
Excitation dynar~iics in randor~i one-diriiensional system~is
S. Alexander

Racah Institute ofPhysics, The Hebrew University, Jerusalem, Israel

J. Bernasconi and W. R. Schneider

Brown Boveri Research Center, CH-5405 Baden, Switzerland

R. Orbach

Department ofPhysics, University ofCalifornia, Los Angeles, California 90024

The authors investigate the asymptotic (low-frequency or long-time) behavior of random one-dimensional
systems described by a master equation of the form

C„dP„/dt = 8'„„,(P„,—P„) + 8'„„+,(P„+, —P„}
where either the C„.or the 8'„„+,( = 8'„+,„)are independent positive random variables. This problem can
be mapped onto a variety of physical problems, including one-dimensional particle or excitation diffusion

with random spatial transfer rates er random trap depths, low-temperature properties of the random one-

dirnensional Heisenberg ferromagnet, one-dimensional tight-binding fermion systems with correlated diagonal
and off-diagonal disorder, and electrical lines of random conductances or capacitances. Replacing dP„/dt by
d 'P„/dt ', the above equations also describe a harmonic chain with random force constants or random masses.

Both the random 8'and the random C problem are shown to reduce to the same mathematical problem, and

the authors review the derivation and consequences of its exact asymptotic solution for some general classes of
probability densities. In particular, they are able to determine the exact co~0 asymptotic behavior of the

single-site Cireen function, and thus the low-energy density of states and (for diffusion-type problems) the
long-time behavior of the autocorrelation function. For diffusion-type problems, the investigators further

introduce a scaling hypothesis (based on the assumption of the existence of a single characteristic length) for
the time dependence of the excitation amplitude at sites other than the initially excited site. This allows the
calculation of the low-frequency diffusion constant, and with the help of the Einstein relation, the low-

frequency conductivity. The authors apply their results to several physical systems and, in particular, are able
to account quantitatively for the complex low-frequency conductivity of the one-dimensional superionic
conductor hollandite. The results may also be relevant to quasi-one-dimensional electronic systems for times

(or frequencies) such that diffusion is restricted to a single dimension. The expansion of an earlier scaling

approach gives additional insight into the physical meaning of the asymptotic solutions. The researchers

further discuss effective-medium —type approximations, which, apart from a numerical prefactor, lead to the
correct asymptotic dependences. Comparison is made with the results of alternative approaches to this type of
problem, specifically with those of the continuous time random walk. The authors exhibit the remarkable
satisfaction of the hyperscaling relations for the specific heat and correlation function critical exponents for
the random Heisenberg ferromagnet, even though the exponents themselves are not universal. Finally, aspects
of the problem which remain unsolved, or which are only partly resolved, are discussed, These include the
derivation of asymptotic expansions beyond the leading term, the derivation of rigorous .asymptotic
expressions for the conductivity, the calculation of fluctuations in the site occupancy probabilities for the
diffusion problem, and the treatment of the random one-dimensional antiferromagnet and random one-

dimensional xy model. The investigators close with a short description of an application of this work to
electronic conduction in highly anisotropic materials.
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I. INTRODUCTION

The random one-dimensional chain has been a lassie
test for the theoretical physicist. The first successful
attack on the problem was that of Dyson (1953), followed
by some important contributions by Schmidt (1957),
Domb (1963), Halperin (1965, 1966), and others [for
a review see also the books by Lich and Mattis (1966)
and Hori (1968)j. Dyson was able to obtain an exact
solution for a special distribution of the ratio of the
force constants to masses in a random harmonic chain
(Dyson's Case I). This distribution has the property
that it passes from a smooth decaying function, finite
at zero value of its argument, to a delta function at a
finite value of its argument, as a function of a parame-
ter. Later it has been shown that Dyson's Case I re-
lates di.rectly to the random one-dimensional zy model
(Smith, 1970) and to what is now called off-diagonal
disor der for a random one -dimensional tight -binding
electron band (Theodorou and Cohen, 1976).

Our detailed approach to a solution of the random one-
dimensional. chain is somewhat different from Dyson's
because our choice of the relevant variable is not the
same. The integral equation which arises in our ap-
proach therefore looks somewhat different from, but is
structurally similar to, that which enters in Dyson's
formalism (his Case II). The latter has been described
as ".. . probably one of the most complicated equations
of a function of a single variable in mathematical
physics" (Lieb and Mattis, 1966, p. 123). Our choice
of variable enables us to extract an exact solution for
the single-site Green function, and for the density of
states, in the low-frequency limit.

The general mathematical problem arising from the
random one-dimensional harmonic chain with an ar-
bitrary probability density for the force constants (or
masses) can be mapped onto a variety of other physical
problems. These include particle or excitation diffusion
in a random one-dimensional material, low-tempera-
ture properties of the random one-dimensional Heisen-
berg ferromagnet, the one-dimensional tight-binding
electron problem with corre1ated diagonal and off-
diagonal disorder, and excitation transfer along a one-
dimensional array of traps of random depth (Alexander,
Bema, sconi, and Orbach, 1978b; Bernasconi,
Schneider, and Wyss, 1980).

In this paper we are actually mainly concerned with'
such diffusion-type problems, described by a master
equation of the form of Eq. (2.1) or (2.2) below, rather
than with the harmonic chain problem. Qur asymptotic
solution for the single-site Green function, however,
applies to both types of systems and enables us to
predict the low-energy density of states and the low-
temperature specific heat of a variety of physical sys-
tems. For diffusion-type systems it determiries the
long-time development of the autocorrelation function,
i.e. , of the excitation amplitude at the site of initial
excitation.

In addition, if one assumes that a single charac-
teristic length g(t), or g(w), exists for a random one-
dimensional system, one obtains expressions for the
transport properties which relate them uniquely to the
autoeorrelation function. Though these results are not

entirely rigorous, they are plausible and attractive.
Their application to at least one physical system, hol-
landite (K, „Mg, »Ti, »0„), a one-dimensional super-
ionic conductor with impurity barriers of random
heights, appears to explain a. quite remarkable frequen-
cy dependent ionic conductivity over a wide temperature
range (Bernasconi et aE. , 1979). Further, the specific
distribution of barrier heights which fits the frequency
dependence of the conductivity leads to a prediction of
a transition from zero-to-finite dc conductivity at a
temperature in the vicinity of 400 K for this material.
Th~s remarkable property is solely a consequence of
the change in the site-site transition rate probability
density with temperature.

We shall consider explicitly several general classes
of probability densities for the site-site coupling con-
stants, or for the masses, respectively. The majority
of probability densities which are of interest for phys-
ical problems belong to one of these classes. Not in-
cluded are systems with a finite probability for a com-
plete break, corresponding to a probability density
which contains a delta function at zero coupling
strength. Such "interrupted chain systems" have al-
ready been investigated by Alexander, Bernasconi,
and Orbach (1978a). The corresponding autocorrelation
function possesses a characteristic form, exp[-(Xt)' 3]
for long times t, where & is a constant related to the
number of breaks and to the site-site coupling between
breaks. This result can also be extracted from the
classic review of Lifshitz (1964) about the behavior of the
density of states near a band edge. It is a consequence
of complete localization of excitations within finite seg-
ments of the disordered chain.

The 'present paper deals with systems which are more
interesting —those with zero measure for a complete
break. We shall see that this may lead to a different
kind of localization, but always with a diverging corre-
lation length g(t) as t-~. The rate of this divergence
(compared to t' ' in the diffusive limit) determines the
"strength of localization. " We wish to emphasize that
all of our states are localized in the Anderson sense.
Our use of the term localization rather refers to the
behavior of ((t) relative to pure diffusion as f becomes
large.

To some extent, this paper has the character of a
review. It presents a number of new results, but also
summarizes the present status of our investigations,
partly contained in previous letters and papers
(Alexander, Bernasconi, and Orbach, 1978a, 1978b;
Alexander and Bernasconi, 1979; Bernasconi et al. ,
1978, 1979; Bernasconi, Schneider, and Wyss, 1980),
and makes comparison with alternative methods. In
Sec. II we introduce the model and the different classes
of probability densities we shall consider. We then
define the precise mathematical problem and discuss
the quantities which are to be determined. Section III
is concerned with physical realizations of the mathe-
matical model, including an electrical analog which will
be useful for the construction of our approach to the
solution. In Sec. IV we derive the formal solution for
the autocorrelation function, and contact is made with
the classic treatment of Dyson (1953). Both random
coupling constants and random masses are treated, and
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li. THE MODEL

The dynamics of our general type of one-dimensional
disordered lattice systems can be described by an
infinite set of coupled rate equations (a. master equa-
tion). In our previous investigations (Alexander,
Bernasconi, and Orbach, 1978a, 1978b; Alexander and
Bernasconi, 1979; Bernaseoni esca/. , 1978, 1979;
Bernasconi, Schneider, and Wyss, 1980) their form
was chosen to correspond to the problem of classical
diffusion in a random one-dimensional lattice, i.e. ,

"=W „.,(P„,-P„)+W„„„(P„„-P„), (2.1)

where ~ (~ =0, yl, y2, . . . ) denotes the lattice sites,
P„(t) is the excitation amplitude at site n at time t, and
the nearest-neighbor transfer rates (or coupling con-
stants) W„,=W, „~0 are assumed to be independent
random variables, distributed according to a given
probability density p(w). We shall call this Case (i).

In the next section we shall show that a number of

the two eases are shown to reduce to the same type of
integral equation. Its asymptotic solution near (d =0
(Bernasconi, Schneider, and Wyss, 1980) is presented
in See. V, and in Sec. VI we discuss the resulting
asymptotic behavior of the autocorrelation function for
the different classes of probability densities. We also
derive the corresponding results for the density of
states and specific heat for systems onto which we can
map our problem. In See. VII we investigate the asymp-
totic behavior of transport quantities, such as the
mean-square displacement and the frequency-dependent
conductivity cr(~). A scaling hyPothesis is used to relate
cr(&u) uniquely to the single-site Green function. In Sec.
VIII we sumxnarize our principal results and discuss
their implications in some detail. In Sec. IX we present
an explicit scaling approach which expands the ideas of
an earlier version (Alexander and Bema. sconi, 1979),
and in Sec. X we analyze the results of effective-
medium-type approximations. Several specific ap-
plications to physical systems are discussed in See.
XI, and comparison is made with the results of alter-
native approaches. In particular, we make connection
with the Scher-Lax-Montrall approach (Scher and Lax,
19'73; Scher and Montroll, 19'75) and discuss their
effective-medium-type solution and its inability to
reproduce the correct asymptotic behavior of the auto-
correlation function in one dimension. In See. XII we
exhibit the remarkable satisfaction of the hyperscaling
relation for the specific heat and correlation function
critical exponents for the random Heisenberg ferro-
magnet. Finally, we outline further developments of
our mathematical approach and discuss some unsolved
aspects of the problem in See. XIII. We suggest s'ome
future applications of our solution and point out the
remarkable similarities of experimental results for
one-dimensional organic conductors with the predictions
of our model.

We. wish to point out that the reader who is only in-
terested in the main results may skip Sees. IV through
VII, which contain the technical details of our mathe-
matical approach.

different physical problems can be reduced to an in-
vestigation of the above class of equations„with an
appropriate interpretation of the quantities W„, and

In some of these realizations, one would also like
to consider a generalized version ef Eqs. (2.1). For
an electrical line of conductances ~„,and capaci-
tances C„, e.g. , one has

C„"= W„„,(P„,-P„)+W„„„(P,-P„),dP~
(2.2)

in which case P„denotes the displacements.
If the C„or M„, respectively, are independent random

variables, and W„„., is a constant. independent of n [we
shall eall this Case (ii)], then the mathematical prob-
lems corresponding to Eqs. (2.2) or (2.3), respectively,
lead to the same type of integral equation as is obtained
for the ease of Eq. (2.1), where the W„„„arethe
independent random variables. This will be shown in
See. IV.

We notice that all the above models correspond to
Dyson's (1953) Case II. In Dyson's Case I the quantities
X„(where X,„,= W~, /M„, A.,„=W„,/M, ) are the in-
dependent random variables, and such a system is
related to the random one-dimension@1 xy model and
to a one-dimensional fermion system with off-diagonal
disorder (see the introduction, Sec. I).

We shall consider the following three classes of prob-
ability densities p(co) for the transfer rates (or coupling
constants) W„, in this paper.

Class (a). p(zo) such that

(2.4a)

Class (5). p(zo) such that

p(n) —const as m —0.
Class (c).

(1 —o)go, 0 & to & 1

p(~) =
0 otherwise, 0& a & 1.

(2.4b)

(2.4c)

Most distributions p(ze) of interest for physical prob-
lems belong to one of these classes. An exception are
p(ee) which contain a delta function at tu =0. Corre-
sponding one-dimensional systems decompose into seg-
ments of finite length (interrupted chain systems) and
have been investigated in various contexts (Domb et af. ,
1959; Rice and Bernasconi, 1.973; Alexander et al. ,
1978a; Odagaki and Lax, 1980).

The corresponding classes of probability densities
x(m) or x(c) for the distribution of the quantities M„or
C„, respectively, are the following.

Class (a'). r(m) such that

dmmx m & ~.
0

(2.5a)

where the &„represent the node potentials. For a
harmonic chain with masses M„and force constants
8'„„„.the equations of motion are

M„2"=W„„,(P„,-P„)+W„,(P„„-P„), (2.3)
d'P„
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Class (I)'). r(m) such that

m'x(m) -const as m -~.
Class (c').

(2.5b)

(2.1) and (2.6), x2(t) can be expressed as

x'(t) = g n2P„(t),
n —~

(2.11)

(1 —n)m "
r(m) =

1 ~m(~
(2.5c)

so that

&D(~)& = —,'(O' Q n'&P„((u)& . (2.12)
0 otherwise, o & n & &-

It should be pointed out that the above classes of prob-
ability densities are defined with respect to the asymp-
totic behavior of the corresponding systems. Systems
belonging to the same class exhibit the same behavior
only asymptotically for large times t, or small fre-
quencies ~.

The main mathematical problem with which we shall
be concerned is defined by Eq. (2.1), together with the
initial condition

Through Eqs. (2.9) and (2.12), a(m) is related to all
&Pg, and not directly to &P,& alone. In Sec. VII, how-
ever, we shall propose and discuss a general scaling
hypothesis which will allow us to relate the low-fre-
quency behavior of v(~) uniquely to that of &P,( —i(d)&
Before we develop the approach to our solution, let us
first discuss some physical problems that are related
to our general models of random one-dimensional lat-
tice systems.

P„(t =0) =6 (2 8) III. PHYSICAL REALIZATIONS

and the key quantity to be determined is the single-site
Green function &P, (&u)&, where P„denotes the Laplace
transform of P„,

P„(te) =f dte 'P„(t) .
0

(2.7)

The average &
~ ~

& is defined with respect to the dis-
btibution of the (independent) random variables W„~,.
Thus &P, ((d)& is the Laplace transform of the autocor-
relation function &P,(t)&.

In the analogous problems corresponding to Eqs. (2.2)
or (2.3), respectively, two different Green functions
can be defined, related to different choices of the
initial conditions. These will be discussed in later
sections.

A number of physical quantities can be deter mined
from &P, ((t))& alone. The autocorrelation function
&P, (t)&, e.g. , which describes the time development of
the initial probability amplitude, is simply the inverse
Laplace transform of &P,((d)&; and for Case (i) the cor-
responding eigenvalue density of states N(s) is given by

A large number of physical problems can be reduced
to an investigation of the general type of equations
represented by Eqs. (2.2) or (2.3) above. In the follow-
ing we briefly discuss the most important of the re-
spective physical models.

A. Diffusion and hopping conduction of classical
particles (or excitations}

We consider Eqs. (2.2) and identify Ce+„(t) with the
site occupation probabilities. The problem is then
equivalent to a randonz zeal@ on a random Lattice, and
the transfer rate from site n to site n+1 is given by

tte ttt 1 n e ltt/tn
If C„ is constant, the transfer rates are symmetric,

T~ 1=7„,1,„, Rs the 8'~ 1are always assumed tobe
symmetric. We notice that in spectral diffusion prob-
lems, for example, the transfer rates become sym-
metric if the temperature is sufficiently high. The
anomalous asymptotic behavior associated with class
(c) probability densities [Eq. (2.4c)] can be realized for
an activated (symmetric) W„„„,

N(s) = —-Im(P, ( —s +i0')&, (2.8) W~„„c(:exp(-t) ~ ', /ksT), (3 1)

v((o) =k'T &D(-i(d)&,
B

(2.9)

where n0 is the density, e the charge of the charge car-
riers, T the temperature, and &D(&g)& a frequency-de-
pendent mobility,

tt(te) = —,'te' f dte " et(t) . '
0

In terms of the solutions P„(t) corresponding to Eqs.

(2.10)

with a, similar expression for Case (ii). If the spectral
parameter c is related to the energy eigenvalues of the
system, thermodynamic quantities (such as the specific
heat) can be calculated from a knowledge of N(s)

The frequency-dependent hopping conductivity cr((d),
however, is a somewhat more complicated quantity of
interest. It is related to the mean-square displacement
x (t) as follows (Scher and Lax, 1973; Bernasconi,
Schneider, and Wyss, 1980) (the lattice constant is
unity):

if the activation energies &~~, are random and distrib-
uted according to a probability density

p(A) (x: exp(- t/T), ), b. ~ A, . (3.2)

I~(t) =P(1-P)' ', (3 3)

which leads to a density-dependent exponent, n =1
+ln(1 -P)/y, in Eq. (2.4c). This is the one-dimensional

Such a model has been applied to explain the low-fre-
quency transport properties of the superionic conductor
hollandite (Bernasconi et a/. , 1979) (see Sec. XI), and
leads to a temperature-dependent exponent, n = 1 —T/TD,
in Eq. (2.4c).

A probability density of the type of Eq. (2.4c) can also
arise from configurational disorder. At low temper-
atures one has W~, c(: exp(-yl) for hopping between
equivalent randomly distributed sites of density P on a
one-dimensional regular lattice, and the distance L

between two neighboring sites is distributed according
to

Rev. Mod. Phys. , Vol. 53, No. 2, April 1981
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case of the more general d dimensional random hopping
model of Scher and Lax (1973). Recently it has been
investigated by Bottger et al. (1979) and others.

For a constant 8'„,=S', and random C„, our model
of Eq. (2.2) gives rise to a random txaPPinI, model if
we identify C„with exp(J3&„), P =1/@AT In. this case,
the transfer rates are nonsymmetric,

T „~=S'oe ~ &~& n=~" e" ~' (3.4)

and the quantities C„P„=P„exp(PA„)are related to the
thermal equilibrium distribution. We note that Eq. (3.4)
restricts the transfer mechanism and does not repre-
sent the most general trapping model.

B. Magnetic models

The low-lying excitations of a Heisenberg chain with
random ferromagnetic interactions (J~~, W ~,) are
described by equations of the type of Eq. (2.2) liner-
j2ed equations of motioriI ). Configurational disorder
[see above, Eq. (3.3)] again leads to a, probability
density for the Z„~, of the type of Eq. (2.4c). Cor-
responding models have recently been treated by
Theodorou and Cohen (1979) using a cluster approxi-
mation. Our results differ from theirs for reasons best
seen in a scaling approach (Alexander and Bernasconi,
1979) (see also Sec. XI). We further note that the
random C„model would correspond to a random spin
model, which, however, does not seem too interesting
at the moment.

Huber and Ching (1980) have recently shown that a
planar model of a classical spin glass is also equiva-
lent (in one dimension) to our type of systems with a
Class (b) probability density,

p(J) =(2/m)' 'exp(- J'/2), 0~ J(~. (3.5)

C. Fermion systems

A one-dimensional tight-binding model (Anderson
Hamiltonian) for electrons leads to equations of the
type of our Eqs. (2. 1) if diagonal and off-diagonal dis-
order are correlated in a specific manner (site ener-
gies z„and transfer integrals W„„,related by -z„

. =W„, „+W„„„).The assumption of such correlations
seems, however, to be somewhat artificial, and we are
not aware of a physical model which would predict their
existence.

deal of attention [see Lich and Mattis (1966) and Hori
(1968) for a review). Nevertheless, our rigorous
results for the low-energy behavior of the density of
states (Bernasconi, Schneider, and Wyss, 1980) cannot
be derived with previous approaches.

E. Electrical lines

Several realizations of electrical lines lead to equa-
tions of the type of Eqs. (2.2) or (2.3). In the next
section we explicitly consider Eqs. (2.2), which cor-
respond to an BC line, and discuss in some detail the
cases where either the capacitances C„or the conduc-
tances S'„~, are random. This electrical analog of
our general model turns out to be very useful for the
construction of our approach to a solution.

IV. FORMAL SOLUTION FOR &Ps(w)&

For convenience we use the language of electrical
lines and consider the equations for an BC transmission
line, i.e. , Eqs. (2.2). The Laplace transform of these
equations is

W„„,(P„-P„,) + W„„„(P„-P„„)+ ~C„P„=C„P„(0),
(4.1)

where P„=P„(~) [see Eq. (2.7)] is the voltage at site n,
C„ is a capacitance, and W„„„aconductance. For the
calculation of the single-site (or diagonal) Green func-
tion (P,(~)), we have P„(0)=0 for n 4 0, and it will turn
out to be convenient to introduce admittances and
impedances corresponding to the semi-infinite lines
to the right (for n ~ 0) and to the left (for n ~ 0), re-
spectively, of a node n. I et G„"denote the line admit-
tance to the right (left) of node n, and R„"' the line
impedance including the capacitor C„ to the right (left)
of node n (see Fig. 1}. We restrict our attention in the
following to G„—= G„''(~) and R „"(~),n~ 0, which are
defined by

G„=i „.,/P„= W„„.,(P„-P„„)/P„,
P„=~„=uP„/I„,„=C„'(I„~„-I„„,~)/ „~ „, (4.2b)

where I „„are the branch currents, and where we have
introduced the new variables @„to make the expres-
sions more symmetric. The treatment of G„' '(~) and

D. Lattice vibrations of a harmonic chain

We consider Eqs. (2.3), where the P„denote the site
displacements, and assume that either the masses M„
or the force constants W„„„(but not both) are random
variables. We show in the next section that both prob-
lems lead to the-same type of integral equation which
will be analyzed and discussed in subsequent sections.
We note that M„dP„/dt obeys the same equation of mo-
tion as M„P„, so that we can describe momentum dif-
fusion along the chain, as well as displacement diffu-
sion. We shall use the Laplace transformed equations
of motion in our analysis, so that we further note that
~ will be replaced by co' if we consider Eqs. (2.3)
instead of Eqs. (2.1) or (2.2).

Since the classic treatment of Dyson (1953), the
random harmonic chain problem has received a great

G
(+)
n Cn+z

n
~

' n+1 ' q+P+n, n+~ +n+~, n+Z
C s e r

R (+)
n Cn Cn+) Cn+2

C

FIG. l. Graphical illustration of the definition of the admit-
tance 6'„+ and of the impedance g„' used in connection with
the electrical line described by Eq. (4.1).
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R„'(u) is, of course, exactly analogous.
From Eqs. (4.1) we obtain the following recursion

relations for G„and &f&„:

QP

~/II'. ...i+4..i ' (4.3a)

(d

+G (4.3b)

(4.4a)

Similarly, for case (ii) we eliminate the G„, redefine
~ according to W '~-~, and obtain

(4.4b)

The quantities G„and g„can therefore be expressed as
infinite continued fractions depending on ~ and on the
original (independent) random variables C„,C„„,. . . ,
and S' ~„S'~,

As indicated in Sec. II, we shall restrict ourselves to
the following two cases.

(i) The W„„„are independent random variables,
distributed according to p(m), but the C„are constant
(—= C)

(ii) The C„(or C„') are independent random variables,
distributed according to x(c) [or p(c ') =c'r(c), respec-
tively], but the W„„„areconstant (= W).

For case (i) we eliminate the P„, redefine ~ according
to C - , -and then obtain

P„(t =0) =6„,, (4.9)

the right-hand side of Eq. (4.1) becomes equal to C6„„
and from this, together with Eq. (4.2a), we obtain

Po(~) =((g +Go '+Go') ' (4.10)

for a definite chain, where ~ and I', have been normal-
ized according to C~-~ and P,/C-I „respectively.
A s Go and Go+ ' are independent random var iabl es,
both distributed according to f„(g), we can express the
average in the following way,

equation, Eq. (4.5).
Dyson was able to solve the integral equation derived

from Eq. (4.7) exactly when he treated the X„as in-
dependent random variables, distributed according to
a particular set of probability densities. As can be seen
from the definition of the X this does not correspond
to a meaningful realization of the RC transmission line
problem (or of the random harmonic chain problem).
The resulting problem can, however, be mapped on
some other interesting physical models (Smith, 1970;
Theodorou and Cohen, 1976) (see Sec. I).

We now show that the solution of the integral equation
(4.5) enables us to calculate the statistical average of
the diagonal element of the Green function, (Po(~)) or
(P,(t)), and of the density of states.

We first consider the case of random 8'„~, and
constant C„(=C for all n), i.e. , case (i) above. With
the initial condition

In both cases we therefore obtain the same type of
integral equation (Bernasconi et a/. , 1978, 1980),

I'

f„(x) = dx'f„(x') dy p(y)6 ix — —+
4)+x I

p (4.5)

for the probability density f„(x) corresponding to the
random variables G„or Q„, respectively. In Eq. (4.5),
p(y) denotes the (given) probability density of the
original random variables 8'„„„orC„', respectively.

As shown below, the problem of calculating the
single-site Green function (P,(~)) and related quantities
reduces to the problem of solving the above integral
equation. Depending on the choice of variables, there
are several ways of constructing an integral equation
related to a, difference equation of the form of Eq. (4.1).
Our approach is closely related to Dyson's (1953)
original work. Dyson chooses the variables

We notice that in Eqs. (4.5) and (4.11), ~ is taken to be
real and positive. For complex w, (P,(~)) is obtained
by a subsequent analytic continuation, and the average
time evolution of Po(t) is then given by the inverse
Laplace transform,

(P.(t)) =(& 'P.(~)) =& '(P, (~)). (4.12)

One can thus calculate the averages for each ~ sepa-
rately, using f„(g), and the fact that the G„(~) for dif-
ferent are correlated on any specific chain does not
affect the average in Eq. (4.12).

As the matrix of the coefficients in Eqs. (2.2) is sym-
metric for the case (i) problem, and as the chain is
moreover translationally invariant on the average, it
follows that the density of states is simply given by

«2«& ~ «& ~ «~«& «&«««&
which leads to the recursion relation

(4.6) 1
N(s) = ——Im(P, ( —s +t0')) . (4»)

where

(4 7)

(4.8)

This is equivalent to saying that (P,(t)) is the Laplace
transform of the average density of states.

The random capacitor case, case (ii) above, is
slightly more complicated. For the initial condition
(4.9), the analog of Eq. (4.10) becomes

The equivalence of the random W and the random C
problems is therefore obvious in Dyson's formalism and
is pointed out by him. Because of the different choice
of variables, his integral equation for the problems we
consider (Dyson's Case II) is different from our integral

Po(~) = Co[~CO+~/(~ +P', ') +~/(~ +y,'+') j ', (4.14)

and the statistical average now also involves the random
va;riable Co,
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()„(tc))c-f dcc(c)c f d4'I(0') 'f d@"f„(y )(tccctc/(rgc0')+tc/(tc+@")] '.
0 0

(4.1 5)

and is therefore not proportional to (P,(~))~ (if the C„
are random).

We notice also that in this case (random C) the sta-
tistical averages, e.g. , (P,(~)) and (Q, (co)&, depend on
the initial condition. If we impose

Q„(t = 0) =6„,o,
e.g. , instead of Eq. (4.9), this leads to

(P, ( )& =(C,'P, ( ))

(4.17)

(4.18)
and to

(Q, ((o)& q
= (P,((o))z .

Furthermore, the eigenvalue equations for the P„(and
for the Q„) are not symmetric, so that the connection
to the density of states is not immediate. One can,
however, symmetrize the equations by Dyson's (1953)
trans fr omation

(4.19)

In Eqs. (4.14) and (4.15), we have normalized ~ and P,
according to ~/W-~ and WP, -P„respectively; and
the subscript P in Eq. (4.15) refers to the chosen initial
condition, Eq. (4.9). The average charge it the origin is

&Q.( )) =&C.P.( )& (4 16)

(5 3)

(5 4)

(5.5)

Let us first consider the trivial. case of an ordered
system, i.e. ,

p(y) =5(y -I;),
for which Eq. (5.4) reduces to

(5.6)

(5.7)

and

~

~dxf„(x) =1.
With respect to p(y), we shall explicitly discuss the
three classes of probability densities defined by Eqs.
(2.4a) -(2.4c).

For our investigations it turns out to be convenient
to study the Stieitjes transform of Eq. (5.1), which,
after some manipulations, can be written as
(Bernasconi, Schneider, and Wyss, 1980)

f.(*) i&(c)+f=Ac(c)(-„„,)f.{~+ „)
where g denotes the Stieltjes transform of a function g,

g(z) =
t dxZ(x)(x+z) ',
0

It' then follows that

(4.20) The solution of Eq. (5.7) is

f„(z)=[z+Xo(~)j ', (5.8)

(4.21)

V. ASYMPTOTIC SOLUTION FOR f {x)NEAR cu =0

1
N(s) = ——Im(PO( —s +tO')&~

= ——Im(QO(- z +tO')&g.
1

We have thus shown that the solution of the integral
equation (4.5) allows us to calculate important proper
ties of random linear chain systems, both for case (i)-
and for case (ii)- type problems. There are, however,
limitations. In particular, we have not yet been able
to calculate P„(t) for general n or to evaluate the sums
in Eqs. (2.11) and (2.12) in a rigorous way from the
knowledge of the solution of the integral equation (4.5).
The reason essentially is that, while they all have the
same distribution, the G„(~) for different n are cor-
related. For the same reason one cannot obtain closed
expressions for the fluctuations of (P,(t)) [e.g. , calcu. —

late (P', (t))], because the implied convolutions do not
commute with the averaging process. We shall return
to these questions in later sections of this paper.

i.e. , we finally obtain

f„(x)=6(x —X,((o)),

where

(5.9)

X.(~) =a[(~'+4I'.~)' ' -(o] (5.10)

From this solution of our integral equation we can then
derive the well-known results for the autocorrelation
function, P, (~) or P,(t), and for the density of states
N(s), corresponding to an ordered system (see the
following section).

For genuinely disordered systems, for which p(y)
is not a single delta function, the general solution of
the integral equation (5.1) or (5.4) is not known for
arbitrary values of ~. If we observe that g(z) ~ z ' if
g is a probability density, the following inequalities
can be obtained from Eq. (5.4):

p(z) -f (z) & p(z) +~ '. (5.11)

In the limit co -~, this immediately leads to f (z) =p(z),
l.e. )

In this section we discuss the integral equation (4.5)
in some detail and, in particular, we shall be interested
in the derivation of results which are valid asymptot-
ically as ~ -0. For convenience, we reproduce the
integral equation,

f„(x)='p(x) .
If the first N —1 positive moments,

p, —= dxx"p x, 4 =1,2, . . . , N-1
0

(5.12)

(5.13)
OO OO

f„(x)= dx'f„(x') dkp(y)6ix —-+, I, (5 1)~+x
and, as f„(x) represents a probability density, we re-
mark that an acceptable solution has to satisfy

of the given probability density p(x) exist, one ean
construct (Bernasconi and Schneider, 1981) an exact
large ~ expansion for f„(x) of the following form:

f„(x)~0, x~o (5.2)
(5.14)
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The recursive determination of the @„(x),which in
general are distributions, is rather complicated but
straightforward (Bernasconi and Schneider, 1981).
With Eq. (5.14) we can then derive large 1d expansions
for several quantities of iriterest, in particular for the
diagonal Green function (P,(~)).

More interesting, however, and far less trivial, is
the construction of a small asymptotic expansion for
f„(x). We first remark that for ~ =0, Eq. (5.4) is
identically satisi'ied by f,(z) =z, i.e. ,

(5.15)

To investigate the approach of f„(x) to its limiting form
at ~ =0, Eq. (5.15), we have to introduce a "micro-
scope, "

f (x) =6(x —V
" ' (u' ') (5.21)

s( )
— 1/(2-a ) (5.22)

and h(x) =I1' (x), which is the solution of the following
integral equation:

Class (a) includes the ordered system, p(2U) =6(ur —W),
for which p, =8' '. Asymptotically for small , all
class (a) systems therefore behave as an ordered sys-
tem with S' given by an "average transfer rate, »

1F,„=p,
For class (c) probability densities p, Eq. (2.4c),

s(&o), as well as h(x), are no longer universal, i.e. ,
they depend on n. We obtain (Bernasconi, Schneider,
and Wyss, 1980)

(5.16) (5.23)

which magnifies the x scale by s(~) '. The function
s(~) is supposed to be positive for m& 0, and to tend to
zero as -0. We then rewrite the integral equation
for f„as an integral equation for t2„, and we assume
that h„has a limit, denoted by k, as -0, and that
k satisfies an integral equation obtained by a limiting
procedure.

With these assumptions' it is possible to derive the
leading asymptotic behavior of f„(x) near ~ =0, at
least for class (a) and class (c) probability densities
p. The main steps of the rather involved mathematics
are explained in the paper by Bernasconi, Schneider,
and Wyss (1980), and in the following we therefore
merely summarize the final results.

Asymptotically near ~ =0, f„(g) approaches the
homogeneous function representation (scaling form)

(5.17)

l2(x) =6(x -1),
and the 1d dependence of s(~) is also universal,

s( )
—~ 1/2 1/2

(5.18)

(5.19)

where the scale factor s(1d), as well as the limiting
scaling function h(x), is a functional of the given
probability density p(y). It further turns out that class
(a) and class (c) systems exhibit a. qualitatively different
asymptotic behavior near m=0. For all class (a) prob-
ability densities p, h(x) is a universal function,

I1' '(x) can be expressed (Bernasconi, Schneider, and
Wyss, 1980) in terms of a generalized hypergeometric
function, the so-called H function of Fox (Fox, 1961;
Gupta and Jain, 1966),

tt (x):&(P)H12 1x

where

(0, p)

(5.24)

(5.25)

For cia,ss (c) systems, h„(x) therefore does not ap-
proach a delta function as ~-0, in contrast to the basic
assumption of effe ctive -medium -type appr oxi.mations
(Bernasconi et al. , 1978, 1979, 1980) (see Sec. X).
Some general properties of the h functions are dis-
cussed by Bernasconi, Schneider, and Wyss (1980);
and in Fig. 2, as an illustration, we plot their graph
for, several values of ~.

The above results determine the leading ~-0 asymp-
totic behavior of f„(x) for class (a) and class (c) sys-
tems; and in the next two sections we shall use these
results to compute the leading asymptotic behavior of
several physical quantities. In addition, we note that
it is possible to construct exact small ~ asymptotic
expansions for f„(x) which go beyond the leading asymp-

where p, , is the minus first moment of p(y),

p, = dyy p y.
0

Near ~ =0, f„(x) thus approaches a delta function,

(5.20)

h(x)

~ class (Q)

~WI1ile we are able to solve the limiting integral equation for
h(x) rigorously, it remains to be proved that the integral
equation for h~(x) has a unique solution which approaches
h(x) as u —0. It is with this proviso that we use the terms
"rigorous" and "exact" in connection with the corresponding
asymptotic behavior off (x), (Po(~)), etc.

%'e might add that, while a rigorous mathematical proof is
still missing, the above assumptions are accurately confirmed
by numerically determined histograms for f (x) (Bernasconi
and Schneider, unpublished).

0
0

FIG. 2. Function h™(x), Eq. (5.24) vs xfor m=3 2 and
For comparison the class (a}'result, h(x}=6(x-1), is also
indicated.
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totic term (Bernasconi and Schneider, 1981).
Explicit results have been obtained for both class (a)

and class (c) probability densities, and they show, for
instance, that the asymptotic equivalence between class
(a) systems and the ordered system is only va.lid for
the leading term. See also Sec. XIII for a short pre-
liminary account of these results.

We finally have to discuss the case of cia.ss (5) prob-
abi/ity densities which represent the crossover between
class (a) and class (c) systems. For such probability
densities [Eq. (2.4b)], characterized by a finite value
of p(0), we have not yet been able to determine the
asymptotic form of f„(x) near ~ =0 in a mathematically
rigorous way. It seems obvious that logarithmic cor-
rections to the class (a) behavior have to come in, but
the limiting form of f„(x) might be different from that
given by Eq. (5.17). On the other hand, there are
arguments (see Sec. X) that the effective-medium
result

and by inverse Laplace transformation

P (t) =e-' 'I, (2Wt), (6.4)

where I, denotes the modified Bessel function of zeroth
order. Equation (4.13), finally, leads to

—(4Wc —c') '~' 0 ~ c ~ 4W
N(c) =

0 otherwise .
(6.5)

2m''I ' (6.8)

The tu-0 asymptotic behavior of P, (~) is thus given by

Po(u) = —'(W&a) '~' (6.6)

the long-time development of Po(t) by

Po(t)=(47rW) ' 't ' ' t- ~ (6 7)

and the small c behavior of the density of states be-
comes

f„(x)=6(x —c(~)), ~ -0
where

- =(.(.)) ( '.)

(5.26)

(5.27)

Let us now turn to random systems. Here we first con-
sider class (a) and class (c) probability densities, for
which we have determined the exact ~- 0 asymptotic be-
havior of f„(x). We observe that for both classes one
has

should give the exact leading asymptotic behavior of
(P, (&u)) for class (5) systems, even though Eq. (5.26)
may not represent the mathematically correct asymp-
totic solution of our integral equation (5.1).

d
C(T) = dc c N(c)[exp(c/kaT) —1] ~ .

0
(6.1),

We first summarize- the mell-known results for the ord-
ered systems, i.e., for

p(w) = ~(zo —W) . (6.2)

From Eqs. (4.11), (5.9), and (5.10), with I', = W, we ob-
tain

P, (~) = (4 W~+ cu') 'I ', (6.3)

Vl. EXACT RESULTS FOR THE ASYIVIPTOTlC
BEHAVIOR OF &Po(w)) AND RELATED QUANTITIES

In the following, we shall use the results of the pre-
vious section to derive the asymptotic behavior of the
single-site Green function (Po(u)) as &u-0, or (Po(t))
as t- ~, respectively, of the density of states N(c) as
c-0, and of the specific heat C(T) as T-0. For sim-
plicity, we shall consider only the random W case. The
treatment of the random C, and random ~, cases is ex--
actly analogous, and the corresponding results will be
summarized and discussed in Sec. VIII.

To be definite, we explicitly consider systems de-
scribed by Eq. (2.2), with constant C„and random W„„„
[distributed according to a given probability density
p(zv)], and shall briefly comment on the modifications
for systems described by Eq. (2.3) at the end of the sec-
tion. Our single-site Green function, (P, (u)), is there-
fore given by Eq. (4.11), (P,(t)) is given by its inverse
Laplace transform, and N(c) can be determined accord-
ing to Eq. (4.13). If c is energy, the specific heat C(T)
(for Bose statistics) is given by

C, = dx'a(x') dx "a(x"),
0 0 x'+x" (6.11)

From the results of the preceding section we then im-
mediately obtain

(P,(~))= —,
'

p, '~'~ ' ', ~-0 [class (a)]

(P, (&u)) = Co '&u '~ " ', cu - 0 [class (e)]

(6.12a)

(6.12c)

where the constant Co ' is given by Eqs. (6.11) and
(5.24). Its dependence on & is discussed by Bernasconi,
Schneider, and Wyss (1980). With the help of general
Abelian and Tauberian theorems (Doetsch, 1971) the
asymptotic behavior of (Po(t)) for t-~ can be deter-
mined from the asymptotic behavior of (Po(~)) for ~-0,
or of N(c) for c-0. The resulting expressions are

].I 2

0', (t))= ' t '~', t- ~ [class (a)] (6.13a)

c(~)
(P, (t))= — ' t " 'I" ', t- [class (c)]. (6.13c)

'( -'-)
A second quantity determined by (Po(co)) is the eigen-

value density of states, N(c). According to Eqs. (4.13)
and (6.12), its c —0 asymptotic behavior is given by

~1/ 2
N(c)= — -' c-'~', c-0 [class (a)]

2m
(6.14a}

c~ ~

N(c) = ' sin c '~ " ', c- 0 [class (c)] . (6.14c)

lim ~/c(cu) = 0, (6.9)
m~O

so that the asymptotic behavior of (Po(co)) ls simply giv-
en by

(Po((u)) = Coc(u)) ', (u —0 (6.10)

where
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If c is energy, the corresponding specific heat, Eq.
(6.1), has the following low-temperature asymptotic be-
havior:

C(T) ~ T'/2, T- 0 [class (a)]

C(T) T" '/" ' T- 0 [class (c)].
(6.15a)

(6.15c)

VII. ASYMPTOTIC BEHAVIOR OF cr(w) AND &x (t)&

We now turn to the determination. of the asymptotic
behavior of the frequency-dependent hopping conductiv-
ity, 0(tu), and the mean-square displacement, (x2(t)) .
For convenience, we shall again restrict the discussion
to the random W case, Eq. (2.2) with fixed C„'s [or Eq.
(2.1), respectively].

According to Eqs. (2.9)-(2.12), we can express o(~)
and(x (f)) in terms of the (P„(w)), or the (P„(t)), re-
spectively, as

2

0(~)= " &D(-i~));
k~T (7.1)

These results, Eqs. (6.12) to (6.15), apply to systems
which are described by equations of the type of Eq.
(2.2). The expressions for (Po(&u)) and (Po(t)) are of
interest, for example, for hopping systems and elec-
trical lines, and Eqs. (6.14) and (6.15) apply, for exam-
ple, to a random ferromagnetic Heisenberg chain (see
also Sec. X for some specific applications).

For a harmonic chain with random force constants,
on the other hand, which is described by Eq. (2.3), c
plays the role of the squeeze of the eigenfrequency.
This means that for this type of systems the exponents
in Eqs. (6.14a) and (6.15c), for instance, have to be
multiplied by a factor of 2. For a more extensive dis-
cussion of the random harmonic chain case see See.
VIII.

As a general feature we observe that the exponents
associated with the above asymptotic expressions all
show a crossover from universal to nonuniversal (o'-
dependent) behavior as we pass from class (a) to
class (c) probability densities p(u). The actual cross-
over behavior is represented by probability densities of
class (b) type, Eq. (2.4b). As mentioned in the preced-
ing section, and discussed in Sec. X, we believe that
Eqs. (5.26) and (5.27) lead to the exact ~-0 behavior of
(Po(&u)) for these crossover systems. If we observe
that Eq. (6.9) also holds for this case, we immediately
obtain

(0) 1/ 2 ln~ 1/ 2

(P, (~)) =
2 -, ~- 0 [class (b)] (6.12b)

1 p(0) '/' lnt(P, (t))= „,p, t - [class (b)]

(6.13& )

and

1 t'p(0) ' ' -Inc
N(s) = —

i2m( 2 C
s -0 [class (b)] . (6.14b)

P„(f)=e '~'1,„,(2Wt),

and it follows that

D(cu) = W

and

x2(t) = 2Wt .

(v. 5)

(v.6)

(7.7)

denotes the modified Bessel function of integer order,
and we remark that Eqs. (7.4)-(7.7) are valid for all ~
and for all i ~ 0, respectively. o (~) is therefore inde-
pendent of ~, and x (f) exhibits the well-known dif-
fusive behavior with a diffusion coefficient D = W.

For disordered systems, on the other hand, an exact
calculation of (D(&u)) or (x (t)) does not seem possi-
ble. A large &u expansion for (D(~)) can, for example,
be constructed from the integral equation for the spatial
Fourier transform of (P„(cu)) (Bernasconi and Schneid-
er, 1981). A straightforward iteration procedure for
this integral equation leads to

&D(~)) = u, ——((,—V,')

2 3+—.(2~.—3u, u, + u, ) —~ ~ ~ (7.8)

where the moments p, ~ of the probability density p(zo)
are defined in Eq. (5.13). The determination of the
more interesting co- 0 asymptotic behavior of (D(~)),
or, equivalently, of the f- ~ behavior of (x (f)), is
much more difficult. In the preceding section we have
calculated the exact asymptotic expressions for (Po(u))
and (Po(t)), but we are not able to derive the corre-
sponding results for general (P„(~))or (P„(t)) in the
same rigorous way.

In a recent paper, Bernasconi, Schneider, and Wyss
(1980) have therefore proposed and investigated a gen-
eral scaling hyPothesis for the n dependence of (P„(cu))
in the limit as - 0. We notice that a similar hypothe-
sis can be formulated for (P„(t)) (Alexander et al. ,
1978; Alexander a,nd Bern.asconi, I979; Richards and
Renken, 1980), but for several reasons we prefer to
work in ~ space.

Let us, for the moment, restrict ourselves to positive
real . %'e then assume that for w- 0 the n dependence
of (P (~)) can be described by a single correlation
length ((co), i.e., our scaling hypothesis simply be-
comes

(P„(~))= (P,(~))& (n/5 (~)), (v.9)

and
CO

I

&x'(t)) = P n'(P„(t)).
n=-~

For the ordered system, characterized by Eq. (6.2), we
can solve the problem, i.e., Eqs. (2.1) or (2.2) with the
initial condition (2.6), exactly. One has

la)
P„((u) = (v.4)[~(~+4W)]' ' u+2W+[&u(u&+4W)]

and

(D(~))=—~' Q n (P„(~)), (7.2)
where the scaling function E(e) is normalized to satisfy
J'(0) = 1. From the normalization condition for the
(P„(~)),
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P„cd = cO

it then follows that

((&d) '= 2&v (P, (&d)&, u- 0

(v. lo)

(v.11)

2

o((o)= 'T p', [class (a)]
B

Roe 2 1 la (b)]

(V.IV a)

(v. lvb)

and one finally obtains (Bernasconi, Schneider, and
Wyss, 1980)

(D(&d)&=D. .. ~- O
1

~&P.(~)&'
'

where the constant Do is determined by F(g),

(v.12)

dzz'E z dz& z (v.18)

(D(u&)&» const, , ~ —0. (v.16)
&d &P,(~)&'

A trivial procedure (Bernasconi, Schneider, and Wyss,
1980) leads to the value ~4 for the constant on the right-
hand side, but it is actually possible (Bernasconi and
Sehneider, 1981) to increase its value to —,'. A corre-
sponding upper bound has, however, not yet been de-
rived. Finally, we should also mention that an effec-
tive-medium argument (see Sec. X) also leads to Eq.
(7.12), with F,«(g) =exp(-~g

~
) and Do""=—,

' for all three
classes of probability densities considered.

The general scaling hypothesis, Eq. (7.9), which is
strongly supported by numerical simulations (Bernas-
coni, Schneider, and %yss, 1980; Richards and Benken,
1980), as well as by analytical considerations (Alexand-
er and Bernasconi, 1979; Bernasconi and Schneider,
1981) (see also Sec. IX), thus relates the u-0 asymp-
totic behavior of (D(~)& uniquely to that of (P,(~)&, as
has been determined in the preceding section. Insert-
ing the corresponding expressions, Eqs. (6.12a)-
(6.12c), into Eq. (7.12), we obtain

(D(&d)&= p, ', , &d-0 [class (a)] (V.16a)

(D((g)&= ( —Inca) ', co —0 [class (b)]
p(0)

(D(~)&=D' 'C'"'
&d

~' ', u-0 [class (c)] (7.16c)

and, together with Eq. (V.1), this leads to

For the ordered system, it immediately follows from
Eq. (7.4) that E(g) =exp(-~g~), so that D, = ,'. In the-
case of disordered systems, the scaling hypothesis has
been tested numerically (Bernasconi, Schneider, and
Wyss, 1980) for several class (a) and class (c) probabil-
ity den. sities. The corresponding results accurately
confirmed the proposed scaling property, Eq. (7.9), and
moreover indicated that F (g) is in fact universal for
class (a) systems, i.e.,

P(g) =exp(- ~g ~), D, =-,' [class (a)]. (7.14)

For class (e) probability densities, however, deviations
from Eq. (7.14) have been observed, so that F(g)

'(g) and DO=DO ' are expected to become nonuni-
versal for such systems.

Although Eq. (7.12) is derived from a hypothesis, Eq.
(7.9), we believe that it gives the correct ~- 0 asymp-
totic behavior of (D(&d)& for all class (a), (b), and (c)
probability densities. In this connection, we remark
that a rigorous lower bound for (D(&d)& is given by

0(&d) = ' D,' '&o ' ( i-~) " ' [class (c)] (V.lvc)

(x (t)) =2p, ,'t, t- ~ [class (a)]

(x'(t)& c&:t/lnt, . t —~ [class (b)]

(x'(t)& ~t'&'- "" ', t- [class (c)].

(7.18a)

(7.18b)

(V.18c)

We notice that a scaling hypothesis for &P„(t)&, t- ~
(Alexander et al. , 1S78b; Richards and Renken, 1S80),
which is the analog of Eq. (7.9), implies

and therefore leads to the same asymptotic depen-
dences, Eqs. (V.18), for the mean-square displacement.

For long times, class (a) systems thus exhibit the
same diffusive behavior as an ordered system, with a
well-defined finite diffusion constant

(v.2o)D = —,
' lim (x~(t) & /t =p', [class (a)] .

t~~
For class (b) and (c) systems, on the other hand, the
long-time increase of(x (t)) is slower than in an
ordered system, and the diffusion constant is zero. In
this sense we may speak of "localization, " although
(Po(t)& [and, in fact, all (P„(t)&]decays to zero as t-~.

VIII. SUMMARY OF THE PRINCIPAL GENERAL
RESULTS

In this section. , we summarize and briefly discuss the
main general results concerning the asymptotic behav-
ior of our one-dimensional random systems. Several
specific applications of our general mathematical mod-
els will then be introduced and discussed in Sec. XI.
Mathematically, our random systems are described by

for the low-frequency asymptotic behavior of the com-
plex ac hopping conductivity.

Asymptotically for small frequencies, class (a) sys-
tems thus again-exhibit the same behavior as an ordered
system, approaching a finite dc conductivity. On the
other hand, (D(&d)& for a general class (a) system
changes from p, ', at = 0 to p. at =, in contrast to
the ordered system where it is independent of &d.

For class (c) systems, 0(~) has a completely different
low-frequency behavior. It exhibits a peculiar anoma-
lous power law behavior, Eq. (V. lvc), leading to a van-
ishing dc conductivity. This crossover in the low-fre-
quency behavior of v(&d), as we pass from class (a) to
class (c) probability densities, leads to striking predic
tions for some specific applications of our general
models (see %e. XI).

Finally, we briefly discuss the long-time asymptotic
behavior of the mean-square displacement, (x2(t)&.
According to Eqs. {7.2) and (7.3), (x'(t)) is the in-
verse Laplace transform of 2(D(ur)&/co', so that its
t- ~ behavior ean be obtained-from Eqs, (7.16) using
general Tauberian theorems (Doetsch, 1971). It then
follows that
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Eqs. (2.1), (2.2), or (2.3), respectively, and are char-
acterized by the probability density for the relevant
random variable (W„„„,C„, or I(f„). These probability
densities are classified, Eqs. (2.4a), (2.4b), and (2.4c)
and (2.5a), (2.5b), and (2.5c), respectively, according
to the asymptotic behavior of the corresponding sys-
tems. Our main results are concerned with the limiting
asymptotic behavior of the autocorrelation function,
(P, (t)), as t- ~, of its Laplace transform, (P, ((())), as
cu- 0, of the density of states, N(s), as s-0, of the
associated specific heat, C(T), as T-O, of the ac hop-
ping conductivity, ()(&u), as cu-O, and of the mean-
square displacement, (x (t)), or the correlation
length, g(t) =(x2(t))I/2, as t-~. Whereas in most
eases the asymptotic expressions for (P,(~)), (P,(t)),
N(s), and C(T) can be derived rigorously (see Secs. V
and VI), those for a((d) and (x (t)) rely on the validity
of a scaling hypothesis (Sec. VII). In the following sum-
mary we usually indicate only the leading asymptotic de-
pendence on the relevant variable. The corresponding
prefactors are given in Secs. VI and VII for the random
8' case and can be determined similarly for the random
C and random M cases.

A. Equation {2.2} systems, random i/i( case

In Secs. V through VII we have analyzed in detail the
problem corresponding to Eq. (2.2), with all C„equal,
[or Eq. (2.1), respectively] supplemented by the initial
condition. (4.9). This problem is, for example, appro-
priate to the study of particle (or excitation) diffusion
on a chain with random transfer rates W„„„. The prob-
ability density p(2()) for the (independent) random vari-
ables W y is assumed to belong to one of the three
classes (a), (b), and (c), defined by Eqs. (2.4a), (2.4b)
and (2.4c), and the resulting asymptotic expressions
can be summarized as follows

Class (a). Such probability densities allow for the
definition of an "average transfer rate, " W„, where

The asymptotic behavior of all these quantities is thus
the same as that for an ordered system described by
p((()) =5(w —W„). We stress, however, that this equi-
valence between a general class (a) system and an ord-
ered "averaged system" does not extend beyond the
leading asymptotic term (Bernasconi and Schneider,
1981).

Class (b). These systems exhibit a crossover beha-
vior, intermediate between the qualitatively different
asymptotic behaviors of class (a) and class (c) systems,
respectivej. y. We find, not entirely rigorously,

and

(P,(~)) ~ (—ln(u/(u)'/2, (u -0
(P, (t)) ~ (lnt/t)' ', t—
N(c) ~ (—Inr, /c)'/2, s —0

((t) ~ (t/lnt)'", t-
()'(ee) ~ —1/ln( —i cu), a —0 .

(8.3a)

(8.3b)

(8.3c)

(8.3d)

(8.3e)

Class (c). These probability distributions occur in
several interesting physical applications (see Sec. ~1),
and corresponding systems exhibit a nonconventional
asymptotic behavior (compared to that of an ordered
system) with nonuniversal exponents. One has

(P (~)) ~ ~-)./(2-n) ~ 0

(P (t)) ()-t-(1- )n/(2-n)

(8.4a)

(8.4b)

N(C ) ~ C
) (2 n )

C - 0 (8.4c)

C(T) c(. T (1-n)/ (2-n ) T 0 (8.4d)

The long-time development of the correlation length and
of the mean-square displacement are given by

If c is energy, Eq. (8.4c) leads (for Bose statistics) to a
low-temperature specific heat

( (t ) (X2(t ))
'I / 2 c(- t (1-n ) / (2- n ) (8.4e)

W, =P -i =— Arse p I}
0

(8.1)

and the asymptotic behavior of the diagonal or single-
site Green function (or autocorrelation function) is given
by

O(~) ~(-2&v) '" ' e-0 (8.41')

and the low- frequency conductivity exhibits a peculiar
power law behavior

B. Equation {2.2} systems, random C case8.2'

respectively. The density of states behaves as

N(s)~s '/' s-0

(8.2b)

(8.2c)

leading, if c is energy, to a low-temperature specific
heat (for Bose statistics) of the form

C(T) ~ T'/', T- 0.
The correlation length develops as

g(t) =(x (t)) / = (2W„t)'/, t- ~

(8.2d)

(8.2e)

o(&u) (x- W„= const, ~ —0. (8.2f)

while the low-frequency conductivity becomes i'ndepen-
dent of frequency,

This problem, for example, describes an electrical
AC line with random capacitances C„. As mentioned in
Sec. III, it can also be mapped onto the problem of ex-
citation transfer amongst a linear array of traps with
random depths [C„-exp(-t).„/ksT)], and we shall brief-
ly discuss the corresponding system in Sec. XI. Here
we use the language of electrical lines, and the proba-
bility density 2'(c) for the random capacitances C„ is
assumed to belong to one of the classes (a'), (I)'), or
(c'), defined by Eqs. (2.5a)-(2.5c). In Sec. IV we have
shown that the random C problem can be reduced to the
same integral equation as the corresponding random W

problem, with p(1/c) =c 2 (c) playing the role of p(2(/).
We have, however, also shown that the calculation of
(Po(m)) and other averaged quantities of interest is
somewhat more complicated than in the random W case.
Furthermore, the averages depend on the chosen initial
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condition. Corresponding to the two relevant variables
the "node potentials" P„and the "charges" Q„=C„P„,
we have considered two different initial conditions: (C) qc&:C„, t- ~, [class (a')]. (8.15a)

p„(t = 0) = 6„, (8.5) Similar results can be derived for the alternative ini-
tial. condition, Eq. (S.5). Quite generally, we have

and

q„{t= 0) =c„p„(t= o) = 6„,. (P, ( )) =(c~,( )), (8.16a)

C „=v,=— dec& e,
0

(8.7)

As in Sec. IV, we shall denote the corresponding aver-
ages by ( ~ ~ ~ ) ~ and ( ~ ~ ~ ) q, respectively. Let us discuss
the results for the second initial condition, Eq. (8.6),
in some detail.

Class (a ). For these probability densities r(c), an
"average capac itance, "

(P()(t)) ~=(COPO(t)) q. (8.16b)

(COPO((u)) ~&)- (u '", (u - 0 (8.17)

The determination of the asymptotic behavior of
(COP, (&u)) ~, on the other hand, is somewhat more com-
plex, and we therefore refrain from giving detailed re-
sults. We might mention, however, that for class (a')
probability densities (COP/ ~ behaves as

can be defined, and we have

(P, (&u)) q= —,'(C„&u) '", &u —0

(C,P, ((u)) q= —2'(C,„j&u}'/2, &u —0.
(8.8a)

(8.Sb)

only if the second moment v al.so exists:

)/2= dcc'r(c)&~.
0

(8.18)

The long- time behavior of the corresponding inver se
Laplace transforms can again be determined from gen-
eral Tauberian theorems (Doetsch, 1971), and we ob-
tain

(P, (t)) q= {4sC.„)-"2t-'/2,

(C,P, (t)) q= (C,„/4z)'"t '", t-
For class (a') systems, the two quantities (Po(t)) q and
(COPO(t)) q therefore exhibit the same asymptotic depen-
dence on t. This is different for class (b') and class
(c ) probability densities, respectively, for which the
corresponding asymptotic expressions are as follows.

Class (b').

(8.9a)

(8.9b)

(P,((u)) q(c (- &u ln(u) '", (u -0
(CP~(&u)) q&)&: (-in&u/&u)'/2; &u —0

(8.10a)

(8.10b)

(P,(t)) q
&x: (t lnt) '", t —~

(COPO(t) qo- (lnt/t)'/2, t —~ .

Class (c').

(P (~)) ~ &u- &)-u)/ &2-0.) ~ 0

(CoPo((u)) q~ (u "" ', (u -0

(8.11a)

(S.lib)

(8.12a)

(8.12b)

(P,(t)), t-""-", t—
(C P (t )) c&. t - &) -a ) / &2- 0.)

(8.13a)

(8.13b)

We obtain

(C) q~ lnt, t —~ [class (b')]

(C)q~t '" ', t-~ [class (c')]
whereas for class (a') distributions (C) q goes to a can-

(8.15b)

(8.15c)

For both class (b') and class (c') systems, (Po(t)) q thus
decays faster than (COPO(t)) q. This behavior can also be
expressed by a rather curious increasing in time of the
average capacitance (C) q, defined by

(c&,=-(c,p, (t)),/(p, (t)), . (8.14)

Otherwise, the asymptotic &u dependence of (CoPO(&u)) ~
explicitly depends on r(c), i.e. , the corresponding ex-
ponent is no longer universal.

The physical significance of the quantity (C2P (&u)) ~ is
also peculiar. For the random capacitor chain, it would
require a fixed initial. voltage at the origin, but allow
for the full range of capacitances. One would be in the
position of having to provide, at fixed voltage, a charge
for very large capaeitances [C -~ for class (c) sys-
tems]. For the random mass vibrational chain, it would
correspond to a fixed initial. velocity of the atom at the
origin, but allow for the full range of masses. Gne
would be in the position of having physically to provide
finite velocity for very heavy (M -~) masses. These
conditions appear somewhat esoteric, and we shall not
pursue the matter further here.

As discussed in Sec. IV, Eq. (4.21), the density of
states, N(c), is determined by (P, (&u)) ~=(coP, (&u)) q.
According to the above results, Eqs. (8.8b), (S.lob),
and (8.12b), the small c behavior of A'(s) is thus the
same as for the corresponding random 8' case, Eqs. .

(8.2c), (8.3c), and (8.4c).
The mean-square displacement, (x (t)), and the con-

ductivity, cr(&u), are obviously determined by the
(P„(&u))~. The scaling hypothesis of See. VII then again
leads to the same asymptotic dependences as in the
corresponding random W case, given by Eqs. (8.2e),
(8.3d) and (8.4e), and Eqs. (8.2f), (8.3e), and (8.4f), re-
spectively.

C. Equation (2.3}random harmonic chain systems

We now turn to the discussion of Eq. (2.3) systems,
where the first derivative, dP„/dt, is replaced by the
second derivative, d2P„/dt'. These equations describe
the dynamics of a harmonic chain with masses M„and
force constants g'„„„.The P„denote the displ. acements,
and as before we consider two different cases, the
random W case (identical masses) and the random M
case (identical force constants). By Laplace trans-
forming Eqs. (2.3) we can again reduce both problems
to an integral equation of the form of Eq. (4.5), with &u

I
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replaced by u'. Because of the second-order nature of
the equations, the initial conditions,

P„{f= o) = 5„, (8.19)

ol

m„p„(t=o)=5„„ (8.20)

respectively, have now to be supplemented by an initial
condition for the first derivatives. For simplicity, let
us choose

"{t=0) =0
N

(8.21)

(P,{~))~ (—In~)'", u) —0 [class (b)] (8.22b)

(P,(~)) ~ ~ '" ', ~-0 [class (c)]. (8.22c)

Because of the oscillating nature of (P (t)), its f -~
asymptotic behavior can, however, not be determined
from the above ~-0 asymptotic expressions for (P,(~))
alone. One would rather have to analyze all singulari-
ties of (Po(cu)) on the imaginary axis, about which our
present treatment gives no information.

In the expressions for the density of states, g now

plays the role of the square of the eigenfrequency Q,
i.e. , N(s) -N(A'). For the harmonic chain the energy is
proportional to 0, so that for the calculation of the spe-
cific heat we have to use

in both cases. The exact cu -0 asymptotic behavior of
the quantities (P,(e)) and (1VioP, (~)) can then immediate-
ly be determined from the corresponding results for the
(first-order) Eq. (2.2) systems. We merely have to re-
place ~ by u2 in our previous results, and then multiply
this expression by &u (taking into account our choice of
initial conditions in the Laplace transform of d'P„/dt').
For the random W case, for instance, we then obtain

(P,(~)) = (4W „) '", (u -0 [class (a)] (8.22a)

to Eqs. (2.2) or, equivalently, the Laplace transformed
version of Eqs. (2.2) with ~ =s, where s is real and
positive:

sC„P „+W„, „{P„P-„,) + W„„„(P„-P„„)= 0. (9.1)

We again use the language of electrical lines and in-
vestigate the effect on the form of the solution of a
change in the length scale, say, by replacing the ori-
ginal chain by an equivalent chain composed of segments
of length 1V.

Let us first consider the ordered chain, i.e., C„=C
and g„„„=R'for all n. The basic scale for g is then
given by the "Dyson variable"

~= w/c. (9.2)

W„=W/N, C„=NC.
The basic scale for z is now given by

(9.3)

(9.4)

and for sufficiently small c, s «&/N, and on a length
scale»X the description of the chain in terms of the
segments (of length N) thus becomes adequate. Alter-
natively, this implies that one can define a coherence
length, g(s), by

('= x/p . (9.5)

We now consider a random chain. For a definite seg-
ment of length N, consisting of, say, the sites
n = 1, 2, . . . , N, we then have

N

1W„„„,C = C„, (9.6)

For sufficiently small c, the changes in P„along a seg-
ment of length N can be neglected, and its response may
be described by a segment conductance, 8'„, and a seg-
ment capacitance, C„, where

n(c) = 2rN(s') (8.23)

instead of N(s). From Eqs. (8.2c) and (8.4c) we have

and

~ =w„/c„. (9.7)

ancl

n(s) = const, c -0 [class (a)]

n(s) ~ c '" '. , c -0 [class (c)]

(8.24a)

(8.24c)

Obviously, 8'N, CN, and ~N, are still random, and their
distribution is determined by p(w) and x(c), the proba, —

bility densities for the S'„„„and for the C„respective-
ly.

If the moments of I/zo and of c, i,e. ,

and the exponent in the low-temperature specific heat is
multiplied by a factor of 2, (c ) =f dc c Ctc) (9.8a)

C(T) ~ T, T-0 [class (a)]

C(T) ~T'" "" ', T-0 [class (c)].

IX. AN EXPLICIT SCALING APPROACH

(8.25a)

(8.25c)

It is instructive to supplement the discussion by some
explicit scaling arguments which give additional in-
sight into the physical meaning of our asymptotic solu-
tions. These arguments expand and, to a certain ex-
tent, quantify the ideas of an earlier scaling approach
(Alexander and Bernasconi, 1979). They also allow one
to obtain some information on quantities which cannot
be calculated directly from the solution of the integral
equation (4.5).

We consider the eigenvalue equations corresponding

ancl

(c ) = f dcc c(c),
0

(9.8b)

(9.9)

respectively, are all finite, the averaging in Eq. (9.6)
reduces the relative fluctuations, and the distribution
of A. N becomes narrower and narrower as N increases.
(Note that in this section ( ~ ~ ~ ) is used quite generally
to indicate an average over the appropriate probability
distribution. ) Let us, for example, consider the var-
iance (ng =2) and corresponding higher-order quantities
(m &2) of 1/A. „, i.e.,
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For large N we have

(( ( ))) &( -( )) )
())

&c)"

and we can define a crossover length $o such that

(9.10)

lim r„"'(c)/r „' ' (c) = 0,
C ~&)o

and, for definiteness, we write

(„( )
A„(l —n)c " ', c &C„

0, c&C„.
From the recursion relation

(9.17')

(9.18)

)7 (N) «1 for N & $0 .

On a length scale N, NR g, and for

(9.11)

(9.12)

c„{c)=fd c c'„(,c)f'dc"c„,(c")1t(c—c' —c"), (9.19)

we then obtain. approximately

the randomness plays no role for the dynamics of the
solution. Such a sta, tement could, of course, also be
formulated as a renormalization argument; It implies,
for instance, that there exists a well-defined velocity
of sound, c ~(1/X) '", and that asymptotically for long
times a particle obeys an ordinary diffusion equation.
Strictly speaking, this is of course only valid if the
strong inequality (9.12) is satisfied. The crossover
from random to the averaged diffusive behavior does,
however, occur for frequencies g and on a length scale
N given by

s =(1/X) '/(2O and N= (o, (9.13)

respectively, so that at the crossover, Eq. (9.13), the
averaged parameters, (I/ge) and (c), at least qualita-
tively describe the average properties of the system.
A similar crossover argument will be used below.

A more interesting behavior is obtained for systems
for which the averages in Eq. (9.10) are not defined.
This is the case for our class (c) or class (c') type
probability densities for which

p(to) &){-m ™,. n) —0 (0 & n & 1) (9.14a)

r(c) & c " ', c- ~ (0&n&1) (9.14b)

We decompose x„according to

r„(c)=r„"'(c)+ r„"'(c), (9.16)

where r„(0)(c) denotes the most divergent part of r„(c),
i.e. ,

respectively, so that the moments (1/A. ) =(1/m )(c )
diverge. A crossover length, (o, or a, crossover fre-
quency, s =(1/X) '/go2, can therefore not be defined for
these systems. We will show, however, that we can
define a frequency-dependent length, g(s), and a fre-
quency-dependent cutoff, C, =C(c) or W~= W(c), re-
spectively, in a consistent way, such that at p and on a
scale $(s) the system will be properly described by
neglecting the effects of very large C (C &C~) or very
small W (W&W, ).

We restrict ourselves to the random C case, and first
use a renormalization procedure to calculate the dis-
tribution of segment parameters. I et r„(c) denote the
probability density for the distribution of the segment
capacitances corresponding to segments of length g„.
For simplicity we choose

(9.15)

/4„& 2/i„, & („Ao (9.20)

if we require that fdc r'„o'(c) « l. A lower bound for the
cutoff C„=-C, is thus defined by

(9.21)

l.e.)

gl /(1-0. ) (9.22)

(9.23)p= dcx c ~C
Cg

and they are separated by segments for which all ca-
pacitances are smaller than C~. The length distribution
of these segments is given by

R, (N) =P (1 —P) ~, N = 0, 1, 2, . . . ,

so that their average length N is just equal to

(9.24)

(9.25)

if ( is sufficiently large. If C,» denotes the segment
capacitance, we have

(C „)~NC, =N( '"
and the average over all segment lengths becomes

((C )) ~ (1/(1-u) —C

(9.26)

(9.27)

The average segment capacitance, corresponding to the
above segments of average length $, is thus proportion-
al to C„and defines an associated frequency scale,
g&, according to

(9.28)

If we observe that W~~N ', and that (N'), = g', we im-
mediately obtain

& g -(2-0. ))/(1-0, ) (9.29)

The segment capacitance distribution r„(c) (for segments
of length g =2") is therefore adequately described by its
leading asymptotic term r(0'(c) only for segment capa-
citances C, larger than C~= ("" '. For (&C,&C, there
are significant contributions from r„"'(c). INote that it
follows immediately from Eq. (2.5c) that ( is an abso-
lute lower cutoff for r„(c).J

We can now associate a unique frequency E(=a&) with
a given length scale ( by disregarding all capacitances
C with C &C, =("" ' in the original distribution [Eq.
(2.5c)J. The total density p of such large C on the ori-
ginal chain is given by
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We wish to point out that, in contrast to Eq. (9.10),
the corresponding quantities

7I (() =«(c,-«c »,)», /«c„», (9.30)

remain finite as ( -~. The distribution of the segment
capacitances C„thus exhibits no statistical narrowing.
It remains broad, with a width comparable to its mean
value, C~, even in the limit as (-~. This is related
to the exact result (Bernasconi, Schneider, and Wyss,
1980) (see See. V) that for cia.ss (c) systems h, (x) does
not go to a delta function as g -0. Qn the other hand, a
crossover argument nevertheless implies that at g =g,
and on a length scale ( the system is, at least qualita-
tively, described by the average properties of the seg-
ments which are defined through the above cutoff pro-
cedure.

With a given class (c) system we may now associate
two auxiliary systems by either replacing the large ca-
pacitors (C &C&) in the original chain by infinite capa-
citors (Case I) or by eliminating all capacitors larger
than C~ (Case II). It is then very reasonable to conjec-
ture that essentially any quantity we may wish to inves-
tigate is bounded by its values for these auxiliary sys-
tems, at least if g~ is small enough. As a specific ex-
ample we interpret our equations as representing parti-
cle diffusion and wish to calculate the mean-square
distance, (x (t&)), travelled in a time t&

—sf. It then
seems obvious that

&x'(t, )&, „=&N'&„„=(' 1+0—1 (9.32)

For long segments, N & (, we can use our crossover
argument to obtain

(9.31)

although we are not aware of a rigorous proof for such
inequalities.

There are two contributions to &x (t&)&z. For short
segments, N& (, the particle will reach th'e segment
boundary in a time f, & f&. Their contribution is thus
given by

are dealing with a class (a) system. It follows that
C, o= (, from which it can be shown that the quantities
g„((), Eq. (9.30), go to zero a.s ( —~, even for m &1 —c&.

The distribution of the segment capacitances C ~ thus
becomes narrower and narrower as ( —~, and we
simply have

&x'(t)& &c&-'t, (9.37)

In previous investigations (Bernasconi et al. , 1978,
1979, 1980) we have repeatedly used an effective-me-
dium —type (EM) approximation to determine the pro-
perties of random one-dimensional systems that are
related to the models defined in Sec. II. For simplicity
we restrict ourselves to the random S" case and con-
sider the Laplace transformed version of Eq. (2.1),
l.e.)

W„, „(P„—P„,)+W„„„(P„—P„„)+(uP„=P„(0) . (10.1)

In the EM description, the probability density f„(g) cor-
responding to the infinite continued fractions G„[see
Sec. IV, Eqs. (4.4) and (4.5)] is replaced by a, delta func-
tion,

f.(g) =@ -g,«(~)). (10.2)

This is equivalent to replacing all W„„„byan ((d de-
pendent) effective transfer rate, W,«=g,«(g, «+u)/cu,
i.e. , the random system is approximated by an effec-
tive ordered system. W,«(or g,«, respectively) has
to be determined by a suitably chosen self-consistency
condition. Bernasconi et at. (1978, 1979) have, for ex-
ample, used the defining equation for the G„, Eq. (4.4a),
to construct the self-consistency equation, so that

g,«(&d) is determined by the following equation:

The scaling arguments presented in this section are
closely related to an earlier scaling approach of Alex-
ander and Bernasconi (1979). The advantage of the pre-
sent approach lies in the explicit use of a length scaling
procedure which demonstrates the role of the residual
fluctuations.

X. E FFECTIVE-MED IUIVI-TYPE APPROXIMATIONS

&x'(t, )&, „=(c,/()-'t,
so that

(9.33)
g ff = d26P 28 +

0 ~ef f
(10.3)

&X2 (t)&~ t2 &1-n ) / (2-n ) (9.36)

This agrees with the corresponding result in Sec. VII,
Eq. (7.18c), which has been derived from a general
sealing hypothesis for &P„(c)&. Similar arguments apply,
for example, to the conductivity and density of states,
and the analysis for the random TV case is exactly ana-
logous.

If o& becomes negative in Eq. (9.14b), &c ) diverges
only for m &1 —&]&, i.e., &c) always exists, so that we

(9.34)

The same crossover argument can be applied to Case
II (no large C's), so that we finally obtain

AI( «x'(t~)&&A, ~(2, (9.35)

As (~@&" '~" ' and t&-c&', we conclude that for class
(c) systems the mean-square displacement has the fol
lowing long-time behavior:

For all probability densities p(2&)), Eq. (10.3) has a
unique sot.ution which satisfies

llm &d/g f f ((d ) = 0, (10.4)

&P,((d)&=-2g,«(~) ', ~- 0. (10.5)

From Eq. (10.3) we then derive the following asympto-
tic expressions for &P,(&u)& near or= 0 (Bernasconi,
Schneider, and Wyss, 1980):

&P,(w)&= —,
' p~,'e ~' [class (a)]

(P (w))= —( ) ( ) [class (5)]

1 ~1-n
&P (&d)&=- . co ~" ' [class (c)].

2 sin~n

(10.6a)

(10.6b)

(10.6c)

and the ~-0 asymptotic expression for &P, (&d)& is thus
simply given by [see Eq. (4.11)]
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A comparison with the exact asymptotic expressions,
Eqs. (6.12a) and (6.12c) shows that the EM approxima-
tion leads to the correct asymptotic u dependence of
{P,(co)) for both class (a) and class (c) systems. There
is, however, an important difference between the two
classes. For class (a) systems we know that h„(g) ap-
proaches a delta function as u-0 (see Sec. V), i.e. , the
EM assumption, Eq. (10.2) is asymptotically exact.
Any reasonable self-consistency equation therefore
leads to the exact asymptotic expression for {P,(&u)),
with respect to the prefactor, as well as with respect
to the ~ dependence. For class (c) systems, on the
other hand, this is different. h„(g) does not approach
a delta function asymptotically (see Sec. V), so that the
EM prefactor, Eq. (10.6c}, does not agree with the
exact Co ' value, given by Eq. (6.11). Moreover, the
EM prefactor depends on the choice of the self-consis-
tency condition. If, for instance, the usual resistor
network EM theory (Kirkpatrick, 1973) is applied to the
electrical network analog corresponding to Eqs. (10.1),
see Fig. 3, the self-consistency equation for 8',«=g,«
(g.«+ ~)/~ becomes

1~1-o2 ~" ' ~(, ){P,(~))=— . ~ ~" ' [class (c)]. (10.8)

A comparison of the EM prefactors in Eqs. (10.6c) and
(10.8) with the exact prefactor, Co ', is made by Ber-
nasconi, Schneider, and Wyss (1980). For small n,
Co ' can be evaluated analytically,

C' )=-n &' n-00 2 (10.9)

and it follows immediately that the EM prefactors in
Eqs. (10.6c) and (10.8), respectively, also reduce to
zQf. ~2 for tx Q.

For class (c) systems, our EM approximations thus
reproduce the exact asymptotic expression (including
the prefactor) for (P,(u)) if we are in the limit as
~- 0. On the other hand, the EMapproximationbecomes
asymptotically exact for class (a) systenis, as dis-
cussed above. As class (b) systems represent the
crossover between class (a) systems and (o. -0)-class

(10.7)
W+ 2 (ga«+ Ct&)

It follows that the asymptotic expression for {Po(co)),
Eq. (10.6c), is then replaced by

(c) systems, it seems reasonable to conjecture that the
exact class (b) asymptotic expression for {Po(m)) is
given by the EM result, Eq. (10.6b).

Within the EM approximation we can, in addition to
{P,(cu)), easily evaluate the quantities {P„(&u)), and
(D(~)) or o'(&u).

{P„(co))is simply given by Eq. (7.4), with W replaced
by W,«(u). This can also be written as

I gl

(P„(~))= (P.(~))
eff

where

(10.10)

{P,(cu)) = (2g,«+ ~) ', (10.11)

and it follows that the mobility, or frequency-dependent
diffusion constant, is given by

{D(cu))= W,«(co) . (10.12)

Using W,«=g,~, (g,«+ ~)/~, we can then relate {D(~))
to {P,(co)). Asymptotically for ~-0 we obtain

1
{D( }) 4 &p (~)&2 ~ (10.13)

(P„(t))~ (P,(t))x "~'exp(-A x' ), (10.14)

f-, x —= ~n~/f" '~" '» 1. Within the EM approxima-
tion, and for long times, the n dependence of (P„(t)) is
thus described by a "modified Gaussian, " at least forI.ge

~

~/«-.
A problem with the EM approximation is that it ne-

glects fluctuations and correlations. Let us, for in-
stance, consider the diagonal Green function

where we have used Eq. (10.4). The EM relation, Eq.
(10.13), is thus qualitatively identical with our previous
relation, Eq. (7.12), which has been derived on the bas-
is of a general scaling hypothesis. The EM result for
the small cu asymptotic behavior of {D(~)) is deter-
mined by Eqs. (10.13) and (10.6) or (10.8), respectively,
and exhibits the same dependences as obtained in
Eqs. (7.16). The resulting long-time behavior of
{x (t)) is therefore also identical to that given in
Eqs. (7.18).

The long-time behavior of {P„(t))can be determined
from the small ~ behavior of its Laplace transform,
Eq. (10.10), using the methods described in Appendix
C of Scher and Montroll (1975). Without presenting any
details, we remark that for class (c) systems one can,
for example, derive the following result:

p ((g}—((g+ Q (+)+ g (-)) 1 (10.15)
p p

'+-2,-1 p $
+-1,0 „p +0,1 p +1,? pp

Rr

pext=O

FIG. 3. Electrical network analog corresponding to Eqs.
(10.1). The R'g g+ f and ~ represent conductances (or admit-
tances), and the J„denote the node potentials. The "external
node" i's kept at zero potential, and a unit external current is
Qowing into node yg = 0. In the resistor network effective-
medium theory (Kirkpatrick, 1973), the 8'„,„,g are replaced
by an effective conductance, S' f f (~).

which is directly related to the density of states. The
random quantities C" and G' ' are independent, and
both distributed according to the same probability den-
sity, f„(g). In Sec. V we have shown that, for class
(c) systems, at least, f„(g) does not approach a delta
function for u- 0, in contrast to the EM assumption of
Eq. (10.2). In an ensemble of chains we would therefore
find a broad distribution for Po(~), with large fluctua-
tions from one chain to the other, even at arbitrarily
low frequencies. On the other hand, one can usually
only measure an average over a large number (say, X)
of chains, i.e. , one measures
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&P.(~»- -=—gP'"'(~) = &P.(~)&"g (~) ' (».16)
n=l

and the va, riance of &P,(co)&,„ is always of order I/N a.nd

plays no role. An analogous argument applies to a con-
ductivity measurement, for instance, in a material like
the superionic conductor hollandite (Bernasconi et al. ,
1979).

'The situation is also similar for other types of ex-
periments. In energy transport and other diffusion
problems one is, for example, interested in the proba-
bility P,(t) that a particle starting out at the origin is
still there after a time t. In practice one again mea-
sures an average, namely, an average over initial
sites:

po exp(-b /ks T ), b. ~ b.,
0,

his leads to an expression

(11.2)

al superionic conductor hollandite (K, „Mg, »Ti, »0„).
It was assumed that the low-frequency response is
dominated by thermally activated hopping of the mobile
K ions over defect-induced barriers, i.e. ,

W„„„=f, exp(-A„„„/ks T),
where f, is an attempt frequency, and n refers to the
segment between the (n —1)st and the nth impurity bar-
rier. A model probability density, p(A), for the distri-
bution of the barrier heights +

y
of the following form

has been proposed:

where 2 ' denotes the inverse Laplace transform. The
variance of &Po(t)&,„ is again small (-I/N) and is not
important for the interpretation of the experiment. The
situation would be different, however, if one were able
to measure the variance of P,(t) directly, which in-
volves the calculation of

t)(~) =

0 otherwise

for the probability density of the transfer rates W„„„,
with

n(T)= 1 —T/T (11.4)

For T& T, p(u ) thus belongs to class (c), and our
results of Sec. VII predict a low-frequency conductivity
of the form

If the distribution of P,(w), determined by f„(g), is not
a delta function, the G(~) for different (d on a definite
chain are strongly correlated, so that the averaging
process does not commute with the convolution, i.e. ,

a(&u) = c(T)(-i&a)"r ', cu- 0

with a temperature-dependent exponent

v(T)= (T —T)/T + T).

(11.5)

(11.6)

(10.19)

For such quantities the EM approximation would there-
fore lead to incorrect results. On the other hand, even
the knowledge of f„(g) is not sufficient to calculate such
correlated averages.

The above discussion implies that the fact that f„(g)
does not approach a delta function asymptotically is
mainly of theoretical interest, and does not play an
important role in the interpretation of real experi-
ments. It should be noted, however, that only via the
rigorous results for f„(g) (Bernasconi, Schneider,
and Wyss, 1980; and Sec. V above) have we been able
to demonstrate that the EM approximation, as well as
the scaling approach of Sec. IX, lead to the correct
asymptotic dependences for some important averaged
quantities, such as, for instance, &P,(~)&.

XI. APPLICATIONS AND COMPARISON WITH
ALTERNATIVE APPROACHES

In the following, we shall apply our results to several
specific realizations of our general model systems. In
addition, we shall compare our approach with alterna-
tive treatments of the same type of problems.

A. A random barrier model

Bernasconi et al. t (1979) have introduced a random
barrier model to explain the anomalous low-frequency
behavior of the ionic conductivity in the one-dimension-

Above T, p(m) is of class (a), leading to a frequency-
independent conductivity at small ~. The model thus
predicts a mobility transition at T= T . The dc conduc-
tivity and diffusion constant vanish below T, but have
finite values above T . In hollandite, where T = 400
to 450 K, the measured (complex) conductivity o(&u, T)
at and below room temperature shows excellent and
detailed agreement (Bernasconi et al. , 1979; Beyeler,
1981) with the model predictions, Eqs. (11.5) and
(11.6). The mobility transition at T, however, has
not yet been observed, and its observability turns out
to be a very complex problem (Beyeler, 1981). 'The-
oretically, its existence hinges on the specific form of
the barrier height distribution, Eq. (11.2), for which
we have no microscopic justification. While a modified
p(t) ), e.g. , the introduction of an upper cutoff or a dif-
ferent & dependence, will not qualitatively change the
results well below T, it will certainly smear out the
transition at T . Even within our idealized model,
n(T) goes to zero as T approaches T, so that our the-
oretical description by the leading asymptotic term is
no longer adequate in the experimentally accessible
frequency range (Bernasconi and Schneider, 1981; see
also Sec. XIII below). An indisputable proof of the ex-
istence of the transition is therefore only obtainable
from ionic dc conductivity experiments which, how-
ever, require carefully prepared "reversible" elec-
trodes containing the mobile species. Hollandite itself
is, unfo'rtunately, unst;able in contact with metallic po-
tassium, ruling out such measurements on this materi-
al. First experimental results on a different one-di-
mensional superionic conductor, Na, ,Ga, »TiQ»0,
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(Beyeler, 1981), indicate that this compound might be
a better candidate than hollandite for investigations of
the mobility transition.

&(l}=p(1-p}' ', (11.7)

and the corresponding transfer rates, W(l), can at low
temperatures be approximated by (Scher and Lax,
1973)

W(l) = W, (T) exp(-yl) . (11.8)

This leads to a probability density, p(zo}, for the trans-
fer rates of the form of Eq. (11.3), but now with a con-
centration-dependent exponent,

B. Hopping model with configurational disorder

Let os now consider the one-dimensional. version of a
more general d-dimensional model. for hopping between
randomly distributed impurity sites (Scher and Lax,
1973;Scher and Montroll, 1975). Specifically, we con-
sider hopping between equivalent, randomly distribu- .

ted, sites of density p on a one-dimensional regular
lattice. The distance l (measured in lattice constants)
between two neighboring sites is then distributed ac-
cording to

systems. Because of fluorescent decay processes and

only finite anisotropies, one can actually observe one-
dimensional diffusion processes for only a finite time
span. One can thus expect to observe asymptotic (long-
time) one-dimensional limits only in special cases.

D. Random trapping models

As indicated in Sec. III, our random C model gives
rise to a random trapping model if we identify C„with
exp(&„/ka T). The probability density x(c) is then de-
termined by thy distribution of the random trap depths

Compared to the random W case, an additional as-
pect now enters into the problem. As discussed in
Sec. VIII, two meaningful initial conditions can be cho-
sen, Eqs. (8.5) or (8.6), respectively, leading to quali-
tatively different results for the long-time behavior of
(P,(t)) in the case of class (b) or class (c) distributions
x(c). The initial condition (8.5) corresponds to an opti-
cally pulsed excitation experiment where a nonequili-
brium localized trap excitation distribution is created
at the origin at t= 0. Alternatively, Eq. (8.6) describes
a change in temperature at the excited site caused, say,
by a sudden localized heat pulse at t= 0.

o'. (p)= 1+ y 'ln(1-p) . (11.9) E. I ocalization

For p& 1 —exp(-y), o.'(p) is positive, and the distribu-
tion of the W(l) is thus of class (c). Our results then
lead to a low-frequency hopping conductivity of the
form

o(~) ~ ( i&a)",-v = n/(2 —n), ~- 0. (11.10)

Bottger et al. , (1979) have recently applied an approx-
imate percolation approach to exactly this problem.
'Their treatment leads to a different conductivity ex-
ponent, v = 1/(3 - 2n) in our notation, which is tlius
accurate only if ~ is close to one. On the other hand,
this is actually the region of interest in their applica-
tions.

C. Time-dependent aspects of spectral transport

Our coupled rate equations, Eqs. (2.1) or (2.2), can
be used as a simple theoretical model to discuss the
time-dependent effect in fluorescent line-narrowing
experiments concerned with investigations of spectral
transfer within inhomogeneously broadened optical
lines [see, for instance, Huber et al. (1977)j. Within
our model, the quantity which is directly relevant to
these experiments is the autocorrelation function,
(P,(t)). We note, however, that our random W model
is applicable directly only when k~T is much greater
than the inhomogeneous linewidth, as only in this limit
do the transfer rates become symmetric. Our results
of Sec. VI show that the long-time decay of (P,(t)) is
determined by the distribution of transfer rates, p(go).
Depending on the behavior of p(~) near so= 0, several
classes of p(co} can be distinguished which lead to qual-
itatively different long-time results.

'Though their paper is nominally restricted to highly
anisotropic materials, Scher et al. , (1980) have shown
how for short and intermediate times one-dimensional
transport may be relevant even for three-dimensional

In our systems, almost all eigenfunctions (i.e. , all
with e 4 0) are localized (Goda, 1981). According to
the asymptotic long-time behavior of (P,(t)) and $(t)
=(x~(t})'~2 we may, however, introduce a different
concept of localization. For all our systems [classes
(a), (b) and (c) of probability densities] the correlation
length, $(t), and the inverse autocorrelation function,
(P,(t)) ', diverge as t-~. Only for class (a) systems,
however, is the rate of this divergence' the same
(~ t~') as in the case of pure diffusion (i.e. , as in the
corresponding ordered system), so that the diffusion
constant and the dc conductivity are well-defined finite
quantities. In class (b) and class (c) systems, the di-
vergence is slower than t~', leading to a vanishing dif-
fusion constant and de conductivity, respectively. In
this sense we may thus speak of a localization of the
excitations in class (b) and (c) systems, and the
"strength of localization" is determined by the asymp-
totic behavior of g(t) relative to pure diffusion.

F. Numerical simulations

A Monte Carlo study (Rich et al. , 1978}on time-de-
pendent spectral transport has been performed before
our EM results for the long-time decay of (Po(t))
(Bernasconi et al. , 1978) were proved to be asymptotic-
ally correct. The distribution of transfer rates in this
study was of class (a), and the numerical results ac-
curately confirmed our conclusion that asymptotically
the system can be described by an equivalent ordered
system with an "average transfer rate",

dms@ p m
0 i

Bernasconi, Schneider, and Wyss (1980) have carried
out numerical simulations of the u- 0 asymptotic be-
havior of (P (&u)) to test the general scaling hypothesis
described in Sec. VII.
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An extensive Monte Carlo study on the behavior of
the mean-square displacement (& (f)) in class (a)
and class (c) systems has recently been carried out by
Richards and Renken (1980). For class (c) systems,
their results raise some questions with respect to the
exact asymptotic expression for (x (t)) and with re-
spect to the approach to the asymptotic behavior. The
corresponding problems are discussed by Richards
and Renken (1980) and further clarified in a subsequent
reply by Bernasconi and Beyeler (1980). In particular,
the numerical simulations of Richards and Renken
(1980) show that the approach to the limiting asympto-
tic expressions is extremely slow in the case of class
(c) probability densities, which occur in severa, l physi-
cal applications of the model. A comparison of nu-
merical data and experimental results with analytical
model predictions may therefore be possible only if
correction terms beyond the leading asymptotic ex-
pression can be calculated. Richards and Renken
(1980) calculate the first correction term to the asymp-
totic behavior of o(ur) within our previous EM approach
(Bernasconi et a/. , 1978, 1979). Very recent investiga-
tions (Bernasconi and Schneider, 1981) indicate, how-
ever, that the exact asymptotic expansion may differ
significantly from the corresponding EM expression.

C(T) 0(- T(1-~)/(2m) 7 0 (11.11)

Dilute Heisenberg chains of this type have recently
been investigated by Theodorou and Cohen (1979) using
a previously proposed cluster argument. For ferro-
magnetic couplings, and for a class (c) p(J), their re-
sult for the specific heat is

-T(' ) lnTC(T)(x:
x'- o

(11.12)

and therefore does not agree with our asymptotic ex-
pression, Eq. (11.11). Alexander and Bernasconi
(1979) have shown that a correct and internally consis-
tent application of their cluster approach does, how-
ever, indeed lead to the correct result of Eq. (11.11).

G. Dilute ferromagnetic Heisenberg chain

Let us now consider a Heisenberg chain with random
ferromagnetic nearest-neighbor interactions, J„„„,
which can be shown (Alexander and Holstein, 1978) to
be closely related to the diffusion problem. 'The eigen-
value equations corresponding to low-lying excitations
(for which we can use the linearized equations of mo-
tions for the spin lowering operators) are of the form
of Eq. (4.1), and the low-energy density of states is
thus determined by our random W results (W„„„—J„„„)for N(s), i.e., Eqs. (6.14a), (6.14b), and
(6.14c). For a dilute system, with a concentration p of
magnetic sites, the distribution of the spin separation,
I, is given by Eq. (11.7). The assumption of an expo-
nentially decaying interaction, J(l) ~ exp(-zl), then
leads to a probability density p(J) of class (c), provi-
ded that p is not too large, so that n=(2(p)& 0. Our
results of Sec. VI then predict i())(s)(x:s ~(2 ' for s —0,
so that the low-temperature behavior of the corres-
ponding specific heat is, according to Eq. (6.15c),
given by

H. Planar model of a classical spin glass

Huber and Ching (1980) have recently pointed out that
the one-dimensional version of their planar model of a
classical spin glass is equivalent to the type of systems
considered in the present paper, with a class (5) prob-
ability density of the form

p(J) = (2/)()' "exp( —J'/2), 0 ~ J & ~ .
Our EM approximations of, Sec. I, which we believe to
give the correct asymptotic expression for N(&) for
class (b) systems, lead to

(11.13)

-ln~ '"
N(c) =(2m) 'i'(, c -0. (11.14)

This result coincides with that obtained from the coher-
ent potential approximation (CPA) theory of Huber and
Ching (1980). In addition, their CPA theory actually
seems to be identical (Huber, 1980) with our second
version of the EM approximation which, for class (c)
systems, leads to Eq. (10.8) for (P()(w)).

~P„+ (()u()(2 „P-P„( P„,) ) =P„(0),— (11.15)

where )((~) is related to the Laplace transform of the
waiting time distribution g(t) The CTRW. approach is
thus formally identical to our EM type approximations
of Sec. X, with))(~) playing the role of our W, «(&u). The
discussion concerning the neglect of fluctuations and
correlations within the EM approximation (see Sec. X)
therefore also applies to the CTRW approach.

There is, however, an additional difficulty with the
Scher and Lax approach. We have shown that our EM
approaches lead to the correct small ~ (or long-time)
asymptotic description of the average properties of our
random systems. In addition, it can be shown in
straightforward fashion (Bernasconi and Schneider,
1981) that they also reproduce the exact averaged quan-
tities in the opposite limit (i.e. , large &u or small
times, respectively). Our W,«(~) thus defines a wait-
ing time distribution, g(t), which gives an excellent de-
scription of our random systems. This (I)(t) is, how-
ever, different from that obtained by applying the Scher
and Lax (1973) procedure to our original random sys-
tem. The latter leads to incorrect asymptotic expres-

I. The CTRW approach

It is of interest to compare our results with those ob-
tained from the continuous time random walk (CTRW)
approach of Scher, Lax, and Montroll (Scher and Lax,
1973; Scher and Montroll, 1975), which has been used
extensively to describe the anomalous frequency- or
time-dependent transport properties of disordered sys-
tems [for a review see Pfister and Scher (1978)]. The
central idea of this approach is to replace the random
system by an ordered system (with respect to the trans-
fer rates) with a suitably chosen local "waiting time
distribution, " (1)(t). Several schemes have been devel-
oped to relate g(t) to the microscopic properties of the
original model, and for some simple models it has been
shown that this can be done exactly.

Applied to our type of random one-dimensional sys-
tems (random W case), the CTRW approach leads to
equations of the form
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sions in the ~ -0 or I;-~ limit, and the same is true
(Klafter and Silbey, 1980b) for several alternative, but
essentially equivalent, approaches for the dete'rmina-
tion of g(t). As an example we may consider the expo-
nent v(~) which describes the long-time behavior of
(Po(t)) ~t " and (x (t)) ~t in class (c) systems. It
can be shown (Klafter and Silbey, 1980b; Riseborough,
1979) that the existing waiting time approaches all lead
to v=(1-z)/2, whereas the correct exponent [see Eqs.
(6.13c) and (7.18c)] is given by v=(1 —n)/(2 —&). In the
random S' case considered here, it can be seen that the
Scher and Lax average of the local function exp(-Wt)
overestimates the importance of the (rare) small W at
any given time. It therefore underestimates v, as ex-
hibited by the above explicit results.

Whereas the description of a given random system by
a single g(t), or z(w), respectively, always remains an
approximation, it seems important to improve on the
determination of the "best" g(t). This is particularly
true in higher dimensions where an exact calculation of
the average properties, even asymptotically, seems out
of the question.

The Scher and Lax approach also completely neglects
correlations along the paths actually traversed. As a
consequence, the results do not depend on the topology
of space (i.e. , on the dimensionality). For dimensional-
ities higher than one, this deficiency becomes even
more serious than in one dimension, because the small
W can be avoided by the diffusing particle. It can actu-
ally be shown (Alexander, 1980) that our random W
model in three dimensions always leads to conventional
dif fusion asym ptotic ally.

J. Random harmonic chain systems

For random harmonic chain systems, Eq. (2.3), our
asym ptotic results are less corn piete than fo r dif fusion-
type systems, Eq. (2.2). They have been summarized
and discussed at the end of Sec. VIII.

In the vast literature on disordered harmonic systems
the focus is mainly on class (a) type distributions (e.g. ,
binary mass problems). In addition, the low-frequency
limit is less important than in diffusion-type problems,
and other properties of the spectrum have received
much wider attention [see, for instance, Hori (1968)].
Our result that for ~ -0 a class (a) system behaves as
an ordered system with an. average mass, M,„=(m), or
been derived several times with different methods (Domb,
1963; Maradudin and Weiss, 1968; Lu et a/. , 1974;
O' Connor and Lebowitz, 1974). On the other hand, we
believe that the corresponding asymptotic expressions
for class (b) and class (c) distributions are new. It
seems, for example, that it is not possible to extract
these asymptotic results from the integral equation in
Dyson's (1953) approach. As explained in Sec. IV, this
integral equation is different from ours because the rel-
evant random variables, which are connected to the
original random variables via infinite continued frac-
tions, are chosen differently.

Even our nearest-neighbor random systems involve an
infinite number of "effective transfer rates, "X~

l (~), to
describe their average properties exactly. Compare Klafter
and Silbey (1980a).

XI I. NONUNIVERSALITY AND HYPERSCALING

One feature of the results of this paper, exhibited in
Sec. VI, is the nonuniversal character of the specific-
heat exponent for class (c) probability densities p(~).
A similar nonuniversality is also found for the correla-
tion 'length defined and derived in Sec. VII. We show in
this section that though both exponents are nonuniver-
sal, they nevertheless obey a hyperscaling relation de-
rived for T, = 0 systems by Baker and Bonner (1975).

Working in Laplace transform space, Eq. (6.12c) tells
us that

(P ( )) ( (n) 1/(2 a) () (6.12c)

From Eq. (4.13), the density of states X(&) equals

C (n)
0 sin +

g 1/&2- n)
jr

(4.13)

The specific heat has a temperature dependence, aris-
ing from an integration of GN(c) times a Bose factor, of

3This reference was pointed out to us by Professor A. Aha-
rony during a very helpful conversation.

K. Interrupted chain systems (bond percolation models

Although we have excluded them explicitly from our
present treatment, we auld like to add a few remarks
about chains with random interruptions. In a previous
paper (Alexander, Bernasconi, and Orbach, 1978a) we
have calculated the exact long-time behavior of (Po(t))
and the small & behavior of N(&) for this type of system.
The m ethods used w ere, howeve r, entirely dif ferent
from those of the present paper. With regard to the
present approach we note that the integral equation for
f„(g), Eq. (4.5), remains valid for a chain with inter-
ruptions, but we have not tried to determine its asymp-
totic solution for small ~. Our effective-medium (EM)
approximations of Sec. X, however, seem to work quite
well also for this type of system. Odagaki and I ax
(1980) have recently calculated the exact frequency de-
pendence of the hopping conductivity for such a bond
percolation model, and they compare its low- and high-
frequency expansion with the corresponding results of
various approximate treatments. In their paper they
denote our first EM approach, Eq. (10.3), by Bernas-
coni, Alexander, and Orbach (BAO), and their CPA is
identical to our second EM approach, Eq. (10.7). The
two EM approaches, as well as the CTRW, give the
correct frequency dependence both in the low- and high-
frequency limit, but the expansion coefficients dif fe r
with respect to each other and with respect to the exact
solution. The relative merits of approximate treat-
ments are „however, not determined by a comparison
of expansion coefficients alone. In this context we re-
mark that, in contrast to the QTHW, for instance, our
EM approaches lead to the exact asymptotic frequency
dependences (for small, as well as for large cu) for
very general classes of probability densities, and that
they give a reasonably accurate description over the
entire frequency range.
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T(1 u) /&2 0:) (6.15c)

g(t)~ t(1-n) /(2-a& (8.4e)

This correlation length corresponds to the Green func-
tion in real time, (P„(t)), through the scaling relation
(7.9). In the thermodynamic problem we speak of the
equal-time Green function, defined as the thermal and
ensemble average of a product of creation and destruc-
tion operators at different sites. A comparison of the
formal expressions for the two problems shows that,
apart from a Bose factor in the latter, one transforms
into the other upon replacement of 1jt by ksT. We can
therefore w rite

g(T) ~ T-(1-n) /(2-a ) (12.1)

As remarked previously, the exponents of T in the ex-
pression (6.15c) for C(T) and in (12.1) for g(T) are non-
universal in that they depend on the degree of random-
ness through ~. However, a remarkable relationship
between these exponents was predicted by Baker and
Bonner (1975). They considered the scaling relation-
ships at zero-temperature critical points. In our case,
T, would certainly be zero for the one-dimensional ran-
dom Heisenberg ferromagnet (it is zero even for the
ordered case), and their conclusions can be applied to
our results. For T,=O, convention sets

(12.2)

For its part, the correlation length in ~ space arises
from the assumption of a scaling length for (P„(&u)), and
is given by

(7.11)

In the diffusion problem, the inverse Laplace trans-
form of Eq. '(7.11) generates the time-dependent result,
Eq. (8.4e) for class (c) distributions,

totic (low-frequency or long-time) expressions for the
autocorrelation function, showing explicitly the nonuni-
versal character of the corresponding exponents. We
have also demonstrated the applicability of hyperscaling
between the specific heat and the correlation length ex-
ponents, even in the presence of this nonuniversality.

A number of aspects of the random one-dimensional
chain problem remain, however, unsolved, or are only
partly resolved. These include the following.

(a) The asymptotic &u -0 expansions for f (x) beyond
the leading asymptotic teem. All the expressions we
have given for the asymptotic behavior represent only
the leading asymptotic term, and it is not obvious a
Priori how small ~ must become to make correction
terms negligible. Numerical simulations (Richards and
Renken, 1980), as well as an investigation of a(a) in
hollandite close to T (Beyeler, 1981, and private com-
munication), indicate that such corrections to the lead-
ing asymptotic behavior become increasingly important
as one approaches the crossover between class (c) and
class (a) behavior, i.e. , for a -0. It would therefore
be desirable to derive asymptotic expansions which go
beyond the leading term. In principle, this turns out to
be possible (Bernasconi and Schneider, 1981) by writing
down a small ~ expansion for f„(x) of the form

f (x) =—h — + c 1h — + c 2 h — + ~ ~ ~ (13.1)
1 x p x

1 2

where s = c(~) is given by Eqs. (5.19) and (5.22) for
class (a) and class (c) systems, respectively. Explicit
results have been obtained for both class (a) and class
(c) probability densities. For class (a) distributions for
which the first N negative moments exist we have k„=n
for n &/V, while in class (c) systems we have, for ex-
ample,

where the subscript s refers to the singular part, and

(12.3)

6 ) 9
k( ——

cv - —.
(13.2}

Hyperscaling requires (Baker and Bonner, 1975)

—ns=d~ ) (12.4)

where d is the dimensionality. Comparing Eqs. (8.4e)
and (12.1) we see that the relation (12.4) is satisfied
(since d =1). We therefore have the very interesting
result that our exponents satisfy hyperscaling, while at
the same time they are nonuniversal. This result is
unusual, though it must be noted that our expression
for ((T) does rest on an explicit scaling assumption,
Eq. (7.9).

XIII. CONCLUSION AND FURTHER DEVELOPlVlENTS

4This caveat was pointed out by Dr. J. E. Hirsch (private
communication) .

This paper has discussed in some detail the solution
in the low-frequency or long-time limit of a linear mas-
ter equation with random transfer rates or random trap
depths. We have shown how these solutions map onto a
variety of physical systems, ranging from the random
vibrational chain to the random one-dimensional Hei-
senberg ferromagnet. We have exhibited exact asymp-

The calculation of the h„(x), n ~ 1, becomes increasing-
ly involved (Bernasconi and Schneider, 1981), but Eq.
(13.2) already indicates the importance of the correc-
tion terms when n —0 or n -1. We note that the cor-
responding correction terms for averaged quantities
are of quite a different origin than the corrections cal-
culated by Richards and Renken (1980), who worked
with the effective medium results of Sec. X.

(b) The exact asymptotic results for c(~) and
(x2(t)). The results in Sec. VII of this paper all rest
on the assumption of a single characteristic length, g(cu}
or ((t), which leads to a scaling hypothesis for the
(p (&d)) or for the (P„(t)), respectively. Though such an
assumption seems quite plausible asymptotically, it re-
mains a conjecture, as we are unable to obtain a rigor-
ous expression for (P„(~)) or (P„(t)), even in the small
a or large t l-im it.

(c) The fluctuations in the site occupancy probabilities.
We are unable to calculate even the simplest fluctuation
term (Po(t)), in any time domain. This is a consequence
of the lack of commutativity of the averaging process
with the convolution in Laplace transform space, re-
quired for the calculation of this quantity. This would
be the case even if we possessed an exact solution for
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f„(x) for all up.

(d) The random one-dimensional antiferromagnetic
chain. Our starting point of a linear near-neighbor
master equation is inappropriate for the antiferromag-
netic linear chain. We require a low density of spin
waves in order that the spin-wave expansion. can be lin-
earized and mapped onto the master equation for imag-
inary time. Very recent renormalization group and nu-
merical calculations (Dasgupta and Ma, 1980; Hirsch
and Jose, 1980; Bondeson snd Soos, 1980) as well. as
earlier theoretical models (Bulaevskii et al. , 1972;
Clark and Tippie, 1979) and a substantial amount of re-
cent experimental work (Clark et al. , 1978; Sanny et al. ,
1980; Dozier et al. , 1980; Miljak et aE. , 1980; Tippie
and Clark, 1981) have examined this problem. The sub-
ject has been reviewed briefly by Clark (1981). Quite
interesting consequences for the l. imiting probability
density for the random exchange couplings are found.
In particular, the renormal. ized coupling constants are
found to have a singular rtype (c)] distribution whenever
the initial distribution has any randomness.

(e) The random one-dimensional xy model. The ran-
dom one-dimensional xy model maps onto Dyson's Case
I problem (Smith, 1970; Theodorou and Cohen, 1976).
Though one can transform the problem, using a pseudo-
Fermion representation, the interactions which are
near neighbor in the original problem turn out to be
long range in. the transformed representation. This de-
stroys the possibility of mapping it onto our master
equation, and we are unable to contribute to the solution
of this problem using the techniques of this paper.

Very recent work of Griiner (1980a) raises the inter-
esting possibility that the results of this paper may' ap-
ply to electronic transport situations, as well as to
ionic transport. It appears that random barriers in
highly anisotropic electronic conductors have a major
influence on charge propagation. A dc component of
conductivity is present, but the ac conductivity obeys a
frequency dependence much like that predicted by Eq.
(7.17c) of this paper in, fdr example, the model com-
pound QN(TCNQ)2 (Gruner, 1980a). This may be caused
by electrons trapped in regions between barriers of
random heights obeying a distribution law comparable
to Eq. (11.2), but with an upper cutoff, as well. Alex-
ander et al. (1981) have formulated an approach to such
an extension of the model, including a discussion of the
electric field dependence of the ac conductivity, of the
crossover to three-dimensional behavior, and of the
conditions under which our treatment will be relevant
to electronic conduction. Experiments are in progress
(Gruner, 1980b) to test the relevance of this paper's
conclusions to electronic transport in highly anisotropic
mate rials.
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