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The properties of exactly integrable two-dimensional quantum systems are reviewed and discussed. The
nature of exact integrability as a yhysical phenomenon and various aspects of the mathematical formalism are
explored by discussing several examples, including detailed treatments of the nonlinear Schrodinger (delta-
function gas) model, the massive Thirring model, and the six-vertex (ice) model. The diagonalization of a
Hamiltonian by Bethe's Ansatz is illustrated for the nonlinear Schrodinger model, and the integral equation
method of Lieb for obtaining the spectrum of the many-body system from periodic boundary conditions is

reviewed. Similar methods are applied to the massive Thirring model, where the fermion-antifermion and
bound-state spectrum are obtained explicitly by the integral equation method. After a brief review of the
classical inverse scattering method, the quantum inverse method for the nonlinear Schrodinger model is
introduced and shown to be an algebraization of the Bethe Ansatz technique. In the quantum inverse method,
an auxiliary linear problem is used to define nonlocal operators which are functionals of the original local
field on a fixed-time string of arbitrary length. The particular operators for which the string is infinitely long
(free boundary conditions) or forms a closed loop around a cylinder (periodic boundary conditions)
correspond to the quantized scattering data and have a special significance. One of them creates the Bethe
eigenstates, while the other is the generating function for an infinite number of conservation laws. The
analogous operators on a lattice are constructed for the symmetric six-vertex model, where the object which
corresponds to a solution of the auxiliary linear problem is a string of vertices contracted over horizontal links

(arrows). The relationship between the quantum inverse method and the transfer matrix formalism is
exhibited. The inverse Czel fand-Levitan transform which expresses the local field operator as a functional of
the quantized scattering data is formulated for the nonlinear Schrodinger equation, and some interesting
properties of this transformation are noted, including its reduction to a Jordan-Wigner transformation in the
limit of infinitely repulsive coupling.
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I. INTRODUCTION

The state of an isolated system of particles or fields
which is evolving in time can usually be characterized
by the values of certain conserved quantities such as
total energy and momentum. For most interacting sys-
tems, a more detailed kinematical description of the
state will not be preserved in time. For example, the
Fourier components of a field or the momentum distri-
bution of a many-body system will generally have a
complicated time dependence, often exhibiting a tenden-
cy toward thermalization of the system. A familiar
exception to such stochastic behavior is the case of free
fields or noninteracting particles. In this case the full
momentum distribution function is conserved, and one
may construct an infinite number of ordinary constants
of motion (e.g. , the moments of the momentum distri-

bution). A theory which exhibits nonstochastic behavior
of this sort is said to be exactly integrable. A remark-
able fact which has emerged in recent years is that the
phenom. enon of exact integrability is not restricted to
free theories, but arises in a variety of physically in-
teresting models with nontrivial interactions. The
criteria for exact integrability are not understood well
enough to provide a complete Hst of integrable quantum
field theories or a deductive way of testing a particular
theory for this property. However, the list already in-
cludes some of the most interesting two-dimensional
field theories, and recent speculation that gauge theo-
ries in four dimensions might be exactly integrable
provides additional incentive for studying these two-
dimensional theories and trying to identify the impor-
tant concepts. It is possible to entertain great hopes
for the future role of exact integrability in quantum
field theory, but much work remains to be done. In
this paper we review some of the developments which
have led to our present understanding of this phenome-
non.

The history of the subject is a rich one which extends
over fifty years and includes some of the major
achievements of mathematical physics. The seminal
work of Bethe (1931) on the isotropic Heisenberg spin
chain with nearest-neighbor interaction provided the
first nontrivial example of an integrable quantum sys-
tem. The method devised by Bethe for constructing the
eigenvectors of the spin-chain Hamiltonian has since
been successfully applied to a number of models in
statistical mechanics and quantum field theory. A
Bethe A~sagz was applied to the anisotropic ~~& spin
chain by Orbach (1958) and Walker (1959) and more
generally by Yang and Yang (1966). A somewhat differ-
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ent application of the method was discovered by Lieb
(1967a, b, c, d), who used a Bethe Ansatz to diagonalize
the transfer matrices of the ice, F, and potassium di-
hydrogen phosphate (KDP) models, which a.re special
cases of the symmetric six-vertex model. The general
six-vertex model was solved by Sutherland, Yang, and
Yang (1967). A separate thread of development began
with Onsager's (1944) solution of the two-dimensional
Ising model. As described by Schultz, Mattis, and
Lieb (1964), this solution consists of a Jordan-Wigner
transformation to convert Pauli matrices into fermion
operators followed by a Bogoliubov rotation to diagonal-
ize a quadratic form in the fermion operators. A sim-
ilar technique was applied to the ~F spin-chain Ham-
iltonian by the same authors (Lieb, Schultz, and Mat-
tis, 1961). These various developments in soluble lat-
tice models and spin chains were impressively unified
and extended in the very important work of Baxter.
After formulating a Bethe Ansatz solution of the most
general symmetric six-vertex model (Baxter, 1971),
he went on to solve the symmetric eight-vertex model
(Baxter, 1972a, 1973a, b, c). This model includes as
special cases the previously solved ice models of Lieb,
as well as the two-dimensional Ising model (more pre-
cisely, two decoupled Ising models). [The completely
general six-vertex model solved by Sutherland, Yang,
and Yang (1967) is, however, not a, special case of the
Baxter model. ] In addition, Baxter showed that the
general anisotropic XFZ spin-chain Hamiltonian could
be obtained as a logarithmic derivative of the eight-
vertex model transfer matrix (Baxter, 1972b). As a.

result, these operators are both diagonalized by the
same set of eigenvectors, and Baxter's solution of the
eight-vertex model also solves the XFZ spin chain.
Several excellent reviews of the various applications of
Bethe's Ansatz in statistical mechanics are available
(Ka.steleyn, 1975; Gaudin, 1972, 1973; Lieb and Wu,
1972; Lieb, 1969a, b, 1970).

Direct applications of the Bethe Ansatz method to
continuum quantum field theory began with the work of
Lich and Liniger (1963), who solved a, many-body prob-
lem of bosons interacting by a two-body 5-function po-
tential. As a field theory this is the quantum nonlinear
SchrOdinger model. In addition to constructing the
eigenvectors of the Hamiltonian, I ieb and Liniger em-
ployed periodic boundary conditions to obtain an inte-
gral equation for the conserved ground-state density
function (see Sec. II.A), and Lieb (1963) extended this
integral equation method to include excitations above
the ground state. More recently these methods have
been used to treat certain relativistic field theories.
Models which have been solved by a Bethe Amsatz now
include the massive Thirring model (Bergknoff and
Thacker, 1979a, b) and the equivalent quantum sine-
Gordon equation (Sklyanin, Takhtajan, and Faddeev,
1979), as well as the Gross-Neveu (Andrei and Lowen-
stein, 1979, 1980a) and SU(2)-Thirring (Belavin, 1979)
models. In these theories the physical vacuum is con-
structed as a many-body state in a manner analogous
to the ground state of the finite density 5-function gas.
Particle and bound-state energies are computed by
Lieb's integral equation method.

There are two major lines of development which have

led to our present understanding of exact integrability
in quantum systems. One was the development of sol-
uble quantum models as described above. The other
was the discovery of the inverse scattering transform
method for solving certain classical nonlinear wave
equations [for a review see Scott, Chu, and McLaughlin
(1973)]. The original work of Gardner, Greene, Kru-
skal, and Miura (1967) showed that the initial value
problem for the nonlinear Korteweg-de Vries equation
could be reduced to a sequence of linear problems. The
relationship between integrability, conservation laws,
and soliton behavior was clearly exhibited by this tech-
nique. Subsequent work by Zakharov and Shabat (1971)
and by Ablowitz et al. (1973) revealed that the inverse
scattering method is applicable to a variety of nonlinear
equations, including the classical versions of the non-
linear Schrodinger and sine-Gordon equations. The
fact that the quantum nonlinear Schrodinger equation
could also be exactly solved using Bethe's A.ersatz sug-
gested a deep connection between inverse scattering and
Bethe's Ansatz. Such a connection was partially con-
firmed by studying a higher conserved quantity as a
quantum-mechanical operator (Thacker, 1978). The
relationship between inverse scattering and Bethe's
Q&zz/z for the nonlinear SchrOdinger equation was fully
realized by the development of the quantum inverse
method (Sklyanin and Faddeev, 1978; Sklyanin, 1979;
Thacker and Wilkinson, 1979; Honerkamp et al. , 1979).
It was already known that the classical inverse method
could be regarded as a canonical transformation to
action and angle variables. These variables are con-
structed from the scattering data. a(k) and b(k) of a
linear eigenvalue problem and have a trivial time de-
pendence. The analogy with Fourier transformation
for linear systems has often been noted. In the quan-
tum inverse method, the quantities a(k) and b(k) become
operator functionals of the local fields of the system.
The operator b(k) is found to create eigenstates of the
Hamiltonian. The states constructed in this way are
identical with those of Bethe's Ansatz. The operator
a(k) commutes with the Hamiltonian and is the genera-
tor of an infinite number of conserved quantities. Thus,
the quantum inverse method may be viewed as an alge-
braization of the Bethe Ansatz method. This relation-
ship will be discussed in detail in Sec. III.

Like the Fourier transformation, the classical in-
verse method consists of both a direct transform and
an inverse transform. The direct transform expresses
the scattering data as functionals of the local fields,
and the inverse transform expresses the local fields
as funetionals of the scattering data. The latter trans-
form is accomplished via the Gel'fand-Levitan integral
equation for the linear eigenvalue problem (Gel'fand
and Levitan, 1951). In the quantum inverse method,
the construction of the operators a(k) and b(k) com-
prises the direct transform. Recently the operator in-
verse transform for the nonlinear Schrodinger equation
has been constructed by a quantum generalization of
the Gel'fand-Levitan method (Creamer et a/. , 1980a).
The inverse transform expresses the field @(x) as an
expansion in powers of the quantized reflection coeffi-
cient A(k) = b(k)a (k) and its Hermitian conjugate. An
expansion for the charge density P*(x)@(x) is also ob-
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tained. Term-by-term analysis of these expressions
has revealed some interesting properties. In the
strong coupling limit c -~ (impenetrable bosons), the
operator R(x), the Fourier transform of R(k), satisfies
canonical anticommutation relations. In this limit the
Gel'fand-Levitan expression for P(x) exponentiates into
a Jordan-signer transformatjon relating the boson
field Q(x) to the fermion field R(x). This result sheds
some light on the nature of the quantum inverse trans-
form. The Gel'fand-I evitan expression for the charge
density operator also has an interesting structure. It
is closely related to the spectral integral equation for
the finite temperature 5-function gas derived by Yang
and Yang (1969). In the zero temperature limit this
reproduces the excitation spectrum derived by Lieb.
Thus, the integral equation technique for calculating

, the spectrum also falls naturally within the province of
the quantum inverse method. These developments are
discussed in Sec. III.C.

The organization of this review is neither historical
nor logical, but rather, it is hoped, pedagogical. It
seems likely that explicit Bethe Ansatz methods will
eventually be subsumed by the quantum inverse method.
Nevertheless, before presenting the full apparatus of
the quantum inverse method we consider in Sec. II
some explicit Bethe Ansatz solutions. This provides
some insight into the structure of the eigenstates which
should be helpful in understanding the more elegant
algebraic methods which will be reviewed in Sec. GI.

I I. BETHE'S ANSAT2

In this section we will consider several soluble mod-
els which illustrate the workings of Bethe's Ansatz.
Our first discussion in Sec. II.A deals with the nonlin-
ear Schrodinger (6-function gas) model. In addition to
being an instructive toy model, this system provides a
paradigm for other applications of Bethe's Ansatz in
field theory and has been a central inspiration in the
development of the quantum inverse method. After
some elementary considerations in the two-body sys-
tem, we describe the N-body Ansatz, periodic boundary
conditions, and the integral equations for the ground
state and for the excitation spectrum. In Sec. II.B
similar methods are applied to the massive Thirring
model. This model illustrates the application of
Bethe's Ansatz methods to relativistic quantum field
theory. The filling of the Dirac sea and the calculation
of the excitation spectrum are reviewed. Field theory
models with internal symmetry are briefly discussed
in Sec. II.C. In Sec. II.D we introduce the soluble lat-
tice statistics models, beginning with the six-vertex
(ice or ferroeleetric) model and then including the full
Baxter eight-vertex model. The discussion in Sec.
II.D is primarily intended to introduce the definitions
and formalism of two-dimensional lattice models. Only
general features of the Bethe Ansatz solutions are men-
tioned since the details are much more elegantly treat-

ed by the quantum inverse method, which will be done
in Sec. QI.

A. The nonlinear Schrodinger model

The nonlinear Schrodinger model in one-space dimen-
sion is defined by the Hamiltonian operator

H= 8„+8„+g + + dx) (2. 1)

where Go is the free particle Green's function operator

1
Go(~) =

+Zg
(2.4)

and H, and V are the first and second terms in (2. 1),
respectively. In (2.3) the state fkq, . . . , k~} is an
eigenstate of Ho constructed by repeated application of
momentum space creation operators

a+ d~ ef kx (2. 5)

The energy of the state is

N
2

6th~ = (2. 6)

The terms in the expansion (2.3) may be represented
graphically in the usual way. For N= 2 the graphical
expansion is a simple sum of bubbles as shown in Fig.
1. The first term in (2. 3) is just the free state fkq, kq},
which we write as

(2.7)

The second term gives

where Q(x) is a, nonrelativistic boson field with canoni-
cal equal time commutation relations,

(2.2)

Note that Eq. (2. 1) is in the standard form of a, many-

body problem with the second term corresponding to a
two-body delta- function potential. The Hamiltonian
(2. 1) commutes with the particle number operator
N= fQ*P dx, and we may therefore consider each N

body sector of the' Hilbert space separately.
Before constructing the Bethe Ansatz solution to the

model, it is amusing to study the two-body system by
more conventional means. In old-f ashioned time-inde-
pendent perturbation theory, we may construct "in"
eigenstates of H by expanding the I ippmann-Schwinger
equation,

f+(k„. . . , k„)},„=g [G,(~/V]"fk„. . . , k„}, {2.3)
l=o

k2 ~ k2 2 2+ . (4~)(2~)6(k1 k2 f'1 P2)&t &p fO}r ~P1 dP2
27T & i 2 P 1 0'2 ZG Pg P2

dx)dxg&(xg —xg)e "~i"&'~2 2'p*(x&)p~(xq)
f
0&, (2. 6)

2$c

1
—

2
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where we have taken k, &k2. The higher order terms have the same structure as (2. 8) with extra, factors of ic/
(k) k2) from the loop integrations in Fig. 1,

') (/2m ic
ki+ k2 —Pi —P2+iC ki —k2

If we write 1=8(x, —x2) + 8(x~ —x,) in (2.7), the coefficient of 6(x2 —x,) in the wave function sums up geometrically,

k 2

ki k2 ki k2 k2 ki ic (2. 9)

Thus, the full two-body in-state for ki &k2 is

lk(k& kp)),„=fdxX)xg(k(x, —xg)+k(x2 —x)x' ~ ' jx'' '*'22 P (x~)C. (xg)~()). (2. Io)

It is not hard to show that for k) &%2 (2. 10) is an out eigenstate. From this we find that the in state and out state
are related by a. phase

~+(/„u, )&„=e' '2 ') ~+(u„e,)&.„„ (2. 11)

and hence e' is the two-body S matrix. The in and out states are the properly normalized eigenstates of B, which
follows from the fact that the right-hand side of (2.3) may be written as U(0, -~) ~k), . . . k~&, where U is the unitary
time development operator in the interaction picture. The orthonormality of these states may also be checked di-
rectly (Gaudin, 1971;Thacker, 1977). Another normalization which is often convenient is obtained by multiplying
(2. 10) by a. factor [I + ic/(k2 —0))j, giving the unnormalized eigenstate

~k(k„k,)) ()+ =" (k(k„k,»,.
k2 —ki

dXidX2 1 — 8 &i &2 e i "i+ 2 "2 + gi + g2 0
i 2

(2. 12)

The fact that (2. 10) or (2. 12) is an eigenstate of H may
be verified directly by applying the operator (2. 1).
Using integration by parts to bring the derivatives in
Ho onto the wave function, we find

2 dXidX2~ X2 —Xi e"
(1/2) (E(x)+x2)~g( )@kk( )

~

0& (2. 14)

fftc(a„A.,)&=(~', +u', ) ic(e„/, )&. (2. 13)
For c &0 this is a bound state with a normalizable in-
ternal wave function

Note that terms involving 5(x) —x2) coming from kinetic-
energy derivatives acting on the z(x( —x2) in (2. 12) can-
cel against terms from the interaction Hamiltonian V

applied to the state.
En addition to the scattering states with ki and k2 real,

we may also construct a two-body bound state for the
case of attractive coupling c (0 by allowing the k's to
be complex. To avoid a wave function which blows up
when xi or x2 becomes large, we keep the total momen-
tum A = k, + k2 real and choose (j'z) —A, 2) such that the
quantity in the large parentheses in (2. 12) vanishes for
one ordering of the x's, viz. , ki —k2 ——ic, giving

( ) (1/2)cl)() X21 (2. 15)

The energy of the state (2. 14) is E=k) +02= ~(& —c ),
i.e. , the binding energy is —&c .

The two-body eigenstates (2. 10) or (2. 12) were easily
constructed by conventional means. The penetrating
insight of Bethe (1931), adapted to the nonlinear Schrb-
dinger model by Lich and Liniger (1963), was that ex-
act eigenstates of A for the N-body system could be
written down by a rather natural generalization of the
two-body case. The Bethe Arssatz for this model is
most easily written in the unnormalized form which
generalizes (2. 12),

lk(k„. . . , k„)) f"x"'*;dx)=
i+i

+ + + + . . .
x l, ( — x(x, —x)I

i

~ @*(x&).. . y*(x„)~0& . (2. 16)

FIG. 1. Sum of graphs for the bvo-body wave function. By applying (2. 1) to (2. 16), it is again found that, by
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virtue of cancellations between 5-function terms from
Hp and 6 function terms from V the state (2. 16) is an
eigenstate of II,

Equation (2. 17) may be verified directly by showing that
the wave function in (2. 16) satisfies a many-body
Schrodinger equation (I ieb and Liniger, 1963). The
wave functions have also been obtained by summing
Feynman graphs (Thacker, 1976). In Sec. III a par-
ticularly simple derivation of the result (2. 17) will be
obtained by the quantum inverse method.

As before, we may construct bound states for z &0
by letting the k, 's in (2. 16) become complex. To obtain
an N-body bound state we keep the total momentum

K=5~ ", , k,. real and arrange the k,. 's to be spaced by ic
in the imaginary direction, i.e. ,

sitz (2. 16) may be used to study a system of particles
at finite density. In the remainder of this section we
discuss the periodic boundary condition method for
studying the ground state and the excitation spectrum
for a finite density system. Similar methods will be
used for spectral calculations in the massive Thirring
model in Sec. II.B. In this approach a finite density
system is constructed as an N-body system in a box of
length L, with periodic boundary conditions (PBC's)
imposed on the N-body wave functions. In the limit
L -~ with the density N/L fixed, the PBC's reduce to
linear integral equations which determine the spectrum
of the theory. In Sec. III we return to the nonlinear
Schrodinger model and show how these spectral tech-
niques fit naturally into the quantum inverse formalism.

We consider the states (2. 16) in a periodic box of
length I, identifying the points x= & I and x=-~ I,
The many-body wave function

k& ———+ 2(N —1)ic,K

k2 ———+ ~(N- 3)ie,
N

k„= ——2(N —1)ic .

(2. 18)

must then satisfy periodic boundary conditions

0( 2 . A+29 ' ' ' &++) P(BL +2' ' ' 0+N) (2. 22)

Periodicity in the other arguments follows from Bose
symmetry. The condition (2.22) restricts the allowed
values of the k,.'s in a state. From (2. 16) we find that
(2. 22) beconies

Such a configuration of modes is called an '*N string"
and is shown in Fig. 2. By the choice (2. 18) we cause
one or more of the factors in the curly brackets in
(2. 16) to vanish unless the x,.'s are arranged in one par-
ticular order, x& &x2 & ~ ~ ~ &x„. After symmetrization,
the N-body bound-state wave function in the rest frame
1s

or

-jk]L/2 y + jk I /2
k. —k'.

elk. L ~t&(k~ "k])
Z y 2hei

gWi

(2. 23)

(2. 24)

Ip (xl x2, . . . , x„)=exp(-'c Z ~x; —x,
~)i&g~N

The energy of the bound state is

(2. 19) wheie & is the two-body phase shift. The most useful
form of the PBC's is found by taking the logarithm of
(2. 24), for which we must choose a branch of the func-
tion

1 2 N(N —1)
CE Z jp] K (2. 2O)

k —ie
&(k) = -i ln k+ ie (2. aS)

For repulsive coupling g &0, the wave-function An-

Im k

If the logarithm of (2.24) is written

k;L =g &(k& —k, ) + 2mn„n; = integer (2. 26)

X
X

FIG. 2. An n string in the complex k plane, representing a
nonlinear Schrodinger model bound state.

then a change in the branch of (2. 25) is equivalent to a
redefinition of n,.'s. We adopt the convention that
A(k) -0 as k -~ and that A(k) has no discontinuity along
the real axis, as shown in Fig. 3(a). Note that with
this choice of branch, A(k) is not precisely the phase
shift due to the interaction. For example, as c -0,
b(k) goes not to zero but to a step function -2m8(-k).
The interaction phase shift is E(k), Fig. 3(b) which
vanishes in the c -0 limit for all k, but which has a
discontinuity of -2m at k =0 for any finite p. The physi-
cal effect of this definition of the phase shift is to intro-
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FIG. 4. Partic].e-hole excitation above a finite density ground
state in the nonlinear Schrodinger model.

1
dk p(k)L (2.30)

where k~ is determined from the particie density 1V/L

by J "~ p(k)dk =~/L. Equation (2. 28) becomes an in-
tegral equation for the ground-state density p(k),

2mp(k) = 1+ K(k —k') p(k')dk', (2.31)

where the kernel K is given by

FIG. 3. {a) Phase shift used in periodic boundary conditions
{2.26). {b) Interaction phase shift which vanishes for c 0. dk =k'+ ''d&(k) 2e

k +c (2.32)

k12L = &(-k&2) —&(k12) + 2&(+1 &2)

= -4 tan '(k /2/c) + 27T(n$ —n2), (2. 27)

where -m/2&tan '&w/2. Equation (2. 27) has a. solution
kq2 for each choice of (n~ —n2). But for n, =n2 the solu-
tion is k&q ——0 and the state (2. 10) or (2. 12) vanishes
identically. Thus, the state yz&

——~2 is excluded as it is
in a. free fermion system. In fact (2. 27) shows that in
the limit c -~ (impenetrable bosons) the spectrum is
identical to tha, t of free fermions. A similar result
holds for N-body states. The hard-core repulsive in-
teraction has the same effect on the density of states as
the exclusion principle has in a fermion system.

The ground-state k distribution is obtained from
(2. 26) by choosing the n, 's to be as closely spa. ced as
possible, i.e. , z,.&

——yg,. + 1. Subtracting the PBC's for
adjacent k,.'s gives

duce a fermionic description of the spectrum in terms
of the ~,.'s in Eq. (2. 26). To see this, consider the
case of two particles in a box. The two equations (2. 26)
may be added and subtracted to give the condition that
the total momentum k, +k2 must be 2v/L times an in-
teger, while the relative value k&2 =—k~ —k2 must satisfy

The ground-state energy is obtained from the solution
to (2.31),

k~
Zo/L = k p(k)dk . (2.33)

k,
'L= Q &(k'; —k,').+ &(k~ k,') —&(k„—k,'-) + 2mn; .

(2. 34)

The excitations above the ground state consist of
"partacles" which are filled modes above the Fermi
surface and "holes" which are empty modes below the
Fermi surface. For simplicity let us consider a single
particle-hole excita.tion formed by removing a'mode
from below the surface at k=k„and placing it above the
surface at k = k~, as shown in Fig. 4. In response to
such an excitation, the Fermi sea will shift slightly in
a manner described by the PBC's. Each mode in the
sea. shifts only by an amount of order L ', but since the
number of modes is of order I, the shift or "backflow"
of the sea, makes a finite contribution to the excitation
energy. Denote the k values of the sea modes in the
excited state by k,'. . These will satisfy the PBC's:

k, ,)
—k; = —Q A(kq —k;,g) —&(k; —k;) + —. (2.28)1 2r Subtracting from this the corresponding ground-state

PBC gives

As L- ~, the k,.'s become infinitesimally spaced, and
the quantity

(k,' —k,)L= Q [&(ky- k,') —&(kq —k;)]

1""'=L(k...—k, )
(2.29)

approa. ches a. continuous function. The sum in (2.28)
can be replaced by an integral

+ ~(k, —k', ) —~(k„- k,'.) . (2.35)

(k,'. —k,.)L -~(k, ) . (2.36)

As L-~, the left-hand side of (2. 35) approaches a con-
tinuous function which we denote by zo(k),
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Then (2.35) reduces to For reasons which will become clear we define a func-
tion s(k) which is the solution to the integral equation

w()') =f lc(). —).")[w().') —w(), )b((. ')d). '
"kF c(k)=k —t, + f~(k-k')c(k').

2 71
(2.45)

+ t (k, —k) —~(k„- k) .

Using (2. 31) and defining ge(k) p(k) =S'(k), (2. 37) simpli-
fies to

(2. 37)

kF
2mE(k) = K(k —k')F(k')dk'+ &(kp —k) —&(k„—k) .

"kF

(2.38)

E(=k~- k„+Q (k,' —k;)

The excitation energy F.—Eo =E~ is found by subtracting
eigenvalue s,

c'(k) = 2k+ &(k —k')~'(k') .
2 7T

F
(2.46)

Using the same sort of procedure that led to (2.43},
Eq. (2.46) can be solved, giving

Here p.o
——chemical potential is a constant which is fixed

by the requirement s(+k~) =0. [Note that r(k) is an
even function of k. ] Differentiating both sides of (2. 45)
and integrating by parts, we get an equation for c'(k)
= dc(k)/dk,

=k —k„+ 2k' k dk. (2.s9)

kF I
~'(k) = 2k+ L(k, k')2k'

Equation (2.44) becomes

(2. 47)

kF dk' d
[2~5{k- k') —f~(k - k')]Z(k') = 'If(k —k'),

F h

(2.40)

where (2.32) has been used. Equation (2.40) can be
abbreviated as

(1 —I~)1(k) = I~(k —k')kp, dk'
2r

h

{2.41)

Next consider a quantity L(k, q) given by

L(k, q) = [(1—K) 'K](k, q)

'F dk'
—=&(k —q) + &(k —k')&(k'- q) + ' ' ' .2r-kF

(2.42)

Then applying (1+L) to both sides of (2.41) and using
(1 + L)(l —R) = 1 and (1 + L)R = L, we obtain

L(k, k') —. (2.4s)

The excitation energy (2.39) can now be written

+ 2kdk I (2.44)

Thus, the excitation energy may be regarded as the sum
of the bare energy of the particle and hole and a back-
flow energy of the sea, the latter being written a.s an
integral over the function E(k). Equations (2. 38) and
(2. 39) are the essential results of the Lich analysis.
A further simplification of these results may be ob-
tained by adapting an a.rgument of Yang and Yang (1969}.
We write Eq. (2.38) as

Fq ——k~- k„+ c' k —2k dk=c k~ —c kh . 2.48
kh

Thus, the structure of the particle-hole spectrum is
completely summarized by a function s(k) which gives
the physical energy (bare energy plus backflow) of a.

single excited mode. The function c(k) is determined
by a simple integral equation, Eq. (2. 45), which may
be regarded as the fundamental spectral equation of the
theory. The generalization of (2.45) to finite tempera. —

ture was obtained by Yang and Yang (1969) using a var-
iational method. In Sec. III we will see that the struc-
ture of the finite temperature spectral integral equation
for r(k) is closely rela. ted to the structure of the
Gel'fand-I evitan transform for the charge-density
operator j,(x) = (t)*(x)(t)(x).

B. The massive Thirring model

Recently it has been found that certain relativistic
fermion field theories can be exactly solved by tech-
niques which closely parallel those used in the nonlin-
ear Schrodinger model. Early work by Thirring (1958)
in the massless case and by Berezin and Sushko (1965)
in the massive case considered a, wave function Ansatz
built on an unphysical reference state but did not carry
out the PBG integral equation analysis needed to reach
the physical Hilbert space. The problem of recovering
the physical theory in the massless case was resolved
by Lich and Mattis (1965). The massive Thirring model
Ansatz was recently rediscovered (Bergknoff and
Thacker, 1979), and the construction of the physical
states and eigenvalue spectrum was also carried out.
This recent work was stimulated by Coleman's (1975)
demonstration of the equivalence between the massive
Thirring and quantum sine-Gordon models along with
the emerging connection between Bethe's A~sate and
inverse scattering methods. This application of Bethe's
Ansatz was also suggested by the work of Luther (1976),
who pointed out that the massive Thirring model could
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be regarded as the continuum limit of the XFZ Heisen-
berg spin chain. The method of solution we discuss in
this section is related to the treatment of the XYZ
spin-chain and eight-vertex model by Baxter (1972a, b;
1973a, b, c) and Johnson, Krinsky, and McCoy (1973).
The connection between the spectral calculations for
the two models has been discussed (Bergknoff and
Thacker, 1979).

The massive Thirring model consists of a Dirac fer-
mion field with a local j~j coupling, where j~
= —,'[T(), y (t]. Choosing a. basis in which y' is diagonal,
we may write the Hamiltonian in terms of chiral com-
ponents tp( and )I)2,

i

. .. XXXXXXXXX XXXX)(XXXXXXXXXXXXXX. . .

Re

FIG. 5. Physical vacuum for the massive Thirring model.

m P (4142 (t'2 41) gP P1(t 2 02 41 (2.49)

Here we have chosen a certain ordering for the field
operators which will facilitate the diagonalization of &.
The interaction term in (2.49) differs from conventional
ordering by a term proportional to the fermion number
operator N= J (g1g1+ gtg2)dx, which commutes with H.
Thus, we will get the correct physical spectrum by
considering energy differences between states with the
same value of N, e. g. , excitation energies of neutral
bound states or fermion-antifermion pairs relative to
the physical vacuum.

The form of the Bethe. Aygsatz which diagonalizes
(2.49) can be motivated by first considering the diago-
nalization of the free Hamiltonia. n H„given by (2.49)
with go

——0. This also serves to introduce the idea of
complex rapidity, which is extremely useful in de-
scribing the eigenstates of the full theory. To diago-
nalize Ho we first construct momentum space creation
operators

A'(g, x) = cos 8(()q', (x) + sin8(g) q'2(x)

= (2 cos() '"[e'"y', (x) + e "'pe(x)]. (2. 53)

It is clear that the positive energy modes (2.51a) are
obtained by taking g = & = real,

(2. 54a)

Here and elsewhere we use g to denote general complex
values of rapidity while e will always be real. . Letting
$ =in —(2' with a real, we also obtain from (2. 53) the
negative energy modes (2. 51b),

cal vacuum is obtained by filling the negative energy
sea. It is convenient to visualize a state as a collection
of points in complex rapidity space, each point repre-
senting a filled mode. Define the rapidity ( by k
= m p sinhg and consider a local rotation of the chir al
components of the field operator with cot28(g) = sinhg,

a1 2(k) = dxe ""y)t 2(x) (2. 50) e(2).'1= f dxe ' e" "e( (ie —x, x*") . ' (2. 54b)

and mix them by a Bogoliubov rotation,

A11(k) = cos8(k)a, (k) + sin8(k)a2(k),

A12(k) = -sin8(k)a1(k) + cos8(k)a12(k),

where cot28(k) =k/mp. In terms of these operators,
the free Hamiltonian is diagonal,

(2. 51a)

(2. 51b)

/ ~t y~ y ~f y~ y 2

Thus A1(k) and A2(k) create eigenmodes with energies
(k +m, ) and -(k +m, ) t, respectively. Eigenstates
of Hp can be built upon a reference state

~

0) which is
annihilated by the field operators, i.e. , $1(x) I

0)
=$2(x) IO) =0. This is an unphysical state which has all
positive and negative energy modes empty. The physi-

Thus, a positive energy mode is represented by a point
along the real g axis, while a negative energy mode is
a point along the line Imp =21. The physical vacuum is
the state with all modes on the iw line filled, as shown
in Fig. 5. The density of modes along this line is de-
termined by periodic boundary conditions in a box of
length I.. For the free theory this gives a uniform den-
sity in k space, k„=2)Tn/L. Excited states represent-
ing fermion-antifermion pairs may be constructed by
removing modes from the im line and placing them on
the real axis.

Now let us consider the full massive Thirring Ham-
iltonian. We construct a Bethe Ansatz using the rotated
local operator A (g, x) defined in (2. 55). The Anseatz

is structurally similar to that of E(I. (2. 16) for the non-
linear Schrodinger equation,

N

(e(4 ' ' ' 4)) =f , (e'"e"""'X(h) .... (1 —(X((,.—(e)e(x,. —x))e('((i xi) A'((„,x) io) .
ja1 j&)~N

(2. 55)
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The function A($) in (2.55) is given by

This corresponds to a two-body phase shift

&(g) = 2 tan 'X(() = 2 tan ' (cot p, tanh —,
'

g),

(2. 56)

(2. 57)

PBC's on the wave func'tion for the state (2. 55) and
following the same procedure which led to (2.24), we
find that the set of g, 's in a state must satisfy

exp(- , i—mol.sinhg, .) [1+iX(g,. —g,)].
where p, = -cot(~go). By applying the Hamiltonian
(2.49) to the state (2. 55) it can be shown that (Berg-
knoff and Thacker, 1979)

= exp( 2 i' 0 I sinhg (),[1 —iX(g; —g,.)] . (2. 59a)

Hla(2; 2 )) = F ms coco(~) ls(4' ' ' (s)) .

(2. 58)

As with (2. 17), this result follows from a cancellation
between 5(x, —x&) terms from the kinetic energy deriv-
atives in (2.49) acting on the c step function in (2. 55)
and similar terms from the interaction Hamiltonian.
Modes along the real axis give a positive contribution
to the energy, while modes along the im line, Imp =7),
carry negative energy. Periodicity in Im) allows us to
restrict our considerations to the strip -m &Imp ~ m.
In this strip, values of Imp aside from 0 or v generally
lead to a wave function which grows exponentially as
x-+. However, there are special "~-string" config-
urations in the complex $ plane for which the wave
function is exponentially damped, as in the case of the
nonlinear Schrodinger bound states. In the present
case, an ~-string configuration is determined from the
zeroes of the curly bracket factors in (2. 55). This
gives a, vertical row of equally spaced points at ) = o(,
+il(w —)((,), where l=(n —1), (n —3), . . . , -(e —1), and
e, is the position of the string along the real axis as
shown in Fig. 6.

To construct the physical vacuum we must fill all the
negative energy modes along the im line just as in the
free fermion theory. , (The fact that this state is the
correct vacuum may be inferred from the observation
that all other states in the neutral sector have positive
excitation energy. ) The filling of the Dirac sea, is ac-
complished by the same PBC integral equation method
used for the finite density delta-function gas. Imposing

Before addressing the problem of the Dirae sea, con-
sider first the case where (,. is a. member of an n
string. If 0 &Im); &7)', there is an adjacent mode in the
string with g&

——g, —2i(w —)u) for which X((, —g ) = i.
Thus the left-hand side of (2. 59) is zero, while the
right-hand side vanishes as L- ~. Similarly, for
-)) &Imp, &0 with g, in an n string, there is a g, which
causes the right-hand side to be zero, while the left-
hand side vanishes exponentially. This is just a re-
statement of the observation that an n-string configura-
tion yields an asymptotically damped wave function and
thus satisfies the periodic boundary conditions as 0 = 0.
Notice that this argument also restricts the length of
an n string to lie within the strip -)) &Imp,. &m, since
otherwise the side of (2. 59a) which is not identically
zero will grow exponentially instead of vanishing. I.et
us denote regions of the coupling p, by an integer r,
where

rv (r+ 1)w
(r+1) (r+2) (2.60)

Then the length restriction on an n string imposed by
(2.59a) is n &r+2. For example, the free fermion case
p, = 7)/2 lies on the boundary between regions r = 0 and
x=1. On both sides of this boundary, 1 and 2 strings
are allowed, while 3 strings become all@wed for jtj.

&))/2. As p, increases toward )), strings of increasing
length enter the spectrum.

To calculate the energies of the physical states we
must take into account the behavior of the Dirac sea.
(Note that the previous discussion about the PBC's for
~-string modes is unaffected by the presence of sea
modes. ) To determine this behavior we consider(2. 59a)
when g,. is a mode in the sea. In this case both sides
of (2.59a) will generally be nonzero, so we take the
log, giving

Im -mol sinhg, . = g &(g,. —gj)+2)Tn, , (2.59b)

X
j~

', 2) (~-p, )
X-i

(2.61)

h+jg
2)) p(() = -m, cosh) —

J
dg'K(g —g') p(g') . (2.62a)

where & is given in (2.57), which can be written

sinh-,' (( —2i p, )
sinh —,'($+2ip, ) )

'

For the vacuum state, all (,.'s are on the im line. As
I.—~, Eq. (2.59b) reduces to an integral equation for
the ground-state density p($) of modes along the i7(
line,

FIG. 6. An z string in the complex rapidity plane for the
massive Thi. rring model.

Since g= a+i7) with a real, this may be written

2sa, (a)=m„cosoa —f da'K(a —a')O, (a'), (2. 62O)
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where p, (n) = p(ci+im). [The change in relative sign of
the terms in (2.62) compared with (2.31) is related to
the fact that g,.= o,. +in in (2.59b), requiring the n,. 's to
be defined as shown to form an increasing sequence. ]
The kernel is given by the phase shift derivative,

d& sin2 p
dn cosh+ —cos2 p,

' (2.63)

In (2.62) we have introduced a rapidity cutoff A which
is needed to regularize ultraviolet divergent mode sums.
These divergences mill be absorbed by mass renor-
malization. Equation (2.62) can be solved explicitly for
large ~ by Fourier transformation. When expressed in
terms of the renormalized fermion mass m~, p, (n) is
found to be finite and given by p, (o.') =m~ coshpo. ', where
z is defined below in Eq. (2.86). I omit the details of
the calculation, since they are identical to the solution
of Eq. (2.76) for the spectral function q($), which will be
discussed in detail.

The physical particle states in the neutral sector of
the theory are constructed by removing modes from the
im line and placing them in n-string configuratioris about
the real axis. We will consider first a pimple exci-
tation obtained by removing a mode from the im line at

and placing it at a point $, as shown in Fig. 7. We
study the response of the vacuum to such an excitation
by subtracting ground-state from excited-state PBC's
for a mode along the im line. Note that, the PBC's for
the vacuum modes do not require the excited modes
to form an n string. (This requirement comes from the
PBC's for the excited modes themselves. ) This allows
us to consider the vacuum response for a single excited
mode at arbitrary $ . The construction of multiple
excitations and n strings will then be straightforward.
Just as in the derivation of (2.38) for the nonlinear
Schrodinger model, we define a function w(g) which
measures the shift of a sea mode due to the excitation
and subtract PBC's to obtain an integral equation for
the backflow function F($) =~(g)p($),

(2.65)

Following the same line of argument that led to (2.48)
we define a function co($) as the solution to the integral
equation

A+ iw

so($) =m, cosh( —p., — K(( —$')co($'), (2.66)

where p,, is chosen to give co(+A+i7i) =0. In terms of
this function, the energy (2.65) assumes a simple form

E = ..(&,) —..(&,) .

It is convenient to eliminate the constant p., from (2.66),
which can be done in the limit & —~ by defining

(2.67)

s(() =s.(5)+~, (2.68)

where a is a constant which will be chosen to simplify
the integral equation for c ($). Substituting (2.68) into
(2.66), we use the fact that

I~(&-~) „ -c,+c, cosh), (2.69)

where c, and c, are cutoff dependent constants inde-
pendent of g. The form of (2.69) follows from the as-
ymptotic behavior of the kernel K(( —('). Now choosing

ii = u./(I+ c,),
and defining

PR] PBQ + Qc2

(2.70)

(2.71)

we find that the function s(g) satisfies the integral equa-
tion

A+it
s($) =m, cosh& — R(g —$')s((') (2.72)

In terms of E', (n) = E—(oi+in), the energy of the excitation
relative to the ground state is given by

Z=m„cosa(~ —m„oases i+m f sinbnt, (m)da.

»F(()+ I~($ —h')F(k')if(' = &(5 —5,) —&(& —5,) .
- &+iv

(2.64)

Note that the energy (2.67) retains its simple form,

~ =.(&,) —.(~„).
The constant m, in (2.71) is a rescaled bare mass which
can be expressed in terms of m, and the finite coupling
parameter p. by

i'Pli = PFl 0/P' (2.74)

h
. . . xxxxxxxxxxxxx&:xxxxxx( )xxxxx. . .

where y is defined below in (2.86). The easiest way to
see this is to write an integral equation for c'(g) =dc(g)/
d(. Differentiating (2.66) and using ro(+A+in) =0, we
get

A+ jg
s'(() =m sinh( — R(( —$')c'(g') (2.75)

FIG. 7. Particle-hole excitation in the massive Yhirring
IIlo de 1

Equation (2.74) follows by comparing solutions to (2.72)
and (2.75), which will be discussed below.

We wish to construct the solution to (2.72) for any
complex value of g in the strip -7i &1m( & v. Our dis-
cussion will be restricted to the case ii/2& p, &v, i.e. ,
go positive. This is the range of coupling for which the
fermion-antifermion interaction is attractive and the
spectrum contains one or more bound states. In the
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c, (n) = c(n+ iz),
Eq. (2.72) may be written

dn'
c,(n) = -m, coshn — K(n —n')c, (n')

-A

Now we apply

(2.76)

(2.77)

sine-Gordon equivalence of Coleman (1975) this cor-
responds to the range 0&P'&4m. [The case p. &m/2 has

. also been discussed (Bergknoff and Thacker, 1979),
although some problems remain for p, &m/3. ] To solve
(2.72) for general g, we begin by considering the case
in which ( is along the im line. The continuation to gen-
eral $ will then be obtained by inserting this result back
into the integral equation. Writing $ = n+iw and defining

From (2.85) we find

c, (n) =-m~coshyn, (2.av)

where m~ is the renormalized fermion mass

(2.as)

, dA'
c (g) = m~ K(( —n' —im) coshyn'

27T
' (2.89)

To determine c(g) for arbitrary complex $, we write
Eq. (2.72) using the solution (2.87), to determine the
right-hand side. Note also that y&1 for p. &m/2, and
hence with m~ held finite, m, —0 as &-~. Thus Eq.
(2.72) may be written

c,(y) = dc'e' 'c, (n)
-A 2m ' (2.va)

A dc'
C(y)= e' 'coshn

2 tT
(2.79)

(2.so)

Eq. (2.77) gives

)
-m, C(y)
1+fr(y )

(2.al)

The Fourier transform of the kernel may be evaluated
by contour integration from (2.63) and (2.80), which
gives

sinh(11 —2 p, )y
sinh7Ty

The function C(y) given by (2.79) may be written

c(y)=c,(y)+c (y),
where, for A. -~,

(2.82)

(2.88)

~ ~ ~

27T

to both sides of (2.72). The limits of the n integration
in the last term can be taken to infinity because the
kernel K(n —n') falls off exponentially as n —+ ~. De-
fining

( )
s1112 p.

cosh/ —cos2p. ' (2.90)

we see that, in the strip -m&0 &m, the kernel is given

where we have let &- ~ in the limits of integration
because the integral is convergent.

For (= n+iv with n real, it is easy to verify that
(2.89) reproduces the result (2.87). Using (2.89) to
compute c($) for general values of $ requires care in
the definition of the kernel K(g) for complex $. It is
not correct to simply replace the real variable n in
(2.63) by, $. K(g) is defined as the derivative of the
phase shift &(g) given by (2.57) or (2.61). As in the
nonlinear Schrodinger model, the choice of branch for
&($) is correlated with the choice of integers n,. in the
PBC equations (2.60). The appropriatebranch structure
for our choice of n,.'s is shown in Fig. 8. Letting g
= n+io and regarding &(n+in) as a function of n, it is
seen from Fig. 8 that this function is continuous for
-2(~ —p, ) &a&2(w —p. ), while it has a step discontinuity
of (-27t) at n =0 for -m &cr& —2(m —p) and for 2(m —p)
&a&11. [The behavior of &(g) over the entire complex
plane is specified by its behavior in the strip -w& lm)
~ m along with periodicity in Im(. ] Thus the properly
defined kernel K(g) will acquire a delta. -function term
for

~

1m'
~

&2(m —i1). Defining the continuous function

C, (y) =
4v(1 ~iy) ' (2.84)

The function c, (n) is recovered from (2.81) by inverting
(2.vs),

r. , (a)= f eye '"P(y)

gpss, ",, s inh7Ty
ye

47T „2sinh m —p. y coshl y

~ ' 2(m —p. )

~

~

~

eA(1+ jy) e A(1- jy )

X . +
1 +zy 1 —zy

(2.s5) -2(m- p, )

In the limit A-~, this integral is dominated by the y-
plane poles nearest the real axis. Since we are con-
sidering p, &m/2, these poles are at y =+iy, where

'tT

2 JLL,

(2.86) FIG. 8. Analytic structure of the two-body phase shift A($)
for the massive Thirring model.

Rev. Mod. Phys. , Vol. 53, No. 2, April 1981



H. B.Thacker: Exact integrability in quantum field theory and statistical systems

K(o. + iv) =K,(o. + io),
I
o

I

& 2 (7) —p, ) (2.91a)

=K,(~+io) —2«(o), IoI &2()) —p). (2.91b)

Values outside the strip -7t &0. ~7t are obtained by pe-
riodicity.

To provide a complete understanding of the spectrum,
we must describe the phenomenon of "hole trapping, "
which occurs when an excited mode g enters the region

Iim(, I
&2p. -)T, (2.92)

which is the shaded region shown in Fig. 9. The un-
shaded regions in Fig. 9, m &Im( &2p —n and 7) —2p,
&Im(, &—7), maybe regarded as a single region, 3m

-2p. &1m(~&2p, —)T, by periodicity. When ( is above
the "threshold line" Ims~ =2 p. —w, its position relative
to the hole at f„ is unrestricted, as shown in Fig. 9(a).
If the mode is pulled down below the threshold line into
the shaded region [Fig. 9(b)], the associated hole is
suddenly forced to be directly above it, i.e. , Re(„must
equal Re( . We will find that the bound complex (mode
+hole) thus formed is just the fundamental boson of the

quantum sine-Gordon model. To see the effect of
crossing the threshold line, consider the PBC's (2.60)
for a mode in the sea. After separating off the excited
mode $~ from the rest of the sum, we may write the
PBC's in continuum form as

where (2.93)

and p ($) is the density of modes along the iv line for
the excited state. In the ground state there are no holes
on the im line, meaning that the n,.'s are closely packed,
~,.„—n,. =1. For an excited state n, , —n,. =1+~„, where
z„ is the number of holes between mode i and mode i
+ 1. Thus

h(~,„)-h(&,.) = + (2.94)

which can be written in continuum notation as

A+i n' 1—mosinhs= b(( —$')p ((')(fs'+ —&(( —$~)+2vh($),
—A+i I

ah(g) = p, (() + p„(&), (2.95)

h

%XXXXXXXXXXX](X X XXXX( )XXXXX.. .
6& =

i ( 2p. - w' )

////r//
////

(w —2p. )

p„(h)= Z
6(~ —o',),1

(2.96)

where (= o. +i@ Differ. entiating (2.93) and using (2.95)
and (2.96), we get an equation for p ($),

where p„(g) is the hole density. An analogous function
was considered by Yang and Yang (1969)in their derivation
of the thermodynamics of the delta-function gas at finite
temperature. For the case of a single hole at s„=o„
+in, which we consider here, the hole density may be
written

1 1=-m cosh) ——K(( —( ) ——6(o. —o ).0 I h (2.97)

h

. . . XXXXXXXXXXXXllXXX ( )XXXXXX.. .

i (2p. —

/////
/////
(Tr 2p. )-—p X

r I

FIG. 9. (a) Excitation of an unbound particle-hole pair.
(b) Excitation of a bound particle-hole pair.

(b)

Re g

By studying the singularities of this equation we will
demonstrate the phenomenon of hole trapping. Consider
first the ease shown in Fig. 9(a) with $~ above the
threshold line, Im( &2 p —)T. Taking g = o(+in in
(2.97), we see that, for this ease, K($ —( ) has no
delta-function piece, since Im(( —( ) &2()T —t ). The
integral term on the left-hand side also gives no delta-
function contribution. Thus the density p (() must be
of the form

1
p, (o(+i7() =f(o.) ——6(o —o)„), (2.98)

where f(n) is continuous in the sense that the integral

f ' f(o.")da' over a small but fixed range 6 is given
by a continuous function of n plus terms. which fall off
faster than 1/I . The result (2.98) may be seen more
directly by writing the formal solution of (2.9V),

p (s) = (1+K) 'I -mocosh( ——K(g- ( ) ——5(o. —n„) ~

.
27) ( L (" L ") '

(2.99)
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(2.100)K(( —g, ) = K,.(» —(,) —2~5 (n —n, ),
where n = Re/ and o! = Re) . From (2.99) we find that
the mode density along the im line becomes

p»(a +in) =f(n)+ —5(a —n ) ——r(o. —c(„), (2.101)

where f(o) is again continuous. Just as a subtracted
delta function represents an unoccupied mode on the
inline. , the second term in (2.101) represents theplace-
ment of an additional mode on an already filled line.
But this is not possible because of Fermi statistics.
(Specifically, if two modes in the Bethe sA'nsatz wave
function (2.55) have the same $, the wave function van-
ishes identically. ) The only way to avoid this problem

- and construct a legitimate state is to choose &~ = +„so
that the last two terms, in (2.101) cancel. The excited
mode and its hole must bind together when the mode
moves below the threshold line, as depicted in Fig.
9(b).

After all these preliminaries, we are now ready to
evaluate the function c($) from (2.89). In the unshaded
region around the im line, 3m —2»(. &1m» &2 p. —v [Fig,
9(a)], the kernel has no delta-function piece and is
given by (2.9la) and (2.90). The evaluation of the right-
hand side of (2.89) by contour integration is essentially
the same as for the case (= ~+~w. This gives

The first two terms give a continuous contribution to
p». For the last term we write (1+K) '=1 —K(1+ K) ',
giving a delta function and a continuous piece from 1
and K(1+K) ', respectively, as can be seen by doing the
Fourier transform implicit in (2.99). This shows that
(2.98) is the correct form when $» is above the thresh-
old line. In the language of discrete modes, the second
term in (2.98) simply means that there is an unoccupied
mode on the i)T line at ( = c(„+in N. ow consider what
happens when» moves below the threshold line (2.92).
By (2.91), the kernel K(( —(») acquires a delta-function
piece,

r(n+ii) —c(fM+(m)=m I ii. (m —n' —((w —i))

dn'
x coshye' (2.105)

c~(o. +iX) = c (o. +it) —c (o(+in) . (2.106)

Evaluation of the right-hand side of (2.105) is straight-
forward. It is interesting to compare it with the cor-
responding calculation in the region

~

X
~

&2»(, —m which
led to the result (2.102). In either case we must eval-
uate the integral

, da'
m, ~ K [n —o. ' —i(n —X)] coshyn' =—I,+I,

where

(sin2 p,)e"
cosh[n —n'+i(m —X)] —cos2»(, 27)

(2.107)

(2.108)

The integrand has two sequences of poles at ~'= &'„

where

o.'„= o. —i(m —x) + 2i p, + 2in)T . (2.109)

When
~

X
~

&2»(, —w (the unshaded region in Fig. 9), the
poles in the upper half plane are at &„ for n =0, 1, 2, . . . ,
and at o for n=1, 2, . . . . The integrals (2.108) are
easily evaluated,

(()' [(1 i ii . . . ) ( ((
'

li '. . . )]

for
~

X
~

&2 p. —7).. But this is also the region in which
hole trapping occurs, i.e., a mode in this region at
(»= o(+iX must have a hole attached to it at g„= n+iv.
The combination on the left-hand side of (2.105) is the
same combination that appears in the expression for the
excitation energy, Eq. (2.73), and may be regarded as
the energy of an elementary boson,

r. ($) = r»(z cos—hy($ —iw) (2.102a) = ——,
'

m~ e"" '" (» = o. + it), (2.110)

s ($) = -m~ coshy(g —im), 2»(, —)T & Im) ~ v (2.102b)

= -mz coshy(g+ i)) ),. -)T & Im) & z —2»(, . (2.102c)

for 3)T —2»(. &Imp&2(U, —)). If we wish to remain in the
strip -m&1m) ~ 7), periodicity of s(g) allows us to write
(2.102) as

with a similar result for I, leading to (2.102). But
when the excited mode moves into the shaded region
~X

~

&2p —v, the pole at a, = o. +iX —i(2»(, —7) ) crosses
from the upper to the lower half plane, with the result
that

I.———,
' m~e"" '"(1+e"")

Now let us consider the case where ~Imp~ &2»(. —m, as
in Fig. 9(b). In this region, the kernel K(g —n —i7)) in
(2.89) acquires a delta-function piece according to Eq.
(2.9lb). Letting g = o. +iA. , a and X real, we write

= —m~ cosny e = —,'m~ ere I rt:

where

7T
m ~ = —2m ~ cos vy = 2m~ sin —(2y —1)

2

(2.111)

(2.112)

K(g —o. ' —i)) ) =K,(g —o. ' —iv) —27).5(o.'—o.' ') .

Substituting this into (2.89) gives

(2.103) which is the mass of the elementary sine-Gordon
boson. A similar result holds for I . To summarize,
the function c(() in the strip -v&1m/ ~ m is given by

, dn'
c(g) =m~ I) K,(( —o(' —i7)) coshyo. ' —m~coshyo. ,

27t =-m~ coshy()+ in), -)) & Imp &m —2»(, (2.113 )

c(g) = -m~ coshy($ —im), 2(U. —m & Imp ~ m (2.113a)

which, by (2.102a) may also be written as

(2.104) c~(g) =c(()—s(Re&+in)

= »») coshr t, (2.113c)
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Knowing the function c((), it is an easy matter to con-
struct the spectrum of physical states. The PBC's for
the excited modes require that these modes be placed
in n strings, i.e., in vertical arrangements

&3 hole's

...xxxxxxxxxxxx~ ~xxxxx (~ )xxxxxxxx ...

g, = o.', + il (w —p, ), (2.114)

F.,= g m~coshyg, =
l

m sin (2y —1))
nm

2
coshyn,

7Tsin —(2y —1))2

n7r=2m sin (2y —1)) coshyn, ,

(2.115)

where I = (n —1), (n —3), . . . , —(n —1), as shown in Fig.
6. If n ~x where x is determined from the coupling by
(2.60), then all of the modes in the n string lie within
the region ~Imp

~

&2p, —v. Each of the modes has a hole
stuck to it at &, +im, and the energy of the full n-string
+n-hole complex is

1 hole 5holes~l hole
...XXXXX( )XXXXXXX)(XXXXX( )XXXXX( )XXXXX...

X

Re g

which is just the familiar Dashen-Hasslacher-Neveu
(1975) formula first obtained by semiclassical quan-
tization of the "breather" mode of the sine-Gordon mod-
el. [A similar formula. was obtained for the ÃYZ spin
chain spectrum by Johnson, Krinsky, and McCoy (1973).
The connection between the two results was pointed out
by Luther (1976).]

For the two longest strings, n = x+ 1 and n = r+ 2, the
two end modes at the top and bottom of the string at
Im) =+(n —l)(7( —]2) are within the region

~

imp
~

& 2 p
—)T, as shown in Fig. 10(b). Thus two of the n holes
may be located anywhere on the i7T lines. Let the posi-
tions be n, +in and o.', +in. The other (n —2) holes,
those associated with the modes inside the shaded re-
gion ~im(

~

&2p —v, must be, directly above the string.

FIG. 10. (a) Bound 3-string+ 3-hole state, representing the
pg = 3 state in Eq. (2.115). (b) A 5-string state, representing
an unbound fermion pair. Here and in (a), the value of the
coupling is taken in the range ~= 3.

(n —2)v
2m sin

' —(2y —1))coshyc, , (2.116)

just as in (2.115). The contribution from the two end
modes is obtained from (2.113a) and (2.113b), and is
given by

The energy of the state may be written as the sum of
three contributions. The (n —2) modes inside the shaded
region, along with their holes, contribute

(n —2)v
—m cnshy(n, +i(n —1)(s —n) —is] —m coshy(n, —i(n —l)(s —n)+is] = —2m s'n . (2y —)))coshyo, . (2.117)

This exactly cancels the contribution (2.116). The net
energy of the n modes and (n —2) holes is zero, and the
parameter n, completely disappears from the expres-
sion for the energy of the state. The energy of the state
is given entirely by the contribution of the two unbound
holes,

2=m„coshya, +mr o ehy s„em+1, r+2. (2.118)

From this result we infer that the two longest n strings
represent states of an unbound fermion-antifermion
pair with physical rapidities yn, and yo. 2.

Following the same steps which led to (2.115) and
(2.118), one may calculate the physical values of other
conserved quantities for a given state. Calculating the
physical momentum in this way leads to similar expres-
sions with coshyn replaced by sinhy+, giving a Lorentz
covariant energy-momentum relation. Finally we note
that the spectrum also includes compound excitations

consisting of several n strings plus holes. The totality
of such excitations is believed to provide a complete
set of states, although this has never been demonstrated
explicitly.

C. Field theories with internal symmetry

A major advance in the technology of Bethe's Ansatz
was made by Yang (1967), who developed a method for
treating the many-body problem with delta-function
interaction which imposed no limitation on the sym-
metry of the wage function. This method provides a
solution not only for the case of identical bosons dis-
cussed in Sec. II.B, but more generally for a system
consisting of several different particle species (which
will be referred to as "colors" ). The only requirement
is that all colors have identical mass and interact via
a color-invariant delta-function two-body potential. In
field theory, this system is described by a multicom-
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ponent nonlinear Schrodinger equation, with the Ham-
iltonian

z a x a+C a b a b (2.119)

where the sums run from l to N„ the number of colors.
Recently, a Bethe sensate solution for the chiral-in-
variant Gross-Neveu model has been formulated by
Andrei and Lowenstein (1979, 1980), using Yang's tech-
nique to handle the internal symmetry. This model has
a multicomponent fermion fieM interacting by a color-
invariant four-fermion interaction of the form g[($ g)
-((i)y'(t)) ]. It is an important model in that it has non-
trivial renormalization group properties and exhibits
asymptotic freedom and dynamical mass generation.
A similar. model, the SU(2) Thirring model, has been
discussed by Belavin (1979). The study of exactly in-
tegrable field theories with internal symmetry seems
likely to provide additional insights in the future.
Kulish (1979) has shown that the Yang method for the
multicomponent nonlinear Schrodinger model (2.119)
finds a natural place in the quantum inverse method,
and a similar discussion of the Gross-Neveu model has

been presented by Kulish and Reshetikhin (1979). An
outstanding problem of major importance is the ap-
plication of Bethe Ans&t~ or quantum inverse methods
to the nonlinear sigma models. Much work has been
done in the investigation of exact integrability for these
models, but so far they have not been analyzed by the
methods we are discussing here.

In this subsection we will briefly review Yang's meth-
od in the context of the multicomponent nonlinear
Schrodinger model. Relativistic fermion models are
treated in a similar way, with the finite density system
of the nonlinear Schrodinger model again servirig as the
analog of the physical vacuum in the relativistic the-
ories. We begin by considering the two-body system
for the Hamiltonian (2.119). Denoting the colors of the
two particles by a, and a„we try to construct a two-
body eigenstate of the form

(k„k, )= f dx, dx, lP(x„x )k, (x,)@,"(x,)(0). (2.120)

The Bethe sensate for this problem is a generalization
of the identical boson wave function (2.12)

(t)(x&, x, ) = g [Q, P]8(xo &xo ) expi[k~ x@ +k~ xo ]
s, Q

=8(x, (x2){[12,12]e' ' ' ' ' +[12 21]e' ' ' ' ' }+8(x (x,){[21 12] e' ' ' ' '+[21 21] e ' ' ' ') (2 121)

where 8 (x (y) —= 8 (y —x), Q and P are permutations of
(1,2), and the coefficients [Q, P] are to be chosen so
that (2.120) is an eigenstate of H. Continuityof the wave
function demands that

([12,21]) -&„([12,»]) 1 ([», »]&

([21, '21]f 12([21,12]) ' 612, 12

(2.126)

[12, 121+[12 21] = [21, 12] +[21,21] . (2.122)

~21 12 ~12 1 (2.123)

where

(2.124)

Here,

SC

1 2
(2.125)

and 0» is the permutation operator which interchanges
the two components of the column vector g». Thus
(2.123) is written explicitly as

The state (2.120) will be an eigenstate of (2.119), pro-
vided that delta-functiori terms from the kinetic energy
and interaction Hamiltonians are made to cancel. (This
is sometimes stated equivalently as the condition that
the first derivative of the wave function should have a
discontinuity of 2c at x, =x,.) This condition, combined
with (2.122), may be written in an elegant form by col-
lecting the coefficients [Q, P] in a, 2 x 2 matrix and
denoting the columns by g~. This allows us to write the
stated conditions as

It is easy to check that with the conditions (2.126) the
continuity equation (2.122) is satisfied, and that the
state (2.120) satisfies

ff ~k„k, &
= (k;+k', ) ~k„k.&. (2.127)

Equation (2.126) can be interpreted physically in
terms of the two-body scattering process in a way
which leads naturally to the generalization of this re-
sult to any number of particles and colors. Imagine
the particles arranged on a line in x space. The
permutations Q and P may be regarded as the ar-
rangement from left to right of the color labels and
momentum (k,.) labels, respectively. A coefficient
[Q, P] can be interpreted as the amplitude for an ar-
rangement of colors and momenta. , e.g. , [21, 12] is the
amplitude for finding the first particle with color a,
and momentum k, and the second with color ~, and mo-
mentum k, . For definiteness assume that k, &k, . The
time development of the system may be traced from the
incoming configuration of momenta P= (12) to the out-
going configuration P = (21), with an elementary per-
turbative interaction represented by a factor of -~»,
Eq. (2.125). When the ordering of the momenta inter-
changes, i.e., when the fast particle k, passes the slow
particle k2, one of two things may happen to the color.
Either the colors a, and a2 are exchanged between the
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~2, 2„)= Jdx, dx, d(x, x,)d. ,(x) d.„(x )l())

(2.129)

is an eigenstate of H, provided that

(2.130)
i+1

where &~ is a column vector of the Nf &Nf matrix
[Q, P] and P' is the permutation obtained from P by
interchaning P,. and I',.„. The Y operators are defined
by

y l m ii + (p
l

I+ X. l+ &.ij
(2.131)

where (P, is the permutation operator on („which
interchanges Q, and Q . The mutual consistency of the
eqllatloI18 colliallled ill (2.130) lllay be estab118hed llslllg
the identities

y~b y&bij

yab @bc ycb ybc yflb ybc
jk ik ij ij ik jk'

(2.132)

(2.133)

We note the analogous roles played by the operators
and (P, ...when act;ing on („. The first inter-

changes P, and P,.„(mom. entum labels), while the sec-
ond interchanges Q,. and Q,.„(color labels). The peri-
odic boundary conditions which emerge from the wave
function {2.128) can be easily understood from this point
of view. The periodic boundary conditions relate the
amplitude for finding a particle with a particular color
and momentum label at one end of the box to the ampli-
tude for finding a particle with the same color and mo-
mentum at the other end of the box. For an N-particle
system, all N such conditions may be written in terms
of a standard vector (o defined as g~ with P= identity.
It is convenient to define an operator

fast and the slow particle, in which case the color or-
dering Q remains the same, or else the color a, re-
mains on the fast particle and n, remains on the slow
particle. The former may happen only if the par-
ticles interact at least once, while the latter may hap-
pen whether or not they interact. The first and second
terms on the right-hand side of (2.126) describe these
two possibilities.

With this interpretation of (2.126), it is now easy to
generalize (2.123) to the N-body case. I et Q and P be
elements of the permutation group S~ and write the N-
body wave function as

P (Q, d') ~ (xe «xe )exp ( gd xe) . (2 122)
p, Q 'c

Then the state

Equation (2.135) for j =1, . . . , N provides N matrix
eigenvalue equations for the vector go. It can be shown
(Yang, 1967) that the matrices on the left-hand side of
each equation commute with each other. Before proceed-
ing to discuss (2.135)in general, we turn to two special
cases. For identical bosons, &,j= 1 for all i and j
(i.e. , the wave function is symmetric). In this case
(2.135) reduces to the usual PBC'8, Eq. (2.24). If the
particles are identical fermions, P,, = —1, and (2.135)
reduces to the PBC's of a noninteracting theory, Oj=l.
This was to be expected because single-component
fermions cannot interact by a delta function: theirwave
function vanishes when any two coordinates coincide.

One of the most remarkable aspects of Yang's method
is its treatment of the matrix PBC'8 (2.135). As shown
by Yang and extended by Sutherland (1968), the PBC'8
can be solved by a second application of Bethe's
sensate, or more generally by a nested series of
&nsatze. The operators g, j acting on the vector (,
form an N I && N t representation of the permutation group
S~. This may be written as a sum of irreducible rep-
resentations by considering &,'8 of various symmetry
types. Choosing one particular irreducible represen-
tation reduces the PBC'8 (2.135) to a matrix equation
with the dimens ion of that representation. The choice
of representation is reflected in the symmetry proper-
ties of the corresponding wave function. For example,
as already mentioned, the one-dimensional symmetric
and antisymmetric representations produce wave func-
tions for identical bosons and fermions, respectively.
Higher dimensional representations correspond to sys-
tems with two or more species (colors) of particles.
We denote an irreducible representation A by a Young
taMeau [n„n„.. . , n, ], where Z', n,.=¹Graphically
this tableau has n, boxes in the first row, n, boxes in
the second row, ete. For each B there is a conjugate
representation R obtained by interchanging rows and
columns. Figure 11shows the conjugate representations
[5, 3] and [2, 2, 2, 1, 1]=—[2, 1 ]. If R represents a boson
system with n, particles of color l, n, particles of
color 2, etc. , then R describes a fermion system
wit;h the same color content. The periodic boundary
conditions for conjugate representations are related in
a simple way. The eigenvalue 0;. on the right hand side-
of (2.135) may be regarded as a function of the rep-
resentation chosen for the Ip, , '8 and written v~{R). Now
write another eigenvalue equation

yij zjl —(P. . x.
ij ij ij l+y ij

(2.134)

which has the effect of interchanging both momentum
and color labels. 'Thus, the PBC's can be written as

(b)
where

ik I
j (2.136)

FIG. 11. (a) Hepresentation I5, 3]. (b) Hepresentation t2, 2, 2,
1,1].
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density and the density of red particles,

(2.138)

The eigenvalue IU,, i's also a function of the represen-
tation. Then we see that

pkdk=N L, ,

l
.B

o(A)dA =M/L .
-B

(2.147)

(2.148)

o,.(R) = p., (R). (2.139)

a(P)F (A„,y, )F(A, , y, ) F(A, y „),
(2.140)

where the y,. 's are integers which denote the lattice site
and satisfy 1 &y, &y, & ~ ~ ~ &y~~¹ It is found tha. t the
Ansatz (2.140) can be made to simultaneously diag-
onalize the N operators in (2.137) (for j =1, . . . , N) if
we choose

A
F(A, )=

k,.„—A —ic/2

The periodic boundary conditions for the new Ansatz
(2.140) restrict the A's to satisfy

(2.141)

kf-A. -ic 2 "o' A. -AO+zc (2.142)

The factors on the right-hand side are just the two-
body phase shifts associated with the coefficients a(P)
in the Ansatz (2.140). Finally, the eigenvalue p~ in
(2.137) which is obtained from (2.140) is

k~ —A~+i c/2
k,. —A, —ic/2 (2.143)

Using (2.139), the original matrix PBC's [Eq. (2.135)j
reduce to

k,. —A~+ic/2
kj —A6 —ic/2 (2.144)

In the limit L-~ with X/L and M/I- fixed, these equa-
tions reduce to a set of coupled integral equations for
two density functions p(k) and o(A):

B Q

2mo(A) = — K(A —A ') o(A')dA'+ 2 K(2A —2k) p(k)dk
-B -Q

B
2n p(k) = 1+2 K(2k —2A)o(A)dA .

-B

(2.145)

(2.146)

The functions p(k) and o(A) are, respectively, the total

This follows by noting that rows and columns in a Young
tableau represent symmetrization and antisymmetri-
zation respectively, and thus the change of sign in
(2.138) compared with (2.134) is equivalent to using the
conjugate representation in (2.135).

As an example we consider a system with two species
of fermions, e.g. , i'll red ones and N —M blue ones. The
appropriate symmetry for (2.135) is R =[2",1~ '~]. By
(2.139) we may instead consider (2.135) with 4 having
the symmetry R =[K —M, M]. The key to Yang's meth-
od is to regard the vector C as a wave function de-
scribing M identical particles and N —M vacancies on
a lattice and to write a generalized Bethe &nsatz for

Our discussion has followed Yang's original treatment
of the case R =[K—M, M]. Notice that for this case,
the original sensate (2.128) described a. system with
two particle species (colors), leading to 2 x2 matrix
PBC's. The second Ansatz (2.140) used to solve these
PBC s involved only a single color (i.e., identical par-
ticles) on a lattice. Roughly speaking, the dimension
of the problem was reduced by regarding the N par-
ticles as lattice sites on which the color wave function
is defined, with red particles treated as occupied sites
(i.e. , the particles of the second sensate) and blue par-
ticles as vacancies. Sutherland (1968) has extended this
method to include the treatment of an arbitrary number
of colors, using a hierarchy of &nsatze. With each
successive Ansatz, the dimension of the problem is
reduced by treating the particles of one color as va-
cancies and writing a wave function for the remaining
colors.

D. Vertex models, transfer matrices, and spin-chain
Hamiltonians

All of the models we have discussed so far have been
continuum field theories involving operators defined on
continuous space and time. One of the most remarkable
aspects of Bethe's sensate is that is also provides an
exact treatment of certain lattice models for which op-
erators are defined on discrete lattice sites. In fact,
the original Arisatz of Bethe was applied to such a mod-
el, the isotropic Heisenberg spin chain. Subsequent
developments included solutions to the anisotropic ~~8
spin chain (Orbach, 1958; Yang and Yang, 1966) ice
and ferroelectric (six-vertex) models (Lich, 1967a, b,
c; Baxter, 1971), and finally the full 4'YZ spin chain
(Baxter, 1972b) and Baxter (eight-vertex) model
(Baxter, 1972a). Solutions to the two-dimensional Ising
model (Onsager, 1944; Schultz, Mattis, and Lich,
1964) and X'Y spin chain (Lieb, Schultz, and Mattis,
1961) should be included in this list, since they are
subsumed by the Baxter method. In the remainder of
this section we will survey the subject of exactly soluble
lattice models. These models are not only interesting
in their own right but also as further examples of the
applications of Bethe's &nsatz. It has recently been
found that certain operators which emerge in the for-
mulation of the quantum inverse method are directly
related to operators which arise naturally in lattice
models, e.g. , the transfer matrix. In fact, the most
elegant derivation of the algebra of scattering data op-
erators, which is central to the quantum inverse meth-
od, is patterned after Baxter's discussion of commuting
transfer matrices in the eight-vertex model. Thus the
study of soluble lattice models provides important new
insights into the nature of exact integrability in quan-
tum systems.

The discussion in this section is intended to introduce
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and define the soluble vertex models and spin chains,
discuss the relationship between them, and briefly indi-
cate the nature of their solution. [A more extensive
review has been given by Kasteleyn (1975).] In Sec. III
we will return to this subject armed with the techniques
of the quantum inverse method, which considerably
simplify the original solutions based on explicit Bethe
&nsatze. All the models to be considered can be ob-
tained in one way or another from the Baxter eight-
vertex model, and we begin by defining that model.
Consider a square lattice with horizontal and vertical
bonds connecting nearest-neighbor lattice sites. An
arrow is placed on each bond in such a way that each
lattice site (vertex) has an even number of arrows
entering and leaving it. Thus only the eight vertices
shown in Fig. 12 are allowed. A typical configuration
of arrows for a 3 x 3 lattice with periodic (toroidal)
boundary conditions is shown in Fig. 13. To each of the
eight vertex types we assign an energy c,, i =1, . . . , 8,
and an associated Boltzmann weight

-go ~

(d. =ei

There is no loss of generality in requiring that

~5 =~6~ ~7 =~8 ~

(2.149)

(2.150)

To get the symmetric eight-vertex (Baxter) model, we
also impose the "zero-field" condition

Cj = C2p C3 = Cg-

The vertex weights are then written

(d& = C02 = Q
~ C03 = (d& = 5

(d = ('06 =g (d = (d =Kg .

(2.151)

(2.152)

I.(n, p; X, p, ) = g w,. cr„'~a,', , (2.153)

The partition function is defined as the sum over all
allowed configurations of arrows, with each configuration
weighted by a product. of Boltzmann weights (2.149) for
each vertex. The calculation of the partition function is
reduced to an eigenvalue problem by introduction of
the transfer matrix, which describes the operation of
adding an extra row of vertices to the lattice. It is con-
venient to introduce a matrix notation for an elementary
vertex. Denoting a right- (left-) pointing arrow on a
horizontal bond and an up (down) arrow on a vertical
bond by + (-), and with the indices defined as shown
in Fig. 14, an elementary vertex can be written as

)I, )(

FIG. 13. Possible configuration of a 3 &3 lattice with toroidal
boundary conditions.

(X, p, ), the components of which are spin operators in
the space of vertical arrows. Thus the vertex is written

~30' + ZU40' S6~ O' —12620'

@'j.o „+&~20 n -M'30'„+ ~40'„

where the subscript n indicates that the o-matrices act
on the vertical arrow at the nth site in a row. The
transfer matrix 'for a lattice with N sites in a row and
periodic boundary conditions is given by

(2.155)

where the trace is taken over the horizontal indices.
The partition function for a lattice with M rows is
given by

Z =Tr(T"), (2.15V)

where the trace is taken over the Hilbert space in
which the transfer matrix acts, i.e. , the 2"-dimen-
sional space spanned by vectors of the form

(2.158)

-:denoting the configuration of vertical arrows in a row.
Because of (2.157), the free energy,

1

pMN

for a large lattice, is determined by the largest eigen-
value of the transfer matrix. The problem is thus
reduced to that of diagonalizing the transfer matrix,
which is accomplished in these models by explicitly
constructing its eigenstates.

At this point it is worth considering some specific

where 0', i=1, 2, 3 are Pauli matrices and 0'=identity
matrix. The coefficients w,. in (2.153) are given by

w, = —,'(c+d), w, = —,.' (c —d),

w, = —,'(a —b), w, = —,'(a+ 5) .
(2.154)

For our considerations, it is useful to regard the ver-
tex (2.153) as a 2 && 2 matrix in the horizontal indices

5 6 7 8
FIG. 12. Eight allowed vertices of the Baxter model.

FIG. 14. Arrangement of indices for the vertex defined in
Eq. (2.153).
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examples of eigenstates for a special case of the Baxter
model, namely, the six-vertex or generalized ice model
obtained by setting the weight of vertices 7 and 8 in
Fig. 11 to zero, i.e., d=o or M, =m2. The basic vertex
becomes

1
26l =162 = p p sln2'g

~3 = po s in'g cosv ~

MI4 = po cos~ s inv

(2.165a)

(2.165b)

(2.165c)

vertex weights (specialized to the six-vertex case),

~3O + ZV40

220 lO —ZV30 „+A)4O' „
(2.159)

The parameter po enters the transfer matrix trivially
as an overall normalization factor po~. We choose it for
convenience to be

( 0, ,)
which means that

T
~

0) = [ (zo, + m, )"+ (se, —zo, ) ]
~

0) .

(2.161)

(2.162)

The construction of the remaining eigenstates can be
accomplished by a Bethe Ansatz, using (2.160) as a
reference state, and treating down arrows as the "par-
ticles" of the Ansatz. For example, eigenstates of T
with a single down arrow are given by

~k, &
= Q e' ' c, ~0&, (2.163)

where k, must satisfy the periodic boundary condition

iklN (2.164)

The fact that (2.163) is an eigenvalue of T may be
verified directly, using (2.156) and (2.159). It is con-
venient to introduce Baxter's parametrization of the

The six-vertex model transfer matrix has an impor-
tant property which makes the construction of its
eigenstates considerably simpler than in the general
Baxter model. Because vertices 7 and 8 are not al-
lowed, the number of down arrows (or up arrows) is
conserved from row to row under application of the
transfer matrix. This follows from the observation
that, with the definition (2.156) and using (2.159), T
can be written as a sum of terms each of which con-
tains the same number of o. "s as o 's and thus does
not change the number of down arrows in a state. In
particular, the state with all up arrows,

(2.160)

(and also the state with all down arrows) is an eigen-
state of the six vertex model transfer matrix. The
eigenvalue associated with (2.160) is easily obtained
by noting that

p, = [sin(v+ q) sin(v —q)] '~'. (2.166)

For the following discussion, it is helpful to think of
v as a variable and q as a constant. It is sometimes
useful to define a change of variables v- k by

sin(v+ g)
sin(v —q)

(2.167)

This relation between k and v is a lattice analog of the
relation between momentum and rapidity. The eigen-
functions of T with n down arrows are of the Bethe
form,

ik„.. . , k„) =

where

l l l& ~ ~ ~ &/ Nn

f(l„.. . , l„)o,, ~ o, i0) .

(2.168)

n

f((„.. . , („(=P a(P)exp (Qk (~).
J ESn j=l

(2.169)

~(I') sin(v, . —v, + 2q)
a(P') sin(v, . —v, —2q)

' (2.171)

The quantity on the right-hand side is the two-body
phase shift. For (2.168) to be an eigenstate of T, the
k, s or v,. 's must satisfy periodic boundary conditions,

(
sin(v, . + g) " "" sin(v, . —v,. + 2q)
sin(v, . —g) .' sin(v, . —

v& -2'g)
goal

Under conditions (2.171) and (2.172), the states (2.168)
satisfy the eigenvalue equation

(2.172)

In place of the variables k, , we will often use v, , which
is related to k,. as in (2.167),

sin(v, . +q)
sin(v, . —q)

'

The coefficients a(P) are defined up to an overall norm-
alization as follows. If & and &' are permutations which
are identical except for the interchange of -two adjacent
elements, i.e, P = (. . .i,j.. . ) and I".= (. ..j,i. . . ), then

l

Zy k k )
'

( +'I) ~ '' '' '
( ' 2'0) (

'
( 'I) '' '' '

( '+2'I)
k k )sin(v —(7)),.'; sin(v —v,. + 2g) &sin(v+ g);.~ sin(v —v,. —2g)

(2.173)

The explicit demonstration of the results (2.172) and
(2.173) is quite tedious, involving prodigious cancella-
tions among 'unwanted" terms (Lich, 1967a; Baxter,
1971). Fortunately, the advent of the quantum inverse
method has obviated much of this calculation. As we
will see in Sec. III, the results (2.172) and (2.173) are
direct consequences of a simple operator algebra.
Moreover, the quantum inverse method provides an ele-
gant treatment of the full Baxter model. We will re-

I

turn to this subject in Sec. III.
We conclude this section by remarking that there is

a direct relationship between the Baxter model and the
anisotropic (XYZ) Heisenberg spin chain (Baxter,
1972b). The vertex weights w„u„ge„and w~ in
(2.153) can be expressed in terms of parameters p, g,
v, and an elliptic modulus k, using an elliptic function
parametrization which generalizes (2.165) (see Sec.
III.D). Regarding the transfer matrix T(v) as a function

Rev. Mod. Phys. , Vol. 53, No. 2, April 1983



272 H. B.Thacker: Exact integrability in quantum field theory and statistical systems

of v with p, g, and 0 fixed, it may be shown that the
Hamiltonian of the XFZ spin chain

N

(2.174)

can be written as a logarithmic derivative of the trans-
fer matrix with respect to v evaluated at v =g. Sin.ce
transfer matrices T(v) and T(v') commute for any v and
v' (Baxter, 1972a), the operators H and T(v) have the
same v-independent set of eigenstates. The general
equivalence relation between the spin-spin couplings
J„, J„and J„and the vertex weights u,. has been given
by Baxter (1972b). Here we merely note two special
cases of interest. (1) The six-vertex model (d= 0 or
w, =zv, ) is related to the 2L'XZ spin chain (cT„=J,). (2) If
the vertex weights (2.154) satisfy ab =cd, the Baxter
model reduces to two decoupled Ising models, and the
corresponding spin chain Hamiltonian (2.174) is the ÃY
chain (Z, =O).

II I. THE QUANTUM INVERSE METHOD

The inverse scattering method was developed as a
technique for solving certain nonlinear evolution equa-
tions (classical field theories). The method devised
for solving the Korteweg-de Vries equation (Gardner,
Greene, Kruskal, and Miura, 1967) was subsequently
generalized to provide solutions of other interesting
equations, including the nonlinear Schrodinger equa-
tion (Zakharov and Shabat, 1971) and the sine-Gordon
equation (Ablowitz et a/. , 1973; Takhtajan and Faddev,
1974). The Cauchy initial value problem for the nonlin-
ear equation is reduced to a sequence of linear prob-
lems. In special cases, the method yields explicit solu-
tions to the nonlinear equation, e.g. , N-soliton formu-
las. The essential idea of the classical inverse scat-
tering method is to construct a transformation from the
local field variables to a new set of variables which are
defined in terms of the scattering data of a linear eigen-
value problem. In this eigenvalue problem, the original
field serves as the scattering potential. Thus, for ex-
ample, the nonlinear Schrodinger field P(x) at a fixed
time /, is mapped into a set of scattering data a(k) and
b(k). It is found that, for a judiciously chosen linear
eigenvalue problem, the nonlinear time evolution of
the field g (x, /) translates into a trivial time depen-
dence for the scattering data a(k) and b(k). The final
observation which completes the solution of the Cauchy
problem is that the scattering data at a given time
uniquely determin. e the scattering potential, i.e., the
field g(x). From the values of a(k) and b(k) at time
/', one can reconstruct the field @(x,/') and solve the
initial value problem. In Sec. III.A we review the
classical inverse method for the nonlinear Schrodinger
equation, concentrating on those features which are
important in the treatment of the quantized theory.
More thorough reviews of the classical methods are
available (Scott, Chu, and MeLaughlin, 1973; Ablo-
witz, 1978).

Recent investigations have led to the realization that
the inverse scattering technique which had been devel-
oped in classical field theory could be formulated as an
exact operator method for solving quantum field theory

(Sklyanin and Faddeev, 1978; Sklyanin, 1979; Thacker
and Wilkinson, 1979; Honerkamp et a/. , 1979). More-
over, the quantum inverse method is closely related to
the Bethe sensate technique discussed in Sec. II and pro-
vides an elegant algebraic formulation of those results.
Thus, we obtain a unified understanding of methods
which arose in quite different areas of physics. The
remarkable connections which emerge serve to empha-
size the universal nature of exact integrability.

In this section we will review the quantum inverse
method and discuss some of its applications. Our main
focus will be on the nonlinear Schrodinger model, which
provided most of the impetus in the development of the
method and remains the best-studied example. In par-
ticular, it is at present the only model for which a
Gel'fand-Levitan transformation has been formulated
for the quantized theory (Creamer d a/. , 1980). In the
classical theory, this is the transformation which re-
constructs the local field from the scattering data, an
essential step in the solution of the initial value prob-
lem. In quantum field theory it is relevant to the study
of Green's functions. The formulation of the Gel'fand-
Levitan. transformation for other models is currently
under investigation.

The quantum inverse method for the nonlinear Schro-
dinger model is introduced in Sec. III.B, where operator
equations for both the direct and inverse transforms are
obtained. In Sec. III.C, some interesting properties of
the quantum Gel'fand-Levitan equation are noted and
discussed. The quantum inverse method for models of
lattice statistics is presented in Sec. III.D. The diagon-
alization of the transfer matrix for the symmetric six-
vertex model (Thacker, 1980) is discussed, using a lat-
tice version of the quantum inverse method. The solu-
tion of the full Baxter model (Faddeev, 1979; Sklyanin
e/ a/. , 1980) is also briefly discussed. These results
illustrate the deep connection between the quantum in-
verse method and the transfer matrix formalism for
lattice models.

where the Hamiltonian is

a= dx(a„@*a„@+ely I'). (3.4)

The inverse method for solving the initial value prob-

A. The classical inverse method

Before discussing the quantum inverse method, we
will briefly review the classical formalism. To intro-
duce the idea of the inverse scattering transform, we
consider the example of the nonlinear Schrodinger equa-
tion,

&8 0=-8'.0+2cIA I'0 (3.1)

where P(x, t) is a complex classical field. In this theory
theory, Poisson brackets are defined for any two fupc-
tionals o' and p by

be. bp bn bp

~~*t ) ~~t.)I
The equation of motion (3.1) may be written in Hamil-
tonian form as

(3.3)
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lem for Eq. (3.1) was introduced by Zakharov and Sha-
bat (1971). The method is based on a transformation at
time t =0 from the field @(x, o) = @ (x) to a set of scat-
tering data associated with the linear eigenvalue prob-
lem,

8
~(x, g) =q(x, g)+(x, g). (s.5)

Here Q(x, g) is a 2 x 2 matrix which depends on the field
variable at the point x,

( )
( .0 y( )! (3.6)

c x
2

For simplicity, we consider only the repulsive case
c &0. To completely define a solution @ of (3.5), we
must specify a boundary condition. If we assume that

~ @(x)
~

—0 as x —+~, then for g —k = real, '@ may be
specified by the asymptotic behavior

e(x, k) = V(x, u)G(x, u), {s.io)

6 has a finite limit as x - +

fa(k) b'(k))

(b(k) a*(k)j
Note that from (3.5) and (3.10), G satisfies the equa-
tion

(s.ii)

G(x, k) =q(x, k)G(x, k).
8x

Denoting the asymptotic form of Q by Qo, the matrix
Q in (3.12) is given by

(3.12)

will follow essentially the notation of (Creamer, Thac-
ker, and Wilkinson, 1980}]. The scattering data for
(3.5) are defined by the asymptotic form of 4 for x -+~.
Writing

4'(x, k) ~ V(x, k}, (3.7)
4=v'(~-~. )v

where

o

e-(1/ 2)(kxj
(e (1/ 21(kx

V(x, k)=! ' (3.
0

Then it is easy to show that + can be written

(0, 01) (3.
(4. 4.)

where g, (x, k) = $2*(x,k) and tp2(x, k) =t/r,*(x,k) [here we

( 0 ~~ye-(kx )
~&y 4e(kx

Eq. (3.12) may be written as an integral equation,

(s.is)

G(x, k) =I i+dy 6 (y &x)Q (y, k)G(y, k), (s.i4)

where 8(y &x) —= &(x -y) is a step function. By iterating
(3.14), one may generate series expansions for the com-
ponents of &, and in particular, for the scattering data '

a(() and b($). These have the form

a(k) = 1+c dx, dy19 (x &y )e'"'"1 '1'y*(x,)y*(y,)+ ~ ~ ~, (3.15)

b(k) = dx,e'k"1(f) ~(x,)+c dx, dx2dy, e(x, &y, &x2)e"("1'"2' P1*( x)Q*( x)@2(y,)+ (3.16)

(H, b(k)f =ik b(k) . (s.is)
Thus, if @(x,t) evolves in time according to Eq. (3.1),
the scattering data of the linear problem (3.5)-(3.6)
has a simple time dependence,

a(k, t) =a(k, o)

b(k t) b (k 0)e-i

(3.19)

(s.2o)

The Poisson brackets among a, b, a~, and b* may also
be obtained, using properties of the Wronskian for Eq.
(3.5) (Zakharov and Manakov, 1974).

(a(k), b(k')f=„, . a(k)b(k'), (3,21)

(a*{k),b(k')f= —,. a+(k)b(k'),
0 —. k +a&

(a(k), a(k')) =(a(k), a+(k')) = O,

(3.22)

(3.23)

By constructing action and angle variables from the
scattering data, it may be shown that a (g) and b($) have
simple Poisson brackets with the Hamiltonian (Zakharov
and Manakov, 1974)

(a, a(k)f=o, (s.17)

(b(u), b(k')) =o,
(b(u), b*(k')$=2~za+(k)a(k)&(k -u') .

(s.24)

(s.25)

X(x,k) —V(x, u), {3.26)

with components given by

,

x, x,) (3.27)
&x, x,)

where the column vectors g and X are related in the
same way as g and g, i.e., X,(x, k) =X)(x, k) and X, (x, k)
= X,*(x,k). The Gelfand-Levitan integral equation is a

All these Poisson brackets may be checked order by
order, using (3.4), (3.15), and (3.16).

With the field @(x) mapped into a set of scattering
data whose time dependence is given by (3.19)-(3.20),
the final step in the solution of the initial value problem
is the reconstruction of the field from the time-evolved
scattering data. The essential method for accomplish-
ing this was devised by Gel'fand and Levitan (1951) and
adapted to this problem by Zakharov and Shabat (1971).
In addition to 11, defined by (3.7), we define another
solution2C(x, k) of (3.5) with asymptotic behavior
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q(x, k) =a(k)X(x, k)+ I (k)X(x, k) .
Defining the reflection coefficient

(3.28)

R'(k) = t (k)a-'(k), (3.29)

dispersion relation for an analytic function 4(x, ()
which is constructed from the Jost solutions of the lin-
ear eigenvalue problem. Denoting the columns of (3.9)
by g and &Jr and those of (3.27) by X and X, we see that the
asymptotic conditions (3.7) and (3.26) allow continuation
of g(x, g) and X(x, () into the lower half $ plane and of
g and X into the upper half g plane. [Note that for com-
plex g, the conjugate solutions, are related by g, (x, $)
= gf (x, g*), $2(x, g) = g,*(x,(*), etc.] We will construct
a function 4 which is equal to Xe ' " in the upper half-
plane. To motivate the choice of 4 in the lower half
plane, we observe that, for real k, the Jost solution g
may be written as a linear combination of g and X,

(s.s5)

which follows from eigenvalue equation (3.5) for the
Jost solution g.

The direct transform and the inverse transform, de-
fined respectively by the integral equations (3.14) and
(3.34), are the central concepts in the classical in-
verse method. For the direct transform a Jost solu-
tion is constructed from the field P(x) by solving Eq.
(3.14), and the scattering data a(k) and b(k) are ob-
tained from the asymptotic form of that solution as
x- ~, Eq. (3.11). For the inverse transform a Jost
solution is constructed from a(k) and b( k) by solving
Eq. (3.34), and the field is obtained from the asympto-
tic form of the solution as k- ~, Eq. (3.35).

flection coefficient R*(k). The field @(x) is then easily
recovered from the asymptotic form of &, as A - ~,

X,(x, k)e""" — y (x),vc

we can write (3.28) a,s

ga '=X —iu cR*X. (s.so)

"" „,R*(k')X,(x,k')e-"""

This suggests the following definition:

4(, ~)= (s.sl)
ga '8 ""~', Im( &0.

The discontinuity of 4 across the real axis is then
i V cR~X. For simplicity, we are considering only the
case c &0, for which a($) is analytic and nonvanishing
in the lower half plane. For c &0, a(() will generally
have a number of zeroes which represent bound states
of the linear problem and correspond to solitons of the
nonlinear equation. The use of the Gel'fand-Levitan
equation to construct N-soliton formulas is an interest-
ing part of the classical treatment, but we will not dis-
cuss it further here.

Thus, for c & 0, C (x, () is analytic in the cut $ plane.
Since C (x, g)- 1 as

~
g

~
—,which follows from its

definition (3.31) and the properties of the Jost solutions,
the function 4 may be reconstructed from its discon-
tinuity across the real axis,

t'I) ~c ",R*(k )X(x, k')e-*'"~'
2w ~„k—$ -zc

Letting g approach the real axis from above, j-k+ie,
we obtain an equation relating the Jost solutions g and

Xp

, R+(k')X(x, k')e

(0/
(3.33)

The first component of (3.33) and the complex conjugate
of the second component provide a pair of coupled inte-
gral equations for &, and X2,

B. Quantum inverse method for the nonlinear Schrodinger
model

We now formulate the quantum version of the classi-
cal methods discussed in the preceeding section and
discuss their relationship with the Bethe &nsatz tech-
nique of Sec. II.A. The starting point is a normal
ordered operator version of the Zakharov-Shabat eigen-
value equation (3.5),

(3.36a)

where normal ordering for this theory means moving
@~'s to the left and P's to the right. In components,
(3.36a) reads

i = 2&/~+ Wcg2$ ~ (S.36b)

-i ' = —Wc@*/
Bg 1

Qx 1 & 2 f (3.36c)

and similarly for g, x, andx. The Jostsolutionswhichsa-
tisfy Eq. (3.36) are operator functionals of the fields Q and

As in the classical case, a particular solution to
(3.36) must be specified by a boundary condition. Be-
fore discussing the finite density gas, we will first con-
sider the case of an unbounded system with a finite
number of particles. This corresponds to the classical
case &j&(x)-0 as x-a . However, in the quantum
theory, one must be careful to interpret P (x)- 0 in the
sense of weak convergence, i.e., as a, condition on the
physical matrix elements. In dealing with operators,
this means that only normal ordered products may be
set to zero, e.g. , P~(x+a)@(x)- 0 as x- a~, but

P (x+a)@*(x)must be written @*(x)P(x+a)+ &(a)- &(a).
In particular, the specification of an operator Jost solu-
tion by an asymptotic condition like (3.7) must be done
with care.

Let us define a solution &(x, k) for ( =k real, which
satisfies (3.36) and the bounda. ry condition

(S.S4a) G(-f, /2, k) =1, (3.37)

( ),,„„Kc "„„,X,*(x,k')R(k')e"""
(3 34b)

where the limit I —~ will be taken at an appropriate
time. Note that in the I- —~ limit, the solution

Equations (3.34) determine X, and X,* in terms of the re- 4(x, k) = G(x, k) V(-I-/2, k) (s.s8)
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(s.s9)

is analogous to the classical solution 4'(x, k) defined
by (3.7). Thus the scattering data operators a(k) and
b(k) are defined by introducing

G(x, k) = V '(x, k)G(x, k) V(-L/2, If),

Now commuting p (x) with Eq. (3.41), we obtain

[y(x), G(x, k)]= ' ' e""c-G(x,k),

(s.46)

(s.47)

from which the a and b operators are obtained by let-
ting I -~ andx- ~,

G(,k), ~' ' ~ -=7(k). (s.4o)
~-" (b(u) a*(k))

The operator function G(x, k) satisfies a normal ordered
integral equation of the form (3.14),

where we have used the symmetric prescription &(x)&(x)
= ~5(x). Finally, the commutator of &f with G is. ob-
tained from (3.47) and (3.39),

(s.46)

Similarly, we find

G(x, k) =I+ i dy 8 (- 'L &y &x—):Q (y, k) G (y, k):,(3.41) [y +(x), G(x, k)] = ' o G(x, k) . (s.49)

H, (x) = G (x, k, ) G(x, k ) = G, (x) G, (x), (3.42)

where G(x, k) is defined by the boundary condition
(3.37). Here and in the following, eigenvalues k, and
k2 will be indicated by subscripts. The elements of H»
are operator products of the elements of ~, with the
elements of &2. The desired commutation relations
are obtained by comparing (3.42) with the direct pro-
duct of the same two solutions in reverse order,

H„(x)=G,(x)e G, (x). (s.43)

with Q defined in (3.13). Eq. (3.41) may be iterated to
produce series expansions for 1" and'for a and b. These
are identical to the classical results (3.15) and (3.16)
with the terms on the right-hand side interpreted as
normal ordered operators.

The central property of the scattering data operators
a(k) and b(k) is that they satisfy simple commutation
relations among themselves, their complex conjugates,
and the Hamiltonian. These were obtained by two dif-
ferent methods, one which generalized the classical
Wronskian derivation of Poisson brackets (3.23)—(3.27)
(Thacker and Wilkinson, 1979), and one which adapted
a technique used by Baxter in the eight-vertex model
(Sklyanin, 1979). Here we will follow the approach of
Sklyanin, which gives a deeper insight into the struc-
ture of the method and its relationship to transf er ma-
trix techniques. To obtain the commutator algebra of
the a and b operators, we consider a 4 & 4 matrix of
operators which is the direct product of Jost solutions
to (3.36) with two different real eigenvalues g =k, and

k2,

These two results can be used to normal order (3.44),
which becomes

9 H„(x)=: I „(x)H„(x):,
Bx

(s.5o)

where

I"» = Q, (8 I+ IS Q2 —ico'Q o

—.'(u, +k,) Vc y (x)

-ac @+(x) —.'(u, -k, )

-Vc y*(x)

Vc @(x)

Vc @(x)-ZC

0 —,'(k, -k, ) vc @(x)

-Wc@+(x) -sly*(x) --,'(k, +u, )

. BH21
21 218x

I

The most important property of the matrix (3.51) is
that an interchange of the eigenvalues k, and k2 may be
accomplished by a c-number similarity transforma-
tion,

(s.52)

I"„(x)=baal „(x)8, ', (s.53)

where . is a matrix depending only on the eigenvalues
and 0,

0 0 0

(3.51)
By interchanging k, and k2 we also obtain an equation
for the direct product in reverse order (3.43),

8i H~2(x) =:Q~G~:I3 G—2+ G~tS: Q2G2:,Sx
(s.44)

Differentiating (3.42) and using the fact that G satisfies
the Zakharov-Shabat equation (3.36), we obtain

with

O~P 0

0 0 0 1,

(3.54)

Q(y) = vc e '"'@(y)0' —vc e' ~&]& *(y)cr

we see that

(s.45)

with a similar equation for H» obtained by interchang-
ing eigenvalues k, -k, . Normal ordering of Eq. , (3.44)
may be achieved by moving the @ in Q, past G2 in the
first term and the P* in Q, past G, in the second term
To do this we must know the commutators of @ and @*
with a Jost solution G(x, k). This is easily obtained
from the integral equation (3.41). Writing

k1-k2A= —ic '
1 2

(s.55)

ZC
IH=

k1 —k2 —ie (s.56)

Equation (3.53) is fundamental. It constitutes a local
characterization of. the exact integrability of the sys-
tem.

From (3.50), (3.51), and (3.52) it is seen that
(RH»(x)@ ' satisfies the same equation as H»(x). These
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276 H. B. Thacker: Exact integrability in quantum field theory and statistical systems

two quantities are also equal at x = -I- by virtue of the
boundary condition (3.37) and the definitions (3.42) and
(3.43). Thus, they are equal everywhere,

where

—.'(u, +u, )

Se„(x)= a„(x)(R. (s.5v)

H, 2(x) = W, ', (x)H,2(x)W,2(-L/2) . (3.58)

Here W»(x) is a solution to (3.50) with the fields in &'»

set equal to zero,

W„(x)= exp (i 1",(2O)x), (s.59)
I

We now want to take the limits I-- ~ and x- ~ in
(3.5'7) and obtain the commutator algebra of the a and b

operators defined in (3.40). But first this equation
must be written in a form which is finite in these limits.
This is done by introducing a, function H»(x) which has
a finite asymptotic behavior,

(0)
12

—,'(u, -u, ) -zc

—.'(u, —u, )

0

0

--.'(u, + u, )

(s.eo)

The construction of H» in (3.58) is similar to that of
G in (3.39). Because of the normal ordering term -ic
in (3.60), W„ is not given simply by V, (8 V„ i.e., the
asymptotic behavior of a product of Jost solutions (in
the sense of weak convergence) is not the same as the
product of their asymptotic behaviors. By calculating
the exponential in (3.59), we find

(j j 2) (k1+k2) x

W„(x)=
e""")'2'" sin —(k -u )x2C

k-k1 2

e (j / 2) (k2-k1 0
e-(f., j 2) (k1+k2)x

(3.61)

(s.62)

Now noting that (RW» -—W»(R, we can multiply (3.57) by
W2,'(x) on the left and W»(x) on the right to give

(Ra„(x)= a„(x)51,

I

with

1 2 y 1 2k -k k —k, +ic
k, —k2 —ic ' k1-k2 (s.68)

(3.63)
where

U, (x) =[V,'(x) V '(x)]W, (x)

for which the limits x, L - ~ can be taken. The algebra
of a and b operators is obtained by writing (3.62) in
terms of the functions G, and G2, using (3.39), (3.42),
a,nd (3.58),

(RU, ', (x)[G,(x) (3 G, (x)]U„(-&/2)
= U„(x)[G,(x) (8 G,(x)]U„(-I-/2)&,

a(k)b(k')= (1 — k,) (kk)a( )k,

a~(k)k(k')= (1+,) k(k')a "(k),

(s.69)

(s.vo)

b*(k)b(k')=, b(k')b~(k), (s.vl)

From (3.66)-(3.68) we obtain all the desired commu-
tation relations for the scattering data operators (for
u ~k'):

e-i (k1-k2)X g+ (I 0
zc

k1- k2
(3.64) [a(k), a(k')] = [a(k), a*(k')] = [b(k); b(k')] = 0. (3.72)

I 0

where I is the four-dimensional unit matrix. For
x —a~ and k, &k„ this becomes

0 0

The commutators of a and b with the Hamiltonian

[a,a(u)] =o,

[a, b(u)] =u'b(u),

(3.73)

(s.v4)
zc0 0

(s.65)
0 0 ]. 0

(s.ee)

where 7'(k) is defined in (3.40), and

1 0 0 0

0 0 0 1

Noting that U»'(~) = U»(-~), we see that the asymptotic
form of (3.63) is

(R„[7(k,)co 7 (u, )] =[v (k,)e 7'(k, )](R„,

may be obtained by an operator generalization of the
classical argument which led to (3.52) and (3.53). Al-
ternatively, we may expand the operator lna(k) for
k-~

lna(k) =g C„
e=1

(s.v5)

By studying the integral equation (3.41) or equivalently
the expansion (3.15), we can show that the Hamiltonian
may be written in terms of the coefficients &„ in (3.75)
(Faddeev, 1979), 'specifically,

(R„=U„( )(RU„( )= 00 yO
0 n 0 0

0 0 0

(s.ev)
1 $Ca=- —, C +C ——C .

Zc 3 2 (s.ve)

The commutators (3.73) and (3.74) follow directly from
this result along with (3.69) and (3.72).
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From the relations (3.69)-(3.74), we conclude that
b(k) is a creation operator for eigenstates of H, and
that a(k) is the generator of an infinite number of con-
servation laws. The multiparticle states created by
application of b operators to the vacuum,

~
c (k„k„.. . , k„))= b(k, )b(k, ) "b(k„)l o), (s.v7)

are eigenstates of H because of (3.74),

rr)o(a„. .. ,a„))= F a*,.))e(a„.. . , ~„)).
(=1

(s.vs)

By explicit calculation from the series (3.16), it has
been shown for ¹ 3 that the states (3.77) are identical
to the Bethe Ansatz states (2.16) (up to a trivial over-
all constant). Recently, the same result has been ob-
tained for aLL N using the Gel'fand-Levitan equation
(Creamer et a/. , 1980a). Thus the quantum inverse
method provides an algebraic formulation. of Bethe's
&nsatz. The operator a(k) is diagonal on the states
(3.77), as seen from (3.69),

R*(k) = b(k) a-'(u), (s.so)

a(k)iC(k„. . . , k„))= I- ie(k„. . . , k„)).
g=l

(s.v9)

The commutation relations (3.69}-(3.72) have been ob-
tained for k &k'. A more careful analysis of the limits
taken on (3.53) shows that the (k —k') denominators in
(3.69) and (3.70) should have infinitesimal negative
imaginary parts. , and that the relation (3.71) shall
have an extra delta-function term (Faddeev, 1979),
as already indicated by the classical result (3.27). It
is convenient to define the operator reflection coeffi-
cient

G(, )
t'&(k) C(k)I

( )
Ia(k) D(k))

(3.85)

where, for the case under consideration, C(k) =&*(k)
and D(k) =&*(k). The relation (3.57), along with the
definition (3.42) gives

6I[r~(k)e v', (k')] = [v', (k')e &, (k)]Q, ,

where 6I is the matrix (3.54) with

(3.86)

k k'
~(k, k') = (s.sv)

)8(k, k') = (s.ss)

From (3.86) we obtain commutation relations among the
elements of V~(k). Of particular interest are the rela-
tions

[A(k), A(k')] = [a(k), a(k')] = O,

A(k)a(k') =, a(k'Q(k) ' &(kQ(u'),
II

(3.89)

(3.90)

would prevent any discussion of the finite density case.
This turns out not to be the case, as we will see in
Sec. III.C, where the fundamental spectral equation
(2.45) is obtained directly from the infinite volume alge-
bra without using periodic boundary conditions in a
box. In the remainder of this section, we will describe
an approach to the finite density problem which is
closer in spirit to the usual Bethe's &nsatz methods.
It relies on the algebra of operators &(k) and B(k) de-
fined in a finite box of length L. These operators are
defined in terms of the Jost solution G(x, k) which
obeys the boundary condition (3.37). We write

which satisfies the commutation relations

R*(k)R "(k') = S(k ', k)R*(k')R*(k), (s.sl)
D(k)B(k') =, B(k')D(k)+, '„a(k)D(k'),

R(k)R*(k') = S(k, k')R*(k')R(k) + 2m~ (k —k'), (3.82)

where S(k, k') is the two-body S matrix, [~(k)+D(k), ~(k')+D(u')] =O.

(3.91)

(s.92)

I ~

S(k, k') = (s.ss)

The operator R*(k) creates the same set of eigenstates
as b(k) but with a different normalization. The parti-
cular significance of the operator R*(k) is that

~

c (k„.. . , k„))=R*(u,) ~ "R'(k„)
~
o) (3.84)

is a normalized in state if kl&k, & ~ ~ ~ k„and a norm-
alized out state if k, &k, & ~ ~ &k~. The fact that A and
R~ satisfy the simple relations (3.81) and (3.82) will be
of central importance in discussing the quantum Gel'-
fand-Levitan transformation (see Sec. III.C).

So far only a system of particles in. infinite space has
been discussed, i.e., we have not introduced periodic
boundary conditions in a finite box. In the conventional
Bethe Ansatz analysis of Sec. II, the I'BC's were essen-
tial to understanding the ground state and excitations of
a finite density system. It might be suspected that by
taking the infinite volume limit to get the algebra
(3.69)-(3.72) one has lost essential information which

r(k) =&(k)+D(k), (s.9s)

which is in a sense more fundamental. This operator
is precisely analogous to the transfer matrix in lattice
models (see Sec. IILD).' We will show that the states

I
c (k„.. . , k„))=a(k, ) ~ "a(k„)

i o), (s.94)

are exact eigenstates of T(k), provided that the k, 's
satisfy periodic boundary conditions. First we note
that the zero-particle state

~
0) is an eigenstate of &(k)

and D(k) separately,

&(k)
~
0) = e'~ t

~
0),

D(k)[O)=e '""'~O),
(s.95}

(3.96)

The structure of the algebra (3.86) or (3.89)-(3.92) is
typical of the quantum inverse method in a finite volume.
Similar results (with different functions o' and)S) are
also found for the sine-Gordon model (Sklyanin et at. ,
1979) and the six-vertex lattice (Thacker, 1980).

Instead of discussing the Hamiltonian, we will con-
struct eigenstates of the operator
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with eigenvalue

(3.97)

A(k;k„. . . , k„)=e""'

which is easily seen by writing&(k) and B(k) as normal
ordered series expansions in P and P~. Now we apply
T(k) to the state (3.94) and use the commutation rela-
tions (3.90) and (3.91) to commute &(k) and B(k)
through the string of B operators. By this calculation,
it is found that (3.94) is an eigenstate,

T(k)
i

C (k„... , k„)&= ~(k; k„... , k„) i
C (k„... , k~)&,

the periodic boundary conditions Eq. (2.23) obtained
from the explicit Bethe wave functions. To understand
how the result (3.97) follows from the relations (3.89}-
(3.91), consider the action of &(k) on the state (3.94).
Commuting &(k) through the string of B's and then using
(3.95) we obtain 2" terms, which may be grouped ac-
cording to the arguments of the N B operators. Note
that the second term on the right-hand side of (3.90)
results in an. exchange of the arguments k and k' be-
tween the & and B operators. Of the 2~ terms obtained
from A(k) acting on the state, one of them contains no
exchanges (or equivalently, no factors of P). It is
given by

(3.98) , (3.100)

provided that the k,.'s satisfy the conditions

(3 99)hi 414 1, k. —k.j4i i i l&i i j

for i=1, 2, . . . , N. Notice that Eq. (3.99) is precisely

Combining this with the corresponding term from D(k)
gives the right-hand side of (3.97) with the eigenvalue
(3.98). Thus we must show that all of the remaining
terms cancel. Consider first the terms in which k is
exchanged with k, in the state. The terms of this form
are given by

N N

(3.101)

which vanishes provided that the periodic boundary con-
dition (3.99) is satisfied for i=1. The remaining terms
in which k,. is replaced by k in the state with i = 2, 3,
. . . , N, may be calculated explicitly, but such a calcula-
tion is unnecessary. Because of the second commutator
in (3.89), the state (3.94) is symmetric in the k,. 's.
Thus the sum of the terms in which k replaces ki for
i&1 are obtained from (3.101) by interchanging k, and

k, All of these terms vanish by virtue of the PBC's
(3.99). This completes the demonstration of Eq. (3.97).

he essential differences between the infinite volume
relations (3.69)-(3.72) and the finite volume relations
(3.89)-(3.92) are the presence of the second (exchange)
term on the right-hand side of (3.90) and (3.91) and the
fact that a and a~ commute separately, while only the
combination A+D commutes in the finite volume case.
One result of this is that the reflection coefficient op-
erator R*(k), Eq. (3.80), which had simple commuta-
tion relations in the infinite volume case, is not a use-
ful operator for the finite volume system. No operator
with properties like (3.81) and (3.82) has been construc-
ted in a finite box. As we saw in Sec. III.A, the re-
flection coefficient plays a central role in the classical
inverse transform as the kernel of the Gel'fand-Levitan
integral equation. 'The same is true in the quantum in-
verse method, where the simple properties of the op-
erators R(k) and R*(k) are basic to the structure of
the quantum Gel'fand-Levitan transform (see Sec.
III.C). Thus the formulation of the inverse transform
in the quantum theory (a.s it is presently understood)
requires that the infinite volume limit be taken ab in-
itio. This turns out to be less of a restriction than it
might seem, since the finite density spectral results
usually associated with periodic boundary conditions
in a box can be obtained directly in an infinite volume

I

using the Gel'fand-Levitan formalism. In this calcula-
tion the finite box is avoided by introducing a tempera-
ture parameter, and the finite density results are con-
structed via a fugacity expansion, each term involving
matrix elements with a finite number of particles in an
infinite volume.

v c "
y P(x, k ')R (k') e' "'"t '

(3.102a)

(3.102b)

where now the ordering of the operators on the right-
hand side is important. The derivation of (3.102) par-
allels the classical derivation in most respects, though
some subtleties arise due to operator ordering [e.g. ,
the analytic function 4(x, $) is not given by (3.33) in
the lower half plane]. For details we refer to the or-
iginal paper. Here we confine our discussion to two in-
teresting properties of the quantum Gel'fand-Levitan
transform.

C. Some properties of the quantum Gel'fand-Levitan
transform

In Sec. III.A we found that the classical Jost solution
y(x, k), defined by (3.26) and (3.27), satisfies a
Gel'fand-Levitan integral equation (3.34). This provided
the basic tool for reconstructing the field configuration
P(x) from a set of scattering data. Recently it has been
shown (Creamer et al. , 1980a; Grosse, 1979) that a
corresponding integral equation for operators in the
quantum theory is also valid,
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By iterating Eq. (3.102) we obtain series expansions
for g, and X, in terms of A and A *. Each term in the
series is normal ordered in the A operators, i.e. , all
R*'s are to the left and all R's to the right. . The field
operator (t)(x) is then obtained just as in the classical
theory,

I(O

y2(x, k)e'~»l2 1 —— jo(x')dx'+0 —,0 k'
(3.104)

By taking the asymptotic behavior of the other compon-
ent of the Jost solution y„we also obtain an expression
for the charge-density operator jo(x) = (I!) "(x)@(x),

g, (x, k)e' (3.103)
he series expansion for the field operator obtained

by iterating (3.102) and taking the limit (3.103) may be
written

dk. ..„dP,dk, dk, R *(P,)R(k, )R(k.)e' "~'2 "'"
(2w)', (p~ —k, -is)(p, —k, -is)

()&
n=O

where the general term is given by

dp' I dk R(p'„) ~ ~ R *(P,)R(k, ) ~ ~ R (k„)e' '

II. ,[(i.-k. — )(i„-k.„- )1

(3.105)

(3.106)

Equation (3.105) describes an operator transformation
from R(k) to @(x). This transformation turns out to
have a remarkably simple and familiar form in the limit
of infinitely repulsive coupling, c —~. In this limit
(3.105) is just a Jordan-Wigner transformation
(Creamer et a/. , 1980),

&OO

(t)(x)=N~ exp' —2 R*(y)R(y)dy R(x)
x

where R(x) is the Pourier transform

R(x) = —R(k)e*""dk
27r

(3.107)

(3.108)

[R(x),R*(y)],=5(x -y). (3.109)

Thus, for the special case of the c = ~ nonlinear Schro-
dinger model, the quantum inverse transformation be-
comes a Jordan-Wigner fermion-to-boson transforma-
tion. We note that (3.107) may be written in another
form using the general formula for canonical fermion
or boson fields P(x), )t)t(x) (Grosse, 1979),

exp dye y y y =:exp dye "' —1 y y

(3.110)

and N~ represents norma, l ordering of R opera, tors.
Note that in the limit c-~, the two-body S matrix
(3.83) becomes -1, and the relations (3.81) and (3.82)
become canonical anticommutation relations for fermion
creation and annihilation operators. The Fourier trans-
form R(x) is a local fermion field with anticommutation
re lations

(t)")(x)= -c dj,dk, dk, R *(P,)R (k, )R (k, )
(2m)' (P, -k, -is)(p, -k, is-)

1+S(kx, k2) ( ()),( () )»i
2

(3.113)

By partial fractioning, changing variables, and com-
bining terms we obtain

P "'(x ) = -2c dp, dk) dk, R *(py)R (k()R (k2)
(2(()' (k, —k, +ic)(P, —k, is)-

~ ei (op+02-py Jx

The c —~ limit on &f&")(x) can now be taken,

(, )( ) 2. dP, dk, dk, R ~(P()R(k, )R(k2)
(2(()' (P, —k, -is)

~ ei (Ay+42-P. y)x

= ~(x)R(x),
where

(3.114)

here. The essential idea can be seen by studying the
second term of (3.105),

( ) dp(dk~dk2 R "(p~)R(k )R(k )e'(()1+()2 ~1)»

(2(()' (p, —k, -is)(p, —k, —is)
(3.112)

[That the first term qb(o) agrees with (3.111) is obvious. ]
In spite of the explicit power of c in front of (3.112),
(t)"'(x) has a. finite limit as c- ~ due to the implicit c
dependence of the A operators. Symmetrizing over the
integration variables k, and k, and using the commuta-
tion relation (3.81), we get

From (3.107), we get

((x)=exp(~'wf »*(»)»(y)dy)R(x), (3.111)
( ) 2. dj,dk, R (P )R(k„);(, ~, )„

(2(()' (p, -k, - is)

The demonstration that (3.111)or (3.107) is the c =~
limit of the Gel'fand-Levitan transformation involves an
analysis of the general term @ of the series (3.105)
(Creamer et al. , 1980b) which will not be repeated

(3.115)

(3.116)

Analysis of the higher order terms in (3.105) shows that

y" (x) =~„([t(x)] R(x)l~!],
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))(*)=~x)t(-(~f ("(s)('() )dv) ('(~). (3.117)

leading to the result (3.107).
The transformation (3.111)may be inverted by noting

that R*(x)R(x)= (t) "(x)@(x), which leads to

cient expressed in terms of @ and (t) *, but a procedure
for doing this to all orders has not been developed.

%e now return to the general case of finite c and dis-
cuss the structure of the Gel'fand-Levitan transform
for the charge density operator which is obtained by
solving (3.112) and taking the limit (3.114). This gives

'This is a simplified form of the direct Zakharov-Shabat
transform c =~. 'The same result should also follow di-
rectly by taking the c- ~ limit of the reflection coeffi-

j,(x)= g jo"'(x),
n=O

where

(3.118)

~ ~

+ dk dp (gp —g fp)e-i (cD-c)) )xj.'"'(x) = (-c)"
(27()' g,",t(p, —u; -zc)(p; —k;„-ZE)](p„„—k„„-zc)

x R "(p„„) R *(P,)R(a, ) ~ R(a„., ) . (3.119)

The Gel'fand-Levitan expression (3.118) is related in
an interesting way to the spectral integral equation for
the finite temperature delta-function gas. The finite
temperature results for this model were first obtained
(Yang and Yang, 1969) by a variational method using
Bethe's &nsatz with periodic boundary conditions.
More recently these results were rederived (Thacker,
1977) using a graphical formalism which had emerged
from an analysis of N-particle Feynman graphs
(Thacker, 1975, 1976). In the graphical derivation, it
was found that the statistical mechanics of the system
could be obtained by calculating certain almost-forward
matrix elements of the charge-density operator. The
object of interest is the partition function

q(P +) Tr 8(eÃ-))&) (3.120)

where the trace is taken over a complete set of states.
The logarithm of (3.120) is an extensive quantity which
may be regarded as the connected part of the partition
function. It can be shown (Thacker, 1977) that this
quantity is given by

Inq = lim Trt I (q)e8(~" '] (3.121)

where

Y(q)= e N (f y (x)0 dx) . (3.122)

In this expression K= fx@*(x)P(x)dx is the Galilean
boost operator which has the property

e" R ~(k)=R*(&+q)e" (3.123)

Note that formally 1'(q)-1 as q- 0, and the right-hand
-side of (3.121) would naively give Q. The effect of
bringing the limit outside the trace is to pick out the
connected part of Q. This occurs because a diagonal
matrix element of 1'(q) will vanish unless the state ob-
tained by acting to the right with the operator in paren-
theses in (3.122) is the same as the state obtained by
acting to the left with e "~. 'Thus an equal amount of
momentum q must be transferred to each particle in the
state, which, in a graphical expansion, can only occur
if a graph is fully connected.

Matrix elements of 1'(q), Eq. (3.122), can be computed
by using the Gel'fand-Levitan series for the charge-

density operator, Eq. (3.118). The pressure 6' is ob-
tained from In@ by simply dividing out a factor P2)(5(0),
where 27(5(0) is the infinite volume analog of the size of
a box. Inserting the expansion (3.118) into (3.121), we
get a corresponding expansion for the pressure

(p (p(n) (3.124)

The trace in (3.121) is taken by summing over a com-
plete set of Bethe Ansatz states

R *(u, )R *(u,) ~ R *(A.~)
~

0),
using the expressions (3.119) and the commutation rules
(3.81) and (3.82) to compute the matrix elements. The
first term +' ' turns out to be the pressure of an ideal
fermi gas,

(3.125)

(P (0) ln(1+ e() (P-() ))
1 dk 2

P 2)( (3.126)

he calculation of the general term 6'"' involves a
symmetrization over the k, 's and p,. 's in (3.119) which
leads to extra c-dependent factors in the integrand, as
in the example (3.112)-(3.114) for P(x). The first four
terms in (3.124) have been obtained by direct calcula-
tion from (3.119). From these expressions the form of
the general term +'"' has been surmised. From the
form of 5'"), the series (3.124) can be summed up ex-
plicitly in terms of the solution to a nonlinear integral
equation. Defining c(k) as the solution to the equation

(P = — —ln(1+ e~' "') .1 dk
P 2m

(3.128)

These are the same results originally obtained by Yang
and Yang. By this derivation it is found that the integral
equation (3.127) and the pressure (3.128) can be obtained
from the Gel'fand-Levitan expression for the charge
density (3.118). The expansion of (3.128) in powers of
the kernel K corresponds term by term to the expansion
(3.118) for j,(x). Note that if we define a Fermi momen-

s(k) = k' —p —.
— K(k —k') ln(1+ e 8' +'), (3.127)

dk'
P 2m

where K(k) = 2c/(0'+ c'), we find that the pressure is
given by
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turn k~ by the zeroes of c(k),

s(+k~) = 0, (3.129)

then s(k) &~ 0 for
~

k
~

~& k~. The zero temperature (P —~)
limit of (3.127) is thus

Ay

s (k) = k' —p, + K(k —k')c (k'),
2m

(3.130)

which is just the spectral equation (2.45) for excitations
above the ground state. In Sec. II the integral equation
for s(k) was derived by studying periodic boundary con-
ditions in a box. Here it was obtained directly from the
Gel'fand-I evitan formalism using the infinite volume
commutation relations for R and R*. 'This emphasizes
the important point that the infinite volume algebra
(3.69)-(3.72) does contain the information necessary to
treat the finite density system, even though it is sim-
pler than the finite volume algebra (3.89)-(3.92). In
this regard it is also worth noting that the exchange
factor (Pln) in (3.91) is simply an overall factor which
drops out of the periodic boundary conditions.

D. Inverse method for lattice models

One of the most intriguing aspects of the quantum in-
verse method is its close relationship to the transfer
matrix techniques developed in soluble lattice models.
'This connection was first suggested by the work of
Skylanin (1979), whose derivation of the commutation
relations for the nonlinear Schrodinger model was in-
spired by Baxter's (1972a) analysis of the eight-vertex
model transfer matrix. The quantum inverse method
for lattice models has been studied for the XXZ spin
chain (Kulish and Sklyanin, 1979) and the symmetric
six-vertex model (Thacker, 1980). Recently, Takhtaj an

and Faddeev (1979) (see also Faddeev, 1979) have con-
structed the quantum inverse formalism for the full
Baxter model. In each of these examples the inverse
method provides an elegant algebraic derivation of re-
sults which had previously been obtained by a Bethe
Ansatz for many-spin-wave states.

To illustrate the essential points in a fairly simple
context, we will consider the quantum inverse method
for the six-vertex model. The solution for the full Bax-
ter model is briefly reviewed in the latter part of this
section. In Sec. II.D we saw that the transfer matrix
and partition function were constructed from an ele-
mentary vertex L, given by (2.155) for the eight-ver-
tex model and (2.159) for the six-vertex model. The
transfer matrix (2.156) may be regarded as a string of
vertices tied together at the ends. 'To motivate the for-
mulation of the quantum inverse method on a lattice,
we note that the solution to a linear eigenvalue problem
of the form (3.36) with specified behavior at xo may be
written as a path-ordered exponential,

x Xo+ 6
P expi Q dy = lim expi Q dy

xo 4~0 xO

"o+ x
x expi Q dy ~ ~ ~ exp i Q dy .

Xo

In the six-vertex model, an elementary vertex is pre-
cisely analogous to one of the exponential factors in
(3.132). The lattice construct which corresponds to the
path-ordered exponential solution (3.131) of the linear
problem (3.36) is a string of vertices contracted over
horizontal arrows. Thus the analog of the Jost evolution
G(x) with boundary condition (3.37) is given by a product
of elementary vertices,

(3.132)

G(n) = L,L, ~ ~ L„. (3.133)

In particular, the matrix analogous to V~(k) in (3.85) is
obtained by stringing vertices all the way across the la-
ttice,

i~(.) ~(.))
1 2 7

(c(~) D(~) j
(3.134)

(a)

(c)

where N is the number of sites in a row. Using a meth-
od which parallels the derivation in Sec. III 8, we will
obtain relations for the operators A, B, C, and D which
are depicted in Fig. 15.

The algebra of the operators defined in (3.134) is
based on a fundamental property of the elementary ver-
tex. We parametrize the vertex weights by p, v, and g
as defined in (2.165), and consider the vertex L„as a
function of v for fixed p and q. Then the direct product
of two vertices with different values of v is related to
a direct product of the same two vertices in reverse

x
~(")=:&~m(' Q(y)&y I&'(".):,

XQ ) o (3.131)

where the path ordering refers to the matrix structure,
specifically, FIG. 15. Operators A, B, C, and D defined in Eq. (3.134).
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order by a similarity transformation,

&|.I „(v) 1.„(v')f= (L „(v') L „(v)8,
where

0 0 0

61 =61(v,vi) ~ 0 P n 0

0 n P 0

0 0 0 1

(3.135)

(3.136)

V-V+2

FIG. 17. Commutation relation Eq. (3.135).

v+2q

with

sin(v' -v)(k=R v, v'
sin(v' —v+ 2q) '

sin2qP=P v, v' =
sin(v' -v+ 2q)

'

(3.137)

(3.138)

The relation (3.135) is analogous to the nonlinear Schro-
dinger result (3,53) and may be verified by direct cal-
culation. The direct products in (3.135) may be visual-
ized as the contraction of two vertices over a vertical
bond (i.e. , a spin-operator product), as shown in Fig.
16. It is interesting that the similarity transformation
matrix has essentially the same structure as an ele-
mentary vertex if the latter is regarded as a four-by-
four matrix.

(3.142)
~

k„.. . , k„)=B(v,) ~ ~ ~ R(v„)
~
0),

where v; and k,. are related by (2.170). It is easily
seen from (2.161) that the state

~

0) with all spins up is
an eigenstate of A(v) and D(v) separately,

(3.143)

the nonlinear Schrodinger model, but now with n and P
given by (3.137) and (3.138). (To agree with previous
conventions, we have also interchanged the roles of
B and C compared with the nonlinear Schrodinger mo-
del. ) From here the analysis of the six-vertex model
simply repeats the steps which led from the nonlinear
Schrodinger algebra (3.89)-(3.92) to the eigenvalue
(3.98) and periodic boundary conditions (3.99). The op-
erators &(v;) can be used to construct the Bethe Ansatz
eigenstates (2.168),

I.(v) =

p sin(v+ q)
'

p sin(v —q) p sin2q

p sin2q p sin(v —g)

p sin(v+ q)

D(.)/»= (,."„".,,'-)"'$».

By applying the transfer matrix

T(v) = try (v) = A(v)+ D(v),

(3.144)

(3.145)

@(v,v') = L(v' -v+ q) . (3.140)

The fundamental relation (3.135) has the structure
shown in Fig. 17.

Using (3.135) we find a similar relation for the ma-
trix of scattering data operators (3.134)

&ly'(v) &(v')] = (~(v') + &(v))@, (3.141)

which gives the commutation relations for A, B, C,
and D defined in (3.134). 'These relations are identical
in form to the finite volume algebra (3.89)-(3.92) for

(3.139)

By an appropriate choice of an overall factor in the def-
inition (3.136) we find that

to the states (3.142) and using the commutation rela-
tions (3.141), the eigenvalues (2.173) and periodic boun-
dary conditions (2.172) are obtained by a straightfor-
ward procedure.

'The quantum inverse method for the full Baxter
eight-vertex model (Takhtajan and Faddeev, 1979)intro-
duces some essentially new features which have not been
encountered in the previously considered models. The rel-
ative simplicity of the six-vertex model resulted from the
special form of the vertex matrix (2.159) or (3.139) and
the commutation matrix 6I, Eq. (3.136) or (3.140). By
virtue of the ice rule (two arrows in and two arrows
out), these matrices, written in four-by-four form,
have a 1-2-1 block diagonal structure. In addition to
simplifying the commutation relations, this also allows
one to choose a local spin state ~+)„(spin up) which is
annihilated by the lower left corner of the vertex matrix
(2.159), viz. , (2.161). For the Baxter model, the ver-
tex is given by (2.155), which can be written in four-by-
four form as

a 0 0 d

( )
0 b c 0

0 c b 0

d 0 0 a

(3.146)

FIG. 16. Direct product of vertices L (v) &&L (~'). where (Baxter, 1972a)
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a= pe(2q)e(v —q)H(v+ q),
b = pe(2n)H(v n—)e(v+ g),
c = pH(2q)e(v —rl)e(v+ rl),

d = pH(2q)H(v —q)H(v+ q) .

(3.147a)

(3.147'b)

(3.147c)

(3.147d)

Lr ™rLrMr+x (3.148)

where the Mr's are a set of two-by-two c-number ma-
trices. A 1' matrix constructed from the vertex (3.148)
has elements which are linear combinations of the op-
erators in (3.134),

g'=L~L2 ~ ~ ~ L~=M~~VM~, ~ . (3.149)

By an appropriate choice of the transformation M„, it is
possible to find a local spin state which is annihilated
by the lower left corner of the gauge-transformed ver-
tex matrix I „'. In fact, Baxter has shown that the eight-
vertex model is equivalent to a generalized ice model
where only the six vertices are allowed, but where the
vertex weights depend on both the arrow configuration
and on an integer l. This equivalence may be stated as
a local property of the vertex (3.146) (Baxter, 1973b).
It was used to construct a Bethe Apgsatz for the tr'ansfer
matrix eigenstates (Baxter, 1973c). The quantum in-
verse method for the Baxter model (Takhtajan and Fad-
deev, 1979) is also closely related to this ice-model
equivalence. The relation (3.140) between the vertex
matrix and the @, matrix allows the commutation rela-
tions (3.141) to be expressed in a form which resembles
the familiar case (3.89)-(3.92) in terms of operators
A~, , (v), B~, , (v), C„,(v), and D~, (v), which are the ele-
ments of the matrix

(3.150)

From the commutation relations of these operators, the
algebraic construction of eigenstates can be carried
through. For a detailed discussion we refer to the work
of Takhtajan and Faddeev (1979) and to the original
treatment of Baxter (1972a,b; 1S73a,b, c).

IV. DISCUSSION

'The study of exactly integrable quantum field theories
has developed rapidly over the past several years, and
this development seems likely to continue apace for
some time to come. In this concluding section I should

Here H and 8 are Jacobi eta and theta functions with
elliptic modulus A, . The parametrization (3.147) ex-
presses the vertex weights a, b, c,d in terms of p, g,
v, and k. It reduces to the ice model form (2.165) by
taking 0' 'p= po and letting the modulus k go to zero.
By considering the vertex (3.146) to be a function of v
with p, g, and k fixed, it is found that a relation of the
form (3.135) can be constructed for the. full eight-ver-
tex model (Baxter, 1972a) with (R again being given by
t3.140).

The fact that d4 0 (i.e., go, W gg, ) means that it is not
possible to choose a local "vacuum" spin state which is
annihilated by the lower left corner of (2.155). How-
ever, there is a certain gauge freedom in the choice of
the vertex L, which allows us to introduce a gauge
equivalent vertex

like to make a few remarks about the present state of
understanding and possible future directions.

An important approach to the treatment of exactly
integrable quantum theories which was not discussed in
this review is the study of factorizable S matrices
(Zamolodchikov and Zamolodchikov, 1979). In this
approach one exploits the fact that the presence of an
infinite number of conservation laws in a two-dimen-
sional theory generally will preclude the possibility of
inelastic scattering. (Elastic scattering with exchange
of internal quantum numbers is allowed. ) This leads
to a factorized S matrix which can be obtained explicitly
by symmetry considerations along with analyticity and
elastic unitarity. The S matrix of the sine-Gordon-
massive Thirring model, which was originally obtained
by this method, has recently been obtained directly
from the Bethe Ansatz eigenstates (gorepin, 1979).
Similar results for the chiral invariant Gross-Neveu
model have also been obtained (Andrei and Lowenstein,
1980b). The connection between the S matrix and the
eigenstates is of great interest, particularly in view of
the fact that the S matrix for the O(N) nonlinear sigma
model is known (Zamolodchikov and Zamolodchikov,
1979), while the construction of eigenstates has not yet
been accomplished.

Because of the apparently general connection between
exact solubility and the existence of an infinite number
of conservation laws, much effort has been devoted to
the construction and study of higher conservation laws
for various theories. Models for which higher quantum
conservation laws have been constructed include the
sine-Gordon-massive Thirring model (Flume, 1976;
1977; Kulish and Nisimov, 1976a, b; Berg et a/. , 1976;
Luscher, 1976; Flume et al. , 1976; Nisimov, 1977; Low-
enstein and Spear, 1978), the nonlinear Schrodinger model
(Thacker, 1978;— Oxford, 1979), the (g|t)'Gross-Neveu
model (Witten, 1978; Neveu and Papanicolao, 1979), the
O(N) nonlinear o model (Pohlmeyer, 1976; Polyakov,
1977; Araf 'eva et al. , 1978; Luscher and Pohlmeyer,
1978; Luscher, 1978; Lowenstein and Spear, 1978)and
the chiralO(N) x O(N) and SU(N) x SU(N) o models (Gold-
schmidt and Witten, 1980). It is reasonable to suspect that
the 0. models should be amenable to exact solution meth-
ods of the type we have discussed in this paper. Al-
though a classical inverse formalism has been develop-
ed (Pohlmeyer, 1976; Zakharov and Mikhaliov, 1978),
a quantum inverse method for the (T models has not yet
been constructed. This is a very important unsolved
problem, especially in view of the interesting analogies
which can be drawn between 0 models and realistic
four-dimensional gauge theories.

Even within the scope of models which can presently
be studied by the quantum inverse method, there are
some important questions which have not yet been an-
swered. A general method for obtaining Green's func-
tions for integrable theories has not been devised,
though progress has been made in some special cases
(Wuet a/. , 1976, Vaidya and Tracy, 1979a, b; Satoet al. ,
1978, 1S79, 1980; Jimbo et al. , 1980). The inverse
Gel'fand-Levitan transformation has so far been formulat-
ed only for the nonlinear Schrodinger model. For other
models, only the direct transformation is known. Formu-
lation of the quantum Gel'fand-Levitan method for these
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other models would be of great interest. As we saw in Sec.
III.C, the Gel'fand-Levitan transformation for the non-
linear Schrodinger equation, in the limit c-~, be-
comes a Jordan-Wigner transformation which express-
es the interacting boson field in terms of a free fer-
mion field; the latter being the Fourier transform of
the quantized reflection coefficient. Recently, a sim-
ilar connection has been found for the isotropic ~Y
(i.e. , the ZCA) spin chain by studying the direct trans-
form (Fowler, 1980). The relationship between the
quantum inverse method and the Jordan-Wigner fer-
mion-boson transformation is of particular interest in
the two-dimensional Ising model (which may be treated
by the quantum inverse method as a special case of the
Baxter model). In this model, the Jordan-Wigner
transformation desc ribes the re lationship between or-
der (spin) and disorder (kink) variables and is closely
related to the self-duality between the high- and low-
temperature phases of the system (Kramers and Wann-
ier, 1941; Kadanoff and Ceva, 1971). The possibility
of relating inverse scattering transformations to dual-
ity transformations is intriguing, particularly since it
has recently been suggested that four-dimensional
SU(N) gauge theory has a self-duality property some-
what like the Kramers-Wannier duality of the two-di-
mensional Ising model ('t Hooft, 1978, 1979; Mandel-
stam, 1979). The fermion-boson equivalence between
the massive Thirring model and the quantum sine-Gor-
don equation (Coleman, 1975) may provide some addi-
tional insight into the question of inverse scattering
vis-a-vis Jordan-Wigner transformations. In compar-
ing the solution of the massive Thirring model (Berg-
knoff and Thacker, 1979) with that of the sine-Gordon
model (Sklyanin et a/. , 1979), the equivalence is ap-
parent at the level of PBC's and spectral integral equa-
tions, which are essentially identical for the two theo-
ries. However, the equivalences between the operators
of the two models (Coleman, 1975; Mandelstam, 1975)
have not been discussed in the context of the inverse
method.

The discovery of exact integrability in two-dimen-
sional quantum field theories raises one question of
central importance to the future direction of the sub-
ject: Is exact integrability an inherently two-dimen-
sional phenomenon, or does some analogous behavior
occur in realistic four-dimensional theories'P The an-
swer to this question is far from clear at present, but
promising developments have been discussed by Poly-
akov (1979). This work draws on an analogy between
four-dimensional gauge fields and two-dimensional
chiral fields. (For the definition of a chiral field, see,
for example, Zakharov and Mikhailov, 1978.) In gauge
theory, the analog of the chiral field is a nonlocal
Wilson loop operator I' exp f,A„dx" where C is a closed
contour. The role of x space in the chiral theory is
fulfilled by the space of all closed contours ("loop
space") in gauge theory. The hope is that exact inte-
grability in gauge theory will manifest itself by an in-
finite number of functionally conserved currents in loop
space. The ideas of Polyakov fit rather well with the
duality considerations of 't Hooft (1978, 1979), es-
pecially in view of the suggested connection between
self-duality and exact integrability in two-dimensional

models. 't Hooft proposed that the appropriate order
variable in gauge theory is the Wilson loop operator,
which may be interpreted as the creation operator for
a loop of electric flux, and that the dual disorder var-
iable creates a loop of magnetic flux. Whether the for-
mulation of four-dimensional gauge theory in terms of
loop variables will eventually lead to an exact solution
procedure remains a matter of speculation, but the
parallels with the two-dimensional formalism are
amusing and encouraging.
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