
The physical interaction potential of gas ator~is with single-
crystal surfaces, deterriiined fror~i gas-surface diffraction
experirIients

H. Hoinkes

PhysI'kalisches Insti tut der Universi tat Erlari gen-Nii rnberg, Erin-Rommel-Str. 1, D 8520 Erlangen, Germany

A comprehensive survey and data collection of experimental results achieved from diffracting beams of light

gases like H, D, 'He, "He, and H, from single-crystal surfaces (alkali halides, oxides, and graphite) is given,
and &t is shown that gas—surface diffraction is a valuable tool to get detailed information on the physical gas-

surface potential: (a) From comparison of diffracted beam intensities with calculations in a corrugated hard-

wall approximation the periodic structure of the interaction potential is obtained together with information on

the atomic structure at the surface. Ib) From bound-state resonance investigations one gets information on the
different terms of the gas-surface potential in Fourier expansion v{r) =KG vo(z)exp(iG R)'. the achieved

spectrum ofbinding energies j E, ( can be used to construct the main term U«(z}, whereas observed splitting of
degenerate bound states allows evaluation of the strength of the periodic terms v G(z). (c) from E, levels near

the dissociation limit the constant C, of gas—surface long-range dispersion attraction can be determined.

Finally, regarding the experimental results on C, and the potential well depth D, two semiempirical rules are
established: C, = Kc a(e' —1)/(e+ l) and D = Ko a(e —1)/(e+ 1). These rules allow the calculation of C,
and D from the static electric polarizability a of the atom, the optical dielectric constant e of the solid, and the

system-independent constants K~, KD given in the text. Calculated values of D for several gas-surface systems

are given in a table.
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I. IN T ROD UCT ION

In the early 1930s the first gas-surface diffraction
experiments were carried out in order to verify the
wave nature of atomic particles. And indeed the
de Broglie relation was fully confirmed with He and

H, beams diffracted from (001) surfaces of LiF, NaF,
and Nacl (Stern, 1929; Estermann and Stern, 1930;
Estermann, Frisch, and Stern, 1931) and with beams
of atomic hydrogen diffracted from LiF (Johnson, 1930,
1931). A first review of these experiments was given
by Frisch and Stern (1933a).
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934 H. Hoinkes: Physical interaction potential of gas atoms with single-crystal surfaces

Some of these first experiments showed also a min-
ima structure in the diffracted intensities (Estermann
and Stern, 1930; Frisch and Stern, 1932, 1933a, 1933b;
Frisch 1933). This effect, called "selective adsorption, "
was explained a few years later by Lennard- Jones and
Devonshire (1936, 1937; Devonshire, 1936) by transi-
tions of incident particles into bound surface states. In
more detail this special scattering process may be
described in the following way. An incident atom is
transferred to a bound surface state by diffraction; in
this surface state the atom is bound normal to the sur-
face in the gas-surface potential with a discrete binding
energy &,- &0, but moves parallel to the surface with an
energy E

~
=E, +

~
E,

~

which surmounts the incident en-
ergy E,. just by the gained binding energy ~E,. ~. Afte~
some time the atom may leave this bound state again by
a second diffraction step leading to an outgoing dif-
fracted beam. Since energy conservation and diffraction
conditions have to hoj.d simultaneously this process
occurs only at certain conditions of incidence. But if
these conditions are fulfilled the temporary bound states
may act as intermediate states causing a resonance
behavior in the elastic diffraction process. As a result
strong changes in the diffracted beam intensities may
occur under resonance condition (Garcia, Celli, and
Goodman, 1979; Celli, Garcia, and Hutchison, 1979).
The main effect observable at these bound-state reso-
nances is minima in the specular beam intensity, but
maxima may also appear in higher-order diffracted
beams (Greiner et a/. , 1980). From the conditions of
incidence where the resonance minima are found the
binding energies E,. ean directly be calculated.

In their work in 1936 Lennard-Jones and Devonshire
already pointed out the virtue of gas-surface diffraction
in yielding information on the gas-surface interaction
potential. Using the experimental data of Estermann,
Frisch, and Stern they determined from the selective
adsorption minima some energy levels of states bound
in the gas-surface potential well and from these binding
energies they also got the depth and the range of this
potential well and deduced from observed diffracted
beam intensities approximately the strength of the pe-
riodic variation of the potential well parallel to the sur-
face.

After these first very promising results there was a
rather long period mith only little work in the field of
gas-surface diffraction. But during the 1960s, when
improved vacuum conditions and also improved methods
of controlling surfaces mere developed, the number of
gas-surface interaction investigations increased rapidly,
motivated also by the expected progress in technological
problems like aerodynamics or heterogeneous catalysis.
As mentioned above Lennard-Jones and Devonshire
(1936, 1937) already have pointed out the virtue of dif-
fraction experiments to elucidate gas-surface inter-
action. So one type of the experiments which started
at the end of the 1960s was the diffraction of light atoms
or moleculeq like H, D, H„D2, 'He, and He with ther-
mal energies from regularly ordered single-crystal
surfaces. This seemed to be apromising way to advance
in fundamental understanding of the physical gas-sur-
face interaction. Here physical interaction means that
the interaction between a gas atom and the surface

arises only from van der Waals forces causing binding
energies for the light atoms mentioned above smaller
than 100 meV. In the past tenyears extensive diffraction
experiments with these light particles have been carried
out and their results have also stimulated a lot of the-
oretical work. And both experiments and theory to-
gether led to considerable progress in the understanding
of gas-surface diffraction and from this also of physical
gas-surface interaction. A series of review papers
(Stickney, 1967; Beder, 1967; Goodman, 1971; Logan,
1973; Smith, 1973; Steele, 1974; Toennies, 1974;
Somorjai and Brumbach, 1974; Goodman and Wachman,
1976; Goodman, 1977a; Cole and Frankl, 1978; Wilsch,
1978) which appeared in the past ten years reflects the
increasing interest and successful development in this
field.

As the method of determining gas-surface interaction
potentials by gas-surface diffraction is now well es-
tablished and has been successfully applied to several
gas-surface systems, it is worthwhile to give a com-
prehensive review of the method and the results achieved.

his will be done in the following sections.
Section II first gives a 'description of the general fea-

tures and the shape of the physical gas-surface inter-
action potential (Sec. II.A) and then it deals with the
state of theoretical methods for calculating potential
curves (Sec. II.B). In this section results from first-
principle calculations are discussed, concerning com-
plete potential curves and also the long-range asymptotic
behavior. Also considered here are potential curves
which may be achieved by the approximative method of
summation of pairwise potentials between the gas atom
and the atoms or ions of the solid.

Section III deals with the different kinds of information
on the gas-surface potential that may be extracted from
gas-surface diffraction experiments. After a short
survey on elastic gas-surface diffraction theory (Sec.
III.A) results obtained within the corrugated hard-wall
model are discussed (Sec. III.B), and then the maintopics
of this chapter are described in, detail. Thesearebound-
state resonances and the experimental results on the
interaction potential obtained from investigating the
resonance structure in diffracted beams (Sec. III.C).
These results concern binding energies in the potential
well, the strength of the long-range attractive part,
and the shape of the potential well averaged parallel to
the surface. It is also shown that semiempirical rules
for the coefficient C, of the long-range attractive part
as well as for the potential well depth D can be es-
tablished from these experimental results (Sec. III.C.
3 and 4). It is further demonstrated that experimentally
observed resonance splitting of degenerate bound states
may well be used for gett. ing information on the strength
of the periodic potential terms and the results achieved
in this way are compared to results on the periodic
terms in the hard-corrugated-wall model (Sec. III.D).
Finally it is shown that the increase of inelastic effects
at resonanCes can be described by using an additional
imaginary part in the potential.

The article ends with a concluding discussion in Sec.
IV which also points out the potential of thermal en-
ergy atom diffraction (TRAD) to become also a valuable
technique of surface structure analysis.
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H. Hoinkes: Physical interaction potential of gas atoms with single-crystal surfaces

Four appendixes present some supplementary results
and collections of experimental data. Appendix A gives
some special results concerning gas-surface potential
curves calculated from summation of pair potentials.
In Appendix B all the binding energies E,. obtained from
experimental resonance investigations are collected in
a table and in Appendix C all the model potentials used
to fit these experimental binding energies &,. are dis-
cussed. Finally, Appendix D presents in a table poten-
tial well depths calculated for several gas-surface sys-
tems with the semiempirical rule established in Sec.
III.C.4.

I I. G ENE RAL F EATUR ES OF THE PHYSICAL
GAS-SURFACE INTERACTION POTENTIAL

Before discussing detailed features of the gas-sur-
face interaction it should be stated here that we are
dealing in the following with atoms or molecules of
thermal energies. This means the particles being inci-
dent to the crystal surface have energies in the region
from 10 to 100 meV, the consequence of which is that
the incident. particles can approach the atoms or ions
forming the solid surface only up to a distance given by
the corresponding van der %aals radii, and have no
chance to penetrate the topmost monolayer at the solid
surface.

A second aspect which should also be pointed out. here
is that we are dealing with van der Waals interactions,
and that the attractive interaction between the gas atom
and the solid is given by the polarization energy only,
and that all kinds of charge exchange attraction will be
excluded. From this we see that the well depth D of the
potential for the light gases H, H» or He has to be ex-
pected to be D ~ 100 meV, which is comparable to the
incident energy.

And a third aspect which should be mentioned in ad-
vance is that we will discuss only purely elastic dif-
fraction effects so that we have to regard here only a
time- independent potential which is averaged over the
thermal vibrations of the solid atoms.

v(r) = P vo(z) exp(zG R) . (2.1)

Here, and in the following, the notation of Cabrera
et al. (1970) is used, where the vector components
parallel to the surface are denoted by capital letters
and the z direction is the outward normal to the sur-
face plane. Then the position vector of the gas atom

potential is caused by the interaction of the gas atom
with a relatively large number of crystal atoms or in
good approximation with the crystal as a continuum
characterized by a certain dielectric function, so that
the attractive part of the potential function can be
assumed to be practically constant parallel to the sur-
face.

The weak periodic variation of the repulsion in the
case of metals manifests itself also in the diffraction
behavior. Only rather weak diffracted beams of first
order have been observed with He on metal surfaces
like W (211) (Tendulkar and Stickney, 1971; Stoll and
Merrill, 1973; Stoll, Ehrhardt, and Merrill, 1976),
Ag (111) (Boato, Cantini, and Tatarek, 1976; Horne
and Miller, 1977), Cu (001) (Mason and Williams, 1978),
Ni (110) (Rieder and Engel, 1979). Onlyby using stepped
surfaces like Cu (117) (Lapujoulade and Lejay, 1977) or
Pt(997) (Comsa et a/. 1979) has more pronounced dif-
fraction appeared, and there is only one very recent
experiment, again with Cu (117) (Lapujoulade, Lejay,
and Papanicolaou, 1979), where transitions to bound
states could be 6bserved. The consequence of these
facts is that we will deal in the following mainly with
insulating or Semiconducting solid surfaces for which
strong enough selective adsorption effects have been
observed until now.

An example of the potential function v(z) with its steep
repulsion which depends. on the position in the unit cell
and its constant long-range attractive part is given in
Fig. I. A quite general representation of this potential
function reflecting the periodicity of the surface lattice
is the following Fourier series:

A. The shape of the gas-surface potential

From the conditions given above we can state first
that the potential function has a strong repulsive part
in front of the solid. The reason for this repulsion is
the overlapping of the wave functions of the electrons
of the gas atom and of the electrons at the surface of
the solid. In the case of inert gas crystals or ionic
crystals the electrons are well localized at the posi-
tions of the atoms or ions forming the crystal surface
so that the strength of the repulsion will change rel-
atively strongly parallel to the surface at fixed gas
atom-surface plane distance. The situation is quite
different with metal surfaces where the electron dis-
tribution at the surface can be assumed to be smeared
out much more, leading to a relatively small variation
of the strength of repulsion when the position of the gas
atom is varied parallel to the surface.

At longer distances the gas-surface potential is dom-
inated by an attractive van der Waals interaction given
by the distance-dependent polarizatio~ energy between
a gas atom and the solid. This attractive part of the

v(z)in lneV
sk
-- CABD

Q
Bx

X

X g X
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0 , jii, i
I

2

Ar —NaCl

6 zinA

QNa' Q

I"IG. 1. Example of the physical gas —surface interaction
energy as function of the distance z of the gas atom from the
surface plane. The curves represent energy functions for Ar
above four different sites (A, B, C, and D) of the (001) sur-
face of a NaCl crystal as calculated from pairwise summation
by Rogowska (1978).
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936 H. Hoinkes: Physical interaction potential of gas atoms with single-crystal surfaces

is written as r = (x, y, z) = (R, z), and G represents a two-
dimensional reciprocal surface lattice vector. For a
square array with lattice constant I, G can be repre-
sented by G =g(m, n), with g = 2w jl and m, n integers.

The main term of the Fourier series voo(z) represents
the lateral average of the gas-surface interaction. A
qualitative picture of it is given by the mean of the four
curves shown in Fig. 1. Since the periodic surface
structure appears only in the short-range repulsion the
higher potential terms can be assumed to be repulsive
only. Their strength decreases rapidly with increasing
order m+n of G as discussed, for instance, by Good-
man (1967, 1973).

B. Theoretical results on the physical gas-surface
interaction potential

1. F irst-principle calculations

There have been only a relatively small number of
attempts to calculate the physical gas-surface inter-
action potential from first principles, starting, say,
with the electronic structure of the solid surface and
of the gas atom. Recent calculations for He on metals
have been done by Kleinman and Landman (1973, 1974;
Landman and Kleinman, 1975) and by Zaremba and Kohn
(1976, 1977). They calculate the attractive van der
Waals interaction at large distances and the repulsive
interaction energy at small distances and construct
from these two parts a complete potential as a function
of the distance ~ of the gas atom from the surface but
without periodic structure parallel to the surface. An
essential parameter in this procedure is the definition
of the reference plane z = ~, from which the distance of
the gas atom should be measured in the attractive part
of the potential. Values of z, relative to the first atom
layer of the solid are given by Zaremba and Kohn (1976)
for metals as well as for dielectric solids. The inter-
action of rare gas atoms with graphite surfaces has
been calculated by Freeman (1975) using density func-
tional techniques of Gordon and Kim (GK) (1972), but
the results are rather qualitative due to the approxi-
mations in the graphite density function and due to the
incorrect treatment of the dispersion energy by the
GK method. Another ab initio calculation of physisorption
was given recently by Wood (1978) for He onLiH. Using
the molecular orbital approach of floating spherical
Gaussian orbitals (FSGO) he gets potential functions
which depend on the position over the lattice cell showing
no minimum for the (100) LiH face and only a small
minimum with a depth of f) 02 meV .for the (110) face.
Bruch and Ruijgrok- (1979) studied also very recently
the physical adsorption of atomic hydrogen within an
app roximative model whe re a hydrogen atom inte racts
with a perfectly imaging substrate bounded by a sharp
planar surface and where the repulsion is introduced
by a bounding condition which excludes the atomic elec-
tron from the substrate.

Because of the more or less severe approximations
still used in these first-principle calculations the
achieved results are in most cases only of qualitative
character.

2. Pairwise summation calculations

An approximation frequently used that allows cal-
culating physisorption potential energies of several
gas-surface systems is based on the additivity assump-
tion. In this case the potential function is achieved by
summing or integrating over all binary interactions
between the gas atom and the lattice atoms or ions. A
discussion of this method together with a survey of re-
sults is given for instance by Beder (1967) or recently
in more detail by Steele (1973, 1974).

With the pairwise gas atom-solid atom potential func-
tion U„(p,.), where p,. = ~r —r,.

~

denotes the distance
between the gas atom at r and the ith solid atom at r, ,
the total gas atom-solid surface potential is given by
the sum

(2.2)

and the arithmetic mean is used for the appropriate
range parameter

o„=(o„+o„)/2. (2.4)

A further shortcoming of this summation method arises
from neglecting many-body effects in the interactions.
For instance, the interaction of a pair of atoms may be
changed by a solid nearby. The effect of each of these
approximations on the potential parameters may be
appreciably larger than 10% even in the case of rare
gases interacting with rare gas crystals. A more
detailed discussion of these problems, which become
important for ionic crystals and even more for graphite,
can be found, for instance, in Steele (1974) 'and refer-
ences given there. Approximative procedures achieved
by replacing the summation over the solid atoms by an
integration are also discussed by Steele (1974). An
essential result in this context is that gas-surface po-
tentials of the form v(z) =Az ' —Bz ' are obtained from

This method avoids the difficulties arising in calcula-
tions which start with the electronic structure of the
solid and the gas atom, but here some other problems
and approximations have to be accepted.

First the distribution of the atoms in the solid must be
known. In, most cases this problem is overcome by
assuming the same configuration in the surface region
as in the bulk of the solid; relaxations at the surface
are neglected or might be used as a fitting parameter
in comparison with experiments.

A second and much more severe problem is connected
with the deficient knowledge of the parameters of the
pair potential curves. As the atoms or ions forming
the solid are often in an electronic state not found in
the gas phase, these parameters cannot be determined
from independent experimental measurements and have
to be evaluated by theoretical estimates. Frequently
used in this context are combination rules; that means
the gas atom-solid atom parameters (gs) are deter-
mined by combining the corresponding solid atom-solid
atom (ss) and gas atom-gas atom (gg) parameters.

For instance, the geometrical mean is commonly
used for the potenti-al well depth

(2.3)
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H. Hoinkes: Physical interaction potential of gas atoms with single-crystal sorfaces 937

integrating a (12-6) Lennard-Jones pair potential over
the solid. (The detailed formulas achieved by Steele
are given in Appendix A. )

Concerning gas-surface diffraction investigations,
most of the pairwise summation calculations have been
done for the system He-LiF (001) (Goodman, 1967,
1973, 1976; Tsuchida, 1969, 1974; Cabrera and Good-
man, 1972; Davies and Ullermayer, 1973; Chow and
Thompson, 1976) but also for atomic hydrogen on LiF
(Finzel et al. , 1975). Very recent calculations of the
interaction potential of rare gas atoms with alkali halide
crystals have been done by Rogowska. (1978) and by Hall
and Bose (1978). ln these cases the interaction between
the gas atom and one of the lattice ions may be divided
into three parts [see, for instance, Davies and Uller-
mayer (1973)]:

4Q--

20--

(Z)
'

l3)I~
(4)

U„(p) =A. exp(-5p) —Cp ',
or the Lennard-Jones (12-6) potential

(2.5)

(2.6)

where &, &, C, and 6 are constants depending on the
interacting particles.

In terms of the equilibrium separation po, the poten-
tial well depth g„, and the reciprocal repulsion range
parameter 7, these equations can be represented by

(2.7)

or

&„(p)= s„[(p.!P)"—2(p./P)'] (2.8)

The part (c) is proportional to the square of the electric
field intensity E(r) at the position r of the gas atom,

(a) long-range attractive, nonpolar van der Waals
dispersion interaction

(b) short-range exchange repulsion and additionally
(e) forces arising from the interaction of the Coulomb

field of the lattice ions with the electron cloud of the gas
atom, which is an induced dipole interaction.

The parts (a) and (b) are usually represented by the
second and first term, respectively, of the modified
Buckingham potential

FIG. 2. Fourier components of the interaction potential be-
tween He and Lip (001) as calculated by Tsuchida (1969) from
pairwise summation: (1) vp0(z); (2) v/0(z) or vg g(z) (3) v2, 0(z).
The dotted line (4) gives the (0, 0) term of interaction energy
caused by the electric field of the charges of Li and F ions
(higher terms too small to be shown here) and the dashed line
(5) shows the approximations of v pp(z) by a 12-3 potential.

S3 U U

2 ' 'U+U, (2.12)

or by using the Kirkwood-Miiller formula (Rogowska,
1978)

12-6 pair potential between the gas atom and the alkali
halide ions, combination rules of the form (2.3) and
(2.4) were used together with the assumption of rep-
resenting the ions by the corresponding rare gas atom
(Tsuchida, 1969, 1974; Davies and Ullermayer, 1973).
For the Buckingham pair potential the parameters of
the exponential repulsion term were also calculated by
corresponding combination rules (Finzel et al. , 1975;
Rogowska, 1978), whereas the coefficient C in the at-
tractive dispersion energy term was calculated by using
the London formula (Finzel et a/. , 1975)

U; (r) = --'n IE (r)
I

', (2.9) C =6m, c' e (2.13)

where a is the polarizability of the gas atom. After
summing the contributions of part (c) over the solid
ions it turns out that the resulting attractive potential
terms are very short ranged and in most cases neg-
ligible as compared to contributions of the dispersion
interaction (Tsu chida, 19'69; Davies and Ullermayer,
1973) (see also Fig. 2).

Further types of pair potentials used in gas-surface
potential calculations are the Yukawa form (Cabrera
and Goodman, 1972):

(2.10)

U„(p) = s„(exp [2q(po —p)] —2 exp [a(po —p)]) . (2.11)

In order to get the parameters in the Lennard- Jones

&„(p)= Pp
' exp (—~p),

or Yukawa-6 form [see Appendix C, Eq. (C18)] and the
Morse form (Goodman, 1976)

where n „U „and w, , are the electric polarizability,
the ionization potential [corrected following Pitzer
(1959)], and the diamagnetic susceptibility for the gas
atom and the solid ion, respectively, m, is the mass
of the electron, and c is the velocity of light.

In some of the pairwise, summation investigatioris
formulas were developed which allow analytical evalua-
tion of the Fourier components Un(a) [see Eq. (2.1)]
from the pair potential parameters (Steele, 1973, 1974;
Cabrera and Goodman, 1972; Tsuchida, 1970).

Figure 2 shows the Fourier components for He on
LiF as they were derived by Tsuehida (1969) with a
Lennard- Jones 12-6 pairwise potential, replacing Li
by He and F by Ne and using the combination rules
given above with the parameters

g„, „,=0.93 meV g„, „,=3.08 meV

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980



938 H. Hoinkes: Physical interaction potential of gas atoms with single-crystal surfaces

poHe H~ =2.88 A poNe Ne
= 3.09 A.

The dashed line shows that the (0, 0) component can be
well approximated by a function of the form

v„(z) = (D/'3)[(z, /z)" —4(z, /z)'], (2.14)

with well depth D = l0.4 meV and ~, =2.65A. The higher
terms are well approximated by

~ „(z)=e „(z./'z)", (2.15)

with c» ——0.26 meV, c» ——0.22 meV, and c,0=0.04 meV.
A comparison with potential parameters (D = 6.7 meV,

z, =.2.8A) estimated from experimentally determined
binding energies (see later) shows the approximative
character of the results achieved by pairwise summa-
tion. The lack in precision was similar in the case of
atomic hydrogen on I iF (Finzel et a/. , 1975) with a well
depth of D =13.4 meV calculated from pairwise sum-
mation as compared to a=17.8 meV determined from
experimental binding energies. To get a more quan-
titative description. of the strength of the periodic po-
tential terms here the dispersion parameter C for H-F
was changed (from 5.6 eV A' to 7.0 eV A ) so that the
experimental well depth was reproduced by the calcula-
tion. Variations of the H-Li+ parameter were ineffective
since the contribution of the Li+ ions to the total inter-
actions amounts to about 10% only. A similar fitting
procedure was used by Chow and Thompson (1976) for
constructing a gas-surface potential for He-LiF atom-
surface scattering calculations {for form and param-
eters used, see Sec. III.C.3 and Appendix C).

I I!. THE GAS-SUR FACE INTERACTION POTENTIAL
FROM GAS-SURFACE DIFFRACTION EXPERIIVIENTS

A. Survey on elastic gas-surface diffraction theory

As a consequence of the periodicity of the gas-sur-
face potential the wave function of a gas atom incident
on the surface with a wave vector k,. = (K, k, ,) can be
expressed by

P(r) = Q yo(z) exp[i(K+G) R],
G

where the partial wave

(3.1)

Recently Bruch and Watanabe (1977) used formula
(2.17) in order to calculate the coefficient C, for H, He,
and H, interacting with LiF and NaF. Their results will
be compared with experimental results later. To con-
clude, we see that neither calculations from first prin-
ciples nor pairwise summation can deliver physical po-
tential energies which do not contain more or less sev-
ere approximations. Note that in a pairwise summation
the problem is only shifted to the determination of the
correct pair potential parameters. Thus it is indeed
necessary to test the validity of the results of the dif-
ferent theoretical calculations by experimental investi-
gations, and an appropriate method for measuring the
physical interaction potential is the diffraction of light
atoms from single-crystal surfaces. This method, to-
gether with its results on well depth, range, and strength
of periodic terms of the interaction potential, will be
discussed in the following chapter.

3. Long-range asymptotic behavior of the gas-surface
potential

qua(r) = go(z) exp[i(K + G) R)

corresponds to:
(a) a diffracted beam of the order 6 = (I,~) for

( 3.2)

From pairwise potential integration in the continuum
approximation of the solid we have already seen that a
z ' dependence results from the p

' term of the dis-
persion energy in the pair interaction. But this result
for the main contribution to the interaction energy at
large gas-surface separations (z & I =lattice constant)
in physically interacting gas-solid systems can be
deduced quite generally; see, for instance, Lifshitz
(1956) or Zaremba and Kohn (1976). They showed that
this polarization energy is given by

v~(z) =-C, z ', (2.16)

C, = — a (i'm) . cav,
z(iu ) —1

4~, z(in )+1 (2.17)

where a(iso) is the electric dipole polarizability of the
gas atom and z(iw) is the dielectric function of the
solid, both at pure imaginary frequencies. Some ap-
proximative forms of this expression have been dis-
cussed by Steele (1974).

where the constant C, can be expressed by optical prop-
erties of the atom and the solid. At verylargedistances
(z &10 nm) retardation effects change the asymptotic
behavior to v~ ~g, but the interaction at these dis-
tances is not relevant in the gas surface diffraction ex-
periments discussed in the following.

For an isotropic atom and an isotropic solid, C, is
given by

~;,= A. ',. —(K+G)'- &O; (3.3)

(b) a. closed channel (waves decaying exponentially
normal to the surface) for

k~, &0;

(c) a bound-state resonance channel for

t ',.= (2m, /n')z, &0,

(3.4)

(3.5)

where E, is the binding energy of an atom bound normal
to the surface in the gas surface potential well v»(z)
and m~ is the mass of the gas atom. If relation (3.5)
holds for some special 0 vector the incident atom may
be transferred by diffraction to a state where it is bound
normal to the surface with the binding energy E& but
moves parallel to the surface with the energy (K+G)'k'/
2m~ which surpasses the incident energy just by the
gained binding energy

~
E'; ~. Such intermediate diffrac-

tion states result in resonances in the elastically dif-
fracted beams and may cause strong changes in the in-
tensity of these beams (for a more detailed discussion
of bound state resonances see Sec. III.C. l).

If condition (3.3) is fulfilled for some reciprocal lat-
tice vectors other than the specular beam (G=O, O) the
corresponding higher diffracted beams may appear. The
distribution of the scattered intensity to these different
allowed outgoing beams is then determined by the peri-
odic structure of the gas -surf ace inter action potential.
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In order to extract information on the gas-surface po-
tential from observed diffracted beam intensities the de-
pendence of the amplitudes of the partial waves ga(z) on
the strength of the periodic potential terms vG(z) must
be known, but this in general implies solving the Schro-
dinger equation with the gas-surface interaction poten-
tial v(r)

[—(k'/2m, )V'+ v(r) —k'k,'/'2m, ] g(r) =0. (3.6)

the gas-surface potential is given by

v(r) =~, z «&(R),

where the surface is defined by the shape function

z = $ (R) =g gG exp(iG R) .

(3.11)

(3.12)

With the expansions for v(r) and g(r) given in Eqs. (2.1)
and (3.1), the following infinite system of coupled differ-
ential equations for ga(z) is achieved (Goodman, 1977a;
Ca.brera et al. , 1970):

d 2 2m'.+ k5, PG(z) —
@.

' Z.va 6 (z)NG (z)=0 (3 7)
dz Gl

For comparison with experiment the asymptotic form
(G(z-~) has to be regarded. For the diffracted beams
this can be represented by

(G(z-~) =I. '~' [~(G, O) exp(-ik„z) +So exp(ika, z)],

(3.8)

where 5(G, G') is the Kronecker delta function, and I. is
a normalization length. The interesting quantity is the
amplitude SG which is related to the observable diffrac-
tion probability I'& by

(3 9)

In purely elastic scattering particle conservation re-
quires the sum over all allowed diffracted beams to be
unity:

With this form of the potential, of course, all effects
caused by resonance channels mentioned above are neg-
lected, and the calculated diffracted beam intensities
are valid only if the conditions of incidence are so that
no resonance may occur.

The corrugated hard-wall model was proposed for
gas-surface scattering by Garibaldi et af. (1975) using
the so-called "Rayleigh hypothesis, " which allows deter-
mination of the scattering amplitudes for sufficiently
small corrugation. Rigorous treatments were given la-
ter by Masel, Merrill, and Miller (1975) and by Good-
man (1977b) and in a recent. paper Garcia and Cabrera,
(1978) presented a formalism which is more suited for
numerical evaluation of the scattered beam intensities,
especially at strong corrugations. Garcia and Cabrera
gave also a detailed discussion comparing the different
methods mentioned above. Very recently also Armand
and Manson (1978) gave an exact solution of the scatter-
ing by a hard corrugated wall.

For comparison with experiment two differentmethods
of calculating should be mentioned, both based on the
Rayleigh hypothesis. The first method introduced by
Garibaldi et al. (1975) uses the eikonal approximation
together with the simplest form of the shape function

(3.1o) g (R) = —,
' (,[cos(2'/a) + cos(2wy/a)],

corresponding to a corrugation period of length a,

(3.13)

So any reliable elastic theory should give results
which satisfy this unitarity condition. There have been
a. number of attempts to solve Eq. (3.7) within several
approximative methods. A detailed discussion of the
different approaches is, for instance, given by Goodman
and Wachman (1976) or by Goodman (1977a). Concern-
ing the form of the potential used in the calculations two
essentially different types have to be mentioned: (i) the
hard corrugated wall with sometimes an attractive
square well in front of it, and (ii) potentials with weaker
repulsive and attractive forms like Morse potentials,
9-3 Lennard-Jones form, or similar forms.

It should be mentioned here that also semiclassical
trajectory calculations have been shown to work quite
well for describing He scattering from periodic solid
surfaces at least if k, is not too small (k;l e 20, where I
is the lattice constant). A detailed discussion of differ-
ent semiclassical calculations may be found, for in-
stance, in a review paper, by Goodman (1977a) and a
comparison of semiclassical theory to approximations
for solving Eq. (3.7) in the case of a corrugated hard-
wall potential is given by Hill and Celli (1978).

B. Results with a hard corrugated wall

In the method of calculating diffracted beam intensities
discussed here the gas-surface interaction is approxi-
mated by a periodic har d corrugated wall. That means

ltO 0 ~ 1 -ltO ot-1 4 0

and the other $G 's all zero.
This method leads to a rather simple form of the dif-

fr acted intensities I' G.

(3.14)

where Jl l Jl I
are the Bessel function of integral order

lm I ~ In I
and the argument C is given by

C = 2 (o kg (cosOq + cos6G) ~ (3.15)

It should be mentioned here that unitarity [Eq. (3.10)]
does not hold for the intensities I'6 calculated by the ap-
proximative formula (3.14) [see also Chiroli and Levi
(1976)].

Sometimes an attractive potential well of depth D in
front of the wall is included in the calculations with the
only effect of replacing the z component of the wave

- vector A; cos06 by effective values of

(k,' cos'OG+2m, D/k')'~'

and changing C to

C' = —,
' (,[(k,' cos'6, + 2 m, D/'h') '~'+ (k,' cos'eo+ 2 m, D/k') '~'] .

(3.16)

In order to fit the calculated and experimental intensi-
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ties the parameter g, and sometimes also D were vari-
ed. The agreement achieved by such fitting is rather
good; see, for instance, Boato, Cantini, and Mattera
(1976). Values of g, and D resulting from such fitting
for several systems are given in Table I. Of course,
this method is not well suited for determining the poten-
tial well depth D because of the approximative charac-
ter of the model used and also because of the fact that
the well depth is only small compared to the incident en-
ergy in many cases.

The second method to be mentioned here is the GR
method proposed by Garcia (1977a), which is suited to
achieve quite exact results for the diffracted beam in-
tensities within the Hayleigh model. This method was
used by Garcia (1976, 1977b) for comparing calculated
intensities with experimental ones for He on LiF given
by Boato, Cantini, and Mattera (1976). The shape func-
tion us ed by Garcia had the for m

Cantini, and Mattera, 1976; Bledsoe and Fisher, 1976),
and NaC1(001) (Bledsoe and Fisher, 1976), they found:

$»[He-LiF (001)]=0.030 nm,

$ „[He-NaC1 (001)]= 0.034 nm,

and estimated from the specular beam intensity of He on
Cu (001) (Armand, Lapujoulade, and Lejay, 1976, 1977)
(no higher-order beams could be observed) an upper
limit of the corrugation to be

g,o[He-Cu(001)] ~ 0.0025 nm.

They achieved also a tentative value for the corrugation
of the system He on W (112) by reexamination of the ex-
periments by Tendulkar and Stickney (1971) and by Stoll
and Merrill (1973):

( „[He-W (112)]= 0.027 nm,

$ (R) = —,
' $»[cos(2m/a) x + cos(2m/a)y]

+ —,
' 5»[ cos(2m/a) (x +y) + cos(2m/a) (x —y)]

+ —,
' $»[cos(4m/t2) x + cos(4m/a)y],

and the resulting set of best coefficients was:

(» = (0.0307 + 0.0003) nm;

$ „=(0.0017a 0.0003) nm; t „=0 .

(3.17)

The He-W(112) data by Tendulkar and Stickney were al-
so interpreted within a sinusoidal hard-wall model by
Goodman (1978) with

g(R) = 2(, cos(2w/a, ) x (3.19)

= 0 since the W (112) surface is corrugated only in
x direction normal to the close packed rows of atoms.
The adjustable parameter in this model („and an effec-
tive Debye temperature were estimated to be

To give an impression of the quality of the fit, Fig. 3
shows a comparison of experimental and calculated in-
tensities of some diffracted beams. A further attempt
at determining corrugation parameters using the GR
method was made by Garcia, Armand, and Lapujoulade
(1977) with the following shape function

((R) = —,
' 5»[cos(2m/a) x+ cos(2m/a)y] . (3.18)

Fitting experimental results for He on LiF (001) (Boato,

$„[He-W(112)]=0.004 nm; g,«=385 K.

A successful application of the hard-wall model was al-
so given by Armand and Manson (1978) using a, triangu-
lar corrugation to reproduce the data of He scattered
from a stepped Cu (117) surface by Lapujoulade and
Lejay (1977). These He-Cu(117) data were also inter-
preted with hard-wall calculations by Garcia and Ca-
brera (1977). Regarding the results discussed above the
hard-wall model seems to be a good approximation for

TABLE I. Corrugation parameter gp and well depth D giving best agreement between experiment
and calculations in eikonal appioximation.

Gas- surface
system ( ()/nm D/meV Ref. Comment

He —LiF

He —Li F

0.0301

0.0289
D fixed independently~ ~

Ne- LiF 0.0273 11+2

He —NiO 0.0135 10

He-NiO

H~—NxO

He-graphite

H—K Cl(H20)

0.0139

0.025

0.0023

0.076

50'

Higher terms included (» = (20 = (2& = p.pp1 nm

27I 2x 2z
4(H) =—(cos—x+cos—y+~ cos—x cos—y); o. = 0.7a a a a

27l . 27IQ $7I
$(H) = 2(p [cos x + cos + cos (x —y]a a

(p to high for eikon. approx. , see also Garcia (1977a)

Boato, Cantini, and Mattera (1976).
Cantin. i, Felcher, and Tatarek (1977).
Cantini, Tatarek, and Felcher (1979).
Boato, Cantini, and Tatarek (1978) .
Frank, Hoinkes, and Wilsch (1977).
D values from bound state resonances.
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H:G. 3. Logarithmic plots of diffracted beam intensities as function of angle of incidence 0,. ((100) di.rection in the plane of inci-
dence): Dashed lines are experimentally observed intensities [from Boato, Cantini, Mattera (1976)]; Full lines represent calcu-
lated diffraction probabilities normalized to the experimental curves at 0;= 0 (parameters used: )&0

——0.0307 nm, (&&= 0.0017 nm
0&=110 nm ~) [from Garcia (1976,1977b)].

describing diffracted beam intensities at least in the
case of thermal He beams scattered from alkali halide
or metal sur faces. But the ques tion arises of how phys ic-
ally meaningful the corrugation parameters derived
here are. If the corrugated wall is not really hard, the
resulting corrugation could depend on the energy of the
incident beam. Until now this effect has not been inves-
tigated in detail. But since this possible variation of the
corrugation should appear mainly with respect to the en-
ergy normal to the surface it can be mentioned that in
the case of He onLiF (Garcia, 1977b) one set of corru-
gation parameters worked well to describe the intensity
distribution to different diffracted beams over a rela-
tively wide range of angles of incidence (0 & 8; & 65').
With an incident wave vector of k; = 110 nm ' the energy
normal to the surface E& „=k'k,' cos'6, /2nz~ varies in
this range from 62 to 11 meV. It should also be men-
tioned in this context that for He on LiF the corrugation
parameters extracted by Garcia (1977b) from experi-
ments with relatively high incident energy (k& = 110 nm ')
could also be used to reproduce well the detailed reso-
nance structure observed by Frankl et al. (1978) at rel-
atively low incident energy (k, = 60 nm '). This was
shown by Garcia, Celli, and Goodman (1979) using a po-
tential form where a long-range attractive part was
added to ihe hard corrugated repulsive wall.

A problem not solved until now appears when the cor-
rugation parameters resulting from a hard-wall analysis
for He and for H on LiF (001) are compared. With simi-
lar conditions of incidence a much stronger specular
beam is observed with atomic hydrogen as compared to
He and this yields a corrugation parameter $» [see Eq.
(3.17)] with a, value of

g,o[H-LiF (001)] = 0.009 nm,

(Greiner et a/. , 1980) which is about one third of the
value for He.

An answer to this problem could perhaps come from
calculations of the type recently performed by Armand
and Manson (1979) and Armand (1980). Using for the
repulsion an exponential corrugated potential of the form

v(r) = C exp[ —~ [z —g(R)]), (3.20)

they found an enhancement of the specular beam intens-
ity when the repulsion becomes softer by decreasing z
(g-, ~ gives the hard corrugated wall), and a softer re-
pulsion for atomic hydrogen as compared to the harder
closed-shell atom He is well conceivable.

We will come back to the corrugation parameters later
in Sec. III.D when the hard-wall results are compared to
the strength of periodic potential terms determined from
band structure effects in bound-state resonances.

C. Results from resonance effects

1. General considerations on bound-state resonances

We include now in our considerations the attractive
well in front of the surface and especially the states in
which an atom is bound normal to the surface in the po-
tential well moo(z) with a discrete binding energy E, . If
then at certain conditions of incidence the following res-
onance condition is fulfilled:

k'0,'/2 m, E,"(K+ G) =—E, & 0, (3.21)

an additional intermediate channel of diffraction opens
for the incident atoms. In Eq. (3.21) E,"(K+G) is the en-
ergy of an atom moving parallel to the surface in the
periodic gas-surface potential with the wave vector KG
= K+0 when the atom is bound normal to the surface in
the state with quantum number j. This energy Ez" (K+G)
surmounts the incident energy just by the binding energy
~Ez~. In other words this condition says that the incident
beam is energetically in resonance with a closed channel
in which the atom is bound normal to the surface with
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binding energy —
~ E, ~

and moves parallel to the surface
with the corresponding higher energy E,"(K+G).

The effect of such resonances on the experimentally
observable diffracted beams is as follows:

The diffracted beams are coupled to the incident beam
and also to each other by the periodic terms vG(z) of the
gas-surface interaction potential, and from this rela-
tively strong coupling there results a certain distribu-
tion of the incident intensity to the different allowed dif-
fracted beams. Theoretically this coupling is described
by the system of coupled differential Eqs. (3.7). At res-
onance an additional intermediate channel opens into
which the atom may be diffracted first and from which
it may then in a second diffraction step be transferred
to an outgoing diffracted beam again, with the conse-
quence that the distribution of the scattered intensity to
the observed beams may be strongly changed. The min-
ima or maxima appearing at resonance in the diffracted
beam intensities are easily observed in experiment and
can be used to get information on the binding energies
E; and on the strength of the periodic potential terms.
A relatively simple model, which gives a clear descrip-
tion of the intensity behavior at resonance, was devel-
oped recently by Celli, Garcia, and Hutchison (1979).
Assuming that the particles bound normal to the surface
are moving freely parallel to the surface (a. good ap-
proximation in most cases; for essential deviations see
later) we get for the resonance condition the form

(K+C)'= (3m, /u')(Z, +
~ Z, ~) . (3.23)

This form allows a simple geometrical representation
of the resonance condition in K space as shown in Fig.
4: to the surface component K= k; sin0, lying in the
plane of incidence a reciprocal lattice vector Q has to be
added so that the resultant wave vector KG = K+ 0 lies on
the resonance circle with radius

Jt-„, , = [(2m, /Z')(Z, +
~ Z,.~)]"

centered at the origin of K. From Fig. 4 it is clear that
this resonance constellation can be reached only at cer-

tain conditions of incidence since 0 and E& can take only
discrete values.

Regarding Fig. 4 and the usual scattering geometry as
given in Fig. 5 the experimental variation of the follow-
ing parameters seems to be adequate for investigating
resonance effects:

(a) Variation of the azimuthal angle y at fixed (); and

E,. by rotating the crystal around its surface normal.
This corresponds in Fig. 4 to rotating the reciprocal
lattice around its origin (0.0) at the end of K and leads to
a resonance when at a certain value of y = y„, a 6 vector
meets a resonance circle.

(b) Variation of the angle of incidence 9, changes the
length of K= k; sin0;, thus shifting the origin of the re-
ciprocal lattice relative to the resonance circle so that
at certain values of 0; a G vector coincides with a reso-
nance circle.

(c) Variation of the incident energy E& has a similar
effect as case (b) but changes also the radius of the res-
onance circle so that the situation. becomes less easy to
survey.

2. Determination of binding energies

The determination of binding energies E& in the mean
attractive potential well voc(z) is mainly based on the
minima appearing at resonance in the specular beam in-
tensity. This effect, called "selective adsorption, " has
been known since the first diffraction experiments by
Frisch and Stern (1933b) and has been used in the past
for several gas-surface systems. The experimental
method most frequently used corresponds to the case (a)
mentioned above that is measuring the specular intensity
I,~ as function of the azimuthal angle y with the param-
eters E;, 0; kept constant. From the resonance angles
y„, at which minima are observed the binding energies
can be determined unequivocally using only the kine-
matic resonance condition without any assumption about
the form of the gas-surfac'e potential.

In order to get the correct labeling of the reciprocal
lattice vector involved in the resonance the curves I ~„
=f (y) have to be measured with different parameters ()&

or E&. Then from the shift of y„, from curve to curve
the 0 vector can be determined.

Figures 6-8 show typical experimental results: Fig-
ure 6 represents the quite simple structure observed
with atomic hydrogen on NaF(001) (Finzel et a/. , 1975).

=" (110)

lane Ot

IdenCB

plane
incide

wx "=010)

FIG. 4. Geometrical representation of resonance condition in
E space with Ã, , = [(2m~/h ) (R;+ (

E'.
[ )]

F
Li

Scattering geomet~.

ystai surface
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In this case only a G vector of type (0, 1) is involved and
only two bound-state levels are contributing, so that the
labeling of 6 and the determination of the E,. values is
easy. Somewhat more complicated is the structure
found with atomic deuterium diffracted from NaF (001)
(Finzel et al. , 1975), since G vectors of different type
and more bound states are contributing (see Fig. 7).
But the determination of the E& values is still not very
complicated. A borderline case for finding the correct
labeling of the 0 vectors is given in Fig. 8 with the sys-
tem D on KC1(001) (Frank, Hoinkes, and Wilsch, 1977)
where many overlapping minima are observed.

- A good test of the correct labeling of the observed

minima may be derived from the resonance condition
written in the form

(3.23)

which obviously shows that for a certain resonance
characterized by 0„, and E; „,, which is observed by
varying the azimuthal angle y and the angle of incidence
0; but keeping the incident energy E; constant, the sur-
face component of the incidentwave vector K; must al-
ways end on a circle with radius

sc„,= [(2~,/a')(z;+ I z; I)]"
which is centered at -G„,. An example of experimental

H1 ~ NgF (PP1j
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l
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E„=-Ol meV
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n ensit as function of azimuthal angle yn diffracted from NaF(001); resonance structure in the specular intens' y
measure a i ', of Av/v =12+ FWHM. Bound-state resonances by G = (0, +1) to bound-measured at different incident energies E; with a beain of g v/v) =12 FW . oun -s a
state levels E. are indicated [from Finzel et al. (1975)].
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FIG. 7. Atomic deuterium diffracted from NaF(001); resonance structure in the specular intensity as function of azimuthal angle
y measured at different incident energies E;. Bound-state resonances by reciprocal lattice vectors (m, n) to bound-state levels
E are indicated Ifrom Finzel et aE. (1975)].

results p/otted in the appropriate way is shown in Fig 9.
for the system 'He-LiF (001) investigated by Meyers and
Frankl (1975). Some typical binding energy spectra re-
sulting from resonance investigations are shown in Ta-
ble II. A mor e detailed table with all the binding ener-
gies known to the author is given in Appendix B.

Any two isotopes like H and D or 'He and 'He with the
same electronic shell but different mass should give dif-
ferent series of levels which fit to the same g3s-surface
interaction potential. Consequently this isotopic effect
was used to confirm the labeling of the quantum number
j of the observed levels. Especially the question of
whether the deepest observed level is indeed the deepest
level of the investigated system can be answered more

.definitely if the j labeling is confirmed by a second set
of levels given by an additional isotope. This isotopic
effect was first applied by Hoinkes, Nahr, and Wilsch
(1972b) and Finzel et al. (1975) in investigating the in-
teraction of atomic hydrogen on Lir and Nap using H
and D and was also used by Derry et at. (1977, 1978,
1979) for He on LiF, NaF, and graphite using 'He and
'He.

In some previous publications on bound-state reso-
nances on LiF (001) [see, for instance, O'Keefe et at.
(1970)] it was proposed that there is at least one mono-
layer of regularly adsorbed water on the surface. But in
recent investigations we could show by secondary ion
mass spectroscopy (SIMS) [Estel et at. (1976)] that there
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FIG. 8. Atomic deuterium. diffracted from water-covered Kcl(001); resonance structure in the specu].ar intensity as function of
azimuthal angle y measured at different angles of incidence 8; with constant incident wavelength X;=1.04 A. The resonance
labeling has to be regarded as a tentative one [from Frank, Hoinkes, and Wilsch (1977)].

is definitely no water on the LiF (001) and Na, F (001) sur-
face at the conditions of the gas-surface diffraction ex-
periments discussed here.

3. Determination of v~(zj from binding energies E00 g

Knowing the spectrum of binding energies (E& f the
problem is now to determine a corresponding potential
energy curve. The question of the uniqueness of the po-
tential curve obtainable from (E&'Iwas discussed recent-
ly by Le Roy (1976). He pointed out that the inversion of
a set of vibrational energy levels to determine a poten-
tial curve is a problem which has been extensively stud-
ied in diatomic molecular spectroscopy, where it was

shown that the IE;'I spectrum may be used to get the
width of the potential as function of the depth of the po-
tential. Regarding Fig. 10, this means the distance z,—
z, at a certain energy E is determined by ILE;) but there
is no way of determining the individual values of z, and
z, from the (E~j spectrum only. This is demonstrated
clearly by the Rydberg-Klein-Rees (RKR) method of
molecular physics for calculating the width of the poten-
tial. This method recently was used by Schwartz, Cole,
and Pliva (1978) and Cole and Frankl (1978) to develope
a procedure of constructing gas-surface potential curves
from $E)).

The RKR method is based on the Bohr-Sommerfeld
quantization condition for the phase integral between the
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FIG. 9. Incident surface wave vectors in A„, K~ plane at ex-
perimentally observed resonances for He-LiF (001). The
points achieved from azimuthal scans at different angles of
incidence but constant ~i= 0.103 nm. fit well to resonance cir-
cles K,. Oi with radii K,. = ((2m/h )(E;+~E, ()] ~ and centered at
(0, -g) l.from Meyers and Frankl (1975)].

2
(j+1/2) = [2(2m')' /h] [E —vaa(z)]'~ dz,

Z

where h= Planck's constant, and the quantum number j
=j(E) becomes an integer when E equals an eigenvalue
E, . Differentiation of (3.25) with respect to E yields

dj (E) 2(2m, )'~' 'a dz
dE h . [E —t „(z)]"''

and this equation can be inverted to the relation for the

(3.25)

(3.26)

classical turning points z, and z, at energy E (see Fig.
10)

Z2

(j+1/2)h =2 p dz, (3.24)
1

where the momentum P as a function of z is given by the
kinetic energy E„;„ofa particle with total energy F.
moving in the potential well v«(z). Thus one gets the
relation

width of the potential (z,—z, )

z, (E) -z, (E) =@(2/m„)'~' dE'(E -E')-"dt)/dE',

(3.27)
where, in addition, a mass reduced quantum number

j (E)+1/2 (3.28)

where m~= mass of H atom, has been introduced. The
function t)(E) may be constructed by interpolating be-
tween the experimental data points E& at which j(E,)
=0, 1, 2, . . . . So we have a formula for the distance be-
tween the classical turning points, but to fix these
points at certain z values in order to get a unique po-
tential curve we need additional information on the in-
teraction. In diatomic molecular spectroscopy, in ad-
dition to the vibrational levels, the rotational levels
contribute information on the potential so that in this
case the turning points may be evaluated independently.
But there is no equivalent quantity here in the case of
linear vibration in v»(z) normal to the surface.

t„(z)- —C, z '. (3.29)

With this behavior at the outer turning point Le Roy
(1976) achieved a formula for the energy levels near the
dissociation limit

~

E„~"=hC -"(t) —r))

where b = 0.2027 (meV)'~' nm and t), t)n = mass reduced
quantum numbers defined in Eq. (3.28), where j~= ef-
fective quantum number of the dissociation limit.
Formula (3.30) shows that for levels near the dissocia-
tion limit a plot of the one-sixth power of the binding
energies versus q should be linear; the slope and the
intercept with the q axis will give C, and qL„respec-
tively. Corresponding plots of the experimental binding
energies of H, D on LiF and NaF are given in Fig.
lpga, b. They show that the measured Ez values fit quite

(3.30)

a. ExperImental results on the long-range attracfi ve part

One kind of information on the gas-surface potential
curve which can be introduced additionally to proceed in
constructing v„(z) is the asymptotic behavior already
discussed

TABLE II. Examples of binding energies in the gas-surface potential well voo(z) as determined
from experimental resonance investigations.

Gas Surface Eo
Binding energies (me V)

E Ref.

H

D
LiF(001) -12.2 + 0.2

—13.7 ~0.2
—3.5 ~0.3
—6.7 +0.2

—0.5 + 0.3
—2.3 + 0.2 +0.5 + 0.3

L.F(001) -5.59 + 0.1
—5.9 ~0.1

—2.0 +0.1
—2.46 + 0.1 —0.78 + O. l -0.21 + 0.1

b
b

He Graphite
He

-11.62 + 0.12
—12,02 + O. l

-5.38+ 0.12
—6.34 + 0.1

—1.78+ 0.12
—2.85 + 0.06

c
-1.00 + 0.06 -0.17 ~ 0.06 c, d

Finzel et al. (1975).
Derry et al. (1978).
Derry et al. (1979).
Boato et al. (1979$).
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FIG. 10. Classical turning points z~ and z2 of a particle with
total, energy E in the potential well &00(z)

O.O
2

well to a straight line, but they also show that there
should be some additional bound states between the '

highest observed level and the dissociation limit. The
values of C, and g~ determined from plots like those
shown in Fig. 11 are given in Table III for those gas-
surface systems for which reliable binding energies ex-
ist. Also shown in this table are the values of C, cal-
culated by Bruch and Watanabe (1977) and a comparison
of the total number of levels N, , calculated from gD by

Ng g
next larger integer toj D=qD(m~/mH)' ' —1/'2

Cl

LLJ

10—

( ~ }8D( ~ ) on NaF

(3.31)
with the number of observed levels N,b, . In the last col-
umn the values of the potential well depth D are given
which were obtained from extrapolating the E(q)' ' curve
to 7) = 0 or j = —1/2. Of course, this value of the potential
well depth achieved from extending the z ' behavior to
the potential minimum is only an approximative one.
This should be compared with values of D achieved by
other methods discussed later.

b. Semiempirjcal rule for the attraction constant C3
Bruch and Watanabe calculated the values of C for3

some gas-surface systems using the general formula for
the polarization energy [Eq. (2.17)]. Since these are
relatively complicated calculations which require the
knowledge of the electric dipole polarizability of the
atom and of the dielectric function of the solid both as
function of imaginary frequencies, it will be shown in
the following how a simpler procedure can be used to
get rather reliable values of C, for systems not investi-
gated until now.

With the systems for which C, is known from experi-
ment (see Table III) we have checked the following rela-
tion:

(3.32)

where ~ is the static electric polarizability of the gas
atom, c, is the optical dielectric constant hf the solid,
and K, is a factor of proportionality which should be
constant for all gas-surface systems. The result of this

O.O0

FIG. 11. Experimental binding energies E& [from Finzel et al.
{1975)]plotted as function of mass-reduced quantum number g
according to Eq. (3.30) [after Le Roy (197$)]. (a) H, D on
LiF (001); (b) H, D on NaF (001).

check is shown in Fig. 12 where the experimental values
of C, (Column 2 of Table III) are plotted as function of
o. (c —I)/(c+ 1). The values of o. and e used for these
calculations are given in Table IV together with the re-
sultant values of n(c —I)/(c+ 1). Indeed the functional
dependence of the experimental points in Fig. 12 can be
fitted quite well by a straight line, the slope of which
gives a mean value of

(0 1412 0 010)

Figure 13 shows a plot similar to Fig. 12, but here the
values calculated by Bruch and Watanabe (Column 3 of
Table III) were used. Again the functional dependence is
rather well approximated by a straight line, but the re-
sultant value of

3

K,' ' = (0.108+ 0.003) 1O-" cm'
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TABLE III. Values of attraction constant C3, the effective mass reduced quantum number of the
dissociation limit qD with the corresponding total number of bound-state levels Nt, t, and the poten-
tial well depth D 3 as obtained from plots of E, =f(p) (Ej' values from Table VIII) according to the
method proposed by LeBoy (1976) are compared with values C3

' by Bruch and Watanabe {1977)and
the number of experimentally observed levels Ã,b, .

System C3" /meVnm3 C'+'/meV nm3 D 3/me V

H-LiF

H-NaF

3He
4He

He
4 -NaF
He

He —NiO

0.25 + 0.09

0.18 + 0.11

0.12+0.03

0.12 ~ 0.044

0.22 + 0.11

0.194

0.154

0.093

5.3 + 0.5

4.8 + 0.8

3.6 +0.2

3.4 ~0.3

4.4 +0.6

5-6
7-8

4-6
6-8

6-7
7-8

5-6
7-8

8-10

25.6 +3.1

27.5 + 3.5

9.3 +0.8

8.8 +1.3

12.8 *2.3

—LiF
D2

H2—NiO

3He
4

—gl aph.
He

H—graph.

H2—graph.
2

Kr—graph.

Xe—graph.

0.80 ~ 0.14

0.11~ 0.03

0.54 ~ 0.05

0.67 ~ 0.08

0.27

0.173

1.74

2.47

9.5 + 0.5

4.0 + 0.3

7.85 ~ 0.2

8.6 + 0.3

13-14
6-7
7-9

8
11

12-13
17-18

85+6

25 +6

57 +2

Values determined by Le Roy (1976).
Calculated by Bruch and Watanabe as cited by Derry et al. (1979).

E
C:)I
E
C

I I I I I

H, H2, He-alkalihaaides, Ni 0, graphite

exp.
C g[Ct

=(0.14

0 5.—

0 1

I

2
I

3 4 5 6
n (E-1)/{a+1) in 10 crn

FIG. 12. Constant of attractive dispersion interaction C3 de-
termined from experimental binding energies E plotted as
function of o.'(Z —1)/(p+ 1) with ~ = static electric polarizability
of the atom and g=optical dielectric constant of the solid. An

approximative linear dependence with the constant of propor-
tionality ~&"~ is clearly demonstrated.

is somewhat smaller as could be expected from compar-
ing the experimental and theoretical values of C, in Ta-
ble III. So taking one of these two mean values, K,'" or
K,'~', an approximative value of the polarization energy
coefficient C, of an unknown system may be evaluated
with the values of o.(c —1)/'(c+ 1) as given in Table IV or
calculated from static dipole polarizability a and optical
dielectric constant c tabulated elsewhere. Regarding the
deviations of the known values of C, from the straight
line in Fig. 12; the error in a C, coefficient calculated
in this way can be assumed not to be larger than 30%,
which was the deviation in the worst cases.

The situation is still better with the calculated C, val-
ues. There the deviations from the straight line are in
general much smaller than 30%. The good agreement is
also demonstrated by C, values recently calculated by
Vidali, Cole, and Schwartz (1979). With the general
formula [Eq. (2.17)] they get for atomic and molecular
hydrogen on graphite:

Cv, ' (H-gr) = (0.397 + 0.006) me V nm';

Cv' (H, -gr) =(0.55+ 0.03) meVnm',
whereas from our rule one has

C~""(H-gr) = (0.43 + 0.01) meVnm';

C,'""(H,-gr) = (0.52+ 0.02) meVnm'.
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TABLE IV. Static electric polarizabilities ~ and optical dielectric constants 6 together with the
values of o.(c- 1)/(6+1) calculated with these n and C for different gas-surface systems.

~(c- 1) /(v+1)

Crys tal

Gas~ a
6

H

6.7'
He

2 lb
Hp

8.1
Ne

3 96'
Ar

16.5'
Kr

24 9b
Xe

40.6b

LiF
NaF
NaCi
KC1
RbC1
NiO
MBO
Mgo
Graphite

1.92
1.74'

2.19
47
4 7

3.9g

2.11
1.81
2.58
2.42
2.50
4.35
4.35
3.31
3.97

0.66
0.57
0.81
0.76
0.78
1.36
1.36
l.04
1.24

2.55
2.19.
3.12
2.92
3.02
5.26
5.26
4.00
4.79

1 ~ 25
1.07
1.52
1.43
1.48
2.57
2.57
1.95
2.34

5.20
4.46
6.35
5.96
6.16

10.71
10.71
8.15
9.77

7.85
6.72
9.58
8.99
9.29

16.16
16.16
12.29
14.74

12.79
10.96
15.62'

14.66
15.15
26.35
26.35
20.04
24.03

The electric polarizabilities here and in the following are given in cgs units, since these units are
used in most tables, & in SI units is achieved by multiplying the values given here by 1.11&10 ~6

As m /Vcm .
Static electric polarizabilities ~ from Tang, Norbeck, and Certain (1976) and references given
there.
Average polarizability n=(1/3)(~~l+2&&) from Landolt —Bornstein (1951a).
Optical dielectric constants &(& = 500 nm) from Landolt-Bornstein (195lb)
6 from CRC Handbook of Chemistry and Physics (%'east, 1974).
C from Kittel (1969).

~ Effective dielectric constant for graphite constructed somewhat arbitrarily by C ff=(Re ~, +~.,)/2
proved to be working well for representing graphite in the C3 or D rule I&,. =5.6 +i 7.0 and 6,
=2.25 calculated from optical constants at 2.5 eV given by Greenaway et al. (1969)].

2.5

O
U P)

1.0—

0.5—

10
l I

15 20
Q (E:-1)/IE+1j in 10 crn

25

FIG. 13. Constant of attractive dispersion interaction C3 as
calculated by Bruch and Watanabe (1977) plotted in the same
manner as F ig. 12.

This shows that the values from our rule and those cal-
culated by Vidali et al. differ by a few percent only.

The reason for the difference between the experiment-
al and theoretical values of C, may be caused by the fact
that even with the weakest bound levels observed in
selective adsorption, still a region of the attractive po-
tential is probed which is too near to the potential mini-
mum to be well described by the asymptotic long-range
behavior of pure polarization attraction. A more de-
cisive answer to the question of whether there is some
fundamental effect causing the observed difference could

be given by confirming or rejecting the existence of the
additional levels expected from theory near the dissoci-
ation limit. If these levels could be observed in experi-
ments with higher resolution the uncertainty in the ex-
perimental values of C, could be diminished, for until
now in most cases the theoreticaL values lie within rela-
tively large experimental error bars.

c. Construction of v~(z) with RKR method

Assuming the asymptotic form of the potential to be
known by v",,(z) = -C,/z', Schwartz, Cole, and Pliva
(1978) proposed a, procedure based on RKR method of
constructing v«(z) from the spectrum IE,} The first.
step is getting the function 7I(E') defined in Eq. (3.28) by
interpolating between the experimental values of E, at
which j(E&) takes the values j =0, 1, 2, . . . . In doing this
interpolation account is also taken of the fact that the
potential is nearly harmonic at the bottom of the well so
that q(E) should vary with E linearly there. The second
step is calculating the width of the potential well as a
function of energy E from Eq. (3.27). The third step is
combining the well width with the known asymptotic
form;- that means setting in the asymptotic region the
outer turning point z, to

z, =(C,/IEI) i'

where Schartz, Cole, and Pliva, (1978) used the values of
C, ' calculated by Bruch and Watanabe (1977). For the
construction of the complete potentia, l curve a graphical
procedure is applied which uses again the fact that v»(z)
is harmonic near the equilibrium position z, . But there
remains a small ambiguity in the shape resulting from

The values of C3 for H-LiF, H-NaF, and He-LiF used by
Schwartz et al. , deviate somewhat from those given by Bruch
and Watanabe: Cs (Schwartz) = (3,5/4)C3 (Bruch, Watanabe);
only the value for He-NaF is the same in both papers.
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d. Model potentials used for v~(z)
The method most frequently used to overcome the

inversion problem in determining zoo(z) from the spec-
trum of binding energies JE,.j is to choose some ap-
propriate model potential with two or more free pa-
rameters, and to determine these parameters by fitting
the energy levels of the assumed potential to the ex-
perimental fE,.j spectrum. A review of the different
types of model potentials used in this connection is given
in Appendix C.

A form frequently used since the first calculations
by Lennard- Jones and Devonshire (1937) is the Morse
potential (Appendix C.1). Although it does not have the
correct long-range asymptotic form, it works well for
describing the experimental values of &,-, at least for
the stronger bound levels. This is clearly demonstrated
in Fig. 16 for H, D on LiF and NaF (Finzel et al. ,

0
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H, D —L1F (001)

different ways of connecting the repulsive and the at-
tractive part of the potential in this graphical interpola-
tion. The resulting form of the potential curves for
H, D-LiF and H, D-NaF are shown in Figs. 14 and 15,
respectively, together with (9-3) and shifted Morse hy-
brid potential curves determined from fitting binding en-
ergies (see next section and Appendix C).

1975). Two other examples of potential forms which
were also used in order to fit experimental binding en-
ergies are the (9-3) and the "shifted Morse hybrid po-
tential"'(Appendix C.3 and 5). In Figs. 14 and 15 the
potential curves for H, D on LiF and NaF resulting
from these model potentials are compared to the po-
tential curves constructed with the RKB method by
Schwartz, Cole, and Pliva (1978).

00
1

1,
l&

I

I

I

I

I

I

I

I

I

I

I

I

e. Potential parameters from fitting {Ejspect. raj
A detailed survey of the potential parameters obtained

for the different potential forms from fitting experi-
mental binding energies (E,j is given in Appendix C in
Table IX. An essential aspect which can be seen from
this table is that the resultant parameters vary. appre-
ciably with the model potential used, especially the
highest and lowest values obtained for the potential well
depth D, which differ by up to 20%. But this is not
surprising considering the arguments given above about
the uniqueness of a potential curve as determined from
{E,j. Very different potential forms chosen from dif-
ferent points of view may force certain parameters to
rather different values. The (S-3) potential, for in-
stance, with steep sides and a strong curvature near
the minimum, becomes relatively deep and narrow,
whereas the more moderate curved Morse potential
gets a much smaller depth.

The values of C, in Table IX determined from D and
v of the (9-3) potential, are appreciably larger than

—22

FIG. 14. Interaction potential curves &pp(z) for H or D on
LiF (001) constructed from experimental binding energies
(Finzel et aE. , 1975) by: RKR procedure (full curve); fitting
a (9-3) model potential (---); and fitting a shifted Morse hy-
brid model potential (-.-) Iafter Schwartz, Cole, and Pliva
(1978)]-

—20—

II
IV I

I
I
I &

001)

—22

FIG. 15. The same as Fig. 14 but for H, D on NaF (001).
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FIG. 16. Gas-surface Morse potentials (D =well depth and v= reciprocal range parameter) for the systems H, D-LiF(001) and
H, D-NaF(001); experimental and calculated binding energies are compared [from Finzel et al. (1975)].

those calculated by Bruch and Watanabe (1977) and those
evaluated according to the method of Le Roy (1976)
(see Table III). The reason for this is that D and a. are
determined mainly in order to fit E,. values of states
deep in the potential well and it cannot be expected that
they then reproduce the correct asymptotic behavior of
the potential too. Comparisons of different potential
forms have been also given by Tsuchida (1975) and by
Schartz, Cole, and Pliva (1978). Tsuchida compared
the applicability of Morse, (12-3), and zeta potentials
for He-LiF (001). Schwartz et al. constructed and dis-
cussed potentials from the BKR method and of the
shifted Morse hybrid and (9-3) form for H, D on LiF
and NaF and for 'He, He on LiF, and NaF. Very
recently Goodman, Garcia, and Celli (1979) gave a
comparison of the shifted Morse hybrid and the flat-
bottom hard-wall potential and discussed also the val-
ues of C, determined by different methods. Comparing
the quality of the fit to binding energies within the dif-
ferent model potentials, the "shifted Morse hybrid po-
tential" (SMH, see Appendix C.5) turns out to be one
of the most appropriate ones. It also has a realistic
form with the correct asymptotic behavior and fits well
to the potential curvy constructed with the RKR method.
So the SMH form and the curve constructed with the
BKR method may be regarded as giving the best rep-
resentation of the potential well v»(z).

z = r, +r, =d/2+r, . (3.33)

Putting this value of closest approach into the attractive
potential v, (z) one gets for the well depth in our model

D = C~(d/2 + r —zo) (3.34)

v (zj
Ak

Zo ZQt

can be given by starting with the rule for C, developed
Rbove. ApproxlmatlIlg the gRs-sul fRce lnterRctlon by
a hard repulsive wall at z and an attractive part of
v, (z) = —C, (z —z, )

' we get a potential of the form as
shown in Fig. 17. 'The gas atom approaches the crystal
surface up to the hard wall at a distance ~ measured
from the first surface layer, and this distance of closest
approach is given by the sum of the radii of the surface
particle x, and the gas atom x . Since we are dealing
with the lateral average of the gas-surface interaction
we may use an average value for the radius of the sur-
face particles given by half the layer distance d/2. So
we get for z

4. Semiempirical rule for the potential well depth

In the following a rule will be established, which
allows us to get approximative values of the potential
well depth D in physical gas-surface interaction. This
rule is an extension of an empirical rule proposed pre-
viously (Hoinkes, Nahr, and Wilsch, 1972b) which
related the well depth of an arbitrary gas atom inter-
acting with LiF (001) to the electric polarizability of the
atom. Now various crystals characterized by the
optical dielectric constant g will be included in the new
rule.

A qualitative derivation of a potential well depth rule

FIG. 17. Approximative representation of the gas-surface
interaction potential by a repulsive hard wall at z and a z
attractive term counted from z0.
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z, =d/2.

So we finally get for the well depth

D=C r

(3.36)

(3.36)

This means as long as the radius of the gas particles
v; can be assumed to differ only weakly for different
particles, and this is the case at least for H, He, and
H„we get

D cx C (3.37)

So we finally have for D a rule corresponding to that for
C, [see Eq. (3.32)]:

We now need the value of ~„ the coordinate of the plane
parallel to the surface from which the attraction. has to-
be counted. This problem was recently discussed by
Zaremba, and Kohn (1976), with the result that for di-
electric solids as regarded here z, is well approxi-
mated by half a lattice distance

70-

~ 6o-
C.

~ 5o-
CL

40-

g 30-
(D

O
cL 20-

I I I I I

H, H2, He —alkalihalides, N i O, graphite

D=K n(s-1)/(~+1). (3.38)

This relation developed here resembles approximately
one of the relations recently discussed by Bogowska
(1978) for potentials achieved from pairwise summation
(see Appendix A.2).

In order to test this D rule given above, the well
depths D of all the systems investigated experimentally
by selective adsorption are plotted as a function of
o!(c—1)/(p+1) in Fig. 18. Since the value of D evalua, ted
from the (EJ} spectrum depends, on the model potential
used, in Fig. 18 two D values, determined from two
extreme models, the 1VIorse and the (9-3) form, are
shown. In both cases D was evaluated from the two
deepest energy levels E, and E, using the corr'esponding
formulas (C2) and (C6). The resultant values D and
D' ' are summarized in Table V.

Figure 19 demonstrates indeed in good approximation
a linear relation between the well depth D and n(g —1)/
(p+1). Using the data plotted in Fig. 19 a least squares
fit for the constant of proportionality KD results in a
mean value of

KL, ——(11.2+ 0.4) meV/10 "cm'.
In a second attempt, vAere only rare gases were con-
sidered and where the range of D values was expanded
by also taking into account heats of adsorption for He
to Kr as compiled in Table VI, the linear relation be-

2 3 4 5
ct (c-1}l(v+1} in10' crn

FIG. 18. Potential well depth D determined from experimental
binding energies E as function of &(g —1)/(g+ 1) with n = static
electric polarizability of the atom and g = optical dielectric
constant of the solid. An approximative linear dependence with
the constant of proportionality K& is clearly demonstrated.

The deviations of the actual values of D from those cal-
culated by Dz ——K~o!(e —1)/(v+1) are in both cases for
almost all systems smaller than 20%%u~ (the main devia-
tion appears in the system He-NiO with 30%) as shown
in the last columns of Tables V and VI, respectively.

he mean value of these relative deviations is also
quite similar in both cases with

1 p ID„—D~„l
D. .

So we can finally state here that for a gas-surface sys-

tween D and o.'(p —1)/(a+1) turned out to be comparably
good (see Fig. 19) with a mean value of KD

K ~ = (12.6 + 0.5) meV/10 "cm'.

TABLE V. Values of the well depth D as used for plotting Fig. 18. DM and D9 ~ are calculated with
Eqs. (C2) or (C6) with the two deepest levels Eo and E& and then averaged over isotopes.
D&=&~e(g —].)/(g+1) with ED=11.2 meV/10 5 cm3.

Surface, D"/me V

DM + D9-3
D =-

2 meV
&& 100

He
He
He
He
H

H
H

H2

H2

NaF (001)
LiF (001)
Graphite
NiO (001)
NaF (001)
LiF (001)
Graphite
Graphite
NiO (001)

6.86
8.10

15.55
10.34
18.3
18.6
42.9
50.5
62.7

7.55
8.70

16.3
10.81
20.2
20.4

5
51.6
65.5

7.21
8.40

15.9
10.6
19.3
19.5
43.7
51.0
64.1

6.4
7 4

13.8
15.2
20.3
23.6
44.0
53.7
58.9

13.0
13.6
15.4
30.4
4.8

17.5
0.7
4.9
8,8
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D. Results on the periodic potential terms from bound-
state resonances

)
a 150—
E
C:

Ci

CL

~ 100—

50—

I I i I I I 1
I

i I i

5 10
-25 3a (E:-1)l (E:+1) in 10 cm

FIG. 19. The same as Fig. 18 but extended to heavier rare
gases with D taken from heats of adsorption (see Table VI).

15

tern with van der Waals interaction the potential well
depth D may be estimated from the static electric po-
larizability + of the gas atom and the optical dielectric
cons'tant q of the solid by the D rule:

(3.39)

and taking an averaged value. of AD=12 meV, /'&0 "cm'
the error in the achieved value of D can be assumed
to be smaller than 25%. A table with potential well
depths calculated with this rule for several gas-sur-
face systems is given in Appendix D.

In Sec. III.A it was discussed that the strength of the
periodic variation of the gas-surface interaction deter-
mines the distribution of the elastically scattered in-
tensity to the different diffracted beams, and in Sec.
III.B it was also shown that corrugation parameters
may be extracted from the observed diffracted beam
intensities within the corrugated hard-wa, ll model. In
the following a second way of getting information on the
periodic structure of the gas-surface interaction will
be discussed. It will be shown that the strength'of the
periodic terms vo of the general expansion of the po-
tential [see Eq. (2.1)] may be determined from bound-
state resonance investigations.

E,".(K, ) = (m'/2m, )(K+G)'. (3.40)

Measurable deviations from this free-particle relation
may occur if two bound states with Ko and K are en-

1 2.
ergetically degenerate but differ from one another in
Ko by a vector G~ = Ko —K which belongs to a rel-
atively strong periodic potential term vG . Since the two
degenerate states can be bound normal to the surface
in two different levels E,- and &, in general the de-

1. Resonance splitting for degenerate bound states

The method of determining the strength of the periodic
terms discussed here is based on an effect pointed out
recently by Chow and Thompson (1976). As we have
seen above, ~ at certain conditions of incidence an atom
may be diffracted by a certain G vector to a bound sur-
face state. In this state the atom is bound normal to the
surface with a discrete binding energy E,. and moves
parallel to the surface with a wave vector KG =K+G.
Since this two-dimensional motion parallel to the sur-
face takes place in a periodic potential, band structure
effects may occur in the eriergy E,'-' of this motion as a
function of the two-dimensional wave vector KG. In
most cases the band structure E'J'(Ko) is well approxi-
mated by the free-particle relation

TABLE VI. Potential well depths and heats of adsorption together with the values of ~(C- 1)/(&+1)
used for plotting Fig. 19. DE calculated with KD=12.6 meV/10 ~ cm .

Gas Surface D/me V

a

10 ~ cmg —1
~+1 E- 1

Dz =&a~ 8+1 DE

He
He
He

NaF (001)
LiF (001)
Graphite

Select. ads.

7.21
8.40

15.9

0.57
0.66
1.23

7.18
8.32

15.5

0.4
1.0
2, 6

Heats of adsorp. (Beder, 1967)

He
Ne
Ar
Ar
Ar
Ar
Kr

Graphite
Graphite
LiF (001)

.KCl (001)
KJ (001)
Graphite
Graphite

14.8
36.0

77
90

109
117
169

1.23
2.32
5.20
5.87
7.56
9.68

14.6

15.5
29.2
65.5
74.0
95.3

122.0
184.0

4 5
23.2
17.5
21.7
14.4
4.1
8.1

From Table IV.
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generacy is described by the following condition

(e'/2, )(K+G,)' —lE,. l

= (m'/2. ~,)(K+G,)' lE, ,
l

.

(3.41)

The degeneracy of these two states p, = y(j; G, ) and

y, =y(j', G, ) is lifted because of the coupling by the
periodic component vo (z), and two new admixed states
p, „are created with new energy eigenvalues E, „
=E, ,+ &E. The energy splitting 2&E of the new states
depends on the strength of the periodic potential term
VG~ ~

Now the conditions of incidence in a diffraction experi-
ment may be chosen so that the incident beam is in
resonance with such degenerate bound states as.indi-
cated by the following resonance condition:

—;=«'/2~)«+G»'- E, I
=«'/2~, )«+G.)'- lE; l.

(3.42)

30—

30-

i/)— 30-
C:

R30—

D& —Na F ( 001)

TsF = 240K

e, = 75o
E0 I-1,-2 )

~ .wo, &
E ' 0-1

l. ..~

0

~ ~ 0

~ ~ ~

~~ 00
~o ~

0+ ~

~ ~

Qo ~ ~
~ ~ ~

~ 0 ~ 04'

e
0 ~

~ ~ O~ ~
~ ~

~y OOO

~ P% o
~ ~

E = 88.3 meV
I

Ei= 86. 0 meV

E;= 81.5 me V

EI= 78. 6 meV

E;=74. 2 meY

If in addition G~=G, —G, belongs to a strong vG term
[terms of the type (1, 0) or (1, 1) in most gas-surface
systems], the resonance minimum in the specular beam
is not observed for the incidence condition determined
by Eq. (3.42), but a splitting of the resonance minimum
may be found. The resonance now occurs with the
shifted energy eigenvalues E, + &E and E, —&E of the
admixed states.

Minimum splitting of this kind in azimuthal plots of
the specular intensify was observed first with atomic
deuterium on LiF and NaF by the Erlangen group
(Frank, 1973; Wonka, 1973; Hoinkes, Greiner, and
Wilseh, 1977) and with He on Na. F by the Pennsylvania
State University group (Liva, Derry, and Frankl,
1976). An example of experimentally observed splitting
for D-NaF (001) is shown in Fig. 20. There the spec-
ular intensity was measured as a function of the azi-
muthal angle y at different incident energies E,. and the
constant angle of incidence 9,. =75 . At the point of de-
generacy of the resonant bound states y(0; 0, —1) and
cP(0; —1, —2) two minima, shifted from the undisturbed
position are observed.

Following the ideas of Chow and Thompson (1976) we
have calculated the energy of the admixed bound states
and succeeded in determining the strength of the periodic
coupling term v» from the observed splitting (Hoinkes,
Greiner, and Wilsch, 1977). From perturbation theory
the energy eigenvalues of the admixed states are known
to be

E, b
= 1/2(E(0; 0, -1)+ E(0; -1, —2)

+ [(E(0;0, —1) —E'(0; —1, —2)}'+4H, I
'~ ),

(3.43)

showing that at the point of degeneracy where
E(0; 0, —1)= E(0; -1, -2) the energy splitting between
the mixed states is given by

AE b
——E, —Eb = 2H~2

=2 (0; 0, -1
l
v»(z) exp(iG» R)

l
0; —1, —2) . (3.44)

Thus by transferring the observed y splitting to an en-
ergy splitting the corresponding matrix element may be

40—

~ y

O~

~ ~

~ oo~+
~ ~

0 EI= 69. 3 me V

-30' I

-28O 2/0
I I I I I

-2 4 -22 -20

FIG. 20. Splitting of bound-state resonance minima in azi-
muthal plots of the specular intensity of atomic deuterium
scattered from NaF (001), measured at different incident en-
ergies E;. The contributing bound states are indicated by ar-
rows.

vii (z) = Pii D exp (—2Kz ) ~

So we get for the matrix element

H» ——p» D exp(K'h/m, &u) . (3.46)

The only unknown parameter is P», which finally re-
sults from comparison with experiment to be

P„(H-NaF) = 0.02 .
Figure 21 demonstrates that the observed splitting is
well described by curves of resonance angles calculated
with the energy eigenvalues of the mixed states E, , as
given in Eq. (3.43) using P„=0.02.

It should be pointed out here also that the resonance
minimum produced by the relative high-order G vector

determined from experiment. We find from the minimum
splitting shown in Fig. 20:

(0; 0, —1
l
v„(z) exp(iG» R)

l
0; -1, —2 ),„,= 0.48 mev .

Further, by comparing this experimental matrix ele-
ment with the matrix element calculated with the eigen-
funetions of v»(z) and an appropriate form of v»(z) the
strength P» of v»(z) can be evaluated. We have done
this in an approximative way by taking harmonic oscil-
lator wave functions for the z motion in the j = 0 state
with w =2(D — E,

l
)/5 and by using for the form of

v»(z) the repulsive part of the known Morse potential
multiplied by the strength factor p»
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E me Y

88.3—

86.0—

81.5—

78.6—

74.2—

,—Eo'(-1,-2j
I

E (0, -1 j

'The more complicated structure observed with D-
LiF around the (0; 0, 1) resonance is shown in Fig. 22.
The simple two-band perturbation theory seemed riot,
to be suited to extract P values from the splitting. But
the band structure calculations by Garcia-Sanz and
Garcia again result in energy splittings which compare
well to experiment when reasonable values of P,o and

P» are used. ' Figure 24(a)-(c) shows the free bands at,
three different incident energies E,. =21.7, 22.0, and
22.3 meV, where in case (c) the three bound states
(0; 0, 1), (3; —1, 1), and (3; 0, -2) are degenerate and
simultaneously in resonance with the incident beam at
y =27.2'. The band structure with P,0=0.055 and P»
=0.027 is given in Fig. 24(d) —(f) showing a splitting in
the resonance angles of &y, „=0.8, which compares
rather well to an experimental value of &y,„,=1 . So
for the gas-surface systems discussed here we get
from resonance splitting the following PG values

69.3— P„(H-LiF) =2P„(H-LiF) ~ 0.055,

P„(H-NaF) = 0.02 —0.03 .

65.0—

-26.5

(—1, —2) is only observed near the point of degeneracy
with the strong resonance produced by G= (0, —1). This
change in strength of the resonance is demonstrated in
Fig. 21 by the varying darkness of the disks.

More detailed theoretical investigations concerning
this splitting in D-NaF and also concerning a more
complicated structure of interacting bound states ob-
served with D-LiF (see Fig. 22) were carried out
recently by Garcia-Sanz and Garcia (1979). In cal-
culations based on the theory of Cabrera et al. (1970)
with a Morse potential (parameters as given in Table
IX) and the two periodic terms v» and v» they deter-
mined the two-dimensional band structure in the region
of degeneracy. The results are given in Fig. 23 for D-
NaF and in Fig. 24 for D-LiF. The calculated curves
represent the bound-state energy E(j, K+G) as function
of the azimuthal angle y at constant incident surface
vector K.

Figure 23a shows the degeneracy of the bound states
(0; 0, -1) and (0; —1, —2) in free band approximation
(P» —P» ——0) at y =26.1', where both states are also in
resonance with the incident beam E(0; 0, —1 ) =E(0; —1,
-2) =E', And from Fig. 23(b)—(d) it is clearly seen that
only P» &0 causes a splitting, whereas P» has prac-
tically no influence on the band structure in this r'egion.
As a final result a value of P» ——0.03 may be extracted
leading to resonance angles of 25.5 and 26.7 which
compare well with the experimental ones.

I I I I

-27.0 -26.0 -25.5 -25.2
'Y

FIG. 21. Calculated dependence of incident energy E; on azi-
muthal angle p under bound-state resonance conditions for in-
dependent bound channels (crossing lines) and for admixed
bound channels with P~~ = 0.02. The disks represent the exper-
imentally observed angles of resonance minima (the darkness
indicates the depth of the minimum).

These values can be compared with approximative PG

values determined previously (Finzel et al. , 1975) with
different methods:

(i) The interaction potential for H-LiF (001) was calcu-
lated by pairwise potential summation (see Sec. II.B.2)
and the resulting potential function v(r) was then fitted
by the expansion given in Eq. (2.1) taking va terms up to
the order (1, 1). For the form of the higher-order terms
[Gc (0, 0)j again vG(z) =PGD exp( —2I&z) was assumed.
The PG values resulting from this procedure were

P „(H-Li F)= 0.055; P „(H-Li F)= 0.027 .

(ii) A second way to get information on pG values was
comparing experimental diffraction intensities in the

(1, 0) and (1, 1) beams with intensities calculated in first
order distorted wave Born approximation (FODWBA)
with formulas given by Cabrera et al (1970). H.ere we

obtained:

p,o(H-LIF) = 0.017; p „(H-LiF)=p,o/2

p„(H-NaF) =0.015; p„(H-NaF) =0.010.

(iii) Finally, we have compared the expe'rimentally ob-
served dependence of the specular intensity on the angle
of incidence with calculations according to the theory by
Cabrera et al. (1970). With the assumption P„=O we

have extracted in this case:

P „(H-Li F) = 0.03 5 —0.040 .

In the case (i) the calculated PG values represent the

strength of the per iodic ter ms in the whole z region and

may well be compared with the values obtained from
resonance splitting, which represents the periodic
structure in the potential well. The situation is different
in the cases (ii) and (iii); there the PG values result
from the periodic structure at positive energies normal
to the surface. But because of the approximative char-
acter of these values no decisive conclusions on the en-
ergy dependence of the periodic terms can be drawn
from our results. Garcia. —Sanz and Garcia. (1979) could
also explain resonance splittings observed by Liva,
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FIG. 22. Splitting of bound-state resonance minima for atomic deuterium scattered from LiF(001). (a) Azimuthal plots of specu-
lar intensity measured around the (0; 0, 1) resonance at different incident energies E;. (b} Calculated dependence of incident

energy E; on azimuthal angle p under bound-state resonance conditions for independent resonances (j;rn, n); position and in-

creasing strength of observed minima indicated by points with increasing cross section.

Derry, and Frankl (1976) for He-NaF(001). ~ith band
structure calculations for this system they got

P»(He-NaF) =0.05; P„(He-NaF) = 0.02.
Very recently Boato et al. (1979a, 1979b) have done de-
tailed experimental resonance investigations for He on
graphite. They observed several crossings of reso-
nances and found out that practically only the first Fou-
rier component v yp is contributing to the periodic part of
the potential. Using perturbation calculations of the kind
we had shown to work well with D-NaF (Hoinkes,
Greiner, and~ilsch, 1977), as discussed above, they
determined from the observed splittings matrix ele-
ments of the type (p, I v»1y, ) and used these to get
more insight in the complete form of the gas-surface in-

teraction potential for He graphite. Following the
variable exponent potential form (see Appendix C.7) for
v»(z), Boato et al. (1979b) chose as a representation of
the first Fourier component of the potential

v„(~) = —pD(1+Xz/p) "', (3.46)

where the parameters D = 15.70 meV, ~ = 1.413 A, and

p = 5.3 are known from fitting experimental binding ener-
gies. Calculating the matrix elements (cp&1 v» leg&. ) with

y,. and y, being wave functions evaluated from v~~(z)
with parameters given above, they got best fits with a
=3 and P =0.019. The fit is not so good with the less
steep repulsion given by n = 2 which would represent the
repulsive form of v~00'(g); also, the repulsive term of an
appropriate Morse potential is not steep enough to get a
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D/Na F (100)
e=75

82"

80

Ej

78

82"
(c)

P) 0=0., P) )=0 03 P) 0--P) )
=0 03

80.

25.6 260 264 268 256 26.0 264 268 g ( )

FEG. 23. Calculated band structure for D-NaF{pol) representing the bound-state energy E(y;m, n) as function of the azimuthal
angle p at constant incident surface component K=@;sin 0; of the wave vector (E;=78.6 meV; 0;=75 ). {a) Free bands; (b) shows
that influence of v&o(z) is practically zero; (c) splitting due to v~~(z), and (d) from v&0(z) and v&&(z) together the same splitting
results as from v&~(z) only )from Garcia-Sanz and Garcia (1979)].

good fit of the matrix elements. So resonance splitting
delivers not only information on the strength of the per-
iodic potential terms but also on the z dependence of the
periodic terms in the region of the well.

Calculations of band structure effects by Chow (1979)
and of matrix elements (cp&~v~ ~cp;. ) by Carlos and Cole
(1978) done in advance of these recent experiment by
Boato et al. (1979b) agree only qualitatively with experi-
ment. This shows that the expressions for the He-
graphite potential gained from pairwise summation are
only of approximative character. In very recent calcu-
lations, however, Carlos and Cole (1979) showed the
agreement between calculated and experimentally de-
termined matrix elements is strongly improved if an
anisotropic He-C pair interaction is assumed in the
pairwise summation. On the other hand, Hutchison and
Celli (1980) showed that they get good agreement be-
tween theoretical and experimental matrix elements in
calculations with the flat-bottom corrugated hard-wall
potential (see Appendix C.8) if they include additionally a
weak periodic variation of the depth of the flat bottom.

2. Results from comparison of calculated and
experimental resonance structure in diffracted beams

In the last few years the elastic gas-surface diffrac-
tion theory has developed to a state where not only over-
all diffracted beam intensities out of resonances can be

g(R) = (—,')&,[cos(2'/l)+ cos(2my/f)]

+ g, cos(2'/f ) cos(2my/l ), (3.47)

with g, = 0.0307 nm and g2 = 0.0017 nm, as known from
hard corrugated model calculations at higher incident
energies (k;= 110 nm ') (Garcia, 1976).
So we see that at least in the case of He-LiF this some-

described, but where also the experimentally observed
resonance structure can be reproduced quite well. This
was demonstrated clearly with calculations by Harvie
and Weare (1978) and in more detail by Garcia, Celli,
and Goodman (1979) for He on LiF(001). Their calcu-
lated curves describe almost quantitatively all the fea-
tures seen in the detailed resonance structure measure-
ments by Frankl et al. (1978) at relatively low incident
energy (k,.= 60 nm ').

Using for the interaction potential the flat-bottom cor-
rugated hard-wall model (FBHW) as described in Appen-
dix C.8, Garcia et al. achieved this good agreement -be-
tween theory and experiment with the following potential
par ameter s:
(a) the well parameters determined from fitting the
binding energies IE;'I

D= 8.0 meV, n= 14.1 nm ', and P = 10.4 nm '

(b) the corrugation function
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FIG. 24. Caycuyated band structure -for D-LiF(001) representing the bound-state energy E(j;m, ~) as function of the azimuthal

angle p at constant angle of incidence (8;=80') and at three incident energies E,.=21.7; 22.0; 22.3 meV. (a)-(c) Free bands:

Pf p P f $ 0; (d)- (e) spli ttings from interac ting bands w ith Pf p
—0.055, P& &

——0.02 7 [from Gare ia- Sanz and Gare ia (1979)].

what approximative model potential with the hard cor-
rugated wall and the flat bottom works quite well to de-
scribe the scattering behavior, even if this is strongly
controlled by bound state resonances. Concerning the
gas-surface potential, however, no further information
is achieved from this detailed comparison of experi-
mental and theoretical resonance structure since the pa-
rameters of the model potential used were already
known from bound-state levels and from diffracted beam
intensities observed out of resonance at higher incident
energies. Some additional information concerning the
question whether the periodic structure near the bottom
of the potential well is really well described by the
FBHW potential could perhaps be obtained from band
structure splittings which seem to exist in the experi-
mental data but are not investigated in detail by Garcia
et al.

3. Relation between the periodic structure parameters

$o and PG

We have now seen that there are two essentially dif-
ferent methods for studying the periodic structure of the
gas-surface interaction potential by atomic beam dif-
fraction experiments. There is first the possibility of
describing the experimentally observed distribution of
scattered intensity to the different diffracted beams.
This is usually done with the corrugated hard-wall model .

by fitting the corrugation parameters $o (see Sec. III.B).
The second way to get infor mation on the periodic struc-
ture of the gas-surface interaction potential is to inves-
tigate splittings in the resonance structure of degenerate

bound states. In this case the strength of the periodic
terms vo(z) of a Fourier expansion IEq. (2.1)j of the
gas-surface potential may be determined. Since these
Fourier coefficients are usually represented by

vG(z) = poDf (z), (3.48)

where f„(z) gives the repulsive form of the assumed
model potential the final result of such investigations
are certain values of Po which of course depend on the
form of f„(z) used.

These two methods mentioned above can be considered
to contribute information on the periodic structure of the
potential in two different regions; while the observed
splitting results from the structure in the region of the
well, the distribution of intensity to different diffracted
beams is mainly determined by the repulsive part in the
region of 'Uoo+0.

Looking more closely at these two representations of
the potential (i.e. , the hard wall with the corrugation pa-
rameters $o and the softer potential with Fourier coef-
ficients characterized by Po values), the problem is how
to correlate the parameters go with PG. To get a. rela-
tion between these two different representations it is
reasonable to assume that the form of the hard wall is
given by z, (x, y), the z coordinate at which the incident
energy normal to the surface E; „equals the potential
energy v(x, y, z). In other words z, (x, y) is given by the
turning points of the incident atoms. To give an example
of a transformation go —PG we represent v(x, y, z) by a
Morse potential and corresponding periodic terms up to
order (1, 1) and get:
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Xyg gX~P
Q Q ~

Equation (3.49) may be transformed to

(E, „/D) [.exp~(z, —z )]'+2 exp~(z, —z„) —1

= 2p „(cosgx + cosgy) + 4P „cosgx cosgy = C (x, y),

(3.51)

(3.49')

and from this zo is evaluated to be

z, (x, y) =z + (I/z) In((D/E, „)
&& ([1+(E „/D)(1+ C(x, y))]' ' —1)].

(3.52)

Equating this expression of z,(x, y) and $(x, y) from Eq.
(3.50) for the following three selected pairs of

(gx, gy) = (m/2, m/2); (0, m/2); (0, m)

we finally get the relations

z = —(I/v) In/(D/E, „)([I+K)„/D] '~' —I)), (3.53)

.. .„&[1+(E;../D)(1+ 2e,.)]"—»
» ([1+ E /D] 1/2 j)

([1+E,. „/D]'~' —1)
(([&+(&;,./&)(& —4/I )]'~' —&)I

(3.54)

(3.55)

The results for the inverse transformation g- p is given
by

'U(x, y, zo) =D exp[-2K(z o
—z~)]

([I—2 exp'(zo —z )]+2P»(cosgx+ cosgy)

+4pi, cosgx cosgy] =E', (3.49)
and we have to compare it with the corrugation of the
hard wall expanded to the same order

$(x, y) = (—,')(»(cosgx+ cosgy) + g,„cosgx cosgy . (3.50)

The parameters D and K represent the constant term
v«(z) and are assumed to be known from IE,), and z
is a free parameter which has to be chosen sothat the
values of ( and z, averaged over the surface fall to-
gether:

VIIa. Of course the FG values achieved from the Morse
potential depend somewhat on E; „, the energy incident
nor mal to the sur face.

It should be mentioned here that both the PG and the gG
values were obtained by fitting calculated intensity dis-
tributions to experimentally observed distributions. In
both cases the experimental results- were obtained at
fixed incident energy E& = 65 meV and with angles of in-
cidence 0,- between 0 and 65; that means the values of
E, „=E,cos'6, lie between 65 meV and 22 meV. So both
evaluations give information on the same repulsive part
of the potential.

The agreement is not so good if, for the system H-LiF
parameters PG from resonance splittings are trans-
formed to hard-wall parameters and vice versa. As
shown in Table VIIb for the example of E, „=50 meV,
the transformation of the known PG values yields go pa-
rameters which are obviously larger than those ex-
tracted from comparing experimental intensity distribu-
tions to corrugated hard-wall calculations. This result
can again be a hint that the corrugated hard-wall model
works worse for atomic hydrogen than for helium, an
effect which was already discussed in Sec. III.B. How-
ever, it should also be mentioned that for the hydrogen
results discussed here the Po values represent the peri-
odic structure in the well, whereas the )G values are
related to the repulsive part of the potential at positive
energies. So the results in Table VIIb could also mean
that the variation of the vG terms as functions of z is
stronger than assumed in Eq. (3.49).

For mor e decisive results, on the periodic structure in
different regions of the potential additional experimental
investigations are necessary. For instance, resonance
splittings with the contribution of different bound levels
should be investigated, and also more detailed investi-
gations of intensity distributions at different incident
energies should be done.

E. Complex potential for describing inelastic effects in
bound-state resonances

In the previous section we stated that the resonance
structure observed in specular intensity for He-LiF(001)

p„= (1/2) [(E& „/D) U' exp/r&„

+ 2U exp(~ g „/'2) —1],
P „=(1/4)(1 —(Z, „/D)U' [exp(-i&(„)]'

—2U exp( —vg „)j,

(3.56)

(3.57)

TABLE VIIa. Transformation of Fourier coefficient strength
P& to hard-wall corrugation parameter (G by Eqs. (3.54), (3.55)
for three normal incident energies E;.„. Example shown here:
He-LiF (001) witha =7.6 meV, z =1.1 A /go=0 1 Pgg=0. '007
[from Goodman and Tan (1973)].

with

U. =(D/E,. „)([1+E, „/D]"—1). (3.58)
i,n/me V 10 50

Hard wall values
(Garcia, 1976)

In order to show that this transformation works well
we examine as an example the case He-LiF (001) which
is the most extensively investigated system. From
Goodman and Tan (1973) we get the Morse potential and

P~ parameters corresponding to Eq,. (3.49),
D = 7.60 meV, K = 11 nm ', p»=0. 10, and p„=0.007,
and transforming these by Eqs. (3.54) and (3.55), values
of $» and (» are obtained which compare quite well to
the corrugated hard-wall parameters given by Garcia
(1976, 197Vb). The actual values are listed in Table

g„/nm
& q)/nm

0.027 2 0.022 4 0.021 0
0.002 14 0.001 76 0.001 65

0.0307
0.0017

&,0/nm g«/nm

0.055
0.032

0.027
0.0078

0.015
0.009

0.0084
0.0023

TABLE VII b. Transformation PG = = g& for H—LiF (001) at
E'; „=50 meV with. D =17.8 meV and ~ =10.4 nm, PG values
from resonance splitting and (G values from diffracted beam
intensity distributions.
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FIG. 26. Calculated and experimental specular intensity for H and D-LiF(001). The experimental data (A) were taken from

Finze]. eg a). (1975). The calculations were done with moo~ (D=19.7 meV; +=36.7 nm; re= 0.24 nm} and the strengths of periodic

and imaginary terms 'Pgo= 0 06' Pgg= 0 03 and y= 0.04 resulting from a ftt of the experimental data (12% FTHM velocity distribu-

tion is included) [from Chow and Thompson (1979)].

«1 for the (0;0, 1) resonance is I' =1.0 me&, but this
is Bn upper limit since the velocity spread of the beam
w» not included in the calculations; correspondingly
the mean lifetime of 7 = D.7 & 10 " sec has to be re-
garded as a Iower limit.

In order to establish more generally an optical po-
tential suitable for describing the effect of phonons on
the diffracted intensities, it would be necessary to
know how the potential parameters depend on the con-
ditions of incidence and on the thermal properties of
the crystal. In the examples discussed here by Chow
and Thompson (1979) and by Hamauzu (1976, 1977),
it was only shown that the model potential works with
reasonable values of the potential parameters at the
special conditions given in the experiment.

In very recent investigations with atomic deuterium

scattered from LiF (001) (Greiner et a/. , 1980) it was
again shown that purely elastic calculations yield re-
sonances which are too narrow and too deep (or high)
as compared to experimental data. Only if the contri-
bution of inelastic scattering is taken into account by
a multiple Debye-Wailer factor in the resonances is a
reasonable description of the resonances obtained.

IV. CONCLUDlNG DlSCUSSION

There are two essentially different aspects in the
attempt to get information on the physical gas-surface
interaction potential from gas-surface diffraction ex-
periments with atomic beams of small mass (m ~ m„,)
and energies in the thermal range.

One aspect is getting information on the periodic

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980
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structure on the surface of a crystal. In those cases,
where atoms with thermal energies interact by van der
Waals forces only with the atoms or ions of the top-
most surface layer, the results on the surface struc-
ture achieved here are really results on the first layer
without any influence of deeper layers. Most of the
investigations concerning this aspect have been done
by diffracting He nozzle beams from crystal surfaces
and then comparing the observed diffracted beam in-
tensities with calculations where the interaction po-
tential is approximated by a corrugated hard wall. The
applicability of this method has been tested extensively
with the system He on LiF (001) as is, for instance, dis-
cussed in detail by Garcia. (1977b). Garcia (1976) gave
also a tentative analysis of the surface crystallography
of LiF (001) ba.sed on experiments. l diffraction intensi-
ties by Boato, Cantini, and Mattera, (1976) showing that
the Li' ions a.ppear to be displaced upwards from the
crystal surface by 3.6 +0.6 pm. Very recent experi-
ments with He diffracted from a stepped metal surface
of Cu (117) by Lapujoulade, Lejay, and Papanicolaou
(1979), or of Pt (997) by Comsa et al. (1979), from
clean and hydrogen saturated Ni (110) surfaces by
Rieder and Engel (1979), from reconstructed (100) and
(111)Si surfaces by Cardillo and Becker (1978, 1979;
Cardillo, 1979), and from TaS, corrugated at the sur-
face due to charge-density waves by Boato, Cantini,
and Colella (1979) show indeed that thermal energy
atom diffra. ction (TEAD) is further developing as a.

technique of surface structure analysis. In combination
with low-energy electron diffraction (LEED) and low-
energy ion scattering the method of TEAD ca,n give a
complete instrument with re spe ct to sur face structure
analysis; the chemical composition of the surface
should be checked by additional methods (ESCA, SIMS,
AES. . . ).

A problem in this context is still whether the ha'rd-
wall model, which was shown to work very well in the
case of He-LiF (001), is also a good approximation for
analyzing the scattering distributions of He observed
from silicon, and clean or adsorbate-covered metal
surfaces, or whether'a softer form like the exponen-
tial corrugated potential recently discussed by Armand
and Manson (1979) and Armand (1980) should be applied
in order to get a realistic description of the periodic
structure at the surface. A good test for the applica-
bility of the hard corrugated wall or other models
would, for instance, come from an examination of the
resulting corrugation parameters as function of the
incident energy.

The second main aspect in trying to extract informa-
tion on the gas-surface interaction potential from dif-
fraction experiments is to find out the form of the at-
tractive potential well; that means its well depth, its
range, and in some respect also the periodic variation
of the depth. The knowledge of these parameters is
important, for instance, in adsorption -des orption
calculations or in considerations on surface reactions
where precurser states with a certain mobility paral-
lel to the surface have to be regarded.

We have discussed in detail how experimental in-
vestigations of bound-state resonances can give bin-
ding energies (E,.) and from these detailed information

on the attractive potential well of several gas-surface
systems. And we have shown that these exper imental
results may be used to test general theoretical models
for calculating potential forms or parameters, for in-
stance, the constant C, of dispersion attraction, or to
establish empirical rules which may be used to esti-
mate potential parameters from electrical constants
of a certain gas-surface system which possibly is not
accessible to experiments. -The gas-surface systems
most extensively investigated in this respect were H,
H„and He on alkali halides and graphite, but recent
diffraction experiments on MgO (001) (Rowe and Ehr-
lich, 1975) or NiO (001) and on metal surfaces promise
more detailed experimental results on the physical
gas-surface interaction potential well for these sys-
tems also.

1. Potential formulas obtained from summation or
integration of pair potentials

Approximative formulas for gas-surface potentials
may be achieved by replacing the summation of pair
potentials by an integration. The following formulas
have been obtained by Steele (1974) on the basis of a.

Lennard-Jones (12-6) pair potential:

U ( p) = 4c [((y /p)" —((y /p)'] . (A1)

Here c„ is the well depth and 0 is the distance at
which the potential curve crosses the zero energy line.
0„ is connected to the equilibrium distance p, between
the gas atom and the surface atom by

0 =P2 (A2)

Treating a simple cubic lattice, using for 0. "the com-
bination rule (2.4) and assuming a„ to be equal to the
lattice constant of the solid, the following three ex-
pressions for the gas atom-solid surface interaction
potential may be formulated (with reduced distances
p* =p/v. , and z* =z/v„).

(a.) The summed pairwise potential is given by

(AS)

(b) After integration over the (100) planes parallel
to the surface the gas atom-solid surface potential,
which is now constant parallel to the surface, is re-
presented by

(A4)
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APPENDIX A: SOME SPECIAL R ESULTS
CONCERNING GAS-SURFACE POTENTIAL CURVES
CALCULATED FROIVI SUMlVlATION OF PAIR
POTENTIALS
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where k is an integer that indexes the crystal layers.
(c) Full integration finally results in the following

potential function, which is again constant parallel to
the surface:

stant, and A, &4,B,. . .B4 parameters derived from
fitting the calculated values of D„~ to the relations
(A6) or (A7). For the C site B,. . .B, depend somewhat
on the kind of the positive ion, but for theA site all
the D„values are well approximated by one equation:

A comparison of the results of these three procedures
is given in Fig. 27, showing that the fully integrated
approximation is a rather poor one in the presented
region of z, whereas the partially summed curve ap-
proximates the lateral average of the summed potential
rather well.

D~ = (A,n, +A.,) [a'(s —1)/(s + 1)+&,] +&,

and for the C sites

D~ = (ff,no +fI2)(e +E~) +II

(A6)

where a, is the polarizability of the gas atom, c, the
optical di.electric constant, a half the bulk lattice con-

2. Relations on the potential well depth extracted from
pairwise potential summation

Since in the case of physical adsorption the dominant
contribution to the total binding energy is given by at-
tractive dispersion forces, Rogowska (1978) calculated
by pairwise summation gas -sur face potential curves
for Ne, Ar and Xe on Na, K, and Rb halides and tried
to find out relations between the calculated well depth
D and physical properties of the ionic crystal and of
the gas atoms which influence the dispersion forces.

The potential as function of the distance of the gas
atom from the surface was calculated at four positions
ove'r the unit cell%, E, C, and D (see Fig. 1). For
the two sites with the deepest well depth (A and C) the
following relations couM be deduced from the calcu-
lated curves. For the A sites

0.016—(0.009n, +0.0148) a' +2 05 x 10-"
(& + I)

(A8)
0

(When o., and a are expressed in A in this relation, D~
is obtained in ergs per atom. )

APPENDIX 8: BINDING ENERGIES FROM
EXPER IIVlENTAL RESONANCE INVESTIGATIONS

The binding energies E',. determined from resonance
investigations of all the systems known to the author
are listed in Table VIII. Some of the results in Table
VIII are based only on one or a small number of 1„
=f(y) curves and, therefore, are questionable. This
is the case with the first E,. values for 4He on NaF cal-
culated by Devonshire (1936) and Tsuchida (1969) from
the experimental results of Frisch and Stern (1933b).
The correct levels of this system are now well es-
tablished from the experiments by Derry et al. (1977,
1978). Also questionable are the value of the deepest
level of He on NaC1 estimated by Bledsoe (1972) and
the values of the levels for H, and D, on I iF as de-
termined by Tsuchida. (1969) from Frisch and Stern's
results (1933b) but also as given by O'Keefe et al.
(1970) from their experiments. In the last case es-
pecially, the fact of finding almost identical values of
the binding energies for the two isotopes H, and D,
casts doubt on these results.

APPENDIX C: REVIENt OF MODEL POTENTIALS
USED TO FIT EXPERIMENTAL BINDING ENERGIES E-

1. Morse potential

v~ (z) =D{exp[—2~(z —z, )] —2exp[- ~(z -z,)]}, (C I)
(d 0
N 10

-20—
-3.0—
-4 0—

-50—
-6,0—
-70—
-8.0

(Ig g /(-ass =" 0-

I I

0.6 1.0 1.4 1.8 2.2
z tOss

FIG. 27. Example of gas-surface interaction potential curves
calculated from pair potentials for an atom over a simple
cubic crystal lattice: (a) full curves calculated from direct
sums of pair potentials for three different positions (A. , SP, S)
above the unit cell [see Eq. (A3)], (b) black dots give the re-
sult from summing after integration over the (001) planes [see
Eq. (A4)], (c) dashed curve obtained by replacing the sum by
an integral over the solid [see Eq. (A5)] [after Steele (1974)].

with D =well depth, v =reciprocal range parameter, z,
=position of minimum, not determined by (E,.), and
spectrum of energy eigenvalues:

E.= -fD' 2 —[kv/(2m )' ](j+1/2)P;

j =0, 1, 2, . . . , ~ [(2m+)'~'/vh —1/2]. (C2)

advantages: simple form representing the general
behavior of repulsion and attraction, analytical form
of LE,.}spectrum, capability of fitting E,. of the strongly
bound states.

Disadvantages: too short ranged in the asymptotic
region, not suited to represent the levels near the dis-
sociation limit.

An appropriate test for the applicability of the Morse
potentia. l is linear behavior in a. plot of

~

E',
~

' ' =f(q)
with q as defined in Eq. (3.28). The Morse potential
was used by Devonshire (1936) and Lennard-Jones and
Devonshire (1937) for He-LiF and after that in many
theoretical investigations. It worked also well for de-
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scribing the experimental values of E-,. for H, D on LiF
and NaF (Finzel et al. , 1975); this is clearly demon-
strated in Fig. 16.

2. {12-3)potential

v.", '(z) =- (D/3) [(z,/z)" —4(z, /z)']

with D =well depth and z, =position of minimum and
range parameter.

(C 3)

Advantages: correct asymptotic form of attraction,
good fit of the potential form achieved from pairwise
summation [see Tsuchida (1969) and Fig. 2].

Disadantages: arbitrary repulsive form, no analyti-
cal formula. of the J(E~) spectrum,

The (12-3) potentia. l wa. s used by Tsuchida (1969) for
calculating diffra. cted beam intensities for He-LiF.

3. {9-3)potential

(C4)

(C 5)

with D =well depth, z„, (7 = range parameter, z =z„-zp
1/6= 3 0 - zp = position of minimum, z =0- - zp = point of

vanishing vpp zp shifts the potential in z direction but
is not determined by (E,.). Spectrum of energy eigen-
values derived in WKB approximation (Cole and Tsong,
1977)

-D~ results in strong improvements in the fit of observed
(E,.) as compared to normal Morse potential.

Disadvantages: long -range attraction still incorrect.
The shifted Morse potential was used by Schwartz,
Cole, and Pliva (1978) to construct a hybrid potential
(see next subsection).

5. Shifted Morse hybrid potential

Q~MH (z )
—PM (z ) . z ( z

vsMH(z) C z-3. (C9)

with D', x, and & (see Sec. C.4) determined from fit
of the observed levels, but without highest levels which
lie in the asymptotic region. z, = position of minimum
varied so that the SM potential matches value and slope
of the asymptotic potential form —C,z ' at a point of
contact z .

For more details see Schwartz, Cole, and Pliva
(1978), who constructed SMH potentials for H, D-LiF,
and NaF (see Figs. 14, 15) and also 'He, 'He-LiF, and
NaF using for C, the values calculated by Bruch and
Wa.tanabe (1977).

6. - Exponential-3 potential

exp-3 K~ev,',"'-'(z) = —' D exp[ —~(z —z, )]-
KZ~ —3 KZ~ z

(C 10)
with D =well depth, - K =reciprocal range of repulsion,
z, =position of minimum.

E.= —D[1 —(j+1/2)/L]'
with

L = (3.07/)t)(2m+a'/8')' ',

(C 6) Advantages: form of repulsive and attractive part as
expected from theoretical considerations.

Disadvantages: no analytical formula for energy
e igenvalue s.

4. Shifted Morse potential

v„M(z) =D'(exp[ —2x(z —z, )] —2 exp[ —)2(z —z, )]—~)

(C7)
with D =D'(1 +&) = well depth, x =reciprocal range
parameter, & =shift parameter, z, =position of mini-
mum, not determined by LE&). Spectrum of energy
eigenvalue s

E',. = -D'(1 +&) +Ax(2D'/m )'~'(j +1/2)
—(5'x'/2m, )(j +1/2)'.

AdvantaI, es: analytical .formula for (E,.), small shift

(C8)

and j =0, 1, 2, . . . ; j =next integer to (L —1/2).

dvantages: (9-3.) form results from pairwise sum-
mation of Lennard-Jones (12-6) potential in the con-
tinuum limit of the solid (Steele, 1974), correct a.s-
ymptotic form of attractive part with C, =3' 2Do '/2.

Disadvantages: z repulsion as arbitrary as the x "
repulsion 'in interatomic interaction.

A test for the applicability of this form is the linear
variation of E',. with q. For a detailed discussion of
this potentia. l form see Cole and Tsong (1977) and also
Schwartz, Cole, and Pliva (1978) who constructed
(9-3) potentials for the systems H, D on LiF and NaF
(see Figs. 14, 15) and a.iso 'He, 4He on LiF and Na.F.

.7. Variable exponent potential

v„(z ) = 21 (1 + —
) —2 (1 + —

) (C 11)

with D =well depth, A. =reciprocal range parameter,
P =variable exponent, z, =0=position of minimum, and
spectrum of energy eigenvalues (accuracy better than
1%):

(j +I/2)25}(.
- s&(&

(2mD) &2~(p)

with X(p) and S(P) functions calculated by Mattera
et al. (1980b).

(C 12)

Advantages: flexible analytical form, analytical
formula for eigenvalue spectrum.

Disadvantages: deficiencies of the general form are
compensated by using the exponent as fit parameter,
the resultant exponents have in general no theoretical
justif ication.

A detailed discussion of this potential form is given
by Mattera et al. (1980a). It was used to fit the E&
spectra of H (Tomma. sini and Valbusa, 1979), He

The exp-3 potential was used for calculating diffracted
beam intensities for the systems He-LiF (Chow, 1977),
He-Ag (ill) (Chow and Thompson, 1978), and H,
D-LiF, and Na. F (Chow and Thompson, 1979).
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(Boato et a/. , 1979b), and H„D, (Mattera. et a/. , 1980a)
on graphite.

8. F lat-bottom hard-wall potential (includes surface
corrugation)

tive part approximated by:

v, (z) =-D l z~P

n+P
v (z)= —D; z&Pa A +&

(C14)

FBHw(r) ~. z &g (R)

v " (r) =v, (z); z) $(R),
(C18)

with g(R) =surface corrugation profile, v, (z) =attrac-

with D =well depth, n, P = position and range para-
meters with P ~ g

A dvantages: correct long-range asymptotic form
with C, =(n +p)'D, suited for theoretical ca.lculations.

TABLE IX. Gas —surface potential parameters determined from fitting experimental binding en-
ergies.

Surface Model potential D/meU Range 3rd Parameter C3/me V nm Bef.

LiF (001)

NaF (OO1)

Graphite

Morse
BKB method
SMH
9 —3
exp —3
FBHW
Morse
RKR method
SMH
9 —3
FBHW
VE

0 =0.18 nm
o. = 0.096 nm
~ =13.5 nm ~

A. Atomic hydrogen and
17.8 ft =10.4 nm
18.4 ~ ~

18.77 K = 12.0 nm ~

20.73 ~ = 0.194 nm
19.7 0. =36.7 nm ~

17.8 m = 0.104 nm
17.9 w = 11.5 nm
17.6 ~ ~ ~

18.36 K = 12.4 nm ~

20.62
17.6
43.2

deuter ium

& ='0,048

z~= 0 24 nIl1

P = 0.123 nm

& = 0.028

P = 0.115 nm

p = 5.1+0.9

0.170
0.393

0.208

0.135
0.312
0.165

b
b
b
c
d

b
b
b
d
e

LiF (001)

NaF (OO1)

NiO (001)
Graphite

9 —3
BKB method
SMH
9 —3

- Morse
12 —3
Zeta potential
FBHW
exp- 3
Z Yukawa-6
9-3
SMH
9 —3
FBHW
Morse
Z Yukawa-6
Z 12 —6
UE
SM
FBHW

9.20
7.5
8.32
8.92
8.03
9.34
8.90
7.98
8.8
9.20
7.72
6.91
7.64
6.72

10.1
15.75
16.25
15.70
14.59
14.4

B. 3He, He
0.= 0.185 nm

g =12.9 nm ~

0. = Q. 194 nm
K =12 nm
ze 0 23 nn1

n = 0.141 nm
If; =47.8 nm ~

0 =0.189 nm
~=12.3 nm '
o = Q.191 nm
n = 0.137 nm
f(:=10.7 nm '

~ = 14.13 nm ~

f(:=]3.5 nm '
m=0. 133 nm

~ ~ ' ~

& = 0.075

P =0.104 nm
&~=0.23 nm

& =O.O59

P = 0.109 nm

p= 5.3
& = 0.058
P = 0.093 nm

0.139

0.0817
0.1692

0.117

0.124
0.0725
0.138
0.100

0 ~ 165

f
b
b
b

g

d
h
1

f
b
b
d

3

k
k
1

1

Graphite VE 51.5
C. H2, D2

A. =14.5 nm ~ p =4.03

Finzel. et a$. (1975).
Schwartz, Cole, and Pliva (1978).
Chow and Thompson (1979).
Goodman, Garcia, and Celli (1979).
Tommasini and Valbusa (1979).
Derry et aI, . (1978).

g Tsuchida (1975).
Chow (1977).

' Chow- and Thompson (1976).
' Cantini, Tatarek, and Felcher (1979).
~ Derry et al, . (1979).
~ Boato et al. (1979b).

Mattera ef aE. (1980a).
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9. Potential forms produced by pairwise summation

N
(C15)

summation over all solid atoms or ions located at r„,
with different forms used for the pair potential u„.

Disadvantages: approximate character of hard wall
and flat bottom with discontinuities, no analytical for-
mula for {E~}spectrum.

This potential was used in theoretical investigations
of the diffraction behavior at resonances, with the
parameters D, o. , and P determined from fitting the
energy eigenvalues to the experimental (E,.) spectrum
[see, for instance, Garcia, Celli, and Goodman (1979);
Garcia, Goodman, Celli, and Hill (1979)j. Very re-
cently Goodman, Garcia, and Celli (1979) gave a de-
tailed discussion of this potential and showed that it is
well suited to reproduce the experimental (E,.$ spectra
of H, 0 on LiF, NaF, and ~He, 3He on LiF, NaF, and
graphite.

APPENDIX D: TABLE WITH POTENTIAL WELL
DEPTHS CALCULATED WITH THE SEMIEIVlP IR ICAL
RULE GIVEN IN SEC. III.C.4

He H2 Kr

LiF
NaF
NaC1
KCl
Rbcl
NiO
MnO
MgO
Graphite

25.3
21.7
31.0
29.0
30.0
52.2
52.2
39.7
47.6

7.9 30.6
6.8 26.3
9.7 37.4
9.1 35.0
9.4 36.2

16.3 63.1
16.3 63.1
12.5 48.0
14.9 57.5

15.0
12.8
18.2
17.2
17.8
30.8
30.8
23.4
29.2

62.4
53.5
76.2
71.5
73.9

128.5
128.4
97.8

117.2

94.2 153
80.6 132

115 187
108 176
111 182
194 316
194 316
147 240
177 288

TABLE X. Well depth D in meV of physical gas —surface inter-
action potentials, calculated from D =~D~(E —1)/(8+1), with
~a=12 meV/10 cm3 and a.(K —1)j(8+1) given in Table IV.

a. u = (12-6) Lennard-Jones potentialN

This results in g potential

v~, (z) =A. ,g(10, z/d) —28, &(4, z/d) (C 16)

with g =Riemann g function, d= lattice layer spacing,
A „&,=energy parameters, which may be calculated
from pair parameters or used as fitting parameters in
order to reproduce the experimental (E,.J spectrum,
z, =position of minimum given by& (ll, z, /d)/f(6, z,/d)
=48„/6A. .

For more details of this form see Tsuchida (1974),
who used this potential to calculate diffracted beam
intensities for He on LiF. Another form resulting from
summing the 12-6 potentials [see also Eq. (A4) j
(Steele, 1974; Carlos and Cole, 1978) is

(C 17)

with z„=@+nd; d =lattice layer spacing, A, =area of
unit cell, c =well depth parameter of pair potential. l,
o. =range parameter of pair potential. c and 0 may be
used for fitting the experimental (E,.t spectrum.

h. uN = Yuka~a-6 potential

u„(r) =
6 1+ exp[o. (~ -~) j —(x /x)'s(1+nx ) 6r

(C 18)

where c, x, and n are well depth, separation at mini-
mum and range of repulsion of the pair potential.

This potentia. l was used by Chow and Thompson (1976)
for calculating diffracted beam intensities at bound-
state resonances for He on LiF. For the two kinds of
ions in an alkali halide crystal the values of c» and
x» were estimated from combination rules and the
values of &, , were determined from fitting the experi-
mental binding energies (Ez)t.

The potential parameters obtained for the different
potential forms from fitting experimental (E,.J spectra
are gathered in Table 1X.
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