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The concept of the double-humped fission barrier of actinide nuclei has made possible an understanding of a
vast amount of data on nuclear fission during the past decade. In this article the analysis of most available
relevant data is reviewed, and a synthesis of the fission barrier parameters and their trends over the actinide
region is built up. The sequence of the work begins with an outline (but not a critical discussion) of the
theoretical foundation of the double-humped barrier, and this is followed by a full account of the nuclear
reaction theory required to describe fission reactions within the concept of such a barrier. This reaction theory
provides the theoretical tools for a quantitative understanding of a range of phenomena of such kinds as
spontaneously fissioning isomers, their half-live and yields, vibrational resonances and narrower intermediate
structure in fission cross sections, and the general trends and magnitudes of fission cross sections at excitation
energies near the top of the fission barrier, The magnitudes and trends of fission barrier parameters and the
level structure of highly deformed nuclei that are extracted from the data on these phenomena are discussed
in the light of current concepts of nuclear structure. Also, the possibility of a three-humped and more
complex barriers is reviewed.
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I ~ INTRODUCTION

A. Classical picture of the fission process

This review is intended to cover the fascinating de-
velopments of low-energy nuclear fission over the past
decade. By the term "low-energy" we imply energies
of the fissioning nucleus that are comparable to the po-
tential energy barrier in the deformation path toward
fission. The phenomena discussed in this review are
those that are governed by the properties of the fission
barrier as such, rather than those that seem to be de-
termined at the later stages of fission, i.e., just prior
to, or even after, scission, at which point the two in-
cipient fission products just separate.

The concept of the fission barrier has been based on
the classical theory of the electrically charged liquid
drop ever since the work of Bohr and Wheeler (1939);
this itself was based on the original suggestion of
Meitner and Frisch (1939). The analogy of nuclear
behavior to that of a charged liquid drop is suggested
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by the standard semiempirical formula for nuclear
ground-state energies:

E = E„„+E, r +E„„i+Ep
= .—c,A + c2A. 'i'+ c,(Z'/A. 'i') a 6 .

Since the nuclear radius is proportional toA' ' the first
three terms in this equation are proportional to nuclear
volume, surface area, and Coulomb repulsion energy,
respectively. The remaining "odd-even" term is es-
sentially quantal in origin. It is a small correction of
the form 6 = ll A ' ' MeV to be added or subtracted for
doubly odd or doubly even nuclei, respectively. Of the
same origin are isospin-Idependent terms, depending
on the difference in proton and neutron numbers, Z and

respectively. Myers and Swiatecki (1966) suggest
that this be assumed to reduce the magnitude of the
sur face as well as the volume ener gy:

direction of
defor ma tion

c,=a, [1—~(u- Z/A)'],

c2=a, [1 —z(N —Z/A. )2] .
(1.2) b)

(1.3)
eformation
ong broken

urve in (a I }

Ecou& C3 z 2

2E,„& 2a, [1—z(N —Z/A)'] A
(1.5)

A large number of papers spread over a period of more
than 20 years have been devoted to the computation of
the energy of deformation of the nucleus in terms of the
liquid drop model. Most studies have concentrated on
drops with X= 0.7-0.8, which are the values appropri-
ate to the actinide nuclei. A typical set of energy con-
tours in the plane defined by two of the most important
deformation parameters (the quadrupole and hexadeca-
pole coefficients in a Legendre polynomial of the liquid
drop surface) is shown in Fig. 1(a). The energetically
most favorable path towards fission is indicated by the
broken line and the potential energy barrier presented
along this path is shown in Fig. 1(b); the ba, rrier peak
in Fig. 1(b) corresponds to the point denoted "col", or
saddle, shown in Fig. 1(a).

The droplet model of Myers and Swiatecki (1969) and
Myers (1977) is presently the most refined description
of average nuclear properties based on the liquid drop
concept.

Nuclear reactions leading to fission have been inter-
preted on the basis of this kind of fission barrier, es-
pecially its height. Such data are particularly con-
cerned with reaction rates. By contrast the spon-
taneous fission half-lives of ~'uclear ground states are
sensitive not only to the effective height of the barrier
but also to the width and the inertial parameter associ-
ated with the nuclear collective motion along the fission

If the nuclear "fluid" is assumed to be incompressible,
an estimate of the energy necessary to deform the nu-
cleus is made by identifying the second and third terms
as the surface and Coulomb energies of a classical
liquid drop. It was easily shown by Bohr and Wheeler
that a spherical liquid drop nucleus is unstable if

2
Ecoul 4 3 &1.

2E,„,f 2c2 A

The above ratio, which is called the fissility parame-
ter denoted by. X, also reads

FIG. l. (a) Schematic diagram of potential energy contours of
a fissionable nucleus as a function of the quadrupole and hex-
adecapole deformation parameters. (b) The potential energy
along the minimum energy trajectory for increasing elonga-
tion.

path. This inertial parameter is usually incorporated
with the curvature of the barrier to obtain a parameter
that leads to the transmission coefficient. Thus, if the
barrier is assumed to have an inverted harmonic oscil-
lator form, the curvature (which is proportional to the
restoring force constant C of the oscillator) and inertial
parameter B give the frequency of an oscillator,
~ = (C/A)'~', and it can be deduced (Hill and Wheeler,
1953) that the transmission coefficient of the barrier is

T =]1+exp[2m(E~ —E)/Aa]) ', (1.6)

4(t)=g a„4„exp —
.

'
)n=l jz

= exp — ' — a„„exp (1.7)

where E~ is the peak barrier energy, and E the nu-
clear excitation energy. Analysis of spontaneous fis-
sion half-lives using peak barrier energies known from
induced fission reactions reveals that the tunneling pa-
rameter k~ usually lies in the range 0.35-0.40 MeV
(Swiatecki, 1955). Such a low value implies that the ef-
fective inertia of the tunneling motion exceeds the mini-
mum possible (irrotational) value by a considerable
amount.

Estimates of the half-life of a particular mode of de-
cay of a nuclear state can be obtained from statistical
considerations. The arguments of Blatt and Weisskopf
(1952) in particular are simple and appealing. Consider
a system with uniformly spaced levels with eigenvalues
E„=E, + nD. The classical behavior of the system at
time t is obtained by superposing a large number of
eigenfunctions and is represented by the wave function

Rev. Mod. Phys. , Vol. 52, No. 0, October 1980



S. Bjsirnholm and J. E. Lynn: The double-humped fission barrier 729

where the @„'s contain the spatial dependence. Clearly,
the period of motion of this wave function is

P = 2mb/D . (1.6)

Thus the classical configuration corresponding to the
formation of the nucleus in a particular mode (or chan-
nel) p will be repeated after a period of time of the
order of I'. The nucleus will now be in a position to
decay through the original mode (channel) of formation,
and will only be inhibited from doing so by the exis-
terice of an external barrier, the transmission coef-
ficient of which is T„. Thus the lifetime T„ for this
particular mode a.lone will be of the order of P/T„and
the partial width of the state is

(1.9)

The different modes p correspond to states of exci-
tation of the internal degrees of freedom of the system.
Thus the total fission width of the nucleus will be given
by Eq. (1.9) summed over all states of internal excita-
tion at the saddle point. For energies well above the
barrier this leads to the statistical formula. (Bohr and
Wheeler, 1939) for the fission width,

I"(f) = (D/2')N, (1.10)

where N is the number of levels of internal excitation
available to the reaction,

Ã = dE' p* E' —E~

p* being the density of such levels at the saddle point
and E„ the fission threshold energy.

When coupled with the wave function corresponding to
distortion through the saddle point, the various states
of internal excitation comprised in the quantity N to-
gether make up the overall "transition state" of the fis-
sioning nucleus. A. Bohr (1956) first considered the'
influence of the properties of the individual components
of the transition state on the fission process. The acti-
nide nuclei have values of the fissility parameter X in
the region of 0.75 considerably less than unity, and this
implies, according to the liquid drop model, that, such
nuclei are appreciably elongated at their saddle points
(the major to minor axis ratio being of the order of 2).
Thus the lowest states of internal excitation at the
saddle point ought to be well described by the unified
model (Bohr and Mottelson, 1975) of nuclear struc-
ture. In particular, if the saddle-point nucleus has
cylindrical symmetry about its direction of elongation,
the quantity K describing the projection of the totalangu-
lar momentum of the state on the cylindrical symmetry
axis should be a good quantum number. An excited nu-
cleus formed with specified angular momentum pro-
jection along a specified direction in space will there-
fore have its axis of elongation at the saddle point re-
lated to this space direction, this relation being gover-
necl by the distribution of K values among the compon-
ents of the transition state (see Fig. 2). The preserva-
tion of this relationship between the saddle and scission
points implies that the angular distribution of fission
products will bear this same relationship to the original
specified space direction. As an example of this theory,

FIG. 2. The relationship between total angular momentum j:
and rotation R of a spheroidal nucleus, and the projection of I
on the z axis of the laboratory reference frame (M) and the
symmetry axis z' of the nucleus (K).

Bohr cited the case of low-energy photofission of an
even nucleus (spin parity = 0'). Electric dipole absorp-
tion of the gamma ray leads to an excited nucleus with
total angular momentum and parity 1, the projection
of angular momentum along the gamma-ray direction
being +1. The lowest 1 state of the distorted saddle
point nucleus is expected, from the unified model and in
agreement with observation of low-lying ground-state
excitations, to have K= 0. This implies that the nuclear
elongation direction must be, on average, perpendicular
to the gamma-ray direction of incidence, and hence the
threshold photofission will result in a "sideways" angu-
lar distribution of fission products (see Fig. 3), in
agreement with observation. At higher energies, a
second 1 component, or "channel, " will become en-
ergetically available in the transition state; this is
expected to have K=1, and the photofission angular
distribution is therefore expected to be more nearly
(though not completely) isotropic, and this behavior
is also observed.

Emission of
Fission Products

y mme tr y Axis of
issioning Nucleus, z

Direction of Photon 8eam, z

in of Compound Nucleus
rojection on z, M =+1,
rojection on z', K=0 )

FIG. 3. The relations of Fig. 2 explain the angular distribution
of fission products from an even nucleus in a photofission re-
action dominated by dipole absorption and fission through a
transition state with K= 0.
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Bohr's "channel theory of fission" was applied to the
analysis of most low-energy fission phenomena during
the next decade. It seemed that this combination of the
charged liquid drop picture of the fission barrier with
the unified nuclear structure description of the excita-
tion of internal degrees of freedom was basically capa-
ble of explaining fission phenomena that would result
from features "frozen" into the system at an early
stage of its development. An important example of
phenomena that were thus qualitatively, or even semi. —

quantitatively, explained by this theory is the behavior
of the neutron-induced fission cross section of even
actinide nuclei. The fission barriers of the odd-neutron
compound nuclei are higher than their neutron separa-
tion energies, so the cross sections as a function of
energy show a marked exponentially rising tunnel effect,
as in Fig. 4. In addition to this overall increase and
eventual saturation, there is rising and falling struc-
ture of a minor kind. The explanation that was advanced
for this rising and falling [originally, it appears, by
Mottelson (unpublished) but expounded principally by
Wheeler (1956, 1963)J assumes competition in the decay
of the compound nucleus between fi ssi on and neutr on
inelastic scattering. In a rising part of the fission
cross-section curve it is assumed that the energy of
the compound nucleus is approaching the threshold E
of a Bohr "fission channel. " The rate of rise falls off
as this threshold is exceeded and the tunneling factor,
Eq. (1.6), asymptotically approaches unity. If a neutron
inelastic scattering threshold is now crossed by in-
creasing the excitation energy further the share that
fission takes in the decay of the compound nucleus is
reduced and the fission cross section falls somewhat
until the threshold of the next Bohr channel approaches.
(For details see the discussion in connection with Fig.
vs. )

B. New observations implying shell strocture at the
fission barrier

The first apparent weakness in this whole picture of
the fission barrier lay in the quantitative estimates of

barrier heights from the liquid drop theory. The liquid
drop force constants deduced from analysis of nuclear
masses according to Eq. (1.1) can be adjusted to lead
to barrier heights for the actinides of the order of 5-6
MeV (above the ground state), but it is by no means
possible to explain how the barriers can remain con-
stant in the range from '"Th (%=0.76) to '"Cf (X=0.82)
as observed; the liquid drop predictions change from
7.5 to 2.8 MeV in this range. It had long been known,
however, that substantial deviations from Eq. (1.1) oc-
curred for nuclei near-shell closures. Equation (1.1),
with fitted constants might overestimate the ground-
state energy of magic nuclei such as "'Pb by 10-15
MeV. Attempts were therefore made to incorporate
the nucleon shell effects into the semiempirical formu-
la. Myers and Swiatecki (1966) first attempted to do
this in a way that would give a semiempirical energy
formula explaining all the stability features of the
known nuclei; these features were, principally, the
ground-state energies, the ground-state quadrupole
moments, and the fission barriers. They made the as-
sumption that shell effects would be largest for a nu-
cleus when in its spherical configuration. Thus, start-
ing from an equation that is the generalization (by
liquid drop theory) of Eq. (1.1) to a body with variable
def ormation,

E = E„(A,Z) +F., (A, Z)f(shape. ) +E,(A, Z)g(shap. e) (1.12)

[here, g(shape) is the dimensionless ratio of the elec-
trostatic energy of a distorted drop to that of the sphere,
while f(shape) is the similarly defined ratio of surface
energiesj, they add a shell term which depends on N
and Z and falls off as a Gaussian with deformation.

In work carried out a little later along related lines,
Strutinsky (1967a, b) concentrated on deriving the shell-
correction term from actual shell model energy levels
in a binding field of varying shape, rather than in a
semiempirical way. Jn this approach the shell correc-
tion was calculated essentially by summing the ener-
gies of occupied single-particle Nilsson orbitals in a
potential well of given deformation and subtracting from
this the energy calculated by integrating over a suitably

~~4u(n, &)

Z:
C)
I—

uJ
ul

I

C3
CL

2:
C)

01—

10—

5
c9
IX
LU

LLI 0

2I 0pu

I I

1 2 3
NEUTRON ENERGY (MeV)

FIG. 4. Neutron fission cross section of U. This shows the
general feature of a very sharp rise in cross section from sub-
barrier energies, which is characteristic of quantal barrier
tunneling.

I l

0.3 0.6
DEFORMATION .P

09

&IG. 5. Potential energy curve towards fission as calculated
by Strutinsky (1967ab) from his theory of shell correction en-
ergy superposed on the liquid drop energy.
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averaged single-particle level density. The addition of
such a correction to the normal liquid drop term not
only led to the reproduction of'observed ground-state
quadrupole moments, the deviations of magic nuclei
energies from the smoothed liquid drop behavior, and
fission barriers of the right order of magnitude, but
also indicated an oscillation of the energy curve of acti-
nide nuclei with increasing deformation (see Fig 5)..
This oscillation is of course due to a superposition of
an oscillatory behavior of the shell-correction term on-
to the liquid drop energy term. In other words,
Strutinsky found that "shell" effects could exist for de-
formed as well as spherical potential wells. It is the
existence of this oscillatory feature, often known as
the double-humped barrier, that has been of central
importance in understanding the new arid striking ex-
perimental discoveries in low-energy fission. The
theor y of the Strutinsky potential energy function is
described in greater detail in Sec. II. Here we mention
that the quantitative calculations indicate that for the
actinides the first maximum in the bar, rier is some
6 or 7 Me V high, the secondary minimum, at a prolate
deformation corresponding to a ratio of axes of 2:1, is
some 2 or 3 MeV shallower than the main well, while
the second maximum has about the same height as the
first for uranium, and decreases for the heavier ac-
tinides.

The first experimental observation for which the
theory of a double-humped barrier provided an explana-
tion was the occurrence of spontaneously fissionirig
isomers. The first such isomer had been discovered
by Polikanov e& al. (1962); this proved to be a 14 msec
isomeric state of '4'Am with spontaneous fission as its
principal mode of decay (Flerov and Polikanov, 1964).
The spontaneous fission half-life was appropriate to a
state wi. th an excitation energy of several MeV, so its
peculiar property was apparently its extraordinary
stability against gamma decay. A few more'such iso-
rners with similar half-lives were discovered in the
following years, all in doubly odd Am nuclei, and it
was confirmed by direct measurement by Bjgrnholm
ef al. (1967) that the excitation energy (for ' 0Am) was
indeed close to 3 MeV. The hypothesis that the spon-
taneously fissioning isomer might be a state lodged in
a second minimum of the deformation energy curve
was first advanced by Polikanov et al. (1962), referring
to the discussion by Hill and Wheeler (1953) of pro-
late-oblate isomerism, and later by Flerov and Druin
(1.966). These suggestions received support from sub-
sequent theoretical work in which the aforementioned
approach due to Strutinsky (1967) played a pivotal role.

It was also suspected at about this time that structure
apparent in fast neutron-induced fission cross sections
could not be explained quantitatively by the theory of
competition between successively opening fission and
inelastic neutron scattering channels (Lynn, 1966a). In
the cross sections for "OTh (see Fig. 6) and "'Th, for
example, there are strong resonancelike peaks. The
angular distributions of fission products released in
fast neutron- and deuteron-stripping-induced reactions
also show sharp changes as a function of excitation en-
ergy. The scale of such structure is in the range
10-100 keV, which rules out any association with
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FIG. 6. Neutron fission cross section of Th [data of James
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single-particle modes of the entrance channel (gen-
erally believed to have widths on the scale of MeV) as
an alternative explanation to the competition theory.

The explanation that now became available for these
phenomena was essentially that higher vibrational
states in the secondary well (carrying most of the fis-
sion strength) are only weakly damped into the normal
compound nucleus motion (Lynn, 1968a, b, c; Bjgrnholm
and Strutinsky, 1969).

The discovery of a third phenomenon now seemed to
confirm the central assumption of a doubled-humped
fission barrier hypothesis. The new phenomenon is
narrow intermediate structure in slow neutron fission
cross sections in measurements where the neutron
resolution is comparable with the fine-structure re-
sonance widths. The target nuclei for which this effect
has been discovered in its most dramatic form are the
even-even and odd-Z actinides. These normally have
fission cross sections for thermal neutron bombard-
ment that are extremely small compared with radiative
capture, and this property naturally holds for the low-
est few resonances of the cross section. However, if
the cross sections are studied over a much more ex-
tended energy range, it is found that narrow bands of
resonances in which fission is comparable to capture
occur at intervals 1 or 2 orders of magnitude greater
than the normal resonance spacing. The first, and
roost striking, examples discovered of this phenomenon
are in the cross sections of the target nuclei "'Np
(Paya et zl. , 1968) and "'Pu (Migneco and Theobald,
1968) (see Fig. 7).

We can now summarize our understanding of these
phenomena as follows. The spontaneously fissioning
isomer of a nucleus is explained as being the "ground-
state" zero-point vibration in the secondary well. It
is, in fact, the lowest state of a whole set of levels of
increasing complexity as the energy increases, associ-
ated with the highly deformed shape at the secondary
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ture resonances of appreciable strength and those clustered
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fission channel.

A number of reviews on the barrier aspects of fission
have appeared during the last decade (for example,
Strutinski and Pauli, 1969; Lynn, 1969; Brack et al. ,
1972; Nix, 1972; Michaudon, 1973, 1976; Grant, 1976).
Our aim in this review is to give a critical and com-

minimum. These levels fission readily compared with
states of normal deformati on at the same energy. They
are also much less dense because more of their energy
is tied up in potential energy of deformation and is not
available for excitation of the internal degrees of free-
dom. Obviously these are the levels that are responsi-
ble for the narrow intermediate structure phenomenon
in fission, each such level corresponding to a single
group of fission resonances in the cross section, and
the width of each group being a measure either of the
strength of coupling between the "highly deformed
state" and the "normal states, " or of the fission width
of the highly deformed state, whichever is greater.
The hi gh intermediate barrier between the two wells is
responsible for the very weak coupling between the two
sets of states that makes the structure so readily ap-
parent. The "gross" structure that is apparent in the
cross sections of other fission reactions measured with
"poor" resolution (i.e., resolution that envelopes very
many fine-structure resonances) follows from an as-
sumption of weak damping of certain. simple modes of
the highly deformed nucleus into its complex level
structure. These simple modes correspond to little or
no excitation of the single-particle degrees of freedom
of the nucleus, the available energy being carried by a
stretching vibration of the secondary well, the mode
thus having a correspondingly high fission strength.
The weak damping, at nominal excitation energies of
some 5 or 6 MeV, can be expla'ned by the much re-
duced energy available for internal excitation of the nu-
cleus in its highly deformed shape.

C. About this review

prehensive account of the information about the double-
humped fission barrier that can be deduced from experi-
mental work. We hope thereby to provide a body of
reliable data on deformation properties of the actinide
nuclei that can be compared with the results of theo-
retical calculations. Such a testing ground is obviously
of great importance for nuclear theory. To provide a
first orientation for the analysis of the experimental
data and a basis for subsequent comparison, we begin
Sec. II by giving a summary of the results of theoretical
work at the present time. A critical review of the
theory is not attempted here; it has been covered else-
where by authorities on the subject. This chapter is
followed by a full account of the theory for reactions
proceeding through a double-humped barrier. Both the
statistical theories, from which simple, yet useful,
limiting expressions may be established, and more
formal theories are described. This chapter provides
the foundation for analyzing the experimental data.

Experimental work in this field has been extremely
active over the past years. Shape isomers are being
formed and investigated from a wide range of reactions
employing both low- and high-energy particles. Their
ener gi es ar e being found by measur ement of the excita-
tion curves for their formation, while their half-lives
give information about the penetrability of the outer
barrier of the double-humped potential, and their for-
mation yields can give relative barrier heights. This
work is mainly discussed in Sec. IV.

Prompt fission is also being examined with a variety
of reactions. Fast neutrons with high-energy resolution
are used to measure fission cross section and fission
product angular distributions in order to elucidate
properties of the vibrational states in the second mini-
mum. To reach even lower energies, below the neu-
tron threshold of the compound nucleus, two-stage re-
actions following bombardment with high-energy pro-
jectiles are extremely useful. Reactions such as
(P, P'f), (t, Pf), and, in particular, (d, Pf) are all being
used. Since the only competing process in the decay of
the compound nuclear states at this energy is gamma-
ray emission, fission can be measured sensitively far
below the barrier energy. The chief requirement in
these measurements i s good ener gy resolution in de-
fining the fissioning compound nucleus states. Photo-
fission, with its comparative simplicity in spin and
parity of the fissioning compound nucleus plays
a special role in this field. All these experimental
topics are covered in Sec. V. One of the most sensitive
tools is decay after slow neutron absorption; this dis-
plays intermediate structure from which deductions are
made about both the inner and outer barrier penetra-
bilities. . The topic is treated in Sec. VI. But much
information on barrier heights comes from the study
of cross sections with energy resolution that is in-
sufficient to resolve intermediate structure, but covers
a range of excitation from deep sub-barrier energies
to well above the barrier. Understanding the influence
shell effects exert in defining the shape and the total
energy of the nucleus as it proceeds towards fission
has also led to the recognition that the saddle points of
the two-humped barrier may have a lower symmetry
and consequently a higher density of transition states
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than expected from liquid drop theory. This affects
the magnitude as well as the shape of the fission cross-
section curves. These aspects are explored in Sec.
VII. The barrier data from all these different methods
are collected and summarized, nucleus by nucleus, in
Sec. VIII, where a comparison with theoretical cal-
culations of the double-humped barrier is made. The
level structure of rotational and intrinsic excitations
built on the isomeric shape i.s reviewed in Sec. IX. The
question. of more highly complex barriers than the two-
humped one is reviewed in Sec. X in the light of recent
experimental advances; and Sec. XI finally summarizes
the main points. In the appendix the most commonly
used parametrizations of deformed shapes are reviewed.

Il. SUMMARY OF BARRIER THEORY

A. Potential energy surfaces

The primary preoccupation of fission theory is the
determination of the potential energy surface in the
space of the various collective coordinates defining the
shape of a deforming nucleus. Efforts to do this still
Use the liquid drop model as the starting point. Myers
and Swiatecki's (1966) first attempts to improve the
liquid drop theory were followed by Strutinsky's
(1967ab) which represented abreakthroughby developing
a more fundamental way of calculating the shell ef-
fects, thus enabling the theory to be extrapolated to
large deformations.

The basis of Strutinsky's method of calculating nu-
clear energies, either as a function of nuc1ear mass or
as a function of deformation, is now well known. Very
briefly outlined it is this: in a pure independent-parti-
cle shell model, neutrons and protons fill the levels
of a deformed potential well up to a certain level, the
Fermi energy, corresponding to the particular nucleus
of interest. The energies of the filled levels are then
summed to give the nuclear ground-state energy at the
chosen deformation of the well. It is well known, of
course, that because of the residual interactions, and
hence the correlated motions, among the nucleons,
which cannot be described in the framework of a sim-
ple potential well model, this is a quite inaccurate
procedure for extracting the absolute energy of a real
nucleus. For this the liquid drop model with semi-
empirically adjusted parameters gives much more
realistic estimates of the nuclear binding energies,
within 15 MeV or so at worst relative to binding en-
ergies of hundreds of MeV over the whole periodic ta-
ble; but it does not give any of the correlations with
nuclear shell closures that appear in the observed
binding energies.

Strutinsky's way of obtaining accurate estimates of
absolute nuclear energies is to hypothesize thai sum-
ming the sirigle-particle state energies as shown in the
left half of Fig. 8 will reproduce the relative change in
energy from nucleus to nucleus due to the shell struc-
ture at a given deformation. To obtain this change, de-
noted by E,„,„, it is only necessary to subtract from the
independent-particle energy a similar sum calculated
from the independent particle levels smeared out in
some way to remove the shell structure, as illustrated
schematically in the right half of Fig. 8. The gross

FIG. 8. Schematic diagram of Strutinsky shell-correction
method illustrating the difference between bunched energy lev-
els and a smooth level ordering. In practical calculations
actual energy levels are used.

energy that is thus removed is then replaced by a rea-
listic energy term calculated from the liquid drop mod-
el E„DM. Thus,

EI.DM Eshell

Strutinsky's method when applied to the broad mass
of nuclei with the energy minimized as a function of
deformation for every nucleus, was immediately suc-
cessful in reproducing accurately the nuclear binding
energies. Furthermore, when the energy was calcu-
lated as a function of extended deformation for the acti-
nide nuclei, in order to calculate fission barrier heights
to compare with observation, he discovered a secondary
dip (Fig. 9 a.nd Figs. 5 and 46) in the energy at defor-
mations corresponding roughly to the traditional liquid
drop saddle shape. It is now recogni~ed that this de-
formation corresponds to a spheroidal shape with a ratio
of major to minor axes of 2:1. This symmetry
gives rise to considerable shell structure and hence
great stability for particular nuclei with the appropriate
neutron and proton numbers, in analogy with spherical
potential wells (see Fig. 10). The dip, or secondary
well, offered an explanation for the spontaneously fis-
sioning isomers that had been known for a few years,
and for the phenomena of intermediate structure in fis-
sion cross sections that were being discovered about
that time. Struiinsky's theory therefore immediately
became spectacularly successful.

Since then great efforts have been put into the calcu-
lation of potential energy surfaces as a function of de-
formation. Some of these have been devoted to studying
the possibility of new metastable shapes among the
lighter nuclei, and io the estimation of the stability of
superheavy nuclei with respect to alpha, beta, and
fission decay.
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I; The barrier region

a. Basjs and technical treatment of Strutfnsky theory

Th st'f tion of the Strutinsky method for deter-
mining nuclear energies, the technical method for

in it out and the physical nature of the results
have been reviewed in detail by Brack et a . ,'
Another comprehensive review containing less detail
but also with a complete bibliography has been written

Basic justifications of the Strutinsky method start
from the Hartree-Pock theory. Brack et al. ,k et al. (1972)
show how the expr essi on for the energy of a nucleus
in Hartree-Fock theory, in which the single-particle
potential is self-consistent with the single-particle
density matrix generated by that potential, can be
written in terms of shell-model single-particle ener-
gies and densities to second order in the difference
between the shell-model and the self-consistent densi-
ties. The significant feature of the new expression for
the Hartree-Fock energy is that apart from the simple
sum over occupied shell-model levels, the remaining
principal term is expressed in terms of averaged sin-
gle-particle densities, and is therefore smooth in its
dependence on nucleon numbers and nuclear shape. It
is this smooth term plus a smooth component extracted
from the sum over occupied single-particle levels that
is replaced by a liquid drop expression for the energy

0 I
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I i I ~ I
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DEFORMATION 4
FIG. 10. Energy levels of a harmonic oscillator potential for
prolate spheroidal deformations. Numbers in diagram are
numbers of particles filling the shell. From Nix (1972).
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F. Th most recent review of the Hartree-FockZ.DM.

method is due to Brack (1980).
Most of the methods for extracting the smooth com-

ponent from the sum of occupied energy levels are
based on Strutinsky's own technical procedures for
averaging over the shell-model energy levels with a
suitable weighting function. This weighting function can
be expressed as sums of products of Gaussxans and
Hermite polynomials, the width of the Gaussian being
governed mainly by the energy spacing between major

h ll st below the Fermi energy. Such averaging
1 dif-procedures can run into conceptual if not pra'ctica

ficulties f the shell-model potential is a realistic one
perm' ing att a continuum of unbound eigenstates, like the

n 1974)Woods —Saxon potential for instance. Bengtsson (
has therefore initiated a method in which each individua
shell-model leve1. as a function of deformation is
smoothed by fitting it with the cube root of a fourth-
or der polynomial in the deformation parameter; this
particular form of the fitting function is suggeste y
the Thomas-Fermi statistical model. The smooth
component of the sum of occupied energy levels is then
simp y given y1 n b the sum of the occupied smoothed ener-
gy eve1 ls resulting from this fitting procedure, and the

shellunbound levels thus require no consideration. The she
correction energy E,&,& thus defined for neutrons in
"'Pu is shown in Fig. 11 in comparison with the result
from the same set of shell-modej. levels using the
Strutinsky procedure. The overall agreement, es-
pecially for prolate deformations in which we are most
interested in fission theory, is seen to be remarkably
good, although local differences of up to 1 MeV can
occur.
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b. Compar/son with Hartree-Fock calculations

Apart from work on the justification of the Strutinsky
theory in a basic way, there have been attempts to cal-
culate nuclear deformation energies directly from
Hartree-Fock theory. These employ the Skyrme ef-
fective nucleon-nucleon interaction (Skyrme, 1956)
with parameters adjusted to reproduce gross nuclear
properties, as given by Vautherin and Brink (1972).
The result of the work of Flocard et al. (1974) showing
the binding energy for" Pu as a function of the quad-
rupole moment of the nucleon density is presented in
Fig. 12. No allowance is made for axial asymmetry
or reflection asymmetry in the nuclear shape in this
calculation. It looks qualitatively very similar to the
deformation energy curves that result from calculations
using the Strutinsky method, but the energy differences
between the extrema are greater. For example, the
first barrier height (~„)is at about 9 MeV relative to
the primary well depth ('U, ), whereas Strutinsky calcu-
lations with a similar restriction on the range of nu-
clear shapes explored would give about 6 MeV for this
quantity. There are recognized sources of error in the
present Hartree-Fock calculation, however, that ap-
proach the order of 1 MeV; they-'arise from the neces-
sity to project out the 0' ground state from the calcu-
lated state with no constraint on angular momentum,
and from the truncation of the harmonic oscillator basis .

states used in the numerical work. At large deforma-
tions, all calculations based on the assumption of axial
and reflection symmetry give too high barriers. This
difficulty is not restricted to the Hartree —Fock ap-
proach.

c. Nuclear models employedin Strutinsky calculaitons

Apart from the possible source of error arising from
the actual principle of the Strutinsky theory and pos-
sible errors from the technical treatment of smoothing
procedures, the basic parametrizations of the models
used in the theory contain uncertainties that will give
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FIG. 12. Binding energy of Pu as function of deformation
(the parameter Q is the quadrupole moment of the matter den-
sity; see Appendix) calculated with a Hartree-Fock method
due to Vautherin and Brink {1972). Dashed and solid curves
correspond to pairing-interaction strength independent of nu-
clear surface area and proportional to surface area respec-
tively. From Flocard et al. (1974).

rise to errors in calculations based on the theory. The
main source of this kind of error is likely to come
from the liquid drop model, which provides the basic
(or macroscopic) energy term in the Strutinsky theory,
but there are also likely to be significant uncertainties
from the shell model adopted, and smaller errors from
the treatment of the pairing interaction, which is shell
dependent and is also incorporated into the Strutinsky
theory. This last term depends not only on the choice
of shell model but also on the hypothesis assumed for
the dependence of the interaction strength on surface
area. Note, in this connection, that virtually all cal-
culations with the Strutinsky method have been made
for even nuclei.

(i) Liquid drop and droplet models. The nuclear
energy in the basic liquid drop model of the nucleus is
characterized by a volume term proportional to the
mass number A„, a surface energy term proportional
to the surface area, and hence to A' ' for a spherical
nucleus, and a Coulomb energy term, proportional to
A. ' ' for a spherical nucleus:

e Z
E~D = —c,A + cA. '~'f(s haep) +—,&, . g(shape) (2.2)

Xo

[cf. Egs. (1.1)-(1.3 and 1.12)]. So far as the fission
barrier is concerned, the important terms in Eq. (2.2)
are the surface energy and Coulomb energy terms, and
the sum of their contributions to the liquid drop energy
relative to the energy of a spherical liquid drop can be
written as
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E„n(shape) —E~n (0) =([f(shape) —1]

+ 2X [g(shape) —1]}E,(0), (2.3)

where E,(0), the surface energy of a spherical liquid
drop, is c,A' ' and X, the fissility parameter, is de-
fined as the ratio of the Coulomb energy of a spherical
drop to 2E, (0):

(2.4)

—', (e'/x, ) = 0.7053 MeV,

a, = 17.9439 MeV, x = 1.7826. (2.5)

Another set coming into vogue is derived from a rede-
termination of droplet model coefficients by Myers
(1977); from these an equivalent set of liquid drop co-
efficients can be determined, among which an effective
neutron-proton asymmetry coefficient K,« turns out to
have a value of about 3.4. These changes imply a gen-
eral lowering of the fission barriers. At the same time
the large effective a value causes barrier heights to de-
crease with increasing neutron number (and fixed Z
value) for nuclei situated in a broad interval near beta
stability, as opposed to barriers calculated from a ~
value of 1.78 [Eq. (2.5)], which increase when neutrons
are added. The precise value of the surface neutron-

The fissility parameter and hence the values of the
coefficients a, and ~, are crucial in determining the
shape dependence of the liquid drop energy and there-
fore of fission barriers. These coefficients have to be
determined empirically from an overall fit to nuclear
binding energies and, where possible, to experimental
fission barriers. For reliable determination of the co-
efficients, Eq. (2.2) is too crude as it stands, and it is
recognized that in that formula the volume and surface
terms are only the leading terms of a systematic ex-
pansion of the binding energy of a finite body with a
relatively thin surface region in which the matter densi-
ty falls to zero. The ratio of surface diffuseness to
nuclear radius is of order A. ' ', so a refinement of
Eq. (2.2) takes the expansion to higher powers in A.

This is the droplet model of Myers and Swiatecki
(1969). In this model, terms in A. ' ' are associated
with energy of curvature of the surface and redistribu-
tion of Coulomb energy in the surface, and other terms
are associated with the compressibility of nuclear mat-
ter. The many parameters involved are determined
partly from fitting to experimental data and partly from
statistical calculations based on Thomas-Fermi
theory; fitting to experimental data has to take account
of shell effects both in ground-state masses and in fis-
sion barriers, and this is generally done in the em-
pirical way outlined by Myers and Swiatecki (1966,
1967). Values of the liquid drop (or droplet) coef-
ficients actually used for calculations of fission bar-
riers by the Strutinsky method vary. One common set
is that due to Myers and Swiatecki (1967) (liquid drop
model):

x, = 1.2249 fm,

giving

proton asymmetry coefficient is probably the main un-
certainty arising from the liquid drop or the droplet
model in calculating fission barrier heights. Of course,
all parameters are highly correlated.

(ii) Shell modefs. - There is wide variety in the
choice of shell model for calculating the shell-correc-
tion energy entering fission barrier calculations.
Strutinsky's own calculations (1967) employed a de-
formed Woods-Saxon potential which has the advantage
of physical realism for nuclear shapes that are not too
strongly deformed. The potential is defined so as to
have a constant skin thickness about an effective
surface defining the shape. Figure 13 shows the
landscapes of independent proton and neutron shell cor-
rections as functions of nucleon number (Z or N, re-
spectively) and elongation c. The diagram is based on
the Woods —Saxon potential (Brack et a/. , 1972). Such a.
potential encounters difficulties for strongly necked-in
shapes, and here a variation suggested by physical no-
tions of the effect of finite range nucleon forces has
advantages; this is the diffuse-surface potential ob-
tained by folding a Yukawa function with a square-mell
potential of the nuclear shape required (Bolsterli et al. ,
1972):

V. . . exp[- (r —r'(/a]Vr = —
4

', d'~' (2.6)
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FlG. 13. Contour maps of the shell energy correction for pro-
tons and neutrons, respectively. The Woods-Saxon potential
parameters used are those appropriate for Pu. The thick
curves are zero energy lines and the increment per line is
1 MeV. The shaded areas have negative values. The deforma-
tion parameter (see Appendix), c = 1, corresponds to a sphere;
the isomeric minimum occurs for c =-1.42 and neutron number
N= 144. From Brack et al. (1972).
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where V, is the square well depth. The range a of the
Yukawa function can be chosen to give the desired sur-
face diffuseness. Parameters of such potentials are
generally chosen to reproduce a given set of experi-
mental data on single particle levels. Nix and his col-
laborators chose to fit their potential to the levels of
2o'Pb in their earlier calculations (Bolsterli et al. ,
1972), but in a later set Moiler and Nix (1974) have
adjusted their parameters to fit the levels of heavy
deformed actinide nuclei. The difference in the two
sets of potential well parameters amounts to about 11/o
in the surface diffuseness parameter (smaller in the
1974 version) and 12% and 6% in the neutron and proton
spin-orbit interaction (greater in the 1974 version).

The other class of shell-model potentials in common
use is based on the harmonic oscillator. In general
these have distinct computational advantages and permit
the exploration of a greater variety of nuclear shapes.
Calculations of the potential energy landscape in the
region of the barrier are generally performed within
the framework of the one-center modified oscillator
model (Nilsson model) with the shell-model potential
having, typically, the following form:

V = Vosc + Vcorr, (2.7)

Vos. = —k~0p' 1 ——6 +20'cosy+ 264P4
1a

2 4p sing
+ —&

2 i~2 (&22+ &2—2»3 5 j2j
(2.7a)

V = —u k(5, [21, ~ s+ p(1', —(1',))] . (2.7b)

p ((d„x +(0~/ +(g) z ). (2.8)

The oscillator frequencies for the principal ellipsoidal
axes are related to the parameter cu, (itself governed
by the shape parameters e, e„and y) through the re-
lations

cu„= ~, [1 ——,'e cos(y+2m/3)],

[1 ——E ' cos(y —277/3)],

= ~0[1 —
3 e cos'y],

and (d0 is related to the spherical oscil.lator frequency
~00 through a volume conservation condition. A typical
numerical value adopted by Nilsson et al. (1969) for the
last parameter is

0 410 1 N —Z
S(d0 =

~g3 1+ (2.9)

the plus and minus signs referring to proton and neu-
tron potentials, respectively.

The deformation parameters e, c4, and y refer to

The correction term, depending principally on the
square of the orbital angular momentum l„has the ef-
fect of flattening the potential towards its outer edges
and also contains a spin-orbit interaction. The pa-
rameters k and p are adjustable for optimal reproduc-
tion of experimental single-particle level schemes.
The variable p is the radius vector length in "stretched"
coordinates and is defined by

quadrupole deformation (nuclear elongation), hexadeca. —

pole deformation (waistline "necking-in" or broadening)
and degree of axial asymmetry, respectively. The pa-
rameter y is generally treated through its range of
values 0 to 60, 0 representing axial symmetry of a
prolate body, and 60 the opposite extreme of axial
symmetry of an oblate body. Other degrees of freedom
in the shape can be introduced within this framework,
still allowing practical computation, and two such im-
portant parameters are the deformations associated
with the third-and fifth Legendre polynomials; these
parameters allow the description of a pearlike asym-
metry in the nuclear shape, often referred to as mass
or volume asymmetry. Apart from these parameters
to describe deformed nuclear shapes many other pa-
rameters have been employed by other authors. The
relationships amongst the commoner of these is de-
scribed in the Appendix.

More sophisticated shell-model effects can be in-
corporated within the Strutinsky theory. One of these
is a shell-correction term to the Coulomb energy due
to Larsson et al. (1974), which is normally computed
simply as a liquid drop term with uniform charge
density over the nucleus. For this, the Coulomb re-
pulsion energy is calculated directly from the single-
particle wave functions; the proton densities arising
from these can change sharply with changing deforma-
tion giving rise to changes in the occupation of single-
particle levels near the Fermi energy with very dif-
ferent radial and angular distributions.

The treatment of pairing correlation energies also
gives room for elaborations. One of these is the de-
pendence of the pairing interaction strength on surface
area, as already mentioned. Another is the introduction
of the quadrupole pairing force (Larsson et al. , 1974).
This arises from the well-known expansion of a delta
force in terms of spherical harmonics,

6(r, r,) = ' ' g 1„„(i)1„„(2), (2.10)

with only terms in A. =0,2, p =0 being retained.

d. Results of ca!culatlons

(i) Inner barrier. The shell correction as a function
of deformation is obviously correlated with the local
density of single-particle levels in the shell. model
around the highest occupied level, the Fermi energy.
High single-particle densities give rise to a positive
shell correction (less stability) and vice versa. An
osclllatlng shell correction supe11D1posed on the llquld
drop saddle region gives rise to the double-humped
barrier. Variation of the shell-correction amplitude or
phase with changing proton and neutron number, to-
gether with the variation of the liquid drop potential
barrier with changing fissility parameter, gives rise to
variation of the double-humped barrier from nucleus
to nucleus. The contribution to the shell correction
from the pairing correlation effect is opposite in sign,
being negative at high single-particle densities, but is
much smaller in magnitude than the main shell effect.

The phrase "double-humped barrier" expresses the
main feature of the potential energy of deformation of
heavy nuclei as a function of elongation of the nucleus
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towards fission. Early calculations assumed a maxi-
mum degree of symmetry in the shape in the course of
this elongation. Pashkevich (1969) first investigated the
potential energy as a function of axial asymmetry along
this path and noted that the secondary well in the bar-
rier was stable with respect to this asymmetry. This
work and later work by Larsson et al. (1972), Schul-
theiss and Schultheiss (1971), and Larsson and Leander
(1974) all concentrated on investigating the potential
energy surface in the plane of elongation and the y de-
gree of freedom, and has established in general that the
nucleus may have axial asymmetry at the first saddle
point (A) but regains axial symmetry at the secondary
well (II). Typical results of Larsson and Leander (1974)
are shown in Fig. 14. For "'Th the inner barrier oc-
curs at a value of y= 10 but the potential energy on the
axially symmetric path is only -0.4 lVIeV higher than the
saddle; whereas for '"Cm the barrier energy drop at an
axial asymmetry y= 17 is a substantial 1.8 MeV.
There is a trend for increasing stability of axially
asymmetric shape at the inner barrier both with in-
creasing neutron number and increasing mass number
as shown in Fig. 15. As far as the actual magnitudes of
the barrier heights are concerned, the axially asym-

TAL ENERGY
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FIG. 14. Potential energy landscapes for 6Th and Cm. The
plane is one of nuclear elongation (&) versus axial asymmetry
(p); see Appendix. The nuclear shape is chosen so that the en-
ergy is minimized as a function of the hexadecapole deforma-
tion parameter e4. Energy contours are at intervals of 0.2
MeV. The heavy solid line with arrows follows roughly the
track of minimum potential energy with increasing elongation
through barrier A and secondary well II. From Larsson and
I.eander (1974).
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metric values of Fig. 15 tend to be a little lower in
general (on average -0.5 MeV) than experimental data
(see Secs. VII and VIII), after making allowance for
zero-point P-vibration energy of the ground state. For
the Th nuclei they are considerably lower, but there
may be special'reasons in theory and interpretation of
experimental data for this [see (ii) below]. For each
element the trend of the calculated value with neutron
number i.s gently peaked at N= 150.

The agreement of this kind of calculation with data.
seems to be impr'oved if the quadrupole pairing inter-
a'ction is included (Larsson et al. , 1974), particularly
for Th nuclei, for which the inner barrier is raised by
about 1 MeV. For Pu nuclei quadrupole pairing raises
the inner barrier by about 0.5 MeV. It should be noted
that in these calculations the liquid drop energy has
been refitted so that the calculation reproduces experi-
mental data on the secondary well.

(ii) Secondary well. Calculations on the energy of
the second minimum relative to that of the first mini-
mum, this time due to Moiler and Nix (1974) (using still
the modified harmonic oscillator shell-model poten-
tial), are shown in Fig. 16. In general these energies
are in the range 2 —3 MeV and agree with available ex-
perimental data on spontaneously fissioning isomers
to this extent (see Secs. IV and VIII for experimen-
tal data). However, interpretation of experimental
fission cross-section data on Th isotopes [see, for ex-
ample, James et al. (1972) and discussion in Sec. Vj
indicates that the secondary well is higher than 4 MeV .

for these light nuclei and so disagrees with the trends
of the calculation.

The overall trend of the curves in Fig. 16 (with a
minimum about N~ 144 and a peak about N~ 152) is also
given by calculations using the folded Yukawa model of
Moiler and Nix (1974). However, there are discrepan-
cies in absolute value of up to -0.5 MeV between the two
sets of calculations, changing in sign between Th and
Fm. More recent calculations based on single-particle
diagrams of the type shown on Fig. 23 tend to locate the
second shell minimum at neutron number N= 148.

(iii) Outer barrier. Early calculations in which the
nuclear shape was assumed axially and reflection sym-
metric indicated that the outer barrier was higher than

CALCULATED PPINTS

0 I I L I I I ~ I ~ ~ t I I I I i I ~ I ~ I L I I j ~ ~

226 230 234 238 242 246 250 254 25S
MASS NUMBER A

FIG. 15. Inner barrier height as calculated from Strutinsky
theory with a modified harmonic oscillator shell model with
and without the axial asymmetry degree of freedom. Pairing
interaction strength was assumed proportional to surface area,
and the liquid drop neutron-proton asymmetry constant v=1.78.
From Larsson and I.eander (1974).
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~=2.8. From Moiler and Nix (1974).
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the inner one in the actinides by some 3-4 MeV (see
Fig. 9). Experimental data, on spontaneous fission iso-
mer half-lives and excitation cross sections (discussed
in Sec. IV) and intermediate structure in fission cross
sections (see Sec. VI) refuted this; indeed, analysis of
data on plutonium and heavier nuclei suggested that ex-
perimentally the outer barrier is the lower. The dis-
crepancy was removed at least qualitatively by the cal-
culations of Moiler and Nilsson (1970) and by Moiler
(1972) demonstrating that reflection asymmetry in the
nuclea. r shape (included in the shell-madel potential as
third- and fifth-order Legendre polynomials) gave po-
tential energy minima at the elongations corresponding
to the outer barrier. There is no calculational evidence
for axial asymmetry also existing at the outer barrier.
Indeed, the existence of pron'ounced changes with en-
ergy of the angular distributions of fission products
is held to be evidence against axial asymmetry.

More recent calculated values of the outer barrier
height due to Moiler and Nix (1974) are shown in Fig.
17. The curves for individual elements do not show
marked structure or trends except for the highest ele-
ments, but there is a strongly falling tendency with in-
creasing nuclear charge, which is borne out by experi-
mental data on fission isomer excitation yields. These
calculations employ a modified harmonic-oscillator
shell-model potential, and they show discrepancies of
up to -1 MeV (changing sign in going from Th to Fm)
with calculations based on a folded Yukawa potential

NEUTRON NUMSER, N
FIG. 17. Calculated outer barrier heights using modified har-
monic oscillator shell-model potential. From Moiler and Nlx
0974).

[Eq. (2.6)].
The calculations based on the folded Yukawa shell-

model potential show a new feature in the potential en-
ergy curve in the second barrier region; this is a ten-
dency in the low Z, moderate N nuc-lei for the outer
barrier to be further split into two subsidiary peaks
with a shallow minimum between them (see Fig. 18).
If this is a real physical effect it will explain experi-
mental fission data on Th isotopes which demand an in-
terpretation involving a double barrier with a very
shallow well between them (further discussion is found
in Secs. V, IX, and X).

(iv) Probable accuracy of quantitative calculations on
fission barrier parameters. In Table I the theoretical
results on fission barriers for three specific nuclei are
compared. These nuclei are quite central to the nuclear
stability line and to the actinide group of elements and
therefore ought to provide reasonable tests for theo-
retical calculation. Some of the differences in the num-
bers are due to very significant differences in the
physics assumed, e.g. , degree of asymmetry in shape
allowed. Even where sets of numbers should be com-
parable, because differerices are confined to the choice
of shell model, as in rows 1 and 3 (columns 3 —5) or
rows 1 and 2 (column 6) differences of the order of 1
MeV in the estimated quantity occur. This can probably
be taken as a measure of the accuracy of the theory at
the present time. This statement is supported by a
comparison of the measured nuclear ground-state
masses of the actinides and lower nuclei with the values
calculated by Moiler and Nix (1974) using the folded
Yukawa shell model within the Strutinsky theory; the
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the nuclear binding energies of nearly 2000MeV, but they
are not accurate enough to supply on their own the relevant
barrier parameters for calculation of nuclear cross
sections required by technology, for instance.

2. Potential energy between saddle and scission

236Ti 240
~

%

average discrepancy is about zero, but there are sys-
tematic trends of the discrepancy curves as a function
of neutron number, the trends having a slope of -0.25
MeV per neutron pair (compare Fig. 138). The ac-
curacy of the theory is extremely good when set against

C)
Q —5 + M ~ & . A 3 I i s l a

0.75 1.50 0-75 1.50 0-75 $.50 9-75
DISTANCE BETWEEN MASS CENTRES r

(UNITS DF Ro}
FIG. 18. Calculated fission barrier potential energy curves,
using folded Yukawa shell-model potential. From Moiler and
Nix (1974). The dashed curves assume reflection symmetry in
the nuclear shape, but the solid curves allow for minimization
of the potential with respect to reflection asymmetry.

The point to emerge from the theoretical calculations
of the kind described above in Sec. II.A. l.d.iii, that
the saddle point at the outer barrier of actinide nuclei
occurs for reflection asymmetric nuclear shapes, in-
vites the speculation that this is the reason for mass
asymmetry in the final mass division of these nuclei.
Much work has been done on this point, and forms one
of the most interesting further developments based on
the shell-correction method, leading towards an ap-
parent solution of the formerly intractable problem of
mass asymmetry in fission. In broad terms, the theo-
retical work has coricentrated on mapping out the en-
ergy surface mell beyond the outer saddle point and well
down the slope towards the scission point where the two
incipient fission fragments finally part company. By
contrast with the region of deformation up to the outer
saddle point, this region is a hazy, ill understood area
from the overall point of view including the dynamical
effects. The whole question of nuclear viscosity arises
here in a very important way. There is a genera1 feel-
ing that viscosity must act selectively. Some quantities
seem to be frozen in at the saddle point, e.g. , the pro-

|
TABLE I. Comparative results on fission barrier heights from a range of calculations. The
barrier heights are quoted in MeV relative to the primary minimum of the potential energy curve.
For comparison with experimental data (normally quoted relative to the nuclear ground state) a
zero-point beta-vibration energy should be subtracted from these numbers.

Reference Rmarks on calculation U& ( OPu) 'Uz ( Pu) 'U& ( 2Th) U& (~3 Th)

Moiler and
Nix (1974)

Moiler and
(1974)

Lal sson and
Leander (1974)

Larsson and
Leander (1974)

Flocard et al.
(1974)

Flocard et al.
(1974)

Folded Yukawa shell
model. No axial
asymmetry in
deformation but
reflection asymmetry
allowed

Modified harmonic
oscillator shell
model. No axial
asymmetry but
reflection a symmetry
allowed

Modified harmonic
oscillator shell
model. No axial
asymmetry

Modified harmonic
oscillator shell
model. Axial
asymmetry allowed

Hartree-Fock
calculation. No
axial asymmetry or
reflection asymmetry.
Pairing interaction
stl ength pr'opor'tlonal
to surface area

Ditto, but pairing
inte raction strength
constant

5.45

6.3

6.3

5.6

9.0

11.0

6.3

7.1. 4.7

5.7
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jection of the nuclear spin on the major axis of defor-
mation, thus determining the angular distributions'of the
fission fragments relative to some laboratory-based
axis that is significant in the original formation of the
excited fissioning nucleus. The finding of mass asym-
metry in the energy surface at the outer barrier at
first sight indicates that the broad trends of mass di-
vision in the final fission products may also be largely
frozen in here. More detailed studies of the way in
which mass yields in fission are determined indicate
that the potential energy surface plays a crucial role in
mass division. The important feature is not just the
potential energy at the outer barrier but rather the po-
tential energy landscape several MeV below the outer
saddle point. This alone points to the fact that the dy-
na, mics of the problem must be of vital importance in
controlling the mass division, as it is also for deter-
mining the spontaneous fission half-lives.

T= —' B,-,. qq;q, (2.11)

demands the knowledge of the inertial tensor as a func-
tion of the collective coordinates. This is the essential
complement to the potential energy and can be either
modeled according to hydrodynamic concepts (Nix,
1967) or can be computed microscopically from the
same shell-model level schemes used to construct the
shell correction to the potential energy in the Strutinsky
method (compare Fig. 44). The classical liquid drop
model is already sufficiently complex that straight-
forward analytical expressions for the inertia have not
been derived except for very small deviations from a
sphere, in which case the inertial parameter associated

B. Dynamical considerations

The potential energy landscapes for deformation of
the nucleus discussed in Sec. II.A.2 above provide the
essential foundation for discussing the fission process
and already suggest many of the most striking pheno-
mena to be observed, but, with such complicated po-
tential energy surfaces, and with the consideration that
the nucleus is a microscopic body, strongly influenced
by the motion of a single or a few nucleons, it is ap-
parent that the dynami cs of fissi on i s still a maj or
problem. For large deformations a description of the
deformation in normal modes based on a I egendre
polynomial expansion of the surface is not practicable;
the alternative choices of suitable deformation parame-
ters are arbitrary, guided by physical intuition, and as
a result the inertial tensor can take a complicated non-
diagonal form. The inertial tensor is strongly affected
by single-particle and pairing effects as well as being
a measure of "collective motion. " In addition, the ef-
fects of "viscosity" in the nuclear motion play an im-
portant role. Many of the quantities observable in
fission (e.g. , cross sections at low energies, proper-
ties of spontaneously fissioning isomers) do not require
a theory of viscosity for their explanations; these can
be based on extensions of normal quantal ideas, includ-
ing calculations of the inertial tensor.

The dynamical requirement of an expression for the
kinetic energy in terms of generalized collective co-
ordinates q;

with the lowest normal mode (the quadrupole term in the
spherical harmonic expansion of the surface) for irro-
tational flow is

Bs = 3MR02/8m, (2.12)

B„„=(1+~»' k exp f- (r —0 75K,)/. d]jP, (2.13)

wher e A p is the spherical nuc lear radius, and -k and d
are parameters that describe deviations from the ir-
rotational value (for irrotational flow 0= 1, d =R,/2. 542).

Microscopic calculations of the inertial tensor are
normally based on the cranking model, originally de-
veloped by Inglis (1954) for calculation of nuclear mo-
ments of inertia, in which the independent particle or
quasiparticle system is assumed to be driven in a spe-
cific form of collective motion by an external force,
and the inertial parameter is determined from the gen-
erated kinetic energy and the collective velocity. Its
application to fission was first developed by Sobiczewski
et al. (1969b) and Damgaard et al. (1969). The cranking
model expression involves virtual excitations from the
ground state ~0& of the deforming system to excited
states ~m&:

&0)B/bq; ~m&&m (e/a@, [0&
12

m&p E —Ep
(2.14)

For a pure independent-particle system this expres-
sion llterRlly evRluRted contains slngulRrltles Rt
single-particle level crossings. Within the shell-cor-
rection framework of the Strutinsky theory, however,
pairing forces are included in the shell-model treat-
ment; the resulting energy gap separating the ground
state from other states removes these singularities
and leads to an inertial tensor of reasonable physical
magnitude. A simple statistical expression for the de-
pendence of the inertia on the energy gap A and the
density of single-particle states g,«at the Fermi en-
ergy is developed by Damgaard et al. (1969):

BH 'g«
2 IBq

(2.15)

0

A typical detailed calculation of the inertia from the
cranking model is shown in Fig. 19; this is due to Pauli
and Ledergeber (1974). As to be expected from Eq.
(2.15) it is correlated with the shell correction to the
potential energy of deformation of the nucleus. The

P being the coefficient for the second spherical har-
monic Y2p in the expansion of the surface, M the nu-
clear mass, and Ap the nuclear radius. For his studies
of the later stages of fission towards the scission point
Nix (1969) used the Werner-Wheeler numerical method,
in which the internal hydrodynamic flow is approximated
by the flow of circular layers of fluid perpendicular to
the symmetry axis.

Phenomenological expressions for the inertia have
also been employed; for example, if the fragment sepa-
ration r is employed as the fission variable the asymp-
totic inertial parameter at large separations is the re-
duced mass of the fragments jU, while at the other ex-
treme of small deformation it tends toward Eq. (2.12)
for irrotational flow. A typical expression for B„„,due
to Randrup et al. (1973), is
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FIG. 19. Intertial parameter B ~ corresponding to the collec-
'tive parameter for nuclear elongation c compared to the shell
correction energy E,h &

. From Pauli and Ledergerber (1974).

structure in the inertial parameter implies that the
potential energy alone does not provide a simple guide
to the dynamical motion of the system through deforma-
tion space. This is demonstrated by Pauli and Leder-
geber's treatment of spontaneous fission half-lives. The
half-life is proportional to the Gamow barrier tunneling
factor

z- (I/~) exp[2K/8]

The trajectory calculated from this prescription for
symmetric deformations in" Pu is shown in Fig. 20.
It is apparent that the "dynamic" barrier for this tra-
jectory is higher than the static barrier. Calculations
of spontaneous fission half-lives of ground states using
these calculations of the inertia and the least action
principle give remarkably close agreement with data
provided that the surface energy constant of the liquid
drop model is suitably adjusted (see Fig. 21). This, as
shown in the diagram, differs for different elements.
Agreement is poorer (discrepancy up to 4 orders of
magnitudes) if it is attempted to use a universal surface
energy constant (see also Fig. 45). Half;lives of spon-
taneously fissioning isomers are shown in Fig. 22.

Pauli and Ledergeber suggest as a hypothesis that the
least action trajectory determined for spontaneous fis-
sion should also be the path for near-barrier fission.
This would have the attraction of explaining the high
intermediate barriers observed for Th isotopes where
the dynamic barriers are particularly high compared
to the static barriers of Pauli (1974). It is neverthe-
less a very controversial idea and needs to be properly
tested by a calculation of the development of the wave
function over the barrier in a two- or few-dimensional
deformation space.

C. Structure of shape isomers and related states

1. Single-particle states

The properties of the spontaneously fissioning isomers
associated with the secondary well of the double-humped

K= 'dq2B E Vq / (2.16)

The integral K, the action integral, is calculated along
a trajectory q through deformation space, defined to
give the least value of K. The inertial parameter B,
for this trajectory is determined from the inertial ten-
sor by

12

Pu-

7

Bq; Bq B Q'z Bq (2.1V) Cm-

2C, S Cf

C)

C3
U AND Pg

C = 49.0 t1-187I )5
Cm

'C = 4 9.41 (1-2 121 j

Ct AND Fm

S, C = 50.47(1-2 84I2)

35 37 39

1.0 C 1.18 1.30 1 42 1.54 186 1.78
FIG. 20. Least action trajectory for ground-state spontaneous
fission of Pu through potential energy landscape in plane of
elongation parameter c an/ neck constriction @. From Pauli
Ledergerber 0974).

FIG. 21. Least action calculations of ground-state spontaneous
fission half-lives mith optimized adjustments of surface energy
constants for different groups of elements. From Pauli and
Ledergerber 0974). Points are from theory, crosses from
experiment.
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barrier can be discussed by means of fairly standard
nuclear models. The single-particle character of low-
lying states associated with the secondary well can be
obtained by extensions of Nilsson diagrams to the
greater deformations, as already calculated for the pur-
pose of forming the nuclear potential deformation en-
ergy in the Strutinsky theory. A set of single-par-
ticle diagrams for the extended deformation at the
second minimum is shown in Fig. 23; this has been
compiled by Metag (1979) from computations of various
authors. Data on highly deformed single-particle levels
in odd-A isomers that can be tested against the predic-
tions of such diagrams are already available; see Sec.
IX.

2. Rotational bands
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The deformed shell-model level schemes can also be
used to determine the moment of inertia of the rotational
bands associated with the spontaneously fissioning
isomers. Generally, the cranking model of Inglis
(1954) is used for these calculations, and the pairing
force is included. A typical calculation on "'Pu, due
to Pauli and Ledergerber (1974) is shown in Fig. 24.
It is very similar to a calculation by Sobiczewski et al.
(1973); see also Sec. IX.

NEUTRON NUMBER, N

FIG. 22. Least action calculation spontaneously fissioning
isomer half-lives. From Pauli and Ledergerber (1974).

3. Vibrational states
In addition to particle excitations and the associated

rotational bands the level spectrum of the second well,
particularly of even nuclei, will contain collective
states of distinctly vibrational nature. Among these
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FIG. 23. Calculated single-particle neutron level schemes at the deformation of the second minimum, calculated for different
shell models by different authors. From Metag 0980).
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the stretching, or P, vibration plays a special role, as
the one that is directly coupled to the fission motion.
At the energies where one, two, and higher vibrational
modes occur one observes resonance fission, as de-
scribed in more detail in Sec. V. Two-phonon and
higher vibrational states have so far not been observed
in the excitation spectrum of the ordinary ground state
of deformed nuclei. The specific coupling to the fis-
sion mode makes such higher states observable for the
shape isomeric nuclei. Also the increasing spreading
of the vibrational strength to the neighboring states
within a broad energy interval can in principle be
studied (Sec. V).

The position of the P-vibrational states can be calcu-
lated microscopically from the single-particle wave
functions of the states surrounding the Fermi level and
the strength of the residual interaction, by the random
phase method (Zielinska-Pfabe and Gabrakov, 1973).
Although calculations of the energies of such states in
the first well have appeared to be very sensitive to de-
tails of the ordering of the single-particle states in-
volved, making it perhaps premature to expect reliable
theoretical predictions for P vibrations in the second
well, such calculations for the second well would be
of considerable interest.

FIG. 24. Calculated moment of inertia of the lowest rotational
band for Pg. as function of elongation c. From Pauli and
Led ergerber (1974).

The transmission coefficient is most easily derived
in the case of a barrier with sharp edges (Fig, 25).
The deformation variable is denoted by q (for this has
no associations with any of the specialized definitions
of deformation that occur in the literature; see Ap-
pendix) and the inertial parameter associated with this
degree of freedom is denoted by B and assumed to be
independent of deformation. The potential energy ~ is
assumed to be zero for q & 0, 'U~ for 0- q - q» and 'U„

for q &q,. If an incident wave with total energy E is
progressing from small values of g to increasing g, in
the stationary wave representation the wave function
solution of the Schrodinger wave equation —(a /2B)
(&'&f/Bri2) + ('U —E)Q = 0 has the form

Q =e""+ae '"0", @ &0 (incident wave and reflected wave)

etky g + ee lkg Q 0 & q

Q =de'""", '0, &p (transmitted wave only)

(3.1a)
(3.1b)

(3.1c)

The wave numbers are related to the "velocity, " giving
the rate of change of deformation of the system, through
the usual de Broglie relationships,

e, =Bv,/u= (2'/r2)",
k~ = [2(E —Ve)B/h')'~' (=Ac~, if E& V~),

a„=Bv„/@=[2(Z —~„)B/a']".

(3.2a)

(3.2b)

(3.2c)

The incident flux is just the velocity 'l~p while the flux
of the transmitted wave is ~d~'v„, giving for the trans-
mission coefficient T = ~d~'v„/vo. The coefficients a, 5,
c, d are found by matching the wave function at g=O and

giving finally

theory [Wigner, 1938; Blatt and Weisskopf, 1952; see
Eq. (1.9)] for the decay of a system over a classical
barrier; this is now modified for near-barrier fission
by multiplication by a transmission coefficient T that
incorporates the quantal barrier tunneling effect (the
Gamow factor). The transmission coefficient is normal-
ly calculated by solving the Schrodinger equation in one
dimension, with boundary condition defined by re-
straining the wave function on the right of the barrier
to a progressive wave, i.e., one traveling from left to
right in this convention.

't. Single-barrier peak

a. Rectangular barrfer

III. REACTION THEORIES FOR THE FISSION
PROCESS

A. One-dimensional barrier penetration theories

Phenomenological models that deal with the fission
channel on a one-dimensional basis, either ignoring
the existence of the other degrees of freedom of the
system, or treating them simply as a gross absorption
out of the fission mode, are very commonly used in the
analysis of fission data.

Models of the first class are based on the estimate of
the fission width obtained from simple statistical

LUz 0 ———
LU

I—z
LLj
I—
D
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FIG. 25. Rectangular barrier in the potential energy 'U vs
deformation g.
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4k~ kok

[kz —k~z (ko + k„)+ kokz] sin'k~qz + k~ (k, + k„)' '

4&v'uo

[~~ + fez (k', + k„') + kok„] sinh'xz'&2+ Kz (k, + k„)' '

(3.3a)

(3.3b)

0-

lX
LLI

The oscillating character at above-barrier energies
of the transmission coefficients shown i.n Fig. 26 are
peculiar, among single-barrier peaks, to the rec-
tangular barrier with its sharp edges. Transmission
coefficients of more realistic barriers must therefore
be sought. Since it is apparent from Eq. (3.3) and Fig.
26 that the most important parameters affecting the
transmission coefficient are the barrier width and
height, relative to the kinetic energy, while the poten-
tials on either side are comparatively unimportant,
the mathematical details may be simplified by con-
sidering only symmetric barriers.

(i) Triangular barrier. The triangular barrier is the
most obvious case to consider next (Fig. 27). The wave
functions within the barrier region can be expressed as
Airy functions:

10-

I
I

I

vF 6q vixen

Some examples of this function are given in Fig. 26
for parameters that would be typical, in order of mag-
ni tude, for actini de fissi ori bar riers.

b. Other barrjer forms
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4 = n/li(4) 4. 5» (t), (3 4)

where $ is related to the slope of the potential hill
('u = 'U, —c )'/i —q, ~) and the energy by g = (2Bc/k 2) '/2

[~q
—g, ~

+ (V, —E)/c], while the Airy functions have the
asymptotic forms

/ti($) = — dz cos(gz+~2z')- g
' exp( ——&' 2)

1 1
7T 0 2v'7t

Bi(t) = — dz[e' '/~ +sin(z$+~2z2)j
0

f 1/4 exp( 2 $3/2)1
v'm

vaiid if 2(2B/h ')' 'E' '/c» 1 and 2(2B/If' )' '('U2 —E)' '/
c»1. Matching of the wave functions (3.1a), (3.1c) to
(3.4) at the discontinuities and use of the asymptotic
forms for the Airy functions leads to

(3.5)

FIG. 27. Symmetric triangular barrier in the potential energy
'U vs deformation q.

4U E 3/2
T =exp

3 A c (3.6)
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(ii) Hyjerbolic cosine barrier. All discontinuities in
potential gradients are avoided in the hyperbolic cosine
barrier (Fig. 28), expressed by

'O(q) = 'u, /cosh2(uq), (3.7)

+ b sinhuqE(- ~s+ ~2ik/n2+ ~ , 2

—~2s —~2ik/u+~2, ~2, —sinh'uq)', ;,
(3.8)

where k = (2BE/N ')' ', s = ~2 [- 1+ (1 —8Bu /n'I ')'/'J and
the resultirig barrier transmission coefficient is [e.g. ,
see Landau and Lifshitz (1958)]

The wave functions in this case take the form of hyper-
geometric functions,

1 aF(- —2s+~2ik/n, -~2s —2tik/u, ~2, —sinh2uq)

1012
I I l I

3 6
INC I DE NT E NE R G Y ( MeV ) or

sinb'(w k/n)
si nh'(w k/n) + cos' [~2w (1 —8B'u, /k 'n') '/']

if 8B'O,/8'u'& 1 (3.9a)

FIG. 26. Transmission coefficient calculated for the passage
of a wave through a rectangular barrier (Fig. 25). The inertial
parameter' is chosen so that 2B/5 =1200 MeV (the deforma-
tion parameter g is &dimensionless).

sinh'(wk/n)
sinh'(wk/n) + cosh'[+w(8B'U2/k'u' —1)'/']

if 8B'u2/kzn & 1. (3.9b)
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FIG. 28. Hyperbolic cosine barrier in the potential energy 'U vs deformation p.

(iii) Inverted parabolic barrier. The barrier that is
almost universally employed in nuclear fission studies
is the inverted parabolic one, generally known as the
"inverted harmonic oscillator, " the "oscillator" having
circular frequency denoted by ~:

(3.10)

term in its asymptotic expansion for x» ~a~,

E(a, x) —V2x" '~'exp[ ,'ix'+—argr(—,'+ia)+ —,'v],
and corresponds to a transmitted wave to the right of
the barrier. The same solution with argument —x cor-

.responds to a reflected wave to the left of the barrier,
while the solution

(3.11) E*(a, —x) = c '~%'(a, -x) —ic'~'W (a, +x} (3.16)

The general solution of the Schrodinger equation for
such a potential is the parabolic cylinder function, the
standard form of which can be written [see, e.g. ,
Abramowitz and Stegun (1965)]

{coshma)'~'
2lvr

x (Ir(—,'+-,'ia)y, (x) +@2
I
1'(—'+ —'~) Jy, (x}3,

(3.12a,)

corresponds to an incident wave to the left of the bar-
rier. Thus, to the right of the bar rier

@ =BE(a,x), x positive

-and to the left

g =E*(a, -x)+RE(a, -x), x negative.

Since the asymptotic forms of E and E~ hold for their
analytic extension into the complex q plane, this enables
a connection to be made between these forms, giving

where y, and y, are related to the confluent hypergeo-
metric functions

The result for the transmission coefficient is there-
fore

T = 1/(1+exp[2m(vz —E)/K~}, (3.17)

x = (4C~B/h')'i'(q —r! )

a = (Z~ —E)/h&u .
(3.13)

(3.14)

From the standard form complex solutions of the
Schrodinger equation can be built with the asymptotic
forms (for large ~x~) of waves progressing to either
the left or right. Thus the solution

E(a, x) =c ' ~(a, x)+ic' 'W(a, -x) (3.15)

[with c = [1+exp(2wa)]'~ —exp(vra)] has, as the leading

= e "~ '" (1+{a+~2){x/2!)+ {a+2)(a+ —',)(x'/4!)+ ~ ~ ~ j,
{3.12b)

y2= e "~~'" jl+ (a —~)(x'/2! )+ {a ——,')(a ——,')(x'/4! )+
(3.12c)

a well-known result due to Hill and Wheeler (1953).
This result is one that is very commonly used in the
analysis and presentation of fission reaction data. It
is to be noted that the transmission function increases
monotonically with energy; for energies far below the
barrier it increases purely exponentially and above
the barrier it reaches asymptotically to unity.

c. General approximate form for a s/ ngle-humped barrier

The last formula is a special case of the general
formula for a barrier with only a single extremum;
this was given by Froman and Froman (1965, 1970) in
the JWKB approximation. As in the exact treatment
of the parabolic barrier the asymptotic wave forms to
left and right of the barrier are connected by following
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a path on the wave-number sheet, k (with phase cor-
responding to positive value of 0= [2B(E—~)/N']' ',
when the argument is real and q lies to the left of the
barrier') in the complex q plane. The transmission
coefficient is given by

T = [1+exp(2K)]

where, in first order,

f" RB(E —'u) '

82
I)+t hm

(3.16)

(3.19)

@((() (2&( ( )l) p
(' BXp dll(28(R 'U)I )he

Here, q, , 7I, are just the points q„q~ at which 'U()j) =E,
in the sub-barrier case when the barrier peak exceeds
the available energy E; K is then real and positive.
However, in the superbarrier case, the path of integra-
tion for K proceeds in the upper half-plane of the
above-mentioned Riemann sheet and connects arbitrary
points (on the real g axis) to the left and right of the cut
joining the zeros of k in the upper and lower half-

, planes of g. In this case K is real and negative. Fro-
man and Froman (1970) also treat higher-order phase
integral approximations to K.

2. Double-peaked barrier

a. Genera) JNIKB treatment

Whereas the single-peaked barrier exhibits a trans-
mission function that rises almost monotonically with
energy in an exponential mariner, the characteristic
features of the transmission of the double-peaked bar-
rier are dominated by the virtual states of the potential
well that lies between the two peaks; these states give
rise to resonances in the transmission function, and
the effect of the potential maxima on either side of the
well is felt mainly in the widths of these resonances
and in the minima between the resonances.

These features are revealed by the JWKB treatment
of the problem. Within the secondary well of the bar-
rier, where the kinetic energy is positive, the quasi-
classical approximation to the wave functi. on is

~C

dn[2B(E -~)]'"= (n, + &)m,

which is Bohr's quantization condition. When the bar-
riers on either side of the secondary well are finite,
so that the wave function does not vanish for g-a~,
the condition (3.21) on (j) for discrete solutions is no
longer required for the general solution, but the ampli-
tude of the wave function between the wells is maxi-
mized at an energy close to the above quantization con-
dition, i.e., resonance occurs. This is reflected in the
expression for the transmission function, for which,
in the JWKB approximation, Ignatyuf et al. (1969) de-
duced that

(3.21)

where T„and T& are the transmission coefficients of
the barriers A and B treated separately (as in Sec.
III.A. 1).

This formula has been criticized on the grounds of
arbitrary use of the JWKB connection formulas (for
which see, e.g. , Kemble, 1958) at the classical turning
points q, and 7I, . Leboeuf and Sharma (1973a) give Eq.
(3.22) without the term in sin'@ in the denominator as
the correct first-order JWKB approximation, but this
formula is actually less satisfactory than Eq. (3.22)
in that it diverges at the resonance condition of Eq.
(3.21). Froman and Dammert (1970) give the general
approximate form

exp] —2 (K„+Ka)f
(S —1)'+4S cos'o. ' (3.23a)

S = [1+exp( —2K„)]'~'[I+ exp( —2Kt))J 't', (3.23b)

with expressions for A& and K~ in higher-order phase
integral approximations, which reduce in first order to
the expression (3.19) introduced in Sec. II.A. 1. c (for
barrier B, of course, the turning poirits g„g„must re-
place ri, and g, in that expression), while the phase
angle o. has correction terms on @, resulting in

j./2
c 2B (E —~)

d'g . —Q~ —OgN2
Q b

(3.23c)

with

T= ~4(T„Tt))[[~(T„+Ttt)]2 sin2(j)(E)+cos'@(E)] ', (3.22)

+C, exp ——„' aq m E-V
IZ

(3.20) 1 K~ K~ K~ 1 2K~
g ln — + ar gl

2 m, p m 2
(3.23d)

01

C 2 g/2 77

( )]),t
sin — dq[2B(E —V)J +—

Between the two turning points gb and g, where E = 'U,

this wave function reduces to the form of either and a similar formula, for a~ in terms of K&. The final
term in the formula for the correction phases a has
been given approximately by Ford et al. (1959) as

—argI" ———= — ln +—

~, & 2 sin — d7I [2B (E —~)] ' '+—

if the condition is imposed that the solution of the exact
Schrodinger equation vanishes as g-a ~. For these
two expressions to be identical at q, the sum (j) of their
phases must equal an odd-integral multiple of —,'m:

'In the sub-barrier case this corresponds to the phase
k ~ = e-'~~4

)
k'~

) when E &'U on the real g axis.

where y is Euler's constant with value 0.57721.57. The
function vz and the approximation Eq. (3.23d) for it are
shown in Fig. 29. Leboeuf and Sharma (1973b) also
give expressions for various near-barrier situations;
these are encompassed by Froman and Dammert's ex-
pression, Eq. (3.23), so they need not be restated here.

The resonance condition for Eq. (3.23a) is discussed
in some detail by Froman and Dammert. They note
that for a symmetric double barrier the resonance con-
dition is exactly
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T= —' exp/-2(K~+Ks)]= —,'(T&Ts) . (3.2 I)

I ' i I I
1 2 3 K fTI

I I I I I

b. Speciaf treatments

(i) Double-peaked rectangular barrier. .In the bar-
rier formed of rectangular sections shown in Fig. 30
the wave function has the form

ik& r) —jk& q

-0 OS

sk3I) + -Ik3ri

Q = b,e'"'" + c2e '"'",
y =b etk1 ) +C e-ik1)

ikpr)

'g ~& 'g ~& 7/

gggF/P
7/ p (3.28)

FIG. 29. The phase correction 0. to the phase angle G' that
gives rise to resonant effects in tunneling through a double-
humped barrier. It is shown here as a function of the wave-
number integral E. After Froman and Dammert (1970). The
dashed curve is an approximation due to Ford et al. (1959).

a = (n+ —2)s, (3.24)

wh'ere n is an integer, and at this energy the trans-
mission is exactly unity. For energies far below the
peaks of both barriers this same condition for resonance
is approximately true; in fact the quantity 4S cos'+ is
the dominant term in the denominator of Eq. (3.23a) ex-
cept when cosa is very close to zero, and hence, in
this strongly sub-barrier situation, the transmission
function has the appearance of high, very narrow peaks
on a low but exponentially increasing base. In the case
af a symmetric double barrier these peaks rise to a
transmission value of iinity. Equation (3.23a) can be
written approximately

with

k = (2EB/5')' ' k = [2(E —'U )B/O'I' '

k, = [2(E —V )nB /k' J'~', k, = [2(E —Ze)B/O'J'~',

and k, = [2(E —w )B/O'J". The transmission coefficient
T =

i bovi, /,v is found by matching Q across the boun-
daries g„g2 Ql Qp The final expression is somewhat
unwieldy to write down, and in practice it is simpler
to star t wi th the for m of the asymptoti c outgoi ng wave
in the final region (q, &q), calculate numerically the
coefficients b„c, relative to bp from the matching at
g, and hence calculate the "parent" coefficients b„,c„
at each preceding boundary until the value of b, relative
to uMty ls obtained from the matching at g3 The
matching conditions at gp are

~b k+ kp 2k@
kl —&o

while those at g, are

(3.29a)

b, (b,/c, )(k, + k,)e'"' """'+(k —k,)e
(b / )(k k ) i(k&+kk)k& (k k ). i(k&-k&)'k& ~ ( ' )

and generally at q„are
cosh '(K„—Ks)

1+/coso'/[ —,
' exp(-2K„) + -', exp(-2Ksi])' ' (3.2 5) b„, , (b„/c„)(k„+k, ,)e"" ""'&'"k+ (k„, , —k„)e ' """+"'"

c„,, (b„/c„)(k„,, —k„)e' «'" +&'k" +k(k„+ k„, ,)e'

giving T,„= cosh '(K„—Ks) at resonance. Close to the
resonance conditioii coso. can be written o.'—(n+ —,')m,
thus demonstrating that the half-width of the resonance
is Ao. = —,' [exp( —2K&) + exp( —2Ks)] which, in terms of
energy, is

')c
I'= ff [exP(—2K„)+exP(-2Ks)J dr)[(E —V)/2B]-'~'.

ClT=l-
b,

(3.30)

(3.29c)

Since the transmitted flux is equal to unity minus the
reflected flux, the transmission coefficient is just

2

(3.26)

The denominator in this expression is the reciprocal
of the classical oscillation frequency between the two
barriers. The resonance width therefore is simply
interpreted through the Heisenberg uncertainty princi-
ple, i.e., it is Planck's constant (divided by 2w) multi-
plied into the escape probability (oscillation frequency
times probability of tunneling the barriers) from the
intermediate well.

Other pointy to be noted about the JWKB formula
are, firstly, that well below the peaks replacement of
o! [Eq. (3.23c)] by &P [Eq, (3.21)J gives rise to very
small error in n, but this nevertheless implies a large
shift in the resonance in comparison with its width.
Secondly, between resonances, the transmission has
minima close to the value

v-Q ————
I—

uJ
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FIG. 30. Douhle-humped rectangular barrier in the potential
energy 'U vs deformation g.
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'U = 'U~ ——,' C~('/i —'/i~)',

'U = 'U„+ —,' C«('/i —'0«)', '//, & '/i & '/i,

'U ='Us —
2 C«('/i —g«), '/i &'/i (3.31)

Such a barrier has been considered particularly by
Cramer and Nix (1970) and Wong and Bang (1969). For
smooth joining the points q„p, are given by

- 1/2
2(U~ —'U«)C~
C«(C~+ C„)

1.!2
2(U« —'U«)C«

iz is C (C +C )

(3.32«)

(3.32b)

and also lead to the conditions that

(6 „being unity).
This numerical procedure can be applied to any arbi-

trarily shaped barrier, by approximating the barrier
with a sufficiently large number of constant potential
steps. The transmission coefficient corresponding to
barrier penetration frorrf the ground state through a
realistic double-humped barrier can be calculated
within a factor of 2 by breaking the barrier into the
order of 1000 equal steps. Many of the numerical cal-
culations given, by way of example, below, have been
calculated by this method.

(ii) Smoothly joined harmonic segments. Another
barrier form for which an exact numerical solution can
be obtained is that in which the double-humped barrier
is composed of harmonic segments of the form

1 r(—,' —&»/2) m 7)a»
f/(««&+«) 2a /2+1/4 cos

4
+

2 yq(x«)2»

I (—' —& /2) m wasin —+ " y, (x„), (3.33a)

1 I' ( ~
—a«/2), 7/ «a«V(««&«)=, F(~, ~ 2:„/"./ s

4
+

2 y.{ «)

r (-; —a„/2) ««a„+ 2a«/a-y/4 cos
4

+
2 y2(xl)

J
(3.33b)

the functions y„y, being those of Eq. (3.12) while
a« = {~« E)/—her«, x«= (4C«B/h')' '{ri —q«). The re-
quired wave function in this region is formed from a
superposition of U and V. All the appropriate solutions
in the three regions and their derivatives can be calcu-
lated from the series expansions (3.12b), (3.12c),
matched at the points q„g„and hence the transmission
factor deduced. An example of the computed coefficient
for.a barrier with 'U„= 6 MeV, U» = 2 MeV, 'U& = 5 MeV,
hu„=1.3 MeV, N~»=2. 0 MeV, and A~~=0.48 MeV is
shown in Fig. 31 (Cramer and Nix, 1970), and is com-
pared with calculations from the SWKB formula of
lgnatyuk et al. (1969). The shape of the barrier is also
shown in this figure, together with the parabola joining
points, and the virtual vibrational energy levels in the
secondary well are also indicated. At the 4.76-MeV
level the energy calculated by the simple JWKB formu-
la [Eq. (3.22)] differs from the exact energy by 18 keV.

7)« = q, + (q, —qs),C~

II
(3.32c) 3. Effects of variable inertia

C»n~=n, +
C (n, -n«).

A
(3.32d)

The solutions of the Schrodinger equation for these po-
tentials are the parabolic cylinder functions, with
forms (3.16) and (3.16), for the regions '/i &q, and
g & g„ the quantities a and x being calculated for the
appropriate values of &~, C&, q& and 'U&, C~, g~. In the
intermediate region (q, & q &q, ) the Schrodinger equa-
tion has general solutions of the form

In the single barrier peak case it appeared that rather
broad superbarrier resonances, or oscillations, appear
in the transmission coefficient through the square po-
tential. These disappear as the potential edges become
softer until, in the limit of the inverted parabola, not
even a trace of an inflection remains in the mono-
tonically rising transmissio~ function. These con-
clusions, - however, are only. rigorously valid if the in-
ertia associated with the deformation variable g is in-

X
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~ VfKB

0
0 0'2 04 06

DEFORMATlON 6
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FIG. 31. Examples of transmission coefficient for a double-
humped barrier composed of parabolic segments [from Cramer
and Nix (1970)], and comparison with a JWKB calculation of
Ignatyuk et a$. (1969).
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dependent of q. It is possible, if the inertial parameter
varies sufficiently with deformation, that superbarrier
resonances might appear in the transmission through a
rather rounded barrier (Hofmann, 1972). This can be
demonstrated by transforming from the deformation
variable q to a new variable ~ for which the inertia is
a constant B„ the transformation being defined by

x= Bg' B '~ dg', (3.34)

and writing the Schrodinger equation in this new varia-
ble, in terms of which the potentia. l energy 'U (x) will
have a different form. In particular, if the inertial
parameter B (tl) follows qualitatively the rise and fall
near the top of the barrier and is nearly constant else-
where, as expected in some cranking model calcula-
tions (see Sec. II.B.1), 'U(x) will have a much squarer
form than U(tI).

Hofmann (1972a) has investigated the degree of soft-
ness of the edges of the barrier 'U(x) required to give a
reasonable degree of superbarrier oscillation. If 'U(x)

has the form of an inverted Eckart potential

U(x) = U, tl+ exp[—(x~ —x)/d]) ', (x~ » d), (3.3 5)

the ratio of edge diffuseness parameter d to width (at
half maximum) 2x~ is found to be =0.14 for resonances
to disappear. This is a rather small ratio and leads to
the feeling that superbarrier structure is likely to oc-
cur for a realistically shaped fission barrier only if the
inertial parameter of the fission motion varies quite
strongly. The degree of dependence of oscillation on the
ratio of diffuseness to barrier width is illustrated in
Flg. 32.

More complicated superbarrier oscillation effects
can occur for the double-humped barrier.

4. Barrier transmission with absorption

As stated above, the one-dimensional treatment of the
fission process can be extended to take some account
of other degrees of freedom by treating excitation of

Q = exp( —ik,tl)+S~f exp(ik, r)), tl &tl, . (3.36)

The amplitude Sf& is calculated by solving the Schro-
dinger equation (usually by numerical integration), the
governing boundary condition to give the correct solu-
tion being that the wave function is real and regular at
some value of the deformation p sufficiently far op
the low deformation side of the potential well. A re-
sulting value of S&f with modulus unity implies pure
scattering of the fission wave. The difference between
unity and ~S&f ~' gives the abs'orption into the internal
region, i.e., compound nucleus formation; the cross
section for compound nucleus formation from an "in-
verse-fission" channel is proportional to 1 —~Sf&~', and
this expression is normally defined as the transmission
coefficient Tf corresponding exactly to the simple bar-
rier transmission already considered in Sec. III.A. 1;

the latter as a simple absorption out of the fission
mode. This method is very familiar in the treatment
of nucleon scattering by complex nuclei, being just the
optical model of nuclear reactions. In the application
of the optical model to the fission process it is neces-
sary to include the well(s) in addition to the barrier in
the potential energy function for the deformation mode.

In the original application of this method to fission
through a single-peaked barrier (Lynn, 1966a) there is
no difficulty in principle in obtaining the transmission
function, and hence the fission strength function. An
imaginary component is introduced into the potential
well representing the internal compound nucleus region.
This can be either a constant component between certain
adopted limits of deformation, or have some functional
form attenuating to zero in the region of the potential
barrier. An incident wave of form exp( —ik,ri) in the
deformation mode is now considered to fall on this po-
tential, and the result of the interaction gives an out-
going wave with amplitude Sff, beyond a deformation
value q, expressing the range of the potential barrier
beyond the internal region, the wave function has the
form
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FIG. 32. Oscillations in the barrier transmission coefficient
for different values of the ratio of edge diffuseness to barrier
width (Hofmann, 1972a). The energy spale is relative to the
barrier peak, which is 5.49 MeV. For the continuous curve
HO=488 Mev/I, xz. ——0.1212, d= 0.01; dashed curve, &0——966
MeV/k; dash dot curve, B-o ——488 Mevla, d= 0.005.

(3.37)

A typi cal transmission coefficient thus calculated is
shown in Fig. 33. It is seen that resonance effects can
be found, but these are due to weakly damped vibra-
tions in the deep potential well. Such small imaginary
components are not normally expected at the excitation
energies considered here.

Such a treatment has also been applied to the double-
humped potential barrier (Bondorf, 1970; Holmberg
et al. , 1969). If the imaginary component of the poten-
tial is confined to the primary well, transmission co-
efficients that display the vibrational resonance peaks
described above in Sec. III.A.2 can be expected. These
are undamped vibrational resonances (zero damping in
the secondary well), and spreading the imaginary po-
tential across both the primary and secondary well is
not a strictly correct way of treating the damping in the
secondary well. In the calculations of Holmberg et al.
(1969) small imaginary components are assigned to
both potential wells, and double resonances are found;
one of these is a vibrational resonance in the secondary
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FIG. 33. Transmission coefficient calculated by the scattering
method for a potential barrier bounding a complex potential
well Ifrom Lynn O.968a)]. The real well depth is about 6 MeV
and the imaginary depth only 30 keV.

well and the other a vibrational resonance in the pri-
mary well. The latter is not expected, as stated above
in our remarks about the single-peaked barrier.

The difficulty in this model is that absorption into the
secondary well has to be considered separately from
that in the primary well; use of an imaginary potential
in both wells simply lumps together the absorption in
the two wells. The picture here is that an incident in-
verse-fission wave penetrates the secondary well with
attenuation, and this attenuated direct component is
absorbed in the primary well, while the component ab-
sorbed in the secondary well can be reemitted into the
fission channel, or suffer a transition irrevocably into
some other degree of freedom, or be emitted into the
primary well. The total flux reaching, and being ab-
sorbed, into the primary well is the quantity of in-
terest here. Bondorf (1970) and Back et al. (1971) have
modified the model to obtain the transmission coefficient
correctly by making the simplifying assumption that all
the flux reaching the primary well is absorbed com-
pletely. The wave function at some deformation g, close
to the entry (at barrier A) into the primary well there-
fore has no returning wave and is given by

@ =a exp(-ik, Ii), (3.38)

(or, more exactly, to take the attenuation distance I/K
in the primary well into account, @ =a exp[ —K(7I, —q)
—ikp]; the factor exp[-K(Ii, —ri)j is required if the
Imaginal y potelltlal stal'ts at 'QI wltll a nonzero value).
The flux that is absorbed directly into the primary well
is thus k, ~a~'/k„, while that absorbed in the secondary
well is 1 —~S«~'. Of the secondary well absorption a
fraction

is emitted into the primary well, T~ and TI, being
transmission coefficients from the secondary well
across barriers A and B, and T& the transmission
probability for deexciting radiation across compound
levels (class-II states) associated with the secondary
well deformation. Thus

T, = ' +P„(1—IS«l ).k, /a/' (3.40)

Of the two terms on the right-hand side of this equation
the first can be interpreted as a "direct" one, being
the fraction of the wave that is transmitted right across
the secondary well without absorption. The second term
corresponds to reemission after absorption into the
compound motion of the secondary well and hence is
expected to have a microscopic structure corresponding
to the class-II compound states associated with this
motion. The detailed structure of the first term is ex-
pected to be just the much broader one of the vibrational
resonances in the secondary well.

A schematic example of the transmission coefficient
of Eq. (3.40) is shown in Fig. 34 in comparison with the
result for zero damping in the secondary well.

B. Statistical models

When absorption out of the fission mode is very strong
a limit has been reached that is just the opposite of the
simple undamped barrier transmission models of the
double-humped barrier. This limit can be treated by
assuming statistical equilibrium among all the degrees
of freedom of the nucleus. Such a model is therefore
appropriate to moderately high excitation energies
("hot" nuclei), in distinction to the barrier transmis-
sion model which can. only be expected to describe low
excitations in the secondary well.

In a hot nucleus with very many degrees of freedom
only a relatively small amount of excitation energy will
be concentrated on motion in the deformation mode;
this amount will be of the order of the nuclear tem-
perature 0. If this temperature is much less than the
barrier between the wells in the potential energy of
deformation the nuclear system will survive for a rela-
tively long time in one or other equilibrium shape be-
fore changing shape, or decaying by particle emission,
radiation, or breakup by fission. Thus, in first ap-
proximation, two sets of states, associated with each
equilibrium shape, and denoted by class I for the first
well and class II for the second, exist in the nucleus.
The probability of decay of these states can be repre-
sented by transmission coefficients that take account
of barriers (deformation, centrifugal, or Coulomb)
as well as the internal nature of the states in the en-
ergy region under consideration. These transmission
coefficients can be defined through the reciprocity
theorem in terms of the probability of the formation
of such states of the compound nucleus in the inverse
process to the given decay mode. Thus, for a forma-
tion process n, the maximum possible average cross
section is g~~~, where X is the de Broglie wave-
length (divided by 2m) of the relative motion of pro-
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FIG. 34. Schematic picture of the transmission coefficient through a double-humped barrier with damping (represented by an
imaginary component in the potential energy) in the secondary well (broken curve) compared with the case of zero damping (ful].
curve). In the fir st case the imaginary component is 50 ke V.

jectile and target, and gJ is the statistical weighting
factor for formation of the compound nucleus with total
angular momentum J. The actual cross section for
compound nucleus formation is denoted by

TIIC~')
-PII(~ )

= +I"TII (5') + TII (A)

TII(~)
II I

M &'Tn(8') + Tu(&)

(3.45)

(3.46)
20 f)((CN) 7T X fy gJ' T f)f (3.41)

where T„ is the transmission coefficient for this mode
of formation. When the ratio of partial width to level
spacing I „/D is small, T„=2wI" /D; and it has been
established fairly conclusively (Moldauer, 1967) that,
in general,

T = 1 —exp[-2III'„/D] . (3.42)

Transmission coefficients for making transitions from
shape I to shape II, denoted by TI(», and vice versa,
denoted by T»(», can be defined in analogy with the
decay coefficients.

T I(cx)+I(n)
8TI(0) + TI(&)

(3.43)

and the probability of a transition from a class-I state
to a class-II state is

Probability treatment
From the transmission coefficients the probability of

decay of a class-I state by process n is

Given these probabilities the overall decay of the nu-
cleus can be calculated. Let us assume that the nu-
cleus is initially populated entirely in class-I states.
The initial stage of decay consists of a fraction PI(„)
=ZqP«II) decaying to all residual systems allowed to
class-I decay (these will principally be, according to
the Franck-Condon principle, class-I states of lower
excitation in the same nucleus, reached by gamma
transitions, and residual nuclei of class-I shape reached
by neutron emission) and a fraction P, 11 changing to
shape II. The second stage of decay therefore consists
of a fraction P, 11

~ PII«. ) (where PII(d ) =Bc() PII(II )) de-
caying by processes allowed by the Franck —Condon
principle for class-II state decay (this is either fission,
over barrier B, or formation of residual nuclei in
sllRpe II) Rnd R f1actloll PI Il

' PII I cllRllglIlg back to
shape I. The third stage consists of this new fraction
I I II

' I g I dividing as in the first stage, and if the
process is followed through and the infinite series thus
generated are summed we have for the final fraction
of decay to shapes I or II (II here includes fission),
respec tively,

T I(w)

&()Tl(IO + Tl(»
(3.44)

T II(&) TII(&')
I(~) j

I(TI(d) + TI(A) ) (TII(A} TII(d') ) Tl(A) TII(A) J
y

Similarly, probabilities for decay or shape transition
of a class-II state are (3.47)
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(d~)
— PI ~ IIPII I PI ~IIPII(d )

n=O

&I
I ( Iz) (e-Se& e See)

l
2

where

(3. 52b)

PI ~ IIPII(d ' )

& -Pr-aPn-r

Ty(~) Tg(d )

(Tl{d& +Tl(A&)(TH(d'& +TH(») TI(A&TII(»

(3.48)

The fractions for individual decay processes are con-
tained within these expressions. Thus the fraction of
decay by prompt fi.ssion, for example, is given by

TI(A& TH(z» (3 49)
(TI(d& + TI{A&)(TII(dI& + TH(A&) —TI(A&TII(A&

For decay of the compound nucleus excited initially
in a class-I shape the ratio of decay. either by fission
or to residual nuclei of shape II, relative to decay to
shape I states, is therefore

e 2{ I(t) 11(t)
l

2 ( 1(t) + 11(t)

I( II){ I (d) TII(d))j

+ = I'r(d) —I"I (-Ir) —I'rr(g) ~

(3.52c)

(3.52d)

(3.52e)

(3. 52f)

From Eqs. (3.52) any specific decay rate may be com-
puted. Thus the fission rate is determined from n, by

2nf
BT

= ~zz(z&n2(r) (3. 53)

(3. 54)

Qur immediate interest, however, is in the number of
nuclei remaining undecayed after time 7

and by integrating this over all time we find the branch-
ing ratio for fission I',z,/I'„,

r (-rr) rr 0)f(
(&) I (g) II (g) I (-II) II(- I) .

TI(&)7a(d')
+(dl& (TH{A& TH(d'&)TI(d&

(3.50)

N(r) = tzz(r) + &12(r)

[(Z&, -R)e se'+ (d, +R)e sd'].
2A (3. 55)

This expression is remarkable for the factor Tl(»/
(TII{A& +T„{d,&) by which the ratio is reduced below that
expected for completely mixed compound nucleus mo-
tion, TH{d &/T, {„&. For the kind of fission barrier ex-
hibited by the actinide nuclei, fission decay (TH(»)
completely dominates particle or radiative decay. If
the barrier A. is much lower than B then it is expected
that T&(»»T&(~), and since, according to the theory
of reaction rates over a, single barrier (Wigner, 1938)
TI(A& =TH{A&, Eq. (3.50) reduces consequently to the corn
piete mixing expression. If, on the other hand, B is
much lower than A. , the factor T,{A&/(TH{A& +TH(e&) is
much less than unity; and this implies a partial de-
coupling persisting between the class-I and class-II
states.

I (d) II (E) ~

+ + ~I Il(~I(d) +II (d&)/ ~&
~

.

(3. 56)

(3. 57)

This formula indicates the existence of two decay modes
of the coupled system.

To determine the partial decay widths of the coupled
system from the branching ratios, such as Eq. (3. 54),
it is necessary to compute the average total width. The
prescription of Bj&{&rnholm and Strutinsky (1969) is to
compute the time 7., for decay of the total population of
the system N to the value 1/e. This can be done nu-
merically, or approximations can be considered that
lead to an analytical expression for I', .

For weak coupling of the primary well to the secon-
dary well, I', » can be neglected in comparison with
other widths, giving

2. Time-dependent treatment

Such decoupling can be demonstrated more explicitly
(BjSjrnholm and Strutinsky, 1969) by studying the time
development of the system, with a population norma-
lized to unity at time, ~ = 0 in the first mell, and set to
zero in the second well,

n, {0}= 1, n, (0) = 0 .
The rate of change of these populations in time is given
by

8nl
I (f) 1 II( I)B7

I

an2

~T
I I( II) I II(t)n2 &

(3. 51a)

(3.51b)

tll = [(& I I (I) + I zz (I })e26

(3. 52a)

where I'I«» I I«„are the total width of class-I and
class-II states, being the sum of a decay width (I I(d)
or I'„, „respectively) and a width for shape transition
(I'I(„I» or I „(„»). The solution to the coupled differ-
ential equation {3.51) is

This leads to a principal component in N(7.) with half-
life 1/S corresponding to a total width I',

(11(d) I'zz(d&)
t 1(d)+ I II (P I )I (d) zr (d)

(3. 58)

and hence

I ~r zr~zz(f )
f e

Izr(f )
(3e 59)

I S - I-I I I I I ~1 I I -I I (d&

r, „+r„, (3.60)

I-Ir Iz (f}
Iz-iz+ Izz-r

{3.61)

The time development of a two-mell system has been
generalized (Sperber and Aframe, 1972) to the case
where changing populations at different energies are
considered and the transition widths are energy depen-
dent. For this purpose a set of integrodifferential
equations must be solved.

Strong coupling between the two wells operates when

I is larger than both the decay widths
I'r(d), I'zz(d), and in this case
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C. Formal treatment of fission reaction theory

The treatment of most details of fission reactions at
low energies requires the consideration of the role of
degrees of freedom other than the fission mode in more
detail than the simple damping incorporated in pheno-
menological theories. Theories that treat these other
degrees of freedom explicitly from the start can be re-
garded as formal reaction theories incorporating the
fission process.

A few formal reaction theories incorporating fission
have been proposed. The principal phenomenons to be
explained by such formal theories is the appearance of
intermediate structure in fission cross sections (see
the examples in Figs. 6 and 7). This can be accounted
for by quite general approaches. For example, %eig-
mann (1968) postulates the existence of an intermediate
state, which may be of complicated character, that
couples to the fission channel; this state is assumed to
be localized to the deformation of the secondary well.
The normal states of the system are coupled to the
open-particle channel and to the intermediate state by
the methods of Weidenmiiller and Dietrich (1966) and
Mahaux and Weidenmiiller (1967). Norenberg (1970)
showed how the intermediate state can be defined by the
generator coordinate method of Hill and Wheeler (1953)
and Griffin and Wheeler (1957).

More precise definitions of the complicated interact-
ing states can be made within the R-matrix theory of
nuclear reactions (Lynn, 1968a, b; 1973), and this a,l-
lows quantitative calculations of intermediate structure
and related phenomena for various assumptions about
the fission barrier. In the original R-matrix theory for
reactions involving absorption and emission of rela-
tively simple particles (Wigner and Eisenbud, 1947;
Lane and Thomas, 1958) discrete solutions (the internal
A-matrix states) of the Schrodinger equation are set
up in a nuclear internal region with boundary conditions
imposed at the entrances to the reaction channels; in-
ternal wave functions are written as expansions of these
basis solutions and enable the matching conditions be-
tween the internal and channel wave functions to be ex-
pressed; this leads in turn to the collision matrix (the
elements of which are defined as the amplitudes of
outgoing waves in the channel for incoming wave of unit
flux in any given entrance channel) and cross sections
for the reactions. One of the special features of this
approach for fission through a double-humped barrier
is the introduction of two sets of auxiliary internal A-
matrix states, the wave functions of the states of each
set being largely confined to deformation regions cor-
responding to the primary and secondary wells, re-
spectively, of the deformation potential. Just as the
R-matrix states of the conventional R-matrix theory
can be made by judicious choice of boundary conditions
to correspond closely to the resonances ("compound
nucleus states") observed in reaction cross sections,
so these two sets of auxiliary states correspond ap-
proximately to the normal fine-structure resonances
observed in simple particle or capture reactions (class-
I auxiliary states) and to the intermediate structure
groups observed in fission cross sections (class-II
auxiliary states). It is to be emphasized that these

latter states can be very complicated ones depending
on the many intrinsic degrees of freedom of the nu-
cleus as well as the prolate deformation mode; they
are thus to be described as "compound states" with the
nuclear shape essentially confined to the highly de-
formed values associated with the secondary minimum.

The other special feature is the introduction of the
concept of the deformation channel. The channel en-
trance can be set at a fixed elongation of the incipient
fissioning nucleus, and this will normally be close to
a barrier peak in the deformation energy. In this re-
gion of deformation the nucleus can be expected to be
in a, state of intrinsic excitation (Bohr 1956) analogous
to the states of excitation of the product nuclei in a par-
ticle reaction channel. In this review, the R-matrix
theory as thus extended to the fission process is em-
ployed as the principal framework for analysis and dis-
cussion of the detailed phenomena in near-barrier fis-
sion. This theory is therefore described more fully
below.

T =T„+T,(q). (3.62)

Likewise the potential energy V(q, $) will not, in gene-
ral, be a separable function of 7) and g, and it is neces-
sary to find a prescription that will give an approxima-

1. The Hamiltonian operator and explicit reference to the
deformation mode

In order to write the nuclear Hamiltonian in a form
suitable for describing the fiss'ion reaction in formal
R-matrix theory, it is necessary to choose a deforma-
tion parameter that will describe the separation of the
parts of the divided nucleus as well as small deforma-
tions of the original compound nucleus. A discussion
of deformation parameters that have been employed in
various aspects of fission theory is given in.the Appen-
dix. The deformation parameters described there can
be classified into those that are dependent on a descrip-
tion of the surface shape .of the nucleus and those of a
statistical character, related to the individual nucleon
coordinates. The shortcomings of a surface shape
parameter in a formal reaction theory, namely, the
necessity of assuming a specific form for the shape that
will, moreover, be useful for all stages of the fission
process, can be avoided by using one of the statistical
parameters. At this stage we shall not choose a spe-
cific deformation parameter, but shall merely refer to
it with the generalized symbol q. The remaining SA-4
degrees of freedom {it being assumed that the three
degrees of freedom associated with the center of mass
have already been separated out) are known collectively
as the "intrinsic" degrees of freedom and are denoted
collectively by the symbol $.

It is now assumed that the kinetic energy operator
of the nuclear Hamiltonian can be separated into com-
ponents referring explicitly to the deformation parame-
ter q and the intrinsic coordinates g, respectively.
%bile it is possible to choose a deformation parameter
q that allows its kinetic energy operator to be iridepen-
dent of the intrinsic degrees of freedom, it is not in
general possible at the same time to free the remaining
component of the kinetic energy from all dependence on
def ormation. Thus
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H, (n) =7', (n)+ ~(n, &), (3.63)

for a fixed value of n, the lowest eigenvalue s, (n) is
taken as the deformation potential energy V(n). An in-
trinsic Hamiltonian term H„, can now be defined for
some chosen value of deformation go, and also a
"coupling" term H, depending on both deformation and
intrinsic variables. Thus

tion to the overall dependence of the potential energy on
q. The prescription that we choose is in the spirit of
Strutinsky's theory of the deformation energy, and con-
sists of representing the potentiaI eriergy for the defor-
mation by the minimum total intrinsic energy surface.
More precisely, of the eigenvalues s„(n) of the opera-
tor

s' a'
2Bq ap' ' (3. 70)

Discussions of the ambiguities of this procedure, par-
ticularly when the shape variables constitute only a
part of the total degrees of freedom of the system, have
been given by Jensen and Koppe (1971), Dietrich (1972),
Hofmann (1972b), and Norenberg (1973). Briefly, it
turns out that the ambiguity in the kinetic energy term
for any single variable is equivalent to a curvature term
to be added to the potential energy.

As an example of the phenomenological procedure we
can take the simple quadrupole deformation parameter
P of Eq. (A7). For small values of P the kinetic energy
operator is

H =H„+H„,(g, no) + H, (n, g, no),

where

H, =T„+v(n),

H...(&, n. ) =T,(n.) s.(n-.)+ l'(n. , 0,
H. = &,(n) ..(n—)+~(n, &) -H...(n.) .

(3. 64)

(3.65)

(3.66)

(3. 67)

The inertial parameter 8~ for the irrotational liquid
drop 1s

B~ = 3AmR', /8m, (3.71)

where m is the nucleon mass, so that Am is the liquid
drop mass, and Ao is the radius of the drop. If the po-
tential energy has the quadratic form

It is useful to be able to generalize the intrinsic Hamil-
tonian to any other value of deformation q. . Therefore
we shall denote the eigenvalues and eigenfunctions of
H„,(n) by h „(n) and y (n), and from the definition of
H„„ the eigenvalues 6 (n) are just c (n) —eo(n), the
intrinsic excitation energies with respect to "ground"
at the fixed deformation q. The eigenfunctions and
eigenvalues of H„are denoted by 4,(n) and E,.

2. Form of the kinetic energy operator for the
deformation variable

In phenomenological models of the liquid drop type, the
usual procedure in setting up the Hamiltonian is to
write the kinetic and potential energy terms for irrota-
tional flow in terms of the shape parameters (denoted
here by o, ~). The quantal operator for the kinetic en-
ergy term is then written according to the Schrodinger
prescription:

VS=2 C~p', (3. 72)

@„=(n+-,')h~, = (n+ —,')h(C, /B, )'~'. (3. 73)

The form of the kinetic energy operator for statistical
deformation parameters can be derived without am-
biguity from the Schrodinger form for the Cartesian
coordinates of a system of particles (here assumed to
have equal mass, m):

k' B2 B2 22
T — + +2~ . gg 2 gy2 A@2i '4 t

(3. 74)

The general equation for transforming the second 'de-
rivative in a particular coordinate, say x, , into the
second derivatives of a new set of coordinates g& is

with stiffness parameter CB, as expected in the liquid
drop model, the solutions of the Schrodinger equation
in the P variable are the well-known Hermite functions
with eigenvalues

(3. 68)

where B~„ is the relevant element of the covariant
inertial tensor, B is the determinant of this tensor, and
B " is the element of the related contravariant tensor

+I~ y(a&,
)

aq a g,

I

(3. 75)

BxvB gx (3. 69) Hence, the generalized Laplacian term of Eq. (3. 74) is

p(9*0 a'y a'y) pIa'y ~ -(ag, )* (ag, ) (ag,
)

ay + (a'g, a g, v'g,

)I
a2y ~ ag, ag„ag, ag„ag, ag„

8 B 8 8 2 8

8,. 2,. Bg,. Bg,. 8,- 8
(3. 77)

The condition of orthogonality for the new coordinates
8, is

I

Hence, the summation over j t k on the right-hand side
of Eq. (3. 76) vanishes for an orthogonal coordinate
system.

Equation (3. 76) can be formally expressed in terms
of the scale factors hz
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(3. 78)

T
I-'(4@+8Ar') a'

2m aq' ' (3. 8O)

.where 6 is the mean square of the radial positions of the
nucleons (with respect to the center of mass). The iner-
tial parameter appropriate to the quadrupole moment-
appears in this operator as

m
4@+8Ar' (3.81)

For asymptotically large separation I of the two fission
products the quadrupole moment is

2AIA, , 2 M

Al+A, m
(3.82a)

where A, and A, are the mass numbers of the product
and M is their reduced mass. In this asymptotic situa-
tion the kinetic energy operator of Eq. (3.80) becomes

k2 2'
2M Bl

(3. 82b)

For near-spherical spheroidal deformation on the other
hand, the quadrupole moment can be related to the
spheroidal deformation parameter P [see Eq. (A22)]

3ARO

(5~)"'

and the inertial parameter Bo -(5m/24AR', )(I —(~', )'~'P}
The kinetic energy operator transformed into its form
for P in this limit is just

(3.82c)

k2 8'
2Bg BP

(3.82d)

with the inertial parameter of Eq. (3. 71) appropriate
to irrotational flow.

The most easily handled of parameters of the statis-
tical class is the mean square radius parameter

dt= Q (x', + y',. + z,'. )

to which corresponds a kinetic energy operator

2m@~-' ae ae. (3.84}

3. General R-matrix theory

a; Green's theorem for the nuclearinternal region

The central relationship of R-matrix theory connects
the values and derivatives of the wave function of the
compound nucleus at the channel entrances. For this
purpose the compound nucleus is defined as an internal
region of the configuration space of all the nucleons in
the interacting system. The internal region itself is

(3. 79)

for an orthogonal system.
As an example of the application of Eq. (3. 79), if the

deformation parameter q of a new coordinate set is
taken to be the quadrupole moment Q defined by Eq.
(A21), the kinetic energy ope rato r is

delineated by setting boundaries in the energetically
open reaction channels. At this surface the relation
between values and derivatives is deduced by means of
Green's theorem. The wave functions of the Schrodin-
ger equation for the nuclear Hamiltonian in the internal
region are denoted by +, and +, for two energies E, and
E,. The left- and right-hand sides of the Schrodinger
equation for one of these solutions is multiplied by the
complex conjugate of the other solution; this is sub-
tracted from the transpose equation and then integrated
over the internal region, thus:

I dT[@,H@g' —@2H@,]= (E2 —E,) dr%2*4, ,
T T

(3. 85)

where w denotes the internal volume. This can be re-
duced to an integral over the internal surface by Green's
theorem. To do this the potential energy terms of the
Hamiltonian are assumed to have the usual self-adjoint
pr operty, which allows them to vanish from the inte-
grand on the left-hand side of Eq. (3. 85), leaving only
the terms which involve the kinetic energy operator of
H. Thus Eq. (3. 85) becomes

(&, —&,) Idee,"c,= J d8(&z )(e,"&„e,—e,&e;),

(E, —E,) d~,*y,= g(Vy, D„—V„D,*,).
T C

The values V, and derivatives D, are defined as the pro-
jections of the wave function + and its gradient against
a channel surface function describing the state of the
system in the channel for all degrees of freedom other
than the channel variable. The total set of channels in
the sum on the rhs of Eq. (3.87) comprises deforma-
tion as well as particle channels.

It should be noted that if the ratio of value to deriva-
tive for ea.ch channel has a fixed value (boundary condi-

, tion) independent of the labeling of the state, then the
states +„+,are orthogonal; this is the basis of the
definition of the R-matrix eigenstates (see Sec. III. C.
3.b. ).

(3. 87)

Equation (3.87) is a compact formal way of writing
a result which can probably be most easily demon-
strated by making expansions of the wave functions + in
a way that is appropriate to a physical description of the
channels. First, consider a set of channels that are
characterized by the residual system (in configuration
space outside of the internal system} having a particular
grouping of nucleons (e. g. , an alpha particle plus resi-
dual nucleus or a neutron plus residual nucleus); this
is the channel type + and for it a specific inertial para-
meter B and a channel separation parameter p can be
assigned. For the simple particle channels given as
examples above, the inertial parameter is just the re-
duced mass of the separated residual nuclei, and the
channel separation parameter is their radial separation
(measured between their individual centers of mass).

(3. 86)

where g denotes the surface of the internal region, B,
signifies the inertial parameter of each channel c in
which a boundary of the internal region is placed, and
V„ is the gradient operator normal to the surface g.
This integral can be expressed as a product of value and
derivative quantities at the channel entrances:

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980



S. Bjslrnholm and J. E. Lynn: The double-humped fission barrier

g C&n&y u&n&(p )
c{ot)

(3.88)

with expansion coefficients C,'"'. Such an expansion is

The particular grouping of nucleons designated as a
single-channel type can occur in various states of in-
ternal excitation and in different modes of relative angu-
lar momentum. Each combination of state of excitation
and angular momentum constitutes a separate channel,
denoted by c, and the complete wave function describing
the state of excitation and relative angular momentum
is denoted by qb, . The wave function describing the
relative motion in the channel is denoted by u, (p ). The
appropriate expansion of +„ for the set of channels of
type n (denoted by c{n})is, therefore,

not limited to the external region, defined by a channel
boundary p ~ R, but can also be continued into the in-
ternal region. However, if the channel functions P, are
limited to internal states of excitation that are all bound
and the wave function of relative motion u, describes
unbound relative motion, then the expansion (3.88) is
incomplete in the internal region; completeness is to
be achieved by adding similar expansions over other
types of channels.

However, with the limitation at present to the expan-
sion (3. 88) and the appropriate rearrangement of the
kinetic energy operator for explicit dependence on the
channel separation parameter p and other degrees of
freedom (including the internal ones of the residual
system} g&& ', . . . , $& ', say, E&l. (3. 85) becomes

R~
(E, —E,) dry,*@,=(E, —E,) . . . h, dp I&~&&d&$,

T 0

Pof
~ ~ ~ hp dP+~ ~ ~ h (fx)

0

dg'~' QC"'@.*u "&*(p ) Q C', @&, , u'"(p )
c{of) c'{n)

e2 (l)
C&2& &&& g

I' u B II1& Bu

c{o&) c«{~I 2' Hh BP h P (3P

u(l) (2)+Oh Bu, ()~ (,)

1

x &t&'& Q T &n&

T &a& P,* (3.89)

The terms in T~&
' vanish so long as they involve bound states (t), , i.e. , do not involve channels that are not of

type ~. In this case the term involving the kinetic energy of the channel pair reduces to

8 f (p )up~'* B(fu,',") f (p )u,'," B(fu,',"*) 0& 8' g &,& &, & f u,' '* B(f u,'") f u,'" B(f u,"'*)

(3.90)

where f'(p ) is a factor giving the dependence of the product h, ( ) . . . h, (~) upon p . If the nuclei of channels of
type u are divided into A, and A -A. , nucleons, respectively, the separation parameter is

+i +g + ~i ~j + ~i ~j (3.91)

From this it is straightforward to derive

1 A.

I&', A, (A —A„) (3.92)

and

]gh, &-& p'. =f'.(p.).
y=l

For channels of this type, the value and derivative
quantities of the general Eq. (3.87) can be written

(3.93)

C,'"'A u,'"' (3. 94)

and

g&~ &/ 2

Of aPO p =R~
(3.95)

respectively; here, M =B is the reduced mass of the

two particles in the channel. Note that the normaliza-
tion of the channel function is

which implies that the normalization of basis radial
eigenfunctions {for the description of the internal re-
gion) appropriate to the channel is

~ = g C'"'X.„~'"'(n)
C~

(the deformation channel being labeled by the intrinsic
state of excitation p. ), and the expansion of the volume
integral is

(3. 96)

Rof
dp f'(p )u„*u„,=5

0

The same kind of analysis can be applied to channels
characterized by a deformation parameter q, such as
the quadrupole moment Q or the root-mean-squared
radius S. The appropriate expansion in this case is
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')o

(E, —E,) d~y,*+,= . . . h„d„. . . h, dg,
T qm in

2 IIh 8@;",, g", , , 2 IIh Bc,' ',
2m H h Bq h„Bq Hh Bq h„Bq

I

+ @ +, X,~ . &(,-Xc„—Xc* &g,X,~

where go defines the entrance to the fission channels. As in the separated-particle case, if the expansion (3.96) is
limited to bound intrinsic wave functions X„ that are appropriate to a description of the fission process, the term on
the right-hand side involving the kinetic energy operators T, . vanishes. Qn the other hand, if the expansion (3.96) is
defined to be formally complete, this term corresponds to the contributions to the surface integral from the other
(separated-particle) channels of the kind already dealt with in Eq. (3.90). The contribution to the surface integral
can now be written as before

f ly

CQ tCQ

@2 f (~)+(2) 4 p(f +(1) ) f (~)+(1) &(f+(2)*) riO @ f+ p(f g ) fy (fg )
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(3. 98)

1/2
V, = C, f @,„,(q), (3.99)

Here the factor f is just%"" " ' when q is chosen to be
(R. The right-hand side of Eq. (3.98) become s a term
in the general equation for the volume integral (3. 87)
with the value and derivative quantities now written

(3. 102)

(note that this is not a uniform expansion), and the ex-
pansion coefficients

dzX~@
r

(3. 103)

D, = @fo C, (3. &OO)

where the inertial parameter 8„is equal to mh2„and f,
denotes f (qo).

b. R-matrix eigenstates

)i, (c)
c

~& (c)
(3. 101)

The substitution of this boundary condition in the
Green's theorem relation of Equation (3.87) establishes
the orthogonality of the eigenfunctions X~, which we
shall refer to from this point as the R-matrix eigen-
states.

In standard A-matrix theory a special set of eigenfunc-
tions A.„with eigenvalues E, is defined; the members of this
set are solutions of the complete Schrodinger equation
within the internal region, but with specific real and ener-
gy-independent boundary conditions applied at the channel
entrance. The value and derivative quantities of these spe-
cific eigenfunctions are denoted by y~&, &

and Pz&, &, rather
than by the notation V„D,already employed [see Eqs. (3.94)
(3.95) and (3.99), (3. 100)j for these quantities for gen-
eral wave functions of the internal region without speci-
fied boundary conditions. The boundary conditions of
the eigenfunctions X~ are denoted by

are obtained from the Green's theorem relationship,
giving finally the required equation

V,, =Q R,, (D, —S,V,), (3. 104)

where

~A, (c') ~X (c) (3. 105)

d. Outgoing and/Incorn/ ng wave functions

0, = exp(ik, p, ),
while an incoming wave I, xs

(3. 106a)

The collision matrix of the nuclear system is obtained by
matching the sum of incoming and outgoing waves in every
channel to the internal wavefunction through Eq. (3.104) and
the logarithmic derivatives of the outgoing waves in the
channels. The outgoing wave 0, in any channel is de-
fined as the solution, with asymptotic character of in-
creasing separation or extension, of the component of
the Schrodinger equation referring only to the channel
variable. The character of increasing (or decreasing)
separation is established by calculating the flux in the
channel from the asymptotic wave function. As exam-
ples, the outgoing wave 0, in an s-wave neutron chan-
nel has the form

c. The central R-matrix relatIonship
I,= exp(-ik, p, ), (3. 106b)

The fundamental & -matrix relationship, which state s the
relation between the value and derivative quantities of any
internal wave function 4, is given in terms of the values
yz&, &

(which are commonly known as the reduced width am-
plitudes) and the eigenvalues @„ofthe &-matrix eigen-
states X~. The general wave function+ at energy & is ex-
panded in terms of the Q -matrix states

2M 2M,
~c

(3. 10'7)

where the wave number k, is E(2M, Z/h'). For particle
channels, generally both these functions are solutions
of the radial Schrodinger equation in the channel, writ-
ten as
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~p VOI. =—S+iP =c c c O
PC RC

(3. 108)

For fission channels defined at some point of defor-
mation qo before the scission point, some reservations
have to be made in defining similar wave functions and
related qualities. This is due to the presence of a re-
gion of mixing forces between the channel deformation
and scission point. This already implies that a unique
excitation energy equivalent to the s, of Eq. (3. 107)
cannot be defined for the full extent of the channel.
Therefore an equation of the type (3. 107), namely

(for the outgoing wave, and similarly for the incoming
wave) where s, is the total excitation energy of the resi-
dual particles, M, is the reduced mass of the residual
particles in the channel, and Q, is the potential energy
between the two residual particles in the channel, in-
cluding the centrifugal potential term 8'l, (l, + 1)/
2M, p', . Further details of these wave functions are
given by Lane and Thomas (1958).

The logarithmic derivative of an outgoing wave in
an energetically open channel is complex, and its real
and imaginary parts are known as the shift S, and pene-
tration P, factors, respectively: s, = p, 'q, (s'I", )I,/v,"',

o, = p, 'g, (i'I', )Q,/v,'~'.
(3. 111a)

(3. 111b)

Similar functions for.the deformation channels are
defined by

& =f 'x I /v'"
0 =f 'X Q /v'"

(3. 112a)

(3. 112b)

v„being the rate of change with time of the deformation
variable in the channel jL(, .

With these definitions the general solution of the wave
function in the external region can be written

are multiplied by the internal wave function g, describ-
ing the state of excitation of the channel particles and
their state of relative angular momentum, and are di-
vided by the channel radius variable and the square root
of the relative velocity v, of the channel particles at
infinite radius; this last factor ensures that unit ampli-
tude of the incoming or outgoing wave corresponds to
unit flux spread over the full unit sphere. These ex-
tended definitions of the incoming and outgoing wave
functions are denoted by 8, and 6,:

6...s, —U...e,, y, , (3.113)
B @ B

2B Bq' Bq'
+ [u(q) —E+ 8„]jf@=0,

(3. 109)

would have to be understood in the sense of being valid
for a specific internal state energy $, as defined by the
eigenvalues of the Hamiltonian (3. 66), in the immediate
neighborhood of the channel deformation, while beyond
this point the potential energy term would require gen-
eralization to describe the deformation channel mixing
terms, and after the scission point a complete super-
position of true fission product outgoing waves must
result from the original wave Q, with their fluxes (in-
tegrated over the full solid angle) totalling unity. From
this description, however, some incoming waves for
different channels p,

' must occur in principle and will
affect the normal B-matrix formulation. This is further
discussed in Sec. III. C. 3.f. For the present we as-
sume that such ingoing wave components are negligibly
small, as indeed can reasonably be expected if the
channel deformation parameter is close to an outer
saddle point before a long, monotonic potential en-
ergy descent towards the scission point. With this
assumption we can define the penetration and shift fac-
tors for a deformation channel in direct analogy with
Eq. (S. 108):

(3. 110)

e. Deduction of the collision matrix and cross sections

The collision matrix for any set of reactions passing
through a common compound system is defined in terms
of the amplitudes of outgoing waves generated in the
exit channels of the reaction by unit amplitude wave in
an entrance channel. For the purpose of this definition
the radial wave functions of Eqs. (3.106) and (3. 107)

y, e""'S~.—U, , g, (3. 114)

Thus if the y, correspond to bombardment of a target
nucleus by a unit flux plane wave of projectile particles,
the cross section for producing a scattered wave is
given by the squared modulus of this expression after
integrating over the channel wave function and solid
angle elements. Full details of such cross-section ex-
pressions are given by Lane and Thomas (1958); here
we simply quote the well-known expression for the
cross section integrated over the full solid angle:

o, „,g i5„. UJ
C

(3. 115)

Here g~ is a spin statistical factor depending on the
total angular momentum J of the system and the spins
of target and projectile nuclei.

The values and derivatives of the wave function of Eq.
(3. 113) at the channel entrances must equal those of the
wave function of the internal region. Therefore they
must satisfy Eq. (3. 104). The value and derivative
quantities obtained from Eq. (3. 113) are

I/2
V, = —,]~ y, I, — y, ,U„,O, , 3. 116a

C C

D, = -- ——-- —
~I2 y, ' — y, ,U,~

' 3. 116b

(with precisely similar quantities for the deformation
channels du), and the matching to the internal value and

where the U...are the elements of the collision matrix
and the y, are the amplitudes of the incoming waves in
the various channels c. The scattered wave into any
channel c' may be defined as the difference between the
actual wavefunction + in the channel and the incident
wave:
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derivative quantities by means of the R-matrix relation
Eq. (3. 104) and rearrangement leads to the expression
for the collision matrix

U=AP' '(I —B(L —dI)] '(I —H(L* —e)jP ' 'A

(3. 117)

Here, Q, P, L, and are all diagonal matrices repre-
senting a hard-sphere phase shift (O', =I,/0, at p, =A, ),
penetration factors, outgoing-wave logarithmic deriva-
tives, and boundary conditions at the edges of the inter-
nal region, respectively.

f. Modifications to the R-matrix formalism for interactions
in the deformation channels

100.

o 1

&C

01

C3

I—

001

l.
10

-.'/

10 I ! I

The theory developed so far has introduced the conceptof
deformation channels, and by implication such a channel
does not necessarily have to be defined as opening at a de-
formation corresponding to the separation of the nuclear
system into two distinct (fission product) nuclei. In-
deed, there are great advantages, for the discussion
of "total fission" cross sections or of cross sections
for phenomena obviously governed by features of the
barrier, in considering deformation channel entrances
as being close to the barrier; for one thing there will
be only a limited number of deformation channels then
entering the discussion, rather than the very large num-
ber that would correspond to the fission products in all
their various states of excitations and angular momen-
tum relationships.

However, the obvious difficulty arises when it comes
to making detailed calculations using the theory that the
form of the logarithmic derivative, hence the shift and
penetration factors, of the outgoing wave functions in
the deformation channels is not easily established.
This is unlike the particle channels for which very pre-
cisely defined and calculable shift and penetration fac-
tors can be established at channel radii sufficiently far
outside the nuclear interaction region. There are two
distinct problems here. One is that the form of the po-
tential energy function between saddle and scission
point, and hence of the outgoing wave function is not
precisely known. For any assumed potential form,
homever, the outgoing wave function and its logarithmic
derivative [Eq. (3. 110)] can be calculated numerically
by starting with a simple form for fe [such as exp(ikq)]
at a very large deformation and using the step technique
described in Sec. III.A. 2. b. (i). Typical numerical re
suits achieved by this procedure that also demonstrate
the dependence of shift and penetration factors on the
form of barrier assumed are shown in Fig. 35.

The second and more fundamental problem is that the
region between saddle and scission in the deformation
channel cannot be described as a simple potential en-
ergy function in the deformation degree of freedom
alone. Interaction with other degrees of freedom ex-
ists in this zone. This interaction may be comparatively
weak for the lowest spin-parity 0' deformation channel
of even compound nuclei (another manifestation of the
superfluidity phenomenon) but is certainly strong for
most other deformation channels. The consequence is
that channel mixing will occur, and an outgoing wave
entering the interaction zone at low deformation will

-25

LI

-50I—

-2 0 -1 0' 0 0
ENERGY (MeV)

10

FIG. 35. Typical shift and penetration factors for a single bar-
rier peak with channel entrance at the deformation correspond-
ing'to the peak. The barrier falls to -180 MeV below the peak.
The inertial parameter is 4.015x10 gcm . Three inverted
harmonic oscillator barriers are shown, denoted by "-"-5~
=0.6 MeV, —/~=0. 8 MeV, ——5u'=1.2 MeV. The curve ——
denotes a linear ramp falling through 90 MeV over a deforma-
tion interval of 1. ——denotes constant potential for an inter-
val 0.194 from the channel deformation, followed by a linear
ramp, " similar, but the constant potential. is limited to a
deformation interval of 0.1.

reappear in very many different channels. Normally,
the waves in the new channels mill be outgoing waves or
incoming waves with much reduced kinetic energy in the
deformation mode (thus having very weak amplitudes
at the channel entrance), and the probability that an in-
coming wave will appear in the original or in a-channel
with comparable kinetic energy should be negligible.
The actual numerical treatment to obtain shift and pene-
tration factors can be accompiisheci phenomenologically
using a numerical method similar to that described
above, but with a complex potential energy function in
the channel.

Finally, it is desirable to be able to treat formally the
case in which incoming waves returned from the inter-
action zone in the channel are not negligible. This is
particularly likely to occur when the most significant
feature of the interaction zone is a potential trap of
some kind. The formal treatment that can be used is
the "extended penetration factor method" (Lynn, 1973).
In deformation space an intermediate region encompass-
ing the interaction zone is introduced, bounded by q,
(the deformation channel entrance) and g„, a value of
deformation beyond the interaction. The Green's
theorem relation [see Sec. III.C. Sa and Eq. (3.85}]for
this intermediate region, the volume of which is de-
noted by 7.(int), is
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D„„,(n )
v„,(q )

D ( )(nd) 1 ~f@' ( )

)
——,, )

=—S(g) + iP(q),

(3. 119)

(3. 120)

in which C«„) is a solution of the outgoing-wave type of
the Schrodinger equation,

f(n)& I'„',(n)
+(int) g 0 an

pf @(2)
f (q)y (1) (g) f (u)

')c

(3. 118)

(The sign f refers to taking complex conjugate of the
intrinsic components alone of the wave function. ) In
this expression the labeling of the channels according to
intrinsic states X„can refer to different sets of intrin-
sic states, one set for evaluation of the terms at q, and
the other for qd. Value V(„) and derivative D(„) quan-
tities for the deformation channels can be defined at
values of q, and q„ in analogy with Eqs. (3. 99) and
(3. 100). Eigenstates for the intermediate region are
denoted by Z, with complex eigenvalues E„; they are
orthonormal complex solutions of the nuclear Hamil-
tonian in the intermediate region with boundary condi-
tions

exactly. The result for the reaction cross section
(c'c c) is the well-known single-level Breit —Wigner
formula

rk(c) rx(c )
y2 gz (E ~ E)2+ 1P2

C 4 A,

(3. 125)

where I"~„„I'~(,,) are the partial widths for channels c
and c', I"~ is the total width, and 4„ the level shift.
These are defined in terms of the R matrix reduced
widths and the penetration and shift factors by

2~.(.) = 2&.y.(.) (3. 126)

(3. 127)

&.= 2 (S.- &~—))'l&;) (3. 128)

where the reduced width amplitudes y~(, ) are defined
in Eq. (3. 101a).

(ii) Level matrix -formulation. A formal method of
inverting the matrix (1 —R(L —(B)j, which, in practice,
allows the truncation of the level sums in the final
cross-section expressions to any required degree, is
to transform from the form (3. 117) to a form involving
the inversion of a level matrix C (Thomas, 1955; Lane
and Thomas, 1958);

[T, +~(n)]~.(.)--c"'c,(.. . (3. 121)

the energy being that available to the deformation mode,

+(4) E g (~ ) (3. 122)

A general solution of the Schrodinger equation at energy
E in the intermediate region can now be expanded in
terms of the eigenstates Z„(in analogy with the d'evelop-
ment of Sec. III. C. 3. c), and the logarithmic derivative
of this solution at q, in the channel j(j. can be shown to
be

A=C ',
Cz~, —(E~ —E)5&v —Ex' 2zP

(3. 129b)

(3. 129c)

S „—e,„y),( „)y),,( „), (3. 130a)

The generalized level shift and width quantities here
are defined by

, =-s.(q,)+ zp„(q, ) =z„— (a™„',}„„,

(3. 123)
c"yx(c")yx'(c") ' (3. 130b)

the (complex) intermediate R-matrix element being

v„„,(q, )v„„,(q.)
int, gg' ~ ~ E (3. 124)

g. Alternative expressions and approximations for the
collision matrix

Equation (3.117) is in general much too complicated
for practical use. In the usual case of nuclear re-
actions there are very many channels available as
well as an infinite number of eigenstates. Usually,
many of the channels will be closed, but this fact
is not expressed in the & matrix and the problem
has to be faced, at least formally, of inverting the non-
diagonal matrix of very large order (1 —R(L —%)]. The
methods for doing this are reviewed in detail by Lane
and Thomas (1958). Here a brief synopsis is presented.

(i) Single level formula Th-e commone. st and most
drastic simplification is to truncate the sum over
levels in the R matrix [Eq. (3. 105)] to a single term;
the remaining terms can be either ignored or repre-
sented by a diagonal constant. - With this simplification
in the physics the matrix inversion can be carried'out

~l/2 ~1/2 ~1/2 ~l/2
ec', int I 2 ~J' ~ X(c) A, (c') X'(c) X'(c')

XXV

(E~ E)(E~ E) + 4 —1'~f'~—
[(E,—E)'+ —,'1 I][(E,, —E)'+ —,

' r",,]
(3. 131)

(iii) Reduced R matt'ix foxmuLation -An alternat. ive
way of restricting the A-matrix so that inversion of
1 —R(L —(S) becomes a numerical possibility is the re-
duced R-matrix method (Teichmann and Wigner, 1952;

It is numerically feasible to carry out the inversion of
Eq. (3. 129b) with the explicit retention of several
levels. Thus Eqs. (3.129) form a very useful many-level
formalism for practical situations, and were intro-
duced into the analysis of fission cross-sectiori data in
the neutron resonance region by Vogt (1958, 1960).

Even the narrow level approximation of this form-
ulation contains first-order level-level interference
terms in the cross section. In this case the level ma-
trix C and its inverse A are diagonal. In addition to
single-level Breit-Wigner terms of the type (3. 125)
(summed over levels X) in the cross section, inter-
ference terms occur having the form
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Thomas, 1955). In the most restricted and useful form
of this all the closed channels and most of those only
slightly open [expressed by their partial widths, as de-
fined in Eq. (1.126), being very much smaller than the spac-
ing between levels] are eliminated in explicit reference
in the expression for the collision matrix. The colli-
sion submatrix U„„referring only to the explicitly re-
tained channels has a form analogous to Eq. (3. 117):

U„„=O„P'„~ [1 —R„„(L„—R,)] '[1 —R„„(L„—R,)]P„'~ A„.

~X (c)~X (c')
( „„)„=

2
(3. 133a)

(3. 132) .

The reduced A -matrix R„„now has a complex form

where the level shifts and width quantities are sums
only over eliminated channels, denoted as a subset by

c"inc
" &)t( ") (3. 133b)

(3. 133c)& "&)~( ") ~

c"ine

The application of this formalism to fission in particu-
lar was introduced by Reich and Moore (1958).

(i()) S mat-six formulation. An alternative formula-
tion of the collision matrix stems from its analytic ex-
tension into the complex energy plane (Humblet and
Rosenfeld, 1961). This formulation, the S-matrix
theory, is obtained from the expansion in the complex
energy plane about its poles at the complex energies
E("' --'z

l 2 l

C) )((,'&G((c)e p[~(~l(e') ~)(c))]
Uc'c ~c'c +c'+c @c'c ~ g E p E E E (H) + z I"( (3.134)

Here the g, are threshold factors, containing the ex-
plicit energy dependence on centrifugal and coulomb
potential barriers, Q... is a background function, regu-
lar- and slowly varying, the G«„are partial width am-
plitudes associated with the pole I, and the g„,&

are
associated phase factors. The numerator of each term
in the sum of Eq. (3. 134) is the residue of the pole at
E (H) 1 P(H)

l 2 l

In the narrow-level approximation there is an obvious
relation between these poles and the R-matrix parame-
ters, that is, E,'"'-E~ —A~, I","'-I"~, G', („-I~„,-nm,
where n is an integer.

When the narrow level approximation is not valid
there is no such simple correspondence between the
poles and the A-matrix parameters. Resonancelike
features in the cross section are obviously much more
closely related in width and position to the S-matrix
parameters than to the R-matrix parameters. It is
often useful therefore to be able to deduce the S-matrix
poles from the R-matrix parameters, and this is done
by diagonalization of the level matrix C appearing in
Eq. (3. 129c). Special cases of such diagonalization
(mostly for two R-matrix levels) are discussed by
Lynn (1968a, 1966b). For exa.mple, when two R-matrix
levels overlap [the sum of their widths as defined by
Eq. (3. 127) is less than half their separation] and the
bulk of their widths is confined to one or few channels,
there is a strong repulsion of the corresponding S-
matrix poles in the imaginary direction in the complex
energy plane (and also attraction in the real direction).
This implies that the imaginary components of the
poles, and hence the widths of the corresponding reso-
nance features in the cross section, are, respectively,
much larger and much smaller than the larger and
smaller of the two R-matrix level widths. The usually
dominant narrow peak that thus appears in the cross
section, surmounting a much less conspicuous broad
hump, is termed a quasiresonance (Lynn, 1966b).

Numerical methods have been developed for deter-
mining the S-matrix poles for several R-matrix levels.
These involve finding the zeros in the complex energy

plane of the determinant of the level matrix C [Eq.
(3. 129c)], followed by numerical integration of the
collision matrix around a small circular contour sur-
rounding the poles thus determined. Examples of the
results of such procedures have been presented by
Lynn (1969).

4. Introduction of phenomenological aspects of fission
into the formal reaction theory

a. The double-humped fission barrier

The potential 1&(ri) of the deformation Hamiltonian defined
in Sec.III.C.1 [Eq. (3.65)]cannot, as yet, be calculated
from first principles. It is necessary to deduce it by using
theories that have so~e phenomenological aspects. The
original theory of this kind was the liquid drop model
(see Sec. II). If this is taken to provide the classical
analog of the term T, (q)+ V()1, g) of Eq. (3. 63), which
is just c,()i) [—= 'U(q)] in the classical limit, it gives a
function for 'U that has a minimum at values of q corre-
sponding to the sphere, rises and passes through a
maximum (the fission barrier) for prolate, axially
symmetric deformations, and finally reaches (asymp-
totically, for the separation into two smaller particles)
a value that is considerably lower than the spherical
value (for nuclei heavier than iron).

Particle shell effects are added in a semiempirical
way to the liquid drop mass in the model of Myers and
Swiatecki (1966) (see also Sec. II). These are at maxi-
mum for the sphere and are attenuated for larger dis-
tortions. They affect the position and magnitude of the
ground-state minimum of 'V()i) but do not affect the bar-
rier.

Shell effects have a much more dramatic influence on
'u (so far as fission effects are concerned) in the theory
of Strutinsky (1967a, b) as described in Sec. II. The
principal term of T, ()1) + V(q, g) is taken to be the static
liquid drop energy for deformation q. To this is added
the sum of single-particle energies computed on the as-
sumption that V(q, g) is a static, single-particle poten-
tial well of fixed deformation g, and from it is sub-
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~=~, + —,'C, (q —q, )', q &q„ (3. 136)

a.l Qund

,C~(q-——q~), q. - q q, (3. 136)

and similar equations for the regions around q„and q~
have already been given as Eqs. (3. 31) [Eq. (3. 136)
now replaces the first of those equations]. The joining
point q„ is given by

2(u„—v, )C,
C (C +C) (3. 137a)

with the condition

q, =q„+ (C /C, )(q„-q ) . (3. 137b)

The other joining points are given by Eqs. (3. 32). The
curvature coefficient is seldom referred to directly,
but rather through the real or imaginary vibrational
frequencie s,

m~, = [C,/&„(q, )]"',
&~„=[C„&,(q„)]"',
i@w„= [-C~/B„(q~) ]' ',
~&~. = [ C./&. (q. )]"-'

(3.138a)

(3.138b)

(3.138c)

(3.138d)

'The last two appear in the expressions for the trans-
mission coefficient of a, wave through an inverted har-
monic barrier. For the barriers A and B separately,
the relevant transmission coefficients are

1
1+ exp (-[2n (E —'U~)/her„J) (3.139a)

traeted a similar sum computed over a suitably
"smoothed-out" (shell-averaged) single-particle spec-
trum. That this procedure gives a qualitatively rea-
sonable picture of the behavior of eo(q) has been checked
by Vautherin and Brink (1972) who calculate this quan-
tity directly from the Hamiltonian term T&(q)+ V(q, ()
by a Hartree —Pock method with the constraint of fixed
quadrupole moment. - The Strutinsky prescription for
the deformation potential%(q) results in a double-
humped fission barrier for nuclei in the general range
of thorium to curium and, to a less dramatic extent, on
either side of these limits. It is the purpose of the re-
mainder of this section to survey, using the R-matrix
development given above, the more detailed theoretical
consequences for fission reactions of this kind of bar-
rier.

It is useful, at this point, to recall the definition of
some quantities which cari be used to characterize the
barrier, at least in an approximate fashion. The value
of the potential at@,is l~beled U„atg„ itis U„, atq«, ~„
and at q~, ~~. In the neighborhood of each of these de-
formations it is generally assumed, for calculational
purposes, that the potential energy is harmonic, and
that the four harmonic segments join smoothly to each
other. Thus, in the region of q„

1
1+ exp(-[2m(E —W )/@&us]].

(3.139b)

and can be used in the semiquantitative discussion of
fission rates through the double-humped barrier as
parametrized above, provided the energy is not too far
below the heights of the barrier peaks.

b. Illustration of vibrational states of the double
potential well: class-I and class-II vibrational states

+6) ] + ~e2k

b,„„v+A cotKq,
( 82k' y

a ~ -A cotKg,

Numerical solutions of these equations are shown in
Fig. 36. 'The striking degree of clustering of the wave
function within either one well or the other leads to
the classification of the wave function; those with ma-
jor amplitude within the deeper, primary well are
class-I vibrational states and those concentrated in
the secondary well are class-II vibrational states.
Note that the energy eigenvalues of states of either
class are very little perturbed from the values they
would have if the opposite well were filled in. Note
also that the total number of nodes of the wave function
no longer gives the ordering of the vibrational state
within its class. Thus the "zero-point" vibration in the
class-II well 4,""has three nodes, indicating that it is
weakly "coupling" with the class-I vibrational state
@,(I)3

c. Ampli tude relaitonships of class-I and class-II
vlbra/ tonal states

The numerical illustration of the last section suggests
a systematic way of calculating the special features of
the vibrational wave functions of a, double potential well
of more general shape (Lynn, 1968b). From the double
well separate primary and secondary wells [denoted by
'U, (q) and 'U, (q), respectively] are constructed in the
manner shown in Fig. 37 so that X',(q)+L', (q) =a(q), the
origin of the energy scale being taken as zero. The
modified asymptotic end-values are equal to the height
of the intermediate maximum of the double well. The

The nature of the wave functions C(q) of the quasidis-
crete states of the deformation mode that occur for the
double potential well that thus appears in the Strutinsky
picture of the deformation energy of actinide nuclei is
graphically illustrated by numerical calculation for a
double rectangular well (bounded by an infinite poten-
tial at the inner wall of well I). For wave functions (un-
normalized)

4(q) = sinKq, 0&q& q, (range of well I)

= ae + be"", q, &q& q, (range of barrier A)

= c sin(kq+ 6), q, & q& q, (range of well II)

=de ~", q, &q (range of barrier E3)

the matching conditions are

cot(kq, + 6) = -&/k,
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are calculated, and the solutions
ri en approximately

& @(Z)+ f ~(2&
V V Vi V V2 (3.141)

the twwa wave functions a eaw ions appea. ring on the rhs h

unity giving the class

of Q„) and the other is sm y oct
mensuratel

i u e terms will can

y; in this case a
e general-

ll ffice.
e a '

n reatment

The deterermination of the
( ) e carried ou

is s bst t ted i to the Schrod'
u e well the result 'u e we is multi lied

and iritegrat
eads to tw

g '0ion over th o q
V

od. The result for the

where

(1) E~od . )
dq y(1) (2)

1(12) 2 (12)+
q 1/2

2 (11) 1(22)

1 — dq @"'Q"'
v1 V2

(3.142a)

~ (2) ~ (1)
v

Vg V~ tf

(3.142b)

{3.142c)

Ae+'U, + 01(22) 2 (11) ~+ 1(1(12) 2 (12) dq y")P")

V1 V2

(3.142d)
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'The ratio for the amplitudes is

b

a„

(1)
v 2(ll )

(/4+ g( g ) d'q y 1 (t) +'U
(3.143a)

b

a, + 6 6 + Ul(22)
(3.143b)

f

If v signifies a class-I vibrational state, the eigenvalue
is approximately

)
X

LLi

LLI

j-
z:
LiJ

O
CL

0 25 515 75
DEFOR MAT ION

llj
C3 O
~ CL

i X—O
Z:
uJ CL
t—O
Z Z

X.

-12
10

10
~ ~ I I l I

-5 -4 -3 -2 -1 0
VIBRATION STAT E ENERGY

V V 2(ll) 2(12) ~ @VI @V2

+1 (12)+2(12) U2 (11)+1 (22 )

q (2) g (1)
V2 Vl

{3.144a)

if the matrix elements (3.142c) and overlap quantities
are small compared to &E. The amplitude ratio, from
Eq. (3.143a), is then

U2 (12)
a, (3.144b)

if terms of second order in T„, the transmission co-
efficient through the intermediate barrier (see Sec.
III.C.4.a), are dropped.

Similar equations hold for a class-II vibrational
state:

~v- ~V + 'Ul(22) Ul(12)
(2) (1) (2)

Ul (12)+2(12) +2 (11)1 (22)
7

(3.145a)

) (6v —E„) d'g
&I v @v2 1 (12)+2(12)

(3.145b)
v +(2) 6 (1) d~ y (1)@(2) (+ (2) + (1)}~

V2 Vl Vl V2 V2 Vl 2 (12)

which is just 'o, &„&/{e„'"—e„"'i. When e„"' and e„',"are
very close

it is clear that a„=b„, and there is no obvious categori-
zation as a class-I or class-II state. However, for the
range of inertial and potential parameters that are rel-
evant for the actinide fission barriers, this kind of de-
generancy is extremely unlikely. The band widths with-
in which the closeness condition, given above, is ful-
filled, are approximately proportional to (T„)' '. The
constant of proportionality is the square root of the con-
stant given in Eq. (3.148) below in connection with the
amplitude of mixing of type 1 and 2 states. For an in-
termediate quadratic barrier with h~~-1.0 MeV [see
Eq. (3.138c)] this bandwidth is already only a few keV
for states 1 MeV below the barrier and is rapidly at-
tenuating (by a factor -30/MeV); this is to be com-
pared with an expected spicing, the P-phonon energy,
-0.5-1.0 MeV for the basis states.

In the approximate solution of the Schrodinger equa-
tion with the wave function in the normal case the values
of the coefficients a„and b„are very close to the values
given by first-order perturbation theory. For a class-I
vibrational state, a„=1, and

FIG. 38. Intensity of the minor -component (tail in opposite
well) of class-I and class-II vibrational wave functions of the
double-well potential shown in the left-hand part of the figure.
The basic phonon frequency in both wells is 5u= 0.8 MeV.

[in agreement with Eq. (3.144b)]. For a class-II vibra-
tional state, b„=1, and

(@(2& iQ i (j)(1&)

v g (2) g(1) (3.147)

KTg
(&

(»
& (2&)2

Vl V2

for class-I states and

KT~
(g 't2& q 't& &)2

V2 Vl

(3.148a)

(3.148b)

for class-II states, the constant K is found to have the
empirical value 0.006, which is close to the expected
"statistical" value of I'~„(S'~&)'/32&r, where @co& is the
smaller of h, and h„. En general, for other wells
with less uniformity among I», S~, , and h~„, it is
found that K lies within a factor of 2 of this "statistical"
value.

I

d. Boundary condI tions; shI ft and penetration factors

The discussion above of class-I and class-II vibra-
tional states in the deformation potential 1j (&7) for the
double potential well feature of the fission barrier was
made with the assumption that these states are dis-

he small contributions to the wave function that might
arise from other states of the potential'U„can clearly
be calculated in the same way.

The matrix elements of 'U„are quite readily and ac-
curately calculable by straightforward digitial com-
puter methods. From the AVKB approximation to the
wave function P„"& and @„"& in the barrier region it can
be shown that the strongest factor in the amplitude ex-
pressions of Eqs. (3.146) and (3.147) is the square root
of the transmission coefficient through the intermediate
barrier [refer to Sec. III.A. l and Eq. (3.139)]. This is
borne out by the numerical computations'. A graphical
display of the matrix elements required for Eqs. (3.146)
and (3.147) for all the eigenvalues of a typical double
potential well is shown in Fig. 38. If the empirical re-
sults are expressed in the form

(p(i& i
~~

i @(2&)
b Vl 2

(1) g(2)
Vl V2

(3.146) 2For precise computation Equation (3.143b) should be used
for class-I states and equation (3.143a) for class-II states.
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crete. 'To employ these, as is done in the next section,
in the formal reaction theory to calculate cross sec-
tions through the fission barrier, it is necessary to
introduce the discreteness through the imposition of a
formal boundary condition at the entrance to the defor-
mation channel (see Sec. III.C.3.b). This should be real
to ensure reality of the vibrational states.

physically, the most natural boundary condition to
choose if a vibrational state in a particular energy re-
gion is of principal interest is one that is equal to the
shift factor in the deformation channel at an outgoing
wave energy thai is very close to the vibrational state
eigenvalue. In this way level shifts in resonance cross-
section formulas become small or negligible [see Sec.
IILC.3.g, especially Eq. (3.128) and (3.130)J.

he calculation of the shift and penetration factors
in a deformation channel has already been considered
in Sec. III.C.3.f. For the main development of the re-
action theory in relation to the double-humped barrier,
as pursued in the next section, it is clear that the nor-
mal choice of channel entrance will be close to the out-
er peak at g~ in the potential energy wave. 'The shift
factor S then has a (negative) value close to the recip-
rocal attenuation distance a at qe(S = —v= —[2Et(e -'Ue)/
A'j'~'), while the penetration factor I' is exponentially
decreasing with decreasing energy E.

There are s pec ial situations, however, in which it is
useful to be able to set the channel entrance at the in-
ner barrier q~. 'The structure of class-I and class-II
vibrational wave functions does not then enter the de-
velopment of the reaction theory, but the shift and pen-
etration factors carry the physics implications of the
secondary well. The form of the shift and penetration
factors in this case are considered by Lynn (1973). Nu-
merical calculation of these factors can be achieved by
the inward potential step method described in Sec. III.C.
3.f. Typical results are shown in Fig. 39. These have
a resonance or "dispersive'* character, and the dis-
persion anomalies occur close to the positions of vi-
brational states in the secondary well. This is illus-
trated by the superposition on these figures of the
transmission coefficient (as defined in Sec. III.A. 2)
through the same double-humped barrier; there is al-
ways close correspondence in energy. Note however
that whereas the transmission coefficient can approach,
but never exceed, the value of unity, the penetration
factor can peak to 'much larger values.

A more analytica, l calculation of the shift and pene-
tration factors employs Eqs. (3.119)-(3.124) of Sec.
III.C.3.f simplified for a single deformation channel (we
are not at this stage considering the possibility of inter-
actions between the deformation and other degrees of
freedom in the secondary mell). 'The boundaries of the
intermediate zones described in Sec. III.C.3.f are q4
and gB (substituted for q„g~, respectively). If the
eigenstates set up in the intermediate zone are to have
reasonably uniform properties the poles of the ex-
pression obtained for the logarithmic derivative from
Eq. (3.124) must be located approximately midway be-
tween the eigenvalues P~. In a uniform model for these
eigenstates, the poles 'occur at energies e„=2 (Eg+ Ey 1)
and their residues are d2~/7t2V~~(q„), where d~ is the spac-
spacing of the states E~. The imaginary component u„
of the pole energy ev is the mean of that of the eigen-
values F'~ and 9 ~„, and this is interpreted as the half-

width for decay of an intermediate state at energy ev
through the outer barrier B. In the region of the pole
e, =e, —in~„, the shift and penetration factors thus have
the form

d', (e. —&)
b

TI 2@2(rt } (e ~ )2+ ~)2

t4)t ZU

TI'V,'(q~) (ev —e)'+ W,
' ' (3.149)

where S, is a smoothly varying background term.
This accounts for the "dispersion" character of these
factors that appears in the numerical calculations des-
cribed in the last paragraph. The result (3.149) can be
written in terms of the reduced widths y'„(q„) of vibra-
tional states of the secondary well, which are defined
with a boundary condition D, (q~).'V„(q~) = [2B(e —V~)/
g']'~'=—w~, rather than with the intermediate zone con-
dition = -K„, which is natural for setting up the con-
ditions appropriate to the internal region (g& q~). The
modified result is

K+@(0~)( v E ) $4K&~v( rt&) ~'v

(& —~) + ~f
'

(& —~)'+ g&'
(3.150)
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FIG. 3S. Shift and penetration factors calculated within the
inner peak of a double-humped barrier. The parameters of
the barrier are (in MeV): U&=-6.52 MeV, S~&= 0.85 MeV,
'U& ———0.2 MeV, 5~&=1.06 MeV, Uxj; —2.04 MeV, Izcu&&=0.608
MeV, U&= 0.2 MeV, h~&= 0.8 MeV. The deformation param-
eters are: gz = 0.S, q&= 0.5845, channel deformation g„= 0.34.
The transmission coefficient of the barrier is also shown
(dashed curve).

5. Specialization of the reaction theory to the double-
humped barrier

a. Class-I and class-ll compound R-matr/ x states

'The form of the double-humped potential energy bar-
rier in the elongation mode lends itself readily to spec-
ial treatment within the extended A-matrix reaction
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X(I) ~ g&z X 4, (I)
IV f 1(g) ~

+IV
(3.152)

~(II) ~ c )tzz~ g, (II)
)tzz ~ p.v X f v(u» (3.153)

with eigenvalues E~, , E~„respectively.
To be formally complete the expansion {3.151) must

include unbound intrinsic states p„. R-matrix theory
is normally confined to the energy region in which only
two-body reactions are possible. With this limitation
the terms in {3.151) that include unbound y will be
coupled with 4 with vanishingly small amplitude at
the channel deformation q „. Such terms can be regard-
ed as giving rise to waves in the simpler particle
channels and can be written alternatively as an expli-
cit expansion involving states of the residual nuclei
involved in these channels, analogous to Eq. {3.88),
leaving only couplings involving bound X in the explicit
sum over p.v in Eq. (3.151).

Physical properties of the class-I and class-II com-
pound states follow quite simply from the expansions
(3.152) and (3.153). Class-I states can be expected to
contain significant amounts of components X„C,'('„„
where 4,'(' ) corresponds to zero-point vibrational mo-
tion within the primary well and the X are highly ex-
cited intrinsic states. The latter will include unbound
states corresponding to the motion of free neutrons or
protons, or more complex particles such as o'. parti-
cles, against the appropriate residual nucleus, and the
zero-point vibrational state becomes an essential part
of the description of the ground (or even a low excited
state) of the residual nucleus. Thus class-I states will
have neutron and proton reduced widths for decay into
these particular channels. They will also have reduced
widths for alpha decay to the ground and low excited

theory outlined above. In this the R-matrix internal
eigenstates, as defined in Sec. III.C.3.b, are expanded
in terms of two auxiliary sets of eigenstates, the class-
I and class-II states. In this treatment the channel de-
formations are chosen close to the outer barrier B.
Physically, the class-I states are largely confined to
deformations within the region of the primary well of
the double-humped barrier, and the class-II states are
similarly located within the region of the secondary
well.

Formal definition of these auxiliary states follows
from the expansion of the R-matrix internal states in
terms of vibrational wave functions as in Eq. (3.96):

(3.151)
P, yV

with the X„being defined as intrinsic states of the in-
trinsic Hamiltonian for channel deformation q„(see
Sec. III.C.1). Here, the vibrational wave functions
4)„&„), unlike the free wave function 4) „'") of Eq. (3.96),
are subject to a real energy-independent boundary con-
dition at the selected channel deformations g„and this
can depend on the channel label p, ; the vibrational wave
functions 4„( ) are themselves discrete, and if their
eigenvalues E„are lower than the intermediate barrier
of the double-humped barrier, they fall into the classes
I and II described in Sec. III.C.4.c. The class-I and
class-II R -matrix states are therefore conveniently de-
fined by the incomplete expansions,

states. The limitation of the expansion to class-I vi-
brational states with (extremely likely) very small
amplitudes at the channel deformation g„, even for
comparatively high quantum numbers v', also implies
that the class-I states have very small, although not
quite negligible, fission widths.

By contrast, the class-II states, by virtue of their
components of class-II vibration, particularly those of
high quantum number v", have much larger reduced
fission widths, but have zero reduced nucleon widths
to ground and normal low-lying states of residual nu-
clei. Another important difference for fission barrier
potentials calculated for actinide nuclei by the Strutin-
sky method lies in the density of the two kinds of state
(for the same available excitation energy). This arises
from the density of the basis product states X„4„"(')
and X„C,'('„'). The intrinsic states can be envisaged as
combinations of single-particle or hole states with
spacing of the order of 100 keV. Furthermore, rota-
tional bands with spacings of the same order will be
built on them. By contrast, the vibrational states will
have separations of the order of & MeV. Thus the prin-
cipal contribution to density of class-I and class-II
levels will come from the combinations X 4,'(„') and

0 ( ) respective ly. For the actinides the potential
energy calculations (see Sec. II) and the experimental
evidence of spontaneously fissioning isomers (see Sec.
IV) and fission cross-section intermediate structure
(see Sec. VI) indicate that the secondary well is at
least about 2 MeV above the primary well, so that this
amount of excess energy is tied up in the vibrational
state 4,'('„') and is not available for the excitation of in-
trinsic degrees of freedom in the class-II compound
states. Consequently the density of class-II states can
be expected to be some 2 or more orders of magnitude
lower than the class-I density.

h. F!nal R-matrix compound states

x (X 4„( )j Hi X4, ,(„))=0, (3.155)

using the split of the Hamiltonian into deformation, in-
trinsic and coupling (H, ) terms as defined in Eq. (3.64).
This is a representative row of a matrix equation, the
eigenvalues of which are determined from the secular
equation

det(H„„„...—E~5 „„.„.) = 0 . (3.156)

he determination of the eigenvalues of the matrix H
is also conventionally expressed as finding the unitary
matrix U, which transforms H by the operation UHU '

The final R-matrix states X~ can now be constructed
from the auxiliary class-I and class-II compound states
according to the procedure described by Lynn (1968b).
The expansion (3.151) is substituted into the Schroding-
er equation

(3.154)

in the internal region of configuration space (defined
in Sec. III.C.3.a). Both sides are multiplied by X,*C„*
and integration over all var'iables gives

Rev. Mod. Phys. , Vol. 52, No. 4, October 198G



768 S. Bjdrnholm and J. E. Lynn: The double-humped fission barrier

into the diagonal form E. We now specifically consider
only the eigenstates of a particular set of good quantum
numbers (these are normally total angular momentum
J and parity xx).

he matrix H can now be partitioned into submatrices
depending on whether the index v of an element refers
to a class-I (vx) or class-II (x xx) vibrational function.
'Thus,

XI)I II)XI & 0 T '

S H, , s-' SHII T'
THzz I S THzz rr T

we have

S 0 H H S-' 0
Iy I Ig II

(3.158)

Hr, z Hz, rz
H=

LHII, r Hxr, zz &
(3.157)

The submatrices H» and Hxx» may now be separately
diagonalized by operation with matrices

'The eigenvalues of H, I are just the class-I compound
states defined in Exl. (3.152), and those of Hxx, x are
the class-II compound states of Eq. (3.153). The uni-
tary matrices S and T required to effect this subspace
diagonalization are themselves -the expansion coeffi-
cients of the class-I and class-II compound states, re-
spectivee

ly:
S 0

and:

S-' 0

g0 T'
., = &~x

l
i"x'x& =~,'

(3.159)

where S and T are unitary operators within the sub-
space of functions of classes-I and II, respectively. So

Thus the submatrices S H, „T ' and T H», S ' have
elements of the form

(SHx xxT ).,x„= 2 ~ &~xl l"'x&&~'"x III
I

~"&xx&&~"&xxl'xx&=&~x" IH 1~x*"&
'rz ~

(T H„,s '),„,, = &x,",,"l
H,

l
x',",'& .

(3.160a)

(3.160b)

For compound states rather lower in energy than the
intermediate maximum A in the deformation potential
energy barrier, it is expected that the admixture of
vibrational states 4 from above the maximum, with
comparable amplitude in both regions of deformation
I and II, will be very small. In this case the matrix
elements of Exl. (3.160) are very small because of the
attenuation of the vibrational components through the
intermediate peak. At low enough energies it is clearly
possible for these matrix elements describing the
coupling between class-I and class-II states to be so
small that the eigenstates A, can be described to a
very good approximation as being either class-I or
class-II states. Good physical examples of such a clean
separation are provided by the slow neutron resonances
in the cross sections of "'Pu (see Sec. VI.E.l.a) and
"'U (see Sec. VI.E.l.b).

Very rough estimates of the magnitude of the coup-
ling matrix elements can be made from Eq. (3.160) for
the slow neutron case (resonance states at an excita-
tion energy of -5 MeV with a density D, '-10' MeV ').
Observations of the neutron-induced fission cross sec-
tions of fissile nuclei indicate that the high vibrational
sta.tes (quantum number v -5-10) are mixed fairly uni-
formly over the compound states. 'The magnitude of
the matrix element for mixing of a vibrational state
into a class-I state in the absence of attenuation through
the intermediate barrier can thus be deduced from the
spreading width value H'& h(d, (see Sec. III.C.5.c(iii)
for discussion of Lorentzian mixing) to be & (D,S, /
2'�)' '. 'The attenuation through the intermediate bar-
rier will reduce this by a factor (T„/2m}' '. The frac-
tionation of a class-II vibrational state into the class-
II compound states will be given by

where D» is the class-II compound state spacing. Thus

I/2
l&~"'I" l~""&I-( ' "—" (3.161)

Vibrational states v, , v» that are very close in energy,
and thus, according to the discussion of Sec. III.C.4.c,
would be of comparable amplitude in both wells, might
be expected to make a large contribution to the admix-
ture coefficients described by Eq. (3.160). Such a si-
tuation could cause a breakdown of the weak coupling
theory here being developed. In fact this will not happen
because the components in the two wells will have op-
posite relative sign in the two vibrational wave func-
tions {one has an extra node). This will lead to major
cancellation in the matrix element of H, .

c. Specific couplfng modes of class-I and class-II states

With small matrix elements in the off-diagonal sub-
matrices for coupling class-I and class-II states the
final diagonalization of the Hamiltonian of Eq. (3.159),
and the insertion of the resulting eigenstates into the
A-matrix reaction theory, becomes possible by a num-
ber of methods corresponding to distinct physical si-
tuations. In most of these the approximation is made
that the coupling matrix elements are sufficiently
small that the effects of all but one class-II state
on a localized group of class-I states can be ne-
glected.

(i) Ve~y weak couPling; n~x mw class-II states. Here
narrowness of the class-II state is defined by the pro-
duct of penetrability and squared amplitude at the chan-
nel deformation (the fission width) being much smaller
than the energy interval 5 between the class-II state
and its nearest class-I neighbor. (It will be shown in
Sec. III.C.5.c(v) that although this condition does not
affect the diagonalization of H it has a- drastic effect
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on the properties of the resonances in the cross sec-
tion. ) Very weak coupling is defined as the average
magnitude of the coupling matrix element ()(I

~
H,

~
)(II)

being much smaller than the energy interval 5. This

condition allows the Hamiltonian of (3.159) to be dia-
gonalized by perturbation theory. Second-order per-
turbation theory in the region of a single class-II state
gives

(X&'&IH IX&"')' (X"&IH IX"") (X~ IH
' IX"")(X""IHIX",')

)tr &-" )trz Z (I ) ~z ~ ~z I ~ &zz ) c A,II )tz I c )tI (3.162a)

(X&I& IH IX&II&)z

Ex. -E)ir+
~rz

for the states that remain essentially class I in character, and

(3.162b)

r r E)tr ' - )tz )I.r I )tz

(3.163a)

)t,r )trr E)tz
(3.163b)

' IH IX&II
I (o) 1 II ~ III (I (o) )»'z~() 2(E ~ )z (InI)

)tr )trr

(X,",' I H. I X,',",')I', ,«) ——
(z 'z ",', jr„„(f),

xr )tr I'
(3.164)

for quasi-class-I resonance states, while

III' -(f) =
I

(3.165a)

for the remaining state. From these relations simple'
results are obtained for the resonance widths [see
Sec. III.C.3.g. (ii)]. If I'„„&z& is the fission width tha, t an
unperturbed class-II state woul. d have if it appeared as
a resonance in a suitable cross section and the fission
widths for unperturbed class-I states are assumed to be
negligible, we have immediately that

(3.166)

(3.167)
)err )tr

(o) 2where I'I(„)=2P„(at 1 eV) yI(„). The terms raised to
one-half power (the reduced width amplitudes) are ran-
dom from one resonant state to ariother, and generally
will be unknown. This gives a numbers of possibilities
for the value of I'&-(„) in relation to the values of the
I ),.~„). A maximum value of I'), - ~„) can be stated for a
finite number of admixed class-I states (this would oc-
cur if the signs of the»I'iI(n) were fully correlated) and
a mean expected value of this width can also be given;
the latter is I

=I'I (f) — Z I"I(I)II )t (x)t")
(3.165b)

(p(0) )
I'&f & I'&n&r,

)tet (&)
)t'(~ )t" ) )tzz(f )

(3.168)

is the fission width of the quasi-class-II resonance.
Exactly similar relations hold for the partial radiation

widths for el.ectromagnetic transitions to lower class-II
states, so we see that each admixed level. has exactly
the same pattern, in terms of relative intensities; of
class-II spectrum superimposed on the normal class-I
spectrum. This "fingerprint" spectrum could be used
to identify the second minimum phenomenon in reso-
nance behavior when the class-II states themselves can-
not fission (because the saddle point is too high). The
fingerprint behavior is of course quite different from
the norma. l spectrum behavior that varies strongly (at
least in the high transition energy region where discrete
transitions can be observed) from one resonant state to
the next. Each class-II fingerprint spectrum will. also
vary strongly from one class-II group of resonances to
the next group. Radiative transitions are treated in
greater detail in Sec. VI.D.

Neutron (or other pa. rticle) widths cannot be given so
unambiguously. The expressions for reduced neutron
widths (in the experimenters' convention: neutron width
divided by a factor proportional to the penetration fac-
tor) are

Physical examples of such coupling between class-I
and class-II states are to be found in the slow neutron
cross sections of ' Pu and "'U. In the former, three
now well-studied class-II states occur below a neutron
energy of 2000 eV, and in this energy range the average
class-I level spacing is -14 eV. For each of the class-
II states, identified by the comparatively high fission
cross sections of the resonances in their immediate
vicinity (see Fig. 7), the class-II fission width is about
2 eV. In two of the cases (at 800 and 1900 eV) the bulk
of this fission width is to be found in a single weak, but
broad, resonance at the center of a cluster of strong
fission resonances. The quasi-class-II resonance thus
identified has a reduced neutron width less than one-
tenth of the average value of its neighbors. Further
details are to be found in Sec. VI.E.1.

(ii) Vez"y u&eak coupling u)i th accidental degenez'acy.
The perturbation theory of subsection (i) above does not
cover the possibility of an accidental degeneracy or
near-degeneracy between a class-I state and a class-II
state. This situation, with weak coupling to the remain-
ing class-I states, can be dealt with quite easily. The
subsection H, of the Hamiltonian matrix around a given
class-II state (moved into the row 1, column 1 position)
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EIII
(x'"

l H, l x "')
&x,'" l a. l

x(")&
E2I 0

0 ~ ~ 0

(x '"la, lx,") (x '"la lx'"& ~ ~ ~

Here, E2I is the nearly degenerate class-I eigenvalue.
The top l.eft-hand submatrix of order two can be diagon-
alized by a matrix with a unitary submatrix S' in that
position and partitioned otherwise as

0 0
W 0

i0

(3.169)
By operating with this matrix and its reciprocal on the
submatrix H& we obtain

0 EI

(x(x) la l
x(xx)&(w-x) (x(x}la

l
x(xx)&(w-x)

(x(x)
l a l

x(xx)&(w-x) (x(x)
l a l

x(xx))(w-x)

w &x(")la,. lx(')& ~ .
w &x('"

l H, l
x("& ~ ~ ~

0 ~ ~ ~

0 (3.170)

Here (dropping Roman subscripts, where their impiied
presence is obvious, for convenience)

E'=-'[(E +E )+[(E —E )'+4(x(x) la, l
y(xx)&']'"]

(3.171a)

E;= g(E, + E, ) —[(E, —E2)'+ 4(x(')
l H, l

x(")&']x&2& .
(3.1711)

2 qx(~x 2) (Ex, —Ezx)

&Xxx IH, I
X(xx)& (x)

z(~1,2) El —EAI

""'""(E ~ —Ex )(E ~ —E ~ )
(3.173b)

The eigenfunctions corresponding to these are

1 11 1 21 2
(II) (I)

2 21 1 2&2(II) (I)

where

(x la, lx
» [((E E )~ (x( &

l a l
x( &&~)]x&2» '

(3.17lc)

(3.171d)

E-= E ~ +W'
"z(&1 2)

2

w' g &x', la, l
x""&'

2 xx(gx» (E2. —E„x)

&x.x l e.lx(")&
21

I (~1,2) E2 —EXI

(3.173c)

(3.172a)

(E, E)
2& [((E E )& (X(xx&

l H l
X(x»&)]x&2 1& '

(3.172b)

",, (.. .) (E,, —E,,)(E,, —E,.)
for the near-degenerate states, and

, &x",'la, lx", "&'
jl A'I

(3.173d)

By perturbation theory we find

&x", "l H. l
xi", &'

1' 1 ll (3-173a) , ~XxI la. lX,""&'
21 (3.1V4a)

I f

&X(xx)la lX &
xx x' ~ mx 2'

E~ -E ~ E —E
z 1 ~z

&Xxx IH. IX',xx)&&X(x" la. lXxx& W' W2,

x;(~x,2) Exx —Ex ~ .(E„—E,,) (E, —E;) i

'i ' (3.174b)
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for the remaining quasi-class-I states.
The corresponding expressions for fission widths of the narrow resotmnces appearing in the cross sectiori are

1"(f) 11 ~ (@ @ )2 1'(f) 21 ~ (~ @ )(E ~ ) 1(f) r (3.175a)

(X zI [a,[ X( zz)&" (X(zz)
) a, ( X., &'

zz(x 1,2) &) z ~z(& 1,2)
(3.175b)

for the resonance corresponding to the two nearly de-
generate states, and

1/~"

(&1—&, )(E —&;)
(3.175c)

for the remaining quasi-class-I resonarices. In these
equations the fission widths of the diagonalized pair of
nearly degenerate states are given by their amplitudes

(3.1V6a)

After perturbation by the remaining class-I states,
these two states can no longer be assigned precise esti-
mates for their neutron widths. To first order the ex-
pectation values of the reduced neutron widths are

1/2 1/2.

(3.176b)
1

In first approximation the reduced neutron width am-
pl. itudes of the nearly degenerate resonance states are

Z (0)1/2 ~ Z (0)1/2
I'(rz) 21 2Z(rz) ~ (3.a'77a)

I (o)zf2 gr I (o(1f2 (3.177b)

xz(2 1 2) ( 1 1z)(E1' 2') xz(2 1 2) ( 1

+ + 11 ~ (E @ )2 &tZ(ri) ~

&t Z(W 1,2) 1.
' ~Z

( zz) (z) 2 (z) {zz) 2

(I (2) ) 1 3gr2 g &X, I &.I Xxz & I(r2 g (X., I &.I X1 & ~ (2)
XZ(2 1.2) (@2' @XZ)( 2' 1') 2 (22.2) (+2' @2 )

( — )'
)tz( x 1,2) 2~ —

)tz

(3.178a)

(3.178b)

These results are to be substituted into the resonance
cross-section formulas, e.g. , the single-level formula
Eq. (3.125) or a many-level formula of Sec. III.C.3.g. (ii)
or (iii}. The sign of the first-order level-level inter-
ference between the quasidegenerate resonances is
implied unambiguously by the diagonalization treatment
above. Neglecting the perturbation of the levels A.",
the substitution of the width amplitudes of Eqs. (3.176)
and (3.177) into Eq. (3.131) gives

2 2~,;„, = ——g 2W O' I (g)I' („)

Dz &(AzlH I )(zx) +DxDzz ~ (3.180)

With these conditions it is a good approximation to con-
sider onl.y the mixing of a single cl.ass-II state with a
group of class-I states in its vicinity. However, the
coupling is too strong to permit a perturbation treat-
ment.

The limitation to a single class-II state allows the
diagonalization of the matrix on the right-hand side of
Eq. (3.158) to be reduced to the solution of

Cxz(&zx —&x) + ~zxx(&(zl ff I )(zz) = 0,

(3.179)

This is positive (constructive) between the two reso-
nances and destructive outside.

A perfect example of accidental degeneracy between a
class-II and a class-I level is provided in the fission
cross section of ~~ Pu. The group of resonances cen-
tered at 1405 eV neutron energy (shown in Fig. 115) is
dominated by two resonances of very similar parame-
ters, sharing between them a total. fission width of 3.5
eV. The constructive interference effect is very clear.
A full analysis of this group is given in Sec. VI.E.1.

(iii) Moderately weak coupling: narrow class-Il
states. Moderately weak coupling may be defined as
occurring when the magnitude of the coupling matrix
elements lies within the range.

(Cx } + Z (Cx } = 1 ~

Xz

Here the C&„C),,&
are the expansion coefficients of the

class-I and class-II states in the diagonalized states ~:

(3.182)

zz~ C~zXq +Cq Xq
"z

The solution of these equations (see, e.g. , Lynn, 1968b;
Bohr and Mottel. son, 1969) is

(3.183}

&)(xi Ã. I )(xx & .
z +~ Q~ zr '

I
(3.184a }

Cx &~zxllf. l~x)+CA ~ —&~)=0, (3 181)

for a single class-II state &zz, together with the normal-
ization condition
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~ &)(, I a, !z„)'
E E )

P., i H, i h.„)
)(Ez Ez)

z z

This result is exact and incorporates the results of
perturbation theory for the very weak coupling case.
Equations (3.184) are most easily surveyed for the uni-
form, or picket fence, model of level structure. Class-
I levels are assumed to be equally spaced (with inter-
val D, ) and the squared matrix element of ff, is as-
sumed to be independent of &z. Thus

(3.184c)

gH @EDE&„—E& ——— ' cot
z

(3.185a)

(the origin of the energy scale coinciding with a class-I
level) and

(C~„)' =
H2

C

H(E„—Eg) + 2 +H,
zz z

(3.185b)

In the familiar Lorentzian form of Eq. (3.185b) the
half-width of the profile of squared admixture coef.-
ficients (defined as half-width at half-maximum) is

W= '(1+,',) (3.186)

The first factor is the well-known "golden rule, "and for
all but very weak coupling the second factor is nearly
unity. It must be remembered, however, that, accord-
ing to Eq. (3.185a), eigenvalues a, re densest close to the

s (e)dk' dR f y='5'(y', E)d y
0

(3.187)

In the uniform model class-I spacings and matrix ele-
ments do not fluctuate about their mean values, and the
only quantity that varies among the members of the
ensemble is the interval between the class-II state and
the nearest class-I state at higher energy. The evalua-
tion of the strength then gives exactly

(3.188)

An estimate of the value to be expected for the Lo-
rentzian half-width in terms of the intermediate barrier
transmission coefficient T„can be obtained from Eqs.
(3.186) and (3.181), with the result

spreading class-II state Az, [Fig. 40 is a schematic di-
agram of the solution (3.185a)], hence the half-width of
suitably averaged strength of the mixing (C~»)'/D a. s a
function of energy is less than the result given in Eq.
(3.186). In fact it has been shown (Lane et al. , 1974)
that W= xH2jDz is the exact result if the average mixing
of &zz into the states & is def ined by an ensemble pro-
cedure in which the members of the ensemble are all
possible patterns of Ez and (C~„)' resulting from pre-
scribed mean values and statistical distributions of the
class-I level spacings and the matrix elements (for fur-
ther discussion of these distributions see Sec. VI). The
strength function s(E) for spreading of the state A.» is
defined in terms of the probability P(y', E)dE dy' for
finding, amongst the ensemble of these patterns, a
total admixture coefficient (C„„)'lying between ) ' and
Z +dZ in value in the energy interval E to E+dE. Then

2W= —-T~.Dzz
2%

(3.189)
I
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FIG. 40. Schematic diagram of the solution of the eigenvalue
Eq. (3.184b) for mixing of a single class-II state with many
class-I states. Circles give the eigenvalue solutions E~.

The coefficients of mixing of the class-II state, into
the states A., as expressed by Eq. (3.184c), can be used
immediately to give the fission widths in the narrow
r e sonance approximation;

Fg(f) = (Cg ) Zg (f) . (3.190)

((Cadiz) )~ Q (u(E~ E)(Cq ) (3.19la)

In the uniform model the resonance fission widths would
therefore follow the Lorentzian profile of Eq. (3.185b).
Entrance channel widths must be deduced from the co-
efficients of Eq. (3.184a). Far from the class-II state
the entrance channel widths are very little disturbed
from the original pattern possessed by the class-I
states. Near the original class-II states there is con-
siderable dislocation of the original pattern, but, ex-
cept in the case of very weak coupling, there will be no
strong reduction in expected value, and anticorrelation
between fission width and entrance channel width will
only be weak.

For nonuniform distributions of level. spacings and
matri~ elements (particularly useful for situations
where long-range energy variations might be involved)
another variation of the local. ly averaged strength of
admixing of the special state may be employed (Bohr
and Mottelson, 1969). The locally avera. ged admixture
coefficient ((C„, )')z is defined as the weighted average
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where ~(x) has the Cauchy form

]. .

2w &'+ (&/2)' (3.19lb)

The right-hand side of Eq. (3.191a) is in the form of the
sum of residues of a contour integral which can be al-
ternatively evaluated as the sum of residues of the two
poles E+i&/2, E i-A/2, giving

C&( „)& ——
( ), .

( )„( )
zz zx

with

c',"(n.) '
@( )(~ ) p&

(3.196)

~I
)

DI
k(u I

(3.198)

for separation of the class-I and class-II states by the
average value —,'Fzcu (the simplifying assumption huz
=her» = ken is made here). The coefficients C„'„'- and
C~„. can be evaluated on the assumption of strong mixing
of the vibrational modes into the respective class of
compound states as

II )2 II (3.197)

&~iij II.I ~z)'
~(E-E )'+(~/2)"

&) „Ia, l ~,&'(E —E,,)
i1Ezzz = Z (E E )a+ (~/2)a

I

(3.192b)

(3.192c)

~2
2 ')izz(&) II 28' 2m T~

(E —E )'+ W' DII 2m Scoz

(3.199)

Thus, for moderately weak couplzng,

Physical examples of moderately weak coupling have
been observed in the fission reaction in a few cases.
The best explored is the slow-neutron-induced fission
cross section of "'U (James et al. , 1977). Fission and
neutron widths have been measured for all the reso-
nances in the region of 550 eV and the former show
(Fig. 116) a Lorentzian type of profile about this energy,
but with very considerable scatter about the ideal form
(see Sec. VI.E.3.b). The half-width of the profile has
been assessed as 68 eV, a factor of -7 times the mean

. class-I level spacing (D, =10.3 eV). Further analysis
of these data is discussed in Sec. VI.D.3.b. Another
example, in which the fine structure resonances have
not been experimentally reqolved, occurs in the fission
cross section (see Fig. 84) for neutrons bombarding
"'Th (James et a/. , 1972). In this case the class-II
state appears to be of particularly simple character
(see Sec. V.B.5.a.).

(iu) Class-I background effects in mode&ately weak
coupling. So far in this section the assumption has been
made that the fission width of the fine-structure reso-

.nances arises only from their admixture of class-II
compound state. However, a weak contribution to the
fission width can also come from the many-phonon
class-I vibrational state admixtures in the class-I
compound states. The importance of this contribution
is assessed here [the discussion is based on a.n unpub-
lished report (Lynn, 1974a)].

From Eq. (3.183) the reduced width amplitude of final.
R-matrix state ~ for a fission channel p. is

y)t &» ——C„II&)tzz &» + Cia)tz &" ) (3..193)

the class-II and class-I reduced width amplitudes being
eva. luated from Eqs. (3.152), (3.155), and (3.10la), their
essential values being

(3.194)

(3.195)

where v", v' are the highest appreciably admixed vibra-
tional states in the class-II and class-I compound states
under consideration. Clearly these vibrational states
will be comparatively close in energy, hence an estimate
of the ratio of their wave-functions at g„can be ob-
tained from Sec. III.C.4.d [Eti. (3.148)]. This is

using Eqs. (3.185b) and (3.193—198), and the assump-
tions that g~z(C, „,)'= 1 (reasonably well satisfied for all
~ if the coupling is not very weak) and that there is no
correlation in sign amongst the coupling matrix ele-
ments. Substitution of Eq. (3.189) into (3.199) shows
that at the class-II resonance energy the class-I con-
tribution to the fission width is negligible (fractional
contribution = T'„/8w).

Far away from resonance the contribution of other
class-II compound states has to be included. Perturba-
tion theory expressions can be used for this, giving

~(i) W &~rlH. I ~zi) ~X,-A„,
~II "Z

M &~z ~ H. l ~It)
~ '-y)t( ) y)t (I)+ ~ E E 'Y ( )

XII AI

(3.200 )

(3.200b)

In a picket-fence model of uniform class-II levels the
sum of the class-II contributions to the reduced width,
under the assumption of no correlations in sign among
the matrix elements, is just

(H ) w'(H, ) yz~~&g& 2 wE

(E E )2 II (
)tI I )tz I )l Iz

(3.201)

the energy being measured from a point midway between
two class-II levels. Again this can be expressed in
terms of the transmission coefficient T~, from Eq.
(3.189), and the result

Dz»II( )

{at E =0) is to be compared with the class-I contribution
the second term on the right-hand side of Eq. {3.199),
which equals

DI y)tzz(ll ') TA/ 2+DII ~

In this midway situation it is apparent that the class-I.
contribution to the fission width is comparable to that
from the class-II states.

(v) Very weak couPling: broad class-Ii states. The
definition of broadness here is that the fission width of
the state, as computed from Eq. (3.126) with appropriate
reduced width amplitudes at the channel deforhmtion and
penetration factor through the outer barrier, is of the
order of or larger than the class-I level spacing. The
extremely strong level-level interference that can now
occur can completely reorganize the fine-structure
resonance patterns from those predicted by the straight-
forwy, rd application of the formulae of the preceding
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section into the Breit-Wigner single-level form. This
broadness of the class-II state can effectively decouple
to a large degree the mixing of class-I and class-II
states that occurs when they are confined to the internal
region. (The same kind of decoupling effect has already
been seen in the statistical treatment of Sec. III.B when
the outer barrier B is 1ower than the intermediate
barrier A. .)

The effect is most simply illustrated by treating the

case of accidental degeneracy of a class-II and class-I
level. In Sec. III.C.5.c.(ii) the formulas for eigenva. lues
of the internal A-matrix states that result from the de-
genera. cy are given [E(I. (3.173)]. These are substituted
in the level-matrix formulation of B-matrix theory [Sec.
III.C.3.g. (ii)]. With the neglect of radiative capture and
retention of a single entrance (neutron, in this example)
and fission channel, the resulting two-level matrix
[Eq. (3.129c)] is

E;—E —4i(Vzzz(g) + Vz (n) ) (i) ~z ( ))
--'z(1', (y) —I, (.)) E, +2I&A IH. IA &I

—E --'z(i' (~)+I'. (.))
(3.202)

E',"' =E',"' =E;+ l&A, IH. I A»&I,

~(zz) ~ 4&Azl H. l Axz&'
(f)zz I'~ (f) —I"2 („) '

(H) 4&Ax I H, l Azx)=I'. (.)+ '
~

(3.204a)

(3.204b)

(3.204c)

The residues of the poles may be factorized into the
partial width quantities:

4&Ax I H. I Azx &'
G &&& ex&&(2&'(,»&)= F,„&&& &+

~&,
'&, „),

xzz(f) az(~) j

(3.205a)

4&A. x I H, I Azx)G,(„)exp(2z(, („))= 2, (") (1. —I,
1zz(f) 2z(")

4&Ax IH, I A, z&'
G,'(g) exp(2z4(f)) (z) I z (f) (p p i21

~zz(f) ~z(~) '

(3.205b)

(3.205c)

G;r ~&ex»(2&(,r„&)=&'„&„».&. *
), I.4&AzlH. I Axz&'

i zz(f) 2z(ff)

(3.205d)

These results may be applied to the interesting physical
situation that may occur when the excitation energy of
the compound nucleus is of the order of or greater than
the saddle-point energy but much lower than the inter-
mediate potential energy maximum. In this case 1 yzz(f)
may be very large, perhaps as great as or greater than
the spacing of the class-I states. With very weak cou-
pling and accidental degeneracy between a c1ass-I and a
class-II state, the two R-matrix internal states have
nearly equal fission and neutron widths, and the res-

The poles of the S ma. trix [see Sec. III.C.3.g(iv)], which
give the positions and widths of fine-structure reso-
nances, are determined by solving the secular equa-
tion for this matrix, with the result
E("' ——,'zr(z") =E,, ——,'Z(1'„,~) + I, („&)+I&Ax I H, l A»& I

+ [(«xlH. I Axz&'-, .«z„(r& —I'z,(.))')]'".
(3.203)

If (I',„(t)-I', ,(„))'&&16&A., I H, l Axz&' then the approximate
positions and widths of the fine-structure resonances
are

&A IH I Axz) I z (y) (3.206)

The deduction of Eq. (3.206} follows (Lynn, 1968b)
from an elaboration of the level-matrix method of R-
matrix theory [see Sec. III.C.3.g(ii)]. In this method
[due to Lane a, nd Thomas (1958)j the internal R-matrix
states [the Xz of E(I. (3.151)]are divided into two groups,
and the R matrix is correspondingly split into two parts,
R' and R', each consisting of a sum over one group of
levels. It can be shown that the collision matrix now
has t-he form

U g =e ~' ~ 6 ~+2&P'' 1-iR P} 'R

+ 2~ ~ Prx Ag(zx)Pfx CPix(fz) Ag p
1/2 1/2 I (3.207}

where P. , denotes the penetration factor for channel c.
The new inverse level matrix A' now refers only to the
level. s contained in the section R' of the R matrix, and
the elements of its reciprocal A ' are

onant structure due to these has the form of a narrow
resonance with strong neutron width and small. fission
width superposed on and interfering with a very low,
broad background resonance term with small neutron
width and 1arge fission width. If the spacing between the
class-II state and the next neighbor class-I states is
greater than I'zzx(y), we note [from E(I. (3.175c)] that the
fission widths of the next-neighbor resonances are ap-
pr oximately

&Azl H
I Azx) I z (i) & ("Ez —Ez' )' .

If the fission width of the c1.ass-II state is only slightly
1ess than the class-I level spacing, we see that the next-
neighbor resonance fission widths (G'„.(z)) are nearly of
the same order as that of the sharp component of the
quasiresonance. We have here an example of the qual-
itative result [a, iso discussed by Weigmann (1968)] that
if we consider the class-II state as first coupled to the
continuum, giving a broad resonance, then, even though
the coup1. ing of the class-II state to the class-I states
may be very weak, this coupling is spread over the
width of the class-II resonance. This is quite distinct
from the case of coupling. of discrete states in which the
spreading of the class-II state is governed by the cou-
p1.ing strength alone. The simple approximate expres-
sion for the fission widths of the fine-structure reso-
nances is
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(+ )xx = (Ex -E)6.x~

-2 Q I'. [(1-xR'p) '].. r.i, &rx x. &,

(3.20S)

0
[(I-'R'P) '] .=6 .+

~here

r =2 gy'„,&I'./(E, —E) = -,'xr, /(E, —E).

{3.210a)

(3.201b)

while the quantities a are modified reduced width
amplitudes

xxx(. &
= [(I —1R'p) '].. yx (. &

. (3.209)

If 8 consists of a single level the matrix 1 —iB P is
readily inverted giving

Equation (3.210a) can be substituted in Eqs. (3.208) and
(3.209) which in turn are substituted in Eq. (3.207).
Bather than write out this general expression we con-
sider only the case where R' consists only of narrow
levels so that A' ' and hence A' are approximately di-
agonal. The collision matrix for this case is

U = e' &a+a'y) g + 2 0(a) 0(v)
1 1/2 1/2 1

0 2 0

2 z(r»x, & rex&» + I' n/, &)rx(n& /-/c rnx c& rxx c& erg, & rex 2& (~c I'nx, &rx(,&)
1 I 1/2 1/2 1/2 1/2 Y 1/2 1/2 1 1/2 1/2 V 1/2 1/2 2

I
&~( ) ~~(a) + E -E--'iI (E —E--'ir )'0 2 0 0 2 0

(3.211a)
where

Z i ~ Z + 2 +c(raze&rz/e&)
A(c) +

C 0 2 0
(3.211b)

For the very weak coupling situation (ignoring now the
possibility of accidental degeneracy between a class-I
and class-II level) the level in 8' is taken to be the
quasi-class-II level E0= E„; its width is very nearly
the class-II fission width in the circumstances in which
we are interested —I"&t zz(f) comparable to or larger than
Dz, The poles corresponding to the other levels are now
easily estimated from Eq. (3.211): they are at the com-

(3.212a)

(3.212b)

plex energies E,"' —2iI &, where

E(H& E 2(+craze&rzxc&) (En E 1 )
l X (E E(N))2 I(I I (H))2

l A. (E E(H) )2 (P P (N] )2

The residues of these poles may be factorized into par-
tia I width a nd pha se factor s

—,'{r.—I ',"')r'„".&I ',"., Q.r'/2&r '„",.&
—,'r~.&(g, r~z/2& rH/2„)'[(E„- Ep&)' ——,'(r, —r', "&)']

i{a} — x(a& (E E (H& )2 + 1 (r Z (H& )2 [(E @&H&)2 1(r Z ( )H2]&2

xr'(', &r&~2,
& Q,re,&rg', &(E„-Ex "&) 'xr,

& (Z, r—g', &rxp, &)'(E„—E, )(1,—r ')
)(E EzH& )2 + ix(r r lH&)2 [(E @zH&)2 y z(r rxH&)2]2

In the condition of very weak coupling we have, from Eqs. (3.162) and {3.163)

rl/2 & Xzl +cl 1& Z 1/2 Z 1/2 rl/2 rl/2 ~ ( XXI +c~
zz(f) ' 0(f) 'zz(f) ~ 0( ) ~ E E & ( )

&tzz 0
(3.214)

and therefore (ignoring other possible open channels
such as radiative capture)

rl/2 & XXI ~el 1& r~(c) 0(c) E E ~zz(f)
C 0

W &&xxxl Hcl &xx& r, /.+ ~ Z&t ( )I&t( )
0

(3.215)

G2 &~XXI ffcl ~z&'rzxx(/&
l(f) (E E(H))2+ (IP )2

[cf. Eq. (3.185)]. The phase factor is given by

"xzx/&(En E 1 )exp(2igr(f)) =arctan
( t z xzz(f)

(3.216a)

(3.216b)

for fission summed over channels p. . With I ),„«) ~Dz
it is clear that only the first term on the right-hand side
is important. It is now apparent, from Eq. (3.212),
that the magnitudes of E," —E& and 1 ',

" —I'& are small
compared to E, —E, and j. -, —I', , respectively, ex-
cept in the case of accidental degeneracy. We can
therefore approximate E~ by E,'"' and neglect I",'H' in
comparison with 1"0 in finding an approximate expres-
sion for the partial width quantity G«& from Eq. (3.213).
After some manipulation the result for G', ~) is found to
be

Equation (3.213) with the extra conditions (3.214) also
allows us to see that the neutron partial width quantity
G2(„) is very close to F~„).

To find the parameters of the broad resonance term,
the roles of R and R' can be reversed; the latter now
includes only the level at E0. In the same way as before
we now find that the width of the pole associated with
the broad resonance is, approximately,

r(H& r 1 H&&xxl &el &x&'- I ~»(f) D2
z

(3.21')

while its neutron partial width and phase quantities have
an expectation value of

Gng „& exp(2i g g „&)= -xx
r(„&(Xxxl H I &xx&

Dzr. zz(f)

A simpler treatment of the broad class-II level can be
made by use of the extended penetration factor described
in Sec. III.C.4.d. The deformation channel boundaries
are set close to the intermediate maximum A. . Because
of the compound states associated with the secondary
well the penetration and shift factors to these inter-
mediate channel. deformations have a dispersion form:
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L —S +sP~ —S„„+ Gs
Pi —E-2 VPr

(3.219)

where S» is a background term comparatively slowly
varying with energy, and the residues G, of the poles
Pr i-VV'r vary similarly with energy (roughly speaking
as the transmission coefficient T~ through the inter-
mediate barrier). The half-widths 'Vpr also vary with
energy (as the transmission coefficient Ts). The R-
matrix internal states are confined to the primary well
region of deformation and are expected to have no fea-
tures that relate to intermediate structure, i.e., their
reduced widths and energy levels will vary over con-
siderabie energy regions only in a way characteristic
of statistical scatter. The properties of the fine-struc-
ture resonances in the cross section are found by
studying the S matrix. If it is assumed that particle
channel widths are all small it is sufficient to do this
for the one-channel (deformation) S matrix, which is
just

U 1-L,If (3.220)

where I ~ =I„—~. With the dispersive form for I ~
(limited to one pole) this becomes

-2iG, SV',R ~ „
(P, —Z-im, )[(1-8„)(F,—e-i ~",) —f:,If,„,]'

(3.221)

with poles E —2iI' given by

(5, —E( ) + 'il" ("l -i'W, )(1—-8„)—G,R„,=0, (3.222)

which can be further simplified by putting S» ——0 through
arranging the boundary condition Q~ at the channel en-
trance to be equal to S». If the compound state as-
sociated with the secondary well that is responsible for
the dispersion form of the logarithmic derivative I„
is broad [this is defined by the conditions

2GYx(p)~AD& && j-

and&'P, &&D~, where y&(„) are the reduced widths of the
internal level. s and D„ their spacing], the fine-structure
resonances appear at energies

These equations are of the same basic form as Eq.
(3.212). In addition to these poles an additional pole
with E = & and j. =2~& can be found, correspond-
ing to the class-II state.

It is al.so to be noted that this treatment reproduces
the results for a narrow class-II state. If ~& is van-
ishingly small the approximate solution of the pole
equation is

E(H) = G y~(~)
m 1 E E(&) s

k
(3.225a)

(3.225b)

The disadvantage of these results compared with those
previously derived is that numerical estimates of the
important quantity G„which in conjunction with the re-
duced widths y~„) plays the role of the squared coupling
matrix elements, are not so straightforwardly obtained.

(ui) Stz ongez class-I-class-II coupling (witfz weak cou-
Pling to the continuum). Physical situations in which
more than one cIass-II state must be simultaneously con-
sidered have received little study. When the spreading
widths [as defined by Eq. (3.186)]are much smaller than
the spacing of class-II states, perturbation treatments
are valid [as exemplified in Sec. III.C.5.c(i)]. When the
spreading widths are as large or larger than the class-
II spacings (moderate to strong coupling) numerical
methods must in general be employed in diagonalizing
the matrix. Some special cases have been treated how-
ever. One is the case of a damped vibrational reso-
nance (Back, 1974), which is discussed in Sec. V.C.2.c.
Another case is that in which only two class-II states
are overlapping (Lynn, 1974a).

When only two class-II states are involved the matrix
(3.157}can be diagonalized in the following way. The
eigenvalues and admixture coefficients resulting from
the coupling of the class-I states to one of the class-II
states (e.g. , called N) are first found from Eq. (3.184);
these coupled states are called ~'. The matrix elements
coupling these new states to the second class-II state M
are

E~ =Eg+&g,(H)

the level. shifts && being

Grrz( )(&r —&z)
(Ez- &r)'+~"

r
'

and have widths

I (a) 2G&~&yx(i )
NE (~ cy )2 ~g 2

(3.223a)

(3.223b)

(3.223c)
I

P iH. (M) = gc'„'(~, )H, [m) =
E), -E),

(3.226)

[substituting Eq. (3.184a)j. The product (Xz ~H, ~N)
x (rzz~H, ~M) can be expected to have uniform sig'n from
one class-I level to another in the case of sub-barrier
coupling; if the intrinsic states X are defined at the
deformation of intermediate barrier A, then

&&zlH. I»PzlH. I») = Q ('.'.)' Q C". „C.;;.-&~z rzlH. I ~;zrz')&~z r IH. I z11rz )

= (C„',„)'-C„,„.C„. r &vzN IH~I r zzrz'& (3.227)

the modes vIp. and vI'Ip. ' being taken to be the on, ly ones
contributing appreciably in magnitude to the coupling.
Thus the ma. trix element (&'i H, i M) ca,n be written ap-
p»ximately, in the general case of statistically scat-
tered squared matrix elements (A.zi H, ~

Xzz)', and exactly,
in the uniform case of equal squared matrix elements,

as

(3.228)
hf,

p. 'i H. i zlf
&

=+ „""'C„"' (Z„—E„,),
II

[from Eq. (3.184b)] with the sign being determined by
the product
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[see E&I. (3.184a)]

~ (A. 'I H~I M)Cz.&~)i(g) —— gx) M {3.230)

The sum of C&(~) and C&~) is, therefore,

~ (z'IH. IM&C, ,&„,Cx(u) + C~(x) —C&(+)

~ C'„,
& „~(E~ -E„.)

)t( ~) E'),.—Eq
(3.231)

by Eq. {3.228), showing the existence of either compl. ete
coherence or anticoherence.

In Fig. 41 the locally averaged admixture coefficient
(C~&»),„ is shown for the case

Ez& —E~ = 0.5Dz, (Azl H, l M) =(Azl H, l M)' =Dz,

the nearest class-I level to E~ is 0.25D, above E~ (i.e.,
midway between E„and E~), and the width of the av-
eraging function & is just D&. At the peak energy the
width is 0.458D„and the level shift &E~ is 0.246D&.
These properties are reflected approximately in the
peak of Fig. 41, which has a measured half-width of
= 1.3Dz& corresponding to I" +&, and is centered about
E~+0.22D& {the fact that the peak of Fig. 41 is narrower
than expected from the calculated I." is due to the rapid
energy variation of the level shift). If the fission width
associated with the level E~ is negligible compared with
that of E~, the curve of Fig. 41 is proportional simply
to the locally averaged fission widths of the final eigen-
states of the system.

~ifgtCp t g4 ~
zz zz

The expectation value of squared matrix element there-
fore has, instead of the essential independence of ener-
gy of the (A&I H, I M)', a strong energy dependence of the
form

Ex((yi I H I M)2) (&
z& /CÃ )2 ( zl cl ) ( z z')

(E» —E„)'+W'„

(3.229)

where W~ = z&(A. z I H, I N )'/Dz.
The result of coupling the states ~' to the class-II

slate M with the matrix elements of E&i. (3.228) can be
written in the generalized Lorentzian form described in
Sec. III.C.5.c.(sii), giving the admixture coefficients
(Cz)' of M into the final eigenstate &, averaged over a
Cauchy weighting function. With the matrix element
substituted into the width expression it appears that if
the class-II state M lies much closer to N than the half-
width W~, the effective width of the central states &

close to N is much smaller than the value deduced from
the matrix element (A. zl H, l M). Well away frozn the
center, however, the wings will be more nearly the
value expected for a simple Lorentzian. Thus the ap-
pearance of a narrow peak superimposed on a broader
base begins to appear.

In studying the behavior of the fission widths of the
final states, the contribution of the state N must also
be included. Expressions for the coefficients of ad-
mixture N can be derived just as for M, but now the
states &' are obtained by coupling M to the ~~. It now
has to be decided whether the contributions C~„)y„(f)
and C&(~)y~(&) to the fission width amplitudes of the final
states are to be added in a coherent or incoherent man-
ner (on the average). This can be answered by deducing
the coefficients C~(~) in the following mariner:

Cz&z&)(~ IH, I M)
~( z') ——

I I t I I I I I l l I

U
U
UJ~ 02-

UJ 0.~
lX
UJ

I I I

-50)
i I I t I I I I I

0
E-Eg

FIG. 41. The locally averaged admixture coefficient (C„&z&&)~„
for the coupling of a class-II state M into the final eigeristates
A, of. a picket-fence systexn of class-I levels coupled to two very
close class-II levels of which M is one.

(vii) OverlaP of class-II levels zvith broad resonance.
The appearance of a narrow peak in the profile of ad-
mixture coefficients resulting from "overlap" of two
cl.ass-II states is analogous to the formation of quasi-
resonances in interference of fine-structure resonances
(Lynn, 1964, 1966b).

In the last section this effect was seen for the case in
which the class-II states lie within their coupling half-
widths. The effect can also be demonstrated for overlap
within the decay widths of the class-II states over the
outer barrier B Asimu. lated numerical example (Lynn,
19'l4a) is shown in Fig. 42. In this exampie the class-II
R-matrix state parameters (relative to the class-I
state spacings Dz) are

E —E, =12D, j. ,'~, ——20D, F,f, ——28D

and the mean squared coupling matrix element

(~zl H
I ~zz) = 1.4D~z/2zz.

With these para, meters the matrix (3.157) has been di-
agonal. ized and the resulting eigenstates substituted
into the collision matrix (3.117). The poles of the col-
lision matrix are determined by numerical methods [see
Sec. III.C.3.g. (iv)]. From the residues of the poles [see
Eq. (3.134)] the fission strength G'

& ~z is determined and
the plot of these quantities is shown in Fig. 42. The
broad and narrow intermediate resonances in the pat-
tern of fine-structure resonances is easily apparent,
while the background class-II resonances are also in-
dicated.
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FIG. 42. The partial fission width quantities G
&&&

of the S-
matrix poles resulting from the coupling of a picket-fence set
of class-I &-matrix levels to two overlapping class-II levels.
The envelope of these pole strengths is analogous to quasireso-
nance profiles that can occur in fine —structure cross-section
curves. Circles correspond to poles that will appear as com-
paratively narrow resonance peaks in the cross section, while
the squares correspond to the poles of the underlying class-II
quasi resonances.

IV. SHAPE ISOMERS

A. Early developments

1. D iscovery

The discovery of the shape isomers, or spontaneously
fissioning isomers, is now history. As such it is a
classic example of how an unexpected side effect turned
out to be more interesting than the primary effect for
which the initial experiment was designed.

In 1961 the search for new elements had been pushed
to Z = 101, mendelevium, and beyond. There was con-
troversy about the properties of element 102 (nobelium)
but enough was known to realize that spontaneous fission
was likely to be the dominating decay mode for heavier
elements such as element 104. Liquid drop theory, to-
gether with half-life systematics, suggested spontaneous
fission lifetimes in the millisecond range. In an effort
to synthesize and identify the new element 104, Flerov
and his co-workers in Dubna bombarded a plutonium
target (Z =94) with neon ions (Z =10) to make element
104.

242Pu + 22~ e 260104+ 494 10

The detectors indeed registered a radioactive sub-
stance decaying by spontaneous fission with a half-life
of 14 mill. iseconds. As a test, designed to rule out
lighter el.ements as the source of the spontaneously
fissioning activity, a control. experiment was performed

I

"'U+ "No "'104+4n92 10

Unexpectedly, the 14 msec activity reappeared! (Pol-
ikanov et a/. , 1962). In subsequent experiments, in-

C)
I—

CL
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I I -3

10

Shape
isomer

10

p, rl R, 2ll fl, 2 tl B,a, 3n

5 10 15
AVERAGE ANGULAR MOMENTUM, &I&

FIG. 43. The isomeric yield ratio for a typical spin isomer
Au with I= X2, as compared to the isomer yield ratio for
~Am. Flerov' et al ~ (1968).

0

eluding fast neutron activation of ' 3Am, the activity
was soon tracked down to '~ Am (Flerov and Polikanov,
1964). Thereby a range of completely new questions
arose.

2. Approaching an explanation

How was it possible for an excited state in a nucleus
to resist gamma decay for more than 14 msec and at
the same time undergo spontaneous fission at a rate
which meant a dramatic reduction of the fission barrier
by comparison to '~Pm in its ground state? The pos-
sibility of explaining the stability towards gamma decay
by ascribing a very high spin value to the isomeric level
was soon rul. ed out by the observation that the yield of
the isomer, compared to the ground state yield, was
virtual. ly the same whether it had been produced in a
heavy ion reaction, bringing 20-25 units of angular mo-
mentum into the system, or by a (p, n) reaction at the
Coulomb barrier where there is barely any angular mo-
mentum brought in (Fig. 43). If high spin cannot explain
the stability towards gamma decay, would it be possible
that the isomer was lying quite close to the ground
state'P It would then be necessary to explain how the
fission barrier could be penetrated so exceptionally
fast.

This interesting possibility was explored by Urin and
Zaretsky (1966). It is a fact that the inertial parame-
ters B, required, according to Eq. (2.16), to explain the
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ordinary spontaneous fission half-lives, are quite large
compared to the minimum inertia one could envisage in
the case of nuclear matter behaving as an irrotational,
nonviseous fluid during the shape changes which lead
to fission. For a sphere this minimum inertia. is 32/15
=2.13 times greater than the reduced mass of the nucleus,
considered as two solid half-spheres. (For larger dis-
tortions the irrotational mass approaches the reduced
mass value. ) In ordinary spontaneous fission the iner-
tial parameters required to explain the observed half-
lives are five to ten times larger than the reduced mass
values; see Figs. 44 and 45. If the new isomer were a
piece of nuclear matter in a special hyperfluid state
with an inertial parameter some four times smaller
than that of ordinary nuclear matter, tunneling through
the same energy barrier would take place at a rate
characterized by a penetration factor of 10 ", as ob-
served for the 14 msec isomer, rather than by a factor
10 ' -10 ', which is typical of ordinary spontaneous
fission in this region of A. In such a case the isomer
could be very close to the ground state in energy,
whereby the problem of understanding the stability
towards gamma decay would be eliminated.

This hypothesis failed to find support from subse-
quent reaction threhsold measurements (Bjg(rnhoim
et al. , 1967), which showed that the isomer excitation
energy was of the order of 3 MeV. Now speculations
about special hyperfluid nuclear matter had again to
yield to ways of explaining the striking stability towards
gamma decay of a 3 MeV excited state in a doubly odd
heavy nucleus and with low spin. Clearly, a new se-
lection rule was operating here.

3. Shape isomerism

The idea of nuc lear shape isomerism, which implied
that the isomer was lodged in an intermediate energy
minimum, was advanced as one of several possible ex-
planations by Polikanov et al. (1962) and by Flerov and
Druin (1966). A breakthrough occurred in 1966 when the
idea received independent support from the theoretical

1ps

I

140
I

148 152
I

156 160

side. Myers and Swiatecki's work (1966) on the incor-
poration of shell effects into the liquid drop description
of nuclear masses and fission barriers had focused at-
tention on shell effects. This inspired several attempts
to replace the first schematic description of these by
one based on the actual shell model. diagrams of the
single-particle levels as a function of deformation
(Nilsson diagrams). In this way one could hope to ob-
tain better accuracy in the calculation of ground state
masses and barriers. The general method along these
lines that was developed by Strutinsky proved to be par-
ticularly fruitful (see Sec. II). In 1966 the first numer-
ical results were obtained (Strutinsky, 1967a). They
immediately showed (Fig. 46) that the liquid drop fission
barrier for a certain region of nuclei among the acti-
nides was split into two by a large negat&ve shell cor-
rection; and '~Am lay in that region. Similar results,
based on a somewhat different theoretical approach
were obtained at the same time by Gustafson et al.
(1967).

Experiments with isomeric fission now became fo-
cused by these ideas. One obvious consequence, namely
that all. the nuclides in the region, rather than a few odd
ones, ought to exhibit fission isomerism, was soon con-
firmed by Lark et al. (1969), as techniques for detecting
isomers with half-lives shorter than milliseconds and
microseconds were developed.

FIG. 45. Ground-state spontaneous-fission half-lives. Open
circles: experimental values . Full circles: calculated values
with the determined semiempirical inertial-mass function
shown in Fig. 44. From Handrup et al. (1973).
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FIG. 46. The first calculations of fission barriers based on
the liquid drop model (dashed lines) with inclusion of shell ef-
fects (full lines). Strutinsky (1967ab).
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The interpretation of the isomers as the lowest state
of the intermediate minimum between two barriers,
which the theoretical calculations suggest, leads to a
host of very specific predictions of the properties of
the isomeric states and of the collective and individual
particle excitations which can be built on these. In
Sec. IX these particular aspects, including the appear-
ance of two isomers in the same nucleus, are ex-
amined in greater detail.

B. Islands of shape isomers and decay modes

't. The uranium-berkel ium island

The occurrence and half-lives of presently known iso-
mers are illustrated in Fig. 47 and listed in Table II.
They form ao island around a midpoint of maximum
stability. This is most readily seen when even, odd-A.
and doub}y odd nuclides are examined separately. These
are three groups with half-lives increasing stepwise
as one goes from one to the next. Within each group the
longest half-lives occur for isotopes with neutron num-
ber around 146-148. This special. stability is evidence
of a neutron shell with the magic number around 146-
].48. Strictly speaking it is evidence of a minimum in
the transmission coefficient, Eq. (1.6), for spontaneous
fission as a function of neutron number. It requires
independent measurements of the isomer energy E» and
the height of the outer barrier E~ with high accuracy to
establish at which shape the magic number applies.
There must necessarily be a strong shell effect for

those shapes which we identify with the isomers, in
order to have shape isomerism at al.l. It is therefore
generally assumed that the magic neutron numbers ap-
ply to this shape; but some influence from an antishell
effect at the outer barrier may well play a role (see
Sec. VIII.E).

The variation of half-lives with proton number is
monotonic and seems to be dominated by the generaI.
decrease in stability towards spontaneous fission with
increasing nuclear charge.

The extension of the island of shape isomers towards
the "north" and the "east" (increasing Z and N, re-
spectively), is thus readily understood. To the "south"
and "west" the island appears to be limited, not by the
filling of the shell minimum, but by a shift in the rela-
tive importance of the inner and outer barrier. Spon-
taneous fission gives way to gamma decay as the dom-
inating decay mode. This is seen. indirectly from an
abnormal decrease in the partial cross section for ob-
servation of the spontaneous fission mode in "U and
"8U, as shown by Pedersen and Hasmussen (1972) and
by Wolf and Unik (1973) in the case of ""Np. This gen-
eral trend is entirely in agreement with expectation,
but it would be highly desirable to obtain more details.
Here, one runs into the fundamental difficulty of devis-
ing methods with a sensitivity that is sufficient for the
identification of weakly populated gamma decaying iso-
mers. For the spontaneous fission mode the problem
is much simpler. In no case has a shape isomer been
identified through its delayed gamma rays, and only in
one case, namely "BU, has it been possible to measure
delayed gamma transitions after the isomer was identi-
fied through its (weak) spontaneous fission decay branch
(see Fig. 48).

It has been possible to discover the island of shape
isomers in the actinide region thanks to the specificity
of the spontaneous fissi. on decay mode. On the other
hand, cross sections are small in this region because
of the competing prompt fission reaction. This also
renders detection of delayed gamma rays particularly
diff icult.

It is unlikely, as demonstrated by the studies of
Borggreen et al. (1973), that the "south western" coast
'line of the island of shape isomers around the magic
neutron number 144-148 wil1. readily be mapped. This
is unfortunate, for it may help resolve the puzzle of the
"Th resonance at 5.83 MeV excitation energy, which
is a candidate for the lowest-lying state in the second
minimum, or alternatively, as proposed by Moiler
and Nix (1974), of a third minimum present in these
light nucI. ei at stil. l larger elongation. A systematic
mapping of the shape isomer family in the region be-
tween U and ~0Th would definitely help to clarify the
situation and test the prediction of a rapidly decreasing
inner barrier as 23OTh is approached.

2, Other islands'

In addition to the magic island of shape isomers with
N = 141-151 there are other regions with a different set
of magic numbers, where shell effects will stabilize
a particular shape. Most prominent among these is the
island of superheavy elements characterized by spher-
ical shapes and magic numbers (Z, N) = (114, 184), which
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FIG. 47. The island of shape isomers in the actinide region of the isotope chart. From Metag (1980).

is of course the higher homolog of the well. -known
(spherical) shell model nuclei. Below the actinide re-
gion, nonsphepical shapes are stabilized by shell ef-
fects for nuclei with (Z, N) close to (84, 118), i.e., " Po.
Detailed calculation of deformation energy curves have
been performed by Pashkevich (1969b) and Tsang and
Niisson (1970); see Fig. 49. It is apparent that the in-
ner barrier is considerably smaller than the outer bar-
rier and thus gamma-ray emission is the most likely

decay mode according to the calculations. So far, it
has not been possible to identify this additional island
of shape isomers. Early experimental indications of
delayed fission from reaction recoils with mass num-
bers near to '~po (Ruddy and Alexander, 1969) could
not be confirmed (Bjgrnholm et al. , 1970). The more
recent interest focuses on the detection of gamma rays,
but no definite indications have been obtained about the
existence of this magic island.

TABLE II. Occurrence and half-life of fission isomers. In a number of nuclei there are two decay
periods. The one that is listed as number two is presumably due to an excited state in the second
minimum. For the even isotopes of plutonium (except 24 Pu) and curium, and for ~Pu, this is sub-
stantiated by measurements of excitation functions near threshold. Reference 1 is Britt (1973)
more recent results are taken from Ref. 2 (Metag, 1974) and Ref. 3 (Metag, 1980).

Nucleus t 1/2 Ref. Nucleus Ref.

236U

238U

237Np

'"Pu
'"Pu

237pu

238pu

239pu

'4'Pu
241.pu

242pu

243pu
'44pu
'4'Pu

125+ 15 nsec
195+30 nsec

&1 nsec
40 + 12 nsee
30 + 5 nsec
40+15 psee
34+ 8 nsec

110+ 12 nsec
1.1+0.08 @sec
0.5 + 0.2 nsec
6.0 + 1.5 nsec
8.1+0.8 @see
3.0 +2 nsec
3.8 + 0.3 nsec
24+1 psec
30+5 nsec

3,6+ 0.6 nsee
50 + 30 nsec
60 + 15 nsec

0.4+0.1 nsec
90+30 nsec

1
1
3
1
1
2
1
1
1
1
1
1
3
1
1
1
2
1
2
2

"'Am
2"Am
2»Am
2"Am
24k Am
24'Am
24'Am
244Am

24'Am
2"Am
24'cm

24'cm
242 pm

243cim
244cm

245C m
242Bk

243Bk
244Bk

5+2 nsee
35+4 @see

163+12 nsec
0.91+ 0.07 msec
1.5+ 0.6 p,see
14+0.7 msec

5.5+ 0.5 p, sec
1.0 + 0.15 msec
640 +60 nsec
73+10 @sec
10+2 psec
55+ 5 nsee
15+ 1 nsec
40+ 15 psec

180+ 70 nsec
42+6 nsec

&5 psee
&100 nsec

13+ 2 nsec
600 + 100 nsec
9.5+ 2 nsec

5+2 nsec
820+ 60 nsec

2+ 1 nsec

1
1
1
1
1
1

1
1
3

1
2
1

2
1,

1
1
2
1
1
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3. Unobserved decay modes

So far we have discussed the deca f hay o a s pe isomer
by barrier penetration only i e b tay spon neous fis-
sion or by gamma decay. In addition to this, the iso-
mers may, in principle, decay in the same way as the
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FIG. 48. The gamma decay of th 3 U he s ape isomer. Russo,
Petersen, and Vandenbosch (1974, 1975).

FIG. 50. Several decay channels are open to a sha e is
when its ener ~ ~ergy Ezz zs sufficiently high compared to the n
separation ener S o

e o e neutron
energy „, or when the alpha decay Q value, (Q

+ Ezz), is large, e.g. , greater than 12 MeV.

ground state undergoes radioactive alpha or beta decay
to a daughter nucleus. If the radioactive decay proceeds

then the Q values and hence half-lives will be compar-
able to those of the ground-state decay, and this means

o ousan s of years.i etimes of the order of minutes to th d
In this case, since the longest observed t tal 1 fo x ctime
~s msec, it is not surprising that attempt t bs o o serve
a p or eta branches from the shape isomers have
failed. It is true that alpha emission from the ti s ofe 1ps 0

the nu
ngated shape is enhanced because th t la

e nucl. ear and Coulomb potentials that determine the
eights of the barrier against alpha decay diminishes

the barrier at the tips, but this effect is not strong
enough to offset the influence of the t ll
al ha half-1p a —ives. The effect is likely to be less than a

i i y, as can be seen fromfactor of 100 in decay probabilit a
the fact that in the general alpha decay systematics
there are no signs of an enhancement of the alpha tran-
sitions between (normally) deformed nuclei as com-
pared to spherical alpha emitters (Lederer et al.
1967).

~ $

In the case of an alpha (or beta) transition from a
shape isomeric state directly to the norrnall. defa y e ormed

ug er ground state the Q value is increased by the
isomer excitation energy E A 2-M Ve increase in Q

c y y a very largevalue wil. l speed up the alpha deca b
fa.ctor of the order of 10" [see Lederer et al. (1967)].
This is the maximum to expe t thc, since e poor spatial
overlap between initial. and final states will. lead to a
reduction of the order of the transmission coefficient
of the inner barrierbarrier. For U an isomer with 2.5 MeV238

excitation energy will have a partial alpha half-life
ion er than 102g 0 sec, to be compared to the actual isomer
lifetime of 2 & 10 'e o sec. Similarly an isomer in ' Cm
with 2.0 MeV exV excitation energy will have a partial alpha
half-life exceedin 10 ' seg

" sec, to be compared to an actual.
decay period of 4x 10 " sec. Cl. 1,c. ear y, possible long-
ran eal ha rp g oups from shape. isomers in the actinide
region will be extremely weak B ta de ecay branches
are even more unlikely.

Long-range alpha groups could be found, however,

pa s are emitted from the excited states of ' Porticles a
which has an exceptionally high ground-state Q value
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(Q„=8.95 MeV) and a ground-state half-life of 3 && 10 7

sec. Therefore, alpha emission from excited states
competes successful. ly with gamma-ray emission. If
shape isomers in the region of highly unstable alpha
emitters exist, which means the region above ' Pb
with Z&84 and N&128, the shape isomeric state would
contain, by barrier penetration, some elements of these
excited, alpha emitting states and would corresponding-
ly have a significant chance of itself decaying by long-
range alpha emission. This possibility remains to be
explored. According to Tsang and Nilsson (1970) one
should expect shape isomers in this region, which is
part of the Z= 84, N= 118 magic island (Fig. 49).

An. interesting decay mode that is related to gamma
decay appears possible if the isomer excitation energy.
exceeds the neutron separation ener'gy from the first
well. In this case penetration of the inner barrier leads
to an unbound state and delayed neutron emission can
occur. This may be a sensitive way of detecting shape
isomers in the Po region. The isomers must, however,
lie at such high energies in this case that the formation
cross section is likely to be quite low.

The decay modes discussed in this section are il.lus-
trated in Fig. 50.

C. Half-life systematics and odd-even effects

't. Spontaneous fission half-lives

The majority of known shape isomers decay predom-
inantly by spontaneous fission; the measured half-lives
thus relate directly to the penetration of the outer bar-
rier. In a few cases, namely, '"U, '"U, and '"Np,
the decay probability has to be corrected for the gamma
decay mode, which dominates in these cases, as re-
vealed by abnormally low partial reaction cross sec-
tions for observation of the delayed fission mode. In
all other cases the cross sections follow a regular and
reasonably mell-understood pattern, which is com-
patible with a negligible gamma branch and hence a
total lifetime equal to the partial spontaneous fission

lifetime. The observed regularity in the formation
cross sections makes it very unlikely that gamma de-
cay could play a role; this decay mode would invariably
change from case to case because of the discrete na-
ture of states in the first well influencing the decay
probability in an erratic way.

The spontaneous fission half-lives are plotted in Fig.
51 as function of neutron number and in Fig. 52 as
function'of proton number. The difference is striking;
a strong shell effect in the neutron dependence is con-
trasted to a monotonic, liquid-drop-type dependence
on proton number. A pure liquid drop dependence
would give nearly horizontal lines for the neutron de-
pendence and strongly sloping lines in the Z diagram.
It is the changing slopes for neutrons and the con-
stancy of the slopes for protons that constitute the real
difference between the two cases, representing the
most direct evidence for a neutron shell effect centered
around N =144-148.

In addition to this, the half-lives fall into groups ac-
cording to the odd-even character of the decaying nu-
cleus. On the average, the lifetime increases by some
3-5000 times as one goes from an even nucleus to an
odd-A nucleus and by a similar factor during the next
step to doubly odd species. This is equivalent to a
nearly 25% increase, for each step, in the magnitude
of the penetration integral [Eq. (2.16)t.

It should be noted that the odd-even effect is erratic
to some degree. The numbers given above apply to the
most extreme cases, which form the largest group in-
cluding all even nuclides, but there are a few excep-
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-FIG. 51. Isomeric half-lives show a strong neutron dependence
and a strong odd-even effect. Based on Metag (1974).
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FIG. 52. Half-life for spontaneous fission as a function of
proton number. For the two isomers of uranium (g =92) and
for ~Np (Z=93) the spontaneous fission lifetime is much long-
er than the directly observed half-life, because gamma decay
dominates, as evidenced by "missing cross section. " From
Metag (1974).
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tions with short half-lives, for example, the 9.5 nsec
isomer ' ' Bk, the 110 nsec isomer '" Pu and the more
or less well established isomers, '4' Pu (35 nsec) and"' Pu (60 nsec). It could be argued that these isomers
represent excited states in the second well which con-
sequently have to penetrate a lower barrier. In the
case of '" Pu this is definitely not so (Vandenbosch
et al. , 1973) and in the other three cases the formation
cross sections are quite normal in magnitude. If these
isomers were excited states in the second well with
excitation energies 0.3-0.7 Me&, as required to ex-
plain the reduction ie half-life, then a considerable
reduction in formation probability would be expected.

2. The odd-even effect

There are three separate effects contributing to the
odd-even differences in the lifetimes

(i) An increase in inertial Parameter and hence a de-
crease in @cd~ value with the number of unpaired nu-
cleons. As mentioned earlier, the effective inertia
associated with the barrier penetration exceeds the
minimum value consistent with the physical separation
of the nucleus into two halves; see Fig. 44. Griffin
(1971) has shown that the inertia associated with the
separation of a system of virtually independent parti-
cles would be even larger by several orders of magni-
tude. The pair correlations facilitate the inertial re-
sponse to shape changes, although they do not reduce
the inertia to the minimum possible value. According-
ly, systems with unpaired nucleons will have increased
inertia. Urin and Zaretsky (1966}and Sobiczewski
et al. (1.969a) have made theoretical estimates of the
increase due to one unpaired particle and found it to be
of the order of 25% in the inertia, and therefore of the
order of 12% in the value of Au&~. Other things being
equal this will increase a spontaneous fission half-life
typically by a factor of one hundred to one thousand.
This is the general order of magnitude, but consider-
able variations are to be expected depending on which
particular orbital the unpaired particle' occupies.

(ii) An increase in the Pairing gap at the barrier top
compared to the gap at the shape isomeric "ground"
state. Just as the magnitude of the pairing gap is mea-
sured by the odd-even differences of the ground state
masses, a difference in pairing gap will be revealed
by an odd-even staggering in the barrier heights.
Here, the barrier and the ground state are defined as
the lowest-lying state, whatever its spin and parity.
Since the barrier height is a measure of the energy
difference between a minimum and a maximum in the
potential energy curve, one might expect shell effects
of opposite sign at the two points and hence a sys-
tematic difference in the pairing gap also. This view
is open to question, however, because the barrier can
also be considered as a minimum in a many-dimen-
sional energy landscape of all the variables except one.
There is, in fact, a large negati. e shell effect at the
asymmetric outer barrier. Qn the other hand, if the
pairing energy is dependent upon surface area, even
with a negative shell effect one may expect an increased
pairing gap (Sec. VIII.D). As defined here the odd-even
differences in the pairing gap can be small or large,
but they are likely to.be systematic in nature.

(iii) Specialization energy. This is the extra energy
required to find a transition state at the barrier with
quantum numbers matching those of the shape isomeric

ground state. The minimum and absolute requirement
is for the transition state to have spin and parity Iw

equal to that of the initial state. If this is all, then the
specialization energy is likely to be low because rota-
tional levels with appropriate spin and parity are in
general easy to find at the asymmetric outer barrier.
Requiring also that the spin projection K be conserved
narrows the choice. From what is known about Coriolis
mixing of A quantum numbers, one should indeed expect
spin projection to be conserved during the tunneling mo-
tion, provided the nuclear shape preserves axial sym-
metry. According to theory this is not the case for the
inner barrier, but it seems to hold for the outer one
(see Sec. II). Even so, the K quantum number is not an
absolute constant. Admixtures are nevertheless likely
to be small so that the fission probability, by virtue of
such admixtures, is expected to be cut down by a fac-
tor of 100 or more. There can also be restrictions on
the intrinsic radial and orbital angular momentum
quantum numbers of the individual particle that will
further increase the effective specialization energy.
'Finally, for doubly odd nuclei, preservation of the
quantum numbers of each of the two unpaired nucleons
individually will lead to a specialization energy that is
the sum of the individual specialization energies. This
is equivalent to the assumption of completely indepen-
dent motion of the two particles. Spectroscopic evi-
dence from normally deformed nuclei does not give
much support to such a stringent assumption, since
mixing of two-quasiparticle configurations with the
same total A values appears to be very strong in many
cases. It is characteristic of the specialization energy
that it depends strongly on the properties of the initial
single-particle state; it may be large but it can also be
zero.

The three contributions to the odd-even effect are
illustrated schematically in Fig. 53.

3. Shell effects

Metag (19'74) has made a. phenomenologica. l analysis
of the neutron shell effect and of the odd-even effects
based on all the known spontaneous fission half-lives
of shape isomers. The exponent in the penetration in-
tegral [Eq. (2.16)] is expressed in the following way:

Spe
Incr

I =0
FIG. 53. Compared to the barrier of an even nucleus (with
spin zero) an odd-A. shape isomer sees an increased barrier:
(i) the inertia may increase to decrease the 5~ value; (ii) the
pairing gap A may be larger at the barrier by an amount 5&,
compared to the minimum; (iii) the lowest-lying transition
state with (I,KP value equal to that of the isomeric state may
lie on amount S~ above the lowest transition state.
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27r 27r
(E~ —X,~) = —[aX+h +c(N —N, )'+S], 4. The h~~ values

(4 1)

where
1/f for odd nuclei

Am =@coo 1.0 for odd-A nuclei

f for even nuclei

for odd nuclei

S = S, for odd-A. nuclei

0 for even nuclei .
The quantity X is the fissility parameter [Eq. (1.5)] and
the term aX+b accounts for the smooth liquid drop de-
pendency. The term c(N —No)' describes the neutron
shell effect, whereas the odd-even variation of inertial
coefficients is expressed through the parameter f which
multiplies @co~, and the odd-even effect on the barrier
height is reflected through the energy S, which is then
the sum of a possible systematic difference in energy
gap S~ and specialization energy S,.

Equation (4.1) expresses the main systematic effects.
Provided these effects are strong compared to the scat-
ter caused by individual particle effects, a fit to the
known half-lives serves to determine the parameters
N„c, S„f, and hwo in a meaningful way.

Figure 54 shows a least-square fit to the parameter
N„ the magic neutron number. The value N, =146 is
clearly preferred. This reflects the weighted shell
effects for all shapes across the outer barrier. It is
not certain that N, =146 is the magic number for the
isomeric shape as such, although it is suggested (com-
pare though, Sec. VIII.E). The strengthof the shell effect
is expressed by the parameter c, for which Metag (1974)
obtains 0.04 5~, or 0.024 MeV for A~o=0. 6 MeV.

a = (-49.4 + 5.2)hu, ,

b = (46.0+4.4)h&u, ,

c =(-3.9+0.4) .10 'A'&u, ,

So = (0.43+0.26)hu, ,

f= 1.16+ 0.08 .

(4.2)

IA -6

0

Odd

o

Ci 0

~~CJ,

CI

0 0

fig) =0.68
odd A

S =0.8

even
S=O

0

/0

0

A separate determination of f and S is virtually im-
possible on the basis of the available lifetimes, essen-
tia. lly because of the scatter in the actual decay rates.
This is very clearly brought out by Vandenbosch's
(1974) discussion of the data, shown on Fig. 55. As
can be seen, it is equally possible to throw the entire
odd-even effect into the barrier height S or into the
inertia through the 5m~ values.

The resolution of this ambiguity remains a challenge.
Figure 56 shows one of the Metag (1974) fits to the

spontaneous fission half-lives. With 5.5 x 10 "sec as
the half-life for zero barrier height, he obtains the
following values:

l. 5— OCld fl(d= 0.37

en
=0.68

o

C3oo 05
c3 —10

I I I I I

2 3
OUTER BARRIER Ep —EII {MeV)

I I I

150140 142 144 146 148
MAGIC NEUTRON NUMBER, N

FIG. 54. Determination of the magic neutron number No from
a least-squares fit to the half-lives using Eq. (4. j.). Curve (a)
corresponds to S= 0, curve (b) corresponds to f=1,S=0.
From Metag (1974).

FIG. 55. In both parts of the figure the experimental sponta-
neous fission half-lives are plotted against the theoretically
calculated height of the outer barrier, assuming no odd-even
effect. From part (a) the maximum value of the specialization
energy, S=S~+S, is derived by assuming K~= 0.68 for all
nuclear types. In part (b) S is assumed to be zero and the
maximum variation in @au value is derived. From Vanden-
bosch (1974).
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0

-10

I

086
I

0.850.81 0.82 0 83 0,84
F I SS I L I T Y, X

FIG. 56. Simple phenomenological description of spontaneous
fission half-lives including the effect of a magic neutron num-
ber and the odd-even effect. The full drawn curves are the
predictions of Eq. (4.1) with parameters adjusted to give a best
fit. Points are experimental values. From Metag (1974).

(Other fits with either S, =0 or f= 1.0 are equally satis-
factory; compare Fig. 55.) From the experimental
barrier heights (E~ —E„) and the half-lives of '"U,
"'Pu, and '4'Pu, a value of h&u~ = (0.65+0.05) MeV re-
sults. With this value the results can be summarized
as in Table III.

The average behavior of inertial effects and increases
of the barrier heights will $ie between the extremes I
and III. The analysis of odd-even effects, Sec. VIII.
D.2, points to a pairing energy difference of the order
of 0.25 MeV; thus case I is definitely ruled out.
Whether ca.se II, based on Metag's (1974) suggestion,
has struck the right balance still remains to be seen.
In addition, a glance at Figs. 55 and 56 clearly shows
that the idea of defining average quantities such as
(hcoz) and (S) in an unambiguous way is of limited use-
fulness.

5. Theoretical half-life estimates

First, a remark on the relation between isomer and
ground-state spontaneous fission half-lives is in order.
This aspect has been explored in particular by Bandrup
et al. (1973), by Pauli and I.edergerber (1974), and
again by Randrup et aE. (1976). Randrup et al. (1973)
derive a phenomenological inertial coefficient that
exceeds the reduced mass by a factor of 6.5 more than

the irrotational, nonviscous, mass coefficient does;
see Fig. 44. They obtained this number through a fit
to all the known ground-state spontaneous fission half-
lives of even nuclei, using the then-best calculated
barrier, Fig. 45. When this phenomenological inertial
coefficient was used to estimate isomeric decay, half-
lives thai were too long resulted. Pauli and I ederger-
ber (1974) find theoretical half-lives based on micro-
scopically calculated inertial parameters and barriers
in good agreement with experiment for the (even) ground
states as well as for (even) isomers, see Figs. 21 and 22.
This requires, however, a rather arbitrary Z-dependent
readjustment of the liquid drop parameters. Without this
readjustment calculated and measured lifetimes still
agree within 2-3 orders of magnitude, which is not
bad for a process characterized by penetration factors
of 10 'o-10 . Returning to the problem, Randrup
et al. (1976) estimate half-lives using both phenomeno-
logical and microscopical inertial coefficients. At the
same time new barriers are calculated with the inclu-
sion of further shape degrees of freedom. Good fits
are obtained in both cases. The factor multiplying the
mass excess compared to irrotational flow is now 11.5
instead of 6.5, and the microscopically calculated in-
ertias are reduced 20%. The isomer half-lives are now
satisfactorily reproduced, especially when the micro-
scopic inertial coefficients are used.

The ground-state spontaneous fission is also strong-
ly influenced by the presence of an unpaired particle.
For the heavier elements, Pu to Fm, the hindrance
factor is about 10' (Randrup et al. , 1973) to be com-
pared with a hindrance of (3-5) x 10' for isomer fis-
sion. For ground-state fission it is not possible to dis-
cern a tendency towards proportionality between the
penetration exponent and the logarithm-of the hindrance
factor as one would expect from Eq. (4.1) for constant
f and a constant increase S in barrier height. The bar-
rier height is known to remain almost constant from
Th to Fm; therefore a constant increase (in MeV) is
also a constant relative increase. This failure can to
some degree be attributed to the influence of the indi-
vidual unpaired particle, but not entirely. Puzzlingly,
the most stable elements long appeared to be the least
hindered by the presence of the odd particle. Thus the
hindrance factor for "'U is quoted to be HF =10 and
for '"U, HF =40. This problem has been taken up by
Grutter et al. (1974) who attempted to remea. sure the
spontaneous fission rate of ' 'U and found the hindrance
factor to be unmeasurably large and at least ten times
greater than previously believed. When the difficulties
of measuring these weak fission rates are considered,

TABLE III. Three different hypotheses relating the penetration factor k~~ with the magnitude of
pairing and specialization energy to explain isomer half-lives.

Case I
Pairing and

specializa-
tion energy

(s)
(MeV)

(k~~)
(MeV)

Case II
Pairing and

specializa-
tion energy

(s&
(MeV)

(8Q)~)

(MeV)

Case III
Pairing and

specializ0. -
tion energy

(s)
(Me~

o —e
0 0

0
0
0

0.65
0.51
0.40

0
0.25
0.50

0.65
0.56
0.48

0
0.8
1.6

0.65
0.65
0.65
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together with the problem of obtaining samples suffi-
ciently free of contaminating impurities of neighboring
even isotopes, it appears reasonable to discard the
problem and attribute the situation as being due to ex-
perimental difficulties. The same may apply to the
"'Am ground-state spontaneous fission branch, which
experimentally appears to be less hindered than the
decay from the odd-A neighbors.

The fact that as a rule the hindrance factors for
doubly odd isomers are closely equal to the product of
the odd-A hindrance factors indicates independent con-
tributions from each particle. This is expected for the
inertial and pairing gap effect. To the extent that the
specialization energy contributes in a major way to the
hindrance, this also means that not only is the total
spin projection K conserved during tunneling, but each
individual compone-nt Q, and 0, of two particles i.s con-
served too (K=A, +0,).

Qn the basis of an observed hindrance due to a single
particle of =3 x10' for the shape isomeric fission with
a typical penetration factor of 10 ' it would be reason-
able to expect hindrance factors in excess of 10' for
ground-state spontaneous fission of odd-A nuclei in the
Cm-Fm region where penetration factors are of the
order of 10 "and smaller. The fact that the observed
hindrance is less, typical1y 104-10', has been inter-
preted by Nilsson (1969) as indicative of a barrier
penetration process where not just one but several
shape degrees of freedom come into play. The thicker
the barrier to be penetrated, the greater freedom there
is to find a way through the multidimensi:onal deforma-
tion energy landscape and thus to minimize the pene-
tration integral. Alternatively, the axial asymmetry
at the inner barrier may ease the problem of matching
the quantum numbers at the inner barrier to those of
the initial state, in this way easing the hindrance due
to the odd particle.

Summarizing, the predominant features of spontane-
ous fission from the ground state and from the isomeric
state can be understood within the same conceptual
framework of tunneling through a two-humped fission
barrier. Both barrier heights and inertial effects are
increased by the presence of one or several unpaired
particles. This picture, partly phenomenological,
leads to an understanding of tunneling rates with an
accuracy of 10-20%%ug in the penetration exponent.

D. Shape isomer formation yields and excitation
fUnctlons

More specific information on the barriers containing
the shape isomer, particularly on the isomer excitation
energy and on the outer barrier, can be obtained from
the experimental data on the cross sections for forma-
tion of the isomer, and especially from the dependence
of such cross sections on excitation energy. Specifi-
cally, it is expected that extrapolation backwards of a
sharply rising excitation curve to its threshold point
will yield the isomer excitation energy, while the
maximum value of the excitation curve, in the case of
neutron evaporation reactions, will give information
on the relative transmission coefficients (and hence
barrier heights) of the inner and outer barriers of the
penultimate nucleus in the evaporation process (i.e. ,
that nucleus with one more neutron than that of the
shape isomer itself); and the drop in yield with further
increasing excitation energy ought to be governed by
the outer barrier of the final nucleus.

a. The one-neutron evaporation process
The case treated here is for an initial nucleus of

mass number A excited by a monoenergetic reaction
to a precise excitation energy E~ and total angular
momentum and parity J'. The evaporation of a neutron
from this excited nucleus is treated in the statistical
theory, originally formulated by Weisskopf (1973), by
the use of the transmission coefficients for formation
of the compound nucleus by neutrons as defined in Eq.
(3.41). From this expression, by summing over all
possible angular momenta, a simplified expression can
be obtained for the neutron transmission coefficient
for specific neutron energy & connecting the compound
nucleus to a single state of the residual nucleus and
summed over all orbital angular momenta:

2E +] T ~ n(CN) (4.3)

where rn is the reduced mass of neutron and nucleus.
If the level density of the residual nucleus is assumed
to depend on total angular momentum J simply as 2J+1,
a simple expression for the summed transmission coef-
ficient for total first-stage neutron emission from the
nucleus may be obtained from E(l. (4.3); this is,

E -$
de „(c„)(e)zP'„",(E*-S, -g), (4.4)

0

where p',« is the level density of the residual nucleus
A. +x —1 for an effective angular momentum of zero and
both parities and S, is the neutron separation energy
of a neutron from the nucleus A. In the use of Eqs.
(4.3) and (4.4) the compound nucleus formation cross
section by neutrons, (T„«~), is generally assumed to
be independent of the neutron energy ~.

A more accurate representation of the spin depen-
dence of the level density is

(I+ l)2
p(U, I) =p,«(U)(2I+1)exp

1. Threshold excitation curves from neutron
evaporation theory

Most of the experimental data on shape isomer exci-
tation curves are from neutron evaporation reactions;
a highly excited nucleus is formed, usually from char-
ged particle bombardment, and the isomer results
from this after emission of a specified number of neu-
troris. The relevant width (or more accurately trans-
mission coefficient) for the last stage neutron eva-
poration leading to the states in the final nucleus that
feed the isomer is expected to be very small in com-
parison with the total for all other modes of decay. It
is then possible to derive simple statistical theory ex-
pressions that describe to first order the expected
feature of the excitation curve in the neighborhood of
its threshold (JKgare, 1970; Vandenbosch, 1972).
These are related to the features of (xn) evaporation
reactions first discussed in terms of the statistical
theory by Jackson (1956).
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where 0 is a spin dispersion coefficient. The use of
this form of the level density excludes a simple deri-
vation of Eq. (4.4), but a modified form can be obtained
(Lynn, 1974b) containing an additional factor f,ff(J Q)
in the integrand. For approximate calculations a sim-
ple prescription for f,ff{J f) is to compute it ih terms
of a related function f(J, /):

++1

Z, (~,&(2I+1)exp[- (I+—,')'/2o']
(2J + l)(2l + 1) (4.6)

p""(U, I) =p,",', "(U)(2I+1)exp[—(I+ —,')'/2o'].
Thus the transmission coefficient summed over the
special states is

(4.7)

The required factor f,«(J, e) is simply set equal to the
weighted average of f(Z, 1&) and f(J, l&), where l& and l&

are the orbital angular momentum values bracketing
the average orbital angular momentum of the contri-
butions to the compound nucleus formation cross sec-
tion as expressed in Eq. (4.3). This will vary some-
what with energy, and to remove f,«(J, &) from the
integrand of the modified Eq. (4.4) l„should be ca.lcu-
lated for the approximate mean energy & of neutron
emission. Ef the level density energy variation can be
described by a simple exponential formula with con-
stant temperature 8 then & is just 28. The factor
f,«(J, 28) will not be included explicitly in the equations
given in this section, but should be understood to be
included as a multiplying constant in more detailed
work.

Equations (4.3) and (4.4) are applicable to special
states that might feed a specific isomer as well as to
the totality of states of the residual nucleus. For the
application of Eq. (4.4) to such a special state their
level density is labeled by the extra superscript s, and
the same factorization as in Eq. (4.5) is adopted:

T &g& &(E*)=
g (2el + 1)~=2m

Z «S~
&& (fe v„&cN)(e)Ep && (E* -S( —e) .

(4.8)

The evaluation of the integrals in Eqs. (4.4) and (4.8)
is particularly simple if, as well as making the as-
sumption that 0„«» is constant, it is assumed that the
level density has the simple exponential form with
constant temperature:

p (1 ) (U) —
p

( 1 & (0)en/g)

&s)p(1, g ) (U )
—p(lr s) (0)eUg/g)

(4.9a.)

(4.9b)

Here U, is an effective excitation energy for the special
states and may differ from the true excitation energy
of the residual nucleus by an isomer excitation energy
E,. Similarly, the temperature 8,'" may be one that is
appropriate only to the special states. Substitution of
Eq. (4.9b) into Eq. (4.8) gives

T (E+) «cN) gff (0I 1 (2j' ~1)

x[8,' e s g( s ) —(E* —S, —E +8,')].
(4.10)

Thus the excitation function for the population of a spe-
cific state that is fed by the set of specia. l states s (with
no branching elsewhere) is given by the ratio Tz, &„,&/

T~,&„&, where T~„» is the summed transmission coef-
ficient over all possible decay processes. If these are
effectively limited to neutron emission then

T~~(r)(E*) =T~ („,()((E) = " g' (2J+I)[8 e z -s( /g) (Eg S) +8))] (4.11)

(4.12)

If the isomer excitation energy E, is appreciably greater than the residual nucleus temperature 6„ the second fac-
tor in the square bracket of Eq. (4.11) is unimportant in the eva. luation of the excitation function, which becomes

Y (E")= Tz&(n. s& (E ) peff ( )81 s /g(s) s) ()/g s (/g(& E —S( —Ez &s g& sg&/g)

For the simple case of Oy 6)y this function is shown
in Fig. 57. By contrast, the excitation function of the
ground state of the residual nucleus, on the assump-
tions that it is fed uniformly from all states reached
by neutron evaporation and that there are no compe-
ting reactions, is simply a step function at the thres-
hold energy.

h. T~o-neutron evaporation process

For isomers reached by a two-stage neutron emis-
sion process from the nucleus A the population of states
excited in the nucleus A. —1 by emission of one neutron
must first be written down. This is obtained simply
from Eqs. (4.3) and (4.4) giving

1 ')de ep ' (E* —S, —~)
(4.13)

for the probability of exciting states, of all spins, with-

I

in the interval of excitation energy d 8, at energy 5',

in the residual nucleus. If now the isomer is fed (uni-
formly) from a set of special states in the residual
nucleus A. —2 reached after emission of a second neu-
tron, and the density of these states is denoted by
p""(U, I), the probability of forming the isomer is

(E~) —
d&( I& (@ ) (n, s&(

sg+xg & r) (S))
(4.14)

where the transmission coefficients now refer to the
compound nucleus A. —l,and the total angular momen-
tum notation ha.s been dropped (the dependences on an-
gular momentum being assumed to cancel). These
again can be readily evaluated under the constant tem-
perature level density assumption to obtain expres-
sions of the kind (4.10) and (4.11), but with the numeral
1 that appears there in superscripts and subscripts
being replaced by 2, to indicate quantities referring to
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such as might be employed phenomenologically to represent the sparsely occurring levels in an energy gap region,
the rising excitation curve above the threshold becomes rapidly damped and can be expected to fall away rapidly
in due course .The same feature is found in the expressions (4.12) and (4.17) for isomers formed from one- and
two-neutron evaporation. In the first case, the leading term is proportional to (Ef/8~)', but the term exp[—E,*(l/8,
—1/8,")]becomes dominant at high energies for differing temperatures; while in the two-neutron evaporation case
the leading term is (E~/82)».

The general result for the three-neutron evaporation case, with all temperatures being different, is

(Eg) — z+(tL tnt)(E ) jeff ( ) 3 B eE+/g~
T (Eg) (3)(0) 828282

where

x(e ~~ ' [f'(I —e ss ~t) —2$B —f(Ef 2B—)e s~ t+II'(I —e s~ +) +2IIB —II(E~+2B)e s +]
+[4'(I +2B/8'" —E*/8"') +e (E* —2B)]e-s.*"
+(24'/8")(1 —e ss ~

) —4'(I +2B/8'"+Ef/83") +24 B(1+Ef/8',")
+[A'(I —2B/8"' —E*/8"') +A(E*+2B)]e ss ~

+(2X'/8'")(I —e- ~ '
) -W'(I —2B/8'" +E*/8'*') —2WB (1+ E*/8"')j

e-' = g-'
1 2 g -1 g-1 g-1

2 3
1 g-1 ,,g-1 + g($)-1 p 1 g 1 g-1 y-1 g-1 g-1 + g($)-1

3 3 1 3 & & 2 3 3 (4.23)

d. General remarks

It is apparent from the above equations and the illus-
trating diagrams (Figs. 57, 59, and 60).that a variety
of shapes of isomer excitation curves can-occur, even
for reactions of a specified number of neutron evapor-
ation stages. Care must be taken therefore when the
excitation curve is analyzed to deduce the isomer en-
ergy E', . The most common assumption that is made
is the equitemperature one. This is probably quite
adequate in the analysis of data leading to isomers
occurring in doubly odd nuclei. It is fraught with con-
siderable uncertainty, however, in dealing with the
spont;aneously fissioning isomers of even- and odd-&
nuclei. In these cases the special levels (which are the
class-II levels of the secondary well in the fission bar-
rier) are expected to be spasmodically placed in an en-
ergy gap with no strong overall energy variation, which
is then followed by a normal level density region char-
acterized by a typical temperature. An approximation
to the excitation curve could be achieved by summing
a. curve calculated with a very high (o'r perhaps even
negative) "temperature" built on the isomer state, with
an equitemperature curve built on an effective isomer
energy placed at the top of the energy gap. This could
possibly introduce some structure into an otherwise
monotonic excitation curve with a smoothly varyingde-
rivative. Some evidence for this kind of picture em-
erges from the data on excitation of the "'U shape iso-
mer through the (n, n') reaction [Wolf and Meadows
(1974) and private communication]; attempts to fit these
data with the simple equitemperature one-stage evapor-
ation model of Eq. (4.12) have not been very successful
(Fig. 61).

Further modification of the excitation curves dis-
cussed above might occur with relaxation of the restric-
tion that decay of the compound nuclei in all but the in-
itial state is through neutron emission processes only.
Fission is the major. competitive reaction, of course.
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FIG. 61. Data for excitation of ~U shape isomer by the g, n') re-
action (Wolf and Meadows, 1974 and private communication).
The broken curve is a statistical calculation based on constant
temperature level density models (8& ——0.5 MeV, 0I'i=0.55 MeV,
EEL=2.35 MeV}. The full curve treats the class-II state spec-
trum as having an energy gap (2& = 1.2 MeV) containing rota-
tional bands based on ~=0+ ground state, a K =0 vibration
at 0.5 Me V higher, and a IF= 2+ vibration at 1 MeV higher.
The isomer energy is 2.56 Me V. The dotted curve shows the
effect of omitting the K =0 band.
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2. Absolute strengths of excitation curves

Some of the factors governing the absolute values, as
distinct from the shapes, of the excitation curves for
shape isomers have already been discussed. Some of
these factors are included explicitly in the equations
already given, notably the probability of first neutron
emission from the initial compound nucleus, and level
density ratios between isomer-feeding states and the
totality of residual states in the final nucleus. Extra
multiplying factors that have to be introduced into the
isomer yield functions are the probabilities of second
and subsequent neutron emission, the overall factor be-
ing approximately

* ' T'" » (Z* 2pe) (4.24)

for an (xn) evaporation process. As stated at the end of
Sec. IV.D. &.d, fission is normally expected to be the
major reaction competing with neutron evaporation.

So far in this section we have not considered the im-
plications of the double-humped fission barrier for
shape isomer yield except insofar as the secondary
minimum of the barrier provides the mechanism for
the existence of the class-II states that feed the isomer
after final neutron emission. The formulas given so
far are implicitly for an outer barrier very much higher
than the inner barrier. When the outer barrier is com-
parable with or lower than the inner barrier there is a
decoupling effect on transition processes from a nu-
cleus effectively in a normal shape to states in a differ-
ently deformed shape. This effect has already been dis-
cussed in Sec. IIIB.1, and the relevant reduction factor
for states of class I decaying to states of class II is
given by Eq. (3.50). This implies a further multiplying
factor, approximately

T I")"' '[E„*,—2(x —I)e]+ T I~,"' '[E„*,—2(x —l)e]
(4.25)

where T (», T (» are the transmission coefficients
across the inner and outer barriers, respectively, for
the final stage of decay at the nucleus A —x+ 3. , the iso-

As long as the fission transmission' coefficient has a
similar dependence on excitation energy as the total
neutron transmission coefficient (as suggested by the
near constancy of neutron-induced fission cross sections
at energies above the fission barrier; see Sec. VII), the
shapes of the excitation curves presented above will re-
main essentially unchanged, but the magnitude will be
reduced by a product of factors representing the ratio
of neutron to total transmission coefficient at each
stage of evaporation. Proximity of a fission barrier to
an excitation threshold could alter the shapes very con-
siderably, but assessment of all the known shape iso-
mer data shows that this does not appear to occur in any
known case. It can affect the shape of a ground-state
excitation curve quite severely, however, as in the case
of two-neutron evaporation to "0Cm (Metag et af. , 1973).

Discussion of the detailed analysis of isomer threshold
data is given in Sec. IV.D.3.

mer being found in the nucleus A. —x.
For analysis of the shape isomer excitation curves,

information on the product (4.24) is to be obtained, di-
rectly or indirectly, from experimental data such as
neutron-induced fission cross sections up to excitation
energies of some 20 MeV. At these higher energies the
data are somewhat indirect because they contain contri-
butions from (xnf) reactions as well as immediate fis-
sion, and an assessment of the relative importance of
the contributions from each process has to be made;
at the present state of knowledge this is largely subjec-
tive. For the highly fissile nuclei —Pu and up —there
are good reasons to think that first chance fission dom-
inates. Data on relative neutron and fission transmis-
sion coefficients are given by Huizenga and Vandenbosch
(1962), and a further discussion of these topics is given
in Sec. VII of the present review. Where experimental
data do not exist on the relative neutron to fission emis-
sion probabilities for particular nuclei these have to be
deduced from systematic trends.

Apart from determining the isomer excitation energy
it is also a prime aim of the analysis of isomer excita-
tion data to deduce the factor (4.25); this gives inform-
ation on the height of the outer barrier relative to the
inner barrier in the nucleus A —g+1. How far this can
be successfully accomplished will be dealt with in the
detailed analysis of data in Sec. IV.D. 3.

Most measurements of shape isomer excitation curves
have been made by detecting the delayed spontaneous
fission of the isomer relative to the prompt fission
yield. Such a measurement introduces another possible
factor into the analysis of the data, namely the branch-
ing ratio between decay of the isomer by spontaneous
fission and by gamma cascades through lower class-I
states to the ground state of the residual nucleus. The
gamma branch of the isomer decay is very difficult to
measure, and has in fact been observed in only one
case, namely, from the shape isomer of "'V (Russo
et al. , 1974). Although the difficulty of the measure-
ment suggests that the sparsity of data on the gamma
branch may not reflect an intrinsic improbability in
this mode of decay, the systematic behavior of the
spontaneous fission yield from most isomers strongly
supports the belief that for most of the presently known
shape isomers the gamma-decay branch is negligible.

At higher excitation energies the shape and magnitude
of the isomer excitation curve becomes distorted by ad-
ditional effects. The first of these is the possibility of
fission decay, through the outer barrier, of the higher
class-II states that feed the isomer (Britt et a/. , 1971).
Here, the competition between gamma decay and fission
must be calculated from a model of the radiation pro-
cess and the Hill —WheeLer penetrability factor through
the outer barrier [see Eq. (3.17)]. The outer barrier
height can be left as an adjustable parameter in fitting
the curve over an extended energy range [as was at-
tempted by Britt et al. (1971,1973)] or can be assessed
from other data. In the two papers of Britt et af.
(1971,1973) the radiation transmission coefficient to
lower class-II states was calculated from a simple
strong coupling dipole model in which the gamma-ray
strength is simply assumed to be proportional to the
cube of the gamma-ray energy and the proportionality
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constant is obtained from neutron resonance radiation
width data in the actinide region. In some of the numer-
ical analysis given below in Sec. IV.D. 3 a more elabor-
ate giant-dipole resonance model has been used; this is
described in more detail in Sec. VII. For the analysis
of plutonium and americium isomer data the basic an-
alysis is not too greatly dependent on the treatment of
the radiation process (typical calculations of the trans-
mission coefficients for radiation

hand
fission are shown

in Fig. 62, but in the curium isomers, where the outer
barrier appears to be rather low, this competition is
more difficult to assess; in these nuclei class-, II states
not far above the energy gap could be decaying apprec-
iably by fission, and the radiation properties of such
states will be particularly difficult to compute reliably
with a statistical model.

The net effect of this fission competition in the decay
of the class-II states is to attenuate the isomer excita-
tion curve at higher energies, causing it to fall away
from the asymptotic values indicated in the idealized
formulas (4.12), (4.16), and (4.21). Tending to compen-
sate this effect, however, is another route for feeding
the class-II states. In this final neutron evaporation is
to highly excited class-I states of the final nucleus;
these are coupled, relatively strongly above the inter-
mediate barrier, and much more weakly below, to the
class-II states which can then feed the isomer by gam-
ma cascades (see Fig. 63). These class-II states suf-
fer strongly from the fission attenuation effect, of
course, but in the neutron evaporation process the
class-I states of the final nucleus are so much more
strongly populated than the class-II states that the

route can be an appreciable one at higher excitation
energies. Britt et al. (1971) estimate that this route
can be the predominant one at an excitation energy of
5 MeV above the isomer threshold. These calculations
were very schematic, however, assuming a sharp cut-
off energy, for example, below which coupling between
class-I and class-II states was negligible. More real-
istic calculations made for the present review with re-
assessed empirical level density functions for normally
deformed nuclei and for the barriers (see Sec. VII) in-
dicate that even for energies greater than about 7 MeV
above the threshold the contribution from the class-I
route is of the order of 10-20/p of that from direct neu-
tron evaporation to the class-II states. At these higher
energies, however, other processes even more difficult
to assess quantitatively come into play, such as neu-
tron emission in a preequilibrium mode rather than
compound nucleus evaporation (Britt et a/. , 1973), and
although it is encouraging that the overall shape of the
excitation curve can b'e accounted for, not much reli-
ance can be placed on parameters deduced from the
higher energy reaches.

3. Experimental data on isomer excitation

Most experimental data on excitation of spontaneously
fissioning isomers exist for the Pu, Am, and Cm nu-
clides. In Secs. IV.D. 1 and 2 it was remarked that an-
alysis of the excitation curves is probably least com-
plicated for double odd nuclei. For this reason the
study of the experimental data is begun with the ameri-
cium series.

a. Amer/c/um shapeisomers
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(i) Am. The most important data available on the
excitation function of the 14-msec isomer of this nu-
cleus are those due to Flerov et al. (1967) using the
'43Am(~, 2pz) reaction. There are also data on the
242pu(d, 2~) reaction (Britt et al. , 1971), which do not
reach to such a low energy as the former, but are be-
lieved to give more accurate values of the overall mag-
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nitude of the yield. If the (n, 2n) data are normalized
to the (d, 2n) data (which are given as the ratio of de-
layed fission cross section to prompt fission cross sec-
tion), they must be approximately doubled in value.

These data are plotted in Fig. 64. A number of fitted
curves and calculated points from the theory described
in Secs. IV.D. 1 and 2 are shown in comparison. In the
first of these (long-dashed curve) the level density tem-
peratures assumed are 6, = 0.65 MeV (for "'Am), 8,
= 0.528 MeV (for ' 'Am), and 8,"' = 0.5 MeV (for class-
II states of "'Am). The numerical values of temper-
ature are discussed in Sec. VII. All class-II states ex-
cited in '"Am are assumed to decay to the isomer. The
fitted curve shown is for parameters Ezz: 2 5 M~V, and
a normalization constant

& 0) P T(A- ) T A-y)
Jeff' J f A

(4.26)

with value 1.5 x10 . In the expression for X, P, is the
probability of two-neutron evaporation and Pf the ac-
cumulated prompt fission probability (in this case the
sum of f, n'f, and, at the highest energies, 2nf pro-
cesses), while T„'"",T ~" " are thebarrier transmission
coefficients for the nucleus one neutron higher than the
isomer [see Eq. (4.25)]. The fission and neutron-evap-
oration data reviewed in Sec. VII indicate that P,„/P&
-0.23 for "'Am, and, with the assumption that p,",", '(0)
= p,'„'(0), this fit determines T~/(T~+ Ts) =0.074 for' 'Am. Using the behavior of fission barrier level den-
sities as reviewed in Sec. VII this quantity indicates a
barrier difference V& —V~= 1.5 MeV for "'Am.

The dot-dashed curve and the short-dashed curves
are for different assumptions of temperature, while the

continuous curve is an example of a fit making allow-
ance in a simplified way for higher class-II states to
decay by fission over the outer barrier. With an as-
sumed height for the outer barrier the energy in the
secondary minimum at which the class-II radiation
coefficient T, equals the outer barrier transmission
coefficient can be determined on the basis of models
(see Fig. 62 based on the considerations of Sec. VII).
Class-II states below this energy are assumed to decay
completely by radiation to the isomer and above this
energy by fission over the outer barrier. This approxi-
mation is intuitively justified by the very rapid change
with energy of the barrier transmission coefficient be-
low the barrier energy. . The population distribution of
states in the second well following two-neutron evapor-
ation is shown in Fig. 65.

A summary of the parameters of all the fits is given
in Table IV. This demonstrates the range of variation
in deduced values of the parameters resulting from rea-
sonable assumptions about some of the other nuclear
parameters. It does not include any variation due to ex-
perimental error. The most reasonable set of assump-
tions is probably incorporated in the solid curve shown
in Fig. 63 [for a discussion of Vs for '4'Am see subsec-
tion (fi) below], and the values of E„and V' ' ' de-
duced from this are taken as the most likely values of
these parameters. The errors (from parametrization)
appear to be of the order of +0.2 MeV and +0.3 MeV,
respectively.

Data from the "'Pu(t, 3n) reaction (Britt et af. , 1972)
seem to confirm approximately the value of VB for
'"Am. With a generalized multitemperature model for
the three-neutron evaporation (temperatures of 6, =0.83
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FIG. 64. Excitation of 14 msec isomer of Am through (~, 2')
(Flerov. et al. , 1967) and (d, 2n) (Britt et al. , 1971) reactions.
The fitted curves are explained in the text and in Table IU.
Circles are experimental points due to Flerov et a). (1967),
squares are experimental data of Britt et al. (1971) and crosses
are detailed statistical theory computer calculations.
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TABLE IV. Fits to excitation function data for 14 msec shape isomer of 4 Am. In deduction of
*U~~ ~~, the value of 'Uz for Am was taken to be 6.25 MeV. The points X are full statistical theory
numerical calculations of the isomer excitation for the parameters shown. See Fig. 64.
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FIG. 66. Excitation of 1.5 psec isomer of Am through
~4~ Pu(t&, 2n) reaction, circles are due to Lark et a/.
(1969) and triangles to Britt et aE. (1972). The param-
eters for two possible fits are described in the text.

MeV, 6, =0.63 MeV, 6},=0,"'=0.52 MeV are deduced
from the level density parameters recommended in Sec.
VII), with E« fixed at 2.9 MeV and P,„/P& ——0.17, these
data yield -0.9 MeV for the barrier height difference
in ' 'Am. The quality of these data are relatively poor,
however, covering only one decade in relative range.
In particular the isomer excitation energy is ill deter-
mined, a perfectly adequate fit being possible with E«
-2.3 MeV, for example.

(tt) 'Arn. Data on the excitation of this isomer
through the '4'Pu(p, 2n) reaction are due to Lark et a/.
(1969), and are shown in Fig. 66. Fits with siniple con-
stant-temperature level density models tend to give low
values of &„and V~ ''. As explained in Sec. IV.D. 2
more realistic level density models should be used in
the odd-A (or even) case. The actual fits shown here
employ an energy gap 24 "' in the level density of the
secondary minimum, within which the density is con-
stant (assumed equal to 1.2 MeV ' for J= —,

' states of one
parity in the odd-A case) and above which the density
has a constant temperature rather similar to the tem-
perature of the class-I states in the corresponding en-
ergy region. If, for the level density above the gap,
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FIG. 67. Excitation of 0.9 msec isomer of Am. Circles are
data from the 4 Pu(p, 2') reaction (Bjgfrnholm et a/. , 1967) and
squares are from the 4 Pu(d, 2') reaction (Britt et aI. , 1971).

p,"„''(0) = p,'«'(0), only poor fits are possible (for a
reasonable value of the gap, say 2b. "'= 1.2 MeV); and
a fit is shown by the dashed curve in Fig. 66 (parame-
ters are Z» ——1.8 MeV, V'" ' ' = 5.3 MeV, T '" ' &/(T &" ' &

+ T 's ' ') = 0.011. Better fits are achieved if p "„"'(0) is
rather lower than p,"„'(0) (by a factor -2), or e,"' is
rather higher than e, (by perhaps 10%). With such fits,
an example of which is shown by the continuous curve
of Fig. 66, higher values of V~ for '4'Am, more in ac-
cord with other evidence, are achieved. The paramet-
ers for the continuous curve are: 8, =0.65 MeV, 6,"'
= e =0.518 MeV, 2t& "'=1.2 MeV, p "''(0) =0.5 p "'(0)
=0.9 MeV ', E„=2.2 MeV, V~s ~'=5.0 MeV, P,„/P&
= 0.303, T„'" '&/(T~ ' '+ T'" ' ') =0.058. With a value
of V~ = 6.5 MeV for '42Am (see Sec. VII) this last value
can be interpreted to give V~ = 5.3 MeV for '"Am.

(»&) Arpg. Important data on the threshold ex-
citation curve of the 0.9 msec isomer of ' 'Ain are
available from the "'Pu(p, 2n) reaction (Bjt(rnholm
et a/. , 1967). The absolute magnitude of the curve is
confirmed by results from the '4OPu(d, 2n) reaction
(Britt et a/. , 1971). These data are shown in Fig. 67.

The analysis of the data carried out for this review
is similar to that described for "'Am. A typical fitted
curve is shown ip Fig. 67. The parameters for this
are: 0, =0.65 MeV, 8, =0.528 MeV, 0,"'=0.558 MeV,
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V~ '' = 5.3 MeV, E„=3.0 MeV, X=2 x IO . From this
(with P,„/&&=0.2) it is deduced that T„' ' '/(T~
+ T'„" ' ') =0.2 and hence that Vs is -0.9 MeV lower than
VA for Am.

The rather poor data from the '4 Pu(t, 3n) reaction
(Britt et al. , 1972) indicate a barrier height difference
of about 1.5 MeV for '"Am, if the isomer energy is
fixed at 3.0 MeV.

(iv) A.m. Data on the excitation of the 0.163 msec
isomer of "'Am are available from three reactions, the
'~OPu(p, 2n) reaction (Lark et al. , 1969; Britt et al. ,
1972), the "'Np(n, 2n) reaction, and the "'Pu(d, 2n)
reaction (Britt et al. , 1971). Data on the "'Np(a, 2n)
reaction are also given by Fleury et al. (1973). These
data, shown in Fig. 68, illustrate the consistency, and
hence the experimental uncertainty, connected with this
kind of work; it is apparent that systematic shifts in
normalization (by up to 30/o) and/or energy (by up to
0.2 MeV) are required to bring the data from the differ-
ent reactions into juxtaposition.

Examples of three fits to the data are shown. The
continuous curve is the fit of Britt et al. (1971). This
was a computer program calculation based on statistical
theory and the level density functions used were those of
Gilbert and Cameron (these are essentially constant
temperature forms below about 4' MeV); the relevant-
paramwters are E„=2.5 MeV, p' ''=5.2 MeV,
—V~ ''=1.2 MeV. The dashed curve is based on a
level density model with energy gap as described for
'"Am; the parameters are 8, =0.65 MeV, 0, =9,"=0.51.8

sumed), T„'" ' '/(T~~" ' '+ T s'" ' ') =0.044, giving Vs
= 5.2 for V~= 6.5 MeV in ' Am. The dot-dash curve is
due to Britt et al. (1973) and is based on a model in

which all relevant level densities (including barrier
densities) and hence transmission coefficients are cal-
culated from the deformed nucleus single-particle level
schemes of Bolsterli et al. (1972) (these do not show
energy gap features). This model allows for prequil-
ibrium neutron emission (which has the effect, mainly,
of not allowing the isomer yield to drop too rapidly at
high excitation energies) but the absolute fraction of
preequilibrium component in the excited populations is
adjusted to the data. The parameters deduced-from the
fit are E»=2.5 MeV, &~" ''=4. 65 MeV, V' ''=5 6
MeV (with V„'" ' '= 6.45 MeV),

(v) ~~Am. The data available on the excitation of the
1 msec isomer are. from the '44Pu(t, 3n) reaction (Britt
et al. , 1972). Two typical fits are shown in Fig. 69.
The parameters for the dashed curve are: 0 =0.7 MeV
(for the residual nuclei in the first two evaporation
stages), 8, = 0.5 MeV (final stage), V ~s

' ' —E„-2.5
Mev, Z„=2.6 Mev, V'" "—V', "-1.2 Mev (as-
suming P,„/P&=0.45). Higher values of the outer bar-
rier are deduced from a more general multitemperature
model. The full curve employs for the first-stage
evaporation, 6i, =0.83 MeV, for the second stage, 8,
=0.63 MeV, and, again 0, =8,"'=0.5 MeV for the final
stage g7ith g —2 8 MeV y'( ) g ( ) y 0 MeV
Considerable variation in these parameters is possible;
E» could be lowered to -2.5 MeV and V~" '' by 0.3-0.4
MeV.

(vi) Data from (n, y) reactions. Two of the isomers
discussed above (those of '4'Am and "'Am) have been
formed also by the (n, y) reaction, the neutron en-
ergy varying between thermal and -2 MeV. The
reaction yields as a function of neutron energy have
been compared with the results of gamma-ray cascade
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are Np(e, 2n) data, squares are ~~Pu(d, 2n) data [both from Britt et al. (1971)l, and open circles are 4 Pu(p, 2n) data by
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TABLE V. Double-barrier parameters of americium nuclei as deduced from experimental data on
shape isomer excitation functions. The level density parameters employed are those given in Sec.
VII for class-I states and barrier deformations. For class-II states of odd-A. nuclei, the level
density parameters are described under Section IV. B.3.a. 'UA values, where appropriate, are taken
from Sec. VII. The table is to be taken as an attempt to achieve consistent parameters through the
whole chain of nuclides downwards from 5Am. Bracketed values are assumed from other evidence
than the stated reaction for the purpose of obtaining a fit.

Nuclide Reaction Data Ref.
'Ua

(MeV) {MeV) (MeV) Remarks

Am 4 Pu(t, 3n) Am Britt eg ag.
(1972)

'"Am ditto

4 Am(n, y) 44 Am Boca eg a
(1969)

"'Pu(p, 2n)"3 Am Britt et ag.
(1972)

"'Am ditto ditto

Am(n, 2n) ~~Am Flerov et al.
(1968)

2~ Pu(d 2n) 4 ~Am Britt et al. )
(1971)

4 Pu(t, 3n) 4 Am Britt et ag
r'

(1972)

'"Am

Am 2 ~Pu(p, 2n) ~Am Bjgrnholm et
ag. (1967)

pu(p, 2n) 38~Am Lark et al.
(1969)

Britt et ag.
(1972)

3 Np(m, 2n) ™AmBritt et ag.
(1971)

24~Am 243Am(n, 2n)2~™AmFlerov et al.
(1968)

Pu(d, 2n. )242~Am Britt et ag.
(1971)

Am(n, y)24 Am Dahlsuren et ag.
(1969)

Boca et ag. (1969)
Nagy et ag. (1970)

242pu(p 2n) Am Lark et ag. (1969)
Britt et ag. (1972)

Ditto Ditto
24tPu(P 2n)240mAm Bjgrnho[m

et ag. (1967)
240PU(d 2n)240mAm Britt et ag

(1971)
Pu(t, 3n) 4 Am Britt et al.

(1972)

2.8

(2.8)

2.3

2.9

(2.9)

2.2

3.0

6.15

6.37

6.25

6.5

6.'2

5.2

(5.3)

5.5

5.3

(5.0)

5.3

(5.3)

5.5

5.3

(5-0)

5.3

(5.3)

5.2

+0.3-0.5 MeV
uncertainty on 'Uz
+0.3-0.5 MeV

uncertainty on EI &

V~ deduced with
assumed E~ I

+0.3-0.4 MeV
uncertainty on Z„

Value deduced if E~~
for Am assumed to
be 2.9 MeV

&~ deduced with
assumed &u

Value deduced if &gg
for Am assumed to
be 3.0 MeV

"9Am

"8Am

23~Am

239Pu(d 2n) 239mAm

Ditto
»Pu(P, 2n) 38~Am

Ditto
238pu(P 2n)237mAm

Ditto

Ditto

Ditto
Sletten and
JP rgensen
(private commun. )

Ditto
Polikanov and

Sletten (1970)
Ditto

2.4

2.6

2.4

6.0
(-5.2)

5

(-5.0)
a 1.2

(-5.0)

Assumed value for Uz

Assumed value for Uz

Assumed value for 'Uz

the model have been devised.
Comparisons between calculations and observation

for the '44Am isomer are shown in Fig. 71, and for the' 'Am isomer in Fig. 72. In both cases it is apparent

that these (n, y) data are in reasonable agreement (at
least in order of magnitude) with the parameters nec-
essary to achieve fits for the excitation by neutron evap-
oration reactions.
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(»&) Gene~at remarks .Data on other americium iso-
mers ('4'Am, "'Am, "'Am} are also available. The de-
ductions from these and all the above-mentioned data,
using the present analysis, are collected in Table V.
It wiQ be seen from the discussions of specific cases
given in the subsections above that the error due to un-
certainties from the analysis alone (due to uncertainties
in the choice of theoretical parameters) seems gener-
ally to be of the order of 0.2-0.3 MeV in the quantities
E» and U~, and experimental uncertainties are prob-
ably of similar magnitude. In some cases the data are
considerably poorer or more limited in range than the
average case; for these the extent of the uncertainty
in analysis is indicated in the "remarks" column of Ta-
ble V.

b. Plutonium shape isomers

The analysis of these isomers for this review follows
the same general lines already described for the odd-A
americium isomers [see particularly the discussion of
'4'Am under Sec. IV.D.3. a. (ii)]. For even nuclei the
constant level density within the energy gap of the
class-IIlevel system is assumed tobe 0.45 MeV ', and it is
also assumed that the exponentially rising component
of the class-lI level density is half the magnitude of the
corresponding class-I component.

A typical example of analysis of plutonium data is
given in Fig. 73. The data are from the "'U(cy, 2n) and
"'Np(d, 2n) reactions for excitation of the shape isomers
of "'Pu (Britt et al. , 1971). The model parameters for
the continuous curve are g, = 0.65 Me V, g,"' = e, = 0.5
MeV, 2n "'= 1.2 MeV, o.'«''(0} = 0.5 o,'~«'(0), 8» ——2.8
MeV, V'" '' =5.3 MeV, P,„IP&=0.12, T&" ' 'l(T~" ' '

+ T ~~" ' ') = 0.34, implying that Ve= 4.9 MeV with V~ = 5.5
MeV for "'Pu. The "'U(o. , 3n) data of Wolf and Unik

[referred to by Britt et al. , (1972)] support an outer
barrier height that may be -0.3 MeV lower than this.

The collected results of analysis of plutonium isomer
data on the present scheme are presented in Table VI.
The remarks given above Table IV are relevant to this
table also.

The data referred to in Table VI do not exhaust the
available experimental information on excitation func-
tions of plutonium shape isomers. The 8.5 p.sec isomer
of "'Pu has been observed by the '4 Pu(y, n) reaction
(Gangrskii et a/. , 1973). The nature of the energy de-
pendence of the bremsstrahlung source adds a further
complication to the analysis of this kind of reaction.
From their analysis Gangrskii et a/. report a number of

. values of E„ranging around 3.0 MeV, and therefore in
qualitative agreement with the value given in Table V.
The photoneutron reaction has also been used to investi-
gate the excitation of the 24 p. sec isomer of '4'Pu (Gan-
grskii et at. , 1970). In this case the ratio of delayed
fission to prompt fission (&10 at maximum brems-
strahlung energy of 12.5 MeV) seems very high. The
isomer energy is given as 2.9 MeV for a nuclear level
density temperature of 0.7 MeV.

c. Cur~urn shape isomers

The principles for analysis of curium isomer data
are the same as those described for the plutonium iso-
mers. In the curium case much of the evidence rests
on three-neutron evaporation data, so a typical example
of this, for excitation of the ' 'Cm isomer, is shown in
Fig. 74. Here the fit is for an energy-gap model as de-
scribed in Sec. IV.D.3. 5 with temperatures 8, =0.83
MeV, e2= 0.63 MeV, e, = 8,"' (above the energy gap)
=0.5 MeV. The isomer energy E„=2.1 MeV, and with
the assumption P,„/P& 0.06 it turn-—s out that V„—V~
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FIG. 73. Excitation of the 0.11 and 1.1 @sec isomers of 3~pu. Circles are the U(n, 2n) reaction an/ squares the Np(d, 2n)

reaction. [From Britt et al. 0971)j.

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980



800 S. Bjsirnholm and J. E. Lynn: The double-humped fission barrier

TABLE VI. Double-barrier parameters of plutonium nuclei as deduced from shape isomer excita-
tiOIl fuIlctlOIls ~

Nuclide

241pu

Reaction data

238U (~ 2n )240 Pu

Ref.

Britt et al.
(1971)

Namboodiri et
al. (1973)

Gangrskii et
al. (1972}

@II Uw Ua
(MeV) (MeV) (MeV)

6.14 +0.5 MeV uncertainty
depending on value of
&~z selected for 2 Pu.
Note data of 2nd ref.
-60% lower than that
of 1st

240pu Ditto
238U(~ 3n)239~u

Ditto
238U (~ 2 n )238~u

Ditto
Britt et al.

(1971)
Wolf and Unik

(1972)

Ditto
Limkilde and

Sletten (1973)

2.7

5.57

6.26

0

(5.2)
5.6

+0.5 MeV uncertainty

238pu Ditto
235U (~ 2n)237~u
2 37Np(d 2 )2 37lltP

236U(~, 3n)23~ Pu

Ditto

Britt et al.
(1971)

Wolf and Unik
see Britt et
al. (1972)

5.5

(-5.0)

-4.6 Uz deduced for Ezz of
237Pg. = 2.8 MeV

3 Pg. 3 U(n, 2n}23™pu Britt et al.
Np(d, 2n }23~~u (1971)

2.8 (5.3)

2 36pu 3U(cu, 2n) 5 Pu Britt et al.
(1971)

235Pu Ditto Ditto 2.6 (5.1) +0.3-0.5 MeV
uncertainty
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FIG. 74. Excitation of the 13 nsec isomer of 245Cm by the Pu(o. , 3n) reaction; circles are from Britt et al. (1971); and Ni-
angles are results of Wolf and Unik (1972), communicated privately to Britt et al. (1971).
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-1.6 MeV for "'Cm.
Collected double-barrier parameters for curium nu-

clei are given in Table VII. The deductions obviously
have very great uncertainties associated with them, but
the trend, in comparison with Pu and Am isomers, is
clear; both the &„values and the VB values are consid-
erably lower than the correspondingly values for the
lower-Z nuclei.

d. Shape isomers of other nuclei

While shape isomers of nuclei other than the isotopes
of Pu, Am, and Cm are known, and in some cases their
excitation functions have been measured, these do not
add significantly to the body of systematic quantitative
information on barrier parameters assembled in Tables
V to VII. This is for a variety of reasons; in some
cases the data are too limited in range to provide reli-
able estimates of such quantities as the isomer energy,
in other cases information is lacking on other nuclear
parameters (such as neutron evaporation probability),
sometimes the isomer formation results from a reac-
tion chain that involves charged particle emission and

, is thus of a predominantly direct or preequilibrium
character, and finally, for nuclei of lower charge than
plutonium, it is believed that the isomer may have a
significant branching ratio for decay by gamma emis-
sion (cascading through class-I states associated with
the primary well). These "nonsystematic" cases are
dealt with below.

(i) Ilerkelinm isomers. Three fission isomers of
Berkelium have been reported by Wolf and Unik (1972).
Two having half-lives of 600 and 9.5 nsee belong to
24'Bk, and the third, half-life 820 nsec, belongs to
'~'Bk. All are excited by the (n, 3n) reaction. Excita-
tion curves have been measured by these authors, but
the cross sections are low and the range of the data is
too limited for reliable analysis. The yields are about
1 order of magnitude (or more) lower than those of sim-
ilar reactions leading to isomers of Pu, Am, and Cm.
Although part of this factor may be accounted for by
greater fissionability in the berkelium chains, the re-
sults do seem to provide qualitative evidence for a con-
tinued decrease in both isomer energy and outer bar-
rier height with the extra increase in proton number.

Isomers of '4'Bk (5 nsec) and "'Bk (2 nsec) have been
reported by Gangrskii et al. (1972). These were formed
by (o., 2n) reactions and very low cross sections of 0.48

and 0.25 p.b, respectively, were measured.
(ii) U. Several observations have been made of this

spontaneously fissioning isomer, the most precise val-
ue of the half-life of which has been quoted as 116+ 7
nsec (Christiansen et a/. , 1975). The reactions used to
investigate it have been '"U(d, p), '"U(n, y) (for both
thermal neutrons and fast neutrons up to -2 MeV), and
"'U(d, pn) A.ll except the fast neutron reactions, for
which there are special experimental diff iculties, agree
in establishing the cross section for delayed fission to
be rather low. Christiansen et al. (1975) report the ra-
tio of delayed fission yield to prompt fission to be
(1.24+ 0.8) x10 ' at deuteron energy 11 MeV, Britt and
Erkilla (1971) report (8.7+ 1.3) x10 ' for the same quan-
tity at 12 MeV, and Wolf et al. (1970) give the isomer
ratio (relative to formation of the ground state) as 1.3
x10 ' at 13 MeV deuteron energy. Wolf e& at. (1970)
also measured the isomer ratio for the "'U(d, Pn) reac-
tion at 21 MeV deuteron energy; the result quoted is
gx10 '., whereas a value of more than 10 ' might have
been expected for a shape isomer at about 3 MeV ex-
citation energy.

Probably the most detailed study of the formation of
the "'U shape isomer has been carried out by Pedersen
and Rasmussen (1972). This was also a study of the
(d, p) reaction but the delayed fission was measured in
coincidence with the proton energy (at deuteron energy
of 11 MeV), and thus the delayed fission cross section
was established as a function of excitation energy in
"'U. The data were analyzed by Pedersen and Rasmus-
sen on the assumption that class-I states were excited
by the (direct) (d;p) reaction and these could decay by
gamma emission to the isomer, or by prompt fission,
by coupling to class-II states (for a discussion of the
theory of this coupling, see Sec. III. C.5). Assumptions
of either complete damping of class-II vibrational states
into the class-II compound states, or of only partial
damping, could lead to reasonable reproduction of the
observed coincidence spectrum (see Fig. 75), using the
following barrier parameters: 'U~ = 6.1 MeV, @co„=1.0
MeV, U~= 5.8 MeV, Ace~=0. 7 MeV, and a reasonable
spectrum for the low-lying barrier states. With these
same parameters the total cross section for formation
of the isomer was estimated to lie between 6 and 20 p, b,
whereas the observed cross section for delayed fission
was only 1.0+ 0.5 p,b. The discrepancy suggests that the
y-decay branch of the isomer (through low-lying class-I

TABLE VII. Double-barrier parameters of curium nuclei as deduced from shape isomer excitation
functions.

Nuclide Reaction data Ref. (MeV) (MeV)
'Ug

(MeV) Remarks

24't.;m

245cm
244cm
24'Cm
242cm

24k gm

244pu(a 3n)'4' cm

Ditto
242pu(~ 3n)243 ( m

Ditto
239ru(a, 2n)'" Cm

Ditto

Britt et aE.
(1971)

Wolf and Unik
(1972)

Ditto
Ditto
Ditto

Britt et al.
(1971)

Ditto

2.1

2.1

5.8

6.0

(4.6)
4.3
(4.4)
4.0 -+0.5 MeV uncertainty

Ditto
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FIG. 75. Relative delayed fission yield (measured in coinci-
dence with proton yield from the d, p reaction) of 36U (histo-
gram). Part (a) shows calculation of yield assuming complete
damping of class-EI vibrational states into class-II compound
states, and part (b) is a calculation for partial damping [from
Pedersen and Hasmussen {1972)].

states) is about 1 order of magnitude stronger than the
fission branch, and this is qualitatively supported by
the results of the other measurements referred to above.

(iii) U. A spontaneously fissioning isomer of "'U
with half-life -200 ns has been observed by means of the
(a', pn) reaction (Polikanov and Sletten, 1970; Wolf
et ai. , 1970) and the (n, n') reaction (Wolf and Meadows
(1974) and private communication]. Cross sections for
the first reaction are quoted as 0.4 jL{,b at deuteron en-
ergy of 13 MeV and a few jlJ,b at 21 MeV. The excitation
curve for the (n, n') reaction is shown in Fig. 61; its an-
alysis by use of Eqs. (4.12), (4.23), and (4.25), yields
an isomer energy of -2.3 MeV and an outer barrier
height of -4.5 MeV for "'U (assuming '0„= 6.4 MeV;
see Sec. VII). This outer barrier appears to be very
much lower than its assessment from other evidence
(Secs. VI and VII), and the isomer therefore appears
to be a candidate, like "U, for appreciable compet-
ition from a gamma-decay branch. Direct observation
of this branch has been made by Russo et al. (1975)
using the (d, pn) reaction at a deuteron energy of 1S
MeV; see Fig. 48 and Sec. IV.B.1. This gamma-ray
transition scheme establishes the isomer excitation
energy as 2.559 MeV. There is conflict here with the
results from the (n, n') reaction (see Fig. 61). The sim-
ple temperature model fit shown in that diagram gives
E«=2.35 MeV, and with a higher temperature fit Wolf
and Meadows (private communication) obtain E„=2.0—
2.2 MeV; this rests strongly on the experimental sep-
aration of the two lowest points of the curve from back-
ground. If these two points are ignored then the data
can be fitted rather mell with a more elaborate model
that represents the states within the energy gap as ro-
tational bands based on the ground state and one or two
vibrational states, plus a normal exponentially rising
continuum of states above the gap. The full curve of
Fig. 61 is based on an isomer excitation energy of E„
= 2.56 Mev.

The observations of Russo ef al. are supported by
measurements of the nuclear radiative decay of muonic
atoms of "'U (Fromm et a&. , 1977). These authors in-
terpreted a group of gamma rays with decay half-life
9+2 nsec as feeding the low-lying vibrational and ro-
tational states of "'U from an isomeric state at 3.176
MeV. They accounted quantitatively for the shortened
half-life and increased energy relative to the observa-
tions of Russo et al. by the distortion of the fission bar-
rier due to the energy shift of the bound muon.

(iv) NP. Despite many attempts and some false at-
tributions later retracted, it was not until 1973 that
reliable evidence for the existence of a spontaneously
fissioning isomer in any neptunium isotope was pub-
lished. The isomer then reported was found to have a
half-life of 40+ 12 nsec and belong to "'Np (Wolf and
Unik, 1973). The reaction employed was "'U(g&, 2n),
and the excitation curve is shown in Fig. 76. The curve
fitted by Wolf and Unik, using Eq. (4.16) for a simple
single temperature model, gives an isomer energy of
2.7+0.3 MeV. An energy-gap model, as described in
Sec. IV.D. 1.d. , gives an E» value in the range -1.5-2.8
MeV. The ratio of the cross sections for delayedfission
to prompt fission is the lowest ever measured, and if this
were interpreted simply as a measure of the value of
T„/(T~+ T~) for "'Np it would imply an outer barrier
several MeV below the intermediate barrier. It is clear
from the evidence of intermediate structure in the neu-
tron-induced fission cross sections of "'Np that this
cannot be so (see Sec. VI.E.3.c.). It is inferred there-
fore that this isomer has a very strong gamma decay
branch through class-I states, and that the branching
ratio for fission is only of the order of 10 ' (for E„
-2.8 MeV). The existence of this isomer has been con-
firmed by Migneco et ai. (1977), who measured a half-
life of 45+ 5 nsec and an excitation energy of 2. 85+0.4
MeV, and deduced a branching ratio of 1.9x10 '.
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FIG. 76. Excitation of the VNp shape isomer by the 3 U(p, 2&)
reaction [after Wolf and Unik (1973)]. The curve shown is Wolf
and Unik's fit for E'zz=2. 7 MeV.

e. Summary of barrier information fromisomer excI tati on
functions

The properties of the double-humped barrier deduced
from the measured excitation functions are summarized
in Table VIII for the Pu, Am, and Cm isomers. This is
a comparison of the results of three independent .sets of
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analyses. In Table VIII the values of V~ that are em-
ployed to deduce outer barrier heights, but are them-
selves generally deduced from other information, are
shown in the first three columns. The column labeled
by the figure (3) lists our own recommendations as dis-
cussed in Sec. VII. The column labeled (1) lists the
more crudely assessed values of V„(generally from the
same experimental sources, such as fast neutron fis-
sion cross sections (d, pf) yields, etc. , as used in the
work of Britt et al. (1971), in which a systematic effort
to analyze the excitation data on many isomers was
first made. The column labeled (2) is from the analysis
by Britt et gl. (1973) in which all the relevant. data (fis-
sion cross sections as well as isomer excitation func-
tions) were analyzed using a computation of level den-
sities (both at barriers and in the potential mixing)
based on the single-particle level schemes calculated
by Bolsterli et al; (1972); this was an approach distinct
from the earlier one, which employed the empirical
level density parameters of Gilbert and Cameron, and
in many cases it appears that the V& values differ ap-
preciably from the values either recommended by our-
selves or quoted by Britt et al (1971).. This could be
due in part to the fact that the level densities calculated
by Britt et al. (1973) contain no enhancement factor to
allow for the collective states (particularly the rotation. -
al ba.nds) built on the independent quasiparticle states
of that calculation, and therefore do not allow for the
variations in these rotational enhancement factors with
the changing asymmetry in nuclear shape that follows
changing nuclear deformation [Bjgrnholm et al. (1974);
see Sec. VII].

The next three columns give the values of the shape

TABLE VIII. Barrier parameters deduced for plutonium,
americium, and curium nuclides with the aid of shape isomer
excitation data. Numbers in columns labeled (1) are from
Britt et al. (1971), in columns labeled (2) from Britt et ag.
(1973), and in columns labeled (3) the results from our analy-
sis are presented.

isomer excitation eneigy E„for E, as deduced froin the
measured excitation functions. The numerals (1), (2),
and (3) have the same connotation as above. The final
three columns give the information on outer barrier
heights deduced from the excitation functions and the
values of V„ listed in the relevant one of the first three
columns. Again, in both sets of numbers there is very
considerable variation, by up to 0.5 MeV for the E„
values and in some cases even more for the V~ values.
In general, there is rather eloge agreement between
the E„values of Britt et al. (1971) and ourselves [col-
umns labeled (1) and (3)], but there seeins to be better
agreement on the V~ values between Britt et al. (1973)
and ourselves [columns labeled (2) and (3)]. These dif-
ferences can be taken as a measure of the uncertainty
still remaining in our knowledge of these barrier para-
meters.

V. VIBRATIONAL RESONANCES IN FISSION CROSS
SECTIONS

A. Introduction

Structure in fast neutron-induced fission cross sec-
tions had been observed at a compartively early stage
in fission physics. For example, unpublished measure-
ments at Los Alamos dating from about 1950 show clear
structure in the fission cross section of '"Th for neu-
trons above 1 MeV energy (see Fig. 77). This structure
certainly had nothing to do with resonance fine struc-
ture, the energy resolution of these measurements be-
ing about 4 orders of magnitude coarser than the expec-
ted resonance fine spacing. First published explana-
tions' of the effect were based on an extension of A.
Bohr's (1956) ideas of channels over the fission barrier
for the fission process (see Sec. I.B). The simple Hau-
ser-Feshbach (1952) type of expression, based on the
statistical theory of nuclear reactions, for the fission
cross section is

'Uz (MeV) &y~ (MeV) U~ (MeV)
Nuclide (1) (2) (3) (1) (2) (3) (1) (2) (3}

+cF c (CN )
(f )

~c'T (c')
(5.1)

235pu
"'Pu
2 37pu
'"Pu
'"ru
'"Pu
24k p
23~Am

'"Am
'"Am
'"Am
24'Am
242Am
243Am

"4Am
'"Am
24k( m
242cm
'4'Cm
244cm
24'cm
"'Cm

2.4 1.7 2.6 5.0 4.65.8 (4.7)
(5.04)

5.8 (5.27) 2.9
(5.26) 5.5

5.8 (6.27) 6.3 2.6
5.8 (6.00) 5.6 2.6

(5.95) 6.1 2.6
6.4 (5.09) 2.4
6.4 (6.4) 6.2 2.7
6.4 (5.8) 6.0 2.5
6.4 (6.45) 6.5 3.0
6.4 (5.7) 6.2 2.2
6 4 (6 4) 6 5 2 9

(5.75) 6.3
(6.25) 6.4

6.1
2.3

5.4
5.35
5.15
5.35

5 42.3 2.8
2.4 2.7
2.2 2. 7
2.4 2.3 5.35

2.1 2.4
2.3 2.6
2.5 2.4
2.6 3.0
2.2 2.2
2.3 2.9
2.0 2.3

2.8

4.8
5 4
4.65
5.5
4.55
4.95
4.9

5.4
6.05

6.0

6.2 (5.05) 2.0 2.1 5.0 4.2
6.p

6.2 (5.8)

6.2 (6.3)
5.8

5.7

20 15 19 48 40

2.4 1.7 2.1 4.9 4.4

(5.1}
~4 5
(5.3)
4.9
5.6

~5 '0

~5
(-5.0}
(~5 p)
~4 5

5.2
5.3
5.3
5.5
5.3
5.2

(~4 3)
~4 0
(4.4)
4.3

(4.6)
4.1

The compound riucleus formation cross section o, «»
is itself proportional to the transmission coefficient for
the entrance channel c [see Eq. (3.41)]. The fission
transmission coefficient T «, is the sum over all Bohr
fission channels p, , and the sum in the denominator is
taken over all particle and fission channels. From Eq.
(5.1) it is easily seen that the fission cross section will
rise as a distinct fission channel opens in accordance
with an expression such as Eq. (3.17) or (3.18) and tends
to an asymptotic value (modulated only by the assumed
gentle energy variation of 0, ,~& as the opening becomes
complete, only to fall after an inelastic scattering
threshold for a particle channel c' is crossed.

At later dates structure was also found in the fission
yield of certain (d, pP reactions. In this reaction the
proton energy following the deuteron stripping process

3The original explanation appears to have been. due to Mottel-
son (unpublished) but was developed and popularized by Wheeler
~1956).
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FIG. 77. Neutron-induced fission cross sections of Th.
From Henkel and Smith (1956).

is measured so that the excitation energy of the result-
ing fissioning nucleus is known. The reaction is par-
ticularly useful for observing fission in the barrier re-
gion of even compound nuclei in which the barrier lies
below the neutron separation energy. In this situation
the only competition against the fission process is the
electromagnetic deexcitation and it has a very weak en-
ergy dependence without structure. Early observations
of the structure (Northrop et a/. , 1959) suggested a
series of steps and plateaus, and these were explained
as the effect of the initial channel opening for a set of
states of particular spin and parity. Later observations
(Britt et a/. , 1968) showed that some of these "plateau"
levels really dipped with increasing excitation, and the
explanation was advanced that this was due to structure
[probably residual single particle effect (Specht et a/. ,
1966)] in the (d, p) formation probability for states of the
same spin and pg.rity as the opening fission channel.

Changes in the angular distributions of fission prod-
ucts with changing excitation energy in such reactions
were also held to be manifestations of the channel
structure of the fission barrier [see, e.g. , Huizenga
(1965)].

LRter observations Rnd more quantitative RnRlysls
particularly of the structure in fast neutron-induced
fission cross sections, showed such explanations to be
virtually untenable. The principle evidence came from
measurements of the fission cross section of" Th
(Gokhberg et a/. , 1959b, Evans and Jones, 1965). This
showed a distinct peak in the cross section at a neutron
energy of 720 keV; in the higher resolution measure-
ments of Evans and Jones the peak cross section was
observed to be about four times higher than the mini-
mum value at higher neutron energy (see Fig. 8). At
these comparatively low neutron energies for bombard-
ment of an even target nucleus, there is only a very
limited possibility of inelastic scattering thresholds.
On the basis of very plausible assumptions about the
residual states in "Th for inelastic scattering, it was
computed on the competition theory (Lynn, 1966) that
the fission cross section should only drop at most some
10% below the peak value (see Fig. 78); the peak in this
curve was clearly a resonance effect of some kind. An

p. 4i

~hi~"
il

C)

LU

I

v) p. 2—
C)

0.1—

p 4 10
NEUTRON ENERGY ( Mey)

FIG. 78. Neutron-induced fission cross-section of Th Idata
of Evans and Jones (1965)]. Calculations of the fission cross
sections on the assumption that any structure is due entirely
to single barrier penetration and competition from inelastic
scattering; the ~" value of the fission channel eras assumed to
be 2, fission following excitation by neutron f a&aves.

analysis of the peaks in the fission cross section at
higher neutron energies (-1.4 MeV) in the cross section
of 2"Th showed that there would have to be a very
strong onset of states in '"Th above 1.5 MeV for them
to be explained by the channel competition theory; the
density of states above this energy would have to in-
crease at a rate about five times greater than accept-
able on current knowledge of level densities, and it was
also established experimentally (Holmberg et a/. , 1969)
that no strong onset of inelastic scattering occurred at
that energy.

Channel analysis of angular distributions of the fis-
sion products released in fast neutron-induced fission
had fallen into similar difficulties. /harp changes in
the angular distribution with changing neutron energy
were attributed to new fission channels opening but an
attempt at quantitative analysis for the "U target nu-
cleus by Vandenbosch (1967) showed that the various
channels would need to have very different tunneling
characteristics (hu ranging from 12 keV to -1.5 MeV).

It was apparent therefore that intermediate reson-
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ance effects existed in the fission transmission coef-
ficient, the structure not being attributable to the neu-
tron entrance channel. , since no sign of systematically
related structure existed in other fast neutron reactions
on these nuclei. An optical mode}. of the inverse fission
process was introduced (Lynn, 1966a), the variable of
the complex potential well being the prolate deformation
parameter, and this served to show that the imaginary
component of such a potential would have to be of the
order of 50 keV or less to obtain resonance effects in
the fission mode transmission coefficient as strong as
those observed. Contrasted with the imaginary poten-
tial. value of a few MeV routinely found in optical model
analyses of nucleon scattering data, this suggested sur-
prisingly weak coupling of the deformation mode with
the compound nucleus motion, and raised a number of
questions. One of these was, why was there no sugges-
tion of such structure in the slow neutron cross sections
of fissile nuclei (particularly in the fine-structure re-
sonances where the fission widths appeared to show the
characteristic features of strong mixing into the com-
pound nucleus). Another important question was raised
by the stipulation that the resonant mode in such a mo-
del should be a many-phonon beta vibration; the zero-
point vibration and one-phonon beta state are well
known in the nuclear spectroscopy of even nuc1. ei, but
the higher beta vibrations have never been observed,
suggesting that they may be quite appreciably damped
by coupling with the other degrees of freedom of the
compound nucleus.

The theoretical work of Strutinsky introducing the
double- humped fission barrier of the actinide nuclei
provided answers for these questions. The weakly
damped beta-vibrational states responsible for the re-
sonance structure in the fission transmission coeffic-
ient could be explained, not indeed a,s a many-phonon
state in the oscillator well centered on the normal beta
deformation associated with the nuclear ground state,
but as a few-phonon state oscillating about the mean de-
formation value of the secondary well. The weak damp-
ing observed is due to the combination of the low effec-
tive excitation energy available in the secondary well
and the inhibition provided by the intermediate barrier.
When this barrier is energetically overcome, as it is
for the slow neutron cross sections of the fissile nu-
clei, there is a dramatic increase in the mixing of this
special vibrational state into the normal states of the
compound nucleus, and the broad resonance features in
the fission transmission coefficient largely disappear.
In this picture, the dramatic changes in angular dis-
tribution of fission products with changing excitation en-
ergy that are often observed are due more to the dom-
inance of individual vibrational resonances, each as-
sociated with spin-parity quantum numbers given by
coupling with simple states in the other degrees of
freedom (single-particle, gamma. vibrations, rotations,
etc. ),. rather than the opening of fresh fission channels
at the barrier. The "steps" in the fission probability
curves measured from (d, Pf) and similar reactions are
now also largely understood as vibrational resonances,
rather than the energies at which the lowest channel of
each spin and parity become effectively open at the bar-
rier (see al.so Sec. IX, Fig. 152).

B. Pure vibrational resonances

1. Definition as barrier transmission resonances

When there is no damping of the vibrational motion by
the other degrees of freedom, the vibrational reso-
nances can be treated by the simple transmission theo-
ry of Sec. III.A. 2. The fission transmission coefficient
to be substituted in the cross section, Eq. (5.1), is cal-
culated directly from the flux transmitted through the
double-humped barrier if an incident wave of unit flux
progressing from low to higher deformation is incident
on the barrier. It is found for a symmetric barrier that
the narrow peaks in the transmission coefficient reach
a value of unity. The resonant condition is given ap-
proximately by Eq. (3.21). For a harmonic oscillator
form of potential for the secondary well, U = ~~+ &C»q',
and an inertial parameter independent of deformation
this gives the familiar beta-phonon condition E -'U»
= (n+2)+u&. Forms for the transmission coefficient in
the region of resonance are given by Eq. (3.23a), and
from this it can be shown [Eq. (3.26)] that the resonance
width is proportional to the sum of the transmission
eoeffieients T~ and T~ through the inner and outer bar-
rier, respectively, considered as separate entities,
and is also proportional to the oscillation frequency be-
tween the two barriers:

I'=(T~+Ts)R~n /'2n . (5.2)

The peak transmission at the resonance is

TA~B
los (T T )2 (5.3)

Between vibrational resonances the transmission reach-
es a low value of

TATB
min 4

(5.4)

These formulas were first given by Ignatyuk et al.
(1969).

Examples of ealeulated transmission curves have been
shown in Figs. 31 and 34. These certainly bear a close
qualitative resemblance to the best experimental ex-
amples of vibrational resonances (cf. the neutron fis-
sion cross section of "'Th, Fig. 6). Considerable use
has been made of the simple transmission theory in
analyzing such data. A typical early attempt is to be
found in the paper of Britt et al. (1969) in which the
fissioning compound nucleus "'Pu is studied. An indi-
cation of a resonance at about 5 MeV excitation energy
in the fission transmission coefficient of this nucleus
had been noticed in the (d, pf) reaction (Britt et al. ,
1968; Wolf et al. , 1968). This was investigated further
by means of the "'Pu(P, P'f ) reaction in which the re-
appearance of the resonance confirmed that it was as-
sociated with the fission exit channel and not the en-
trance channel as first suggested by Pedersen and Kuz-
minov (1969). The energy variation of the fission yields
in both reactions could be reasonably well reproduced
by the transmission model, if allowance is made for
resolution broadening or damping of the resonance
(Back et al. , 1969, 1971). The basic vibrational res-
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onance was deduced to be at an excitation of 4.91 MeV
in a double-humped barrier with U~ = 5.95 MeV, A~„
=1.3 MeV Uri — .1 MeV, @~xi = 2.00 MeV
MeV, k&u~ = 0.48 MeV (these parameters should be
compared with those in Sec. V.C.4.a). These parame-
ters also reproduce reasonably well the spontaneous
fission half-lives of the ground state of "'Pu (7&&10" y)
and its shape isomer (4 nsec). Later experimental work
has shown the 5 MeV resonance to have considerable
substructure (Specht et al. , 1969; Glassel et al. , 1976;
see Sec. V.C.4.a). This can be explained a.s simple
coupling to excited intrinsic states (see Sec. V.B.2) or
(more likely) as evidence for damping of the vibrational
resonance; this is treated in Sec. V. C.2.

Another example of the use of the transmission theo-
ry is provided by analysis of sub-barrier photofission
of "'U (Alm et al. , 1974). The fission yield for asym-
metric fission is shown in Fig. 79. Because of the na-
ture of the incident bremsstraMung gamma-ray spec-
trum structural features are not strongly pronounced
but the inflexion at around 5 MeV maximum gamma-ray
energy does indicate a strong resonance feature. Com-
parison of barrier models with the experimental data
is made by calculating the expression for photofission
yield,

embodying the Hauser-Feshbach expression for the
photofission cross section [see Eq. (5.1)j and the brem-
sstrahlung spectrum yield n(E, E ) of photons of
energy Ez from incident electrons of energy E . In
the photofission cross-section calculation photons of
electric dipole character dominate, exciting compound
nucleus states in "'U of spin and parity 4' =1 . The
photofission cross section that fits the data is shown
in Fig. 80; it includes weak quadrupole fission. Below
the neutron emission threshold at 6.14 MeV in "'U,
gamma-ray emission is the only process competing
with fission. The barrier parameters found for the
fission transmission coefficient are 'U„= 6.1 MeV,
ken =1.0 MeV, ~ =6.05 MeV, @ =0.9 MeV, U )(
= 2.9 MeV, @~~~ =3.2 MeV. These barrier heights for
"'U are about 400 keV higher than those deduced from
analysis of other data (see Sec. VII); this is expected
for the inner barrier since the 1 channel will be some-
what above the 0' channel defining the barrier, but at
the reflection-asymmetric outer barrier the 1 channel
should be much closer to the barrier peak. The dis-
crepancy may be accounted for by the high value of
@u~ adopted in the above analysis.

Indications of vibrational resonances at much lower
energies have been found by Zuchko et al. (1978b) in the
photofission of "'U and "'U (see Figs. 128 and 161).

2. Barrier transmission resonances coupled with excited
intrinsic states
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It is to be expected that fission cross-section or yield
curves should show considerably more structure, though
probably on a satellite scale, than that apparent in a
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FIG. 79. Points, measured sub-barrier photofission yield for
asymmetric fission of U as a function of the end-point energy
of the bremsstrahlung spectrum. The full line is a calculated
yield curve composed of a dipole fission contribution (dashed
curve) and a quadrupole contribution (dot-dashed curve). From
Alm et al. (1974).
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FIG. 80. Calculated photofission cross sections as in Fig. 79,
but here plotted directly-as a function of the photon energy.
This makes the resonance structure near 4.5 Me V readily vis-
ible. From Alm et al. (1974).
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FIG. 81. Schematic energy dependence of fission transmission coefficient allowing for excitation in the intrinsic degrees of free-
dom (uncoupled to the fission mode). Two intrinsic excitations are shown, with 1 MeV excitation (——curve) and 1.5 MeV excita-
tion (- — —curve).

simple transmission curve such as Fig. 31. Such a
transmission curve completely ignores all degrees of
freedom other than the deformation mqde, whereas it
should be interpreted as the transmission curve for all
intrinsic degrees of freedom in the lowest state of ex-
citation. If the intrinsic degrees of freedom are in an
excited state, a corresponding fission transmission
coefficient will exist, similar to the original one but
raised in energy by an amount equal to the intrinsic ex-
citation; this is shown schematically in Fig. 81. Ulti-
mately there will be an infinite superposition of such
curves constituting the total fission transmission co-
efficient, but the structure of all but the lowest of these
will be lost at energies not far above the barrier among
the high, structureless contributions from the lowest
intrinsic excitations. Below the barrier the extra reso-
nances that occur will be much narrower than those re-
lated to the lowest one or two intrinsic states, and will
normally be suppressed by experimental resolution.
This picture assumes, of course, that within the entire
barrier region there is no mixing between the deforma-
tion and intrinsic degrees of freedom.

Evidence for the coupling of higher intrinsic states
with vibrational resonances is sparse. The most
thoroughly investigated example is the fission cross
section of "'Th in the neutron energy range 0.7-1.4
MeV (James et al. , 1972). In this case the vibrational
resonances coupled to different intrinsic excitations
are hardly at all resolved, but the main peak of 720
keV has been interpreted as a superposition of vibra-
tional resonances each comprising a vibrational state
coupled to a member of a rotational band, while in the
region of the rising cross section around 1 MeV the

strong change in angular distribution of fission products
is inferred as a vibrational state coupled to an intrin-
sic excitation of different single-particle character
from that in the 720-keV resonance. The '"Th cross
section and analysis is discussed in greater detail in
Sec. V.B.6.a).

The fission cross section of "'Pa (Muir and Veeser,
1971) shows structure that appears complicated enough
to demand an explanation based on at least a few in-
trinsic states. Much improved measurements of this
cross section (higher energy resolution, better angular
distributions) are desirable to enable a careful analysis
to be made; studies by Sicre et al. (1976, 1979) have
gone a considerable way to.meeting this need.

Some early attempts at analysis of the (d, Pf) reso-
nance found at 5.0 MeV excitation energy in "'Pu were
also based on the idea of a pure transmission resonance
with satellites representing coupling to intrinsic states
(Back et a/. , 1969). In the measurements reported in
this paper structure was observed on the high-energy
side of the resonance. This could be qualitatively re-
produced with a rotational band of intrinsic states car-
rying spin-projection quantum number K' = 0', while
subsidiary structure at a slightly higher energy was
ascribed to a K'= 1 (bending vibration. ) rotational band.
Barrier parameters for the model were 'U~ = 6.0 MeV,
Su~=1.3 MeV, ~~= 5.8 MeV, ~~ =1.3 MeV, U&&=2.3
MeV, @&& = 2.0 MeV. The intermediate barrier height
is very similar to that of Britt et at. (1969) but the
outer barrier parameters are rather different. Our
assessment (see Sec. VII) is a few hundred keV lower,
but again penetrability parameters (k~„, A. &us) are also
considerably lower.
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3. Formal definition of vibrational states in R-matrix
theory

(II ) ( II)
)III XP v(P ) (5.6)

with eigenvalue

Eq =eV+6„II (5.7)

The comprehensive formal reaction theory for treat-
ing fission cross sections expounded in Sec. III. C.5 in-
cludes the special case of pure vibrational resonances.
'The R-matrix theory described there is based on the
concept of eigenstates of the internal region of the re-
action system. It was shown that if the fission barrier
is of double-humped character the R-matrix internal
eigenstates can be constructed from two auxiliary sets
of states with only a limited degree of coupling between
them. The second set of these states, the class-II
states associated with vibrational motion mostly within
the secondary well, are largely responsible for govern-
ing the magnitude of the fission cross section.

The class-II internal states are defined in Eq. (3.153)
in terms of the vibrational and intrinsic wave functions
of the components of the Hamiltonian introduced in Sec.
III. C.1 [Eqs. (3.64-67)]. It is immediately apparent
that a sufficient condition for a class-II state of a pure
vibrational nature is that it contains only one term in
the expansion (3.153), namely

Although it is the vibrational factor in Eq. (5.6) that
governs the magnitude of the cross section resulting
from the class-II internal state, the nature of the in-
trinsic states entering the expansion is important for
special features of the fission process such as the
angular distribution of the fission products. Analysis
of angular distributions for the observed case of fast
neutron-induced fission of "'Th is described in Sec.
V. B.5.a.

4. Cross sections in the region of vibrational resonances

With the definition of the vibrational state as a rela-
tively simple type of class-II auxiliary R-matrix state
[Eq. (5.6)] all cross-section formulas resulting from
coupling this class-II state to the much denser and
more complex class-I auxiliary states, associated with
normal deformation, to give the complete R-matrix
states can be taken over from Sec. III.5. All degrees of
coupling strength are possible in principle, but only
one —moderately weak coupling —has been reasonably
well established by observation; this is the "'Th neu-
tron-induced fission cross section.

The magnitude of the matrix element for the coupling
of the vibrational state to the class-I states is given
immediately by Eq. (3.161) with D„=ken» where ~„ is
the circular frequency of vibrations in the secondary
well. The result for the matrix element is

For a physically observable resonance the distribution
of energy here should be high for the vibration and low
for the intrinsic state. The wave function y„describing
the state of motion in the intrinsic degrees of freedom
is defined at a fixed value of deformation r~„generally
taken to be the channel deformation close to the outer
barrier B. In the case of an absolutely pure vibrational
state this choice of deformation is not important, be-
cause the coupling term H, in the Hamiltonian [Eq.
(3.67)] must then vanish, implying that the intrinsic
term II, is independent of deformation. This can never
be completely true of course, or fission would be prac-
tically unobservable in particle-induced reactions.
There must at least be considerable interaction in the
primary well region. It is to be expected in a number of
situations that Eq. (5.5) might be very nearly satisfied
for intrinsic states defined at a deformation ~~, near the
center of the secondary well, but nevertheless the des-
cription in terms of a basis defined at the outer or inner
barrier might be more fragmented. Thus a nearly pure
vibrational state in the configurational sense may not
be outstanding in its fission strength. The criteria for
the appearance of pure vibrational fission resonances in
fission cross sections or yield curves are clearly very
tight; they demand the near fulfilment of Eq. (5.6) at
both the inner and outer barriers so that the coupling
width as well as fission width is maximized. It is to be
expected that such resonances will normally be found
only at energies equivalent to excitations in the second
well that are within the energy gap for even nuclei or
that are very close to "ground" in odd-A. and odd nuclei.
Some numerical studies of models of configuration mix-
ing relating to fission strength are described in See.
V. C. 1 on damped vibrational states.

(5.8)

The actual profile of fission widths of the fine-structure
resonances that appear in fission yields or cross sec-
tions of reactions that are initiated by populating the
class-I states depends also on the fission width of the
vibrational state. The estimate for this is commonly
based on the statistical theory methods of Wigner (1938)
or Blatt and Weisskopf (1952) [see Sec. I, Eq. (1.9)],
giving /

k(d II
(f) 2vr B (5.10)

This estimate is borne out by numerical computations
based on the formal &-matrix expression for the fission
width in terms of reduced widths and penetration factor
[Eq. (3.126)]. The penetration factor P, along with the
shift factor S, can be computed numerically by inte-
grating an outgoing wave in the deformation mode
through an inverted harmonic oscillator barrier up to
the barrier deformation q~ to determine its logarithmic
derivative there (the method is described more fully in
Sec. III.C.3.f). The reduced width can be computed
by numerical integration of the vibrational wave function
in a well composed of normal and inverted harmonic
oscillator segments smoothly connected [see Eq. (3.31)
in Sec. III. A.2.b], so that it matches the shift factor
(taken to be the natural boundary condition ) at g~;
the value of the wave function at g~ gives the reduced
width on substitution in Eq. (3.99).

and the coupling width of the I orentzian profile for ad-
mixture of the vibrational states into the complete com-
pound nucleus states is [ from Eqs. (3.185), (3.186)J

(5.9)
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To illustrate the magnitudes involved the foll. owing
examples may be quoted. A secondary well of depth
ha~ =0.7 MeV and bounded by barriers with@~~=0. 8
MeV, S&(&s =0.6 MeV has eigenvalues (above the zero-
point vibration) of —2.45 MeV (for &8 = —38), -1.75 MeV
(for &8= —32), -1.07 MeV (&8= —23.6), —0.5 MeV (&I&

= —13.3). The reduced width amplitudes y„at the outer
barrier deformation are 0.0022, 0.015, 0.097, 0.51,
respectively, and the penetration factors I' at these
energies are 0.0047, 0.048, 0.46, 2.6. These values
give fission widths 2Py, for the vibrational states of
3.8~10-», 1.8x10 ', 7.2~10 ', and 1.13&&10-' Mev,
respectively. Comparison with Eq. (5.10) for the fis-
sion widths suggests that the latter underestimates the
widths of the vibrational states by a factor ranging
from about unity for the high-lying states near the top
of the fission barrier to about 100 for the states 3 MeV
below the barrier.

Depending on the relative magnitude of I', &, ) and

1„&z& with each other and with the class-I (fine-struc-
ture) level spacing D, , different formulas from Sec.
III.C.5 are applicable. We summarize them here. If
both the coupling width and fission width of the vibra-
tional state are much smaller than the class-I level
spacing, then the perturbation formulas, Eqs. (3.165)
and (3.166), are applicable to the partial widths that
describe the resonance fine structure through the
Breit-Wigner formula [Eq. (3.125)] or a many-level
formula [Eqs. (3.129)-(3.131) of Sec. III.C.3.g]. If the
coupling width is much larger than the class-I level
spacing and the fission width I'„~f&, then the Lorent-
zian form of Eqs. (3.185) and (3.190) determines the
fission widths for the resonance fine structure. The
third major case that is likely to occur is the domi--
nance of I"„&f&

with respect to both D& and I"„&„.
In this case the fission widths of the fine-structure
resonances in the cross section are given by Eq. (3.204)
which is essentially identical in form to Eq. (3.185), if

&
& s

= && &&( (I —
I U&(&(I )

becomes

(5.11)

the total vibrational width is substituted in the Lorent-
zian denominator. In intermediate situations (I"„

&f &) Lorentzian patterns of widths in the fine struc-
ture are not expected, even as an average "ideal"
representation. Numerical studies of such cases reveal
considerable enhancement of the fission widths at the
center of the vibrational resonance above the Lorentzian
profile. Examples of such patterns can be found in the
literature [see, e.g. , Lynn (1973)]; see also Sec.
VI.E.4.a).

No example of resonance fine structure in the cross
section through a. pure vibrational resonance has yet
been observed. Consequently cross-section formulas
that describe the local average over the resonance fine-
structure are of more immediate interest for analyzing
experimental data. If the vibrational state is coupled
strongly enough with the fine-structure levels (I'„

vD c)
»D, ) it is sufficient to find the local variation of the
fission strength function T'& &»/D& through the vibration-
al resonance. The extended penetration factor method
described in See. III.C.4.d can be employed for this.
The logarithmic derivative for the outgoing wave func-
tion through the secondary well can be written in dis-
persive form [see Eq. (3.150)], and this can be em-
ployed directly in one-channel reduced B-matrix theory
(Thomas, 1955) [see Sec. III.C.3.g(iii)] provided that the
pa, rtial widths in all eliminated channels are small
(I'~&,

&
«D&,). The collision function in Thomas' theory

is just U» ——exp(2i(j&„) (1 —IPR)/(I —I.„R), where L„
= L„—&8 „=8„+& I'„. The R function is R =Q&y&2&»/
(E &,

-E —iW&), where W& = —,Q, I'&, &, &
is the sum over the

partial half-widths of eliminated channels. For uniform
overlapping R-matrix levels (W~ »D&, ) the R function
is just i ms&, s„being the reduced strength function s„
=y2~&»/Dq. The absorption cross section

Il -IR I' & [5', + &&'G, 8» s'„/(1+ &&'S~2 s2&) E]'+['vv, +(&G,—s&/(I+ &&'(&~ s2~)]' ' (5.12)

where S»——S»-„ is the smoothly varying background
component of L„. In the uniform model (Lane and

Thomas, 1958}the absorption cross section can be
written in terms of the local strength function as

I &(„& 1 —exp(-4&&W& /D&, )
1 —exp(- 4"W~/D&)(l —»I'&, (& &/Dx)

(5.13)

~X(o) 1(C) ~l(II )

2~ (~i+&& E)'+ ~(1'«.&+ -&(p&)'
' (5.14)

With the above conditions, the equality of the right-hand
sides of the equations gives

I

width, and shift factor of the vibrational resonance l,
appearing as an anomaly about energy 5, in the extend-
ed penetration factor. The fission strength function
(multiplied by 2&&) can be used directly as the appro-
priate transmission coefficient in average cross sec-
tions of the Hauser —Feshbach type [see Eq. (5.1) of
Sec. V.AJ.

A more direct calculation of the fission cross section
through a vibrational resonance can be obtained by
using two-channel reduced A-matrix theory. We now
consider an entrance channel different from the fission
channel. (We assume in the notation below that this is
a neutron channel, labeled n. ) The fission cross sec-
tion through channel p, is

(&„q
——&r &&'„g~ I U„„I

',

= &&'s'„G, S»/(I+ &&' 8„'&s'„) for the fission width, coupling

with

2~~1/2~1 j2 g g-I
n jI n jI njI
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the two-channel reduced &-matrix being

6& g & x&c&& & &c'&

E 2~~x( )
(5.1V)

among the partial widths; this is defined by

~A(g ) ~X(g ) ~X(P ) ~X ()1 ) (5.18)

and d is the determinant of (1 —I R). For the fission
channel the dispersive logarithmic derivative of Eq.
(3.150) is again adopted. The cross-section expression
is tractable if there is complete lack of correlation

The '„„=0, so that d= (1 —L„+.„„)(1—L„N.»). For uni-
form overlapping A-matrix levels (~z(, )

+& D)„giving
Z~& g&. &/(L x —& —a&1'~&. )) =«~., Z~& ~&„&/!1-.-&

1—2i F),(, )) = its„

5, —E —i~)
(1+ nP„s„)(1—irr5„s„)i 5, —E+

w2GRq st/(1+ &&~5~~s~q) —i '&&&& —i &&G,sq /(1+ &&2Sq2 st�)] (5.19)

{5.20)

The final expression for the cross section is

~ g2~ (n) (ttT T )
n)1 J

(e)

where

(5.21)

(5.22) cos2z+E- - &&ll{2~ g)sin2n+&&-K(~ g) (5.26)

in agreement with Eq. (5.14). The other transmission
coefficients in Eq. (5.21) are defined as

'j'(„) ——47rP„S„//(1+ 71 P„S„)', (5.23)

~'(.) = 2".I'~(.) /'Dx ~ (5.24)

+uT&u&
+pT &p &++c~&c&

(5.25)

where T&, ) denotes the transmission coefficients for
other channels, such as radiative decay and neutron
emission.

The angular distribution of fission products resulting
from nuclear reactions plays an important role in
analyz, ing the data on vibrational resonances. The ex-
pression for this angular distribution up to excitation
energies not much greater than the barrier height is
based on the idea, of Bohr (1956) that the fissioning nu-
cleus in transition over the barrier, being "cold" inso-
far as intrinsic excitations are concerned, can be in a
transition state in which the projection of total angular
momentum on the cylindrical symmetry axis K is a
good quantum number. The angular behavior of the
wave function of the fissioning nucleus is then de-
scribed by the wave function of a symmetric top (Wig-
ner1959),:

The form of the neutron transmission coefficient allows
for the contribution of many-level interference effects
which do not cancel in the average cross section when
the narrow-level expression for T„(namely, 47(I'„s„)
approaches unity.

The formula obtained for the fission strength function
I'~&»/D„or the transmission coefficient, T„=2&&I'&„&/

Dz, can be applied directly to obtaining the fission
probability Pf, the quantity that is normally measured
in fission induced by particle transfer reactions. It is
simply

W(g) = Q(xi (J,M )W~~~(g)
J'M

(5.27)

This formula was first applied by Bohr (1956) to the
special case of photofission of an even target nucleus.
Since the spin projection M on the beam direction car-
ried by photons is zero, Eq. (5.27) reduces simply to

W(g)
3 sill g

4x

for K=0 channels, and to

(5.28)

3(l+ cos'g)
4x (5.29)

for K =1; these formulas are sufficient for dipole radia-
tion. Comparison with experiment [photofission of "'U,
Winhold et al. (1952)] demonstrated the preponderance
of the K =0 channel at energies just above the fission
barrier. At higher energies a falling-away from side-
ways peaking of the fission product distribution to a
more isotropie form demonstrated the opening of a

(where the integer n takes values such that the factorial
arguments are not negative) with J being the total angu-
lar momentum and M its projection on a laboratory-
fixed axis; g and &t& are the polar and azimuthal angles,
respectively, of the symmetry axis of the top in the
laboratory frame and X is the angle of rotation of the
top about its symmetry axis. After the nucleus has
passed through the fission barrier it is assumed that
the direction of this symmetry axis, along which the
recoiling fission products ultimately emerge, remains
undisturbed. The fission product angular distribution
is therefore just the squared modulus of d„&&(g) weighted
by the distribution of J and M:
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K =1 channel.
For particle-induced reactions going through a com-

pound nucleus state of definite total angular momentum
4 and parity ~, the projection of the orbital angular
momentum of the incident particle is zero, and this can

in many cases simplify the M distribution and hence the
angular distribution expression. In particular, for nu-
cleons incident on a zero-spin target nucleus (in which
case ( M) can only be —,') the angular distribution;is
(Wilets and Chase, 1956):

(2K)!
J=x. Ic( ) [(K I

) ~ ] a2zz

W~ «„~(0)= I(K . . . ~„sin~ '8[1 +4K(K +1) cos'8],
(2K+ 1)!

2
(5.3O)

~z=x+&, &(!~)= (K ~, K ', , 2~, sin' '6'[1 —4Kcos'a+ 4K(K+ 2)cos'g],(2K+ 3)!
K+ —' t K+~ Ig

CC

UJ
o 1.0
LA

I

Vlc)
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FIG. 82. Angular distribution of fission products following nucleon-induced fission of a zero-spin nucleus (Wilets and Chase,
1956). (a) gives curves for X= ~, (b) K= ~.
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p I Mp)
X ()1K) +Z, l u &

(5.31)

The angular correlation between k~ and the fission
products can be written in terms of the above quanti-
ties as

for the three lowest values of 4. This expression is
shown graphically in Fig. 82. For nonzero values of I
the angular distribution functions for many special cases
are presented by Wheeler (1963). Calculations of the
distribution for unoriented target nuclei with I @ 0 are
shown in Fig. 83.

The Mdistribution resulting from reactions of the
particle-transfer type is more complicated (Britt et al. ,
1965; Specht et al. , 1966). In this case the laboratory-
fixed direction is generally chosen to be that of the out-
going particle immediately prior to the fission of the
residual excited nucleus, i.e., the angular correlation
between this particle and the fission products is com-
puted. For a stripping or pickup reaction leading to the
fissioning compound state via a single-particle or hole
state of orbital angular momentum /, total spin j, and
spin projection m, coupled to an unexcited core state
(the target nucleus) of angular momentum and projection
I, Mz the amplitude A(ljm; IMI, ZM; k~) for emitting the
final particle with momentum k~ has to be computed by
a suitable method (such as distorted wave Born approxi
mation). If more than one single-particle (or hole) state
contributes to the reaction the appropriate amplitudes
are summed after multiplying by the reduced width
amplitude yq~„-) for entering the compound nucleus state
&; the states X thus reached are the fine-structure
states X discussed formally in Sec. III.C.3. For narrow
levels & it can be assumed that they are formed and de-
cay independently of each other. The probability of fis-
sion of a level & through channel p. , projection K is

0.7—
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(5.32)

This is normally expanded into a sum of Legendre poly-
nomials with eoeffieients AL:

W(6~t) =QA~P~(cos&q) . (5.33)

5. Experimental data on pure vibrational resonances

No experimental eviderice on broad resonance behav-
ior in fission cross sections or fission probabilities
has so far been found that is completely conclusive in
proving the existence of a, pure vibrational state.
Nevertheless we shall summarize here the data in a
number of likely eases without prejudice to the eventual
interpretation.

231Th

The most carefully studied candidate as a pure vibra-
tional resonance is undoubtedly "'Th in the region of
5.85 MeV excitation. Data on 'neutron-induced fission
of '"Th have been measured by Yuen et al. (1971) and
James et al. (1972) and analyzed by the latter authors.

ANGLE ( OEG)

FIG. 83. Angular distribution of fission products following
nucleon-induced fission of target nuclei with spin I =- z and nu-
cleon/=1. (a) is for K= 0, (b) for E= 1, (c) for %=2.

Very recent measurements by Blons et aL (1978,
1980) are discussed in Sec. X.B.2.a. In this cross
section the resonance occurs at a neutron energy
of 720 keV, and is apparently about 30-keV wide;
this is about 4 orders of magnitude greater than the
resonance fine spacing expected in the cross section
at this energy. A feature of the experimental studies is
that the angular distribution of fission products with re-
spect to the incident neutron beam direction has been
measured at various energies across the resonance.
The forward peaking of the angular distribution right
across the resonance indicates that the intrinsic state
(defined at the outer barrier q~) in the resonance con-
figuration [Eq. (5.6)] has angular momentum projection
K = —,

' on the symmetry axis [see Eq. (5.30) of Sec.
V.B.4]. The analysis of the data proceeds on the as-
sumption that the observed resonance is a composite of
peaks, each of K= & but with different total angular
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momentum 4, forming a rotational band of intrinsic
states.

On this assumption the cross section has been calcu-
lated using the Hauser —Feshbach formula, (5.1) and the
fission transmission coefficient for a vibrational reso-
nance, Eq. (5.14). The major competition against fis-
sion in the decay of the compound nucleus is provided
by elastic and inelastic scattering of neutrons to known
and inferred rotational bands in "'Th. Strength func-
tions for the calculation of these neutron transmission
coefficients were taken from the known s- and P-wave
neutron strength functions determined by low-energy
neutron studies. At 700-keV neutron energy the main
neutron entrance channels to the compound nucleus are
provided by s-, P-, and d-wave neutrons (exciting total
angular momenta and parity & = —,", —,', —,', ~", —,")
and somewhat more weakly by f-wave neutrons (&"

). From the calculation of the various spin-
parity components of the cross section the angular dis-
tribution of fission products is obtained by the use of
Zq. (5.30).

The main variables in fitting the data are the parity
of the intrinsic state in the vibrational resonance con-
figuration, and the effective moment of inertia ~ and
decoupling parameter a that govern the relative spacings
of the members of the ~= & rotational band:

k2
~x„.&zr) = &X ~KKi+ s ( +»-~(1~+1)

La

The best fit to the data of James et al. (1972) and Yuen
et al. (1971) was achieved with odd parity and with
(h'/2s) lying between 1.8 and 2.V keV and a, &, be-
tween —2.0 and —2.3 (see Figs, 84 and 85 and Table IX).
The value of the moment of inertia thus determined is

&(c) J(f )l
~(f )

J (c)+ &(f)
(5.35)

where I"(, ) is the coupling width of the vibrational res-

more than twice thai observed for any normally ob-
served rotational bands in odd-& actinide nuclei, and
this provided one of the first direct indications that the
shape of the nucleus in the intermediate states acting in
fission was indeed much different from normal, as
postulated by the double-humped barrier theory. The
lower bound 1.8 keV leads actually to a moment of in-
ertia that exceeds the rigid value for a deformation
corresponding to the normal isomeric state by 30/o. It
may be taken as indication of the resonances in "'Th
being located in a third minimum of still higher defor-
mation (see Sec. II.A. 1.1., also Sec. VII.D.3.,
Sec. IX.C.3. , and especially Sec. X.B.2.a).

What are the reasons for believing this remarkable
resonance phenomenon to be a nearly pure vibrational
resonance as distinct from a damped vibrational reso-
nance as described in Sec. V.C. Mainly, that it is
very smooth. With neutron energy resolution of a few
keV it is to be expected that any class-II compound state
structure would not occur with a frequency greater than
a few class-II states per resolution interval, and, be-
cause of the statistical fluctuations in strength and
width inherent in compound states, this would cause
large variations about any smooth curve that would de-
scribe the envelope of the vibrational resonance. On
the other hand, there is a feature in the fit to the data
that suggests damping is playing a role. This is the
variation in width and strength of the different spin
components of the resonance (other than variations due
to penetration through the centrifugal barrier). If the
strength of a vibrational resonance of given spin ~ is
defined by

300

—100—
E

X
XX

X

LEGEND

MODEL (See Table )

A(1) X X X X

C)I-

I
Vl
V)
C3
lK
C3 10—

A(2) 0 ~ ~ ~

B(1)

8(2} ~ ~ ~ ~
{Otherwise like 8(1}}

S.65 0.70
I I

075 0-80
NEUTRON ENERGY { MeV )

FIG. 84. Comparisons of the fission cross section of Th mith models of the rotational band associated vrith the class-II vibra-
tional state (James et al. , 1972). Details of the model are given in Table IX.
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FIG. 85. Comparison of fission product angular distribution from the reaction Th(n, f) with the models of Table IX (James et g$. ,
X972).

onance, then in the "'Th best fit the ratio of strengths
ls

x/2(f) 3/2(f ) 5/2(f )" 7/2(f) (5.38)

Strictly speaking these variations arise, in the anal-
ysis, from the neutron fission cross section of each
component, and could be attributed to the variation of
neutron strength function with spin, but this appears
unlikely. The question is discussed further in See. V.C.

Recent high-resolution work on the neutron fission
cross section of ' Th in the region of 720 keV has
shown that there is more structure than ean be ac-
counted for by a single rotational band (Veeser, 1976;
Blons et al. , 1978). One suggestion (Blons et a/. , 1978)
is that there are two rotational bands of ~=2 and op-
posite parity, lending support, again, to the idea of a
third minimum, but this requires further investigation

(see also Sec. V.C.4.e, Sec. IX.C and Sec. X.B.2.a).
At higher energies in "'Th no more peaks appea, r in

the cross section, but the angular distribution of fission
products undergoes marked variations in character with
changing neutron energy, becoming considerably side-
ways-peaked with respect to neutron direction at about
960 keV and forward-peaked again at 1060 keV. The
sideways peaking is attributed by James et al. (1972) to
a ~= 2 intrinsic state coupled to a much broader vi-
brational resonance. The general behavior of the K
= 2 component of the cross section both at the sharp
resonance at 720 keV and at higher energies can be
satisfactorily explained by the choice of barrier pa-
rameters:

U~= 6.02 MeV, km~-0. 9 MeV,

~ =6.27 MeV, h~-0. 57 MeV.
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TABLE IX. Parameters for models of the rotational band
associated with the class-II vibrational resonance of ~Th.
In column 5 the coupling or fission width is examined, which-
ever is the smaller.

Model

(JIC)
~II(~IC) ~ II

(keV) (keV)

II (c p' f)
I,(ICIC}

II(c or f)

2{1): m=+
(HIC)
v (c or f) = 2.16 keV

718

709

729

14

3.5

A(2): ~=+
(KIC)r. II{c or f}=2.16 keV

B (1): x=—
I

II ( f) 1.27 keV(KH)

718

709

720

712

14

3.5

3.5

0.5

0.5
0.2
0

Q (2): x=—
(KIC}

Vv II(c pl f)
——1.27 keV

720

712

747

729

0.5
0.2
0.6

( ICIC}

(c or f) = 1.2 keV

720

710

732

708

26

3 ~ 5

0.5
0.8
0

b. 233Th

Early work (Henkel and Smith, 1956) showed the rich
structure in the fast neutron fission cross section of
"'Th and the work of Henkel and Brolley (1956) revealed
the strong, fission product angular distributions as-
sociated with it. Recent work on the fission vibrational
resonances of "'Th has concentrated on finding sub-
structure within the main resonances (Blons et al. ,
1975), and on improving the energy resolution oi the
angular distribution information (Caruana, et a/. , 1977).

Blons et al. (1975 a, b) have attempted to use both sets
of information for an analysis akin to that described in
the section on '-"Th. Some of the substructure found on
the main resonance peaks has spacing patterns akin to
that of a simple rotational band (see Fig. 86); simple
because, as proved by the sideways peaking of the an-
gular distribution on these main peaks (see Fig. 87),
the intrinsic states at the head of the bands have spin
projection quantum number ~~ &, and the pattern is
therefore not complicated by the decoupling parameter
occurring in Eq. (5.34). However, the conclusion is
contentious because other groups of substructure do not
fall into a simple rotational pattern, and a quantitative
fit to the magnitude of the cross section that includes
the detailed structure has not been achieved tsee
Caruana et al. , (1977)]. Proof would require a mea-
surement of the angular distribution with sufficiently
fine resolution to isolate the individual peaks of the sub-

structure.
The deduced moment of inertia of the rotational bands

is on average larger even than that found for '"Th, and
this has led Blons et al. (1975a) to suggest that this is
evidence for a tertiary well in the region of the "con-
ventional. " second barrier peak, splitting the fission
barrier into three peaks. Although the hypothesis has
attractions on theoretical grounds concerning the cal-
culation of fission barriers (see Sec. II), and for the
explanation of some trends in the systematics of fission
cross sections (see Sec. VII and also the caption to Fig.
87) and barrier heights (see Sec. VIII. F), it cannot be
regarded as conclusive.

232pa

The fission of this nucleus has been explored prin-
cipally in a series of measurements of the neutron in-
teraction with "'I'a, including angular distribution of
the fission products (Sicre, 1976; Sicre et al. , 1979).
Measurements of the fission cross section with high-
energy resolution have been made by James et al. (1979)
and Plattard et al. (1979). The considerable structure
observed in the fission cross section measured with
about 10-keV resolution is shown in Fig. 88. The anal-
ysis of the cross section and, more especially, the an-
gular distribution data are complicated by the nonzero
spin of the target nucleus (I'= & ). Hence the range of
~ quantum numbers extends from —2 to 2 and implies
much less dramatic features in the angular distribution.
On the other hand, the rather low neutron energies of
the resonances limit the orbital angular momentum
that can be brought effectively into the compound nu-
cleus. Only neutron s and P waves will give appreciable
cross sections for compound nucleus formation, al-
lowing excitation of states of total angular momentum
and parity ~' = I, 2 and ~' = o', 1,2', 3', respectively.
In spite of the undramatic angular distributions Sicre
found that the data could not be reproduced by a model
based on a unique ~ value for each resonance. Ro-
tational bands based on &'=2 and 3 were required for
the 200-keV resonance and on ~'=0 and 3+ for the 330-
keV resonance, as shown in Fig. 88. Measurements
with higher energy resolution (-2 keV) reveal that the
200-keV resonance does have in fact a narrow com-
ponent (width considerably less than 2 keV) at 160 keV
(Fig. 89), and angular distribution measurements
(rather strongly sideways peaked; see, e.g. , Fig. 90)
confirm that ~, ~= 3. The likelihood of odd parity
(excitation by neutron d waves) is almost ruled out by
the peak cross section |80 mb, according to Plattard
et al. (1979), to be contrasted with an expected maxi-
mum value of about 6O mb).

On the assumption that these resonances are all of
pure vibrational character, Sicre gives possible barrier
heights that will represent the data. They are fairly
close to the values

'U~ =5.95 MeV, A'&~=0. 9 MeV,

'U~ = 6.15 MeV, A~~ = 0.4 MeV

that also give a reasonable representation of the fission
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cross section at higher energies using a strong coupling
model.

In the (t, Pf) reaction on "'Th Back et al. (1974a) have
observed marked structure at an excitation energy of
5.5-5.8 MeV and broader structure at 6.5 MeV. The
fission probability curve (see Fig. 91) up to 6 MeV has
been fitted with barrier parameters:

'U„=6.15 MeV, h~~ =1 MeV,

U~ =6.52 MeV, h~ =o.75 MeV.

e. Other nucfej

Other nuclei showing structure which may be due to
more or less pure vibrational resonances are "U
[from the "'U(t, Pf) reaction] showing a considerable
peak at 5.1 MeV, "'U [from '"U(t, Pf)] with a less sig-
nificant peak at 5.3 MeV, and '3 U [from 2"U(d, Pf)] with
some structure at 4.9 and 5.4 MeV excitation [Back
et al. (1974a)]. All have been analyzed with pure vibra-
tional models, as described in Sec. V.B.1 and Sec.
III.A.2, giving barrier heights of about 6 MeV.

C. Damped vibrational resonances

't. Schematic models of damping
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H=a„+H, „,((, q )+H, (q , g; q,), '

where

a„=T„&(q+),

H, „,(q.) = T, (q.) s.(q.)+ V(q. , &—),

(5.37)

In this section we study some schematic models,
based on the Hamiltonian, Eq. (3.64), introduced in
Sec. III.C.1. We recall that the Hamiltonian is split
into three components, viz. , a deformation-dependent
part, an intrinsic part (defined at fixed deformation
qo), and a coupling term, which allows for the change
in the intrinsic part. with changing deformation about
QP y

FIG. 90 Angular distribution of fission products from neutron-
induced fission of Pa at neutron energy 160 keV. The smooth
curves are the theoretical ones for particular combinations of
J, E, and & (implying different M weightings).

a, = T, (q) s,(q)+ v(q, () a,„,(q.).
The eigenvalues of T~(q)+ V(q, g) at fixed q are labeled
s„(q) and those of H, „,(q) are g, (q) =s (q) —so(q). The
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potential energy of deformation '0()1) is just the "ground"-
state energy s„(q).

In the numerical models presented below a limited
number of vibrational states (depending only on the
deformation) and a limited number of intrinsic states
(at fixed deformation) are combined to form the basis
states, and the mixing of these through the coupling
term into final eigenstates is studied. Although the
models must be considered as schematic ones developed
to gain insight into the mixing process and the effect on
fission and coupling widths, some attempt has been
made to introduce quantities that give them some bearing
on realistic physical situations.

a. 81 ngle-partic!e models

The dependence of the intrinsic states on deformation
is taken to be qualitatively similar to that determined
by the single nucleon states in a deformed potential well
of the Nilsson type. In the Nilsson model levels are
labeled by harmonic oscillator quantum numbers and the
projection & of the nucleon total angular momentum on
the cylindrical symmetry axis of the potential well: the
energy of such a level depends strongly on deformation,
generally (though not always) decreasing for low 0 and
increasing for high &. A schematic nuclear intrinsic
state is constructed by filling single-particle states
until the appropriate numbers N and Z of neutrons and
protons occupy the level scheme. For low-lying states
paired particles are made to occupy the lowest orbits
and are then regarded as a vacuum, while the last un-
paired neutron or proton occupies any appropriate
higher orbit, the energy above the Fermi energy (de-
fined here as the highest pair-occupied level) giving the
excitation energy of the state. As an orbit occupied by
a single particle sinks into the "Fermi sea" with
changing deformation, a "hole" state can appear,
carrying the same configuration, by displacing two
paired particles from its orbit into the next available
unoccupied orbit. For the present schematic model
this behavior in energy is represented by a. parabola,
one branch representing the particle state in an orbit
above the Fermi level and the other branch representing
its reemergence as a hole state in the Fermi sea.

In realistic Nilsson model calculations the potential
well is never a perfect harmonic oscillator. The dif-
ference between the latter and the actual potential causes
mixing and repulsion when two labeled orbits of the

I

H, (q, g; q, ) =H, (g, q) H, (g, )),), (5.38)

where Hp(q, $) is the Hamiltonian for the single-particle
oscillator orbits. The eigenvalues and eigenstates of
&, are denoted by b 'P', X

'P'. The Hamiltonian for the
intrinsic states is

H,.„(~,q, ) =H, (g, q, ) +~„„, (5.3O)

where v„, is the residual interaction between orbitals.
Since the matrix element

(5.40)

(5.41)

The diagonalization of

H =H„+Hp())0)+ v...+H,

is accomplished by using the basis states @„()))X'p)()),)
in the expression

(5.42)

4& = Q c.",'(, ) 4„X,"'(n. ) . (5.43)

By the usual technique of multiplication by (t)„*, X*, ,
after operation on p) by H, and integration, the coupled
equations

same spin projection and parity intersect. In the work
of Moiler and Nix (1974), for example, the matrix ele-
ment for this interaction between the harmonic oscil-
lator orbits is of the order of 0.1 MeV; a typical dia-
gram of level behavior with this effect inc'Luded is shown
in Fig. 92.

Residual internueleon forces that cannot be included
in a smooth potential well description wi11 also affect
the repulsion between levels at orbital crossings. This
can be included in the method of calculation described
below. However, its extreme manifestation in the pairing
correlation force is not included, but it is hoped that
nothing essential for the results of the present study is
thereby omitted.

In this model the res idual interaction, as desc ribed
above, between the orbitals is assumed to be inde-
pendent of deformation. Also the wave function of a
given harmonic oscillator orbital is assumed to be de-
pendent on deformation in only a very slow and non-
essential way, which is henceforth neglected. In this
way the coupling term of Eq. (5.37) can be written

[~, + @ ~ ()4)l + Q'c„' (,&x„'.'lv„, lx' ')+ pc„','. (p)&v'l[8„''(q) g ', '()),,)] v) —E c', ' (5.44)

are obtained. If we limit ourselves first to simple harmonic oscillator behavior of the deformation potentiaj. , with
its center being taken as the origin of the deformation scale,

u())) = —,'( @2= 2B(u2r)2, —

and the intrinsic orbits are assumed to have the quadratic behavior (as discussed above)

g (p)(~) @
(p) D(p)~ ~ (p)(~ t (p))2

the Eqs. (5.44) reduce to
(p) A(»

c.",)(p)[~„+g(P)+A(P)t)(P)2 —E,]+pc,",', (p)v„,+pc.",„)(,) ", +
5 v + ", [[v(v —1)]"'5„„,„+[(v+2)(v+1)]'~'6.,

I V

1 D(p) ~ (p)~ (p)
+ (~2 V 6„~ ~) + 42 V+~2 „„)j (5.45)
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where v~~, (taken to be v [2 —5,] in the calculations
below) represents (p,

~
v„,

~

p') and o.' = (h&u/k)'~'. The
harmonic oscillator quantum numbers v have the usual
convention of being enume rated from zero upwards.

After diagonalization of the Eqs. (5.45) the eigen-
functions g~ must be rewritten in the basis @,y„(qo) with
expansion coefficients c,'~', where the X ('go) are the
intrinsic eigenfunctions of &,„,(go) =&~(q,)+v„,. This
is simply accomplished by diagonalizing the equations

&J"'(rl, ) —& (q, )+ Q v„,, =0 (5.45)

in the basis y'~'(qo), the expansion coefficients
(g„(7io) ~y',,(g, ) being used to make the transformation
in the expansion of g, .

In this model the harmonic oscillator potential can be
taken to represent the secondary well in the fission

y(A B) ~ q ~()t) (5.47a)

depending on the choice of g, . The new expansion co-
efficients are

barrier, and go can be chosen as a channel deformation
near q~, or at the center of the oscillator (in order to
define the configuration mixing in the mostobvious way),
or at a lower deformation towards the intermediate
barrier g„ in order to obtain a measure of the coupling
width that the eigenstates mill have. By estimating
amplitudes of the vibrational wave functions @, at the
channel deformation and intermediate barrier defor-
mation, quantities proportional to the fission reduced
width amplitude and coupling reduced width amplitude
for the different channels p, can be obtained:
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' ( X Iwo X ' lo (5.47b)

The results of a numerical example are presented in
Fig. 93 for the parameters of Table X; this is a basis
limited to four vibrational states (v=0 —3), with phonon
energy equal to O. V MeV, and six states of the particle
potential well (p. =l-6). While the first five particle
states have the parabolic behavior schematically
assigned to single-particle states as described above,
the sixth is given no deformation dependence but is
intended to allow for the mixing in of more complex
states above the energy gap. The residual interaction
matrix element between all particle states is taken as
0.1 MeV.

En the lower part of Fig. 93 a conventional measure of
the vibrational strength of the first 14 calculated eigen-
states is shown; these are the squared admixture co-
efficients C,' ' for the basis components with jL(, =1, the
lowest intrinsic state, defined at the central defor-
mations of the well (deuoted here by q»). Different
phonon components are denoted by various forms of
vertical line measure, as indicated in the figure caption.
Vibrational strength as thus defined is obviously quite

well localized, although the weighted mean strength for
different. phonon components is not separated by the
starting phonon energy of 0.7 MeV but by an "effective"
phonon energy of 1.0 MeV.

Intheupper partof Fig. 93 the relative reduced widths
calculated at deformations q„=q„—0.13 and q~ =q«
+0.13 are shown for the lowest channel. Because the
loga. rithms are presented in this diagram the relative
differences are visually underemphasized, but it is
apparent. that. there is no marked correlation either of

1
2
3
4
5
6

0.0
0.0
0.0
0.0
0.0
1.2

154
72

130
500

55
0.0

-0.24
-0.125
-0-06

0.04
0.23
0.0

TABLE X. Parameters describing the deformation dependence
of schematic single-particle levels in numerical model of vi-
bration damping (energies in 1VIeV). All values of D&~ are set
to zero.
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the reduced widths with each other or with the conven-
tional vibrational strength. The reason for the lack of
correlation is, of course, that the intrinsic states
defining the lowest channels at the chosen intermediate
and outer barrier deformations have essentially dif-
ferent particle state structures from each other and
from the intrinsic state defined at g„. The last is
essentially 94% of i&~ =3, while the lowest channel at
ri~ is composed of 97.6% of i&~ =2 (and only 1.7% p~ = 3),
and the lowest channel at &is is 98% of &«~ = 5.

The envelopes of possible reduced widths for pure
vibrational states are shown by dashed curves in the
upper part of Fig. 93. It is apparent that none of these
eigenstates would have nearly the full fission strength
that our simple conception of a vibrational resonance
would lead us to expect. A single quantitative measure
of fission strength for the eigenstates cannot be given
since it would involve the barrier penetrabilities which
are independent of the mixing model, but for reasonably
similar values of P„and Ps (the condition under which
fission vibrational resonances are most likely to be
apparent), the greatest strength will fall short of a pure
vibrational fission strength by more than an order of
magnitude. The fission strength is here defined by

(2P&r,'&„&)(2P&&r,'&. &)
x(P ) I"(A) + P (B ) 2@ y(A)2 + 2@ (B)2

X(u ) A, (g) A~X(u ) + 8~X(v )

(5.48)

6. Single-partjcle models w/ th rotaiton and Cori oli s
coupling

The kind of model described in theprevious subsection
is appropriate for the low-lying states in odd-A nuclei
with spin -2. Higher spin states of single-particle char-
acter are expected to have similar density, eventually
falling away in a Gaussian manner as the spin exceeds
a dispersion value o~ of order 3-3.5 in actinide nuclei.
These higher-spin single-particle states would also
couple with members of the rotational bands built on
lower spin states. For an axially symmetric nucleus,
the residual interaction mechanism for this coupling
is the Coriolis force

II...= —
@ (21 j), (5.49)

which is proportional to the integrated cross section
across a fission resonance.

Finally it should be noted that the chosen input pa-
rameters for this calculation were not entirely ar-
bitrary; they very approximately describe the single-
particle states with odd parity and spin projection &

for a 141 neutron system in the region of the secondary
well deformation (&i—= e —0.65) as deduced from the di-
agram of Nilsson et al. (1969). The lack of a. clearcut
contender with outstanding fission strength in the spec-
trum of Fig. 93 (particularly among the lower states,
below, say, 1.5 MeV excitation energy) throws doubt
on the interpretation of the resonance in '"Th as a pure
vibrational resonance, as discussed in Sec. V.B.5.a.
The state with greatest potential fission strength (that
at 2.59 MeV) has in fact over 80% of p~ =6 in its struc-
ture, which implies that it is very likely further damped
into a great many more complex states. Further dis-
cussion of the 3 Th ease is given in Sec. V.C.4 and
Sec. X.B.2.a.

where j is the intrinsic spin of the single particle. In
first order the Coriolis coupling connects states which
differ by unity in the spin projection K on the sym-
metry axis. The matrix element for the coupling of
two intrinsic states is [see, e.g. , Bohr and Mottelson
(1975)]

(x» &I, E+&& I 'eo&'
l xs ' &I, &&&)

= -[t(1-SC)(1+@+1)]'~2A. (5.50)

A = —(@~llew, lz&,

and j, is the component of the nucleon spin perpen-
dicular to the symmetry axis. For "U the magnitude
of A~ is observed from interband electric quadrupole
transition strengths to be =25 keV in the normally
deformed nucleus.

The Coriolis force can also operate in second order
between states differing by 2 in K. But the appropriate
matrix elements are expected to be an order of magni-
tude smaller.

It is clear that Coriolis coupling will significantly
increase the fragmentation of vibrational fission states
with spin greater than &A. The already fragmented con-
figuration of spin-& single-particle states given in the
example at the end of the previous subsection will be
reflected in the spin-& components of their rotational
bands, and these will be further fragmented by Coriolis
coupling with single-particle states with &= —,. Num-
erical models demonstrating the effect in a weaker way,
and how it might apply to "Th, are given in Sec. V.C.4.

c. Even nucleus

A simple model for an even nucleus is to postulate a
lowest intrinsic state (the fully pair-correlated state)
with a wave function that is assumed to be invariant to
deformation, and higher intrinsic states that are com-
posed of two single-particle states or holes. 'The higher
states are built up from configurations with energies
that have a parabolic dependence on deformation, as
described in Sec. V.C.1.a, with residual interaction
matrix elements coupling them. The minimum energies
of the higher states are greater than or equal to the en-
ergy gap (26), relative to the lowest intrinsic state.

A schematic numerical model of this system has been
solved with three vibrational states and eight intrinsic
states. The lowest intrinsic state has zero energy and
no dependence on deformation while the remaining seven
have quadratic coefficients &„' ' ranging between 300 and
400 MeV, and minimum energies (24) of about 1.2 MeV
(within the range 1,15—1.25 MeV) occurring at defor-
mation 5'~) of ranging from about -0;15 to 0.15 at. inter-
vals of approximately 0.05, relative to the center of the
deformation well. The residual matrix element coupling
all the intrinsic states (including the lowest) has been
taken to be 0.1 MGV.

The result, as shown in Fig. '94, is that the coupling
and fission widths for the lowest. channel are correlated
not only with each other, but with the vibrational con-
figuration as defined at the center of the deformation
well, and this is true not only for the main fission res-
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onances at 0.0, 0.7, and 1.4 MeV excitations (cor-
responding very precisely to 0, 1, and 2phonons coupled
to the lowest intrinsic state) but, to some degree, for
the higher states as well. However, the fission and
coupling widths of the higher states through the lowest
channels are so small that the contributions of higher
channels to the widths must be taken into account. The
reduced widths for the next channel are therefore shown
on Fig. 94 also. For these it is apparent. that there is
little sign of correlation. This is because the channel
intrinsic states at the inner and outer deformation have
a quite different configuration.

2. Detailed resonance structure of damped vibrational
resonances

The results of the schematic models discussed in the
last section show us that among states of fairly simple
character some states with high fission strength do
occur, but, except in even nuclei, these are not usually
states of strong vibrational character in the conventional
sense. Furthermore, states can occur with particularly
high fission or coupling width, but not necessarily both,
and these will not always appear withparticularly strong
fission character. Nevertheless, such states will be
treated in this section as vibrational resonances in con-
sidering the mixing of relatively simple states with a
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FIG. 95. Schematic illustration of the damping of a vibrational
resonance into class-II, and ultimately class-I compound
states.

dense background of much more complicated states
(class-II compound states), but in doing this the pos-
sibility of their having nonideal properties must be con-
sidered. After dissolution of its fission strength in an
incomplete way among the neighboring c1.ass-II com-
pound states, the vibrational resonance is coupled to
the class-I compound states to give an idealized sit-
uation which is indicated schematically in Fig. 95 [from
Lynn (1970)]. Below, the possible detailed properties

I
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of this three-stage hierarchy of structure are con-
sidereded.

a. Resonance widths and cross sections

(i) DamPing of a state with ideal vibrational char
aeter. A considerable amount can be learnt about the
detailed structure of resonance widths and cross sec-
tions by simple use of the formulas for the coupling of
class-I and class-II states given in See. III.C.5. To
use these formulas it is only necessary to assume that
there is no overlapping of the class-II states that con-
~stitute a damped vibrational resonance. In the ideal
situation (the uniform model with equal matrix elements
connecting the isolated vibrational state to its neigh-
boring class-II compound states) the fission widths of
the class-II (fl-matrix auxiliary) states will be given
by

I"
v(D) v(f )D„2~ (E„—E„,)'+(-,'I'„„,)' '

where I"„(» and I'„«, are the damping and fission widths
of the vibrational state at E„; the coupling widths are
given by a similar formula. The condition that class-
II states of maximum width at the center of the damped
vibrational resonance do not overlap is equivalent to

plicated than this. Here we shall not discuss the pre-
cise shape (width and peak cross section) of each fine-
structure resonance but only the locally averaged fission
cross section across the fine-structure line, i.e.,

(o. ) ~ x(e& x.(f &
r I

)t(f ) (6.64)

where I ~„) is the entrance channel width and I"„ is the
total resonance width that includes all reaction chan-
nels in addition to entrance and exit channels. The
equations expressing the entrance channel width, when
this, as will normally be the ease, is a process carried
only by the class-I compound states, have been given
for perturbation theory (very weak coupling between
class-I and class-II states) in See. III [Eq. (3.167)]; a
quasi-class-II state will carry. only a small fraction of
class-I admixture and its entrance channel width is cor-
respondingly smaller than its quasi-class-I neighbors
(this topic is discussed in more detail with examples in
Sec. VI). When somewhat stronger coupling applies,
the admixture coefficients C~(» carrying the fractionX(Xzg)
of class-II state in the fine-structure states & become
small, even at the center of the class-II iritermediate
resonance, and in the uniform model there is no marked
fluctuation of the expected entrance channel width

(f ) (D) ( ) (D)

The choice of formula for coupling the class-II and
class-I compound states will depend on the magnit. ude
of I'~„(,) and I ~, «) ateachclass-IIstate. One reasonable
case is to assume that the class-II coupling widths
I"„(„aremuch greater than the class-I level spacing
at the center. The formula for moderately weak cou-
pling [Eq. (3.185)] then applies. Notice that as long as

as we move away in energy from thecenter
of the damped vibration the fine-structure fission widths
(of B-matrix states) at the center of each class-II inter-
mediate resonance remain constant at the value

in crossing the intermediate resonance.
Reaction channels can be characteristic of either

class-I or'class-II compound states. For the most part,
in the excitation energy ranges in which- structured
fission phenomena are likely to occur, particle emis-
sion processes, such as inelastic neutron scattering,
are likely to be confined to class-I compound states and
will have the same properties relating to the inter-
mediate resonances as the entrance channel widths. On
the other hand, electromagnetic radiation widths are
likely to be of the same order of magnitude for class-
II compound states as class-I states (see See. VI.D.2
for a discussion). Thus we may write in general

I I v(f)
X, (f )

v(c)
(6.62)

(6.66)

v(f) Q(D)
2z( (E„-E„,)'+(-,'I"„, ,)'

' (6.63)

The profile, rather than the widths of the intermediate
groups, then shows the wing attenuation of the vibra-
tional resonance.

The features of the cross section to be expected
across a damped vibrational resonance are more com-

Thus a profile of the vibrational resonance drawn
through the peaks of the fission widths at the class-II
states will be much broader than the nominal width
I"„(», this width will be reflected in the rapidly de-
creasing widths of the class-II states, as illustrated
in Fig. 96. At sufficient energy from the center of the
vibrational state, however, the coupling widths of the
class-II resonances become less than the class-I level
spacing, and then the perturbation formulas applicable
to very weak coupling [Eqs. (3.162)—(3.167)] are appli-
cable. A quasi-class-II state can then be identified in
each intermediate group, carrying the bulk of the class-
II fission width

Thus the factors that determine the appearance of the
cross section across a damped vibrational resonance
depend not only on the vibrational state widths
I'.(», I „,.), r (f) but also on the magnitude of the
class-I entrance channel width and on the magnitude and
nature of the reaction widths. Some examples of the
effect of the magnitude of the competition factors are
shown in Figs. 96, a, b, c, d, and e.

(ii) Damping of vibrational states with nonideal char
aeter. The ideal vibrational resonance discussed above
is that of a single state with particularly strong fission
and coupling width embedded (before mixing) in a dense
forest of compound class-II states with fission and cou-
pling widths that are small enough to be neglected. The
discussion of See. V.C.1 makes it apparent that non-
ideal situations can occur in which, for example, two
comparatively simple states may be situated quite close
together, one carrying a strong coupling width and the
other a strong fission width. The background class-II
states will pick up elements of both, with the result,
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FIG. 96. Fission widths and cross sections of the fine-structure resonances across a damped vibrational resonance, with param-
eters 1"„(f)=1unit 2 (~) =25 ~ (D):75 Dz:1 Dzz=21 7. The top part of the diagram presents the widths and illustrates the
flattening of the profile through the peaks of the class-II states. Lower diagrams show the cross section «averaged over an energy
interval Dz across each fine structure resonance) for different choices of the entrance channel width and reaction width. Note:
energy eigenvalues have been diagonalized only approximately.

that in the region of one state (say that one with the
strong fission width) the fission widths of the class-II
states will have the typical I orentzian character of
Eq. (5.51), but the coupling widths will show relatively
little change with energy; this is shown schematically
in Fig. 97. In this nonideal case the fine-structure
width and cross-section profiles will show quite dif-
ferent features from those described in the previous
subsection.

'The simplest assumption is that the class-II state
coupling width (or alternatively the fission width) is
effectively constant across the vibrational resonance.
As in the previous subsection we shall confine our dis-
cussion to the properties of R-matrix states, which
means that the simple cross section deductions from
the partial widths are only applicable when the class-

II coupling width ahvays exceeds the fission width. Then
the fission width profile is (for moderately weak cou-
pling)

D (D) v (f ) II II (c)
(2v)' [(E„,—&.)'+ (—,'r „, ,)'][(&,-&„,)'+ (—.'r„„,)'] '

(5.57)

At the center of each class-II resonance the fission width
of fine-structure levels is

1 D ~D(D) ~D(y)DIIr„„(E,-Z„,)= —,
(

'
),
"

(, ), . (5.58)
tT II(C) XII v + 2 D(D)

Thus the profile through the peaks of the intermediate
resonances reproduces that of the vibrational state with
its characteristic damping width. The widths of the
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FIG. 96. (Continued)

intermediate resonances are constant, on the other
hand, at the value I"»(). These features are illu-
strated in Fig. 98.

(iti) Cross section PxoPexties whe-re class IIfission-
zvid'ths exceed cout ling Mid'ths. In this section the dis-
cussion may be based on the widths associated with the
poles of the collision matrix. The relevant equations for
coupling of a single class-II state with many class-I
compound states are given in Sec. III.C.5 [Eq. (3.206)].

From Eq. (3.206) it can be seen that the main dif-
ference that accrues in the profile of observed reso-
nance widths when the fission width of the vibrational

level is much greater than its coupling width is that the
two widths interchange their rdles. Thus for the case
of the ideal vibrational resonance the fission widths in
the central region are

(5.59)

for the poles that carry significant partial width in the
entrance channel and hence appear as significant fine-
structure resonances in the cross section. In addition
to these there is a pole with fission width approaching
in value to the full fission width of the class-II reso-
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nance but with very small entrance channel width; it
will not normally be observable as a resonance in the
cross section, but if it is included in the pattern of
fission widths, it will introduce a very sharp distinction
from the case discussed in Sec. V.C.2a (i); this is
illustrated in Figs. 99 a, b, c, an& d.

At the fringes of the vibrational resonance the class-
II fission width eventually becomes less than the class-
I level spacing, and perturbation theory again becomes
applicable. The central resonance will have a fission
width given by Eq. (5.53) and its immediate (quasi-
class-I) neighbors have the values

2 1 &II(&) I )tII(f)
X(f )

I

(5.5O)

In the cross section the central resonance, being
narrower than the fine-structure spacing, will now,
in. principle, be observable, but its entrance channel
width, being governed by the quantity (1 —C,'&,„)), will
be smaller, by a very considerable factor than in the
corresponding case described in Sec. V.C.2.a(i).

In the case of the nonideal vibrational resonance,
there is no longer even an approximate simple exchange
of roles between the fission width and coupling width.
We present here the general formulae for the fission
width of fine-structure resonances ignoring the con-
tribution of poles corresponding to very broad quasi-
class-II states.

When the coupling width of the class-II states is
essentially constant and only their fission widths fol-
low the vibrational resonance profile, the required
expression is

(5.61)
D, II II& ) (D) (f)[( )II ) + 4 (A]

~)t. (f )

(&, —&, )'[(&, -&.)'+l I'(.)]'+l 2„" I'.(! I', (++I'II(.)l «.„-~.)'+-'I".(o)]
'

provided class-II fission widths are greater than class-I level spacings [otherwise Eqs. (5.57), (5.58) are valid]. If
the class-II fission widths remain essentially constant and Lorentzian behavior is confined to the coupling widths

DI IX IK(f)»&D)(C)[»(E)II +») + 4 ~»(a)]
- X(f) (5.52)

b. Interfereri ce effects

Interference effects in the neighborhood of a class-II compound state forming a component of a damped vibrational
resonance can be brought out by using perturbation theory (I ynn, 1974). In the neighborhood oI a class-II state X„
the contribution of all other class-II states X'„ to the wave function of a fine-structure compound state at energy E~
1s

g (x, IH, i)&'„)

II

C9

CL

C)

~ ~ I I . . a

II II

(5.53)
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FIG. 97. Damping of nonideal vibrational states into class-II
compound states. The upper part of the diagram shows two
such states, one with strong coupling width (indicated by the
broken vertical line), the other with strong fission width (indi-
cated by the solid vertical line). Background class-II states
are indicated by dots. In the lower part of the diagram the re-
sult after Lorentzian mixing of each special state into the back-
ground states is shown, coupling widths being indicated by
dotted line and fission widths by solid lines.
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FIG. 98. Fission cross sections of fine-structure resonances
across a damped vibrational resonance of nonideal properties,
the class-II fission width having Lorentzian behavior and the
class-II coupling width being independent of energy. Param-
eters are: DI——1 unit, DII= 19.7, I „(D)= 100, 1",(f) 3, rI( )

II(c)
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for the projection on the fission vibrational mode
4 „,y . %ith the assumption of the Lorentzian expres-
sion the coefficients (&&'„

l

v„l/)' giving the damping
(with half-width W„,, = 2I'„,&«) of the vibrational statevrrP ~ vrrP (4)
into the states Xr'„ the "diagonal" term in this expres-
s ion can be evaluated as

&T(X, IH, I &/„p.)(A.,', IH, I v„».)' J-"v,„,—&+ill
vrr~ vrrw vrr&-

(5.64)

The contribution from the state X„ to the same proj-
ection of the wave function can be written

.I &&& l"&( « i" I x&&«&, I ~«.)
I

II II II
the half-width of the class-II state &» being W„,
= —,

'- I', (, , Thus besides the Lorentzian contribution
to the fission width of a fine-structure (R-matrix) state
4 from the nearest class-II state there is an interference
term (changing sign across the intermediate resonance)
and a background term from other class-II states:

1 ( x IH~ I ~z&& ~xz«~.&.&= (E '~ ). ~. +21«&IH. I&«&(&&IH. I&«&
I

)t rr +

( "&I+ x)( ~II x) + && &II
Z &/2 1 &/2 + ( & . &&l) "&I &/&

[(~ ~)2+ gr~ t[(E ~ )2+ qr2 t & «&/& ~«& &/& (g —g' ) gr
vrr+ )t + v (5.66)

These expressions are deriv d on the assumption that
cross-terms in vrr p not equal to vrr jL vanish. The
degree of correlation between inner barrier coupling
and outer barrier fission modes (expressing the purity
of the initial vibrational configuration; see Sec. V.C.1)
is given by the term @.:

s.= l1—
vrr P ' ~vtIP

(~z I I &'« l" )(&'&z4 I ~a&)

(&&, IH, I &&„)

c. Closed expression for an/Idealized damped v! brati onal
resonance

A closed expression for the mixing of an idealized
vibrational configuration into class-II and class-I states
has been obtained by Back (19V4). The basic assumption
made in deriving this expression is that only the vi-
brational configuration 4„, „couples to the class-I
compound states (through the matrix element

(y, lH, lv„l&)); the matrix elements between class-&
states and all other configurations of the type 4,'
are zero. Physically, this corresponds to the ideal
vibrational state with full correlation of amplitude and
intrinsic wave function at the inner and outer barriers.
The nonzero matrix elements (».,",& lH, l

&/„p) give the
damping of the vibrational state among the other class-
II states ~r"I' which are obtained by diagonalization
among all class-II configurations v,', p' except v» p.

The uniform picket-fence model (see Sec. III.C.5) may
be adapted to deal with this situation. Two sets of uni-
form spacings and matrix elements are postulated. The
e igenvalues of the fine- s true ture R —matrix states are
(in general) given by

(5.68)
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Admixture coefficients for:

(i) states &&, into fine-structure states are

(~& IH, Iv„V) C (5.59)()tI) & & )t(&III

(ii) quasi-class-II states &&.,",& into fine-structure states

(5.70)

I )tII

(5.71)

(&&I,
" IH, I v» p,)

I

(iii) the vibrational state into fine-structure states

In the picket-fence model the last. expression becomes

c2 DI
)t(

I „ (,, )

mE, 2

E, -~„„,——.F. &,&cot D
+-, I'. &. &+F.„&. &K.„&z»(D,/D«) csc D—

II II
(5.V2)

where

(5.V3)

2&&(Xqq&& IH, I v«V.)~p (D)
II

(5.V4)

is the damping width of the vibrational state into the
quasicomplete class-II set.

The eigenvalue equation in the picket-fence model
becomes

27&(X, I H, I v„V.)'
@II(c )

is the coupling width for the vibrational state directly
into the class-I compound states, and

I

Eq. (5.72) is shown in Fig. 100. This should be com-
pared with Fig. 96 in which the coefficients have been
computed with overlap, but not interference, of the
class-II intermediate resonances.
3. Average fission strength functions and cross sections
over a damped vibrational resonance

a. Strength function for a single vibrational level (wi th
weak coupling to the fission continuumj

If an individual class-II state X» is considered after
damping of the. vibrational state v«, the fission strength
function averaged over the class-II intermediate reso-
nance is [see Sec. V.C.2.a. (i)]

1 .&&(E —5)
+ —I „(D)cot

2 "II II

the original spacings being

(5.V5)

(5.V6)(q)+x =4 ~& +~ =~&zD&&+5 ~

I II
A numerical example of the admixture coefficients of

)t(g) XII(c) XII(f ) (5.V7)
&I ( &. &c& &. &&&f &II

If it is assumed that the admixture of the vibrational
state gives the coupling width as well as the fission
width to the class-II compound states, then simple

— Lorentzian expressions for these properties can be
written down(assuming that these widths add a negligible
amount to the damping of the vibrational state and that

LU

OC

C3

ENERGY

FIG. 100. An exact uniform model calculation of profile of admixture coefficients for the R-matrix eigenstates across a damped
vibrational resonance ldue to Back (1974)]. Parameters are Dz= ~, Dzr ——21.7, 271(XI lII, l UIIp~ /DI=25, 2&(XII lH l'UIIp) /DII = 75.
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T
XII(C) A. rz f

I II
2m

IID
27t

vrr(D) v Zr(c )
I"

I v I(D) vrr(f )r
.J.

(s.7a)

(s.79)

where I „(» is the damping wid h of the vibrationalvrr D)
state into the class-II compound states. Substitution
of these expressions into (5.77) gives

~vrr (» vr r (f )
I'

D„271' E —E„+4 I', (D)vrr 'rz
(s.ao)

If none oi' the fine-structure (R-matrix) levels re-
sulting from the mixing of a vibrational level, first
into class-II states, and from these into class-I states,
has a fission width of the order of or greater than the
class-I level spacing, a superior treatment, based
on Bohr and Mottelson's (1969) expression IEqs.
(3.192)] for the energy-dependent average properties
of a Lorentzian line, can be given. As in Back's fine-
structure treatment, given above in Sec. V.C.2.c, two
kinds of matrix element coupling the vibrational level
to the class-I states A,„„nd to the background class-
II states, H~(b) are recognized. Then the expressionXII vII
for the effective width [Eq. (3.192b)] becomes

2d&~ II~Ivrr
eff D (E E )2+ (I g)2

I

H) (b)

(+ ~&b))2 . (I g)2 (s.al)

if a Cauchy averaging function of width &, is employed.
If the second term on the right-hand side of this ex-
pression is evaluated at energy & equal to a given
E~ the result in the uniform approximation is

H(b)
)tzr vzr 2mB 7] 27TH~ '„"',~ g,

rr

(s.a2}

with 8 =1.0903 for A=D» and approaching unity for ~
»D„. The same term at energy midway between two
class-II levels is

respectively. The expression for the fission strength
function through channel p, is, therefore,

~

~ ~

I' 1 ( v &c) v (D) + v (v. )X(u)

Note that this treatment explicitly achieves the extra
spreading of the vibrational state due to coupling with
class-I states across the intermediate barrier. In this
way it is superior to the first treatment presented. The
price paid for the simplicity of treatment is the neglect
of any contribution to the coupling with class-I states
that may come from the background class-II states
[see also Sec. V.C.2.(I.(ii)].

b. Energy-independent coup!Ing to c!ass-I states

An alternative assumption to that presented in the
previous subsection is that the coupling width for each
class-II compound state is effectively constant. The
mechanism for this possibility is that the source of the
coupling width does not come from the vibrational level
that provides the fission width. Examples of this pos-
sibility were seen in the schematic models of Sec. V.C.1
and discussed in more detail in Sec. V.C.2.(I(ii). If we
think qf these models as giving the configurations only
of the simplest (class-II) states, which then have to be
coupled to a, denser background of more complex (class-
II) states, then we see that in certain cases (such as the
single-particle models for odd-A nuclei) there may be
little or no correlation between the coupling and fission
widths of the '*simple" states. We can find examples
in those models of a state with considerable fission
width and small coupling width being neighbor to one
with negligible fission width but very large coupling
width. It is apparent then that the class-II compound
states in the neighborhood of the first state may nearly
satisfy the assumption of energy-independent coupling.

With this assumption and the use of Eqs. (3.1a5b) and
(5.53) it is found that

n(D&

( ) -(r
2D I I

pI"+ 4 +
) rr(c)

(S.a7a)
Thus the effective width of the vibrational resonance is

2 2H' (b) 2mH (b)
XII vII XII vII tanh

"
&» (@ E, )'~ (~)' D«~ 2D

)t

2
2~+~ (b )

II II g,
II

(s.a3)

I/22DIrr. II(D)I .II(f )
(D)+Vrz

&c)II
c. Non-Lorentzian fission width behavior

(5.a7b)

with 8=0.0171 for ~=DII and
for L» D». Evaluation of the

The result is that I',« for the
vibrational resonance is

2FH), v 27t+)t(b)v
I II rz Vzz

eff
I II

again approaching unity
first term gives

2
27t&) vI II

Dz~
(s.a4)

(s.as)

locally averaged, damped

Yet again, the class-II coupling widths may have the
Lorentzian form of the vibrational resonance while their
fission widths have different energy behavior. The form
of the fission strength function is then

vII (D) vII(c)
2DI r

(E @ i2 I P2 II vII( )Iv)II(c)
vrr' + 4 vzz&»

(f' )

(s.aa)

which is approximately the sum of the widths for cou-
pling the vibrational level to the class-I and background
class-II states directly and alone, I'„(,) and I",

d. Fission probabili ty and fission cross section

If the widths of class-II compound states are greater
than the class-II level spacing the expressions for the
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fission strength discussed in Secs. V.C.3.a and b may
be used directly in computations of fission probability
or fission cross section [see Eqs. (5.1) and (5.25)), the
fission transmission coefficient being

(5.89)

hese expressions are not valid if the intermediate
structure is not washed out in this way. Consider the
situation in which the transmission coefficient for com-
petitive processes (such as radiative capture) T' is
much smaller than the fission coefficient. If the energy
dependence of the latter is modulated across the class-
II resonances there will be regions between the reson-
ances where the fission probability is much smaller than
indicated by the ratio of the average transmission coef-
ficients, and in consequence the true average fission
probability is also smaller than this ratio; the factor
between the two can be large. No exact treatment of
the problem is available for the class-II structure
across a damped vibrational resonance, but treatments
for local levels and a sequence of uniform levels are
described in Sec. VI.C.2.c. Application of these for-
mulas to the damped vibrational resonance results in
line shapes for the fission probability that are similar
in width to that of the original fission transmission co-
efficient although the half-widths of the intermediate
structures in the fission probability are much broader
than the corresponding widths in the transmission co-
efficient [see E&l. (6.87)]. The expression for the fis-
sion probability averaged over energy intervals equal
to the class-II level spacing as deduced from Eqs.
(5.25), (5.78), and (5.79) for isolated class-II states is:

1
P & &zz (D)

' ' =[(E Z„,)"-;r )

~l ZZ(c)~vZZ(f )

(5.90)
The conditions for the validity of this are that I'„
and 1"„„)are much smaller than 1"„(»and thatvzz (c) vzz(D )
I'„&,&I'„&z&/I'„' &»«T'. This expression is illustrated
for certain choices of parameters in Fig. 101 and com-
pared with the shape that wouM be deduced if the class-
II intermediate structure were not taken into account:

"P "=f
r r

I zr(&»rr «) ~rr (f )

xx& & zz&&& zz& &+ zz&&& [( zx +
xx

(5.91)
4. Examples of damped vibrationaI resonances

240p~

The classic example of a damped vibrational fission
resonance occurs at 5 MeV excitation energy in the
compound nucleus 2'opu and has been studied by many
workers (Back et &z/. , 1969; Specht et al. , 1969; Britt
et &zl. , 1969; Back et &zl. , 1974b; Glassel et a/. , 1976).
'The most definitive work has been done by Glassel et
&zl. (1976), who have measured the fission yield curve
of the '"Pu(d, pf) reaction with energy resolution of
3 key, thus revealing structure (presumably class-II
intermediate reasonances) within the damped vibration-
al resonance, and also the angular distribution of fis-
sion. fragments about the classical recoil axis. Their

1.0 I ~+~s~t~o ~+~gy 0 +%a s~

CQ

Q3

0.5

0.0—
0.5 0.5

EXCITATIQN ENERG&

FIG. 101. Fission probability, averaged across energy interval of the order of the class-II level spacing, for a damped vibration-
al resonance. In this example the parameters are I'„(D)=0.05, I'„(&)= 0.02, I'„(&)= 0.01. Dot-dash curves do not include effect
of class-II structure. Dashed curve is a Lorentzian for comparison with the I = 7.5 x 10 full drawn curve.
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FIG. 102b. Fission probability of Pu in the region of 5 MeV, determined from the Pu(d, pf) reaction and a model fit to the
data. Barrier parameters used are given in the text (Glassel et al. , 19'76).
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results are shown in Fig. 102a. The coefficients A~
are those describing an expansion of the angular dis-
tribution in Legendre polynomials

W~~( 8) = Q A)P ~(cos 8) . (5.92)

The interpretation of the data centers around the as-
sumption [supported by photofission data of Rabotnov
et al. , (1970)] that the fission channels have spin pro-
jection along the fissioning axis K'= O'. 'The average
branching ratios (or fission probabilities)

(5.93)

for the different total angular-momentum components
of the fissioning nucleus can then be deduced, the rela-
tive compound nucleus formation cross sections for
these components being calculated from distorted wave
Born approximation and the Nilsson scheme of neutron
levels. 'The branching ratios found at 5 MeV are:

P~(0', 0) = 0.63,
P~(2', 0)= 0.50,
P~(4", 0) = 0.20 .

The high average branching ratios found for the lower
angular-momentum values imply that the widths of in-
termediate structures in the fission probability curve
approach the class-II intermediate level spacing, in
fact about 4(Y%%d and 6(P/q of the respective D„values,
while the width of the spin 4 structures will be about
12% of D». The actual intermediate structure reso-
nances observed in the vibrational resonance are nearly
all J'=2', giving D«(J =2 ) =10.8 keV. The expected
widths {in the probability curve) for these resonances is
therefore about 4 keV, i.e. , close to the resolution width
and agreeing with observation. The level spacin'g for
4'= 0' states is expected to be about five times greater
than the J'= 2' spacing, thus implying a width =30 keV
for any intermediate resonances with 4'= O'. These
would therefore be hidden by the superimposed 4"
=2' resonances, and it is therefore not surprising
that they are not observed. The widths of the J'=4'
resonances on the other hand are much smaller than
the resolution width, and their strength is about one
order of magnitude lower (per resonance) than the 2'
resonances; therefore, because of finite instrumental
sensitivity, they will not be observed.

A model fit (which cannot be unique) to the data is
also shown in Fig. 102b; it incorporates a hypothetical
E'= 0 vibrational resonance at 4.65 MeV. The barrier
parameters are U„= 5.65 MeV, S~„=0.82 MeV, 'U~

= 5.3 MeV, h~~ = 0.6 MeV, S»=0. 8 MeV, while the
damping width I'„(D)= 0.12 MeV. It does appear that

vzz (D)
a better fit could be achieved with a slightly larger
damping width and a lowering of one or both barriers.
Otherwise the intermediate resonances at 4.9 MeV are
probably excessively high; they do in fact seem to sug-
gest a fragmentation of the vibrational strength between
two subsidiary states before the operation of the more
general Lorentzian damping amongst the class-II com-
pound states.

The more recent evidence also indicates that the vi-
brational resonances of "'Pu are "nonideal" in char-
acter. Goerlach et al. (1978) have measured the prompt
and delayed (shape isomeric) fission as a function of
excitation energy using the 23'pu(d, pf) reaction. Both
forms of fission show resonancelike structure but the
energies of the peaks are uncorrelated. 'This can be
explained on the assumption that the prompt fission is
associated mainly with states (before damping into the
class-II compound states) having strong fission widths
and moderate to weak coupling widths, whereas delayed
fission, which follows the radiative decay of the class-
II compound states, will then be inhibited by competi-
tion due to the large prompt fission widths. Thus de-
layed fission may exhibit peaking in other energy re-
gions where there are underlying states enhancing the
couplirig width but having very weak fission width.

In these circumstances the barrier parameters of
"'Pu deduced from the prompt fission probability should
be reinterpreted. 'The relevant equation for describing
the data is (5.87a). In fact, owing to the dominance of
the damping width, the outer barrier is only lowered
very slightly (=15 keV) as a result of this analysis.

1 0—

2560 (~ pf)
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CL

'ID
4.0
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EXCITATION ENERGY ( MeV j

FIG. 103. Fission probability of U as a function of excitation
energy as measured in the U(I;,pf) reaction (Back ef; al. ,
1974a). The fitted curve full line assumes a vibrational level
(for J»= 0') at 4.98 MeV carrying a rotational band. The
dashed curve is a calculation from statistical representation
of level densities and is appropriate above the barrier
region (see Sec. VII).

A number of other even nuclei exhibit structure in
their curves of fission probability versus energy that
has been interpreted as damped vibrational resonance
structure. The compound nucleus "'U, explored by
means of the 2' U(t, jf) reaction (Back et al. , 1974a), is
typical of these. The data are shown in Fig. 103. These
data have been fitted on the assumption. of a vibrational
state (for angular momentum J'= 0') associated with
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the secondary well at an excitation energy of 4.98 MeV
carrying a rotatiorial band of similar levels, the rota-
tional parameter being h'/28 = 3 keV. The damping
width for the fit was I'„&»=0.& MeV, and the barrier
parameters were chosen as ~~ = 5.68 MeV, 6„= 1.0
MeV, &~ = 5.67 MeV, and h~ = 0.6 MeV. In this calcu-
lation full account was taken of the effect on average
fission probability of the underlying class-II structure
in the damped vibration (see Sec. V.C.3.d), including
also the Porter-'Thomas fluctuations of the widths of
the class-II intermediate resonances (see Sec. VI.C.
3.c).

c. "Pu
Another good example of a vibrational resonance re-

vealed by the (i,pf) reaction occurs in "'Pu (Back et
a/. , 1974). Data and fit are shown in Fig. 104. The vi-
brational-rotational band starts at 4.53 MeV and a
damping width I'„&»——0.2 MeV was used in the fit (Lynn
and Back, 1974); this is apparently a little high. Bar-
rier parameters for the fit are '0„=5.55 MeV, 6(d~= 1.0
MeV, 'U~ = 5.05 MeV, A~ = 0.7 MeV.

1.0—
240 pU ( t p)} ~ppo oQP~~

~O
o~

0
/ o

d. 2asU

'The best studied example of a "classical" damped
vibrational resonance in an odd-mass nucleus is found

in "'U and has been explored by means of the '"U(n, f)
reaction. The basic resonancelike feature at 300 keV
neutron energy has been known for a long time (Lam-
phere, 1962) but was long believed to be explicable as
competition between successive opening of fission and
inelastic scattering channels (see Sec. V.A). The at-
tempt to investigate the class-II intermediate structure
within the vibrational resonance has been made by
James et al. (1977). Individual class-II compound

structure could not be observed at such high neutron
energies with the available energy resolution (-1 keV
to be compared with expected class-II state spacing of
-0.2 keV). However, very considerable fluctuations of
the data points about any possible smooth curve through
the vibrational resonance were observed. This was
attributed to the limited number (-5) of class-II states
to be found in any one resolution interval and the fluc-
tuations of their strengths due to the Porter-Thomas
distribution expected for their widths (see Sec. VI.B.3).

he degree of fluctuation of the cross-section data
was particularly determined and found to be consistent
with observations on individual class-II states at low
neutron energies (see Sec. VI.E.3.h) and a modeling
of the vibrational resonance (see Fig. 105) with the
following parameters:

V, =S„+0.101 MeV,

A„=1 MeV,

v~ = S„+0.674 MeV,

h~~ = 0.56 MeV,
I" &,= 0.05 Mev,

@rr = o.5 MeV,

where the neutron separation energy S„=5.31 MeV.
The barrier heights resulting from this analysis re-

quire a comment. They are considerably different
from the values that would be required to explain the
behavior of the fission cross section at higher energies,
and also from values required by the systematic be-
havior of barrier parameters of neighboring nuclei
(see Sec. VII. D.2). The reason for this appears to be
the choice of behavior for the coupling width in the pa-
rametrization given by James et al. The class-II
coupling width has been assumed not to have vibrational
resonance behavior in the region of 300 keV, and this
is consistent with nonideal behavior described in Sec.
V.C.2.a.(ii). The hypothesis of ideal behavior (vibra-
tional resonance behavior in both the coupling and fis-
sion widths of the class-II states) can be accomodated
within their parametrization. In Sec. V.C.B.b. the ef-
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FIG. 104. Fission probability of Pu as a function of excita-
tion energy as measured in the Pu(t, pf) reaction (Back et
al. , 1974a). The fitted curve full line assumes a vibrational
level (for J~=0 ) at 4.53 MeV carrying a rotational band.
Dashed curve as in Fig. 103.

NEUTRON ENERGY lkeV)

FIG 105 Neutron-induced fission cross section of U in the
region of the 300 keV vibrational resonance (James et al. ,
1977). The curve below is the fit of the authors using the pa-
rameters described in the text, after subtracting a background
cross section indicated by the broken curve.
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fective width of 8, nonideal vibrational resonance is
given [Eq. (5.87)]. We can equate this (substituting the
parameters of James et al. ) to the width of an ideal
vibrational resonance with modified barrier param-
eters, so that

1/2
(mod) 2
vzz(c) vzz(& ) I ZZ V'i

)tzz (c)'-

(5.94)

This will lead to a modified barrier parameter 'U~ =S„
+ 0.44 MeV with h~ = 1.0 MeV in the present case.

e ~~'Th

This case was treated as a pure vibrational resonance
in Sec. V. B but the discussion in Sec. V.C.1 on sche-
matic models for incipient damping indicated that pure
vibrational resonance's are unlikely to occur in odd-
mass nuclei; sorrie observable degree of fragmentation
of the vibrational strength is to be expected. This con-
clusion is particularly reinforced by the numerical mo-
del given in Sec. V.c.l.a in which basic parameters
simulating the Nilsson level scheme in the region of
the secondary well deformation were used; rio level
with outstanding fission properties resembliz|g that
known in the 'Th neutron fission cross section at 720
keV was found. 'This suggests indeed that the model of
.vibrational resonances in a secondary well in the curve
of potential energy of deformation cannot provide an ex-
planation of the distinctive features of the '~~Th fission
cross section, and that the theoretical suggestions
(Moiler and Nix, 1974) of a third well at the deforma. —

tion associated with the outer barrier (see Sec. II.A. l.d)
should be further explored.

Parameters that describe schematically the behavior
with deformation of the single-neutron levels in a sys-
tem of 141 neutrons at deformations in the region of
the second barrier have been taken from the work of
Moiler and Nix (1974); they are shown in Table XI [but
the p(p) = 6 is meant to be representative of more com-
plex intrinsic states at the head of the energy gap].
These levels coupled with vibrational levels with a
spacing of 0.8 MeV provide the basis for the diagonal-
ization of the Schrodinger equation (5.37) as described
in Sec. V.c.l.a. Reduced widths can be calculated by
projecting the wave functions onto intrinsic states de-
fined at deformations equivalent to a barrier position
on either side of the assumed tertiary well at q~. For
angular momentum J'= 2 states (arising from only the
0'=s states in Table XI) it appears that the lowest channel
at an inner deformation 'gs, (chosen here as t)s, ——ris —0.12)
has a configuration containing -99%of the state p, (p) = 5 as
listed in Table XI. The next lowest channel is about 1 MeV
higher in intrinsic excitation energy. At an outer de-
formation q»(rI»= ps+ 0.12) the lowest channel has a,

conf lgul ation contalnlllg 95.5 k of p(p) = 1 and is 0.43
MeV lower than the next channel state. With these very
different configurations for inner (governing coupling
to complex class-II and hence to class-I states) and
outer channels (governing fission widths) any correla-
tion between the reduced width amplitudes for coupling
and fission is unlikely.

'The reduced coupling and fission widths are shown in

TABLE XI. Parameters (in MeV) describing. the deformation
dependence of schematic neutron single-particle levels in a
system of 141 neutrons [taken from Moiler and Nix (1974)]
at a deformation equal to that of the normal outer barrier in
the thorium region. These are used in the model of vibration
damping used to explain the resonance feature at 720 keV in
the neutron fission cross section of 230Th.
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Fig. 106. From this it can be seen that strong candi-
dates for fission resonaz|ces are the eigenstates ~=4,
X=5, X=6, and &=7. 'The relative importance of these
will depend on the ratio of the barrier penetrability
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TABLE XII. Fission strengths of J =
2

states resulting from diagonalization of N = 141 system as
described in text. Barrier penetrabilities are chosen to give widths for the A, = 5 state that are in
the ratio of about 20:1 (as observed for the &"=

&
component of the 720 keV resonance in the reac-

tion '30Th(n j).

{MeV)

1.755
1.816
1.945
2.036

Yy(B&, p = 1)
(rel. )

-0.173
0.749
0.578

-0.740

7z(Bp p = 1)
(rel.)

-1.01
-0.670

0.144
-0.334

0.371
0.430
0.021
0.110

Sy

(&a, &&a,)

0.030
0.527
0.182
0.437

factors P» and P», but on any reasonable choice of
these A. = 5 is always strong in fission. If Pa] and Pa2
are adjusted to give for this state the observed ratio
of coupling and fission widths for the J'=

& component
of the ""fh resonance (see Table IX), the fission
strengths of the eigenvalues in the region of ~ = 5 have
the values shown in Table XII. The fission strengths
quoted are relative values, but are otherwise defined
according to Eq. (5.48).

'The two choices for the penetration factors give re-
sults that begin to have some qualitative resemblance
to the "'Th observations. If the basic parameters of
the single particle states were to be adjusted slightly
so that the X = 4 state moved away from ~= 5 and lost
strength, or alternatively moved closer and merged
with ~= 5, the Pa, &P» case would be a favored solu-
tion. This is particularly so because the admixture of
p(p) = 6 (representing a thicket of complex intrinsic
states) into A. = 5 is only -1/0, whereas it is -33/c into
A. = 7 (more than 200 keV higher), so the strength of the
latter is likely to be more dispersed than the schematic
calculation sugges ts.

'The diagonalization of J'= 2 state involves the 0'
= & intrinsic states of 'Ta,ble XI and the I = —,

' members
of the. rotational bands based on the &4'= —,

' states. The
two sets are coupled by the Coriolis force as described
in Sec. V.C.1.b. With the Coriolis coupling term A~
[Eq. (5.50)] set at a somewhat exaggerated value of 40
keV, the following picture emerges for the J'= ~

states. First, the lowest channel a.t the inner barrier
has the same character as in the J'= —,

' case, i.e. , it
is a A= —,

' channel. Second, the lowest channel at the
outer barrier is now almost pure K= —,

' and lies a few
hundred keV below the R = —,

' channel considered for the
J' = 2 states. If the penetration factor for the former
channel is assumed to be a factor of 20 greater than
that for the latter then the fission strengths for the two

(MeV)
r&

(rel. )

S
(rel. )

E=j/2Sf(jf 2)
(rel. )

7
8
9

10
11

1.75
1.81
1.94
2.03
2.09

20.9
11.2
1.67

36.7
588

0.0016
0.097
0.184
0.456
0.031

0.027
0.433
0.095
0.032

8x 10

0.057
0.184
0.659
0.935
1.0

TABLE, XIII. Fission strengths of J =
2

states resulting from
diagonalization of N = 141 system as described in text.

outer barrier channels have the values given in Table
XIII. In this grouping only one new state (at 2.09 MeV)
appears; its wave function contains over 90/0 of admix-
ture of 0'= —,

' basis states. 'The other states contain
very small admixtures of 0'= —', (the largest admixture
is -5/0 in the 2.03 MeV state) and can therefore be re-
garded structurally as members of rotational bands
built on the K= ~ states in Table XII. Nevertheless their
fission strengths demonstrate considerable fission de-
cay through the K= 2 channel. The candidate for the
strong vibrational resonance at 1.81 MeV has an 18/o
component of K= & decay, while the other strong fis-
sioning state at 200 keV higher has a 93% probability
of K= ~ decay.

Similar trends are revealed for the J'= ~ states.
For these the basis states are the Q'= —,

' state of 'Table
XI and members of rotational bands based on both 0'

and —,
' states. A second-order Coriolis coupling

strength. of A~= 4 keV is assumed for the coupling of
the latter to the intrinsic states. Again the coupling
channel through the inner barrier is unchanged, but
two (very close) channels below theK= ~ channel now

appear for the outer barrier. One of these is K= 2

and the other A = ~. The total fission strength of the
three principal states (at 1.81, 1.94, and 2.03 MeV)
are almost the same as in the J=~ and ~ cases, but, a
greater fraction of the fission strength of the 1.81 MeV
state (22/o) goes through the higher K channels, and
most of this is fractionated in favor of & =;—.

These calculations account, in a qualitative way, for
the observations on the "'Th(n, f) reaction and its an-
alysis described in Sec. V.B.5.a. One essential feature
of the analysis of the 720 keV resonance was the reduc-
tion in widths (and hence strength) of the higher spin
components. This would not have been necessary if,
as suggested by the present schematic model, part of
the strength of the higher spin components had been
assumed to be routed through higher K channels, thus
damping the forward peaking in the angular distribution.

It is also to be noted that a model of incipient damp-
ing of this type, and based, in this case, on the hypo-
thesis of a third minimum in the. potential energy curve,
would allow the explanation of substructure within the
720-keV peak, some suggestion of which has been ob-
served by Veeser (1976) and Blons et al. (1978). For
example, adjustment of the basic parameters to move
the 1.755-MeV state (see Table XII) much closer to the
1.816-MeV state could give rise to this effect (for a
discussion of the role of decoupling with pairs of —,

states of opposite parity (see Sec. IX.C.1).
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f 2 Th

This compound nucleus has also been described as
a candidate for pure vibrational. fission resonances
(see Sec. V.B.5.b) but the richness of ma. in structure
and substructure suggest that it is more likely to fall
in the class of incipient damping as described above
for "'Th. The same degree of detailed analysis has
not been carried out on "'Th, and he'nce it has not been
thought worthwhile yet to explore a detailed model of
incipient damping. It is to be noted, however, that the
presence of two additional neutrons in this system will
reduce the number of easily available Q'= ~ orbitals
and give rise to a greater dominance of fission through
higher K channels, as observed.

Vl. NARROW INTERMEDIATE STRUCTURE IN
F ISSION CROSS SECTIONS

A. introduction

he discovery of narrow intermediate structure in
the slow neutron fission cross sections of "'Np (Paya
et aI, 1968) and '"Pu (Migneco and Theobald, 1968)
(see Fig. 7) provided important evidence for the Strut-
insky theory of the double-humped fission barrier in
nuclei of the actinide series. The existence of spon-
taneously fissioning isomers and a gross resonance
structure in fission cross sections could already be
explained by the model of the double-humped barrier,
but the new phenomenon, the recurrence of narrow
groups of fine-structure resonances, only a few in
number with considerable fission strength interspaced
by tens or hundreds of resonances with negligible fis-
sion strength, was seen to provide vital corroboration
of the picture of a double-humped barrier with a sec-
ondary minimum of considerable depth (Lynn,
1968 a, b, c; Weigmann, 1968).

he narrow intermediate resonances are interpreted
as class-II compound nucleus states associated with a
range of nuclear deformation within the secondary min-
imum of the barrier, unlike the normal, much denser,
fine-structure resonances associated with class-I com-
pound states, for which the nuclear deformation is much
less elongated, being close to that of the ground state
of the nucleus. Because the secondary well is shallower
than the primary well in the deformation energy, the
class-II states have less energy available for excitation
of intrinsic modes and hence are considerably less
dense than the class-I states. Being associated with a
much more elongated form, they clearly have much
larger fission widths than the class-I states; hence
their characteristic fission signature.

Since the original discovery of the intermediate
structure in the cross sections of "'Np and "oPu, many
nonfissile, and some fissile, actinide nuclei have been
found to exhibit the phenomenon of narrow intermediate
structure. In some cases it is clear that the intermed-
iate structure is associated with the gross structure
due to damped vibrational resonances as described in
Sec. V; the picture here is of a simple vibration mode
(which carries the bulk of the fission strength) in the
secondary well being incompletely mixed into the class-
II compound states. In some cases there is no evidence
for narrow intermediate structure, and gross structure

in the cross section is interpreted as being due to a
pure vibrational state, no mixing occurring because
the secondary well is so shallow that there are no near-
by states with which the vibrations can mix; in this
qase the gross structure also represents the interme-
diate structure insofar as it is an actual state associat-
ed with the secondary well, albeit of much simpler
structure than is usual.

In this section we analyze the data on narrow inter-
mediate structure to give quantitative information on
the double barrier. The basic theory necessary for this
analysis has been presented in Sec. III.C.5 and needs
little or no further development here, except for the
treatment of average cross sections including the ef-
fects due to fluctuations in the properties of the fine-
structure and intermediate-structure levels. We des-
cribe the expected statistical properties of class-II
compound states in Sec. VI.B. In Sec. VI.C we present
expressions for the area of intermediate fission reso-
nances, and from these we also derive average cross
sections under different assumptions about the strength
of coupling and of fission decay; these will be employed
in the analysis of average fission cross-section data in
Sec. VII. We discuss electromagnetic radiation proper-
ties in Sec. VI.D, outline the possibilities of observing
such radiation, and discuss the implications on ob-
servations of fission cross sections through the two-
stage (zf) exit process. Finally, we give examples of
intermediate structure for different conditions of coup-
ling and fission decay in Sec. VI.E and analyze them by
appropriate methods.

B. Statistical properties of class-II states

1. Mean vaIues of fission and coupaing widths

'The formal expression from A-matrix theory for the
width of a state is given in terms of a penetration fac-
tor P, and a reduced width amplitude y~&, &

(see Sec.
III.C.3.8)

2
X&c) ~C~X(c) ' (6-1)

@~rzTa
u') (6.2)

From this expression for the fission width of a vibra-

In the case of fission widths no formal calculations
have been based on this expression. Rather, the usual
approach to calculating fission widths is to consider a
pure vibrational state of frequency ». , in classical
terms this reproduces its configuration at the edge of
the well (i.e. , the entrance to the barrier region) ~,z/
2m tim. es per second. The piobability of the wave being
transmitted through the barrier from this state of de-
formation, rather than being reflected to continue the
vibration, is taken from the simple theory of Sec. III.A.1
for the transmission of a traveling wave through a sin-
gle peaked barrier. 'This is denoted by T~ and the Hill-
Wheeler expression for transmission through an inver-
ted harmonic oscillator form of barrier is given in Eq.
(3.140) of Sec. III.C.4.a. Thus the probability that the
vibrational state decays through the outer barrier is
co&, T's/2m per second; therefore its half-life r for this
decay is (2n/co»Ta), and its fission width is
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tional state, the fission width of a class-II state is de-
rived by determining the fraction of the vibrational
mode in the configuration of the class-II state. This is
given in Sec. III.C.5.a, Eq. (3.153). If the predominant
mode for fission decay (defined at a deformation close
to the barrier) is y 4„„,the class-II state fission
width is

(C '»)'K~„T~
)tzz (f—=p~v ) .

(6.3a.)

Expressions for (C'„»)' in the case of damped vibra-
tional resonances are given in Sec. V.C, but here we
are more concerned with the complete damping case,
which we simplify by assuming that the vibrational
state is spread uniformly over an energy interval equal
to the spacing betw'een two vibrational states A~».
Thus (C'„",)' =D» 'h~ and

)

&gg(f=rsv) ( II~ (6.3b)

In this equation, the penetrability T~ is calculated for
the energy of the class-II state rather than the vibra-
tional state; this is in the spirit of the expression
(6.1). All kinetic energies with respect to the barrier
must be adjusted for. any excitation energy carried by
the intrinsic state p.

he magnitude of the coupling matrix element has al-
ready been discussed in Sec. II.C.5.b. Equation (3.161)
gives

(ff )2 I II A
c xzk, zz (6.4)

The coupling width is there'fore

»(H. )x,~„
)tzz (c)

7T
(6.5)

2. General remarks on statistical fluctuations

If the excitation energy of the compound nucleus is
not much higher than the secondary minimum in the
de formation ener gy, s ta tistic al treatments of the class-
II states are inappropriate; detailed nuclear structure
considerations become paramount, and our state of
knowledge in this respect has been reviewed in Sec. IV
on spontaneously fissioning isomers and in Sec. Q on
vibrational resonances; Sec. IX is also devoted to this
subject. At higher excitation energies it is to be ex-
pected that the properties of class-II states will be
governed to an increasing extent by the statistical
phenomena that. have been well explored for highly ex-
cited states of normally deformed nuclei, such as
fine-structure neutron resonances. Also, of course,
any hint of departure from idealized statistical behav-
ior is of great interest, and this is likely to occur,
given the comparatively modest excitation energies in-
volved when the fission intermediate structure is found.

Statistical fluctuation of the properties of compound
nucleus states is best discussed in terms of the formal
A-matrix states described in Sec. III.C. This is be-
cause the A-matrix states are defined completely by
the nuclear Hamiltonian within the nuclear internal re-
gion (with energy-independent boundary conditions to
establish their discreteness), whereas the S-matrix
poles [Sec. III.C.3.g(iv)], which underlie resonance

properties, are in addition governed significantly by
conditions in the external region.

he differences that can occur between the statistics
of R-matrix states and of S-matrix poles can be illus-
trated by a numerical example. We took a. set of R-
matrix states, their individual properties (consisting
of reduced width amplitudes for entrance and exit chan-
nels and energy eigenvalue) being chosen at random
from Gaussian distributions with zero mean for the
amplitudes and a Wigner distribution [see Eq. (6.1) be-
low] for the spacings between eigenvalues. To calculate
the collision matrix we chose a small penetration fac-
tor for the entrance channel c and a, large one for the
exit channel c' so that the average widths of the fina. l
R -matrix state width distributions was

(D) being the average R-matrix state spacing. We cal-
culated poles of the resulting collision matrix by nu-
merical methods. Distributions of the real components
of the pole positions E,'"' (see Sec. III.C.3.g(iv) for
definitions), the width amplitude quantities, G,'~&,', , and
the phase factors t'«, ,

&
are shown in Figs. 107-109 in

comparison with the dis tr ibutions expected for narrow
resonances (very small penetration factors in all chan-
nels). As can be seen from this numerical example
distinct differences occur.

rrD mD
p(D)dD —,exp —,dD . (6.6)

The important extra result that has been deduced
from the study of the diagonalization of Hamiltonians
of higher order is that the positions of distant levels are
correlated. To state this more precisely, the distri-
bution of higher-order spacings, defined as the spacing
between a level and the distant neighbor separated
from the first by a specified number of nearer levels,
has a much smaller variance than would be deduced
from the addition of the specified number (plus one) of
nearest neighbor spacings drawn randomly from the
Wigner distribution, Eq. (6.6). The degree of correla-
tion is very considerable. For large order spacings,
the variance in the number of levels expected to be
found in an energy interval of n mean level spacings
is (Dyson and Mehta, 1963)

V =—[In(2mn)+ 1+ y ——'m'],

3. Class-l l level spacing statistics

a. IntermedIate structure groups

The distribution of eigenvalues of A-matrix levels
has been discussed in a long series of papers stemming
from an original suggestion by Wigner (1956). For a
review of this topic see Lynn (1968a). The basic idea
is that randomly distributed off-diagonal matrix ele-
ments- of the Hamiltonian matrix cause repulsion of its
eigenvalues. The distribution of spacings between
nearest levels that results from this is remarkably
close (within a few percent) to the simple expression
that Wigner deduced from the consideration of two lev-
els alone:
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FIG. 107. Distribution in histogram form of real components of 5-matrix pole separations in many-level case described in text.
Full curve is the Wigner distribution normalized to 59 spacings.
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where y(= 0.5772) is Euler's constant. [This is to be
contrasted with the random superposition of Wigner
spacings, V = 0.273n. For n = 100, this is 27.3, where-
as Eq. (6.7) gives V= 1.4.] These long-range correla-
tion properties have been used in statistical schemes
for testing long sequences of neutron resonances to
determine such things as (a) the existence of hidden
quantum numbers, (b) the absence of levels from what
otherwise appears to be a complete sequence, or (c)
the presence of levels that are not of the same kind
(having the same set of good quantum numbers) as the
remainder of the sequence.

hese statistical properties of level spacings are
expected to hold good for most cases of narrow inter-
mediate structure, in which class-II levels are dense
enough that it is obvious that considerable intrinsic
excitation energy is available. In only one case, to
date, are there sufficient data available to make any
significant test of the expected statistics, or to make
deductions on the purity of the level sequence involved;
this is the structure in the cross section of the "'Np
(n,f) reaction.

6. Impact on fine-structure spacing correlati ons

It is of considerable interest to consider the effect of
coupling class-II levels with class-I levels on the spac-
ing distributions of the fine-structure levels. We re-
strict the discussion to narrow levels, and hence to ob-
servable resonances with properties that can be related
immediately to those of the R-matrix states. If coup-
ling is very weak, as described in Sec. III.C.5.c(i), a
sequence of class-I R-matrix levels becomes inter-
spersed with occasional levels that are of nearly pure
class-II character with very little disturbance of their
original eigenvalues [unless there is accidental degen-

(D) (6.8)

where (D) is the mean spacing of all states and (Dz),
(D„) the mean spacings of class-I and class-II states,
respectively. This is to be compared with Eq. (6.7).
To the best of our knowledge no applications of these
tests to samples of experimental data have yet been re-
ported.

4. Statistical properties of class-l l fission widths

The statistical properties of fission and coupling
widths of class-II states follow from the theory of level
width statistics pioneered by Porter and Thomas (1956)
with reference to neutron resonance spectroscopy in

cracy; Sec. III.C.5.c(ii), in which case rather more
dislocation occurs owing to level repulsion between the
degenerate class-I and class-II levels]. Application of
sophisticated statistical tests as described, for exam-
ple, by Bahn et al. (1972) to a complete series of reso-
nances of one angular momentum in, say, a total cross
section, should reveal the class-II interlopers. Slight-
ly stronger coupling, which spreads the class-II state
appreciably into a modest number of class-I states
[see Sec. III.C.5.c(iii)] will preclude the identification
of individual interlopers but nevertheless should cause
some dislocation of the correlation properties of the
original class-I series. Simple application of the sta-
tistical tests of Dyson and Mehta (1963) should reveal
a considerably increased variance due to this effect;
the variance on the number of levels n. to be found in
a given energy interval becomes

4 1 2V= 2[In(2vn)+ 1+@ -8m ]
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~ (g')(II )

(I &II& )dl &Ix& dI (II)
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This gives (the variance of each deformation channel
width being 2I'"" )

2 2I (II ) I (II)
off ( t) ~ (6.11b)

For equal partial widths the fission width distribution
will be the member of the X' family with vgff degrees
of freedom:

&„„(I', , )di", , = I' '(—'v„,)(v„,/21', ,)'"'~'
+ I (veff 2) ~8f fI' (f )& 2I'(f )dI(f ) (f') '

(6.11c)

5. Statistics of coupling matrix elements

which is the Porter-Thomas distribution.
If more than one deformation channel p, ' contributes

to the fission width it is to be expected that the partial
widths are uncorrelated and hence the total fission width
will have a distribution with lower variance than the
Porter-Thomas one. For a number of deformation
channels with mean widths that are not too different an
effective number of channels v,«can be defined. The
definition is based on the variance of the fission width
distribution:

0.5 1.0

FIG. 108. Distribution of 5-matrix partial width amplitudes
(G&(f)/2 ) compared with &-matrix reduced width amplitudes
(p),(f)) in many-level case described in text.

particular. The basic ideas follow from Eq. (3.153).
Let us suppose that this expansion is based on a defor-
mation close to the outer barrier for the definition of
the intrinsic states X„. Then a particular component
y, 4„"&&'., (where p' will normally be a. low-lying intrin-
sic state and v' a high phonon number) will define the
wave function for the fission channel. For class-II
states of considerable excitation there will be very
many terms in the expansion (3.153) and it is then to
be expected that the expansion coefficients C II will
have a Gaussian distribution with zero mean to a. very
good approximation. Thus the projection of the class-II
state wave function X~"„"on the channel wave function
'y, 4„",(,), and hence the reduced width amplitude for
fission through this channel, will have the same Gaus-
sian distribution

1 y ({II))2
p(y' ' )O'Y' ~ ', = exp — -- dy', ' (6 9)

&&& &2)& /2 2y {II)c
(gc' ) (@')

Transformation of this distribution to that for the widths
gives

The coupling matrix elements linking the fine-struc-
ture resonances with the class-II intermediate states,
and defined by E&i. (3.160), are subject to a bivariate
form of distribution. In the double sum in E&l. (3.160a),
the coefficients

(&&,
~

&&&. 'v, ) —= C ~, and (&«"v»~ X„)=—C

are expected to have separately the Gaussian distribu-
tion form of E&l. (6.9) with zero mean. If more than
one term in the sum over». 'v& and». "v» in E&l. (3.160a)
is significant, the form of distribution is unaffected,
although the dispersion, and hence the mean of the
squared matrix element, is the sum of the squared indi-
vidual terms. 'Thus, if we consider only the distribu-
tion relating to class-I levels (for a given class-II
level), the resulting form is the Porter-Thomas one

where

(&,)», „=Q (C„'„,)' Q (u'v, ~H,
~

p."v„)'(C. && )',I II, V I I c II ~~&p

the bars referring to averages with respect to class-I
states only. The usual expression for the coupling
width of the given class-II state can therefore be writ-
ten
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= 2w(H, )i i„
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(6.12)

Because of the Gaussian distribution of the coefficients
C",, over class-II levels, it is immediately obviousf' vZZ

that the distribution of the coupling width thus defined
also has the Porter-'Thomas form,

1
P( Xgg (C)) X gg(C) (27r p (p &)1/2

)tZZ (c) ) IZ &c&

~&zz (c)

II (c)

the triangular bracket referring to the mean over
class-II levels

(6.13)

(1„,&. ,&=2~ p (C". . )'&(C„"„„)'&&~'vi~ .
~

~'vii&'»i.
vz

(6.15)

(I',„(,)&=2m Q Q (y, 'v, IH,
~

p. "v„&'&(C~'.„' )'&(C", )' D, .
"II & vI

(6.14)

'There could be special circumstances in which a.
channel effect appears, and as a result the coupling
width distribution could be that of a set of superim-
posed Porter-Thomas distributions with smaller var-
iances. 'This can happen, for example, if the matrix
elements (p'v, ~H,

~

V, "v»& are nonzero only if p' =—p, ",
and the significant values are limited, by tunneling,
to very few values of v„vzz. Hence

(H,')„„,= g (C".'„)'(C".„'„)'(V'v, jH.
~

V'v„&'
+ VI

When we come to examine the experimental data (Sec.
VI.E) we shall find that there are many observations of
intermediate fission resonances in which the fine struc-
ture has not been resolved. Nevertheless, valuable
information can still be obtained from such structure.

'The area of the 'neutron cross section under an in-
termediate resonance is the sum of the area of its com-
ponent fine-structure resonances. Each of these has
an area

A~= 2n'X~g(J)1 ~( )I'~(~) /1"„.
Therefore,

(6.16a)

here. Superficially, the fission width expression of
Eq. (6.3) and the coupling matrix element of Eq,
(3.160a) involve the same significant expansion coef-
ficient C '„' for a many-phonon vibration mode, and+vzz
the two would therefore seem to be correlated. This
could, in fact, be the case when pure vibration modes
uncoupled to other degrees of freedom retain their
identity in a special way after coupling is introduced,
so that the vibration is mixed into a dense background
of compound states without any further major adjust-
ments at a more elementary level. This could be the
case in an even nucleus, and the vital factor that the
discussion of Sec. &.C.1 brings out-is that the intrinsic
wave function X „defining the lowest channel at both
the inner and outer barrier deformations has the same,
or a. very similar, configuration. That discussion also
shows that even the simplest low-lying states in' odd-. A
nuclei have quite uncorrelated fission and coupling
widths, because the intrinsic channels are so different
in these nuclei, and it is therefore very unlikely that
any pattern of correlation will be carried over to the
compound class-II states unless there are very marked
effects of damped vibrational resonances.
C. Average cross sections over intermediate resonances

1. Area of intermediate fission resonances

6. Correlations between fission and coupling widths of
class- I l states A~ = 2w'y g(J) Q Pu &U~u) (6.161)

The question of a possible correlation between coup-
ling and fission widths of class-II states must be raised The sum has to be computed taking into account the
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variation of the fission width across the intermediate
resonance, and the Porter-'Thomas fluctuations of the
partial widths both in the entrance and the deformation
channe ls.

a. Moderately weak coupilng: general expression wi th
neglect of fluctuations

The fine-structure fission widths of Eq. (6.16) are
represented by a Lorentzian (Eq. (3.185b)]. In addition
to the neutron and fission widths, an additional reac-
tion width I",(„) is included in the total width. Normally,
for low-energy neutron reactions the neutron width is
just the total radiation width. We replace the sum by
an integral in Eq. (6.16) and obtain, for a well isolated
class -II re sonance,

tron fission cross section is, therefore, neglecting fluc-
tuations,

I (.)=2m K g(J) '"' rz (,)r„(/)
&n) (r )

(6.19)

Notice that this expression is general for any Lorentz-
ian form of the fine-structure fission widths and thus
encompasses the case of very weak coupling to a class-
II level with broad fission width.

When the fission widths of the fine-structure reso-
nances at the center of the intermediate resonance are
much smaller than the total widths

&(n) )t(f )

(r ()))+ r ().&)

zz(r(„)+ 1 („))
(r„,&„+r„,«&) (r&„,+ r &„,)~+ 2D,r„„„r„,«,

(6.17)

&rz„(/)Dz/rz„(. ) «r(. )+ r(.&)

the intermediate area is approximately

a „,= 2~'&'g(z) '"' r,„„,
(n) + (r)

(6.20)

'Thig is to be contrasted with the expression that would
be obtained if the class-II fission width were spread
uniformly over all fine-structure resonances in an en-
ergy interval D

X(f'7) )(.(f )

r,
XII(c) Xzz (/) II

(/&)(I'& &+ r( &)Dzz+ zzz& & zzz(/)

(6.18)
The value of the right-hand side of Eq. (6.17) is smaller
than that of Eq. (6.18).

The area under ari intermediate resonance in a neu-

in the limiting case I",„(f)«T',„(,).
h. Moderately weak coupilng wi th fluctuations of fine
structure

Analytical expressions for intermediate resonance
areas that take account of the fluctuations in the widths
of the fine-structure resonances are available only for
some simplified cases.

(i) 1 „&/& « I', . Firstly, we consider the case in which
the fine-structure fission widths are always much
smaller than the total widths. The individual terms in
the sum in Eq. (6.16) are to be averaged over Porter-
Thomas distributions P(x)dx [see Eq. (6.10)]. Thus, on
the assumption that the reaction width I ~&„) is uniform,

(
I

A, (n) )t(f ) X(n) X(f )

r, r, (n) + I,(, )

dl', „,dI,f,p, „,p, f, ) — =,f, d, „,p
~( )~(f) ~ (n)

(n) + (r) (n) (r)
(6.21)

The last integral is well known from the theory of neutron capture reactions (Lane and Lynn, 1957), so we obtain
the result

(6.22a)

where

(6.22b)

r„„,r„„ I,„,r „,
r + r (rz /2 ~ rz/2)2

for Porter-Thomas fluctuations. The ratio

(6.23)

and the sum Zzrz(/) =I
I) (/) if I z (/) «rz

& ).
(ii) Reaction z(/idN negligible. If only the entrance

channel width and fission width are substantial the aver-
'age value of I"

z&„) rz«&/rz becomes

g
~( )~(f)

nf (I I /2 + rz /2)
~( )~(f)

(r& &+ r&/))
(6.23b)

is shown in Fig. 110 as a function of the ratio I",„&/
I'(f) ~

To obtain the intermediate resonance area the expres-
sion (6.23) must be integrated over the Lorentzian en-
ergy dependence for the fission width:
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+
I.(.)I ~(~)

r -r =2 r,„...r,„„,r,„,
X(n) ' X(f )

1

I (c2+ Ii&2) + 2 &n» &&z &c»&yg&f& & &2 + ~2 + &&&& &c&I r "g/2

27T 27r

(6.24)

with half-width W = —,'(I'~„„&+ I,„,z&). The ratio of this
quantity to the expression (6.17), which we label lnts„~,

Ints„, =&T '(W'+U)'"
1

s'+ W' + 2[ U(s' + W')]' "+ U

depends only on the parameter W/~U where
U =I,„„&I',„&zg,/2&TI", &„&. This functional dependence
is shown in Fig. 111.
c. Moderately weak coup)ing: fluctuation ofin termediate
areas

Fluctuations in the areas of intermediate resonances
are due in principle to fluctuations in the widths of the
fine-structure resonances as well as to fluctuations in
the widths of the class-II states. In practice, when the
half-width of the intermediate resonance encompasses
several fine-structure resonances on average, the ef-
fect of the former is small and only fluctuations of the
class-II widths need be considered.

(i) I,&z&
«I",. This is the simplest case to consider.

The expression for the area, is given by Eq. (6.20). The
fluctuations in the intermediate area are just those in
the class-II fission width, i.e. , they are governed by
the Porter —Thomas distribution Eq. (6.10) in the case
of a single deformation channel. The variance asso-
ciated with this distribution is twice the square of the

in the absence of fluctuations. With independent
Porter-Thomas fluctuations of both the coupling and
fission widths the mean value of A~„will be

L„=2&» „,/&T, (6.26)

where the "uniform model" value of the area A. » „„is
just Eq. (6.25) with the mean values of the class-II

widths substituted for I"», (,), I )t„(f).
The variance in the intermediate area is also easily

computed for Eq. (6.25); it is

r —42

var& ir =&rr 2 ~ (6.27)

This is considerably lower than case (i), by a factor of
about 3.

In general, because of fluctuations, intermediate
areas will cover a range between cases (i) and (ii) and
the variance will lie between the limits established for
the two cases.

mean value.
(ii) I"~&~& —I'~ in beni al resonances. In this extreme

the expression for the intermediate resonance is [from
Eq. (6.19)]

Cv&&,
„,+ r „;&r„„...r „„„,t j2

F(~) + P(7)

(6.25)

d. Very weak coup/ing of narrow class-II states

(i) Areas in the uniform model. This degree of coupling is analysed using perturbation theory in Sec.III.5.c(ii).
From that discussion it is clear that two kinds of term contribute to the intermediate resonance area of Eq. {6.16},
the single quasi-class-II level and the many quasi-class-I levels. The area of the quasi-class-II resonance is

2 2

I 1/2 ~2~H„„,, ,„,I',„„, „,, „,)
)(L -&~ )'

( )
5 c&x&, x&&»&&&n& &I I & ] Q -c&x& x&&& ~ c&x& x&&& x&&r&
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FIG. 110. The fluctuation factor 8 & for Porter-Thomas fluctu-
ations. The full curve labeled p= 1 is the factor calculated
from Eq. (6.23b) for Porter-Thoznas distributions of neutron
@widths. The broken curve (v=2) is for- exponential distribu-
tions.
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The first term in the denominator is the quasi-class-II resonance neutron width, the second includes reaction pro-
cesses from the class-11 state (principally fission and radiation), and the third is the contribution to reaction pro-
cesses from class-I levels. The last is assumed to comprise very many incoherent channels (as in radiative cap-
ture).

The contribution to the area from the quasi-class-I resonance is

II 2
c()tI )tll)(~)tII(f ) + ~ )tII(r ))

XI;n) Xl(r) (6.29)

Expectation values of the total area

=&~- +&~II (6.30)

can be calculated on the assumption of a uniform model for spacings, class-I partial widths and coupling matrix
elements. I.et us assume that the class-II level lies at energy xD I from the nearest class-I level. Then the sum

1 1 ~ 1 v~
(6.31)

(6.32)

Applying this to Eq. (6.28), with the assumption of completely random sign in the matrix elements and reduced neu-
tron width amplitudes I ~ („,, we find

2&&'K g(f)(m B I', („&I',„(~ &/D') [1 —(v B /D, ) csc»x] csc»x
(» B /D )I,csc»x[+1 —(» B'/D ) csc2~x]I'„

(where I", = I"«„) + I, (r ) and I"„„=~„„,q, + I „„,„,).
For the same uniform model we can derive

2
2 z B I'&&.&I'.„(~& r

A&, , =2v A g(d) ' ~
( x)2 +B~i.

%e fjnd a lower limit for this by putting x =-,':
3/2

mHI I"
2p g g(j) "

.II csc px
D2I

~~I. I. 7)-2D2I" & /2 g2H2I"
2 2 rex I(n) XII (f ) I I tl I

H I 2

An upper limit is found by neglecting the class-II contribution to the denominator in Eq. (6.29):

(6.33)

(6.34)

(6.35)

(6.37)

For very weak coupling the argument of the hyperbolic tangent in Eq. (6.34) is very small, so the hyperbolic tangent
is well approximated by its argument. Within this a.pproximation Eq. (6.34) is the same as Eq. (6.35), so we can
adopt the latter in forming the final expression for A,„:

2 v B ~» ~x»'& 2 [1 (v B /Dz) csc &&x] 1
(vr B /D )1,csc»x+ I', [1 —(m B /D, ) csc mx] I',

The median value of x is 4, for which

I I I . I

(ii) Fluctuations. Fluctuations in the area are much
more sensitive to the fluctuation in the class-I levels in
this case, and also to the relative position x of the
class-II level in relation to the nearest class-I level.
Indeed the sensitivity of the expression (6.36) to the x
parameter renders it impossible to derive frorri it a
true expectation value. For very small values of x the
physical case is that of accidental degeneracy, treated
in Sec. III.C.5.c., in which the most important contri-
butions to the area come from two fine-structure reso-
nances sharing almost equally nearly all of the class-
II fission width and the neutron width of the degenerate
class-I level. If we make the assumption that the level
repulsion is much greater than their widths 2 ~H [»-,'(I „,+I', ,) (so that the coherent interference in the
cross section need not be taken into account) the inter-
mediate resonance area is simply

A„„(deg) = 47&2&2g(Z)(-,'I"„,, „,)(-,'I"„, , )/[-,'(I", + I', )],
(6.38a)

(6.39)

varA =A
)tI I )tII 6~ j II j

(6.40a)

For weak enough coupling, the factor D, /6m iH [ in the
variance can be very much greater than the typical val-
ue of 2 due to porter-Thomas fluctuations in widths.
Extra quantities of this order must be multiplied into
this factor to account for fluctuations in I I( ) I gII(f),
and ~H

~

in the expression (6.39).
The contribution from degenerate levels should be

l

and this is the true upper limit of Eq. (6.36) for small
x. Equation (6.38) will replace Eq. (6.36) for small x
below a transitional region around x -2 ~H ~/D, . Integra-
tion of the leading terms of Eq. (6.36) from this transi-
tional value of & to & =0.5 allows us to find very approx-
imate values for the mean value and variance (due to
the x parameter alone) of the intermediate area. They
are
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added to the mean value of Eq. (6.39), giving

)H(
g(~) D

I"I( )I Ill(f&

2. Average fission cross sections

a. Moderate to strong coupling and/or very broad fission
width

(6.41a)

A modification to these considerations arises from
the possibility that the class-II fission width (and/or
class-I neutron width) is greater than the modulus of the
coupling matrix element. Then, if accidental degener-
acy nearly occurs, the fine structure resonances do not
have parameters identical to the R-matrix levels as we
have assumed so far; their areas must be determined
from the parameters of the S-matrix poles. We pre-
sented the appropriate S-matrix parameters in
Sec. III.C.5.c(l&} [see Eqs. (3.204), (3.205)]. Using these
we find

I&.I (deg} =2&'&'g(&}(» r.,(.&rI„(f& I +Ir„() —I'„, ,f, ' I I „
(6.38b)

if the class-I and class-II reaction widths are equal.
This is lower than the right-hand side of Eq. (6.38a)

by the factor

4a'(r, , + r„„)'/(r„,, „,—r „„„,}'r„,r „,.
Equation (6.38b) is expected to be crudely valid for x =0
to

x -] [(Z'„+I'„,)/2DI ] —4H ].

The expectation value of the intermediate area becomes,
in consequence,

2

7Y,„=2 g g(z) r„„,r„„„4h'

(6.41b)

This bears the ratio to the rhs of (6.41a) of roughly
8 lft l(rl + r&l)/(rl —rll}'.

By similar arguments as before the variance is at
least

(6.40b)

(f)I"
+f 0GN I (6.42)

neglecting fine-structure width fluctuations. For in-
coming neutrons the compound nucleus formation cross
section Oc„ is

&cs = 2)I'&'g(~) -'"' . (6.43)

The mean fission width is obtained by averaging over
the class-II levels. For a single class-II level,

DI all(c) Ill(f &
I I

(f ) Ice
II (r&(ll (c) + I II(f &)

(6.44)

(which is just the result from pure sta, tistica. l theory,
Sec. III.B.1.). The average of expression (6.44) over a
sequence of class-II levels with coupling and fission
widths independently distributed in the Porter-Thomas
manner is

I XII (c) A,rr (f )
I r—t/s —t/2D„(r, „,+I „„„)

The ratio I'(f)/(r(f))I [with average values of the
class-II width substituted in Eq. (6.44)] is denoted by
&,'f ", and a perfectly analogous quantity is shown in
Fig. 110.

The fluctuation factor S~" is closer to unity if more
than one deformation channel is open at the barriers.
For example, with two equally open channels at the
outer barrier and coupling that is strong enough to give
moderate overlap (I"„= »L&o}f neighboring intermediate
resonances the effective statistical distributions can be
assumed to be approximately exponential, and the aver-
age fission width becomes

(6.45)

This is the limiting case in which intermediate struc-
ture is barely or not at all perceivable. To a good ap-
proximation the average fission cross section is just
the normal expression from statistical compound nu-
cleus. theory:

]

~rr «) )trr (f ) r2 r2 2r I' ln )tr r «)
(f ) —

g )trr «) )trr (f ) )trr (o) err (f)
)trr (o) )trr (f }~ )t rr(f)

(6.46)

The corresponding graph of I,'f" is also shown in Fig. 110. For more details of the fluctuation factor ~&' see
Lynn (1980).

Evaluation of the fluctua. tion factor s„f, which must be multiplied into the simple statistica, l form (6.42) to allow
for fine-structure width fluctuations in the neutron fission. cross section, must be obtained in general by numerical
integ ration. Vi7ith the definition

~)t, ( )I )(f)

the general integral to be calculated is (Dresner, 1957)
tli 2+1 r(x)

nf (r,„,l'„,)'"(r (.) I'(„)'"

(x+ I',„,/2I', „,) (x+ I",„,/2I;f, ) [(x+ 1,„,/2I;„) ~ ~ ~ (x+1 &„,/2I;, )]If (6.47)
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with Porter- Thomas fluctuations in n channels, includ-
ing the entrance and exit channels, together with react-
ion channels labeled here by a to z in addition. to a non-
fluctuating radiation width 1"(».

b. Fluctuations in the broadly modulated fission cross
sectIon

var(I'(f )) 21'(f) . (6.48)

e must make approximations in applying this to the
local average cross-section fluctuations. If fission is
weak in the deexcitation of the compound nucleus, then

var(oq)„, = 2(Y~2 . (6.49)

If fission predominates, on the other hand, the cross-
seetion fluctuations are greatl. y reduced. We analyze
this crudely by making the expansion

(c) (P&f)+ (f)
I'(1+ 6r «&/I )

1 1 (6 I y))
gf 1 + 5Z (f ) emcee ~ + ~ ~ ~I'

(f ) l

Only second-order terms are retained. The average of
(5I'«&)' is just var(1 &&&)„„and we can deduce

. var(vz)& ((Tf)& (Gf)&

[
—

(
—

)P ( (f ))&cc
(Yf 0'~N Gf

(f )
(6.51)

Although the narrow intermediate structure will not
be dramatic when the class-II levels are broad (whether
due to coupling or to fission) the locally averaged fis-
sion cross section (in the sense of averaging over an

energy interval of order Dzz) will show fluctuations due

to the width fluctuations of class-II levels, if the coup-
ling is still sufficiently moderate that a single class-II
level will dominate the fission strength function in its
immediate vicinity. We have evaluated the variance of
the expression (6.44) for Porter-Thomas distributions
of the class-II coupling and fission widths; it is

c. Moderately weak coupling andlor moderate class ll-
ifssion w/ dths

The average neutron fission cross section can be de-
duced immediately from the expression for the area
over an intermediate resonance, Eq. (6.19). This is
spread over the energy interval D~ to give the average
(local) cross section,

X(((c) &(((f)I' I"
nf loc

(n) (r ) II

&((I'(„)+I'(„&)
"~(1',„...+ I',„«,) (r,„,+ r,„,)~+ 2D,r. ..,r, „«, I

(6.52)

on the assumption that fluctuations in the fine-structure
widths ean be ignored. The same assumptions as in
Sec. VI.C.1.b must be made to obtain analytical expres-
sions that include the effects of fluctuations. If the
fine-structure fission widths are all much less than the
total widths, the rhs of Eq. (6.52) must be multiplied by
the fluctuation factor 6 [Eq. (6.22b)] (or a generaliza-
tion if there is one or more inelastic scattering chan-
nels included in the reaction width). If the reaction
width is negligible the multiplying factor is 6+ [Eq.
(6.23b)], suitably integrated over the Lorentzian profile
(see Fig. 110).

If the class-II width approaches the order of magni-
tude of the class-II level spacing the expression (6.52)
is found to be inaccurate and can exceed the value of the
compound nucleus formation cross section. This is be-
cause the fission competition factor is unduly weighted
far out on the wings of the intermediate resonance, be-
yond the energy limits ~E-E, ~=2Da, where the other
intermediate resonances become dominant, thus de-
pressing the effectiveness of fission in the competition
process. This effect can be compensated partially by
limiting the integration to the energy interval D~, in
which case

c 2+ 2 x ) (n& X(&(c) X&&(f )

(I'& &+ I'& &)Dr( -(~&„& &+ ~nu')) (~& )+
&

&)~+ 2 z~& n& &~) n&f&-

2 &((I'(.)+ I'(.))x —arctan D~
7t.

a (I',„...+I, «,)'(r, „,+1,„,)~+2D,r, „,I,„«,
(6.53)

ca= (~ca))cc= 2~
I

~&r +rx 1+a'+ 2a coth
Dz

(6.54)

where R = (1 &„&+
1"&„&)(I" ( )+ I' (f))D(,/(I'„(, )I'&(«&D, ).

The "smooth-average" fission cross section (aver-

More accurately, the contribution of the wings of the
other class-II levels within the energy interval D~ can
be taken into account. An exact expression can be
found within the uniform (picket-fence) model (Lynn
and Back, 1974):

2~2)i'(g) (n) 8 )( «)I" r
I «)+r«)

(6.55)

Alternatively, if the class-II fission width is much
greater than the coupling width, I'«„replaces I'g(f)
in Eq. (6.55).

aged over many energy intervals of D~) is subject also
to fluctuations in the class-II widths. When the fine-
structure fission widths are always much smaller than
the total widths the appropriate multiplicative factor
S~' is just unity. The final approximate expression for
the cross section is in this ease
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cr„q = 2»'K'g(J) ~(~)
( ) (r)

2(1 ( &+ I ( &)I s& &~a(f &
1

S
mDX

(6.56)

Again, fluctuations must be expected in the local

On the other hand, if fission saturates the center of
the intermediate resonances [I'~&&-I'~; Eq. (6.25) then
applies to the intermediate areas), the fluctuation fac-
tor Ss& = 2/». Hence

average cross section. In the former case (I'«&«I'~)
these fluctuations will be of the Porter-Thoma~ type,
so

var(v„z)„, = 2o'„z . (6.57)

v2- 4
var(o„, )&..=, o'„, . (6.58)

In the second case (I'~&&& -I"„at the center of intermedi-
ate resonances}

d. Very weak couplIng

The local average fission cross section is obtained from Eq. (6.36):

D',D„(m'H'/D', )I', csc»x+ I'„[1—(» Jf'/D', ) csc'~x] Iz
(6.59)

As discussed in Sec. QI.C.1.d the variance of this
quantity is high.

The average fission cross section over a large num-
ber of class-II spacings is [see Eq. (6.41a)]

x(&) zv)

1 1 4
I'& I'x+ I'E

Note that this is higher by a factor D, /2&T'~H
~

than the
expression one would obtain from a picket-fence model,
with the class-II state always at the median position
(—;D,) with respect to the nearest class-I level.

If the mean class-II or class-I width is greater than
the modulus of the coupling matrix element we must
derive the average cross section from Eq. (6.41b); it is

(6.61)

D. The class-Il radiation width and fission by the two-
step (7f}process

1. General remarks

In the interpretation of the fission cross section ob-
served in intermediate structure phenomena and in
analyzing the class-II level parameters that are ob-
tained due allowance must be made for the radiative
deexcitation of the class-II level. This enters not only
as a competition factor, but may also lead to delayed
fission following radiative cascades to the class-II
shape isomer (or isomers). It depends on the half-life
of the shape isomer and the method of measurement
whether or not this two-step fission process will con-
tribute to the measured cross section. If it does con-
tribute then an assessment of its importance must be
made before an interpretation of the outer barrier pa-
rameters can be deduced from the prompt fission
width.

If measurements of the fission yield are made using
time-independent processes, i.e. , the incident beam is
monoenergetic, or the method of analysis (as in bre-

msstrahlung experiments) can give an effectively
monoenergetic result, the delayed fission contribution
is completely contained within the measured yield.
Most neutron fission cross sections are measured with
pulsed neutron beams and time-of-flight methods,
however. In such measurements delayed fission will
be contained completely within the total fission yield
only if the half-life of the shape isomeric state is
much less than the time resolution interval of the neu-
tron energy determination or the time-interval equiva-
lent of the resonance width (whichever is the greater).
If the shape isomer half-life is much greater than the
time resolution then the delayed fission yield will al-
most certainly be lost in the background effects, unless
special care is taken to suppress instrumental back-
ground and prompt fission is very weak compared with
delayed fission. If the shape isomer half-life is rough-
ly equivalent to the time resolution or resonance width,
delayed fission will be observable as a tail or skew ef-
fect in the resonances in the time-of-flight spectrum.

Alternatively, it may be possible with careful mea-
surements (no successes have been definitively reported
to date}to observe the gamma-ray transitions between the
class-II levels directly. These will mostly be prompt,
of course, and the complete cascade of gamma rays
will show a spectrum quite different from that of the
class-I transitions; the maximum energy will be lower
than that of a class-I spectrum by the excitation energy
of the shape isomer, and discrete primary gamma
rays will be observable at energies which only show a
dense effective continuum in the class-I spectrum. The
difficulties of measuring such a spectrum will depend
on the magnitude of prompt fission deexciting the initial
class-II state and on the degree of admixture of the
class-II state into the class-I states. Gamma rays ac-
companying the prompt fission will tend to mask the
characteristic class-II spectrum, as will gamma rays
from the deexcitation of admixed class-I states into a
quasi-'class-II resonance.

2. Magnitude of the class-I I radiation width

Estimates of radiation widths depend on theoretical
models of the radiative transition matrix element and
the level density of final states. For a review of the
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I gQ&X
(e2 E2 )2+ (p s )2 (6.62)

where N, Z, and A are the neutron, charge, and mass
numbers. of the nucleus, respectively, Al is the nucleon
mass, E~ is the energy of the giant resonance (of the
order of 18 MeV for very heavy nuclei), and I'~ is the
width of the giant resonance (-4 MeV). The quantity x
is the fraction of exchange force in the internucleon
force (Levinger and Bethe, 1950). It is normally as-
sumed to be 0.5, but there is some evidence that it
may be lower.

Two relatively simple level density formulations are
also adopted. In the constant temperature form a pure
exponential rise of level density with excitation energy
is assumed:

p(E ) =D '(U)=C exp(E*/'8) . (6.63)

C is a, simple proportionality constant. Alternatively,
the Fermi gas form is favored, in which the nuclear
states are assumed to be built from a superposition of
independent particles moving in a potential field:

2(&E +)8(E ~h—
12~2 o3 ~1/4E 43/4 (6.64)

'The excitation energy E~ is usually adjusted to an ef-
fective value according to the parity of the nucleon
numbers; this is a. semiempirical adjustment to a.liow
for the highly correlated nature of the nucleon ground
state due to pairing interactions among the nucleons.
The Fermi gas parameter a is proportional to the den-
sity of single-particle states at the Fermi energy of
the unexcited nucleus. Normally parameters like a, C,
and the temperature 8 are adjusted so that the chosen
formulation reproduces observed level densities at low
excitation energies and at the neutron separation ener-
gy, where neutron resonances give convenient refer-
ence data. 'The difficulty of fitting data at widely differ-
ent excitation energies has given rise to the use of hy-
brid models [see, e.g. , Gilbert and Cameron (1965)] in
which the constant temperature model is used for the
first few MeV of excitation, above which the Fermi gas
formula follows without discontinuity. The dependence
of level density on spin is a common choice to most

topic see Lynn (1968a). Two relatively simple models
of the radiative transition process are commonly fav-
ored. In both, electric dipole transitions are normally
assumed to be predominant. In the strong coupling di-
pole model due to Blatt and Weisskopf (1952) the transi-
tion matrix element is assumed to be independent of the
energy c„of the transition and proportional to the level
spacing of the initial state. Thus the energy dependence
of the radiative width for the transition is proportional
to the phase-space fa.ctor s„'. In the giant dipole reso-
nance model the same dependence on level spacing is
assumed, but the energy dependence is that required to
give the form of the photonuclear cross section accord-
ing to the Goldhaber-Teller (1948) collective model.
Combined with the phase-space factor the radiative
width becomes

4 1VZ e' (1+ 0.8x)'&»" 8 &K

work:

1 8+3 '
p(Z') = —(2 J+ 1) exp —,p(E *) .

~\

(6.65)

I' „~68'- e s "/ (8E*3+ '88'E*3
) (r)

+ 68'E "+ 68'] . (6.66)

The effective excitation energy of class-II states is
lower than the true excitation energy by the energy of
the class-II shape isomer, E~. If the effective excita-
tion energy is considerably greater than the tempera-
ture the class-II radiation width is essentially equal to
the class-I radiation width unless the temperature for
the class-I and class-II radiation widths differ.

If the Fermi-gas model is adopted for the level den-
sity we may still employ Eq. (6.66) to obtain a rough
estimate of the class-II radiation width relative to the
class-I width. The effective temperature to be substi-
tuted in Eq. (6.66) is 8= 2(E~/a)'/'. Therefore,

E~-E~ ' a,
~&(((r) @g ~&I(~) '

a~
(6.67)

For low to moderate energy transitions the energy
dependence of the partial radiation width in the giant
resonance model lies between c„' and c„'. Thus the lead-
ing term in the radiation width dependence approaches
1209', and, for the Fermi-gas model, the total radia-
tion width of class-II states is more nearly represen-
ted by

)tyy(r ) E g a )tI (y (6.68)

More exact calculations -of the class-II radiation width
require numerical integration. A detailed survey of da-
ta on the actinide nuclei (Lynn, 1974b) leads to the con-
clusion that the giant dipole resonance model in con-
junction with a constant temperature level density mod-
el (8= 0.5 MeV) up to a few MeV excitation followed by
the independent particle model can give a good repre-
sentation of the deexcitation of these nuclei. From this
representation we have calculated some typical results
on the value of the class-II radiation width and show
them in 'Table XIV. In all cases we have assumed that
the level density parameters of the class-II states are
the same as those of the class-I states. 'The details of
the level density parameters that we have adopted [from
Lynn (1974b)] are given in Sec. VII.

3. The class-I radiation width to class-ll final states

Cross transitions from class-I states to class-II
states may also lead to prompt or delayed fission and
contribute to any background fission observed between
intermediate resonances. Such transitions have been
considered by Lynn {1969). The electromagnetic per-
turbation operator in the Hamiltonian may be split into
a collective part and a single-particle operator. Tran-

The spin dispersion coefficient 0 has values of the order
of 6 for actinide nuclei.

Simple estimates of class-II radiation widths are ob-
tained from the combination of the strong coupling di-
pole model and the constant temperature level density
model. The total radiation width depends on excitation
energy and temperature according to
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TABLE XIV. Total radiation widths calculated on the giant dipole resonance model [parameters
given in report by Lynn (1974b)] over a range of effective excitation energies appropriate to class-
II states.

Effective excitation
energy E* +II

(MeV)

Typical even
nucleus ( Pu)

I'( z)
{meV)

Typical odd-A.
nucleus (~39U)

~() T)
(MeV)

Typical odd
nucleus ( 3 Np)

I'(yT)
(one V)

1.0
1.5
2.0
2.5
3.0
4.0
5.0

0.1
1.9
7.5

15.5
32+1
34.2

2.6
6.1

12.0
19.5
24.1

2.0
8.0

17.4
27.5
36.7
48.9
54.5

sitions involving the latter are not allowed because of
the orthogonality of the vibrational states of the basis.
Collective transitions of the electric monopole type be-
tween vibrational state components or electric quadru-
pole type between members of the rotational bands
based on such vibrational states are allowed but are
weaker, by a factor of the order of the transmission
coefficient across the inner barrier T„, Eq. (3.139),
than the corresponding transitions within the set of
class-I states.

The simple factor T„was estimated on the assump-
tion that only the "tail" of the final vibrational wave
function, having similar character to the main part of

. the initial. wave function within the primary well, would
contribute significantly to the matrix element

We have checked this assumption numerically by inves-
tigating these matrix elements within a double potential
built up from rectangular components. The difference
between primary and secondary well depth was postula-
ted to be 3 MeV, the barrier between them was 6 MeV
above the primary well, the barrier width 4g„= 0.38,
and the width of each well &q, = ~q~ = 0.19. The inertial
parameter B was chosen so that 2B/A'= 1156.4 with the
energy in MeV units. We calculated the lowest class-I
vibrational states to have eigenvalues 0.209, 0.834,
1.869, and 3.297 MeV. The eigenvalues of the two low-
est class-II states are 2.674 and 3.199 MeV. Calcula-
tions of the matrix element between the 2.674 and
1.869 MeV states and the 3.297 and 3.199 MeV states
compared with a. standard class-I transition between
the 3.292 and 1.869 MeV states show one to two orders
of magnitude increase in radiative strength over the
value estimated on the simple assumption. , This can be
attributed to the contribution from the wave function in
the barrier region. This result still implies that at
sub-barrier energies cross transitions can normally be
neglected.

wave function of the type

~0=4'o Xo
' II (6.69)

T t„(@2)&

= 10 "T„(sec). (6.71)

Numerical studies of the matrix element (6.70) in a
rectangular well model (see Sec. III.C 4 band S. e.c.
VI.D.3) show that the barrier region also gives a major
contribution to the matrix element, and the transitions
of this type 'can be 1 to 2 orders of magnitude faster
than the estimate (6.71).

The isomeric wave function will contain very small
components of nearby class-I states owing to the coup-
ling term H, in the Hamiltonian, Eq. (3.64) (Lynn, 1971).
The mixing process will be one of extremely weak coup-
ling and is described by the perturbation theory of Sec.
III.C.5.c(i). The isomeric wave function is thus

~ (4")t i H, i
Ã' )

Xgs 0 Xo+~ E EII )t
)tr

(6.72)

Th'e small class-I terms give a contribution to the ra-
diation width of

it has the possibility of decaying to lower class-I states
by collective &0 or E2 transitions through the beta-
vibration-rotation bands, the relevant matrix elements
being of the type

(6.70)

A contribution to this matrix element will come from
the primary well region I of the deformation parameter,
where the wave function 4," has a very weak tail of
class-I type (4,"-cC', in region I; see Sec. III.C.4.c). The
intensity of this tail c is estimated as being of the ord-
er of the transmission coefficient T„[Eq. (3.148b)j.
From this component alone we estimate the radiative
half-life of the isomer as

4. Branching ratio of the shape isomer
~(C,"I H. ~2C') '

is(y) ~ (E ~II)2 )tr(yT) t
)I

(6.73)

In Sec. IV. D.3.d we presented examples of shape iso-
mer decay in which there is clear evidence that the pre-
dominant mode of decay is electromagnetic radiation to
lower states of class-I character rather than fission.
Here we indicate how the radiation strength, and hence
the branching ratio to fission, is quantitatively related
to the barrier parameters.

If we assume that the isomer state is described by a

and the' class-I radiative transitions comprised in
I'„(») will normally contain electric dipole as well as)tr (

magnetic and higher multipolarities. Because of the
statistically fluctuating character of both the coupling
matrix element and the energy denominator in this
equation the isomer radiation width is expected to fluc-
tuate strongly from one nucleus to another (to a con-
siderably greater extent than the fission width). Most

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980



S. Bj&&lrnholm and J. E. Lynn: The double-humped fission barrier

3lH I ~is(y) -

D & (r &)
r

with variance

(6.75)

r2 D
var~i (y) = ~i (y) 6~iH, !

(6.76)

which is expected to be very large.
This "mixing" contribution to the shape isomer radia-

tive width is much greater than the pure collective
component, Eq. (6.71), even at the "median" level. The
dependence of the isomer partial half-lives (including
fission) on energy and barrier parameters is shown in
Fig. 112. The coupling matrix element is deduced from
the strong coupling model in ter'ms of the transmission
coefficient T~ through the intermediate barrier [see Eq.
(3.161)]. Mean class-I level spacings and radiation
widths are deduced from the recommended level density
parameters discussed in Sec. VII. Note that the "me-
dian" value of the half -li fe shown in Fig. 112 is also the ex-
pectation value (to a good approximation). The variance
of the half-life is just half the square of the median val-
ue.

5. The two-step Ipf) process throogh class-l states

fluctuation comes from the energy denominator. If x
.denotes the separation of the isomer from the nearest
class-I state rela". ive to the mean class-I spacing 0„

mI" HI". = '&"~) ' csc'mx .is(y)

For the median value of x (x = —,'), I",', &»
= »'&,'I'~ &„r,/

D,', but this is not t;he expectation value. An expecta-
tion value cannot be calculated from Eq. (6.74) alone,
consideration of the possibility of accidental degeneracy
between the isomer and a class-I state being necessary.
If accidental degeneracy occurs the value of the isomer
radiation wadth ~s &I"~ (». Thxs xs the approx&mate val-
ue of I",', (» to be expected within the range of x from
zero to 2 H. ~/D„Eq. (6.74) being relevant (approxi-
mately) in the region x&2 ~H, I/D, to x = —,'. The expec-
tation value of I i (y) is, therefore,

where T„,Ta are the transmission coefficients [Eqs.
(3.139) and (3.140)] for a state at excitation energy E
across the inner and outer barriers, and T, is the
class-I transmission coefficient in the absence of fis-
sion

{8.77b)

This fission probability is to be integrated over the
primary gamma-ray deexcitation spectrum to obtain
the width for the (yf) process:

E
r,&&„y)

- dr„F) &„)(r )p&(E —a„)Pf(E —c„). (6.77c)

10)
'

76-
5-

6
5—

There is some experimental evidence for the (n, yf)
reaction. Ryabov et al. (1973) have measured the mean
energy of gamma rays and the mean number v of prompt
neutrons emitted in association with fission for several
of the slow neutron resonances in the neutron cross
section of" Pu, and have correlated the results with
the resonance fission widths. For resonances identi-
fied. as being ~' = 1', apparent linear relationships be-
tween these quantities and the reciprocal fission width
were observed, the mean total gamma-ray energy in-
creasing from 13.8 MeV for resonances with large fis-
sion width to 14.7 MeV for those with very small &(&),
and &j decreasing from 2.87 (very large I"&&,) to 2.65
(very small I'&z&).

These results can be interpreted as evidence for the
(n, yf ) reactionas follows. The total energy E&~~ of the
gamma rays emitted by fission products is known to be

The two-step (yf) process was recognized before the
concept of the double-humped barrier as a possible,
though rather weak, fission decay mechanism of the
compound nucleus (i,ynn, 1965). The primary y ray-
transition takes place throUgh compound nucleus states
of normal deformation (now described as class-I states).
'This is not related to the intermediate structure phen-
omena of course. The fission decay of the final state
reached in the gamma-ray transition is .governed by the
nature of the fission barrier. Intermediate structure
phenomena may be involved if the final state lies below
the barrier peaks. Intermediate resonanc'e phenomena
as such will not be observable in this reaction (except,
in principle, by very sophisticated experimental meth-
ods not y.et undertaken), - but the probability of the fis-
sion stage of dec&citation may be affected appreciably
by such structure. In the uniform picket-fence model
of the final states after gamma-ray deexcitation the
branching ratio for 'fission is (Lynn and Back, 1974)

L&J
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109—

65-
4

10
8
7
6
5
4

10

l=

/
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(6.77a)
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FIG. l12. Median estimates of shape isomer radiative and fis-
sion half-lives.
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comparatively insensitive to the excitation energy of the
fissioning compound nucleus. The variation in gamma-ray
energy observed in these measurements can therefore
be attributed to the primary gamma rays of mean energy
c„emitted in the part of the total fission occurring by
the (yf) route, giving

E~(P&I + (E(P& —)I
y +r(f)+ r(yf) (f, ef f)

where I'«, «& is the (observed) total effective fission
width, I (f)+ I'&,f). The neutron emission number does
depend appreciably on the excitation energy of the fis-
sioning nucleus. If this dependence is assumed to be
linear, as observed in neutron-induced fission at higher
energies,

"(S )P«&+[&'(S»tab=
(f) + (rf)

)
E~(dv/dE)I (y»&—VgS

(f off )

The experimental results can therefore be analyzed to
give the quantity cyr&yf)- For J'=1 resonances of '"Pu
it is 4.6+ 0.4 MeV. meV (Shackleton, 1974). The mini-
mum observed resonance fission width is I (f,«) = 3.5
+ 0.6 meV (for the 35.5 eV resonance), giving an upper
limit for the (yf) width of I &,z& & 3.5 meV, and a. mean
primary gamma-ray energy of r. „&1.3 MeV. (The earl-
ier results of Byabov et al. gave, I"( f) =4.1+0.9 meV.
s „=800 + 90 keV. )

If only electric dipole primary gamma-ray emission
is assumed then fission will take place through inter-
mediate states of spin and parity 4 =0, 1,2, and of
these the ~'=1 st.ates are expected to have the lowest
fission barrier. The barrier parameters for ~' = 1 are
expected to be 'U„(1 )- 'U„(0')+ 1.0 MeV, 'U~(1 )- U~ (0').
Using the o' barrier parameters assessed in Sec. VII we
have done cascade calculations [based on Eq. (6.77c)] of
the partial yf width of the 1' resonances of "'Pu+n. If
the primary gamma-ray deexcitation is assumed to be
by the giant dipole resonance mechanism (see Sec.
VII.B.2) the result is I'&„&&

——1.0 meV, and the mean pri-
mary gamma-ray energy py 0 83 MeV.

It is known, however, that magnetic dipole primary
transitions are quite significant in the deexcitation of
neutron resonance states of heavy nuclei (to the order
of 10%). In this case the intermediate fission states can
have spin and parity &'=0', 1', 2+. Hence fission is es-
pecially favored. The primary gamma-ray ~1 strength
was assumed proportional to the cube of the gamma-ray
energy in our cascade calculation for this process. The
partial width was calculated to be I'&„z& -—2.4 meV (E1
+Ilf1) and the mean primary gamma-ray energy r =0.98
MeV. These values are a little lower than the experi-
mental data suggest, but this could reflect a deficiency
in our understanding of the primary gamma-ray de-
excitation mechanism rather than uncertainty in the fis-
sion barrier parameters.

Attempts to make more direct measurement of the
primary gamma rays emitted in the (n, yf) reaction have
been reported (Dlouhy et al. , 19'I6). A small fraction
of the primary radiative transitions will undergo elec-
tron conversion, and these are detected by observation

of the sequential characteristic K x-rays in coincidence
with fission. Measurements of this kind on the neutron
reso'nances of '"U suggested a correlation of the intens-
ity of each coincidence with the reciprocal fission width,
but unfortunately the statistical significance of the cor-
relation is weak.

E. Experimental data on intermediate structure and its
analysis

l. Very weak coupllrtg

The formal treatment of very weak coupling between
class-I states and narrow class-II states has been de-
scribed in Sec. IILC.5.c(i). The treatment is by per-
turbation theory, and the significant feature of the fine-
structure resonance pattern that emerges is the occur-
rence in each intermediate group of a single state, car-
rying the bulk of the class-II strength, with large fis-
sion width and small neutron width; a few neighboring
levels, all essentially class-I in nature, have signifi-
cant, but comparatively small fission widths and normal
neutron widths.

a. Intermedjate structure! n 'Pu

A particularly good example of the phenomenon is
found in the slow neutron fission cross section of Pu
(Fig. 7). The intermediate structure in this cross sec-
tion was originally discovered by Migneco and Theo-
bald (1968). The original resonance parameters that
they deduced from their data allowed a range of inter-
pretations. One was indeed the weak coupling phenom-
enon, a few of the intermediate groups having a reson-
ance with fission width of the order of 100 meV (but with
large standard errors) dominating its neighbors. In
some analyses, however, the widths of the groups were
found to be consistent with values of the order of 20-50
eV, and this was held to be evidence of either moderate
coupling [see Sec. III.C.5.c(iii)] or very weak coupling
to a broad class-II state. An intermediate case was pos-
sible (Lynn, 1968b) in which the quasi-class-II level
with a width of the order of a few eV lay unidentified,
because of its relative weakness as a peak, among the
observed structure.

In the most definitive data to date (Auchampaugh and
Weston, 1975) the last possibility has proved to be the
correct one. The three lowest intermediate resonances
(at 782, 1405 and 1936 eV) were measured with high
resolution and sensitivity in both total and fission cross
sections. The measurements on the 1405-eV group con-
firmed the observation of Migneco and Theobald that the
bulk of the fission strength in the group was divided
roughly equally between the 1402 and 1408 eV resonances
but the fission widths of these are much larger (-2 eV)
than originally believed; this is in fact a case of acci-
dental degeneracy (Lynn, 1968b). The measurements on
the other two groups (see, e.g. , Fig. 113) revealed
resonances that were missed in the earlier work; in
each group a resonance with large fission width (-2 eV)
and weak neutron width was revealed, ideal candidates
for the role of the quasi-class-II state.

We have analyzed the data for the 782 and 1936 eV
groups using the perturbation theory of Sec. III.C.5.c(i).
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FIG. 113. Intermediate structure in the slow neutron fission
cross section of Pu in the regions of 782 and 1936 eV [from
Auchampaugh and Weston (1975)].

In each group we summed the fission widths of observed
resonances to give the best estimate of the class-II fis-
sion width [Eq. (3.165b)]. We used them to find the coup-
ling matrix elements [Eq. (3.169)] and finally, from Eq.
(3.167) and the values of reduced neutron widths of the
quasi-class-I levels, we deduced a range of possible
values of the reduced neutron width of the quasi-class-II

level and compared this with the experimentally mea-
sured value.

The results of the analysis are shown in Table XV.
We analyzed 16 quasi-class-I levels in each group. The
mean squared coupling matrix element for each class-II
level is represented in the table in the form of the coup-
lirig width

1"g„(., = »(ff.)~ ~, 'D, .

From the total cross-section resonances D~ has be'en

found to be 15 eV. The possible values of the reduced
neutron width of the quasi-class-II level were found, as
expected, to have a distribution highly skewed in favor
of very small values (resembling a Porter-Thomas dis-
tribution). The mean of the possible values (the expec-
tation value), and the maximum value possible (all con-
tributions to the amplitude from the 16 analyzed class-I
levels having the same sign) are quoted in the table,
and it is apparent that for both cases the observed width
is of the order of the expected value and much less than
the maximum possible value, lying in fact in the center
two quartiles of the distribution; these values ark very
much smaller than the mean reduced neutron width of
class-I levels, i.e. , 15&10 4 eV.

The following information on barrier heights can be
deduced from the information in Table XV. By substi-
tution of the mean class-II fission width I ~, &, ——2.5 eV
into Eq. (6.3) with the Hill —Wheeler barrier penetrability
formula, [Eq. (3.140)] for T~, we find the value of
2z(Vs —S„)/hes to be 3.6. Here, S„ is the neutron sep-
aration energy. The assumption of km~=0. 52 MeV,
which is the consensus of evidence described in Sec.
VII.D-.1, gives 0~=5.54 MeV. Note that this is the bar-
rier height for fission channels of total angular moment-
um and parity J'= ~" and may not be the nominal bar-
rier height for the lowest channels. Similarly, from
Eq. (6.5) the inner barrier (for j"= —,") has the numeri-
cal relation 2v(~~ —S„)/A~„=3.8, which, for h&u~ =0.8
MeV yields 'Uz = 5.73 MeV. As can be seen from the
data on barrier heights compiled in Sec. VII, the values
of U~ and 'U~ for J'=

& channels are quite consistent
with the overall. picture. .

Several intermediate resonances have been observed
in the fission cross section of ' Pu at neutron energies
greater than 2 keV, but the fine structure of these has
not been measured in any detail. Because the cl.ass-ll
fission widths appear to be so very large it is clear that
analysis of the areas of these higher energy intermediate
resonances will not give any extra useful information.

From the density of class-II states we infer the ex-

TABLE XV. Weak coupling analysis of intermediate structure of the neutron fission cross section
of 4 Pu. Data from Auchampaugh and Weston (1975). For completeness, details of the 1405 eV
class-II level (analyzed as an accidental degeneracy in Sec. VI.E.2 has been included in this table.
Units are eV.

Quasi-class-II level
Observed properties Calculated neutron width

(o) &0)I v'y') I"v (n) ~ +v'(n) &|:xp (I v (,))...,
. Class-II level

Deduced properties
~~rrV) rXII(c)

782.4
1936
(1405)

1.45
2.2

1.3&10 4

4.5x10 '
0.84x10 '
1.2 x 10

3.3x10 "
5.7x 10 4

1.53
2.4
3.54

1.60
3.7
1.5
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citation energy of the lowest state of the secondary well
to be 1.85 MeV. This is based on the assumption that
the level density law of class-II states is similar to
that of class-I states; the parameters for the latter
can be found in Sec. VII.B.3.

b. Intermediate structure in ~U

Because of the known fact that barrier height(s) in"U are much higher relative to the neutron separation
energy than those of '"Pu it was expected that fission
intermediate structure in the cross section '"U at low
neutron energies would be much weaker in magnitude
than that of '4oPu. This is indeed so, and it took many
years of searching before definitive evidence was dis-
covered, commencing with a crude resolution measure-
ment (using a lead slowing down spectrometer on the
electron linac of the Rensselaer Polytechnic Institute)
and measurements of fine-structure resonance param-
eters appearing later from RPI (Block et al , 1973) a.nd
Oak Ridge (Difilippo et a/. , 1977).

Below 60 keV neutron energy 28 groups of fission

NEUTRON ENERGY, E (ev)

FIG. 114. Intermediate structure in the slow neutron fission
cross section of U in the region of 720 eV [from Difillipo et
g. (1977)].

resonances have been discovered. Seven of these lie
below 10 keV, giving a mean spacing for class-II states
of -1.4 keV. Only for the groups at 720 and 1213 eV
has the resonance fine structure been partly elucidated
(Difillipo et a/. , 1977); it is shown in Fig. 114 for the
720 eV group and resonance parameters are given in
Table XVI. We can make alternative deductions about
the properties of the class-II state; one deduction de-
pends on the hypothesis that the resonance at 720 eV in
the fission cross section is different from the resonance
observed at about the same energy in the total cross
section, and the other is that they are identical. The
data. of Difillipo et al. (1977) and De Saussure et al.
(1978) indicate that there may be about 0.5 eV discrep-
ancy between the observed resonance at this energy in
total and fission cross sections when the energy scales
of the other resonances are matched.

For the first hypothesis our analysis of the data sug-
gests that F),zz(f) lies between 23 meV and about 500
meV, the maximum value being governed by the resolu-
tion width, while the minimum value is derived from
the area of the fission resonance and the experimental
upper limit for the neutron width of a resonance that
would be unobservable in the total cross section. The
mean squared matrix el.ement will lie between about
0.37 and 0.02 eV', and hence the coupling width I'&

lies between 0.13 and 0.05 eV. For the second hypo-
thesis, rxII(f) =1.6 mev, r~ (c) =2.5 ev.

z (c)
The first hypothesis indicates barrier heights for

states of total angular momentum and parity J = ~", as
'U„-1.0 MeV (for K~„=0.8 MeV), 'Us-0. 75 MeV (h~~
=0.52 MeV) relative to the neutron separation energy.
The second hypothesis indicates 'U„-0.6 MeV, 'U~-1
MeV. Both these sets or parameters are considerably
lower [by about ~ MeV on hypothesis (i), and up to 1
MeV on hypothesis (ii)] than those assessed for '"U+n
by fitting the fast neutron fission cross section (see
Sec. VII).

There are two possibilities for explaining this dis-
crepancy. One is that the class-II states at low neutron
energy in the cross section of '"U may be considerably

TABLE XVI. Resonance parameters of fine-structure resonances in the fission cross section of
U —721 eV group. Units are eV or eV (last two columns).

(0)
- I') (n) Remarks

Hc.xI) II
(I y (f) = 0.023)

(i)

2&g,Xg Xg
(ii)

708.3
721.0
721.6

721.6

730.1
765.0
856.0

2.4x10 5

&1.4x10 4

&0.023
&6.5

1.4x10 3

1.2x10 '
6.1x1p 6

1.1x 10

8.2x10 4

6.4x 10 &

&S.7x10 '
&1,7x 10"7

6.4x 10 ~

3.6x 10"~

2.8x 1p 4

2.9 & 10

Hypothesis (i)—quasi-clas s-II
level unobserved
in total cross
section.

Hypothesis (ii)—
quasi-cl as s-II
level with
neutron width
as observed in
total cross
section

0.18

&1.8x 10
=—~u

0.36
0.49
0.84

5.4
. 7e3

12.7
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enhanced in strength by a damped vibrational resonance
effect. The other explanation concerns the possibility
of shape isomeric fission. This is not expected to be
observed in the neutron time-of-flight measurements of
the fission cross section if either the branching ratio
for fission (in competition with gamma. -ray decay to the
normal ground state) is very small or the half-life of
the isomeric state is very much greater than the effec-
tive time resolution of the measurement (which was
about 0.25 psec). If neither of these conditions are ful-
filled then the expected magnitude of the class-II state
radiation width (-20 meV on the giant dipole resonance
model, described in Sec. VI.D.l) implies that delayed
fission from the isomer as well as prompt fission is
contributing to the observed cross sections. The true
class-II fission width will therefore be less, probably
much less, than the values deduced above, and barrier
B will consequently be much higher. To account fully
for the discrepancies both possibilities are probably re-
quired. It does seem, however, that hypothesis (i) is
greatly favored if isomeric fission does indeed consti-
tute the bulk of the observed fission, the inner barrier
height being nearer to the value required by the statis-
tical analysis of fast neutron cross sections by some
400 keV. In this case the fission branching ratio of the
shape isomer is about unity. On hypothesis (ii) the
branching ratio will be about 0.1.

Information may also be obtained from the areas of
the intermediate resonances at higher energies. As ex-
plained above, the hypothesis (i) employed in the analy-
sis of the 721 eV intermediate resonance leads to the
further hypothesis that most of the observed fission is
delayed fission following class-II radiation and the
branching ratio for fission at the isomer state is almost
unity. With this assumption we can analyze the areas
using the very weak coupling formula, Eq. (6.36), sub-
stituting I &

= I'«» =0.023 eV. Because the areas ofII II )
the intermediate resonances up to 25 keV or so do not
appear to fluctuate abnormally we do not use the expec-
tation value formula derived from Eq. (6.36), i.e. , Eq.
(6.41a), which is dominated by the effect of near de-
generacy, but rather the median formula, Eq. (6.37).
The intermediate resonance areas and the deduced coup-
ling widths F~„& &

=2vH, /Dz are listed in Table XVII.
The mean value of the coupling width (including the 721
eV group) is 0.012 eV, which implies a barrier height
'U~-1.25 MeV.

The second hypothesis that may be adopted in the anal-
ysis of these areas is that moderately weak coupling
applies, in which case Eq. (6.20) may be employed to
give the class-II fission width. These fission widths
are also listed in Table XVII. The mean value is 1"~II (~&=3.9&& 10 4, which implies an outer barrier height of
'U~-1.1 MeV. These widths may still be interpreted as
the class-II state radiation width multiplied by the iso-
mer branching ratio. Although the fluctuation of the
values appears at first sight to rule out this interpreta-
tion it is possible that the fluctuations are determined
by the fluctuations of the neutron widths of the few re-
sonanc es in each group carrying significant fission
strength. For sufficiently strong coupling to allow the
validity of Eq. (6.20), the quasi-class-II state must
pick up a neutron width of normal value from its class-

TABLE XVII. Analysis of intermediate resonance areas in the
neutron fission cross section of 3 U. Hypothesis (i): very
weak coupling with class-II fission widths composed predomi-
nantly of the radiation width leading to delayed fission. Hy-
pothesis (ii): moderately weak coupling.

EXII ( + +~II (b.eV)
Hypothesis (i)

rl(c) (e&)
Hypothesis (ii)

~f~(eV)

1213
5715
70 90
7430
7804
9358

11432
14479
15228
15558
18119
23067

0.221
0.0134
0.0382
0.094
0.093
0.025
0.199
0.031
0.223
0.189
0.0405
0.029

4.75x 10
69 x1p 4

2.2 x10 3

5.6 x lp '
5.7 x10 3

1.7 x10 3

1.5 x 10
2.7. x 10

21.96x 10
1.68x 10 2

3.9 x10 3

x10

1.07
2.4
8.3
2.1
2.2
6.9
6.7
1.3
9.7
8.4
2.1
1.9

x10 '
x]p 5

x10 5

x10 4

x10 4

x10 '
x]p 4

x10 4

x10 4

x10 4

x1p '
x]0 4

I neighbors, and this implies 2v' H'/ Dza 1. From this
condition the mean coupling width should be at least 6
eV, implying an inner barrier height, V~-0.45 MeV,
which is certainly much too low and indicates that the
first hypothesis is more satisfactory.

The spacing of the class-II states suggests that the
"ground" state of the secondary well is about 1.85 MeV
above true ground. This is considerably lower (by -0.7
MeV) than the shape isomer state of the neighboring
nucleus '"U.

c. Intermediate structure in ~~Pu

Intermediate structure in the neutron fission cross
section of '4'Pu wa. s first discovered by James (1969)
who found weak fission groups at 767 eV and 29 keV.
Auchampaugh et al. (1971) and Bergen and Fullwood
(1971) were able to make much more sensitive measure-
ments with higher energy resolution and discovered many
more fission groups, giving an estimate for the class-II
level spacing of about 720 eV. Auchampaugh and Bow-
man (1973) deduced parameters of the fine-structure
resonances in the five lowest energy groups with the
aid of high resolution total cross-section measurements.
The parameters of the quasi-class-II levels apparently
revealed by these data are not as definitive as those for
the Pu cross section; the deduced properties of the
class-II states, with comments, are given in Table
XVIII.

It is apparent that the properties of only the lowest
two class-II levels are reasonably well established.
From these we deduce that the mean class-II fission
width, I'&,&-0. 3 eV, and the coupling width, I"&,

& &-2.7 eV. These values (with class-II spacing -900 eV)
~o~ld correspond to barrier heights 'U~, 'U~-0. 5 MeV
above the neutron separation energy of '4'Pu (assuming
ha~ =0.8 MeV and ha+=0. 52 MeV), and these are
reasonably consistent with the parameters established
in Sec. VII.

Intermediate resonances at higher energies do not
completely confirm the above coupling width. If the
areas are analyzed using the formula for moderately
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TABLE XVIII. Deductions on properties of class-II levels re-
vealed in cross section for ~42Pu(n g). Based on resonance
parameters of Auchampaugh and Bowman (1973). Units are eV.

eV it is 0.28 eV. With this value of the coupling width
the inner barrier height U„ is 0.8 MeV above the neu-
tron separation energy.

762.5

1836

&0.26

XH~c

kp (c)—

&4 4

Comment

Neutron width
of

(n),
quasi-cia ss-II
resonance satisfies
constraints
of perturbation
theory by factor
2 below maximum
for I'g (f) = 0.26

xx (~) ~ 0.5
xr(~)80 5

I'y („) very close
to maximum allowed
by perturbation
theory . . stated
limits are probably
very close
to actual values

d. Intermediate structurein ~~Pu

Intermediate structure is apparenL in ihe cross sec-
tions of pu (Auchampaugh et a/. , 1971), but this is too
weak, and the first group at too high an energy, for it to
have been possible to investigate the underlying fine
structure in any detail. The areas of the intermediate
resonances up to 20 keV have been measured, however.
On the assumption thai very weak coupling is operating
we have analyzed these areas using the "median" for-
mula, Eq. (6.27). The value of the fission width was
assumed to be (i) 0.025 eV (i.e. , class-II radiation fol-
lowed by delayed fission) and (ii) 0.2 eV in turn. The
results for the coupling widths I'», &, ~

=»&',/Dz»e
shown in Table XIX. The mean values are 0.21 and 0.1
eV for the two cases, respect. ively. With a class-II lev-
el spacing of 2.7 keV, this implies (u„-S„)/hey„-—1.21,
1.34, or 'U& -S„-1.0, 1.07 MeV, respectively, for
Sco& ——0.8 MeV.

2741

3112

3568

3670

0 ~ 002

&0.021

&0.015

0.007

~60

&30

&70

-60

Has the quasi-
class-II resonance
been observed 7

Do these contribute
one or two class-II
levels P

weak coupling, Eq. (6.20), as the value of 2.7 eV for the
coupling width suggests they could be, the deduced fis-
sion widths of the 1836 and 3112 eV class-II states are
4 and 2.5 meV, respectively, in disagreement with the
values given in Table XVIII. The reason is that the
neutron widths of the quasi-class-II resonances in these
groups are much lower than the average class-I neutron
widths, thus showing that the coupling is not strong
enough, in these two cases at least, for the application
of Eq. (6.20) to be valid. The mean class-II fission
width deduced in this way from the areas up to 30 keV
is 15 meV. Much of the contribution to this average
value comes from a group of three strong intermediate
resonances around 28 keV.

To use the very weak coupling formula for the inter-
mediate resonance areas, Eq. (6.27), we need to have
an estimate of the class-II fission width. With an as-
sumed value of 1& y&

=0 2 eV the mean value of theII
coupling width is I'&, &,) =0.14 eV and with l", «) =0.025~~, (f) ~

2. Very weak coupling with accidental degeneracy

The formal theory for accidental degeneracy is de-
scribed in Sec. III.C'.5.c(ii). There is now one well. —

established example of the phenomenon, already men-
tioned, the 1405 eV intermediate resonance in the cross
section of 240Pu (Fig. 115). Here, two fine-structure
resonances ai 1402.2 and 1408.3 eV share almost equal-
ly a large total fission width of -3.5 eV. All neighbor-
ing resonances have fission widths no larger than 5

meV, so it is clear ihat these two resonances share
almost equally the bulk of the class-II siate wave func-
iion. This can be attributed to the accidental degener-
acy (or very near degeneracy) of a class-I and class-II
level, the actual levels that are the result of diagonal-
ization being repelled by the coupling interaction.

The actual analysis of the 1405 eV intermediate reso-
nance, based on Eq. (3.170) onward, can be simplified
by noting that the sum of the fission widths of all other
resonances in the group is only of the order of I'7o of
those of the two central resonances and therefore forms
an extremely weak perturbation. Our approach is to
assume that the class-II level has been diagonalized
with all class-I levels except the nearly degenerate one,
and we now consider the diagonalization of this approx-
imate class-II level denoted by X„=1 (II) with its de-
generate class-I neighbor, denoted by X, = 2(I).

TABLE XIX. Intermediate resonance areas in the fission cross section of 4Pu. Analysis is on the
assumption of very weak coupling [Eq. (S.27)J.

x, (eV)
I x. [-, ( / ) (eV)

Assn. (i) I'y, (~)
= 0.025

I~„(c) (eV)
Assn. (ii) Iy„(f)——0.2

1650
5500
7700

11300
12000
15600
18000

6.4
5.1
3.6
0.94
1.9
1.2
6.4

0.146
0.24
0.20
0.065
0.135
0.10
0.58

0.050
0.098
0.088
0.031
0.064
0.050
0.30
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f) —v~11 1 (II)(f)

2(f) " 21 1'(EI)(f)

(6.Ssa.)

(6.83b)

ing with the remaining class-II levels, and therefore
the lower value is likely to be the valid one.

Our analysis of the remaining fine-structure reso-
nances fol.lows the perturbation procedure outlined in
the previous section, the quasi-class-II level being set
at 1405.3 eV with a fission width of 3.5 eV. The aver-
age squared matrix element H2 I I (including the near-
ly degenerate class-I level) is found to be 3.6 eV' and
hence the cl,ass-II coupling width I'~„(,) ——1.5 eV. The
expectation value of the reduced neutron width of the
approximate class-II level is 1.4x10 eV' ', this is to
be compared with the value of 3.1x10 ' eV' ' inferred
above, which is in fact quite close to the median value
for the distribution of possible reduced width values.

One more interesting comparison can be made be-
tween the degeneracy analysis and the cross section
data. This concerns the interference to be expected be-
tween the two central resonances in the cross section.
From the two-level analysis we have

FIG. 115. The 1405 eV intermediate resonance in the neutron
fission cross section of Pu showing two fine-structure res-
onances interpreted as being due to the accidental degeneracy
of a class-I with a class-0 level. Data are from Auchampaugh
and %'eston (1975).

We obtain the mixing coefficients W«, tV, 2 from the
values of I',

&f& using Eq. (3.173b), by the use of

I i(f)
f (f) 2(f)

I"2(f)
~&(f ) + ~2(f)

(6.78a)

Thus, from Eq. (3.172), the repulsion f).(=E,, -EI () is
relaied to t.he coupling matrix element between the
class-II state and the state XI =2(I) by

I 2(f)
2 2

2 2H)2 8'(( I ( (f)
(6.79)

We deduce the separation of the class-II and class-I
state from Eq. (3.171), giving

2(E2(I) EI' (II&I I(f) I 2(f)
12 2&f) 1(f)

(6 . 80)

By successive approximations, starting with ~6
~

-3 eV,
I', (f) ——2.0 eV, I'2&f) ——1.5 eV, it turns out that H, (,2)
= 9.8(+0.5) eV' and E,&I&

—E,.&II& ——0.9 eV with an accu-
racy of the order of 20/z.

We deduce the reduced neutron width of the approxi-
mate class-II level from

I (0)l/2 Iyy ~ (0)l /2 Tgg P(0)1/2
1(n) = Vvll 1' (II) (n) —Vv21 2(I) (n) &

~ (0)l/2 gyes ~ (0)l /2 Tgf I ((I)1/2
2(n) — 21 1' (II ) (n) + ~"11 2(I ) (n)

(6.S1a.)

(6.81b)

glvlng

~(O)l/2 Tgg ~(O)l/2 + yg)) ~~ (0)l/21' (II) (n) —""11 1(n) ~ 21 2(n) (6.82)

The observed values of the reduced neutron widths are
0.22x10 a.nd 0.23x10 ~ eV'/, giving possible values
of 3.1&&10 6 and 4. 5&&10 eV'/2 for I"'."/ This re-
duced width can only be picked up by the very weak mix-

From these expressions and the corresponding ones for
the neutron widths [Eq. (6.81)] we have

1(n) 1(f) "~11 1'(II)&f) 1'(II)&n) " ll ""21 1'(IE)(f) 2(E)(n)

(6.S4a)

2(n) 2(f ) —" 21 1' (I I ) (f ) 1' (IE) (n) " 11 ~" 21 1' (I I ) (f ) 2 (I) (n)

(6.84b)

The deduced value of I",'. &'„&,„, [3.1 &10 '(E,.«I) eV)] im-
plies that the first term on the rhs of these two equa-
tions can be neglected, giving opposite signs for the two
products that control the interference; hence construc-
tive interference is expected for the fission cross sec-
tion between the resonances [destructive outside: see
Eq. (3.131)]. This is in agreement with Auchampaugh

and Weston's multilevel. fit to their data.

3. Moderately weak coupling

a. Analysis procedures

For narrow class-II states (fission widths much less
than the class-I state spacing) moderately weak coupling
is defined by the spreading of the class-II state into the
neighboring states to sufficient extent that no single
state carries the bulk of the original elass-II state.
However, there is insufficient spreading to allow com-
parable and significant amounts of two or more class-
II states to be found in the final states. The mathemat-
ical formulation of this mixing problem was outlined in
Sec. III.C.5. The condition for the matrix el.ements
was shown to be

2mH ' &~DII-

For an idealized picket-fence model with uniform class-
I level spacing and uniform squared matrix elements
the pattern of fission widths for the resonant states is
I orentzian [see Eq. (3.185)], and most analyses of data
are based on this fact, the assumption being made that
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in a realistic case the actual fission widths of the reso-
nances will fluctuate according to a Porter-Thomas
distribution [see Eq. (6.10)] about a Lorentzian profile.
While this assumption is certainly reasonable in prac-
tice for the values far out on the wings of the Lorentz-
ian (and can be demonstrated on the more basic as-
sumption of Gaussian behavior of the matrix elements)
it is much more questionable near the center of the
group, particularly if it is rather narrow; the individual
distributions are truncated (maximum value is the
class-II fission width) unlike the Porter-Thomas dis-
tribution, which extends to infinity, and there must be
some degree of correlation amongst the widths.

The most straightforward approach to analysis of this
kind of data is a "differential" one. The fission widths
of the resonances are treated as experimental observa-
tions of the Lorentzian function, and the parameters of
the latter (centroid energy, peak height, and half-width)
are determined by fitting a curve to the "observations"
using the method either of least squares or of maximum
likelihood. Because of the highly skewed distribution
function of the "observations" relative to the ideal pro-
file, the latter method is the more satisfactory. The
procedure has been described by Werz et al. (1973) and
James et al. (1977).

Differential fits turn out to be unsatisfactory if there
are only a few levels within the half-width of the Lor-
entzian profile. This is because the strong central
levels dominate the fit (the faraway levels only deter-
mine the product I'„&q&F„&,&) and these few can be

zz ) xzz c)
wildly untypicxal owing to the Gaussian spread of the
small number of matrix elements that govern their
properties. Numerical tests of the fitting procedure
based on stochastically generated simulations of reso-
nance widths (Lynn, 1972) indicate that little confidence
can be placed in the method.

Fitting procedures of an "integral. " kind turn out to be
better (Lynn, 1972; Lane et a/, 1974). The cumulative
sum of fission widths is plotted as a function of energy.
This "staircase" function is then fitted by an idealized
smooth function derived from a Lorentzian:

I'
z z(f) ~zz(c)

and (&x lH, lkxx)', exactly equal in number to the ob-
served quantities E~ and I'~(». A numerical procedure
has been established for doing this (Lynn and Moses,
1980). From the basic Eqs. (3.181) for the mixing of a
class-II state with a set of N class-I states, together
with the normalization conditions, (3.182) and

Q C2x& x &
= 1

~ Xx = 1 I&l—

Z x&xxx&

we obtain

1g2-
x l+cl ~xx& g c2 /(E E )z &

zz z

2

C~(~zz) 1
&& x III. I

»xx&'

(6.86a.)

(6.86b)

I

Eq — EqCq(q )
= E~ — E~Cq()i. ) (6.86c)

C~(x„)
x (E-E,) E-E, +Z, &~, ia, iq, &'/(E, -E)

giving

C.(;,) =0.„E„—E

Substituted into Eq. (6.86b) this gives the sum rule

(6.86d)

The sum x(E) =—Zz C2x&x &/(E —Ex), which features on the
lhs of Eq. (6.86b) for E =Ex, has I&I+1 poles at E =E„.
These, by Eq. (3.184b), are also the poles of the func-
tion

f(E)
E —Ex +Ex (Xx I II, l Xxx)'/(Ez —E)

[f(E) being regular], and'hence this may be identified
with x(E). By Liouville's theorem f(E) must then be a
constant and it turns out to be unity by calculating the
residue of x"(E) at any pole E„Thus.

E) = E)i.C)i. (x ), (6.86e)

= 1+1 z—+ —arctan (6.85) which in turn in (6.86c) gives

where W= z I'~ (~) . Numerical trials on simulated level
zz

sequences show that the square root of the variance in
the determination of the width ranges from about 50%
for I'„&,&/D, =1.5 to about 30% for I'~„&,&/Dx =12.5.

The concept of the coupling width is more of an aid to
discussion than a physical reality. The quantity that we
really wish to know is the mean squared matrix element
for the coupling. It is just this quantity that is ex-
tracted from the data on very weak coupling, by the de-
termination of the individual matrix elements. It is
also possible, in principle, to extract the individual ma-
trix elements from data on moderately weak coupling.
The equations to be solved are (3.184b) and (3.184e)
[substituted into Eq. (3.190)J together with the sum rule
Z„I'„&z&——I'„„&» to give the unknowns E„,, E„

ExCx&x„& ~ (6.86f)

These two sum rules and the normalization conditions
lead to

(6.86g)

r 2

x= xzz(y)

Z~, (kx lH, l X„)'/(Ez —E„)'+1

+Ex-+Ex =Ex
z

In practice the class-I eigenvalues are found from the
numerical solution of Eq. (6.86d). Once these are de-
termined the matrix elements can be calculated from
Eq. (6.86a) and the class-II eigenvalue from Eq. (6.86f).
A check on the convergence of the numerical process
can be provided by evaluating
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where the g, are the experimental errors on the ob-
served fission widths. The procedure has been tested
on simulated resonance parameter sets, including sets
with stochastically generated errors. The recovery of
the initial values of the matrix elements has been shown
to be remarkably good.

b. intermediate structure/fn U

Narrow intermediate structure was discovered in the
neutron fission cross section of '"U by James and Rae
(1968). The first attempt at determining the resonance
parameters in the lowest intermediate resonance was
made by James and Slaughter (1969), and a. much more
comprehensive study of the cross section was later
carried out by James et al. (1977).

The intermediate resonance at 580 eV in this cross
section seems to be the best known example of moder-
ately weak coupling between a class-II state and its
class-I neighbors. The fission widths of the fine-
structure resonances up to 1000 eV total 190 meV,
while the largest individual value is 8.7 meV (for the
resonance at 515.9 eV). There are severs, l more indi-
vidual fission widths of similar magnitude, e.g. , 4.1
meV (at 455.3 eV), 4.0 meV (at 518.9 eV), 5.0 meV (at
560.9 eV), 7.0 meV (at 582.4 eV), 5.0 meV (at 643. 5

eV), 5.1 meV (at 690.0 eV), and 4.9 meV (at 726.1 eV).
A tight cluster of strong fission resonances around
1100 eV appears to constitute a second, narrower, in-
termediate resonance.

In analyzing the data James et al. (1977) employed
both the method of least-squares fitting to a cumulative
sum of fission widths and the differential fitting method
with maximum likelihood. They improved the latter
method by weighting the likelihood function for each in-
dividual fission width according to the experimental

uncertainty in the value of that width. In applying the
maximum likelihood method they tested the hypothesis
that two class-II levels are present as well as the hy-
pothesis of a single class-II level. 'The former hypoth-
esis is indicated at a significance level of 98.7'. Fits
to the data are shown in Fig. 116.

The parameters deduced for the class-II level are
given in Table XX. The width of the resonance at 580
eV encompasses. 13 class-I levels (D, = 10.6+ 0.6 eV),
and it can be presumed in consequence that the differ-
ential method of fitting these data is fairly sound. 'The
parameters of the 1227-eV level must be considered
much more doubtful, because, in particular, a moder-
ately strong fission resonance observed at 1134 eV has
not been seen in transmission and its fission width
could therefore be much more substantial than the val-
ue assigned to it in the analysis.

James et al. have also observed intermediate struc-
ture at higher energies (see Fig. 117). Assignment of
individual class-II levels is difficult, because two or
more observed groups may belong to the same class-II
state owing to the fluctuation phenomenon (see, e.g. ,
the clusters between 4.0 and 4.6 keV, which probably
constitute one or at most two class-II states). James
et aE. give an upper limit of 2.1 keV for the class-II
spacing. Using Eq. (6.19) with an additional fluctuation
factor [Eq. (6.22b)] the class-II fission widths can be
extracted from the areas of the intermediate fjssion
resonances. 'These values are listed in Table XX. The
mein class-II fission width of 81 meV, together with
the class-II spacing, imply, on the strong damping as-
sumption, barrier parameters of

(U~ -&„=0.7 MeV, on the assumption that her~ = 0.52
MeV).
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FIG. 116. Fission width in the neutron fission cross section of U as a function of neutron energy. The full curve is a fit using
experimentally weighted maximum likelihood, and the dotted curve is based on unweighted maximum likelihood (giving a width for
the higher class-II state 40% lower than that from the "weighted" analysis). Data and fit from James et zg. (1977).
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TABLE XX. Properties of class-II levels in the cross section
for U(n j'). From James et al. (1977) (an arithmetical error
occurred in this paper and has been corrected in the values
listed below, supplied by G. D. James).

(eV)
)

(mev)
~~qq (c)

{eV) Comments

580+ 16 85+ 20 136+20 Analysis by I.orentzian
fitting to fission
width of fine-
structure resonances.

1 227 +65 5.1 -22 174+,'4, Ditto

3 100

4 575

7 845

11886

13076

15

50

263

58

130

Value obtained from
area of intermediate
structure resonance
(neutron width assumed
constant) .

Ditto

Ditto

Ditto

Ditto

c. In termediate structure in ~~Np

The neutron fission cross section of Np was the first in
which narrow intermediate structure was discovered

The much sparser data on the coupling width suggest
that

('U„-S „)/'hen„= 0.25,
allowing for an effective number of transition states at
the inner barrier of -2.4 (see Sec. VII.C.1.). Analysis
of the overall features of the fast fission cross section
(see Sec. VII) suggests that the inner barrier is much
higher than this. It would appear therefore that a
damped vibrational resonance may be enhancing the
coupling width in the slow neutron energy region.

(Paya et a/. , 1968; Fubini et al ., 1968). Since the first mea-
surement a great deal of precise work has been done (Paya.
et a/. , 1.969; Brown et al. , 1970; Kolar et al. , 1971;
Keyworth et a/. , 1973; Plattard et a/. , 1976), so that
by now many intermediate resonances have been ob-
served and the fine-structure resonance parameters of
the group at lowest energy are almost completely
known.

The remaining uncertainties in the lowest energy
group, at 39.9 eV (shown in Fig. 118), are such, how-
ever, that it is not clear whether this group should fall
into the classification of very weak coupling or that of
moderately weak coupling. 'The fission cross section is
dominated by a resonance at 39.9 eV with a fission
width of 3.3 meV (Plattard et a/. , 1976); the neighbor-
ing resonances have fission widths of the order of 0.4
meV at most. But a careful-examination of the shape
of the central resonances'has reveale'd another weak
unresolved resonance with a fission width similar to or
greater than, that at 39.9 eV; the magnitude of this
width appears crucial to the interpretation of the inter-
mediate resonance. The analysis of Plattard et al. sug-
gests that the fission width of the resonance at 39.7 eV
is -1.6 meV; with this value the fission width of the
resonance at 39.9 eV i8 reduced to =0.9 meV.

The spacing of the resonance fine structure is 0.69 eV
(Paya et a/. , 1968) for s-wave resonances of both spine.
It is fundamental to the theory of fission intermediate
structure as developed in this article that the total
angular momentum of each class-II state, like that of
each class-I state, is a good quantum number, and no
coupling between the two classes of states can violate
this property. It has been checked that the important
fissiori resonances in the region of 40 eV do have the
same spin (Keyworth et a/. , 1973) and its value is j= 3.
Hence, the relevant class-I spacing D, (J = 3') = 1.17 eV
(spin and parity of "'Np are I'= —', ). It is clear from
the dominance of the fission widths of the two central
resonances that the width of the intermediate resonance
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FIG. 117. Neutron fission cross section of 3 U above 2 keV neutron energy. From Jaxnes et al. (1977).
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cannot be much greater than the class-I spacing.
A very rough and simple analysis of the data con-

firms this. We have extracted the product (&, ~H,
~

&x)'
+g~ (f ) for all the J= 3 resonances from 20 to 55 eV
(together with a few of unknown spin but significant fis-
sion width) using the simple Lorentzian formula, Eq.
(3.185), for a class-II level at 39.7 eV, and two as-
sumptions about the half-width W, i.e. , (i) W= 0 and
(ii) W = 1.5 eV. With assumption (i) we find that
2w(A. , ~H,

~

A.x)'I"~ &&&/Dz = 8.4 x 10 ' eV', and with assump-
tion (ii) the same quantity= 10x 10 ' eV'. The smaller
of the two widths I'~ („, I'~ (&, should equal 5.3 meV
(the sum of the observed fine-structure fission widths)
and this indicates 2W= 1.7 eV for either assumption (i)
or (ii.). Notice that no a Priori assumption about mod-
erately weak coupling of a narrow (fission width) class-
II level or of very weak coupling of a broad class-II
level [see Sec. III.C.5.c(v)] has been made.

Apart from the disagreement between the initial input
(W= 0) and the result, assumption (i) would be untena-
ble on statistical grounds; the central ten resonances
give a mean squared coupling matrix element only one
quarter of that from the full range. The probability of
this, or a smaller value, occurring can be calculated
from the X' distribution with 10 degrees of freedom;
it is -10 4.

'The data have also been analyzed by fitting an inte-
grated Lorentzian curve to the cumulative sum of the
fission widths (Moses, 1976). The result depends on
the value assumed for the fission width of the 39.7 eV
resonance, ranging from 2S'= l.3 eV for very small

FIG. 118. Neutron fission cross section of ~Np in region of 40
eV. Data from Paya et al. (&969). For explanation and dis-
cussion of t&e curves see reference.

values through 28".=0.55 eV for I„(z& ——1.5 meV to
2&=0.18 eV for I'~«& ——9 meV. The overall error in
these results due to experimental uncertainties
in the fission widths of the other resonances is of the
order of 10%. It is clear from the variations in the ex-
tracted values of the envelope width 2W that the central
widths are unduly affecting the determination of the re-
quired quantity. In the procedure of Lynn and Moses
(1980), which is least sensitive to the details of the
central levels, 2W is 1.88 eV for the data of Plattard
et al. (1976).

Some other interesting properties of the 40 eV inter-
mediate resonance have been measured. Kiuken et al.
(1972) measured the angular distribution of fission pro-
ducts from the (n,f) reaction with the target nuclei
aligned. 'They attempted to interpret these data in
terms of unique values of total angular momentum J
and projection of angular momentum K along the cylin-
drical symmetry axis of the nucleus as it passes
through the deformation channel at the outer barrier.
'The pair of values implied by experimental data were
J= 2,K= 2. The J value is in conflict with that of Key-
worth et al. (1973) determined by polarization methods.

he discrepancy can be resolved if it is assumed that
two or more deformation channels, with different E
values, are about equally penetrable at this excitation
energy. This accords with current ideas on the density
of deformation channels at the outer barrier of an odd
nucleus (Lynn, 1974b). An expression for the effective
number of available channels at given excitation energy
below the barrier energy is given in Sec. VII.C.1. [Eq.
(7.30)]. With the barrier level density parameters also
given in that section this number is 3.6 in the present
case.

This factor for the effective number of channels must
also be taken into account in interpreting the inter-
mediate structure parameters in terms of barrier
heights. If the average value of I'~ &, is assumed to be
5.3 meV (and this value appears to be borne out by the
approximate fission widths deduced from the areas of
the higher-energy intermediate resonances) and the
class-II level spacing for one spin only is taken as
80 eV (twice the observed spacing (Paya et a/. , 1969);
see Fig. 119), the outer barrier height relative to the
neutron separation energy is

('Ue-S„)/h(ue = 1.43,
giving U~ -S„=0.65 MeV for @~ = 0.45 MeV. Note that
in this interpretation it has been assumed that the ob-
served fission width is entirely due to prompt fission.
The smallness of its value does put this assumption in
doubt. The observation couM be that of delayed fission
from the shape isomer of "'Np (if its half-life is sub-
stantially less than 1 p.sec), but this is not likely be-
cause the observed isomer of the neighboring nucleus
of "'Np only has a branching ratio to fission of -10 '.
In interpreting the value of the coup'ling width an even
larger number of effective channels (7.2) must be al-
lowed for the inner barrier (see Sec. VII.C.2.). With
this the barrier height relation is

( 'Ug —S„)/8 cog = 0.72,
giving 'U„-S„=0.47 MeV for k„= 0.65 MeV. These
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barrier heights both lie within 300 keV of the values re-
quired to fit the fast neutron cross section (Sec. VII).

If the roles of the barrier heights are reversed [i.e. ,
the intermediate resonances are interpreted as very
weak coupling of the class-I states to a broad class-II
level as described in Sec. III.C.5.c(v)] the discrepancy
with barrier parameters required to fit the fast neutron
fission cross section becomes very much worse.

It should be noted that the above interpretation, in
which it is assumed that both possible angular momen-
tum states for s-wave neutron resonances J'= 2+, 3' are

TABLE XXI. Areas of intermediate resonances in the fission
cross section of 23 Np [data from Plattard (1973)]and analy-
sis.

E), (eV) A y (b.eV)

(Q ) (eV )
(assuming I'~II ~y~

= 0.003 eV,
I'y = 0.03 eV)

119
200
233
253
283
335
372
426
474
553
584
669
719
808

0.78
1.6
0.49
0.50
0.43
0.31
0.74
0.50
0.34
0.13
0.26
0.52
0.41
0.51

0.061
0.17
0.054
0.058
0.055
0.043
0.11
0.076
0.056
0.023
0.048
0.105
0.083
0.11

FIG. 119. Neutron fission cross section of 7Np in region 100-
500 eV [from Plattard et aE. (1976)].

about equally fissionable on account of the density of
deformation channels available for odd nuclei, is in
some conflict with observations on the distribution of
spacings of the intermediate resonances at higher en-
ergies (Fubini et al. , 1968). This appears to satisfy
the Wigner relationship for a single set of levels with
good quantum numbers [Eq. (6.6)]. However, because
of the Porter-Thomas fluctuations of the fine-structure
components, there is a clear conceptual difficulty in
distinguishing uniquely one intermediate resonance
from another. Further development of methods to as-
sign "signatures" of class-II states to the individual
fine-structure resonances (e.g. , of the type mentioned
above in which the angular distribution of fission pro-
ducts is measured) will be required to resolve this
question.

We have analyzed the areas of the intermediate reso-
nances at higher energy as measured by Plattard (1973),
see Table XXI. Because the data on the 40 eV inter-
mediate resonance indicate that this is an intermediate
case between moderately weak coupling and very weak
coupling we have in the first place used the very weak
coupling area formula, Eq. (6.37), for the median po-
sition of the class-II level. We have assumed a class-
II radiation width of 0.027 eV and a class-II fission
width of 0.003 eV in this analysis. 'The average value of
the coupling width, including the value of 0.55 eV for
the 40 eV group, is 0.107 eV. This leads to the value

(u„-S„)/'8'&u„= 1.12

(allowing seven effective channels), or U„-S„=0.73
MeV (assuming hem„= 0.65 MeV).

4. Weak coupling to class-I I states with broad fission
width

a. General

This case bears many similarities to that of moder-
ately weak coupling to a class-II state with narrow fis-
sion width. In particular the pattern of fine-structure
fission widths is expected to be basically Lorentzian
(with Porter-Thomas fluctuations about the Lorentzian
envelope). In fact there is better justification for this
expectation than there is in the alternative case. The
areas of intermediate resonances are expected to be
governed by the same general formulas (see Sec.
VI.C.I.a).

The differences should be found, in principle, in the
details of the microscopic cross section. 'The presence
of another S-matrix pole, in addition to those governing
the fine-structure resonances, lying at a comparatively
large distance below the real axis in the complex ener-
gy plane, must give rise to some interference effects.
In practice such interference effects can hardly be ob-
servable in any but the most precise of measurements
and analysis. This is illustrated in Fig. 120 in which
are shown the cross sections calculated from a simula-
ted set of A-matrix parameters generated from a sto-
chastic set of class-I parameters and coupling matrix
elements and a postulated class-II state. The details
of some of the class-I and A-matrix parameters are
given in Table XXII together with parameters of the
S-matrix poles to which they g'ive rise. As expected
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ulated cross sections and fits for weak coupling of class-I states to a class-IZ state with large fission width (I Xyg f)
)& D&). Parameters are given in Table XXII.

the R-matrix and S-matrix parameters have little re-
semblance. An R-matrix fit to the cross section leads
to a. set of R-matrix parameters which are similar 'to

the S-matrix poles, except that the distant pole is ab-
sent. 'The fit is good and the similarity between the
fitted R matrix and the S matrix indicates that the
cross section has almost the exact appearance of mod-
erately weak coupling.

Effects that obviously cannot be described by a simple
R-matrix fit based only on the apparent fine-structure
resonances do occur if the ela,ss-II coupling and fission
widths are comparable in size. A simulated example
is shown in Fig. 121 with parameters listed' in Table
XXIII. The fit shown in Fig. 121 was the best that

could be procured and shows considerable discrepancy
with the simulated cross section.

We conclude therefore that the interpretation of
broad intermediate resonances (I'~»D, ) is generally
ambiguous and is likely to remain so for some time in
the present state of the experimental art. There are
some data extant, however, for which there seem to be
good reasons for interpreting as weak coupling, strong
fission rather than vice versa.

b. Intermecfiate structurein 2~Pu

The neutron fission cross section of "'Pu has been
measured in the low- and medium-energy ranges by

TABLE XXII. Part of the set of level parameters describing the simulated cross sections of Fig.
120. The class-II state has fission and coupling widths I"y„~~) = 20, I'~ ~~)

= 4.3. The unit for all
parameters is the mean class-I level spacing D&.

E),)
Class I
~~& (~) ~r "n

Coupled

~(n)

Poles
+(a) pa)

Cross-section fit
I II x(n) I ~y)

-0.932
-0.037

0.928 0.0022 1.89
1.072 0.0051 0.0056 1.072 0.0048 0.(3)57

1.934 0.0046 2.574

0.0070 0.387 -1.011 0.0089 0.299
0.0147 0.032 -0.056 0.0156 0.222

0.256 0.(3)3 2.813

-0.947
—0.038

0.792
0.903
1.0 72

0.091
0.041

15.154
0.414
0.025

-0.947 0.00 77 0.0665
-0.037 0.0182 0.0050

0.928 0.0024 0.390
1.0 72 0.0048 0.009

2.246 0.00 70 0.274

2.585 0.0248 0.577
2.369 0.{3)2 0.605

2.250 0.082

2.577 0.164

2.25 0.0070 0.053

2.58 0.0259 0.125

3.465 0.0051 0.015
4.632 0.0158 0.066

3.141 0.0353 4.503
3.478 0.0016 0.255
4.649 0.0130 0.084

3.465
4.635

0.028
0.047

3.47 0.0049 0.0036
4.64 0.0128 0.0125
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FIG. 121. Simulated cross sections and fits for coupling of class-I states to a class-II state when the coupling and fission widths
are of comparable magnitude. Parameters are given in Table XXIII.

Silbert et al. (1973). At low energies (to a few hundred
eV) the capture cross section has also been measured
and this has enabled Silbert and Berreth (1973) to ana-
lyze the fine-structure resonance parameters across
the intermediate resonance at 285 eV.

'The central resonance in this group, at 285 eV, has a
fission width I'~«&= 3.5 eV. The other resonances all
have fission widths of the order of or less thari 100 meV,
the two largest being at 192 eV (I',

&z&
——130 meV) and

300 eV (I'~&&&= 102 meV). This case could apparently be
one of very weak coupling analyzable with first-order
perturbation theory (see Sec. VI.E.l). We have carried
out an analysis of this kind over the central 16 reso-
nances, and this results in an estimate of the coupling
width

I'
z „(,) = 2zzH,'/D z

= 17 eV,
which is a little too large for very weak coupling to be

a good description. More importantly, however, this
detailed analysis gives I'„',,(„)= 1.46 x 10 eV'~2 for the
maximum value of the reduced neutron width of the
hypothesized quasi-class-II resonance, 3.06 x 10 ' eV' '
for its expectation value, and 1.7 x 10~ eV' ' for the
median value of the distribution of possible reduced
neutron widths. The observed value for the 285 eV
resonance is 1.54 x 10 ' eV' ', which seems to rule out
the very weak coupling interpretation.

The hypothesis of a broad class-II fission width
therefore seems the only tenable one. The 285 eV reso-
nance would then be interpreted as essentially a class-I
resonance close to the class-II state and having a large
coupling matrix element to yield a fission width with a
value that has fluctuated well above the expectation
value at that energy. The appearance of the next two
substantial fission resonances at a separation of the
order of 100 eV suggests that the Lorentzian, hence

TABLE XXIII. Part of the set of level parameters describing the simulated cross-section of Fig.
121. The class-II state has fission and coupling widths of I'y„(&) ——20, I y, (~) = 17; the unit for all
parameters is the mean class-I level spacing D .

Class I
~& (n)I

Coupled
I'~(n)

S-matrix poles Attempted fit
I x(g) +m I m Gmg) Gn1y') Eg I g(n) I g'(g)

(a) (a)

2.822
3.895
5.626
5.788
6.421
8.015
8.596
9.247
9.638

10.267
11.657
12.167

0.0110
0.0114
0-0980
0.0006
0.0217
0.0036
o.(7)4
0.0135
0.0087
0.0158
0.0097
O. (6)23

2.822
5.601
5.655
6.055
7.788
8.047
8.598

(-)o.o112
0.0797

(—)o.o263
0.0146

(—)0.0142
o.(3)3

(—)0.(5)4

0.(4)5
0.146
0.134
0.306
1.490
0.202
o;(3)2

2.822
5.632
5.706
6.053
7.622
8.019
8.598

0.031
0.132
0.241
0.419
2.153
0.038
0.035

0.012
0.081
0.0044
0.024
0.0075
0.0034
o.(4)2

o.(4) 7
0.023
0.296
0.589
3.5
0.017
0.(3)1

2.82 0.011 0.(4)4
5.63 (-}O.114 O.O11

(-)O.O19 O.379

8.02 0-003 0.018

9.624 0.0129 0.0104 9.627 0.041 0.012 0.009 9.62 0-012 0.009
10.267 0.0055 1.455 9.853 1.210 0.0077 1.62 9.87 0.0039 0.791
11.667 (-)0.0079 0.066 1.1.651 0.071 0.0086 0.042 11.65 (-)0.0088 0.040
12 178 0.(4)4 o o37 12 17o o o47 o.(4)7 12.18 O. (4)3 0.027

Rev. Mod. Phys, Vol. 52, No. 4, October 1980



864 S. Bj&&irnholm and J. E. Lynn: The double-humped fission barrier

class-II, width approaches this order of magnitude. A
reasonable guess at the parameters of the Lorentzian
might be (I'~»)(E~ ) -400 meV, I', & &

-50 eV, giving

H2 —7.5 eV', I", , -4.5 eV.

The fitting procedure of Lynn and Moses (1980) yields
( )=4.3 eV, I'~ (g)=28 eV.

Silbert and Berreth (1973) point out that the overall
statistical distribution of fission widths in this inter-
mediate group is peaked (at about 5 meV). This sug-
gests that the distribution of squared coupling matrix
elements may not be as broad as a Porter-Thomas
form, and this could be explained by the hypothesis
that there is more than one effective "charinel" for
coupling across the intermediate barrier. (Note, how-
ever, that this is a physical concept that is not con-
tained naturally within the theoretical development of
the coupling matrix element, as outlined in Sec.
III.C.5.b). The low-lying density of J'= a states at the
inner barrier is expected to be about 14 MeV ', and the
effective channel number [see Eq. (7.30), Sec. VII.C.1)
might therefore be expected to be -2.4. However, if
the measured fission widths from 18 to 500 eV are di-
vided by the Lorentzian expectation curve with the pa-
rameters given above, the peak in the distribution re-
ported by Silbert and Berreth is largely washed out,
and the distribution is not too dissimilar from a
Porter-Thomas form. Therefore this case does not
provide us with definitive evidence of "multichannel
C Oup ling.

'The areas and widths of the intermediate resonances
at higher energies have been determined from the data
of Silbert (1969). From the evidence of the detailed
fine structure of the 285 eV intermediate resonance as
well as the apparent size of the higher resonances, it
is clear that fission usually saturates at their center.
Therefore the apparent width of these resonances is
not their true width. The true width is given by the ex-
presslOn

made in Sec. VII from the behavior of the fast neutron
fission cross section.

c. Intermediate structure In 4 I u

o (E)v E
az W =

&&-»~ (o(E)~E&
(6.88)

"9Pu is normally considered to be fissile by slow
neutrons, and as such would not be expected to display
narrow intermediate resonances in its neutron fission
cross section. Because the compound nucleus "'Pu is
even, however, compound nucleus states having cer-
tain values of spin and parity may still lie near or be-
low the lowest appropriate deformation channel, at
both the inner and outer barriers. 'The J'= 1+ states,
which can be formed by absorption of s-wave neutrons
by "'Pu (J'= a'), are expected to be such a set. The 1'
state is not expected as a simple low-lying collective
state in the spectrum of an even nucleus for either
normal or barrier deformations; the lowest candidate
for the intrinsic state in the description of a deforma-
tion channel at the barriers is a combination of a
mass-asymmetry vibration (R '=0 ) and a bending vi-
bration (K'= 1 ), or a two-quasi-particle (broken pair)
excitation coupled to A'= 1+.

For this reason intermediate structure in the 1+

resonances of the "'Pu cross section, overlying the
broad 0 resonances in which no more than very rudi-
mentary intermediate structure is expected, has been
sought (Patrick and James, 1968; Paya et a/. , 1969).
The assumption that the structure is indeed confined to
the 1' resonances has been confirmed by Trochon et al.
(1970) who determined resonance spins by measurement
of the elastic scattering cross section of 23 Pu. The
early attempts at analysis employed the autoeorrelation
method first applied to neutron cross-section data by
Egelstaff (1958). In this, a sequence of normalized lo-
cally averaged cross sections are defined for a standard
energy interval S' by

1 I ~g(c) I)z(f)
y& ( xn& ».&&&f&) 2 (F F ))t~ «)+

(6.87)

and serial correlation coefficients

cov [a~( W); a;,»( W)]
[vara, ( W) .varaz, ~(W) ]~&"

(6.89)

which is obtained by substituting a Lorentzian form for
the fission width into the competition expression I"~&f &/

Another relation between the coupling and fission
widths of the class-II states is obtained from the inter-
mediate resonance areas by use of Eq. (6.19), together
with a fluctuation factor for which we have adopted Eq.
(6.24b). The results of the complete analysis are
shown in Table XXIV. The mean coupling width I'„
= 7.1 eV; this yields (with Dn —900 eV)

(z~-S„)/Ko&„= 0.48,

or U„-S„=0.38 MeV if 5~~=0.8 MeV. 'The mean fis-
sion width I ~ (&)

——180 eV is sufficiently large to sug-
gest that the outer barrier for spin J'= ~+ states is near
or lower than the neutron separation energy. These
values are in qualitative agreement with the deductions

are determined. The data can thus be reduced for a

E'),„{eV) A ),„(b.eV S~ (eV) I'g„(f~ (eV) I'y, «~ (eV)

2000
2900
3300
4000
5600
6000
6200
6400
6900
8700
9600

965
1340

706
950

1200
560
360
460
630

1300
970

400
170
300
100
300
100

~200
200
200
600
500

350
48

200
~15
180

170
160
130
440
370

1.8
10
2'

25
7

-11
1.6
2.2
4
9
7

TABLE XXIV. Areas and widths of intermediate resonances
in the fission cross section of BPu [&iata from Silbert (1S69)].
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the correlogram have a probability of occurring from
a purely statistical grouping of fine-structure resonan-
ces of less than 0.1%. James and Patrick (1969) have
returned to the original cross-section data, averaged
in 33.3 eV groups, and attempted to define the inter-
mediate resonances by fitting a curve of the form

Z s

LU
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~ oZ
QJ I—o D

o 0K crD
UJ

CL ~oD UJ)
LLj

I& II
cI

|I'

50

k
FIG. 122. Autocorrelogram from data on the neutron fission
cross section of Pu (James and Patrick, 1969). The cross
section is averaged over energy intervals of W=33.3 eV.

range of values of W. A typical correlogram thus pro-
duced from the "'Pu neutron fission cross section is
shown in Fig. 122 for 8'= 33.3 eV. 'The peaks that ap-
pear at energy intervals of typically 4k ~ W= 450 eV are
taken as indications of intermediate resonances with a
local spacing of about that value. Perez et al. (1969)
have shown that this is not a good measure of the av-
erage spacing of the intermediate resonances; if the in-
dividual spacings are assumed to have a quasi-signer
distribution with long-range correlations, as described
in Sec. VI.B.3, then the correlogram would rise mono-
tonically to an- asymptotic value with increasing k.

Nevertheless, Fig. 122 is strongly indicative of in-
termediate structure, and several of the peak values in

TABLE XXV. Parameters of intermediate resonances and
deduced properties of class-II state in the neutron fission
cross section of 239Pu.

982
1350
1800
2416
2800
3200
3817
4517
5217
5617

317
133
150
266
266
233
266
600
200
316

372 x 104
53 X1Q

101x 1Q4

154x 1p4

264x 1p4

227 x 104
248x 104

114p x 1Q4

164x 104
217x 1p4

6.0
1.9
4.2
27
5.7
6.2
5.5

11.0
5.5
3.7

222
102

92
222
185
151
190
449
131
264

EE
(eV) I~EE ~f~ (eV) ~yE, (b.eV ) IzEE~~~ (eV) I"yEE~&& (eV)

10 K)tg
(+f )333 ev g (@ @ )2 (Zp )2 S (6.90a)

where

z&„) kzz(c) z. zz(f)p (0)
0 r .I

(6.90b)

2l- r Or, = I 2
I XEE(c) rXEE(f) DE

&g2eff &g
E

(6.90c)

'The numerical term 70b ~ eV' ' is an estimate of the
contribution from the spin 0 resonances. 'The para-
meters of the intermediate resonances are given in
Table XXV, and the data are shown in Fig. 123. If the
data are divided by the fitted curve, a relatively
structureless correlogram is obtained.

The average coupling and fission widths from the da-
ta in Table XXV are I'~

&,&=5.2 eV, l"~ &) = 200 eVe
A.g (f )

The class-II level spacing is D~= 515 eV. 'These re-
sults indicate that the inner barrier for J'= 1' states is
about 0.45 MeV above the neutron separation energy
(S„=6.52 MeV). Reference to the barrier height (for 0'
states) of "'Pu, (Iuoted in Sec. VII, indicates that the
first 1 inner barrier state lies -1.4 MeV above the in-
ner barrier. On the other hand the class-II fission
width indicates that there are already about two defor-
mation channels of J'= 1' fully open over the outer bar-
rier at the neutron separation energy. This indicates
that the lowest 1' states may occur at a considerably
lower energy in the spectrum of states at the outer
barrier deformation than at the inner barrier, and may
well be related to lack of reflection symmetry in the
shape of the nucleus as it passes over the outer barrier
(see Sec. VII).

'The data on intermediate structure in the neutron
fission cross section of "'Pu together with that in the
region. of 5 MeV excitation energy from the (d, pf) re-
actiori in the same nucleus give fuller evidence on the
level density behavior of class-II states than we have
for any other nucleus. From the neutron fission cross
section we find that the class-II spacing of "'Pu at ex-
citation energy 6.5 MeV is -500 eV (for spin and parity,
J'= 1+). The class-II spacing at 5 MeV in "OPu is de-
duced from the intermediate structure to be -11 keV
(Glassel et a/. , 1976); it is inferred [from the strength
of quadrupole fission observed in the angular distribu-
tion of photofission products of 2ecPu (Rabotnov et al. ,
1970), and the angular distributions of the d, pf peaks]
that the spin and parity of these states is J'=2'.

If we assume that the dependence of the class-II level
density on effective excitation energy is similar to that
of class-I levels we can infer (from the level density
parameters in Sec. VII.B.3) that the energy of the shape
isomer state of 4 Pu is E~ -2.6 MeV.
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FIG. 123. Neutron fission cross section of Pu faveraged over 33.3 eV intervals and fitted according to Eq. (6.90)] with parame-
ters given in Table XXV.

VII. GENERAL TRENDS IN FISSION ABOVE AND
BELOW THE BARRIER

A. Introduction

In Secs. IV-VI we have discussed all the special in-
termediate structure phenomena that can be expected
as features of the double-humped barrier, and we have
analyzed the considerable amount of data on these.
Apart from such data there is a large amount of fission
cross-section measurements available that do not show
structure related to spectroscopic features of the sec-
ondary well, but nevertheless are directly dependent on
the double barrier and can be made to yield important
information for testing the theoretical development of
deformed nuclear structure and for future use in appli-
cations of nuclear reaction theory.

Because of the wealth of parameters implied by the
double-humped barrier, no single fission cross section
and its functional dependence on excitation energy can
be made to yield a unique set of barrier parameters for
the relevant nucleus. Rather we must assume general
trends for the barriers over the full set of actinides,
being guided to some extent by the theoretical expecta-
tions, and, more importantly, by the deductions al-
ready made from the study of structure effects, prin-
cipally those on yields of spontaneously fissioning iso-
mers. Even with this use of systematic trends we still
find it necessary to assume that certain parameters
are unchanged over the full range of the actinides.
These are principally the barrier penetrabilities (he@~

and hcos) and the level densities of intrinsic states at
the barrier deformations. With this assumption of no
variation (other than that due to the odd-even character
of the nucleus) the barrier heights of a large number of
the actinide series of nuclides can be deduced.

B. Statistical transmission coefficients

1. Elastic and inelastic neutron channels

The general concepts of the statistical treatment of
cross sections of reactions that proceed through a
compound nucleus mechanism were introduced in Sec.
III.B. The simplest form of general equation for a re-
action cross section integrated over. all angles of emis-
sion of the outgoing particle is written in terms of the
transmission coefficients introduced there as

(J fr) J & T (c') ~2 g~q T~+ (c)T (e')

where the sum. over c" is to be made over all open
channels. In applying this expression to fission cross
sections in the barrier region of actinide nuclei the
chief competitive processes are neutron emission to
the ground and excited states of the target nucleus,
and, to a lesser extent, radiative transitions to lower
states of the compound nucleus.

If the compound nucleus is excited by the bombard-
ment process to an excitation energy not too Inuch
above its neutron separation energy, and the magnitude
of the compound nucleus formation cross section for
each total angular momentum and parity J' can be cal-
culated fairly accurately, it is possible to use Eq. (7.1)
in a. full Hauser-Feshbach (1952) treatment in which the
transmission coefficient for each excited state of the
target nucleus is calculated from its energy of excita-
tion and spin and parity quantum numbers. The full
compound nucleus formation cross section for neutron
bombardment at energy E„of a nucleus. of spin I and
parity ~i r xample, is

(7.1)

I:+ 2 4 s
&„(cN)(+ ) = ++ p k(~ )TJ („,~ ~(E„) (7 2a)

J s= -]/21 E= -sl

from which the components of given 4' are deduced. In
Eq. (7.2a.) the quantity s is the channel spin in the en-
trance channel and l is the neutron orbital angular mo-
mentum. The parity m of each term within the sum on
the rhs of Eq. (7.2) is implied by the condition

( 1)'vr =7r, . — (7.2b)

The contribution of the neutron channels to the sum in
the denominator of Eq. (7.1) is

ZT:=ZZ Z Z, T~ (,„,(E —r. .„), (7.3a)

where g,.„is the excitation energy of the state i" of the
residual nucleus defining the channel n" and I" is its
angular momentum. The sum over orbital angular mo-
menta f" on the rhs of (7.3) is further limited by the
condition

(7.3b)

w,.„being the parity of the excited state of the residual
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nucleus. The subscripts i" and E", which with 8", col-
lectively define the channel, will often be denoted simply
by n".

Expressions for the individual neutron transmission
coefficients ean be obtained from B-matrix theory as
follows. The basic expression for the ratio of average
neutron width (in a single channel) of the B-matrix
states to their level spacing is

" = 2P (E ) (E )
Jfr

(V.4)-

o„„=m&„g(J ) (1 —
~
U„„~') (7.6)

for the definition of the compound nucleus formation
cross section, U„„being the collision matrix element
averaged over many levels. If U„ is eal.culated from
R-matrix theory, with the possibility of direct reactions
being ignored, Eqs. (7.6) and (3.41) lead to

2mr~w &„)/D~w
(1+mr, .(„)/2D,,)' (7.V)

This expression is also obtained by Lane arid Thomas
(1958) as a result of deriving [using the reduced R-ma-
trix formulation described in Sec.III.C.3.g(iii)] the aver-
age cross section for a specific entrance and exit chan-
nel. Their derivation rests on the restrictive assumption
that in all other channels c", which are eliminated from
the reduced R matrix, 2mI;, )/D « l.

Equation (V.V) is approximated by Eq. (7.5) for small
values of r&„)/D. Equation (7.7) reaches a maximum
value of unity for 2mI'&„)/D=4, and then diminishes to
approach the value of 16/(2mI" &„,/D). This asymptotic
part of the behavior of the transmission coefficient is
still a slightly dubious feature. Moldauer (1967) has ex-
amined its behavior through the intermediary of 8-ma-
trix theory [see Sec.III.C.3.g(iv)], calculating it for
various simple models of the R-matrix parameters. He

in which P, is the penetration factor of Eq. (3.108) gov-
erning, in this case, the penetration through the centri-
fugal barrier, and s~,z is the strength function describ-
ing the intensity of the R-matrix states just within the
barrier, i.e., ratio of average reduced width Z&JQ( gg)

to level spacing DJ~; it is governed in principle by the
total angular momenta and excitation energies of the
compound and target (or residual) nuclei, and the or-
bital angular momentum of the emitted neutron, but is
much l.ess sensitive to these factors than is the penetra-
tion factor.

At the relatively low bombarding energies at which
cross sections are dominated by narrow resonances
the transmission coefficient is deduced by averaging
the cross section [of Eq. (3.41)] over the single-level
Breit-signer form to give

(7.5)

In fissile nuclei at low neutron bombarding energies,
and at higher energies in other nuclei, the resonances
are broader (relative to the level spacing) and the cross
sections have interference, or "many-level" terms that
lead to the breakdown of the simple linear relation
(7.5). From simple considerations of statistical fluc-
tuations in cross sections Feshbach et al. (1954) have
proposed the expression

finds that relation (7.7) holds for one, two, and three
channel models with uniform or harmonic behavior of
the reduced widths of the levels. He al.so finds the re-
lationship

(7.8)

between the transmission coefficient and the 8-matrix
partial strength function I'&',")'/D, giving a connection
between S-matrix and R-matrix strength functions:

(c ) if (c)
2D 2D (7.9)

p &'„'(U) = C, exp(U/e, ),
Equation (4.4) takes the simple form

(7.10)

x G, exp () —. (E„+8,)
1

(7.11)

The level density pa, rameters to be used in corijunction
with these equations are described in Sec.VII.B.3. The
value of the compound nucleus formation cross section
can be calculated for one (entrance) neutron channel

Numerical parameters for the transmission coeffi-
cients are usually calculated from an optical model of
nuclear reactions, often with specific channels included
by a coupled channel treatmerit. There are few experi-
mental data to fully validate such calculations, and
since the bulk of our calculations are expected to be
rather insensitive to the details of the individual trans-
mission coefficients we have chosen to use certain ex-
perimental data directly and apply them to a wider range
of nuclides, orbital angular momenta, and excitation
energy of the residual nucl. eus by the simplest possible
extrapolation. The chosen experimental data ax e the
neutron strength functions measured in low-energy neu-
tron resonance cross sections of some of the commoner
actinides. These are limited to s- and p-wave neutrons
and have values of so=0.025 and s, =0.045 for an as-
sumed channel radius of 9 fm. For calculations at
higher neutron energies, for inelastic channels and for
other actinides, we have simply assumed that for all
even values of orbital angular momentum the strength
functions have the value of 80 above, and for odd values
of / the strength functions take the value of s, .

At higher neutron energies our knowledge of the spec-
troscopy of the residual nucleus involved in such proc-
esses becomes i.ncomplete or nonexistent except in a
statistical sense, deseribabl. e by a level density func-
tion. It is then necessary to make statistical. estimates
of the sum in Eq. (7.3a). A discussion of such estimates
has already been given in See.IV.D.l.a, in connection
with the competitive effects in the process of excitation
of shape isomers. The relevant equations for the total
transmission coefficient for rieutron channels is Eq. (4.4)
[note alamo the extra factor in Eq. (4.6)]. With the com-
mon assumption of a constant temperature form for the
level density,
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using the strength functions adopted above; as implied
in the derivation of Eq. (4.4) the value of this quantity
is essentially constant above neutron energies of a/out
100 keV, its value being about 2.9 b.

2. R adiative transitions

At the present state of knowledge the competitive role
of radiative transitions in the compound nucleus pro-
cess must be treated entirely on a statistical basis. An
individual transmission coefficient for y- ray emission
of energy g„ from highly excited states of energy E' and
total angular momentum and parity J' can be written

(7.12)

where E'(E', c„) contains the energy dependence of the
transition matrix element a~ well as the phase space
dependence z2„' depending on the multipolarity Lm~
of the transition concerned. The total radiative trans-
mission coefficient is therefore

2mI'J (y t t)T7 (l', tot&(
J' fr

E
dc„E(E, S„) g g p'"(E —r.„,dP),

0 - I J'g=l J- LI

(7.13)
in which p"'(U, Z&r) is the level density of the normal
states of the compound nucleus at excitation U.

There is still a choice of model for the transition ma-
trix element and its related energy dependence E(E, r.„).
There are two principal models of practical use at the
present time.

In the Weisskopf strong coupling (SCD) model it is as-
sumed that the spectral behavior E'(E, E„) depends only on
the phase space factor, &„' . For the purposes of com-
petition by radiation in particle emission and fission
reactions we consider only dipole radiation, L =1, as
being a significant contributor to the radiative process,
so we set

&G =13 MeV, I~ =4 MeV. A more exact form of the
spectral factor that is suitable for deformed nuclei is

8 NZ e' (1+0.8x) ~ i I;.cs4
3 A Rc mc' ~ 3 (r2-E~G)2+(I;cs„)2 '

(7.16)

Veysiere et al. (1973) give the following parameters for
the two dipole components:

E, =11 MeV, I', =2.9 MeV

E', =14 MeV, T', ~ =4.5 MeV .
The two models can be tested by their ability to repro-

duce the energy dependence of neutron capture cross
sections and the capture gamma-ray spectra resulting
from thermal neutron capture. However, the choice of
level density model and parameters strongly affects
the results of the ealeulations. Hence, the first kind of
experimental datum is used to establish the effective
temperature 6 for the low-energy Level densities of
actinides (see Sec. VII.B.3), this temperature thus being
dependent on the radiative model. It turns out that the
S(:D model requires a temperature 8 of 0.55 MeV to fit
the neutron radiative capture cross section of '"U up to
3 MeV neutron energy. The temperature for the GDR
model is 0.5 MeV, and this is much cioser to the value
implied by other evidence on the level density (such as
neutron inelastic scattering).

With the appropriate vaLue of the level density tem-
perature taken as a fixed parameter for the model, the
gamma-ray spectra can be calculated. In these calcu-
lations it is assumed that the secondary gamma-ray
transitions of the cascade are governed by the same
model as the primary transitions. The calculation for
the SCD and GDR models are compared in Fig. 124 with
experimental data from thermal neutron capture by
"'U. Agreement is not very good for the SCD model,
but is distinctly better for the GDR model. Therefore
the QDR model is adopted for the purposes of further
analysis of fission cross-section data in this review.

S'(E, s,) =C&r. ', (7.14) 3. Level densities for neutron and radiative channels

r~a,'
(r. ', —E'„)'+ (I cc„)' '

where e is the electron charge, c the velocity of light,
x the fraction of exchange force between neutron and
proton in the nuclear Hamiltonian LLevinger and Bethe
(1950)], and m the nucleon mass. For uranium and its
neighbors the photoresonance oarameters have values

8 NZ e' (1 +0.8x)
3 A hc mc' (7.15)

and calculate the total radiative transmission coefficient
from Eq. (7.13). The constant C„can be determined for
actinides by adjusting the radiation width for slow neu-
tron capture by '"U to the experimentaL value of 24 meV
(s-wave resonances corresponding to levels in 23'U with
gw &+)

The alternative model that is in general use is the
giant dipole resonance (GDR) model. A more plausible
model than the SCD, it is based on collective models of
the giant dipole resonance observed in photonuclear ab-
sorption. From the form of the photonuclear cross sec-
tion as given by the model of Goldhaber and Teller (1948)
it can be deduced that the appropriate spectral factor is

(7.17a)

0 2 —0 088~g~2~3

e= (U/~)'~',

g= m'p, /6.

(7.17c)

(7.17d)

(7.17e)

The predominant parameter here is ~, which is related
to the average density p, of single-nucleon states
around the Fermi energy of the nucleus, the width of
the averaging function being of the order of the temper-

It is generally believed that the main contribution to
the nuclear level density at moderate to high excitation
energies comes from the combinations of nucleons (or
quasinucleons) independently excited from the nuclear
"vacuum" or ground state. To first order the indepen-
dent-nucleon model gives rise to the well-known Fermi-
gas type of Level density relation:

(2J~ I)e- «+'&» &2~

4 (2.) ~

e2 (CU)

P(~)= 12. ~ U ~
(7.17b)
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FIG. 124. Gamma-ray spectra resulting from low-energy neutron capture by U and Th compared with calculations on the238 232

strong coupling dipole and the giant dipole resonance model.

ature 8. The spin-dispersion parameter z is also re-
lated to p, as well as to the spin distribution of the sin-
gle-nucleon states; the numerical coefficient adopted in
Eg. (7.17c) comes from a gross assessment of the spins
of all the bound single-particle levels and is noi ex-
pected to be an accurate value for individual nuclides,
because the actual coefficient depends most strongly on
the spins of the single-particle orbitals around the
Fermi level.

The effective excitation energy U appearing in Eqs.
(7.17) is adjusted from the true excitation energy E by
an amount which depends on the odd or even nature of
the nucleus. This adjustment was originally introduced
empirically (Hurwitz and Bethe, 1951), but is now
understood as an asymptotic consequence of the more
realistic model of independent quasinueleons. The
quasinucleons emerge as a consequence of the short-
range pairing force between nucleons which results in
all nucleons paired in single-particle orbitals becoming
involved in a correlated motion which depresses the en-
ergy of the correlated state. It costs energy to create
the quasiparticles by placing unpaired nucleons in par-
ticular orbitals. This energy cost is over and above
that from the single-particle energies due to different
occupation of the orbitals, and at ihe lowest level it
amounts to an energy gap 26. In an even nucleus this
gap separates the ground state from the lowest of the
noncolleetive states, which have the character of two
quasiparticles. In an odd-mass nucleus it separates
single quasiparticles from three quasiparticle states.
The availability of an increasing number of quasiparti-
eles to form independent quasinucleon states gives rise
to a rapidly increasing density of such states (by simple E —U=~p (7.18a)

combinatorial considerations). According to this model
there are sudden jumps in density at energy intervals
of approximately 2A, but numerical calculations indi-
cate that the sharpness of the jumps becomes very
much reduced at the higher excitations. Because of
this smearing it appears that the level density can be
approximated by a constant temperature form, Eq.
(7.10). An odd nucleus is already expected to have a
high density of two quasiparticle states at very low ex-
citation energy. This density will be roughly equal to
thai of an even nucleus just above the energy gap at E
= 2A, although rather lower than thai of an odd-mass
nucleus at this excitation energy. Thus even at low ex-
citation energies an odd-even effect in level densities,
and hence the need for a possible adjustment in effec-
tive excitation energy, is found to exist.

At somewhat higher energies a certain "critical en-
ergy" is expected in the quasiparticle model, above
which the single-particle orbitals around the Fermi en-
ergy are mostly occupied (statistically) by unpaired
nucleons, and the operation of the pairing interaction
in forming a correlated state is thereby inhibited.
Above this critical energy the independent-nucleon mod-
el, described by Eq. (7.17), of level densities gains a
certain validity. However, the depression of the corre-
lated ground state by the pairing force gives rise to a
modification of the effective excitation energy io be
used in Eq. (7.17). For an even nucleus the effective
lowering of the ground-state energy, a,nd hence the cor-
rection to be subtracted from the true excitation energy
to give the effective excitation energy U, is
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TABI E XXVI. Values of empirical even proton and neutron
number excitation energy corrections for the independent-
particle model level density formulation. Bracketed values
are assumptions; other values from Gilbert and Cameron
(1965).

90
92
94
96
98

0.78
0.69
0.61
0.72
(0.78)

138
140
142
144
146
148
150
152
154

(0.60)
0.60
0.57
0.49
0.43
0.50
0.39

(0.45)
(0.45)

For odd mass and odd nuclei this correction should be
reduced by the amounts & and 2h, respectively, as
discussed above. In practice empirical corrections are
usually employed for the effective excitation energy.
Gilbert and Cameron (1965) give

U= E —P(Z) —P(N), (7.18b)

In this expression both positive and negative values of
K are implied. In fact, for a reflection and axially
symmetric nucleus (the latter is a necessary condi-
tion for K to be a good quantum-number) the allowed
states must necessarily be a correctly phased combina-

the P functions being zero for odd values of proton and
neutron number. The values of P for even Z and ~,
which we use in our own analyses, are given in Table
XXVI. In normal use, the Fermi-gas level density for-
mula employs the effective excitation energy Eq.
(7.18b), and the constant a is empirically adjusted to
observed level densities from neutron resonance spec-
troscopy.

Direct numerical calculations of level densities in
t

both the independent nucleon and quasinucleon models
have been made, the actual density of combinations
from the detailed spectrum of single-particle orbitals
being computed. For deformed nuclei such calculations
describe the density of intrinsic states; they therefore
fall far short of the level density actually observed be-
cause there is a large contribution of collective states
of rotational character (Bjo'rnholm, Bohr, and Mottel-
son, 1974). The contribution of these depends directly
on the density of the intrinsic states, the latter being
assumed to be the bandhead states of the rotational lev-
els. To obtain the full functional dependence on energy
and angular momentum'it is necessary to know, or as-
sume, a spin dependence for the bandhead states. In a
deformed nucleus with axial symmetry the projection Q
of the angular momentum of a particle or quasiparticle
on the symmetry axis is a good quantum number. Sev-
eral independent particles summing their spin projec-
tions in a statistical manner to give a total spin projec-
tion E can therefore be expected, to good approximation,
to give rise to a Gaussian distribution for the depen-
dence of the bandhead level density on this quantity:

(U K) PBH(, e-K /2ax(U) 2

BH ! (2 )1 I2

~
S'

p (U, K, I) = pss U — I(I+ 1) —K ~,K, ('l. 20b)
Le

where 8 is the effective rotational moment of inertia of
the nucleus about an axis perpendicular to the symmetry
axis. If the bandhead density has a simple constant
temperature form [as Eq. (7.10)] then we obta, in

Ce'" I(I+1)u'-
p(U, I)=

(2 ), &z exp
28&

x exp E'
&K-

(7.21)

For small values of the coefficient (5'j288 —1j2gr2)
(compared with I') this expression tends to the form

p(U, I)= (2I ~ ].)e-I'~"'l" p (U) (7.22a)

here

and

&x = (88jII ') '~ ', (7.22b)

c
p.(U)=

(2 )„, e (7.22c)

For states of low angular rnornentum this represents an
increase over the density of bandhead states alone by
a factor of approximately 2o.K.

With this rotational enhancement effect it is possible
to make explicit calculations of level densities from the
independent-particle and quasiparticle models that can

tion of a wave function of positive K and its conjugate
form with negative K. By convention these states are
assigned positive K values only, and in this case an
extra factor of 2 must be included on the right-hand
side of Eq. (7.19) to achieve normalization. In the spe-
cial term with K= 0 this would seem to imply an imbal-
ance in the density of such states. In fact, the condition
of symmetry on rotation through m. about an axis per-
pendicular to the symmetry axis of the nucleus, which
is assumed to be a normal condition of the states we
are discussing, leads to the omission of every alternate
state from the rotational sequence built on the K= 0
bandhead. Invariance of the eigenstates to the operation
of rotation through m implies the existence of a quantum
number x with eigenvalues +1. The members of the ro-
tational band have allowed angular momentum (-1) = y.
Thus, to a good degree of accuracy, the total density
of bandhead and rotational states will be obtained by us-
ing Eg. (7.19) for K= 0 states without the extra factor of
2 required for K4 0 states by the condition of m-rota-
tional symmetry.

Examination of the Nilsson model of single-particle
schemes in the actinide region indicates that for single-
particle neutron levels (Q~)'~2 =3.5 and for single-par-
ticle proton levels (Q2~)i~2 =3.0. This leads to an esti-
mate of ox-(2n)' '&& 3.25 at about X-(2n+ 1)b, for an
even nucleus, and at correspondingly lower energies
for odd mass and odd nuclei.

The total density of nuclear states as a function of ex-
citation energy and total angular momentum I is finally
determined by adding to the bandhead density the con-
tribution of the rotational states:

1-1

p(U, I)= p „(U,K= I)+ g p„(U,K, I) (7.20a)
K=- (I-1 )
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be usefully used in analysis of cross-section data. This
is the approach adopted in the work of Gavron et al.
(1976). In our analysis of data. for this review we have
preferred to adopt empirical information on level den-
sity parameters, using the formulations outlined above
for purposes of interpolation and extrapolation.

In this spirit we employ a level density analysis based
on the approach of Gilbert and Cameron (1965), but with
a special treatment of the very low-energy regions of
even and odd-mass nuclides. This very low-energy re-
gion is just the energy gap E= 0-2d. For even nuclides
the energy gap contains only a very few levels of col-
lective type, such as beta, gamma, and octupole vibra-
tions with their accompanying rotational bands. The
levels of odd-mass nuclei consist mainly of single
quasinucleon excitations, again accompanied by rota-
tional bands. A crude level density approximation to
these spectra would be, in first order, simply indepen-
dent of energy, and this we have adopted, except that in
very many of our analyses the detailed spectra them-
selves have been used in this energy gap region. With
an energy-independent level density form

p(V, Z'}= C(2J+1)e ' "'"~~, (7.23)

the values of C and g have been chosen as C= 0.225
MeV ', g = 4 for even nuclides, and C = 0.625 MeV ', g
= 4.5 for odd-A nuclides.

At intermediate energies we have adopted Gilbert and
Cameron's suggestion of a constant temperature form

p(& g') = C(2g+ 1)e «+'~ '&'~'~'e~&e (7.24)

TABLE XXVII. Level density parameters for the actinides at
intermediate excitation energies (except where temperatures
are modified by Table XXVIII). Constant temperature forms
of type p(J~) = (2J+ &) e ~++~~2& ~2 . Ce~~ are assumed.

Type Energy range
C

(MeV ) (Mev)

Even
Odd-&
Qdd

1 MeV-&gp
1.2—Egp

IP

0.225
0.9
3.75

0.5
0.5
0.5

5.3
6.1
6.1

The data required to parametrize this formula for the
actinides are very sparse. In particular, for the value
of the spin-dispersion coefficient 0 we have resorted
to calculated estimates as given by the independent-par-
ticle formula, Eq. (7.17), and the rotational band en-
hancement, Eq. (7.21). The consensus of such values is
collected in Table XXVII. Some theoretical guidance is
necessary for the values of the constant C also. Ex-
perimental spectroscopic evidence (which again is much
sparser than we would wish) indicates that C= 3.5 for
odd actinides. Our discussion of the quasi-independent
nucleon model indicates that this should be reduced by
a factor of approximately e ~~8 for odd-A nuclides and
e '~ for even nuclides. The temperature 0 has been
determined from a selection of nuclear reactions, sub-
jected to statistical theory analysis. The spectra of in-
elastically scattered neutrons from "'U and "'Th, with
neutron bombarding energies up to 5 MeV, have been
measured by Batcbelor et al. (1965) and analyzed to
give 8- 0.45-0.5 MeV. We have analyzed the neutron
radiative capture cross section of "'U up to 3 MeV [as

C. Transmission coefficients for fission

't. Statistical expressions

The statistical theory for fission decay through the
double-humped barrier has been treated in Sec. III.B.
From Eq. (3.49) for the fraction of decay by fission we
see that the statistical transmission coefficient for fis-
sion can be written in terms of transmission coeffi-
cients across barriers A and B' separately as

T
T (~ ) T(g )

(f) T(Q)+ T(p)
(7.25)

(with neglect of the very small transmission coefficient
for decay of class-II states by particle or radiative
emission). Tbe calculation of the statistical transmis-
sion coefficients T(» and T(» is based on the original
statistical theory of Bohr and Wheeler (1939) and the
transmission coefficient of Hill and Wheeler (1953) for
quantal tunneling through an inverted parabolic barrier
[see Sec. III.A. l.b(iii), Eq. (3.17)]. Denoting either A
or R by D the required expression is

evaluated by Sowerby et al. (1974)]. This depends on
the temperature representing the level density of re-
sidual states in "'U involved in inelastic neutron com-
petition as well as the temperature of the final states
excited by primary radiative transitions in "'U. The
calculation of ihe radiative transmission coefficient
from the latter level density also involves an assump-
tion about the radiative mechanism. With the assump-
tion of the GDR model (see Sec. VII B.2) the final (com-
mon) temperature for the two level densities that best
fits the data is 0= 0.5 MeV. The choice of the SCD
model is 8= 0.55 MeV. We consider that the best con-
sensus of experimental data for the actinides yields 8
=0.5 MeV. The collected parameters for this inter-
mediate energy region are given in Table XXVII.

At higher energies the independent-particle model
formulation, described by Eqs. (7.17), has been adopted
for our analysis. The value of the Fermi-gas param-
eter a has been fixed by the data from neutron reso-
nance cross sections at an excitation energy equivalent
to the neutron separation energy of the compound nu-
cleus. The Fermi-gas parameters of nuclides for which
neutron resonance data have not been measured have
simply been assumed by extrapolation from neighboring
nuclides. We have defined the energy E» demarcating
the intermediate energy regime from the higher-energy
regime by the simple condition of equality between the
density given by the constant temperature formula to
that of the independent-particle formula. In some cases
the energy E» cannot be so defined, the density from
the latter formula being everywhere lower than that of
the former at excitation energies lower than the neutron
separation energy. In these cases we have assumed
the intermediate energy region to include the neutron
separation energy and we have adjusted the tempera-
ture so that Eq. (7.24) reproduces the neutron reso-
nance density. The collected parameters for the acti-
nides are given in Table XXVIII.
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TABLE XXVIII. Level density parameters for the actinides at higher excitation energies. Brack-
eted entries of a and &&p are assumed values. Entries labeled+ are from Gilbert and Cameron
(1965). Neutron separation energies S„are from the tables of Wapstra and Gove (1971).

Nucleus

Ia
(ground
state)

6 +lP CV

(MeV) (MeV) (MeV )
Sn

(Mev)
a{0 .~n) Di= 0(~n)

{eV) (eV)
Dobs(Sn)

(eV)

228Th

229Th

230Th

23iTh

232Th

233Th

234Th

28ipa

232 p
233pa
234 pa
282U'

283U'

234U

235~

236~

237+

238U

238U

240U

284 Np

285Np

236 Np

237 Np

238Np

239Np

235p

236pu

237pu

238pu

239p

240 p
24i pu
242 p
243 pu
244 pu

245pu

240Am

24i A

242 Am

0
5~
2

0+

0 +

( 2~')

0
3»
2

(2, 3)
3w

2

7-
2

0'

(0')

2-
(6-)

5+
2

2'

0+

(-')

0+

1+
2

0+

5+

2

0 +

0+

2

1
(I.S. 5-)

0.519

{0.518)

(0.5)

{0.518)

0.518

0.518

0.528

3.27

(4.45) (29.44)

3.82

4.0
3.1
5.0
4.4

4.17

3.87

28.76+

29.0

28.88+

29.8

27.97'

29.05

26.79+

29.05'

28.51'

29.05

28.51

(3.87) (28.51)

5.0 27.37+

28.0

3.97

4.4

28.51

28.0

27.41'

29.5

(3.6) (29.0)

2.66 32.0

26.0

27.2

(3.27) (31.6)

29.31

31.6

7.134

5.233

6.787

5.129

6.431

4.789

6.179

6.863

5.567

6.511

5.197

7.278

5.737

6.840

5.307

6.536

5.129

6.144

4.863

5.924

6.119

6.992

5.691

6.591

5.486

6.227

6.25

7.357

5.859

6.998

5.657

6.524

5.243

6.305

5.043

6.018

4.76

5.94

6.66

5.535

16.5

(1.033)

3.46

(1.79)

5.26

2.41

(8.54}

8.43

(22.7)

(32.9)

12.4
(36.6)

1.98

4.53

2.6
6.85

2.32

7.99

7 44

29.6
10.7
23.6

(2.54)

7.5

0.39

8.25

18.0

0.46

0.69

0.22

4.31

0.804

11.5
0.49

3.1

0.45

0.59

7.3
2.0

0.67

14.8

11.8

0.75

7.7

16.7

0.41

0.69

4.1
0.6

10.6

17.3
2.5

20.8

0.69

9.5
2.25

-0.65

17

0.77
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TABLE XXVGI. (&Ontznued. )

Nucleus

I ff

(ground
state) (MeV)

&ip
(Me V) {MeV-')

sn
(MeV)

D(o, s„) D, ,(s„)
(eV) (eV)

D...(s„)
(eV)

24'A

244Am

245Am

'4'Am

24?A

'4f Cm

'4'Cm

'4'Cm

244 Cm

245Cm

'4'Cm

247Cm

248Cm

"'cm
250Cm

248Bk

250 Bk
248 Cf
248 Cf
250 Cf

25f Cf

252 Cf

253 Cf

2

(-')
2

0'
5+
2

0+

0'

0'
8-
2

0+

f+
2

0'

(-')
2

0.518

0.509

(0.528)

(0.528)

(O.528)

(O.521)

(O.534)

(0.521)

(O.534)

0.521

0.520

0.544

0.504

0.495

(o.5o4)

(o.5)

(o.5)

0.51

26.0

28.2

25.7

27.5

25.7

27.5

25.7

27.0

26.5

29.5

26.5

27.5

32.0

6.425

(+0.049

for Am)

5.365

6.047

5.06

5.86

6.07

6.972

5.705

6.796

5.52

6.452

5.156

6.209

4.713

5.91

6.214

4.968

7.03

5.60

6.62

5.11

6.17

4.83

(4.57)

7.07

(9.71)

9.53

28.4

18.2
85.3

20.0

81.7

(4.46)

12.9

(33.8)

0.33

0.70

14.2

1.54

42.7

0.68

16.9

(refers to

I.S. target)

0.67

14.8

40.8

1.33

35

16.0

2&r(E —1&o —g)T~.(D&(E) = d~ pD(e, J') 1+ exp
0 @COD

(7.26)

where pD is the density of intrinsic states X at the bar-
rier deformation qD. %e assume henceforth, unless
specifically stated, that this has the constant tempera-
ture form

(7.27)

the effective excitation energy U being measured from
the peak barrier potential UD.

By using Eq. (7.27) simple approximations can be
found for the barrier transmission coefficients. For E

T g =8 C (28+1)e ' "~"~~D exp ~ —1 +2exp
E- 'UD E -'UD @D

J+(D) D D 8D 8 2m8
[&r'/12+ )

D D

@GOD —»n(E —vD)+ ~ 5-) exp + ~ ~ ~

27Tyg 8D +@D J
(7.28)

The terms neglected in the second square bracket of the
rhs are of order (ho&D/27r8D) and higher, and those neg-
lected in the third square bracket are those remaining
after the practical computational summation at yg= n,„,.
For E&&D

I~ 2trn(R —U ))2TIyg8D-

(7.29)
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If we consider only the leading term of this we see that
for E«'UD ihe transmission coefficient can be de-
scribed as the product of the Hill-Wheeler transmis-
sion factor and an effective number of (degenerate)
channels equal to

~D@ Dn„~= p~(E —'UD, J') 2' HD —@~D
(7.30)

2. Level densities of intrinsic states at barrier
deformation s

It is believed that the density of intrinsic states at ex-
tended defo'rmations of the nucleus, such as those of the
barriers, can be accounted for by models such as the
independent-particle models discussed in Sec. VII.B.3
with the addition of rotational state enhancement. Such
models have been used directly in analysis of fission
cross-section data, , notably by Britt et zl. (1973), the
basic single particle level schemes required for the
computations being taken from the work of Bolsterli et
al. (1972) [described briefly in Sec. III.A. l.c(ii)].

As a consequence of the Strutinsky theory on nuclear
energies as a function. of nuclear deformation it is ex-
pected that the single-particle state densities at the
Fermi energy for the barrier deformations of actinide
nuclei should be considerably higher than those at the
stable or meta-stable deformations. This has two con-
sequences for the density of intrinsic states. One is
that the energy gap in the density of barrier states
should be greater than those at stable deformations.
The other is a tendency to an increase in the level den-
sity owing to the increase in the Fermi-gas parameter
a, Eq. (7.17e). Calculations based on the independent
quasiparticle model that include boih these effects indi-
cate that the net effect is a, reduction in level density at
the barriers at effective excitation energies up to about
8 MeV (Britt et a/. , 1973). These effects are expected
to be greater at barrier & than at barrier B, at which
reflection asymmetric shapes are calculated to have
several MeV greater stability than symmetric shapes,
with consequent decrease in single-particle state den-
sity. At barrier B, therefore, it can be expected that
the density of independent qua. siparticle states will be
quite similar to that of the stable nucleus.

On the other hand, lack of symmetry of the nuclear
shape at the barrier deformations can increase the
contribution of the rotational states built on each inde-
pendent particle bandhead (Bjs(rnhoim, Bohr, and Mot-
telson, 1974). The simplest enhancement of rotational
states is exhibited by a deformed shape which violates
both the parity operation 6' and that of rotation through
m about an axis perpendicular to the symmetry axis (R,
but invariant to the product of these operations, which
describes reflection $ in a plane containing the sym-
metry axis. This invariance implies that eigenstates
with K (spin projection on the symmetry axis) = 0 have
quantum number s= +1. Unlike the states with (R in-
variance (discussed briefly in Sec. VII.B.3) with quan-
tum number &=+1, the rotational bands built on these
states have a complete sequence of angular momentum
bui their parity is constrained by the condition m

= s(-1)1. States with K& 0 also have a complete se-
quence of angular momenta in the rotational band and

= (2r + 1)pa„(E) (7.31)

if E„,(y, r) is much less than the temperature 8 of the
level density formula for pa„. For this expression we
note tha, t the density of bandhead states will be approxi-
mately double that of axially symmetric nuclei because
K is no longer a good quantum number and states of
negative K therefore contribute independently to the ba-
sis. Equation (7.31) is thus higher by a factor -o~(87')' '
than the density for an axially symmetric nucleus with
(R invariance, Eq. (7.21).

The rotational states of the completely asymmetric
nucleus can be built up from basis states of specified
symmetry with respect to rotations through n. about the
three body-fixed axes. The quantum numbers for these
rotations fall into four sets: (x,~,r, ) = (+1,+1,+1),
(+1, -1, -1), (-1,+1, —1), ( —1, -1,+1). Any one of these
sets is appropriate for the description of a single ro-
tational band of a nucleus that lacks axial symmetry but
otherwise possesses the symmetry of an ellipsoid. This
is expected to be the condition of the deformed nucleus
as it passes over the inner barri. er A. The density of
its rotational states therefore is expected to be one
quarter of the density for the completely asymmetric
nucleus, i.e. , o~(7r/2)'~' times that of the normally de-
formed nucleus with axial and (R symmetry [Eq. (7.22)].

These theoretical expectations on the intrinsic state
densities at the barrier deformations are at least semi-
quantitatively confirmed by an analysis of the data on
fission cross sections. In this analysis we are guided
by the relative heights of barriers A. and B as deter-
mined by the study of shape isomer yields (Sec. IV.D),
and, where these give no information, the calculation of
energy surfaces, (Sec. II.A. 1). From this evidence it
is clear that the outer barrier of Cm, Am, and, to a
lesser extent, of Pu, nuclides is much lower than the
inner barrier.

The trend of this evidence indicates that the two bar-
riers will be of comparative height for U and Np nu-
clides. The theoretical evidence indicates a higher
outer barrier for the Th nuclides. The magnitudes of
the cross section, well above the barrier, depend main-
ly on the higher barrier, both on its height and the den-
sity of intrinsic states. Neutron competition, the main

also have both parities for each rotational state. Thus
the density of rotational states is just twice that in
which the nuclear shape is invariant to the 6 and (R op-
erations. The nuclear energy calculations described
in Sec. II.A. l.d(iii) indicate that 3 invariance but lack of
(R invariance is the condition to be expected for the nu-
clear shape at the outer barrier deformations.

Maximum enhancement of the rotational states is ob-
tained when the nuclear shape is completely lacking in
symmetry. In this case the nucleus will be able to make
collective rotations about the three (perpendicular)
body-fixed axes, with the result that there will be 2I+ 1
different states for every value of rotational angular
momentum I in each rotational band. If ea.ch of these
states is labeled by a number z, the total level density
based on a density of bandhead states p»(U) is

21+1
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factor in which is the normal level density, provides the
measure of the latter quantity. After making due allow-
ance for the effect of barrier height it appears that the
fission cross sections of Th and Pa nuclides are rela-
tively weaker than those of the Pu and higher charge
nuclides. The numerical factors for enhancement of the
barrier state densities over the level densities of nor-
mally deformed nuclei turn out to be -4 for barrier A
and -2 for barrier B.

Owing to the wide range of numerical param'eters,
chiefly of the rotational enhancement effects, permitted
within our current theoretical understanding of the bar-
rier level densities, we have based our analysis of fis-
sion barriers, so far as possible, on experimental
evidence for these densities. This experimental evi-
dence is essentially limited to the fission cross sec-
tions themselves. But the deduction of such level den-
sities from fission cross sections is very dependent
upon assumptions about ihe barrier height; and to some
extent the converse is true —deductions about barrier
heights are affected by assumptions about the barrier
level densities. For the present work we have at-
tempted to find, for odd and odd-A compound nuclei,
simple constant temperature forms that will satisfy a
few key cross sections that are well measured. For
odd-A nuclides these are the fission cross sections of' 'Cm, "'U, and "'Th, and for odd nuclides the fission
cross sections of '7Np and Am. The cross section
of '~ Cm is chosen because of the evidence that the outer
barrier of "'Cm is some 1.3 MeV below the inner bar-
rier. The cross sections of "'U and "'Th are chosen
as being two of the best-known cross sections with
rather close barrier peaks but requiring the dominant
barrier to be reversed between the two cases; compar-
ison of these two indicates the necessity of the density
at deformation B to be lower than that at A.

Barrier densities of even nuclides are assumed to be
more complex; an energy gap containing a limited
spectrum of collective levels, different for barriers A
and B, according to the shape symmetry indicated by
theory for the two deformations, is postulated, beyond
which a sequence of constant temperature forms is
found. At deformation B a vibration-rotation band de-

"'U:U~ = 5.63 MeV, 5~„=1.04 MeV,

&~ = 5.53 Me V, @(d~ = 0.6 MeV

"'Pu: U~= 5.5V MeV, k~„=1.04MeV,

U~ = 5.0'7 MeV, h~~= 0.6MeV. (7.32)

scribing mass asymmetry vibration and carrying quan-
tum number K"'= 0 is assumed to coexist with the
"ground" state K"'= 0'+ band. The only other vibration-
rotation band that is believed, possibly, to exist within
the energy gap is the gamma vibration with K'= 2', its
excitation energy is placed, arbitrarily, at about 1
MeV, but there is no strong reason why it should be
similar to its value at the stable deformation. The
other characteristic vibration-rotation band to be found
in the spectrum of a normally deformed nucleus is the
one-phonon beta vibration, bui this expresses excited
motion in the deformation degree of freedom g and is
not to be counted among the intrinsic states. At de-
formation A (R symmetry holds but axial asymmetry
implies that the gamma vibration near the top of the
energy gap is to be replaced by extra rotations in the
ground-state band. The members of the rotational
band, which has the set of quantum numbers (x,x,r, )
=(+++), are as follows: I=a, 2', 3, 4', 5', 6~. . .
The exact energies of these states will depend on the
moments of inertia for rotation about the three princi-
pal axes of the nuclear shape. With the low-lying spec-
tra thus postulated and barrier heights roughly fixed
from particle-transfer induced fission reactions (which
can explore fission from excited states below the neu-
tron separation energy of the compount nucleus) we
have determined the constant temperature barrier level
densities from the neutron-induced fission cross sec-
tions of "'U and "'Pu, two of the most accurately
known of all cross sections.

The barrier level density parameters thus deter-
mined and used in our analysis of data on other actinide
nuclides are presented in Table XXIX. The reference
barrier parameters of the compound nuclides ' U and
"'Pu are as follows:

TA,BLE XXIX. Barrier level density parameters employed for actinide nuclei. Level densities
take the form of Eq. (7.27). The parameters given in the last line (for odd nuclides) are only sug-
gested values; no experimental-data have been analyzed beyond 2 Me&.

Type

Energy
range
(MeV)

Cz
(Mev-') (MeV)

C~
(MeV ~)

Even

Odd-&
Odd

1.0-2.5
2.5-2.8
2.8—~ 5
1.0 —1.4
1.4-2.0
2.0-3.05
3.05 ~5
0—~-3
0- 2

)5

0.021 35
1.435 x 10
1.6

6.8
11.5
54.5

0.3005
0.1877
0.5

0.48
0.36
0.5

0.021 35
0.198
0.009 65
0.426 5
3.4
5.75

27.2

0.3005
0.576
0.308
0.5
0.48

-0.36
0.5

5.7
6.0
6.3
5.7
5.7
6.0
6.3
6.4
6.4
6.4

(Suggested: no data analyzed beyond -2 MeV)
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The number of parameters available for fitting the
cross-section data of these nuclides, is excessive for a
unique fit. Some of the factors that must be taken into
account in assessing the significance of this particular
choice are discussed in Sec. VII.D.

3. Effects due to intermediate structure

The effect on fission cross sections of intermediate
structure due to the hierarchy of class-II levels asso-
ciated with the secondary weQ has already been dis-
cussed in detail in Secs. V and VI. Here we summarize
the implications for extraction of the fission barrier
parameters.

The effects will be confined, in the main, to sub-bar-
rier energies. Above the barrier the fission cross sec-
tions can be treated with considerable confidence with
the Hauser-Feshbach formula incorporating the statis-
tical fission transmission coefficient described in Sec.
VII.C.1. Details of calculation of fluctuation factors to
take into account the statistical variation of the under-
lying class-II states are given by Lynn (1980).

Below the barrier there are two Inain classes of ef-
feet. The first is a "giant resonance" class in which
the cross section, even on the large scale observed
with comparatively poor experimental resolution,
shows structure. For this the data must be analyzed
directly using the fission transmission coefficients de-
scribed in Sec. V.B for pure vibrational resonances,
or Sec. V.C for damped vibrations.

The second class of effect is that due to compound
class-II states, the density of which is too high to per-
mit observation by experiments with normal resolu-
tion. From the point of view of Hauser-Feshbach the-
ory the important result of this class of effect is that
the fine-structure resonances are not uniform in their
properties. A certain degree of statistical variation in
the partial widths can be absorbed within Hauser-Fesh-
bach calculations by the use of the fluctuation factors )(
[see, e.g. , Eq. (6.22)], but the variation in widths
introduced by the coupling between class-II and class-I
states is too extreme to be handled within the simple
framework of that theory. The modified expressions
required for the fission probability and hence the av-
erage cross sections can be obtained from Secs. VI.C.1.
~, b, and c, and VI.C.2.c for moderate coupling between
class-I and class-II states, and for the case of the
class-II fission width being much greater than the
class-I level spacing, and in Secs. VI.C.1.d and
VI.C.2.d for very weak coupling of narrow class-I and
class-II states. This class of intermediate structure
effect will also be present when there is already gross-
er structure due to damped vibrational resonances.

The importance and magnitude of these effects ai.e il-
lustrated in Fig. 125. The uppermost curve is the one
that would be obtained for a given set of barrier param-
eters if the Hauser-Feshbach theory were assumed to
be completely valid to deep sub-barrier energies. The
upper branch of this curve at very low energies is due
to the assumption that radiative cascades can depopu-
late the class-II states and lead (via the shape isomeric
state) to delayed fission. There is already a large dif-
ference between this statistical theory result and the

fission probability calculated on the assumption of
moderate to moderately weak coupling; this implies
that the incorrect use of statistical theory to analyze
data, especially those at excitation energies below the
neutron separation energy where weak radiation effects
provide the only competition to fission, can lead to
large errors in the extraction of barrier heights. At
very low energies the very weak coupling mechanism
again causes drastic changes in the behavior of the fis-
sion probability. The statistical assumptions (dis-
cussed in Sec. VI.C.l.d) used for estimating the average
are quite crucial here, and the two curves shown can
be used together as a pictorial representation of the
range of fluctuation to be expected for the locally av-
eraged fission probability in this regime, the range of
averaging being the class-II level spacing. Over most
of the regime delayed fission can be the principal con-
tributor to the total fission yield, especially when spon-

10

10
Q3

CQ
C)

CL

10

-5
10

/

PMD

10

j' /

/
107 /

r PMP

PAPy

r
-2 -1

ENERGY RELATIVE TO INNER BARRIER { MeV )

FIG. 125. Probability of fission decay of an even compound nu-
cleus with equal barrier heights lying below the neutron separ-
ation energy. Barrier penetrability parameters are Sou& ——1.0
MeV, h~z = 0.6 MeU. The radiation transmission coefficients
used in the calculations are T =6.4 x10e "+& '5 5, TX{y) ~ zx(y)
=- 7.2 x10+e @ '++' ' . The statistical model with prompt fis-
sion only is indicated by SP, including delayed fission by SD,
the intermediate structure calculation with at least moderately
weak coupling by IP, ID, the very weak coupling perturbation
treatment for median position of class-II and class-I lines by
PMP, PMD, and the averaged perturbation treatment by PAP,
PAD. The continuous curve represents the optimum choice of
:Dlod el.
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TABLE XXX. Relevant formulas for calculating average fission cross-sections under various conditions of fission and coupling
strength. The equation numbers in the text are quoted.

Hegime
Conditions on coupling

and flsslon strength
Expression for

average cross section Class-I Quctuation factor Class-II fluctuation factor

Statistical

Moder ately
strong coupling
or fission

Moder ately
weak coupling
or flSsion

TA+ Tg&&$

TA+ TB

TA+ Ta «1
Il(f) + ~"Iz(c) ~DI

7.1, 7.25

6.42

6.53, 6.54

6.47
(or generalization for
many fission channels)

6.47

6.22b

6.44, 6.45 (1 channel)
6.44, 6.46 (2 channels)
6.56 (see also 6.26)

Very weak
coupliIlg and
flS SloIl

Very weak
coupling with
effective
degener acy

TA+ Tg « 1,
Tg (f) + Tg ( ) & Dz

rXII(. ) + rXII V) & DI

(~) or Eq l H~ l

»z&l~. l

6.59 (with x=2 for median)
6.60 (for long-range average)

6.61

Not given because importance of delayed fission
in these regimes will usually cause these
factors to be close to unity.

Note: when delayed fission is predominant, the
branching ratio of the isomer state must be
multiplied into the class-II fission width.

taneous fission dominates the decay of the shape iso-
meric state, as has been assumed in preparing Fig.
125.

The relevant equations to be used in different energy
regimes are summarized in Table XXX.

D. Barrier heights and penetrabilities

'l. General remarks on analysis of data

Having established the expressions for fission cross
sections averaged over suitable energy intervals, and
the level densities to be used in conjunction with them,
we can now survey the fission cross-section data and
the extraction of barrier parameters therefrom.

10—

Many of these data are neutron-induced fission cross
sections. These cross sections of even and odd Z,
even-~ actinide targets normally have a fission barrier
appreciably above the neutron separation energy. The
barrier heights in these cases can usually be found
fairly adequately by detailed Hauser-Feshbach or more
general statistical model fitting of the cross section;
because the neutron competition factor is usuaQy strong
the modifications due to intermediate structure effects
are not usually very important. A typical example of
such a fit is shown in Fig. 126.

The other classes of nuclides, which have barriers
inaccessible to probing by neutrons, have been ex-
plored by a great variety of particle transfer reactions,
the excitation energy of the fissioning nucleus being de-
duced from the energy of the particle emerging from the
transfer. Normally, the fission probability as a func-
tion of excitation energy is extracted from these data

C)

o
uJ
Vl

l

Vl

C)

C)

Vl

LL

01 — /
/

/4
-Ojro

0

0-4~4-4-4-4-4-0~4-4-4-4440
0

I—

CQ

CQ
CO

CL

C) -2
cn 10
cA

259Pu (~He, df)
Ooo0

0'01
0

l

10
I

20
I

3 0
NEUTRON ENERGY (MeV)

FIG. 126. Neutron fission cross section of U (- ———detailed
Hauser-Feshbach calculation with barrier states K = z' band at
5.96 MeV (barrier A), 5.71 MeV (B), %~=

@ band at 6.36 MeV
(A. ), 6.11 MeV (B) plus continuum, —statistical Hauser-Fesh-
bach calculation.

10 V I

S 6
EXCI TATI ON ENERGY Y ( MpY j

FIG. 127. The fission probability of 240Am. Data and calcu-
lation on 23~Pu(3He, df) reaction. The data are from Back et al.
(1974c}.
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and presented, thus simplifying the analysis. The ear-
liest reaction to be used in this way was the (d, pf) re-
action. This was quickly followed by the (f, pf) reac-
tion, and later by ('He, df), ('He, tf), and (t, of). These
are invaluable for determining the barriers of even and
odd Z, even-N compound nuclides, which normally lie
below the neutron separation energy for the actinides,
and also for determining the barriers of many other
nuclides that cannot be formed by neutron reactions.
To carry out the analysis it is necessary to know the
relative cross sections within the compound nucleus
formation cross section for the different values of total
angular momentum and parity J . These are given by
Back et al. (1971) for the (d, pf) reaction on a. few of the
commoner fissile nuclides and by Back et al. (1974a)
for the distribution of orbital angular momentum trans-
fer in other (d, pf) and (t, pf) reactions; these latter
values can be combined vectorially with the target nu-
cleus spin to obtain ihe J' relative cross sections. For
extracting the barrier parameters of those nuclides
with barriers below the neutron separation energy the
treatments that fully include the effects of narrow inter-
mediate structure are essential. Normally the excita-
tion range covered by ihe data is limited to moderately
weak coupling, as exemplified in Fig. 127. Occasion-
ally, however, the very weak coupling formulas must
be invoked, as in the case of deep sub-barrier photo-
fission of U. This is illustrated in Fig. 128. At the
lower energy range in this diagram we see that a com-
pletely satisfactory fit is not achieved with barrier pa-
rameters that fit the higher-energy data. This can be
accounted for, partially, by the strong statistical fluc-
tuation effect mentioned in Sec. VII.C.3 (note that the
data fall between the "average" and "median" curves)
and partially by the occurrence of an apparent vi.bra-
tional resonance at 3.5 MeV; the actual location of a

10

Even: 6„= &.04 Me V, h ~ = 0.6 Me V

Odd-A: 5~~= 0.8 MeV, 5~~= 0.52 MeV

Odd: 5~„=0.65 MeV, A~~=0. 45 MeV.

(7.33)

nearly pure vibrational state relative to the nearest
class-I state will be crucial for the magnitude of the
cross section around this energy.

When we come to the detailed fitting, it is immediate-
ly obvious, as already pointed out in Sec. VII.C, that
the number of available parameters is excessive. Ap-
proximate values for some of the parameters are
guided by considerations other than the cross-section
data alone. For example, the penetrability param-
eters 5u„,k~ are suggested by the values required to
f it the half -lives for spontaneous fission of ground
states and shape isomers. There is no physical reason
why the spontaneous fission penetrability parameters
should be identical to those governing reaction rates at
higher excitation energies, because the barriers may
not be exactly parabolic in shape, inertial parameters
may vary with deformation through the barrier, and
other effects of interaction between the deformation
mode and other degrees of freedom can occur, but it is
still reasonable to exp'ect some similarity in magni-
tude. Because of the lack of uniqueness we find it is
possible to move the barrier heights by possibly 200—
300 keV in compensating directions and to change the
penetrability parameters by -10%%uq with -200 keV com-
pensatory changes in barrier heights without seriously
affecting the quality of fit. For the final analysis of
barrier heightg a consensus of values of the penetrabil-
ities has been used; this consensus consists of three
pairs of values of 5~~ and km~, each pair being com-
mon to the even, the odd-mass, , and the odd actinide
nuclides, respect ively. Only in exceptional circum-
stances in order to obtain a reasonable fit to the cross-
section data has it been found necessary to depart from
these common values. These values are:

10

E

«3

10
V)

I

V)
V)
C3
CL

-5
10

C)

Vl

LL

10—

01—

10
30

T I ~ a / I

35 40 45 50
GAMMA —RAY ENERGY (MeV )

55 60

FIG. 128. Calculated sub-barrier photofission cross section of
U. The branching ratio for delayed fission of the isomeric

state is assumed to be 0.1. Barrier parameters have been as-
sumed as ~~=6.4 MeV, h~z ——1.0 MeV, 0~=5.8 MeV, h~~= 0.6
MeV for the J~.= 1 transition states. Data are from Bowman
et al. (1975) (circles) and Zhuchko et al. (1978b) (squares; see
also Fig. 161). The broken curve is the "median" value of the
cross section calculated from perturbation theory.

These values are fully consistent with the Sw~ values
of Table III, case I and II.

The greatest problems in fitting are presented by the
cross sections that exhibit apparent giant resonance
effects. Not only do we have the two barrier heights
and two barrier penetrabilities to consider, but also the
positions and widths of the vibrational resonances. We
consider here in some detail the fitting of a few such
cross sections.

The first case is that of the "'Pu(t, pf) reaction for
the fission of ' Pu. The fission probability curve of
this nuclide shows the well-known vibrational resonance
at 5.0 MeV (described in Sec. V.C.4.a) and a, lower res-
onance at 4.5 MeV, which has been interpreted by
Goldstone et al. (1976) (see Sec. IX.B.4) as the beta vi-
bration with one phonon less than that of the 5.0 MeV
vibration. Accepting this interpretation we can attempt
to fit the fission probability curve with a phonon energy
of 0.5 MeV, placing I = 0' vibrational states at -4.4
and 4.9 MeV. In Fig. 129 three calculations of the fis-
sion probability are shown in comparison with the data
[measured by Back et al. (1974)]. In all of them the
barrier parameters are chosen to be:
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ooo 001

gpo
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CQ
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C)
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0.01—

0 001
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I I

5 6
EXCITATf ON ENERGY ( Mpv )

FIG. 129. The fission probability of Pu as measured in the
(t, pf) reaction (Back et al. , 1974a). The full curve assumes
the parameters'U~= 5. 55 MeV, Uz =5. 05 MeV, I'„&D&=0.2 MeV,
and a simple E'= 0+ rotational band of transition states at the
inner barrier. The short dashed and dot-dashed curves as-
sume a more complex spectrum of transition states, appropri-
ate to axial asymmetry, at the inner barrier. - Their parame-
ters are otherwise the same with I „&z~= 0.2 MeV for the dot-
dashed curve, p &D&

= 0.& MeV for the short dashed curve.
vg j&D)

„=5. 55 MeV, 5~„=1.04 MeV,

~, =5.05 Mev, n~, =0.6 MeV.

For one of the curves the barrier transition states
are assumed to have the same simple rotational band
structure, . based on a A''=0' bandhead, as in the
secondary well. For the other two curves a more
complex set of barrier transition states has been
assumed. The inner barrier has been assumed to
have maximum axial asymmetry, and therefore
a full set of gamma-rotational states is interlaced
with the simple rotational band. The outer barrier,
having parity and n-rotational asymmetry, has a low-
lying band of K'= 0 transition states, but the odd-par-
ity class-II states make only a marginal contribution to
ihe cross section, even with this assumption. The
class-II vibrational states are assumed to have full pro-
jection onto these barrier deformation channel states.
AQ curves contain the full effects of moderately weak
damping of the class-II compound states into the fine
structure states, and they also contain the effects of
Porter-Thomas fluctuations in the widths of the class-
II states.

Apart from the effect of the damping width the calcu-
lated curves are rather similar at lower excitation en-
ergies. But there is considerable deviation above the
5.0 MeV resonance, the calculations with the fuller
transition state spectra rising considerably above the
experimental data. This fault cannot be rectified readi-
ly by changing the barrier heights without worsening
the fit at lower energies (see Fig. 130). The weak point

in the assumptions behind these two fits is almost cer-
tainly that the vibrational states project fully onto all
the transition states. In the pure form of the vibration-
al model this will certainly not happen, and the two
simpler fits are therefore more appropriate. If frag-
mentation of the vibrational states (as described sche-
matically in Sec. V.C) occurs, any strength gained for
passing through the more complex channels will be lost
to the channels with simpler configuration. Thus we
expect the simpler calculations to give a more realistic
estimate, and the other calculations to serve rather as
an upper bound.

The second case is that of the ' OPu(t, pf) reaction.
The fission probability curve of '~'Pu, Fig. 131, shows
evidence for only one vibrational resonance, at -4.65
MeV. The vibrational state with one extra phonon is
evidently so near the top of the secondary well that its
broadness does not allow it to appear as a distinctive
peak in the cross section. This introduces extra com-
plication into the fitting by allowing the phonon energy
to be a free parameter. In Fig. 131 four calculations
with inner barrier transition states appropriate to an
axially asymmetric deformation are shown. In the first
two the phonon energy is chosen to be O.V MeV, the
lower vibrational energy for I'= 0' as 4.53 MeV, and
the barrier parameters are 'U~ = 5.55 MeV, V ~ = 5.05
MeV; they fit the experimental data (Back et al. , 1974)
at lower excitation energies but override the data in the
region of 5 MeV. Adjustment of the barrier heights
alone is unlikely to improve the fit (see Fig. 130).
However, a choice of phonon energy of 0.8 MeV and in-
ner barrier height raised to 5.65 MeV gives an excel-
lent fit from 4.4 to 5.5 MeV. For the reasons concerned
with configuration mixing that were discussed in the' 'Pu case, these calculations are probably overesti-
mates at the higher excitation energies. Hence a fifth
calculation is shown in which the transition state spec-
trum of the inner barrier is reduced to the simple rota-
tional form based on a K'= 0' bandhead. The assump-
tions of 'U„= 5.55 MeV, ~~= 5.05 MeV, and a phonon en-
ergy of 0.5 MeV yield a good fit up to 5.2 MeV; beyond
this it can be assumed that more complex class-II
states contribute. This is shown more clearly in Fig.
104.

Even mith these complications in the fitting it is seen
that we are not moving the barrier heights (once the
penetrabilities are fixed) by more than about 0.1 MeV.
Hence our earlier estimate of an uncertainty of -0.2-0.3
MeV in fitted barrier heights still appears reasonable.

The detailed results of the analysis of barrier param-
eters is presented in Table XXXI.

2. Systematic trends in barrier parameters

The interesting evidence on the density of intrinsic
states at the barrier deformations and its interpretation
in terms of rotational enhancement due to a lowering of
the nuclear shape symmetry has already been discussed
in Sec. VII.C.2. It is noteworthy that this evidence,
crude as it is, is consistent with the expectations on
nuclear shape that are given by the theory of nuclear
deformation energy. Some additional aspects of this
topic are t~en up in Sec. VII.D.3.
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TABLE XXXI. Recommended values of barrier parameters from analysis of fission cross-section data on the actinide nuclides.
It is not claimed that these parameters are unique in the sense of being the only sets that will fit the data. They are designed to
be used with the other nuclear parameters given in this section for the purpose of establishing the systematics of actinide fission
barrier parameters on a common basis.

Compound
nucleus

Neutron
separ ation
energy S„

(Mev) Reactions
+A @~A +B @~B

Footnote {MeV) (MeV) (Me V) (Me V) Comments

229Th
2soTh

232Th

233Th

2s4Th

230Pa

23fPa

2 32Pa

233Pa

23fU

2 32U
2 33U'

235U

236U

238U

5.23
6.79

6.43

5.85

6.86

5.96

7.28
5.79

6.84

5.31

6.54

5.13

6.14

4.86

22'Th(n f)"'I a(t, ~f)
229Th(n f)
230Th(n -

f)

1
2
3,4
5, 6

230Th (t pf )

Th(n, f) 7, 8

Th(t pf) '

23'Th isHe, tf l

230Th(3He df) 10,9

2sf Pa(„ f)
23f Pa(d pf )

Pa( He, tf)

11
10

9

"'Pa('He, tf)

23fPa(3He, df)
"'U(n, f)

2
12 13

233U (d pf )
233U (n f')
233U (t pf )
234~ (n f)

15
16

234U (t pf ) .

235U (d pf )
235U (n,f)
236~ (n f)

14
17
18

236U (t pf )

23ZU'(n f )

238U (n f)

'"Th{'He, df ) 10,9

6.1 1.0

6.02 0.9

5.82 1.0

6.55 0.8

6.1 1.0

6.1 0.65

5.9 0.8

6.3 0.65

0.8

5.8 0.8

5.2
+5.8

1.04

5.6 1.04

6.15 0.8

5.7 1.0

6.46 0.8

5.63 1.04
6.28 0.8

-6.7
6.5 0.75

6.27 0.57

6.22 0.75

6.65 0.56

6.5 0.75

6.1 0.45

5.9 0.52

6.25 0.45

6.2

-5.2 0.52

5.1
+5.8

0.6

5.5 0.6

5.9 0.52

5.53 0.6
6.08 0.52

5.7 0.6

6.16 0.52

From value of O.„f above 2 MeV
See Note 1

Analysis of vibrational resonance structure
reported by Yuen et a3. (1921). Statistical
Hauser —Feshbach analysis gives barriers
-0.3 Me Vhigher. See also Sec. V.

Barrier parameters from pure vibrational
model analysis; statistical Hauser- Fesh-
bach calculation with same parameters is
about factor 2 too large at high energies.

From statistical Hauser-Feshbach calcu-
lation. For relation to vibrational struc-
ture see Sec. V.

Pure vibrational resonance fit to data.
See Fig. 91.

From. statistical Hauser-Feshbach calcu-
lation,

From statistical Haus er-Feshbach calcu-
lation.

Barrier estimates (from Hauser-Feshbach
statistical analysis) agree with crude
analysis of vibrational resonance struc-
ture; see Sec. V.

From statistical Hauser-Feshbach analy-
sis .

From statistical Hauser-Feshbach analy-
sis.

See Note 2.
References cover resonance region, and

cross section to 1 keV neutron energy
suggests that nuclide is fissile.

See Note 2.

Detailed Haus er-Feshbach calculation
with &'= 2' band at barriers 0.2 MeV
lower than quoted barrier heights gives
better fit than- statistical analysis (see
Sec. D.2 and Fig. 126). For relation to
intermediate structure see Sec. V. C.4
and Sec. VI. D.

See Note 2.
See Note 2.
See Note 3.
From statistical analysis . Detailed
Hauser-Feshbach calculation with K'= &'

band 0.1 MeV below these barriers and
band 0.1 MeV above gives improved fit

{see Sec. VII. D.2) .
See Note 2. Also see Fig. 128 for which

calculated photofission cross section has
lowest J'=1 barrier states 0.7 MeV,
0.1 MeV above 'UA, 'UB, respectively.

Resonance data suggest that E'= 1' barri-
er A state could be -1.1 MeV above'UA.

Reference cross section for barrier level
density parameters of odd-& nuclides
(see Sec. VII. C.2). For relation to inter-
mediate structure see Sec. VI.
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TABLE XXXI. {Continued. )

Compound
nucleus

Neutron
separ ation
energy S~

(Mev) Reactions
U ~ 563g

Footnote (MeV) (MeV) (Me V) (MeV)

240U

2 33Np

2 34Np

5.92
7.35

238U (t Pf)
233U (3He tf )

"'U('He, df ) 10 5.7 0.65

5.75 1.04
5.4 0,8

5.5
4.7

5.2

0.6
0.52

0.45

See Nate 2.
From statistical Hauser-Feshbach analy-

SlS .
From statistical Hauser-Feshbach analy-

81S ~

2 35Np

2 36Np

237Np

, 238Np

2 38Np

237Pu

238pu
238pu

6.99

5.69

6.59

6.23

7.0
5.66

234U (3He tf )
U( He, df)

235U (3H tf )
235U(3He, df)

236U (3He tf}
236U (3He df )

3 Np{d, pf)

238U {3He tf )
Np(n, f)

"'U('He df)

237Np (3Het f' }

237Np(3He, df )
Pu(n, f)

9
10

9
10,9

9
10,9

9
20, 21, 17

10,9

6.0

5.9

6.1

5.9

5.5
6.3

0.8

0.65

0.8

0.65

0.8

0.8

1.04
0.8

5.2

5.7

5.6

5.6

5.2

5.0
5.7

0.52

0.45

0.52

0.52

0.6
0.52

Froo1 statistical Hauser-Feshbach analy-
818 ~

From statistical Hauser-Feshbach analy-
818 .

From statistical Hauser —Feshbach analy-
S18 ~

From statistical and detailed Hauser-
Feshbach analysis.

For relation to intermediate structure see
Sec. VI.

From statistical Hauser-Feshbach analy-
818 .

From statistical Hauser-Feshbach analy-
818 ~

See Note 2.
From statistical Hauser-Feshbach analy-
sis. Detailed Hauser-Feshbach calcula-
tions give good fit with E'= 2', 2', 2
bands of barrier states -0.15 MeV below
quoted barriers. For relation to inter-
mediate structure see Sec. VI.

240Pu 6.52 238pu (t Pf ) 5.57 1.04 5.07 0.6 See Notes 2 and 3 and Fig. 129. Relation
to intermediate structure described in
Secs. V and VI.

'4'Pu

242pu

243pu

244pu
245pu

238Am

'4'Am

5.24

6.30

5.04

6.02
4.76

7.25

"'Pu(n, f)
24'Pu(n, f)
."'P {t,Pf)
240Pu(t, Pf )

Pu(n, f)
~'Pu(n, f)

17
23, 24, 25
10

2
26, 27, 28
29, 30

42Pu(t, Pf )
"'Pu(n, f)

2
30

238Pu (3He tf )

238Pu(3He, df ) 10

6.1

6.0

5.4
5.8

6.5

0.8

1.04

0.8

1.04
0.8

0.8

5.1

5.4

5.0
5.3

5.6

0.52

0.6

0.52

0.6
0.52

0.52

See comment under 8Pu.

See Note 2 and Fig. 131.
Detailed Hauser-Feshbach analysis.
From statistical Hauser-Feshbach analy-
sis. For relation to intermediate struc-
ture see Sec. VI.

See Note 2.
From statistical Hauser-Feshbach analy-
sis. Detailed Hauser-Feshbach calcula-
tion suggests lowest barrier states (per-
haps K'=$+ —) are -0.1 MeVlower than
this.

From statistical Hauser-Feshbach analy-
818 .

From statistical Hauser-Feshbach analy-
Sis

24~Am

242Am

'4'Am

6.66

5.54

6.43

24 Pu(3He, tf)
24 Pu( He, df)

24~Am(d, pf )

241Pu (t pf )
'Am(n, f)

"'Pu('He, df)

9
10

10

9
31 32
10,9

6.2

6.5

0.8

0.65

0.8

5.7

5.7

5.6

0.52

0.45

0.52

From statistical Hauser-Feshbach analy-
S18

From statistical and detailed (on n,f)
Hauser-Feshbach analysis .

See Note 4.
From statistical Hauser-Feshbach analy-

818 ~

243Am (d,Pf ) 5.6 0.45 Fram statistical and detailed (on n, f)
Hauser- Feshbach analysis.
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TABLE XXXI. (Continm ed. )

Neutron
separation

Compound energy S„
nucleus (MeV) Reactions

S(d~ U gy S(dg
Footnote (MeV) (MeV) (Me V) (MeV) Comments

'4'Am

'4'Cm

'4'Cm

243cm

244cm

'4'Cm

246C

247Cm

'4'Cm

'4'Cm

'"cm

249Bk

'"Bk

250C f

6.05

5.86

6.9

6.8

5.52

6.45

5.16

6.21

6.21

4.97

6.62

4.83

Am(n, f)
243A (t pf )

"'Cm(t c f)

33 27
10

10

Am( He, tf) 9

24iAm (3He df ) 9

Am( He, tf)

Cm(n, f)
245cm(n, f)

24~em(n, f)

248cm(p pff)

248Cm(n, f)
'4'Cm(t, pf )

248Cm(3He, df ) 10

"'Bk(n,f)
'4'Cf(n, f)
252Cf(n, f)

35,36

24~Am (He, df) 2, 9

6.2

5.8

6.6

5.8

6.7

5.8

6.3

5.7

6.2

5.7

5.7

5.3

-6.2

6.1

5.6

5.4

0.8

0.8

0.8

1.04

0.8

1.04

0.8

0.8

1.04

0.8

1.04

0.8

'0.65

1.04

0.8

5.3

5.0

4.0

4.3

4 3

5.0

4.8

4.6

4.1

3.6

0.52

0.52

0.52

0.6

0.52

0.6

0.52

0.6

0.52

0.6

0.52

0.6

0.45

0.6

0.52

From statistical Hauser-Feshbach
818 ~

From statistical Haus er-Feshbach
818 ~

From statistical Hauser-Feshbach
S18.

From statistical Hauser-Feshbach
81S ~

From statistical Haus er-Feshbach
818 ~

From statistical Hauser-Feshbach
Sls .

From statistical Hauser-Feshbach
81S ~

From statistical Hauser-Feshbach
81S ~

From statistical Hauser-Feshbach
sis (and see Note 5}.

From statistical Hauser-Feshbach
' 818 ~

From statistical Hauser-Feshbach
sis (and see Note 6).

From statistigal Hauser-Feshbach
81S ~

From statistical Hauser-Feshbach
S18.

From statistical Hauser-Feshbach
818 .

From statistical Hauser-Feshbach
S18-

See Note 7.

analy-

analy-

a�nal-

ya�na-

analy-

analy-

analy-

analy-

analy-

analy-

analy-

analy-

analy-

analy-

Vorotnikov et al. (1973)
Back et al. (1974a)
Gokhberg et al. (1959a)
Cote et al. (1965)
James et al. (1972)
Yuen et al. (1971)

7 Henkel and Smith (1956)
8 Lamphere (1965)

Qavron et al. (1976)
ioBack et al. (1974c)
iiMuir and Veeser (1971)
i2 James (1964)
i3 Farrell (1970)

i4Back et al. (1971)
Britt and Cramer (1970)
Lamphere (1962)

i7Sowerby et al. (1974)
Rosier et al. (1972)

iBMcNally et al. (1974)
Brown et al. (1970)

2iStein et al. (1968)
22Silbert et al. (1973)
2 Nesterov and Smirenkin (1960)
24Henkel et al. (1957)
»Byers et al. (1966)

6Kappeler ancl PQetschirger (1970)
7Butler and Sjoblom (1961)
Blons (1973)

29 Butler (1960)
Auchampaugh et al. (1971)

3iSeeger et al. (1967)
»Bo~an et al. (1965)
33Baybarz et al. (1971)

Vorotnikov et al. {1970)
35Silbert (1973)

Vorotnikov et al . (1972)
37 Moor e et al. (1971}

Note l. T.he (t, nf} data can be fitted by these parameters using a pure vibrational model built on a K = 0' rotational band over
the barriers and making some allowance for the presence of a EP= 0 band. The data cannot be fitted by a strong damping model
with the same barrier heights and her& reduced to 0.6 MeV. The fission cross-section data are adequately fitted by specific cal-
culations using these barrier heights with rotational bands at the following positions (energy units in MeV)

Barrier A Barrier B

0
2+

1
2

E~ —S
~P 0
-0.33

0.22
p

E~ —S
-0.25
~0 5

0.75
-0.8

.statistical calculations in the region of 1 MeV are almost a factor of 2 too high; this tends to be a common feature of the statisti-
cal calculations on Th nuclei suggesting that barrier B densities might be overestimated (but see Sec. VII.D.3). Hesonance region
data give fission widths ranging from 4 meV to &160 meV and resonance spacing of 0.41 eV; this is consistent with position of J
= 3'barrier state implied above (giving- r&(3') = 10 meV).
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TABLE X3QCI. (Continl ed. )

Note 2. Barrier parameters fit a calculation of fission probability through the K~= 0' rotational band across the barrier. A
damped vibrational model has been assumed and the calculation includes the effect of Porter —Thomas fluctuations in the class-II
levels. Porter- Thomas fluctuations in the class-I levels have not been included but neither has experimental resolution and these
two effects tend to be compensatory.

Note 3. The statistical model calculations of fission cross-sections of 3~U and ~Pu have been adjusted simultaneously to give
the barrier densities that have been used for statistical calculations on other even compound nuclei (see Sec. VII.C.2).

Note 4. Analysis of spontaneous fission isomerism suggests vz- 5.6 MeV. Resonance data at low neutron energies give I ~&- 0.18 meV. This agrees with barrier parameters given.
Note 5. Parameters are from statistical model fit. Specific calculation employs J'= 3/2' barrier states 0.06 MeV be]ow the

statistical parameters, J~=1/2' 0.05 MeV above, 1/2 0.08 MeV above.
Note 6. Parameters are from statistical model fit. Specific calculation employs J~= 7/2+, 9/2 barrier states 0.2 Mev below

the statistical parameters, J~= 1/2+ 0.05 MeV above.
Note 7. Parameters are from statistical model fit. Specific calculation has J~= 3/2+, 5/2' barrier states 0.25 MeV below statis-

tical values, 3/2, 0.18 MeV below. Resonance data indicate fission w'idths are of the order of magnitude to be explained by bar-
rier parameters.

(odd-A) = 6.3 MeV

(odd)= 6.5 MeV. (V.34)

This is in contrast to the general trend of the outer
barrier heights, which, insofar as they can be quanti-
tatively assessed from shape isomer formation yields
and intermediate structure data, decrease strongly and
in a roughly linear fashion with A (by perhaps 3 MeV in
passing from Th to Cf; see Fig. 134). Figure 132 shows
that the centroid positiori for these inverted parabolas
of intermediate barrier height is virtually the same
neutron number, viz. , N= 147, for all charges. A rough
empirical equation for the inner barrier heights ap-
pears to be

—0.01067(N —147)'. (7.35)

Interestingly, this neutron number is very close to that

6—
I-
x
CD

IJJ ~~v
V

CL
tlJ

Z:

I

140
I I

145 i50
NEUTRON NUMBER, N

I

155

FIG. 132. Inner barrier heights as a function of neutron num-
ber. Open symbols denote doi~bly even nuclides, hatched de-
note odd-mass, black denote doubly odd, O-Th, Cm; U-Pa,
Am; &&-U, Cf; D,-Np, Bk; 'g-Pu.

form about a centroid abscissa value, and that the max-
imum barrier height: for each proton number is virtual-
ly unchanging with increasing Z. This value is

(even) = 5.7 MeV

(~= 148) i:aleulated by Strutinsky from his combined
liquid drop and shell correction model as being that for
optimum development of the secondary well in the fis-
sion barrier; see, however, Sec. VIII.E.

Both the relevant figures, but particularly Fig. 132,
immediately show a considerable odd-even effect in the
height of barrier A [as also expressed in Eg. (7.34)].
The biggest difference is seen between the odd-mass
and even barriers, but some reservations must be ex-
pressed about a too literal acceptance of this result.
Firstly, the determination of the barriers of even nu-
clei is difficult, as already pointed out, because the
strong fission decay in the barrier region is only in
competition with weak electromagnetic radiation arid
hence'the barrier parameters are strongly dependent on
the choice of penetrability frequency. However, a rais-
ing of the even barriers ean only be done at the ex-
pense of raising 5~~ and hence accentuating the odd-
even difference in this parameter. On the other hand,
in the odd-Pf nuclei formed from even targets the fis-
sion decay in the barrier region is undergoing strong
competition from neutron evaporation and in a statisti-
cal sense the barrier should be easily determined.
However, in these nuclei there is also a strong neutron
centrifugal barrier to consider; the effect of the inter-
play between the fission and centrifugal barriers is
shown in Fig. 135, which shows that for a given change
in fission barrier there is a much bigger shift in the
fission cross section of low orbital angular momentum
states than for those of high angular momentum. It is
now apparent that the choice of barrier density for odd-
A nuclei has been affected by the neutron centrifugal
barrier; it seems very likely that in "'U most of the
lowest barrier A states carry high angular momentum,
but the fission cross section is hardly affected by them
at lower energies. Consequently, the fission cross sec-
tion only starts to rise rapidly as many barrier states
are coming in simultaneously, some way above the
proper barrier energy. Thus for this reference cross
section the barrier has almost certainly been deduced to
be too high in energy and the density of states chosen at
this barrier starts at too high a value at an already rap-
idly increasing rate. , This is borne out by the analysis
of the fission cross sections of "'U (see Fig. 126) and
"'U for which the statistical calculation gives too high
a cross section just above the barrier height, whereas
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6 —
gf

B-V~V

N=147(TS) (Pa)

38

(U)

39

(PU)

40

FISS}LI T Y

(cf)
t

42

FIG. 133. Inner barrier heights as a function of fissility Z /EA(1 —1.78(R —&/A) ]. &ertica]. arrows on abscissa indicate ~=147
for various Z. Symbols in Fig. 132.

more detailed study suggests barrier states for a few'

low angular momentum values below the statistical bar-
rier and some of the higher angular momentum states
at some distance above. The general consensus of the
analysis suggests that in these nuclides the true barrier
is some 2-300 keV below the value fixed by the statis-
tical model calculation, and this is borne out by the na-
ture of the barrier level density, which will now lie al-
most midway between those of odd and even nuclides,
reflecting the situation that is found for level density at

Th

)
X

eo-
CD

UJ

normal deformation.
This downward shift of the odd-mass barrier heights

still leaves a consider'able difference against even bar-
rier heights and at the same time opens up a definite
gap between odd-mass and odd barrier heights. An odd-
even effect in intermediate barrier heights is thus sub-
stantiated. Physically, it seems to reflect the differ-
ences in single-particle level density at different nu-
clear deformations that are cited by Strutinsky (1967)
as the cause of maxima and minima in the shell correc-
tions that have to be added to the liquid drop energy
surface. The singLe-particle level density also affects
the pairing energy gap, depressing the fully pair-cor-
related ground state of even nuclei below the lowest
two-quasi-particle state (which is the character of the
ground state of odd nuclei) by an amount that is there-
fore expected to have a maximum at the shell correction
maxima (i.e. , the barriers) and minima at the shell
correction minima. See also Sec. VIII.D.2.

3. The thorium anomaly

a. Comparison with theory

40— 0
Cm

Ct
0 —I

150
I

140
l

145
NE UTRON NUM BE R

FIG. 134. Outer barrier heights as a function of neutron num-
ber. Symbols as in Fig. 132.

155

It is generally found that the heights of barriers and
secondary weQ depths determined from experimental
data, and presented in Table XXXI, are in reasonable
agreement with the results of theoretical calculations
(as summarized in Secs. II and VIII) to within about 0.5
MeV. Nevertheless there appear to be some consider-
ably greater discrepancies associated particularly with
'the thorium nuclides. The occurrence of undamped or
weakly damped vibrational resonances in the fission
cross sections of "'Th and "'Th (see Sec. V.B.5) sug-
gests that there is comparatively little energy available
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parison is made difficult by the presence of vibrational
structure, which obscures the monotonic rise in the
barrier transmission coefficients of the separate bar-
riers. However, a clear qualitative example is pro-
vided by the fission probability of '"Th, as measured
in the (t, Pf ) reaction (Back et a I., 1974b) and compared
with calculation in Fig. 91. It is obvious that the pene-
trability parameters h~, k~~ need to be increased con-
siderably to get good detailed agreement with the data.
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c. Interpretation w/ th a triple-humped barrier

The first suggestion to resolve the thorium anomaly

was made by Miler and Nix (1974). In their detailed
calculations of the deformation surfaces of a range of
actinide nuclides they found a shallow dip in the outer
barrier peak (see Fig. 17). If this is a real effect it
could explain the problems outlined in Subsections ~
and b above. The hypothesis of a shallow tertiary well
at the deformation corresponding to the outer barrier
in the conventional two-humped barrier model would
allow the existence of undamped or weakly damped vi-
brational resonances, a high apparent inner barrier,
and a reduced barrier state density at this new apparent
inner barrier (corresponding to the expectation that this
barrier will have axial symmetry). It would also sug-
gest higher values of the penetrability parameters, of
both the intermediate and outer barriers enclosing the
tertiary well. Indeed, with a low enough peak for the
true inner barrier A, which will allow rather thorough
mixing of the class-I and class-II compound states at
excitation energies approaching the value of barrier B,

FIG. 135. Calculated neutron fission cross sections of an even
nucleus for states of specified angular momentum and parity
J~ illustrating interplay of fission and neutron c.entrifugal
barriers. The short dashed curve is the compound nucleus
formation cross section.

0-3 0

025—

for intrinsic excitation in the secondary well; esti-
mates from this evidence that the secondary well lies
at least 4.5 MeV above the primary well contrast with
theoretical estimates of the order of 2.5 MeV (see Fig.
15). A discrepancy is also found in the inner barrier
height. The experimental data suggest -6 MeV (above
ground) jn "'Th and '"Th, while calculations yield
-4.5 MeV (see Fig. 14).

b. Above-barrier cross sections and barrier
transparencies of Th and Pa nuciIdes

Using barrier parameters derived from the analysis
of near-barrier experimental data on Th and Pa nu-
clides, we find that the calculated values of the cross
sections tend to be too high by a factor approaching two
(see Fig. 136). This suggests that the barrier level
densities (as given in Table XXX) are too high for these
nuclides.

The cross sections of these same nuclides also ap-
pear to rise too quickly in the barrier region when they
are calculated with the "universal" set of barrier pen-
etrability parameters given in Eg. (1.33). Exact com-

C) 0.20—
l—

LU

I

~ 0)5—
fK

K
C)
~ 0)0—
4

0.05—

0
l-0 1-5 2.0 25 30

NEUTRON ENERGY (MeV )

4.0

FIG. 136. The calculated neutron fission cross section of Th
up to 4 MeV, as based on the double-humped barrier param-
eters of Table XXXI, compared with data (circles and full
curve).
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the reaction theory of fission processes, as it has been
described in Secs. III, V, and VI of this article, will be
unchanged except that the role of the class-II states will
now be taken by a new set of class-III states (which may
be pure vibrational states) centered in the tertiary well,
and the transmission coefficients T~, TI, governing th' e
coupling and fission widths will be replaced by coeffi-
cients T~, T~ for the subsidiary peaks of the split outer
barrier, their heights being Us/'Uc and with penetra-
bility parameters S~~, S(d~ that are considerably
larger than the original S~~.

Direct evidence to support this hypothesis is not yet
conclusive. Blons et al. (19'l5a) have observed sub-
structure in the fission cross section of "'Th (see Sec.
V.A. 5.b) and have interpreted this as rotational band
structure, but have not made a quantitative fit to sub-
stantiate this. The moment of inertia of the rotational
band appears large enough to be associated with the high
deformation of the outer barrier, but it must be borne
in mind that the effective moment of inertia of a rota-
tional band, especially in an odd-A nucleus, can be af-
fected by Coriolis coupling with higher bands differing
by one unit in the spin projection quantum number. The
model of vibrational state damping described in Sec. V.
C.1 and applied to the case of "'Th in Sec. V.C.4.e
lends qualitative, but not yet unambiguous, support
also to the hypothesis. These questions a.re further
discussed in Sec. IX.D.

Vill. SUMMARY AND ANALYSlS OF BARRlER
lNFOR IVIAT ION

A. Introduction

The experiments which define fission barrier heights
or the energy of the second minimum are based on a
considerable variety of different methods. Most of
these allow the barrier parameters of a particular i.so-
tope to be determined without requiring any knowledge
of the barrier parameters in neighboring species.
Sometimes a given parameter may even be measured by
two or more independent methods.

The question of internal consistency between several
measurements pertaining to the same isotope has been
treated in the foregoing Secs. IV, V, and VII. Here we
shall present "best" values for each isotope; one for
each of the three extrema, first barrier, isomeric
minimum, and second barrier. Summarizing the data
in this way will allow for a broader test of consistency.
At the same time, systematic tr'ends in the barrier pa-
rameters can be examined.

There are three kinds of trends. First, a smooth one
to be associated with average properties of nuclear
matter as described by the liquid drop or droplet mod-
els; secondly the odd-even staggering due to pairing;
and finaQy the broader oscillations for which shell ef-
fects are responsible. In this section we shall analyze
the experimental data with a view to separating the
three effects from each other and then compare with
the theoretical models outlined in Sec. II. As we shall
see, theory accounts quite well for the major trends,
in particular it invariably confirms the existence of a
two-humped barrier, if not a three-humped one. The
isomeric mini. mum seems most pronounced when the

neutron number equals N= 144. Accordingly this is the
magic number for neutrons moving in the strongly de-
formed potential of the isomeric shape. Evidence for
departures from axial and reflection symmetry at the
barriers is also brought out quite strongly. As for
pairing, the data appear to favor the hypothesis of a
pairing strength which increases as the surface of the
nucleus incr eases.

When it comes to details, however, especially to the
variation of shell effects with proton number, there re-
main serious discrepancies. It is not even clear wheth-
er these are due to a misinterpretation of the experi-
mental results or to shortcomings of the theory.

B. "Best"values of barrier heights and isomer engeries

Table XXXII summarizes the best values of the energy
of the three extrema 'U~, (E« —Et), and 'Us. They should
be understood in analogy to the ground states as the en-
ergy of the lowest state of the relevant deformation,
whatever the spin and parity of that state is. The last
two columns in Table XXXII present the ground-state
energy, relative to the energy of a spherical liquid drop
or to a spherical droplet, respectively (see Sec. VIII.
C.3).

The barrier energies are primarily based on the re-
sults summarized in Tables V-VII and XXXI. The er-
rors quoted reflect both an eventual spread between in-
dependent determinations and the experimental uncer-
tainties in a narrower sense. In contrast to ground-
state energies it is only in exceptional cases that bar-
rier heights can be defined with better than 0.2 MeV
accuracy.

In a number of cases, slow neutron fine-structure
resonances provide an additional measure of ihe bar-
rier heights, Sec. VI. In these cases the barriers are
defined in terms of a reaction channel of definite spin
and parity (usually I '= 2"), which may or may not rep-
resent the lowest barrier state. The energies derived
in this fashion are therefore to be regarded as upper
limits only.

The level density expression used in Sec. VII to ana-
lyze fission excitation functions of odd-A nuclei as-
sumes an exponentially rising density of states begin-
ning directly at the energy of the lowest channel. Con-
sidering the effect of pairing that pushes the onset of
an exponentially rising level density towards higher en-
ergies, this assumption may represent a true situation
where the barrier lies somewhat lower than assumed in
the analysis. In the level density models used for even
and doubly odd nuclei, there is no such ambiguity. The
barrier heights of odd-A. nuclei from Table XXXI have
therefore, been lowered by about 0.25 MeV in the pro-
cess of establishing the final values of Table XXXII;
compare Sec. VII.D.2 for a more detailed discussion of
this crucial point.

Isomer excitation energies are mainly based on exci-
tation function thresholds, Sec. IV, and on extrapolation
of class-II level densities down to zero energy, Sec. VI.
Again, the errors quoted in Table XXXII include both
the spread between independent determina, tions and the
usual experimental uncertainty. In the case of isomer
energies, systematic errors are especially hard to rule
out. In essence, this is because the available experi-
mental methods are rather indirect. The results there-
fore tend to be model dependent.
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TABLE XXXQ. Summary of barrier and ground-state energies. All energies are in MeV. Most of
the numbers are taken from Tables V-VII and XXXI, subtracting a small correction for odd-A nuclei;
see te~. The 228aa barriers are from Weber et al. (1976), and the 6Ac, 227Th, 22 Th, 2 2pu, and

Pu barrier values are due to Habs (1977}. The energy &~ relative to the spherical shape of the
liquid drop is based on Myers and Swiatecki (1967) with experimental masses from Wapstra-and
Gove (1971). Those relative to the droplet are from Myers (1977) with experimental masses from
Wapstra and Bos (1977).

Isotope
&rx

(Helative to ground state)

Ex
Rel. to spherical:

liq. drop droplet

228H a
'"Ac
227Th
228Th
229Th
230Th
23k Th
232Th
233Th
234Th
'"I a
2 32p
233p
232U

234U

23+
236U
237U'

238U

239U

240U

Np
Np

2 36Np
237Np
2 38Np
239N

Pu
234pu
'"Pu
238pu
237p
238p
239pu
240p

"'Pu
Pu

'4'Pu
'44pu
'4'Pu
237A

'"Am
239Am
240Am

~Am
"'Am
'4'Am
'"Am
'4'Am
247Am

241( m
'4'Cm
243Cm
244(m
"'Cm
'4'Cm
247C m
'4'Cm
"'Cm

8.0 + 0.5
6.0 + 0.6
5.9+ 0.3
6.2 + 0.3

6.1 + 0.2
6.0+ 0.1
5.8 + 0.2
6.3 + 0.2.
6.1 ~ 0.2
5.9 + 0.2
6.1 + 0.3
6.1 + 0.3
5.2+ 0.2
5.6+ 0.2
5.9 + 0.2
5.6 ~ 0.2
6.1+ 0.2
5.7+ 0.2
6.3 + 0.2
5.7+ 0.2
5.5 + 0.2
5.5 + 0.2
5.8 + 0.2
5.7 + 0.2
6.1 + 0.2
5.9 + 0.2
5.3 + 0.4
5.8 + 0.7

5.5+ 0.2
6.2 + 0.2
5.6 + 0.2
6.1+ 0.2
5.6 + 0.2
5.9 + 0.2
5.4 ~ 0.2
5.6 + 0.2

6.2 + 0.3
6.5 ~ 0.2
6.0 + 0.2
6.5 + 0.2
5.9 + 0.2
6.3 + 0.2
5.9 + 0.2
5.5 + 0.2
6.3+ 0.3
5.8 + 0.4
6.4 + 0.3

' 5.8 + 0.2
6.2 + 0.2
5.7 + 0.2
6.0 + 0.2
5.7 + 0.2
5.6 + 0.2'

&5.8
&&4 5
&6.2

&5.7

2.5 +0.3
2.3 + 0.2
2.5 +0.4
2.6 + 0-.01
1.9 + 0.3

2.8 + 0.3
2.3 +0.3

2.6 + 0.4

2.8 + 0.2
2.7 + 0.2
2.6 + 0.2
2.4 +0.3
1.9 + 0.3

1.7 +0.3

2.4 + 0.2
2.6 +0.2
2.4 + 0.2
3.0 + 0.2
2.2 +0.2
2.9 + 0.2
2.3 ~ 0.2
2.8 + 0.4

2.1 + 0.3

1.9 + 0.3

2.1 + 0.3

8.5
7.7
6.6
6.5
6.5
6.5
6.1
6.2
6.3
6.5
5.9
6.2
6.1
5.1
5.5
5.6
5.5
5.9
5.7
6.1
5.5
5.1
5.2
5.6
5.4
6.0
5.4

+ 0.5
+ 0.3
+ 0.3
+ 0.3
+ 0.3
+ 0.3
+ 0.3
+ 0.2

0.2
+ 0.2
~ 0.3
+ 0.2
+ 0.3
~ 0.3
+ 0.2

0.2
+ 0.2
+ 0.2
+ 0.2
+ 0.2
+ 0.2
+ 0.2
+ 0.2
+ 0.2
+ 0.2

0.2
+ 0.2

5.1 + 0.4
4.5 + 0.4

5.0 + 0.2
5.5+ 0.2
5.1+ 0.2
5.4 ~ 0.2
5.1 + 0.2
5.2 + 0.2
5.0 + 0.2
5.0 + 0.2

5.2+ 0.3
5.1 ~ 0.3
5.4 + 0.3
5.4 + 0.3
5.4 + 0.3
5.2 + 0.3

4.3 + 0.3

4.2 + 0.3

4.3 ~ 0.5
4.0 + 0.5

0.92
0.23
0.32
0.20
0.37
0.33
0.39
0.44
0,.57
0.63
0.26
0.09
0.26

-0.19
-0.28
-0.26
-0.15
-0.20

0.05
0.10
0.31

—0.63
-0.51
-0.65
-0.43
-0.61
-0.25
-0.16
-0.50
-0.71
-0.76
-0.86
-0.81
-0.98
-0.71
-0.70
-0.46
-0.48
-0.21
-0.18
(-1.o)
-1.32
-1.15
(-1.40}
—1.05
-1.14
-0.76
-0.91
-0.48
(-o.13)
—1.57
-1.35
-1.41
-1.26
~1,37
—1.13
-1.10
-0.86
-0.63

0.16
-0.95
-0.94
-0.95
-0.83
-0.75
-0.73
-0.54
-0.40
-0.19
-1.03
-1.16
-0.95
-1.52
-1.58
-1.59
-1.38
-1.43
-1.04
-1.00
-0.63
-2.06
-1.96
-2.08
-1.85
-1.98
-1.58
-1.50
-1.89
-2.22
-2.23
-2.41
-2.29
-2.50
-2.15
-2.17
-1.81
-1.84
-1.43
-1.37
-2.54
-2.83
-2.76
-2.99
-2.67
-2.71
-2.33
-2.42
-1.95
-1.49
-3.25
-2.96
-3.08
-2.87
-3.03
-2.69
-2.70
-2.35
—2.13
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TABLE XXXII. {Continued. )

Isotope
Ezz

(Relative to ground state)
+B

E
Rel. to spherical:

liq. drop droplet

250( m
249Bk
250Bk
250C f
253C f

5.3 + 0.2
6.1 + 0.2
6.1 + 0.2
5.6+ 0.3
5.4 + 0.3

4.1 + 0.3

-0.28
-1.23
-1.07
-1.80
-0.83

-1.57
—2.94
-2.72
-3.52
-2.55

C. The smooth reference frame: liquid drop, or droplet
liquid drop treatments of pairing, will be reflected in
these energy values.

't. Expressing barrier energies and minima relative to a
spherical liquid drop

Thus, for v denoting either I, A, II, or B,
+ ~shel 1 + gg

V V V V
(8.1)

j(6-

C9
IX

'

LU

4
K0
I-
x 2
O

I iq. dr. or droplet saddle

0'

FIG. 137. Schematic diagram of the total nuclear deformation
energy along the fission path. Shell effects are built on the
underlying liquid drop (or droplet) reference energy. One may
imagine plots of the type shown on the figure —one for each
isotope stacked according to X value and projected onto a
plane perpendicular to the X direction. This will lead to plots
like those shown in Figs. 139-142.

For a single nuclide it is natural to characterize the
double barrier in terms of the heights of the two max-
ima and of the second minimum, relative to the ground
state. When many nuclides are to be compared, the
grourid state becomes a poor reference point because
the ground-state energy, like the other extrema, incor-
porates shell and pairing effects. It is better to
exhibit the general liquid drop trends, the pairing, and
the shell effects separately for each of the four extre-
ma. --This can be done by expressing the energy of each
of these relative to the energy of the spherical liquid
drop, as shown in Fig. 137. The ground-state energy
(or mass) relative to that of a liiluid drop sphere is ac-
curately known from mass measurements, provided the
parameters of the liquid drop model have been fixed;
the energies or masses of the three other extrema are
then easily obtained from the relative energies &~,
(E« —E,), and ~s; Table XXXII. These energies, mea, -
sured from the base line of Fig. 137, will be denoted
by E„E„,E», and EB, respectively. They represent
a sum of shell correction energies and liquid drop de-
formation energies. Also the deviations from a smooth-
ly varying odd-even staggering, as assumed in the

The shell energies are generally thought to be sums of
independent contributions from protons and neutrons,

Eshel 1 Eshel 1(Z) + Eshel 1(~)
V V V

and the pairing deviation is

(8.2)

2. Ground-state shell effects, a test case

For ground-state shapes the liquid drop deformation
energy is small, if not zero. Therefore the shell cor-
rection energy E,""' is relatively well defined. At the
same time there is a large body of a,ccurate experimen-
tal data for the ground states, both mass measurements
and spectroscopic data. The latter are essential for
making a realistic choice of the shell model potential
used in calculating shell energy correctioris. The de-
scription of nuclear-binding energies in terms of
Strutinsky's shell correction method (Sec. II) can there-
fore be gauged by its success in fitting the ground state
binding energies.

Figure 138 illustrates one such test over an extended
region of the isotope chart. One sees that the main
trends are well reproduced, for example, the large
dip at doubly magic ' 'Pb and the secondary depression

n~, = ~.(z, x) -z, (8.8)
l

where the liquid drop odd=even pairing correction a has
the va.lue 1L4, the same for protons and neutrons
and for all shapes.

To isolate the shell correction energy requires
knowledge of the, liquid drop deformation energy as in-
dicated on Fig. 137 and hence of the shape in question.
This knowledge is generally not available —especially
for the two barriers —and therefore one cannot deter-
mine the shell correction energy unambiguously.
Nevertheless, the magnitude of the deformation energy
can be crudely estimated from the liquid drop model by
making plausible assumptions about the shape, and the
change in this energy with proton and neutron number
can then be estimated rather accurately, allowing inter-
esting trends in the remaining effective shell energy to
be isolated arid studied as a function of neutron and pro-
ton number. This is especially true, if it is permissi-
ble to assume that the barriers and the minima have
fixed, or at least slowly varying shapes, as indeed
most theoretical models predict.
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assoc''ated with the onset of deformation around mass
number 228 a.nd extending towards "'Fm with nucleon
numbers += 152 and Z= 100. From the plot of differ-
ences between theory and experiment (in Fig. 138) one
also sees that discrepancies-of the order of 1-1.5 MeV
remain. There seem to be two difficulties. One is to
estimate the magnitude of the shell energy correctly
over an extended region. This gives rise to the largest
discrepancies, of order + 1 MeV. The other and small-
er difficulty is in describing the slopes for a given ele-
ment and hence the variation with neutron number cor-
rectly.

Deviations of this nature are not specific to the ex-
ample shown here. There have been many attempts to
calculate ground-state masses using a range of liquid
drop or droplet model parameters combined with dif-
ferent choices of single-particle potentials. Several
such attempts are reviewed by Myers (1977). Although
the deviations change in nature from one calculation to
another, the overall discrepancies invariably remain of
the order of + 1 MeV.

3.- Choice of liquid drop and droplet parameters

The introduction of the shell correction method for
describing the fission barrier coincided with the
appearance of the Lysekil version of Myers and
Swiatecki's (1967) mass formula, including a new set of
carefully fitted liquid drop parameters [see Eq. (2.5)].
A large number of early barrier calculations are there-
fore based on this parameter choice. Since then, the
liquid drop concept has been refined'in the form of the
droplet model of Myers and Swiatecki (1969). In 1977
Myers presented complete tables calculated on the ba-
sis of a best fit of the droplet parameter to the most re-
cent mass measurements (Wapstra and Bos, 1977) and

(0) N —Z
&~ =a, 1-y A.

A
(8.4)

The calculated fit to the ground-state masses shows a
systematically wrong isospin dependence for the acti-
nides reflected in the upwards sloping lines in Fig. 138,
lower part. Moiler shows that this can be remedied by
very small adjustments of the constants a, and y of less
than 1%. The price paid is a poorer agreement for the
ra.re-earth nuclei. %'hat is worse, it tends to transfer
the wrong isospin dependence from the ground-state
fits to the fits at the other points: barriers A and B
and the second minimum. This modification is there-
fore not very appealing.

The Lund group combines the Lysekil liquid drop for-
mula in unaltered form with a calculation of the shell
correction in which the pairing strength increases in
proportion to the surface area, G- S. One effect of

barrier heights, see Myers (1977).
%ith this development in mind we present the four ex-

perimental energies Ez, u~, (Ezz —' Ez), and. 'Us in two
ways:

(i) relative to the 1967 I ysekil spherical liquid drop
(Figs. 139 and 141), and

(ii) relative to the 1977 spherical droplet (Figs. 140
and 142).

In both cases the energies relative to the sphere are
denoted Ez E„Ezz and Eg respectively.

In the decade between these two years there have
been several studies of how to improve the liquid drop
model parameters. Contributions have been made by
groups in Lund-Berkeley-Warsaw, at Los Alamos, in
Copenhagen-Basel-Moscow, and in Dubna.

Moiler (1972) studied a modification of the Myers-
Swiatecki liquid drop formula, namely of the isospin
dependent volume term
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this is to damp the shell oscillations at large deforma-
tions. At the position of the outer barrier, the damping
factor is of the order of 0.8 compared to a. shell cor-
rection calculation with a constant pairing strength, G
= const. Another effect of surface dependent pairing ap-
pears as a smooth average increase in the pair conden-
sation energy with increasing surface area, i.e. , an ef-
fective decrease of surface energy and hence of the bar-
rier height. At the outer barrier this amounts to a 2
MeV decrease.

Apart from the moderate damping effect inherent in
the assumption of G- S, the Lund group obtains nearly
identical results with another version of the calculation,
where G is constant. It is done by increasing the liquid
drop parameter a describing the (N —Z) dependence of
the su&face energy, which for a sphere is

N —Z
s (8.5)

The Lysekil version has z=y= 1.78 which is equivalent
to. the assumption that the volume and surface energies
have the same (N —Z) dependence. The Lund group in-
creases ~ from 1.78 to K= 2.53, keeping a, constant.
Thereby the surface energy and hence the fissility is
increased by about 0.03 units on the average for the
actinides. Comparison with experiments in the actinide
region alone cannot decide which of the two versions is
the most adequate; but the second version implies a
general increase in fissility for nuclei near beta sta-
bility, which for lighter species lowers the liquid drop
barrier by a larger amount. For ' 'Lu or '"Ir the Lund
group will calculate fission barriers with the G= const,
x= 2.53 version that lies 4 MeV lomer than the rnea-
sured fission barriers, as summarized by Moretto,
Thompson, Routti, and Gatti (1972). At first glance
this may be seen as an argument in favor of the G-S
version with e= 1.73. The same inconsistency with the
Lu-Ir barriers as mentioned above is, however, likely
to appear also with this version, because the lighter
nuclei have strongly dramn-out saddle shapes, i.e. , a
large surface and hence a large pair condensation en-
ergy, which also lowers the barrier.

A surface dependent pairing would tend to increase
the energy gap for large distortions, therefore mea-
surements of the energy gap (odd-even staggering) can
test this assumption, see Sec. VIII.D. 2. On the other
hand, the general increase in pair condensation energy
with increasing deformation will not be visible in the
comparisons, because this effect is bound to be ab-
sorbed into the general liquid drop or droplet trends in
the process of fitting the parameters of these models.

Pauli and Ledergerber (1971) introduce another modi-
fication of the surface energy, Eq. (8.5). They estimate
the liquid drop energy at the outer barrier for a number
of isotopes with different values of (N —Z) by subtrating
calculated shell corrections from the experimental bar-
rier energies using a conscant pairing strength. The
best fit to the remaining liquid drop part of the energy
at the outer barrier is obtained for v= 2.84. The same
fit determines the quantity 2a,/c„where c3 is related
to the Coulomb energy of the spherical liquid drop

Z(o'= c Z'/a'"
C 3 (8.6)

According to Myers and Swiatecki (1967) 2a, /f.-3= 50.9,
whereas Pauli and Ledergerber (1971) obtain the value
52.8 from their best fit to the outer barrier. In the total
binding energy a, and c3 contribute to the sum with equal
sign. There is in fact a sufficient margin to adjust the
ratio 2a,/c;, which influences the deformation energy,

/

by 4% without affecting the ground-state fits. [as an ex-
ample, Seeger (1967) obtains 2a, /c3= 51.9 with z= 2.38
in his fit to the ground-state masses. ] Pauli and Led-
ergerber's modification (1971) changes the (N —Z) de-
pendence of the fissility X in such a way that the P-
stable isotope of a given element has practically un-
changed X value. The barriers predicted for "'Lu and'"Ir agree with experiment within 1—1.5 MeV, as they
agree with the Myers-Switatecki version (1967).

In the analysis of experimental barriers, the Los Ala-
rnos group (Britt, Bolsterli, Nix, and Norton, 1973)
reaches a, conclusion which supports the readjustments
of K and 2a,/e3 proposed by Pauli and Ledergerber
(1971), so does the analysis made by Ignatyuk et al.
(1975).

For the purpose of this study two differences betweenthe
droplet model of 1977 and the liquid drop model of 1967
should be emphasized. On the one hand, the fissility of a
typical beta stable actinide is increased in the droplet pic-
ture by about 0.025 units, as cari be seen from a comparison
of Figs. 139and 140. This means that the droplet saddle
energy is lowered by 1-2 MeV relative to the liquid drop
(for Cf and Th, respectively). Secondly, the variation of
fissility with neutron number is opposite in the two models.
In the droplet picture the decrease in surface tension as-
sociated with an increase in the neutron excess weighs
heavier than the increase in Coulomb radius with the
addition of neutrons. Ther efore the fissility increases
with increasing neutron number (Figs. 140 and 142).
In the liquid drop picture the opposite is true (Figs. 139
and 141). This is reflected in the ~ values, Eq. (8.5);
the liquid drop model uses ~= 1.78 whereas the effective
z value is = 3.4 in the 1977 droplet model. These two
rc values clearly bracket the results of the more limited
searches for an optimum ~ value mentioned above.

The experimental energies of maxima and minima will
be analyzed in the following with reference to both mod-
els. Each of the two will give rise to a different split-
ting of the total energy into a smooth. part and a shell
correction, displaying in this way the range of uncer-
taint:y inherent in this procedure.

4. The variation of experimental barrier energies with
fissil ity

Table XXXII and Figs. 139 and 140 show once again
the striking fact that the barriers from thorium to cali-
fornium have essentially constant heights. They lie in
the narrow interval from 6.5 to 5.5 MeV, whereas liq-
uid drop valties decrease from 7.5 to 2.8 MeV (and
droplet values from 5.0 to 1.5 MeV). The figures also
show that the main cause of this effect is a steady low-
ering of the ground-state energies with increasing Z
value due to shell effects at the ground-state deforma-
tion (most pronounced when the droplet serves as ref
erence frame). A secondary cause is the positive shell
effect at barrier A. . It contributes to an increase of the
barriers beyond plutonium, where the saddle shape be-
gins to approach deformation A.

Figures 141 and 142 illustrate the large negative shell
effect at the isomer deformation. The downward ar-
rows marked Th and Pa refer to the strong undamped
resonances observed in these nuclei. If associated with
deformation II the arrows illustrate the possible range
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(about 2L} for the position of the isomeric minimum at
deformation II.

The measured outer barriers follow the liquid drop
saddle energy rather closely. It is nevertheless incor-
rect to conclude that shell effects are unimportant here.

The apparent weakness of shell effects at the outer
barrier is rather due to balancing influences of shell
effects —favoring pear-shaped distortions by several
MeV —and the liquid drop tendency opposing such dis-
tortions. See Fig. 9.
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Among the barrier points for plutonium there are two
given in parenthesis. These are the values measured in
a rather indirect way by Habs (1977) for Pu and ' Pu.
Ambiguity exists whether these barriers should be asso-
ciated with deformations & or with &, respectively. It
appears from the plots that assignment to barrier &
falls best in line with the remaining Pu barriers. In
the following they will therefore be assigned barrier &
as also proposed by Habs (1977).

D. Empirical shell corrections and pairing gaps

't. Defining the shell plus pairing correction

As previously ment;ioned, it is not possible to deter-
mine the smooth liquid drop (or droplet) contribution to
the total barrier energies unambiguously, because the
true shapes are not known. There is, however, con-
siderable theoretical and, as far as the two minima are
concerned, also experimental evidence of approximately
constant and well defined shapes at each of the four ex-
trema. We will therefore subtract the liquid drop or
droplet deformation energy of an axially and reflection
symmetric shape corresponding to each of the four ex-
trema, cf. Fig. 137 and Eq. (8.1). In choosing the four
shapes, we have been guided by the results obtained by
Nilsson ef ~I. (1969) in a full calculation of liquid drop
plus shell energies.

The liquid drop (and droplet) deformation energy de-
pends to a good approximation linearly on the fissility
parameter X when the shape is fixed. Our choice of
reference shapes is represented by the straight lines
drawn on Figs. 139-142 and marked with the appropri-
ate deformation &. Note that they are tangent to the
dotted curves, labeled saddle, at the X values where
the fixed shape coincides with the changing saddle shape.
The vertical distance of the experimental point from the

relevant s traight line is then per def init ion the empir i-
cal shell plus pairing correction E'""'+ 5b. , Eq. (8.1).

The most obvious weakness with this definition is the
assumption of fixed and axially and reflexion symmetric
shapes. There is clear evidence from measurements of
quadrupole and hexadecapole moments of a considerable
variation of ground state shapes in the acinide region
(Bemis et a/. 1973). These variations are of sufficient
magnitude to change the calculated shell energy by 1-2
Mey; see Brack et al. (1972). Similarly, deviations
from reflection symmetry at the outer barrier, and from
from axial symmetry of the inner barrier, are sug-
gested by virtually all theoretical studies of these shape
degrees of freedom; see Sec. II.A. l.d. Furthermore,
the well-known mass asymmetry seen in low-energy
fission is suggestive of a pear-shaped outer barrier.
The empirical shell energies defined here are there-
fore likely to combine true shell effects with modifica-
tions of the underlying liquid drop energies, arising
from distortions away from the assumed axially and re-
flection symmetric reference shapes. However, these
distortion energies are likely to remain small compared
to the main liquid drop deformation energy; see, for
example, Fig. 9.

In Sec. VIII. F the empirical shell energies will be
compared to theoretically calculated values. The fact
that the empirical shell correction, as defined here,
contains a (small) contribution of liquid drop distor-
tion energy is not so disturbing as it may appear be-
cause the theoretical "shell" energies will also be pre-
sented in a way that includes such a correction.

2. Odd-even effects at differen't deforrnations, pairing
gaps

The empirical shell energies are shown as functions
of the neutron number in Figs. 143-146 for the four
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barrier points, respectively. In each figure the results
of using the 1967 liquid drop reference surface or the
1977 droplet surface can be compared. Similarly, Figs.
147 and 148 show th'e shell energies as a function of
proton number. In this section we will focus on the odd-
even effects.

The standard odd-even mass difference Z of Eq. (8.3)
used in the (196'I) liquid drop model varies from 0.'l3
MeV for A =226 (Ra) to 0.69 MeV for A =254 (Cf). (The
droplet model has a slightly more complicated way of
describing the odd-even effects. ) Deviations from the
mean appear as a staggering of the lines connecting
neighboring isotopes in Figs. 143-146, or isotones in
Figs. 147 and 148.

a. Ground-state shapes

For the ground states there clearly are systematic
deviations, with odd-N energies always lying lower than
the even-& neighbors. This indicates that the pairing

TABLE 3QCKIII. Pairing gap P(Z) and P(N) from odd-even
mass differences (MeV).

gap is lower than average, as one should expect in a
region where the shell corrections are strongly nega-
tive. The odd-even proton staggering is less pro-
nounced. From the magnitude of the deviations the true
odd-even difference can be found. It is denoted by P(Z)
and P(K) for protons and neutrons, respectively, and is
equivalent to the gap parameter 6. The results are
presented in Table XXXIH. They agree with those of
Table XXVI as they should, since they are based on the
same experimental masses.

b. Barrier A

The shell energies at the inner barrier are shown in
Figs. 144 and 147. Although the odd-even staggering
hardly exceeds experimental errors, the systematically
repeated and regular pattern seen on Fig. 144 as one
goes from one element to the next is to be taken as
evidence of a real effect. In this case it is opposite to
the ground-state trend. The odd-N energies lie consis-
tently high, i.e. , the gap is larger than the average,
as indeed is to be expected where the shell correction
energy is positive. The resulting gap values are shown
in Table XXXIV. (They would have been even higher if

Ground state (I)
N P (Z) P(N)

TABLE XXXIV. Pairing gap P(Z) or P(Ã) from odd-even mass
differences (MeV) .

92-98
90
92
93
94
95
96

140-152
137-144
142-148
141-146
142-150
146-150
146-150

0.75 + 0.05
0.70 + 0.05
0.50 +.0.05
0.45 + 0.05
0.50 + 0.05
0.45 + 0.05
0.50 + 0.05

90-98
92
94
95
96

140-155
142-148
144-150
145-150
148-154

Barrier A
P (Z)

0.9+1
1.1 + 0.1
1.0 + 0.1
1.0 +0.1
0.9 + 0.1
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c. The/isomeric shape

The odd-even staggering seen on Fig. 145 is to be
considered inconclusive, because it goes in different
direction between U-Pu on. one side, and Am on the
other. Systematic errors in the isomer energies may
be responsible for this; cf. Sec. VIII.B.

From the excitation energy of tmo-quasiparticle iso-
mers in the second well it is nevertheless possible to
obtain an estimate of the neutron gap. From Sec. IX.B.
3 we obtain

L„=P(N) = (0.65 + 0.15) MeV.

d. Barri er 8
The relevant neutron data are shown on Fig. 146.

The evidence for systematic odd-even deviations are
marginal in this case. There seem however to be
enough regularity and repetition to imply that the neu-
tron gaps are slightly larger than average.

The proton systematics is seen in Fig. 148. Here the
evidence -seems to be somewhat clearer, indicating a
high value for the proton gap.

Table XXXV summarizes the results.

e. Ooes the pairing strength! ncrease with surface area?

If the pairing strength G mere to vary with deforma-
tion in a manner proportional to the surface area of the
nucleus, as qualitatively suggested by Kennedy, Wilets,
and Henley (1964) and assumed by Nilsson et al. (1969),
we should expect a systematic and increasing tendency

TABLE XXXV. Pairing gap P(Z) and (PN) from odd-even
mass differences (MeV).

Barrier ~
P(Z)

90-96
92
94

140-150
142-148
144-150

1.1 + 0.1
0.9 + 0.15
0.9 + 0.15

the odd-A barriers had not been corrected downward by
=0.25 MeV as mentioned in Sec. VIII.B.)

of the odd-even staggering in going from the ground
state towards barrier B. On this tendency would be
superposed an oscillatory tendency due to changes in
shell level density with changing deformation. For the
general trend to stand out, gap values should be com-
pared for a constant value of the shell energy correc-
tion. This condition must even be fulfilled for the neu-
trons separately when neutron pairing is studied, and
similarly for the proton pairing. The empirical shell
energies at the two minima are roughly equal, and on
theoretical grounds it may be permissible to assume
the neutron contributions to be so separately. At bar-
rier A, on the other hand, the shell energy is not at all
comparable, being of opposite sign. The situation at
barrier B is more complex. The empirical shell energy
is nearly zero, but as discussed in Sec. VIII.D.1 and as
illustrated in Fig. 9 this is likely to be the result of
compensatory effects from a large negative shell cor-
rection and an equally large liquid drop correction
stemming from a pear-shaped distortion. The true
shell energy at deformation B may therefore well be of
the same magnitude as for shapes I and II. From the
calculations of Brack et al. (1972) it even appears plau-
sible that the neutron shell energy fulfils the condition
separately. With all possible caution one may therefore
attempt a comparison of the neutron gap values at de-
formations I, II, and B for Z=94 —96, K=144 —150
(Tables XXXIII and XXXV and Sec. VIII.D.2.c),

Deformation I: P(N) = 0.50+ 0.05

Deformation II: P(N) = 0.65+ 0.15

Deformation B: P(N) = 0.90+ 0.15.

Disregarding experimental errors this appears to be
the correct trend if the pairing strength G is propor-
tional to the surface areaS(G -S),whereas G = const.
should give a constant value inall three cases. The trend is
even quantitatively the correct one if G-8; see, for ex-
ample, Sobiczewski et al. (1973) and Flocard et al.
(1974).

When experimental errors are taken into account to-
gether with all ihe assumptions that have had to be in-
voked it cannot be said that the evidence for G being
proportional to S is conclusive. It seems nevertheless
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FIG. 146. The empirical shell correction E~ for the outer barrier, as a function of neutron number.

xnore likely to be correct than the alternative assump-
tion of a pairing strength that stays constant.

3. The shell corrections

Leaving now the question of pairing we may focus at-
tention on the sign and the larger scale variation of the
empirical shell correction with neutron and proton
number. The extend of the ambiguity arising from the
choice of liquid drop or droplet reference frame, re-
spectively, will also be examined.

a. Systematic trends

The change in sign of the shell effects is the most
conspicuous feature. The ground state and isomeric
minima have large negative shell energy, whereas at
barrier A it is clearly positive. At the outer barrier B
the empirical correction is slightly positive, but as
previously observed the true shell effect may well be
negative her e.

The three assumptions of, (i) independent neutron and
proton contributions to the shell energy, Eq. (8.2), (ii)
fixed shapes and (iii) fixed energy level diagrams, ap-
pear to be approximately fulfilled as far a8 barrier A
and B are concerned. The trend with neutron number
in Figs. 144 and 146 is roughly the same irrespective
of proton number. As a consequence the variation of
shell correction with proton number will repeat itself
whatever the neutron number. This is why the empiri-
cal shell energies are shown as a function of Z for one
neutron number only in Figs. 147 and 148.

The independence of proton and neutron contributions
is not borne out by the data for the isomeric minimum,
Fig. 145. This may, however, be due to practical dif-
ficulties in eliminating systematic errors. Such diffi-

culties are not present when it comes to the ground
state, Fig. 143. En spite of this, Es~""' exhibits a min-
imum as a function of neutron number, that is not in-
dependent of proton number. As discussed in Sec.
VIII.D.1 this lack of independence is understood as the
result of a breakdown of the assumption of fixed shapes
at the ground-state deformation.
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FIG. 147. &he empirical shell corrections E& and E& forshcl1 sheH

the ground states and barrier A, respectively, plotted as a
function of proton number in analogy to Fig. 143.

b. InfIuence of the choice of smooth reference frame

For a given element the droplet model predicts a low-
er fission barrier than the liquid drop model. Conse-
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quently, shell effects are to a greater extent seen to be
responsible for the actual barrier heights, when the
droplet model is used as reference frame. This is re-
Qected in Figs. 139-148 and perhaps best seen from the
heavy lines on. Figs. 150 and 151 which summarize the
data. The empirical ground-state shell correction is
typically 1.5 MeV more negative when referred to the
droplet, whereas the outer barrier correction E~""' is
somewhat more positive, resulting all in all in a larger
amplitude for the shell effect in the droplet case. At
deformation II the two reference frames give almost
identical results, and at baz. rier A the droplet is still
low compared to the liquid drop in analogy to the ground
states, though less pronounced.

The other major difference between the two models
lies in the different assumptions about the reduction in
surface tension with increasing neutron excess. The
droplet model abandons the clear but arbitrary assump-
tion of equal influences of neutron excess on the volume
energy and on the surface energy that is made in the
liquid drop model by setting y = z= 1.78 in Eqs. (8.4)
a,nd (8.5).

As a consequence, the trend in fissility of the iso-
topes of a given element go in opposite directions in the
two models. This is the reason for the very different
slopes in Eshe11 and @she11 seen in Figs 144 ]46
150.

The 19VV droplet model incorporates ten years' ad-
vance in the development of the description of average
nuclear properties. In the subsequent analysis prefer-
ence will therefore be given to the numbers derived
with reference to this model.
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shcjl shellFIG. 148. The empirical shell corrections E&& and E& for
the isomeric minimum and the outer barrier, respectively,
plotted as a function of proton number.

Liquid drop, 'K = l.78 Droplet

X

C9

UJ 2CL

'Q

Isomer
fission
barrier

Cl

CQ

UJ 2
UJ

Isomer
fission
barrier

0—
. I I I I l

I 42 I44 I46 I48 150

NEUTRON NUMBER, N

I I I I 1

I42 I44 I 46 I4S I 50

NEUTRON NUMBER, N

outer barrier energies, to see if it is possible to learn
more about the precise vaalue of the magic neutron num-
ber characterizing the shell that is responsible for the
occurrence of the second minimum.

Figure 149 shows the isomer and outer barrier ener-
gies relative to the spherical liquid drop or droplet,
respectively, plotted agai.nst neutron number. The

- heavy, curved lines are drawn in a crude fashion to il-
lustrate the trend of the experimental points. The thin
straight lines show the slope to be expected if the shell
corrections were constant, irrespective of neutron
number. Both plots illustrate how the distance between
two parabolas with displaced axes may have a maximum
that is intermediate between the individual extrema of
the iwo curves. This maximum lies near N= 146, as
expected from the half-life systematics.

The isomeric minimum, on the other hand, appears
to occur at a somewhat lower neutron number; which
number depends among other factors on the choice of
reference frame. Weighing the droplet frame heavier
leads one to focus on N= 144 as the right magic neutron
number for the isomeric shape. It agrees with the
Woods-Saxon calculation, Fig. 13.

This result must be seen in the light of the very ap-
preciable errors associated with the experimental en-
ergies, allowing in fact different curved lines to be
drawn through the same points. For one thing, the dif-
ference between the thick lines on Fig. 149 which de-
scribes the variation in the effective barrier heights as
a function of neutron number has a curvature three
times larger than required in order to agree with
Metag's (1974) analysis, Sec. IV.C.B. In a more con-
sistent analysis the lines through the points would
therefore have to be less curved, adding ambiguity to
the conclusion arrived at above. There remain, never-
theless, clear indications of a displacement of the iso-
meric minimum somewhat below the value N= 146 de-
rived from half-life systematics.

E. The magic neutron number for isomeric shapes

As discussed in Sec. IV.C.3, fission isomers with
N= 146 have the longest half-lives. The effective fis-
sion barrier seen by the isomer must therefore have
its maximum at this neutron number. In this section
we will analyze the trends in americium isomer and

FIG. 149. The energies of the isomeric minimum II and of the
outer (fission) barrier B relative to the spherical liquid drop
(left) and to the droplet (right), plotted as a function of neu-
tron number. Thin lines show the pure liquid drop or droplet
trends. Thick lines are drawn to illustrate the experimental
trends.
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F. Comparison of empirical and theoretical shell

corrections

It is customary to compare measured barrier heights
and isomer energies with calculated values using the
ground-state energy as a reference point in both cases
(and adding 0.5 MeV to account for the zero-point ener-
gy at the minimum). This may conceal compensating
errors at the two energies involved; cf. Sec. VIII.C.2.
In this review we shall instead compare the empirical
and theoretical shell energies at the four barrier points
separately, keeping in mind that in boih cases "shell,
energy" includes the true Strutinsky shell correction
plus a (smaller) correction for the liquid drop energy of
distortion away from the assumed axial and reflection
symmetric reference shapes; cf. Sec. VIII.D.1. The
comparisons are made in Figs. 150 and 151.

The most simple shell correction was introduced by
Myers and Swiatecki (1967) and is still used in the
droplet mass formula of Myere (1977). It assumes a
spherical shell correction that varies smoothly between
magic numbers, being large and negative at the closed
shells and becoming positive between shells. This
spherical shell energy damps out with deformation. Tt

goes through zero at a deformation slightly smaller
than the deformed ground-state shapes, runs through an
over- or undershoot, and reaches zero at larger dis-
tortions.

The remaining shell corrections shown in Figs. 150
and 151 are derived from shell level densities by the
Strutinsky method. The single-particle potential mod-
els used are the modified harmonic oscillator model of
the Lund-Berkeley-Warsaw group (Nilsson et at. ,
1969), the Woods-Saxon model of the Copenhagen-
Basel-Moscow group (Strutinsky, 1967; Back et gl. ,
1972}, and the Dubna group (Pashkevich, 1969) and the
potential. obtaine d by folding a Yukawa two-nucleon inter-
action function with a sharp-surface pseudodensity of
given shape used by the Los Alamos group (Bolsterli,
Fiset, and Nix, 1,969). See Sec. II.A.l.e.

More important than the choice of radial dependence
of the potential is the parametrization of the shape, in

particular the inclusion of deviations from axial and
reflection symmetry.

Moiler and Nilsson (1970) were the first to show that
pear shapes were important at the outer barrier. For
plutonium there is an energy gain of 2.5-3 MeV in al-
lowing the nucleus to pass the barrier with asymmetric
shape. Also Pauli, Ledergerber, and Brack (19t1) and
Bolsterli et al. , (1972) obtain this result with their
version of the potentials; see Figs. 9 and 150. %hile
all calculations show the ground and isomeric minima
to be stable towards asymmetric distortions, it was
found by Pashkevich (1969}that the inner barrier could
be unstable towards nonaxial, i.e. , gamma, distor-
tions. Subsequent calculations by I arsson, Bagnarson,
and Nilsson (1972) and by Gotz, Pauli, and Junker
(1972) substantiate and extend this result. For "'Fm
the barrier is lowered by almost 2 MeV, whereas for
"~U the barrier is unaffected; see Fig. 15. Thus, for
a meaningful comparison with experiment, the calcu-
lated barrier shapes must include the gamma degree
of freedom for barrier A, and the octupole degree of
freedom for barrier E.

Theoretical shell energies are compared to the em-
pirical ones in Figs. 150 and 151. The quasi-indepen-
dence found for the neutron and proton contributions

(Sec. VIILD. S) allows the experimental energies to be
summarized in forms of two plots; one for Z= 94 with
varying neutron number, the other for N=. 144 with
varying proton number. In each case the empirical en-
ergies (heavy lines) are shown both with reference to
the 1967 liquid drop model and to the 197'l droplet mod-
el.

1. The dependence on neutron number

In the bottom left part of Fig. 150 ground-state ener-
gies are compared. Calculations based on the Nilsson
(Nilsson et al. , 1969) and Woods-Saxon (Pauli and Led-
ergerber, 1971) levels include optimization with respect
to quadrupole and hexadecapole distortions. These two
calculations come closest to the droplet-based empiri-
cal energies. None of the four theoretical models re-
produce the minimum for N= 144 characteristics of the
plutonium ground state; they all predict the minimum to
be near N= 152, which does appear as a shell minimum
in ihe experimental energies, but not until Z reaches
the value Z =98 (Cf). To avoid confusion only the
%oods-Saxon results are shown in the three other plots
of Fig. 150.

The axially symmetric barrier A seems slightly high
in comparison with the droplet based data; and the in-
clusion of y asymmetry (taken from the calculation
shown in Fig. 15) does lower it. The resulting change
in the trend is unsatisfactory, however, and may raise
doubts about the quantitative validity of the y-asym-
metry correction. It appears to depend too strongly on
neutron number, and too weakly on proton number; cf.
Fig. 151.

For ihe isomers the magnitude as well as the trend
in the calculated shell energy —with a minimum showing
up at += 144—shows very satisfactory agreement.

Ai the outer barrier the neglect of a reflection-asym-
metry correction clearly leads to overestimated barrier
heights. The improvement resultim@ from the inclusion
of this correction (Moiler, 1972) is strong evidence for
pear shapes at the outer barrier.

On ihe whole, the comparison of empirical and theo-
retical shell effects as a function of Deuiron number
gives satisfactory agreement for the large deformations
associated with the fission barrier. The quality of the
fits compares favorably to the fits to ground-state
masses in Sec. VIG.C.2. The agreement in sign and in
the approximate trends should be especially empha-
sized as a measure of the quality of the fit. This has
to be underlined, because the agreement with respect
to the actual magnitude of the she11 effect is partly co-

' incidental, being dependent on the choice of plutonium
(Z= 94) as the point of comparison (see below).

2. The dependence on proton number

The bottom left graph on Fig. 151 compares the ex-
perimental and theoretical ground-state shell correc-
tions. As in the neutron case the Nilsson and %oods-
Saxon potentials give the most satisfactory fit to data
based on the droplet reference frame. One notices that
the theoretical calculations cannot entirely reproduce
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FlG. 150. Comparison of experimental (heavy lines) and theoretical (thin lines) shell correction energies versus neutron number.
The theoretical models are explained in the text.

the very steep decrease of the empirical shell correc-
tion as the proton number increases.

The experimental points for the second minimum
(bottom right) exhibit a downwards curving trend, which
probably reflects shortcomings in the analysis of the
data. This trend should therefore be neglected when
comparing with the calculation. With this reservation
the agreement with the Woods-Saxon calculation is
satisfactory within the limited range of Z values avail-
able for the comparison. Here the evidence, in the
form of undamped resonances, f6r a high-lying mini-
mum in thorium (Z = 90) and protactinium (Z = 91) has
been omitted. Taking it into account would reveal a
large discrepancy with the theoretical estimate, a fact
that is taken as evidence for the existence of a third
minimum in these nuclei (see Fig. 18).

The same problem appears when barrier A is con-
sidered (top left). In drawing the experimental trend
(thick lines) a discontinuity has been inserted between
Z= 91 and Z= 92 (ura. nium) in order to illustrate a pos-
sible ambiguity in the assignment of experimental bar-
rier heights of thorium and protactinium to deforma-
tion &. If the third minimum exists the barriers as-
signed in Table XXXII as belonging to deformation Q
may actually lie closer to the outer barrier B, and what
is assigned barrier B may correspondingly represent
a still more deformed barrier, C. The data is shown
in more detail on Fig. 147; regrettably, the evidence

for a break in the trend between Z= 91 and Z = 92 is not
clear cut.

There is presumably no ambiguity above Z= 91 in Fig.
151 top left. Here, the comparison with the Woods-
Saxon calculations with or without the inclusion of y
asymmetry shows very poor agreement. ,The experi-
mental and theoretical trends are in opposite direc-
tions. The experimental data are indicative of a shell
maximum at deformation A that is situated at a Z value
well below Z= 90, whereas the Woods-Saxon shell en-
ergy landscape (Fig. 13) predicts the maximum to oc-
cur for a proton number considerably above Z= 100.

The situation with respect to barrier B (top right on
Fig. 151) is not very satisfactory either. Clearly, the
reflection asymmetry is required to obtain barrier
heights of approximately the right order of magnitude,
but after the inclusion of this there still remains a
severe disagreement between experimental, droplet-
based trends and the theoretical trend —as in the case
of barrier A..

The clue to an improvement in the situation may lie
in improving the proton potentials. It could perhaps
also lie in the shape parametrization or in the underly-
ing droplet model. Finally there may be flaws in the
interpretation of the experimental data in terms of bar-
riers A and B of more or less fixed shapes. After all,
there are no direct measurements of the shapes of the
barrier states.
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IX. SPECTROSCOPY OF SHAPE ISOMERS

A. Shapes of higher and lower symmetry

In the preceding sections, the role of the two-humped
barrier in influencing the fission process has been par-
ticularly emphasized. Intermediate states in the second
well have been regarded as interesting because they
speed up fission in a striking way; and the isomers be-
cause they give rise to delayed fission and at the saxne
time teach us something about the barrier penetration
process.

In this section, the isomeric states and the intermedi-
ate resonances are viewed as spectroscopic levels in a
nuclear system of an unusual shape. From this view-
point the extraordinary instability of these states to-
wards fission is considered to be of secondary impor-
tance. The interest will be focused on the spectroscopic
properties of the ground state and the excited levels in
this special sample of nuclear species, which possess
a unique shape.

In this regard the interest coincides with previous at-
tempts to study the individual transition states at the
saddle point, which was believed at that time to have
approximately the shape now attributed to the isomer.
These attempts led actually to a number of riddles
(Vandenbosch, 196'7) that were not resolved until the ex-
istence of the double barrier was fully realized. Figure

152 illustrates how the interpretation of fission excita-
tion functions and angular distributions depends on the
picture of the barrier. With a single barrier, careful
measurements may give information about the actual
spectrum of transition states at the saddle, although
there are difficulties stemming from the fact that the
signature of these states is broadened by the trans-
parency of the Hill-Wheeler barrier. It is expressed
through the quantity 5u that was then thought to be of
the order of 3-400 keV on the average. By contrast, a
double barrier is characterized by narrow resonances
to be viewed as excited states of the isomeric config-
uration.

The relative stability of these states, as reflected by
the much smaller widths, opens greatly improved pos-
sibilities for spectroscopic studies. At the same time,
the increased complexity of the barrier diminishes the
chances for a detailed study of the transition states at
the two barriers.

In the following, the discussion will ther. efore be cen-
tered on the spectroscopy of the states of the second
well.

These states are expected to be characteristic of a
system with a large, axially symmetric, prolate defor-
mation where the individual nucleons are subject to a
pairing force. The resulting quasiparticles move rela-
tively independently apart from long-range interactions
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which give rise to collective vibrational excitations.
Each intrinsic state mill be the bandhead of a rotational
band, characterized by parity and spin projection quan-
tum number K'.

In this respect, there is a close parallel to the motion
in the ordinary deformed nuclei, which have been so ex-
tensively studied already. It is therefore natural to ask
what specific new features one may expect to find. Fig-
ure 153 answers this in a general way: a high degree of
symmetry —mhich one may associate with perfection or

&o+pa
I

RATlO OF AXES
FIG. 153. The spontaneously fissioning isomers have shapes
of higher symmetry than ordinary deformed nuclei. This
should be reflected in their excitation spectra.

beauty —profoundly influences the excitation spectrum.
The nucleus '"Pb serves as example. The shell effects
associated with spherical symmetry lead to the unique
excitation spectrum of '"Pb, because this nucleus con-
tains the right number of protons and neutrons to exploit
the shell effect fully. , conversely, large groups of nu-
clei have a nucleon composition that is unfavorable for
a spherical shape, because of the shell degeneracies.
These are driven away from the spherical symmetry by
the Jahn-Teller effect until they find a less unfavorable
shape. The ordinary deformed nuclei are such systems,
and they do not possess special symmetry in this sense.
It is true that there are what is loosely referred to as
shells in these nuclei; neutron number 152 and proton
number 100 are often quoted as being magic. However,
the gap in the spectrum of single particle energies at
these nucleon numbers is accidental in the sense that it
is not connected with a, special symmetry [&ee, h.owever,
Strutinsky et af. (19VV).] The shape isomers are differ-
ent. These are nuclear systems with nucleon numbers
being right, or approximately right, for a field of spe-
cial symmetry having a ratio of axes 2:1. In this sense
they are more perfect —or beautiful —than the ordinary
deformed nuclei. The excitation spectra of the shape
isomers may accordingly show special features associ-
ated with the higher symmetry.

In addition there are several aspects specifically con-
nected with the highly elongated shape. One is the ques-
tion of the increase in pairing strength with surface
area; the 6 —8 case that is discussed in Sec.VIII.D.2. The
excitation spectrum of the isomeric configuration will
be sensitive to the pairing strength through the rotation-
al energy spacings (moment of inertia) and the energy
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gap 2& separating the ground state from the lowest two-
quasiparticle excitations in an even nucleus. The
strength of the spin-orbit force is another quantity which
is believed to depend on deformation. Such a dependency
is reflected in the predicted ordering of the single-
particle states and can be elucidated through spectro-
scopic studies of levels in the odd-A isomers. Finally,
a possible pear asymmetry of the isomeric shape will
give rise to a degeneracy of single-particle states with
opposite parity.

B. Doubly even shape isomers

1. Rotational bands

In the process of producing shape isomers, the deex-
citation process is terminated by an E2 cascade through
the rotational band built on the isomeric level, in com-
plete analogy to the population of the ground-state rota-
tional bands in the first well. The fraction of the total
cross section leading through the rotational band is
measured by the isomer-to-prompt-fission ratio and is
thus of the order of 10~-10 ' (see Fig. 154). It has been
possible to observe the weak rotational transitions in a
few cases. The first of these is "'Pu (Specht et al. ,
1972) where the rotational levels up to spin 8 have been
established (see Fig. 155). For this rotational band the
constant A. of the expansion

value (A =8 j28, where 8 is the moment, of inertia). At
the same time the stiffness toward centrifugal distortion
of the system appears to be equal to or larger than typi-
cally encountered with ordinary deformed systems
(Vandenbosch, 1974, 1977).

Borggreen et al. (1977) have measured the rotational
constant for 236U, and Metag, Habs and Specht (1980)
for 3 U. In odd-A. systems, there is a very accurate
measurement for the 0 = —',"band in Pu made by
Backe et al. (1979), and cruder estimates exist for
'3'Th and "3Th (James et al. , 1972; Blons et al. , 1978
and 1980).

A comparison with theoretical calculations of the mo-
ment of inertia follows at the end of this section.
2. Quadrupole moments

The establishment of rotational bands built on the
fission isomeric ground states has opened a way for the
determination of their quadrupole moments, because the
lifetimes of the E2 rotational transitions are propor-
tional to the square of the static electric quadrupole mo-
ment. A measurement of the rotational E2 lifetimes
will determine the quadrupole moment and thereby the
shape.

Rotational lifetimes have been determined in three
different experiments.

E„,(I) =A I(I + 1) +B [1(I+ 1)1' (9.1)

is less than half the value found in the first well; the
constant B, which measures the deviation from strict
adiabatic rotation, is an order of magnitude smaller
than encountered for nuclei in the first mell. The shape
isomer is, in other words, the most perfect rotor ever
found in connection with nuclear rotational motion. This
is partly to be ascribed to the large deformatiop and
large mass of this system as reflected in the small A
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baticity parameter B. IAfter Specht et z$. (1972) including
a slight revision of the constants A. and B due to Metag, Habs
and Specht (1980).
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Metag and Sletten (1977) have measured these relative
to the lifetimes for spontaneous fission of the " Pu
isomer. This isomer was chosen because it has a spon-
taneous fission half-life of 37 +4 psec, comparable to
the expected E2 transition rate. The experiment is
based on the fact that fragments from the spontaneous
fission of a given rotational state with spin I are emitted
with a characteristic angular distribution relative to
the axis of the particle beam that is used to produce the
isomer and aligns the reaction products with the spin
perpendicular to the beam axis. The reaction products
are allowed to recoil into vacuum, where the alignment
is preserved (Metag et al. , 1976), and then to decay in
flight. The lowest 0' state decays isotropically, but the
higher spin states contribute increasingly, to the extent
that they undergo fission, to an anisotropic decay pat-
tern. The net anisotropy to be observed depends on the
magnitude of the quadrupole moment through the branch-
ing ratios between E2 transitions and spontaneous fis-
sion. Figure 156 shows the results of the measure-
ments. A quadrupole moment, Q =37 +84 b gives the
best agreement with observation.

In the second experiment, by Habs et al. (1976), the
feeding time of the 8-p, sec isomer of '"Pu, produced in
the (n, 3n) reaction on a '"U target, has been measured
by an elegant adaptation of the plunger method. Recoils
leaving the target will normally have an ionic charge of
one to two units. If, however, an internal conversion
process takes place during the flight, Auger cascades
will give rise to the shakeoff of electrons, resulting in

an ionic charge of 14 to 25 units. These high charge
states can be reset to their original charge by passage
through a thin carbon foil. By measuring the relative
yields of high (N„) and low (N~) charge states as a func-
tion of the distance between the target and a carbon foil,
Habs et al. have measured the feeding time for the popu-
lation of the '3'Pu isomer in its ground state. Under the
very plausible assumption that this feeding time is de-
termined by the last electromagnetic deexcitation cas-
cade through the lowest-lying rotational band and as-
suming this to have an 0 value of —,', a quadrupole mo-
ment of 36+ 4 b is deduced (see Fig. 157). In a later
experiment, Backe et al. (1979a) confirm the spin as-
signment and show that the uncertainty introduced by a
possible competition from M1 transitions is negligible.
By an extension of this method Ulfert et al. (1979) have
determined the quadrupole moment in ~3 U to be 29 +3
B, and Metag, Habs and Specht (1960) have measured
a value of 32+5 b for 236 U.

Finally, Bemis et al. (1979) have succeeded in mea-
suring the "' Am quadrupole moment by a completely
different technique. They study the optical isomer shift
of the 'S, ~, -"P,~, atomic transition by directing a tun-
able, polarized laser beam onto a sample of 1 msec me-
tastable americium atoms produced by stopping reac-
tion recoils in helium gas. Resonance ab'sorption of
polarized photons leads in turn to an alignment of the
nucleus that will reveal itself as a measurable change
in fragment angular distribution from the isomer decay.

. The observed hyperfine shift implies a change in nu-
clear root mean square radius of 5.1+0.2 fm2, corre-
sponding to a charge quadrupole moment of 33+ 2 b.

The measurements are thus in agreement. As dis-
cussed later they also agree fairly well with the calcu-
lated quadrupole moment of a prolate ellipsoid with a

2.5—CD Q[b

10
1,0 I

I
I I t I

I
I t I I

I
I I I

2.0—
35

N„
N„+ NL

05

K =i. =5h
T (MI)
T (E2)

I gg — gR il
~ 0.3

1.5—
60

0. 1

0.05—

1.0—

0' 30' 60' 90' 120' 150 180'

0.01

DECAY TIME (ps)
0 50 100 ~ 150 200 250
I t t t t i t « t I (» r I i t « I t t t t I

I t I t t I t t t t I t t I t I

0 50 100 150

DISTANCE TARGET — CARBON FOIL ( p~)

ANGLE, ec.rn.

FIG. 156. Angular distribution of delayed fission fragments
emitted in flight from the 37 psec isomer of 6Pu. The non-
isotropic distribution shows that spontaneous fission takes
place from excited rotational states with nonzero spin in com-
petition with rotational E2 transitions: A static quadrupole mo-
ment of 37b gives best agreement with the data; see insert.
(Metag and Sletten, 1977).

FIG. 157. Probability distribution for the arrival of excited
Pu nuclei in the isomeric ground state as a function of flight

time for the reaction recoils, i.e., feeding time (Habs et al. ,
1977). The theoretical curve represents a cascade calculation
for the ~

+ rotational band with a quadrupole moment of 36b .
The (Ml/E2) branching ratio and the Igtr —g~i value are de-
duced from the conversion electron spectra of Backe et al.
(1979&.
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FIG. 158. Yields of two different fission isomers of 3 Pu
relative to the prompt fission yields in the 6U(~, 2n) reaction
plotted as a function of the maximum energy available to the
reaction product 238Pu From Limkjlde and Sletten (1973).

ratio of axes of two to one (see Table XXXVII).
The measurement of the quadrupole moments show in

the most direct and independent way that the fission iso-
mer's are inde, ed prolate shape isomers.

3. K isomers, energy gap

In the doubly even ' 'Pu there are two shape isomers
with different half-lives and dif ferent excitation energies
as measured by Limkilde and Sletten (1973) in reaction
threshold measurements (see Fig. 158).

NEUTRON NUMBER
FIG. 160. Comparison of,the excitation energies of "normal, "
short-lived fission isomers (open circle) to "abnormal, "
longer-lived isomers. From Metag (1974).

In the first well of ' 'Pu, as in many other doubly
even nuclei, there exists an isomeric state which is
generated by breaking a neutron pair and coupling the
two spin projections to a large K value which hinders
the gamma decay to the ground-state levels. The exci-
tation energy measures the magnitude of the neutron en-
ergy gap 2&„with a determinacy of about 0.2 MeV. The
existence of two spontaneously fissioning isomers in
"'Pu appears to parallel this situation and is inter-
preted accordingly as illustrated on Fig. 15S. In a num-
ber of other nuclei there are isomers with unexpectedly
long half lives and high reaction thresholds as compared
to general systematics. Figure 1.60 summarizes the
situation, and it is seen that an excitation energy for the
two-quasiparticle isomers and hence an energy gap 2&„
of 1.3+0.3 Me&- is found on the average for all cases.
The gap value is specifically ascribed to the breaking of
a neutron pair by analogy to the first well.

4. Vibrational states

The class-II eigenstates of the fission degree of' free-
dom are identical to the beta-vibrational states with

X
3
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FIG. 159. Two-quasi-particle isomeric states in the first and
second well. From Limkilde and Sletten (1973).
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FIG. 161. Photofission cross sections of SU and 3 U deter-
mined by deconvoluting the bremsstrahlung photofission yield
curves and descending to very low photon energies. Vibra-
tional resonance structures at about 3.5 MeV photon energy
are indicated by the data; see also Fig. 128. From Zhuchko
et al. (1978b).
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K' =0' built on the isomeric ground state. Their special
role in giving rise to broadly spaced resonances in the
fission cross section is discussed in Sec.V. A comprehen-
sive experimental review of such resonances in doubly

' even nuclei is due to Back et gl. (1974), and an especially
penetrating study of 2 Pu is described by Glassel et al.
(1976);see Fig. 102a. Similarly, in-depth studies of 236U

and OPu have been performedby Goldstone et al. (1975,
1976) and by Goerlach et al. (1978). The photofission
reaction has been exploited by Zuchko et al. (1978a, b)
locating extremely low-lying resonances in U and
"'U, previously described-as a-"shelf" iri the photofis-
sion cross section (Bowman et al. , 1975); see Figs. 161
and 128.

As a rule, strong resonances are found in the energy
region just below the lower of the two barriers. This is
2-3 MeV above the lowest state of the second well. The
maximum possible energy of a beta-vibrational quantum
is thus about 3 MeV, to be compared to values ranging
from 0.6 to 1.2 MeV in the first well. There is incon-
clusive evidence of two successive vibrational reso-
nances with E' =0' in '"U and in '40pu, where the spac-
ings are 0.'? and 0.5 MeV, respectively. This consti-
tutes a lower limit for the vibrational quantum. Frag-
mentation and anharmonicity effects near the top of the
barriers are like1y to lower the spacing compared to
the first vibrational excitation, so perhaps 1 MeV is
the order of magnitude indicated by this type of evi-
dence.

There is unambiguous evidence of mixing of the beta
vibration with the underlying spectrum of I' =2' com-
pound states (G1Kssel et al. , 1976) (see Sec. V.C.4.a)
and it is usual to describe this in terms of a strength
function with a width of the order of 100 keV or more.
The location of the originally pure beta-vibrational
state is identified as the center of the resonance. A
"new" resonance with K' =0', appearing some 0.5-0.7
MeV higher or lower, is accordingly interpreted as the
next state in the vibrational spectrum [see Goldstone
et al. (1976) and Fig. 162]. Such an interpretation is in
fact quite dubious. As shown in Sec. V.C, one cannot

. generally exclude the possibility of an irregular frag-
mentation of the beta-vibrational strength over an ener-
gy interval of 1 MeV giving the appearance of separate
vibrational states, each with a mixing width of the order
of 100 keV.

Only at very low excitation energy is the vibrational
state likely to remain pure (Secs. V.B.3 and V. C.l.c).
The resonancelike structures seen by Zhuchko et aE.
(1978b), Fig. 161, do lie very low, just 1.0 —1.3 MeV
above the isomeric ground state. They may indeed by
the pure vibrational states; and if they can be regarded
as the first phonon state, a phonon energy of about 1
MeV will result (Table XXXVI and Fig. 162). An as-
signment as the two-phonon state seems unlikely. It
would correspond to a phonon energy near ground of
0.5-0.6 MeV. At higher energies, near the top of the
barriers, the 0'-0' resonance spacing wouM then be
expected to be considerably smaller than 0.5 MeV both
because of anharmonicities and as a result of fragmen-
tation. This in conflict with the available experimental
results.

Superposition of intrinsic excitations with the beta-

vibrational states can give rise to new resonances with
quantum numbers differing from K' =O'. These must be
rather low-energy modes, because the fission strength
will be determined by the beta. -vibrational component of
the combined motion. In the region of steeply rising
fission probability characteristic of the resonance re-
gion, a satellite resonance is likely to be obscured un-
less it lies relatively close in energy to the pure beta-
vibrational state; cf. Fig. 81. Nevertheless Goldstone
et al. (1975) have performed an analysis that leads
them to identify a series of no less than four different
intrinsic excitations, built on the beta-vibrational reso-
nance at 5.1 MeV in "U. They a1.1 have the shme abso-
lute strength (and width) and energies 0.25, 0.35, 0.55,
and 0.72 MeV, respectively, above the beta-vibrational
state.

Table XXXVI summarizes the properties of vibra-
tional states in the second well. Tentative assignments
are bracketed. For a more detailed discussion, see
Secs. V.B.5 q,nd V.C.4.

TABLE XXXVI. Vibrational states in the second well.

Nucleus

Energy above:
Ground state Isomeric state

(MeV) (MeV)

232Th
234 Th

234U

238U

24 DU

238p
240p

242p
244p
250cm

(0')
0'

(0-)
0'
?
0+
p+

?
?
?
?
p+

p+
0'
p

+

0'
?

(o')
(0-)
0'
p+

0'
?
0+

5.50 + 0.05
5.50 + 0.05
5.80 + 0.05
5.00 + 0.05
(5.50)
3.60 + 0.10
5.12 + 0.05
5.37 + 0.05
5.47 + 0.05
5.67 + 0.05
5.84 + 0.05
3.60 + 0.10
5.15 + 0.05
5.80 + 0.05
5.40 + 0.05
(5.1)
4.0 + 0.].0
(4.5)
4.65 + 0.05
5.05 + 0.02
4.65 + 0.05
(4.6)
(3.4)
4.0

=2.5
=3.0
=1.3
=2.8
=3.1

3 Q2

4

1.0
2.60
3.25

=2.8
=2.4

1.60
2.10
2.25
2.65

4
4

=1.8

5. Compound levels

The intermediate structure in the neutron-induced
fission cross sections with low-energy neutrons is in-
terpreted in terms of class-II compound states of defi-
nite spin and parity, as discussed in Sec. VI. The same
interpretation applies to the fine-structure states ob-
served with the vibrational resonances using charged
particle transfer reactions of high energy resolution
and with simultaneous measurements of the fission frag-
ment angular distributions; Sec. VI.E.4.c.

As a result, the specific class-II compound nucleus
level density in one or more energy intervals lying from
3 to 4.5 MeV above the lowest state can be measured.
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At present unambiguous results for doubly even nuclei
are available for 40Pu only. Here, the correlation anal-
ysis of James and Patrick (1969) indicates a spacing of
460 eV for the 1' class-II states at the neutron binding
energy, i.e., 6.534 MeV above the ground state and 4.1
MeV above the isomeric state. In addition the class-II
fine structure of the 5.05-MeV resonance has been re-
solved in the (d, Pf) measurement of Glassel et al.
(1976) and ascribed to I'=2' states on the basis of frag-
ment angular correlation measurements. The spacing,
D»(2'), is found to be 11 keV at this energy, which is
estimated to be about 2.65 MeV above the isomer.

relative to the isomeric ground state. This representa-
tion is accurate as far as the rotational bands are con-
cerned. The K isomer of Pu is also measured rela-
tive to the position of the spontaneously fissioning
ground state, albeit with lower accuracy; see Fig. 158.

The remaining excitation energies are determined rel-
ative to the ground state of the first well, typically with
an accuracy of 50 keV or better. The main uncertainty
in the excitation energy is due to a poor know ledge of
the position of the isomer itself. The only exception is

U, where the energy is derived from the observation
of gamma rays feeding well known states in the first
well (see Fig. 48). This evidence is in conflict with
some features of the threshold measurement in the
(n, n'), reaction populating the isomer [Wolf and Meadows
(1974); see Sec. IV.D.S.d. It will nevertheless be used
in the following.

The isomer energies E» used for the determination of
excitation energies in the second well are indicated in
Fig. 162. The symbol = means that the number is based
on threshold measurements; cf. Table VI. For 40Pu

the value 2.4 MeV is based on class-II level densities.
The symbol = means that the number is found by extra-
polation.

Fission fragment angular distribution measurements
have contributed to the determination of R values. This
is indicated by writing the R value above the level (or
band) in question.

6. SUmmary of experiments

A review of the available information on the level
structure in the best studied even isotopies of uranium
and plutonium is shown in Fig. 162.

The excitation energy of the different states is given

N =146 N =148N =144N = 142

AT(,I MeV ITli

K = 0
3. 25 0

MeV MeV MeV

- 3.0

0w 2.8 =2.8
0

? K - isomer�? 7. Comparison with theory

a. The quadrupole moment
13

1.0

With the isomeric shape given as the local minimum
in a shell-plus-liquid-drop energy landscape the elec-
tric quadrupole moment can be calculated. Brack et al.
(1974) and Pomorski and Sobiczewski (1978) have done
this, arriving at nearly the same values. It should be
noted that in the theoretical calculations the shape of the
isomeric minimum is invariably found to be axially and
reflection symmetric. See, e.g. , Larsson and I eander
(1974).

The theoretical values shown in Table XXXVII are
from Bracket al. (1974). One notices a satisfactory agree-
ment between theory and experiment. As stated before,
this is the most direct proof of the validity of the interpreta-
tion of fission isomers as prolate shape isomers.

The experiments are not sensitive to the sign of the
quadrupole moment~ From this point of view the iso-
mers might as well be oblate shape isomers with the
same quadrupole moment, but of opposite sign. Such a

/

0.242
0.141%
0 067
O. 020%
0.000

236m
U

E~= 2.3MeV

2 0.0200' 0.000
238mU

E jT
—-2.559 MeV

0 ———— 0
234m

U

E&= 2.5 MeV?

+0 ————0
24o

U

E&=.2.6 MeV ?

C. t ~ee— t compound states

D~{l') = 0.46keV

D (2) = llkeV

+

265 K=o =~2
(263) =- (0')

2.25 (1 )
2.1 0 (0 ')

2.4 0'(0')-24

K- isomer
1.3'-0.3 ? &

K- isomer
&K- isomer

1.2 +- 0.4 ?

0.239
0. 140 t
O. aevi'&0.020 K~
0.000

240 pU

Eli= 2.4 MeV

TABLE XXXVII. Experimental and theoretical quadrupole
moments.

8/6.
Q = Barn

0 0+
236 pU

Ez= 2.7MeV

0 0+
238 pU

E&= 2.7MeV

0 0 +

242 pU

E&= 2.2 MeV Electric quadrupole moment
Experiment Theory
e x10+ cm e x 10~ crnNucleus

FIG. 162. Nuclear data sheet for shape isomers of doubly
even uranium and plutonium isotopes. The excitation energies
are given relative to the position of the isomeric state. The
energy of this state is generally known with poor precision
(AE'=+ 0.3 MeV, except for U). As a consequence the ex-
citation energies of the higher-lying states are equally uncer-
tain in many cases, although their energy relative to the
normal ground state is well known.

'. 32 +5
29 +3

~ 14

36 +4
33 +2
11.3 + 0.5

U isomer
U isomer

236Pu isomer
239Pu isomer
240Am isomer
240Vu ground state

+ 33.1
+36.7
+36.7

+11.9
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situation is actually completely unrealistic. An oblate
nucleus mould have to have an axis ratio of 3:3:1 to
possess the same quadrupole moment, and the liquid
drop deformation energy required to produce such a
shape is over 50 MeV.

b. Moments ofinerit a

The rotational constant A in Eq. (9.1) is related to the
moment of inertia 8 through

=—(MeV )
2a
O' A

(9.2)

The measured moments of inertia for deformed even
nuclei in their ordinary ground states are systematical-
ly found to be two to three times smaller than expected
for a rigid rotor.

Theoretical calculations of the moment of inertia are
based on the Inglis (1954) cranking formula with inclu-
sion of pairing effects. In an extensive study by Nilsson
and Prior (1961) it is shown how superfluidity as de-
scribed by the pairing formalism is responsible for the
large reduction of the moment of inertia. . Quantitatively
the formalism gives persistently a somewhat too large
reduction with calculated moments of inertia about
20% smaller than the measured values.

Similar calculations for shape isomers are due to
Sobiczewski et al. (1973) and to Pomorski and
Sobiczewski (1978) who also use the Nilsson ha. rmonic
oscillator base. In the more strongly deformed shape
isomers the reduction of the moment of inertia due to
superfluidity is less drastic, and the agreement be-
tween calcula. ted and measured moments of inertia is
better for the large deformations, with the calculated
values being slightly low with G -S and slightly high for
G =const.

In a parallel study by Brack et af. (1974) the Nilsson
oscillator base is replaced by Woods-Saxon wave func-
tions and again good agreement with experiment is ob-
ained for the isomers 3'~U, 3 U, and '~Pu. For

ground states the agreement is generally less satisfac-
tory.

There have been serious doubts whether the BCS pair-
ing formulation should actually be expected to lead to
quantitative agreement, because of its lack of rotational
invariance (Migdal, 1959a, b). Using again Nilssonoscil-
lator wave functions Hamamoto (1974, 1975) has extended
the theoretical treatment by adding to the standard
monopole term of the pairing interaction a quadrupole,
or Migdal, term, which corrects for this failure. The
correction (Hamamoto, 1974) reduces the discrepancies
otherwise occurring between the calculated energy gap
and moment of inertia for ordinary deformed nuclei to
a.bout 2'fo.

The results of Hamamoto's (1975) calculations of iso-
meric shapes are compared to experimental values in
Table XXXVIII. The new theoretical calculations over-
estimate the moment of inertia, of the isomers by 18%
in case of G =const and 9% when G -S. Thus the inclu-
sion of quadrupole pairing terms, which successfully
corrected a long standing discrepancy with respect to
the ground-state moments of inertia, is less successful
for the description of the isomer moments of inertia.

Part of the trouble may have to do with the p, (l -(l ))
term in the Nilsson Hamiltonian, which tends to give
unrealistically large moments of inertia for strongly
deformed nuclei. At any rate, there still seem to be
unsolved problems in understanding the dynamics of nu-
clear rotational motion for strongly distorted systems.

c. The energy gap

The experimental evidence on the magnitude of the
neutron gap is summarized in Sec. IX.B.3. The uncer-
tainties are large, resulting in an estimated magnitude
of 1.3+0.3 MeV as an average for the four shape-iso-
meric nuclides ' Pu and ' Cm.

Pomorski and Sobiczewski (1978) have calculated the
gap, 2A„, and find it to be 1.16 MeV on the average for
the four nuclides in the case where G =const, and 1.52
MeV in the case of G -S. The evidence with respect to
these two alternatives is therefore inconclusive when
seen in isolation; see, however, Sec. VIII.D.2.

d. Vibratjonal exci tatjons

Zielinska-Pfabe and Gabrakov (1973) have attempted
to calculate the energies and B(E2) values of beta and
gamma vibrations in the second minimum. They esti-
mate values of 0.75-1.25 MeV for the gamma-vibra-
tional phonon in. ' U and Pu. There is no experi-
mental evidence to test this result. The attempt to cal-
culate energies of beta vibrations that might more
readily be compared with experiments (cf. Table XXXVI
and Fig. 162) is not believed by the authors to yield
m eaningful results.

The theoretical exploration of collective vibrations in
the second well thus remains open.

C. Odd-A shape isomers

An odd-A nucleus can be thought of as a doubly even
core to which an extra particle is coupled. With the
core in its paired ground state, the odd particle deter-
mines the spin, spin projection 0, and parity of the

Nucleus

Moment of inertia, 29/&2
Experim ent Theory

(MeV ~) (MeV )

Rigid
(MeV ~)

23~Th isomer
Th isomer

isomer
238U isomer

Pu isomer
240pu isomer
'"U ground state
'4'Pu ground state

520 ~ 30
450 ~ 50
297 + 1

297 + 10
299.1 + 0.3
132 + 0.5
140 + 0 5

332
131
150

365
370
378
384
387
390
274
283

TABLE XXXVIII. Experimental and theoretical moments of in-
ertia. The theoretical values are from Hamamoto (1975). The
numbers quoted assume a pairing strength G -S for both neu-
tron and proton contributions. The neutron contribution for the

6 U isomer has been corrected to a value found for adjacent
nuclei, since there is a strong singularity in the calculation
due to a shell gap at W= 144 that is believed to be unrealistical-
ly large. With G= const the calculated moments of inertia are
8/p bigger. The values of the rigid moment of inertia refer to the
the isomeric shape with deformation & =0.6.

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980



S. Bjsirnholm and J. E. Lynn: The double humped fission barrier 909

systems as a whole. Different single-particle configu-
rations with given 0"values have different energies,
which may vary considerably with deformation. This is
the origin of the specialization energy, Fig. 53.
means that the double-humped barrier may look differ-
ent for different single-particle configurations. In par-
ticular the location and width of the fission resonances
will vary-with the value of Q . %ith a given spin distri-
bution and alignment, produced in a particular nuclear
reaction, there will be a specific pattern of fragment
angular distributions associated with each band of given
0 value, Fig. 152. In principle, all that is required is
to find the fission resonance peaks, measure the angu-
lar distribution, and deduce Q, I'. Then one has to judge
whether the resonance corresponds to the zero-order
beta-vibrational motion of the core or to a higher-order
phonon coupled to the single particle. If it is the zero-
order phonon, the resonance represents the single-
particle state in the second well with its associated ro-
tational band.

When the secondary well is deep as evidenced by the
existence of fission isomers, measurements of rota-
tional and interband transitions following a reaction are
possible just as in the case of even isomers discussed
in Sec. IX.B.1. but the experimental difficulties are
greater. In recent years there have, nevertheless,
been major advances in this area. The work of Backe
et al. (1979) on 2s9 Pu seem to open new avenues for
spectroscopic studies of shape isomeric odd-4 nuclei
Metag, (1980) and Metag, Habs and Specht (1980).

The spin of the isomer may be aligned as a result of
the reaction. , and the alignment may under favorable
conditions be preserved during a period which is longer
than the decay time. The fission fragments will then be
emitted according to an anisotropic pattern that can be
brought. to rotate under the influence of an externally
applied magnetic field, thanks to the. nonzero magnetic
moment of the isomeric nucleus. As a result, spins
and magnetic moments of odd-A isomers can in prin-
ciple be determined. So far, however, it has scarcely
been possible to overcome the experimental difficulties
associated with this type of measurement.

There is a furidamental interest in measurements of
the properties of the individual single-particle states.
It allows the most detailed test of the theoretical cal-
culations of the single-particle motion in potentials of
varying shapes that form the basis for the whole picture
of the double-humped barrier.

An example of four different calculations of single-
particle levels, which all lead to a second minimum of
comparable magnitude, is given in Fig. 23.

1. The ~"Th and ~3Th resonances

The only odd-A nuclei where very pronounced and
sharp resonances of the vibrational type have been ob-
served are 3 Th and 23 Th. They are found in neutron
induced fission at energies almost 6 MeV above the
ground state (Sec. V.B.5.)

From the present knowledge of damping, or of vibra-
tional strength functions, this implies that the reso-
nances must be located in a shallow intermediate well
with a minimum lying at least 4 MeV above the ground

state. For all we know the lowest-lying resonance may
even represent the ground state of the intermediate
minimum. As discussed in Secs. IV, V, VIII and X, the
theoretical calculations have consistently failed to pre-
dict such high-lying secondary minima in the thorium
isotopes. This is the "thorium anomaly. " As one solu-
tion, Moiler and Nix (1974) have pointed to the possible
existence of a third, shallow minimum at still larger
deformations. Such a minimum appears in their theo-
retical barrier calculations for the lighter actinides.
See Figs. 1& and 165.

The most conspicuous resonance is found in the
Th(n, f) reaction at 700 keV neutron bombarding ener-

gy, as is seen in Fig. 84. James et al. (1972) have
measured the fission excitation function and fragment
angular distribution with a neutron energy resolution of
5 keV. The fragment angular distribution in the region
of the peak shows uniquely that the Q value is one-half.
The various rotational states of this 0 =-,' band are

. hidden in the peak. By extremely careful high-resolu-
tion measurements of the angular distributions at the
flanks and across the top of the peak [see also Yuen et
al. (1971)], ,the outline of a strongly decoupled rotational
band of negative parity emerges. Nature has been un-
kind in this case. The angular distributions are not as
rich in structure as one might have expected with a dif-
ferent value of the decoupling parameter a.

As a result of these measurements, a 0'= —,
' band

with a rotational constant A. = 2.3 + 0.5 keV and a decou-
pling parameter a = —2.1 +0.2 is known to lie 5.85 MeV
above the ground state. There is evidence of an Q =—,

band slightly higher, at 6.12 MeV (see Sec. V.B.5.a).
The predicted single-particle spectra for the second

minimum (Fig. 23) contain states which could explain
the measurements, but this is no proof and does not ex-
clude the possibility that the resonances are due to lev-
els in a possible third minimum at larger deformations.
In Sec. V.C, the case of 3'Th is discussed from this
point of view; indeed it is shown there that schematic
models for fragmentation of the vibrational states seem
better able to explain the observations on 3 Th if the
Nilsson states in the region of the outer barrier de-
formation (third minimum) are considered.

Recently, Blons et al (1978and 19.80) have reported ad-
ditional structure in the region of the decoupled 2 band.
Their analysis (1978)suggests the presence of an addi-
tional, almost degenerate 2 band of opposite parity; and
they regard this as evidence of a permanent reflection
asymmetry of the field in which the odd spin 2 particle
moves. Qualitatively, this explanation cannot be excluded.
In such a case, however, the two —,

' bands of opposite parity
should have numerically equal decoupling parameters
but of opposite sign (Bohr and Mottelson, 1975). The
interpretation suggested by Blons et al. (1978) is not in
quantitative agreement with this. A renewed examina-
tion of the problem shows that the data are consistent
with decoupling parameters of equal and opposite sign,
(Blons et al. 1980). See Sec. X.B.2. a.

Th(n, f) reaction has been known for a long time
to show broad structures at neutron energies 1.3-1.8
MeV (see Sec. V.B.5.6). These structures are accom-
panied by pronounced variations in the fission fragment
angular distribution patterns (Andosenko et al. , 1969).

Rev. Mod. Phys. , Vol. 52, No. 4, October 1980



910 S. Bj/rnhoim and J. E. Lynn: The double humped fission barrier

More recently, Blons, Mazur, and Paya (1975a, b) have
observed what might perhaps be rotational fine structure
in the excita. tion function. Carua, na et al. (1977) in a, re-
newed a.nalysis of the ~3~Th(n, f) data conclude tha. t only
a shallow minimum behind relatively thin barriers
(large h ~ values) can explain the measurements, thus
supporting the third minimum hypothesis.

Attempts have been made by Androsenko et af. (1969)
as well as by Blons, Mazur, and Paya (1975b) to inter-
pret the date in terms of resonance structures with
cha. racteristic values of 0' (cf. Fig. 152), a.nd in the
latter case with characteristic moments of inertia. The
two groups do not focus the attention on quite the same
neutron energy regions, but the measurements are con-
sistent where they can be compared.

As a result, a more or less tentative scheme of single
particle states, possibly coupled to vibrations, in the
second or perhaps the third minimum can be presented
as in Table XXXIX. It should be emphasized again that
there are major ambiguities in connection with the in-
terpretation of these experimental results, especially
as regards "'Th.

2. Single-particle properties of shape isomeric states
237p

In Pu there are two fission isomers, one with a 1.1
p. sec half-life, the other decaying with a 0.11 p, sec
period. Russo et al. (1971) have studied the relative
population of these two isomers in compound nucleus
reactions with different amounts of angular momentum
brought into the compound system. They find that in-
creased angular momentum favors the population of the
1.1 p. sec isomer. Using a traditional, statistical, iso-
mer-ratio analysis of the results they conclude that the
spin of the short-lived isomer is likely to lie between

—, and —,', whereas the longer-lived isomer would have a
spin value several units higher. Giinther et al. (1979)
reach the same conclusion based on photon excitation of
the isomers.

In a subsequent study, Vandenbosch ef al. (1973) mea-
sured the thresholds for producing the two isomers by
the (o, 2n) reaction separately, and found that the
longer-lived, higher-spin isomer is lying (0.30+0.15)
MeV above the other isomer, which then presumably is
the ground state in the second well.

The nuclide 3 Pu has 143 neutrons. It is not difficult
to identify levels which can explain these results in the
diagrams of Fig. 23, and similar diagrams. For the
high-spin isomer, the [615]—"' or the [505]—states at
that time seemed likely candidates that would explain
the highly hindered gamma decay to the lower-lying
ground-state band, for which the assignment [512]~ ap-
peared to be a likely possibility.

Experimental data of the nature just described are in
effect insufficient to allow definite assignments and to
test the theoretical predictions in a crucial way. It
therefore appeared to be a major step forward when it
was realized by Specht et al. (1974) that fission frag-
ments from the spontaneous decay of isomers that had
recoiled into a lead backing were emitted nonisotropi-
cally. Of the two isomers of 'Pu the long-lived one
was found to emit the fragments preferentially sideways
with respect to the beam, thus indicating a high 0 val-
ue, whereas fragments from the short-lived isomer
were mainly emitted along the beam direction {low Q
value). This result immediately showed that the two
isomers decay by spontaneous fission independently of
each other, and that a possible gamma transition be-
tween them is absent or at least weak. At the same
time these findings opened the way for spin- and 0-val-
ue determinations and for the measurements of mag-
netic moments and g factors. Anisotropy measurements

TABLE XXXIX. Single-particle resonances in Th and Th (tentative).

Nucleus

231Th

2 33Th

1
2
3
2
5+

2

2
5-
2
3+
2
3
2
1
2
3
2

3
2
1
2

Neutron
bombarding

energy
(Mev)

0.71

0.99

1.0

1.2

1.35

1.415

1.504

1.579

1.711

Energy
above first
minimum

(MeV)

5.84

6.12

5.80

5.90

6.00

6.00

6.15

6.20

6.30

6.37

6.50

Moment of
inertia
2 S/S

(Mev 1)

520 + 30

410 +15

365 +15

Footnote

The more recent measurements of Blons et al. (1980) have a higher value of the moment of in-
ertia, cf: Table XXXVIII.

James, Lynn, and Earwaker (1972).
Androsenko et al. (1969).
Blons, Mazur, and Paya (1975).
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from isomers recoiling into vacuum are also reporteP
to yield positive results, particularly in the case of the
34 nsec isomer of Pu (Galeriu et al. , 1974).

An attempt to exploit these new possibilities was
made by Kalish et al. (1974) who employed perturbed

237angular correlation techniques to the study of the Pu
isomers. Their measurements resulted in ag factor
for the 1.1 p, sec isomer of 0.18 +0.02 with positive sign.
Similarly the other isomer was tentatively found to have
a g factor of 0.54+0.06, again positive. Subsequent
work by the Copenhagen group and at Heidelberg (Habs
et al. , 1975, 1976, 1977) failed to arrive at reproduc-
ible results. The original measurements must there-
fore be considered highly uncertain until the experimen-
tal situation becomes more clear.

The collective motion of the nucleus gives a negative
contribution to the g factor. To obtain a positive g fac-
tor with an odd neutron nucleus requires a positive con-
tribution from the neutron spin magnetic moment, and
this means in turn that the neutron spin g must be anti-
parallel to the neutron orbital angular momentum pro-
jection A (Q = p ——', ). The significance of eventually
finding a positive g factor becomes clear. , when it is
realized that none of the high spin levels on the three

left-hand diagrams in Fig. 23 fulfils the condition Q =
p ——,

' for neutron numbers near & = l43.
239p&

The conversion electron measurements of the 3 nsec
delayed transitions feeding the 8 p, sec fission isomer
in 3~Pu, Fig. 163, can be interpreted unambiguously

9 (-)in terms of a single-particle state of spin — at 203
keV excitation energy, decaying into the rotational

g (+l y (+) 5 (+)ground band with spins 2, 2, 2, and 0 value
(Fig. 164). Moreover, a careful analysis of the

2
Mj. -F.2 competition within the band leads to the con-
clusion that ~gz —gz

~

for this band is ~ 0.30. This
means that the predominant component of the isomeric
state has to be an orbit with antiparallel coupling of
spin and orbital angular momentum, and that a possible
admixture of a component, with 1 and s parallel amounts
to less than 40/p. As already noticed in the previous
subsection none of the —' levels on the three left-hand

2
~ ~ 1diagrams of Fig. 23 fulfils the condition of Q = A ——, for

neutron numbers near K=145 [see Metag (1980) and
Metag, Habs and Specht (1980)].
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pothesis. For a perfectly stable pear shape, levels of
opposite parity will be degenerate. But if an inversion
mode, as in the ammonia molecule, is possible due to
tunneling through a (symmetric) barrier which sepa-
rates two pear-shaped minima, then the degeneracies
are split by an amount 5, where is the frequency of
the inversion oscillations. The energies in Table
XXXIX and the more recent results of Blons e f. g$.
(1980) suggest values of 5~ between 3 and 200 keV, de-
pending on the Q value, see Sec. X.A. 2.a. Examination
of Fig. 165 and similar energy landscapes that include
the reflection asymmetry (MOller and Nix, 1974) sug-
gests that an inversion mode, which at the same time
includes considerable changes in elongation, is possi-
ble. Whether or not such a mode will turn out to have
frequencies @~ of the order 3 —200 keV remains a mat-
ter of speculation.

D. The third minimum hypothesis

The experimental evidence which has been accumu-
lated for ~Th and 3 Th is weighing more and more
heavily towards the picture of a shallow intermediate
well with very little damping of the intermediate states.
In addition some of the evidence points to a highly elon-
gated intermediate shape that is pear shaped. All this
supports the third minimum hypothesis of Moiler and
Nix (1974), but does not unequivocally prove it. See
Sec.X.A. and B.

If it were possible to find evidence of the remains of
the second minimum, presumably lying low in energy
and separated by a relatively low barrier from the
ground-state minimum, then the situation would be
more definite. The photofission measurements on Th
by Zhuchko et al. (1975, 1978a, b) may contain the clue
in this connection, since these measurements suggest
the presence of a shelf in the excitation function below
4.5 MeV photon energy.

As discussed in Sec. VII.Q.3, such a shelf is expected
to occur at an energy where a delayed fission branch
from an isomer populated through gamma decay of the
intermediate states in the second minimum begins to
dominate over prompt fission. The shelf is thus indica-
tive of the existence of a minimum lying appreciably be-
low 4.5 MeV. This may be the second minimum missed
so far.

If this interpretation is correct it should be possible
to find a shape isomer in 3 Th and presumably also in
the neighboring isotopes. Such isomers are likely to
decay by a strong gamma branch and relatively weak
fission.

X. TRIPLE-HUMPED AND OTHER MULTIPLY
COMPLEX BARRIERS

A. Introduction

Although the title of this review proclaims that it is
about the double-humped fission barrier, scattered ref-
erences have been made throughout the text to the
triple-humped barrier. Indeed, it is axiomatic to the
Strutinsky theory, on which all the development of the
double-humped fission barrier has been based, that
structure in the fission barrier can be of a general. and
variable nature, depending on the shape-dependent

shell structure of the nucleus concerned. In this sense,
the double-humped fission barrier is merely the first
and most dramatic detailed form discovered for the fis-
sion barrier and is common to a wide range of nuclides
in the transactinium group. It is our purpose in this
section to survey the evidence for more complicated
forms of the fission barrier.

B. The possibility of a triple-humped barrier for the light
actinides

't. Theoretical indications

All theoretical calculations that have been done to sur-
vey the fission barriers of the actinides indicate that the
lower charge nuclides around thorium should have a
secondary minimum at a potential energy (relative to
the primary well minimum) 2.5 to 3.0 MeV. . The inner
barrier peak should also be considerably depressed
relative to the outer peak. That the experimental data,
analyzed within the context of a double-humped barrier,
agree with neither of these features has been discussed
in Sec. VII.D.3.a. and Sec. VIII.F.2. Some of the more
detailed calculations, especially those of Moiler and
Nix (1974), indicate a feature that could reconcile data
and theory. 'This feature appears in Fig. 18 as a shallow
splitting of the outer barrier peak of the barriers of low
Z, moderate & nuclj. des such as Th and Th. The
source of this splitting is a minor shell effect for pear
shapes only, occurring at an elongation greater than
that of the major shell closure responsible for the sec-
ond well. In the U —Pu region the elongation of the ma-
jor shell closure nearly coincides with that of the liquid
drop saddle. In the Th region the liquid drop saddle
occurs at larger elongation, causing a depressed inner
barrier and a broader (pear shaped) outer barrier, now
split by the minor shell closure.

The tertiary minimum thus generated in the fission
barrier is thus split in the direction of the mass asym-
metry deformation coordinate (see Fig. 165). This has
important spectroscopic consequences. For even nu-
clides states with one extra phonon in a mass asymme-
try vibrational mode, and hence with &- and p quantum
numbers of opposite sign from the basic intrinsic states,
will be lowered, thus giving rise to near degeneracy of
rotational bands of opposite parity. For odd-mas
nuclides the ordinary Nilsson wave functions describing
the particle motion will split into two states of opposite
parity in the pear shaped field. The result will again
be nearly degenerate rotational bands of opposite parity.
For all cases the amount of splitting ~& of the near de-
generate states is related to the tunneling frequency ~3
for inversion of the pear shape through ~& =@~3 Fur-
ther, the spectroscopy of states associated with the
tertiary minimum wil. l be affected by the increased mo-
ment of inertia of the rotational bands at the greater
elongation of the tertiary well; this will be- perhaps
50$r, to 60$ greater than that associated with the second-
ary well (see Fig. 24).

In the energy region in which intermediate resonance
effects are important, cross sections will be affected
in magnitude in two ways. Intermediate resonance size
and spacing will be much greater than the values as-
sociated with the cl.ass-II compound states of the usual
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secondary well, because of the shallowness of the ter-
tiary well; and the overall rate of rise of cross sections
with energy will be slower because of the relative thin-
ness of the barriers encapsulating the tertiary well. .
Because the innermost peak of the new complex barrier
is expected to be lower than the tertiary well base,
new forms of intermediate structure are not likely. The
formal treatment of cross-section theory can be adapted
straightforwardly from the development for the two-
humped barrier described in Sec.III.C.5; the class-I
compound states of that formalism will now be a rather
thoroughly admixed set of class-I and class-II states;
and a new set of class-III states, based on vibrational
wavefunctions with their principal component of ampli-
tude in the tertiary well, takes the place of the class-II
states. At lower energies (below the lowest of the class-
III states, , which will be an extremely short-lived fis-
sioning isomer, only observable as a resonance in a
nuclear reaction cross-section) intermediate structure
should exist in principle, but should now show the stan-
dard characteristics of coupling between class-I
compound states and class-II states that are substantially
denser and very much narrower than the class-III states
expected at higher energies. Narrowness of the class-II
states will be dictated by the substantial broad outer
double-barrier to be overcome by fission. At these en-
ergies the shallow dip in this barrier at higher potential
energy is immaterial. It is likely indeed that the prin-
ciple mode of decay of these class-II states will be ra-

diative deexcitation to a class-II shape isomer which
itself has a strong branching ratio in favor of radiation
to the ground state.

2. Evidence from intermediate resonance structure

Possible candidates for the role of the class-III states
within the triple-humped barrier hypothesis are to be
found in the striking, large-scale intermediate reson-
ances found in the fission cross sections of some of the
thorium and protoactinium isotopes. These have been
treated in Sec.V.-B.5 as pure vibrational. resonances in
a secondary well, thus leading to the thorium anomaly
described in Sec.VII.D.3. Difficult features in the analy-
sis of these resonances have also led us to consider
them as special forms of weak, incipient da.mping (see
Sec.V.C.4.e). Since the submission of Secs. I through
IX of this review for publication new data and analyses
have become available, and these lend considerable sup-
port to the hypothesis of the triple barrier.

2317

Most work has beeri -concentrated on '"Th, because
the comparatively large and well isolated intermediate
resonance at 710 keV in the neutron fission cross section
of ' Th is most conducive to analysis. The latest high
energy resolution data on the fission cross section
(Blons et al. , 1980) do not confirm the existence eight
separate peaks within the resonance envelope that were
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claimed earlier to exist (Blons et al. , 1978) but reveal
a number of shoulders (up to 4) in addition to two well
defined peaks (see Fig. 166). In addition to the cross-
section data, more measurements (Leroux et a/. , 1980);
Boldeman et a/. , 1980) have been made on the angular
distribution of fission products, with improved resolu-
tion over those discussed in Sec. V.B.5.

Two analyses of these data have been made. Both are
based on a pure vibrational model, which differs from
that described in Sec.V.B.5, first, in not allowing dif-
ferent widths among the various rotational members of
the band, and, secondly, in allowing two nearly degen-
erate rotational bands (instead of one) having the same
intrinsic spin (K= 2) and opposite parity. The essential
feature of the new analyses that distinguishes them from
earlier ones (e.g. , Blons et al. , 1978) is that the de-
coupling parameter, a,~, (see Eq. 5.34) is of opposite
sign (and similar magnitude) for the two parities. This
(see Bohr and Mottelson, 1975) is an essential require-
ment for the degeneracy brought about by reflection
asymmetry of the deformed nuclear field in which the
spin- —,

' particle moves; as such it is an important ele-
ment in validating the triple-humped barrier hypothesis.

Within these constraints the work of Boldeman et al.
first of all establishes the inadequacy of a fit based on

a single rotational band; this is not a consequence of the
new data but, rather, of the assumption of equal coupling
and fission widths of all the rotational components of
the vibrational resonance. Secondly, the work estab-
lishes that a double rotational band model will give a
reasonably good representation of the new data. In the
analysis there are six adjustable parameters: the in-
trinsic plus vibrational energy, h„of the K"= ~" state
(with quantum number x=+1 for the 6I operation —see
Sec.VII.B.3), the energy separation Ah from the second
intrinsic vibrational state of opposite va. lue of x(= —1)
and m(= —1), the effective moment of inertia 8, the
decoupling parameter for one of the rotational bands,

and the coupling and fission widths T'„&,), I'„&f)
for a single rotational band component. These give
sufficient parameters for calculating the detailed
fission transmission coefficient. The neutron and
radiative transmissio~ coefficients are calculated as in
standard Hauser-Feshbach calculations (see Sec.VII.B),
and, at the rather high neutron energy, should not differ
significantly for different models. The parameters
found for a reasonable fit to the data are 8, = 705.3 keV,
Ah = 3 keU, h2/28 = 1.85 keV, and a, &

= -1.1 = -a,
&

.
The coupling and fission widths are not explicitly quoted
by Boldeman et al. ; instead, the triple-humped barrier
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parameters are given. We have recalculated the cross
section with essentially the same model as Boldeman et
al. (using neutron transmission coefficients based on
resonance region neutron strength functions rather than
optical model parameters) for the purpose of calculating
fission product angular distributions convoluted with ex-
perimental energy resolution functions. Our cal.culation
is compared with the experimental data of Blons et al.
(1980) in Fig. 166. The coupling width I', &,&

=9 keV and

1„&=1 keV.
The second analysis is due to Blons et al. (1980). The

model is essentially the same, but with parameters
$„=702.5 keV, Ah =0, h'/28=2. 0 keV, a,, , =1.3, a „,
= —1.5 (n. b. , reversed decoupling parameters), I",&„
= 6.3 keV, I'„&&& = 0.7 keV. The fit to the cross-section
data is virtually as good as that of the Boldeman ef, al.
model shown in Fig. 166, but this good agreement is
somewhat artificial inasmuch as the compound nucleus
formation cross sections and total neutron transmission
coefficients for some of the total angular momentum
components have been used as additional adjustable pa-
rameters. For example, the subsidiary peak at 720
keV only appears in the calculated curve because an un-
acceptably large adjustment to the neutron properties of
the J' = ~" component of the cross section was made.

The anisotropy (defined as v(0 )/cr(90 )) of the angular
distribution of the fission products is shown in Fig. 167.
The good energy resolution data of Leroux et al. (1980),
Boldeman et al. (1980), and Yuen et af. (1971) are shown
in black symbols. Older data with poorer energy resolu-
tion (spread -20 keV) are shown by open symbols. The
newer data tend to support the calculated curves from
the new reflection —asymmetric well models, although
the scheme of Blons et al. is uncomfortably high in the
region of 730 keV and that of Boldeman et al. in the re-
gion of 745 keV. A calculated curve based on the latter
model with the cross sections convoluted with a Gaussian
resolution function of width 25 keV at half-maximum is
also shown in Fig. 167. The difference between this and
the perfect resolution curve is not nearly great enough
to account for the spread in the data, and the discrepan-
cy thus revealed in the data must be regarded as wor-
rying.

Of the two models, that of Boldemanetal. must be pre-
ferred, mainly because of the excessive adjustment of neu-
tron properties used in the scheme of Blons et al. (1980) .
Nevertheless, reservations must be drawn about either
of these analyses as cons'tituting proof of the third well
hypothesis. Reference to Fig. 166 shows that many of
the individual J" components are nearly degenerate,
indicating that a model with as many as seven separate
rotational components is not, in itself, necessary. Sec-
ondly, there are large discrepancies in the angular dis-
tribution data; but even so, the model calculations lie
well outside the range encompassed by the data in signi-
ficant energy regions. All the evidence suggests that a
pure vibrational model cannot explain all the data,
whether the model is limited to a single parity rotation-
al band or to two parities as required by the reflection-
asymmetric third well. Fission through the higher spin
components of the band may be weaker, either because
of reduced coupling and/'or fission width. Alternatively,
components of higher spin-projection & may be mixed

into the intrinsic state (this is incipient damping of the
type described in Secs. V.C.1 and V.C.4.e). Yet again
there could be accidental energy overlap of a K = —,

' vi-
brational band (of single parity) with a band of higher K.
Any of these possibilities would reduce the angular
anisotropy in particular energy regions as apparently
required by the experimental data. But the latter them-
selves also require more definitive study.

The most significant conclusion to emerge from all
these analyses, particularly strengthened by the new
high resolution experimental data on the fission cross
section, is the high value of the moment of inertia of
the rotational band. At a value of h'/2g =2 keV, it is
significantly higher than the value we would expect for
a nucleus with the deformation of the secondary well,
even after allowing for possible compression by Coriolis
coupling with a higher K band at higher energy. This
in itself is significant support for the validity of the tri-
ple-humped barrier hypothesis.

b. 2~Th

The greater number of close intermediate resonances
and the higher neutron energies at which they occur
make the analysis of the fission cross section of '"Th
much more complex than that of '"Th. In addition,
angular distribution data are not available with the very
good energy resolution used for 2"Th. Consequently, no
detailed comparison of these data with the quantitative
calculations that may be based on a third well model
have yet been made. It does appear, however, that the
moment of inertia could be high [h'/2g= 2 keV (Caruana

ai. , 1977)j, in accord with the model.

232pa

Data on the neutron fission cross section and fission
product angular distribution of '"Pa were described in
Sec. V.B.5.c. Again new data with improved neutron
energy resolution have become available. These have
revealed new weak substructure (James et al. , 1979;
Plattard et al. 1979) in addition to the main gross struc-
ture previously observed, and fission has also been.
observed in the fine-structure resonances at very low
energy (Plattard et a/. , 1979).

The overall picture is reasonably consistent with a
very, shallow well in the main fission barrier. From Sec.
VII.C.2 we would expect the density of bandhead states
in a reflection symmetric system that could be excited
strongly by neutron s and p waves at neutron energies
up to about 400 keV to be about 20 MeV ' at very low
excitation. This is in agreement with the observation
of groupings of strong intermediate fission resonances.
This conclusion is not affected by the po-ssibility that
rotational bands of opposite parity are introduced by a
reflection-asymmetric tertiary well, so long as the
degeneracy splitting is smaller than about 20 keV. The
overall level density would be -90 MeV ' and this is
consistent with the density of narrow intermediate
structures observed within the groups, thus confirming
the overall impression of clustering into a set of rota-
tional bands. The widths of the clusters will have an
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upper limit of =(~q'/28)J(J+1), where J= 3. The ob-
served widths are in rough agreement with a high mo-
ment of inertia, corresponding to h'/28= 2-2.5 keV.

A particularly sharp intermediate resonance (of width
2.9 keV) occurs at 156.7 keV. It has been established
(see Sec. V.B.5.c) to haveK =3'. Plattard et al. (1979)
have observed non-Lorentzian behavior and evidence of
substructure in its wings. Two possible explanations ad-
vance themselves. Qne is that the substructure could be
due to the existence of, complex class-II level. s, the
non-Lorentzian behavior being due to Porter- Thomas
fluctuations. The second possibility is the existence of
a nearly degenerate K' =3. band. If this is slightly
lower than the K'= 3+ states, weak peaks with total ang-
ular momentum J"=3, 4 due to excitation by neutron
d waves could appear below, or straddle, the main reson-
ance. This explanation would certainly favor the third
well hypothesis. To support it high energy. resolution
measurements of the angular distribution of fission pro-
ducts would be required.

Fission widths of fine-structure resonances have been
measured up to 60 eV by Plattard et al. (1979). They do
not show the pattern of narrow intermediate structure
described in Sec.VI (e.g. , as in the "7Np cross section).
Therefore they may well be coupled directly to the gross
structures observed at higher energies without any more
complex class-II level structure intervening. If they
were outliers from a A" =2 vibrational resonance at
about 200 keV [this would be consistent with the angular
distributions observed by Sicre (1976)], their fission
widths could be expected to be =3,x 10 ' eV, which would
be one to two orders of magnitude smaller than the
widths observed. This suggests an even closer vibra-
tional state of jC'=0, 1 or 2 .

Again, no conclusive evidence for a triple-humped
barrier emerges from the present data on this reaction.
But in view of the narrowness, and hence the possibility
of discrete observation of many of the structures, fur-
ther detailed studies with the aim of establishing near
degeneracy with states of opposite parity in a few of the
rotational bands could be productive.

3. Other evidence

Qther evidence that points in favor of the triple-bar-
rier hypothesis for Th and Pa nuclides has been men-
tioned briefly in Sec.VII.D.3. Cross sections calculated
with the standard barrier level densities of Sec.VII.C.2
tend to be too high in the region above the barrier by a
factor approaching 2; (See e.g. Fig. 136). To correct
this it would appear to be necessary to reduce the rota-
tional enhancement of one or both of the barrier- level
densities implying higher shape symmetry than as-
sumed in the standard calculation. The new picture
would suggest that the two outer barriers & and g usurp
the roles of barrier A and &, thus replacing axially
asymmetric barrier A with an axially symmetric, but
reflection-asymmetric barrier p. This indeed reduces
the transition state density for this barrier approxi-
mately by the required factor of two. But this fact could
also be explained by a low degree of axial symmetry of
the thorium nuclides as actually predicted by calcula-
tions (see Sec. II.A. l.d. (i)). But in support of the triple-

humped barrier hypothesis, the rate of rise of the cross
section is much less than expected, suggesting thin bar-
riers with large values of 5~.

There is some evidence that subbarrier photofission
cross section behavior may be different for Th nuclides
than for higher charge actinides [see, e.g. , Zhuchko et
a$. (1978ab)]. The behavior expected for the photofission
cross section of a nucleus with triple-humped barrier
of the character described in Sec.X.B.1 will be as follows.
At energies in the region of barriers gg and C typical
vibrational. resonance phenomena will be apparent. At
lower energies, below the tertiary well, the photofis-
sion cross section will decrease at a rate proportional
to the transmission coefficient T&~, ~& of the outer barrier.
Below inner barrier peak A. the rate of decrease will be-
come even faster, becoming proportional to T& Tp&

but will also begin to show new irregularities owing, first,
to fluctuations due to accidental degeneracy of class-II
and class-I levels, and, secondly, to class-II vibration-
al levels. At very low energies the cross section is
unlikely to show the "shelf" expected for delayed fission
following radiative decay of class-II states, because de-
layed fission will be strongly suppressed in favor of
gamma decay back to the first well. It is this last fea-
ture (the "shelf" ) that is dubious in the photofission mea-
surements made on Th to date.

C. Complex barriers for Ac and Ra nuclides

It is well known that fission of Ac and Ra nuclides at
relatively high excitation energies exhibits a triple-
humped mass-yield curve, the two outer peaks in the
fission product yields being similar to the normal asym
metric yield curve of most of the transactinium nuclides
at low excitation energy, and the center peak being sym-
metric fission similar to that characteristic of lower-
charge nuclides like the isotopes of Po. Measurements
(Konecny et al. , 1974; Weber et al. , 1976) of fission
induced at low excitation energies of Ac arid Ra nuclides
by charged particle transfer reactions such as (t, pf) re-
veal considerable differences in the cross-section be-
havior as a function of energy for asymmetric and sym-
metric fission in the region of the barrier.

In the work of Konecny et al. measurements were made
on a number of Ac isotopes (odd-Z)- and odd-N Ra. iso-
topes. In all cases it appears that asymmetric fission
proceeds through a well defined barrier, with typical
Gamow penetration apparent at sub-barrier energies.
Symmetric fission appears to pass through a barrier
some 1.5 MeV higher. In one case ("'Ac) a resonance
effect appears near the barrier in the cross section for
asymmetric fission but not in that for symmetric divi-
sion.

This latter phenomenon is found more strongly in the
fission of "'Ra, (Weber et al. , 1976). It is taken a,s an
indication that symmetric division does not follow
the same route through the potential energy surface in
the barrier region as that of normal. asymmetric fis-
sion. Weber et al. attempt to reproduce the cross-sec-
tion for symmetric division at higher energy by calcula-
tion from statistical theory. They find it necessary to
assume an axially asymmetric outer barrier (giving ro-
tational enhancement of barrier transition states) to re-
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produce the correct magnitude of the cross section.
'They speculate that asymmetric division of this nuclide
and of related ones proceeds across a barrier with an
axially asymmetric innermost barrier and a reflection
asymmetric outer barrier while symmetric division is
governed by a quite different route through two axially
asymmetric barriers. There is some suggestion
(Gavron et al. , 1977) that a similar double route
through a two-humped barrier may exist for ' 'V,
enhancement of the density of barrier states being
required to explain the photofission cross section
in the photon energy region of 7 —11 MeV. Gavron
et al. present calculations of potential energy surfaces
as a function of three deformation pa, rameters (elonga. —

tion, mass asymmetry, and axial asymmetry) that show
such dual barrier routes to be possible.

D. Complex barriers for heavy actinides

There is evidence that giant intermediate resonances
are found again at the upper end of the transactinium
range. Britt et at. (1978) have measured the fission
probability as a function of excitation energy for a num-
ber of high charge actinides with neutron numbers in
the range %= 150—154, using (t, pf), (d, pf), and (p, p'f)
reactions. A distinct change is apparent in the proper-
ties of the fission barrier at %=154. For both Cm and

Cf there is a fall of 0.5—1 MeV in barrier height at this
neutron number, and for '"Cf strong resonance effects
appear. In this resonance the anisotropy that appears in
the angular distribution of fission fragments indicates
that K+0, which is surprising for the first vibrational
resonance of an even nuclide. Britt ef, al. interpret this
as possible evidence that the axially asymmetric inner
barrier is split at N=154, in analogy with the subshell
splitting of the reflection asymmetric outer barrier of
the lighter actinides. Axial asymmetry of this new bar-
rier well would imply that K is not a good quantum num-
ber for its vibrational state and hence account for the
anomalous behavior gf the angular distribution. There
are, as yet, no theoretical calculations of the potential
energy surface that support this speculation.

XI. SUMMARY AND CONCLUSIONS

It has been our purpose in this article to make a
critical survey of the vast amount of experiments re-
lating to the fission barriers of the actinide group of
nuclides. In numerous ways observations are reflecting
the existence of a complex structure of the barrier with

at least two barrier peaks and an intermediate minimum

between these. In essence it has emerged that the fis-
sion of actinide nuclei pro ceeds as a two —step pro ce ss.
As a consequence, reaction theories, both purely quan-
tal and quantum-statistical, have had to be reformulated
and developed further to meet this new situation. This
is the second major purpose of this review. Based on
the extended theoretical framework, the data have now

been subjected to a detailed analysis in order to deter-
mine the extent to which they can be understood within
a coherent, quantitative picture of the barrier and its
associated spectra of excited states.

To do this we have had to be guided, at least qualita-

tively, by the modern structure theory of the fission
barrier. This explicitly underlines the importance of
shell- effects in deformed nuclei and draws out the
fact that in the actinides, the strong deformation
at which a major shell closure occurs more or less
coincides with the saddle in the liquid drop potential
energy surface of the nucleus; the consequence is the
double-humped barrier. In Sec. II we have summarized
these. theoretical developments and indicated the main
conclusions that can be drawn from them. Inner bar-
riers are more or less constant at 5 to 6 MeV (above
ground) for the main range of the actinides, but begin
to fall rather rapidly at the thorium end of the range
and more slowly at the fermium end. The depth of the
secondary well between the two barrier peaks is also
calculated to be fairly constant at about 2 to 3 MeV. By
contrast, outer barriers fall quite strongly from the
lighter to the heavier actinides, being calculated to be
about 6 to 7 MeV in the thorium isotopes and only 2-3
MeV in the fermiums. These general trends in the
heights of the peaks and depth of the secondary well can
be explained quite simply by the changing deformation
of the liquid drop saddle in relation to the shell closure
responsible for the secondary well.

A secondary, but important, conclusion that emerges
from theory is that the route of minimum potential ener-
gy for a fissioning nucleus does not necessarily pre-
serve maximum symmetry of shape. Axial asymmetry
is indicated for the inner barrier, and reflection asym-
metry (with respect to a plane perpendicular to the
cylindrical symmetry axis) at the outer barrier. The
secondary well appears to retain axial and reflection
symmetry. Axial asymmetry at the inner barrier in-
creases in going to the higher charge nuclides. These
results not only have large implications for the barrier
heights that must be traversed in going to fission, but
also for the density of transition states that govern fis-
sion cross sections at higher energies and for many
detailed spectroscopic effects.

We have seen that the double-humped barrier, with
its strongly developed secondary well nestling between
the barrier peaks, is responsible for a range of re-
markable phenomena in nuclear spectroscopy and nu-
clear reaction physics. ' To analyze these data quanti-
tatively we have had to review critically and to contri-
bute to the theory of nuclear reaction processes that
involve fission. Many fission yields measured as a
funCtion of nuclear excitation energy are so spectacular
in their structure as to invite treatment by a relatively
simple one-dimensional picture of transmission through
a two-humped barrier; and quantitive models, both
analytic and numerical, of this kind were developed
relatively early in the last decade. But suspicion, and

later on evidence, of substructure within these giant
resonances in the fission probability curve led to mod-
ified one-dimensional theories that include damping
(by means of an imaginary term) in the secondary po-
tential well, and, in order to deal with the detail of
the substructure, to more formal theories that explic-
itly allow reference to other degrees of freedom of the
nuclear system (states of "intrinsic" excitation) than
the fission deformation coordinate.

Such a formal development, with strong emphasis on
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the basis for the concept of deformation channels, is
described fully in Sec. III; and many of the specific
and structurally very rich consequences in terms of
intermediate structure in fission cross-section curves
are derived there. In Sec. III.C intermediate structure
was developed in terms of two sets of basis stat6s; the
class-I states are largely localized, by the nature of
the vibrational wavefunctions entering their structure,
to the region of normal, quite moderate deformation,
about which the primary well in the deformation en-
ergy curve is centered; and the class-II states are lo-
calized at the more extended shape of the secondary
well. The class-I states approximate to the relatively
dense fine-structure resonances that appear in neutron
cross sections at moderate excitation energies, while
the properties of the class-II states govern the scale
of the intermediate structure in the fission channel.
One of these properties is the coupling interaction with
class-I states, and this is dominated by the height of
the inner barrier between the two wells. A second is
the fission width, governed by the outer barrier, and
a third is the spacing of class-II states, governed by
the depth of the secondary well. But quite detailed
properties of the intermediate states can be accom-
modated in principle within the formal theory, through
the detailed spectroscopy of th~ class-II states. These
aspects have been exploited considerably in later parts
of the review, particularly for analyzing fission at deep
sub-barrier energies.

At near- and above-barrier energies structure phe-
nomena become less conspicuous in the fission cross sec-
tions. Simpler theories encompassing the gross sta-
tistical properties of the class-I and class-II states
then become appropriate (Sec. III.B). The statistical
theory is particularly appropriate for analyzing data
Qn yield of spontaneously fissioning isomers resulting
from high energy reactions followed by neutron evapor-
ation and for estimating the magnitudes of fission cross
sections above the barrier. Various formal aspects of
these topics are further developed in Secs. IV, VI, and
VII.

In Secs. IV-VII we have used these reaction theories
as tools to analyze most of the experimental data re-
lating to the fission barrier that have been assembled
over the past decade. Section IV has been devoted to
shape isomers. In Sec. IV.A we reviewed the evidence
and arguments that established the remarkable spon-
taneously fissioning isomers as the lowest of the set of
states with the greatly extended deformation character-
istic of the secondary well of the theoretical double-
humped barrier. In Sec. IV.B we outlined the known
extent of shape isomerism (the uranium-berkelium
island) and drew attention to the fact that these shape
isomers have so far been identified entirely through
their fission decay. It has been observed, mainly de-
ductively through reduction in the observed yields of de-
layed fission, but also directly by observation of gamma
rays, that the preferential mode of decay of shape iso-
mers of low Z and N is by electromagnetic radiation.

his is consistent qualitatively with theoretical expec-
tations, in which the outer barrier against fission
strengthens and the inner barrier against radiation
weakens as Z and N are lowered within the actinide

group. It is highly desirable to extend the known limits
of shape isomerism by developing methods that will de-
tect the gamma branch in the isomer decay, indepen-
dently of the fission branch.

In Sec. IV.C we reviewed the systematics of decay
properties of the shape isomers. Systematic depen-
dence of the spontaneous half-life on neutron number,
showing maximum stability at N = 146, and proton num-
ber, showing strongly decreasing half-life with in-
creasing Z, and also a strong odd-even effect, are
readily apparent in the data. The dependence on N
j.s directevidence for a combination of shell effects, atex-
tended deformation, that results in maximum half life
for N =146, in agreement with theoretical expectations.
In contrast, the odd-even effect calls for new demands
on theory; currently there are three pos'sible explana-
tions, increase in inertial parameter, increase in
pairing gap, and increase in specialization energy, in
all of which the theoretical argument is qualitative
rather than quantitative. Further experimental work
could also contribute greatly to resolving these ques-
tions, particularly extended work on the spectroscopy
of states associated with the secondary well and on the
transition states at the outer barrier. The gains in
understanding the physics of deformed many-body sys-
tems, in particular the dependence of pairing energy
on deformation, could be great here.

In Sec. IV.D we analyzed the excitation functions for
yields of the shape isomers. 'These gave us two impor-
tant classes of information. One is the excitation en-
ergy of the shape isomer, relative to the ground state,
and the second is the outer barrier height. , normally of
the nucleus with one neutron more than that of the iso-
mer. The excitation energy is of course a direct
measure of the depth of the secondary well and can be
compared directly with theoretical estimates of this
quantity. Agreement for the main body of isomers
from Pu to Cm is quite good. But more comprehensive
and more precise information on the excitation ener-
gies of these isomers is badly needed for other pur-
poses. One is to help pin down the cause of the odd-
even effect in half-life, and a second is for the study
of level density of class-II states as deduced from in-
termediate structure in fission cross sections. 'Two
methods have been shown to be possible for increased
precision. One is the observation of the excitation
curve by the (n, n') reaction, and the other is the mea-
surement of energies of gamma rays emitted in the
gamma branch decay of the isomer. Both methods have
been applied to '"U but at present a certain measure
of disagreement remains.

Outer barrier heights as deduced from shape isomer
excitation functions are in qualitative agreement with
theory in showing the expected fall with increasing Z.
But, in view particularly of the rather indirect nature
of the deduction ofbarrier heights from suchdata, major
improvements in the experimental data, both in energy
precision and in absolute yield measurement, would be
highly desirable.

Turning now to the phenomena of structure in fission
cross sections, we came across the first major apparent.
discrepancy with nuclear structure theory in Section V. It
is demonstrable that the very large scale resonances ob-
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served in the cross sections of some light actinides are
. explicable in terms of pure vibrational resonances in the

secondary well of a. double-humped fission ba.rrier (al-
though some detailed quantitative discrepancies ap-
peared in the analysis of the best-studied eases). But
our considerations of the mechanisms that can lead to
damping of the vibrational resonances of odd-A nuclides
indicate that this can be quite strong above the very
lowest excitation energies in the secondary well. From
this we inferred that the secondary well in 'Th and Pa
actinides is shallow and some 4 to 5 MeV higher than
the primary well, while the inner barrier must be, at
least, almost as high as the outer barrier. 'These con-
clusions are in direct conflict with the trends that the
theory of the potential energy surface has established.
'These studies of the experimental situation have led to
the serious consideration of a feature observed in some
theoretical work, namely, that the outer barrier may
be split to give a shallow tertiary well that houses the
vibrational resonances; we took this matter up again in
Sec. X (with passing references in other sections). New

precise data on vibrational resonances are badly needed
for even nuclides. The difficulty here is that the bar-

- riers of such nuclides normally lie below the neutron
separation energy, which makes the vibrational reso-
nances inaccessible to the high energy resolution of
neutron measurements. The requirement is for in-
creased energy resolution in fission induced by
charged-particle transfer reactions.

By contrast, the study of damped vibrational resonan-
ces leads to no great discrepancies with structure theory.
The best examples occur in even nuclides, so the compara-
tively modest damping widths observed seem quite con-
sistent with the excitation energy based on the expected
(or known) depth of the secondary well. But the possi-
bility. that the vibrational resonance belongs to a terti-
ary well and that the damping is a consequence of
coupling of this class-III state to denser class-II states
within a secondary well has not been ruled out. More
complete information on the sequence of vibra(ional
states through the full excitation range of the secondary
well is required, and intensive theoretical work on
damping of vibrational levels would be very desirable.
Damping can be a quite complex phenomenon and such
simple models as we have studied in this review indi-
cate that the patter as of coupling and fission width asso-
cia".ed with a vibrational resonance could differ considera-
bly from each other, with significant consequences for
the cross-section patterns. - For this reason the reso-
lution of the narrower intermediate structure due to
the complex class-II states into which the vibrational
level is fragmented, could give important checks on
theories of damping mechanisms. In two cases at least
the class-II sub-structure has been observed, but not
to the precision that yields this kind of information.

We took up the study of the narrow intermediate
structure due to complex class-II levels in Sec. VI.
'The available data exh'bit a range of spacing width, and
strength properties thac are mostly consistent with barrier
heights that have been deduced from other kinds
of data. (excitation energies and yield curves of shape
isomers, Sec. IV, near- and above-barrier cross-
section curves, Sec. VII). Some phenomena, of special-

ized but intriguing interest have been reviewed here,
e.g. , accidental degeneracy of a class-I and a class-II
level; this plays an important role in the energy depen-
dence of very deep sub-barrier average cross sections.
In one case ('"Pu) the density of class-II states in the
neutron cross section can be related to that observed at
a much lower excitation energy in the (d, pf) reaction,
thus providing a useful check on the level density be-
havior of complex states at the secondary well defor-
mation. But the total volume of data on class-II reso-
nances is still very sparse. Qnly about 4 or 5 such in-
termediate groups have been studied with the amount
of detail that can be regarded as definitive. So
tests on their expected statistical properties (especial-
ly correlations between coupling and fission widths)
are very crude, and our knowledge of their trends with
energy and angular momentum are virtually nonexis-
tent.

In spite of many searches there is no direct evi-
dence of radiative cascades from class-II resonance
states to lower class-II states, a process that should
culminate in delayed fission from the shape isomer.
'This process has particular relevance to the one case
so far that is not fully consistent with other data on
barrier heights, namely, the neutron fission cross sec-
tion of "'U. Here the intermediate structure indicates
barriers (for the J'=2 states) that are much lower
than those indicated by the fast neutron fission cross
section. Delayed fission following radiative "capture"
in the class-II state could explain the discrepancy, but so
far no spontaneously fissioning shape isomer has been
observed for ' 'U, and systematics suggest that such an
isomer could have too long a half-life and too small a
branching ratio for fission to fulfill the required role. In
addition to searches for the isomer and class-II radiation
(extremely difficult in view of the weakness of the inter-
mediate resonances) high energy resolution measure-
ments of the angular distribution of fission products
from the intermediate resonances observed at high
neutron energies (100-200 keV) in the "'U cross sec-
tion could help to resolve this problem.

The largest body of evidence on the heights of the bar-
rier peaks, particularly that of the inner barrier, has
come from analysis of fission cross sections at energies
near and above the barrier. Such cross section data
are generally without structure (because of insufficient
resolution in the measurements below the barrier, and
because it is broadened to disappearance above); the
evidence for analyzing them systematically in terms of
a double-humped barrier comes from the structure
phenomena at lower energies and the analysis of shape
isomer data as well as the indirect knowledge gained
from the systematic trends of the cross sections as
functions of Z and A. With this insight we have ana-
lyzed most available cross-section data, much of it on
fission induced by charged-particle transfer reactions,
to obtain a fairly comprehensive set of barrier para-
meters for the actinide nuclides. In doing this we have
reviewed also the evidence from the magnitude of the
cross sections that gives strong indirect support for the
asymmetries in nuclear shape at the inner and outer
saddle points strongly suggested by the theoretical cal-
culations. This evidence manifests itself in the form
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of enhancement of the cross section due to the
increased density of transition states at inner and outer
barriers brought about by the extra rotational bands re-
quired by the broken symmetries. The agreement with
theory is at least semiquantitative. More careful com-
parison between experiment and theory will await more
precise measurements of the fission cross sections,
particularly those of the charged-particle transfer re-
actions. The-elucidation of the energy gap in the spec-
tra of transition states at the two barriers of odd-A
nuclides could follow from careful analysis of such da-
ta, particularly if angular distribution data become
available also.

We have presented a detailed analysis of the full set
of barrier parameters and their systematic trends in
Sec. VIII. Here we have attempted to separate the ef-
fects of the smooth liquid drop (or droplet), the pair-
ing, and the shell contributions to the energ~r. The
ground-state energies (at normal deformation) have
been included in the analysis, all points on the barrier
energy curve being referred to the spherical liquid
drop energy. Although there is some ambiguity in the
choice of liquid drop or droplet model in extracting the
smooth "background" contribution to ascertain the shell
plus pairing corrections, the procedure does make
certain major trends apparent in the experimental data
and allows more incisive comparison with the theory
(compensating errors between ground state and barrier
energies are at least partly eliminated).

The magnitude at different deformations of odd-even
staggering in the data thus reduced shows that the
energy gap has an increasing trend with deformation.
Observation in even nuclides of excited shape isomers
with a two-quasiparticle configuration gives another
assessment of the energy gap and confirms this trend.
Taken together, these observations, though not con-
clusive, do tend to convince us that the pairing correla-
tion force is proportional to the surface area of the
nucleus.

The shell energies are not completely reproduced by
theory. For Z =92-96, the shell energy at ground-state
deformation appears with a minimum at N= 144 in the
data, but not in theory. At barrier A the experimental
shell energies plotted against neutron number have a
quite different trend from the theoretical calculations
with axial asymmetry included, suggesting that the
latter effect has not been quite correctly treated. At
the secondary minimum, onthe other hand, there is
good indication of agreement (at moderate Z numbers
=95) with theory, the observed minimum lying near N
=144. At the outer barrier agreement between experi-
ment and theory in the N-dependence is not unsatisfac-
tory, provided the all-important mass-asymmetry de-
gree of freedom is allowed. Dependences on proton
number also show deviations with theory. The compari-
son at the two minima is not bad, provided that data for
the second minimum of thorium and protoactinium are
omitted. Similarly the magnitudes of the shell correc-
tions at the barrier deformation are reasonable overall,
but trends are unsatisfactory, and again, at barrier &,
the low charge data effect a discontinuity (the thorium
anomaly) with the main trend of experimental data; this
discontinuity is simply not explained by the two-humped

barrier theory.
Although there could be flaws in the interpretation of

the experimental data, further investigation on the
theoretical plane is certainly called for.

The theoretical spectroscopy of the class;II states
associated with the secondary well is closely allied with
the theory of the potential energy surface. Further-
more, the experimental spectroscopy of these states
can give us information os botP static and dynamic
aspects of the deformation of the nucleus in the secon-
dary well. We have reviewed these aspects of the sub-
ject in Sec. IX and have mostly found agreement with
the concepts of the double-humped barrier. Particular-
ly striking are the observations of rotational bands
built on the shape isomers of even nuclides and the de-
duction from these of moments of inertia fully consis-
tent with the standard deformation expected for the nu-
clear potential of the isomeric state. The lifetimes of
the transitions within these bands have allowed deter-
mination of the quadrupole moments, thus confirming
the extended shape as being that of a prolate nucleus
with a major to minor axis ratio of 2:1. The agree-
ment of these results with quantitative theory is satis-
factory for the quadr'upole moment, and for the mo-
ment of inertia the cranking model with superfluidity
in its most elaborate formulation reproduces the re-
sults within 10%-20% accuracy.

The spectra of highly deformed odd-A nuclides are
particularly important in yet a different way. Com
parison with the spectra, 'calculated in Nilsson-type
models allows an indirect assessment of the deforma-
tion as well as a check upon the basic theory of shell
corrections. In two cases of plutonium isotopes pre-
cise or approximate values of the spin projection of
two bandhead states have been measured and also their
gyromagnetic factors. Although the spins can be fitted
loosely into a Nilsson scheme at reasonable deforma-
tion, there is disagreement with the standard theory on
the g factors. This disagreement may indicate that
the spin-orbit force is stronger than generally as-
sumed at large deformations. There is great incentive
here for continued efforts in the spectroscopic field.

Finally, we have devoted a special section to sum-
marizing the possibilities for even more complex
forms of the fission barrier than the double-humped
one. The main thrust to considerations of this kind
arises from the thorium anomaly and leads to the con-
sideration of the spectroscopy of "quasi-isomers" —the
vibrational states —observed in the cross sections of
thorium and protoactinium nuclides. We have shown
that the present data, although now existing in consid-
erable detail, on the cross section of "Th in particu-
lar, are neither consistent enough among themselves,
nor yielding to a sufficiently. unambiguous analysis, to
confirm in a definite way the hypothesis of a triple-
humped barrier with shallow tertiary minimum that is
suggested by theory. Nevertheless, the third mini-
mum hypothesis seems the most reasonable explana-
tion of the data. Even more careful measurements
with high energy resolution are required on the vibra-
tional resonances, and additional information on their
counterparts in even nuclides would be valuable. In
addition, careful exploration of the deeper sub-barrier
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region —below the hypothesized innermost barrier, by
means of charged-particle transfer or photofission-
might confirm the picture by picking up the true class-
II states. Once again, however, we must mention that
we have no illusions about the difficulties of performing
such experiments.

As a broad overall conclusion we can say that this
review has revealed that a vast amount of data is in
broad agreement with the concept of a two-peaked fis-
sion barrier; and it has been shown how the properties
of the intermediate states resulting from a structured
barrier, as well as the barrier parameters themselves,
ean give new information on the forces operating in
many-body systems with large deformations. Many
detailed problems remain, however. These are now

mainly concerned with the spectroscopic properties of
the intermediate states that so dramatically affect the
rate of fission. But in turn the elucidation of the spec-
troscopy of the intermediate states is intimately con-
nected with a more quantitative theoretical understand-
ing of the deformation surface, affecting the calcula-
tion of the shell correction and the pairing energy cor-
rection through such matters as the dependence of spin-
orbit force and pairing force on the nuclear deforma-
tion. It is on spectroscopic evidence, too, that the
question of the existence of more complex structure,
such as the third minimum, in the deformation surface
will ultimately be resolved.
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APPENDIX' PARAMETRIZATION OF DEFORMED
NUCLEAR SHAPES

The development of quantitative theories of nuclear
fission is dependent upon an adequate parametrization
of the shape of a deformed body. Many different para. -
metrizations are to be found in the literature and this

can give rise to inconvenience when attempting to com-
pare the results of one paper with those of another. In
this Appendix we list definitions of shape parametriza-
tions that commonly occur, and give relationships,
analytical or numerical, among them.

The requirements of a shape parametrization can
have different sources. In nuclear fission theory a
prime requirement is to define in detail the sharp sur-
face configuration of the electrically charged liquid
drop, which appears as a prime concept in the develop-
ment of the theory. 'The later theoretical developments
that led to the subject matter of the present review de-
mand the definition of the shape of a single-particle po-
tential well. This can be done either by defining the
shape of the potential at a certain contour (generally
the midpoint between maximum depth and zero) and
prescribing the radial dependence of the potential about
that contour, or by defining the directional dependence
of the force constants that give the potential (as in the
deformed harmonic oscillator potential).

Often, however, it is the shape of the nuclear density
distribution that is required (usually as an end product.
of the theoretica. l calculation). Again this shape can be
defined for a specific contour in the density. In some
work the density is used as a basis upon which the po-
tential for the single-particle levels is constructed.

In such requirements a detailed surface parametriza-
tion is called for, demanding, normally, several inde-
pendent parameters. In many studies (of cross sec-
tions and fission reaction rates, for examples) only a.

single parameter, a measure of the overall elongation
of the system, is required. This can usually be con-
structed from the detailed description of the shape that
is provided by the many-parameter description.

Among the many-parameter descriptions of the nu-
clear shape there are a number that are very familiar from
their use in the studies of nuclear ground-state prop-
erties. Such parametrizations are commonly used in
theories of fission up to the barrier region but become
increasingly inadequate for studies of extreme elonga-
tions.

One of the most familiar and general is the spherical
harmonic expansion. The radius of the body (at sharp
surface or chosen contour, as appropriate) is defined
as a function of spherical polar angles 8, Q, in the
frame of reference

R(8, @)=R, o.,+go.', I', (8, $) (Al)

Often the frame of reference is body-fixed, and in this
case the expansion is written with specialized coeffi-
cients, a,„:

R(8', Q') =R, a, +Pa, I', (8', @')
1m

(A2)

n= -&
(A3)

'The transformation from the a, to the &, is effected by
the rotation matrices D' „:
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where the 8,. are the Euler angle's specifying the trans-
formation from the laboratory to the body-fixed frame
of reference. 'The reality of the nuclear surface im-
poses the conditions

compressibility of the body demands the constancy of
the volume

(A5a)

a, „=(-1)'a*... (A4a)

(A4b)

'The condition to fix the center of mass at the origin of
the body-fixed frame gives Q]p Qy y Qy] 0, and the in-

where

C=ggg C{ll l-mmm-)
rm r'm'r"m"

with

(A5b)

(2l+ l)(2l'+ l)(2l" + 1) ' (l- I m I )!(l' —
I
m'

I )!(l"—
I
m"

I )!C(ll'l "mm'm") = n. , rx, n,„
4m (l+ ImI )!(l'+ Im'I )!(l"+ Im"

I )!
(l'+ Im'I )!(l"+ Im"

I )!(l+ l'- l")!A!
(l'- I

m'
I )!(A —l)!(A- I')!(A —l")!(l+ l'+ l"+ 1)!

(l+ Iml+ 0)!(l'+ l"-Iml —0)!
(l-Iml —0)!(l'-l" + Imi+ 0)!(l"-Im"

I
—0)!0! '

The term C(ll'l "mm'm") is zero unless m+ m'+ m" = 0,
A is an integer, where 2 A = /+ l'+ l", and /+ l' - l",
l+ l" - l'-

~

l- l" ~. The ordering of coefficients in the
expression for C(ll'l "mm'm") is arranged so that

~

m
~=

~

m' +
~

m"
~

. For the ranges of deformation for which
Eqs. (Al) and (A2) are useful expressions o!, (or a, )
does not differ greatly from unity. %ithin this approxi-
mation

I

ials:

R(C)=R, c,c g c p, (cccC)] . (A8a)

R(6)) =Ra p„+Q p~ Y~o(8, @) (A8b)

The equivalent expansion in spherical harmonics is us-
ually written

p=1- 3 ~t '+C1
(A6)

12m t

[Equation (A6) also holds for the relation between ao and
the a, , of course. ]

For small values of the deformation the quadrupole
parameters a, of Eq. (A2) are often considered ade-
quate as a description of deformation. In the descrip-
tion of an ellipsoidal surface with axes of the reference
frame coinciding with the major axes of the ellipsoid,
a„=a, , = 0, and the two remaining independent para-
meters are usually written as

The expansion coefficients of Eq. (A8a) are related to
those of Eqs. (A2) and (A8b) by

o 2/+ 1 ~)' 2y+ 1 (A9)

for &=—l. In Eq. (A8a) o!, is adjusted with deformation to
maintain volume conservation. [Use Eq. (A6) with Eq.
(A9) substituted for the &„&40.] The quadrupole para-
meter in this system is closely related to another com-
monly used parameter 5 for expressing small defor-
mations of a prolate spheroid:

Q2p = p cosp

a„=a, , = (P siny)/v 2 .
(A7a) R(8) =R,[1+—,5P, (cos 8)] .

Clearly,

(A10)

The next higher-order coefficients in the spherical
harmonic expansion describe other important features
in the incipient deformation towards fission. The coef-
ficient Q,p describes the tendency of the body to be pear
shaped and is generally known as the "mass asymmet-
ry" parameter. The l=3 coefficients with p. & 0 can be
used to describe bending and/or wiggling deformations
(which may not be of importance in quasistatic calcu-
lations but would be of significance in dynamic consid-
erations). The a„coefficient describes necking of the
waist of the body (if a« is negative) or thickening of
the waist (a«positive).

In the description of the early stages of fission dis-
cussion is often confined to prolate spheroids, for
which an approximate description is given by y= 0 in
Eqs. (A7) and a„=p, a, ~, ~

= 0. By contrast, the oblate
spheroid is described by y= —,'7r, a„=2P, a, ),)

= (—,')' 'P.
More generally, axially symmetric shapes are com-
monly described by an expansion in Legendre polynom-

5= —n, .3
2 (A11)

V„,(x,y, z) = 2 Af[~,'(x'+ y')+ &u,'g'] (A12)

can be described in first approximation by the single
deformation parameter s by introducing

cu, = coo(e)(l- 3r-),

~, = cu, (c)(1+—,'s),
and the stretched coordinates

(A13a)

(A13b)

(A14a)

(A14b)

(A14c)

In first order 6 is identical tb the principal parame-
ter e of a series of parameters employed (usually) for
describing the deformation of a harmonic oscillator
potential well. The axially symmetric harmonic oscil-
lator potential
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(1969).
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p =5+0+&
to give

becomes zero, apd & describing the asymmetry of the
shape in the z direction. The parameter c is a dimen-
sionless elongation parameter

V„,= —,'h ~,p'[I ——', zP2(cos e, )], (A15) c =C/Ro . (A17d)

2
dz p'= ~4R',

Z
g

in terms of the radius R, of the undeformed sphere, z,
and z, being the end points of the surface at which p

(A17c)

8, being the polar angle in the stretched coordinates.
'This form can be extended to higher multipolarities:

I

V, ,= —,'hen, (r. , E„r, , )p' 1-—', zP, + 2, g c~P, . (A16)
X~3

Ellipsoidal forms can be described by extending the
expression to include spherical harmonic terms of the
type Y», Y, „as in Eq. (2.7). "Mass-asymmetric"
forms (pear shapes) are described by the inclusion of
odd terms (A. = 3, 5, etc.).

'The relationship between the lowest order parameters
P„P, of the simple spherical harmonic expansion of
Eq. (A8b) and those of the stretched coordinate descrip-
tion (A16) is shown in Fig. 168. Some shapes in the
(c,cJ.parametrization are shown in Fig. 169.

Expansions of the type (A16) are useful for the des-
cription of the shapes of fissioning actinide nuclei up
to about the outer barrier peak (e -0.85) with terms up
to &= 6 included. But other shapes with a finite number
of parameters have also been used to cover this range
of the double-humped barrier. The family of surfaces
used by Brack et al. (1972) is expressed in terms of
the cylindrical coordinates z, p:
p2/'C2 (I z2/C2)(A+ Bs2/C 2 / ~z /C }—0 B) 0 (A17R)

p'/C'- (1-z'/C') [(A+ o.z/C) ex(pBzc'/C')] = 0 B - 0
(A17b)

Here, C is determined by the volume conservation con-
dition

c= (A+ ', B) '—i', (A18)

and this is approximately true also for Eq. (A17b).
Thus the shapes described by Eqs. (A17) can also be
described by use of the elongation parameter c together
with a parameter h, which can be chosen to describe
the variation of thickness of the waist of the surface
without change in the elongation. 'The connection be-
tween (A, B] and fc, h] is

B = 2k+ a (c- 1),
A= 1/c'- ,'B . —

(A19a)

(A19b)

Some shapes lI1 the (c q
h.

~ (x) parametl lz ation Rl e shown
in Fig. 170. The relation between the (c,h) parametri-
zation and the two principal. parameters P„P, of the
mass-symmetric and axially symmetric spherical
harmonic expansion is shown graphically in Fig. 171.

It is to be noted that the (c,h] parametrization is cap-
able of describing the bifurcation of the surface into
two parts, a property that is eminently desirable for
theoretical descriptions of the later stages of fission.
Another family of surfaces that has this property is the
Cassinian oval, defined in cylindrical coordinates by

(p'+ z')'+ 2s(p'-z')R'+ (c'-1)R'= 0. (A20)

'The constant R is determined in terms of the elongation
coordinate c by volume conservation, R being the
spherical radius Ro when c = 0. 'For small deformations
c is approximately equal to the parameter of same no-
tation in Eq. (A16). At c = 1, Eq. (A20) describes a
scission configuration, and separated fragments occur

With the form (A17) 2c is the length of the surface along
the symmetry axis from z, to z, in units of R,. With
the volume conservation condition applied to Eq. (A17R)

-0.3-

I

1.3
I

1.6
I

1.9 2.2

FIG. 170. Some shapes that can be described in the (c, h] parametrization. Solid lines show 'shapes that are symmetric to a ro-
tation by m about an axis perpendicular to the symmetry axis (a = 0). The dotted lines show shapes with 7r-rotation asymmetry
introduced (6 = 0.2),. From Brack et al. (1972).
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FIG. &71. Relation between the (c,h} parametrization and the (pq, p4) spherical harmonic expansion. From Brack et al. (1972).

for c& 1; see Pashkevich (1971).
It is often more satisfactory, however, to describe a

sequence of shapes in which the division into two parts
is an essential component by families based on two
centers. For two bodies such a description is the nat-
ural one and the single undivided body can be described
by the exterior parts of the two overlapping surfaces.
Usually each part is described by a shape parametriza-
tion of the kind discussed above, each part having its

0.0

own separate set of deformation parameters (including
volume), and an additional elongation or separa. tion
parameter is introduced, being, essentially, the dis-
tance (absolute or normalized) between the centers of
the two parts. In, the description of the unseparated
body, the sharp cusp that appears in the surface where
two center shapes intersect is an unsatisfactory fea-
ture. Various prescriptions have appeared in the liter-
ature for smoothing out this cusp. Clearly a large
choice of parametrizations and elaborations of para-
meter sets becomes available in such schemes.

At the opposite extreme are the descriptions of an
elongating system in terms of a single parameter.
These are usually statistical parameters of the kind
described in Sec. III.C. The commonest parameter of
this kind is the quadrupole moment

0.1

~e:::::::::::+::.::::::::w'-:::::::::w;:;-";::::x::::.: i, P.2

':::::-":::::::::x-'::.::-:':::.:ii-i::::i:4:-':-'::.i:::~k:::-':::::::c::':.:;::0:. i 0 3

(A21)

where p is the number density function of the body, the
integration being taken over the volume of the body.
For small deformations and sharp surfaces this para-
meter is simply related to the quadrupole parameter
in the axially symmetric spherical harmonic expansion:

3%802 167I
(A22)

Shape Equipotent ials

FIG. j.72. Nuclear shapes and potentials described by the
parameter y. From Nix (1972).

A single parameter description of elongation that is
not of a simple statistical nature is the y parameter in-
troduced by Hill and Wheeler (1953) and commonly used
in papers by Nix and his collaborators [see, e.g. ,
M'oiler and Nix (1974)]. This parameter is defined by
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y= 1-X, (A23)

where' is the fissility parameter [see Sec. II.A.I.c,
Eq. (2.4)] of an ideal liquid drop with the deformation
described by y at its saddle point. 'To first order y is
related to some of the simpler deformation parameters
we have already introduced by

2 3 3 5
y =—r. = —o'. = —— P(=0 27.0P) .

7 7 7 47t'
(A24)

An illustration of deformed shapes for various values
of y is shown in Fig. 172.

R E ER-ENCES

Aberg, S. , S. E. Larsson, P. Moiler, S. G. Nilsson,
G. Leander, and I. Ragnarsson, 1980, in Physics and Chem-
istry of Fission, Proceedings of a conference at Julich
(IAEA, Vienna), to appear.

Abramowitz, M. , and I. A. Stegun, 1965, editors, Handbook
of Mathematical Functions (National Bureau of Standards,
USA), p. 686.

Alm, A. , T. Kivikas, and L. J. Lindgren, 1974, in Physics
and Chemistry of Fission, Proceedings of a conference at
Rochester, (IAEA, Vienna), Vol. 1, p. 55.

Androsenko, C. C. , S. B. Ermagambetov, A. V. Ignatjuk,
N. S. Rabotnov, G. N. Smirenkin, A. S. Soldatov, L. N.
Usachev, D. L. Spak, S. P. Kapitza, J. M. Tsipenjuk, and
L. Kovach, 1969, in Physics and Chemistry of Fission,
Proceedings of a conference at Vienna (IAEA, Vienna),
p. 419.

Auchampaugh, G. F.', and C. D. Bowman, 1973, Phys. Bev.
C 7, 2085.

Auchampaugh, G. F. and L. W. Weston, 1975, Phys. Bev.
C 12, 1850.

Auchampaugh, G. F. , J. A. Fare].l, and D. W. Bergen, 1971,
Nucl. Phys. A 171, 31.

Back, B. B., 1974, Nucl. Phys. A 228, 323.
Back, B. B., J. P. Bondorf, G. A. Otroschenko, J. Pedersen,

and B. Rasmussen, 1969, in Physics and Chemistry of Fis-
sion, Proceedings of a conference at Vienna, (IAEA, Vienna),
p. 351.

Back, B. B., J. P. Bondorf, G. A. Otroschenko, J. Pedersen,
and B. Basmussen, 1971, Nucl. Phys. A 165, 449.

Back, B. B., O. Hansen, H. C. Britt, and J. D. Garrett,
1974a, Phys. Hev. C 9, 1924.

Back, B. B., O. Hansen, H. C. Britt, J. D. Garrett, and
P. Leroux, 1974b, Physics and Chemistry of Fission, Pro-
ceedings of a conference at Rochester (IAEA, Vienna), Vol. 1,
p 3 ~

Back, B. B., H. C. Britt, O. Hansen, B. Leroux, and J. D.
Garrett, 1974c, Phys. Bev. C 10, 1948.

Backe, H. , L. Bichter, D. Habs, V. Metag, J. Pedersen,
P. Singer, and H. J. Specht, 1979a, Phys. Rev. Lett. 42,
490.

Batchelor, R. , W. B. Gilboy, J. H. Towle, 1965, Nucl. Phys.
65, 236.

Baybarz, R. D. , J. R. Berreth, F. B-. Simpson, W. K. Brown,
M. E. Ennis, R. H. Fullwood, G. A. Keyworth, J. H. Mc-
Nally, M. S. Moore, and M. C. Thompson, 1971, Los Ala-.
mos Report LA-4566.

Bell, B. E. , S. Bjgrnholm, and J. S. Severiens, 1960, Mat.
Fys. Medd. Dan. Vid. Selsk. 32, No. 12.

Bellia, G. , A. Del Zoppo, and E. Migneco, 1976, Catania
University, Italy, preprint PP/512.

Belov, A. G. , Yu. P. Gangrskii, B. Dahlsuren, and A. M.
Kucher, 1971, Yad. Fiz. 14, 685.

Bemis, C. E. , J. B. Beene, J. P. Young, and S. D. Kramer,
1979, Phys. Hev. Lett. 43, 1854.

Bemis, C. E., F. K. McGowan, J. C. L. Ford, W. T. Milner,
P. H. Stelson, and B. L. Robinson, 1973, Phys. Bev. C 8,
1466.

Bengtsson, R, 1974, in Physics and Chemistry of Fission,
Proceedings of a conference at Bochester (IAEA, Vienna),
Vol. 1, p. 203.

Bergen, D. W. and R. R. Fullwood, 1971, Nucl. Phys. A 163,
577.

Bj@rnholm, S. , 1972, J. Phys. (Paris) 33, C5-33.
Bj@rnholm, S. , A. Bohr, and B. Mottelson, 1974, in Physics

and Chemistry of Fission, Proceedings of a conference at
Bochester (IAEA, Vienna), Vol. 1, p. 367.

Bjp'rnholm, S. , J. Borggreen, and E. K. Hyde, 1970, Nucl.
- Phys. A 156, 561.
Bjgrnholm, S. , J. Borggreen, L. Westgaard, and V. A. Kar-

nauchov, 1967, Nucl. Phys. A 95, 513.
Bj/rnholm, S. , and V. M. Strutinsky, 1969, Nucl. Phys.

A 136, l.
Blatt, J. M. and V. F. Weisskopff, 1952, Theoretica/ Nuclear

Physics (Wiley, New York).
Block, H. C. , R. W. Hockenbury, B. E. Slovacek, E. B.

Bean, and D. S. Cramer, 1973, Phys. Rev. Lett. 31,
247.

Blons, J. , 1973, Nucl. Sci. Eng. 51, 130.
Blons, J. , C. Mazur, and D. Paya, 1975a, Phys. Rev. Lett. 35,

1749.
Blons, J. , C. Mazur, and D. Paya, 1975b, P'roceedings of the

Conference on Nuclear Cross Sections and Technology,
Washington, D. C. , 1975 (NBS, Washington, D. C. , 1975),
Special Publication No. 425, p. 642.

Blons, J. , C. Mazur, D. Paya, M. Bibrag, and H. Weigmann,
1978, Phys. Rev. Lett. 41, 1282.

Blons, J. , C. Mazur, D. Paya, M. Ribrag, and H. WeigmanD. ,
1980, Paper delivered at XVIII International Winter Meeting on
Nuclear Physics, , Bormio, Italy.

Boca, I. , N. Martolugu, M. Sezon, I. VQcov, N. Vilcov,
G. N. Flerov, A. A. Pleve, S. M. Polikanov, and S. P.
Tretyakova, 1969, Nucl. Phys. A 134, 541.

Bohr, A. , 1956, in Peaceful Uses of Atomic Energy, Proceed-
ings of a conference at Geneva, 1955 (United Nations, New
York), Vol. 2, p. 220.

Bohr, A. and B. Mottelson, 1969, Nuclear Structure, Vol. 1
(Benjamin, New York).

Bohr, A. and B. Mottelson, 1975, Nuclear Structure, Vol. 2
(Benjamin, New York).

Bohr, N. , and J. A. Wheeler, 1939, Phys. Hev. 56, 426.
Boldeman, J. W. , D. Goguy, A. R. D. Musgrove, and R. L.

Walsh, 1980, private communication.
Bolsterli, M. , E. O. Fiset, and J. H. Nix, 1969„ in Physics

and Chemistry of Fission, Proceedings of a conference at
Vienna (IAEA, Vienna), p. 183.

Bolsterli, M. , E. O. Fiset, J. R. Nix, and J. L. Norton,
1972, Phys. Rev. C 5, 1050.

Bondorf, J. P. , 1970, Phys. Lett. B 31, 1.
Borggreen, J. , E. Kashy, J. Hattula, and V. Maarbjerg, 1973,

Nucl. Phys. A 218, 621.
Borggreen, J. , J. Pedersen, G. Sletten, B. Heffner, and

E. Swanson, 1977, Nucl. Phys. A 279, 189.
Bowman, G. D. , M. S. Corps, G. F. Auchampaugh, and S. C.

Fultz, 1965, Phys. Bev. 137, B326.
Bowman, C. D. , I. G. Schroder, C. E. Dick, and H. E. Jack-

son, 1975, Phys. Rev. C 12, 863.
Brack, M. , 1980, in Physics and Chemistry of Fission, Pro-

ceedings of a conference at Julich (IAEA, Vienna), to appear.
Brack, M. , J. Damgaard, A. S. Jensen, H. C. Pauli, V. M.

Strutinsky, and C. Y. Wong, 1972, Rev. Mod. Phys. 44, 320.
Brack, M. , T. Ledergerber, H. C. Pauli, and A. S. Jensen,

1974, Nucl. Phys. A 234, 185.
Britt, H. C. , 1973, At. Data Nucl. Data Tables 12, 407.
Britt, H. C. , M. Bolsterli, J. R. Nix, and J. L. Norton,

1973, Phys. Rev. C 7, 801.

Rev. Mod. Phys. , Vol. 52, No. 4, October l 980



S. Bjdrnholm and J. E. Lynn: The double humped fission barrier

Britt, H. C. , S. C. Burnett, and J. D. Cramer, 1969, in
Physics and Chemistry of Fission, Proceedings of a con-
ference at Vienna (IAEA, Vienna), p. 375.

Britt, H. C. , S. C. Burnett, B. H. Erkkila, J. E. Lynn, and
W. E. Stein, 1971, Phys. Bev. C 4, 1444.

Britt, H. C. and J. D. Cramer, 1970, Nucl. Sci. Eng. 41,
177.

Britt, H. C. , and B. H. Erkkila, 1971, Phys. Rev. C 4, 1441.
Britt, H. C. , B. H. Erkkila, and B. B. Back, 1972, Phys.

Rev. C 6, 1090.
Britt,' H. C. , A. Gavron, P. D. Goldstone, B. Schoenmackers,
J. Weber, and J. B. Wilhelmy, 1978, Phys. Bev. Lett. 40,
1010.

Britt, H. C. , W. R. Gibbs, J. J. Griffin, and B. H. Stokes,
1965, Phys. Rev. 139B, 354.

Britt, H. C. , B. A. Bickey, and W. S. Hall, 1968, Phys. Bev.
175, 1525.

Brown, W. K. , D. B. Dixon, and D. M. Drake, 1970, Nucl.
Phys. A 156, 609.

Butler, D. K. , 1960, Phys. Bev. 117, 1305.
Butler, D. K. , and R. K. Sjoblom, 1961, Phys. Rev. 124,

1129.
Byers, D. H. , H. C. Diven, and M. G. Silbert, 1966, Pro-

ceedings of the Conference on Neutron Cross-Sections and
Technology, USAEC Report CONF-660303, Vol. 2, p. 903.

Caruana, J., J-. W. Boldeman, and B. I,. Walsh, 1977, Nucl.
Phys. A 285, 205.

Christiansen, J. , G. Hempel, H. Ingwersen, W. Klinger,
G. Schatz, and W. Witthuhn, 1975, Nucl. Phys. A 239,
253.

Cotd, R. E., H. Diamond, and J. E. Gindler, 1965, in Brook-
haven National Laboratory compQation BNL 325, 2nd edition,
supplement No. 2, Vol. III, p. 3.

Cramer, J. D. , and J. R. Nix, 1970, Phys. Rev. C 2, 1048.
Dahlsuren, B., G. N. Flerov, Yu. P. Gangrsky, Yu. A.

Lasarev, B. N. Markov, Nguyen Cong Khan, 1969, Dubna
Report E15-4744.

Damgaard, J. , H. C. Pauli, W. M. Strutinsky, C. Y. Wong,
M. Brack, and A. S. Jensen, 1969, in Physics and Chemistry
of Fission, Proceedings of a conference at Vienna (IAEA,
Vienna), p. 213.

De Saussure, G. , D. K. Olsen, R. B. Perez, and F. C. Di-
fQippo, 1978, Oak Ridge Report OBNL/TM-6152.

Dietrich, K. , 1972, in Structure of Nuclei, a lecture
course at International Centre for Theoretical Physics in
Trieste, 1971 (IAEA. Vienna), p. 373.

Difilippo, F. C. , B. B. Perez, G. de Saussure, D. K. Olsen,
and R. W. Ingle, 1977, Nucl. Sci. Eng. 63, 153.

Dlouhy, Z. , J. Kristiak, and Ts. Panteleev, 1976, Czech. J.
Phys. B 26, 1334.

Dresner, L. , 1957, in Neutron Interactions saith the Nucleus,
Proceedings of a conference at New York, U. S. AEC Report
No. TID 7547, p. 71.

Dyson. , F. J. , and M. L. Mehta, 1963, J. Math. Phys. 4, 701.
Egelstaff, P. A. , 1958, J. Nucl. Energy 7, 35.
Evans, J. E. , and G. A. Jones, 1965 (private communication).
Farrel]. , J. A. , 1970 (private communication).
Flerov, G. N. , and V. A. Druin, 1966, Dubna report, JINR

P-2539.
Flerov, G. N. , J. P. Gangrsky, B. N. Markov, S. M. Poli-

kanov, and H. Jungclaussen, 1968, Sov. Nucl. Phys. 6, 12.
Flerov, G. N. , A. A. Pleve, S. M. Polikanov, S. P. Tretya-

kova, N. Martalogu, D. Pcenaru, M. Sezon, I. VQcov, and
N. VQcov, 1967, Nucl. Phys. A 97, 444.

Flerov, G. N. , and S. M. Polikanov, 1964, Compt. Rend.
Cong. Int. Phys. Nucl. (Paris), 1, 407.

Fleury, A. , F. H. Ruddy, M. N. Namboodiri, and J. M.
Alexander, 1973, Phys. Rev. C 7, 1231.

Flocard, H. , P. Quentin, D. Vautherin, and A. K. Kerman,
1974, in Physics and Chemistry of Fission, Proceedings of
a conference at Rochester (IAEA, Vienna), Vol. 1, p. 221.

Ford, K. W. , D. L. HQl, M. Wakano, and J. A. Wheeler,
1959, Ann. Phys. (NY) 7, 239.

Froman, N. , and O. Dammert, 1970, Nucl. Phys. A 147, 627.
Froman, N. , and P. O. Froman, 1965, JWKB Approximation,

Contributions to the theory (North-Holland, Amsterdam).
Froman, N. , and P. O. Froman, 1970, Nucl. Phys. A 147,

606.
Fromm, W. D. , H. G. Ortlepp, S. M. Polikanov, U. Schmidt,

G. N. Zorin, B. Arlt, and G. Musiol, 1977, Nucl. Phys.
A 278, 387.

Fubini, A. , J. Blons, A. Michaudon, and D. Paya, 1968, Phys.
Bev. Lett. 20, 1373.

Ga].eriu, D. , M. Marinescu, D. Poenaru, I. Vilcov, and
N. Vilcov, 1974, in Physics and Chemistry of Fission, Pro-
ceedings of a conference at Rochester (IAEA, Vienna), Vol. 1,
p. 297.

Gangrskii, Yu. P. , V. N. Markov, I. F. Kharisov, and Yu. M.
Tsipenyuk, 1973, Sov. J. Nucl. Phys. 16, 151.

Gangrskii, Yu. P. , B. N. Markov, and Yu. M. Tsipenyuk,
1970, Phys. Lett. B 32, 182.

Gangrskii, Yu. P. , T. Nad', I. Vinnai, and I. Kovach, 1971,
At. Energ. 31, 156.

Gangrskii, Yu. P. Nguen Kong Khan, and D. D. Prelatov,
1972, At. Energ. 33, 829.

Gavron, A. , H. C. Britt, E. Konecny, J. Weber, and J. B.
WQhelmy, 1976, Phys. Bev. C 13, 2374.

Gavron, A. , H. C. Britt, P. D. Goldstone, J. B. Wilhelmy,
and S. E. Larsson, 1977, Phys. Rev. Lett. 38, 1457.

GQbert, A. , and A. G. W. Cameron, 1965, Can. J. Phys. 43,
1446.

Glassel, P. , H. Rosier, and H. J. Specht, 1976, Nucl. Phys.
A 256, 220.

Goerlach, U. , D. Habs, M. Just, V. Metag, P. Paul, and
H. J. Specht, 1978, Z. Phys. A 287, 171.

Gokhberg, B. M. , G. A. Ostroschenko, and V. A. Shigin, 1959a,
Dokl. Akad. Nauk. USSR 128, 911.

Gokhberg, B. M. , G. A. Ostroschenko, and V. A. Shigin,
1959b, Dokl, Akad. Nauk. USSR 128, 1157.

Goldhaber, M. , and E. Teller, 1948, Phys. Rev. 74, 1046.
Goldstone, P.D. , F.Hopkins, R. E.Malmin, P.von Brentano,

and P. Paul, 1976, Phys. Lett. B 62, 280.
Goldstone, P. D. , F. Hopkins, B. E. Malmin, and P. Paul,

1975, Phys. Bev. Lett. 35, 1141.
Gotz, U. , H. C. Pauli, and K. Junker, 1972, Phys. Lett.

B 39, 436.
Grant, I. S. , 1976, Bep. Prog. Phys. 39, 955.
Griffin, J. J. , 1971, Nucl. Phys. A 170, 395.
Griffin, J. J. , and J. A. Wheeler, 1957, Phys. Rev. 108,

311.
Groshev, L. V. , A. M. Demidov, V. N. Lysenko, and V. I.

Pelekov, 1958, Atlas of Capture Gamma-Ray Spectra,
Akad. Nauk, Moscow.

Grutter, A. , H. B. von Gunten, V. Herrnberger, B. Hahn,
U. Moser, H. W. Reist, and G. Sletten, 1974, in
Physics and Chemistry of Fission, Proceedings of a con-
ference at Rochester (IAEA, Vienna), Vol. 1, p. 305.

Gustafson, C. , I. L. Lamm, B. NQsson, and S. G. Nilsson,
1967, Ark. Fys. 36, 613.

Gunther, W. , K. Huber, U. Kneissl, H. Krieger, and H. J.
Maier, 1979, Phys. Bev. C 19, 433.

Habs, D. , 1977, Habilitationsschrjft, Max Planck Institut,
Heidelber g.

Habs, D. , S. Hanna, B. Herskind, V. Metag, P. Paul,
J. Pedersen, G. Schultz, G. Sletten, and H. J. Specht,
1975, 1976, 1977, Max-Planck-Institut fQr Kernphysik,
annual reports.

Habs, D. , M. Just, V. Metag, E. Mos].er, B. Neumann,
P. Paul, P. Singer, H. J. Specht, and G. Ulfert, 1975,
Max Planck Institute, Heidelberg, Annual Report,

Habs, D. , V. Metag, H. J. Specht, and G. Ulfert, 1977,
Phys. Rev. Lett. 38, 387

Rev. IVlod. Phys. , Vol. 52, No. 4, October 1980



S. Bjdrnholm and J. E. Lynn: The double humped fission barrier

Hamamoto, I. , 1974, Nucl. Phys. A 232, 445.
Hamamoto, I. , 1975, Phys, Lett. B 56, 431.
Hamamoto, I. , and W. Ogle, 1975, Nucl. Phys. A 240, 54.
Hauser, W. , and H. Feshbach, 1'952, Phys. Rev. 87, 366.
Henkel, B. L. , and J. E. Brolley, 1956, Phys. Rev. 103,

1292.
Henkel, R. L. , R. A. Nobles, and R. K. Smith, 1957, Los

Alamos Report AE CD-4256.
Henkel, R. L. , and B. K. Smith, 1956, in BNL 325, edited by

D. J. Hughes and J. A. Harvey.
Hill, D. L. , and J. A. Wheeler, 1953, Phys. Bev. 89, 1102.
Hofmann, H. , 1972a, Phys. Lett. B 42, 177.
Hofmann, H. , 1972b, Z. Phys. 250, 14.
Holmberg, M. , L. G. Stromberg, and L. Wallin, 1969, Nucl.

Phys. A 129, 149.
Howard, W. M. and J. R. Nix, 1974, in Physics and Chemis-

try of Fission, Proceedings, of a conference at Rochester
(IAEA, Vienna), Vol. 1, p. 145.

Huizenga, J. B., 1965, in Proceedings of the Scottish Uni-
versities Summer School in Physics, (Glasgow University).

Huizenga, J. B., arid B. Vandenbosch, 1962, Nuclear Fission
in Nuclear Reactions {North-Holland, Amsterdam), Vol. 2,
p. 42.

Hurwitz, M. , and H. A. Bethe, 1951, Phys. Bev. 81, 898.
Ignatyuk, A. V. , M. G. Itkis, V. N. Okolovich, G. N. Smiren-

kin, and A. S. Tishin, 1975, Yad. Fiz. 21, 1185.
Ignatyuk, A. V. , N. S. Rabotnov, and G. N. Smirenkin, 1969,

Phys. Lett. B 29, 209.
Inglis, D. , 1954, Phys. Bev. 96, 1059.
Jackson, J. D. , 1956, Can. J. Phys. 34, 767.
J5,gare, S. , 1970, Phys. Lett. B 32, 571.
James, G. D. , 1964, Nucl. Phys. , 55, 517.
James, G. D. , 1969, Nucl. Phys. A 23, 24.
James, G. D. , J. W. T. Dabbs, J. A. Harvey, N. W. HQl,

and R. H. Schindler, 1977, Phys. Rev. C 15, 2083.
James, G. D. , J. E. Lynn, and L. Earwaker, 1972, Nucl.

Phys. A 189, 225.
James, G. D. and B. H. Patrick, 1969, in Physics and Chem-

istry of Fission, Proceedings of a conference at Vienna
(IAEA, Vienna), p. 391.

James, G. D. , and E. R. Rae, 1968, Nucl. Phys. A 118, 313.
James, G. D. , and G. G. Slaughter, 1969, Nucl. Phys. A 139,

471.
James, G. D. , D. B. Syme, and M. C. Cooke, 1979, Harwell

Nuclear Physics Progress Report, AERE PB/NP. 26.
Jensen, H. , and H. Koppe, 1971, Ann. Phys. &N. Y. ) 63, 586.
John, J. , and V. J. Orphan, 1970, General Atomic Report

GA-101 86.
Kalish, R. , B. Herskind, J. Pedersen, D. Shackleton, and

L. Strabo, 1974, Phys. .Bev. Lett. 32, 1009.
Kappeler, F. , and E. Pfletschinger, 1970, in Proceedings of

the Conference on Nuclear Data for Reactors (IAEA, Vienna),
Vol. 2, p. 77.

Kemble, E. C. , 1958, Fundamental Principles of Quantum
Mechanics with Elementary Applications (Dover, New York),
p. 100.

Kennedy, B. C. , L. Wilets, and E. M. Henley, 1964, Phys,
Bev. Lett. 12, 36.

Keyworth, G. A. , J. B. Lemley, C. E. Olsen, F. T. Seibel,
J. W. T. Dabbs, and N. W. HQl, 1973, Phys. Bev. C 8,
2352.

Kolar, W. , and K. H. Bockhoff, 1968, J. Nuc]. . Energy 22,
299.

Kolar, W. , J. P. Theobald, and E. Lanzana, 1971, Z, Phys.
248, , 355.

Konecny, E. , H. J. Specht, and J. Weber, 1974, in Physics
and Chemistry of Fission, Conf. Proc. , Rochester, 1973
(Vienna: IAEA), Vol. 2, p. 3.

Kuiken, R. , N. J. Pattenden, and H. Postma, , 1972, Nucl.
. Phys. A 196, 389.
Lamphere, B. W. , 1962, . Nucl. Phys. 38, 561.

Lamphere, B. W. , 1965, in Physics and Chemistry of Fission,
Proceedings of a conference at Salzburg (IAEA, Vienna),
Vol. 1, p. 63.

Landau, L. D. , and E. M. Lifshitz, 1958, Quantum Mechanics
{Pergamon, London).

Lane, A. M. , and J. E. Lynn, 1957, Proc. Phys. Soc. (I.on-
don') A 70, 557.

Lane, A. M. , J. E. Lynn, and J. D. Moses, 1974, Nucl.
Phys. A 232, 189.

Lane, A. M. , and R. G. Thomas, 1958, Bev. Mod. Phys. 30,
257.

Lark, N. L. , G. Sletten, J. Pedersen, and S. Bj@rnholm,
1969, Nucl. Phys. A 139, 481.

Larsson, S. E. , and G. Leander, 1974, in Physics and Chem-
istry of Fission, Proceedings of a conference at Rochester
(IAEA, Vienna), Vol. 1, p. 177.

Larsson, S. E. , G. Leander, I. Ragnarsson, and J. Randrup,
1974, Phys. Scr. A 10, 65.

Larsson, S. E., I. Bagnarsson, and S. G. Nilsson, 1972,
Phys. -Lett. B 38, 263.

Leander, G. , 1980; in Physics and Chemistry of Fission,
Proceedings of a conference at Julich, (IAEA, Vienna), to
appear,

Leboeuf, J. N. , and B. C. Sharma, 1973a, Can. J. Phys. 51,
446.

Leboeuf, J. N. , and R. C. Sharma, 1973b, Nucl. Phys. A208,
514.

Lederer, M. , J. M. 'Hollander, and I. Perlman, 1967, Table
of Isotopes (WQey, New York), p. 577.

Levinger, J. S. , and H. A. Bethe, 1950, Phys. Bev. 78, 115.
Leroux, B., G. T. Barreau, A. Sicre, T. Benfoughal, F. Cai-

tucoli, J. P. Doan. , and G. D. James, 1980, in Physics and
Chemistry of Fission, Conf. Proc. , Julich, 1979 (IAEA,
Vienna), to appear.

Levinger, J. S. , and H. A. Bethe, 1950, Phys. Rev. 78,
LimkQde, P. , and G. Sletten, 1973, Nucl. Phys. A 199, 504.
Lynn, J. E. , 1964, Phys. Rev; Lett. 13, 412.
Lynn, J. E. , 1965, Phys. Lett. 18, 31.
Lynn, J. E. , 1966a, Nuclear Datafor Reactors (IAEA, Vienna),

Vol. 2, p. 89.
Lynn, J. E. , 1966b, inNuclear Structure Study with Neu-

trons, Proceedings of a conference at Antwerp (North-
Holland, Amsterdam), p. 125.

Lynn, J. E., 1968a, The Theory of Neutron Resonance Reac-
tions (Clarendon, Oxford).

Lynn, J. E. , 1968b, Harwell Report AEBE-B 5891.
Lynn, J. E. , 1968c, in Nuclear Structure, Proceedings of

a conference at Dubna (IAEA, Vienna), p. 463.
Lynn, J. E. , 1969, in Physics and Chemistry of Fission,

Proceedings of a conference at Vienna (IAEA, Vienna),
p. 249.

Lynn, J. E. , 1970, Nuclear Data for Reactors (IAEA, Vienna),
Vo].. I, p. 106.

Lynn, J. E. , 1971, Harwell Report AEBE-M 2505.
Lynn, J. E. , 1972, Harwell Report AERE-R 7279.
Lynn, J. E. , 1973, J. Phys. A 6, 542.
Lynn, J. E. , 1974a, Harwell Report AEBE-B 7373.
Lynn, J. E. , 1974b, Harwell Report AERE-R, 7468.
Lynn. , J. E. , 1980, in Fission Cross Sections, edited by A.

Michaudon (Pergamon, Oxford) Chapter V, to appear.
Lynn, J. E. , and B. B. Back, 1974, J. Phys. A 7, 395.
Lynn, J. E. , and J. D. Moses, 1.980, J. Phys. G (in press).
Mahaux, C. , and H. A. WeidenmQller, 1967, Nucl. Phys.

A 91, 241.
McNally, J. H. , J. W. Barnes, B.J. Dropesky, P. A. Seeger,

and K. Wolfsberg, 1974, Phys. Rev. C 8, 717.
Meitner, L. , and O. B. Frisch, 1939, Nature 143, 239.
Metag, V. , 1974, Habilitationschrift, Max-Planck-Institute

fur Kernphysik, , Heidelberg.
Metag, V. , 1980, in Physics and Chemistry of Fission, Pro-

ceedings of a conference at Julich (IAEA, Vienna) to appear.

Rev. Mod. Phys. , Voj. 52, No. 4, October 't980



S. Bjgrnholm and J. E. Lynn: The double-humped fission barrier

Metag, V. , S. M. Lee, E. Liukkonen, G. Sletten, and
S. Bjp'rnholm, 1973, Nucl. Phys. A 213, 397.

Metag, V. , B. B. Repnow, and P. von Brentano, 1971, Nucl.
Phys. A 165, 289.

Metag, V. , D. Habs, H. J. Specht, G. Ulfert, and C. Kozhu-
harur, 1976, Hyperfine Interactions 1, 405.

Meta@, V. , and G- Sletten, 1977, Nucl. Phys. A 282, 77.
Michaudon, A. , 1973, Adv. Nucl. Phys. 6, p. l.
Michaudon A. , 1976, in Proceedings of the International Con-

ference on Interactions of Neutrons with Nuclei, EBDA Re-
port CONE-760715-P1, 641.

Migdal, A. B., 1959a, Sov. Phys. -JETP 37, 249.
Migdal, A. B. , 1959b, Nucl. Phys. 13, 655.
Migneco, E. , G. Busso, B. De Leo, and A. Pantaleo, 1977,

Phys. Bev. C 16, 1919.
Migneco, E. , and J. P. Theobald, 1968, Nucl. Phys. A 112,

603.
Moldauer, P. A. , 1967, Phys. Rev. 157, 907.
Moore, M. S. , J. H. McNally, B. D. Baybarz, 1971, Phys.

Bev. C 4, 273.
Moretto, L. G. , S. G. Thompson, J. Boutti, and R. C. Gatti,

1972, Phys. Lett. B 38, 471.
Moses, J. D. , 1976 (private communication).
Muir, D. W. , and L. B. Veeser, 1971, Proceedings of the

Conference on Nuclear Cross Sections and Technology,
(USAEC Report CONF 71031, Vol. 2, p. 292.

Myel's, W. D. , &977, Droplet Model of Atomic Nuclei (IFFY
Plenum, - New York).

Myers, W. D. , and W. J. Swiatecki, 1966, Nucl. Phys. 81, 1.
Myers, W. D. , and W. J. Swiatecki, 1967, Ark. Fys. 36, 343.
Myers, W. D. , and W. J. Swiatecki, 1969, Ann. Phys. (NY)

55, 395.
Moiler, P. , 1972, Nucl. Phys. A 192, 529.
Moiler, P. and S. G. Nilsson, 1970, Phys. Lett. B 31, 283.
M'oiler, P. and J. R. Nix, 1974, in Physics and Chemistry

of Fission, Proceedings of a conference at Rochester (IAEA,
Vienna), Vol. 1, p. 103.

Nagy, T. , A. G. Belov, Yu. P. Gangrsky, B. N. Markov,
I. V. Sizar and I. F. Kharisov, 1970, Dubna Report
P7-5162.

Namboodiri, M. N. , F. H. Buddy, and J. M. Alexander, 1973,
Phys. Bev. C 7, 1222.

Nesterov, V. G. , and G. N. Smirenkin, 1960, At. Energ. 4,
185.

Nilsson; S.G. , 1969, Proceedings of the Robert A. Welch
Foundation Conference XIII on Txansuxanic E/ements, Hous-
ton, Texas (Bobert A. Welch Foundation, Houston}, p. 471.

Nilsson, S. G. , and O. Prior, 1961, Mat. Fys. Medd. Dan.
Vid. Selsk. 32, No. 16.

Ni]sson, S. G. , C. F. Tsang, A. Sobiczewski, Z. Szyman-
ski, S. Wycech, C. Gustafson, I. Lamm, P. Moiler, and
B. Nilsson, 1969, Nucl. Phys. A 131, 1.

Nix, J. R. , 196,7, Ann. Phys. (NY) 41, 52.
Nix, J. B., 1969, Nucl. Phys. A 130, 241.
Nix, J. B., 1972, Annu. Rev. Nucl. Sci. 22, 65.
Norenberg, W. , 1970, Habilitationsschxift, University of

Heidelberg.
N'orenberg, W. , 1973, Z. Phys. 260, 165.
Northrop, J. A. , B. H. Stokes, and K. Boyer, 1959, Phys.

Rev. 115, 1277.
Pashkevich, V. V. , 1969, Nucl. Phys. A 133, 40.
Pashkevich, V. V. , 1971, Nucl. Phys. A 169, 275.
Patrick, B. H. , and G. D. James, 1968, Phys. Lett. B 28,

258.
Pauli, H. C. , 1974, Phys. Scr. A 10, 127.
Pauli, H. C. , and T. Ledergerber, 1971, Nucl. Phys. A 175,

545.
Pauli, H. C. , and T. Ledergerber, 1974, in Physics and

Chemistry of Fission, Proceedings of a conference at
Bochester (IAEA, Vienna), Vol. 1, p. 463.

Pauli, H. C. , T. Ledergerber, and M. Brack, 1971, Phys.

I.ett. B 34, 264.
Paya, D. , J. Blons, H. Derrien, A. Fubini, A. Michaudon,

and P. Ribon, 1968, J. Phys. (Paris) 29, 159.
Paya, D. , J. Blons, H. Derrien, and A. Michaudon, 1969, in

Physics and Chemistry of Fission, Proceedings of a confer-
ence at Vienna (IAEA, Vienna), p. 307.

Pedersen, J. , and B. D. Kuzminov, 1969, Phys. Lett. B 29,
176

Pedersep, J. , and B. Basmussen, 1972, Nucl. Phys. A 178,

Pedersen, J. and G. Sletten, 1976 (private communication).
Perez, P. B., G. de Saussure, and M. N. Moore, 1969, in

Physics and Chemistry of Fission, Proceedings of a con-
ference at Vienna (IAEA, Vienna), p. 283.

Plattard, S. , 1973, Thesis, Orsay.
Plattard, S. , G. F. Auchampaugh, N. W. Hill, G. de Saus-

sure, B. B. Perez, and I. A. ,Harvey, 1979, P'proceedings
of the Conference on Neutron Cross-Sections and Technology,
(DOE, Washington D. C. , 1980), to appear.

Plattard, S. , J. Blons, and D. Paya, 1976, Nucl. Sci. Eng.
61, 477.

Polikanov, S. M. , and G. Sletten, 1970, Nucl. Phys. A 151,
656.

Polikanov, S. M. , V. A. Druin, V. A. Karnauchov, V. L.
Mikheev, A. A. Pleve, N. K. Skobelev, V. G. Subotin,
G. M. Ter-Akapian, and V. A. Fomichev, 1962, Zh. Eksp.
Teor. Fiz. 42, 1016.

Pomorski, K. , and A. Sobiczewski, 1978, Acta Phys. Pol.
B9, 61.

Porter, C. F. , and B. G. Thomas, 1956, Phys. Bev. 104, 483.
Babotnov, N. S. , G. N. Smirenkin, A. S. Soldatov, L. N.

Usachev, S. P. Kapitza, and Yu. M. Tsipenyuk, 1970, Sov.
J. Nucl. Phy s. 11, 285.

Bahn, F. , H. S. Camarda, G. Hacken, W. W. Havens, H. I.
Lion, J. Rainwater, M. Slagavitz, and S. Wynchank, 1972,
Phys. Bev. C 6, 1854.

Bandrup, J. , S. E. Larsson, P. Moiler, S. G. Nilsson,
K. Pomorski, and A. Sobiczewski, 1976, Phys. Bev. 13,
229.

Bandrup, J. , C. F. Tsang, P. Mufller, S. G. Nilsson, and
S. E. Larsson, 1973, Nucl. Phys. A 217, 221.

Reich, C.W. , and M. S. Moore, 1958, Phys. Rev. 111, 929.
Bos]er, H. , F. Plasil, and H. W. Schmitt, 1972, Phys. Lett.

B 38, 501.
Buddy, F. H. , and J. M. Alexander, 1969, Phys. Rev. 187,

1672.
Russo, P. A. , J. Pedersen, and B. Vandenbosch, 1974,

Physics and Chemistry of Fission, Proceedings of a con-
ference at Rochester (IAEA, Vienna), Vol. 1, p. 271.

Russo, P. A. , J. Pedersen, and B. Vandenbosch, 1975,
Nucl. Phys. A 240, 13.

Russo, P. A. , B. Vandenbosch, M. Metha, J. R. Tesmer,
and K. L. Wolf, 1971, Phys. Bev. C 3, 1595.

Byabov, Y. , J. Trochon, D. Shackleton, and J. Frehaut, 1973,
Nucl. Phys. A 216, 395.

Schultheiss, H. , and R. Schultheiss, 1971, Phys. Lett. B 34,
245.

Seeger, P. A. , 1967, Proceedings of the Third International
Conference on Atonic Masses, Winnipeg, (University of
Manitoba Press), p. 85.

Seeger, P. A. , A. Hemmendinger, and B. C. Diven, 1967,
Nucl. Phys. A 96, 605.

Shackleton, D, 1974, Thesis, University of Paris.
Sicre, A. , 1976, Thesis, University of Bordeaux.
Sicre, A. , F. Caituco]. i, G. Barreau, T. P. Doan, T. Ben-

foughal, and B. Leroux, 1980, in Physics and Chenzistxy
of Fission, Proceedings of a conference at Jmich (IAEA,
Vienna), to be published.

Silbert, M. G. , 1969, Los Alamos Report LA-4108-MS.
Silbert, M. G. , 1973, Nucl. Sci. Eng. 51, 376.
Silbert, M. G. , and J. B. Berreth, 1973, Nuc]. . Sci. Eng. 52,

Rev. Mod. Phys. , VoI. 52, No. 4, October 1980



S. Bj/rnholm and J. E. Lynn: The double humped fission barrier

187.
Silbert, M. G. , A. Moat, and T. E. Young, 1973, Nucl. Sci.

Eng. 52, 176.
Skyrme, T. H. , 1956, Philos. Mag. I, 1043.
Sobiczewski, A. , S. Bjgrnholm, and K. Pomorski, 1973,

Nucl. Phys. A 202, 274.
Sobiczewski, A. , Z. Szymanski, and S. Wycech, 1969a, in

Physics and Chemistry of Fission, Proceedings of a confer-
ence at Vienna (IAEA, Vienna), p. 905.

Sobiczewski, A. , Z. Szymanski, S. Wychech, S. G. Nilsson,
J. R. Nix, C. F. Tsang, C. F. Gustafson, P. Moiler, and
B. NQsson, 1969b, Nucl. Phys. A 131, 69.

Sowerby, M. G. , B. H. Patrick, and D. Mather, 1974, Ann.
Nucl. Sci. Eng. 1, 409.

Specht, H. J. , J. S. Fraser, and J. C. D. MQton, 1966,
Phys. Bev. Lett. 17, 1187.

Specht, H. J. , J. S. Fraser, J. C. D. Milton, and W. G.
Davies, 1969, in Physics and Chemistry of Eission, Proceed-
ings of a conference at Vienna (IAEA, Vienna), p. 363.

Specht, H. J. , E. Konecny, J. Weber, and C. Kozhuharov,
1974, Physics and Chemistry of E'ission, Proceedings of a
conference at Rochester (IAEA, Vienna), Vol. 1, p. 285.

Specht, H. J., J. Phys. G. (to be published).
Sperber, D. and A. Aframe, 1972, Phys. Lett. B 41, 574.
Stein, W. E. , B. K. Smith, and H. L. Smith, 1968, Neutron

Cmss-Sections and Technology, NBS Special Publication 299,
Vol. 1, p. 627.

Strutinsky, V. M. , 1967a, Ark. Fys. 36, 629.
Strutinsky, V. M. , 1967b, Nucl. Phys. A 95, 420.
Strutinsky, V. M. , and H. C. Pauli, in Physics and Chemistry

of I"ission, Proceedings of a conference at Vienna (IAEA,
Vienna), p. 155.

Strutinsky, V. M. , A. G. Magnev, S. B. Ofengenden and
T. Dressing, 1977, Z. Phys. A 283, 269.

Swiatecki, W. J. , 1955, Phys. Bev. 100, . 937.
Szymanski, Z. , 1974, Phys. Scr. A 10, 122.
Teichmann, T. , and E. P. Wigner, 1952, Phys. Rev. 87, 123.
Thomas, R. G. , 1955, Phys. Bev. 97, 224.
Tsang, C. F. , and S. G. Nilsson, 1970, Nucl. Phys. A 140, '

275.
Ulfert, G. , D. Habs, V. Metag, and H. J. Specht, 1978, Nucl.

Instrum. Methods, 148, 369.
Ulfert, G. V. Metag, D. Habs, and H. J. Specht, 1979, Phys.

Bev. Lett. 42, 1596.
Urin, M. G. , and D. F. Zaretsky, 1966, Nucl. Phys. 75, 101.
Vandenbosch, R. , 1967, Nucl. Phys. A 101, 460.
Vandenbosch, B., 1972, Phys. Bev. C 5, 1428.
Vandenbosch, B., 1974, in Physics and Chemistry of E'ission,

Proceedings of a conference at Rochester (IAEA, Vienna),
Vol. 1, p. 257.

Vandenbosch, R. , 1977, Annu. Bev. Nucl. Sci. 27, 1.
Vandenbosch, B. and J.R. Huizenga, 1973, Nucleary'ission

(Academic, New York).
Vandenbosch, B., P. A. Russo, G. Sletten, and M. Metha,

1973, Phys. Bev. C 8, 1080.
Vautherin, D. , and D. M. Brink, 1972, Phys. Bev. C 5, 626.
Veeser, L. , 1976 (private communication).
Veysiere, A. , H. Bail, R. Bergere, P. Carlos, and A. Le-

pretre, 1973, Nucl. Phys. A 199, 45.
Vogt, E. , 1958, Phys. Bev. 112, 203.
Vogt, E. , 1960, Phys. Bev. 118, 724.

Vorotnikov, P. E., S. M. Dubrovina, V. N. Kosyakov, L. V.
Chistyakov, V. A. Shigin, and V. M. Shubko, 1.970, Nucl.
Phys. A 150, 56.

Vorotnikov, P. E., Z. S. Gladhik, A. V. Davydov, S. M.
Dubrovina, G. A. Otroschenko, E. S. Pal'shin, V. A. Shigin,
and V. M. Shubko, 1973, Sov. J. Nucl. Phys. 16, 505.

Vorotnikov, P. E. , B. H. Gokhberg, S. M. Dubrovina, V. N.
Kosyakov, G. A. Otroschenko, L. V. Chistyakov, V. A.
Shigin, and V. M. Shubko, 1972, Sov. J. Nucl. Phys. 15, 20.

Wapstra, A. H. , and K. Bos, 1977,' Nucl. Data Tables 19, 175.
Wapstra, A. H. , and N. B. Gove, 1971, Nucl. Data Tables 9,

265.
Weber, J. , H. C. Britt, A. Gavron, E. Konecny, and J. B.

WQhelmy, 1976, Phys. Rev. C 13, 2413.
Weidenmuller, H. A. , and K. Dietrich, 1966, Nucl. Phys. 83,

332 ~

Weigmann, I-I. , 1968, Z. Phys. 214, 7.
Weigmann, H. , and J. D. Theobald, 1972, Nucl. Phys. A 187,

305.
Weisskopf, V. F. , 1937, Phys. Rev. 52, 295.
Werz, R. , Bohr, G. , J. P. Theobald, and H. Weigmann, 1973,

Proceedings of the Symposium on Nuclear Physics with ther-
mal and resonance energy neutrons, Petten Report BCN-203,
p, 172~

Wheeler, J. A. , 1956, Peaceful Uses of Atomic Energy, Pro-
ceedings of a conference at Geneva (United Nations, New
York), Vol. 2, p. 155.

Wheeler, J. A. , 1963, in Fast Neutron Physics, edited by
J. B. Marion and J. L. Fowler (lnterscience, New York),
Vol. 2, p. 2051.

Wigner, E. P. , 1938, Trans. Faraday Soc. 34, 29.
Wigner, E. P. , 1956, Proceedings of the Conference on Neu-

tron Physics by Time-of-I" /ight, Gat].inburg (Oak Ridge National
Laboratory, Oak Ridge, Tennessee) ORNL-2309, p. 59.

Wigner, E. P. , 1959, Group Theory, English translation by
J. J. Griffin (Academic Press, New York).

Wigner, E. P. , and L. Eisenbud, 1947, Phys. Bev. 71, 29.
Wilets, L. , and D. M. Chase, 1956, Phys. Rev. 103, 1296.
Winhold, E. J., C. Demos, and O. Halpern, 1952, Phys. Bev.

87, 1139.
Wolf, K. L. , and J. W. Meadows, 1974, Bull. Am. Phys. ' Soc.

19, 595.
Wolf, K. L. , and J. P. Unik, 1972, Phys. Lett. B 38, 405;
Wolf, K. L. , and J. P. Unik, 1973, Phys. Lett. B 43, 25.
Wolf, K. L. , B. Vandenbosch, and W. D. Loveland, 1968,

Phys. Bev. 170, 1059.
Wolf, K. L. , B. Vandenbosch, P. A. Russo, M. K. Mehta,

and C. R. Budy, 1970, Phys. Bev. C 1, 2096.
Wong, C. Y. , and J. Bang, 1969, Phys. Lett. B 29, 143.
Yuen, G. , G. T. Bizzo, A. N. Behkami, and J. B. Huizenga,

1971, Nuc]. . Phys. A 171, 614.
Zhuchko, V. E. , A. V. Ignatyuk, Yu. B. Ostapenko, G. N.

Smirenkin, A. S. Soldatov, and Yu. M. Tsipenyuk, 1975,
JETP Lett. 22, 255.

Zhuchko, V. E. , Yu. B. Ostapenko, G. N. Smirenkin, A. S.
Solditov, and Yu. M. Tsipenyuk, 1978a, Yadern. Fiz. 28,
1170.

Zhuchko, V. E. , Yu. B. Ostapenko, G. N. Smirenkin, A. S.
Soldatov, and Yu. M. Tsipenyuk, 1978b, Yad. Fiz. 28, 1185.

Zielinska-Pfabe, M. , and S. Gabrakov, 1973, Phys. Lett.
B 44, 405.

Rev. Mod. Phys. , VoI. 52, No. 4, October 1980


