

Ponce (1979) derived this equation (by a slightly dif-
ferent method), and he evaluated the resulting velocity
field xe, (z) for the three lowest states of the H,

' system.
[Actually he obtained somewhat more: his full form for
g is, in our notation, g=g, (z, t)+g2(x, t) +m(t)xz. ] He
then used the resulting ETF to compute transition

This is just the continuity equation relating the electron
density p and velocity field w.' Together with the equa-
tion curlw =0 (which follows from the fact that w is a
gradient), and suitable boundary conditions, this equa-
tion determines w(r', t) in terms of p(r', t) and its de-
rivatives, all of which are known in principle since (t)

is given. [Hiley and Green carried out a development
similar to this one, but they obtained a different result
because they did not restrict g to be real. Again, if
the exponential factor in Eq. (4.18) is to represent an
ETF, the restriction to real g is essential. ]

The exact solution to Eq. (4.22) has not been con-
structed for any molecular function @. However, sup-
pose we use the approximation that the vector field w
points only in the z direction, w =Su„and that for each
internuclear distance, ~+, is only a function of z, not of z
or y. Then we can integrate Eq. (4.22) over x and y to
obtain
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probabilities for the processes
H'+ H(ls) —H + H(2p)

—H(ls or 2P) +H' (4.24)

at E = 250 eV and 1 keg. Good agreement was found
with some experimental measurements.

Ponce did not compare his ETF with the one previous-
ly obtained by Thorson et al. The present author has
made some comparison, and found the two ETF's to be
somewhat different. However, it is known that for the
processes studied, (4.24), calculated transition prob-
abilities are not too sensitive to the form of the ETF.
(As was mentioned earlier, for transitions mediated by
a degeneracy at small &, even the unmodified PSS the-
ory is often sufficiently accurate. )

Several interesting questions are rasied by these cal-
culations. First, it is not known whether the form as-
sumed by Ponce is an accurate solution to the continuity
equation (4.22). Second, it is not yet known whether
accurate solutions to (4.22) can be obtained for the
problems of interest. Third, one can show that if the
ETF were chosen to satisfy Eq. (4.22) exactly, then
matrix elements of & +A.~ would vanish exactly. Cou-
plings might then arise only from terms that were pre-
sumed to be negligible in the derivation of Eqs. (2.59)
or (3.61). The full implications of this are not yet
known. All of these questions need much more study.

To conclude this section we repeat that there is no
final answer to the question of what is the best s„for
a molecular basis function. Of the available methods,
one can say with reasonable confidence that the Bates
and Mccarroll form is an improvement on the unmodi-
fied PSS theory, that decomposition into atomic states
should be even better, and that Thorson's method gives
the best presently available results for the cases he
studied. The Euler- Lagrange method looks promising,
but has not yet led to definitive results. '

Among significant computational studies that are ongoing at
the present time, we mention the work of Thorson et ag. (1981);
Vaaben and Taulbjerg (1979); Macias, Riera, and Yanez (1980);
and Winter and Hatton (1980).

3. Definitions and constructions of adiabatic
and diabatic representations

Equation (4.1) was suggested as a general definition
of a diabatic representation, but its meaning was de-
liberately left ambiguous. First, we must distinguish
between applications of (4.1) to the radial component
(P~+A~) only, and those which include all vector com-
ponents. From this point on, we shall only apply this
equation to the radial component. Second, we have
shown that a distinction must be made between matrices
of type A» or A» (based on single-center functions and
coordinates) and those of type A„(constructed explicit]y
using class M states and curvilinear coordinates); a
corresponding distinction must be made between diabatic
representations for which (&~+A)) =0 (type E') and
those for which (P~+A~~) =0 (type M). Third, Eq. (4.1)
is also ambiguous in that it might hold only within a
sharply truncated set of states, or only hold approxi-
mately.

V=h+ve( —L /R+Ae+ye). (4.25b)

For Eqs. (A10),

V=8+ I+ (2p, R2) 'L[K(K+1)—A2I S+L2+L2 —Q') .
(4.25c)

In general V includes all terms that can be collected into
a (possibly velocity-dependent) "potential" coupling ma-
trix, but it does not include &~, 4; y~, or B, which
are related to B/BR ("nonadiabatic") couplings.

a. Born-Oppenheimer representat/ on

Recall that we defined the Born-Oppenheimer repre-
sentation as the (orthogonal) set of eigenfunctions of the
ezectxostatic Part of the molecular electronic Hamil-
tonian,

(4.26)

We took h~o to include only the electronic kinetic energy
and electron-electron, electron-nuclear, and nuclear-
nuclear Coulomb potential energy; we deliberately ex-
cluded spin-orbit couplings and other higher-order mag-
netic effects from h&0. These states and their eigen-
values (and sometimes the important matrix elements of
P) a,re routinely calculated by quantum chemists. As
suggested earlier, there are then two ways to obtain the
A matrix and related terms (I, y, etc.): (i) Since the
quantum-chemical calculation typically begins with a
class V (or possibly a class F) basis, and the s„'s
proper to such a basis are given in (4.9), the matrices
&~, y~ can be computed in the original ~ePxesentation of
V or I states and then transformed into the Born-Op-
penheimer representation according to Eqs. (4.12) and
(4.13) by the same matrix U(R) which diagonalizes h~o.
(ii) Alternatively, once given the eigenstates of h Bo and
the matrix ~", switching functions may be chosen for
each eigenstate and the matrix A.~~ is then computed di-
rectly using s as in Eq. (2.53).

We repeat that these two approaches are not neces-
sarily identical within a finite basis, because no con-
straint has been placed on the choice of switching func-
tions used to define A„". Only if the special switching
functions of Eq. (4.8) are used is A~ equal to A» +y R» .
Moreover, even in that case, A~' is not to be identified
with A„because the invariance condition (4.13) only

Furthermore, though we have often referred to adia-
batic basis states, we have avoided until now giving
them a precise definition. This concept also requires
some attention: In the past adiabatic states" have
usually been assumed to be the same as Born-Oppen-
heimer states, " but it is now convenient to draw a dis-
tinction between them.

For the purposes of this section, it is convenient to
define a general coupling matrix V such that

V= electrostatic + magnetic + angular

+ electron- reduced- mass coupling matrices.

(4.25a)

The specific form of this matrix depends on which set
of coupled equations we are considering. For Eqs.
(2.68),
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holds for A~+g~. We denote by A~~ a matrix A" com-
puted originally in a molecular representation using
switching functions, and any transform of such a ma-
trix according to (4.3). Ag or Ars means any transform
of an A. matrix that was computed originally in class F
or V basis with corresponding atomic coordinates.

c. 01 abatlc representat/ ons —def/n!Itlons

We admit several different types of representations
to the class of diabatic representations. We shall say
that a rePresentation is diabatic if all, or a Part, of the
matrix (P" +As) either vanishes or is negligible: The
representation. is fuLLy diabatic if Ps+As vanishes
exactly in a complete set; it is partially diabatic if a.
selected subset ((m, n)] of elements of (P"+As)
vanishes; and it is aPP~o~imately diabatic if the relevant
port:ion of (Ps+As) can be considered "negligibly
small. "" This terminology deliberately does not speci-
fy whether A" is of type A~ or type A~.

(i) E-diabatic rePresentations. An E-diabatic repre-
sentation is defined by the condition (Ps+Ars) =0. The
properties of such representations follow from the sim-
ple and obvious theo~em

[(B/BR), + „(B/B ) ]@„(;R) = 0

(with a„constant) if and only if

@„(r;R) = @„(x,y, z —Ic„R),

(4.27a)

(4.27b)

i.e. , if and only if @„is in class E. Since P is just the
matrix of —ihB/BR, and Ar is either the matrix of
(-iha„B/Bz) or a transform of it, we have the following
consequences.

In the quantum formulation, the intimate relationship be-
tween P++A.+ and B& insures that if the former is negligible,
so will be the latter.

b. Adiabatic representations

A representation is adiabatic with respect to a given
type of interaction if the part of the V matrix repre-
senting that interaction is diagonal. This definition can
be applied either to the complete set of states or to any
subset.

For example, Born-Oppenheimer states as defined
above are adiabatic with respect to electrostatic cou-
plings, but they are not adiabatic with respect to spin-
orbit couplings, angular couplings, or electronic-re-
duced-mass couplings (represented by the matrix I);
in fact we shall see. that they are diabatic with respect
to those couplings.

There is never any conceptual difficulty in construc-
ting an adiabatic representation: It is done by di-
agonalizing the desired part of the V matrix. Thus,
given a Born-Oppenheimer representation, one obtains
the representation that is adiabatic with respect to both
electrostatic interactions and spin-orbit couplings by
calculating the matrix of the spin-orbit Hamiltonian
hso, adding it to h ~0, and diagonalizing the result.
Representations that are adiabatic with respect to other
interactions or combinations of interactions are cal-
culated similarly. Again this can be done for an entire
matrix or any part of it.

(I) If every state in a representation is in class E,
then P"+A~~

—= 0, i.e. , a class F representation is fully
F diabatic.

(2) If any particular state &f&~(r; R) in a representation
is in class E, then the hth column of (Ps+Are) vanishes.

(3) Any representation obtained by an R inde-Pendent
invertible transformation from a representation based
on class E'states is also fully diabatic. (Hence, not
every fully F-diabatic state is necessarily a class F
state).

(4) Conversely to (I), if in some complete set we find
that Ps+As' =0 and that Ars satisfies Eqs. (2.64a), i.e. ,

(Ar)a = —'h(@a I
~.B/Bz

I @.)
then every state in that representation is in class X.

(5) Conversely to 2, if in some complete set we find
that the entire kth. column of P"+A~~ vanishes and that

(Ar")a. = &.(&.)a.

where P, is the z component of the electronic momen-
tum, then P~(r; R) is in class E.

Fully 5'-diabatic states meet one of the intuitive
criteria that would be expected for diabatic states; these
states move along with the nuclei to which they are at-
tached, but do not change character in any way. But on
the other hand these states have nonvanishing, velocity-
dependent radial couplings y~, and also they are not

. orthogonal.
A fundamental result follows as a trivial consequence

of the above. If some molecular representation
(@~(r;R)) is constructed by matrix transformation of
class E states as in Eq. (4.7), then

(Ps+As)u= Ut(Ps+As)r U —ihUt S~dU/dR

= —ihUf S~dU/dR

since (P"+As)r vanishes in a class E representation.
Thus the matrix representing the real nonadiabatic
couplings in the molecular representation comes only
from the R dependence of the coefficients of the trans-
formation. This is equivalent to using the special s"„'s
of Eq. (4.8), and it provides a way of identifying and
eliminating the displacement part of I'" without the di-
rect. construction of an A~ matrix. An analogous result
can be obtained if the original basis states are in class
V; in this case nonadiabatic coupling comes from the R
dependence of the coefficients and that of the param-
eters f, - - - &.

(ii) M diabatic rePrese-ntations. An M- diabatic repre-
sentation is defined by the condition (Ps+Ad) =0. Basis
states for this type of representat, ion have detailed
properties that depend on the switching function used
to calculate A~~; they will not generally be the same as
F-diabatic states.

As R —~, ~ [f„(r;R) + X] assumes the proper value
for e„near each center, and-y~ goes to zero. Therefore
A~~ and UfA~~V become identical, and the conditions
(P"+A)) =0 and (P"+A"„)=0 become equivalent. M-
diabatic states must thus become either class F' states
or fixed linear combinations of such states, in the
limit R —~. (Of course, this result is rather trivial,
since such an asymptotic correspondence to class F
states holds for the basis states of any reasonable
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representation. )
For symmetric systems, switching functions must

have ungerade symmetry, and (P+A) has no couplings
between g and u states. For such systems, M-diabatic
states retain the g or u symmetry and the two-center
molecular character of the adiabatic states.

The really significant property of M-diabatic states
is this: Provided that y vanishes (or is negligible) in
the original class ~ representation (Sec. II.C.3.e), then
in the transformed equations @El velocity-dePendent
couPLings are made to vanish (or to be negligible).
Hence the coupled equations in an M-diabatic repre-
sentation have the form intuitively desired of a diabatic
description. Although M-diabatic states are not class &,
and must undergo some (pr'esumably slow) change with

R, and although their detailed nature depends upon the
choice of switching functions used to define A~, this de-
tailed behavior is of no concern to us if we are inter-
ested only in the actual solution of a collision problem;
to solve the coupled equations one needs only to know
the matrix elements of h, S, etc. in the diabatic repre-

sentationn.

f„(r;R) indePendent of n. One especially simple and
conveniently-diabatic representation is obtained if the
original class M states are orthogonal, and if we take
the same switching function for all states, because
then A~~ is Hermitian. To find the diabatic representa-
tion we can require U(R) such that

Ut(PR+As) U ikUtdU/d—R =0 . (4.29)

Since (P +A„)is Hermitian, it easily follows that
d/dR(U~U) =0, i.e. , U'tU is a constant. But since we

know that (P" +As„)—0 a.s R —~, we can choose
U(R ~) = 1 as our. initial condition; then U~ (R)U(R) = 1,
U(R) is unitary, and the diabatic basis states are ortho
gonal.

d. Olabat jc representati ons —construction

The definitions and properties given above suggest
several methods for constructing diabatic representa-
tions; which method is appropriate depends upon the
objectives of the problem, the required accuracy, and
the amount of information available from earlier stages
in the calculation.

(i) Partia. l or total decomPosition ofa hnoson adiabatic
constxuc. tion. As noted earlier, a quantum chemist
typically begins the construction of Born-Oppenheimer
or adiabatic states with a set of basis functions based on
atomic states or atomic orbitals; these may be class I"
or class V states. This basis is usually quite large
compared to the number of adiabatic stat. es calculated.
Then the Born-Oppenheimer Hamiltonian is made di-
agonal by a transformation U(R) (or a series of trans-
formations in stages, for the many-electron ease), and
a sharply truncated set of adiabatic states is obtained
for use in a collision problem.

But since the original basis states are single-center
states, there is no doubt about the correct forms for
s~, and the resulting matrices A~~ and y~~. If the matrix
U(R) is available, we may then transform the matrices
P", A~R, and yFs according to Eqs. (4.3), and then trun-
cate to the relevant square submatrices corresponding

to the adiabatic states considered. %ithin this trun-
cated subspace we may now identify in a piecewise man-
ner each of the velocity-dependent couplings:

(1) P~+ = UtP"U: that part of P's which represents
only displacement;

(2) Ag = U~A)U: this arises from ETF's or coordi
nate transformations in the original basis, and it exact-
ly cancels ~~;

(3) Ps& U~P—z—U: that part of Ps which arises from
the slow variations with R of the parameters in the
class V functions;

(4) P~~ =—ih UtS '(dU/dR): the nonadiabatic couplings
which arise from the (sometimes rapid) changes in the
coefficients of transformation;

(5) yg = UtygU: the momentum-transfer couplings.
Obviously, only the last three pieces need actually be

calculated. The advantage of this approach is that it
allows us to identify the real couplings in the problem
and to attribute each to a clearly distinguishable source.
The transformation to a suitable truncated representa-
tion can then be carried out by a matrix W which can be
defined in several ways; in any case it satisfies a dif-.
ferential equation of the form

ihd W/dR = DW (4.30)

%e may take
(a) D=Pc'. In most cases this is the significant

choice. It eliminates the rapid variations arising from
changing coefficients, leaving only the smaller
couplings due to slow variations in the parameters and
to yg . If this were applied to the full (untruncated)
space it would just take us back to the original class V
basis. If the construction of the adiabatic representa-
tion is done in successive transformations (e.g. , SCF-
LCAO-MO calculation followed by configuration mixing),
then I'~ will have separate pieces arising from each
stage and the most significant of these may be retained
awhile ignoring the rest.

(b) D=Pcs +Ps . This also eliminates the couplings
which arose from slow parameter variations. The re-
sulting diabatic states will therefore be closer to class
F' than the original basis; in the limit, of a complete set
of states a fully E-diabatic representation will be ob-
tained.

(c) D=Pg +Pcs +ys; this eliminates all velocity
dependent couplings from the new representation, which
is therefore M diabatic. In general the new states are
still molecular, but they should be slowly varying. Note,
however, that in general D~ca and the transformation
is not unitary.

(ii) Direct sy. nthesis of a Practical A~ in adiabatic
representation. It may happen that the information
necessary to obtain the separate pieces of the non-
adiabatic couplings as above is not readily available,
or it may be that the labor required to do so is not justi-
fied by the approximations inherent in the collision
problem considered. Then it is a reasonable procedure
to introduce a suitable switching function directly into
the adiabatic representation and calculate the matrix
AR and find the M-diabatic representation by solving Eq.
(4.30) with D = P"+A~s. We have earlier discussed the
particularly simple result that appears if a single
switching function is used, i.e. , the diabatic states are
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orthonor mal.
In many cases it may be possible to estimate A

rather than compute it explicitly, and, then just let D
be the remaining "large" part of I'" which one wishes to
eliminate. Also it is obvious that if A" is negligible,
then diabatic states within a small manifold can be con-
structed using Eq. (4.30) with D=P", as Smith original-
ly proposed.

(iii). Partition of V matrix. Suppose that the V matrix
can be partitioned in some way, V= Vo+ V„andwe be-
gin in a representation in which Vo a major part of V,
is diagonal, but V, is not diagonal. For example, Vo

might be h, and V& could be the angular coupling Q or
the 'isotopic" coupling I; alternatively Vo might include
only the electrostatic interactions hI,o, and V& might be
the spin-orbit terms. Frequently it will happen (usually
because of symmetry) that the eigenstates of Vo have no
(P~+A") matrix elements connecting states that are
coupled by V, . It follows that the given representation
is diabatic with respect to V„though adiabatic with re-
spect to Vo. Let U(R) be the matrix transforming to the
fully adiabatic representation, in which Vo+ V& is di-
agonal. The resulting velocity-dependent couplings are
then

Ut(P +A" +y )U —ihU tS dU /dR.

take the form

i@—d = Vd~d

or

[(2p)-'(- Nd/dR)'+ V] q'= E&'.
Writing

&a =Z U~a&~j
with

Uf VV=&

Uis

cos~ sinter )
U= I( —sin&@ cosa& )

where

cot2~ = (V, 2
—V«)/2 V, 2

—T(R)

and the eigenvalues e„(R)are

(V1l + V22)/2 + f[(V1$ V22)/2]' + V g2 ]' '

=(V„+V„)/'2+ V„[1+T(R)]'~

(4.31a)

(4.3 lb)

(4.32)

(4.33)

(4.34)

(4.3 5)

(4.36a)

(4.36b)

Should we find that these couplings a,re out of hand, (i)
we can be sure that the source of the trouble is the
dU/dR term and (ii) the easy way to get to the diabatic
representation required is not to integrate Eqs. (4.30)
but to refrain from the damaging transformation U(R):
Practically all useful diabatic representations have
been constructed in this way.

4. Two modei processes

The discussion in the preceding section gives precise
definitions of adiabatic and diabatic representations, a«
it tells how such representations can be constructed
from various starting points. However it does not
answer one of the most important questions: Which
type of representation is most convenient for a given
collision process 'P A partial answer to this will be given
in the following section; however, to understand this
answer, some familiarity with elementary excitation
mechanisms is needed, so we consider here two im-
portant models for degeneracy-mediated transitions.

l

a. Curve crossing

Consider a problem in which only two electronic
states are important; suppose there exists an M-
diabatic representation in which the states are ortho-
gonal, all radial velocity-dependent couplings P"+4"
+ yR vanish or are negligible, and the diagonal matrix
elements of V cross at some point R~.

We can transform to the adiabatic representation
using a 2 x 2 matrix U which diagonalizes V. Then the
diagonal elements will not cross, the basis vectors will
depend significantly on R (and may change drastically
and abruptly), and transitions between them are induced
by this B dependence.

For any two-state problem, in an orthogonal diabatic
representation; the coupled equations (2.68) or (A10)

= —ih U~dU/dR

and evaluation of this expression gives

[P"+AR + y" ]"„=—ih d(u/'dR .

(4.37b)

(4.3 8)

The coupled equations in adiabatic representation are
therefore

[ + B(PR ~AR + R)A] dAd
(4.39a)

or

f(2i )-'[- ed/dR+ (P"+A" + y")"]'+~ }q" =Z&~.
j'

(4.39b)

Before the role of ETF's or coordinate transformations
was understood, the above analysis used to be applied in
the PSS framework. It gave a way of finding the behavior
of P+ matrix elements from assumptions about the adiabatic
potential matrix V. Now we see that the same models
actually give information about P+ +A ++ y+, which is the
quantity of interest.
Equations (4.39) describe the same physics as do Eqs.

(4.31), but in a different way. A crossing of V«and V22
was indicated in Fig. 1(b). The corresponding e~'s have
an avoided crossing. When T(R)»l (R —~) they ap-
proach V&& and V22, and their separation at R„is just
2V,2(R,). Taking the conventions V22) V„and V,2) 0 at
large R (the latter convention can be made to hold by
suitable choice of ihe relative phases of @D, and @~2),

Eq. (4.35) shows that ~ passes from zero [R—~, T(R)
»1] to ~/2 [T(R) « —1)] on going through the crossing,
and the adiabatic states @~ change character: e.g. , for
T-+~, p~~ —@p, while for T« —1, @", ——@f. lf V, 2

Following the transformation rules Eq. (4.4), we have

[P"+AH+ "]~=U~[P +As+ad" ] U inUtifU/-dR

(4.37a)

I
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is small, Eq. (4.35) shows that this change occurs over
a short distance,

dg ~ E( —F2
(4.40)

h. Asymptot/ c near degeneracy

When diabatic potential curves are strongly coupled
but do not cross, there is a somewhat greater variety
of possible behavior than appears in the crossing case.
The case of asymptotic near degeneracy (also called
"perturbed symmetric resonance") is the most compli-
cated of the common situations, and it provides a basic
model within which the simpler situations can also be
understood. This case is frequently called the Demkov
coupling mechanism (Demkov, 1964), and it is repre-
sented in Fig. 1(c).

Assume again that a system can be described by a
pair of orthogonal M-diabatic states with negligible
~~+A" +y". Now suppose these states are nearly de-
generate, with

V22 —Vii -=&(R) (4.41)

small and slowly varying, and assume they are coupled
by V,2(R) such that 2V,2»b, at small R but V,2-0 at
large R. These two states form what we shall call the
"external diabatic" representation.

Another diabatic representation can be formed by a
fixed (R-independent) linear combination of these states.
Using &u = &/4 in Eq. (4.34), the resulting V matrix has

where the force 5'»= —(dV»/dR). Thus if the coupling
between the diabatic states V, 2 is smooth and weak, the
coupling du&/dR between adiabatic states will be abrupt
and strong.

The above describes the behavior of the diabatic and
adiabatic basis states. How does the actual wave func-
tion for the system behave? Various solvable models
and approximat, ion methods show that at low velocities
the system wave function tends to follow the adiabatic
states, while at higher velocities it tends to follow the
diabatic states. This means that if such a higher-veloc-
ity collision is described in the diabatic representation,
the probability of transition from one diabatic state to
the other is small; however, if the same collision is
described in the adiabatic representation, the probabili-
ty of transition from one adiabatic state to the other is
very large. This simply reflects the fact that in order
to pass from the lower energy state to the higher energy
state in Fig. 1(b), a transition is required in the adia-
batic representation, but no transition in diabatic repre-
sentation. Although any collision can be described in
either representation, normally it is most convenient
to use the representation in which couplings and transi-
tion probabilities are small.

One final point must also be noted. For a curve
crossing there is a range of intermediate velocities in
which the system is about equally likely to follow the
diabatic or adiabatic states. This means that in either
representation the transition probability is around;.
Such situations intrinsically involve strong coupling,
and there is no electronic basis set of the types nor-
mally considered in mhich the coupling is weak.

the original A(R) off diagonal and the original Vf2(R)
diagonal. Since the resulting basis states still have &~
+A" + y"=0, they constitute what we call the internal
diabatic" representation.

The adiabatic representation is as usual the one in
which V is diagonal; it is related to the original external
diabatic representation by a transformation matrix U
in which &u goes from zero at large R to &/4 at small R;
hence the adiabatic states vary continuously from ex-
ternal to internal diabatic states. Since ~ will change
most rapidly near R, where T(R,) = 1, the adiabatic
states are strorigly coupled in this region.

In a very slow collision, the system wave function
again tends to behave adiabatically, adjusting continuous-
ly to the changing Hamiltonian, as do the adiabatic basis
states. In a fast collision, the system wave function
tends to stay in the original precollision state. There-
fore it. is most convenient to use the adiabatic repre-
sentation at, low velocities and the external diabatic
representation at high velocities.

There may be a range of intermediate velocities in
which the system behaves adiabatically with respect to
V,2(R) in the internal region, and adiabatically with re-
spect to A(R) in the external region; however it may pass
sua'denly from one region to the other. A "split diabat-
ic" representation is suitable for describing this type of
behavior; We may use the internal diabatic states at
small R and the external diabatic states at large R,
joining the two at some point near R,. This split repre-
sentation contains the physics of the sudden approxima-
tion, and is most convenient when the sudden approxima-
tion is appropriate. Like any other representation, it
can also be used as the starting point of a close-coupling
calculation even if the sudden approximation is not
valid; solution of coupled equations is carried out on.
both sides of the boundary at R„and the solution joined
there. Again, any representation can. be used to solve
any problem, but it is convenient to seek representa-
tions in which the coupling remains weak. "
5. Optimal representations

We now take up the question that underlies the whole
discussion of changes of representation. Of all the Pos-
sible rePresentations of a gAren collision system, can
zee Pick the "oPtimal" one, in Mhich couPling between
the states is as ujeak as Possible '? Although it is un-
likely that a completely general answer to this question
mill ever be found, a cautiously affirmative answer can
be given if the question is suitably restricted.

We consider only partially diabatic and partially
adiabatic representations, in which the coupling between
a pair of states (j, h) is represented either by Vz~ or
&z"~+A&~+ yz"„. Even with this restriction, three more
limitations are evident. First, the "optimal" repre-

~2It is worth remarking that asymptotic diabaticity, that is,
the tendency for a colliding system to obey sldden rather than
adjabafjc connections between internal and external states in
asymptotically near-degenerate manifolds, is a very common
phenomenon. In Sec. IV.B, examples will be discussed in con-
nection with isotope splittings, transitions among fine-struc-
ture levels, and near-resonant charge exchange.
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sentation, if it exists at, all, necessarily depends on. the
collision velocity. Second, for many collision proces-
ses, there is a range of intermediate velocities for
which the system shows an intrinsic strong coupling,
and for which there is no representation of the type con-
sidered here in which the coupling is weak. This point
was emphasized for the curve crossing problem, but it
also holds for other mechanisms.

A final limitation is also apparent. Since the opti-
mal" representation is the one that gives the best zero-
order description of what actually happens in the colli-
sion, it is only possible to give general rules for the
construction of optimal representations if there are
general models that at least approximately describe
the behavior of a wide variety of systems. For curve
crossings, the Landau- Zener model has such broad
applicability, and it has often been used to estimate the
diabaticity or adiabaticity of a given collision. For
states that are strongly coupled but do not cross, an
appropriate model is one first suggested by Hosen and
Zener, These models are based on a number of as-
sumptions and approximations (two-state truncation,
orthogonal M-diabatic representation, classical tra-
jectory formulation, linear crossings, etc. , etc.).
Hence, they lead to formulas for the transition probabili-
ty that may or may not be sufficiently accurate for the
problem at hand. However, the accuracy of the formu-
las is not of concern to us here: Regardless of whether
they are correct to within 1% or only to within a factor
of two, they c~n provide the relatively gross distinction
between essentially adiabatic and essentially diabatic
behavior. We use the results of these models here only
to help us choose a good representation, one in which
an accurate solution may conveniently be obtained.

Within these limitations and restrictions, a simple
prescription can be given for choosing a good repre-
sentation. It must be recognized that we are asking
quite a modest question: For each pair of states (j, k)
in the system, is it. better that the couplings between
them be represented diabatically by V,.», with (I "+A"
+y"),» =0, or adiabatically, by (5'"+A"+y");», with

V,.~=0 7 For a system with N states, we then have
2N(N 1) choices. T—his set of choices can normaLLy be
made by a sequerlce of binary decisiorls, each decision
involving only one pair of states. Although one decision
may influence another, a self-consistent set of choices
can usually Qe reached by beginning Kith the most
strongly coupled pairs.

The procedure for making the binary decision'p can be
condensed into a set of rules or guidelines. As stated
here, the rules assume that the starting representation
is diabatic between the given pair of states under con.—

sideration, so we are deciding whether to diagonalize
Vz» or leave it off-diagonal. (For noncrossing problems,
we assume that an. external diabatic representation is
the starting point. ) The steps in the procedure are

Decide what collision velocity is of primary in-
terest. The optimal representation necessarily depends
on the collision velocity.

2. Examine the curves V,;(R) and V'„„(R)for cross-
ings. If they cross, apply rule 3; if not apply rule 4.

3. For crossing states, estimate the Landau- Zener
parameter,

s„= p~ Q 5p Q dg (4.43a)

= Ad/Nv, (4.43b)

where d is the distance over which 4(R) = V,;(R) —V»»(R)
is compa, rable to V,.„(R),and 4 is the average of A(R)
over that region. Then

(a) If s„«1and t;»n =&1, do not diagonalize V,.»;
use the external diabatic representation.

(b) If s„»1 and i. RzD» 1, diagonalize the V matrix
to use the adiabatic representation.

(c) If s„»1and P«n -.&1, then the "split" repre-
sentation may be used if convenient.

(d) If s„«1and &«D» 1, weak coupling is obtained
in both external diabatic and adiabatic represen-
tations.

5. In the intermediate cases (as for L;Lz =-1 or s„=1,
&Rzn = 1) the problem intrinsically involves strong
coupling, and the choice of representation probably
doesn't matter. Diagonalize V if you are a chemist;
leave it off diagonal if you are a physicist.

Figure 16 summarizes the rules in a simple flow
chart. Examples of their application will be given sub-
sequently.

B. Representations and excitation mechanisms
for specific systems

At last we consider the description of specific sys-
tems. The purpose of this part is to show how the gen-
eral theory developed above is applied to real collision
processes; in particular, the purpose is to display ex-
amples of the coupling matrices in Table IV, to show
how diabatic and adiabatic representations have been
constructed for specific systems, and to explain the
various mechanisms leading to electronic excitations in
slow collisions.

It is useful to classify problems according to (1) the
type of degeneracy, and (2) the specific physical inter-
actions causing transitions. Table V shows the re-
sulting catalog, with columns corresponding to de-
generacy types and rows to the interactions. Some
blocks contain two interactions because both may play
a role in the process, or because they act in similar
fashion. In some cases an example is given to illus-
trate the problem type.

A few general comments are appropriate here.
(a) "Radiai couPLing. " Sometimes the expression

"radial coupling" is used to denote the couplings which

On the other hand, we cannot give here any discussion of
the methods for solving the coupled equations, or of the re-
sulting features that appear in cross sections; those topics are
outside the scope of the present article.

(4.42)

where I'; is the force —(dV;;/dR) and v~ is the classi-
cal radial nuclear velocity at the crossing point. If f«»0.69, diagonalize V,-~ to represent this coupling adia-
batically; if &Lz ~ 69 d t di g

4. For noncrossing states, estimate the two param-
eters
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RULES FOR OBTAINING A USEFUL
PARTIALLY OIABATIQ REPRESENTATION

1V
ESTlMATE

~S = vh J(F - Fgh

i(~i »1 l(~SI ESTIMATE s = f h dt/h

[ I sl » 1 ORlsl ™1
DON' T

DIAGONALIZE

"mn-
(Diabatic

Representation)

ESTIMATE g = (kd/hv)

I sl » 1, ( ~D && 1

Reps—~tionj
I s Il

—1,f Rz'0 (( 1

DETERMINE what collision velo:itles v are of primary interest;
DETERMINE matrix elements of h for dlabatlc basis states;

,
FOR EACH PAIR OF STATES {m, n) EXAMINE diagonal elements for CROSSINGS.

h and h„GRGSS: h and h„„DONOT CROSS:

+
IDENTIFY: (h - h„„)—= h, (R) (externally dominant

interaction); h „=V (R) (internal interaction,
V-OasR- ~)

DON' T
DIAGONAL I ZE

mn'

(Use external
diabatic rep. ,

6 diagonal,
V off-diag. )

Isl »1, $ RZD(&1
+

DON'T DIAGONALIZE h

(Use "split diabatic" rep. :
internal diabatic rep. where
V is dominant, external
diabatic rep. where+ is
dominant, and match in
competition region).

DIAGONALIZE
"mn:

(Adiabatic
Representation)

FIG. 16. Rules for obtaining a use-
ful partially diabatic representation.

TABLE V. . Degeneracies and interactions. The number in parentheses in each box indicates the subsection in which the corre-
sponding problem is discussed.

Inter action

Degeneracy
type a=0

(united atom)
R =R„

(curve crossing)
+~oo

(asymptotic)
Cont inuum
mediated

Isotopic
splitting

H'+ Q —H+ Q'
(IV.B.5)

Spin-orbit
coupling

Angular
coupling

H +H(l~) —H'+H(2P)
(IV.B.2)

Tr iplet- singlet
and other DS & 0
transitions (IV.B.l)

Rotational
transitions
(zw, &0«)

Transitions among
fine-structure
multiplets and
components
(IV.B.7)

Electrostatic
two-elec tron
(CI)

Avoided crossings
of valence-shell
levels (CI of SCF
conf igurat ion s)
(IV.B.3.a)

Resonant and
near -r e sonant
excitation and
charge exchange
(IV.B.4 and IV.B.6)

Electron detachment
and coll isional
auto ionization
(IV.B.8)

Electrostatic
one-electron
(SCF effects)

Avoid crossing of
inner-shell levels;
covalent-ionic
tr ans itions
(IV.B.3.b and
IV.B.3.c)
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arise in an adiabatic representation due to the matrix
II "(R); in particular, this expression most often refers
to the adiabatic representation of electrostatic cou-
plings. "Radial coupling" is not, therefore, a separate
physical interaction, but a way of describing any other
type of interaction in an adiabatic representation.

In contrast, note that we have included the angular
(Coriolis) coupling in the table. Like the radial cou-
pling this is a dynamic interaction arising from the
nuclear motion (in this case, the rotation of the molecu-
lar frame of referen'ce). However, in a partial-wave
expansion, angular coupling appears as a distinct "po-
tential' matrix [see Eq. (4.25)]., and it is easiest to
think of it in' this way.

(b) Russell Saund-ers vs j jcoup-ling context. Here
we normally assume the context of Russell-Saunders
coupling; that is, we assume that the intrinsic strength
of ato~ic spin-orbit interactions is substantially less-
than that of electrostatic interactions. While this situa-
tion is most common, there are of course problems
where the opposite condition holds (j-j coupling
scheme), and our discussion can be modified accord
ingly.

(c) Selection rules Th.ere are two ways of using se-
lection rules in atomic collision theory. One way is to
examine the symmetries of the full quantum Hamil-
tonian H. One then finds the obvious conservation laws
for total energy and total angular momentum. In addi-
tion, for identical nuclei, 4 must be either symmetric
or antisymmetric with respect to exchange, and this
symmetry is, of course, conserved in any collision.
Finally, also for identical nuclei, the parity of elec-
tronic states (symmetry on inversion of electrons
through the center) is conserved. So we have the
rigorous rules (see Herzberg, 1950, pp. 212—218 and
240—245)

EE=Q,
~2=0,
AM~ ——0,
sym + anti

identical nuclei only.g+ u

A second way of using selection rules involves ex-
amining a specific representation and asking which cou-

pling matrices connect a given pair of basis states in
that representation. The resulting selection rules then
obviously depend upon the symmetries that are built into
the chosen representation. Let us examine the selection
rules associated with a, Hund case a representation (ap-
pendix) in which the electronic states are denoted
~~A(~)& ~SZ&. Besides the quantum numbers used to
label the states, there are two other quantum numbers
that can be considered: A=A + Z, and (a) symmetry of
the electronic state on reflection through any plane con-
taining the nuclei. This reflection operator does not
commute with L„soin general a basis function cannot
be characterized by both A and a symmetry, but one
can construct states having a symmetry as combinations
of pairs of states having (L, ) =+Ah.

Table VI gives selection rules for each of the coupling
matrices. Selection rules involving A, y, etc. were ob-
tained on the assumption that s has the form (3.38) with
f a cylindrically symmetric function. Parity (m) is a
quantum number only for symmetric systems (equal
nuclear charges). For systems with identical nuclei,
none of the matrices connect states of opposite parity.
For symmetric but heteronuclear (isotopic) systems
P and A connect states of opposite parity, but P + A does
not (the two cancel). Parity-violating coupling for such
systems is contained in the matrix I.

Rules of this type are helpful in identifying the mecha-
-nism of a particular transition. For example, if one
sees a transition for which AS=1, one knows that it
must arise- from spin-orbit coupling, since no other
matrix connects such states. Conversely, if one knows
that spin-orbit coupling is negligible in a particular sys-
tem, then one arrives at the additional selection rule
~S=Q. One also notes that, for example, ~A=+2 does
not appear anywhere in the table. This does not mean
that such transitions are impossible; rather that they
can only be described (in this representation) as oc-
curring through a sequence of intermediate transitions
having &A =a 1. Let us now examine specific cases.

1. Curve crossings coupled by spin-orbit interaction

Crossings between Born-Oppenheimer energy levels
coupled by spin-orbit interactions are the paradigms
for defining a diabatic representation by partitioning
of the V matrix (Sec. I&.A.3.d. iii). Recall that we de-

TABLE VI. Selection rules for coupling matrices in case a representation. 0 means the quantity is
conserved (e.g. , S does not connect+ to —states}. See text regarding parity.

BOS, k

SOC

~A ~A pA ~R

Je,we,

0

+1, 0

0

+1, 0

+1, 0

0

+1, 0

g, Q ~gpQ

+ ~+

(+ —,——+weak)

+1, 0

0

0

+1, 0

+1, 0

+1, 0

+1, 0
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Born-Oppenheimer states give a better zero-order description
than do the adiabatic states.

2. Angular coupling in the united-atom limit

A very important class of transitions involves the
angular Gr Corlolls coupling 1n the united-atom limit
(R —0). Molecular levels which are orbitally degen-
e»te (same n, I) a,s R —0 chars. cteristically dissociate
to very different energy levels of the separated pro-
ducts. Hence collisions which carry a system into the
region of such orbital degeneracy can produce very ef-
ficient, strong-coupled excitation by angular coupling.

The prototype for such processes is the reaction

H'+ H(ls) —H" + H(2P),

which was first treated by Bates and Williams (1964)
using the straight-linc-path impact parameter method;
a more complete study was later done by Knudson and
Thorson (1970) (see also Bates and Sprevak, 1970). The
universality of this process as a mechanism for elec-
tronic excitation, and especially for inner-shell vacan-
cy production, has been widely recognized, and num-
bers of calculations employing it have been done (Briggs
and Macek, 1972; other references are in Sec. IV.B.3.b).

In the H,
' system the 2po„level [which dissociates to

H'+H(ls)] and the 2P~„level [which dissociates to
H'+H(2P)] are essentially degenerate for R ~ 1.0 a.u. ,

as Fig. 18 shows. The two states are connected by
angular coupling, v(Pe+As + y") inthe classical tra-
jectory formalism (or Q in the quantum formalism).
The momentum-transfer term y vanishes because the
basis states are eigenfunctions of ABO. Coupling arises
mainly from

v P =—(vob/R2)(2P7t„~ L„i 2Pv„), (4.47)

v being the asymptotic relative nuclear velocity and &

the impact parameter corresponding to angular momen-
turn Nk.

The A -matrix element can be neglected at small R,
but at large R it cancels a long-range term in P. ~

(as was shown in Sec. II.B.2.a and Sec. II.C.4). To
see this, let us write the molecular states in I CAO
approximation and consider the matrix element
(2P„~L,~ls„).Since the electron coordinates are de-
fined relative to the center of mass of the nuclei, we
may write

L =L + ~iSRB/Bx~,

where x~, y„areaxes referred to atom A (cf. Fig. 5).
The second term couples l~„and 2p„states, and it
increases linearly with R, giving P a long-range A '
behavior. This long-range coupling is physically
meaningless, however, and it is canceled by the A,

matrix element, which therefore changes the molecular

(b) (d) (e)

(3.

FIG. 18{b) Botational coupling in the transition H+ +H(1s) —H+ +H{2p). Collisions in which the nuclei scatter to 90 are repre-
sented.

(a)-(e) illustrate a very slow collision.
(a) The electrons begin in the ungerade superposition of 1s atomic states.
(b) For small internuclear separations, this state becomes a 2pcr united-atom state.
(c), (d) Ef the internuclear axis rotates slowly, the electronic state follows.
(e) As the nuclei move apart, the electronic state again becomes the ungerade superposition. of 1s states. No transition has oc-

curred.
(f)-(j) Illustrate the consequences of more rapid motion on the same path.
{f), (g) Just as {a), (b).
(h) If the internuclear axis rotates too rapidly, the electronic state might not follow.
(i) As the axis rotates further, the electronic state becomes 2pvr.

(j} The 2p7t. molecular state dissociates into the ungerade superposition of separated-atom states. The transition occurred be-
cause the electrons could not follow the rapidly rotating internuclear axis.
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L, to the atomic L, or L,
Angular coupling arises as a dynamic effect from the

rotation of the molecular frame of reference. However,
for the purpose of defining diabatic and adiabatic repre-
sentations, it is most convenient to treat it as "just
another term" in V, and to discuss it in exactly the
same way that we discussed spin-orbit coupling. It
connects Born-Oppenheimer states of different A (AA = ~ 1)
which are not connected by h» or P; hence Born-Oppen-
heimer states may be said to be "diabatic with respect to
angular couplings. " On the other hand, in a representation
made up of nonrotating atomic or molecular states,
angular coupling would not appear, and h would be non-
diagonal; such a representation could be called 'adia-
batic with respect to angular couplings but diabatic with
respect to electrostatic couplings. " Such states are
suitable for describing intermediate-to-high- velocity
collisions, or other situations in which the coupling to
the internuclear axis is weak (corresponding to Hund's
eases d or e; see Appendix ). Still another representa-
tion can be constructed which is adiabatic with respect
to both electrostatic and angular couplings. It is ob-
tained by diagonalizing h Bo+ve(Pe+Re). Knudson and
Thorson called this the X representation, and used it
for some of their numerical calculations on the H2' sys-
tem. However, they found that it offers no particular
advantages'. By estimation of typical matrix elements
and application of the rules of Sec. IV.A.5 one concludes
that the "diabatic" Born-Oppenheimer representation is
generally preferable to this fully adiabatic basis. '4

force of the nucleus. (ii) Alternatively we might take
Ao to be the Hamiltonian for Hartree-Fock self-con-
sistent field (SCF) states; this includes an averaged part
of the electron-electron interaction. && would be the dif-
ference between the actual Hamiltonian and the SCF
Hamiltonian. This method should work whenever the
SCF method gives a sufficiently accurate description of
the molecular states.

Unfortunately, these two partitionings frequently fail
to give adequate diabatic states, and no other general
partitionings of hBO present themselves. The frustra-
tions attendant on such calculations had led many
workers to conclude that no satisfactory definition of
diabatic states existed.

The approach taken here circumvents this difficulty
in the following way. We say that partitioning does not
provide the definition of diabatic states; instead it pro-
vides a cQlcuzational technique whj. ch may or may not
be adequate for any given problem. The definition of
diabatic states is given in Sec. IV.A by the requirement.
that selected parts of ~" +A.~ vanish. For those cases
in which an acceptable partitioning cannot be found,
diabatic states can be constructed by one of the other
methods given therein. With this in mind, let us ex-
arnine several specific cases.

a. Coup/lIng of SCF configurations

The SCF method was used to define diabatic states for
the He —Ne system. Theoretical analyses of experi-
mental studies of the process

3. Avoided crossings having electrostatic interactions He'(12S) +Ne(2 'S) —He'(1 'S) +Ne (3 '3P) (4.48)

In the previous cases, diabatic and adiabatic states
we' re constructed by partitioning the coupling matrix V.
Diabatic states were taken to be eigenstates of the elec-
trostatic part of V; the remaining part of V (spin-orbit
or angular coupling) connected states of different sym-
metry, for which I'"+A" matrix elements vanish. In
much of the literature it has been assumed that this
partitioning technique constitutes the operational defini-
tion of diabatic states. Such partitioning runs into dif-
ficulty, however, when the transitions of interest are
caused by electrostatic interactions, because the elec-
trostatic part of the Hamiltonian does not separate it-
self neatly into large and small parts.

Certain partitionings have been found to give accep-
table diabatic states in special cases. Writing

two possible partitionings are immediately apparent:
(i) We might take ho =electron-nuclear and nuclear-
nuclear interaction, h& ——electron- electron interactions.
Such an approach has been. used for inner-shell transi-
tions of heavy atoms, for which the interelectron repul-
sion is much smaller than. the very strong attractive

~4Angular couplings can also cause transitions at curve
crossings involving states of different A with the selection rule
QA= +1. Such situations are not unlike spin-orbit transitions,
except that the coupling matrix element depends upon the col-
lision velocity and the impact parameter [Eq. (4.47) j. Russek
(1971) has examined this case.

had already suggested that the transition was mediated
by a, crossing of (HeNe)' molecular terms (Smith,
Marchi, Aberth, Lorents, and Heinz 1967; Coffey,
Lorents, and Smith, 1969; Smith, Fleischmann, and
Young, 1970; Olson and Smith, 1971; Baudon, Barat,
and Abignoli, 1970; Bobbio, Doverspike, and Champion,
1973.) To calculate the relevant energy curves, Sidis
and Lefebvre-Brion (1971) calculated SCF molecular
orbitals by expansion in Slater-type orbitals with
screening constants chosen to optimize the wave func-
tions for the separated atoms. The resulting eigen-
values are shown in Fig. 19(a) and some of the signifi-
cant configurations are identified in Table VQ. Con-
sider pa, irs of states such as (B, C) or (C, E) which dif-
fer by two or more orbitals. These are not coupled
either by the SCF Hamiltonian or by I'", both of which
are effectively one- electron operators. Normally the
form of s„(r,R) will be chosen such that A" is also the
matrix of a one-electron operator, so it also will not
connect such pairs. Since, however, these configura-
tions are coupled by the two-electron part of the Hamil-
tonian, the SCF calculations are providing a partially
diabatic representation of the system: The SCF repre-
sentation is adiabatic with respect to the one-electron
self-consistent field, but diabatic with respect to the
remaining two- electron interactions in h Bo.

When the coupling matrix elements were examined,
Sidis et al. found that those linking states C, ~ and
C'E' were quite large, 5 eV or more. Since the colli-
sion energies of interest were below 500 eV, rule 3 of
Sec. IV.A. 5 says that such pairs should be described
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TABLE VII. Some p' configurations for the (He-Ne)' system.
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I
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adiabatically, and this is exactly what Sidis and
Lefebvre-Brion did. The resulting curves are shown
in Fig. 19(b). There remains a, crossing between B
and new C, C' states for which the coupling is quite
sma. ll (-0.25 eV). This could also be diagonalized if
desired, but that would 1.ead to a less convenient repre-
sentation.

FIG. 19. (a) Potential energy curves for the (HeNe)' molecular
ion computed in the single-configuration approximation. (b)
Energy curves for the (HeNe) system after diagonalization of
the 4 x4 CC'EE' block of the Hamiltonian (from Sidis and
Lefebre-Brion, 1971).

h. Inner-sheII exc/ ta/t ans

Since inner-shell electrons are so much more tightly
bound than those in valence shells, inner-shell collisional
excitations occur only at energies much higher than those
that are appropriate for slow-collision excitations of va-
lence electrons. For collisions fast enough to disturb in-
ner shells, effects on outer shells are violent and chaotic;
not only can multiple ionizations and excitations by di-
rect impact occur, but also a variety of complicated
secondary electronic effects, and theoretical under-
standing of these is not yet very advanced (one approach
has been developed by Garcia and Schmid, 1976, 1977).

However, if vacancies are created in inner shells, it
is possible to identify these separately, from the high-
energy electrons or photons subsequently emitted
through autoionization, Auger effect, or x-ray emis-
sion, and such specific inner-shell processes have
been the subject of much experimental study. Of
course, if the collision energy is really high, inner as
well as outer-shell excitations can be treated by Born-
type approximations or classical models such as the
binary encounter approximation. At lower energies,
however, the observed selective nature of inner-shell
excitations (especially the existence of rather sharp
onset I„hresholds) soon led to the recognition that inner-
shell molecular orbitals and their potential energy
curves play a crucial role. Though "fast" for valence
electrons, a collision may be "slow" for the much
more tightly bound inner-shell electrons, and many
concepts developed for valence shell processes can be
applied to inner-shell problems too.

The special feature of inner shells of atoms is that
the electron-nucleus attraction strongly dominates over
the electron-electron repulsion. Because of this, the
independent particle Hartree- Fock or molecular-orbi-
tal picture is more accurate for inner shells than for
valence shells, and inner shell transitions can be de-
scribed quite well by considering the behavior of one-
electron orbitals and their energies.

Although (as usual) quantitative calculations would re-
quire knowledge of the orbital energies as functions of
internuclear separation, a good deal of qualitative in-
formation can be obtained simply by examining the cor-
relations between united-atom and separated-atom
states.

Adiabatic correlation diagrams are obtained using
rules given by Mulliken (1928) (see also Herzberg,
1950, p. 329). For equal nuclearcharges , the orbitals
have conserved angular momentum about the internu-
clear axis P.) and conserved parity (g, u); correlations
are made by connecting united-atom and separated-
atom states with no crossings between states of the
same symmetry. Atomic orbital energies include ef-
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fects of screening of the nuclear charge by the inner
electrons, so„for example, the energy of the 2s orbital
lies below that of the 2p orbital. The resulting correla-
tion diagram is shown in Fig. 20(a).

Such a diagram can be used to suggest pathways for
specific excitations by degeneracy-mediated transitions.
For example, it shows that an electron could be excjted
from the o„ls=2Po.„orbital to the 2P~„=—&„2Porbital
through the degeneracy in the united-atom limit, as
discussed in Sec. IV.B.2. (Of course such a transition
ean take place only if the latter orbital is empty; hence
workers in this area usually speak of the propagation of
holes rather than of the excitation of electrons. ) On the
other hand the diagram also suggests that transitions
involving the 2so~=v~2s orbital are very unlikely, be-
cause the energy of this state never closely approaches
that of any other state of g symmetry.

As experiments in this area progressed, it was quick-
ly recognized that this adiabatic correlation diagram
was inadequate. Many specific and apparently degen-
eracy-mediated transitions occur that are not predicted
by this diagram. This led Lichten to suggest that some
sort of diabatic correlation diagram might be more
appropriate (Llchten, 1963, 1967, 1980; Fano and Llch-
ten, 1965; Barat and Lichten, 1972.)

Again because of the dominance of the electron-nu-
cleus interaction in inner shells, one possible set of

united atom molecule

ng+nq+ A+ &,

yg„+g, (4.49a)

diabatj. c states is obtained by partitioning the-electro-
static Hamiltonian into electron-nuclear and electron-
electron parts. The Schrodinger equation for one elec-
tron in the field of two bare nuclei is separable in pro-
late spheroidal coordinates (Slater, 1963, p. 1), and
each orbital is characterized by three quantum num-
bers, n~, n„,and v~= X [8 and q a,re the spheroidal co-
ordinates (~~+ x~)/R and (x„—xa)/R]. These quantum
numbers correspond to conserved 'symmetries ' that
provide a correlation between united-atom and sepa-
rated- atom states.

To make this correlation for a symmetric molecule, let us
first examine the orbitals close to the united-atom limit. Here
the spheroidal coordinates {(,g, @) go over to spherical coor-
dinates (x, I9, p), and the orbitals go continuously into hydro-
genic united-atom states characterized by quantum numbers
(yg, ), ng). Now n& is the number of modes in the (-dependent
factor in the wave function, and this must go to the number
of radial modes in the hydrogenic state, n„=z—) —1. Like-
wise yz„ is the number of modes in the g-dependent factor, and
this must be equal to the number of 0 modes, n& =E —m.

The azimuthal quantum number X for the molecule is the
same as m for the atom. Hence we have the correspondence
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FEG. 20. (a) Adiabatic molecular orbital correlation diagram. (b) Diabatic molecular orbital correlation diagram.
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molecule separated atoms

nfl
2n„' or 2n„'+1, {4.49b)

The resulting correlation diagram is shown in Fig. 21.
It differs significantly from that in Fig. 20(a): the
neglect of screening by inner electrons leaves more de-
generacies in separated-atom and united-atom limits,
but, more important, it allows a higher degree of
"promotion" of orbitals and more crossings of states.

The separated-atom limit is more complicated. The molecu-
lar orbitals do not correlate uniquely to atomic states of given
(n, l, m): such states are mixed by the field of the other "dis-
tant" nucleus (Stark effect). For example, in the n =2 level,
the appropriate separated atom eigenfunctions would be the
linear combinations of degenerate states 2@+2p~, 2g —2p~,
2p„, 2p . (The effects of screening of the nuclear field by
inner electrons, which would split this degeneracy, are still
being ignored. ) Because of the Stark effect, the separated
atoms should be described in parabolic coordinates, which are
the limit of prolate spheroidal coordinates as R —~ (see
Condon and Shortley, 1959, p. 398; Bethe and Salpeter, 1957,
p. 228).

The corresponding quantum numbers for the separated
atoms are denoted n&, g„',m' = X. These quantum numbers
again count nodal surfaces of each type. Now, each ellip-.
soidal nodal surface of the molecule must go over to a para-
bolic nodal surface of the separated atoms, so we must have
n&=n&. The hyperbolic nodal surfaces of the molecule are
divided between the two atoms: half go to A and half go to B,
with possibly one left over. Thus we have the correlations,

Note, for example, the crossing of the 2scr~ and 3da~
orbitals which might mediate a transition from the 2so~
level.

The effects of screening of the nuclear field by inner
electrons are not easy to guess without a quantitative
calculation. In the separated-atom limit and in the
united- atom lim it, this s cr een ing caus es orbitals of
higher & to have higher energy, and because of this,
Barat and Lichten originally suggested another correla-
tion diagram in which, for example, the crossing be-

1

tween 2so, and 3'~ states does not appear. However,
quantitative calculations made by Larkins (1972) and
Eichler, Wille, Fastrup, and Taulbjerg (1976) showed
that the Barat-Lichten correlations were incorrect in
that one aspect. Correlations obtained by Eichler et al.
are shown in Fig. 20(b).

Figure 22 shows their quantitative calculation of mo-
lecular orbital energies for the Ar-Ar system. Because
screening was included, the crossings involving orbitals
of the same symmetry are represented adiabatically as
avoided crossings. Estimating the coupling strength and
the forces in these regions, and using the Landau-
Zener formula (rule 3 of Sec. IV.A. 5), they showed that
the system usually behaves diabatically at the collision
velocities of interest, in accord with the correlation
diagram [Fig. 20(b)].

At present there remains some uncertainty about the
size of the h, 2 matrix element, and particularly about
how its magnitude varies as different systems are con-
sidered. Obviously, whenever it is large, the system
behaves adiabatically over a larger velocity range. The
assumption of adiabatic behavior at the crossings in-
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FIG. 21. Correlation diagram for 0. states of a symmetric,
one-electron system, as given by Barat and Lichten.

'35

30

3d '

—2p
2$

0
LP
LLI

W

-SOO
/

Wlo —Is

Ar+Ar

LI I I I I j I I I I I I I i I I I I I

0.5 I.0 I.S 2.0
INYERNUCI. EAR DI$TANCE {a.u. l

FIG. 22. Molecular orbital energies obtained by Eichler et al.
(1976) for the Ar-Ar system. Energies of orbitals having the
same symmetry avoid crossing, and the diabatic correlation
diagram is obtained by drawing smooth crossing curves through
these regions.
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dicated by boxes in Fig. 22 leads to the Barat-Lichten
correlation diagram. As of this writing, a definitive
theoretical calculation of h;& matrix elements is not
available, but relevant experiments have been carried
out by Meyerhof et al. (1979).'5

c. Co valent Ionic transi tions

Many systems of special interest in chemistry exhibit
transitions from a covalent state, in which the active
electron is shared by the two atoms, to an ionic state,
in which the active electron is associated primarily with
one atom. Transitions that occur by this mechanism
include

Na+ Cl =Na'+ Cl-

4-
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and more generally

M+X M'+~ (4.50)

where M is an alkali atom and X is hydrogen or a halo-
gen. Such systems have long been. the subject of re-
search (Polanyi, 1932; Magee, 1940, 1952; Bates and
Boyd, 1956; Berry, 1957).

In the simplest model of such reactions, the energy of
the covalent state is taken to be approximately indepen-
dent of R at distances greater than about 5ao: .

Izzz (R) —constant, or perhaps ——C„„/R6 (4.51)

—2a. ,o /Rz —Cion/R + A exp( —R/p), (4.52)

where 0., and e are the polarizabilities of the positive
and negative ions, and the other constants are empirical
or semitheoretical parameters. This intuitive picture
immediately provides the crossing diabatic curves (Fig.
23), and much can be learned about the behavior of
these systems by simply guessing a. form for h„(R)and
solving the resulting coupled equations (see, for exam-
ple, the review by Baede, 1975, and work by Faist and
Levine, 1976).

A complete ab initio calculation would include evalua-
tion of the coupling matrix element h, 2, but obtaining a
simple estimate of this quantity is not so easy. From a
large amount of theoretical and experimental informa-
tion on charge transfer processes, Olson, Smith, and
Bauer (1971) obtained an empirical correlation between

More detailed reviews of theory and experiments on inner-
shell excitations have been written by Garcia, Fortner, and
Kavanaugh (1973) and by Briggs (1976). Since then work in this
area has remained very active; for an overview of recent
work, the best source is the ICPEAC proceedings.

The ionic state has a higher energy as R —~. The
asymptot, ic energy gap ~ is equal to the difference be-
tween the ionization potential of M and the electron af-
finity of ~. However, because of the long-range Cou-
lomb attraction between the ions (and the smaller inter-
action between the cha. rge and the induced dipole), the
energy of the ionic state decreases substantially with
decreasing R, so that at some (usually fairly large) dis-
tance it crosses the covalent curve. A good empirical
representation of the ionic potential curve was proposed
by Bittner (1951):

Iz22(R) =& —1/R —(n, + n )/2R4

FIG. 23. Approximate diabatic and adiabatic potential energy
curves for the Li-I system, showing the crossing between co-
valent and ionic states. E~~ and E22 are the corresponding
adiabatic levels, and the Li -I asymptote is also shown (Faist
and Levine, 1976).

Iz, z(R„)and R„.Their empirical correlation is given by
the following formula: Define

R 12 12(Rx)/(I1I2)

R„=~ [(2') + (2Iz) ] R„,
where I&, I2 are the ionization potential or electron af-
finity for the initial and final states of the exchanged
electron; then

H"„=R„exp(—0.86R„"). (4.53)

[@.(I)@.'(2) + @.'(I)@.(2)][~(1)P (2) + P (I)o(2)] (4.55)

where @„'is usually taken to be a rather diffuse orbital
centered on the %atom (Chandrasekhar, 1944; Shull and
Lowdin, 1956; Goddard, 1968).

If &f&„, @„,and @„'are fixed so that they give the best
possible description of the separated atoms, then these
wave functions, [Eqs. (4.54) and (4.55)], form an F-di-
abatic basis. Using such a basis, Numrich and Truhlar

Their graph of II~2/R„" vs R„is shown in Fig. 24; the
points represent values for various specific systems,
and the solid line is the empirical correlation (4.53),
which is a least-squares fit to the points. They find that
83%%u~ of the data fall within a factor of 3 of this line. This
empirical correlation is helpful for first estimates, but
it has limited usefulness for quantitative calculations be-
cause cross sections are often quite sensitive to the
value of /z» (the Landau- Zener formula contains IzIz in
an exponent), and a small error in )z» can become a.

large error in the calculated cross section.
For ab initio calculation of k&2, wave functions are

needed for the covalent and ionic states. Alkali hydrides
(e.g. , LiH, NaH, etc. ) can be treated in good approxima-
tion as "two-active-electron" systems, and the Heitler-
London valence bond form gives a simple wave function
for the covalent state:

[(f)„(1)(f)„(2)z $„(1)g~(2)][n(1)P (2) w P (1)o(2)]. (4.54)

The ionic state is more difficult to describe accurately,
but one possible wave function is
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and I'" matrix elements through a large variational
calculation, (ii) identifying the displacement part of P~
either by inspection or by one of the methods for cal-
culating A", and (iii) calculating the transformation ma-
trix W satisfying Eq. (4.30). The critical question in
this approach is whether the results will be sensitive
to A, and if so, whether a suitable A" can be speci-
fied. (Of course, once the adiabatic P~+A~ is avail-
able, it is not clear whether or not construction of di-
abatic states is worth the effort. ")
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FIG. 24. Empirical correla'tion between H~& and R„*obtained by
Olson, Smith, and Bauer (1971).

(1975) have carried out very detailed calculations of po-
tential energy curves and coupling matrix elements for
some alkali hydrides (NaH, KH, and 1VI'gH'). Their
calculations show quite clearly the problems associated
with the use of limited E-diabatic basis sets. For ex-
ample, since their basis was not large enough or flexi-
ble enough to account for polarization of the ions, they
had to add an empirical polarization potential to the
ionic curve. Also, since the wave functions (Q„,Q„,@„')
did not represent exact atomic states, empirical ad-
justments to the energies were made at R = ~. Even
with such adjustments, it was found that the calculated
energy curve for the ionic state of NaH was insufficiently
attractive to cross the energy of the lowest covalent
state. The existence of such a. crossing is not disputed,
however; more flexible wave functions should give
lower energies, and perhaps show this crossing.

Calculations with larger or more flexible basis sets
can be made; for example Brown and Shull (1968) ob-
tained quite accurate energies for the LiH molecule
using a many-term wave function containing explicit
correlation. However, such calculations ultimately
lead to the Born-Oppenheimer states, which provide
the adiabatic, non crossing representation. A parti-
tioning of the electrostatic Hamiltonian that is suitable
for accurate calculation of diabatic states for these sys-
tems has not been found.

However, this does not mean that diabatic states are
not defined for such systems —it only means that they
are not very accessible. They can still be defined by
the requirement that selected parts of I' +A vanish.
Probably the only way they can actually be constructed
is by (i) obtaining adiabatic Born-Oppenheimer states

4. Resonant charge exchange

Resonant charge exchange, as in

H'+ H(ls) —H(ls) + H', (4.56)

5. Charge exchange in isotopic systems

The process
H'+ D(1s) —H(ls) + D' (4.57)

is the paradigm for this type of collision, that involves
symmetric but not homonuclear molecules. The reac-
tion as written is endothermic by about 30 cm '
= 0.0037 eV, because the reduced masses for the elec-
tron are different on H and D. If this difference can be
neglected, then it is intuitively obvious that this pro-
cess must be identical to Eq. (4.56).

Such a result does not, come directly out of the un-
modif ied PSS theory, however. The Born- Oppenheimer
wave functions and energy levels are essentially the
same for H,

' as for HD, but the P matrix is quite dif-
ferent. Since &„is to be evaluated holding r' fixed

Other calculations of h~2 for covalent-ionic transitions have
been made by Adelman and Herschbach (1977) and Janev and
Radulovic (1978), See also the review by Janev (1976).

has been well understood for many years (see, for ex-
ample, Mott and Massey, 1965, pp. 430ff, and Maple-
ton, 1972, Chapters 1 and 2). As in Sec. II.B, an
atomic state representation, which is diabatic with re-
spect to the electrostatic interaction between the elec-
tron and the incident proton; is suitable at high colli-
sion velocities. Corresponding adiabatic states are
just the Born-Oppenheimer electronic states for H, ',
and their energies can be calculated exactly by sepa-
ration of variables (Fig. 18). The lowest two states
have, respectively, g and u symmetry, and they are
therefore not coupled by electrostatic interactions or
by PR

As discussed in Sec. IV.A, the A matrix has been cal-
culated for this system using several methods. Since the
switching functions have ungerade symmetry, A does not
couple g to u states, and it vanishes in the two-state
(1sa~, 2po„)manifold. 1 vanishes because the states are
eigenfunctions of h, and for identical nuclei, none of
the matrices in Table Ig 'have couplings between g and
u states. The I matrix has nonvanishing, but very
small, diagonal matrix elements, which are usually
neglected. Accordingly, resonant charge' exchange is
described as coherent elastic scattering on the two po-
tential curves e~, e„(ore, +I~, e„+I„if this level of ac-
curacy is needed).
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relative to the center of mass of the molecule, a cou-
pling between g and n states arises which does not go
to zero as the nuclear masses go to infinity [Eq. (3.28)].
This fact was one of the reasons we developed the the-
ory in Sec. III.C. It is now easy to show that the "fic-
titious" (g, u) coupling of Eq. (3.28) is exactly canceled
by the A-matrix element, so in this level of approxi-
mation the scattering in HD' is identical to that in H2'.

At very low energies (threshold to -0.1 eV) the re-
duced- mass discrepancy becomes significant. Its ef-
fects are contained in the I matrix, which has both di-
agonal and off-diagonal (g, u) elements. In the limit as
A —~, one can show that the matrix elements of I be-
tween degenerate states are

k2
I~ (R —~) = —

& Q» ~ Vz I p„&for e~ =s„.
2p,

(4.58)

Consider the states P„„,@„whichwere defined in Eq.
(3.12); these are like atomic A and I3 states, but they
are scaled by the molecular electronic reduced mass.
As R —~, the g and u Born-Oppenheimer states become
linear combinations of these two states. It is easy to
show from Eq. (4.58) that (at large R)

=-,'-g'(m„-' —m-')&@„ Iv',
I y„&, (4.59)

h~(m ' —m ')&@„ Iv~ y„), (4.60)

I„~(R—~) =0.
and from this we obtain the matrix elements of I in the
molecular representation

I~~(R —~) =I„„(R—~)

h '[,'- (I,-'+ m„-')—I-']&@„
I
v'„

I y„&,
(4.61a)

I~„(R—~) = I„g(R—~)

(mi' —~~')&y. , Iv'„,I y.,&. (4 61b)

Conversely, by starting from the Born-Oppenheimer
states and diagonalizing 6+I as R -~, essentially
exact atomic state energies are recovered.

These collisions provide an example of asymptotic
near-degeneracy. The Born-Oppenheimer states are
adiabatic with respect to electrostatic interactions,
which dominate at small R, but they are diabatic with
respect to the electron-reduced mass ("isotopic") cou-
pling I, which dominates as R —~. They therefore con-
stitute the internal diabatic representation. There are
several ways to choose an external diabatic representa-
tion. The atomic states p„„,@„(or@„'„,&j&„' ) are S'

diabatic, but only suitable for fast collisions. An M-
diabatic representation is obtained using linear com-
binations of exact Born-Oppenheimer states,

@."= (@.,—@.„)/~2
y~ = (y + 0 .„)/M2

These two states go to @„,@„asR —~, but they are

orthogonal at all R. They are diabatic with respect to
the electrostatic interaction within a given (g, u) pair,
but they are adiabatic with respect to electrostatic
couplings to other states, i.e.,

&y&II „Iy„'&=0,a~n

we also find that this is large. To estimate g„»,& is

ci

CS

e
C

ILJ

LJ

C
O

LJ
O

UJ

-- ~ =-—'(~ 1~)b 2 b

--&,'=- '
(m Imo)

{m/mo ~

FIG. 25. Qualitative energy diagram for an electrically sym-
metric but heteronuclear ("isotopic" ) molecule. Solid lines
are Born-Oppenheimer eigenvalues, ~(10g), e(lo-n), vs R.
Dotted lines are fully adiabatic eigenvalues, obtained by di-
agonalizing h, +I. The isotopic splitting is exaggerated several
thousandfold for clarity.

For either definition of the external diabatic representa-
tion, I is diagonal at large R.

There is a representation which is adiabatic with re-
spect to both electrostatic and isotopic coupling. It is
obtained from the Born-Oppenheimer representation by
a 2 x 2 mat;rix U which diagonalizes 0+I. The states
change their character continuously from atomic at
large R to molecular at smaller R; the change is most
rapid-in the critical region in which h» is comparable
to the isotopic energy gap, I» —I». The eigeovalues
S~ of 0+ I are the energies of these states, and they
also go continuously from atomic to molecular limits
as indicated schematically in Fig. 25. Coupling between
these adiabatic states is caused by the term
II &(—ihV~U).

How does the system actually behave, and which
representation is most convenient for describing that
behavior'? To illustrate the rules given in Sec. (IV. A.5),
we carry them out in detail for this case. The energy
range of interest is from 0 to 1 eV, corresponding to
relative collisiori velocities &0.007 a.u. There are no
crossings, so we go to rule 4. Starting naively with the
5'-diabatic (ls„,ls~) states, we find that electrostatic
matrix elements h;~ to other atomic states (2s„.~ ~ )
have magnitudes of several e& and ranges of a few ao,
so at the low velocities of interest, those couplings
should be treated adiabatically (of coursel).

Such a treatment brings us to the M-diabatic repre-
sentation of Eq. (4.62). Now, examining
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part of A"„,and it shows that A, 2 is not small.
The above method of calculation of A,"2 is unlikely to

be accurate except at large R, because it is based on
the assumption that the states have atomic character,
whereas in fact their two-center molecular character
increases with decreasing B. Therefore, Melius and
Goddard also (indirectly) used what we call the 'spe-
cial" s„'sof Eq. (4.8) to calcula. te Pp~+A, ~, i.e. , they
expanded the Born-Oppenheimer states in terms of
atomic states and attached an atomic s„to each of the
latter. (They called this the "generalized-traveling-
orbital" or GTO method. ) The resulting matrix ele-
ments of P,"&+A,"z = aiSM;z are also shown in Fig. 27.
Since they differ significantly from the matrix elements
in Eqs. (4.65) it is evident that this more difficult cal-
culation is necessary. These GTO matrix elements
should give a reasonable representation of the non-
adiabatic couplings, and they could have been used in
the calculation of cross sections.

The general theory discussed herein was not available when
Melius and Goddard did their work, and they were not satis-
fied with the GTO matrix elements, partly because they were
concerned about the' uniqueness of the atomic orbital expan-
sion, and perhaps partly because of the non-Hermitian charac-
ter of the GTO coupling matrix (this last can now be recog-
nized as a valid result). They therefore chose a different
method, which can be described in the present framework in
the following way. Suppose we take a switching function that
depends on the nuclear coordinate R, but not on the electronic
coordinate-~: f„=f„(R).Furthermore, let us use not only
"different f's for different states" but also "different f's for
different matrix elements. " Thus we replace fn(R) byfI, n(R) ~

and Eq. (2.64a) becomes

kn phd kn&

with

&g„( )=p Yg,„()+~j.
anally let us choose K~„(R)such that

K «.(» fl e«e=. l
«'~» f I e«eJ d'~,

where, as usual, z is the electron coordinate parallel to the
internuclear axis. This method is equivalent to using a certain
weighted average of r& and r~ as the electron coordinate which
is to be held fixed in calculating B/BR. Since v~2 is the same
as K2g, the A matrix is Hermitian. The resulting 5 is+
matrix element is also shown in Fig. 27 (denoted M f/), and
this is what Melius and Goddard used in their calculation.

Although the result is reasonable, this is probably not the
best possible method of calculating nonadiabatic couplings.
In using an f that is independent of &, this approach does not
really account for the two-center, molecular character of the
basis functions. Also, since it uses a matrix f~„orK~„, dis-
placement effects are not associated with each individual state;
this is somewhat different from the intuitive picture we have
been developing, in which Bft)„/BR can be separated into a dis-
placement part and a coupling part.

Diabatic states for this system were also calculated
by two methods. Again class F' states were found to be
an unacceptable representation for slow collisions, but
an M-diabatic representation was obtained by integra-
tion of Eq. (4.30) using D&2 ———iIIM~&2 [Actuall. y Melius
and Goddard effected the integration by fitting their M»
to an assumed analytic form of B~/BR, from which they
were able to extract information about the diabatic
Hamiltonian matrix. Later Dinterman and Delos (1977a)
obtained substantially the same result by exact numeri-

cal integration of Eq. (4.30) using the same M[2. j As in
the paradigm of asymptotic near degeneracy considered
in Sec. IV.A.4.b, it was found that the diabatic 0&& and
@22 are approximately parallel, and h, 2 has an exponen-
tial dependence on R.

7. F ine-structure transitions

One example of a collision leading to a fine-structure
transition is

Na(3p P3),) + G —Na. (3p P, )2) + G,

where G is a rare-gas atom or some other "inert" tar-
get. These transitions occur because of the competing
effects of electrostatic, rotational, and spin-orbit cou-
pling. Spin-orbit coupling is responsible for the
energy gap between initial and final states, but as the
internuclear separation decreases, the electrostatic in-
teraction between the active electron and the target, be-
comes much larger than the spin-orbit interaction.
Also, in the rotating molecular frame, angular coupling
increases as R decreases, so that it may also become
stronger than the spin-orbit coupling. Thus the de-
scription of these collisions involves all of the ma-
chinery described in the appendix.

Let us examine the atomic states first. Neglecting
spin-orbit coupling, the 2I' term would be characterized
by (space-fixed) case d states ~eLM~)

~
SM~) (Table

VIII). If these states were rotated to coincide with the
molecular frame of reference, we would obtain a repre-
sentation characterized by ~eLA)

~
SZ). Such rotating

atomic states are, of course, the asymptotic limit of
the Born-Oppenheimer states tthese a.re the states @„„
or $0 of Eq. (3.12)].

Either of the above atomic basis sets can be combined
into eigenstates of the total electronic (orbital+ spin)
angular momentum (j,j... or j ) by means of Clebsch-
Gordan coefficients. Such combinations of space-fixed
states give the case e representation ~eLSj m~), and the
same combination of rotating states gives the ~eLSjQ)
representation, which is the asymptotic limit of a gen-
eral case & representation. For the case of one elec-
tron outside a closed shell, if spin-orbit coupling is
treated as a perturbation of the terms of the electro-
static Hamiltonian, and its matrix elements between
different configurations are neglected, then these states
are eigenfunctions of the atomic Hamiltonian including
spin-orbit coupling (Condon and Shortley, 1959, p. 120).

For each of the above atomic representations there is
a corresponding molecular representation. The electro-
static field from the target atom distorts the electronic
orbitals, and eigenstates of the electrostatic part of the
molecular electronic Hamiltonian (including the field
from the target atom but excluding spin-orbit coupling)
are the Born-Oppenheimer states, or the case b repre-
sentation

I
eA)

I
S Z &.

In the collision, transitions between Born-Qppen-
heimer states are produced by spin-orbit and angular
couplings, and by the usual I'"+A" matrix elements.
Frequently the interaction with the target atom is suf-
ficiently weak that the Born-Oppenheimer states retain
essentially atomic character; in that case, A can. be
calculated by Eq. (2.64a) and(P+ A) becomes —ih Va with
the electron coordinate heM fixed relative to the alkali
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not adjust to the presence of the Rydberg electron.
Nonadiabatic couplings (P +A") are associated only
with the changing orbital exponents in the core, and
they are believed to be negligible.

Some of the resulting diabatic energy curves are
shown in Fig. 29. Crossings between discrete 4- core
and B-core curves are evident, as well as crossings
between discrete B-core states and the A-core con-
tinuum fHe2' (A) +e ].

Selected diabatic states for H2, HeH', He2', and He2, had
been calculated by O' Malley (1969) using similar ideas.
Earlier, O' Malley (1967) had also shown that given one diabatic
state, it is possible to calculate an associated "quasiadiabatic
representation" by projecting that state out of the basis. Let
P =

) &f& x p ~
be a projection operator for the given diabatic

state, and let Q=1-P. Consider the basis made up from p
snd the set of eigenfunctions (pal) of Qhg (the latter set uot in-
cluding P ). The functions p@ may be considered to be adia-
batic among themselves, since they are not connected by
matrix elements of the electrostatic Harniltonian. However
transitions between P+ and these states are represented
diabatically. PAQ corresponds to the electrostatic matrix
element coupling po to Q o$, and the corresponding (Ps+As)
matrix elements will be negligible if the variation of QD with B
is sufficiently limited.

Actual construction of such an "O'Malley representation"
has not been made, but it should not be difficult. However, it
is important to note that in this representation all couplings
except those involving qua (or some set of p 's) are repre-
sented adiabatically; as mentioned earlier, such a represen-
tation may not be advantageous for Hydberg states or for a
continuum.

A definitive calculation of diabatic states has not been made
for any negative-ion system, but Olson and Liu (1978) have
obtained crossing ionic and neutral curves for HeH, ArH,
and ArCl systems using a Hartree-Pock approximation,

There is also another approach to the theory of collisional
ionization and electron detachment. This other approach is
based on the assumption that the state which crosses the
continuum can be described as some sort of quasibound reso-
nance (see, for example, the work of Bardsley, 1967, 1968;
Herzenberg, 1967; Chapman and Herzenberg, 1972; Chen,
1967; Miller, 1970). Unfortunately, the relationship between
a diabatic state and a quasibound resonance or a virtual state
is not yet clear.

V. CONCLUSION

In this article, a part of the theory of el,ectronic ex-
citations in slow atomic collisions has been developed
in a Iogically deductive way. Starting from the Schro-
dinger equation (in either classical trajectory or fully
quantum-mechanical form), we first showed how to ob-
tain a general set of close-coupled equations, then we
discussed the general principles underlying the choice
of representations, and finally we reviewed calculations
on specific systems.

However (as one can see from the references cited
in each section), the historical development of the
topics considered here was quite different. In fact,
calculations were made (successfully, in most cases)
long before there was an acceptable underlying theory.
The earlier quantum-mechanical calculations were
based on unmodified PSS theory, P matrix elements
were often estimated from models (see Sec. IV.A.4),
or diabatic states were obtained by physical intuition.
As calculations progressed, the difficulties inherent in

this approach grew more and more clear.
What was missing was a proper quantum-mechanical

form of close-coupling theory. In the classical tra-
jectory framework, it has been known since the 1958
paper of Bates and NcCarroll that electron-translation
factors have to be incorporated in the expansion (Sec.
II.C). However, an adequate quantum formulation was
not developed until much later (ihe final version of this
theory being given here, in Sec. III.C).

Now, starting from this approach, calculations can
be set up logically and systematically. One of the
pleasures of writing this article (especially Sec. IV.B)
has been seeing how des criptions of so many dif-
ferent systems emerge as special cases of a general
theory.

One must not conclude, however, that all of the prob-
lems in this area have been solved. There is still a
great deal to be learned about the behavior of specific
systems through computational investigations and com-
parison of theory with experiments.

Also, a problem still outstanding is that of finding
simple but accurate forms for s„for molecular states.
Very little is known about what forms are best" and
what forms are good enough" for a given system.

Furthermore, the whole close- coupling approach has
obvious limitations. It is adequate if only a few coupled
states are involved (and incorporation of good s„'shelps
to reduce the number of states needed}. Also, it can
still be used for many-state systems if there is only
weak coupling. But close- coupling methods are difficult
to use to describe systems having strong coupling among
many states. Systems in which the initial or final state
is highly excited, systems showing ionization or elec-
tron detachment, and intermediate-velocity collisions
typically involve a very large or an infinite set of cou-
pled equations. In certain cases, techniques have been
found for solving such equations; in other cases, the
problem has been circumvented (and a new sei of prob-
lems produced) by abandoning the close-coupling frame-
work.

All of these problems are active subjects of current
research.
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APPENDIX: ANGULAR ASPECTS
OF THE R EP R ESENTAT ION P ROBL EM

In most of the text, it is assumed that the electronic
basis states can be represented by functions @„(r;R)
which depend only on the internuclear distance R and
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TABLE VIII. Hund's coupling cases. (w) in l«(m)) means parity is possibly a quantum number for the electronic state. IZMz(Q)&

is the abstract vector corresponding to Hz& (6, C). 0 is a parameter in this function.

Hund's
case Condition

Electronic
state

representation

Nuclear
angular
functions Simple product and vector coupled representations

Qe»ken»86
I eA(rr)& ISZ& QQ JQ (+4) I

e A(~&& Isz& IMAM, (Q&&

QQ»@e»@co

@(L) » QE » @6

Ae»&e»hen

Am» SP» Qe

or Se» A(d » Qe

le A(~)) ISM,&

I
e Q(vr))

or lejQ&

or
I eLSj Q)

le LM~& ISM s&

I eLSjm; )

or Iv'm. &

l«(7r» ISMs&IKME«» I+s=zl«(~&& IKS~MJ (A)&

I
e Q(.)& I~M, (Q)&

I ej Q& IMAM, (Q&)

I eLSj Q)l JM~(Q))

I
LMt& ISMs&INMs&i, +~=Ir l«NKMrr&ISMs&

E+s j I
eLNKS JMz)

I
eLS jm, ) INMrr) ~,s g I&LSjN JMg)'

Icjm )INMs), s ~ I
ejN JMz)

on the electronic coordinate r defined in Eq. (2.10) and
Fig. 5. In other words, it is assumed that the basis
functions rotate in space, maintaining a fixed orienta-
tion relative to the internuclear axis. Such a description
is normally appropriate for slow atomic collisions. On
the other. hand, in Sec. II.B, we briefly considered the
possibility of using space-fixed electronic basis states,
and we mentioned that such states are generally more
suitable than rotating states for the description of fast
collisions. However, in neither case did we say anything
about the spin part of the wave function; does it rotate
or remain space fixed?

In the first part of this appendix, we consider these
problems in more detail, and we ask under what condi-
tions space-fixed or rotating spatial or spin states might
be preferable. The discussion is simplest if we de.—
scribe the collision in the classical trajectory formula-
tion. Afterwards we shall consider the quantum-me-
chanical description of the nuclear motion, and present
one form of partial-, wave analysis. '~

l. Electronic basis states —review of Hund's coupling cases

Coupled equations describing atomic collisions have
been given in various forms. For the present purposes,
we refer to Eqs. (2.68). Those equations contain the
electronic Hamiltonian matrix h, which can be divided
into an electrostatic (Born-Oppenheimer) part and a
xnagnetic (spin-orbit) part, and they conta. in the angular
coupling matrix (—L, /R+A ), which arises because

The problems discussed here are ancient, and their resolu-
tion, given by Hund, is familiar to molecular spectroscopists
(Herzberg, 1950; Hougen, 1970; Mulliken, 1930, 1931). Re-
cently these problems have again received attention because of
their importance in atomic collisions. The presentation given
here follows papers of Masnou-Seeuws and McCarroll (1974),
Mies (1973), and Thorson (1961, 1965), We also note recent
papers by Aquilanti and Grossi (1981), and Aquilanti, Casa-
vecchia, Grossi, and Lagana (1981).

the basis states rotate with the molecular frame.
The relative strength of these three interaction ma-

trices is of great importance in determining the out-
come of the collision. For example, it is the electro-
static interaction between electrons and nuclei that
makes the spatial part of the electronic wave function
rotate with the molecular frame, so if this interaction
is very weak, the wave function may remain more
nearly space fixed.

Therefore we need a rough estimate of the strength
of these interactions. Let us say ~& represents the
strength of that part of the electrostatic interaction
which couples the electronic state to the internuclear
axis; we can take ~~ to be the energy gap between any
given state having (L, ) = AII and the nearest state having
(L, ) = (Aa l)h. Obviously this quantity depends on the
internuclear distance, for it goes to zero both as R
—~ and as R-O, but it may have a magnitude of sev-
eral eV for R -a few Bohrs. Similarly, let SB repre-
sent the strength of the angular coupling, and @co repre-
sent the strength of the spin, -orbit interaction; w can be
identified as the spin-orbit precession frequency, or A~
as the spin-orbit energy splitting. Angular coupling
vanishes as R —~ (since e —0), but it may become
very large at small R, while the spin-orbit interaction
typically does not vary too much with R.

Now five cases arise, identified by Hund (1926) and
Mulliken (1930); these are given in Table VIII, and pic-
torial representations of the corresponding electronic
states are given in Fig. 30.

Consider first Hund's case a: Suppose the electro-
static interaction is much stronger than the spin-orbit
interaction, and this, in turn, is much stronger than
the angular coupling. Then the electrostatic interac-
tion causes the spatial part of the electronic wave func-
tion Y to rotate, following the internuclear axis. In the
rotating frame, angular couplings, being the quantum
mechanical representation of Coriolis and centrifugal
forces, tend to 'decouple" Y from the internuclear
axis; i.e. , they would make it retain its space-fixed
orientation. However, by hypothesis, these couplings
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{e) ~ 0 +

0
.r: cP

o~o

of rotation of the internuclear axis, so the spins cannot
follow that axis, but tend to retain their original space-
fixed orientation. Hence it is best to take the spin part
of the basis states to be quantized on a space-fixed axis
(z'), and we denote such spin states ISM,), with M,
=(S,,)~a.

Skipping case c for the moment, in cases d and e,
angular coupling dominates coupling to the internuclear
axis; this means simply that the electrostatic field is
not strong enough to force Y to rotate, so it tends to
remain space fixed. Of course, the initial and final
states of any collision are necessarily space fixed, but
in addition there are several physical situations in which
Y might retain its original orientation throughout the
entire collision. (i) In fast collisions, even if the elec-
trostatic fields are strong, the electrons may not have
enough time to adjust to them. (ii) In very distant colli-
sions, the electrostatic fields may be too weak to cause
rotation of the electronic state. (iii) Near the turning
point of very close collisions, the field generated by the

FIG. 30. Pictorial representation of electronic states in
Hund's cases (a)—(e). On the left is the state with nuclei fixed
on the horizontal axis. On the right is what happens to the
electronic state when the nuclei are rotated m/2 counterclock-
wise.

(a) A g state (both spins up). Spatial and spin functions
rotate with the nuclei.

(b) The spatial part rotates, but the spins stay space-fixed.
(c) For strong spin-orbit coupling this state is a superposi-

tion of p and g, and it rotates.
(d) Neither spatial nor spin parts rotate.
(e) Space-fixed state for strong spin-orbit coupling.

are weak. Therefore Y, which itself follows the inter-
nuclear axis, is best described by an expansion in basis
functions which also follow this axis. Such functions,
which we have always written as Q„(r;R), can be char-
acterized by quantum numbers A (possibiy parity, m =g
or u, for a symmetric system), and by their energy
and any other quantum numbers, which we collectively
denote e. Thus these rotating basis functions are rep-
resented by kets

I
e A(m)) .

Now, whenever the spatial part of the electronic wave-
function rotates with the internuclear axis, the spin-
orbit interaction will tend to couple the spins to this
same axis. In classical mechanics, spin-orbit coupling
makes the electron-spin —angular-momentum vector S
precess about the electron- orbital- angular- momentum
vector L. However, in a molecule in which the spatial
wave function rotates with the internuclear axis, only
one orbital angular momentum component, L, —AA is
quantized (conserved), so the spin must precess about
the z (internuclear) axis. If this precession is rapid
enough, compared to the rate of rotation of the mole-
cule, then we can say that the electron spin follows the
rotating molecular frame. Accordingly, the basis states
should also have this property; we therefore use elec-
tron spin states IS Z) oriented along (or "quantized on")
the internuclea, r axis, with Z =(S,)/N.

In Hund's case b, the electrostatic interaction again
dominates the other interactions, so the spatial part of
Yfollows the internuclear axis. Now, however, the
spin-orbit precession frequency is slower than the rate

nuclei is nearly spherically symmetric, and the inter-
nuclear axis may rotate suddenly, so again the electrons
might not go along. (iv) If an electron is in a high
Hydberg state, such that its orbital radius is much
larger than the internuclear separation, then again it
"feels" mainly the spherically symmetric Coulomb at-
traction of the nuclei, and it need not follow the
rotation of the internuclear axis.

In any of these situations, the spatial part of Y tends
to retain its original, space-fixed orientat, ion. If, in
addition, spin-orbit coupling is negligible (case d) then
it is convenient to use basis states in which the spin
part is separable from the spatial part (and is also
space fixed, of course). Furthermore, in the above-
mentioned situations, the major part (or the average of)
the electrostatic field is spherically symmetric, so it
is appropriate to describe Y by an expansion in spheri-
cal harmonics (one-electron case) or eigenfunctions of
I.', L„(many-electron ease). Thus a possible expansion
basis is lcLMr) ISM,).

If spin-orbit coupling is not negligible, but otherwise
case d conditions are met, then we have case e. Within
a given term (i.e. , within the set of states having in
common the quantum numbers &, L, S), the matrix
representing hs«connects states of various M~, M„
and it is diagonalized by transformation to the
IeLSjm, ) representation, using Clebsch-Gordan co-
efficients (Condon and Shortley, 1959; Edmonds, 1957).
If the spin-orbit interaction is even larger than the
energy gap between various terms (and if there is more
than one electron outside a closed shell), then L and S
cease to be "good quantum numbers, " and the states
can only be characterized by total electron angular mo-
mentum Ie jm, .). (Of course, the use of j as a "good
quantum number" involves the assumption that the in-
teraction between the electrons and the pair of nuclei
can be approximated in some way by a single, spher-
ically symmetric field. )

Finally we turn to Hund's case c, with weak angular
coupling and strong spin-orbit coupling. There are two
quite different physical situations in which these condi-
tions occur, and distinct representations should be
used to describe them. If we have an atom in a given
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~eLSj m, ).or ~q jy~.) state, and it is only weakly per-
turbed by a distant, slowly moving atom or ion, then
j (and possibly L and S) may remain a reasonably good
quantum number, but the electronic state might slowly
reorient itself, following the internuclear axis. Such
a situation is best described by expansion in states
(eLSj Q) or ~ejQ), which are just case e states rotated
so that they are quantized on the internuclear axis, with
Q=(j, )/S. Mulliken (1931, 1932, 1937) recognized the
importan. ce of such states in molecular spectroscopy,
and they are also useful for describing fine-structure
transitions (Sec. IV.B.V).

Case c can also arise at moderate internuclear dis-
tances, in situations for which j makes no sense as a
quantum number. For example, suppose we have a
system which we attempt to describe by case (a) basis
states, ~eA(n)) ~SZ), but suppose we then find that
matrix elements of the spin-orbit Hamiltonian (4.44)

(S II)(t A (7T) ~a ~fA(7r)) ]Sz)
between states with S' = S + 1, A' = Aa 1 are at least as
large as the (electrostatic) energy gap between these
states. Then it may be preferable to transform to a
representation in which the full electronic Hamiltonian
matrix h=h ~0+A„,is diagonal. Such states can no
longer be characterized by definite values of A or Z,
but Q= A+ Z is still a good quantum number, so these
states are denoted ~e Q(m)). These states constitute the
adiabatic representation for the problems discussed in
Sec. IV.B.1.

For bound molecules, since the internuclear distance
is normally confined to a small range, it is usually
found that, one of Hund's cases applies, and often the
electronic state is adequately described by a single ket
from one of the above representations. In that situa-
tion, Hund's list of cases provides a scheme for clas-
sifying the actual physical states of various molecules.

For colliding atoms, on the other hand, since the
relative strength of the interactions changes with B,
and since the internuclear distance is not confined, the
system passes from one case to another through an in-
termediate range where two interactions are comparable
and no Hund case applies. For example, initial and final
states must ultimately be referred to the space-fixed
laboratory frame (case d or e), but at intermediate
distances Born-Oppenheimer eigenfunctions often pro-
vide a good representation (case a or g).

The usual approach for collision problems, therefore,
is to take any one representation and to solve the cou-
pled equations in that representation. Now Hund's
scheme classifies the representations that can. be used,

and helps us to pick one that is appropriate to the
problem at hand. The chosen representation may cor-
respond to one of the Hund cases, or to an intermediate
case, or it may change from one case to another either
smoothly or suddenly with R. If the basis set is large
enough, then any problem can be solved in any repre-
sentation. Representations are chosen on the basis of
convenience, and of accuracy of truncation to a small
manifold. Some helpful rules for choosing a representa-
tion are given in Sec. IV.A. 5.

2. Quantum-mechanical nuclear rotational functions

In the preceding section, the discussion of rotating and
nonrotating electronic states was framed in the language
of the classical trajectory formulation, but all of the
same considerations still apply if a quantum-mechani-
cal description of the nuclear motion is used. In addi-
tion, in the quantum description, we have to pick an ap-
propriate set of eigenfunctions to describe the rotation
of the nuclei or of the whole molecule. '

For cases (d) and (e), it is reasonable to use spheri-
cal harmonics Y~„„(8,4), with N the quantum number
corresponding to orbital angular momentum of the nu-

clei, and M„the g component. The assumption in these
cases is that the coupling between nuclear and elec-
tronic angular momenta (N, and j or L) is weak. How-
ever, unless that coupling entirely vanishes, none of the
quantum numbers j,m&, NM„(or LM~) really represent
conserved quantities. It may therefore be convenient to
transform to a representation consisting of eigenfunc-
tions of the total angular momentum J2 and its Z com-
ponent~~, since these are rigorously conserved
(J =N+ j in the usual vector coupling sense).

In case (e), this transformation is accomplished by
combining states of various m~ and M~, using Clebsch-
Gordan coefficients, into states characterized by
~AN JMz) (or if L and S are good quantum numbers,
states ~eLSjN JM~). In case d, since magnetic effects
are by hypothesis negligible, one can leave the spin part,
separate, and combin. e states of various M~ and M~ into
states

~
e LNKM~)

~
SM~), where K =N + L =J —S. (Sub-

sequently, if desired, K and S can be vector-coupled
into J.)

For cases (a) through (c), the electronic state follows
the internuclear axis and may generate a nonzero angu-
lar momentum about that axis (QS or AS). Accordingly,
the rotational wave functions should be symmetric-top
eigenfunctions, 3C ~~ (8, 4) for case (P), or 3C J"~ (8, C)
for cases (a) and (c). These functions satisfy the dif-
ferential equations

a - a . — a
(sin8) ' sin8 —+ (sin28) ~ —iQcos8 —Q' ~,'"„'=J(J+ 1)W,'"„' (Al a)

—z —~'"' =M ~. a
J'~~ J' J'Af &

~ (Alb)

If a representation is used in which the spin states rotate,
following the internuclear axis (cases a and c), then the coupled
equations (2.68) must be modified to incorporate the effects of
the rotating frame on the electron spin. Essentially L~ must
be replaced by L ~+ S~.

For simplicity, in this section the radius and angles for the
independent variable in the coupled equations are represented
by the notation (R, 6, 4). In the corrected equations (3.6&), the
independent variable is 8, and perhaps it would be better to
write (R, e, C ), but we prefer to avoid excessively Baroque
notat ion.
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The operators on the left are differential representa-
tions of the square of the total angular momentum
(J /5 ), and its Z component(J, /5). The eigenvalues are
J(J+1) and M~, while Q plays the role of a parameter
in these equations. (If we replace here Q-A, J-K,
M~ -Mz, then the operators represent K and Ks.) For
any given Q, fK z'~' (e, C )j forms a complete and ortho-
gonal set of angular functions.

The eigenfunctions 3C can be related to representa-
tions of finite rotations; using the conventions of Ed-
monds (1957),

given by Eq. (3.38), it is convenient to break the A ma-
trix into two parts. From Eq. (2.61), we have

(A4a)

(A4b)

(A4c)

(The second term obviously van. ishes if f„is constant. )
Define

A=Ao+A, ,

(A, ) =&@.I (f.+~)pl@.&,

(A ) „=(—i)t/2)(g IV„f„+'r (V—„f„)+r[(V„f„)~ V ]I/„&.

W+S «2~'~„' (e, O) PR,( =di (e)exp((M 4). (A2)

Two special cases are of interest: for integer J, M~, 0,

o= I +Ao

or, equivalently,

(II,) =(P„I N—v + a„pI @„&,

(A5a)

(A5b)

&(~no'(e, 4) =ph2 Y~„(e,4 =0), (AS a)

~,"„',(e, 4) =PA, I,„,(e, C). (ASb)

These functions satisfy the differential recursion rela-
tion (Kronig, 1930),

The quantities ph~ ~ ~ ph4 are phases, which can be selected
arbitrarily but not independently. It is convenient to take
ph4=)f)h3= 1; then ph2 turns out to be (-1)", and ph&

——(-1)~J+"
if Mg ~

I
ft

I or if Mz & —
I
fi

I
or if Mz ——0. The proof of this

last statement is an exercise that is especially useful for
building discipline and tolerance of pain.

These phases have caused some confusion in the past. The
convention given by Kronig f1930, p. 62, Eq. (7)] is not con-
sistent with ph4= 1, and a similar inconsistency appears in
Thorson's 1961 and 1965 papers. The above form for ph~ was
given by Thorson and Delos (1978a), but it has not been proved
that it is valid for 0&(Mz) &)0 ~.

3. Partial-wave analysis

After suitable electronic basis functions and corre-
sponding nuclear angular functions have been chosen,
then the three-dimensional coupled equations (3.61)
can be reduced to one-dimensional, radial equations.
Truncation of this set of coupled equations to a small
manifold finally yields a numerically tractable quan-
tum-mechanical formulation. Examination of asymp-
totic behavior of the radial functions and comparison
with scattering boundary conditions gives a formula
for scattering amplitudes and cross sections in terms
of the S matrix.

It should be obvious that the specific form of the
coupled radial equations and the formulas for cross
sections depend upon which set of nuclear angular func-
tions is chosen. In the development below, we shall as-
sume that the electronic basis functions belong within
Hund's cases (a)-(c), so that the nuclear rotation is de-
scribed by K functions, and we shall use notation of
Huhd's case (b), which seems to be most appropriate
for typical slow collisions.

with

(A5c)

(AVb)

are corrected electronic an.gular-momentum operators.
The second-derivative matrix B (Eq. 3.66b) contains

the square of the operator ( in V„+)(—„p),but when this is
written in spherical components we have to distinguish
between two interpretations of &„:as a gradient and as
a divergence. Writing

=(@
I (—im'div + v„p)(- i@grad + v p) I @

and developing div and grad in spherical components,
we obtain

@'2 Q i + g

+ & '[&&.I (L.")'+ (L:)'I@.&

+&@.IL."Ie.&(- 2A„ecote)

+A„Scot2gS ]. (A8)

(To derive this equation, one must use the fact that
components of L„obey standard angular-momentum
commutation relations, except for ignorable correc-
tions related to derivatives of f„.)

(z„may be a function of r' and R). Now we can sepa. —

rate IIo into radial and angular components,

())p)„„-=(I'"+Af) = —(i) (@„+~„—@„), (ABa)

(il;), = (& +&;) =- ~-'&e. lL: le.&, (A6b)

(Il,') = (I ' +~0) =~ '(&@.IL."ly. &
- A„ecote-s ),

(A6 c)

where

a. Further analysis of nonadiabatic coupling matrices H
and 8

The first step is to put the nonadiabatic couplings into
more explicit form. On the assumption that s„(r';R) is

b. Coupled radial equations based on expansion
in 3C-functions

Partial-wave expansion in symmetric-top eigenfunc-
tions takes the form:-
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X„(R)=R ~ Q Q u„(R)3C~~ (6, 4).
K=A NE = -En

(A9)

Here we are assuming that the electronic basis states
are of Hund's case (5) type, and A„is the eigenvalue of
I- /K for the nth basis function. To obtain radial equa-
tions one must insert this expansion (A9) into the three-
dimensional equations (3.61), express (- iW) in spheri-
cal coordinates, use Eqs. (A4) —(A8), and write out the
whole mess on a very large blackboard. Then the fol-
lowing things happen.

(1) The last term from (A8), the last term from (A4c)

and the angular parts of &2 combine via (Ala) into
[K(K+ 1) —A2 ]/2 p, R .

(2) The term from B in which 8/BR acts on R cancels
a related term from (D+ y) (- iM))/„(except for cor-
rections related to y/p, , which we have consistently
neglected).

(3) Angular terms from (D+y). (- NV) together with
the next-to-last term in (A8) combine into forms in-
volving Q, . Finally multiplying the mth differential

(a )equation by 3C ~.~~ and integrating over angles, using
orthogonality, selection rules on A, and the recursion
relation (A3), we arrive at the coupled radial equations

I

(2p. ) S —ihd + (II + y ) —ihd +Bz

+ S[lC(K+ 1) —A ]/2pB + ( I+ I)/2gB —Q/2pB +I+I —SEIM &(R)=0, (A10)

A A

where L„,L, are the matrices of L„",I,„'defined in Eq.
(A7), A is the diagonal matrix 5„„A„,and

(B„) = w'(4. (,'„+~„')4,„), (A

Q = 5~,~„,g[(K+ A+ 1)(K- A)] i/~hI,

+ 5~, ~ ([(K— A+ 1)( K+ A) J~ /AL (A12a)
with

L,= (L„+iL ) + R[(A( + y ) —i(A) + y )],
I. = (I.„—fL,)+R[(A', + y~)+i(Ae, + y~)] .

[This corrects a minor error in Eq. (3.23c), Thorson
and Delos, 1978a.]

Equations (A10) can be solved numerically, or by any
of a wide vari:ety of approximation methods. Standard
analysis of equations of this type (Child, 1974, Chap. 6;
Mott and Massey, 1965, p. 369ff), shows that among the
solutions there is a set of functions having the asymp-
totic form

c. Scattering boundary conditions and cross-section
formulas

The present form of partial-wave analysis is more
complicated than the conventional ones for elastic or

u„~(R)—(A.
„

/0„'/')(5 exp[—i (k„R—Kn/2) J

—8» exp[+ f(k„R—K~/2)]J-. (A13)
0

The first term is the incoming wave in the initial (no)
state; g ~„arethe elements of the S matrix, to be de-
termined by solving the coupled equations, and A.« is
a set of "normalization" coefficients, to be determined
from the boundary conditions.

The exact 8 matrix is unitary and symmetric, and the Q
matrix calculated from the uncorrected PSS equations (3.16)will
also have this property. However, the approximations used in
have this property. However, the approximations used in
deriving Eqs. (3.61) are such that symmetry and unitarity of
the resulting approximate g matrix are not guaranteed. If
errors of this type are found to be significant, it means that
neglected higher-order terms in the Taylor expansion (3.51)
have to be considered. With no further loss of accuracy, we
shall later replace (Az~ /k„)by (A~~ /k„).n KNK gJ

inelastic scattering (Mott and Massey, 1965; Child,
1974, Chaps. 3 and 6) because

(1) we a,re interested in transitions between electronic
states;

(2) charge exchange constitutes a rearrangement such
that different variables describe initial and final chan-
nels;

(3) in general the initial and final electronic states
have a spatial orientation that must be considered.

None of these cause any more major conceptual diffi-
culties, but they do make the formulas more compli-
cated. We can simplify our considerations and still
display the general principles by assuming that the
initial atomic state is spherically symmetric (L =0, or, if
spin is important, j=0). Generalization of the present
formulas to other cases has been given by Thorson
(1961, 1965).

Most of the formulas needed have been given already,
but we collect them again here with some interpreta-
tion. The ansatz for the wave function (3.39) was

We assumed that a subset of the electronic states @„
corresponds asymptotically to the important initial and
final a.tomic states $0„,$0, and we assumed that the
coordinates go in the channels to constants times R„
and R~. Hence at large distances this expansion can
be ~eexPressed in the form

(A14)

Since we are assuming that the basis functions @„(r';g„)
are oriented ( quantized ) on the internuclear axis,
this reexpression is simplest if we take the asymptotic
atomic states $0 (r„),@0 (r~) also to be quantized on
the internuclear axis. Thus these are rotating atomic
states, like the ones introduced in Sec. II.

Scattering boundary conditions (3.8) can be restated
in terms of these rotating states: At large R,
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O' —Q'„(~„)exp (ik Z„)
+Q @0 (r„)f„„„(e„)exp(ik„R~)/R„

the common numerical value of the coordinates g„,and
that these go to (p, ~/p, )'~2R~ (J'=&,B) in the channels.
Also, noting that

+g Q„' (rs)f„„(es)exp(ik„Rs)/Rs. (A15)
tg~

These f's are not identical to those in (3.8) because the
latter refer to space-fixed states.

The scattering amplitudes do not depend on 4~ or 4~
because the initial state, @'„exp(ik„g„),and all of
the interactions, are cylindrically symmetric. Note
that if the initial electronic state were not spherically
symmetric, then reexpression of the first term of (A15)
in terms of rotating states would be much more compli-
cated, and scattering amplitudes would depend upon 4„
and 4~.

Now we must note again the fact that the independent
variable in the coupled equations is really H, that H is

k.,=[2~~(E-" )]'"/I
= lim [k„„(R)+ I„„(R)],

rr-

(A16)

u„r(R~)—(Ar~gk~ ~2) (5„exp[—i(k„R~—Kn/2)]

-8 f exp[+ i(k„R~—Kvr/2)]]. .
(A17)

Finally, we need the standard expansion of a plane
wave in normalized spherical harmonics:

we see that k„in Eg. (A13) differs from k„bythe fac-
tor (p/p, ~)~~2. Hence reexpression of (A13) in asymp-
totic coordinates gives

exp(ik Z„)-(2ik R„)'pi"[(4m)(2%+1)]~ 2Y„O(6„,4„)(-exp[- i(k„R„—Kvr/2)]+ exp[+i(k „R„—Kn/2)]]. .
(A18)

Then, combining (ASa), (A9), (A14), (A15), (A17), and (A18), we obtain

Ar~ = 5~~5~@ (—1)i~[(4n)(2N+ 1)] ~2/2ik'~

and using (ASa), the scattering amplitude for excitation of the neth state is

(A19)

f...„(e,) = [2 (k.„k.,)'"I-'(-1) "' g [(«)(2A+I)]'"I;.„(e„C,=O)(~....—5.,„„).
The differential cross sections are-„.„(8) =(k.„/k.„)If.„,.(e„)I',

If all electronic states have A„=O, Eq. (A20) reduces to the standard form.

(A21)
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