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The concept of the double-humped fission barrier of actinide nuclei has made possible an understanding of a

vast amount of data on nuclear fission during the past decade. In this article the analysis of most available )

relevant data is reviewed, and a synthesis of the fission barrier parameters and their trends over the actinide
region is built up. The sequence of the work begins with an outline (but not a critical discussion) of the

theoretical foundation of the double-humped barrier, and this is followed by a full account of the nuclear
reaction theory required to describe fission reactions within the concept of such a barrier. This reaction theory
provides the theoretical tools for a quantitative understanding of a range of phenomena of such kinds as
spontaneously fissioning isomers, their half-live and yields, vibrational resonances and narrower intermediate
structure in fission cross sections, and the general trends and magnitudes of fission cross sections at excitation
energies near the top of the fission barrier. The magnitudes and trends of fission barrier parameters and the
level structure of highly deformed nuclei that are extracted from the data on these phenomena are discussed
in the light of current concepts of nuclear structure. Also, the possibility of a three-humped and more

complex barriers is reviewed.
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This review is intended to cover the fascinating de-
velopments of low-energy nuclear fission over the past
decade. By the term ‘“low-energy” we imply energies
of the fissioning nucleus that are comparable to the po-
tential energy barrier in the deformation path toward
fission. The phenomena discussed in this review are
those that are governed by the properties of the fission
barrier as such, rather than those that seem to be de-
termined at the later stages of fission, i.e., just prior
to, or even after, scission, at which point the two in-

cipient fission products just separate.

The concept of the fission barrier has been based on
the classical theory of the electrically charged liquid
drop ever since the work of Bohr and Wheeler (1939);

this itself was based on the original suggestion of
Meitner and Frisch (1939). The analogy of nuclear

behavior to that of a charged liquid drop is suggested
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by the standard semiempirical formula for nuclear
ground-state energies:

E=Evol+Esurf +Ecoul+Epair = —ClA +02A2/3+63(22/A1/3):t 6.
(1.1)

Since the nuclear radius is proportional to A3 the first
three terms in this equation are proportional to nuclear
volume, surface area, and Coulomb repulsion energy,
respectively. The remaining “odd-even” term is es-
sentially quantal in origin. It is a small correction of
the form 6=11 A~Y2 MeV to be added or subtracted for
doubly odd or doubly even nuclei, respectively. Of the
same origin are isospinidependent terms, depending
on the difference in proton and neutron numbers, Z and
N, respectively. Myers and Swiatecki (1966) suggest
that this be assumed to reduce the magnitude of the
surface as well as the volume energy:

c;=a)[1-y(N-2Z/A)], (1.2)
c,=a,[l-k(N-2/A)%]. - (1.3)

If the nuclear “fluid” is assumed to be incompressible,
an estimate of the energy necessary to deform the nu-
cleus is made by identifying the second and third terms
as the surface and Coulomb energies of a classical
liquid drop. It was easily shown by Bohr and Wheeler
that a spherical liquid drop nucleus is unstable if

Ecoul Cs 22 > ‘

= g — . 1.4
2Esul‘f . Zcz A 1 ( )
The above ratio, which is called the fissility parame-
ter denoted by X, also reads

Ecoul - Cq __Z_2
2Ean  2a,[1-k(N-Z/A)] A

=X. ' (1.5)

A large number of papers spread over a period of more
than 20 years have been devoted to the computation of
the energy of deformation of the nucleus in terms of the
liquid drop model. Most studies have concentrated on
drops with X= 0.7-0.8, which are the values appropri-
ate to the actinide nuclei. A typical set of energy con-
tours in the plane defined by two of the most important
deformation parameters (the quadrupole and hexadeca-
pole coefficients in a Legendre polynomial of the liquid
drop surface) is shown in Fig. 1(a). The energetically
most favorable path towards fission is indicated by the
broken line and the potential energy barrier presented
along this path is shown in Fig. 1(b); the barrier peak
in Fig. 1(b) corresponds to the point denoted “col”, or
saddle, shown in Fig. 1(a).

The droplet model of Myers and Swiatecki (1969) and
Myers (1977) is presently the most refined description
of average nuclear properties based on the liquid drop
concept.

Nuclear reactions leading to fission have been inter-
preted on the basis of this kind of fission barrier, es-
pecially its height. Such data are particularly con-
cerned with reaction rates. By contrast the spon-
taneous fission half-lives of nuclear ground states are
sensitive not only to the effective height of the barrier
but also to the width and the inertial parameter associ-
ated with the nuclear colleciive motion along the fission
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FIG. 1. (a) Schematic diagram of potential energy contours of

a fissionable nucleus as a function of the quadrupole and hex-
adecapole deformation parameters. (b) The potential energy
along the minimum energy trajectory for increasing elonga-

tion.

path. This inertial parameter is usually incorporated
with the curvature of the barrier to obtain a parameter
that leads to the transmission coefficient. Thus, if the
barrier is assumed to have an inverted harmonic oscil-
lator form, the curvature (which is proportional to the
restoring force constant C of the oscillator) and inertial
parameter B give the frequency of an oscillator,
w=(C/B)¥?, and it can be deduced (Hill and Wheeler,
1953) that the transmission coefficient of the barrier is

T ={1+exp[2n(E, — E)/fiw]}~*, (1.8)

where Ep is the peak barrier energy, and E the nu-
clear excitation energy. Analysis of spontaneous fis-
sion half-lives using peak barrier energies known from
induced fission reactions reveals that the tunneling pa-
rameter Zw usually lies in the range 0.35-0.40 MeV
(Swiatecki, 1955). Such a low value implies that the ef-
fective inertia of the tunneling motion exceeds the mini-
mum possible (irrotational) value by a considerable
amount.

Estimates of the half-life of a particular mode of de-
cay of a nuclear state can be obtained from statistical
considerations. The arguments of Blatt and Weisskopf
(1952) in particular are simple and appealing. Consider
a system with uniformly spaced levels with eigenvalues
E,=E,+nD. The classical behavior of the system at
time ¢ is obtained by superposing a large number of
eigenfunctions and is represented by the wave function

v () Z a,,¢,,exp< )

7
< Byl i —inDt ’
= exp 7 ) an¢nexp T)) (1'7)
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where the ¢,’s contain the spatial dependence. Clearly,
the period of motion of this wave function is

P=211/D. (1.8)

Thus the classical configuration corresponding to the
formation of the nucleus in a particular mode (or chan-
nel) ¢ will be repeated after a period of time of the
order of P. The nucleus will now be in a position to
decay through the original mode (channel) of formation,
and will only be inhibited from doing so by the exis-
tence of an external barrier, the transmission coef-
ficient of which is T',. Thus the lifetime 7, for this
particular mode alone will be of the order of P/Tu and
the partial width of the state is

D
I‘(u)zﬁ/'rﬂz P

o (1.9)

T, .
The different modes (. correspond to states of exci-
tation of the internal degrees of freedom of the system.
Thus the total fission width of the nucleus will be given
by Eq. (1.9) summed over all states of internal excita-
tion at the saddle point. For energies well above the
barrier this leads to the statistical formula (Bohr and

Wheeler, 1939) for the fission width,

F(f) = (D/Z’H)N, (1.10)

where N is the number of levels of internal excitation
available to the reaction, )

E
N= dE'p*(E' —Eg),
Ep
p* being the density of such levels at the saddle point
and E, the fission threshold energy.

When coupled with the wave function corresponding to
distortion through the saddle point, the various states
of internal excitation comprised in the quantity N to-
gether make up the overall “transition state” of the fis-
sioning nucleus. A. Bohr (1956) first considered the’
influence of the properties of the individual components
of the transition state on the fission process. The acti-
nide nuclei have values of the fissility parameter X in
the region of 0.75 considerably less than unity, and this
implies, according to the liquid drop model, that such
nuclei are appreciably elongated at their saddle points
(the major to minor axis ratio being of the order of 2).
Thus the lowest states of internal excitation at the
saddle point ought to be well described by the unified
model (Bohr and Mottelson, 1975) of nuclear struc-
ture. In particular, if the saddle-point nucleus has
cylindrical symmetry about its direction of elongation,
the quantity K describing the projection of the total angu-
lar momentum of the state on the cylindrical symmetry
axis should be a good quantum number. An excited nu-
cleus formed with specified angular momentum pro-
jection along a specified direction in space will there-
fore have its axis of elongation at the saddle point re-
lated to this space direction, this relation being gover-
ned by the distribution of K values among the compon-
ents of the transition state (see Fig. 2). The preserva-
tion of this relationship between the saddle and scission
points implies that the angular distribution of fission
products will bear this same relationship to the original
specified space direction. As an example of this theory,

(1.11)
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FIG. 2. The relationship between total angular momentum I
and rotation R of a spheroidal nucleus, and the projection of I
on the z axis of the laboratory reference frame (M) and the
symmetry axis z’ of the nucleus (K).

Bohr cited the case of low-energy photofission of an
even nucleus (spin parity=0"). Electric dipole absorp-
tion of the gamma ray leads to an excited nucleus with
total angular momentum and parity 17, the projection
of angular momentum along the gamma-ray direction
being +1. The lowest 1~ state of the distorted saddle
point nucleus is expected, from the unified model and in
agreement with observation of low-lying ground-state
excitations, to have K=0. This implies that the nuclear
elongation direction must be, on average, perpendicular
to the gamma-ray direction of incidence, and hence the
threshold photofission will result in a “sideways” angu-
lar distribution of fission products (see Fig. 3), in
agreement with observation. At higher energies, a
second 1° component, or “channel,” will become en-
ergetically available in the transition state; this is
expected to have K=1, and the photofission angular
distribution is therefore expected to be more nearly
(though not completely) isotropic, and this behavior

is also observed.

Emission of
Fission Products

1l

Symmetry Axis of
Fissioning Nucleus, z’

Direction of Photon Beam,z

Spin of Compound Nucleus
( Projection on z,M=21,
Projection on 2, K=0 )

/h

FIG. 3. The relations of Fig. 2 explain the angular distribution
of fission products from an even nucleus in a photofission re-
action dominated by dipole absorption and fission through a
transition state with K=0.



730 S. Bjdrnholm and J. E. Lynn:

Bohr’s “channel theory of fission” was applied to the
analysis of most low-energy fission phenomena during
the next decade. It seemed that this combination of the
charged liquid drop picture of the fission barrier with
the unified nuclear structure description of the excita-
tion of internal degrees of freedom was basically capa-
ble of explaining fission phenomena that would result
from features “frozen” into the system at an early
stage of its development. An important example of
phenomena that were thus qualitatively, or even semi-
quantitatively, explained by this theory is the behavior
of the neutron-induced fission cross section of even
actinide nuclei. The fission barriers of the odd-neutron
compound nuclei are higher than their neutron separa-
tion energies, so the cross sections as a function of
energy show a marked exponentially rising tunnel effect,
as in Fig. 4. In addition to this overall increase and
eventual saturation, there is rising and falling struc-
ture of a minor kind. The explanation that was advanced
for this rising and falling [originally, it appears, by
Mottelson (unpublished) but expounded principally by
Wheeler (1956, 1963)| assumes competition in the decay
of the compound nucleus between fission and neutron
inelastic scattering. In a rising part of the fission
cross-section curve it is assumed that the energy of
the compound nucleus is approaching the threshold E
of a Bohr “fission channel.” The rate of rise falls off
as this threshold is exceeded and the tunneling factor,
Eq. (1.6), asymptotically approaches unity. If a neutron
inelastic scattering threshold is now crossed by in-
creasing the excitation energy further the share that
fission takes in the decay of the compound nucleus is
reduced and the fission cross section falls somewhat
until the threshold of the next Bohr channel approaches.
(For details see the discussion in connection with Fig.
78.)

B. New observations implying shell structure at the
fission barrier

The first apparent weakness in this whole picture of
the fission barrier lay in the quantitative estimates of

2 T T

— 234
s 1k U(n,f) -
= ]
g | ]
— L g
v ]
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'
[%2] 4
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[s 4
© 01 -
z -t ]
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a C ]
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0-01 1 1

1 2 3
NEUTRON ENERGY (MeV)
FIG. 4. Neutron fission cross section of 4U. This shows the
general feature of a very sharp rise in cross section from sub-
barrier energies, which is characteristic of quantal barrier
tunneling.
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barrier heights from the liquid drop theory. The liquid
drop force constants deduced from analysis of nuclear
masses according to Eq. (1.1) ¢an be adjusted to lead
to barrier heights for the actinides of the order of 5-6
MeV (above the ground state), but it is by no means
possible to explain how the barriers can remain con-
stant in the range from 23°Th (X =0.76) to 253Cf (X = 0.82)
as observed; the liquid drop predictions change from
7.5 to 2.8 MeV in this range. It had long been known,
however, that substantial deviations from Eq. (1.1) oc-
curred for nuclei near-shell closures. Equation (1.1),
with fitted constants might overestimate the ground-
state energy of magic nuclei such as 2°°Pb by 10-15
MeV. Attempts were therefore made to incorporate
the nucleon shell effects into the semiempirical formu-
la. Myers and Swiatecki (1966) first attempted to do
this in a way that would give a semiempirical energy
formula explaining all the stability features of the
known nuclei; these features were, principally, the
ground-state energies, the ground-state quadrupole
moments, and the fission barriers. They made the as-
sumption that shell effects would be largest for a nu-
cleus when in its spherical configuration. Thus, start-
ing from an equation that is the generalization (by
liquid drop theory) of Eq. (1.1) to a body with variable
deformation,

E=E,(A,Z)+E (A, Z)f(shape) + E (A, Z)g(shape)  (1.12)

[here, g(shape) is the dimensionless ratio of the elec-
trostatic energy of a distorted drop to that of the sphere,
while f(shape) is the similarly defined ratio of surface
energies], they add a shell term which depends on N
and Z and falls off as a Gaussian with deformation.

In work carried out a little later along related lines,
Strutinsky (1967a, b) concentrated on deriving the shell-
correction term from actual shell model energy levels
in a binding field of varying shape, rather than in a
semiempirical way. In this approach the shell correc-
tion was calculated essentially by summing the ener-
gies of occupied single-particle Nilsson orbitals in a
potential well of given deformation and subtracting from
this the energy calculated by integrating over a suitably

T 1 1
;10— 240p,, —
©
=
> 5[ .
o — —
ac a— \\
w —
& of—
1 1 |
03 0-6 09

DEFORMATION,f3

FIG. 5. Potential energy curve towards fission as calculated
by Strutinsky (1967ab) from his theory of shell correction en-
ergy superposed on the liquid drop energy.
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averaged single-particle level density. The addition of
such a correction to the normal liquid drop term not
only led to the reproduction of observed ground-state
quadrupole moments, the deviations of magic nuclei
energies from the smoothed liquid drop behavior, and
fission barriers of the right order of magnitude, but
also indicated an oscillation of the energy curve of acti-
nide nuclei with increasing deformation (see Fig. 5).
This oscillation is of course due to a superposition of
an oscillatory behavior of the shell-correction term on-
to the liquid drop energy term. In other words,
Strutinsky found that “shell” effects could exist for de-
formed as well as spherical potential wells. It is the
existence of this oscillatory feature, often known as
the double-humped barrier, that has been of central
importance in understanding the new and striking ex-
perimental discoveries in low-energy fission. The
theory of the Strutinsky potential energy function is
described in greater detail in Sec. II. Here we mention
that the quantitative calculations indicate that for the
actinides the first maximum in the barrier is some

6 or 7 MeV high, the secondary minimum, at a prolate
deformation corresponding to a ratio of axes of 2:1, is
some 2 or 3 MeV shallower than the main well, while
the second maximum has about the same height as the
first for uranium, and decreases for the heavier ac-
tinides.

The first experimental observation for which the
theory of a double-humped barrier provided an explana-
tion was the occurrence of spontaneously fissioning
isomers. The first such isomer had been discovered
by Polikanov ef al. (1962); this proved to be a 14 msec
isomeric state of 2*Am with spontaneous fission as its .
principal mode of decay (Flerov and Polikanov, 1964).
The spontaneous fission half-life was appropriate to a
state with an excitation energy of several MeV, so its
peculiar property was apparently its extraordinary
stability against gamma decay. A few more-such iso-
mers with similar half-lives were discovered in the
following years, all in doubly odd Am nuclei, and it
was confirmed by direct measurément by Bjgrnholm
et al. (1967) that the excitation energy (for **°Am) was
indeed close to 3 MeV. The hypothesis that the spon-
taneously fissioning isomer might be a state lodged in
a second minimum of the deformation energy curve
was first advanced by Polikanov ef al. (1962), referring
to the discussion by Hill and Wheeler (1953) of pro-
late-oblate isomerism, and later by Flerov and Druin
(1966). These suggestions received support from sub-
sequent theoretical work in which the aforementioned
approach due to Strutinsky (1967) played a pivotal role.

It was also suspected at about this time that structure
apparent in fast neutron-induced fission cross sections
could not be explained quantitatively by the theory of
competition between successively opening fission and
inelastic neutron scattering channels (Lynn, 1966a). In
the cross sections for 2*°Th (see Fig. 6) and 232Th, for
example, there are strong resonancelike peaks. The
angular distributions of fission products released in
fast neutron- and deuteron-stripping-induced reactions
also show sharp changes as a function of excitation en-
ergy. The scale of such structure is in the range
10-100 keV, which rules out any association with
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FIG. 6. Neutron fission cross section of 2%Th [data of James
et al. (1972)].

single-particle modes of the entrance channel (gen-
erally believed to have widths on the scale of MeV) as
an alternative explanation to the competition theory.

The explanation that now became available for these
phenomena was essentially that higher vibrational
states in the secondary well (carrying most of the fis-
sion strength) are only weakly damped into the normal
compound nucleus motion (Lynn, 1968a, b, c; Bjgrnholm
and Strutinsky, 1969).

The discovery of a third phenomenon now seemed to
confirm the central assumption of a doubled-humped
fission barrier hypothesis. The new phenomenon is
narrow intermediate structure in slow neutron fission
cross sections in measurements where the neutron
resolution is comparable with the fine-structure re-
sonance widths. The target nuclei for which this effect
has been discovered in its most dramatic form are the
even-even and odd-Z actinides. These normally have
fission cross sections for thermal neutron bombard-
ment that are extremely small compared with radiative
capture, and this property naturally holds for the low-
est few resonances of the cross section. However, if
the cross sections are studied over a much more ex-
tended energy range, it is found that narrow bands of
resonances in which fission is comparable to capture
occur at intervals 1 or 2 orders of magnitude greater
than the normal resonance spacing. The first, and
most striking, examples discovered of this phenomenon
are in the cross sections of the target nuclei 2"Np
(Paya ef al., 1968) and 2*°Pu (Migneco and Theobald,
1968) (see Fig. 7).

We can now summarize our understanding of these
phenomena as follows. The spontaneously fissioning
isomer of a nucleus is explained as being the “ground-
state” zero-point vibration in the secondary well. It
is, in fact, the lowest state of a whole set of levels of
increasing complexity as the energy increases, associ-
ated with the highly deformed shape at the secondary
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FIG. 7. Above: the total neutron cross section of *%Pu (Kolar
and Bockhoff, 1968), showing the large number of fine-structure
resonances. Below: the neutron fission cross section of Py
(Migneco and Theobald, 1968) showing a very few fine-struc-
ture resonances of appreciable strength and those clustered
into a few groups that constitute intermediate resonances in the
fission channel.

minimum. These levels fission readily compared with
states of normal deformation at the same energy. They
are also much less dense because more of their energy
is tied up in potential energy of deformation and is not
available for excitation of the internal degrees of free-
dom. Obviously these are the levels that are responsi-
ble for the narrow intermediate structure phenomenon
in fission, each such level corresponding to a single
group of fission resonances in the cross section, and
the width of each group being a measure either of the
strength of coupling between the “highly deformed
state” and the “normal states,” or of the fission width
of the highly deformed state, whichever is greater.
The high intermediate barrier between the two wells is
responsible for the very weak coupling between the two
sets of states that makes the structure so readily ap-
parent. The “gross” structure that is apparent in the
cross sections of other fission reactions measured with
“poor” resolution (i.e., resolution that envelopes very
many fine-structure resonances) follows from an as-
sumption of weak damping of certain simple modes of
the highly deformed nucleus into its complex level
structure. These simple modes correspond to little or
no excitation of the single-particle degrees of freedom
of the nucleus, the available energy being carried by a
stretching vibration of the secondary well, the mode
thus having a correspondingly high fission strength.
The weak damping, at nominal excitation energies of
some 5 or 6 MeV, can be explained by the much re-
duced energy available for internal excitation of the nu-
cleus in its highly deformed shape.

C. About this review

A number of reviews on the barrier aspects of fission
have appeared during the last decade (for example,
Strutinski and Pauli, 1969; Lynn, 1969; Brack ef al.,
1972; Nix, 1972; Michaudon, 1973, 1976; Grant, 1976).
Our aim in this review is to give a critical and com-
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The double-humped fission barrier

prehensive account of the information about the double-
humped fission barrier that can be deduced from experi-
mental work. We hope thereby to provide a body of
reliable data on deformation properties of the actinide
nuclei that can be compared with the results of theo-
retical calculations. Such a testing ground is obviously
of great importance for nuclear theory. To provide a
first orientation for the analysis of the experimental
data and a basis for subsequent comparison, we begin
Sec. II by giving a summary of the results of theoretical
work at the present time. A critical review of the
theory is not attempted here; it has been covered else-
where by authorities on the subject. This chapter is
followed by a full account of the theory for reactions
proceeding through a double-humped barrier. Both the
statistical theories, from which simple, yet useful,
limiting expressions may be established, and more
formal theories are described. This chapter provides
the foundation for analyzing the experimental data.

Experimental work in this field has been extremely
active over the past years. Shape isomers are being
formed and investigated from a wide range of reactions
employing both low- and high-energy particles. Their
energies are being found by measurement of the excita-
tion curves for their formation, while their half-lives
give information about the penetrability of the outer
barrier of the double-humped potential, and their for-
mation yields can give relative barrier heights. This
work is mainly discussed in Sec. IV.

Prompt fission is also being examined with a variety
of reactions. Fast neutrons with high-energy resolution
are used to measure fission cross section and fission
product angular distributions in order to elucidate
properties of the vibrational states in the second mini-
mum. To reach even lower energies, below the neu-
tron threshold of the compound nucleus, two-stage re-
actions following bombardment with high-energy pro-
jectiles are extremely useful. Reactions such as
(p,p'f)y (t,pf), and, in particular, (d,pf) are all being
used. Since the only competing process in the decay of
the compound nuclear states at this energy is gamma-
ray emission, fission can be measured sensitively far
below the barrier energy. The chief requirement in
these measurements is good energy resolution in de-
fining the fissioning compound nucleus states. Photo-
fission, with its comparative simplicity in spin and
parity of the fissioning compound nucleus plays
a special role in this field. All these experimental
topics are covered in Sec. V. One of the most sensitive
tools is decay after slow neutron absorption; this dis-
plays intermediate structure from which deductions are
made about both the inner and outer barrier penetra-
bilities. . The topic is treated in Sec. VI. But much
information on barrier heights comes from the study
of cross sections with energy resolution that is in-
sufficient to resolve intermediate structure, but covers
a range of excitation from deep sub-barrier energies
to well above the barrier. Understanding the influence
shell effects exert in defining the shape and the total
energy of the nucleus as it proceeds towards fission
has also led to the recognition that the saddle points of
the two-humped barrier may have a lower symmetry
and consequently a higher density of transition states
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than expected from liquid drop theory. This affects

the magnitude as well as the shape of the fission cross-
section curves. These aspects are explored in Sec.
VII. The barrier data from all these different methods
are collected and summarized, nucleus by nucleus, in
Sec. VIII, where a comparison with theoretical cal-
culations of the double-humped barrier is made. The
level structure of rotational and intrinsic excitations
built on the isomeric shape is reviewed in Sec. IX. The
question of more highly complex barriers than the two-
humped one is reviewed in Sec. X in the light of recent
experimental advances; and Sec. XI finally summarizes
the main points. In the appendix the most commonly
used parametrizations of deformed shapes are reviewed.

Il. SUMMARY OF BARRIER THEORY

A. Potential energy surfaces

The primary preoccupation of fission theory is the
determination of the potential energy surface in the
space of the various collective coordinates defining the
shape of a deforming nucleus. Efforts to do this still
uise the liquid drop model as the starting point. Myers
and Swiatecki’s (1966) first attempts to improve the

" liquid drop theory were followed by Strutinsky’s
(1967ab) which represented abreakthroughby developing
a more fundamental way of calculating the shell ef-
fects, thus enabling the theory to be extrapolated to
large deformations.

The basis of Strutinsky’s method of calculating nu-
clear energies, either as a function of nuclear mass or
as a function of deformation, is now well known. Very

-briefly outlined it is this: in a pure independent-parti-
cle shell model, neutrons and protons fill the levels
of a deformed potential well up to a certain level, the
Fermi energy, corresponding to the particular nucleus
of interest. The energies of the filled levels are then
summed to give the nuclear ground-state energy at the

- chosen deformation of the well. It is well known, of
course, that because of the residual interactions, and
hence the correlated motions, among the nucleons,
which cannot be described in the framework of a sim-
ple potential well model, this is a quite inaccurate
procedure for extracting the absolute energy of a real
nucleus. For this the liquid drop model with semi-
empirically adjusted parameters gives much more
realistic estimates of the nuclear binding energies,
within 15 MeV or so at worst relative to binding en-
ergies of hundreds of MeV over the whole periodic ta-
ble; but it does not give any of the correlations with
nuclear shell closures that appear in the observed
binding energies.

Strutinsky’s way of obtaining accurate estimates of
absolute nuclear energies is to hypothesize that sum-
ming the single-particle state energies as shown in the
left half of Fig. 8 will reproduce the relative change in
energy from nucleus to nucleus due to the shell struc-
ture at a given deformation. To obtain this change, de-
noted by Eg.y, it is only necessary to subtract from the
independent-particle energy a similar sum calculated
from the independent particle levels smeared out in
some way to remove the shell structure, as illustrated
schematically in the right half of Fig. 8. The gross
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FIG. 8. Schematic diagram of Strutinsky shell-correction
method illustrating the difference between bunched energy lev-
els and a smooth level ordering. In practical calculations
actual energy levels are used.

energy that is thus removed is then replaced by a rea-
listic energy term calculated from the liquid drop mod-
el E yy. Thus,

E=Epy * Egnen » (2.1)

Strutinsky’s method when applied to the broad mass
of nuclei with the energy minimized as a function of
deformation for every nucleus, was immediately suc-
cessful in reproducing accurately the nuclear binding
energies. Furthermore, when the energy was calcu-
lated as a function of extended deformation for the acti-
nide nuclei, in order to calculate fission barrier heights
to compare with observation, he discovered a secondary
dip (Fig. 9 and Figs. 5 and 46) in the energy at defor-
mations corresponding roughly to the traditional liquid
drop saddle shape. It is now recognized that this de-
formation corresponds to a spheroidal shape with a ratio
of major to minor axes of 2:1. This symmetry
gives rise to considerable shell structure and hence
great stability for particular nuclei with the appropriate
neutron and proton numbers, in analogy with spherical
potential wells (see Fig. 10). The dip, or secondary
well, offered an explanation for the spontaneously fis-
sioning isomers that had been known for a few years,
and for the phenomena of intermediate structure in fis-
sion cross sections that were being discovered about
that time. Strutinsky’s theory therefore immediately
became spectacularly successful.

Since then great efforts have been put into the calcu-
lation of potential energy surfaces as a function of de-
formation. Some of these have been devoted to studying
the possibility of new metastable shapes among the
lighter nuclei, and to the estimation of the stability of
superheavy nuclei with respect to alpha, beta, and
fission decay.
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line indicates the liquid drop deformation energy. Calculation

from Nix (1972).

1. The barrier region
a. Basis and technical treatment of Strutinsky theory

The justification of the Strutinsky method for deter-
mining nuclear energies, the technical method for
carrying it out, and the physical nature of the results
have been reviewed in detail by Brack ef al. (1972).
Another comprehensive review containing less detail
but also with a complete bibliography has been written
by Nix (1972).

Basic justifications of the Strutinsky method start
from the Hartree—Fock theory. Brack et al. (1972)
show how the expression for the energy of a nucleus
in Hartree—Fock theory, in which the single-particle
potential is self-consistent with the single-particle
density matrix generated by that potential, can be
written in terms of shell-model single-particle ener-
gies and densities to second order in the difference
between the shell-model and the self-consistent densi-
ties. The significant feature of the new expression for
the Hartree—Fock energy is that apart from the simple
sum over occupied shell-model levels, the remaining
principal term is expressed in terms of avervaged sin-
gle-particle densities, and is therefore smooth in its
dependence on nucleon numbers and nuclear shape. It
is this smooth term plus a smooth component extracted
from the sum over occupied single-particle levels that
is replaced by a liquid drop expression for the energy
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FIG. 10. Energy levels of a harmonic oscillator potential for
prolate spheroidal deformations. Numbers in diagram are
numbers of particles filling the shell. From Nix (1972).

E;pu- The most recent review of the Hartree—Fock
method is due to Brack (1980).

Most of the methods for extracting the smooth com-
ponent from the sum of occupied energy levels are
based on Strutinsky’s own technical procedures for
averaging over the shell-model energy levels with a
suitable weighting function. This weighting function can
be expressed as sums of products of Gaussians and
Hermite polynomials, the width of the Gaussian being
governed mainly by the energy spacing between major
shells just below the Fermi energy. Such averaging
procedures can run into conceptual if not practical dif-
ficulties if the shell-model potential is a realistic one
permitting a continuum of unbound eigenstates, like the
Woods—-Saxon potential for instance. Bengtsson (1974)
has therefore initiated a method in which each individual
shell-model level as a function of deformation is
smoothed by fitting it with the cube root of a fourth-
order polynomial in the deformation parameter; this
particular form of the fitting function is suggested by
the Thomas—Fermi statistical model. The smooth
component of the sum of occupied energy levels is then
simply given by the sum of the occupied smoothed ener-
gy levels resulting from this fitting procedure, and the
unbound levels thus require no consideration. The shell
correction energy E 4 thus defined for neutrons in
238Ppy is shown in Fig. 11 in comparison with the result
from the same set of shell-model levels using the
Strutinsky procedure. The overall agreement, es-
pecially for prolate deformations in which we are most
interested in fission theory, is seen to be remarkably
good, althoﬁgh local differences of up to 1 MeV can
occur.
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b. Comparison with Hartree-Fock calculations

Apart from work on the justification of the Strutinsky
theory in a basic way, there have been attempts to cal-
culate nuclear deformation energies directly from
Hartree—Fock theory. These employ the Skyrme ef-
fective nucleon-nucleon interaction (Skyrme, 1956)
with parameters adjusted to reproduce gross nuclear
properties, as given by Vautherin and Brink (1972).
The result of the work of Flocard et al. (1974) showing
the binding energy for 2*°Pu as a function of the quad-
rupole moment of the nucleon density is presented in
Fig. 12. No allowance is made for axial asymmetry
or reflection asymmetry in the nuclear shape in this
calculation. It looks qualitatively very similar to the
deformation energy curves that result from calculations
using the Strutinsky method, but the energy differences
between the extrema are greater. For example, the
first barrier height (v,) is at about 9 MeV relative to
the primary well depth (U,), whereas Strutinsky calcu-
lations with a similar restriction on the range of nu-
clear shapes explored would give about 6 MeV for this
quantity. There are recognized sources of error in the
present Hartree—Fock calculation, however, that ap-
proach the order of 1 MeV; they-arise from the neces-
sity to project out the O' ground state from the calcu-
lated state with no constraint on angular momentum,

and from the truncation of the harmonic oscillator basis .

" states used in the numerical work. At large deforma-
tions, all calculations based on the assumption of axial
and reflection symmetry give too high barriers. This
difficulty is not restricted to the Hartree—Fock ap-
proach.

c. Nuclear models employed in Strutinsky calculations

Apart from the possible source of error arising from
the actual principle of the Strutinsky theory and pos-
sible errors from the technical treatment of smoothing
procedures, the basic parametrizations of the models
used in the theory contain uncertainties that will give
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FIG. 11. Comparison of two different technical procedures for
calculating the Strutinsky shell-correction energy from the
same set of shell-model levels. The solid curve is calculated
using the normal energy-averaging procedure for every speci-
fic deformation. The dashed curve is from the summing of
smoothed energy levels fitted to the actual shell model levels
over a large range of deformation. From Bengtsson (1974).
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correspond to pairing-interaction strength independent of nu-
clear surface area and proportional to surface area respec-
tively. From Flocard et al. (1974).

rise to errors in calculations based on the theory. The
main source of this kind of error is likely to come
from the liquid drop model, which provides the basic
(or macroscopic) energy term in the Strutinsky theory,
but there are also likely to be significant uncertainties
from the shell model adopted, and smaller errors from
the treatment of the pairing interaction, which is shell
dependent and is also incorporated into the Strutinsky
theory. This last term depends.not only on the choice
of shell model but also on the hypothesis assumed for
the dependence of the interaction strength on surface
area. Note, in this connection, that virtually all cal-
culations with the Strutinsky method have been made
for even nuclei.

() Liquid dvop and droplet models. The nuclear
energy in the basic liquid drop model of the nucleus is
characterized by a volume term proportional to the
mass number A, a surface energy term proportional
to the surface area, and hence to A%/® for a spherical

- nucleus, and a Coulomb energy term, proportional to

A~Y3 for a spherical nucleus:

272
Ep=-C,A+ c,A?%f(shape) +—35- ;gfm g(shape) (2.2)
1]
[cf. Egs. (1.1)—(1.3 and 1.12)]. So far as the fission
barrier is concerned, the important terms in Eq. (2.2)
are the surface energy and Coulomb energy terms, and
the sum of their contributions to the liquid drop energy
relative to the energy of a spherical liquid drop can be
written as
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E, p(shape) — E;,(0) ={[f(shape) - 1]

+2X [g(shape) - 1]} E,(0), (2.3)

where E (0), the surface energy of a spherical liquid
drop, is ¢,A?® and X, the fissility parameter, is de-
fined as the ratio of the Coulomb energy of a spherical
drop to 2E,(0):

) ey

(2.4)

i

The fissility parameter and hence the values of the
coefficients a, and k, are crucial in determining the
shape dependence of the liquid drop energy and there-
fore of fission barriers. These coefficients have to be
determined empirically from an overall fit to nuclear
binding energies and, where possible, to experimental
fission barriers. For reliable determination of the co-
efficients, Eq. (2.2) is too crude as it stands, and it is
recognized that in that formula the volume and surface
terms are only the leading terms of a systematic ex-
pansion of the binding energy of a finite body with a
relatively thin surface region in which the matter densi-
ty falls to zero. The ratio of surface diffuseness to
nuclear radius is of order A~Y/%, so a refinement of
Eq. (2.2) takes the expansion to higher powers in A ~/3,
This is the droplet model of Myers and Swiatecki
(1969). In this model, terms in A'/® are associated
with energy of curvature of the surface and redistribu-
tion of Coulomb energy in the surface, and other terms
are associated with the compressibility of nuclear mat-
ter. The many parameters involved are determined
partly from fitting to experimental data and partly from
statistical calculations based on Thomas~Fermi
theory; fitting to experimental data has to take account
of shell effects both in ground-state masses and in fis-
sion barriers, and this is generally done in the em-
pirical way outlined by Myers and Swiatecki (1966,
1967). Values of the liquid drop (or droplet) coef-
ficients actually used for calculations of fission bar-
riers by the Strutinsky method vary. One common set
is that due to Myers and Swiatecki (1967) (liquid drop
model):

7,=1.2249 fm,
giving
2 (e?/r;) =0.7053 MeV,

a,=17.9439 MeV, «=1.7826. (2.5)

Another set coming into vogue is derived from a rede-
termination of droplet model coefficients by Myers
(1977); from these an equivalent set of liquid drop co-
efficients can be determined, among which an effective
neutron-proton asymmetry coefficient k.4 turns out to
have a value of about 3.4. These changes imply a gen-
eral lowering of the fission barriers. At the same time
the large effective « value causes barrier heights to de-
‘crease with increasing neutron number (and fixed Z
value) for nuclei situated in a broad interval near beta
stability, as opposed to barriers calculated from a «
value of 1.78 [Eq. (2.5)], which increase when neutrons
are added. The precise value of the surface neutron-
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proton asymmetry coefficient is probably the main un-
certainty arising from the liquid drop or the droplet
model in calculating fission barrier heights. Of course,
all parameters are highly correlated.

(ii) Shell models. There is wide variety in the
choice of shell model for calculating the shell-correc-
tion energy entering fission barrier calculations.
Strutinsky’s own calculations (1967) employed a de-
formed Woods—Saxon potential which has the advantage
of physical realism for nuclear shapes that are not too
strongly deformed. The potential is defined so as to
have a constant skin thickness about an effective
surface defining the shape. Figure 13 shows the
landscapes of independent proton and neutron shell cor-
rections as functions of nucleon number (Z or N, re-
spectively) and elongation c. The diagram is based on
the Woods —Saxon potential (Brack et al., 1972). Such a
potential encounters difficulties for strongly necked-in
shapes, and here a variation suggested by physical no-
tions of the effect of finite range nucleon forces has
advantages; this is the diffuse-surface potential ob-
tained by folding a Yukawa function with a square-well
potential of the nuclear shape required (Bolsterli ef al.,
1972):

V(r)=- 4——:;3 [ ar expl-|r—x'|/a] 2.6)

[r-r'|/a
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FIG. 13. Contour maps of the shell energy correction for pro-
tons and neutrons, respectively. The Woods—Saxon potential
parameters used are those appropriate for #%Pu. The thick
curves are zero energy lines and the increment per line is

1 MeV. The shaded areas have negative values. The deforma-
tion parameter (see Appendix), ¢=1, corresponds to a sphere;
the isomeric minimum occurs for ¢ =1.42 and neutron number
N=144. From Brack et al. (1972).
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where V, is the square well depth. The range a of the
Yukawa function can be chosen to give the desired sur-
face diffuseness. Parameters of such potentials are
generally chosen to reproduce a given set of experi-
mental data on single particle levels. Nix and his col-
laborators chose to fit their potential to the levels of
208ph in their earlier calculations (Bolsterli ef al.,
1972), but in a later set Mdller and Nix (1974) have
adjusted their parameters to fit the levels of heavy
deformed actinide nuclei. The difference in the two
sets of potential well parameters amounts to about 11%
in the surface diffuseness parameter (smaller in the
1974 version) and 12% and 6% in the neutron and proton’
spin-orbit interaction (greater in the 1974 version).

The other class of shell-model potentials in common
use is based on the harmonic oscillator. In.general
these have distinct computational advantages and permit
the exploration of a greater variety of nuclear shapes.
Calculations of the potential energy landscape in the
region of the barrier are generally performed within
the framework of the one-center modified oscillator
model (Nilsson model) with the shell-model potential
having, typically, the following form:

V = Vosc + Veorr » (2.7

1 2 (4n\"? /
Vose =5 Tiwop? [1 -3 e(—}) Y,0-cosy +2€,P,

2 (ar\"? si
+'§€<_5’”—) (2—1)% (Yoot Yz—z)] B (2.7a)

Vo= — b+ BQo[21, + s+ L(12 = {12))] . (2.70)

The correction term, depending principally on the
square of the orbital angular momentum 1,, has the ef-
fect of flattening the potential towards its outer edges
and also contains a spin-orbit interaction. The pa-
rameters k and U are adjustable for optimal reproduc-
tion of experimental single-particle level schemes.
The variable p is the radius vector length in “stretched”
coordinates and is defined by
p2=%(wxxz+wyyz+wzzz). (2.8)
The oscillator frequencies for the principal ellipsoidal
axes are related to the parameter w, (itself governed
by the shape parameters €, €,, and y) through the re-
lations

W, =wy[1l —2€ - cos(y +27/3)],
wy = we[l —2e-cos(y -21/3)],
W, =we[l —Ze€-cosy],

and w, is related to the spherical oscillator frequency
&o through a volume conservation condition. A typical
numerical value adopted by Nilsson et al. (1969) for the
last parameter is

lN‘Z), 2.9)

41.0
ﬁa’*ﬁ(“ 3 A4

the plus and minus signs referring to proton and neu-
tron potentials, respectively.
The deformation parameters €, €,, and y refer to
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quadrupole deformation (nuclear elongation), hexadeca-
pole deformation (waistline “necking-in” or broadening)
and degree of axial asymmetry, respectively. The pa-
rameter y is generally treated through its range of
values O to 60° 0° representing axial symmetry of a
prolate body, and 60° the opposite extreme of axial
symmetry of an oblate body. Other degrees of freedom
in the shape can be introduced within this framework,
still allowing practical computation, and two such im-
portant parameters are the deformations associated
with the third-and fifth Legendre polynomials; these
parameters allow the description of a pearlike asym-
metry in the nuclear shape, often referred to as mass
or volume asymmetry. Apart from these parameters
to describe deformed nuclear shapes many other pa-
rameters have been employed by other authors. The
relationships amongst the commoner of these is de-
scribed in the Appendix.

More sophisticated shell-model effects can be in-
corporated within the Strutinsky theory. One of these
is a shell-correction term to the Coulomb energy due
to Larsson ef al. (1974), which is normally computed
simply as a liquid drop term with uniform charge
density over the nucleus. For this, the Coulomb re-
pulsion energy is calculated directly from the single-
particle wave functions; the proton densities arising
from these can change sharply with changing deforma-
tion giving rise to changes in the occupation of single-
particle levels near the Fermi energy with very dif-
ferent radial and angular distributions.

The treatment of pairing correlation energies also
gives room for elaborations. One of these is the de-
pendence of the pairing interaction strength on surface
area, as already mentioned. Another is the introduction
of the quadrupole pairing force (Larsson ef al., 1974).
This arises from the well-known expansion of a delta
force in terms of spherical harmonics,

6(1‘1 - rz) :M)\Z Y)\p (i)Y)\u (2) )
©

v, (2.100)

with only terms in A=0,2, =0 being retained.
d. Results of calculations

() Imnevr barriev. The shell correction as a function
of deformation is obviously correlated with the local
density of single-particle levels in the shell model
around the highest occupied level, the Fermi energy.
High single-particle densities give rise to a positive
shell correction (less stability) and vice versa. An
oscillating shell correction superimposed on the liquid
drop saddle region gives rise to the double-humped
barrier. Variation of the shell-correction amplitude or
phase with changing proton and neutron number, to-
gether with the variation of the liquid drop potential
barrier with changing fissility parameter, gives rise to
variation of the double-humped barrier from nucleus
to nucleus. The contribution to the shell correction
from the pairing correlation effect is opposite in sign,
being negative at high single-particle densities, but is
much smaller in magnitude than the main shell effect.

The phrase “double-humped barrier” expresses the
main feature of the potential energy of deformation of
heavy nuclei as a function of elongation of the nucleus
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towards fission. Early calculations assumed a maxi-
mum degree of symmetry in the shape in the course of
this elongation. Pashkevich (1969) first investigated the
potential energy as a function of axial asymmetry along
this path and noted that the secondary well in the bar-
rier was stable with respect to this asymmetry. This
work and later work by Larsson ef al. (1972), Schul-
theiss and Schultheiss (1971), and Larsson and Leander
(1974) all concentrated on investigating the potential
energy surface in the plane of elongation and the y de-
gree of freedom, and has established in general that the
nucleus may have axial asymmetry at the first saddle
point (A) but regains axial symmetry at the secondary
well (II). Typical results of Larsson and Leander (1974)
are shown in Fig. 14. For 2*°Th the inner barrier oc-
curs at a value of y= 10° but the potential energy on the
axially symmetric path is only ~0.4 MeV higher than the
saddle; whereas for 2*°Cm the barrier energy drop at an
axial asymmetry y= 17° is a substantial 1.8 MeV.

There is a trend for increasing stability of axially
asymmetric shape at the inner barrier both with in-
creasing neutron number and increasing mass number
as shown in Fig. 15. As far as the actual magnitudes of
the barrier heights are concerned, the axially asym-
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FIG. 14. Potential energy landscapes for 2$Th and 2°°Cm. The
plane is one of nuclear elongation (¢) versus axial asymmetry
(¥); see Appendix. The nuclear shape is chosen so that the en-
ergy is minimized as a function of the hexadecapole deforma-
tion parameter €,. Energy contours are at intervals of 0.2
MeV. The heavy solid line with arrows follows roughly the
track of minimum potential energy with increasing elongation
through barrier A and secondary well II. From Larsson and
Leander (1974).
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and the liquid drop neutron-proton asymmetry constant k=1.78.
From Larsson and Leander (1974).

metric values of Fig. 15 tend to be a little lower in
general (on average ~0.5 MeV) than experimental data
(see Secs. VII and VIII), after making allowance for
zero-point B-vibration energy of the ground state. For
the Th nuclei they are considerably lower, but there
may be special reasons in theory and interpretation of
experimental data for this [see (i) below]. For each
element the trend of the calculated value with neutron
number is gently peaked at N~ 150.

The agreement of this kind of calculation with data
seems to be improved if the quadrupole pairing inter-
action is included (Larsson et al., 1974), particularly
for Th nuclei, for which the inner barrier is raised by
about 1 MeV. For Pu nuclei quadrupole pairing raises
the inner barrier by about 0.5 MeV. It should be noted
that in these calculations the liquid drop energy has
been refitted so that the calculation reproduces experi-
mental data on the secondary well.

(ii) Secondary well. Calculations on the energy of
the second minimum relative to that of the first mini-
mum, this time due to Moller and Nix (1974) (using still
the modified harmonic oscillator shell-model poten-
tial), are shown in Fig. 16. In general these energies
are in the range 2—-3 MeV and agree with available ex-
perimental data on spontanecusly fissioning isomers
to this extent (see Secs. IV and VIII for experimen-
tal data). However, interpretation of experimental
fission cross-section data on Th isotopes [see, for ex-
ample, James et al. (1972) and discussion in Sec. V]
indicates that the secondary well is higher than 4 MeV
for these iight nuclei and so disagrees with the trends
of the calculation.

The overall trend of thé curves in Fig. 16 (with a
minimum about N= 144 and a peak about N= 152) is also
given by calculations using the folded Yukawa model of
Moller and Nix (1974). However, there are discrepan-
cies in absolute value of up to ~0.5 MeV between the two
sets of calculations, changing in sign between Th and
Fm. More recent calculations based on single-particle
diagrams of the type shown on Fig. 23 tend to locate the
second shell minimum at neutron number N =148.

(iii) Outer barviev. Early calculations in which the
nuclear shape was assumed axially and reflection sym-
metric indicated that the outer barrier was higher than
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k=2.8. From Moller and Nix (1974).

the inner one in the actinides by some 3-4 MeV (see
Fig. 9). Experimental data on spontaneous fission iso-
mer half-lives and excitation cross sections (discussed
in Sec. IV) and intermediate structure in fission cross
sections (see Sec. VI) refuted this; indeed, analysis of
data on plutonium and heavier nuclei suggested that ex-
perimentally the outer barrier is the lower. The dis-
crepancy was removed at least qualitatively by the cal-
culations of Moller and Nilsson (1970) and by Moller
(1972) demonstrating that reflection asymmetry in the
nuclear shape (included in the shell-model potential as
third- and fifth-order Legendre polynomials) gave po-
tential energy minima at the elongations corresponding
to the outer barrier. There is no calculational evidence
for axial asymmetry also existing at the outer barrier.
Indeed, the existence of pronounced changes with en-
ergy of the angular distributions of fission products

is held to be evidence against axial asymmetry.

More recent calculated values of the outer barrier
height due to Moller and Nix (1974) are shown in Fig.
17. The curves for individual elements do not show
marked structure or trends except for the highest ele-
ments, but there is a strongly falling tendency with in-
creasing nuclear charge, which is borne out by experi-
mental data on fission isomer excitation yields. These
calculations employ a modified harmonic-oscillator
shell-model potential, and they show discrepancies of
up to~1 MeV (changing sign in going from Th to Fm)
with calculations based on a folded Yukawa potential
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[Eq. (2.6)].

The calculations based on the folded Yukawa shell-
model potential show a new feature in the potential en-
ergy curve in the second barrier region; this is a ten-
dency in the low Z, moderate N nuclei for the outer
barrier to be further split into two subsidiai‘y peaks
with a shallow minimum between them (see Fig. 18).

If this is a real physical effect it will explain experi-
mental fission data on Th isotopes which demand an in-
terpretation involving a double barrier with a very
shallow well between them (further discussion is found
in Secs. V, IX, and X). -

(iv) Probable accuracy of quantitative calculations on
fission barviev parameters. In Table I the theoretical
results on fission barriers for three specific nuclei are
compared. These nuclei are quite central to the nuclear
stability line and to the actinide group of elements and
therefore ought to provide reasonable tests for theo-
retical calculation. Some of the differences in the num-
bers are due to very significant differences in the
physics assumed, e.g., degree of asymmetry in shape
allowed. Even where sets of numbers should be com-
parable, because differences are confined to the choice
of shell model, as in rows 1 and 3 (columns 3-5) or
rows 1 and 2 (column 6) differences of the order of 1
MeV in the estimated quantity occur. This can probably
be taken as a measure of the accuracy of the theory at
the present time. This statement is supported by a
comparison of the measured nuclear ground-state
masses of the actinides and lower nuclei with the values
calculated by Moller and Nix (1974) using the folded
Yukawa shell model within the Strutinsky theory; the
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average discrepancy is about zero, but there are sys-
tematic trends of the discrepancy curves as a function
of neutron number, the trends having a slope of ~0.25
MeV per neutron pair (compare Fig. 138). The ac-
curacy of the theory is extremely good when set against

S. Bjdrnholm and J. E. Lynn: The double-humped fission barrier

the nuclearbinding energies of nearly 2000MeV, but they
are not accurate enough to supply on their own the relevant
barrier parameters for calculation of nuclear cross
sections required by technology, for instance.

2. Potential energy between saddle and scission

The point to emerge from the theoretical calculations
of the kind described above in Sec. II.A.1.d.iii, that
the saddle point at the outer barrier of actinide nuclei
occurs for reflection asymmetric nuclear shapes, in-
vites the speculation that this is the reason for mass
asymmetry in the final mass division of these nuclei.
Much work has been done on this point, and forms one
of the most interesting further developments based on
the shell-correction method, leading towards an ap-
parent solution of the formerly intractable problem of
mass asymmetry in fission. In broad terms, the theo-
retical work has corcentrated on mapping out the en-
ergy surface well beyond the outer saddle point and well
down the slope towards the scission point where the two
incipient fission fragments finally part company. By
contrast with the region of deformation up to the outer
saddle point, this region is a hazy, ill understood area
from the overall point of view including the dynamical
effects. The whole question of nuclear viscosity arises
here in a very important way. There is a general feel-
ing that viscosity must act selectively. Some quantities
seem to be frozen in at the saddle point, e.g., the pro-

TABLE I. Comparative results on fission barrier heights from a range of calculations. The
barrier heights are quoted in MeV relative to the primary minimum of the potential energy curve.
For comparison with experimental data (normally quoted relative to the nuclear ground state) a
zero-point beta-vibration energy should be subtracted from these numbers.

Reference Remarks on calculation U, (*Pu)

'UA (244Pu)

Uy (®Th) UV, (¢3Th)

Folded Yukawa shell
model. No axial
asymmetry in
deformation but
reflection asymmetry
allowed

Moller and 5.45

Nix (1974)

Modified harmonic 6.3
oscillator shell

model. No axial

asymmetry but

reflection asymmetry

allowed

Moller and
Nix (1974)

Modified harmonic 6.3
oscillator shell
model. No axial

asymmetry

Larsson and
Leander (1974)

Modified harmonic
oscillator shell
model. Axial
asymmetry allowed

Larsson and 5.6

Leander (1974)

Hartree—Fock 9.0
calculation. No

axial asymmetry or

reflection asymmetry.

Pairing interaction

strength proportional

to surface area

Flocard et al.
(1974)

Ditto, but pairing
interaction strength
constant

Flocard et al.
(1974)

6.3

7.1

7.1

5.9

2.9 5.7

8.0

4.9

4.7

4.7
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jection of the nuclear spin on the major axis of defor-
mation, thus determining the angular distributions of the
fission fragments relative to some laboratory-based
axis that is significant in the original formation of the
excited fissioning nucleus. The finding of mass asym-
metry in the energy surface at the outer barrier at
first sight indicates that the broad trends of mass di-
vision in the final fission products may also be largely
frozen in here. More detailed studies of the way in
which mass yields in fission are determined indicate
that the potential energy surface plays a crucial role in
mass division. The important feature is not just the
potential energy at the outer barrier but rather the po-
tential energy landscape several MeV below the outer
saddle point. This alone points to the fact that the dy-
namics of the problem must be of vital importance in
controlling the mass division, as it is also for deter-
mining the spontaneous fission half-lives.

B. Dynamical considerations

The potential energy landscapes for deformation of
the nucleus discussed in Sec. II.A.2 above provide the
essential foundation for discussing the fission process
and already suggest many of the most striking pheno-
mena to be observed, but, with such complicated po-
tential energy surfaces, and with the consideration that
the nucleus is a microscopic body, strongly influenced
by the motion of a single or a few nucleons, it is ap-
parent that the dynamics of fission is still a major
problem. For large deformations a description of the
deformation in normal modes based on a Legendre
polynomial expansion of the surface is not practicable;
the alternative choices of suitable deformation parame-
ters are arbitrary, guided by physical intuition, and as
a result the inertial tensor can take a complicated non-
diagonal form. The inertial tensor is strongly affected
by single-particle and pairing effects as well as being
a measure of “collective motion.” In addition, the ef-
fects of “viscosity” in the nuclear motion play an im-
portant role. Many of the quantities observable in
fission (e.g., cross sections at low energies, proper-
ties of spontarieously fissioning isomers) do not require
a theory of viscosity for their explanations; these can
be based on extensions of normal quantal ideas, includ-
ing calculations of the inertial tensor.

The dynamical requirement of an expression for the
kinetic energy in terms of generalized collective co-
ordinates gq;

T=Jz“Z:Bij(q)éiéj (2.11)
1,J
demands the knowledge of the inertial tensor as a func-
tion of the collective coordinates. This is the essential
complement to the potential energy and can be either
modeled according to hydrodynamic concepts (Nix,
1967) or can be computed microscopically from the
same shell-model level schemes used to construct the
shell correction to the potential energy in the Strutinsky
method (compare Fig. 44). The classical liquid drop
model is already sufficiently complex that straight-
forward analytical expressions for the inertia have not
been derived except for very small deviations from a
sphere, in which case the inertial parameter associated
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with the lowest normal mode (the quadrupole term in the
spherical harmonic expansion of the surface) for irro-
tational flow is

Bg=3MRZ2/81, (2.12)

B being the coefficient for the second spherical har-
monic Y,, in the expansion of the surface, M the nu-
clear mass, and R, the nuclear radius. For his studies
of the later stages of fission towards the scission point
Nix (1969) used the Werner—-Wheeler numerical method,
in which the internal hydrodynamic flow is approximated
by the flow of circular layers of fluid perpendicular to
the symmetry axis.

Phenomenological expressions for the inertia have
also been employed; for example, if the fragment sepa-
ration 7 is employed as the fission variable the asymp-
totic inertial parameter at large separations is the re-
duced mass of the fragments 1, while at the other ex-
treme of small deformation it tends toward Eq. (2.12)
for irrotational flow. A typical expression for B,,, due
to Randrup et al. (1973), is

B,,={1+ ¥ Eexp[- * —=0.75R,)/d|}1,

where R, is the spherical nuclear radius, and 2 and d
are parameters that describe deviations from the ir-
rotational value (for irrotational flow 2=1,d=R,/2.542).

Microscopic calculations of the inertial tensor are
normally based on the cranking model, originally de-
veloped by Inglis (1954) for calculation of nuclear mo-
ments of inertia, in which the independent particle or
quasiparticle system is assumed to be driven in a spe-
cific form of collective motion by an external force,
and the inertial parameter is determined from the gen-
erated kinetic energy and the collective velocity. Its
application to fission was first developed by Sobiczewski
et al. (1969b) and Damgaard et al. (1969). The cranking
model expression involves virtual excitations from the
ground state |0) of the deforming system to excited
states |m):

B;; =2n? Z: <0|8/3;1;|m>ém]a/aqj|o> .
m#=0 - m— o

(2.13)

(2.14)

For a pure independent-particle system this expres-
sion, literally evaluated, contains singularities at

~single-particle level crossings. Within the shell-cor-

rection framework of the Strutinsky theory, however,
pairing forces are included in the shell-model treat-
ment; the resulting energy gap separating the ground
state from other states removes these singularities
and leads to an inertial tensor of reasonable physical
magnitude. A simple statistical expression for the de-
pendence of the inertia on the energy gap A and the
density of single-particle states g ¢ at the Fermi en-
ergy is developed by Damgaard ef al. (1969):
ﬁz
Bry

_?_Ii ¢ Bett

5| o (2.15)

A typical detailed calculation of the inertia from the
cranking model is shown in Fig. 19; this is due to Pauli
and Ledergeber (1974). As to be expected from Eq.
(2.15) it is correlated with the shell correction to the
potential energy of deformation of the nucleus. The
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shell *

structure in the inertial parameter implies that the
potential energy alone does not provide a simple guide
to the dynamical motion of the system through deforma-
tion space. This is demonstrated by Pauli and Leder-
geber’s treatment of spontaneous fission half-lives. The
half-life is proportional to the Gamow barrier tunneling
factor

7~ (1/w) exp| 2K /7]

q

K= [ agl2m,1E - V(@] (2.16)

)
The integral K, the action integral, is calculated along
a trajectory ¢ through deformation space, defined to
give the least value of K. The inertial parameter B,
for this trajectory is determined from the inertial ten-
sor by

BGZZBH(BQi/BQ)(SQj/aq)- (2.17)

0.15
h
(o]
015
==

10 C 118 130 142 154 166 178
FIG. 20. Least action trajectory for ground-state spontaneous
fission of *%Pu through potential energy landscape in plane of
elongation parameter ¢ and neck constriction z. From Pauli
Ledergerber (1974).
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The trajectory calculated from this prescription for
symmetric deformations in #*°Pu is shown in Fig. 20.

It is apparent that the “dynamic” barrier for this tra-
jectory is higher than the static barrier. Calculations
of spontaneous fission half-lives of ground states using
these calculations of the inertia and the least action
principle give remarkably close agreement with data
provided that the surface energy constant of the liquid
drop model is suitably adjusted (see Fig. 21). This, as
shown in the diagram, differs for different elements.
Agreement is poorer (discrepancy up to 4 orders of
magnitudes) if it is attempted to use a universal surface
energy constant (see also Fig. 45). Half-lives of spon-

' taneously fissioning isomers are shown in Fig. 22.

Pauli and Ledergeber suggest as a hypothesis that the
least action trajectory determined for spontaneous fis-
sion should also be the path for near-barrier fission.
This would have the attraction of explaining the high
intermediate barriers observed for Th isotopes where
the dynamic barriers are particularly high compared
to the static barriers of Pauli (1974). It is neverthe-
less a very controversial idea and needs to be properly
tested by a calculation of the development of the wave
function over the barrier in a two- or few-dimensional
deformation space.

C. Structure of shape isomers and related states

1. Single-particle states

The properties of the spontaneously fissioning isomers
associated with the secondary well of the double-humped
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FIG. 21. Least action calculations of ground-state spontaneous
fission half-lives with optimized adjustments of surface energy
constants for different groups of elements. From Pauli and
Ledergerber (1974). Points are from theory, crosses from
experiment.
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barrier can be discussed by means of fairly standard
nuclear models. The single-particle character of low-
lying states associated with the secondary well can be
obtained by extensions of Nilsson diagrams to the
greater deformations, as already calculated for the pur-
pose of forming the nuclear potential deformation en-
ergy in the Strutinsky theory. A set of single-par-
ticle diagrams for the extended deformation at the
second minimum is shown in Fig. 23; this has been
compiled by Metag (1979) from computations of various
atithors. Data on highly deformed single-particle levels
in odd-A isomers that can be tested against the predic-
tions of such diagrams are already available; see Sec.
IX.

2. Rotational bands

The deformed shell-model level schemes can also be
used to determine the moment of inertia of the rotational
bands associated with the spontaneously fissioning
isomers. Generally, the cranking model of Inglis
(1954) is used for these calculations, and the pairing
force is included. A typical calculation on 2*°Pu, due
to Pauli and Ledergerber (1974) is shown in Fig. 24.

It is very similar to a calculation by Sobiczewski et al.
(1973); see also Sec. IX.

3. Vibrational states

In addition to particle excitations and the associated
rotational bands the level spectrum of the second well,
particularly of even nuclei, will contain collective
states of distinctly vibrational nature. Among these
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FIG. 23. Calculated single-particle neutron level schemes at the deformation of the second minimum, calculated for different
‘shell models by different authors. From Metag (1980).
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FIG. 24. Calculated moment of inertia of the lowest rotational
band for #%Pu as function of elongation ¢. From Pauli and
Ledergerber (1974).

the stretching, or 8, vibration plays a special role, as
the one that is directly coupled to the fission motion.
At the energies where one, two, and higher vibrational
modes occur one observes resonance fission, as de-
scribed in more detail in Sec. V. Two-phonon and
higher vibrational states have so far not been observed
in the excitation spectrum of the ordinary ground state
of deformed nuclei. The specific coupling to the fis-
sion mode makes such higher states observable for the
shape isomeric nuclei. Also the increasing spreading
of the vibrational strength to the neighboring states
within a broad energy interval can in principle be
studied (Sec. V).

The position of the f-vibrational states can be calcu-
lated microscopically from the single-particle wave
functions of the states surrounding the Fermi level and
the strength of the residual interaction, by the random
phase method (Zielinska-Pfabe and Gabrakov, 1973).
Although calculations of the energies of such states in
the first well have appeared to be very sensitive to de-
tails of the ordering of the single-particle states in-
volved, making it perhaps premature to expect reliable
theoretical predictions for g vibrations in the second
well, such calculations for the second well would be
of considerable interest.

I11. REACTION THEORIES FOR THE FISSION
PROCESS

A. One-dimensional barrier penetration theories

Phenomenological models that deal with the fission
channel on a one-dimensional basis, either ignoring
the existence of the other degrees of freedom of the
system, or treating them simply as a gross absorption
out of the fission mode, are very commonly used in the
analysis of fission data.

Models of the first class are based on the estimate of
the fission width obtained from simple statistical
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theory [Wigner, 1938; Blatt and Weisskopf, 1952; see
Eq. (1.9)] for the decay of a system over a classical
barrier; this is now modified for near-barrier fission
by multiplication by a transmission coefficient 7' that
incorporates the quantal barrier tunneling effect (the
Gamow factor). The transmission coefficient is normal-
ly calculated by solving the Schrddinger equation in one
dimension, with boundary condition defined by re-
straining the wave function on the right of the barrier
to a progressive wave, i.e., one traveling from left to
right in this convention.

1. Single-barrier peak
a. Rectangular barrier

The transmission coefficient is most easily derived
in the case of a barrier with sharp edges (Fig. 25).
The deformation variable is denoted by n (for this has
no associations with any of the specialized definitions
of deformation that occur in the literature; see Ap-
pendix) and the inertial parameter associated with this
degree of freedom is denoted by B and assumed to be
independent of deformation. The potential energy U is

- assumed to be zero for 7<0, U; for 0sn<1n,, and U,

for n>mn,. If an incident wave with total energy E is
progressing from small values of 7 to increasing 7, in
the stationary wave representation the wave function
solution of the Schrodinger wave equation — (%Z2/2B)
©2¢ /813 + (U — E)¢ =0 has the form

¢ =e**M+age"**" | 7<0 (incident wave and reflected wave)

(3.1a)
¢=befFM+ceFT  Q0<n<1, (3.1b)
¢ =de'*=", m,<n (transmitted wave only) (3.1c)

The wave numbers are related to the “velocity,” giving
the rate of change of deformation of the system, through
the usual de Broglie relationships,

ko=Buv,/fi= (2EB/i%)*/?, (3.2a)
kp=[2(E = Vp)B/H?M? (=ikg, if E<Up), (3.2D)
kw=Bv./li=[2(E -V.)B/E%">. (3.2¢)

The incident flux is just the velocity v,, while the flux
of the transmitted wave is |d|?v.., giving for the trans-
mission coefficient T = |d|*./v,. The coefficients a,b,
c,d are found by matching the wave function at n=0 and
7,, giving finally

'y
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w |
5 ! |
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FIG. 25. Rectangular barrier in the potential energy U vs
deformation 7. !
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T= 4k2k ke E>VU
[ R+ )+ kil | sindom, T FE (o v o) -
(3.3a)
_ 4k2 kol
T [KE + K2 (B2 + B2) + k2k2 | sinh?k pn, + k2 (ko + Bu)? E<p
(3.3b)

Some examples of this function are given in Fig. 26
for parameters that would be typical, in order of mag-
nitude, for actinide fission barriers.

b. Other barrier forms

The oscillating character at above-barrier energies
of the transmission coefficients shown in Fig. 26 are
peculiar, among single-barrier peaks, to the rec-
tangular barrier with its sharp edges. Transmission
coefficients of more realistic barriers must therefore
be sought. Since it is apparent from Eq. (3.3) and Fig.
26 that the most important parameters affecting the
transmission coefficient are the barrier width and
height, relative to the kinetic energy, while the poten-
tials on either side are comparatively unimportant,
the mathematical details may be simplified by con-
sidering only symmetric barriers.

(¢) Triangulay barvier. The triangular barrier is the
most obvious case to consider next (Fig. 27). The wave
functions within the barrier region can be expressed as
Airy functions:

TRANSMISSION COEFFICIENT

v = T . T T T T T
1-0’—
103
168
16°%-
- ’,’ Barrier b
62l -/ 1.
L L 1 L . s s Il
3 6 9

INCIDENT ENERGY (MeV)

FIG. 26. Transmission coefficient calculated for the passage

of a wave through a rectangular barrier (Fig. 25). The inertial
parameter is chosen so that 2B /42 =1200 MeV-! (the deforma-
tion parameter 7 is dimensionless).
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FIG. 27. Symmetric triangular barrier in the potential energy
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¢ =aAi(§) +bBi(¢),

where £ is related to the slope of the potential hill

(U =V,—c |1 =7,|) and the energy by &= (2Bc/#%)Y3[|n
=Nl + @, — E)/c], while the Airy functions have the
asymptotic forms

(3.4)

Ai(E)=%_/0. dz cos(tz +42%)~ #ﬂ; £V exp(— 2£3/2)
Bi(£)=% f”dz [e38=1%°  sin(z £ +429))]
[

g exp(3527%) (3.5)
v ’

valid if 2(2B/%%)Y2E%2/c > 1 and 2(2B/i?)?@, - E)*/2/

¢ > 1. Matching of the wave functions (3.1a), (3.1c) to

(3.4) at the discontinuities and use of the asymptotic

forms for the Airy functions leads to

8 23‘1/2 v __Ea/z
r-osp [ $(22) " @azBV2]

(ii) Hype‘rbqlic cosine barrier. All diséontinuities in
potential gradients are avoided in the hyperbolic cosine
barrier (Fig. 28), expressed by

V(n) = Vy/cosh?(an) .

(3.6)

(3.7

The wave functions in this case take the form of hyper-
geometric functions, )

¢ = ’aF(— +s+4ik/a, -4s -4ik/a,+, - sinh%am)

cosh‘an

+b sinhanF(—4s+3ik/a++

—is-dik/a+4, 2, —sinhzan)% ,

(3.8)
where k= (2BE//i?)!/?, s =4[~ 1+ (1 - 8BV,/a’%)*/] and
the resulting barrier transmission coefficient is [e.g.,
see Landau and Lifshitz (1958)]

sinh?(nk/a)
= Sinh*(nk/a) + cos?[ 2 (1 - 813'00/72"2 2)172]

if 8BV,/7%a?<1 (3.9a)
or
I= sinh?(nk/a)
sinh®(nk/a) + cosh?[37(8BV /7 2a?® - 1)”2]
if 8BU,/11%a%> 1. (3.9b)



746 S. Bjérnholm and J. E. Lynn: The double humped fission barrier

4
-
(&}
e o
w
=z
w
-
.3 v
= (o]
=
w |
- |
o | |
a |
|
|
! |
' |
! 1
' |
0 |
a1 0 a1

DEFORMATION

FIG. 28. Hyperbolic cosine barrier in the potential energy U vs deformation 7.

(iii) Inverted pavabolic barrvier. The barrier thatis
almost universally employed in nuclear fission studies
is the inverted parabolic one, generally known as the
“inverted harmonic. oscillator,” the “oscillator” having
circular frequency denoted by w:

(3.10)
(3.11)

V=1p - 3Cr(n -np)?
w=(Cp/B)*2.

The general solution of the Schrodinger equation for
such a potential is the parabolic cylinder function, the

standard form of which can be written [see, e.g.,
Abramowitz and Stegun (1965)]

(coshma)/*

W)=

X {lr(é"'%ia)yl(x);\/i“ Ir(% +%w) 13’2(9‘)},

(3.12a)

where y, and y, are related to the confluent hypergeo-
metric functions

= - 2 1. 2
y,=e MV F (Fa+4; 35 3x7)

=e /P14 @+ /2D + @+ e+ HE/A) - - -

(3.12b)
3= e V14 @ - 3)2) + (@ - -HE/4) -
(3.12¢)
and
x=(4CxB/H?M* M -np) (3.13)
a=p -E)/fw. (3.14)

From the standard form complex solutions of the
Schrodinger equation can be built with the asymptotic
forms (for large |x|) of waves progressing to either

the left or right. Thus the solution
E(a,x)=c YW (a,x) +ic/?W (a, — x) (3.15)

[with ¢ = [1+exp(27a)]*/? - exp(na)] has, as the leading

Rev. Mod. Phys., Vol. 562, No. 4, October 1980

term in its asymptotic expansion for x > |a|,
E(a,x)~V2x*~1/2 exp[Lix®+argl (4 +ia) + 17],
~ and corresponds to a transmitted wave to the right of
the barrier. The same solution with argument —x cor-

responds to a reflected wave to the left of the barrier,
while the solution

E*@, —-x)=c YW (a, —x) —ic**W (a, +x) (3.16)

corresponds to an incident wave to the left of the bar-
rier. Thus, to the right of the barrier

¢ =BE(a,x), x positive
and to the left
¢ =E*@a,-x)+AE(a, -x), x negative.
Since the asymptotic forms of F and E* hold for their

analytic extension into the complex 71 plane, this enables
a connection to be made between these forms, giving

A=B (eﬁ')»ia-l/z .

The result for the transmission coefficient is there-
fore

T= 1/{1 +exp[27(Vp - E)/fiw}, (3.17)

a well-known result due to Hill and Wheeler (1953).
This result is one that is very commonly used in the
analysis and presentation of fission reaction data. It
is to be noted that the transmission function increases
monotonically with energy; for energies far below the
barrier it increases purely exponentially and above
the barrier it reaches asymptotically to unity.

c. General approximate form for a single-humped barrier

The last formula is a special case of the general
formula for a barrier with only a single extremum;
this was given by Froman and Froman (1965, 1970) in
the JWKB approximation. As in the exact treatment
of the parabolic barrier the asymptotic wave forms to
left and right of the barrier are connected by following
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a path on the wave-number sheet, %k (with phase cor-
responding to positive value of k= [2B(E —v)/7%2]Y2,
when the argument is real and 77 lies to the left of the
barrier?) in the complex 7 plane. The transmission
coefficient is given by

T= [1+exp(2K)]~*, (3.18)
where, in first order,
i N’ _ 1/2
K=-m [ dn[zB—‘;fz—‘”] . (3.19)
Na’

Here, 7,.,M, are just the points 71,,7, at which V() =E,
in the sub-barrier case when the barrier peak exceeds
the available energy E; K is then real and positive.
However, in the superbarrier case, the path of integra-
tion for K proceeds in the upper half-plane of the
above-mentioned Riemann sheet and connects arbitrary
points (on the real 7 axis) to the left and right of the cut
joining the zeros of % in the upper and lower half-
planes of 7. In this case K is real and negative. Fro-
man and Froman (1970) also treat higher-order phase
integral approximations to K.

2. Double-peaked barrier

a. General JWKB treatment

Whereas the single-peaked barrier exhibits a trans-
mission function that rises almost monotonically with
energy in an exponential manner, the characteristic
features of the transmission of the double-peaked bar-
rier are dominated by the virtual states of the potential
well that lies between the two peaks; these states give
rise to resonances in the transmission function, and
the effect of the potential maxima on either side of the
well is felt mainly in the widths of these resonances
and in the minima between the resonances.

These features are revealed by the JWKB treatment
of the problem. Within the secondary well of the bar-
rier, where the kinetic energy is positive, the quasi-
classical approximation to the wave function is

¢(n)~m§u—2[clexp(% fdn[ZB(E—“O)]”z>

+C, exp<- % f an[2B(E -v)]1/2>] . (3.20)
Between the two turning points 7, and 7, where E=7,
this wave function reduces to the form of either

c i (7 Ve T
(s [ anlmE - ),

or

c (1 [T e
{ZB[E-U(T])]}I/Z’ b1n<—ﬁ— L dan[2B (E - v)]*2+ 4)’

if the condition is imposed that the solution of the exact
Schrodinger equation vanishes as n—-x+«. For these
two expressions. to be identical at 77, the sum ¢ of their
phases must equal an odd-integral multiple of 47:

11n the sub-barrier case this corresponds to the phase
pl1/2=¢=i7/4 | p1/2 | when E < on the real 7n axis.
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<I>=h_ifﬂcdn[éB(E—U)]1/2=(n+é)ﬂ, @.21)

My
which is Bohr’s quantization condition. When the bar-
riers on either side of the secondary well are finite,
so that the wave function does not vanish for n—x=,
the condition (3.21) on ¢ for discrete solutions is no
longer required for the general solution, but the ampli-
tude of the wave function between the wells is maxi-
mized at an energy close to the above quantization con-
dition, i.e., resonance occurs. This is reflected in the
expression for the transmission function, for which,
in the JWKB approximation, Ignatyuk et al. (1969) de-
duced that

T=4(TaT )[4 T+ Tp)? sin®¢(E) + cos*p(E)] ",

where T, and Tz are the transmission coefficients of
the barriers A and B treated separately (as in Sec.
II1.A.1).

This formula has been criticized on the grounds of
arbitrary use of the JWKB connection formulas (for
which see, e.g., Kemble, 1958) at the classical turning
points 7, and 7,. Leboeuf and Sharma (1973a) give Eq.
(3.22) without the term in sin?¢ in the denominator as
the correct first-order JWKB approximation, but this
formula is actually less satisfactory than Eq. (3.22)
in that it diverges at the resonance condition of Eq.
(3.21). Froman and Dammert (1970) give the general
approximate form

T= expl— 2(K, + K5)}
(S—=1)2+4S cos®a ’

(3.22)

(3.23a)

S=[1+exp(-2K,)]Y?[1+exp(-2Kz)|'?, » (3.23b)

with expressions for K, and Kz in higher-order phase
integral approximations, which reduce in first order to
the expression (3.19) introduced in Sec. II.A.1. ¢ (for
barrier B, of course, the turning points 7., 7, must re-
place 1, and 1, in that expression), while the phase
angle o has correction terms on ¢, resulting in

n o 1/2
a= f Cdn[fﬁgﬁ_fz_’(ﬁ] —04-0pg, (3.23c)
My
with
~L[Es | |Ka| _Ka 1 _ Ky
e 2[71 1n pa B +argl’ 5 =, s (3.23d)

and a similar formula for o in terms of Kz. The final
term in the formula for the correction phases ¢ has
been given approximately by Ford et al. (1959) as

Larar(h - K)o £, £)(L)]/
2 &\2 b 27 e 4y ’

where y is Euler’s constant with value 0.5772157. The
function ¢4 and the approximation Eq. (3.23d) for it are
shown in Fig. 29. Leboeuf and Sharma (1973b) also
give expressions for various near-barrier situations;
these are encompassed by Froman and Dammert’s ex-
pression, Eq. (3.23), so they need not be restated here.

The resonance condition for Eq. (3.23a) is discussed
in some detail by Froman and Dammert. They note
that for a symmetric double barrier the resonance con-
dition is exactly :
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FIG. 29. The phase correction o to the phase angle « that
gives rise to resonant effects in tunneling through a double-
humped barrier. It is shown here as a function of the wave-
number integral K. After Froman and Dammert (1970). The
dashed curve is an approximation due to Ford et al. (1959).

a=mn+3)n, (3.24)

where » is an integer, and at this energy the trans-
mission is exactly unity. For energies far below the
peaks of both barriers this same condition for resonance
is approximately true; in fact the quantity 4S cos®a is
the dominant term in the denominator of Eq. (3.23a) ex-
cept when cosa i§ very close to zero, and hence, in
this strongly sub-barrier situation, the transmission
function has the appearance of high, very narrow peaks
on a low but exponentiaily increasing base. In the case
of a symmetric double barrier these peaks rise to a
transmission value of inity. Equation (3.23a) can be
written approximately ‘

_ cosh™®(K, = Kpg)
“T+{cosa/[Lexp(- 2K ,) +; exp(-2K p)]}*°

(3.25)

giving Tmax® cosh™2(K, — Kz) at resonance. Close to the
resonance condition cosa can be written @ - (n +4)7,
thus demonstrating that the half-width of the resonance
is Aa= 4[exp(- 2K,) + exp(= 2Ky)| which, in terms of
eriergy, is

T'= /i [exp(— 2K,) + exp(~ ZKB)J/f - anl(E —v)/2B|~%2,
T

(3.26)

The denominator in this expression is the reciprocal
of the classical oscillation frequency between the two
barriers. The resonance width therefore is simply
interpreted through the Heisenberg uncertainty princi-
ple, i.e.; it is Planck’s constant (divided by 27) multi-
plied into the escape probability (oscillation frequency
times probability of tunneling the barrlers) from the
intermediate well.

Other points to be noted about the JWKB formula
are, firstly; that well below the peaks replacement of

a [Eq. (3.23¢c)] by ¢ [Eq. (3.21)] gives rise to very
small error in @, but this nevertheless implies a large
shift in the resonance in comparison with its width.
Secondly, between resonances, the transmission has
minima close to the value :
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T+ exp{=-2(Ks+ Kp)}= $(TaTs) - (3.27)
b. Special treatments
() Double-peaked rectangular barviev. In the bar-

rier formed of rectangular sections shown in Fig. 30
the wave function has the form

¢ =ettal 4 ¢ gmtRan N<,

¢=b3eik3n+036—ik3n’ Ny SN <N,
¢=bzeik2n+cze.—ikznr NySN<N,.
¢’=bxeik1"+c,\e_ikln; NSN<T7,

b =bgetton, no<m, (3.28)

with
k,= RQEB/R2)Y?, ky=[2(E —V\)B/R?Y?,

k2= [Z(E --'U")B/ﬁzj vz s k1= [2(E _'UB)B/ﬁzjl/z ’

and ko= [2(E —U,)B/#? "2 The transmission coefficient
=1b,|%v,/v, is found by matching ¢ across the boun-

daries 7,,M,,M,,N,- The final expression is somewhat

unwieldy to write down, and in practice it is simpler

to start with the form of the asymptotic outgoing wave

in the final region (ny<m), calculate numerically the

coefficients b, ¢, relative to b, from the matching at

M, and hence calculate the “parent” coefficients b,, c,

at each preceding boundary until the value of b, relative

to unity is obtained from the matching at ;. The

matching conditions at 7, are

%L= %%kkie'z“‘l’w, (3.29a)
1 1 0
while those at 7, are
i(ky=R2)N ) - ~i(Ry+Ra)N )
_ . /c )k +R)e + (ky— R ))e (3.29b)

02 ® /cl)(k Zk)eT RV EINL L (B f)e R RO
and generally at 1, are

buey _ Bu/cy) byt by, JeHimine s (o, | — ) e~ 0 Ene 1n

Cory (b /c )(km - b )e'“' ntRp+ D0 o (k +ky, 1)e‘"‘”* 1=B)0n

(3.29¢)

Since the transmitted flux is equal to unity minus the
reflected flux, the transmission coefficient is just
2

(3.30)

T=1-|%
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FIG. 30. Double-humped rectangular barrier in the potential
energy U vs deformation 7.
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(b, being unity).

This numerical procedure can be applied to any arbi-
trarily shaped barrier, by approximating the barrier
with a sufficiently large number of constant potential
steps. The transmission coefficient corresponding to
barrier penetration front the ground state through a
realistic double-humped barrier can be calculated
within a factor of 2 by breaking the barrier into the
order of 1000 equal steps. Many of the numerical cal-
culations given, by way of example, below, have been
calculated by this method.

(ii) Smoothly joined harmonic segments. Another
barrier form for which an exact numerical solution can
be obtained is that in which the double-humped barrier
is composed of harmonic segments of the form

V=V, —3C,(M =1M,)%, n<n,
V=V, +4C (M -np)?, n,<n<mn,
V=Uz -5Cp(m=-m5)*, n>n,. (3.31)

Such a barrier has been considered particularly by
Cramer and Nix (1970) and Wong and Bang (1969). For
smooth joining the points 7,,7, are given by

/2
2(04 —vy)C ]‘
=q, - 22aTOnial (3.32a)
My ="y [cu(cA+c,,)
2(Ug —Vn)C Ve
=n. 4% = Un)Cy. 3.32b
na nB [CE(CII+CB) ] 3 ( )
and also lead to the conditions that
=n,+ S8 ) (3.32¢)
Ty =7e+ G = (e =7s) 5 .
=y 4 Cu 3.32d)
Na=1,+ My =My) - (3.

Ca

The solutions of the Schrodinger equation for these po-
tentials are the parabolic cylinder functions, with
forms (3.15) and (3.16), for the regions 17 <7, and
n>mn,, the quantities ¢ and x being calculated for the
appropriate values of Uy, C,4, N4 and Vg, Cp, M. In the
intermediate region (7, <n<7,) the Schrddinger equa-
tion has general solutions of the form

749

1 [T -a.,/2) T Ta
Ulay, x,) = 7{—[—2&#@1’:—(:05(2 + 2_">3’1("u)

T2 —-a,/2). (1 7a
_ﬁz__ﬂy__sm(z +—211)y2(x")] . (3.33a)

1 't -ay/2) . (1 7a
VL (% —a")[ 2“:1 1/ Sln(z‘*"é‘u)yl(xu)

Viay, xy) =

' -ay/2 T Ta
+ Fort 2 cos(§ + ), 0],
(3.33b)

the functions y,, y, being those of ‘Eq. (3.12) while

ay = (@, - E)/ Bwy, x;= (‘4C11B/ﬁ2)‘/“(71 —ny). The re-
quired wave function in this region is formed from a
superposition of U and V. All the appropriate solutions
in the three regions and their derivatives can be calcu-
lated from the series expansions (3.12b), (3.12c),
matched at the points 7,,7,, and hence the transmission
factor deduced. An example of the computed coefficient
for a barrier with U, =6 MeV, U; =2 MeV, Uz=5 MeV,
fiw,=1.3 MeV, Zwy=2.0 MeV, and 7wy =0.48 MeV is
shown in Fig. 31 (Cramer and Nix, 1970), and is com-
pared with calculations from the JWKB formula of
Ignatyuk ef al. (1969). The shape of the barrier is also
shown in this figure, together with the parabola joining
points, and the virtual vibrational energy levels in the
secondary well are also indicated. At the 4.76-MeV
level the energy calculated by the simple JWKB formu-
la [Eq. (3.22)] differs from the exact energy by 18 keV.

3. Effects of variable inertia

In the single barrier peak case it appeared that rather
broad superbarrier resonances, or oscillations, appear
in the transmission coefficient through the square po-
tential. These disappear as the potential edges become
softer until, in the limit of the inverted parabola, not
even a trace of an inflection remains in the mono-
tonically rising transmission function. These con-
clusions,- however, are only rigorously valid if the in-
ertia associated with the deformation variable 77 is in-
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FIG. 31. Examples of transmission coefficient for a double-
humped barrier composed of parabolic segments [from Cramer
and Nix (1970)], and comparison with a JWKB calculation of
Ignatyuk et al. (1969).
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dependent of 1. It is possible, if the inertial parameter
varies sufficiently with deformation, that superbarrier
resonances might appear in the transmission through a
rather rounded barrier (Hofmann, 1972). This can be
demonstrated by transforming from the deformation
variable 17 to a new variable x for which the inertia is
a constant B, the transformation being defined by
n

= [T BB, (3.34)
and writing the Schrodinger equation in this new varia-
ble, in terms of which the potential energy U (x) will
have a different form. In particular, if the inertial
parameter B(7n) follows qualitatively the rise and fall
near the top of the barrier and is nearly constant else-
where, as expected in some cranking model calcula-
tions (see Sec. II.B.1), f)(x) will have a much squarer
form than v(1).

Hofmann (1972a) has investigated the degree of soft-
ness of the edges of the barrier U(x) required to give a
reasonable degree of superbarrier oscillation. If U(x)
has the form of an inverted Eckart potential

Vx) =Vy{1l+exp[— (xp —x)/d|} ",

the ratio of edge diffuseness parameter d to width (at
half maximum) 2x; is found to be =0.14 for resonances
to disappear. This is a rather small ratio and leads to
the feeling that superbarrier structure is likely to oc-
cur for a realistically shaped fission barrier only if the
inertial parameter of the fission motion varies quite
strongly. The degree of dependence of oscillation on the
ratio of diffuseness to barrier width is illustrated in
Fig. 32.

More complicated superbarrier oscillation effects
can occur for the double-humped barrier.

(wp>d), (3.35)

4. Barrier transmission with absorption

As stated above, the one-dimensional treatment of the
fission process can be extended to take some account
of other degrees of freedom by treating excitation of
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FIG. 32. Oscillations in the barrier transmission coefficient
for different values of the ratio of edge diffuseness to barrier
width (Hofmann, 1972a). The energy scale is relative to the
barrier peak, which is 5.49 MeV. For the continuous curve
B(=483 MeV/72, xp=0.1212, d=0.01; dashed curve, By=966
MeV/#?; dash-dot curve, By=483 MeV/#%, d=0.005.

Rev. Mod. Phys., Vol. 52, No. 4, October 1980

the latter as a simple absorption out of the fission
mode. This method is very familiar in the treatment
of nucleon scattering by complex nuclei, being just the
optical model of nuclear reactions. In the application
of the optical model to the fission process it is neces-
sary to include the well(s) in addition to the barrier in
the potential energy function for the deformation mode.

In the original application of this method to fission
through a single-peaked barrier (Lynn, 1966a) there is
no difficulty in principle in obtaining the transmission
function, and hence the fission strength function. An
imaginary component is introduced into the potential
well representing the internal compound nucleus region.
This can be either a constant component between certain
adopted limits of deformation, or have some functional
form attenuating to zero in the region of the potential
barrier. An incident wave of form exp(—iky) in the
deformation mode is now considered to fall on this po-
tential, and the result of the interaction gives an out-
going wave with amplitude S;;; beyond a deformation
value 7, expressing the range of the potential barrier
beyond the internal region, the wave function has the
form

¢ = exp(=ikgn) +S;; exp(ikyn) , N>7,. (3.36)

The amplitude S;; is calculated by solving the Schro-
dinger equation (usually by numerical integration), the
governing boundary condition to give the correct solu-
tion being that the wave function is real and regular at
some value of the deformation 7., sufficiently far on
the low deformation side of the potential well. A re-
sulting value of S;; with modulus unity implies pure
scattering of the fission wave. The difference between
unity and ISHI2 gives the absorption into the internal
region, i.e., compound nucleus formation; the cross
section for compound nucleus formation from an “in-
verse-fission” channel is proportional to 1 — lS,,Iz, and
this expression is normally defined as the transmission
coefficient T, corresponding exactly to the simple bar-
rier transmission already considered in Sec. IIL.A.1;
Tp=1-[S,]%. (3.37)

A typical transmission coefficient thus calculated is
shown in Fig. 33. It is seen that resonance effects can
be found, but these are due to weakly damped vibra-
tions in the deep potential well. Such small imaginary
components are not normally expected at the excitation
energies considered here.

Such a treatment has also been applied to the double-
humped potential barrier (Bondorf, 1970; Holmberg
et al., 1969). If the imaginary component of the poten-
tial is confined to the primary well, transmission co-
efficients that display the vibrational resonance peaks
described above in Sec. III.A.2 can be expected. These
are undamped vibrational resonances (zero damping in
the secondary well), and spreading the imaginary po-
tential across both the primary and secondary well is
not a strictly correct way of treating the damping in the
secondary well. In the calculations of Holmberg et al.
(1969) small imaginary components are assigned to )
both potential wells, and double resonances are found;
one of these is a vibrational resonance in the secondary



S. Bjgrnholm and J. E. Lynn: The double humped fission barrier 751

T

T

_.
=]
L

TRANSMISSION

10

| |
-0'5 00 05 10
ENERGY ABOVE BARRIER (MeV)

FIG. 33. Transmission coefficient calculated by the scattering
method for a potential barrier bounding a complex potential
well [from Lynn (1968a)]. The real well depth is about 6 MeV
and the imaginary depth only 30 keV.

well and the other a vibrational resonance in the pri-
mary well. The latter is not expected, as stated above
in our remarks about the single-peaked barrier.

The difficulty in this model is that absorption into the
secondary well has to be considered separately from
that in the primary well; use of an imaginary potential
in both wells simply lumps together the absorption in
the two wells. The picture here is that an incident in-
verse-fission wave penetrates the secondary well with
attenuation, and this attenuated direct component is
absorbed in the primary well, while the component ab-
sorbed in the secondary well can be reemitted into the
fission channel, or suffer a transition irrevocably into
some other degree of freedom, or be emitted into the
primary well. The total flux reaching, and being ab-
sorbed, into the primary well is the quantity of in-
terest here. Bondorf (1970) and Back ef al. (1971) have

modified the model to obtain the transmission coefficient

correctly by making the simplifying assumption that all
the flux reaching the primary well is absorbed com-
pletely. The wave function at some deformation 1, close
to the entry (at barrier A) into the primary well there-
fore has no returning wave and is given by

¢ =aexp(—-ikmn), n<mn, (3.38)

{or, more exactly, to take the attenuation distance 1/K
in the primary well into account, ¢ =a exp[-K(n, —n)
—ikm]; the factor exp[— K(n, -7)] is required if the
imaginary potential starts at 77, with a nonzero value}.
The flux that is absorbed directly into the primary well
is thus &,|a|?/k., while that absorbed in the secondary
well is 1 —|S;|%. Of the secondary well absorption a
fraction
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Ta

TTa i TaT, (3.39)

ba
is emitted into the primary well, T, and T z being
transmission coefficients from the secondary well
across barriers A and B, and T, the transmission
probability for deexciting radiation across compound
levels (class-II states) associated with the secondary
well deformation. Thus

- 2

T,= 1’1;5“— +pa=1S,,17). (3.40)
Of the two terms on the right-hand side of this equation
the first can be interpreted as a “direct” one, being
the fraction of the wave that is transmitted right across
the secondary well without absorption. The second term
corresponds to reemission after absorption into the
compound motion of the secondary well and hence is
expected to have a microscopic structure corresponding
to the class-II compound states associated with this
motion. The detailed structure of the first term is ex-
pected to be just the much broader one of the vibrational
resonances in the secondary well. '

A schematic example of the transmission coefficient

of Eq. (3.40) is shown in Fig. 34 in comparison with the
result for zero damping in the secondary well.

B. Statistical models

When absorption out of the fission mode is very strong
a limit has been reached that is just the opposite of the
simple undamped barrier transmission models of the
double-humped barrier. This limit can be treated by
assuming statistical equilibrium among all the degrees
of freedom of the nucleus. Such a model is therefore
appropriate to moderately high excitation energies
(“hot” nuclei), in distinction to the barrier transmis-
sion model which can only be expected to describe low
excitations in the secondary well.

In a hot nucleus with very many degrees of freedom
only a relatively small amount of excitation energy will
be concentrated on motion in the deformation mode;
this amount will be of the order of the nuclear tem-
perature 6. If this temperature is much less than the
barrier between the wells in the potential energy of
deformation the nuclear system will survive for a rela-
tively long time in one or other equilibrium shape be-
fore changing shape, or decaying by particle emission,
radiation, or breakup by fission. Thus, in first ap-
proximation, two sets of states, associated with each
equilibrium shape, and denoted by class I for the first
well and class II for the second, exist in the nucleus.
The probability of decay of these states can be repre-
sented by transmission coefficients that take account
of barriers (deformation, centrifugal, or Coulomb)
as well as the internal nature of the states in the en-
ergy region under consideration. These transmission
coefficients can be defined through the reciprocity
theorem in terms of the probability of the formation
of such states of the compound nucleus in the inverse
process to the given decay mode. Thus, for a forma-
tion process «, the maximum possible average cross
section is 7x%g,, where x, is the de Broglie wave-
length (divided by 27) of the relative motion of pro-



752 S. Bjérnholm and J. E. Lynn: The double humped fission barrier
-
P4
w
O
w
w
w
(@]
(&)
=z
o
n
(L)
=
[%2]
z
<
[e o
[
-10 1 |
1073 2 ] 0

ENERGY (MeV)

FIG. 34. Schematic picture of the transmission coefficient through a double-humped barrier with damping (represented by an
imaginary component in the potential energy) in the secondary well (broken curve) compared with the case of zero damping (full

curve). In the first case the imaginary component is 50 keV.

jectile and target, and g, is the statistical weighting
factor for formation of the compound nucleus with total
angular momentum J. The actual cross section for
compound nucleus formation is denoted by -

Oaien) =T 81T a s (3.41)
where T is the transmission coefficient for this mode
of formation. When the ratio of partial width to level
spacing I',/D is small, T, =27Ty/D; and it has been
established fairly conclusively (Moldauer, 1967) that,
in general,

To=1-exp[-2T,/D]. (3.42)
Transmission coefficients for making transitions from
shape I to shape II, denoted by Ty, and vice versa,

denoted by Ty 4), can be defined in analogy with the
decay coefficients. '

1. Probability treatment

From the transmission coefficients the probability of
decay of a class-I state by process « is :

e Ty
Pl(a) - I(a

—— , (3.43
248T 1) +Tya) )

and the probability of a transition from a class-I state
to a class-II state is

P e Ty (3.44)

226T e * Ty

Similarly, probabilities for decay or shape transition
of a class-II state are
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Tior

Piian == o (3.45)
me e Ty + Ty’

Py, =___TI_I&A_L__ (3.46)

228 Tuey + T

Given these probabilities the overall decay of the nu-
cleus can be calculated. Let us assume that the nu-
cleus is initially populated entirely in class-I states.
The initial stage of decay consists of a fraction Py,
=EBPI(B) decaying to all residual systems allowed to
class-I decay (these will principally be, according to
the Franck—Condon principle, class-I states of lower
excitation in the same nucleus, reached by gamma
transitions, and residual nuclei of class-I shape reached
by neutron emission) and a fraction P;_; changing to
shape II. The second stage of decay therefore consists
of a fraction Py - Py(y (Where Py =Z—)BrPn(Br)) de-
caying by processes allowed by the Franck—Condon
principle for class-II state decay (this is either fission,
over barrier B, or formation of residual nuclei in
shape II) and a fraction P+ Py..; changing back to
shape I. The third stage consists of this new fraction
P;_, g+ Py dividing as in the first stage, and if the
process is followed through and the infinite series thus
generated are summed we have for the final fraction
of decay to shapes I or II (I here includes fission),
respectively,

_ . Py
Fap =22 (Prn - Pyt "Prgay = =P P

n=0

;Tl(d) Ty + T
{T @) + Tray) Tucay + Tuy) = Tray Tuear)

(3.47)
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2 r
=—1CID (o"SeT _ oSt
Fuap = Z (P1~uPy—1)"ProuPr e A (e™er =€), (3.520)
=0
§ where
- PronPuany .
1-Pi Py Se:EfF1<:>+rxx(g)—A) (3.52¢)
T1a)T @) S¢=3(T1¢) + Trrey + 8) (3.524)
N (Tl(tl) +TI(A))(TII(:1') +TII(A))_ TI(A)TII(A) : A:[R2+4Fn—u)(rna)‘rlua))]llz (3.52e)
@ 48) R= rl(d) -I 1) = Tyreey - (37 52f)
. - ’ From Eqs. (3.52) any specific decay rate may be com-
The fractions for individual decay processes are con- puted. Thus the fission rate is determined from n, by
tained within these expressions. Thus the fraction of 5 ‘
decay by prompt fission, for example, is given by 37 = L1pnnaAT) (3.53)

Tya) T ' (3.49)
(T + Tray) Tuwy + Tuay) = Ty Ty

For decay of the compound nucleus excited initially
in a class-I shape the ratio of decay either by fission
or to residual nuclei of shape II, relative to decay to
shape I states, is therefore

Figy =

F<du’= Ty Tuen
Fup T +Tue)) Ty

(3.50)

This expression is remarkable for the factor T,/
(Ty1ay + Ti1@ry) Y which the ratio is reduced below that
expected for completely mixed compound nucleus mo-
tion, Ty /T s For the kind of fission barrier ex-
hibited by the actinide nuclei, fission decay (Ty))
completely dominates particle or radiative decay. If
the barrier A is much lower than B then it is expected
that T'g4) > Tp(s), and since, according to the theory
of reaction rates over a single barrier (Wigner, 1938)
T1a) =Tu4), EQ. (3.50) reduces consequently to the com-
plete mixing expression. If, on the other hand, B is
much lower than A, the factor Tya)/(Tya) +Tww)) is
much less than unity; and this implies a partial de-
‘coupling persisting between the class-I and class-II
states.

2. Time-dependent treatment

Such decoupling can be demonstrated more explicitly
(Bjdrnholm and Strutinsky, 1969) by studying the time
development of the system, with a population norma-
lized to unity at time, 7=0 in the first well, and set to
zero in the second well,

7,(0)=1, n,(0)=0.

The rate of change of these populations in time is given

by
on
Fp" == pym+ Tnephe (8.51a)
on, ’ .
——aTZ:P”,")nl— Tireyhss (3.51b)

where I';,, I';;(;, are the total width of class-I and
class-II states, being the sum of a decay width (I,
or I}y, respectively) and a width for shape transition
(Ty w1 Or Typyy). The solution to the coupled differ-
ential equation (3.51) is

1

m =55l

-s,
(=T, +Typgy)e™e

+(A+1"1(“—F”(“)e'sl’], (3.52a)
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and by integrating this over all time we find the branch-
ing ratio for fission T, /T,

rl(«mrnm
rl(g)r‘ll(g)— I(=II)" II(~1) * (3.54)

T

=N 00) =
Ty 2

Our immediate interest, however, is in the number of
nuclei remaining undecayed after time 7

N(1)=n,(7) + ny,(7)

_ ZLA [(A_R)e's37+(A+R)e_slr]' ‘ (3. 55)

This formula indicates the existence of two decay modes
of the coupled system. )

To determine the partial decay widths of the coupled
system from the branching ratios, such as Eq. (3.54),
it is necessary to compute the average total width. The
prescription of Bjgrnholm and Strutinsky (1969) is to
compute the time 7, for decay of the total population of
the system N to the value 1/e. This can be done nu-
merically, or approximations can be considered that
lead to an analytical expression for T,.

For weak coupling of the primary well to the secon-
dary well, I'|_;; can be neglected in comparison with
other widths, giving

R=T1 4 =Ty, . (3.56)
A=R+2T, (T, - T/ |R]. (3.57)

This leads to a principal component in N(7) with half-
life 1/S, corresponding to a total width T,

L~Lw+ L. (_r”d)_rn(d)) ’ (3.58)
(G = Gra)
and hence
rzrleurll(f) R (3.59)
L)

Strong coupling between the two wells operates when
either I';_;; or I';;  is larger than both the decay widths
L), Lizw), and in this case

r r +T r
I.~S = b ad § Sl § H7)Y 111" 1(d) . (360)
¢ ¢ t-11 T T rpeg
Hence,
r,~ SwTue (3. 61)
g+ L

The time development of a two-well system has been
generalized (Sperber and Aframe, 1972) to the case
where changing populations at different energies are
considered and the transition widths are energy depen-
dent. For this purpose a set of integrodifferential
equations must be solved.
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C. Formal treatment of fission reaction theory

The treatment of most details of fission reactions at
low energies requires the consideration of the role of
degrees of freedom other than the fission mode in more
detail than the simple damping incorporated in pheno-
menological theories. Theories that treat these other
degrees of freedom explicitly from the start can be re-
garded as formal reaction theories incorporating the
fission process.

A few formal reaction theories incorporating fission
have been proposed. The principal phenomenon to be
explained by such formal theories is the appearance of
intermediate structure in fission cross sections (see
the examples in Figs. 6 and 7). This can be accounted
for by quite general approaches. For example, Weig-
mann (1968) postulates the existence of an intermediate
state, which may be of complicated character, that
couples to the fission channel; this state is assumed to
be localized to the deformation of the secondary well.
The normal states of the system are coupled to the
open-particle channel and to the intermediate state by
the methods of Weidenmiiller and Dietrich (1966) and
Mahaux and Weidenmiiller (1967). Norenberg (1970)
showed how the intermediate state can be defined by the
generator coordinate method of Hill and Wheeler (1953)
and Griffin and Wheeler (1957).

More précise definitions of the complicated interact-
ing states can be made within the R-matrix theory of
nuclear reactions (Lynn, 1968a,b; 1973), and this al-
lows quantitative calculations of intermediate structure
and related phenomena for various assumptions about
the fission barrier. In the original R-matrix theory for
reactions involving absorption and emission of rela-
tively simple particles (Wigner and Eisenbud, 1947;
Lane and Thomas, 1958) discrete solutions (the internal
R-matrix states) of the Schrddinger equation are set
up in a nuclear internal region with boundary conditions
imposed at the entrances to the reaction channels; in-
ternal wave functions are written as expansions of these
basis solutions and enable the matching conditions be-
tween the internal and channel wave functions to be ex-
pressed; this leads in turn to the collision matrix (the
elements of which are defined as the amplitudes of
outgoing waves in the channel for incoming wave of unit
flux in any given entrance channel) and cross sections
for the reactions. One of the special features of this
approach for fission through a double-humped barrier
is the introduction of two sets of auxiliary internal R-
matrix states, the wave functions of the states of each
set being largely confined to deformation regions cor-
responding to the primary and secondary wells, re-
spectively, of the deformation potential. Just as the
R-matrix states of the conventional R-matrix theory
can be made by judicious choice of boundary conditions
to correspond closely to the resonances (“compound
nucleus states”) observed in reaction cross sections,
so these two sets of auxiliary states correspond ap-
proximately to the normal fine-structure resonances
observed in simple particle or capture reactions (class-

I auxiliary states) and to the intermediate structure
groups observed in fission cross sections (class-II
auxiliary states). It is to be emphasized that these
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latter states can be very complicated ones depending
on the many intrinsic degrees of freedom of the nu-
cleus as well as the prolate deformation mode; they
are thus to be described as ‘“compound states” with the
nuclear shape essentially confined to the highly de-
formed values associated with the secondary minimum.
The other special feature is the introduction of the
concept of the deformation channel. The channel en-
trance can be set at a fixed elongation of the incipient
fissioning nucleus, and this will normally be close to
a barrier peak in the deformation energy. In this re-
gion of deformation the nucleus can be expected to be
in a state of intrinsic excitation (Bohr 1956) analogous
to the states of excitation of the product nuclei in a par-
ticle reaction channel. In this review, the R-matrix
theory as thus extended to the fission process is em-
ployed as the principal framework for analysis and dis-
cussion of the detailed phenomena in near-barrier fis-
sion. This theory is therefore described more fully
below.

1. The Hamiltonian operator and explicit reference to the
deformation mode

In order to write the nuclear Hamiltonian in a form
suitable for describing the fission reaction in formal
R-matrix theory, it is necessary to choose a deforma-
tion parameter that will describe the separation of the
parts of the divided nucleus as well as small deforma-
tions of the original compound nucleus. A discussion
of deformation parameters that have been employed in
various aspects of fission theory is given in the Appen-

"dix. The deformation parameters described there can

be classified into those that are dependent on a descrip-
tion of the surface shape of the nucleus and those of a
statistical character, related to the individual nucleon
coordinates. The shortcomings of a surface shape
parameter in a formal reaction theory, namely, the
necessity of assuming a specific form for the shape that
will, moreover, be useful for all stages of the fission
process, can be avoided by using one of the statistical
parameters. At this stage we shall not choose a spe-
cific deformation parameter, but shall merely refer to
it with the generalized symbol . The remaining 3A-4
degrees of freedom (it being assumed that the three
degrees of freedom associated with the center of mass
have already been separated out) are known collectively
as the “intrinsic” degrees of freedom and are denoted
collectively by the symbol &,

It is now assumed that the kinetic energy operator
of the nuclear Hamiltonian can be separated into com-
ponents referring explicitly to the deformation parame-
ter 11 and the intrinsic coordinates £, respectively.
While it is possible to choose a deformation parameter
n that allows its kinetic energy operator to be indepen-
dent of the intrinsic degrees of freedom, it is not in
general possible at the same time to free the remaining
component of the kinetic energy from all dependence on
deformation. Thus

T=T,+T,n). (3.62)

Likewise the potential energy V(7, £) will not, in gene-
ral, be a separable function of 7 and £, and it is neces-
sary to find a prescription that will give an approxima-
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tion to the overall dependence of the potential energy on
1. The prescription that we choose is in the spirit of
Strutinsky’s theory of the deformation energy, and con-
sists of representing the potential energy for the defor-
mation by the minimum total intrinsic energy surface.
More precisely, of the eigenvalues ¢, (n) of the opera-
tor :

Hm)=T,(m+V®, &), (3.63)

for a fixed value of 1, the lowest eigenvalue &(7) is
taken as the deformation potential energy U(n). An in-
trinsic Hamiltonian term H,,, can now be defined for
some chosen value of deformation n,, and also a
“coupling” term H_ depending on both deformation and

intrinsic variables. Thus
H=H,+H,,(&n,)+Hn, £mn,), (3.64)
where
H, =T, +v(), (3.65)
Hine(§ 16) = Ty (1) = €0(110) + V(11,, £) (3. 66)
H =T n)=eon)+ V(n, §) = Hype(n,) . (3.67)

It is useful to be able to generalize the intrinsic Hamil-
tonian to any other value of deformation 1. . Therefore
we shall denote the eigenvalues and eigenfunctions of
H,.:(m) by 8,(n) and x,(n), and from the definition of
H,,., the eigenvalues § ,(n) are just £,(n) —g,(n), the
intrinsic excitation energies with respect to “ground”
at the fixed deformation 1. The eigenfunctions and
eigenvalues of H, are denoted by &,(n) and €,.

2. Form of the kinetic energy operator for the
deformation variable

In phenomenological models of the liquid drop type, the
usual procedure in setting up the Hamiltonian is to
write the kinetic and potential energy terms for irrota-
tional flow in terms of the shape parameters (denoted
here by a,). The quantal operator for the kinetic en-
ergy term is then written according to the Schrodmger
prescr1pt1on :

_n @
E‘/——aax( B da )’

[

(3.68)
where B, , is the relevant element of the covariant

inertial tensor, B is the determinant of this tensor, and
BM is the element of the related contravariant tensor

> B¥B,, =8%.
v

2y % %\ _ oy
Zi:(ax? Ty *azi)* 5,:{5?

(3.69)

The condition of orthogonality for the new coordinates
§; is

0, 0f, A 0&, 0E,  0&; 08
=i Z2k —2k 21 3k _
<6x{ ax, +ay, 0y, +az 9z )_6“" (.77
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Discussions of the ambiguities of this procedure, par-
ticularly when the shape variables constitute only a
part of the total degrees of freedom of the system, have
been given by Jensen and Koppe (1971), Dietrich (1972),
Hofmann (1972b), and Norenberg (1973). Briefly, it
turns out that the ambiguity in the kinetic energy term
for any single variable is equivalent to a curvature term
to be added to the potential energy.

As an example of the phenomenological procedure we
can take the simple quadrupole deformation parameter

B of Eq. (A7). For small values of 8 the kinetic energy
operator is
h—z 62
Ty=— 55 =% . 3.70
B~ ZBB aBz ( )

The inertial parameter B, for the irrotational liquid
drop is

B,=3AmR2/87, (3.71)

where m is the nucleon mass, so that Am is the liquid
drop mass, and R, is the radius of the drop. If the po-
tential energy has the quadratic form

V=4 Cgh?, (3.72)

with stiffness parameter C,;, as expected in the liquid
drop model, the solutions of the Schrodinger equation
in the B variable are the well-known Hermite functions
with eigenvalues

E":(n+§)ﬁw3:(nf%)h’(CB/BB)”z. (3.73)
The form of the kinetic energy operator for statistical
deformation parameters can be derived without am-
biguity from the Schrddinger form for the Cartesian
coordinates of a system of particles (here assumed to
have equal mass, m):

7 0?2 02 02
T3 2 (327 ot *327)-

3.74
v oz (3.74)

"The general equation for transforming the second de-
rivative in a particular coordinate, say x;, into the
second derivatives of a new set of coordinates §; is

2y 0%y (38,\* , 89 8%
o ;{853 (a_xl> 3, ax%}
0%y (3L, [0k
e (20)(52):

Hence, the generalized Laplacian term of Eq. (3.74) is

0y 0%k, | 0%k, 9%,
+ - —=2
7, > (ax BT

(38.175)

(8.76)

Hence, the summation over j#k on the right-hand side
of Eq. (3.76) vanishes for an orthogonal coordinate
system.

Equation (3. 76) can be formally expressed in terms
of the scale factors &,
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(3.178)

[T () )T

2y % 9%\ 1 9 [Mh, 39
,Z(ax?+6y?+32?)_ﬂkhk zj: 351[ Wi 9,

as

(3.179)

for an orthogonal system.

As an example of the application of Eq. (3.79), if the
deformation parameter n of a new coordinate set is
taken to be the quadrupole moment @ defined by Eq.
(A21), the kinetic energy operator is

_ E2(4Q +8AYY) 9%

To= 2m Q%7

(3.80)

where 72 is the mean square of the radial positions of the
nucleons (with respect to the center of mass). The iner-
tial parameter appropriate to the quadrupole moment -
appears in this operator as

m
== 3.81

Bq 4Q + 8A7*? ( )

For asymptotically large separation I of the two fission

products the quadrupole moment is
Q 2/&1‘42 lZZZM l2’

:A‘ A (3.82a)

where A, and A, are the mass numbers of the product
and M is their reduced mass. In this asymptotic situa-
tion the kinetic energy operator of Eq. (3.80) becomes

n? 9

“3M B (3. 82b)

To=
For near-spherical spheroidal deformation on the other
hand, the quadrupole moment can be related to the
spheroidal deformation parameter 8 [see Eq. (A22)]

3AR?
(511)1/ 2
and the inertial parameter B, ~(5m/24AR2){1 - (£)*/ 28}
The kinetic energy operator transformed into its form
for B in this limit is just
ﬁz 82
T 2B, %’

Q= -8B, ' (3.82c)

T,= (3.82d)

with the inertial parameter of Eq. (3.71) appropriate

to irrotational flow. .
The most easily handled of parameters of the statis-

tical class is the mean square radius parameter

1/2
®R= {Z(x3+y?+2?)} ) (3.83)
to which corresponds a kinetic energy operator
_ n? 0 3A-4 0 ) .
Ta= - me™ a0 (“R R/ (3.84)

3. General R-matrix theory
a. Green’s theorem for the nuclear internal region

The central relationship of R-matrix theory connects
the values and derivatives of the wave function of the
compound nucleus at the channel entrances. For this
purpose the compound nucleus is defined as an internal
region of the configuration space of all the nucleons in
the interacting system. The internal region itself is
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delineated by setting boundaries in the energetically
open reaction channels. At this surface the relation
between values and derivatives is deduced by means of
Green’s theorem. The wave functions of the Schrodin-
ger equation for the nuclear Hamiltonian in the internal
region are denoted by ¥, and ¥, for two energies E, and
E,. The left- and right-hand sides of the Schrddinger
equation for one of these solutions is multiplied by the
complex conjugate of the other solution; this is sub-
tracted from the transpose equation and then integrated
over the internal region, thus:

de[\Ile\Ifg‘—\I/g‘H\Ill]—_—(Ez—El)fd‘r\lfg‘\lfl, (3. 85)
where T denotes the internal volume. This can be re-
duced to an integral over the internal surface by Green’s
theorem. To do this the potential energy terms of the
Hamiltonian are assumed to have the usual self-adjoint
property, which allows them to vanish from the inte-
grand on the left-hand side of Eq. (3.85), leaving only
the terms which involve the kinetic energy operator of
H. Thus Eq. (3.85) becomes

EZ
(Ez —El) f dT‘I’;‘Ill = Lds(zB )(\Ilz*vn\lll - \I’lvn\l’i.‘)’
T c
' (3.86)

where § denotes the surface of the internal region, B,
signifies the inertial parameter of each channel c in
which a boundary of the internal region is placed, and
v, is the gradient operator normal to the surface §.
This integral can be expressed as a product of value and
derivative quantities at the channel entrances:

(Ez—El) de‘I’é.(\I”l: Z(V;CDIC_VICDQ(C)‘ (3‘ 87)
T c

The values V,_ and derivatives D, are defined as the pro-
jections of the wave function ¥ and its gradient against
a channel surface function describing the state of the
system in the channel for all degrees of freedom other
than the channel variable. The total set of channels in
the sum on the rhs of Eq. (3.87) comprises deforma-
tion as well as particle channels.

It should be noted that if the ratio of value to deriva-
tive for each channel has a fixed value (boundary condi-

. tion) independent of the labeling of the state, then the

states ¥, ¥, are orthogonal; this is the basis of the
definition of the R-matrix eigenstates (see Sec. III.C.
3.b.).

Equation (3.87) is a compact formal way of writing
a result which can probably be most easily demon-
strated by making expansions of the wave functions ¥ in
a way that is appropriate to a physical description of the
channels. First, consider a set of channels that are
characterized by the residual system (in configuration
space outside of the internal system) having a particular
grouping of nucleons (e.g., an alpha particle plus resi-
dual nucleus or a neutron plus residual nucleus); this
is the channel type « and for it a specific inertial para-
meter B, and a channel separation parameter p, can be
assigned. For the simple particle channels given as
examples above, the inertial parameter is just the re-
duced mass of the separated residual nuclei, and the
channel separation parameter is their radial separation
(measured between their individual centers of mass).
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The particular grouping of nucleons designated as a not limited to the external region, defined by a channel

single-channel type can occur in various states of in- boundary p, = R,, but can also be continued into the in-

ternal excitation and in different modes of relative angu- ternal region. However, if the channel functions ¢ are

lar momentum. Each combination of state of excitation limited to internal states of excitation that are all bound

and angular momentum constitutes a separate channel, and the wave function of relative motion u_ describes

denoted by ¢, and the complete wave function describing unbound relative motion, then the expansion (3. 88) is

the state of excitation and relative angular momentum incomplete in the internal region; completeness is to

is denoted by ¢ .. The wave function describing the be achieved by adding similar expansions over other

relative motion in the channel is denoted by #,(p,). The types of channels.

appropriate expansion of ¥, for the set of channels of However, with the limitation at present to the expan-

type a (denoted by c{a} is, therefore, sion (3. 88) and the appropriate rearrangement of the

kinetic energy operator for explicit dependence on the
¥, = E CMo, u""(pa (3.88) channel separation parameter p, and other degrees of
clal freedom (including the internal ones of the residual
with expansion coefficients C{”. Such an expansion is system) £(*,..., &%, say, Eq. (3.85) becomes

R,
(EZ—El)de\II;“\IJI:(EZ-—El)f...f PPy e AEE ...
A (

X hyger  dES® ZC‘2’¢*u‘2)*(p ) Z CP ¢, uP(p,)

clal
Pa &* 5 Tk uld
=1 ... h, dp_«..h, @) dE® C@C Y p* ( )[-“.t__ ( g )
Joo [ tratou g as o CTCP {0200 fh 3o, \7Pp, op,

- u“’ a Lh_?_zéf’_ _utz)*um
Hh o0, 1, 3P, e e
%[0 T 1 0.
7
- ¢ E T“(a) ¢>;*]} . (3.89)
7

The terms in 7,{*’ vanish so long as they involve bound states ¢.,, i.e., do not involve channels that are not of
type «. In this case the term involving the kinetic energy of the channel pair reduces to

f fh,a fZ(Da d‘f(a)---he},‘” dEg > cecWore,

clate’ {a}

(o AR DA AN T a(fuw)]ﬂa (-2 )Zc(z)cm[fa @ A u®) _ foul a(fauéz’*)]”a,
m 2m o

hza 9Py R ap o b 9P, hf,a 0P,

(3.90)

where f2(p,) is a factor giving the dependence of the product k() ... h{® upon p,. If the nuclei of channels of
type a are divided into A, and A - A, nucleons, respectively, the separation parameter is

1 i 1 2 (1% 1 z /1% 1 2q/2
pa"[(}i: 1=1 xi—A'Al j§;+1 xj) +<Z§yi_A‘A1 J=A741 yj) +(A_1 ;Z‘—A_A1 121:»120] ’ (3.91)

From this it is straightforward to derive

f @. () (a) *
1 A cee fi d&l ...d{k 4),:“ 5%‘0,&,
h_ﬁ— = m , (3.92) . . .
« which implies that the normalization of basis radial
and ' eigenfunctions (for the description of the internal re-
ﬁhc“’" < pZ=f2(p,) , (3.93) gion) appropriate to the channel is
j -3 a\Fal
=1 Ry
For channels of this type, the value and derivative f dp, f2(pufu,, =3,, .
0

quantities of the general Eq. (3.87) can be written

e 2 The same kind of analysis can be applied to channels

V"‘:<m_> C™RuMR,), (3.94) characterized by a deformation parameter 1, such as

o the quadrupole moment @ or the root-mean-squared
and : radius &. The appropriate expansion in this case is
PizRa) v [ 2 '
— cm| — u(")) (3. 95) = (n) (n)

pe=() o5 e, L ¥ I G20 ‘ (3.96)
respectively; here, M, =B, is the reduced mass of the (the deformation channel being labeled by the intrinsic
two particles in the channel. Note that the normaliza- state of excitation u), and the expansion of the volume
tion of the channel function is integral is
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no
(Ez_El)de‘Ilz*kIIIZI... hoydy - - by, dE,
T " tn
C *
x Z coow e, (ﬁz)[q)m* EN T T (Hh 23 @F )]
e euteu\2m/ Oh an K2 on Ih an\ k2 an

*
+ d)(z)*q)u)[xcu zj: ngXc'“ - Xe, JZ T(jx:‘“]} s (3.97)
where 7, defines the entrance to the fission channels. As in the separated-particle case, if the expansion (3.96) is
limited to bound intrinsic wave functions x, that are appropriate to a description of the fission process, the term on
the right-hand side involving the kinetic energy operators th vanishes. On the other hand, if the expansion (3.96) is
defined to be formally complete, this term corresponds to the contributions to the surface integral from the other
(separated-particle) channels of the kind already dealt with in Eq. (3.90). The contribution to the surface integral
can now be written as before
f fh Ty b e E CRCYXEXe,
Cusu
(L) [Lnir ey Sl 2Afel] ~(3) ) oo (g AR IS4 U )7,
2m h?) an h?r aT) Tmin n Bn hn aT) Wmin
(3.98)

Here the factor f is just R4 /2 when 7 is chosen to be
®. The right-hand side of Eq. (3.98) becomes a term
in the general equation for the volume integral (3. 87)
with the value and derivative quantities now written

ne 1/2
Vc‘,:(m> Ceufo® (o), (3.99)
1/2
D%z(ﬁ> c, [Mml] , (3.100)
2B, » on —_

where the inertial parameter B, is equal to mh2 and f,
denotes f(n,).

b. R-matrix eigenstates

In standard R-matrix theory a special set of eigenfunc-
tions X, witheigenvalues E, is defined; the members of this
set are solutions of the complete Schrédinger equation
within the internal region, but with specific real and ener-
gy -independent boundary conditions applied at the channel
entrance. The value and derivative quantities of these spe -
cific eigenfunctions are denoted by ¥y and 8,(,, rather
than by the notation V, D, already employed [see Eqs. (3.94)
(3.95) and (3.99), (3. 100)] for these quantities for gen-
eral wave functions of the internal region without speci-
fied boundary conditions. The boundary conditions of
the eigenfunctions X, are denoted by

QL_(QL_CB_

(3.101)
e

The substitution of this boundary condition in the
Green’s theorem relation of Equation (3.87) establishes
the orthogonality of the eigenfunctions X,, which we
shall refer to from this point as the R-matrix eigen-
states.

c. The central R-matrix relationship

The fundamental R -matrix relationship, which states the
relation between the value and derivative quantities of any
internal wave function ¥, isgiven in terms of the values
¥y (Which are commonly known as the reduced width am-
plitudes) and the eigenvalues E, of the R -matrix eigen-
states X,. The general wave function ¥ atenergy E is ex-
pandedin terms of the R -matrix states
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(3.102)

‘I’:Z A,
Y

(note that this is not a uniform expansion), and the ex-
pansion coefficients

A)t:deX;f\If (3.103)

are obtained from the Green’s theorem reiationship,
giving finally the required equation

VC':Z Rc’c(Dc—CBch): (3 104)
c
where
Yace
R, =2 Lwhe (3.105)
py 2

d. Outgoing and incoming wave functions

The collision matrix of the nuclear system isobtained by
matching the sum of incoming and outgoing waves in every
channel to the internal wavefunction through Eq. (3.104) and
the logarithmic derivatives of the outgoing waves in the
channels. The outgoing wave O, in any channel is de-
fined as the solution, with asymptotic character of in-
creasing separation or extension, of the component of
the Schrddinger equation referring only to the channel
variable. The character of increasing (or decreasing)
separation is established by calculating the flux in the
channel from the asymptotic wave function. As exam-
ples, the outgoing wave O, in an s-wave neutron chan-
nel has the form

0, =exp(ik.p,), (3.106a)
while an incoming wave I, is
I,=exp(-ik.p,), A(3. 106b)

where the wave number %, is V(2M_E/7%?). For particle
channels, generally both these functions are solutions
of the radial Schroédinger equation in the channel, writ-
ten as

82
[Bpi -

2M

],

2M
e -

—=¢(E-¢,)0,, (3.107)
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(for the outgoing wave, and similarly for the incoming
wave) where g, is the total excitation energy of the resi-
dual particles, M, is the reduced mass of the residual
particles in the channel, and U, is the potential energy
between the two residual particles in the channel, in-
cluding the centrifugal potential term %%1(,+ 1)/
2M p%. Further details of these wave functions are
given by Lane and Thomas (1958).

The logarithmic derivative of an outgoing wave in
an energetically open channel is complex, and its real
and imaginary parts are known as the shift S, and pene-
tration P, factors, respectively:

LCESc+iPc=[—B—9 391] . (3.108)
pe=Re

O, 9p,
For fission channels defined at some point of defor-

mation 7, before the scission point, some reservations
have to be made in defining similar wave functions and
related qualities. This is due to the presence of a re-
gion of mixing forces between the channel deformation
and scission point. This already implies that a unique
excitation energy equivalent to the £, of Eq. (3.107)
cannot be defined for the full extent of the channel.
Therefore an equation of the type (3.107), namely

R [0%(f8) _ 0%f B
——273-[ o —‘Panz]+[’0(n)—E+8u]f<I>—0,

(3.109)

would have to be understood in the sense of being valid
for a specific internal state energy §, as defined by the
eigenvalues of the Hamiltonian (3. 66), in the immediate
neighborhood of the channel deformation, while beyond
this point the potential energy term would require gen-
eralization to describe the deformation channel mixing
terms, and after the scission point a complete super-
position of true fission product outgoing waves must
result from the original wave O,, with their fluxes (in-
tegrated over the full solid angle) totalling unity. From
this description, however, some incoming waves for
different channels u’ must occur in principle and will
affect the normal R-matrix formulation. This is further
discussed in Sec. III.C.3.f. For the present we as-
sume that such ingoing wave components are negligibly
small, as indeed can reasonably be expected if the
channel deformation parameter is close to an outer
saddle point before a long, monotonic potential en-
ergy descent towards the scission point. With this
assumption we can define the penetration and shift fac-
tors for a deformation channel in direct analogy with
Eq. (3.108): )

Lu=Su+iP“:[—f— 3’2&] . (3.110)
Mu="No

0, 9

e. Deduction of the collision matrix and cross sections

The collision matrix for any setof reactions passing
through a common compound system is defined in terms
of the amplitudes of outgoing waves generated in the
exit channels of the reaction by unit amplitude wave in )
an entrance channel. For the purpose of this definition
the radial wave functions of Eqs. (3.106) and (3. 107)
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are multiplied by the internal wave function ¥, describ-
ing the state of excitation of the channel particles and
their state of relative angular momentum, and are di-
vided by the channel radius variable and the square root
of the relative velocity v, of the channel particles at
infinite radius; this last factor ensures that unit ampli-
tude of the incoming or outgoing wave corresponds to
unit flux spread over the full unit sphere. These ex-
tended definitions of the incoming and outgoing wave
functions are denoted by g, and ©o_:

5c = pzlwc(ilylm)lc/vélz ’
Ocnglwc(i’ Ylm)oc/v:'/z .

Similar functions for the deformation channels are
defined by

9y :f-lxulu/vt/z ’
0, =fXu0,/v./?,

v, being the rate of change with time of the deformation
variable in the channel pu.

With these definitions the general solution of the wave
function in the external region can be written

(3.111a)
(3.111b)

(3.112a)
(3.112b)

¥ :4‘;(5, S =Us 0,09, (3.113)

c
where the U, , are the elements of the collision matrix
and the y, are the amplitudes of the incoming waves in
the various channels c¢c. The scattered wave into any
channel ¢’ may be defined as the difference between the
actual wavefunction ¥ in the channel and the incident
wave:

'I’scat,inc’: Z yc(eﬁwcéc’c_ Uc’c)Oc" (3 114)

c

Thus if the y, correspond to bombardment of a target
nucleus by a unit flux plane wave of projectile particles,
the cross section for producing a scattered wave is
given by the squared modulus of this expression after
integrating over the channel wave function and solid
angle elements. Full details of such cross-section ex-
pressions are given by Lane and Thomas (1958); here
we simply quote the well-known expression for the
cross section integrated over the full solid angle:

m
Occ':E‘z‘ngﬁcc'fUc'c|2~ (3.115)
c

Here g, is a spin statistical factor depending on the
total angular momentum J of the system and the spins
of target and projectile nuclei.

The values and derivatives of the wave function of Eq.
(3.113) at the channel entrances must equal those of the
wave function of the internal region. Therefore they
must satisfy Eq. (3.104). The value and derivative
quantities obtained from Eq. (3.113) are

72 /2 1
Vﬁ(gm) ;375(% C—CZ, yc'UcaOC), (3.116a)

72R_\'/? 1 oI 30
— c ol ’ 20, ‘
Dc_< ZMC> 1)‘1:72 (yc apc ; Ve Ucc’ apc> (3 116b)

(with precisely similar quantities for the deformation
channels p), and the matching to the internal value and
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derivative quantities by means of the R-matrix relation
Eq. (3.104) and rearrangement leads to the expression
for the collision matrix

U=QP!'?{1-R(L-®)}{1 -R(L*- ®)} P'/2Q.
(3.117)

Here, @, P, L, and ® are all diagonal matrices repre-
senting a hard-sphere phase shift (22=1_/0, at p,=R_),
penetration factors, outgoing-wave logarithmic deriva-
tives, and boundary conditions at the edges of the inter-
nal region, respectively.

f. Modifications to the R-matrix formalism for interactions
in the deformation channels

The theory developed so far has introduced the conceptof
deformation channels, and by implication such a channel
doesnotnecessarily have to be defined asopening ata de-
formation corresponding to the separation of the nuclear
system into two distinct (fission product) nuclei. In-
deed, there are great advantages, for the discussion
of “total fission” cross sections or of cross sections
for phenomena obviously governed by features of the
barrier, in considering deformation channel entrances
as being close to the barrier; for one thing there will
be only a limited number of deformation channels then
entering the discussion, rather than the very large num-
ber that would correspond to the fission products in all
their various states of excitations and angular momen-
tum relationships.

However, the obvious difficulty arises when it comes
to making detailed calculations using the theory that the
form of the logarithmic derivative, hence the shift and
penetration factors, of the outgoing wave functions in
the deformation channels is not easily established.

This is unlike the particle channels for which very pre-
cisely defined and calculable shift and penetration fac-
tors can be established at channel radii sufficiently far
outside the nuclear interaction region. There are two
distinct problems here. One is that the form of the po-
tential energy function between saddle and scission
point, and hence of the outgoing wave function is not
precisely known. For any assumed potential form,
however, the outgoing wave function and its logarithmic
derivative [Eq. (3.110)] can be calculated numerically
by starting with a simple form for f, [such as exp(ikn)]
at a very large deformation and using the step technique
described in Sec. III. A. 2. 5. ({). Typical numerical re-
sults achieved by this procedure that also demonstrate
the dependence of shift and penetration factors on the
form of barrier assumed are shown in Fig. 35.

The second and more fundamental problem is that the
region between saddle and scission in the deformation
channel cannot be described as a simple potential en-
ergy function in the deformation degree of freedom
alone. Interaction with other degrees of freedom ex-
istsinthis zone. This interaction may be comparatively
weak for the lowest spin-parity 0* deformation channel
of even compound nuclei (another manifestation of the
superfluidity phenomenon) but is certainly strong for
most other deformation channels. The consequence is
that channel mixing will occur, and an outgoing wave
entering the interaction zone at low deformation will
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FIG. 35. Typical shift and penetration factors for a single bar-
rier peak with channel entrance at the deformation correspond-
ing to the peak. The barrier falls to —180 MeV below the peak.
The inertial parameter is 4.015 x 10748 gcmz. Three inverted
harmonic oscillator barriers are shown, denoted by «.-. -Fw
=0.6 MeV, —7zw=0.8 MeV, ---7w=1.2 MeV. The curve ——
denotes a linear ramp falling through 90 MeV over a deforma-
tion interval of 1. —-— denotes constant potential for an inter-
val 0.194 from the channel deformation, followed by a linear
ramp, *** similar, but the constant potential is limited to a
deformation interval of 0.1.

reappear in very many different channels. Normally,
the waves in the new channels will be outgoing waves or
incoming waves with much reduced kinetic energy in the
deformation mode (thus having very weak amplitudes

at the channel entrance), and the probability that an in-
coming wave will appear in the original or in a.channel
with comparable kinetic energy should be negligible.
The actual numerical treatment to obtain shift and pene-
tration factors can be accomplished phenomenologically
using a numerical method similar to that described
above, but with a complex potential energy function in
the channel.

Finally, it is desirable to be able to treat formally the
case in which incoming waves returned from the inter-
action zone in the channel are not negligible. This is
particularly likely to occur when the most significant
feature of the interaction zone is a potential trap of
some kind. The formal treatment that can be used is
the “extended penetration factor method” (Lynn, 1973).

In deformation space an intermediate region encompass-
ing the interaction zone is introduced, bounded by Ne
(the deformation channel entrance) and N4 2 value of
deformation beyond the interaction. The Green’s
theorem relation [see Sec. III. C.3a and Eq. (3.85)] for
this intermediate region, the volume of which is de-
noted by 7(int), is
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n
arew,= 3 {2 2 [ on(222)

e L)L,

c

(E,~E))

T(int)

(3.118)

(The sign t refers to taking complex conjugate of the
intrinsic components alone of the wave function.) In
this expression the labeling of the channels according to
intrinsic states x, can refer to different sets of intrin-
sic states, one set for evaluation of the terms at 7, and
the other for n,. Value V,, and derivative D ,, quan-
tities for the deformation channels can be defined at
values of 7, and 71, in analogy with Eqgs. (3.99) and
(3.100). Eigenstates for the intermediate region are
denoted by Z, with complex eigenvalues F,; they are
orthonormal complex solutions of the nuclear Hamil-
tonian in the intermediate region with boundary condi-

tions
Dy (1)

by tel —@® 3.119
Vacu (M) * ( )

My _ 1 (8fd> m) .
Dy, € =S +iP
Vi (M) — @ £4(n,) on /., w(ng) +iP,(n,),
(3.120)

in which &,,, is a solution of the outgoing-wave type of
the Schrédinger equation,

(T, + TS cwr=e"20 ),
the enefgy being that available to the deformation mode,

eEM=E-§,(n,). (3.122)

(3.121)

A general solution of the Schrddinger equation at energy
E in the intermediate region can now be expanded in
terms of the eigenstates Z, (in analogy with the develop-
ment of Sec. III.C. 3. ¢), and the logarithmic derivative
of this solution at 7, in the channel u can be shown to

be

Pl =50 + 1P =8, - 3 Ril ) G
u u)Nle
(3.123)

the (complex) intermediate R-matrix element being

R = A A
int,uup Z FX E

(3.124)

g. Alternative expressions and approximations for the
collision matrix

Equation (3.117) is in general much too complicated
for practical use. In the usual case of nuclear re-
actions there are very many channels available as
well as an infinite number of eigenstates. Usually,
many of the c¢hannels will be closed, but this fact
is not expressed in the R matrix and the problem
has to be faced, at least formally, of inverting the non-
diagonal matrix of very large order {1 - R(L —®)}. The
methods for doing this are reviewed in detail by Lane
and Thomas (1958).

(2) Single-level formula. The commonest and most
drastic simplification is to truncate the sum over
levels in the R matrix [Eq. (3.105)] to a single term;
the remaining terms can be either ignored or repre-
sented by a diagonal constant.. With this simplification
in the physics the matrix inversion can be carried out
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Here a brief synopsis is presented.

exactly. The result for the reaction cross section
(¢’ #¢) is the well-known single-level Breit—Wigner
formula

g rh(c)rh(c)
cc’ k2 J (E —A E)z ri ’

o (3.125)
where T, ), I';(, are the partial widths for channels ¢
and ¢’, T, is the total width, and A, the level shift.
These are defined in terms of the R matrix reduced
widths and the penetration and shift factors by

Tyor=2P Y50 » (3.126)
T= 2 Thens (3.127)
A= D, Ser =B WWien » (3.128)

where the reduced width amplitudes v, ., are defined
in Eq. (3.101a).

(é2) Level-matvix formulation. A formal method of
inverting the matrix {1 -=R(L -®)}, which, in practice,
allows the truncation of the level sums in the final:
cross-section expressions to any required degree, is
to transform from the form (3. 117) to a form involving
the inversion of a level matrix C (Thomas, 1955; Lane
and Thomas, 1958);

Uc'c :Qc’ﬂc(bc'c + 2“’2/22 -yh(c')yh'(c)An' Pélz) ’ (3' 1293)
A’
A=C™,

Con = (E,

The generalized level shift and width quantities here
are defined by

(3.129b)

—E)5,, — Ay, — 4T, . (3.129c¢)

Ay = Z (S = B )V (o) Y retery » (3.130a)

Taw=2 ; P o nenvien - (3.130b)
It is numerically feasible to carry out the inversion of
Eq. (3.129b) with the explicit retention of several
levels. Thus Egs. (3.129)formavery useful many -level
formalism for practical situations, and were intro-
duced into the analysis of fission cross-section data in
the neutron resonance region by Vogt (1958, 1960).

Even the narrow level approximation of this form-
ulation contains first-order level-level interference
terms in the cross section. In this case the level ma-
trix C and its inverse A are diagonal. In addition to
single-level Breit-Wigner terms of the type (3. 125)
(summed over levels A) in the cross section, inter-
ference terms occur having the form

m 1/2p1/2 p1/2 p1/2
Ocer, tnt = = 8y Z rx(c)rx(c')rx'w)r).'(c ‘)
c pesy

(E,-E)E,—E)+iI,T,.

X
[(Ey - EY +iTX)[(Ey - EY +3T%] °

(3.131)

(iii) Reduced R-matvix formulation. An alternative
way of restricting the R-matrix so that inversion of
1 -R(L -®) becomes a numerical possibility is the re-
duced R-matrix method (Teichmann and Wigner, 1952;
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Thomas, 1955). In the most restricted and useful form
of this all the closed channels and most of those only
slightly open [expressed by their partial widths, as de-
fined in Eq. (1.126), being very much smaller than the spac -
ing between levels] are eliminated in explicit reference
in the expression for the collision matrix. The colli-
sion submatrix U,, referring only to the explicitly re-
tained channels has a form analogous to Eq. (3.117):

Urr: QrP:/Z[l - Rrr(Lr - mr)]-l[l - R,.,.(L,. - (B,.)]P;l /297 .

(3.132)

The reduced R-matrix R,, now has a complex form

~ DeVaen 3.133
(Rrr)cc’ 2 E)‘ - Af—E _ %er ’ ( . a)

G,(C,)G,(c,exp[i(ﬁ,(c,) + El(c))]
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where the level shifts and width quantities are sums
only over eliminated channels, denoted as a subsetby e:

Ai = Z: (Sc” _(Bc")yi(c”) (3. 133b)
c”ine
T$=2 2 Pudien- (3.133c)
c’ine

The application of this formalism to fission in particu-
lar was introduced by Reich and Moore (1958).

(iv) S-matvix formulation. An alternative formula-
tion of the collision matrix stems from its analytic ex-
tension into the complex energy plane (Humblet and
Rosenfeld, 1961). This formulation, the S-matrix
theory, is obtained from the expansion in the complex
energy plane about its poles at the complex energies
E,(H) -—%il",‘”’:

Ve =0erc = "’c"”c{Qc'C -2 [GAE,)C(E) (E-E +§i1‘§‘”)} :

Here the @, are threshold factors, containing the ex-
plicit energy dependence on centrifugal and coulomb
potential barriers, Q.. is a background function, regu-
lar and slowly varying, the G, , are partial width am-
plitudes associated with the pole /, and the &, are
associated phase factors. The numerator of each term
in the sum of Eq. (3.134) is the residue of the pole at
E{M _LipD,

In the narrow-level approximation there is an obvious
relation between these poles and the R-matrix parame-
ters, that is, E{*’ ~E, - A,, T'\® ~T,, G2, ~Ty(, ~nm,
where 7 is an integer.

When the narrow level approximation is not valid
there is no such simple correspondence between the
poles and the R-matrix parameters. Resonancelike
features in the cross section are obviously much more
closely related in width and position to the S-matrix
parameters than to the R-matrix parameters. It is
often useful therefore to be able to deduce the S-matrix
poles from the R-matrix parameters, and this is done
by diagonalization of the level matrix C appearing in
Eq. (3.129c¢). Special cases of such diagonalization
(mostly for two R-matrix levels) are discussed by
Lynn (1968a, 1966b). For example, when two R-matrix
levels overlap [the sum of their widths as defined by
Eq. (3.127) is less than half their separation] and the
bulk of their widths is confined to one or few channels,
there is a strong repulsion of the corresponding S-
matrix poles in the imaginary direction in the complex
energy plane (and also attraction in the real direction).
This implies that the imaginary components of the
poles, and hence the widths of the corresponding reso-
nance features in the cross section, are, respectively,
much larger and much smaller than the larger and
smaller of the two R-matrix level widths. The usually
dominant narrow peak that thus appears in the cross
section, surmounting a much less conspicuous broad
hump, is termed a quasiresonance (Lynn, 1966b).

Numerical methods have been developed for deter-
mining the S-matrix poles for several R-matrix levels.
These involve finding the zeros in the complex energy
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(3.134)

'plane of the determinant of the level matrix C [Eq.
(3.129¢)], followed by numerical integration of the
collision matrix around a small circular contour sur-
rounding the poles thus determined. Examples of the
results of such procedures have been presented by
Lynn (1969).

4. Introduction of phenomenological aspects of fission
into the formal reaction theory

a. The double-humped fission barrier

The potential V(n) of the deformation Hamiltonian defined
inSec.III.C.1 [Eq. (3.65)] cannot, asyet, be calculated
from first principles. Itisnecessary to deduce it by using
theories that have some phenomenological aspects. The
original theory of this kind was the liquid drop model
(see Sec. II). If this is taken to provide the classical
analog of the term T,(n)+ V(n, £) of Eq. (3.63), which
is just £,(n) [=U ()] in the classical limit, it gives a
function for U that has a minimum at values of 7 corre-
sponding to the sphere, rises and passes through a
maximum (the fission barrier) for prolate, axially
symmetric deformations, and finally reaches (asymp-
totically, for the separation into two smaller particles)
a value that is considerably lower than the spherical
value (for nuclei heavier than iron).

Particle shell effects are added in a semiempirical
way to the liquid drop mass in the model of Myers and
Swiatecki (1966) (see also Sec. II). These are at maxi-
mum for the sphere and are attenuated for larger dis-
tortions. They affect the position and magnitude of the
ground-state minimum of V(1) but do not affect the bar-
rier.

Shell effects have a much more dramatic influence on
U (so far as fission effects are concerned) in the theory
of Strutinsky (1967a, b) as described in Sec. II. The
principal term of T,(n) + V(n, £) is taken to be the static
liquid drop energy for deformation . To this is added
the sum of single-particle energies computed on the as-
sumption that V(n, &) is a static, single-particle poten-
tial well of fixed deformation 7, and from it is sub-
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tracted a similar sum computed over a suitably
“smoothed-out” (shell-averaged) single-particle spec-
trum. That this procedure gives a qualitatively rea-
sonable picture of the behavior of £,(n) has been checked
by Vautherin and Brink (1972) who calculate this quan-
tity directly from the Hamiltonian term T,(n)+ V(n, &)
by a Hartree—Fock method with the constraint of fixed
quadrupole moment. - The Strutinsky prescription for
the deformation potential U(n) results in a double-
humped fission barrier for nuclei in the general range
of thorium to curium and, to a less dramatic extent, on
either side of these limits. It is the purpose of the re-
mainder of this section to survey, using the R-matrix
development given above, the more detailed theoretical
consequences for fission reactions of this kind of bar-
rier.

It is useful, at this point, to recall the definition of
some quantities which can be used to characterize the
barrier, at least in an approximate fashion. The value
of the potential atn, is labeled v;, at M itis U,, atny, U
and at 1y, Ug. In the neighborhood of each of these de-
formations it is generally assumed, for calculational
purposes, that the potential energy U is harmonic, and
that the four harmonic segments join smoothly to each

other. Thus, in the region of 7,
V=1, +3C (-, n<n, (3.135)
around 17),,
| V=1, —3C,(M=m,)°, 7 <<y (3.136)

and similar equations for the regions around Ny and 7ng
have already been given as Egs. (3.31) [Eq. (3.136)
now replaces the first of those equations]. The joining
point 7, is given by

2(v, —U;)C, \*/2
= Y S S X §
Ny =T,4 (CA(CA+CX)> , (3.137a)
with the condition
=0+ (Ca/C)m, = my) . (3.137b)

The other joining points are given by Egs. (3.32). The
curvature coefficient is seldom referred to directly,
but rather through the real or imaginary vibrational
frequencies,

rw =[C/By ()2, (3.138a)
Rwy = [Cry/By(nyp) M2, (3.138b)
ihwy=[-C4/B,(n) ]2, (3.138c)
ifwg = [~Cg /By (ng)]*'2. (3.138d)

The last two appear in the expressions for the trans-
mission coefficient of a wave through an inverted har-
monic barrier. For the barriers A and B separately,
the relevant transmission coefficients are

- 1
A= T exp{—[27(E = V,) /7w, ]}

(3.139a)
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. 1
B~ 1+ exp{—[zﬂ(E —'UB)/;ZwBH

(3.139b)

and can be used in the semiquantitative discussion of
fission rates through the double-humped barrier as
parametrized above, provided the energy is not too far
below the heights of the barrier peaks.

b. [llustration of vibrational states of the double
potential well: class-1 and class-1/ vibrational states

The nature of the wave functions ®(n) of the quasidis-
crete states of the deformation mode that occur for the
double potential well that thus appears in the Strutinsky
picture of the deformation energy of actinide nuclei is
graphically illustrated by numerical calculation for a
double rectangular well (bounded by an infinite poten-
tial at the inner wall of well I). For wave functions (un-
normalized)

@(n)=sinKn, 0<n<n, (range of well I)

=ae™ +be*, 1,<n<n, (range of barrier A)

=c sin(kn+06), n,<n<n, (range of well II)

=de™, n,<n (range of barrier B)

the matching conditions are
cot(kn,+8)==\/k,

1 _),ezx(nz-nl) K

cot(k172+ 6)=W 'l; s

y(zéeml); K+ K cotkn,

a K — K cotKm,

Numerical solutions of these equations are shown in
Fig. 36. The striking degree of clustering of the wave
function within either one well or the other leads to

the classification of the wave function; those with ma-
jor amplitude within the deeper, primary well are
class-I vibrational states and those concentrated in

the secondary well are class-II vibrational states.
Note that the energy eigenvalues of states of either
class are very little perturbed from the values they
would have if the opposite well were filled in. Note
also that the total number of nodes of the wave function
no longer gives the ordering of the vibrational state
within its class. Thus the “zero-point” vibration in the
class-II well {1 has three nodes, indicating that it is
weakly “coupling” with the class-I vibrational state
o0,

c. Amplitude relationships of class-1 and class-1/
vibrational states

The numerical illustration of the last section suggests
a systematic way of calculating the special features of
the vibrational wave functions of a double potential well
of more general shape (Lynn, 1968b). From the double
well separate primary and secondary wells [denoted by
vU,(n) and V,(n), respectively] are constructed in the
manner shown in Fig. 37 so that U,(n)+T,(n)=T(n), the
origin of the energy scale being taken as zero. The
modified asymptotic end-values are equal to the height
of the intermediate maximum of the double well. The
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FIG. 36. Eigenfunctions of a double rectangular well with the
following specification: V;=0.0, 11=0.4, Uy=6 MeV, 71,=0.5,
V=2.5 MeV, n3=0.8, Up=6.0 MeV, 2B/k’=246.5.

eigenvalues E,f:’ and eigenfunctions ¢™ of the Schré-
dinger equations for the separated wells #n,

(n)
Vn

[T+ v (e (n) =€ (3.140)

’

are calculated, and the solutions for the Schridinger
equation of the double well are written approximately

@, ~a,0+b,¢,2, (3.141)
the two wave functions appearing on the' rhs being
(usually) a pair closest in energy. Normally one of the

two coefficients a,,b, is close to unity (giving the class

J

4[A€<‘)2(11) =Vza2 fd?] ¢

The double-humped fission

1)
vy

barrier

A

TOTAL POTENTIAL (v)

o

WELL 1(w)

WELL 2 ()

v

DEFORMATION

FIG. 37. Construct for separate primary and secondary wells.

of ¢,) and the other is small. Occasionally more than
one of the small amplitude terms will contribute com-
mensurately, and Eq. (3.141) will need to be general-
ized accordingly; in this case a perturbation treatment
will normally suffice.

The determination of the coefficients a,,b, of Eq.
(3.141) can be carried out as follows. The wave func-
tion (3.141) is substituted into the Schrédinger equation
for the double well, the result is multiplied on the left
by ¢!’ or ¢,2’, and integration over the full range of 1
leads to two equations in a, and b, which can be dia-
gonalized by the usual method. The result for the
eigenvalues is

1/2
(2)
¢u2>—U1(12)U2(12)+ ‘Uz(u)'ux(zzzl

A€ 1
€,= €V + 307 S | (A~

where

Ae=€® -,

'Un(lm)=fdrl ¢1§: )‘1’5:)"3"(77) ’

) (1) 4 (2)
A€+V 50+ Vyayy "('Ux(xz)*'uz(xz))fdn o0 ¢’|f§
A€ =

, (3.1422)
1 —(fdn¢>.fi’¢.f§’>2
(3.142D)
(3.142¢)
2
—AE( dn ¢v(1)¢lf2))
, Janosres (3.1424)

mod ™

1-(fanopo)
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The ratio for the amplitudes is

€ —¢,+V

ll

QLD"

2a0) . (3.143a)
Y (A€+€(n_€ )fdn(pu)d)(z)_,_.uum)

(€(1) fdn¢(1)¢(2)+vz(1z)

[§%)
L A€+ €,V —€,+V, (5,

QL@"

(3.143b)

If v signifies a class-I vibrational state; the eigenvalue
is approximately

~e 1) (1) 4 (2)
€, 7€, +U2(11>_U2(12)fdn ¢u1 ¢u2

O020V2a2) = Va1V o)
€@ —eW ’
2 1
(3.144a)

if the matrix elements (3.142¢) and overlap quantities
are small compared to Ae. The amplitude ratio, from
Eq. (3.143a), is then

ézz _ D202
a

re (3.144p)

v
if terms of second order in T,, the transmission co-
efficient through the intermediate barrier (see Sec.
III.C .4.a), are dropped.
Similar equations hold for a class-II vibrational
state:

€ "'Ux(zz)—'Uluz)fdn‘;b(l)‘i’m
. V1a2)V2a2) = V21 Vicee)
Ae ’
(3.1452)
a Vy 0y (€2 = €m)fd7l A DE =V, (135 00)
E"z , (3.145b)

(2) ) ) )

Y ( —-< ) _[dnd) : ¢(2 (iu(:)‘fufi))vzuz)
which is just U, ,,,/(€ ‘2’, 6,2’). When €’ and €2 are
very close

(l 6152) - Euf;)l < [t1(12)|)

it is clear that a,~b,, and there is no obvious categori-
zation as a class-I or class-II state. However, for the
range of inertial and potential parameters that are rel-
evant for the actinide fission barriers, this kind of de-
generancy is extremely unlikely. The band widths with-
in which the closeness condition, given above, is ful-
filled, are approximately proportional to (T7,)'/2. The
constant of proportionality is the square root of the con-
stant given in Eq. (3.148) below in connection with the
amplitude of mixing of type 1 and 2 states. For an in-
termediate quadratic barrier with Zw, ~1.0 MeV [see
Eq. (3.138c)] this bandwidth is already only a few keV
for states 1 MeV below the barrier and is rapidly at-
tenuating (by a factor ~30/MeV); this is to be com-
pared with an expected spacing, the S-phonon energy,
~0.5-1.0 MeV for the basis states.

In the approximate solution of the Schrédinger equa-
tion with the wave function in the normal case the values
of the coefficients @, and b, are very close to the values
given by first-order perturbation theory. For a class-I
vibrational state, a,~1, and

(P10, 02)

v €Vi _Euz2 (3.146)
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FIG. 38. Intensity of the minor component (tail in oppositve
well) of class-I and class-II vibrational wave functions of the
double-well potential shown in the left-hand part of the figure.
The basic phonon frequency in both wells is zZw= 0.8 MeV.

[in agreement with Eq. (3.144Db)].
tional state, b,=1, and

~<¢l§2)|«vll¢'§1)>

vE T e @ — e
EVZ €Il1

For a class-II vibra-

(3.147)

The small contributions to the wave function that might
arise from other states of the potential U, can clearly
be calculated in the same way. '
The matrix elements of U, are quite readily and ac-
curately calculable by straightforward digitial com-
puter methods. From the WKB approximation to the
wave function ¢ and ¢ {2’ in the barrier region it can

‘be shown that the strongest factor in the amplitude ex-

pressions of Eqs. (3.146) and (3.147) is the square root
of the transmission coefficient through the intermediate
barrier [refer to Sec. III.A.1 and Eq. (3.139)]. This is
borne out by the numerical computations?. A graphical
display of the matrix elements required for Eqs. (3.146)
and (3.147) for all the eigenvalues of a typical double
potential well is shown in Fig. 38. If the empirical re-
sults are expressed in the form

KT 4

2
b= (E’;i) — €.,§ B (3.148a)
for class-I states and
a? KT (3.148Db)

e A
(€(2) €5i))2

for class-II states, the constant K is found to have the
empirical value 0.006, which is close to the expected
“statistical” value of Zwy(Fw)?/327, where 7w, is the
smaller of Zw; and Zw;;. In general, for other wells
with less uniformity among Zwy;, Zw;, and Fw,, it is
found that K lies within a factor of 2 of this “statistical”
value.

d. Boundary conditions; shift and penetration factors

The discussion above of class-I and class-II vibra-
tional states in the deformation potential U (n) for the
double potential well feature of the fission barrier was
made with the assumption that these states are dis-

2For precise computation Equation (3.143b) should be used
for class-I states and equation (3.143a) for class-II states.
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crete. To employ these, as is done in the next section,
in the formal reaction theory to calculate cross sec-
tions through the fission barrier, it is necessary to
introduce the discreteness through the imposition of a
formal boundary condition at the entrance to the defor-
mation channel (see Sec. III.C.3.b). This should be real
to ensure reality of the vibrational states.

Physically, the most natural boundary condition to
choose if a vibrational state in a particular energy re-
gion is of principal interest is one that is equal to the
shift factor in the deformation channel at an outgoing
wave energy that is very close to the vibrational state
eigenvalue. In this way-level shifts in resonance cross-
section formulas become small or negligible [see Sec.
III.C.3.g, especially Eq.(3.128) and (3.130)].

The calculation of the shift and penetration factors
in a deformation channel has already been considered
in Sec. III.C.3.f. For the main development of the re-
action theory in relation to the double-humped barrier,
as pursued in the next section, it is clear that the nor-
mal choice of channel entrance will be close to the out-
er peak at 775 in the potential energy wave. The shift
factor S then has a (negative) value close to the recip-
rocal attenuation distance k at n5(S=—k=—[2B(e =V )/
h?]*2), while the penetration factor P is exponentially
decreasing with decreasing energy €.

There are special situations, however, in which it is
useful to be able to set the channel entrance at the in-
ner barrier n,. The structure of class-I and class-II
vibrational wave functions does not then enter the de-
velopment of the reaction theory, but the shift and pen-
etration factors carry the physics implications of the
" secondary well. The form of the shift and penetration
factors in this case are considered by Lynn (1973). Nu-
merical calculation of these factors can be achieved by
the inward potential step method described in Sec. III.C.
3.f. Typical results are shown in Fig. 39. These have
a resonance or “dispersive” character, and the dis-
persion anomalies occur close to the positions of vi-
brational states in the secondary well. This is illus-
trated by the superposition on these figures of the
transmission coefficient (as defined in Sec. III.A.2)
through the same double-humped barrier; there is al-
ways close correspondence in energy. Note however
that whereas the transmission coefficient can approach,
but never exceed, the value of unity, the penetration
factor can peak to much larger values.

A more analytical calculation of the shift and pene-
tration factors employs Eqs. (3.119)—(3.124) of Sec.
III.C.3.f simplified for a single deformation channel (we
are not at this stage considering the possibility of inter-
actions between the deformation and other degrees of
freedom in the secondary well). The boundaries of the
intermediate zones described in Sec. III.C.3.f are n,
and 7y (substituted for n,,n,, respectively). If the
eigenstates set up in the intermediate zone are to have
reasonably uniform properties the poles of the ex-
pression obtained for the logarithmic derivative from
Eq. (3.124) must be located approximately midway be-
tween the eigenvalues F,. In a uniform model for these
eigenstates, the poles'occur at energies e, z%(FﬁFM)
and their residues are d3/m*V}(n,), where d, is the spac-
spacing of the states F,. The imaginary component w,
of the pole energy e, is the mean of that of the eigen-
values F, and £,,,, and this is interpreted as the half-
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width for decay of an intermediate state at energy e,
through the outer barrier B. In the region of the pole
e, =€, —1w,, the shift and penetration factors thus have
the form

. a3 (¢, =€)
s+lP~Sb+Teri(nA) (ev_€)2+u,3
i 72
id, 2y (3.149)

T2VE(n,) (e, —€)*+w?’

where S, is a smoothly varying background term.
This accounts for the “dispersion” character of these
factors that appears in the numerical calculations des-
cribed in the last paragraph. The result (3.149) can be
written in terms of the reduced widths y2%(n,) of vibra-
tional states of the secondary well, which are defined
with a boundary condition D,(n,)/V (n,)=[2B(e =V ,)/
#%)t/2=k,, rather than with the intermediate zone con-
dition ® = -k, , which is natural for setting up the con-
ditions appropriate to the internal region (n<n,). The
modified result is

4k i(ma)(e, = €)+ i4K4v2(na)w,

S+iP =S, +
b 2 2 2 2 -
(€, —€)?+a) (€, —€)*+u?

(3.150)

5. Specialization of the reaction theory to the double-
humped barrier

a. Class-1 and class-1l compound R-matrix states

The form of the double-humped potential energy bar-
rier in the elongation mode lends itself readily to spec-
ial treatment within the extended R -matrix reaction
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FIG. 39. Shift and penetration factors calculated within the
inner peak of a double-humped barrier. The parameters of
the barrier are (in MeV): ‘UI: —6.52 MeV, zZw;=0.85 MeV,
V,y=-0.2 MeV, %w,=1.06 MeV, Uy = —2.04 MeV, %w;=0.608
MeV, Ug=0.2 MeV, Fwgz=0.8 MeV. The deformation param-
eters are: 73=0.9, 7,=0.5845, channel deformation 7,=0.34.
The transmission coefficient of the barrier is also shown
(dashed curve).
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theory outlined above. In this the R-matrix internal
eigenstates, as defined in Sec. III.C.3.b, are expanded
in terms of two auxiliary sets of eigenstates, the class-
I and class-II states. In this treatment the channel de-
formations are chosen close to the outer barrier B.
Physically, the class-I states are largely confined to
deformations within the region of the primary well of
the double-humped barrier, and the class-II states are
similarly located within the region of the secondary
well.

Formal definition of these auxiliary states follows
from the expansion of the R-matrix internal states in
terms of vibrational wave functions as in Eq. (3.96):

Xy= D ChXu®yqu s (3.151)
nrv

with the x, being defined as intrinsic states of the in-
trinsic Hamiltonian for channel deformation 7, (see
Sec. III.C.1). Here, the vibrational wave functions
@, unlike the free wave function @‘” of Eq. (3.96),
are subject to a real energy-independent boundary con-
dition at the selected channel deformations 7, and this
can depend on the channel label w; the vibrational wave
functions @,,, are themselves discrete, and if their
eigenvalues €, are lower than the intermediate barrier
of the double-humped barrier, they fall into the classes
I and II described in Sec. III.C.4.c. The class-I and
class-II R-matrix states are therefore conveniently de-
fined by the incomplete expansions,

x{P= 2 Cux, 2,

324

(I1) - AID (1I1)
X = ZCWX @

novip) o
v

(3.152)

(3.153)

with eigenvalues E, ,E, respectively.

To be formally complete the expansion (3.151) must
include unbound intrinsic states x ,. R-matrix theory
is normally confined to the energy region in which only
two-body reactions are possible. With this limitation
the terms in (3.151) that include unbound X, will be
coupled with €, with vanishingly small amplitude at
the channel deformation 7,. Such terms can be regard-
ed as giving rise to waves in the simpler particle
channels and can be written alternatively as an expli-
cit expansion involving states of the residual nuclei
involved in these channels, analogous to Eq. (3.88),
leaving only couplings involving bound x , in the explicit
sum over uv in Eq. (3.151).

Physical properties of the class-I and class-II com-
pound states follow quite simply from the expansions
(3.152) and (3.153). Class-I states can be expected to
contain significant amounts of components x u«bé{L),
where &1}, corresponds to zero-point vibrational mo-
tion within the primary well and the x , are highly ex-
cited intrinsic states. The latter will include unbound
states corresponding to the motion of free neutrons or
protons, or more complex particles such as a parti-
cles, against the appropriate residual nucleus, and the
zero-point vibrational state becomes an essential part
of the description of the ground (or even a low excited
state) of the residual nucleus. Thus class-I states will
have neutron and proton reduced widths for decay into
these particular channels. They will also have reduced
widths for alpha decay to the ground and low excited
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states. The limitation of the expansion to class-I vi-
brational states with (extremely likely) very small
amplitudes at the channel deformation 7 »» €ven for
comparatively high quantum numbers v/, also implies
that the class-~I states have very small, although not
quite negligible, fission widths.

By contrast, the class-II states, by virtue of their
components of class-II vibration, particularly those of
high quantum number v”, have much larger reduced
fission widths, but have zero reduced nucleon widths
to ground and normal low-lying states of residual nu-
clei. Another important difference for fission barrier
potentials calculated for actinide nuclei by the Strutin-
sky method lies in the density of the two kinds of state
(for the same available excitation energy). This arises
from the density of the basis product states x ,9%),
and x , @), The intrinsic states can be envisaged as
combinations of single-particle or hole states with
spacing of the order of 100 keV. Furthermore, rota-
tional bands with spacings of the same order will be
built on them. By contrast, the vibrational states will
have separations of the order of 1 MeV. Thus the prin-
cipal contribution to density of class-I and class-II
levels will come from the combinations xuéé{L) and
X, @31, respectively. For the actinides the potential
energy calculations (see Sec. II) and the experimental
evidence of spontaneously fissioning isomers (see Sec.
IV) and fission cross-section intermediate structure
(see Sec. VI) indicate that the secondary well is at
least about 2 MeV above the primary well, so that this
amount of excess energy is tied up in the vibrational
state @{{}) and is not available for the excitation of in-
trinsic degrees of freedom in the class-II compound
states. Consequently the density of class-II states can
be expected to be some 2 or more orders of magnitude
lower than the class-I density.

b. Final R-matrix compound states

The final R -matrix states X, can now be constructed
from the auxiliary class-I and class-II compound states
according to the procedure described by Lynn (1968b).
The expansion (3.151) is substituted into the Schrdding-
er equation

HX, = E,X, ©(3.154)

in the internal region of configuration space (defined
in Sec. III.C.3.a). Both sides are multiplied by x }&*
and integration over all variables gives

(€+8, =E)Ch,+ D Claye
uv

><(xud),,(u)chixu,(bv.(u))=0, (3.155)

using the split of the Hamiltonian into deformation, in-
trinsic and coupling (H,) terms as defined in Eq. (3.64).
This is a representative row of a matrix equation, the
eigenvalues of which are determined from the secular
equation

det(d —Ep,, ..)=0.

nvy u'v

(3.156)

pryp'v’
The determination of the eigenvalues of the matrix H

is also conventionally expressed as finding the unitary
matrix U, which transforms H by the operation UHU™
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into the diagonal form E. We now specifically consider
only the eigenstates of a particular set of good quantum
numbers (these are normally total angular momentum
J and parity 7).

The matrix H can now be partitioned into submatrices
depending on whether the index v of an element refers
to a class-I (v;) or class-II (v;;) vibrational function.
Thus,

[HI.I HI.II}
H= .
Hy,r Hyn

The submatrices H;,; and Hy; ;; may now be separately
diagonalized by operation with matrices

[S 0] [S'1 0
’
or) @™ Lo
where S and T are unitary operators within the sub-
space of functions of classes-Iand II, respectively. So

(3.157)

(s HI.IIT-I)AIMI: Z 2 M| v (uvy [ H | 17y (" vy l >‘n>=<X{I)IHc|X>g§)> ’

2

(T HII.IS-l)xnx, = <X{:;) IHc IX{;)

For compound states rather lower in energy than the
intermediate maximum A in the deformation potential
energy barrier, it is expected that the admixture of
vibrational states ® from above the maximum, with
comparable amplitude in both regions of deformation
I and II, will be very small. In this case the matrix
elements of Eq. (3.160) are very small because of the
attenuation of the vibrational components through the
intermediate peak. At low enough energies it is clearly
possible for these matrix elements describing the
coupling between class-I and class-II states to be so
small that the eigenstates X, can be described to a
very good approxXximation as being either class-I or
class-II states. Good physical examples of such a clean
separation are provided by the slow neutron resonances
in the cross sections of ?*°Pu (see Sec. VI.E.1.a) and
2387J (see Sec. VL.LE.1.b).

Very rough estimates of the magnitude of the coup-
ling matrix elements can be made from Eq. (3.160) for
the slow neutron case (resbnance states at an excita-
tion energy of ~5 MeV with a density D;* ~10° MeV™).
Observations of the neutron-induced fission cross sec-
tions of fissile nuclei indicate that the high vibrational
states (qQuantum number v ~5-10) are mixed fairly uni-
formly over the compound states. The magnitude of
the matrix element for mixing of a vibrational state
into a class-I state in the absence of attenuation through
the intermediate barrier can thus be deduced from the
spreading width value wSs fw; (see Sec. III.C.5.c(tii)
for discussion of Lorentzian mixing) to be > (D rw,/
27)*/2, The attenuation through the intermediate bar-
rier will reduce this by a factor (T ,/27)!/2. The frac-
tionation of a class-II vibrational state into the class-

II compound states will be given by

<"“’ui)‘u> ~ Dy /Aw)?,

where Dy, is the class-II compound state spacing. Thus
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we have
[S 0] [HI.I Hl.n] [S-l 0]
0 T HII.I HILII 0 T-l
[S Hy,; 87 SHy, T"]

THy,g §* THy,,T™ (3.158)

The eigenvalues of H; , are just the class-I compound
states defined in Eq. (3.152), and those of Hy;,;; are
the class-II compound states of Eq. (3.153). The uni-
tary matrices S and T required to effect this subspace
diagonalization are themselves the expansion coeffi~
cients of the class-I and class-II compound states, re-
spectively:

= ' =M
SAI, wvy <>\I l IJ'VI> —CuIVI

= qp | prp) =CIL

713 ¢ O

(N (3.159)

Thus the submatrices S Hy,;T™ and T Hy,,;S™ have
elements of the form

(3.160a)
(3.160b)
I
D.D.. T,\!/2
ety ol -(P ) (100

Vibrational states v;,v; that are very close in energy,
and thus, according to the discussion of Sec. III.C.4.c,
would be of comparable amplitude in both wells, might
be expected to make a large contribution to the admix-
ture coefficients described by Eq. (3.160). Such a si-
tuation could cause a breakdown of the weak coupling
theory here being developed. In fact this will not happen
because the components in the two wells will have op-
posite relative sign in the two vibrational wave func-
tions (one has an extra node). This will lead to major
cancellation in the matrix element of H,.

c. Specific coupling modes of class-1 and class-1/ states

With small matrix elements in the off-diagonal sub-
matrices for coupling class-I and class-II states the
final diagonalization of the Hamiltonian of Eq. (3.159),
and the insertion of the resulting eigenstates into the
R -matrix reaction theory, becomes possible by a num-
ber of methods corresponding to distinct physical si-
tuations. In most of these the approximation is made
that the coupling matrix elements are sufficiently
small that the effects of all but one class-II state
on a localized group of class-I states can be ne-
glected.

() Very weak coupling; narvow class-II states. Here
narrowness of the class-II state is defined by the pro-
duct of penetrability and squared amplitude at the chan-
nel deformation (the fission width) being much smaller
than the energy interval & between the class-II state
and its nearest class-I neighbor. (It will be shown in
Sec. III.C.5.c(v) that although this condition does not
affect the diagonalization of H it has a drastic effect
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on the properties of the resonances in the cross sec-
tion.) Very weak coupling is defined as the average
magnitude of the coupling matrix element (A;|H | ;)
being much smaller than the energy interval §. This

J

(I)

Xon [1 _(X(I)IHQIX{H)V]
b )‘I (E).I —E).II)

2(E AT E’-n)z

(1) IIN2
<X) |H ]X{II

. =FE
E,, at Ex _Ehl s

The double-humped fission barrier

(1)
XO1H, |X{g)>Xm) Z (X, |, 1 X{I0) (XD |1, IX(I))

A #M
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condition allows the Hamiltonian of (3.159) to be dia-
gonalized by perturbation theory. Second-order per-
turbation theory in the region of a single class-II state
gives

for the states that remain essentially class I in character, and

Xh,,=[1 -

N .
A 2(EX11 -Ell 1 Eyy—Exy
I 18, X7
Eyu=~E, + T ! (3.163b)
by Arr ZI: Ehu _EXI ’

for the remaining state. From these relations simple’
results are obtained for the resonance widths [see

Sec. III.C.3.g.(ii)]. If'l"m(f) is the fission width that an
unperturbed class-II state would have if it appeared as
a resonance in a suitable cross section and the fission
widths for unperturbed class-I states are assumed to be
negligible, we have immediately that

<X(I)|H IX(II)>
PR SRl Al § 54

T,. IT,. (3.164)
A(F) T (E 7\11)2 A (f)’
for quasi-class-I resonance states, while
024 )>~1>~u }
| ~11- Ir 3.165a
)= [1- T [, ) (3.1650)
-0 (- 25 Tap (3.165b)

A(FA)

is the fission width of the quasi-class-II resonance.

Exactly similar relations hold for the partial radiation
widths for electromagnetic transitions to lower class-II
states, so we see that each admixed level has exactly
the same pattern, in terms of relative intensitiesy of
class-II spectrum superimposed on the normal class-I
spectrum. This “fingerprint” spectrum could be used
to identify the second minimum phenomenon in reso-
nance behavior when the class-II states themselves can-
not fission (because the saddle point is too high). The
fingerprint behavior is of course quite different from
the normal spectrum behavior that varies strongly (at
least in the high transition energy region where discrete
transitions can be observed) from one resonant state to
the next. Each class-II fingerprint spectrum will also
vary strongly from one class-II group of resonances to
the next group. Radiative transitions are treated in
greater detail in Sec. VI.D.

Neutron (or other particle) widths cannot be given so
unambiguously. The expressions for reduced neutron
widths (in the experimenters’ convention: neutron width
divided by a factor proportional to the penetration fac-
tor) are
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@D (11) (¢8] (11)
(Xx [H X5 >2]Xm’+ Z <X>.1 |Hc'X>tn

(3.162a)
(E*I—Eklx)(Eh Eyyy) ’
(3.162Db)
X\, (3.163a)
r
D (u
1—-(0) ~ [(1_ <X( 'H !X - ‘)(rg'oz ))1/2
A*(n) Z(EXI _EXII) 1tn
. (D 19 1) D
. (g TH XGP) XV H L XP) (Pi?’(,,))lfz]z
xl'(ﬂ.l)" (E‘!—E’*’I)(EM'EAU) 1 ‘
(3.166)
D an
(0 &P IH X DY ) 2
P ~ (E 25— (g (3.167)
Ay Arr T g

where I‘;fzn) =2P, (at 1 eV) ¥3%(,. The terms raised to
one-half power (the reduced width amplitudes) are ran-
dom from one resonant state to another, and generally
will be unknown. This gives a number of possibilities
for the value of I',~(, in relation to the values of the
Ty«n). A maximum value of I'y.(, can be stated for a

. finite number of admixed class-I states (this would oc-
cur if the signs of the vI'ay(n) were fully correlated) and
a mean expected value of this width can also be given;
the latter is ‘

(o) r,, o
(T35 ()= Y ntvm

(3.168)
v Dy

Physical examples of such coupling between class-I
and class-II states are to be found in the slow neutron
cross sections of 2*°Pu and #*®U, In the former, three
now well-studied class-II states occur below a neutron
energy of 2000 eV, and in this energy range the average
class-I level spacing is ~14 eV. For each of the class-
II states, identified by the comparatively high fission
cross sections of the resonances in their immediate
vicinity (see Fig. 7), the class-II fission width is about
2 eV. In two of the cases (at 800 and 1900 eV) the bulk
of this fission width is to be found in a single weak, but
broad, resonance at the center of a cluster of strong
fission resonances. The quasi-class-II resonance thus
identified has a reduced neutron width less than one-
tenth of the average value of its neighbors. Further
details are to be found in Sec. VI.E.1.

(i) Very weak coupling with accidental degenevacy.
The perturbation theory of subsection (i) above does not
cover the possibility of an accidental degeneracy or
near-degeneracy between a class-I state and a class-II
state. This situation, with weak coupling to the remain-
ing class-I states, can be dealt with quite easily. The
subsection H of the Hamiltonian matrix around a given
class-II state (moved into the row 1, column 1 position)
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is Here, E:, is the nearly degenerate class-I eigenvalue.
N - i i -
( Ey, X H | XDy (X(lmch|X(31)> - Tl?e top left hanq .sut.)matrlx.of order two can be diagon
alized by a matrix with a unitary submatrix W in that
(X O H | x (™ E>, 0 position and partitioned otherwise as
V1| X () 0 Eay 0
W 0
: 0 0 . [ J :
. . . . 0 1
L : ' : * ) By operating with this matrix and its reciprocal on the
(3.169) submatrix Hg we obtain
J
.
E] 0 Wu(X(lII)IH‘chgI)> b
0 E; W21<X(1”)1Hc| Xg”) °ct
KPTH] X0y Wy (XPTH XDy W), E, 0.
KPP H X0y, (XD H Xy W), 0 E, | . (3.170)
L . . . )
r
Here (dropping Roman subscripts, where their implied x.~[1 w2 E §X(A§)1H lX(u)EZ]X
presence is obvious, for convenience) v T2 Gl (E-E) v
E{=H(B, + B) + [(B, - B, + KX (V| H,| X (') ]} w XD o
+
(3.171a) 117\1 #1,2) El'_Ekl *
! - B2 (D X (IDy2 1l '
E, E{(E1+E2) [(E, - E)P+4X, |Hc| HaO R } W W, Z (X(111)|Hch()‘i)>z 3.1730)
(3.171b) MELD B BB, - B &
The eigenfunctions corresponding to these are x (1D (D,
Epm Epewy, 35 K IHIXG) (3.173¢)
X{.:Wqu“) —W21X§n ’ (3.171c) M 1.2) 2T A
é’=W21X§u) +W22Xgl) ’ (3.1714d) Xz"z[l" w3 Z SX(*:)IHQlX(,:DZZ]Xl
where v 2 NG (Ey—Ey) 2
. (D (11)
x| g | x@ GO H Xy
W= a8 lz < (%I)> IRays = Wes » *Wa (12 Ex—Ey %
[(E, - E ) +(X] [H,]| X5
(3.172a) Y x| X
+Wo Wi Xy, (3.173d)
rp(#1,2) (Ez' - EA;)(Ez' - E1')
W - (E;, = E,) ) ——W
21~ [((E, = E.)? +<X§u’ | H,| X‘21)>2)]1/2 Tz for the near-degenerate states, and
(1)
1 (112
(3.172b) By By + W2, gXMLJ H_EIX} )
By perturbation theory we find N
(1D (D2 (D (1D\2
Eu=E.+ W2 Q_Q_E_IHJEAL (3.1732) + W2 g‘-‘%l—)&-l, (3.174a)
A (#1,2) = Ly 28 2!
|
(n
s [1- Bh QU X0y v, (XE")IHC|X§‘:)>2]X(”
2 (B, = By 2 (Bx, = ExV M
(11) (n WuX;l Wa X2"
+(X W H| x50y [Eh,‘El' tEITE
(D
. (D
N Xaf |H | X{")x (" | H | X37) [ Wh_ W3 ]X",’ (3.174b)
A FLe) Ey = Eyy (Ea,—Ey) (B — Ep)i7 M7 ’
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for the remaining quasi-class-I states.

The corresponding expressions for fission widths of the narrow resonances appearing in the cross section are

1"1,,(,): [1_Wf1 2

M(#1,2)

(Ey- B,

I P
2" (f) 21 MG L) (Ezl"ExI)z

for the resonance cbrrespond‘mg to the two nearly de-
generate states, and

2T 2T,
L, = KL.LLL.QE+W 5
) (Ex=Ep)?  (Ex— Ey)

2W Wy (Lo Do) V2
(Er— E,)(Ex— Ey)

](X (0| g, | X(D)y

(3.175¢)

for the remaining quasi-class-I resonances. In these
equations the fission widths of the diagonalized pair of
nearly degenerate states are given by their amplitudes

(N (1D\2
&g |H | X5y
Ll Tys) +2W3,

(D (1D\2
SX)& Ii2 XI ) E :
1 LA Typy +2W 5

(n (D,
- X IH | Xy
(T = [1 —2w?, D L] X5,

(

D,
gX‘! IH IX([!)xzr(o()

72
+W#3,

ap(#1,2) (El' - Exx)z Al s
(o) ) [ 2 z: §X(,")|HE|X§;)22 2
Ty =|1=-2W -w
Fm i Ap(#1,2) (Ey - EAI)(EZ"‘ E\) 2 A (#1,2)

(Xii)lH | x(1Dy2 e

2
+W5 (Ey - EAI)Z Ag(n)

Al#1,2)

These results are to be substituted into the resonance
cross-section formulas, e.g., the single-level formula
Eq. (3.125) or a many-level formula of Sec. III.C.3.g.(ii)
or (iii). The sign of the first-order level-level inter-
ference between the quasidegenerate resonances is
implied unambiguously by the diagonalization treatment
above. Neglecting the perturbation of the levels A”,
the substitution of the width amplitudes of Eqs. (3.176)
and (3.177) into Eq. (3.131) gives

T
Ouf int == ziglzwflwglrllx(f)rzl(ﬂ)
n

% ( (E.— E) (;Ez' - E)+3T.T,, i
[(Ey - EP+iT2][(Ey, - EF + T2

This is positive (constructive) between the two reso-
nances and destructive outside.

A perfect example of accidental degeneracy between a
‘class-II and a class-I level is provided in the fission
cross section of 2*°Pu. The group of resonances cen=-
tered at 1405 eV neutron energy (shown in Fig. 115) is
dominated by two resonances of very similar parame-
ters, sharing between them a total fission width of 3.5
eV. The constructive interference effect is very clear.
A full analysis of this group is given in Sec. VI.E.1.

(iit) Modevately weak coupling: narrow class-II
states. Moderately weak coupling may be defined as
occurring when the magnitude of the coupling matrix
elements lies within the range

]> . (3.179)
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-wh 2
Ap(#1,2) (B - E)»I)(Ex' - E;) " A(#1,2)

771
(1)
XV HI X2 ,
| g 3.175a
A(#1,2) (El' - Ehx)(El' - Ez') vy ( )
(1n (N,
SSir: A SOy 3.175b
a2 (By = By ) (Ey — Ey) 2(f) » @3. )
r -
T¥n=WuT 20, (3.176a)
Fé{z(f) =W21ri/121(f) . (3.176b)

In first approximation the reduced neutron width am-
plitudes of the néarly degenerate resonance states are
L0 ==Wo T 408, (3.177a)
T4z =w, L{QLe. (8.177b)
After perturbation by the remaining class-I states,
these two states can no longer be assigned precise esti-

mates for their neutron widths. To first order the ex-
pectation values of the reduced neutron widths are

(D)
X | Ho| X (™ z]r(o)

(El' — E"I)z 1'(n)

(3.178a)

)
Ky IHgin")f] rw

(Ez' — EAI)Z 2'(n)

(3.178b)

D3 <M H I Ay <Dy Dyy. (3.180)

With these conditions it is a good approximation to con-
sider only the mixing of a single class-II state with a
group of class-I states in its vicinity. However, the
coupling is too strong to permit a perturbation treat-
ment.

The limitation to a single class-II state allows the
‘diagonalization of the matrix on the right-band side of
Eq. (3.158) to be reduced to the solution of

CQX(E)&I - E)) + C}Lu@\ll Hc‘ Arp)=0,

Z: Cr ul Hel Mgy + Gy By =~ By) =0, (3.181)
1

for a single class-II state Ay, together with the normal-
ization condition

(ChpP+ 22 (O =1,

A

(3.182)

Here the C}, C}, are the expansion coefficients of the
class-I and class-II states in the diagonalized states A:

(3.183)

(1)
X= AZ CQIX)'I + CinXﬁ: .
1
The solution of these equations (see, e.g., Lynn, 1968b;
Bohr and Mottelson, 1969) is

C;:I:_ SA;IHEI i) .c

e mr O (3.184a)
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M| H A
EAII‘EJL:ZS Il gl 112

E’\I - El

(C, ) = (ZSM'HEIMQ )

A (Eh "E).)z

This result is exact and incorporates the results of
perturbation theory for the very weak coupling case.
Equations (3.184) are most easily surveyed for the uni-
form, or picket fence, model of level structure. Class-
I levels are assumed to be equally spaced (with inter-
val D;) and the squared matrix element of H, is as-
sumed to be independent of A;. Thus

TIH2

TE)
E"II —E)=— Tgcot(DI )

(3.184b)

(3.184c)

(3.185a)

(the origin of the energy scale coinciding with a class-I
level) and
2
H‘ A . (3.185b)
(Eagy = BV + g +H?

CRE

In the familiar Lorentzian form of Eq. (3.185b) the
half-width of the profile of squared admixture coef-
ficients (defined as half-width at half-maximum) is

\ 1/2
nH 2 D} )1
W= —-ﬁDI 1+—ms) (3.186)
The first factor is the well-known “golden rule,” and for

all but very weak coupling the second factor is nearly
unity. It must be remembered, however, that, accord-
ing to Eq. (3.185a), eigenvalues are densest close to the
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FIG. 40. Schematic diagram of the solution of the eigenvalue
Eq. (3.184b) for mixing of a single class-II state with many
class-I states. Circles give the eigenvalue solutions E,.
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spreading class-II state Ay; [Fig. 40 is a schematic di-
agram of the solution (3.185a)], hence the half-width of
suitably averaged strength of the mixing (C;:n)2 /Dasa
function of energy is less than the result given in Eq.
(3.186). In fact it has been shown (Lane et al., 1974)
that W=1nH 2/D; is the exact result if the average mixing
of A;; into the states A is defined by an ensemble pro-
cedure in which the members of the ensemble are all
possible patterns of E, and (C},,)? resulting from pre-
scribed mean values and statistical distributions of the
class-I level spacings and the matrix elements (for fur-
ther discussion of these distributions see Sec. VI). The
strength function 5(E) for spreading of the state Ay is
defined in terms of the probability P(y?, E)dE dy? for
finding, amongst the ensemble of these patterns, a
total admixture coefficient (C,tu)2 lying between y? and
7% +dy? in value in the energy interval E to E+dE. Then
3(E)E -dE f Y2P(2, E)dy? . (3.187)
0
In the uniform model class-I spacings and matrix ele-
ments do not fluctuate about their mean values, and the
only quantity that varies among the members of the
ensemble is the interval between the class-II state and
the nearest class-I state at higher energy. The evalua-
tion of the strength then gives exactly

H2

D; (s _E)2+"2H4/D2 (3.188)

s(E) =

An estimate of the value to be expected for the Lo-
rentzian half-width in terms of the intermediate barrier
transmission coefficient 7y can be obtained from Egs.
(3.186) and (3.181), with the result

~ DII
2W= o T,. (3.189)

The coefficients of mixing of the class-II state, into
the states A, as expressed by Eq. (3.184c), can be used
immediately to give the fission widths in the narrow
resonance approximation;

Ty = (C3 )T ys) - (3.190)

In the uniform model the resonance fission widths would
therefore follow the Lorentzian profile of Eq. (3.185b).
Entrance channel widths must be deduced from the co-
efficients of Eq. (3.184a). Far from the class-II state
the entrance channel widths are very little disturbed
from the original pattern possessed by the class-I
states. Near the original class-II states there is con~
siderable dislocation of the original pattern, but, ex-
cept in the case of very weak coupling, there will be no
strong reduction in expected value, and anticorrelation
between fission width and entrance channel width will
only be weak.

For nonuniform distributions of level spacings and
matrix elements (particularly useful for situations
where long-range energy variations might be involved)
another variation of the locally averaged strength of
admixing of the special state may be employed (Bohr
and Mottelson, 1969). The locally averaged admixture
coefficient ((Cm)z)E is defined as the weighted average

Gz = 2wl - BXCL)2, (3.191a)
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where w(x) has the Cauchy form
L A
27 X2+ (AJ2)

The right-hand side of Eq. (3.191a) is in the form of the
sum of residues of a contour integral which can be al-
ternatively evaluated as the sum of residues of the two
poles E+iA/2, E—iA/2, giving

1 I'+A

w(x) = (3.191b)

A \2 .
<(C>~II) )E o (EAII +AE)LII — E)z + %(F +A)2 y (3.1923)
with

(A'IIIH(;I A'I>2

I'=A

§(E-—E,LI)2 + (A2’ (3.192b)

Qrl Hol AP (E = Exy)

AByy, = zl: (E-E,)*+ @722 - (3.192¢)

Physical examples of moderately weak coupling have
been observed in the fission reaction in a few cases.
The best explored is the slow-neutron-induced fission
cross section of 24U (James et al., 1977). Fission and
neutron widths have been measured for all the reso-
nances in the region of 550 eV and the former show
(Fig. 116) a Lorentzian type of profile about this energy,
but with very considerable scatter about the ideal form
(see Sec. VI.LE.3.b). The half-width of the profile has
been assessed as 68 eV, a factor of ~7 times the mean
class-I level spacing (D;=10.3 eV). Further analysis
of these data is discussed in Sec. VI.D,3.b. Another
example, in which the fine structure resonances have
not been experimentally resolved, occurs in the fission
cross section (see Fig. 84) for neutrons bombarding
230Th (James et al., 1972), In this case the class-II
state appears to be of particularly simple character
(see Sec. V.B.5.a.).

(iv) Class-I background effects in moderately weak
coupling. So far in this section the assumption has been
made that the fission width of the fine-structure reso-
nances arises only from their admixture of class-II
compound state. However, a weak contribution to the
fission width can also come from the many-phonon
class-I vibrational state admixtures in the class-I
compound states. The importance of this contribution
is assessed here [the discussion is based on an unpub-

lished report (Lynn, 1974a)]. .

From Eq. (3.183) the reduced width amplitude of final
R-matrix state A for a fission channel y is
Vawr =ChrVaggwr + Z: Chiyagw). (3.193)

1
the class-II and class-I reduced width amplitudes being

evaluated from Egs. (3.152), (3.155), and (3.101a), their
essential values being

2 SN
Vagrawr ® (2—1;5') el (m,), (3.194)
13
2o\ Y2 ;
Yxl(u) id (E'?n—) culv‘q’:x') (nu) ’ (3.195)
[

where v”, v’ are the highest appreciably admixed vibra=~
tional states in the class-II and class-I compound states
under consideration. Clearly these vibrational states
will be comparatively close in energy, hence an estimate
of the ratio of their wave-functions at n, can be ob-
tained from Sec. III.C.4.d [Eq. (3.148)]. This is
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&y (1)
§l/" (7741)
for separation of the class-I and class-II states by the
average value 3%Zw (the simplifying assumption Zw;
=Jlwy = iw is made here). The coefficients C)il and
C',\f,,. can be evaluated on the assumption of strong mixing
of the vibrational modes into the respective class of
compound states as

2 1

2 A (3-196)

Mi e, Du
(cuv") ﬁwu ’ (3.197)
D
(CL = ﬁ)‘—l (3.198)
Thus, for moderately weak coupling,
» L YigePa 2W 21 (T ,\ Ewyy
i) = z z + - »
27 (Ex=Ey P +W? " Dy \2n/ Fw,
(3.199)

using Egs. (3.185b) and (3.193-198), and the assump-
tions that 33,,(C};)?~ 1 (reasonably well satisfied for all
A if the coupling is not very weak) and that there is no
correlation in sign amongst the coupling matrix ele-
ments. Substitution of Eq. (3.189) into (3.199) shows
that at the class-II resonance energy the class-I con-
tribution to the fission width is negligible (fractional
contribution = 7% /8).

Far away from resonance the contribution of other
class-II compound states has to be included. Perturba-
tion theory expressions can be used for this, giving

5 Ml Hol M)
XA~X>SII)+ 2  Hol Ay Xagrs

ar Bagy = By

y QulH M)
-'-')’A(u)”?’;qm)“'z L 1L

Ean = By

(3.200a)

Yagge) - (3.200Db)

A
In a picket-fence model of uniform class-II levels the
sum of the class-II contributions to the reduced width,
under the assumption of no correlations in sign among
the matrix elements, is just

i s
= mH ) [1 mnz(%E_)] ,
11

2 =
(E).“ 'EA)ZYA”(“) D,

i
(3.201)

the energy being measured from a point midway between
two class-II levels. Again this can be expressed in
terms of the transmission coefficient T,, from Eq.
(3.189), and the result

2
Dl?’)." W) T,/4Dyy

(at E=0) is to be compared with the class-I contribution
the second term on the right-hand side of Eq. (3.199),
which equals

D, Y?\u(u ) TA/anII .

In this midway situation it is apparent that the class-I1.
contribution to the fission width is comparable to that
from the class-II states.

(v) Very weak coupling: broad class-II states. The
definition of broadness here is that the fission width of
the state, as computed from Eq. (3.126) with appropriate
reduced width amplitudes at the channel deformation and
penetration factor through the outer barfrier, is of the
order of or larger than the class-I level spacing. The
extremely strong level-level interference that can now
occur can completely reorganize the fine-structure
resonance patterns from those predicted by the straight-
forward application of the formulae of the preceding



774 S. Bjédrnholm and J. E. Lynn: The double humped fission barrier

section into the Breit—Wigner single-level form. This
broadness of the class-II state can effectively decouple
to a large degree the mixing of class-I and class-II
states that occurs when they are confined to the internal
region. (The same kind of decoupling effect has already
been seen in the statistical treatment of Sec. III.B when
the outer barrier B is lower than the intermediate
barrier A.)

The effect is most simply illustrated by treating the

case of accidental degeneracy of a class-II and class-~I
level. In Sec. III.C.5.c.(ii) the formulas for eigenvalues
of the internal R-matrix states that result from the de-
generacy are given [Eq. (3.173)]. These are substituted
in the level-matrix formulation of R-matrix theory [Sec.
III.C.3.g.(i2)]. With the neglect of radiative capture and
retention of a single entrance (neutron, in this example)
and fission channel, the resulting two-level matrix

[Eq. (3.129¢)] is

El'_E_%i(lel(f) +le(rn)) "%i(r‘lu(f) "rzl(n))

Ep + 2| Hohy )| - E "'%i(rln(f) +r21(n))

C= (3.202)

L.
=78y () = Taym)

I

onant structure due to these has the form of a narrow
resonance with strong neutron width and small fission
width superposed on and interfering with a very low,
broad background resonance term with small neutron
width and large fission width. If the spacing between the
class-II state and the next neighbor class-I states is
greater than I'iyy(s), We note [from Eq. (3.175¢)] that the
fission widths of the next-neighbor resonances are ap-
proximately

Ml Hol M 2Tl /(Ex = E3L 2.

The poles of the S matrix [see Sec. III.C.3.g(¢v)], which
give the positions and widths of fine-structure reso-
nances, are determined by solving the secular equa-
tion for this matrix, with the result )

Eg”) - 4r{® g, - (T 6y + Ty m) + [ L H I A g |
F [l Hol Ay )? = T%(lel(f) - rzl(n))z)]l/2 .
(3.203)

If (T 6= Toyom ) 16Q1 1| Ho| App)? then the approximate
positions and widths of the fine-structure resonances
are If the fission width of the class-II state is only slightly
less than the class-I level spacing, we see that the next-

" "
B =B = Ep+ [Qul Hl Mo (3.204a) neighbor resonance fission widths (G3«s)) are nearly of
r T . 40| H | App)? (3.204b) the same order as that of the sharp component of the
1 111(9) P : quasiresonance. We have here an example of the qual-
4 A VALY itative result [also discussed by Weigmann (1968)] that
rg“” = le(n) + A1 H[Ay)” (3.204c) if we consider the class-II state as first coupled to the

r -T . . -
1 () 7 Fagn) continuum, giving a broad resonance, then, even though

the coupling of the class-II state to the class-I states
may be very weak, this coupling is spread over the
width of the class-II resonance. This is quite distinct
from the case of coupling of discrete states in which the
spreading of the class-II state is governed by the cou-

The residues of the poles may be factorized into the
partial width quantities:

G?(f) exp(2l§1(f))~I‘lu(f) (1+ ' ci 11 ,

(Fl 11(6) — le(n) )2

(3.205a) pling strength alone. The simple approximate expres-
sion for the fission widths of the fine-structure reso-
; - 4O | Ho[ Ay )? nances is
G3ny exp(2¢§, ()= 1—‘21(") T L L i ¥’ (3.205b)
111(H) T L 2y(n) QH |2 )PT
Tap ™ o oo . (3.208)
A0 | H| Myp)? (Bx = Ex ) +3T540

G2(s) exp(2i &, 5)) = 2T
2(f) 2(f) 1) (Flu(f) — le(n) 32

(3.205¢)

' &)= AT
Gg(n) eXp(21§2(n))“’ le(n) {1 * II ' II .

(Crpgn = Taym )?

The deduction of Eq. (3.206) follows (Lynn, 1968b)
from an elaboration of the level-matrix method of R-
matrix theory [see Sec. III.C.3.g(%)]. In this method
[due to Lane and Thomas (1958)] the internal R-matrix
states [the X, of Eq. (3.151)] are divided into two groups,
and the R matrix is correspondingly split into two parts,
R° and R/, each consisting of a sum over one group of
levels. It can be shown that the collision matrix now

(3.2054d)

These results may be applied to the interesting physical

situation that may occur when the excitation energy of
the compound nucleus is of the order of or greater than
the saddle-point energy but much lower than the inter-
mediate potential energy maximum. In this case I';, (s
may be very large, perhaps as great as or greater than
the spacing of the class-I states. With very weak cou-
pling and accidental degeneracy between a class-I and a
class-II state, the two R-matrix internal states have
nearly equal fission and neutron widths, and the res-
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has the form
Ugy =™ ¥®a% {6.,,, +2iP2[(1 —=iR°P)'R°],,

+2i ; PYay ,PYa,(, Aiu} , (3.207)
m

where P, denotes the penetration factor for channel c.

The new inverse level matrix A’ now refers only to the
levels contained in the section R’ of the R matrix, and
the elements of its reciprocal A™! are
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(A-l)u' = (EA = E)ou.

=i 3 Po[(1=iR°P) Lo Va(on¥ar (o »
c.c
(3.208)

while the quantities o are modlfled reduced width
amplitudes

an(e) =[(1 =ZR°P) " ]ocr Ya(en) -

If R° consists of a single level the matrix 1 —iR°P is
readily inverted giving

(3.209)

L L /:
U,,=e“°d+°°)5 - ik T2 1. 1
a a Z

E,~E-Lil, ' 2' 4 E,- E- LiT}

3t ( %za)
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[(1 —iR°P)™!],.. =6, .+’5;£ff-¢, (3.210)
where
T =i Zyo(c)P /(Ey—E)=4%iT /(Ey- E). (3.201b)

Equation (3.210a) can be substituted in Eqs. (3.208) and
(3.209) which in turn are substituted in Eq. (3.207).
Rather than write out this general expression we con-
sider only the case where R’ consists only of narrow
levels so that A’"! and hence A’ are approximately di-
agonal. The collision matrix for this case is

x (vt Tty + 2

where

liz (rl/z T2 )2
T{=) Tyo+2 EO:E—ziFQ .

For the very weak coupling situation (ignoring now the
possibility of accidental degeneracy between a class-I
and class-II level) the level in R° is taken to be the
quasi-class-II level E = E\ its width is very nearly
the class-II fission width in the circumstances in which
we are interested—1I'ayys) comparable to or larger than
D,. The poles corresponding to the other levels are now
easily estimated from Eq. (3.211): they are at the com-
i

G4 ettt =T -
Ha) Ma) (E,—E}

irilza l—q/za 2 2 112 (E,—
(Eq—EV" P +3(T,~TYV)

P+ a(T, =T

%(r _F(IH))ru/z T2 Z: iz iz _ %rMa)(Ecl—%zd 1/2))2[(E

E(H))

I éfza))rl/(za)z T D) AT TG (D Ty )r'l(zc))z)
E —E-Lil, (E,— E- Lil' ) ’
(3.211a)
(3.211b)
[
plex energies E{¥) - LiT'{¥) where
L5 e iz 2 (g p(H)
EM =E,+ q((E < g(%}))é\(:);(i- 2 Fu‘n)z), (3.212a)
1./2 1/2 2 i
rif=-r,~ 32 Ly T (T, - T 1) (3.212b)

(Eo - ET’”)2+ i, - r””)z :
The residues of these poles may be factorized into par-
tial width and phase factors

E(,”))2 - %(ru_ I—v(’H) )2]
[(E E“”)2+4(F _l-v("H))ZJZ

_ ATy (O T THE) (B, - EY) (T, = T (%)
[(EO—E"”)2+ 4(]." I-(H))z]z

(3.213)

In the condition of very weak coupling we have, from Egs. (3.162) and (3.163)

v~ Ol Hel M i

12~
né Erm By, 0 T =T¥2 ), TiEy =

and therefore (ignoring other possible open channels
such as radiative capture)

< Qul Hel M)
czri{zc)rl/c)"' g - E, !

Tayn
ZM“‘” 20 r T, G.215)
o

for fission summed over channels u. With 'y, 2D;
it is clear that only the first term on the right-hand side
is important. It is now apparent, from Eq. (3.212),
that the magnitudes of E{¥) — E, and T'{¥) =T, are small
compared to E, — E(,”) and I'y - I"(,”), respectively, ex-
cept in the case of accidental degeneracy. We can
therefore approximate E, by E;?’ and neglect I'{# in
comparison with I'y in finding an approximate expres-
sion for the partial width quantity G2, from Eq. (3.213).
After some manipulation the result for G%;, is found to
be

Qoual Hol A )2 Ty )

G%p = 3.216a
M T (Ey= EVTV + BTy P ¢ )
[cf. Eq. (3.185)]. The phase factor is given by
Ty o (B, — EVH)
exp(27 =arcta 1 o L ] 3.216b
P(22€y(5)) n[(EO_ EF - (Thn P ( )
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2. ~ ﬁﬁ!_'f_c_l_"_l)_
25

., (3.214)

I

Equation (3.213) with the extra conditions (3.214) also
allows us to see that the neutron partial width quantity
G%(n) is very close to I'y,.

To find the parameters of the broad resonance term,
the roles of R° and R’ can be reversed; the latter now
includes only the level at E,. In the same way as before
we now find that the width of the pole associated with
the broad resonance is, approximately,

T Ho | Ag)2
I‘E,”)zrxu(f)(l——ﬁiﬁf——‘)—),

1

(3.217)

while its neutron partial width and phase quantmes have
an expectation value of

. T 2
G2y €XD(2iky )= =T _M)_QLLLIE&)_

(3.218)

A simpler treatment of the broad class-II level can be
made by use of the extended penetration factor described
in Sec. II1.C.4.d. The deformation channel boundaries
are set close to the intermediate maximum A. Because
of the compound states associated with the secondary
well the penetration and shift factors to these inter-
mediate channel deformations have a dispersion form:
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Gz

" (3.219)
- 1

W =S, +iP, =S, + Z:
EFI
where S,;, is a background term comparatively slowly
varying with energy, and the residues G, of the poles
F,—iW, vary similarly with energy (roughly speaking
as the transmission coefficient T, through the inter-
mediate barrier). The half-widths W, also vary with
energy (as the transmission coefficient Tz). The R-
matrix internal states are confined to the primary well
region of deformation and are expected to have no fea-
tures that relate to intermediate structure, i.e., their
reduced widths and energy levels will vary over con-
siderable energy regions only in a way characteristic
of statistical scatter. The properties of the fine-struc-
ture resonances in the cross section are found by
studying the S matrix. If it is assumed that particle
channel widths are all small it is sufficient to do this
for the one-channel (deformatxon) S matrix, which is
just
-2iP, R

1-Uun="1r"

where I:u =L, —®,. With the dispersive form for I';,L
(limited to one pole) this becomes

(3.220)

1-U,,= ' ~2iG,"WiRyy : ,
(1= E-iW)[(1=5,,)(F; ~E-iW,;) -G Ry,]
. (3.221)
with poles EU — 2iT ") given by
(F,-EW + 50 —iw,)(1-8,,)~G,R,, =0, (3.222)

which can be further simplified by putting §,,u =0 through
arranging the boundary condition @&, at the channel en-
trance to be equal to S,,. If the compound state as-
sociated with the secondary well that is responsible for
the dispersion form of the logarithmic derivative L,

is broad [this is defined by the conditions

2GYi(mW: Dy <1

and W;>D,, where Y5(,) are the reduced widths of the
internal levels and D, their spacing], the fine-structure
resonances appear at energies g

EW =E, 14, (3.223a)

the level shifts A, being

z?’xgg)(S: -E,)
A= (BrmFPW, ’ (3.223b)

and have widths

Zleﬂ’igE)

ri= .
" (Ba= F)P W

(3.223c)
J

Ml B N YOyl My = 30 (L)
vk

2

"
VITH VITH

A 2 .
= (Cv:u)“(/ghp' Cyf:u'(”!“ I Hcl Vily',>2 ’

the modes vy and viu’ being taken to be the only ones
contributing appreciably in magnitude to the coupling.
Thus the matrix element (A\'| H.| M) can be written ap-
proximately, in the general case of statistically scat-
tered squared matrix elements (\{| H | A;;)?, and exactly,
in the uniform case of equal squared matrix elements,
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These equations are of the same basic form as Eq.
(3.212). In addition to these poles an additional pole
with E{)= &, and T' ¥’ ~ 2w, can be found, correspond-
ing to the class-II state.

It is also to be noted that this treatment reproduces
the results for a narrow class-II state. If W, is van-
ishingly small the approximate solution of the pole
equation is

2
§1- B =G, 20 w1y, (3.2252)
A A m
W
£~ 2wy (3.225b)

Gi 2 YL/ (E\ - E(mﬁ))z] +1.
The disadvantage of these results compared with those
previously derived is that numerical estimates of the
important quantity G;, which in conjunction with the re-
duced widths ¥%,) plays the role of the squared coupling
matrix elements, are not so straightforwardly obtained.
(i) Strongev class-I-class-II coupling (with weak cou-
bling to the continuum). Physical situations in which
more than one class-II state must be simultaneously con-
sidered have received little study. When the spreading
widths [as defined by Eq. (3.186)] are much smaller than
the spacing of class-II states, perturbation treatments
are valid [as exemplified in Sec. III.C.5.c(¢)]. When the
spreading widths are as large or larger than the class-
II spacings (moderate to strong coupling) numerical
methods must in general be employed in diagonalizing
the matrix. Some special cases have been treated how-
ever. One is the case of a damped vibrational reso-
nance (Back, 1974), which is discussed in Sec. V.C.2.c.
Another case is that in which only two class-II states
are overlapping (Lynn, 1974a).

When only two class-II states are involved the matrix
(3.157) can be diagonalized in the following way. The
eigenvalues and admixture coefficients resulting from
the coupling of the class-I states to one of the class-II
states (e.g., called N) are first found from Eq. (3.184);
these coupled states are called A’. The matrix elements
coupling these new states to the second class-II state M

are
, o S CEOuH AN B M)
(AIHCIM)_%:CH(A,]HCIMy g B\~ By
(3.226)

[substituting Eq. (3.184a)]. The product (;|H_|N)

X (\|H, IM) can be expected to have uniform sign from
one class-I level to another in the case of sub-barrier
coupling; if the intrinsic states x, are defined at the
deformation of intermediate barrier A, then

wCllm w1 W Hol vigu'y (v nl Ho| viin")

(3.227)

as

WM H My =+ CV““C"'(EN——EX.) (3.228)
[from Eq. (3.184b)] with the sign being determined by

the product
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The expectation value of squared matrix element there-
fore has, instead of the essential independence of ener-
gy of the (A; |H, | M)2, a strong energy dependence of the
form

Y QM HNY (Ey = Ey P
(Ey = E\?+W2%

(3.229)

X«}"chl M>2) = (CMnu/Cu’u

where Wy =n(\| H,|N)?/D,.

The result of coupling the states A’ to the class-II
state M with the matrix elements of Eq. (3.228) can be
written in the generalized Lorentzian form described in
Sec. II1.C.5.c. (%), giving the admixture coefficients
(C})? of M into the final eigenstate A, averaged over a
Cauchy weighting function.: With the matrix element
substituted into the width expression it appears that if
the class-II state M lies much closer to N than the half-
width Wy, the effective width of the central states A
close to N is much smaller than the value deduced from
the matrix element (A\{| H | M). Well away from the
center, however, the wings will be more nearly the
value expected for a simple Lorentzian. Thus the ap-
pearance of a narrow peak superimposed on a broader
base begins to appear.

In studying the behavior of the fission widths of the
final states, the contribution of the state N must also
be included. Expressions for the coefficients of ad-
mixture N can be derived just as for M, but now the
states A" are obtained by coupling M to the A;. It now
has to be decided whether the contributions Cy ) u(s)
and Cyx)7n(s) to the fission width amplitudes of the final
states are to be added in a coherent or incoherent man-
ner (on the average). This can be answered by deducing
the coefficients C,() in the following manner:

_ CS YA H M)
Cran == — l I

E,.—E, ’
‘[see Eq. (3.184a)]

B M Ho| MYCoy )
Cx(zv) ==C) Z A

A (3.230)

The sum of Cy(y and Cyy) is, therefore,

: ~ QN H | MYCya
Caw +Cany —Cx(u)[l—; L2| .

Eyi—E,

C3o E ,)]
= A A
Cotay [u Z —JELJ—EM_ o , (3.231)
by Eq. (3.228), showing the existence of either complete
coherence or anticoherence.
In Fig. 41 the locally averaged admixture coefficient
{C%(mw)ay is shown for the case

Ey—=Ey=0.5Dy, (M| H | MY =(0| H | MY2 =Dy,

the nearest class-I level to Ey is 0.25D; above Ey (i.e.,
midway between Ey and E,), and the width of the av-
eraging function A is just D;. At the peak energy the
width is 0.458D, and the level shift AE, is 0.246D;.
These properties are reflected approximately in the
peak of Fig. 41, which has a measured half-width of
=1.3D;, corresponding to I' + A, and is centered about
Ey +0.22D; (the fact that the peak of Fig. 41 is narrower
than expected from the calculated I' is due to the rapid
energy variation of the level shift). If the fission width
associated with the level E, is negligible compared with
that of E,, the curve of Fig. 41 is proportional simply
to the locally averaged fission widths of the final eigen-
states of the system.
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FIG. 41. The locally averaged admixture coefficient (C%,,),,
for the coupling of a class-II state M into the final eigenstates
X of a picket-fence system of class-I levels coupled to two very
close class-II levels of which M is one.

(vii) Ovevlap of class-I1I levels with bvoad resonance.
The appearance of a narrow peak in the profile of ad-
mixture coefficients resulting from “overlap” of two
class-II states is analogous to the formation of quasi-
resonances in interference of fine-structure resonances
(Lynn, 1964, 1966b).

In the last section this effect was seen for the case in
which the class-II states lie within their coupling half-
widths. The effect can also be demonstrated for overlap
within the decay widths of the class-II states over the
outer barrier B. A simulated numerical example (Lynn,
1974a) is shown in Fig. 42. In this example the class-II
R-matrix state parameters (relative to the class-I
state spacings Dj) are

E'-E{'=12D;, T}, =20D,, T, =28D,,
and the mean squared coupling matrix element
Ol H App)2=1.4D% /25 .

With these parameters the matrix (3.157) has been di-
agonalized and the resulting eigenstates substituted

into the collision matrix (3.117). The poles of the col-
lision matrix are determined by numerical methods [see
Sec. III.C.3.g.(iv)]. From the residues of the poles [see
Eq. (3.134)] the fission strength G2, is determined and
the plot of these quantities is shown in Fig. 42, The
broad and narrow intermediate resonances in the pat-
tern of fine-structure resonances is easily apparent,
while the background class-II resonances are also in~
dicated.
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FIG. 42. The partial fission width quantities an(f, of the S-
matrix poles resulting from the coupling of a picket-fence set
of class-I R-matrix levels to two overlapping class-II levels.
The envelope of these pole strengths is analogous to quasireso-
nance profiles that can occur in fine-structure cross-section
curves. Circles correspond to poles that will appear as com-
paratively narrow resonance peaks in the cross section, while
the squares correspond to the poles of the underlying class-II
quasiresonances.
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1IV. SHAPE ISOMERS
A. Early developments
1. Discovery

The discovery of the shape isomers, or spontaneously
fissioning isomers, is now history. As such it isa
classic example of how an unexpected side effect turned
out to be more interesting than the primary effect for
which the initial experiment was designed.

In 1961 the search for new elements had been pushed
to Z =101, mendelevium, and beyond. There was con-
troversy about the properties of element 102 (nobelium)
but enough was known to realize that spontaneous fission
was likely to be the dominating decay mode for heavier
elements such as element 104. Liquid drop theory, to-
gether with half-life systematics, suggested spontaneous
fission lifetimes in the millisecond range. In an effort
to synthesize and identify the new element 104, Flerov
and his co-workers in Dubna bombarded a plutonium
target (Z = 94) with neon ions (Z =10) to make element
104.

22Pu+72Ne =26°104+ 4 .

The detectors indeed registered a radioactive sub-
stance decaying by spontaneous fission with a half-life
of 14 milliseconds. As a test, designed to rule out
lighter elements as the source of the spontaneously
fissioning activity, a control experiment was performed

238U +22No # 26°104 + 4n .
Unexpectedly, the 14 msec activity reappeared! (Pol-
ikanov et al., 1962). In subsequent experiments, in-
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FIG. 43. The isomeric yield ratio for a typical spin isomer
196Ay with 1=12, as compared to the isomer yield ratio for
#2mam. Flerov et al. (1968).

cluding fast neutron activation of 2*Am, the activity
was soon tracked down to 22”Am (Flerov and Polikanov,
1964). Thereby a range of completely new questions
arose.

2. Approaching an explanation

How was it possible for an excited state in a nucleus
to resist gamma decay for more than 14 msec and at
the same time undergo spontaneous fission at a rate
which meant a dramatic reduction of the fission barrier
by comparison to >2Am in its ground state? The pos-
sibility of explaining the stability towards gamma decay
by ascribing a very high spin value to the isomeric level
was soon ruled out by the observation that the yield of
the isomer, compared to the ground state yield, was
virtually the same whether it had been produced in a
heavy ion reaction, bringing 20-25 units of angular mo-
mentum into the system, or by a (p,n) reaction at the
Coulomb barrier where there is barely any angular mo-
mentum brought in (Fig. 43). If high spin cannot explain
the stability towards gamma decay, would it be possible
that the isomer was lying quite close to the ground
state? It would then be necessary to explain how the
fission barrier could be penetrated so exceptionally
fast.

This interesting possibility was explored by Urin and
Zaretsky (1966). It is a fact that the inertial parame-
ters B, required, according to Eq. (2.16), to explain the
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ordinary spontaneous fission half-lives, are quite large
compared to the minimum inertia one could envisage in
the case of nuclear matter behaving as an irrotational,
nonviscous fluid during the shape changes which lead

to fission. For a sphere this minimum inertia is 32/15
=2.13 times greater than the reduced mass of the nucleus,
considered as two solid half-spheres. (For larger dis-
tortions the irrotational mass approaches the reduced
mass value.) In ordinary spontaneous. fission the iner-
tial parameters required to explain the observed half-
lives are five to ten times larger than the reduced mass
values; see Figs. 44 and 45. If the new isomer were a
piece of nuclear matter in a special hyperfluid state
with an inertial parameter some four times smaller
than that of ordinary nuclear matter, tunneling through
the same energy barrier would take place at a rate
characterized by a penetration factor of 1078, as ob-
served for the 14 msec isomer, rather than by a factor
1073°~107%°, which is typical of ordinary spontaneous
fission in this region of A. In such a case the isomer
could be very close to the ground state in energy,
whereby the problem of understanding the stability
towards gamma decay would be eliminated.

This hypothesis failed to find support from subse-
quent reaction threhsold measurements (Bjgrnholm
et al., 1967), which showed that the isomer excitation
energy was of the order of 3 MeV. Now speculations
about special hyperfluid nuclear matter had again to
yield to ways of explaining the striking stability towards
gamma decay of a 3 MeV excited state in a doubly odd
heavy nucleus and with low spin. Clearly, a new se-
lection rule was operating here.

3. Shape isomerism

The idea of nuclear shape isomerism, which implied
that the isomer was lodged in an intermediate energy
minimum, was advanced as one of several possible ex-
planations by Polikanov ef al. (1962) and by Flerov and
Druin (1966). A breakthrough occurred in 1966 when the
idea received independent support from the theoretical
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side. Myers and Swiatecki’s work (1966) on the incor-
poration of shell effects into the liquid drop description
of nuclear masses and fission barriers had focused at-
tention on shell effects. This inspired several attempts
to replace the first schematic description of these by
one based on the actual shell model diagrams of the
single-particle levels as a function of deformation
(Nilsson diagrams). In this way one could hope to ob-
tain better accuracy in the calculation of ground state
masses and barriers. The general method along these
lines that was developed by Strutinsky proved to be par-
ticularly fruitful (see Sec. II). In 1966 the first numer-
ical results were obtained (Strutinsky, 1967a). They
immediately showed (Fig. 46) that the liquid drop fission
barrier for a certain region of nuclei among the acti-
nides was split into two by a large negative shell cor-
rection; and 22Am lay in that region. Similar results,
based on a somewhat different theoretical approach
were obtained at the same time by Gustafson et al.
(1967). :

Experiments with isomeric fission now became fo-
cused by these ideas. One obvious consequence, namely
that all the nuclides in the region, rather than a few odd
ones, ought to exhibit fission isomerism, was soon con-
firmed by Lark et al. (1969), as techniques for detecting
isomers with half-lives shorter than milliseconds and
microseconds were developed.
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FIG. 46. The first calculations of fission barriers based on

the liquid drop model (dashed lines) with inclusion of shell ef-
fects (full lines). Strutinsky (1967ab).

The interpretation of the isomers as the lowest state
of the intermediate minimum between two barriers,
which the theoretical calculations suggest, leads to a
host of irery specific predictions of the properties of
the isomeric states and of the collective and individual
particle excitations which can be built on these. In
Sec. IX these particular aspects, including the appear-
ance of two isomers in the same nucleus, are ex-
amined in greater detail.

B. lIslands of shape isomers and decay modes
1. The uranium-berkelium island

The occurrence and half-lives of presently known iso-
mers are illustrated in Fig. 47 and listed in Table II.
They form an island around a midpoint of maximum
stability. This is most readily seen when even, odd-A
and doubly odd nuclides are examined separately. These
are three groups with half-lives increasing stepwise
as one goes from one to the next. Within each group the
longest half-lives occur for isotopes with neutron num-
ber around 146-148. This special stability is evidence
of a neutron shell with the magic number around 146—
148. Strictly speaking it is evidence of a minimum in
the transmission coefficient, Eq. (1.6), for spontaneous
fission as a function of neutron number. It requires
independent measurements of the isomer energy-E;; and
the height of the outer barrier E; with high accuracy to
establish at which shape the magic number applies.
There must necessarily be a strong shell effect for
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those shapes which we identify with the isomers, in
order to have shape isomerism at all. It is therefore
generally assumed that the magic neutron numbers ap-
ply to this shape; but some influence from an antishell
effect at the outer barrier may well play a role (see
Sec. VIIL.E).

The variation of half-lives with proton number is
monotonic and seems to be dominated by the general
decrease in stability towards spontaneous fission with
increasing nuclear charge.

The extension of the island of shape isomers towards
the “north” and the “east” (increasing Z and N, re-
spectively), is thus readily understood. To the “south”
and “west” the island appears to be limited, not by the
filling of the shell minimum, but by a shift in the rela-
tive importance of the inner and outer barrier. Spon-
taneous fission gives way to gamma decay as the dom-
inating decay mode. This is seen indirectly from an
abnormal decrease in the partial cross section for ob-
servation of the spontaneous fission mode in #*°U and
238y, as shown by Pedersen and Rasmussen (1972) and
by Wolf and Unik (1973) in the case of 22"Np. This gen-
eral trend is entirely in agreement with expectation,
but it would be highly desirable to obtain more details.
Here, one runs into the fundamental difficulty of devis-
ing methods with a sensitivity that is sufficient for the
identification of weakly populated gamma decaying iso-
mers. For the spontaneous fission mode the problem
is much simpler. In no case has a shape isomer been
identified through its delayed gamma rays, and only in
one case, namely ?*®U, has it been possible to measure
delayed gamma transitions after the isomer was identi-
fied through its (weak) spontaneous fission decay branch
(see Fig. 48).

It has been possible to discover the island of shape
isomers in the actinide region thanks to the specificity
of the spontaneous fission decay mode. On the other
hand, cross sections are small in this region because
of the competing prompt fission reaction. This also
renders detection of delayed gamma rays particularly
difficult.

It is unlikely, as demonstrated by the studies of
Borggreen et al. (1973); that the “south western” coast
‘line of the island of shape isomers around the magic
neutron number 144-148 will readily be mapped. This
is unfortunate, for it may help resolve the puzzle of the
231Th resonance at 5.83 MeV excitation energy, which
is a candidate for the lowest-lying state in the second
minimum, or alternatively, as proposed by Mdller
and Nix (1974), of a third minimum present in these
light nuclei at’still larger elongation. A systematic
mapping of the shape isomer family in the region be-
tween U and 2*°Th would definitely help to clarify the
situation and test the prediction of a rapidly decreasing
inner barrier as ?*°Th is approached.

2. Other islands?

In addition to the magic island of shape isomers with
N =141-151 there are other regions with a different set
of magic numbers, where shell effects will stabilize
a particular shape. Most prominent among these is the
island of superheavy elements characterized by spher-
ical shapes and magic numbers (Z,N)=(114, 184), which
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FIG. 47. The island of shape isomers in the actinide region of the isotope chart. From Metag (1980).

is of course the higher homolog of the well-known
(spherical) shell model nuclei. Below the actinide re-
gion, nonspherical shapes are stabilized by shell ef-
fects for nuclei with (Z,N) close to (84, 118), i.e., 2®Po.
Detailed calculation of deformation energy curves have
been performed by Pashkevich (1969b) and Tsang and
Nilsson (1970); see Fig. 49. It is apparent that the in-
ner barrier is considerably smaller than the outer bar-
rier and thus gamma-ray emission is the most likely

decay mode according to the calculations.
has not been possible to identify this additional island
of shape isomers. Early experimental indications of
delayed fission from reaction recoils with mass num-
bers near to 2®*Po (Ruddy and Alexander, 1969) could
not be confirmed (Bjgrnholm et al., 1970). The more

So far, it
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recent interest focuses on the detection of gamma rays,

but no definite indications have been obtained about the

existence of this magic island.

TABLE II. Occurrence and half-life of fission isomers. In a number of nuclei there are two decay
periods. The one that is listed as number two is presumably due to an excited state in the second
minimum. For the even isotopes of plutonium (except ?Pu) and curium, and for 23"Pu, this is sub-
stantiated by measurements of excitation functions near threshold. Reference 1 is Britt (1973);
more recent results are taken from Ref. 2 (Metag, 1974) and Ref. 3 (Metag, 1980).

Nucleus tyse Ref. Nucleus ti/n Ref.
236y 125+ 15 nsec 1 BTAm 5+ 2 nsec 1
238y - 195+ 30 nsec 1 28Am 35+ 4 usec 1

>1 nsec 3 239Am 163+ 12 nsec 1

23TNp 40+ 12 nsec 1 M0Am 0.91+0.07 msec 1

235py 30+ 5 nsec 1 M Am 1.5+ 0.6 usec 1

236py 40+ 15 psec 2 M2Am 14+0.7 msec 1

34+ 8 nsec 1 M3Am 5.5+ 0.5 usec 1

23Tpy 110+12 nsec 1 Mam 1.0£0.15 msec 1

1.1+0.08 usec 1 M5Am 640 + 60 nsec 1

Z38py 0.5+0.2 nsec 1 M6Am 73410 psec 1

6.0+1.5 nsec 1 Moom 10+2 psec 3

289py 8.1+0.8 usec 1 55+ 5 nsec 3

, 3.0 2 nsec 3 “lom 15+ 1 nsec 1

20py 3.8+0.3 nsec 1 M2cm 40+15 psec 2

Mipy 241 usec 1 180 = 70 nsec 1

30+ 5 nsec 1 2430m 42+ 6 nsec 1

242py 3.6+0.6 nsec 2 U4om <5 psec 2
50 + 30 nsec 1 >100 nsec 1.

43py 60+15 nsec 2 2450m 18+ 2 nsec 1

24py 0.4+0.1 nsec 2 242k 600 =100 nsec 1

245py 90 + 30 nsec 9.5+ 2 nsec 1

243K 5+ 2 nsec 2

Hpy 820+ 60 nsec 1

M5Bk 2+1 nsec 1
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FIG. 48. The gamma decay of the B8y shape isomer. Russo,
Petersen, and Vandenbosch (1974, 1975).

3. Unobserved decay modes

So far we have discussed the decay of a shape isomer
by barrier penetration only, i.e., by spontaneous fis-
sion or by gamma decay. In addition to this, the iso-
mers may, in principle, decay in the same way as the

4 |- J
2t 1
A =|192
O_ —
/—
o} -
A =196
_2_ .
3
=
Z oL i
N A =[200 |
(O]
o
i
=z
w .
=z
3 ,
=
< N
s
o
2
Y]
o .

-02 0 0.2 0.4 06 08 1.0
DEFORMATION, €

FIG. 49. Shape isomers with a deformation parameter € =0.4
are predicted in the region of Z near 84, and N near 118.
From Tsang and Nilsson (1970).
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FIG. 50. Several decay channels are open to a shape isomer
when its energy Ey; is sufficiently high compared to the neutron
separation energy S,, or when the alpha decay @ value, (an

+ Eyy), is large, e.g., greater than 12 MeV.

ground state undergoes radioactive alpha or beta decay
to a daughter nucleus. If the radioactive decay proceeds
in complete analogy, that is, without shape change,
then the @ values and hence half-lives will be compar-
able to those of the ground-state decay, and this means
lifetimes of the order of minutes to thousands of years.
In this case, since the longest observed total lifetime
is 14 msec, it is not surprising that attempts to observe
alpha or beta branches from the shape isomers have
failed. It is true that alpha emission from the tips of
an elongated shape is enhanced because the interplay of
the nuclear and Coulomb potentials that determine the
heights of the barrier against alpha decay diminishes
the barrier at the tips, but this effect is not strong
enough to offset the influence of the initially very long
alpha half-lives. The effect is likely to be less than a
factor of 100 in decay probability, as can be seen from
the fact that in the general alpha decay systematics
there are no signs of an enhancement of the alpha tran-
sitions between (normally) deformed nuclei as com-
pared to spherical alpha emitters (Lederer et al.,
1967).

In the case of an alpha (or beta) transition from a
shape isomeric state directly to the normally deformed
daughter ground state the @ value is increased by the
isomer excitation energy E;;. A 2-MeV increase in
value will speed up the alpha decay by a very large
factor of the order of 10'° [see Lederer et al. (1967)].
This is the maximum to expect, since the poor spatial
overlap between initial and final states will lead to a
reduction of the order of the transmission coefficient
of the inner barrier. For 2*®U an isomer with 2.5 MeV
excitation energy will have a partial alpha half-life
longer than 10% sec, to be compared to the actual isomer
lifetime of 2 X 1077 sec. Similarly an isomer in 22Cm
with 2.0 MeV excitation energy will have a partial alpha
half-life exceeding 1072 sec, to be compared to an actual
decay period of 4 X 107! sec. Clearly, possible long-
range alpha groups from shape isomers in the actinide
region will be extremely weak. Beta decay branches
are even more unlikely.

Long-range alpha groups could be found, however,
among lighter nuclides. For example, long-~range alpha
particles are emitted from the excited states of ?'?Po,
which has an exceptionally high ground-state @ value
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(R =8.95 MeV) and a ground-state half-life of 3 X 1077
sec. Therefore, alpha emission from excited states
competes successfully with gamma-ray emission. If
shape isomers in the region of highly unstable alpha
emitters exist, which means the region above 2°¢Pb
with Z> 84 and N> 128, the shape isomeric state would
contain, by barrier penetration, some elements of these
excited, alpha emitting states and would corresponding-
ly have a significant chance of itself decaying by long-
range alpha emission. This possibility remains to be
explored. According to Tsang and Nilsson (1970) one
should expect shape isomers in this region, which is
part of the Z~ 84, N~ 118 magic island (Fig. 49).

An interesting decay mode that is related to gamma
decay appears possible if the isomer excitation energy
exceeds the neutron separation energy from the first
well. In this case penetration of the inner barrier leads
to an unbound state and delayed neutron emission can
occur. This may be a sensitive way of detecting shape
isomers in the Po region. The isomers must, however,
lie at such high energies in this case that the formation
cross section is likely to be quite low.

The decay modes discussed in this section are illus-
trated in Fig. 50.

C. Half-life systematics and odd-even effects
1. Spontaneous fission half-lives

The majority of known shape isomers decay predom-
inantly by spontaneous fission; the measured half-lives
thus relate directly to the penetration of the outer bar-
rier. In a few cases, namely, 23U, 23*U, and 2*'Np,
the decay probability has to be corrected for the gamma
decay mode, which dominates in these cases, as re-
vealed by abnormally low partial reaction cross sec-
tions for observation of the delayed fission mode. In
all other cases the cross sections follow a regular and
reasonably well-understood pattern, which is com-
patible with a negligible gamma branch and hence a
total lifetime equal to the partial spontaneous fission
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FIG. 51. Isomeric half-lives show a strong neutron dependence
and a strong odd-even effect. Based on Metag (1974).
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lifetime. The observed regularity in the formation
cross sections makes it very unlikely that gamma de-
cay could play a role; this decay mode would invariably
change from case to case because of the discrete na-
ture of states in the first well influencing the decay
probability in an erratic way.

The spontaneous fission half-lives are plotted in Fig.
51 as function of neutron number and in Fig. 52 as
function ‘of proton number. The difference is striking;
a strong shell effect in the neutron dependence is con-
trasted to a monotonic, liquid-drop-type dependence
on proton number. A pure liquid drop dependence
would give nearly horizontal lines for the neutron de-
pendence and strongly sloping lines in the Z diagram.
It is the changing slopes for neutrons and the con-
stancy of the slopes for protons that constitute the real
difference between the two cases, representing the
most direct evidence for a neutron shell effect centered
around N =144-148.

In addition to this, the half-lives fall into groups ac-
cording to the odd-even character of the decaying nu-
cleus. On the average, the lifetime increases by some
3-5000 times as one goes from an even nucleus to an
odd-A nucleus and by a similar factor during the next
step to doubly odd species. This is equivalent to a
nearly 25% increase, for each step, in the magnitude
of the penetration integral [Eq. (2.16)].

It should be noted that the odd-even effect is erratic
to some degree. The numbers given above apply to the
most extreme cases, which form the largest group in-
cluding all even nuclides, but there are a few excep-
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FIG. 52. Half-life for spontaneous fission as a function of
proton number. For the two isomers of uranium (Z=92) and
for ¥"Np (Z=93) the spontaneous fission lifetime is much long-
er than the directly observed half-life, because gamma decay
dominates, as evidenced by “missing cross section.” From
Metag (1974).
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tions with short half-lives, for example, the 9.5 nsec

isomer ?#37Bk, the 110 nsec isomer ?*"”Pu and the more

or less well established isomers, 2*'™Pu (35 nsec) and
243mpy (60 nsec). It could be argued that these isomers
represent excited states in the second well which con-
sequently have to penetrate a lower barrier. In the
case of 23"™Pu this is definitely not so (Vandenbosch

et al., 1973) and in the other three cases the formation
cross sections are quite normal in magnitude. If these
isomers were excited states in the second well with
excitation energies 0.3-0.7 MeV, as required to ex-
plain the reduction in half-life, then a considerable
reduction in formation probability would be expected.

" 2. The odd-even effect

There are three separate effects contributing to the
odd-even differences in the lifetimes

(i) An increase in inertial pavameter and hence a de-
crease in 7w, value with the number of unpaired nu-
cleons. As mentioned earlier, the effective inertia
associated with the barrier penetration exceeds the
minimum value consistent with the physical separation
of the nucleus into two halves; see Fig. 44. Griffin
(1971) has shown that the inertia associated with the
separation of a system of virtually independent parti-
cles would be even larger by several orders of magni-
tude. The pair correlations facilitate the inertial re-
sponse to shape changes, although they do not reduce
the inertia to the minimum possible value. According-
ly, systems with unpaired nucleons will have increased
inertia. Urin and Zaretsky (1966)’ and Sobiczewski
et al. (1969a) have made theoretical estimates of the
increase due to one unpaired particle and found it to be
of the order of 25% in the inertia, and therefore of the
order of 12% in the value of 7iw,. Other things being
equal this will increase a spontaneous fission half-life
typically by a factor of one hundred to one thousand.
This is the general order of magnitude, but consider-
able variations are to be expected depending on which
particular orbital the unpaired particle occupies.

(ii) An increase in the pairing gap at the barrier top
compared to the gap at the shape isomeric “ground”
state. Just as the magnitude of the pairing gap is mea-
sured by the odd-even differences of the ground state
masses, a difference in pairing gap will be revealed
by an odd-even staggering in the barrier heights.

Here, the barrier and the ground state are defined as
the lowest-lying state, whatever its spin and parity.
Since the barrier height is a measure of the energy
difference between a minimum and a maximum in the
potential energy curve, one might expect shell effects
of opposite sign at the two points and hence a sys-
tematic difference in the pairing gap also. This view
is open to question, however, because the barrier can
also be considered as a minimum in a many-dimen-
sional energy landscape of all the variables except one.
There is, in fact, a large negative shell effect at the
asymmetric outer barrier. On the other hand, if the
pairing energy is dependent upon surface area, even
with a negative shell effect one may expect an increased
pairing gap (Sec. VIIL.D). As defined here the odd-even
differences in the pairing gap can be small or large,
but they are likely to be systematic in nature.

(iii) Specialization energy. This is the extra energy
required to find a transition state at the barrier with
quantum numbers matching those of the shape isomeric
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ground state. The minimum and absolute requirement
is for the transition state to have spin and parity Iw
equal to that of the initial state. If this is all, then the
specialization energy is likely to be low because rota-
tional levels with appropriate spin and parity are in
general easy to find at the asymmetric outer barrier.
Requiring also that the spin projection K be conserved
narrows the choice. From what is known about Coriolis
mixing of K quantum numbers, one should indeed expect
spin projection to be conserved during the tunneling mo-
tion, provided the nuclear shape preserves axial sym-
metry. According to theory this is not the case for the
inner barrier, but it seems to hold for the outer one
(see Sec. II). Even so, the K quantum number is not an
absolute constant. Admixtures are nevertheless likely
to be small so that the fission probability, by virtue of
such admixtures, is expected to be cut down by a fac-
tor of 100 or more. There can also be restrictions on
the intrinsic radial and orbital angular momentum
quantum numbers of the individual particle that will
further increase the effective specialization energy.
Finally, for doubly odd nuclei, preservation of the
quantum numbers of each of the two unpaired nucleons
individually will lead to a specialization energy that is
the sum of the individual specialization energies. This
is equivalent to the assumption of completely indepen-
dent motion of the two particles. Spectroscopic evi-
dence from normally deformed nuclei does not give
much support to such a stringent assumption, since
mixing of two-quasiparticle configurations with the
same total K values appears to be very strong in many
cases. It is characteristic of the specialization energy
that it depends strongly on the properties of the initial
single-particle state; it may be large but it can also be
zero.

The three contributions to the odd-even effect are
illustrated schematically in Fig. 53.

3. Shell effects

Metag (1974) has made a phenomenological analysis
of the neutron shell effect and of the odd-even effects
based on all the known spontaneous fission half-lives
of shape isomers. The exponent in the penetration in-
tegral [Eq. (2.16)] is expressed in the following way:

Specialisation Energy —
Increased Pairing Gap

(1, K ) min
e-e

1=0
FIG. 53. Compared to the barrier of an even nucleus (with
spin zero) an odd-A shape isomer sees an increased barrier:
(i) the inertia may increase to decrease the Zw value; (ii) the
pairing gap A may be larger at the barrier by an amount S,,
compared to the minimum; (iii) the lowest-lying transition
state with (I, K)" value equal to that of the isomeric state may
lie on amount Sg above the lowest transition state.
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2T

27T
%E(EB_E“)z%c—u[aX+b +c(N ~N,)? +S], (4.1)

where
1/f for odd nuclei

7w =hiw,\1.0 for odd-A nuclei

f for even nuclei
and )
2S, for odd nuclei

S=4( S, for odd-A nuclei
0 for even nuclei.

The quantity X is the fissility parameter [Eq. (1.5)] and
the term aX +b accounts for the smooth liquid drop de-
pendency. The term c¢(N —N,)? describes the neutron
shell effect, whereas the odd-even variation of inertial
coefficients is expressed through the parameter f which
multiplies Zw g, and the odd-even effect on the barrier
height is reflected through the energy S, which is then
the sum of a possible systematic difference in energy
gap S, and specialization energy S.. )

Equation (4.1) expresses the main systematic effects.
Provided these effects are strong compared to the scat-
- ter caused by individual particle effects, a fit to the
known half-lives serves to determine the parameters
N,, ¢, S,, f, and 7w, in a meaningful way.

Figure 54 shows a least-square fit to the parameter
N,, the magic neutron number. The value N,=146 is
clearly preferred. This reflects the weighted shell
effects for all shapes across the outer barrier. It is
not certain that N, =146 is the magic number for the
isomeric shape as such, although it is suggested (com-
pare though, Sec. VIII.E). The strengthof the shell effect
is expressed by the parameter ¢, for which Metag (1974)
obtains 0.04 7w, or 0.024 MeV for %w,=0.6 MeV.

" T T T T T
1.5 1
=g - B
- B -
[
[T [ -
o
(2} - o
)
LJ
P - -
S
Q 05 — -
(&)
1 I 1 L 1 1

140 142 144 146 148 150
MAGIC NEUTRON NUMBER, Ny
FIG. 54. Determination of the magic neutron number N, from
a least-squares fit to the half-lives using Eq. (4.1). Curve (a)
corresponds to S=0, curve (b) corresponds to f=1,5=0.
From Metag (1974).
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4. The hw values

A separate determination of f and S is virtually im-
possible on the basis of the available lifetimes, essen-
tially because of the scatter in the actual decay rates.
This is very clearly brought out by Vandenbosch’s
(1974) discussion of the data, shown on Fig. 55. As
can be seen, it is equally possible to throw the entire
odd-even effect into the barrier height S or into the
inertia through the 7w, values.

The resolution of this ambiguity remains a challenge.
Figure 56 shows one of the Metag (1974) fits to the
spontaneous fission half-lives. With 5.5 x1072?! sec as

the half-life for zero barrier height, he obtains the

‘following values:

a=(-49.4 +5.2)7w, ,

b =(46.0 +4.4) 7w, ,
c=(-3.9+0.4) - 107w, ,
S,=(0.43 +0.26)%w, ,
£=1.16+0.08.

(4.2)

4 (B

L

4

OUTER BARRIER Eg-Ep (MeV)

FIG. 55. In both parts of the figure the experimental sponta-
neous fission half-lives are plotted against the theoretically
calculated height of the outer barrier, assuming no odd-even
effect. From part (a) the maximum value of the specialization
energy, S=S,+S,, is derived by assuming #Zw= 0.68 for all
nuclear types. In part (b) S is assumed to be zero and the
maximum variation in %Zw value is derived. From Vanden-
bosch (1974).
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FIG. 56. Simple phenomenological description of spontaneous
fission half-lives including the effect of a magic neutron num-
ber and the odd-even effect. The full drawn curves are the
predictions of Eq. (4.1) with parameters adjusted to give a best
fit. Points are experimental values. From Metag (1974).

(Other fits with either S,=0 or f=1.0 are equally satis-
factory; compare Fig. 55.) From the experimental
barrier heights (E, — E;) and the half-lives of ?3°U,
238py, and 2*°Pu, a value of 7w, =(0.65+0.05) MeV re-
sults. With this value the results can be summarized
as in Table IIL

The average behavior of inertial effects and increases
of the barrier heights will lie between the extremes I
and III. The analysis of odd-even effects, Sec. VIIL
D.2, points to a pairing energy difference of the order
of 0.25 MeV; thus case I is definitely ruled out.
Whether case II, based on Metag’s (1974) suggestion,
has struck the right balance still remains to be seen.
In addition, a glance at Figs. 55 and 56 clearly shows
that the idea of defining average quantities such as
(fiw z) and ¢S) in an unambiguous way is of limited use-
fulness.

5. Theoretical half-life estimates

First, a remark on the relation between isomer and
ground-state spontaneous fission half-lives is in order.
This aspect has been explored in particular by Randrup
et al. (1973), by Pauli and Ledergerber (1974), and
again by Randrup et al. (1976). Randrup et al. (1973)
derive a phenomenological inertial coefficient that
exceeds the reduced mass by a factor of 6.5 more than
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the irrotational, nonviscous, mass coefficient does;
see Fig. 44. They obtained this number through a fit
to all the known ground -state spontaneous fission half-
lives of even nuclei, using the then-best calculated
barrier, Fig. 45. When this phenomenological inertial
coefficient was used to estimate isomeric decay, half-
lives that were too long resulted. Pauli and Lederger-
ber (1974) find theoretical half-lives based on micro-
scopically calculated inertial parameters and barriers
in good agreement with experiment for the (even) ground
states aswell as for (even) isomers, see Figs. 21 and 22.
This requires, however, arather arbitrary Z -dependent
readjustmentof the liquid drop parameters. Without this
readjustment calculated and measured lifetimes still
agree within 2-3 orders of magnitude, which is not
bad for a process characterized by penetration factors
of 1072°.10"*°, Returning to the problem, Randrup

et al. (1976) estimate half-lives using both phenomeno-
logical and microscopical inertial coefficients. At the
same time new barriers are calculated with the inclu-
sion of further shape degrees of freedom. Good fits
are obtained in both cases. The factor multiplying the
mass excess compared to irrotational flow is now 11.5
instead of 6.5, and the microscopically calculated in-
ertias are reduced 209%. The isomer half-lives are now
satisfactorily reproduced, especially when the micro-
scopic inertial coefficients are used.

The ground-state spontaneous fission is also strong-
ly influenced by the presence of an unpaired particle.
For the heavier elements, Pu to Fm, thé hindrance
factor is about 10° (Randrup et al., 1973) to be com-
pared with a hindrance of (3-5) x10% for isomer fis-
sion. For ground-state fission it is not possible to dis-
cern a tendency towards proportionality between the
penetration exponent and the logarithm-of the hindrance
factor as one would expect from Eq. (4.1) for constant
f and a constant increase S in barrier height. The bar-
rier height is known to remain almost constant from
Th to Fm; therefore a constant increase (in MeV) is
also a constant relative increase. This failure can to
some degree be attributed to the influence of the indi-
vidual unpaired particle, but not entirely. Puzzlingly,
the most stable elements long appeared to be the least
hindered by the presence of the odd particle. Thus the
hindrance factor for 233U is quoted to be HF =10 and
for 23U, HF =40. This problem has been taken up by
Griitter ef al. (1974) who attempted to remeasure the
spontaneous fission rate of 235U and found the hindrance
factor to be unmeasurably large and at least ten times
greater than previously believed. When the difficulties
of measuring these weak fission rates are considered,

TABLE III. Three different hypotheses relating the penetration féctor Rwg with the magnitude of

pairing and specialization energy to explain isomer half-lives.

~ Casel CaseII CaseIIl
Pairing and Pairing and Pairing and
specializa- specializa- specializa-
tion energy tion energy tion energy
sy (Fwg) () (Fwg) S) (Fwg)
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
e—e .0 0.65 0 0.65 0 0.65
o—e 0 0.51 0.25 0.56 0.8 ’ 0.65
o0—=o0 0 0.40 0.50 0.48 1.6 0.65
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together with the problem of obtaining samples suffi-
ciently free of contaminating impurities of neighboring
even isotopes, it appears reasonable to discard the
problem and attribute the situation as being due to ex-
perimental difficulties. The same may apply to the
2#2Am ground-state spontaneous fission branch, which
experimentally appears to be less hindered than the
decay from the odd-A neighbors.

The fact that as a rule the hindrance factors for
doubly odd isomers are closely equal to the product of
the odd-A hindrance factors indicates independent con-
tributions from each particle. This is expected for the
inertial and pairing gap effect. To the extent that the
specialization energy contributes in a major way to the
hindrance, this also means that not only is the total -
spin projection K conserved during tunneling, but each
individual component @, and Q, of two particles is con-
served too (K=, +Q,).

On the basis of an observed hindrance due to a single
particle of =3 x10® for the shape isomeric fission with
a typical penetration factor of 107'¢ it would be reason-
able to expect hindrance factors in excess of 107 for
ground-state spontaneous fission of odd-A nuclei in the
Cm~Fm region where penetration factors are of the
order of 10”® and smaller. The fact that the observed
hindrance is less, typically 10*~10°, has been inter -
preted by Nilsson (1969) as indicative of a barrier
penetration process where not just one but several
shape degrees of freedom come into play. The thicker
the barrier to be penetrated, the greater freedom there
is to find a way through the multidimensional deforma-
tion energy landscape and thus to minimize the pene-
tration integral. Alternatively, the axial asymmetry
at the inner barrier may ease the problem of matching
the quantum numbers at the inner barrier to those of
the initial state, in this way easing the hindrance due
to the odd particle.

Summarizing, the predominant features of spontane-
ous fission from the ground state and from the isomeric
state can be understood within the same conceptual
framework of tunneling through a two-humped fission
barrier. Both barrier heights and inertial effects are
increased by the presence of one or several unpaired
particles. This picture, partly phenomenological, -
leads to an understanding of tunneling rates with an
accuracy of 10-20% in the penetration exponent.

D. Shape isomer formation yields and excitation
functions

More specific information on the barriers containing
the shape isomer, particularly on the isomer excitation
energy and on the outer barrier, can be obtained from
the experimental data on the cross sections for forma-
tion of the isomer, and especially from the dependence
of such cross sections on excitation energy. Specifi-
cally, it is expected that extrapolation backwards of a
sharply rising excitation curve to its threshold point
will yield the isomer excitation energy, while the
maximum value of the excitation curve, in the case of
neutron evaporation reactions, will give information
on the relative transmission coefficients (and hence
barrier heights) of the inner and outer barriers of the
penultimate nucleus in the evaporation process (i.e.,
that nucleus with one more neutron than that of the
shape isomer itself); and the drop in yield with further
increasing excitation energy ought to be governed by
the outer barrier of the final nucleus.
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1. Threshold excitation curves from neutron
evaporation theory

Most of the experimental data on shape isomer exci-
tation curves are from neutron evaporation reactions;
a highly excited nucleus is formed, usually from char-
ged particle bombardment, and the isomer results
from this after emission of a specified number of neu-
trons. The relevant width (or more accurately trans-
mission coefficient) for the last stage neutron eva-
poration leading to the states in the final nucleus that
feed the isomer is expected to be very small in com-
parison with the total for all other modes of decay. It
is then possible to derive simple statistical theory ex-
pressions that describe to first order the expected
feature of the excitation curve in the neighborhood of
its threshold (Jiigare, 1970; Vandenbosch, 1972).
These are related to the features of (xn) evaporation
reactions first discussed in terms of the statistical
theory by Jackson (1956).

a. The one-neutron evaporation process

The case treated here is for an initial nucleus of
mass number A excited by a monoenergetic reaction
to a precise excitation energy E* and total angular
momentum and parity J7. The evaporation of a neutron
from this excited nucleus is treated in the statistical
theory, originally formulated by Weisskopf (1973), by
the use of the transmission coefficients for formation
of the compound nucleus by neutrons as defined in Eq.
(3.41). From this expression, by summing over all
possible angular momenta, a simplified expression can
be obtained for the neutron transmission coefficient
for specific neutron energy € connecting the compound
nucleus to a single state of the residual nucleus and
summed over all orbital angular momenta:

x

3 ()T () = 2MEnem(©)

2 pre (4.3)

where m is the reduced mass of neutron and nucleus.

If the level density of the residual nucleus is assumed
to depend on total angular momentum J simply as 2J +1,
a simple expression for the summed transmission coef-
ficient for total first-stage neutron emission from the
nucleus may be obtained from Eq. (4.3); this is,

2m
2

T.r’(n.tot)(E*)= (27 +1) ~

*
E =S,
x [ 7 deopom(©pUNES =8, —€), (4.4)

o

where p!} is the level density of the residual nucleus

A +x -1 for an effective angular momentum of zero and
both parities and S; is the neutron separation energy
of a neutron from the nucleus A. In the use of Egs.
(4.3) and (4.4) the compound nucleus formation cross
section by neutrons, o, .y, iS generally assumed to
be independent of the neutron energy e.

A more accurate representation of the spin depen-

dence of the level density is

P(U, 1) =pere (V)(21 +1)exp (— = ;j’:) ; (4.5)
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where ¢ is a spin dispersion coefficient. The use of
this form of the level density excludes a simple deri-
vation of Eq. (4.4), but a modified form can be obtained
(Lynn, 1974b) containing an additional factor f.(J,¢)
in the integrand. For approximate calculations a sim-
ple prescription for f,;(J,€) is to compute it in terms
of a related function f(J,1):
J+1
gy (21 +1)expl- (1 +3)/20%]

D= —= BT+ @ +1) . (4.6)

The required factor f;;(J,€) is simply set equal to the
weighted average of f(J,l) and f(J,,), where I  and [,
are the orbital angular momentum values bracketing
the average orbital angular momentum of the contri-
butions to the compound nucleus formation cross sec-
tion as expressed in Eq. (4.3). This will vary some-
what with energy, and to remove f,(J, €) from the
integrand of the modified Eq. (4.4) [,, should be calcu-
lated for the approximate mean energy € of neutron
emission. If the level density energy variation can be
described by a simple exponential formula with con-
stant temperature 6 then € is just 26. The factor
Sets(J,260) will not be included explicitly in the equations
given in this section, but should be understood to be
included as a multiplying constant in more detailed
work.

Equations (4.3) and (4.4) are applicable to special
states that might feed a specific isomer as well as to
the totality of states of the residual nucleus. For the
application of Eq. (4.4) to such a special state their
level density is labeled by the extra superscript s, and
the same factorization as in Eq. (4.5) is adopted:

p (U, 1) =pk® (U) (21 +1)exp| - (I +5)2/20%]. (4.7)

Thus the transmission coefficient summed over the
special states is
)

2mo CN)p;%f)(o)el

T o ) (E*) =T pa(y, tor) (E*) = p

*
(27 +1)[6,eF -5 /61 _ (E* -5, +6,)].

2m
w2

TJr("'s)(E;k)= (2J+1)
N .
E 5 (1, s)
x [ 7 deoem@entis (B> =S, —€).
0
(4.8)
The evaluation of the integrals in Eqs. (4.4) and (4.8)
is particularly simple if, as well as making the as-
sumption that o, oy 18 constant, it is assumed that the

level density has the simple exponential form with
constant temperature:

PLRD) =R (0)e

(s)
Peir® (U,) =p ke (0)e¥s1 .

(4.92)
(4.9b)

Here U, is an effective excitation energy for the special
states and may differ from the true excitation energy
of the residual nucleus by an isomer excitation energy
E_. Similarly, the temperature 6%’ may be one that is
appropriate only to the special states. Substitution of

Eq. (4.9b) into Eq. (4.8) gives

) (s)
2mow e Pett® (0063
mh?2
* (s)
X [9§S)6(E -S;~Eg) /6387 _ (E* =S, -E, +9§S))],

(4.10)

T j1(n, ) (E*) = (2J +1)

Thus the excitation function for the population of a spe-
cific state that is fed by the set of special states s (with
no branching elsewhere) is given by the ratio T ;¢(,, ¢/

T ;2(y, Where T ;¢(py is the summed transmission coef-
ficient over all possible decay processes. If these are

effectively limited to neutron emission then

(4.11)

If the isomer excitation energy E, is appreciably greater than the residual nucleus temperature 6,, the second fac-
tor in the square bracket of Eq. (4.11) is unimportant in the evaluation of the excitation function, which becomes

2
Y (E*) = T_,r(n,s)(E*) - PQEFS)(O)G(IS) e-Es/e{s)eEiku/eﬁs)-l/el) [1 _ (1 + E* -§, _Es> e-(E*-sl-ES)/Bis)] .
s

T sv(ny tot) (E*) - pgi"f 0)e3

For the simple case of 6{5'=6,, this function is shown
in Fig. 57. By contrast, the excitation function of the
ground state of the residual nucleus, on the assump-
tions that it is fed uniformly from all states reached
by neutron evaporation and that there are no compe-
ting reactions, is simply a step function at the thres-
hold energy. )

b. Two-neutron evaporation process

For isomers reached by a two-stage neutron emis-
sion process from the nucleus A the population of states
excited in the nucleus A —1 by emission of one neutron
must first be written down. This is obtained simply
from Eqs. (4.3) and (4.4) giving

T v(n, o) (E*) (E* =S, - 8,)p41(8)
T yo 1y (E*) fOE*'Sldi ep{I)(E* =S, —¢)
(4.13)

P,(8,)d8, = s,

for the probability of exciting states, of all spins, with-
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) (4.12)

r
in the interval of excitation energy d &, at energy &,
in the residual nucleus. If now the isomer is fed (uni-
formly) from a set of special states in the residual
nucleus A —2 reached after emission of a second neu-
tron, and the density of these states is denoted by

p'> (U, I), the probability of forming the isomer is

= Tnor(8)
d51P1(51) —ns)\C1/

Y (E*) =
§ SptEg T(T)(51) ’

(4.14)

where the transmission coefficients now refer to the
compound nucleus A —1’and the total angular momen-
tum notation has been dropped (the dependences on an-
gular momentum being assumed to cancel). These
again can be readily evaluated under the constant tem-
perature level density assumption to obtain expres-
sions of the kind (4.10) and (4.11), but with the numeral
1 that appears there in superscripts and subscripts
being replaced by 2, to indicate quantities referring to
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FIG. 57. Isomer excitation functions for one-neutron, two-
neutron, and three-neutron evaporation processes in the equi-
temperature level density models [from Egs. (4.12), (4.16),
and (4.21)]. The curves are normalized to the factor

[T 5%, 101y (B9 p%0) /T sy (E ) p%) (0)] exp(—E5/6,}).

the residual nucleus A — 2, and the excitation energy
E* being replaced by §,. A diagram showing the rele-
vant energy relationships at a glance is given in Fig.

Y (E) =

ﬂﬁzTJr(T)(E*) pg}(())()z o+E g
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FIG. 58. Diagramatic illustration of energy relationships used
in isomer excitation formulas. Neutron separation energies
are indicated by S, maximum excitation energies (relative to
a ground state or isomer state) by E, neutron energies by €,
actual excitation energies (following neutron evaporation) by &.
Subscripts indicate the nucleus to which the quantity refers.

58. Equation (4.14) then becomes, for the case in
which decay processes from the nucleus (A —1) are
limited to neutron emission,

(E* =S, - 81)381/sl[gés)e(sl-sz-zs)/a;s) - (8, -S, - E, +65)]

*
210 P EH(0) (2T +1) p$3:*)(0)65° f”“ g,
S

[Bze( sr-sz)/oz - (81 —82 +92)]
(4.15)

With the simplifying, assumptions that all temperatures occurring in the integral of Eq. (4.15) are equal, and that
E /6, is considerably greater than unity so that only the exponential term in the denominator of the integrand need
be retained, the expression for the excitation curve simplifies to

Y (E*)~ T v so1) (E*) p(%'l’S)(O)e-Es/Gz {1 _[1+E: +l. <

TJf( T)(E*) peff)(o) 92 2

where E¥=E* -S, =S, —E_. This function is shown in
Fig. 56.

By contrast, the excitation function for forming the
ground state of the nucleus A —2 in the absence of re-
actions competing strongly with neutron decay [which
can be found by equating T, /T to unity in the in-
tegral of Eq. (4.14)] has the functional form of Eq.
(4.12) with E, set equal to S, and 6{*’ replaced by 6,;
Eq. (4.12), the isomer yield curve for one-neutron
evaporation, has in fact the functional form first given
by Jackson (1956) for two-neutron evaporation to the
nucleus (A —2). Excitation curves for two-neutron
evaporation to the ground state can, however, have the
functional form given in Eq.. (4.16) (which has the Jack-
son three-neutron evaporation form for excitation of the

nucleus A —3) provided there is a predominant com-
- J

%) p(2,8) (5252
Y, (E*) = T r (o son) (B*) Pe3°)(0) 6226 eE;“u/o‘;)-l/szle—E,/oz(s)

Tyop(E¥) 05(0) 6363

2 1/Ex*\3 *
)+ 3 (5D T

(4.16)

1 B
peting reaction with exponentially increasing trans-
mission coefficient. Such competition could be pro-
vided, for example, by fission from the nucleus A -1,
the effective fission barrier being considerably lower
than the neutron threshold (Metag et al., 1973).

Generally, it is expected that the temperature as-
sociated with the level density of the first-stage nu-
cleus A —1 will differ considerably from the tem-
perature of the final nucleus; for the range of ex-
citation energies of interest in the analysis of spon-
taneous fission isomerism calculations based on the
assumption of an independent-particle model (Fermi
gas) kind of level density indicate that the former tem-
perature may be ~25% higher than that of the A —2 nu-
cleus. Equation (4.15) may be integrated for this more
general case, the result being

* 2 * 3 %2 *
(o B g (o B (B T - (6 -2 e o)
2
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where © here denotes the quantity (65 +6;! — ;') and
® denotes (6;' —6;')™. The form of this equation for some
typical temperatures is shown in Fig. 59.

c. Three-neutron evaporation processes

To calculate the excitation curve for isomers reached
by three-stage neutron emission from the nucleus A the
population of states excited in the nucleus A -2 by
emission of two neutrons must first be evaluated. This
is obtained from the population at the previous stage,
Eq. (4.13), by multiplying by the branching ratio to
states at excitation energy &, in A —2 and integrating
over §,:

£ s,
P,(8,)ds, =d82f dé, P,(8,)
Sp+6,

x 2mo oy (8, =S, — 8,)p51(8;) .
2 T(m(8;)

(4.18)
1
T v (E*¥) p{39(0) _ E* E¥®
Y (E*) = —Ll(mtot) eff e-Esh 1 __(1 4S8 4 S
(BN = T A E PG AT

-S, —E,. This excitation function is shown in Fig. 57.

E*4 E*5 */,
S. s ~EX /8
"86° ' 2467 +12095)e : ] ’

where, as before, E¥ is the maximum excitation energy of the system relative to the isomer, i.e.,
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With the previous assumptions of no significant com-

petition against fission decay and equal temperatures
in the A -1 and A -2 level density laws this again can
be evaluated very simply for values of the excitation
energy such that §,/6, > 1. The range of excitation
energies in the nucleus A — 2 in which we are interested
well satisfy this condition. The result is

T e (E*)
= l ; )
Pz(gz)dgz T_ﬂ( T)(E*)

x El'e' <5*%€zz> PR SRV (4.19)
The isomer yield curve is
_ [T Tin0(6s)
Y (E*) -f d &, P,(8,) =tmsl2- (4.20)
T(T)(‘gz)

53+Es

and substitution of the relevant quantities under the
constant temperature level density assumption gives

%3
EZ

(4.21)

E*=E* -§, =S,

The important case in which the temperature of the special states feeding the isomer differs from the other tem-

peratures can also be derived very simply. The result is

TJ'(n. tot)(E*) pig'fS)(o)

Y (B¥) =
(5 T op(E¥) pl3(0)

E*Z E*S E*4

055"\ ° 1 1
(’%”) EXP['E?(?;‘@?

)

BX

- /(s) .E*
x e"Fs/s3 [1—(1+5§7+20§)2 +

shown for various ratios of 8{*’ to 6 in Fig. 60.

¥ (8)
600" " 34T 12039;3’5>e e ] ’

(4.22)

The leading term in Egs. (4.22) and (4.21) for small E¥/6{% has the form (E}/6)° at large values of E¥/6{% the
term exp[~E¥(1/6 —1/6{)] becomes dominant in Eq. (4.22). Thus, if the special states have a high temperature,

_ RELATIVE YIELD OF DELAYED TO PROMPT FISSION

10 [ L 1 1 L L

1 2 3 4 5 6 7 8 9 10
EXCITATION ENERGY ABOVE THRESHOLD/NUCLEAR TEMPERATURE

FIG. 59. Isomer excitation function for two-neutron evapora-
tion process, with different temperatures for the level densi-
ties in the different states. The curves are normalized as in
Fig. 57. Curves are labeled by values of 055)/62. For every
curve 0,/0,=1.4,E;/0,=4.
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FIG. 60. Isomer excitation function for three-neutron evapora-
tion process, with the temperature of the isomer-feeding
states differing from the temperature of the overall level den-
sity law. The curves are normalized as in Fig. 57 and are
labeled by values of 0§/6.
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such as might be employed phenomenologically to represent the sparsely occurring levels in an energy gap region,
the rising excitation curve above the threshold becomes rapidly damped and can be expected to fall away rapidly
in due course. The same feature is found in the expressions (4.12) and (4.17) for isomers formed from one- and
two-neutron evaporation. In the first case, the leading term is proportional to (E*/6,)?, but the term exp[—E¥(1/6,
- 1/9{”)] becomes dominant at high energies for differing temperatures; while in the two-neutron evaporation case

the leading term is (E¥/6,)*.

The general result for the three-neutron evaporation case, with all temperatures being different, is

T yr(nson(E*) p31(0) 65%0° -E¥ /o,

Y (E%) =
ol T e(n(E¥)  p3I(0) 626262 ¢ °

(s),
x {7 /03 [g2(1 - e"FE k) ~2£0 — {(B¥ - 20)e™53  +T12(1 — B2 /) 4 2110 —[1(E* +20)eF5/M]

+[®2(1 +20/652 — E*/69) +&(E* - 20)]e B3/

+(203/642)(1 — eF3 ) —32(1 +20/6% + E¥/6{’) +280(1 +E*/6{*")

+[A%(1 —20/6% — E¥/6{) + A(E* +20)]e~Es /o

+(203/6)(1 — eBI M)~ A2(1 —20/65° + E*/65°) =200 (1 + E*/65*)},

where

=6 -6;', ®7=6;'-06;!, M™M=06"-0;" +655,

d. General remarks

It is apparent from the above equations and the illus-
trating diagrams (Figs. 57, 59, and 60) that a variety
of shapes of isomer excitation curves can occur, even
for reactions of a specified number of neutron evapor-
ation stages. Care must be taken therefore when the
excitation curve is analyzed to deduce the isomer en-
ergy E,. The most common assumption that is made
is the equitemperature one. This is probably quite
adequate in the analysis of data leading to isomers
occurring in doubly odd nuclei. It is fraught with con-
siderable uncertainty, however, in dealing with the
spontaneously fissioning isomers of even- and odd-A
nuclei. In these cases the special levels (which are the
class-II levels of the secondary well in the fission bar-
rier) are expected to be spasmodically placed in an en-
ergy gap with no strong overall energy variation, which
is then followed by a normal level density region char-
acterized by a typical temperature. An approximation
to the excitation curve could be achieved by summing
a curve calculated with a very high (or perhaps even
negative) “temperature” built on the isomer state, with
an equitemperature curve built on an effective isomer
energy placed at the top of the energy gap. This could
possibly introduce some structure into an otherwise
monotonic excitation curve with a smoothly varyingde-
rivative. Some evidence for this kind of picture em-
erges from the data on excitation of the ?*®U shape iso-
mer through the (r,n’) reaction [Wolf and Meadows
(1974) and private communication]; attempts to fit these
data with the simple equitemperature one-stage evapor-
ation model of Eq. (4.12) have not been very successful
(Fig. 61).

Further modification of the excitation curves dis-
cussed above might occur with relaxation of the restric-
tion that decay of the compound nuclei in all but the in-
itial state is through neutron emission processes only.
Fission is the major competitive reaction, of course.
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FIG. 61. Data for excitation of 23U shape isomer by the ¢ ,n’) re-
action (Wolf and Meadows, 1974 and private communication).
The broken curve is a statistical calculation based on constant
temperature level density models (6;=0.5 MeV, 0$)=0.53 MeV,
E;1=2.35 MeV). The full curve treats the class-II state spec-
trum as having an energy gap (24 =1.2 MeV) containing rota-
tional bands based on K" =0* ground state, a K" =0~ vibration
at 0.5 MeV higher, and a K"=2% vibration at 1 MeV higher.
The isomer energy is 2.56 MeV. The dotted curve shows the
effect of omitting the K™ =0~ band.
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As long as the fission transmission coefficient has a
similar dependence on excitation energy as the total
neutron transmission coefficient (as suggested by the
near constancy of neutron-induced fission cross sections
at energies above the fission barrier; see Sec. VII), the
shapes of the excitation curves presented above will re-
main essentially unchanged, but the magnitude will be
reduced by a product of factors representing the ratio
of neutron to total transmission coefficient at each
stage of evaporation. Proximity of a fission barrier to
an excitation threshold could alter the shapes very con-
siderably, but assessment of all the known shape iso-
mer data shows that this does not appear to occur in any
known case. It can affect the shape of a ground-state
excitation curve quite severely, however, as in the case
of two-neutron evaporation to ?*°Cm (Metag et al., 1973).
Discussion of the detailed analysis of isomer threshold
data is given in Sec. IV.D.3.

2. Absolute strengths of excitation curves

Some of the factors governing the absolute values, as
distinct from the shapes, of the excitation curves for
shape isomers have already been discussed. Some of
these factors are included explicitly in the equations
already given, notably the probability of first neutron
emission from the initial compound nucleus, and level
density ratios between isomer-feeding states and the
totality of residual states in the final nucleus. Extra
multiplying factors that have to be introduced into the
isomer yield functions are the probabilities of second
and subsequent neutron emission, the overall factor be-
ing approximately

L T (EY - 2p6)

(n.tot)

T (7> (E} - 2p6)

(4.24)
=1
for an (xn) evaporation process. As stated at the end of
Sec. IV.D.1.d, fission is normally expected to be the
major reaction competing with neutron evaporation.

So far in this section we have not considered the im-
plications of the double-humped fission barrier for
shape isomer yield except insofar as the secondary
minimum of the barrier provides the mechanism for
the existence of the class-II states that feed the isomer
after final neutron emission. The formulas given so
far are implicitly for an outer barrier very much higher
than the inner barrier. When the outer barrier is com-
parable with or lower than the inner barrier there is a
decoupling effect on transition processes from a nu-
cleus effectively in a normal shape to states in a differ-
ently deformed shape. This effect has already been dis-
cussed in Sec. III B.1, and the relevant reduction factor
for states of class I decaying to states of class II is
given by Eq. (3.50). This implies a further multiplying
factor, approximately

: TAFV[EX —2(x-1)0]
TG VEE, -2(x-1)0]+ T G 7" V[EX, - 2(x - 1)6]

(4.25)

where T 4, T ,, are the transmission coefficients
across the inner and outer barriers, respectively, for
the final stage of decay at the nucleus A4 —x+1, the iso-
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mer being found in the nucleus A - «x.

For analysis of the shape isomer excitation curves,
information on the product (4.24) is to be obtained, di-
rectly or indirectly, from experimental data such as
neutron-induced fission cross sections up to excitation
energies of some 20 MeV. At these higher energies the
data are somewhat indirect because they contain contri-
butions from (xnf) reactions as well as immediate fis-
sion, and an assessment of the relative importance of
the contributions from each process has to be made;
at the present state of knowledge this is largely subjec-
tive. For the highly fissile nuclei—Pu and up—there
are good reasons to think that first chance fission dom-
inates. Data on relative neutron and fission transmis-
sion coefficients are given by Huizenga and Vandenbosch
(1962), and a further discussion of these topics is given
in Sec. VII of the present review. Where experimental
data do not exist on the relative neutron to fission emis-
sion probabilities for particular nuclei these have to be
deduced from systematic trends.

Apart from determining the isomer excitation energy
it is also a prime aim of the analysis of isomer excita-
tion data to deduce the factor (4.25); this gives inform-
ation on the height of the outer barrier relative to the
inner barrier in the nucleus A - x+ 1. How far this can
be successfully accomplished will be dealt with in the
detailed analysis of data in Sec. IV.D. 3.

Most measurements of shape isomer excitation curves
have been made by detecting the delayed spontaneous
fission of the isomer relative to the prompt fission
yield. Such a measurement introduces another possible
factor into the analysis of the data, namely the branch-
ing ratio between decay of the isomer by spontaneous
fission and by gamma cascades through lower class-I
states to the ground state of the residual nucleus. The
gamma branch of the isomer decay is very difficult to
measure, and has in fact been observed in only one
case, namely, from the shape isomer of **®U (Russo
et al., 1974). Although the difficulty of the measure-
ment suggests that the sparsity of data on the gamma
branch may not reflect an intrinsic improbability in
this mode of decay, the systematic behavior of the
spontaneous fission yield from most isomers strongly
supports the belief that for most of the presently known
shape isomers the gamma-decay branch is negligible.

At higher excitation energies the shape and magnitude
of the isomer excitation curve becomes distorted by ad-
ditional effects. The first of these is the possibility of
fission decay, through the outer barrier, of the higher
class-II states that feed the isomer (Britt ef al., 1971).
Here, the competition between gamma decay and fission
must be calculated from a model of the radiation pro-
cess and the Hill-Wheeler penetrability factor through
the outer barrier [see Eq. (3.17)]. The outer barrier
height can be left as an adjustable parameter in fitting
the curve over an extended energy range [as was at-
tempted by Britt e¢ al. (1971,1973)] or can be assessed
from other data. In the two papers of Britt et al.
(1971,1973) the radiation transmission coefficient to
lower class-II states was calculated from a simple
strong coupling dipole model in which the gamma-ray
strength is simply assumed to be proportional to the
cube of the gamma-ray energy and the proportionality
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constant is obtained from neutron resonance radiation
width data in the actinide region. In some of the numer-
ical analysis given below in Sec. IV.D. 3 a more elabor-
ate giant-dipole resonance model has been used; this is
described in more detail in Sec. VII. For the analysis
of plutonium and americium isomer data the basic an-
alysis is not too greatly dependent on the treatment of
the radiation process (typical calculations of the trans-
mission coefficients for radiation gmd fission are shown
in Fig. 62, but in the curium isomers, where the outer
barrier appears to be rather low, this competition is
‘more difficult to assess; in these nuclei class-II states
not far above the energy gap could be decaying apprec-
iably by fission, and the radiation properties of such
states will be particularly difficult to compute reliably
with a statistical model.

The net effect of this fission competition in the decay
of the class-II states is to attenuate the isomer excita-
tion curve at higher energies, causing it to fall away
from the asymptotic values indicated in the idealized
formulas (4.12), (4.16), and (4.21). Tending to compen-
sate this effect, however, is another route for feeding
the class-II states. In this final neutron evaporation is
to highly excited class-I states of the final nucleus;
these are coupled, relatively strongly above the inter-
mediate barrier, and much more weakly below, to the
class-II states which can then feed the isomer by gam-
ma cascades (see Fig. 63). These class-II states suf-
fer strongly from the fission attenuation effect, of
course, but in the neutron evaporation process the
class-I states of the final nucleus are so much more
strongly populated than the class-II states that the
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FIG. 62. Transmission coefficients for radiation and fission of
class-II states above the shape isomer.
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route can be an appreciable one at higher excitation
energies. Britt et al. (1971) estimate that this route
can be the predominant one at an excitation energy of

5 MeV above the isomer threshold. These calculations
were very schematic, however, assuming a sharp cut-
off energy, for example, below which coupling between
class-I and class-II states was negligible. More real-
istic calculations made for the present review with re-
assessed empirical level density functions for normally
deformed nuclei and for the barriers (see Sec. VII) in-
dicate that even for energies greater than about 7 MeV
above the threshold the contribution from the class-I
route is of the order of 10-20% of that from direct neu-
tron evaporation to the class-II states. At these higher
energies, however, other processes even more difficult
to assess quantitatively come into play, such as neu-
tron emission in a preequilibrium mode rather than
compound nucleus evaporation (Britt ef al., 1973), and
although it is encouraging that the overall shape of the
excitation curve can be accounted for, not much reli-
ance can be placed on parameters deduced from the
higher energy reaches. ‘

3. Experimental data on isomer excitation

Most experimental data on excitation of spontaneously
fissioning isomers exist for the Pu, Am, and Cm nu-
clides. In Secs. IV.D. 1 and 2 it was remarked that an-

~ alysis of the excitation curves is probably least com-

plicated for double odd nuclei. For this reason the
study of the experimental data is begun with the ameri-
cium series.

a. Americium shape isomers

(i) °?Am. The most important data available on the
excitation function of the 14-msec isomer of this nu-
cleus are those due to Flerov et al. (1967) using the
243Am(n, 2n) reaction. There are also data on the
242py(d, 2x) reaction (Britt ef al., 1971), which do not
reach to such a low energy as the former, but are be-
lieved to give more accurate values of the overall mag-
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FIG. 63. Schematic diagram of population routes for the shape
isomer.
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nitude of the yield. If the (n, 2n) data are normalized
to the (d, 2n) data (which are given as the ratio of de-
layed fission cross section to prompt fission cross sec-
tion), they must be approximately doubled in value.
These data are plotted in Fig. 64. A number of fitted
curves and calculated'points from the theory described
in Secs. IV.D. 1 and 2 are shown in comparison. In the
first of these (long-dashed curve) the level density tem
peratures assumed are 9, =0.65 MeV (for ***Am), 6,
=0.528 MeV (for 2**Am), and 6§ {*’=0.5 MeV (for class-
II states of >**Am). The numerical values of temper-
ature are discussed in Sec. VII. All class-II states ex-
‘cited in ***Am are assumed to decay to the isomer. The
fitted curve shown is for parameters E;;=2.5 MeV, and
a normalization constant

p(2,s)(0) P2 T;A-l)
N:exp(—E /9(5))"'“L———-‘——I'— ey e e =
11 2 P;ig)(o) Pf TJ(“ 1)+T(B 1)
(4.26)

with value 1.5 x10™. In the expression for N, P, is the
probability of two-neutron evaporation and P, the ac-
cumulated prompt fission probability (in this case the
sum of f, »n'f, and, at the highest energies, 2nf pro-
cesses), while T, T arethebarrier transmission
coefficients for the nucleus one neutron higher than the
isomer [see Eq. (4.25)]. The fission and neutron-evap-
oration data reviewed in Sec. VII indicate that P,,/P,
~0.23 for ***Am, and, with the assumption that p &;(0)
=p 2)(0), this fit determines T,/(T 4+ T)~0.074 for
243Am. Using the behavior of fission barrier level den-
sities as reviewed in Sec. VII this quantity indicates a
barrier difference V, -~ Vy~ 1.5 MeV for ***Am.

The dot-dashed curve and the short-dashed curves
are for different assumptions of temperature, while the
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FIG. 64. Excitation of 14 msec isomer of *2Am through (z, 2x)

(Flerov et al., 1967) and (d, 2r) (Britt et al., 1971) reactions.
The fitted curves are explained in the text and in Table IV,
Circles are experimental points due to Flerov ef al. (1967),
squares are experimental data of Britt ef al. (1971) and crosses
are detailed statistical theory computer calculations.
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continuous curve is an example of a fit making allow-
ance in a simplified way for higher class-II states to
decay by fission over the outer barrier. With an as-
sumed height for the outer barrier the energy in the
secondary minimum at which the class-II radiation
coefficient T, equals the outer barrier transmission
coefficient can be determined on the basis of models
(see Fig. 62 based on the considerations of Sec. VII).
Class-II'states below this energy are assumed to decay
completely by radiation to the isomer and above this
energy by fission over the outer barrier. This approxi-
mation is intuitively justified by the very rapid change
with energy of the barrier transmission coefficient be-
low the barrier energy. The population distribution of
states in the second well following two-neutron evapor-
ation is shown in Fig. 65.

A summary of the parameters of all the fits is given
in Table IV. This demonstrates the range of variation
in deduced values of the parameters resulting from rea-
sonable assumptions about some of the other nuclear
parameters. It does not include any variation due to ex-
perimental error. The most reasonable set of assump-
tions is probably incorporated in the solid curve shown
in Fig. 63 [for a discussion of V, for **Am see subsec-
tion (44) below], and the values of E;; and V §*"1) de-
duced from this are taken as the most likely values of
these parameters. The errors (from parametrization)
appear to be of the order of +0.2 MeV and +0.3 MeV,
respectively.

Data from the 2*?Pu(¢, 3x) reaction (Britt et al., 1972)
seem to confirm approximately the value of V, for
243Am. With a generalized multitemperature model for
the three-neutron evaporation (temperatures of §,=0.83
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FIG. 65. Cumulative population distribution of states in sec-
ondary minimum following two-neutron evaporation to odd re-
sidual nucleus. Temperature 6, for first-stage evaporation is
assumed to be 0.65 MeV and 6&5) for second-stage evaporation
is 0.528 MeV. Curves are labeled by the amount of (initial) ex~
cess energy above the @ value for reaching the isomeric state
in a two-neutron evaporation reaction, E¥— Ey;.
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TABLE IV. Fits to excitation function data for 14 msec shape isomer of 242Am. In deduction of
VYYD, the value of Uy for 243Am was taken to be 6.25 MeV. The points X are full statistical theory
numerical calculations of the isomer excitation for the parameters shown. See Fig. 64.

6, 0, 6§%) T
Curve (MeV) (MeV) Mev) VED By N TED L 7ED v
Long dash 0.65 0.528  0.500 High 2.5 1.5x107¢ 0.074 4.75
Dot—dash 0.65 0.528  0.528  High 2.5 1.5x107 0.074 4.75
Short—dash  0.65 0.528  0.528  High 2.7 2.7x107¢ 0.15 5.05
Solid 0.65 0.528  0.528 5.3 2.9 3.2x107¢ 0.34 5.55
Not shown 0.65 0.528  0.528 5.6 2.8 2.5x107% 0.22 5.25
Not shown 0.65 0.528  0.558 5.3 3.0 5.0x1074 0.47 5.75
X 0.528 0.528 5.7 3.0 5.45

MeV, 6,=0.63 MeV, 6,=6{’=0.52 MeV are deduced
from the level density parameters recommended in Sec.
VII), with E; fixed at 2.9 MeV and Psﬂ/P,= 0.17, these
data yield ~0.9 MeV for the barrier height difference

in #3Am. The quality of these data are relatively poor,
however, covering only one decade in relative range.

In particular the isomer excitation energy is ill deter-
mined, a perfectly adequate fit being possible with E
~2.3 MeV, for example.

(ii) */Am. Data on the excitation of this isomer
through the 242Pu( p, 2) reaction are due to Lark ef al.
(1969), and are shown in Fig. 66. Fits with simple con-
stant-temperature level density models tend to give low
values of E;; and V{*"!). As explained in Sec. IV.D. 2
more realistic level density models should be used in
the odd-A (or even) case. The actual fits shown here
employ an energy gap 2A ) in the level density of the
secondary minimum, within which the density is con-
stant (assumed equal to 1.2 MeV ™ for J=3 states of one
parity in the odd-A case) and above which the density
has a constant temperature rather similar to the tem-
perature of the class-I states in the corresponding en-
ergy region., If, for the level density above the gap,
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FIG. 66. Excitation of 1.5 usec isomer of 2!Am through
242 pu(p, 2n) reaction, circles are due to Lark et al.
(1969) and triangles to Britt et al. (1972). The param-
eters for two possible fits are described in the text.
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p &:°2(0)=p 22(0), only poor fits are possible (for a
reasonable value of the gap, say 2A $’=1,2. MeV); and

a fit is shown by the dashed curve in Fig. 66 (parame-
ters are E;;=1.8 MeV, V{#"2)=5.3 MeV, T V(T ¥
+ T4 ™))=0.011. Better fits are achieved if p (%;°(0) is
rather lower than p 2)(0) (by a factor ~2), or 9{%) is

eff

rather higher than 6, (by perhaps 10%). With such fits,
an example of which is shown by the continuous curve
of Fig. 66, higher values of V for 2*?Am, more in ac-
cord with other evidence, are achieved. The paramet-
ers for the continuous curve are: §,=0.65 MeV, {5’
=0,=0.518 MeV, 2A “’=1.2 MeV, p %5°(0)=0.5 p 2)(0)
=0.9 MeV *, E;;=2.2 MeV, V{*?2)=5.0 MeV, P, /P,
=0.303, T VATV +T$71))=0.058. With a value
of V,=6.5 MeV for ??Am (see Sec. VII) this last value
can be interpreted to give V,=5.3 MeV for ?*?2Am.

(iii) *°Am. Important data on the threshold ex-
citation curve of the 0.9 msec isomer of **°Am are
available from the 22 Pu(p, 2x) reaction (Bjgrnholm
et al., 1967). The absolute magnitude of the curve is
confirmed by results from the 24°Pu(d, 2n) reaction
(Britt et al., 1971). These data are shown in Fig. 67.

The analysis of the data carried out for this review
is similar to that described for 2*2Am. A typical fitted
curve is shown in Fig. 67. The parameters for this
are: 0,=0.65 MeV, 6,=0.528 MeV, 6§’ =0.558 MeV,
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FIG. 67. Excitation of 0.9 msec isomer of 2Am. Circles are
data from the %1Pu(p, 2») reaction (Bjgrnholm et al., 1967) and
squares are from the ?°Pu(d, 2») reaction (Britt et al., 1971).
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V"2 =53 MeV, E;;=3.0 MeV, N=2 x10™, From this
(with P, /P,=0.2) it is deduced that 7 ") /(T {#™1)
+T71)=0.2 and hence that V, is ~0.9 MeV lower than
V4 for **'Am.

The rather poor data from the 2*°Pu(¢, 3n) reaction
(Britt et al., 1972) indicate a barrier height difference
of about 1.5 MeV for ?*!Am, if the isomer energy is
fixed at 3.0 MeV.

(iv) %°Am. Data on the excitation of the 0.163 msec
isomer of 2*°*Am are available from three reactions, the
240py(p, 2n) reaction (Lark et al., 1969; Britt et al.,
1972), the *"Np(«, 2x) reaction, and the 2*°Pu(d, 2n)
reaction (Britt ef al., 1971). Data on the 2*"Np(«a, 2x)
reaction are also given by Fleury et al. (1973). These
data, shown in Fig. 68, illustrate the consistency, and
hence the experimental uncertainty, connected with this
kind of work; it is apparent that systematic shifts in
normalization (by up to 30%) and/or energy (by up to
0.2 MeV) are required to bring the data from the differ-
ent reactions into juxtaposition.

Examples of three fits to the data are shown. The
continuous curve is the fit of Britt et al. (1971). This
was a computer program calculation based on statistical
theory and the level density functions used were those of
Gilbert and Cameron (these are essentially constant
temperature forms below about 4 MeV); the relevant —
parameters are E;;=2.5 MeV, V{#°2)=5.2 MeV, V@™’
-V {1 =1.2 MeV. The dashed curve is based on a
level density model with energy gap as described for
24 Am; the parameters are §,=0.65 MeV, 9, =0${>=0.518
MeV, E;;=2.4 MeV, V72)=5,2 MeV, P, /P,=0.1 (as-
sumed), 7 A"V /AT L+ T §71)=0.044, giving V,
=5.2 for V,=6.5 MeV in 2*°Am. The dot-dash curve is
due to Britt ef al. (1973) and is based on a model in
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which all relevant level densities (including barrier
densities) and hence transmission coefficients are cal-
culated from the deformed nucleus single-particle level
schemes of Bolsterli et al. (1972) (these do not show
energy gap features). This model allows for prequil-
ibrium neutron emission (which has the effect, mainly,
of not allowing the isomer yield to drop too rapidly at
high excitation energies) but the absolute fraction of
preequilibrium component in the excited populations is
adjusted to the data. The parameters deducedfrom the
fit are E;;=2.5 MeV, V{#"2)=4.65 MeV, V{* 1) =5.6
MeV (with V{71’ =6.45 MeV).

() **Am. The data available on.the excitation of the
1 msec isomer are from the **Pu(¢, 3n) reaction (Britt
et al., 1972). Two typical fits are shown in Fig. 69.
The parameters for the dashed curve are: 6=0.7 MeV
(for the residual nuclei in the first two evaporation
stages), 6,=0.5 MeV (final stage), V") - E ~2.5
MeV, E;;=2.8 MeV, V{2 -V 2)~1.2 MeV (as-
suming P,,/P,=0.45). Higher values of the outer bar-
rier are deduced from a more general multitemperature
model. The full curve employs for the first-stage
evaporation, 6,=0.83 MeV, for the second stage, 0,
=0.63 MeV, and, again §,=6.%’=0.5 MeV for the final
stage. With E;;=2.8 MeV, V“ 2 _y°2)~1,0 MeV.
Considerable variation in these parameters is possible;
E,; could be lowered to ~2.5 MeV and V{2’ by 0.3-0.4
MeV.

(vi) Data from (n,y) veactions. Two of the isomers
discussed above (those of 22Am and ?#*Am) have been
formed also by the (n,7y) reaction, the neutron en-
ergy varying between thermal and ~2 MeV. The
reaction yields as a function of neutron energy have
been compared with the results of gamma-ray cascade
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FIG. 68. Excitation of the 0.163 psec isomer of *°Am. Triangles are 24°Pu(p, 2r) data (Lark et al., 1969), closed circles
are 28'Np(x, 2z) data, squares are 23°Pu(d, 2») data [both from Britt et al. (1971)], and open circles are 24°Pu(p, 2z) data by

Britt et al. (1972). The fitted curves are described in the text.
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FIG. 69. Excitation of the 1 msec isomer of *4Am by means o
the %4Pul(t, 3n) reaction (Britt et al., 1972). Parameters for
the fitted curve are given in the text.

calculations modeling the transition schemes between
primary and secondary well with neutron and fission
competition. The transition scheme is shown in Fig.
70. In this, the nucleus is assumed to be formed in
class-I states at an excitation energy equal to the neu-
tron energy plus neutron separation energy. These
states are mixed with class-II states (the mixing can be
considered as a shape transition across the intermed-
iate barrier), the mixing strength being given by the
statistical formulae of Sec. III. B, if the excitation en-
ergy is above the intermediate barrier, or by the for-
mulas for mixing of discrete states (see Sec. IIl. C. 5)
- if otherwise. The class-II components of the mixed
states can decay by fission over barrier B or by radi-
‘ative transitions to lower states in the secondary well.
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FIG. 70. Transition scheme for formation of shape isomer by
cascade radiation.
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the 3Am(x,v) reaction (Boca et al., 1969). The curves are
calculated results from the radiation cascade model.

These lower class-II states can either mix with class-I
states allowing further radiative deexcitation to states
of normal shape, or fission, or deexcite radiatively to
still lower class-II states. The main class-I component
of the original excited state can decay either by neutron
emission or radiation to lower class-I states which
themselves have a (generally smaller) class-II compo-
nent mixed with them. The complete cascade is very
expensive to follow in full numerical detail on an elec-
tronic digital computer but Monte Carlo treatments of
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TABLE V. Double-barrier parameters of americium nuclei as deduced from experimental data on
shape isomer excitation functions. The level density parameters employed are those given in Sec.
VII for class-I states and barrier deformations. For class-II states of odd-A nuclei, the level
density parameters are described under Section IV.B.3.a. U4 values, where appropriate, are taken
from Sec. VII. The table is to be taken as an attempt to achieve consistent parameters through the
whole chain of nuclides downwards from *Am. Bracketed values are assumed from other evidence
than the stated reaction for the purpose of obtaining a fit.

Eqn Va 2
Nuclide Reaction Data Ref. MeV) (MeV) (MeV) Remarks
M5Am  Mpug, 3n)*Am  Britt et al. 6.15 5.2 ~+0.3=0.5 MeV
(1972) uncertainty on Ug
24Am ditto ditto 2.8 (5.3) ~+0.3—0.5 MeV
uncertainty on Ey
23Am(n, v)*4"mAm Boca et al. (2.8) 5.5 Vg deduced with
(1969) assumed Ep
Uipy(p, 2n)243mAm Britt et al. 6.37 5.3 '
(1972)
23Am ditto ditto 2.3 (5.0) ~%0.3—0.4 MeV
uncertainty on Ey;
M3Ame@, 2n)242"Am Flerov et al.
(1968)
M2py(d, 22)22"Am  Britt et al. 6.25 88
(1971)
2M2py(t, 3n)*2mAm Britt ef al. 5.3 Value deduced if Eq;
(1972) for 242Am assumed to
be 2.9 MeV
M2Am  M3Amee, 27)*2™Am Flerov et al.
(1968)
MWpyd, 22)*™Am  Britt ef al. &8 (5.3)
(1971)
242Am@,y)*?"Am Dahlsuren et al. (2.9) ~5.5 U g deduced with
(1969) assumed E g
Boca et al. (1969)
Nagy et al. (1970)
M2py(p, 20?1™Am  Lark et al. (1969) 6.5 5.3
Britt et al. (1972)
MAm Ditto Ditto 2.2 (5.0)
2pyu(p, 22)*”"Am Bjgrnholm
et al. (1967)
M0pu(, 27)*™Am Britt et al. 6.2 5.3
(1971)
U0py(t, 3n)29"Am Britt et al. ~4,7 Value deduced if Eqy
(1972) for 2Am assumed to
be 3.0 MeV
MAm Mpy(p,22)0™Am Bjdrnholm et 3.0 (5.3)
al. (1967)
UWpu(p, 27)**™Am Lark et al.
(1969)
Britt et al. 6.5 5.2
(1972)
BINp( , 22)*3%"Am Britt et al.
(1971)
239pud, 21)23"Am Ditto
2¥Am Ditto Ditto 2.4 (~5.2) Assumed value for Ug
29pu(p, 2n)238™Am Sletten and 6.0 ~4.5
Jdrgensen
(private commun.)
238AMm Ditto Ditto 2.6 (~5.0) Assumed value for Ug
28py(p, 2n)23"™Am Polikanov and Va—Tp ~1.2
Sletten (1970)
BTAm Ditto Ditto 2.4 (~5.0) Assumed value for Up

the model have been devised.
Comparisons between calculations and observation

for the 2**Am isomer are shown in Fig. 71, and for the

242Am isomer in Fig. 72. In both cases it is apparent
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that these (x, v) data are in reasonable agreement (at
least in order of magnitude) with the parameters nec-
essary to achieve fits for the excitation by neutron evap-
oration reactions.
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(vii) Geneval vemavks. Data on other americium iso-
mers (***Am, 23®Am, ?*’Am) are also available. The de-
ductions from these and all the above-mentioned data,
. using the present analysis, are collected in Table V.

It will be seen from the discussions of specific cases
given in the subsections above that the error due to un-
certainties from the analysis alone (due to uncertainties
in the choice of theoretical parameters) seems gener-
ally to be of the order of 0.2-0.3 MeV in the quantities
E;; and V, and experimental uncertainties are prob-
ably of similar magnitude. In some cases the data are
considerably poorer or more limited in range than the
average case; for these the extent of the uncertainty

in analysis is indicated in the “remarks” column of Ta-
ble V.

b. Plutonium shape isomers

The analysis of these isomers for this review follows
the same general lines already described for the odd-A
americium isomers [see particularly the discussion of
2¢.Am under Sec. IV.D.3. a. (i{)]. For even nuclei the
constant level density within the energy gap of the
class-IIlevel system is assumed tobe 0.45 MeV~!, and itis
also assumed that the exponentially rising component
of the class-II level density is half the magnitude of the
corresponding class-I component.

A typical example of analysis of plutonium data is
given in Fig. 73. The data are from the ?**U(o, 2n) and
23"Np(d, 2n) reactions for excitation of the shape isomers
of 2"Pu (Britt ef al., 1971). The model parameters for
the continuous curve are §,=0.65 MeV, 6.9=4,=0.5
MeV, 24 ¢)=1.2 MeV, p$:¢'(0)=0.5 p 2)(0), E;;=2.8
MeV, V"2 =53 MeV, P, /P,=0.12, T @V /TP V)
+T471°)=0.34, implying that V  =4.9 MeV with V, =5.5
MeV for 2*®*Pu. The ?*°U(a, 3n) data of Wolf and Unik
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[referred to by Britt et al., (1972)] support an outer
barrier height that may be ~0.3 MeV lower than this.

The collected results of analysis of plutonium isomer
data on the present scheme are presented in Table VI.
The remarks given above Table IV are relevant to this
table also.

The data referred to in Table VI do not exhaust the
available experimental information on excitation func-
tions of plutonium shape isomers. The 8.5 usec isomer
of 2*°Pu has been observed by the 2¢°Pu(y, n) reaction
(Gangrskii ef al., 1973). The nature of the energy de-
pendence of the bremsstrahlung source adds a further
complication to the analysis of this kind of reaction.
From their analysis Gangrskii et al. report a number of

. values of E;; ranging around 3.0 MeV, and therefore in

qualitative agreement with the value given in Table V.
The photoneutron reaction has also been used to investi-
gate the excitation of the 24 usec isomer of ?*'Pu (Gan-
grskii ef al., 1970). In this case the ratio of delayed
fission to prompt fission (>107 at maximum brems-
strahlung energy of 12.5 MeV) seems very high. The
isomer energy is given as 2.9 MeV for a nuclear level
density temperature of 0.7 MeV.

c. Curium shape isomers

The principles for analysis of curium isomer data
are the same as those described for the plutonium iso-
mers. Inthe curium case much of the evidence rests
on three-neutron evaporation data, so a typical example
of this, for excitation of the ?**Cm isomer, is shown in
Fig. 74. Here the fit is for an energy-gap model as de-
scribed in Sec. IV.D.3. b with temperatures 6,=0.83
MeV, 6,=0.63 MeV, 6,=06{°’ (above the energy gap)
=0.5 MeV. The isomer energy E, =2.1 MeV, and with
the assumption P,,/P,=0.06 it turns out that V, — V,
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FIG. 73. Excitation of the 0.11 and 1.1 psec isomers of 237Pu. Circles are the »5U(a, 2r) reaction and squares the 2TNp(d, 2n)
reaction. [From Britt et al. (1971)].
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TABLE VI. Double-barrier parameters of plutonium nuclei as deduced from shape isomer excita-
tion functions.

. Ey Va Vs
Nuclide Reaction data Ref. MeV) (MeV) (MeV) Remarks
Mpy 2By, 2n)'™pu  Britt et al. 6.14 ~5.4 0.5 MeV uncertainty
: ) (1971) depending on value of
Namboodiri et Eq; selected for *9pu.
al. (1973) Note data of 2nd ref.
Gangrskii et ~60% lower than that
al. (1972) ' of 1st
Mpy Ditto Ditto ~2.3 +0.5 MeV uncertainty
288y, 37)8Mpu  Britt et al. 5.57  ~5.0
(1971)
Wolf and Unik
(1972)
23¥py Ditto Ditto 2.7 (5.2)
38y ,27)?8"Py  Limkilde and 6.26 5.6
Sletten (1973)
238py Ditto Ditto 2.7 ~ (~5.0)
25y, 2n)3"py | Britt et al. 5.5 4.9
BINp(d, 27)287"Pyu(  (1971)
2%y @,37)?"™pu  Wolf and Unik,, ~4.6 Uy deduced for Ep; of
see Britt et 23Tpy = 2.8 MeV
al. (1972)
Blpy Py, 22)?™py | Britt et al. 2.8 (5.3)
BINp, 21)23T"Pu(  (1971)
28py Wy, 24)BmPy  Britt ef al. ~5.2 ~4.5
(1971)
2%py Ditto Ditto 2.6 (5.1) +0.3—0.5 MeV ~
uncertainty
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~1.6 MeV for #**Cm.

Collected double-barrier parameters for curium nu-
clei are given in Table VII. The deductions obviously
have very great uncertainties associated with them, but
the trend, in comparison with Pu and Am isomers, is
clear; both the E; values and the V, values are consid-
erably lower than the correspondingly values for the
lower-Z nuclei.

d. Shape isomers of other nuclei

While shape isomers of nuclei other than the isotopes
of Pu, Am, and Cm are known, and in some cases their
excitation functions have been measured, these do not
add significantly to the body of systematic quantitative
information on barrier parameters assembled in Tables
V to VII. This is for a variety of reasons; in some
cases the data are too limited in range to provide reli-
able estimates of such quantities as the isomer energy,
in other cases information is lacking on other nuclear
parameters (such as neutron evaporation probability),
sometimes the isomer formation results from a reac-
tion chain that involves charged particle emission and
.is thus of a predominantly direct or preequilibrium
character, and finally, for nuclei of lower charge than
plutonium, it is believed that the isomer may have a
significant branching ratio for decay by gamma emis-
sion (cascading through class-I states associated with
the primary well). These “nonsystematic” cases are
dealt with below.

(i) Bevkelium isomers. Three fission isomers of
Berkelium have been reported by Wolf and Unik (1972).
Two having half-lives of 600 and 9.5 nsec belong to
242Bk, and the third, half-life 820 nsec, belongs to
244k, All are excited by the («, 3x#) reaction. Excita-
tion curves have been measured by these authors, but
the cross sections are low and the range of the data is
too limited for reliable analysis. The yields are about
1 order of magnitude (or more) lower than those of sim-
ilar reactions leading to isomers of Pu, Am, and Cm.
Although part of this factor may be accounted for by
greater fissionability in the berkelium chains, the re-
sults do seem to provide qualitative evidence for a con-
tinued decrease in both isomer energy and outer bar-
rier height with the extra increase in proton number.

Isomers of 2*Bk (5 nsec) and 2*°Bk (2 nsec) have been
reported by Gangrskii et al. (1972). These were formed
by (a,2n) reactions and very low cross sections of 0.48
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and 0.25 uyb, respectively, were measured.

(ii) %%y, Several observations have been made of this
spontaneously fissioning isomer, the most precise val-
ue of the half-life of which has been quoted as 116+ 7
nsec (Christiansen ef al., 1975). The reactions used to
investigate it have been 2**U(d, p), 2**U(n, ) (for both
thermal neutrons and fast neutrons up to ~2 MeV), and
236y(d, pn). All except the fast neutron reactions, for
which there are special experimental difficulties, agree
in establishing the cross section for delayed fission to
be rather low. Christiansen ef al. (1975) report the ra-
tio of delayed fission yield to prompt fission to be
(1.24+£0.6) X107 5 at deuteron energy 11 MeV, Britt and
Erkilla (1971) report (8.7+1.3) x107° for the same quan-
tity at 12 MeV, and Wolf ef al. (1970) give the isomer
ratio (relative to formation of the ground state) as 1.3
x107% at 13 MeV deuteron energy. Wolf e/ al. (1970)
also measured the isomer ratio for the **°U(d, pn) reac-
tion at 21 MeV- deuteron energy; the result quoted is
9x107%, whereas a value of more than 10 might have
been expected for a shape isomer at about 3 MeV ex-
citation energy.

Probably the most detailed study of the formation of
the 2°°U shape isomer has been carried out by Pedersen
and Rasmussen (1972). This was also a study of the
(d,p) reaction but the delayed fission was measured in
coincidence with the proton energy (at deuteron energy
of 11 MeV), and thus the delayed fission cross section
was established as a function of excitation energy in
236y, The data were analyzed by Pedersen and Rasmus-
sen on the assumption that class-I states were excited
by the (direct) (d,p) reaction and these could decay by
gamma emission to the isomer, or by prompt fission,
by coupling to class-II states (for a discussion of the
theory of this coupling, see Sec. III. C.5). Assumptions
of either complete damping of class-II vibrational states
into the class-II compound states, or of only partial
damping, could lead to reasonable reproduction of the
observed coincidence spectrum (see Fig. 75), using the
following barrier parameters: U,=6.1 MeV, 7w,=1.0
MeV, U,=5.8 MeV, Zwz=0.7 MeV, and a reasonable
spectrum for the low-lying barrier states. With these
same parameters the total cross section for formation
of the isomer was estimated to lie between 6 and 20 ub,
whereas the observed cross section for delayed fission
was only 1.0+ 0.5 pub. The discrepancy suggests that the
y-decay branch of the isomer (through low-lying class-I

TABLE VII. Double-barrier parameters of curium nuclei as deduced from shape isomer excitation

functions.
' Eq Va Us
Nuclide Reaction data Ref. MeV) (MeV) (MeV) Remarks
MUbom  Mpu(e,372)5™Cm  Britt et al. 5.65 4.05
(1971)
Wolf and Unik
(1972)
245Cm Ditto Ditto . 2.1 (4.6)
Mcm  22py(a, 37)243"Cm Ditto 5.8 4.3
M43Cm Ditto Ditto 1.9 (4.4)
M2cm ¥pu(e,22)*1™Cm  Britt et al. 6.0 ~4.0  ~+0.5 MeV uncertainty
(1971) ‘
Mom Ditto Ditto 2.1 (~4.3) Ditto
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FIG. 75. Relative delayed fission yield (measured in coinci-
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gram). Part (a) shows calculation of yield assuming complete
damping of class-1II vibrational states into class-II compound
states, and part (b) is a calculation for partial damping [from
Pedersen and Rasmussen (1972)].

states) is about 1 order of magnitude stronger than the
fission branch, and this is qualitatively supported by

the results of the other measurements referred to above.

‘(ii3) %*U. A spontaneously fissioning isomer of 238U
with half-life ~200 ns has been observed by means of the
(d, pn) reaction (Polikanov and Sletten, 1970; Wolf
et al., 1970) and the (n,n’) reaction [Wolf and Meadows
(1974) and private communication]. Cross sections for
the first reaction are quoted as 0.4 ub at deuteron en-
ergy of 13 MeV and a few ub at 21 MeV. The excitation
curve for the (n,n’) reaction is shown in Fig. 61; its an-
alysis by use of Eqgs. (4.12), (4.23), and (4.25), yields
an isomer energy of ~2.3 MeV and an outer barrier
height of ~4.5 MeV for **°U (assuming U, = 6.4 MeV;
see Sec. VII). This outer barrier appears to be very
much lower than its assessment from other evidence
(Secs. VI and VII), and the isomer therefore appears
to be a candidate, like ?*°U, for appreciable compet-
ition from a gamma-decay branch. Direct observation
of this branch has been made by Russo et al. (1975)
using the (d, pn) reaction at a deuteron energy of 18
MeV,; see Fig. 48 and Sec. IV.B.1. This gamma-ray
transition scheme establishes the isomer excitation
energy as 2.559 MeV. There is conflict here with the
results from the (z,n’) reaction (see Fig. 61). The sim-
ple temperature model fit shown in that diagram gives
E,;=2.35 MeV, and with a higher temperature fit Wolf
and Meadows (private communication) obtain E;;=2.0-
2.2 MeV; this rests strongly on the experimental sep-
aration of the two lowest points of the curve from back-
ground. If these two points are ignored then the data
can be fitted rather well with a more elaborate model
that represents the states within the energy gap as ro-
tational bands based on the ground state and one or two
vibrational states, plus a normal exponentially rising
continuum of states above the gap. The full curve of
Fig. 61 is based on an isomer excitation energy of E,;
=2.56 MeV.
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The observations of Russo ef al. are supported by
measurements of the nuclear radiative decay of muonic
atoms of 23®U (Fromm et al., 1977). These authors in-
terpreted a group of gamma rays with decay half-life
9+ 2 nsec as feeding the low-lying vibrational and ro-
tational states of ?*®U from an isomeric state at 3.176
MeV. They accounted quantitatively for the shortened
half-life and increased energy relative to the observa-
tions of Russo ef al. by the distortion of the fission bar-
rier due to the energy shift of the bound muon.

(iv) " Np. Despite many attempts. and some false at-
tributions later retracted, it was not until 1973 that
reliable evidence for the existence of a spontaneously
fissioning isomer in any neptunium isotope was pub-
lished. The isomer then reported was found to have a
half-life of 40+ 12 nsec and belong to ?*"Np (Wolf and
Unik, 1973). The reaction employed was 2*®U( p, 21),
and the excitation curve is shown in Fig. 76. The curve
fitted by Wolf and Unik, using Eq. (4.16) for a simple
single temperature model, gives an isomer energy of
2.7+0.3 MeV. An energy-gap model, as described in
Sec.1V.D.1.d., gives an E value in the range ~1.5-2.8
MeV. The ratio of the cross sections for delayed fission
to prompt fission is the lowest ever measured, and if this
were interpreted simply as a measure of the value of
T./(Ta+Tp) for 2**Np it would imply an outer barrier
several MeV below the intermediate barrier. It is clear
from the evidence of intermediate structure in the neu-
tron-induced fission cross sections of **’Np that this
cannot be so (see Sec. VI.E.3.c.). It is inferred there-
fore that this isomer has a very strong gamma decay
branch through class-I states, and that the branching
ratio for fission is only of the order of 107 (for E,
~2.8 MeV). The existence of this isomer has been con-
firmed by Migneco et al. (1977), who measured a half-
life of 45+ 5 nsec and an excitation energy of 2.85+0.4
MeV, and deduced a branching ratio of 1.9x 1073,

e. Summary of barrier information from isomer excitation
functions

The properties of the double-humped barrier deduced
from the measured excitation functions are summarized
in Table VIII for the Pu, Am, and Cm isomers. This is
a comparison of the results of three independent sets of
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FIG. 76. Excitation of the 2*"Np shape isomer by the 2*3U(p, 2x)
reaction [after Wolf and Unik (1973)]. The curve shown is Wolf
and Unik’s fit for E;;=2.7 MeV.
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analyses. In Table VIII the values of V, that are em-
ployed to deduce outer barrier heights, but are them-
selves generally deduced from other information, are
shown in the first three columns. The column labeled
by the figure (3) lists our own recommendations as dis-
cussed in Sec. VII. The column labeled (1) lists the
more crudely assessed values of V, (generally from the
same experimental sources, such as fast neutron fis-
sion cross sections (d, pf) yields, etc., as used in the
work of Britt et al. (1971), in which a systematic effort
to analyze the excitation data on many isomers was
first made. The column labeled (2) is from the analysis
by Britt et al. (1973) in which all the relevant data (fis-
sion cross sections as well as isomer excitation func-
tions) were analyzed using a computation of level den-
sities (both at barriers and in the potential mixing)
based on the single-particle level schemes calculated
by Bolsterli ef al. (1972); this was an approach distinct
from the earlier one, which employed the empirical
level density parameters of Gilbert and Cameron, and
in many cases it appears that the V, values differ ap-
preciably from the values either recommended by our-
selves or quoted by Britt et al. (1971). This could be
due in part to the fact that the level densities calculated
by Britt et al. (1973) contain no enhancement factor to
allow for the collective states (particularly the rotation-
al bands) built on the independent quasiparticle states
of that calculation, and therefore do not allow for the
variations in these rotational enhancement factors with
the changing asymmetry in nuclear shape that follows
changing nuclear deformation [Bjgrnholm ef al. (1974);
see Sec. VII].

The next three columns give the values of the shape

TABLE VIII. Barrier parameters deduced for plutonium,
americium, and curium nuclides with the aid of shape isomer
excitation data. Numbers in columns labeled (1) are from
Britt et al. (1971), in columns labeled (2) from Britt et al.
(1973), and in columns labeled (3) the results from our analy~-
sis are presented.

V4 (MeV) Ey; MeV) Vp (MeV)
Nuclide (1) (2) @ @O @ @ @O (@) 3)
3py 5.8 (4.7) 2.4 1.7 2.6 5.0 4.6 (5.1)
236py (5.04) ~5.2 ~4.5
2py 5.8 (5.27) 2.9 2.3 2.8 5.4 5.4 (5.3)
238py (5.26) 5.5 2.4 2.7 5.35 4.9
¥9py 5.8 (6.27) 6.3 2.6 2.2 2.7 5.15 5.6
M0py 5.8 (6.00) 5.6 2.6 2.4~2.3 5.35 5.35 ~5.0
py (5.95) 6.1 2.6 ~5.4
BAm 6.4 (5.09) 2.4 2.1 2.4 4.8 (~5.0)
Z8Am 6.4 (6.4) ~6.2 2.7 2.3 2.6 5.4 (~5.0)
2¥Am 6.4 (5.8) 6.0 2.5 2.5 2.4 5.4 4.65 ~4.5
M0Am 6.4 (6.45) 6.5 3.0 2.6 3.0 6.05 5.5 5.2
MAm 6.4 (5.7) 6.2 2.2 2.2 2.2 4.55 5.3
22Am 6.4 (6.4) 6.5 2.9 2.3 2.9 6.0 4.95 5.3
23Am (5.75) 6.3 2.0 2.3 4.9 5.5
24Am (6.25) 6.4 2.8 5.3
M5Am 6.1 5.2
cm 6.2 (5.05) 2.3 2.0 2.1 5.0 4.2 (~4.3)
22cm 6.0 ~4.0
“3Ccm 6.2 (5.8) 2.0 1.5 1.9 4.8 4.0 (4.4)
24Cm 5.8 4.3
M5Ccm 6.2 (6.3) 2.4 1.7 2.1 4.9 4.4 (4.6)
246Cm 5.7 4.1
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isomer excitation energy E;, for E, as deduced from the
measured excitation functions. The numerals (1), (2),
and (3) have the same connotation as above. The final
three columns give the information on outer barrier
heights deduced from the excitation functions and the
values of V, listed in the relevant one of the first three
columns. Again, in both sets of numbers there is very
considerable variation, by up to 0.5 MeV for the E;
values and in some cases even more for the V, values.
In general, there is rather close agreement between
the E;; values of Britt et al. (1971) and ourselves [col-
umns labeled (1) and (3)], but there seems to be better
agreement on the V, values between Britt ez al. (1973)
and ourselves [columns labeled (2) and (3)]. These dif-
ferences can be taken as a measure of the uncertainty
still remaining in our knowledge of these barrier para-
meters.

V. VIBRATIONAL RESONANCES IN FISSION CROSS
SECTIONS ’

A. Introduction

Structure in fast neutron-induced fission cross sec-
tions had been observed at a compartively early stage
in fission physics. For example, unpublished measure-
ments at Los Alamos dating from about 1950 show clear
structure in the fission cross section of 232Th for neu-
trons above 1 MeV energy (see Fig. 77). This structure
certainly had nothing to do with resonance fine struc-
ture, the energy resolution of these measurements be-
ing about 4 orders of magnitude coarser than the expec-
ted resonance fine spacing. First published explana-
tions® of the effect were based on an extension of A,
Bohr’s (1956) ideas of channels over the fission barrier
for the fission process (see Sec. I.B)." The simple Hau-
ser—Feshbach (1952) type of expression, based on the
statistical theory of nuclear reactions,  for the fission
cross section is

Ocr=0%c(cN) . (5.1)

24, T (c’)

The compound nucleus formation cross section o, oy,
is itself proportional to the transmission coefficient for
the entrance channel ¢ [see Eq. (3.41)]. The fission
transmission coefficient T, is the sum over all Bohr
fission channels u, and the sum in the denominator is
taken over all particle and fission channels. From Eq.
(5.1) it is easily seen that the fission cross section will
rise as a distinct fission channel opens in accordance
with an expression such as Eq. (3.17) or (3.18) and tends
to an asymptotic value (modulated only by the assumed
gentle energy variation of o, y, as the opening becomes
complete, only to fall after an inelastic scattering
threshold for a particle channel ¢’ is crossed.

At later dates structure was also found in the fission
yield of certain (d,pf) reactions. In this reaction the
proton energy following the deuteron stripping process

3The original explanation appears to have been due to Mottel-
son (unpublished) but was developed and popularized by Wheeler
(1956).
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FIG. 77. Neutron-induced fission cross sections of %32Th.
From Henkel and Smith (1956).

is measured so that the excitation energy of the result-
ing fissioning nucleus is known. The reaction is par-
ticularly useful for observing fission in the barrier re-
gion of even compound nuclei in which the barrier lies
below the neutron separation energy. In this situation
the only competition against the fission process is the
electromagnetic deexcitation and it has a very weak en-
ergy dependence without structure. Early observations
of the structure (Northrop et al., 1959) suggested a
series of steps and plateaus, and these were explained
as the effect of the initial channel opening for a set of
states of particular spin and parity. Later observations
(Britt et al., 1968) showed that some of these “plateau”
levels really dipped with increasing excitation, and the
explanation was advanced that this was due to structure
[probably residual single particle effect (Specht et al.,
1966)] in the (d, p) formation probability for states of the
same spin and parity as the opening fission channel.

Changes in the angular distributions of fission prod-
ucts with changing excitation energy in such reactions
were also held to be manifestations of the channel
structure of the fission barrier [see, e.g., Huizenga
(1965)].

Later observations and more quantitative analysis,
particularly of the structure in fast neutron-induced
fission cross sections, showed such explanations to be
virtually untenable. The principle evidence came from
measurements of the fission cross section of 23°Th
(Gokhberg et al., 1959b, Evans and Jones, 1965). This
showed a distinct peak in the cross section at a neutron
energy of 720 keV; in the higher resolution measure-
ments of Evans and Jones the peak cross section was
observed to be about four times higher than the mini-
mum value at higher neutron energy (see Fig. 8). At
these comparatively low neutron energies for bombard-
ment of an even target nucleus, there is only a very
limited possibility of inelastic scattering thresholds.
On the basis of very plausible assumptions about the
residual states in 2°°Th for inelastic scattering, it was
computed on the competition theory (Lynn, 1966) that
the fission cross section should only drop at most some
10% below the peak value (See Fig. 78); the peak in this
curve was clearly a resonance effect of some kind. An
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analysis of the peaks in the fission cross section at
higher neutron energies (~1.4 MeV) in the cross section
of 232Th showed that there would have to be a very
strong onset of states in 22Th above 1.5 MeV for them
to be explained by the channel competition theory; the
density of states above this energy would have to in-
crease at a rate about five times greater than accept-
able on current knowledge of level densities, and it was
also established experimentally (Holmberg ef al., 1969)
that no strong onset of inelastic scattering occurred at
that energy.

Channel analysis of angular distributions of the fis-

sion products released in fast neutron-induced fission

had fallen into similar difficulties. Sharp changes in
the angular distribution with changing neutron energy
were attributed to new fission channels opening but an
attempt at quantitative analysis for the 2**U target nu-
cleus by Vandenbosch (1967) showed that the various
channels would need to have very different tunneling
characteristics (Zw ranging from 12 keV to ~1.5 MeV).
It was apparent therefore that intermediate reson-
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FIG. 78. Neutron-induced fission cross-section of 2Th [data
of Evans and Jones (1965)]. Calculations of the fission cross
sections on the assumption that any structure is due entirely
to single barrier penetration and competition from inelastic
scattering; the K" value of the fission channel was assumed to
be -%- , fission following excitation by neutron f waves.
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ance effects existed in the fission transmission coef-
ficient, the structure not being attributable to the neu-
tron entrance channel, since no sign of systematically
related structure existed in other fast neutron reactions
on these nuclei. An optical model of the inverse fission
process was introduced (Lynn, 1966a), the variable of
the complex potential well being the prolate deformation
parameter, and this served to show that the imaginary
component of such a potential would have to be of the
order of 50 keV or less to obtain resonance effects in
the fission mode transmission coefficient as strong as
those observed. Contrasted with the imaginary poten-
tial value of a few MeV routinely found in optical model
analyses of nucleon scattering data, this suggested sur-
prisingly weak coupling of the deformation mode with
the compound nucleus motion, and raised a number of
questions. One of these was, why was there no sugges-
tion of such structure in the slow neutron cross sections
of fissile nuclei (particularly in the fine-structure re-
sonances where the fission widths appeared to show the
characteristic features of strong mixing into the com-
pound nucleus). Another important question was raised
by the stipulation that the resonant mode in such a mo-
del should be a many-phonon beta vibration; the zero-
point vibration and one-phonon beta state are well
known in the nuclear spectroscopy of even nuclei, but
the higher beta vibrations have never been observed,
suggesting that they may be quite appreciably damped
by coupling with the other degrees of freedom of the
compound nucleus.

The theoretical work of Strutinsky introducing the
double-humped fission barrier of the actinide nuclei
provided answers for these questions. The weakly
damped beta-vibrational states responsible for the re-
sonance structure in the fission transmission coeffic-
ient could be explained, not indeed as a many-phonon
state in the oscillator well centered on the normal beta
deformation associated with the nuclear ground state,
but as a few-phonon state oscillating about the mean de-
formation value of the secondary well. The weak damp-
ing observed is due to the combination of the low effec-
tive excitation energy available in the secondary well
and the inhibition provided by the intermediate barrier.
When this barrier is energetically overcome, as it is
for the slow neutron cross sections of the fissile nu-
clei, there is a dramatic increase in the mixing of this
special vibrational state into the normal states of the
compound nucleus, and the broad resonance features in
the fission transmission coefficient largely disappear.
In this picture, the dramatic changes in angular dis-
tribution of fission products with changing excitation en-
ergy that are often observed are due more to the dom -
inance of individual vibrational resonances, each as-
sociated with spin-parity quantum numbers given by
coupling with simple states in the other degrees of
freedom (single-particle, gamma vibrations, rotations,
etc.), rather than the opening of fresh fission channels
at the barrier. The “steps” in the fission probability
curves measured from (d,pf) and similar reactions are
now also largely understood as vibrational resonances,
rather than the energies at which the lowest channel of
each spin and parity become effectively open at the bar-
rier (see also Sec. IX, Fig. 152).
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B. Pure vibrational resonances

1. Definition as barrier transmission resonances

When there is no damping of the vibrational motion by
the other degrees of freedom, the vibrational reso-
nances can be treated by the simple transmission theo-
ry of Sec. III.A.2. The fission transmission coefficient
to be substituted in the cross section, Eq. (5.1), is cal-
culated directly from the flux transmitted through the
double-humped barrier if an incident wave of unit flux
progressing from low to higher deformation is incident
on the barrier. It is found for a symmetric barrier that
the narrow peaks in the transmission coefficient reach
a value of unity. The resonant condition is given ap-~
proximately by Eq. (3.21). For a harmonic oscillator
form of potential for the secondary well, U = 'Un+%C“n2,

‘and an inertial parameter independent of deformation

this gives the familiar beta-phonon condition E —Uy;

= +3)Ww. Forms for the transmission coefficient in
the region of resonance are given by Eq. (3.23a), and
from this it can be shown [Eq. (3.26)] that the resonance
width is proportional to the sum of the transmission
coefficients T, and Ty through the inner and outer bar-
rier, respectively, considered as separate entities,

and is also proportional to the oscillation frequency be-
tween the two barriers:

Ta(T,+Tghiwy /27 (5.2)
The peak transmission at the resonance is
T __1_TAZ‘.B_ (5.3)

res =~ (TA+Tp? *

Between vibrational resonances the transmission reach-
es a low value of ’

T,T,
T 42 (5.4)

These formulas were first given by Ignatyuk et al.
(1969).

Examples of calculated transmission curves have been
shown in Figs. 31 and 34. These certainly bear a close
qualitative resemblance to the best experimental ex-
amples of vibrational resonances (cf. the neutron fis-
sion cross section of 2°Th, Fig. 6). Considerable use
has been made of the simple transmission theory in
analyzing such data. A typical early attempt is to be
found in the paper of Britt ef al. (1969) in which the
fissioning compound nucleus ?*°Pu is studied. An indi-
cation of a resonance at about 5 MeV excitation energy
in the fission transmission coefficient of this nucleus
had been noticed in the (d, pf) reaction (Britt et al.,
1968; Wolf et al., 1968). This was investigated further
by means of the ***Pu(p, p’f) reaction in which the re-
appearance of the resonance confirmed that it was as-
sociated with the fission exit channel and not the en-
trance channel as first suggested by Pedersen and Kuz-
minov (1969). The energy variation of the fission yields
in both reactions could be reasonably well reproduced
by the transmission model, if allowance is made for
resolution broadening or damping of the resonance
(Back et al., 1969, 1971). The basic vibrational res-
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onance was deduced to be at an excitation of 4.91 MeV
in a double-humped barrier with U ,=5.95 MeV, 7w,
=1.3 MeV, U, =2.1 MeV, %wy; =2.00 MeV, Vy=5.25
MeV, %wg=0.48 MeV (these parameters should be
compared with those in Sec. V.C.4.a). These parame-
ters also reproduce reasonably well the spontaneous
fission half-lives of the ground state of *'°Pu (7x10' y)
and its shape isomer (4 nsec). Later experimental work
has shown the 5 MeV resonance to have considerable
substructure (Specht et al., 1969; Glissel et al., 1976;
see Sec. V.C.4.a). This can be explained as simple
coupling to excited intrinsic states (see Sec. V.B.2) or
(more likely) as evidence for damping of the vibrational
resonance; this is treated in Sec. V.C.2.

Another example of the use of the transmission theo-
ry is provided by analysis of sub-barrier photofission
of 258U (Alm et al., 1974). The fission yield for asym-
metric fission is shown in Fig. 79. Because of the na-
ture of the incident bremsstrahlung gamma-ray spec-
trum structural features are not strongly pronounced
but the inflexion at around 5 MeV maximum gamma-ray
energy does indicate a strong resonance feature. Com-

_ parison of barrier models with the experimental data
is made by calculating the expression for photofission
yield,
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FIG. 79. Points, measured sub-barrier photofission yield for
asymmetric fission of 233U as a function of the end-point energy
of the bremsstrahlung spectrum. The full line is a calculated
yield curve composed of a dipole fission contribution (dashed
curve) and a quadrupole contribution (dot-dashed curve). From
Alm et al. (1974).

Rev. Mod. Phys., Vol. 52, No. 4, October 1980

S. Bjérnholm and J. E. Lynn: The double-humped fission barrier

. Ey,max T
Y(E ), ey ) f dE 0, cx ——‘LL—Z L (B )y E g max) -
0 c’ ()

(5.5)

embodying the Hauser—-Feshbach expression for the
photofission cross section [see Eq. (5.1)] -and the brem-
sstrahlung spectrum yield #(E,, E, ) of photons of
energy Ey from incident electrons of energy E, .. In
the photofission cross-section calculation photons of
electric dipole character dominate, exciting compound
nucleus states in 2*®U of spin and parity J" =1~. The
photofission cross section that fits the data is shown
in Fig. 80; it includes weak quadrupole fission. Below
the neutron emission threshold at 6.14 MeV in 23%U,
gamma-ray emission is the only process competing
with fission. The barrier parameters found for the
fission transmission coefficient are U, =6.1 MeV,
7w, =1.0 MeV, Uyz=6.05 MeV, Zwyz=0.9 MeV, Uy
=2.9 MeV, Zwy=3.2 MeV. These barrier heights for
238 are about 400 keV higher than those deduced from
analysis of other data (see Sec. VII); this is expected
for the inner barrier since the 17 channel will be some-
what above the 0* channel defining the barrier, but at
the reflection-asymmetric outer barrier the 17 channel
should be much closer to the barrier peak. The dis-
crepancy may be accounted for by the high value of
iwy adopted in the above analysis.

Indications of vibrational resonances at much lower
energies have been found by Zuchko et al. (1978b) in the
photofission of 23®U and 2°°U (see Figs. 128 and 161).

2. Barrier transmission resonances coupled with excited
intrinsic states

It is to be expected that fission cross-section or yield
curves should show considerably more structure, though
probably on a satellite scale, than that apparent in a
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FIG. 80. Calculated photofission cross sections as in Fig. 79,
but here plotted directly as a function of the photon energy.
This makes the resonance structure near 4.5 MeV readily vis-
ible. From Alm et al. (1974).
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FIG. 81. Schematic energy dependence of fission transmission coefficient allowing for excitation in the intrinsic degrees of free-
dom (uncoupled to the fission mode). Two intrinsic excitations are shown, with 1 MeV excitation (--- curve) and 1.5 MeV excita-

tion (=+=«= curve).

simple transmission curve such as Fig. 31. Such a
transmission curve completely ignores all degrees of
freedom other than the deformation mode, whereas it
should be interpreted as the transmission curve for all
intrinsic degrees of freedom in the lowest state of ex-
citation. If the intrinsic degrees of freedom are in an
excited state, a corresponding fission transmission
coefficient will exist, similar to the original one but
raised in energy by an amount equal to the intrinsic ex-
citation; this is shown schematically in Fig. 81. Ulti-
mately there will be an infinite superposition of such
curves constituting the total fissicn transmission co-
efficient, but the structure of all but the lowest of these
will be lost at energies not far above the barrier among
the high, structureless contributions from the lowest
intrinsic excitations. Below the barrier the extra reso-
nances that occur will be much narrower than those re-
lated to the lowest one or two intrinsic states, and will
normally be suppressed by experimental resolution.
This picture assumes, of course, that within the entire
barrier region there is no mixing between the deforma-
tion and intrinsic degrees of freedom.

Evidence for the coupling of higher intrinsic states
with vibrational resonances is sparse. The most
thoroughly investigated example is the fission cross
section of #*°Th in the neutron energy range 0.7-1.4
MeV (James et al., 1972). In this case the vibrational
resonances coupled to different intrinsic excitations
are hardly at all resolved, but the main peak of 720
keV has been interpreted as a superposition of vibra-
tional resonances each comprising a vibrational state
coupled to a member of a rotational band, while in the
region of the rising cross section around 1 MeV the
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strong change in angular distribution of fission products
is inferred as a vibrational state coupled to an intrin-
sic excitation of different single-particle character
from that in the 720-keV resonance. The 2*°Th cross
section and analysis is discussed in greater detail in
Sec. V.B.5.a).

The fission cross section of ?*'Pa (Muir and Veeser,
1971) shows structure that appears complicated enough
to demand an explanation based on at least a few in-
trinsic states. Much improved measurements of this
cross section (higher energy resolution, better angular
distributions) are desirable to enable a careful analysis
to be made; studies by Sicre et al. (1976, 1979) have -
gone a considerable way to meeting this need.

Some early attempts at analysis of the (d, pf) reso-
nance found at 5.0 MeV excitation energy in ?*°Pu were
also based on the idea of a pure transmission resonance
with satellites representing coupling to intrinsic states
(Back et al., 1969). In the measurements reported in
this paper structure was observed on the high-energy
side of the resonance. This could be qualitatively re-
produced with a rotational band of intrinsic states car-
rying spin-projection quantum number K" =0*, while
subsidiary structure at a slightly higher energy was
ascribed to a K"=1" (bending vibration) rotational band.
Barrier parameters for the model were U ,=6.0 MeV,
Aiw,=1.3 MeV, Uz=5.8 MeV, Awy=1.3 MeV, Uy=2.3
MeV, ZAwy =2.0 MeV. The intermediate barrier height
is very similar to that of Britt et «l. (1969) but the
outer barrier parameters are rather different. Our
assessment (see Sec. VII) is a few hundred keV lower,
but again penetrability parameters (Zw,, fwy) are also
considerably lower.
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3. Formal definition of vibrational states in R-matrix
theory

The comprehensive formal reaction theory for treat-
ing fission cross sections expounded in Sec. III. C.5 in-
cludes the special case of pure vibrational resonances.
The R-matrix theory described there is based on the
concept of eigenstates of the internal region of the re-
action system. It was shown that if the fission barrier
is of double-humped character the R-matrix internal
eigenstates can be constructed from two auxiliary sets
of states with only a limited degree of coupling between
them. The second set of these states, the class-II
states associated with vibrational motion mostly within
the secondary well, are largely responsible for govern-
ing the magnitude of the fission cross section.

The class-II internal states are defined in Eq. (3.153)
in terms of the vibrational and intrinsic wave functions
of the components of the Hamiltonian introduced in Sec.
III. C.1 [Eqs. (3.64=67)]. It is immediately apparent
that a sufficient condition for a class-II state of a pure
vibrational nature is that it contains only one term in
the expansion (3.153), namely

X;H"): XpQ(JI()u) s (5'6)
with eigenvalue
E) m€y+&, . (5.7

For a physically observable resonance the distribution
of energy here should be high for the vibration and low
for the intrinsic state. The wave function x, describing
the state of motion in the intrinsic degrees of freedom
is defined at a fixed value of deformation 7,, generally
taken to be the channel deformation close to the outer
barrier B. In the case of an absolutely pure vibrational
state this choice of deformation is not important, be-
cause the coupling term H_ in the Hamiltonian [Eq.
(3.67)] must then vanish, implying that the intrinsic
term H,, is independent of deformation. This can never
be completely true of course, or fission would be prac-
tically unobservable in particle-induced reactions.
There must at least be considerable interaction in the
primary well region. It is to be expected in a number of
situations that Eq. (5.5) might be very nearly satisfied
for intrinsic states defined at a deformation 1), near the
center of the secondary well, but nevertheless the des-
cription in terms of a basis defined at the outer or inner
barrier might be more fragmented. Thus a nearly pure
vibrational state in the configurational sense may not
be outstanding in its fission strength. The criteria for
the appearance of pure vibrational fission resonances in
fission cross sections or yield curves are clearly very
tight; they demand the near fulfilment of Eq. (5.6) at
both the inner and outer barriers so that the coupling
width as well as fission width is maximized. It is to be
expected that such resonances will normally be found
only at energies equivalent to excitations in the second
well that are within the energy gap for even nuclei or
that are very close to “ground” in odd-A and odd nuclei.
Some numerical studies of models of configuration mix-
ing relating to fission strength are described in Sec.
V.C.1 on damped vibrational states.
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Although it is the vibrational factor in Eq. (5.6) that
governs the magnitude of the cross section resulting
from the class-II internal state, the nature of the in-
trinsic states entering the expansion is important for
special features of the fission process such as the
angular distribution of the fission products. Analysis
of angular distributions for the observed case of fast
neutron-induced fission of ?*°Th is described in Sec.
V.B.5.a.

4. Cross sections in the region of vibrational resonances

With the definition of the vibrational state as a rela-
tively simple type of class-II auxiliary R-matrix state
[Eq. (5.6)] all cross-section formulas resulting from
coupling this class-II state to the much denser and
more complex class-I auxiliary states, associated with
normal deformation, to give the complete R-matrix
states can be taken over from Sec. III.5. All degrees of
coupling strength are possible in principle, but only
one—moderately weak coupling—has been reasonably
well established by observation; this is the ?*°Th neu-
tron-induced fission cross section.

The magnitude of the matrix element for the coupling
of the vibrational state to the class-I states is given
immediately by Eq. (3.161) with D, =Aw, where wy is
the circular frequency of vibrations in the secondary
well. The result for the matrix element is

) - 1 1
WX H ] Xy )] =5 D170y T2, (5.8)
and the coupling Width of the Lorentzian profile for ad-
mixture of the vibrational states into the complete com-
pound nucleus states is [ from Eqs. (3.185), (3.186)]

7w

27

Ly e=2Ws LT, . (5.9)
The actual profile of fission widths of the fine-structure
resonances that appear in fission yields or cross sec-
tions of reactions that are initiated by populating the
class-I states depends also on the fission width of the
vibrational state. The estimate for this is commonly
based on the statistical theory methods of Wigner (1938)
or Blatt and Weisskopf (1952) [see Sec. I, Eq. (1.9)],
giving

flwy

Ty 5Ty -

on (5.10)

This estimate is borne out by numerical computations
based on the formal R-matrix expression for the fission
width in terms of reduced widths and penetration factor
[Eq. (3.126)]. The penetration factor P, along with the
shift factor S, can be computed numerically by inte-
grating an outgoing wave in the deformation mode
through an inverted harmonic oscillator barrier up to
the barrier deformation 7, to determine its logarithmic
derivative there (the method is described more fully in
Sec. III.C.3.f). The reduced width can be computed
by numerical integration of the vibrational wave function
in a well composed of normal and inverted harmonic
oscillator segments smoothly connected [see Eq. (3.31)
in Sec. III. A.2.b], so that it matches the shift factor
(taken to be the natural boundary condition ®) at 7,;
the value of the wave function at 7, gives the reduced
width on substitution in Eq. (3.99).



S. Bjérnholm and J. E. Lynn: The double-humped fission barrier 809

To illustrate the magnitudes involved the following
examples may be quoted. A secondary well of depth
7wy =0.7 MeV and bounded by barriers with Zw,=0.8
MeV, fiwy =0.6 MeV has eigenvalues (above the zero-
point vibration) of —2.45 MeV (for ® = —38), —1.75 MeV
(for 8 =-32), —1.07 MeV (® = —23.6), —0.5 MeV (®
=-13.3). The reduced width amplitudes y, at the outer
barrier deformation are 0.0022, 0.015, 0.097, 0.51,
respectively, and the penetration factors P at these
energies are 0.0047, 0.048, 0.46, 2.6. These values
give fission widths 2P7? for the vibrational states of
3.8X107, 1.8X1078, 7.2X107% and 1.13X107% MeV,
respectively. Comparison with Eq. (5.10) for the fis-
sion widths suggests that the latter underestimates the
widths of the vibrational states by a factor ranging
from about unity for the high-lying states near the top
of the fission barrier to about 100 for the states 3 MeV
below the barrier.

Depending on the relative magnitude of I v (o) and
I‘,,u(f, with each other and with the class-I (fine-struc-
ture) level spacing D;, different formulas from Sec.
III.C.5 are applicable. We summarize them here. If
both the coupling width and fission width of the vibra-
tional state are much smaller than the class-I level
spacing, then the perturbation formulas, Egs. (3.165)
and (3.166), are applicable to the partial widths that

_describe the resonance fine structure through the
Breit—Wigner formula [Eq. (3.125)] or a many-level
formula [Eqs. (3.129)-(3.131) of Sec. II.C.3.g]. If the
coupling width is much larger than the class-I level
spacing and the fission width F,,H(,) , then the Lorent-
zian form of Eqs. (3.185) and (3.190) determines the
fission widths for the resonance fine structure. The
third major case that is likely to occur is the domi-
nance of F"n‘f’ with respect to both D; and F"n‘c’ .

In this case the fission widths of the fine-structure

the total vibrational width is substituted in the Lorent-
zian denominator. In intermediate situations (I (.,
~F"n<f)) Lorentzian patterns of widths in the fine struc-
ture are not expected, even as an average “ideal”
representation. Numerical studies of such cases reveal
considerable enhancement of the fission widths at the
center of the vibrational resonance above the Lorentzian
profile. Examples of such patterns can be found in the
literature [see, e.g., Lynn (1973)]; see also Sec.
VL.E.4.a).

No example of resonance fine structure in the cross
section through a pure vibrational resonance has yet
been observed. Consequently cross-section formulas
that describe the local average over the resonance fine-
structure are of more immediate interest for analyzing
experimental data. If the vibrational state is coupled
strongly enough with the fine-structure levels (I‘,,H(c,
> Dy ) it is sufficient to find the local variation of the
fission strength function I',,/D, through the vibration-
al resonance. The extended penetration factor method
described in Sec. III.C.4.d can be employed for this.
The logarithmic derivative for the outgoing wave func-
tion through the secondary well can be written in dis-
persive form [see Eq. (3.150)], and this can be em-
ployed directly in one-channel reduced R-matrix theory
(Thomas, 1955) [see Sec. I11.C.3. g(ii7)] provided that the
partial widths in all eliminated channels are small
(Ty(ey <D,). The collision function in Thomas’ theory
is just U, =exp(2i¢,) (1 —iﬁR)/(l —f,uR), where iu
=L,-®,=5,+iP,. The R function is R=23,72,,/

(Ex —E —iW,), where W, =32,, I\ (,) is the sum over the
partial half-widths of eliminated channels. For uniform
overlapping R-matrix levels (W, > D,) the R function

is just imws,, s, being the reduced strength function s,

= y'i(u) /D,. The absorption cross section

_ 2 (4 _ 2
resonances in the cross section are given by Eq. (3.204) Tabs = 7 (1 |Uﬂ“l ) (5.11)
which is essentially identical in form to Eq. (3.185), if becomes
§
4ns, P 415, G, W, (1 + 8y, n2s2)"1
_ 2 _ 2 TR TRAS AL u I _
s =T TR =" 5,476, S, 55 /(1 + 1283 52) —E [P+ [W, + 16y 5, /(L+ 7782, 5P * (5.12)

where Sbu= S,y —®, is the smoothly varying background
component of f,u. In the uniform model (Lane and
Thomas, 1958) the absorption cross section can be
written in terms of the local strength function as

0, =212 D 1 — exp(—41W,/D,)

D, 1-exp(—41W,/D)(1 —27T,),/D>)

(5.13)

With the above conditions, the equality of the right-hand
sides of the equations gives

Dw 1 LTS rl(ul)
D, 2t (F,+8;=E+3i Ty +Tyn)?

(5.14)

with Ty, =2W,, T, =27s,G,/(1+7282,52), A,
=7252G, S,,/(1+7* §2,s2) for the fission width, coupling
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width, and shift factor of the vibrational resonance [,
appearing as an anomaly about energy ¥, in the extend-
ed penetration factor. The fission strength function
(multiplied by 27) can be used directly as the appro-
priate transmission coefficient in average cross sec-
tions of the Hauser—Feshbach type [see Eq. (5.1) of
Sec. V.A].

A more direct calculation of the fission cross section
through a vibrational resonance can be obtained by
using two-channel reduced R-matrix theory. We now
consider an entrance channel different from the fission
channel. (We assume in the notation below that this is
a neutron channel, labeled #.) The fission cross sec-
tion through channel p is

Opu= TREE \Upel® (5.15)
with
U, =2iP/*PY2 &, d*, (5.16)
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the two-channel reduced R-matrix being

(Rcc’ =Z

X

Yae) Yaee”)
i ’
E\-E -3t

(5.17)

and d is the determinant of (1 — L®). For the fission
channel the dispersive logarithmic derivative of Eq.
(3.150) is again adopted. The cross-section expression
is tractable if there is complete lack of correlation

S|

p §,~E—iw,

The double-humped fission barrier

among the partial widths; this is defined by

Yam Y Yag Y =0 . (5.18)

PP U
The 6i2, =0, so that d=(1~L,&®,,)1-L,&,,). For uni-
form overlapping R-matrix levels (T (,> D,, giving
Z}Yi(n)/(E)\-— E = 3iT o)) =TS, 23Yiu/(Ex—E
—3il\e))=ins,

-1 _
“(1+7P,s,)1 -inS,s,

and
/ 4P G, W,s,s, 21D
i pl/2pi/2 2 2 _ n1 190>y A
|20 P/ 2P/ ?R,,|°=4P, P | & | @, — B+ w2 Tre)

The final expression for the cross section is

TpT
= TRZg, @i (5.21)
(e)
where
r T
T(u) 1) 1) (5.22)

T(Fir 8 =E)+ (T, + D)t

in agreement with Eq. (5.14). The other transmission
coefficients in Eq. (5.21) are defined as

Tm=41P,s,/(L+1P,5,)?, (5.23)

T =21 /Dy . (5.24)

The form of the neutron transmission coefficient allows
for the contribution of many-level interference effects
which do not cancel in the average cross section when
the narrow-level expression for T, (namely, 47P,s,)
approaches unity.

The formula obtained for the fission strength function
Ty /Dy or the transmission coefficient, T, =27,/
D,, can be applied directly to obtaining the fission
probability P,, the quantity that is normally measured
in fission induced by particle transfer reactions. It is
simply

p.= 25uT )
P2 i+ 25T

where T, denotes the transmission coefficients for
other channels, such as radiative decay and neutron
emission.

The angular distribution of fission products resulting
from nuclear reactions plays an important role in
analyzing the data on vibrational resonances. The ex-
pression for this angular distribution up to excitation
energies not much greater than the barrier height is
based on the idea of Bohr (1956) that the fissioning nu-
cleus in transition over the barrier, being “cold” inso-
far as intrinsic excitations are concerned, can be in a
transition state in which the projection of total angular
momentum on the cylindrical symmetry axis K is a
good quantum number. The angular behavior of the
wave function of the fissioning nucleus is then de-
scribed by the wave function of a symmetric top (Wig-
ner, 1959):

(5.25)
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[ &, —E + 2GS, 2 /(1 + 7282 s2) —iW, —inG,;s, /(1 + 7282 s?))

(5.19)

. (5.20)

DA‘ZK(Q’ ¢, X) = d};x(g)eiqueiKX

= ()Y +E) (T —K) (T + M) (J =M)I1}?
GO =2 G A=) (T K —mIn T+ =K

X cos? tK-M=2n (L g)gin2nt M=K (Lg) (5.26)
(where the integer n takes values such that the factorial
arguments are not negative) with J being the total angu-
lar momentum and M its projection on a laboratory-
fixed axis; 6 and ¢ are the polar and azimuthal angles,
respectively, of the symmetry axis of the top in the
laboratory frame and x is the angle of rotation of the
top about its symmetry axis. After the nucleus has
passed through the fission barrier it is assumed that
the direction of this symmetry axis, along which the
recoiling fission products ultimately emerge, remains
undisturbed. The fission product angular distribution
is therefore just the squared modulus of d . (6) weighted
by the distribution of J and M:

W(e)=%;o,(J",M)WJKM(9>

Wy (0) &< |d i (0)| %+ |df_(8)|2 . (5.27)
This formula was first applied by Bohr (1956) to the
special case of photofission of an even target nucleus.
Since the spin projection M on the beam direction car-
ried by photons is zero, Eq. (5.27) reduces simply to

3 sin%0
w(e) =~ar (5.28)
for K =0 channels, and to
2
w(8) = &:Tog_é)_ (5.29)

for K=1; these formulas are sufficient for dipole radia-
tion. Comparison with experiment [photofission of 2°U,
Winhold et al. (1952)] demonstrated the preponderance
of the K =0 channel at energies just above the fission
barrier. At higher energies a falling-away from side-
ways peaking of the fission product distribution to a
more isotropic form demonstrated the opening of a
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K =1 channel. in many cases simplify the M distribution and hence the

For particle-induced reactions going through a com- angular distribution expression. In particular, for nu-
pound nucleus state of definite total angular momentum cleons incident on a zero-spin target nucleus (in which
J and parity =, the projection of the orbital angular case | M| can only be ) the angular distributionsis

momentum of the incident particle is zero, and this can (Wilets and Chase, 1956):
|

WJ:K, K(e) =“T(flé(%]—2—2§r sin%(-1g s

2K +1)!
WJ=K+1~K(9)=[(T1(L§)1_322)2K—+2 sin®*710[ 1+ 4K (K +1)cos?6], (5.30)

(2K +3)! _
(K+3)I(K+ 3)12%+4

Wiokeg, x(0)= sin?~16[1 - 4K cos?0+ 4 K(K + 2)cos*d],

1.8 T T T — T T T T T
(a)

]
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FIG. 82. Angular distribution of fission products following nucleon-induced fission of a zero-spin nucleus (Wilets and Chase,
1956). (a) gives curves for k=%, (b) K=3.
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for the three lowest values of J. This expression is
shown graphically in Fig. 82. For nonzero values of /
the angular distribution functions for many special cases
are presented by Wheeler (1963). Calculations of the
distribution for unoriented target nuclei with 7 #0 are
shown in Fig. 83.

The M distribution resulting from reactions of the
particle-transfer type is more complicated (Britt et al.,
1965; Specht et al., 1966). In this case the laboratory-
fixed direction is generally chosen to be that of the out-
going particle immediately prior to the fission of the
residual excited nucleus, i.e., the angular correlation
between this particle and the fission products is com-
puted. For a stripping or pickup reaction leading to the
fissioning compound state via a single-particle or hole
state of orbital angular momentum [/, total spin j, and
spin projection 7, coupled to an unexcited core state
(the target nucleus) of angular momentum and projection
I, M, the amplitude A(ljm;IM;; JM;k,) for emitting the
final particle with momentum k, has to be computed by
a suitable method (such as distorted wave Born approxi-
mation). If more than one single-particle (or hole) state
contributes to the reaction the appropriate amplitudes
are summed after multiplying by the reduced width
amplitude v, (;;) for entering the compound nucleus state
A; the states A thus reached are the fine-structure
states A discussed formally in Sec. III.C.3. For narrow
levels A it can be assumed that they are formed and de-
cay independently of each other. The probability of fis-
sion of a level A through channel u, projection K is

Py = e
K .
" T+ 25, Te

(5.31)
The angular correlation between k, and the fission
products can be written in terms of the above quanti-
ties as '

W(6) < D w (M) D)

) P IEN

lim

P)\(ux){] dAJlK(ef )‘2+id},r/-x(9f)l2} . (5.32)
This is normally expanded into a sum of Legendre poly-
nomials with coefficients A, :

W(6,)=9_ AL P.(cosb;) . (5.33)
L

5. Experimental data on pure vibrational resonances

No experimental evidence on broad resonance behav-
ior in fission cross sections or fission probabilities
has so far been found that is completely conclusive in
proving the existence of a pure vibrational state.
Nevertheless we shall summarize here the data in a
number of likely cases without prejudice to the eventual
interpretation.

a 231 Th

The most carefully studied candidate as a pure vibra-
tional resonance is undoubtedly #*'Th in the region of
5.85 MeV excitation. Data on neutron-induced fission
of 2°°Th have been measured by Yuen et al. (1971) and
James et al. (1972) and analyzed by the latter authors.
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FIG. 83. Angular distribution of fission products following

nucleon-induced fission of target nuclei with spin I=3 and nu-
cleonl=1, (a)is for K=0, () for K=1, (c) for K=2.

Very recent measurements by Blons ef al. (1978,
1980) are discussed in Sec. X.B.2.a. In this cross
section the resonance occurs at a neutron energy

of 720 keV, and is apparently about 30-keV wide;
this is about 4 orders of magnitude greater than the
resonance fine spacing expected in the cross section
at this energy. A feature of the experimental studies is
that the angular distribution of fission products with re-
spect to the incident neutron beam direction has been
measured at various energies across the resonance.
The forward peaking of the angular distribution right
across the resonance indicates that the intrinsic state
(defined at the outer barrier 1) in the resonance con-
figuration [Eq. (5.6)] has angular momentum projection
K =3 on the symmetry axis [see Eq. (5.30) of Sec.
V.B.4]. The analysis of the data proceeds on the as-
sumption that the observed resonance is a composite of
peaks, each of K =3 but with different total angular
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momentum J , forming a rotational band of intrinsic
states.

On this assumption the cross section has been calcu-
lated using the Hauser—Feshbach formula (5.1) and the
fission transmission coefficient for a vibrational reso-
nance, Eq. (5.14). The major competition against fis-
sion in the decay of the compound nucleus is provided
by elastic and inelastic scattering of neutrons to known
and inferred rotational bands in ?*°Th. Strength func-
tions for the calculation of these neutron transmission
coefficients were taken from the known s- and p-wave
neutron strength functions determined by low-energy
neutron studies. At 700-keV neutron energy the main
neutron entrance channels to the compound nucleus are
provided by s-, p-, and d-wave neutrons (exciting total
angular momenta and parity J *=3%, 37, 37, 3+, §*
and somewhat more weakly by f-wave neutrons (J "
=2~, ¥). From the calculation of the various spin-
parity components of the cross section the angular dis-
tribution of fission products is obtained by the use of
Eq. (5.30).

The main variables in fitting the data are the parity
of the intrinsic state in the vibrational resonance con-
figuration, and the effective moment of inertia 9 and
decoupling parameter a that govern the relative spacings
of the members of the K =3 rotational band:

h—2
E).n.<.nn=Ean(xk)+ PY] [J(J"'l)—K(K"'l)

+6K,1/2(11/2(—)J+1/2(J+%)]. (5.34)\

The best fit to the data of James et al. (1972) and Yuen
et al. (1971) was achieved with odd parity and with
(h?/29) lying between 1.8 and 2.7 keV and «a,,, be-
tween —2.0 and —2.3 (see Figs. 84 and 85 and Table IX).
The value of the moment of inertia thus determined is
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more than twice that observed for any normally ob-
served rotational bands in odd-A actinide nuclei, and
this provided one of the first direct indications that the
shape of the nucleus in the intermediate states acting in
fission was indeed much different from normal, as
postulated by the double-humped barrier theory. The
lower bound 1.8 keV leads actually to a moment of in-
ertia that exceeds the rigid value for a deformation
corresponding to the normal isomeric state by 30%. It
may be taken as indication of the resonances in #!Th
being located in a third minimum of still higher defor-
mation (see Sec. II.A.1.d., also Sec. VII.D.3.,

Sec. IX.C.3., and especially Sec. X.B.2.a).

What are the reasons for believing this remarkable
resonance phenomenon to be a nearly pure vibrational
resonance as distinct from a damped vibrational reso-
nance as described in Sec. V.C? Mainly, that it is
very smooth. With neutron energy resolution of a few
keV it is to be expected that any class-II compound state
structure would not occur with a frequency greater than
a few class-II states per resolution interval, and, be-

- cause of the statistical fluctuations in strength and
width inherent in compound states, this would cause
large variations about any smooth curve that would de-
scribe the envelope of the vibrational resonance. On
the other hand, there is a feature in the fit to the data
that suggests damping is playing a role. This is the
variation in width and strength of the different spin
components of the resonance (other than variations due
to penetration through the centrifugal barrier). If the
strength of a vibrational resonance of given spin J is
defined by

rJ(gergf)

, (5.35)
Trey+Try)

SrpH=

where I',, is the coupling width of the vibrational res-
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FIG. 84. Comparisons of the fission cross section of 2%Th with models of the rotational band associated with the class-II vibra-
tional state (James et al., 1972). Details of the model are given in Table IX.
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FIG. 85. Comparison of fission product angular distribution from the reaction 2 "Th(n, f) with the models of Table IX (James et al.,

1972).

onance, then in the #3!Th best fit the ratio of strengths
is

S1/2¢): S5/ 26,1 Ss/2¢yS1p=1:0.5:0.2:0.4.  (5.36)

Strictly speaking these variations arise, in the anal-
ysis, from the neutron fission cross section of each
componént, and could be attributed to the variation of
neutron strength function with spin, but this appears
unlikely. The question is discussed further in Sec. V.C.
Recent high-resolution work on the neutron fission
cross section of 2*°Th in the region of 720 keV has
shown that there is more structure than can be ac-
counted for by a single rotational band (Veeser, 1976;
Blons et al., 1978). One suggestion (Blons et al., 1978)
is that there are two rotational bands of K =3 and op-
posite parity, lending support, again, to the idea of a
third minimum, but this requires further investigation
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(see also Sec. V.C.4.2, Sec. IX.C and Sec. X.B.2.a).

At higher energies in *'Th no more peaks appear in
the cross section, but the angular distribution of fission
products undergoes marked variations in character with
changing neutron energy, becoming considerably side-
ways-peaked with respect to neutron direction at about
960 keV and forward-peaked again at 1060 keV. The
sideways peaking is attributed by James et al. (1972) to
a K=% intrinsic state coupled to a much broader vi-
brational resonance. The general behavior of the K
=3 component of the cross section both at the sharp
resonance at 720 keV and at higher energies can be
satisfactorily explained by the choice of barrier pa-
rameters:

V,~6.02 MeV, 7w,~0.9 MeV,
V,~6.27 MeV, hw,~0.57 MeV.
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TABLE IX. Parameters for models of the rotational band
associated with the class-II vibrational resonance of 3 Th.

In column 5 the coupling or fission width is examined, which-
ever is the smaller.

Exyor TP Tl arn
Model J (keV) (keV) riff({: or £)
A@): 7=+ : 718 26 1
K

o e o =216 kev & 709 14 1

2 729 3.5 1
A@): m=+ 3 718 26 1

KK .

Iy e asy=2.16 keV 2 709 14 1

3 729 3.5 0.5
B(1): 7=-— 3 720 26 1
Iy o sy=1.27keV 32 712 14 0.5

3 747 7 0.2

] 729 3.5 0.4
B@): 7=~ 3 720 26 1
Iy or p=1.2TkeV 2 712 14 0.5

2 747 7 0.2

3 729 3.5 0.6
C: m=-— 3 720 26 1

KK :

e orn=l2kev 2 710 14 0.5

5

g 732 7

s 708 3.5 0.4

b. 2Th

Early work (Henkel and Smith, 1956) showed the rich
structure in the fast neutron fission cross section of
232Th and the work of Henkel and Brolley (1958) revealed
the strong fission product angular distributions as-
sociated with it. Recent work on the fission vibrational
resonances of ?**Th has concentrated on finding sub-
structure within the main resonances (Blons ef al.,
1975), and on improving the energy resolution of the
angular distribution information (Caruana et al., 1977).

Blons et al. (1975 a,b) have attempted to use both sets
of information for an analysis akin to that described in
the section on #*'Th. Some of the substructure found on
the main resonance peaks has spacing patterns akin to
that of a simple rotational band (see Fig. 86); simple
because, as proved by the sideways peaking of the an-
gular distribution on these main peaks (see Fig. 87),
the intrinsic states at the head of the bands have spin
projection quantum number K= 2, and the pattern is
therefore not complicated by the decoupling parameter
occurring in Eq. (5.34). However, the conclusion is
contentious because other groups of substructure do not
fall into a simple rotational pattern, and a quantitative
fit to the magnitude of the cross section that includes
the detailed structure has not been achieved [ see
Caruana et al., (1977)]. Proof would require a mea-
surement of the angular distribution with sufficiently
fine resolution to isolate the individual peaks of the sub-
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structure.

The deduced moment of inertia of the rotational bands
is on average larger even than that found for 2'Th, and
this has led Blons et al. (19'75a) to suggest that this is
evidence for a tertiary well in the region of the “con-
ventional” second barrier peak, splitting the fission
barrier into three peaks. Although the hypothesis has
attractions on theoretical grounds concerning the cal-
culation of fission barriers (see Sec: II), and for the
explanation of some trends in the systematics of fission
cross sections (see Sec. VII and also the caption to Fig.
87) and barrier heights (see Sec. VIII. F), it cannot be
regarded as conclusive.

c. 22p,

The fission of this nucleus has been explored prin-
cipally in a series of measurements of the neutron in-
teraction with *'Pa, including angular distribution of
the fission products (Sicre, 1976; Sicre et al., 1979).
Measurements of the fission cross section with high-
energy resolution have been made by James et al. (1979)
and Plattard et al. (1979). The considerable structure
observed in the fission cross section measured with
about 10-keV resolution is shown in Fig. 88. The anal-
ysis of the cross section and, more especially, the an -
gular distribution data are complicated by the nonzero
spin of the target nucleus ({"=3"). Hence the range of
M quantum numbers extends from -2 to 2 and implies
much less dramatic features in the angular distribution.
On the other hand, the rather low neutron energies of
the resonances limit the orbital angular momentum
that can be brought effectively into the compound nu-
cleus. Only neutron s and p waves will give appreciable
cross sections for compound nucleus formation, al-
lowing excitation of states of total angular momentum
and parity J"=17,2" and J"=0",1%,2*  3*, respectively.
In spite of the undramatic angular distributions Sicre
found that the data could not be reproduced by a model
based on a unique K value for each resonance. Ro-
tational bands based on K"=2" and 3~ were required for
the 200-keV resonance and on K*=0" and 3" for the 330-
keV resonance, as shown in Fig. 88. Measurements
with higher energy resolution (~2 keV) reveal that the
200-keV resonance does have in fact a narrow com-
ponent (width considerably less than 2 keV) at 160 keV
(Fig. 89), and angular distribution measurements
(rather strongly sideways peaked; see, e.g., Fig. 90)
confirm that J, K=3. The likelihood of odd parity
(excitation by neutron d waves) is almost ruled out by
the peak cross section [80 mb, according to Plattard
et al. (1979), to be contrasted with an expected maxi-
mum value of about 60 mb).

On the assumption that these resonances are all of
pure vibrational character, Sicre gives possible barrier
heights that will represent the data. They are fairly
close to the values

V,=5.95 MeV, 7w,=0.9 MeV,
Vp=6.15 MeV, 7hwy=0.4 MeV"

that also give a reasonable representation of the fission
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al. (1969)]. The energy resolution is 50 keV. The dashed,
dash-dot, and continuous curves are attempted fits to the data
by Caruana et al. For the continuous curve, the lowest vibra-
tional resonance was assumed to be associated withK":%",
while the barrier parameters were considerably higher than
normally assumed for the actinides, viz. U, =6.2 MeV, fiwy
=1.4 MeV, Ugp=7.0 MeV, Zwg=0.7 MeV. These parameters
also provided a fit to the cross-section data of Fig. 86. Simul-
taneous fits to the angular distribution data and the cross sec-
tion using more conventional parameters for the barrier were
not achieved.
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cross section at higher energies using a strong coupling
model.

d 2Th

In the (¢, pf) reaction on 2**Th Back ef al. (1974a) have
observed marked structure at an excitation energy of
5.5-5.8 MeV and broader structure at 6.5 MeV. The
fission probability curve (see Fig. 91) up to 6 MeV has
been fitted with barrier parameters:

V,=6.15 MeV, Z%w,=1MeV,

U, =6.52 MeV, 7w, =0.75 MeV.
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FIG. 90 Angular distribution of fission products from neutron-
induced fission of #!Pa at neutron energy 160 keV. The smooth
curves are the theoretical ones for particular combinations of
J, K, and 7 (implying different M weightings).
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full curve is an attempted fit with a pure vibrational resonance
carrying a rotational band, no resolution broadening included.

e. Other nuclei

Other nuclei showing structure which may be due to
more or less pure vibrational resonances are 2**U
[from the 2°U(¢, pf) reaction] showing a considerable
peak at 5.1 MeV, °U[from 2®U(t, pf)] with a less sig-
nificant peak at 5.3 MeV, and #*U [from #**U(d, pf)] with
some structure at 4.9 and 5.4 MeV excitation [Back
et al. (1974a)]. All have been analyzed with pure vibra-
tional models, as described in Sec. V.B.1 and Sec.
III.A.2, giving barrier heights of about 6 MeV.

C. Damped vibrational resonances
1. Schematic models of damping

In this section we study some schematic models,
based on the Hamiltonian, Eq. (3.64), introduced in
Sec. III.C.1. We recall that the Hamiltonian is split
into three components, viz., a deformation-dependent
part, an intrinsic part (defined at fixed deformation
7,), and a coupling term, which allows for the change
in the intrinsic part with changing deformation about
Mot . '

H =H'7 +Hint(£’ 770) +Hc(77', 5; no) y
where
H=T,+0(n),

(5.37)

Hh‘t('no) =T, (Tlo) —&o(Mo) + V(n,, £),
Hc = Te(T)) - So(n) + V(T), 5) - Hint(no) .

The eigenvalues of T,(n) + V(n, £) at fixed 1 are labeled
€,(n) and those of H,,,(n) are §,(n)=¢€,(n) —&o(n). The
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potential energy of deformation U(n) is just the “ground”-
state energy &,(n).

In the numerical models presented below a limited
number of vibrational states (depend'mg only on the
deformation) and a limited number of intrinsic states
(at fixed deformation) are combined to form the basis
states, and the mixing of these through the coupling
term into final eigenstates is studied. Although the
models must be considered as schematic ones developed
to gain insight into the mixing process and the effect on
fission and coupling widths, some attempt has been
made to introduce quantities that give them some bearing
on realistic physical situations.

a. Single-particle models

The dependence of the intrinsic states on deformation
is taken to be qualitatively similar to that determined
by the single nucleon states in a deformed potential well
of the Nilsson type. In the Nilsson model levels are
labeled by harmonic oscillator quantum numbers and the
projection £ of the nucleon total angular momentum on
the cylindrical symmetry axis of the potential well: the
energy of such a level depends strongly on deformation,
generally (though not always) decreasing for low £ and
increasing for high €. A schematic nuclear intrinsic
state is constructed by filling single-particle states
until the appropriate numbers N and Z of neutrons and
protons occupy the level scheme. For low-lying states
paired particles are made to occupy the lowest orbits
and are then regarded as a vacuum, while the last un-
paired neutron or proton occupies any appropriate
higher orbit, the energy above the Fermi energy (de-
fined here as the highest pair-occupied level) giving the
excitation energy of the state. As an orbit occupied by
a single particle sinks into the “Fermi sea” with
changing deformation, a “hole” state can appear,
carrying the same configuration, by displacing two
paired particles from its orbit into the next available
unoccupied orbit. For the present schematic model
this behavior in energy is represented by a parabola,
one branch representing the particle state in an orbit
above the Fermi level and the other branch representing
its reemergence as a hole state in the Fermi sea.

In realistic Nilsson model calculations the potential
well is never a perfect harmonic oscillator. The dif-
ference between the latter and the actual potential causes
mixing and repulsion when two labeled orbits of the

cn(}‘)m' (p)[Ev' + 53") (o)) + ZCIE}L(p)(szp’) ‘vres |X;(»p)> + z C,‘,ﬁ)' XV’ ][8;?')(77) -& ;(f')(no)] | v) =E>«c.9&' )
1’3 v
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same spin projection and parity intersect. In the work
of Mdller and Nix (1974), for example, the matrix ele-
ment for this interaction between the harmonic oscil-
lator orbits is of the order of 0.1 MeV; a typical dia-
gram of level behavior with this effect included is shown
in Fig. 92.

Residual internucleon forces that cannot be included
in a smooth potential well description will also affect
the repulsion between levels at orbital crossings. This
can be included in the method of calculation described
below. However, its extreme manifestationinthe pairing
correlation force is not included, but it is hoped that
nothing essential for the results of the present study is
thereby omitted.

In this model the residual interaction, as described
above, between the orbitals is assumed to be inde-
pendent of deformation. Also the wave function of a
given harmonic oscillator orbital is assumed to be de-
pendent on deformation in only a very slow and non-
essential way, which is henceforth neglected. In this
way the coupling term of Eq. (5.37) can be written

H,(n, &;mo) =H,(&,n) = H,(£,1,),

where Ht,(n, £) is the Hamiltonian for the single-particle
oscillator orbits. The eigenvalues and eigenstates of
H, are denoted by § »’,x *’. The Hamiltonian for the
intrinsic states is

(5.38)

Hy, (8, m0) =H, (£, M) + Vs, (5.39)

where v_ . is the residual interaction between orbitals.
Since the matrix element

(W [H (&, n0) | 1) =8 P(15)5,., (5.40)

S| Hy (o) | wy=[ 82 - 8226, , . (5.41)
The diagonalization of

H=H_ +H,(,)+v, s +H, (5.42)

is accomplished by using the basis states ¢,(m)x (1,
in the expression

Ih= 2L e, X2 (). (5.43)
viL

By the usual technique of multiplication by ¢} x},

after operation on ¥, by H, and integration, the coupled
equations

(5.44)

are obtained. If we limit ourselves first to simple harmonic oscillator behavior of the deformation potential, with
its center being taken as the origin of the deformation scale,

V(n)=z2Cn*=3Bw™?,

and the intrinsic orbits are assumed to have the quadratic behavior (as discussed above)

6,?)(77) =6(§ﬂ) +D:Lp)77 +A':Lp)(77 _ b‘(‘m)z
the Eqs. (5.44) reduce to

®)

o) (p) ) (p)2 ) (09 Ag
Cou (p)[€v+ 8o +A LD ) “Ex]‘l'z :cvu’(?)vuu"*'z :Cu’u(p)[ P
w’ v

) () (p)

D?) _2A%)p

e e e
a

+
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<1+2V

>6 A‘(‘i)—{[u(v— 1)]/25 [v+2)v+1)]3%,,
2 vt 20!2 w2zt + + 2

{Vzvd (5.45)

w'+

1+ 2V+2 6vv'-l}]=0 ?
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FIG. 92. Behavior of single-particle orbits (neutrons) as a function of deformation with residual interaction effects included [from
Nilsson et al. (1969)]. Numbers in circles indicate number of neutrons required to fill all lower orbits.

where v, ,. (taken to be v[1-5,,.] in the calculations
below) represents {u|v,.s| ") and @ =(Bw/K)/2 The
harmonic oscillator quantum numbers v have the usual
convention of being enumerated from zero upwards.
After diagonalization of the Eqgs. (5.45) the eigen-
functions ¥, must be rewritten in the basis ¢,x,(n,) with
expansion coefficients c.»’, where the x,(n,) are the
intrinsic eigenfunctions of H,,,(,) =H,(1,) +vs. This
is simply accomplished by diagonalizing the equations

8L (1) = 8, (M) + D v,,. =0 (5.46)
—~
in the basis x’(n,), the expansion coefficients
Xx(Mo) | X%, (n,) being used to make the transformation
in the expansion of ¥),.
In this model the harmonic oscillator potential can be
taken to represent the secondary well in the fission

Rev. Mod. Phys., Vol. 52, No. 4, October 1980

barrier, and 7, can be chosen as a channel deformation
near 7, or at the center of the oscillator (in order to
define the configuration mixing in the most obvious way),
or at a lower deformation towards the intermediate
barrier 7, in order to obtain a measure of the coupling
width that the eigenstates will have. By estimating
amplitudes of the vibrational wave functions ¢, at the
channel deformation and intermediate barrier defor-
mation, quantities proportional to the fission reduced
width amplitude and coupling reduced width amplitude
for the different channels u can be obtained:

Yl e 3¢, M)y, (5.472)
v

depending on the choice of 17,. The new expansion co-
efficients are
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vie T

e = 228 4y X o) [X 2 (10)) - (5.47b)
T

The results of a numerical example are presented in
Fig. 93 for the parameters of Table X; this is a basis
limited to four vibrational states (v =0-3), with phonon
energy equal to 9.7 MeV, and six states of the particle
potential well (.=1-6). While the first five particle
states have the parabolic behavior schematically
assigned to single-particle states as described aBove,
the sixth is given no deformation dependence but is
intended to allow for the mixing in of more complex
states above the energy gap. The residual interaction
matrix element between all particle states is taken as
0.1 MeV.

In the lower part of Fig. 93 a conventional measure of
the vibrational strength of the first 14 calculated eigen-
states is shown; these are the squared admixture co-
efficients C!»2 for the basis components with u=1, the
lowest intrinsic state, defined at the central defor-
matiouns of the well (denoted here by 7;,). Different
phonon components are denoted by various forms of

vertical line measure, as indicated in the figure caption.

Vibrational strength as thus defined is obviously quite
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well localized, although the weighted mean strength for
different phonon components is not separated by the
starting phonon energy of 0.7 MeV but by an “effective”
phonon energy of 1.0 MeV.

Inthe upper part of Fig. 93 the relative reduced widths
calculated at deformations n,=7;;~0.13 and 1z =7,
+0.13 are shown for the lowest channel. Because the
logarithms are presented in this diagram the relative
differences are visually underemphasized, but it is
apparent that there is no marked correlation either of

TABLE X. Parameters describing the deformation dependence
of schematic single-particle levels in numerical model of vi-
bration damping (energies in MeV). All values of D{?) are set
to zero.

() 5§ﬁ) A;(xp) b’(‘P)
1 0.0 154 —-0.24
2 0.0 T2 -0.125
3 0.0 130 -0.06
4 0.0 500 0.04
5 0.0 55 0.23
6 1.2 0.0 0.0
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the reduced widths with each other or with the conven-
tional vibrational strength. The reason for the lack of
correlation is, of course, that the intrinsic states
defining the lowest channels at the chosen intermediate
and outer barrier deformations have essentially dif-
ferent particle state structures from each other and
from the intrinsic state defined at 7;;. The last is
essentially 94% of u, =3, while the lowest channel at
n, is composed of 97.6% of u,=2 (and only 1.7% u, =3),
and the lowest channel at 7, is 98% of u,=5.

The envelopes of possible reduced widths for pure
vibrational states are shown by dashed curves in the
upper part of Fig. 93. It is apparent that none of these
eigenstates would have nearly the full fission strength
that our simple conception of a vibrational resonance
would lead us to expect. A single quantitative measure
of fission strength for the eigenstates cannot be given
since it would involve the barrier penetrabilities which
are independent of the mixing model, but for reasonably
similar values of P, and P, (the condition under which
fission vibrational resonances are most likely to be
apparent), the greatest strength will fall short of a pure
vibrational fission strength by more than an order of
magnitude. The fission strength is here defined by

8,0, = —awlify _ @Po%,)@P) g 4
) I")f?u)) +Fx?u)) ZPAyh?l:f +2P3'y)~?“)? ' -

which is proportional to the integrated cross section
across a fission resonance.

Finally it should be noted that the chosen input pa-
rameters for this calculation were not entirely ar-
bitrary; they very approximately describe the single-
particle states with odd parity and spin projection 3
for a 141 neutron system in the region of the secondary
‘well deformation (n=¢€~0.65) as deduced from the di-
agram of Nilsson et al. (1969). The lack of a clearcut
contender with outstanding fission strength in the spec-
trum of Fig. 93 (particularly among the lower states,
below, say, 1.5 MeV excitation energy) throws doubt
on the interpretation of the resonance in ?*'Th as a pure
vibrational resonance, as discussed in Sec. V.B.5.a.
The state with greatest potential fission strength (that
at 2.59 MeV) has in fact over 80% of H, =6 in its struc-
ture, which implies that it is very likely further damped
into a great many more complex states. Further dis-
cussion of the %¥!Th case is given in Sec. V.C.4 and
Sec. X.B.2.a.

b. Single-particle models with rotation and Coriolis
coupling

The kind of model described in the previous subsection
is appropriate for the low-lying states in odd-A nuclei
with spin 3. Higher spin states of single-particle char-
acter are expected to have similar density, eventually
falling away in a Gaussian manner as the spin exceeds
a dispersion value 0, of order 3-3.5 in actinide nuclei.
These higher-spin single-particle states would also
couple with members of the rotational bands built on
lower spin states. For an axially symmetric nucleus,
the residual interaction mechanism for this coupling
is the Coriolis force

ﬁz
H =-—2‘g—(21'j)',

cor

(5.49)
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where j is the intrinsic spin of the single particle. In
first order the Coriolis coupling connects states which
differ by unity in the spin projection K on the sym-
metry axis. The matrix element for the coupling of
two intrinsic states is [see, e.g., Bohr and Mottelson
(1975)]

X a1, 1001 [chrixu'u,ﬁ

\ =-[-K)UI+K+1)]*24,, (5.50)

where
7 ‘
Ap= 53K +1]j.]K),

and j, is the component of the nucleon spin perpen-
dicular to the symmetry axis. For 23U the magnitude
of A, is observed from interband electric quadrupole
transition strengths to be =25 keV in the normally
deformed nucleus.

The Coriolis force can also operate in second order
between states differing by 2 in K. But the appropriate
matrix elements are expected to be an order of magni-
tude smaller.

It is clear that Coriolis coupling will significantly
increase the fragmentation of vibrational fission states
with spin greater than 37%. The already fragmented con-
figuration of spin-3 single-particle states given in the
example at the end of the previous subsection will be
reflected in the spin-3 components of their rotational
bands, and these will be further fragmented by Coriolis
coupling with single-particle states with 2=3. Num-
erical models demonstrating the effect in a weaker way,
and how it might apply to ?*'Th, are given in Sec. V.C.4.

c. Even nucleus

A simple model for an even nucleus is to postulate a
lowest intrinsic state (the fully pair-correlated state)
with a wave function that is assumed to be invariant to
deformation, and higher intrinsic states that are com-

posed of two single-particle states or holes. The higher

states are built up from configurations with energies
that have a parabolic dependence on deformation, as
described in Sec. V.C.1l.a, with residual interaction
matrix elements coupling them. The minimum energies
of the higher states are greater than or equal to the en-
ergy gap (24), relative to the lowest intrinsic state.

A schematic numerical model of this system has been
solved with three vibrational states and eight intrinsic
states. The lowest intrinsic state has zero energy and
no dependence on deformation while the remaining seven
have quadratic coefficients A’ ranging between 300 and
400 MeV, and minimum energies (2A) of about 1.2 MeV
(within the range 1.15-1.25 MeV) occurring at defor-
mation b?’ of ranging from about —0.15 to 0.15 at inter-
vals of approximately 0.05, relative to the center of the
deformation well. The residual matrix element coupling
all the intrinsic states (including the lowest) has been
taken to be 0.1 MeV.

The result, as shown in Fig. 94, is that the coupling
and fission widths for the lowest channel are correlated
not only with each other, but with the vibrational con-
figuration as defined at the center of the deformation
well, -and this is true not only for the main fission res-
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FIG. 94. Numerical model of vibrational damping of lowest states of an even nucleus.

The layout of the figure and the key are as

in Fig. 93 with the addition that reduced widths for the next available channel at the two barriers are also shown; these are de-
noted by open continuous and broken vertical blocks on the right-hand side of the solid blocks showing the reduced widths for the

principal channels at each eigenvalue.

onances at 0.0, 0.7, and 1.4 MeV excitations (cor-
responding very precisely to 0, 1, and 2 phonons coupled
to the lowest intrinsic state) but, to some degree, for
the higher states as well. However, the fission and
coupling widths of the higher states through the lowest
channels are so small that the contributions of higher
channels to the widths must be taken into account. The
reduced widths for the next channel are therefore shown
on Fig. 94 also. For these it is apparent that there is
little sign of correlation. This is because the channel
intrinsic states at the inner and outer deformation have
a quite different configuration.

2. Detailed resonance structure of damped vibrational
resonances

The results of the schematic models discussed in the
last section show us that among states of fairly simple
character some states with high fission strength do
occur, but, except in even nuclei, these are not usually
states of strong vibrational character inthe conventional
sense. Furthermore, states can occur with particularly
high fission or coupling width, but not necessarily both,
and these will not always appear withparticularly strong
fission character. Nevertheless, such states will be
treated in this section as vibrational resonances in con-
sidering the mixing of relatively simple states with a
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dense background of much more complicated states
(class-II compound states), but in doing this the pos-
sibility of their having nonideal properties must be con-
sidered. After dissolution of its fission strength in an
incomplete way among the neighboring class-II com-
pound states, the vibrational resonance is coupled to
the class-I compound states to give an idealized sit-
uation which is indicated schematically in Fig. 95 [from
Lynn (1970)]. Below, the possible detailed properties

FISSION CROSS-SECTION

EXCITATION ENERGY

FIG. 95. Schematic illustration of the damping of a vibrational

resonance into class-II, and ultimately class-I compound
states.

CLASS-I compd

HIERARCHY

OF
1 CLASS-II compd STATES

VIBRATIONAL ( CLASS II)
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of this three-stage hierarchy of structure are con-
sidered.

a. Resonance widths and cross sections

(i) Damping of a state with ideal vibrational char-
acter. A considerable amount can be learnt about the
detailed structure of resonance widths and cross sec-
tions by simple use of the formulas for the coupling of
class-I and class-II states given in Sec.III.C.5. To
use these formulas it is only necessary to assume that
there is no overlapping of the class-II states that con-
stitute a damped vibrational resonance. In the ideal
situation (the uniform model with equal matrix elements
connecting the isolated vibrational state to its neigh-
boring class-II compound states) the fission widths of
the class-II (R-matrix auxiliary) states will be given
by

Toggy, _ 1 r
D, 27 (E,-E

2 oe)

22+ GT,p)° ©.51)
where I',(,, and T’ 4, are the damping and fission widths
of the vibrational state at £,; the coupling widths are
given by a similar formula. The condition that class-
II states of maximum width at the center of the damped
vibrational resonance do not overlap is equivalent to

r r

A1

«<T «<TI

v(f) v(D)s vie) v(D)*

The choice of formula for coupling the class-II and
class-I compound states will depend on the magnitude
of T, () and T, , ateachclass-IIstate. One reasonable
case is to assume that the class-II coupling widths
T\ () are much greater than the class-I level spacing
at the center. The formula for moderately weak cou-
pling [Eq. (3.185)] then applies. Notice that as long as -
l"xn ey > Dy, as we move away in energy from the center
of the damped vibration the fine-structure fission widths
(of R-matrix states) at the center of each class-II inter-
mediate resonance remain constant at the value

r 2D, T,

rHF .
m Fv(o)

(5.52)

Thus a profile of the vibrational resonance drawn
through the peaks of the fission widths at the class-II
states will be much broader than the nominal width

T, (p)s this width will be reflected in the rapidly de-
creasing widths of the class-II states, as illustrated
in Fig. 96. At sufficient energy from the center of the
vibrational state, however, the coupling widths of the
class-II resonances become less than the class-I level
spacing, and then the perturbation formulas applicable
to very weak coupling [Egs. (3.162)-(3.167)] are appli-
cable. A quasi-class-II state can then be identified in
each intermediate group, carrying the bulk of the class-
II fission width

D r T
et 4 v(f)~ v(D) X 5.53
21 (E,-E, )*+GT,;)° (5.53)

I"X,, )=

The profile, rather than the widths of the intermediate
groups, then shows the wing attenuation of the vibra-
tional resonance. -

The features of the cross section to be expected
across a damped vibrational resonance are more com-
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plicated than this. Here we shall not discuss the pre-
cise shape (width and peak cross section) of each fine-
structure resonance but only the locally averaged fission
cross section across the fine-structure line, i.e.,

r . .Tr
(o)‘(f,>oc _L(_e_l_)‘_.z,_(ﬂ

x

, (5.54)

where T, ,, is the entrance channel width and T, is the
total resonance width that includes all reaction chan-
nels in addition to entrance and exit channels. The
equations expressing the entrance channel width, when
this, as will normally be the case, is a process carried
only by the class-I compound states, have been given
for perturbation theory (very weak coupling between
class-I and class-II states) in Sec. III [Eq. (3.167)]; a
quasi-class-II state will carry only a small fraction of
class-I admixture and its entrance channel width is cor-
respondingly smaller than its quasi-class-I neighbors
(this topic is discussed in more detail with examples in
Sec. VI). When somewhat stronger coupling applies,
the admixture coefficients Cf“n) carrying the fraction
of class-II state in the fine-structure states X become
small, even at the center of the class-II intermediate
resonance, and in the uniform model there is no marked
fluctuation of the expected entrance channel width

r‘)\(e) = (1 - Cf(ln))<rlx(e)>

in crossing the intermediate resonance.

Reaction channels can be characteristic of either
class-I or’'class-II compound states. For the most part,
in the excitation energy ranges in which structured
fission phenomena are likely to occur, particle emis-
sion processes, such as inelastic neutron scattering,
are likely to be confined to class-I compound states and
will have the same properties relating to the inter-
mediate resonances as the entrance channel widths. On
the other hand, electromagnetic radiation widths are
likely to be of the same order of magnitude for class-"
II compound states as class-I states (see Sec. VI.D.2
for a discussion). Thus we may write in general

(5.55)

Thoy=(1 _sz(xu))rn(r)+C§(111>FAII(1) . (5.56)

Thus the factors that determine the appearance of the
cross section across a damped vibrational resonance
depend not only on the vibrational state widths
I v5ys T'veys I wis), but also on the magnitude of the
class-I entrance channel width and on the magnitude and
nature of the reaction widths. Some examples of the
effect of the magnitude of the competition factors are
shown in Figs. 96, a, b, ¢, d, and e.

(i) Damping of vibrational states with nonideal char-
actev. The ideal vibrational resonance discussed above
is that of a single state with particularly strong fission
and coupling width embedded (before mixing) in a dense
forest of compound class-II states with fission and cou-
pling widths that are small enough to be neglected. The
discussion of Sec. V.C.1 makes it apparent that non-
ideal situations can occur in which, for example, two
comparatively simple states may be situated quite close
together, one carrying a strong coupling width and the
other a strong fission width. The background class-II
states will pick up elements of both, with the result .
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FIG. 96. Fission widths and cross sections of the fine-structure resonances across a damped vibrational resonance, with param-
eters T'ysy=1unit, Ty, =25, Typy=75, Dy=1, Dy;=21.7. The top part of the diagram presents the widths and illustrates the
flattening of the profile through the peaks of the class-II states. Lower diagrams show the cross section (averaged over an energy
interval Dy across each fine structure resonance) for different choices of the entrance channel width and reaction width. Note:

energy eigenvalues have been diagonalized only approximately.

that in the region of one state (say that one with the
strong fission width) the fission widths of the class-II
states will have the typical Lorentzian character of
Eg. (5.51), but the coupling widths will show relatively
little change with energy; this is shown schematically
in Fig. 97. In this nonideal case the fine-structure
width and cross-section profiles will show quite dif-
ferent features from those described in the previous
subsection.

The simplest assumption is that the class-II state
coupling width (or alternatively the fission width) is
effectively constant across the vibrational resonance.
As in the previous subsection we shall confine our dis-
cussion to the properties of R-matrix states, which
means that the simple cross section deductions from
the partial widths are only applicable when the class-
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II coupling width always exceeds the fission width. Then
the fission width profile is (for moderately weak cou-
pling)

- D r;u(mruéf)Dnch) ; .
YT (2m)? [(Ehn -E,)%+GT ) °Il(E, - Eux)2+ GT11(0)7

r

(5.57)

At the center of each class-II resonance the fissionwidth
of fine-structure levels is

1 _D Fu(D)Fv(f)PII
™ Tircey (B, —Eu)?+GT upy)?
Thus the profile through the peaks of the intermediate

resonances reproduces that of the vibrational state with
its characteristic damping width. The widths of the

)= (5.58)

rx(f)(Ex ~ Ehu

3 4
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FIG. 96.

level is much greater than its coupling width is that the

two widths interchange their roles.

intermediate resonances are constant, on the other

hand, at the value I'j;(¢,.

strated in Fig. 98.

Thus for the case

These features are illu-

of the ideal vibrational resonance the fission widths in

the central region are

(i#i) Cross-section propevties wheve class-II fission

rVC

2D

In this section the dis-

cussion may be based on the widths associated with the

widths exceed coupling widths.

(5.59)

AT

r v(f)

T

poles of the collision matrix. The relevant equations for

coupling of a single class-II state with many class-I

for the poles that carry significant partial width in the
entrance channel and hence appear as significant fine-

compound states are given in Sec. III.C.5 [Eq. (3.206)].

structure resonances in the cross section. In addition

From Eq. (3.206) it can be seen that the main dif-
ference that accrues in the profile of observed reso-

to these there is a pole with fission width approaching
in value to the full fission width of the class-II reso-

nance widths when the fission width of the vibrational
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nance but with very small entrance channel width; it
will not normally be observable as a resonance in the
cross section, but if it is included in the pattern of
fission widths, it will introduce a very sharp distinction
from the case discussed in Sec. V.C.2a (¢); this is
illustrated in Figs. 99 a, b, ¢, and d.

At the fringes of the vibrational resonance the class-
II fission width eventually becomes less than the class-
I level spacing, and perturbation theory again becomes
applicable. The central resonance will have a fission
width given by Eq. (5.53) and its immediate (quasi-
class-I) neighbors have the values

S. Bjdrnholm and J. E. Lynn: The double humped fission barrier

In the cross section the central resonance, being
narrower than the fine-structure spacing, will now,
in principle, be observable, but its entrance channel
width, being governed by the quantity (1 - Cg, ), will
be smaller, by a very considerable factor than in the
corresponding case described in Sec. V.C.2.a(i).

In the case of the nonideal vibrational resonance,
there is no longer even an approximate simple exchange
of roles between the fission width and coupling width.
We present here the general formulae for the fission
width of fine-structure resonances ignoring the con-
tribution of poles corresponding to very broad quasi-
class-II states. ‘

2 T o Darrer .
T, )~ = -—l‘ﬂl_’ﬁ—’iL‘f—’ When the coupling width of the class-II states is
I essentially constant and only their fission widths fol-
1 | AT SRS AU (5.60) low the vibrational resonance profile, the required
T 27°D, [(EMI-E,,)2+(§1",,(D))2]2 : . expression is
] 1
D » DIIFII(c)rv(D)rv(f)[(EMI_Ev)2+%ri(n] (5‘61)

- 1
rh(f)_‘ 477,2

D ’
(E, - Elu)z[ (E*u - B+ Tl +3 {Z_:rl Ty Lo+ Trreel (Em - Ev)2+§r§w>¥

provided class-II fission widths are greater than class-I level spacings [otherwise Eqgs. (5.57), (5.58) are valid]. If
the class-II fission widths remain essentially constant and Lorentzian behavior is confined to the coupling widths

| D2 . Dnrmnrv(mrvgi(Elu—Eu)2+ir,2,<m]
47 I
(B, - Exn)z[ (Exu -E)+iTo 1% +% {2—,, TyersTom + rII(f)[(EAu - Ev)2+érp(0)]}2

b. Interference effects

(5.62)

Interference effects in the neighborhood of a class-II compound state forming a component of a damped vibrational
resonance ‘can be brought out by using perturbation theory (Lynn, 1974). In the neighborhood of a class-II state Py
the contribution of all other class-II states A\}; to the wave function of a fine-structure compound state at energy E,
is :

()\I lHCMh>XA
N E, -FE 1
M1 Mo 1
]
]
! O H v u’)
? =2 2 R MGy o) O v k)8, X
: M1 vi® 2 2
1
£ ! (5.63)
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FIG. 97. Damping of nonideal vibrational states into class~II -150 ] o o R 150
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compound states. The upper part of the diagram shows two
such states, one with strong coupling width (indicated by the
broken vertical line), the other with strong fission width (indi-
cated by the solid vertical line). Background class-II states
are indicated by dots. In the lower part of the diagram the re-
sult after Lorentzian mixing of each special state into the back-
ground states is shown, coupling widths being indicated by
dotted line and fission widths by solid lines.

FIG. 98. Fission cross sections of fine-structure resonances
across a damped vibrational resonance of nonideal properties,
the class-II fission width having Lorentzian behavior and the
class-II coupling width being independent of energy. Param-
eters are: Dp=1unit, Dy;=19:7, T',(p =100, Ty =3, Ty,

=0.15, T'yp=0.
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FIG. 99. Fission widths and cross sections related to the collision matrix poles across a damped vibrational resonance with fis-
sion width exceeding the coupling width. The parameters of the vibrational level are T, =1 unit, T, =25, Typ =75, D;=1,
Dj;=21.7. The top part of the diagram shows all the fission widths including the poles corresponding to class-II levels; this illus-
tration effectively suppresses the widths of the fine structure resonances. The part diagram below is on a scale which shows the
latter, the widths of the class-II poles being removed.
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1075

CROSS-SECTION

FIG. 99. (Continued.)

for the projection on the fission vibrational mode

%, X,. With the assumption of the Lorentzian expres-
sion the coefficients (\}; | vty ? giving the damping
(with half-width W, , =3T, () of the vibrational state
into the states \{;, the “diagonal” term in this expres-
sion can be evaluated as

T H v A 1 H 'VIIW [Eurxu—E'*‘iW"txu ]@ X
VII o

Dy Wl'n“ (EVII“—E)Z"'W'% ™ .
(5.64)
J
Oy H NPT
T = (E, E“I: W;f) +26 [\ [Ho | Mg [H, [ 2 |
11

{ (Evyu—E )(EUI—E ) + Wopgu Wy
[, - —ETwE T,

These expressions are derivad on the assumption that
cross-terms in vj;u’ not equal to vy vanish. The
degree of correlation betweén inner barrier coupling
and outer barrier fission modes (expressing the purity
of the initial vibrational configuration; see Sec. V.C.1)
is given by the term ®:

1- Z O H iy pY@i b 1A

(R,.__
iy i (G T H, g

(5.67)

c. Closed expression for an idealized damped vibrational
resonance

A closed expression for the mixing of an idealized
vibrational configuration into class-II and class-I states
has been obtained by Back (1974). The basic assumption
made in deriving this expression is that only the vi-

‘brational configuration ®,, x, couples to the class-I
compound states (through the matrix element

Rev. Mod. Phys., Vol. 52, No. 4, October 1980

—E )2 4 sz’} x;l(f)rullxu @+ (E

M\ 1(€)=1075 I\ (rR)=9x10"5

The contribution from the state 2;; to the same proj-
ection of the wave function can be written

QI H vy wvi B IOy v
Vi’ E"II—E)‘_ZW’LXI

@, Xu, (5.65)
the half-width of the class-II state A;; being W, |

=3T, ((c)- Thus besides the Lorentzian contribution
to the flssmn width of a fine-structure (R-matrix) state
A from the nearest class-II state there is an interference
term (changing sign across the intermediate resonance)
and a background term from other class-II states:

ﬁ_l |H |vyu® r”IIu(f)
p BT W L . (5.66)

I

(v |H, |vig)); the matrix elements between class-I
states and all other configurations of the type <I>,uxu
are zero. Physically, this corresponds to the ideal
vibrational state with full correlation of amplitude and
intrinsic wave function at the inner and outer barriers.
The nonzero matrix elements (A{%’ [Hcluup) give the
damping of the vibrational state among the other class-
II states A{?’ which are obtained by diagonalization
among all class—II configurations v{;u’ except vy u.

The uniform picket-fence model (see Sec. III.C.5) may
be adapted to deal with this situation. Two sets of uni-
form spacings and matrix elements are postulated. The
eigenvalues of the fine-structure R-matrix states are
(in general) given by

Z()\IIH v u)? > MPIH vy py?
—FE = + (
B 3% Eh_ EAI v’ E -E ‘;;

(5.68)
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Admixture coefficients for:

(i) states %, into fine-structure states are

829

)
<_L_.f"_c|_Vuﬁ2 Cro s (5.70)
II

(iii) the vibrational state into fine-structure states

IH v p)
Crap= 5 Ch iy s (5.69)
! Ey-EBy o o2 =[ Z (g IH Ivup) Z P VH vy p)? ]
(ii) quasi-class-II states A2 into fine-structure states Mo (Ey - My (E E‘“’)

' (5.71)

|

In the picket-fence model the last expression becomes
Cz ~ DI ‘ Fvu(c’)
Appge) 2 ) TE 2 1 [r2 2 TE

E,-E, ,-3T, () cot ——LDU +3\00 e+ Ty e Do oDy/Dr) ese ———lDH (5.72)

where
_2mQ0 I H vy ) (5.73)
uu(c')" DI ‘

is the coupling width for the vibrational state directly
into the class-I compound states, and

200D 1 H Ly w2
T, o=

. By (5.74)

is the damping width of the vibrational state into the
quasicomplete class-II set.

The eigenvalue equation in the picket-fence model
becomes

1 TE

- = = et W
EX EVIIIL 2 ruII(C' ) cot DI
1 a(E, = 8)
+ 3 T, ) cot D (5.75)
the original spacings being
B, =NDy, E{ =2 Dy +6. (5.76)

A numerical example of the admixture coefficients of

r
Eq. (5.72) is shown in Fig. 100. This should be com-

pared with Fig. 96 in which the coefficients have been
computed with overlap, but not interference, of the
class-II intermediate resonances.

3. Average fission strength functions and cross sections
over a damped vibrational resonance

a. Strength function for a single vibrational level (with
weak coupling to the fission continuum)

If an individual class-II state \;; is considered after
damping of the vibrational state v;;, the fission strength
function averaged over the class-II intermediate reso-
nance is [see Sec. V.C.2.a.()]

‘r‘hu(c)rxn(f)

D D, (T

If it is assumed that the admixture of the vibrational
state gives the coupling width as well as the fission
width to the class-II compound states, then simple

(5.77)

xn(c) + r‘ux(f))

- Lorentzian expressions for these properties can be

written down (assuming that these widths add a negligible
amount to the damping of the vibrational state and that

ADMIXTURE

" W

ENERGY

FIG. 100. An exact uniform model calculation of profile of admixture coefficients for the R-matrix eigenstates across a damped

vibrational resonance [due to Back (1974)].
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Parameters are Dy=1, Dy;=21.7, 2m(A |H, [V ) 2/Dy=25, 20\ gy |H, (Vi /Dy = 75.
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T - 11 - ) (5.78)
Mr® T 2g (Em_E,,H)"’ﬁrﬁu(D,
D v ool )
s 1L 1 5.79
Braw 27 (E’*n - EVH)2+ ( )

12 ’
1 uu(D)

where F,,nm) is the damping width of the vibrational

state into the class-II compound states. Substitution
of these expressions into (5.77) gives
r 1 Torpo L vy ‘
—A£)Y Lu L . 5.80)
( D, )5 B, il o (

If none of the fine-structure (R-matrix) levels re-
sulting from the mixing of a vibrational level, first
into class-II states, and from these into class-I states,
has a fission width of the order of or greater than the
class-I level spacing, a superior treatment, based
on Bohr and Mottelson’s (1969) expression [Egs.
(3.192)] for the energy-dependent average properties
of a Lorentzian line, can be given. As in Back’s fine-
structure treatment, given above in Sec. V.C.2.c¢, two
kinds of matrix element coupling the vibrational level
to the class-I states H, ,  and to the background class-
II states, H. A0, are recognized. Then the expression
for the effective width [Eq. (3. 192b)] becomes

dE H)L v
~ b7 ¥ ) ) SR
Feal®= ] 5} GF, )2+ GAP
HA(b)
+ II Y11
. TEoEDy .81

if a Cauchy averaging function of width A, is employed.
If the second term on the right-hand side of this ex-
pression is evaluated at energy E equal to a given

Em the result in the uniform approximation is

;LI;; (381 ZTTHZ TA 277Hf’n”.,u
2 : 5T = coth = : 8,
i & _E"nj +(z4)>  DgA © 2Dg Ly

(5.82)

with 8 =1.0903 for A=D,; and approaching unity for a
>Dy;. The same term at energy midway between two
class-II levels is

H* v -

2 a2 T
& E-E,)°+ ()

H (]
2m Mt

D2 ’
(5.83)

ZWH"II VII g TA

anh =
Dy a 2Dy,

with §=0.0171 for A=D;; and again approaching unity

for A>Dy;. Evaluation of the first term gives
dE, H"I"u ZWH)”IVII (5.84)

D, (E-E,)?+GA? ~ DA

The result is that T'_,, for the locally averaged, damped
vibrational resonance is
anft"u + ZWHféllj)VH

eft = ’
DI DII

r (5.85)

which is approximately the sum of the widths for cou-

pling the vibrational level to the class-I and background
class-II states directly and alone, Fuu(m and I“V”(D)
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respectively. The expression for the fission strength
function through channel u is, therefore,

<r _> o L (r"II‘°’+F"u‘D>+A)FVU‘“’
D, 2n (E ._E)2+j‘ll—(ru11(c)+rvll(D)+A)2

. (5.86)
V11
Note that this treatment explicitly achieves the extra
spreading of the vibrational state due to coupling with
class-I states across the intermediate barrier. In this
way it is superior to the first treatment presented. The
price paid for the simplicity of treatment is the neglect
of any contribution to the coupling with class-I states
that may come from the background class-II states
[see also Sec. V.C.2.a.(ii)].

b. Energy-independent coupling to class-| states

An alternative assumption to that presented in the
previous subsection is that the coupling width for each
class-II compound state is effectively constant. The
mechanism for this possibility is that the source of the
coupling width does not come from the vibrational level
that provides the fission width. Examples of this pos-
sibility were seen in the schematic models of Sec. V.C.1
and discussed in more detail in Sec. V.C.2.a(ii). If we
think of these models as giving the configurations only
of the simplest (class-II) states, which then have to be
coupled to a denser background of more complex (class-
II) states, then we see that in certain cases (such as the
single-particle models for odd-A nuclei) there may be
little or no correlation between the coupling and fission
widths of the “simple” states. We can find examples
in those models of a state with considerable fission
width and small coupling width being neighbor to one
with negligible fission width but very large coupling
width. It is apparent then that the class-II compound
states in the neighborhood of the first state may nearly
satisfy the assumption of energy-independent coupling.

With this assumption and the use of Eqs. (3.185b) and
(5.53) it is found that

<fuf_z> L Topo Lnen -
Dy 2 (E-E, )24+i[(r? + ——Z_D”F__"II(D)FV[IU)_)
viy 4 VH(D) ] Trr\kn(c)
(5.87a)

Thus the effective width of the vibrational resonance is

1/2
r2 2DIIFUII(D)FVII(f) /
v+ nl -
XII(c)

c. Non-Lorentzian fission width behavior

(5.87Db)

Yet again, the class-II coupling widths may have the
Lorentzian form of the vibrational resonance while their
fission widths have different energy behavior. The form
of the fission strength function is then

< 2!5!>~ 1ﬂuu(m viple)
- 2D, T )
Dy 2m [(E E, ) +4(1"5H(D>+————II H?I(D)A—" (C))]
XII(")
(5.88)

d. Fission probability and fission cross section

If the widths of class-II compound states are greater
than the class-II level spacing the expressions for the
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fission strength discussed in Secs. V.C.3.a and b may
be used directly in computations of fission probability
or fission cross section [see Egs. (5.1) and (5.25)], the
fission transmission coefficient being

Tf=‘zn<r1*)—‘:’> . (5.89)

These expressions are not valid if the intermediate
structure is not washed out in this way. Consider the
situation in which the transmission coefficient for com-
petitive processes (such as radiative capture) 7" is
much smaller than the fission coefficient. If the energy
dependence of the latter is modulated across the class-
I resonances there will be regions between the reson-
ances where the fission probability is much smaller than
indicated by the ratio of the average transmission coef-
ficients, and in consequence the true average fission
probability is also smaller than this ratio; the factor
between the two can be large. No exact treatment of
the problem is available for the class-II structure
across a damped vibrational resonance, but treatments
for local levels and a sequence of uniform levels are
described in Sec. VI.C.2.c. Application of these for-
mulas to the damped vibrational resonance results in
line shapes for the fission probability that are similar
in width to that of the original fission transmission co-
efficient although the half-widths of the intermediate
structures in the fission probability are much broader
than the corresponding widths in the transmission co-
efficient [see Eq. (6.87)]. The expression for the fis~
sion probability averaged over energy intervals equal
to the class-II level spacing as deduced from Eqs.
(5.25), (5.78), and (5.79) for isolated class-II states is:

L
20

‘P =
Fou G, i)

x rvn (c)ruu(f)
’ 1 .
N LS N L

‘ (5.90)
The conditions for the validity of this are that LA
and I', () are much smaller than T, ., and that

T, relney/Tiy )< T’. This expression is illustrated
for certain choices of parameters in Fig. 101 and com-
pared with the shape that would be deduced if the class-
II intermediate structure were not taken into account:

“Pf ”___
IL[[(D)I:'H(C)I;)II(f)
7 — 3. 172 .
I:;uw)r:'nmr:au(f)*'T(I::u(w“flln(f))[(E Eun) +4PvnT

(5.91)
4. Examples of damped vibrational resonances

a. #opy

The classic example of a damped vibrational fission
resonance occurs at 5 MeV excitation energy in the
compound nucleus ?*°Pu and has been studied by many
workers (Back et al., 1969; Specht et al., 1969; Britt
et al., 1969; Back et al., 1974b; Glissel et al., 1976).
The most definitive work has been done by Glissel ef
al. (1976), who have measured the fission yield curve
of the ***Pu(d,pf) reaction with energy resolution of
3 keV, thus revealing structure (presumably class-II
intermediate reasonances) within the damped vibration-
al resonance, and also the angular distribution of fis-
sion fragments about the classical recoil axis. Their

1.0 T T T L

FISSION PROBABILITY

05

EXCITATION ENERGY

FIG. 101. Fission probability, averaged across energy interval of the order of the class-II level spacing,. for a damped vibration-
al resonance. In this example the parameters are L =0.05, T, 104)=0.02, I’l,I (g) = 0.01. Dot-dash curves do not include effect
of class-II structure. Dashed curve is a Lorentzian for comparison with the I'=7.5 x 10~ full drawn curve.
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FIG. 102a. High-resolution (~3 keV) proton spectrum from the (d,pf) coincidence experiment by Glassel et al. (1976), below.
Above are the measured fission fragment angular distribution coefficients A, [Eq. (56.92)]. Horizontal lines are theoretical coeffi-
cients for states of a K= 0 rotational band populated through a neutron transfer to the j :—é 29py target with neutron j values as in-
dicated.
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FIG. 102b. Fission probability of 0py in the region of 5 MeV, determined from the 239Pu(d,pf) reaction and a model fit to the
data. Barrier parameters used are given in the text (Glissel et al., 1976).
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results are shown in Fig. 102a. The coefficients A,
are those describing an expansion of the angular dis-
tribution in Legendre polynomials
Wif(6)= D AP,(cosb). (5.92)
A

The interpretation of the data centers around the as-
sumption [supported by photofission data of Rabotnov
et al., (1970)] that the fission channels have spin pro-
jection along the fissioning axis K"=0*. The average
branching ratios (or fission probabilities)

Tr(J",K)

Pf(J‘r,K): dO)

(5.93)
for the different total angular-momentum components
of the fissioning nucleus can then be deduced, the rela-
tive compound nucleus formation cross sections for
these components being calculated from distorted wave

Born approximation and the Nilsson scheme of neutron
levels. The branching ratios found at 5 MeV are:

P4(0%,0)=0.63
P;(2*,0)=0.50,
P,(4*,0)=0.20.

The high average branching ratios found for the lower
angular-momentum values imply that the widths of in-
termediate structures in the fission probability curve
approach the class-II intermediate level spacing, in
fact about 40% and 60% of the respective D, values,
while the width of the spin 4 structures will be about
12% of D;;. The actual intermediate structure reso-
nances observed in the vibrational resonance are nearly
all J"=2", giving D;(J"=2")=10.8 keV. The expected
widths (in the probability curve) for these resonances is
therefore about 4keV, i.e., closetothe resolution width
and agreeing with observation. The level spacing for
J"=0* states is expected to be about five times greater
than the J"=2* spacing, thus implying a width =30 keV
for any intermediate resonances with J"=0". These
would therefore be hidden by the superimposed J”
=2* resonances, and it is therefore not surprising

- that they are not observed. The widths of the J"=4*
resonances on the other hand are much smaller than
the resolution width, and their strength is about one
order of magnitude lower (per resonance) than the 2*
resonances; therefore, because of finite instrumental
sensitiVity, they will not be observed. )

A model fit (which cannot be unique) to the data is
also shown in Fig. 102b; it incorporates a hypothetical
K"=0" vibrational resonance at 4.65 MeV. The barrier
parameters are V,=5.65 MeV, Zw,=0.82 MeV, Uy
=5.3 MeV, fiwg=0.6 MeV, Zw;;=0.8 MeV, while the
damping width ', -, = 0.12 MeV. It does appear that
a better fit could be achieved with a slightly larger
damping width and a lowering of one or both barriers.
Otherwise the intermediate resonances at 4.9 MeV are
probably excessively high; they do in fact seem to sug-
gest a fragmentation of the vibrational strength between
two subsidiary states before the operation of the more
general Lorentzian damping amongst the class-II com-
pound states.

Rev. Mod. Phys., Vol. 52, No. 4, October 1980

The more recent evidence also indicates that the vi-
brational resonances of 2*°Pu are “nonideal” in char-
acter. Goerlach et al. (1978) have measured the prompt
and delayed (shape isomeric) fission as a function of
excitation energy using the *°Pu(d, pf) reaction. Both
forms of fission show resonancelike structure but the
energies of the peaks are uncorrelated. This can be
explained on the assumption that the prompt fission is
associated mainly with states (before damping into the
class-II compound states) having strong fission widths
and moderate to weak coupling widths, whereas delayed
fission, which follows the radiative decay of the class-
II compound states, will then be inhibited by competi-
tion due to the large prompt fission widths. Thus de-
layed fission may exhibit peaking in other energy re-
gions where there are underlying states enhancing the
coupling width but having very weak fission width.

In these circumstances the barrier parameters of
240py deduced from the prompt fission probability should

“be reinterpreted. The relevant equation for describing

the data is (5.87a). In fact, owing to the dominance of
the damping width, the outer barrier is only lowered
very slightly (=15 keV) as a result of this analysis.

b. 8y

A number of other even nuclei exhibit structure in
their curves of fission probability versus energy that
has been interpreted as damped vibrational resonance
structure. The compound nucleus #*®U, explored by
means of the 2°U(¢, pf) reaction (Back et al., 1974a), is
typical of these. The data are shown in Fig. 103. These
data have been fitted on the assumption of a vibrational
state (for angular momentum J"= 0*) associated with
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FIG. 103. Fission probability of %U as a function of excitation
energy as measured in the 236U(t,pf) reaction (Back et al.,
1974a). The fitted curve full line assumes a vibrational level
(for J7=0") at 4.98 MeV carrying a rotational band. The
dashed curve is a calculation from statistical representation
of level densities and is appropriate above the barrier

region (see Sec. VII).
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the secondary well at an excitation energy of 4.98 MeV
carrying a rotational band of similar levels, the rota-
tional parameter being #2/29 ~3 keV. The damping
width for the fit was T', ,,~0.1 MeV, and the barrier
parameters were chosen as V,=5.68 MeV,; Zw,=1.0
MeV, Uy =5.67 MeV, and Zwy=0.6 MeV. In this calcu-
lation full account was taken of the effect on average
fission probability of the underlying class-II structure
in the damped vibration (see Sec. V.C.3.d), including
also the Porter—Thomas fluctuations of the widths of
the class-II intermediate resonances (see Sec. VI.C.
3.c). "

c. #2py

Another good example of a vibrational resonance re-
vealed by the (¢,pf) reaction occurs in ***Pu (Back et
al., 1974). Data and fit are shown in Fig. 104. The vi-
brational-rotational band starts at 4.53 MeV and a
damping width T, ;,=0.2 MeV was used in the fit (Lynn
and Back, 1974); this is apparently a little high. Bar-
rier parameters for the fit are U,=5.55 MeV, 7Zw,=1.0
MeV, Vg =5.05 MeV, Zwy =0.7 MeV.

d. 235, U

The best studied example of a “classical” damped
vibrational resonance in an odd-mass nucleus is found
in 235U and has been explored by means of the #**U(n,f)
reaction. The basic resonancelike feature at 300 keV
neutron energy has been known for a long time (Lam-
phere, 1962) but was long believed to be explicable as
competition between successive opening of fission and
inelastic scattering channels (see Sec. V.A). The at-
tempt to investigate the class-II intermediate structure
within the vibrational resonance has been made by
James et al. (1977). Individual class-II compound
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- 240py (4, pf) _ - /o%é)ooooqpoooamb 3
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FIG. 104. Fission probability of ?Pu as a function of excita-
tion energy as measured in the *%Pu(¢t, pf) reaction (Back et
al., 1974a). The fitted curve full line assumes a vibrational
level (for J*=0") at 4.53 MeV carrying a rotational band.
Dashed curve as in Fig. 103.
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structure could not be observed at such high neutron
energies with the available energy resolution (~1 keV
to be compared with expected class-II state spacing of
~0.2 keV). However, very considerable fluctuations of
the data points about any possible smooth curve through
the vibrational resonance were observed. This was
attributed to the limited number (~5) of class-II states
to be found in any one resolution interval and the fluc-
tuations of their strengths due to the Porter~Thomas
distribution expected for their widths (see Sec. VI.B.3).
The degree of fluctuation of the cross-section data

was particularly determined and found to be consistent
with observations on individual class-II states at low
neutron energies (see Sec. VI.LE.3.p) and a modeling

of the vibrational resonance (see Fig. 105) with the
following parameters:

V,=S,+0.101 MeV ,
fiw,=1 MeV,

Vg =S,+0.674 MeV ,
iwg =0.56 MeV ,

T, )=0.05 MeV,
fiw;;= 0.5 MeV ,

where the neutron separation energy S,=5.31 MeV.

The barrier heights resulting from this analysis re-
quire a comment. They are considerably different
from the values that would be required to explain the
behavior of the fission croess section at higher energies,
and also from values required by the systematic be-
havior of barrier parameters of neighboring nuclei
(see Sec. VII.D.2). The reason for this appears to be
the choice of behavior for the coupling width in the pa-
rametrization given by James et al. The class-II
coupling width has been assumed not to have vibrational
resonance behavior in the region of 300 keV,.and this
is consistent with nonideal behavior described in Sec.
V.C.2.a.(ii). The hypothesis of ideal behavior (vibra-
tional resonance behavior in both the coupling and fis-
sion widths of the class-II states) can be accomodated
within their parametrization. In Sec. V.C.3.b. the ef-
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FIG. 105. Neutron-induced fission cross section of 24U in the
region of the 300 keV vibrational resonance (James et al.,
1977). The curve below is the fit of the authors using the pa-
rameters described in the text, after subtracting a background
cross section indicated by the broken curve.
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fective width of a nonideal vibrational resonance is .
given [Eq. (5.87)]. We can equate this (substituting the
parameters of James et al.) to the width of an ideal
vibrational resonance with modified barrier param-
eters, so that '

(mod) _—
rvu(c)

-T

ZDIIr‘vu(D)ruu(f‘) 1/2 r
vit(D)y Tt ¢h)

T2 .+
vir(D)
( 1 Tl 1 cer

(5.94)

This will lead to a modified barrier parameter U, =S,
+0.44 MeV with Zw,=1.0 MeV in the present case.

e. #'Th

This case was treated as a pure vibrational resonarnce
in Sec. V. B but the discussion in Sec. V.C.1 on sche-
matic models for incipient damping indicated that pure
vibrational resonances are unlikely to occur in odd-
mass nuclei; some observable degree of fragmentation
of the vibrational strength is to be expected. This con-
clusion is particularly reinforced by the numerical mo-
del given in Sec. V.C.l.a in which basic parameters
simulating the Nilsson level scheme in the region of
the secondary well deformation were used; no level
with outstanding fission properties resembling that
known in the 2*°Th neutron fission cross section at 720
keV was found. This suggests indeed that the model of
vibrational resonances in a secondary well in the curve
of potential energy of deformation cannot provide an ex-
planation of the distinctive features of the 2*°Th fission
cross section, and that the theoretical suggestions
(Moller and Nix, 1974) of a third well at the deforma-
tion associated with the outer barrier (see Sec. II.A.1.4)
should be further explored.

Parameters that describe schematically the behavior
with deformation of the single-neutron levels in a sys-
tem of 141 neutrons at deformations in the region of
the second barrier have been taken from the work of
Moéller and Nix (1974); they are shown in Table XI [but
the u(p)=6 is meant to be representative of more com-
plex intrinsic states at the head of the energy gap].
These levels coupled with vibrational levels with a
spacing of 0.8 MeV provide the basis for the diagonal-
ization of the Schrodinger equation (5.37) as described
in Sec. V.C.1l.a. Reduced widths can be calculated by
projecting the wave functions onto intrinsic states de-
fined at deformations equivalent to a barrier position
on either side of the assumed tertiary well at 5. For
angular momentum J"=3" states (arising from only the
Q"=%" states in Table XI) it appears that the lowest channel
at an inner deformation 7y, (chosenhereasn, =n;—0.12)
has a configuration containing ~99% of the state u.(p) =5 as
listed in Table XI. The nextlowestchannelis about1 MeV
higher in intrinsic excitation energy. At an outer de-
formation ng,(ng,=ng+ 0. 12) the lowest channel has a
configuration containing 95.5% of u(p)=1 and is 0.43
MeV lower than the next channel state. With these very
different configurations for inner (governing coupling
to complex class-II and hence to class-I states) and
outer channels (governing fission widths) any correla-
tion between the reduced width amplitudes for coupling
and fission is unlikely.

The reduced coupling and fission widths are shown in
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TABLE XI. Parameters (in MeV) describing the deformation
dependence of schematic neutron smgle-particle levels in a
system of 141 neutrons [taken from Mbller and Nix (1974)]

at a deformation equal to that of the normal outer barrier in
the thorium region. These are used in the model of vibration
damping used to explam the resonance feature at 720 keV in
the neutron fission cross section of ?¥Th,

P P
H(p) é’g’;} A:f’ ”ﬁ) » ij )
Qr=% ‘
1 0.0 242 0.053 0
2 1.4 63 0.053 0
3 4.1 0 0 117.5
4 1.8 0 0 2.5
5 0.0 450 -0.1 0
6 0 0 0 0
3=
QT =3
7 0.0 47 0.06 0
8 0.0 417 —0.06 0
9 2.6 ' 0 0 3.75
Qr=3
10 0.0 31 0.02 0
11 0.0 150 0.08 0
12 0.95 105 0.02 0

Fig. 106. From this it can be seen that strong candi-
dates for fission resonances are the eigenstates A=4,
A=5, A=6, and A="T. The relative importance of these
will depend on the ratio of the barrier penetrability
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model of JT=% 5~ eigenstates at a tertiary minimum deformation
of a 141 neutron system.



836

S. Bjdrnholm and J. E. Lynn: The double humped fission barrier

TABLE XII. Fission strengths of J7 =12_ states resulting from diagonalization of N = 141 system as
described in text. Barrier penetrabilities are chosen to give widths for the A= 5 state that are in
the ratio of about 20:1 (as observed for the J”=1§ component of the 720 keV resonance in the reac-~

tion 230Th(%,f).

E YA(By,u=1) YA(By, u=1) S¢ S¢
A MeV) (rel.) (rel.) (Pai >P32) (P;g1 <PBZ)
4 1.755 -~0.173 ~1.01 0.371 0.030
5 1.816 0.749 -0.670 0.430 0.527
6 1.945 0.578 0.144 0.021 0.182
7 2.036 -0.740 -0.334 0.110 0.437

factors Py, and Pg,, but on any reasonable choice of
these A=5 is always strong in fission. If Py, and Py,
are adjusted to give for this state the observed ratio
of coupling and fission widths for the JT=%" component
of the **'Th resonance (see Table IX), the fission
strengths of the eigenvalues in the region of x=5 have
the values shown in Table XII. The fission strengths
quoted are relative values, but are otherwise defined
according to Eq. (5.48).

The two choices for the penetration factors give re-
sults that begin to have some qualitative resemblance
to the #'Th observations. If the basic parameters of
the single particle states were to be adjusted slightly
so that the A= 4 state moved away from A=5 and lost
strength, or alternatively moved closer and merged
with A=5, the Py ,> Py, case would be a favored solu-
tion. This is particularly so because the admixture of
u(p)=6 (representing a thicket of complex intrinsic
states) into A=5 is only ~1%, whereas it is ~33% into
A=T (more than 200 keV higher), so the strength of the
latter is likely to be more dispersed than the schematic
calculation suggests.

The diagonalization of J"=3" state involves the Q"
= ¥ intrinsic states of Table XI and the I =3 members
of the rotational bands based on the "=%" states. The
two sets are coupled by the Coriolis force as described
in Sec. V.C.1.b. With the Coriolis coupling term A,
[Eq. (5.50)] set at a somewhat exaggerated value of 40
keV, the following picture emerges for the J"=3"
states. First, the lowest channel at the inner barrier
has the same character as in the J"=3" case, i.e., it
is a K=% channel. Second, the lowest channel at the
outer barrier is now almost pure K =3 and lies a few
hundred keV below the K =% channel considered for the
J"=3" states. If the penetration factor for the former
channel is assumed to be a factor of 20 greater than
that for the latter then the fission strengths for the two

TABLE XIII. Fission strengths of J"=—;- states resulting from
diagonalization of N = 141 system as described in text.

Ey I SEG SEGLE Stu=t)
A (MeV) (rel.) (rel.) (rel.) St (total)
7 1.75 20.9 0.0016 0.027 0.057
8 1.81 11.2 0.097 0.433 0.184
9 1.94 1.67 0.184 0.095 0.659
10 2.03 36.7 0.456 0.032 0.935
11 2.09 588 0.031 8x1077 1.0
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outer barrier channels have the values given in Table
XIII. In this grouping only one new state (at 2.09 MeV)
appears; its wave function contains over 90% of admix-
ture of Q"=3" basis states. The other states contain
very small admixtures of Q7=3" (the largest admixture
is ~5% in the 2.03 MeV state) and can therefore be re-
garded structurally as members of rotational bands
built on the K =3 states in Table XII. Nevertheless their
fission strengths demonstrate considerable fission de-
cay through the K=% channel. The candidate for the
strong vibrational resonance at 1.81 MeV has an 18%
component of K=% decay, while the other strong fis-
sioning state at 200 keV higher has a 93% probability
of K=% decay.

Similar trends are revealed for the J"= 3" states.

For these the basis states are the Q"=3" state of Table
XI and members of rotational bands based on both Q"
=3" and " states. A second-order Coriolis coupling
strength.of A =4 keV is assumed for the coupling of
the latter to the intrinsic states. Again the coupling
channel through the inner barrier is unchanged, but
two (very close) channels below the K =% channel now
appear for the outer barrier. One of these is K=3%

and the other K=3. The total fission strength of the
three principal states (at 1.81, 1.94, and 2.03 MeV)
are almost the same as in the J=% and $ cases, but a
greater fraction of the fission strength of the 1.81 MeV
state (22%) goes through the higher K channels, and
most of this is fractionated in favor of K=3.

These calculations account, in a qualitative way, for
the observations on the #*°Th(n,f) reaction and its an-
alysis described in Sec. V.B.5.a. One essential feature
of the analysis of the 720 keV resonance was the reduc-
tion in widths (and hence strength) of the higher spin
components. This would not have been necessary if,
as suggested by the present schematic model, part of
the strength of the higher spin components had been
assumed to be routed through higher K channels, thus
damping the forward peaking in the angular distribution.

1t is also to be noted that a model of incipient damp-
ing of this type, and based, in this case, on the hypo-
thesis of a third minimum in the potential energy curve,
would allow the explanation of substructure within the
720-keV peak, some suggestion of which has been ob-
served by Veeser (1976) and Blons et al. (1978). For
example, adjustment of the basic parameters to move
the 1.755-MeV state (see Table XII) much closer to the
1.816-MeV state could give rise to this effect (for a
discussion of the role of decoupling with pairs of 3
states of opposite parity (see Sec. IX.C.1).
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f. 28Th

This compound nucleus has also been described as
a candidate for pure vibrational fission resonances
(see Sec. V.B.5.b) but the richness of main structure
and substructure suggest that it is more likely to fall
in the class of incipient damping as described above
for Th. The same degree of detailed analysis has
not been carried out on ***Th, and hence it has not been
thought worthwhile yet to explore a detailed model of
incipient damping. It is to be noted, however, that the
‘presence of two additional neutrons in this system will
reduce the number of easily available Q"=3" orbitals
and give rise to a greater dominance of fission through
higher K channels, as observed.

VI. NARROW INTERMEDIATE STRUCTURE IN
FISSION CROSS SECTIONS

A. Introduction

The discovery of narrow intermediate structure in
the slow neutron fission cross sections of »*’Np (Paya
et al, 1968) and **°Pu (Migneco and Theobald, 1968)
(see Fig. 7) provided important evidence for the Strut-
insky theory of the double-humped fission barrier in
nuclei of the actinide series. The existence of spon-
taneously fissioning isomers and a gross resonance
structure in fission cross sections could already be
explained by the model of the double-humped barrier,
but the new phenomenon, the recurrence of narrow
groups of fine-structure resonances, only a few in
number with considerable fission strength interspaced
by tens or hundreds of resonances with negligible fis-
sion strength, was seen to provide vital corroboration
of the picture of a double-humped barrier with a sec-
ondary minimum of considerable depth (Lynn,

1968 a,b,c; Weigmann, 1968). .

The narrow intermediate resonances are interpreted
as class-II compound nucleus states associated with a
range of nuclear deformation within the secondary min-
imum of the barrier, unlike the normal, much denser,
fine-structure resonances associated with class-I com-
pound states, for which the nuclear deformation is much
less elongated, being close to that of the ground state
of the nucleus. Because the secondary well is shallower
than the primary well in the deformation energy, the
class-II states have less energy available for excitation
of intrinsic modes and hence are considerably less
dense than the class-I states. Being associated with a
much more elongated form, they clearly have much
larger fission widths than the class-I states; hence
their characteristic fission signature.

Since the original discovery of the intermediate
structure in the cross sections of #'Np and >*°Pu, many
nonfissile, and some fissile, actinide nuclei have been -
found to exhibit the phenomenon of narrow intermediate
structure. In some cases it is clear that the intermed-
iate structure is associated with the gross structure
due to damped vibrational resonances as described in
Sec. V; the picture here is of a simple vibration mode
(which carries the bulk of the fission strength) in the
secondary well being incompletely mixed into the class-
II compound states. Insome cases there is no evidence
for narrow intermediate structure, and gross structure
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in the cross section is interpreted as being due to a
pure vibrational state, no mixing occurring because
the secondary well is so shallow that there are no near-
by states with which the vibrations can mix; in this
case the gross structure also represents the interme-
diate structure insofar as it is an actual state associat-
ed with the secondziry well, albeit of much simpler
structure than is usual.

In this section we analyze the data on narrow inter-
mediate structure to give quantitative information on
the double barrier. The basic theory necessary for this
analysis has been presented in Sec. III.C.5 and needs
little or no further development here, except for the
treatment of average cross sections including the ef-
fects due to fluctuations in the properties of the fine-
structure and intermediate-~structure levels. We des-
cribe the expected statistical properties of class-II
compound states in Sec. VI.B. In Sec. VI.C we present
expressions for the area of intermediate fission reso-
nances, and from these we also derive average cross
sections under different assumptions about the strength
of coupling and of fission decay; these will be employed
in the analysis of average fission cross-section data in
Sec. VII. We discuss electromagnetic radiation proper-
ties in Sec. VI.D, outline the possibilities of observing
such radiation, and discuss the implications on ob-
servations of fission cross sections through the two-
stage (¥f) exit process. Finally, we give examples of
intermediate structure for different conditions of coup-
ling and fission decay in Sec. VI.E and analyze them by
appropriate methods.

B. Statistical properties of class-11 states
1. Mean values of fission and coupling widths

The formal expression from R-matrix theory for the
width of a state is given in terms of a penetration fac-
tor P, and a reduced width amplitude v, (see Sec.
II1.C.3.¢)

Ther)=2P ) - (6.1)

In the case of fission widths no formal calculations
have been based on this expression. Rather, the usual
approach to calculating fission widths is to consider a
pure vibrational state of frequency w,;; in classical
terms this reproduces its configuration at the edge of
the well (i.e., the entrance to the barrier region) w;;/
27 times per second. The probability of the wave being
transmitted through the barrier from this state of de-
formation, rather than being reflected to continue the
vibration, is taken from the simple theory of Sec. III.A.1
for the transmission of a traveling wave through a sin-
gle peaked barrier. This is denoted by Tz and the Hill-
Wheeler expression for transmission through an inver-
ted harmonic oscillator form of barrier is given in Eq.
(3.140) of Sec. III.C.4.a. Thus the probability that the
vibrational state decays through the outer barrier is
w; T /27 per second; therefore its half-life 7 for this
decay is (2r/w;;Ty), and its fission width is

Z_hwyTy
rvn(n:;: 21;, . (6.2)

From this expression for the fission width of a vibra-
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tional state, the fission width of a class-II state is de~
rived by determining the fraction of the vibrational

mode in the configuration of the class-II state. This is
given in Sec. III.C.5.a, Eq. (3.153). If the predominant
mode for fission decay (defined at a deformation close

to the barrier) is x,®,;, the class-II state fission

width is
(CM)rw Ty
rl]](féuv): 27 1 . (6.33.)

Expressions for (C’L‘}VI)2 in the case of damped vibra-
tional resonances are given in Sec. V.C, but here we
are more concerned with the complete damping case,
which we simplify by assuming that the vibrational
state is spread uniformly over an energy interval equal
to the spacing between two vibrational states Zwy;.
Thus (C}L1)? =0, fiw and

s

Taptewn = (Dy,/2M)Tg . (6.3b)

In this equation, the penetrability Ty is calculated for
the energy of the class-II state rather than the vibra-
tional state; this is in the spirit of the expression
(6.1). All kinetic energies with respect to the barrier
must be adjusted for any excitation energy carried by
the intrinsic state u.

The magnitude of the coupling matrix element has al-
ready been discussed in Sec. II.C.5.b. Equation (3.161)
gives

DD, T ’
(H gy > i - (6.4)
The coupling width is therefore
2m(d )ilx 1 D
ru](c)= 51 ! zE;TITA . (6.5)

2. General remarks on statistical fluctuations

If the excitation energy of the compound nucleus is
not much higher than the secondary minimum in the
deformation energy, statistical treatments of the class-
II states are inappropriate; detailed nuclear structure
considerations become paramount, and our state of
knowledge in this respect has been reviewed in Sec. IV
on spontaneously fissioning isomers and in Sec. V on
vibrational resonances; Sec. IX is also devoted to this
subject. At higher excitation energies it is to be ex-
pected that the properties of class-II states will be
governed to an increasing extent by the statistical
phenomena that-have been well explored for highly ex-
cited states of normally deformed nuclei, such as
fine-structure neutron resonances. Also, of course,
any hint of departure from idealized statistical behav-
ior is of great interest, and this is likely to occur,
given the comparatively modest excitation energies in-
volved when the fission intermediate structure is found.

Statistical fluctuation of the properties of compound
nucleus states is best discussed in terms of the formal
R -matrix states described in Sec. III.C. This is be-
cause the R -matrix states are defined completely by
the nuclear Hamiltonian within the nuclear internal re-
gion (with energy-independent boundary conditions to
establish their discreteness), whereas the S-matrix
poles [Sec. III.C.3.g(iv)], which underlie resonance
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properties, are in addition governed significantly by
conditions in the external region.

The differences that can occur between the statistics
of R -matrix states and of S-matrix poles can be illus-
trated by a numerical example. We took a set of R-
matrix states, their individual properties (consisting
of reduced width amplitudes for entrance and exit chan-
nels and energy eigenvalue) being chosen at random
from Gaussian distributions with zero mean for the
amplitudes and a Wigner distribution [see Eq. (6.1) be-
low] for the spacings between eigenvalues. To calculate
the collision matrix we chose a small penetration fac-
tor for the entrance channel ¢ and a large one for the
exit channel ¢’ so that the average widths of the final
R -matrix state width distributions was

<F(c)> < <D> (r.(c')>= <D>/277 s

(D) being the average R -matrix state spacing. We cal-
culated poles of the resulting collision matrix by nu-
merical methods. Distributions of the real components
of the pole positions E{*’ (see Sec. III.C.3.g(iv) for
definitions), the width amplitude quantities, G#),) and
the phase factors ¢, ., are shown in Figs. 107-109 in
comparison with the distributions expected for narrow
resonances (very small penetration factors in all chan-
nels). As can be seen from this numerical example
distinct differences occur.

3. Class-11 level spacing statistics
a. Intermediate structure groups

The distribution of eigenvalues of R -matrix levels
has been discussed in a long series of papers stemming
from an original suggestion by Wigner (1956). For a
review of this topic see Lynn (1968a). The basic idea
is that randomly distributed off-diagonal matrix ele-
ments. of the Hamiltonian matrix cause repulsion of its
eigenvalues. The distribution of spacings between
nearest levels that results from this is remarkably
close (within a few percent) to the simple expression
that Wigner deduced from the consideration of two lev-
els alone:

7D 7D?
p(D)dD = NDY exp [— 4(D)2]dD .

(6.6)

The important extra result that has been deduced
from the study of the diagonalization of Hamiltonians
of higher order is that the positions of distant levels are
correlated. To state this more precisely, the distri-
bution of higher-order spacings, defined as the spacing
between a level and the distant neighbor separated
from the first by a specified number of nearer levels,
has a much smaller variance than would be deduced
from the addition of the specified number (plus one) of
nearest neighbor spacings drawn randomly from the
Wigner distribution, Eq. (6.6). The degree of correla-
tion is very considerable. For large order spacings,
the variance in the number of levels expected to be
found in an energy interval of » mean level spacings
is (Dyson and Mehta, 1963)

14 =-1ng—[ln(21rn)+ 1+y —37?], (6.7)
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FIG. 107. Distribution in histogram form of real components of S—-matrix pole separations in many-level case described in text.

Full curve is the Wigner distribution normalized to 59 spacings.

where y(= 0.5772) is Euler’s constant. [This is to be
contrasted with the random superposition of Wigner
spacings, V=0.273n. For n=100, this is 27.3, where-
as Eq. (6.7) gives V=1.4.] These long-range correla-
tion properties have been used in statistical schemes
for testing long sequences of neutron resonances to
determine such things as (a) the existence of hidden
quantum numbers, (b) the absence of levels from what
otherwise appears to be a complete sequence, or (c)
the presence of levels that are not of the same kind
(having the same set of good quantum numbers) as the
remainder of the sequence.

These statistical properties of level spacings are
expected to hold good for most cases of narrow inter-
mediate structure, in which class-II levels are dense
enough that it is obvious that considerable intrinsic
excitation energy is available. In only one case, to
date, are there sufficient data available to make any
significant test of the expected statistics, or to make
deductions on the purity of the level sequence involved;
this is the structure in the cross section of the 2*"Np
(n,f) reaction.

b. Impact on fine-structure spacing correlations

It is of considerable interest to consider the effect of

coupling class-II levels with class-I levels on the spac-

ing distributions of the fine-structure levels. We re-

strict the discussion to narrow levels, and hence to ob-
servable resonances with properties that can be related

immediately to those of the R-matrix states. If coup-
ling is very weak, as described in Sec. III.C.5.¢c(f), a
sequence of class-I R-matrix levels becomes inter-
spersed with occasional levels that are of nearly pure
class-II character with very little disturbance of their
original eigenvalues [unless there is accidental degen-
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eracy; Sec. III.C.5.c(i7), in which case rather more
dislocation occurs owing to level repulsion between the
degenerate class-I and class-II levels]|. Application of
sophisticated statistical tests as described, for exam-
ple, by Rahn ef al. (1972) to a complete series of reso-
nances of one angular momentum in, say, a total cross
section, should reveal the class-II interlopers. Slight-
ly stronger coupling, which spreads the class-II state
appreciably into a modest number of class-I states
[see Sec. III.C.5.c(ii)] will preclude the identification
of individual interlopers but nevertheless should cause
some dislocation of the correlation properties of the
original class-I series. Simple application of the sta-
tistical tests of Dyson and Mehta (1963) should reveal
a considerably increased variance due to this effect;
the variance on the number of levels n to be found in

a given energy interval becomes

V= %[1n(21m)+ 1+y —572]

2 D D)
+3 [ln (Dr>+ In (Du>] ,

where (D) is the mean spacing of all states and (D,),
(Dyy) the mean spacings of class-I and class-II states,
respectively. This is to be compared with Eq. (6.7).
To the best of our knowledge no applications of these
tests to samples of experimental data have yet been re-
ported.

(6.8)

4. Statistical properties of class-11 fission widths

The statistical properties of fission and coupling
widths of class-II states follow from the theory of level
width statistics pioneered by Porter and Thomas (1956)
with reference to neutron resonance spectroscopy in
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FIG. 108. Distribution of S-matrix partial width amplitudes
(Gy(pr/21'?) compared with R-matrix reduced width amplitudes
(Ya(py) in many-level case described in text.

particular. The basic ideas follow from Eq. (3.153).
Let us suppose that this expansion is based on a defor-
mation close to the outer barrier for the definition of
the intrinsic states x,. Then a particular component
X, d)‘.(u,) (where u’ will normally be a low-lying intrin-
sic state and v’ a high phonon number) will define the
wave function for the fission channel. For class-II
states of considerable excitation there will be very
many terms in the expansion (3.153) and it is then to

be expected that the expansion coefficients C}II will
have a Gaussian distribution with zero mean to a very
good approximation. Thus the projection of the class-II
state wave function X‘”’ on the channel wave function
x o Lt s and hence the reduced width amplitude for
flss1on through this channel, will have the same Gaus-
sian distribution

1 2”’;2 \(II) )
= eXp (-—- _.u__—>d’y 1 (6,9
(2my (ID2)1/2 2y e/ e
Transformation of this distribution to that for the widths
gives

P(? QLI )) Yy ELI, )) =
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1 . réy
p(l"(“) AT L) = —————————2¢eXp ("= a )dI“‘n.’
(n”) w? (27]‘1_‘51111_‘52;)1/2 21—‘(:,; wr

(6.10)

which is the Porter~Thomas distribution. .

If more than one deformation channel u’ contributes
to the fission width it is to be expected that the partial
widths are uncorrelated and hence the total fission width
will have a distribution with lower variance than the
Porter-Thomas one. For a number of deformation
channels with mean widths that are not too different an
effective number of channels v, can be defined. The
definition is based on the variance of the fission width
distribution:

varT'{J) 2
ﬁ}? —Vm' (6.11a)

This gives (the variance of each deformation channel
width being 2T (1))

2
va= (LTE) /2T (6.110)
u

For equal partial widths the fission width distribution
will be the member of the x® family with v,,, degrees
of freedom:

-Pve“(r(f))dr(f) = T3 04) (Vs /2T Vott /2

X I st/ 25 vetsT ¢5)/ 2T CRY )

(6.11¢c)

5. Statistics of coupling matrix elements

The coupling matrix elements linking the fine-struc-
ture resonances with the class-II intermediate states,
and defined by Eq. (3.160), are subject to a bivariate:
form of distribution. In the double sum in Eq. (3.160a),
the coefficients

0\ lu V1> c,wl

are expected to have separately the Gaussian distribu-
tion form of Eq. (6.9) with zero mean. If more than
one term in the sum over p’v; and u”vy; in Eq. (3.160a)
is significant, the form of distribution is unaffected,
although the dispersion, and hence the mean of the
squared matrix element, isthe sum of the squared indi-
vidual terms. Thus, if we consider only the distribu-
tion relating to class-I levels (for a given class-II
level), the resulting form is the Porter—Thomas one

p[(HC)?ztI A11 Jd(Hc)ilhII

— A
and (u"vy| Ay =C g

2
1 (# )Ann 2
= EXP| — ——== [d(H )} .. »
[ZW(Hc)flan(Hc)iIAu]l/2 2(H, )’1"11 o
where
(Hc)iﬂuz z,: u"I)z Z (w! VIIH 'N’”VI >2(c:nl/ 11 )y ’

wvy
the bars referring to averages with respect to class-I
states only. The usual expression for the coupling
width of the given class-II state can therefore be writ-
ten
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The= 27’(Hc)§1xn/D1
=21 2 (O, 20 (Wl He  wvaCoFy) ® /b, .
(6.12)

Because of the Gaussian distribution of the coefficients
CZ“U 1 over class-II levels, it is immediately obvious

that the distribution of the coupling w1dth thus defined
also has the Porter-Thomas form,

1
P(Typ1 )T 110 = (€10 SWPING SNIIY)

FXII(G) )
X exXp | = 55— )dTl’
p( 2<rhn(c)> A1z (e)
the triangular bracket referring to the mean over
class-II levels

(Cagren =21 22 Zm Ve Ho| v (CHE ) CE /Dy .

u''vrr w'vy

(6.14)

There could be special circumstances in which a
channel effect appears, and as a result the coupling
width distribution could be that of a set of superim-
posed Porter-Thomas distributions with smaller var-
iances. This can happen, for example, if the matrix
elements (u'vy|H,| u"v;;) are nonzero only if u’=pu”,
and the significant values are limited, by tunneling,
to very few values of v;,v,;. Hence

H; )Mhl 2 (Cuul)z(cfiu)ZW’V:!Hcl Hvpp?
and ‘
~2 Z M 2 CMI 2 ’ H ’ Z/D
Copren =21 2, (CU VX(C L Y (w'v|H,| 1wy )?/Dy .
11 u'l'[ u 1 u 11 v
(6.15)

6. Correlations between fission and coupling widths of
class-11 states

The question of a possible correlation between coup-
ling and fission widths of class-II states must be raised
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(6.13)

here. Superficially, the fission width expression of
Eq. (6.3) and the coupling matrix element of Eq.
(3.160a) mvolve the same significant expansion coef-
ficient C “l for a many-phonon vibration mode, and
the two would therefore seem to be correlated. This
could, in fact, be the case when pure vibration modes
uncoupled to other degrees of freedom retain their
identity in a special way after coupling is introduced,
so that the vibration is mixed into a dense background
of compound states without any further major adjust-
ments at a more elementary level. This could be the
case in an even nucleus, and the vital factor that the
discussion of Sec. V.C.1 brings out-is that the intrinsic
wave function X, defining the lowest channel at both

the inner and outer barrier deformations has the same,
or a very similar, configuration. That discussion also
shows that even the simplest low-lying states in odd-A
nuclei have quite uncorrelated fission and coupling
widths, because the intrinsic channels are so different
in these nuclei, and it is therefore very unlikely that
any pattern of correlation will be carried over to the
compound class-II states unless there are very marked
effects of damped vibrational resonances.

C. Average cross sections over intermediate resonances
1. Area of intermediate fission resonances

When we come to examine the experimental data (Sec.
VL.E) we shall find that there are many observations of
intermediate fission resonances in which the fine struc-
ture has not been resolved. Nevertheless, valuable
information can still be obtained from such structure.

The area of the neutron cross section under an in-
termediate resonance is the sum of the area of its com-
ponent fine-structure resonances. Each of these has
an area '

A,= 212228 ()T (s sy / Ty - (6.16a)
Therefore,
Ay =2122%8(0) 2 Ty Tais)/Th - (6.16b)
A

The sum has to be computed taking into account the
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variation of the fission width across the intermediate
resonance, and the Porter—Thomas fluctuations of the
partial widths both in the entrance and the deformation
channels.

a. Moderately weak coupling: general expression with
neglect of fluctuations

The fine-structure fission widths of Eq. (6.16) are
represented by a Lorentzian [Eq. (3.185b)]. In addition
to the neutron and fission widths, an additional reac-
tion width T, ,, is included in the total width. Normally,
for low-energy neutron reactions the neutron width is
just the total radiation width. We replace the sum by
an integral in Eq. (6.16) and obtain, for a well isolated
class-II resonance,

E rx(n)ruf) ~T rxu(c)r‘xu(,‘)

Py T, (T (+ L)
X( TT(F(",-{»I"(”) )1/2
(Tarer* rx;;(f)) (Cmy+ T )1+ 2D o9 Tagp o )

(6.17)

This is to be contrasted with the expression that would
be obtained if the class-II fission width were spread
uniformly over all fine-structure resonances in an en-
ergy interval D ;:

Z r).(_n) Tx(ﬁ)
% T
~T F)«[l(c)rhx(f)l)ll

m (Taprer* rxu«))(r(n)"’ Ty + L T ’
(6.18)

The value of the right-hand side of Eq. (6.17) is smaller
than that of Eq. (6.18).
The area under an intermediate resonance in a neu-

<run)r>.(f)> z< T Tag) >
r)u Fx(n)+rh(7)

T -
f dr‘(n)dl“(f,p(r(",)p(l"(f,)———f-# =Ty, fdl"(,,)p(l"(,,))

y+ T
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tron fission cross section is, therefore, neglecting fluc-
tuations,

A)‘Ilzz'ﬂzng(gf) : F)‘n(c)l‘)‘um
r

x( T + T o)) )”2
(Tap@ ™+ rAII(f))2(r(n) +T )T +2D Ty oy Tannn

(6.19)

Notice that this expression is general for any Lorentz-
ian form of the fine-structure fission widths and thus
encompasses the case of very weak coupling to a class-
II level with broad fission width.

When the fission widths of the fine-structure reso-
nances at the center of the intermediate resonance are
much smaller than the total widths '

(Ta10P v/ Tagpier < Ty + Ty s
the intermediate area is approximately

T
Ahx zzﬂzng(‘]) ‘ rxnm

T +T, (6.20)

in the limiting case rmtf) & | B

b. Moderately weak coupling with fluctuations of fine
structure

Analytical expressions for intermediate resonance
areas that take account of the fluctuations in the widths
of the fine-structure resonances are available only for
some simplified cases.

() T <T,. Firstly, we consider the case in which
the fine-structure fission widths are always much
smaller than the total widths. The individual terms in
the sum in Eq. (6.16) are to be averaged over Porter—
Thomas distributions p(x)dx [ see Eq. (6.10)]. Thus, on
the assumption that the reaction width T, ,, is uniform,

1-‘(n)

. 6.21
T+l ( )

The last integral is well known from the theory of neutron capture reactions (Lane and Lynn, 1957), so we obtain

the result

__27129(28(J)'T‘)T‘"l)?:— Snr Zrh\f) ’
n )

where

_ T T 1/2 T T 1/2}
= JENCIY P (e ) Lo
S"”(”F‘”/r("’){l Ten [ (572) " exolgs)eree(ge) 1y

and the sum 25,T, =g U Do <The-

(i) Reaction width negligible. If only the entrance
channel width and fission width are substantial the aver-
‘age value of T, ,, T, 4,/T", becomes

< ) Y P >= r,T,
Ty + Taiy/ (T + T2

for Porter—Thomas fluctuations.

(6.23)

The ratio
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(6.22a)
(6.22b)
r ]
T.,T Tr,,T
S, =) (f> m () 6.23b
" (I‘l(v{)z ) (F(n)+r(f)) ( )

is shown in Fig. 110 as a function of the ratio T",,/
T -

To obtain the intermediate resonance area the expres-
sion (6.23) must be integrated over the Lorentzian en-
ergy dependence for the fission width:
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1 — fm
2 rl(n)+rx(f) ~_2.;rl11‘°)r"ll(f)r(n) L d&

with half-width W =3(I'y ;) + Iy ;5). The ratio of this
quantity to the expression (6.17), which we label Ints,
Ints,,=7"}(w?+U)l/?
« [ ac !
e+ wE+ LU +
depends only on the parameter W/v U where

U=T, T y;»P1/27T1 (. This functional dependence
is shown in Fig. 111,

WOITZ T

c. Moderately weak coupling: fluctuation of intermediate
areas

Fluctuations in the areas of intermediate resonances
are due in principle to fluctuations in the widths of the
fine-structure resonances as well as to fluctuations in
the widths of the class-II states. In practice, when the
half-width of the intermediate resonance encompasses
several fine-structure resonances on average, the ef-
fect of the former is small and only fluctuations of the
class-II widths need be considered.

() T',s,<T,. This is the simplest case to consider.
The expression for the area is given by Eq. (6.20). The
fluctuations in the intermediate area are just those in
the class-II fission width, i.e., they are governed by
the Porter—Thomas distribution Eq. (6.10) in the case
of a single deformation channel. The variance asso-
ciated with this distribution is twice the square of the

_J

d. Very weak coupling of narrow class-1/ states

(i) Aveas in the uniform model.

1
72
(EZ+W )+2 (n)rxu(c)rxu(f)DI(éﬁ +W ) +r).11(c)r).11(f)DI ’
T 27 27

(6.24)

r
mean value,

(#i) Ty ~T, in central vesonances. In this extreme
the expression for the intermediate resonance is [from
Eq. (6.19)]

A, =21% g(J)___LL(T(r(n) + ru))l")‘u(c,l"mm)x/z ’
. (n) +r(r) ZDx

(6.25)

in the absence of fluctuations. With independent
Porter—Thomas fluctuations of both the coupling and
fission widths the mean value of A, Will be

A-II’_'ZAII.un/"T ’ (6.26)

where the “uniform model” value of the area Ay, , is
just Eq. (6.25) with the mean values of the class-II
widths substituted for | AVIRPSFR SN I
The variance in the intermediate area is also easily
computed for Eq. (6.25); it is
T -4
varA —Au<——7;2'—> . (6.27)
This is considerably lower than case (i), by a factor of
about 3.

In general, because of fluctuations, intermediate
areas will cover a range between cases (¢) and (¢Z) and
the variance will lie between the limits established for
the two cases,

This degree of coupling is analysed using perturbation theory in Sec.II.5.c(é).

From that discussion it is clear that two kinds of term contribute to the intermediate resonance area of Eq. (6.16),

the single quasi-class-II level and the many quasi-class-I levels.

2
Hc()‘pxn)ril/(zn)> He o,
ALY UL § St LU _ .._L_.I.I_2
(;I E)q -E rhx(”(l Z(EA —Ekn)

M1

The area of the quasi-class-II resonance is

(6.28)

Ay =21 %g(J)

o Ey =By

FLUCTUATION. FACTOR  Snf
=
a

il I i1y

A1l PR S

01 01 0 10

1 a1l 1

RATIO OF MEAN WIDTHS [ (n)/ T (f)
FIG. 110. The fluctuation factor 8§ ., for Porter—Thomas fluctu-
ations. The full curve labeled v=1 is the factor calculated
from Eq. (6.23b) for Porter—Thomas distributions of neutron
widths. The broken curve (v=2) is for exponential distribu-
tions.
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FIG. 111. The fluctuation factor Int S, as a function of the pa-
rameter W/VU.
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The first term in the denominator is the quasi-class-II resonance neutron width, the second includes reaction pro-
cesses from the class-II state (principally fission and radiation), and the third is the contribution to reaction pro-

cesses from class-I levels.
ture).

The last is assumed to comprise very many incoherent channels (as in radiative cap-

The contribution to the area from the quasi-class-I resonance is

Ay =21%%8() 2Ty )
T (EHI —Ey Y

Expectation values of the total area

A, =Aw +HA,

(6.29)

H? T, . H? (r +1 )
(A AT Appif) C(AprAyy) A(f) Arzlr)
D AID T Arr /Ir)\X m+ Topem + 10 Ay it 11 .

(EA”"E,\I )2

(6.30)

can be calculated on the assumption of a uniform model for spacings, class-I partial widths and coupling matrix

elements. Let us assume that the class-II level lies at energy xD, from the nearest class-I level.

e

—_— z: =— cscinx,
Y (EM—E,‘")Z % pme (n = x)z D}

Then the sum

(6.31)

Applying this to Eq. (6.28), with the assumption of completely random sign in the matrix elements and reduced neu-

tron width amplitudes F;{f,,,, we find

2112}\2@;'(:[)(#21121“I wapn/DH[1 = (r*H?/D?) esc?nx] escimx

(6.32)

A=

(PH?/DA)T yesclnx +[1 - (m?H?/D?%) csczﬂx]l“m

(where I'y =Ty, + Ty, and Ty =Tage Do)
For the same uniform model we can derive

HT,,, T - 1
A, =2r%%2(J 1(mt )
px 8( )_——*Dfr

I
We find a lower limit for this by putting x =3

2 2
HT ()T <7T D§F1>”2 ta h(,,szrl

Ays 27%2g(J)
D‘%I“I HT

A T

=L (n-x)?+H'T, /DT, "

(6.33)

“)”2. (6.34)

An upper limit is found by neglecting the class-II contribution to the denominator in Eq. (6.29):

272 ’
z anng(J)n_Ii;%_‘ﬁ_"u_‘ﬁ cscinx,

It

(6.35)

For very weak coupling the argument of the hyperbolic tangent in Eq. (6.34) is very small, so the hyperbolic tangent

is well approximated by its argument.

Within this approximation Eq. (6.34) is the same as Eq. (6.35), so we can
adopt the latter in forming the final expression for A, :

272 T2
HT ,, T [1-(n%H%/D?) csclnx] 1
~ s 2 ™ T(m L Ap(f) 2
Ay =21R g(‘])_‘—r—*—‘D‘ ST \@IH /DTy csctnx + T, | 1 — (1?H2/DY) csctrx] | Ty f * (6.36)
The median value of x is ;, for which
20 0T (T i) 1 - 2(n*H*/D?) 1
m > n 11
Apyymed) =27°% f’(‘])*——*“—pg (2n?H?/DDT, +(1 - 2n°A% /DT, | T (6.37)

(ii) Fluctuations. Fluctuations in the area are much
more sensitive to the fluctuation in the class-I levels in
this case, and also to the relative position x of the
class-II level in relation to the nearest class-I level.
Indeed the sensitivity of the expression (6.36) to the x
parameter renders it impossible to derive from it a
true expectation value. For very small values of x the
physical case is that of accidental degeneracy, treated
in Sec. III.C.5.c., in which the most important contri-
butions to the area come from two fine-structure reso-
nances sharing almost equally nearly all of the class=-
II fission width and the neutron width of the degenerate
class-I level. If we make the assumption that the level
repulsion is much greater than their widths 2 |H |
> Z(Tm + I“M) (so that the coherent interference in the
cross section need not be taken into account) the inter-
mediate resonance area is simply

Ay (deg) = 4“25\28‘_(J)(§r>.1(m)(%rxnm)/[%(rn +Ty] s
(6.38a)

" Rev. Mod. Phys., Vol. 52, No. 4, October 1980

I
and this is the true upper limit of Eq. (6.36) for small
x. Equation (6.38) will replacée Eq. (6.36) for small x
below a transitional region around x ~2 |H|/Dy. Integra-
tion of the leading terms of Eq. (6.36) from this transi-
tional value of x to x =0.5 allows us to find very approx-
imate values for the mean value and variance (due to
the x parameter alone) of the intermediate area. They
are

A, "'2”27( g(J)— TimTy (f){ ! 7—1‘} (6.39)

MEAMIONE T :

Az D
A 67THI

For weak enough coupling, the factor D;/6w |H| in the
variance can be very much greater than the typical val-
ue of 2 due to Porter—Thomas fluctuations in widths.
Extra quantities of this order must be multiplied into
this factor to account for fluctuations in I'y(,,, T'y; ¢
and |H| in the expression (6.39).

The contribution from degenerate levels should be

varAd, = (6.40a)
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added to the mean value of Eq. (6.39), giving
. Hl = = '
A zZWZXZg(J)—bT FI(n)r)qI(f)

1 1 4
X{ = 4 = A —m———— ) 6.41a
{ru ry (Ii+ ru)} ( )

A modification to these considerations arises from
the possibility that the class-II fission width (and/or
class-~I neutron width) is greater than the modulus of the
coupling matrix element. Then, if accidental degener-
acy nearly occurs, the fine structure resonances do not
have parameters identical to the R -matrix levels as we
have assumed so far; their areas must be determined
from the parameters of the S-matrix poles. We pre-
sented the appropriate S-matrix parameters in
Sec. III.C.5.c(v) [see Eqgs. (3.204),(3.205)]. Using these
we find

1

. 4H 1
A, (deg) =24 %g(J) 3 T r {-—— +=—2,
aldeg) 8( )(1-.)‘[(") _I«)‘um)z AL A () T, Ty

(6.38b)

if the class-I and class-II reaction widths are equal.
This is lower than the right-hand side of Eq. (6.38a)
by the factor

4H2(r11 + rXxl)z/(rxl(ﬂ) _Fxn(f))zrx!rxu .

Equation (6.38b) is expected to be crudely valid for x=0
to

x~{[(T,,, + Ta)/2D: 1 = 4HA /2,

The expectation value of the intermediate area becomes,
in consequence,

T 2,2, ) 2H
Ay =21 g(J)FI-rumrxH(f)

X{ 1 +2<r,+rn>2 1 }
rlr I rl - rn rxrn
This bears the ratio to the rhs of (6.41a) of roughly

8|H |(Ty +T)/(Ty - ru)
By similar arguments as before the variance is at

(6.41b)

2. Average fission cross sections

a. Moderate to strong coupling and /or very broad fission
width

This is the limiting case in which intermediate struc-
ture is barely or not at all perceivable. To a good ap-
proximation the average fission cross section is just
the normal expression from statistical compound nu-
cleus theory:

Ty
0f=0cn" > (6.42)
neglecting fine-structure width fluctuations. For in-
coming neutrons the compound nucleus formation cross
section ocy is
T
ooy =21 2g(J) =22 |
I

= (6.43)

The mean fission width is obtained by averaging over
the class-II levels. For a single class-II level,

Dy rnI(c)rxu(f)
(T 10e ¥ 75— 7o (6.44)

* Dy (Tar o)
(which is just the result from pure statistical theory,
Sec. II.B.1.). The average of expression (6.44) over a
sequence of class-II levels with coupling and fission
widths independently distributed in the Porter—Thomas
manner is

D, fln(c)f).u(f)

T =t e 6.45
T Dy (I‘iuz(c, + r;qf(f)) ( )
The ratio T4, /AT )10 [With average values of the
class-II width substituted in Eq. (6.44)] is denoted by
8¢, and a perfectly analogous quantity is shown in
Fig. 110,
(I1)

The fluctuation factor 8. ' is closer to unity if more
than one deformation channel is open at the barriers.
For example, with two equally open channels at the
outer barrier and coupling that is strong enough to give
moderate overlap (I;; =Dy;) of neighboring intermediate

least
resonances the effective statistical distributions can be
varA, zA—i 2Dy . (6.400) assumed to be approximately exponential, and the aver-
MEBM(T iy + Trxes) age fission width becomes
= D T T - - - T
Ty=r u@ud (72 -T2 ) =20, Ty In(21e) | . (6.46)
Dy (T T ?
1 ( Are) = hn()‘)) A 1K)

(ID

The corresponding graph of 8!” is also shown in Fig. 110. For more details of the fluctuation factor 84" see

Lynn (1980).

Evaluation of the fluctuation factor 8., which must be multiplied into the simple statistical form (6.42) to allow
for fine-structure width fluctuations in the neutron fission cross section, must be obtained in general by numerical

integration. With the definition

S, ;= Fh(n)rk(f) f(Yl)]'--:(f)
nf — Fh T

the general integral to be calculated is (Dresner, 1957)

(r( )n/Z'l f
S,.s= —n = == —
i 2 Tl @)l T, T2

« ot
x f dx —
0 (x +T(7,/2F(")f377(x +r<r)/2ﬁf))3/z{(x +T, /2T )" ** (x + T, /2T,))] 7
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(6.47)
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with Porter—Thomas fluctuations in » channels, includ-
ing the entrance and exit channels, together with react-
ion channels labeled here by a to z in addition to a non-

fluctuating radiation width T,,.

b. Fluctuations in the broadly modulated fission cross
section

Although the narrow intermediate structure will not
be dramatic when the class-II levels are broad (whether
due to coupling or to fission) the locally averaged fis-
sion cross section (in the sense of averaging over an
energy interval of order D;;) will show fluctuations due
to the width fluctuations of class-II levels, if the coup-
ling is still sufficiently moderate that a single class-II
level will dominate the fission strength function in its
immediate vicinity. We have evaluated the variance of
the expression (6.44) for Porter—~Thomas distributions

of the class-II coupling and fission widths; it is
var(T ;s )i0e = 2T%, . (6.48)

We must make approximations in applying this to the
local average cross-section fluctuations. If fission is
weak in the deexcitation of the compound nucleus, then

var{o;) ..~ 257 .

If fission predominates, on the other hand, the cross-
section fluctuations are greatly reduced. We analyze
this crudely by making the expansion

Tw _(fm’r OF )
D T(+5r,,/T)

_ 1 1 (6T )? 1 1
=z |146r <___ _.:)__&_(,_ _=) ]
f[ @ F(f) r r 1—‘(f) r " ’

(6.50)

(04D 100 = 2T*A2g(J)

Only second-order terms are retained. The average of

(6T 4))? is just var(T «,),,., and we can deduce
2

. Var<of>loc = <o-f>%oc— <0f>loc

(6.51)
J

I
_Ef)Jz Va%g [ )>1oc .

~ [&,(0
7w *)

(6.49)

S. Bjdrnholm and J. E. Lynn: The double humped fission barrier

¢. Moderately weak coupling and/or moderate class-1/
fission widths

The average neutron fission cross section can be de-
duced immediately from the expression for the area
over an intermediate resonance, Eq. (6.19). This is
spread over the energy interval Dy to give the average
(local) cross section, ’

'ty  Dagelrygm;m

<onf>loc = znzng(‘]) T

T Dy
x[ T(Lm+ L)) ]1/2
(Taper Do) T+ T )T+ 2D1rx“<c>rxntf) ’

(6.52)

on the assumption that fluctuations in the fine-structure
widths can be ignored. The same assumptions as in
Sec. VI.C.1.b must be made to obtain analytical expres-
sions that include the effects of fluctuations. If the
fine-structure fission widths are all much less than the
total widths, the rhs of Eq. (6.52) must be multiplied by
the fluctuation factor 8, [Eq. (6.22b)] (or a generaliza-
tion if there is one or more inelastic scattering chan-
nels included in the reaction width). If the reaction
width is negligible the multiplying factor is 8§ ; [Eq.
(6.23b)], suitably integrated over the Lorentzian profile
(see Fig. 110). )

If the class-II width approaches the order of magni-
tude of the class-II level spacing the expression (6.52)
is found to be inaccurate and can exceed the value of the
compound nucleus formation cross section. This is be-
cause the fission competition factor is unduly weighted
far out on the wings of the intermediate resonance, be-
yond the energy limits IE—E1n|=%Dn, where the other
intermediate resonances become dominant, thus de-
pressing the effectiveness of fission in the competition
process. This effect can be compensated partially by
limiting the integration to the energy interval Dy, in
which case

T(C e+ T o))

: T, T, ’
- = 2m2A2g () __mz_.mwﬁ.[
@ r)10e & (Tny + Ty D1y

(T m+ T )

1/2
(Trger* rxn<f>)2(r(n)+ T o))+ 2D1Ty )T a g >]

X % arctan [D n(

More accurately, the contribution of the wings of the
other class-II levels within the energy interval Dy can
be taken into account. An exact expression can be
found within the uniform (picket-fence) model (Lynn
and Back, 1974):

_ T
G =0 ps100= 2TA2g(J) -5:—"—’

-1/2
x {1+R2+ 2R coth[ﬂ&%ﬂﬂ]} . (6.54)
I

where R= (T (,)+ T' () )(Tge)+ Ty¢)Di/ (T T neyPr)-
The “smooth-average” fission cross section (aver-
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1/
(Trer+ Fxn(f))z(r(n)"’ T+ 2D1Fxn(c>rm(f)) 2]

(6.53)

aged over many energy intervals of Dy) is subject also
to fluctuations in the class-II widths. When the fine-
structure fission widths are always much smaller than
the total widths the appropriate multiplicative factor
8 is just unity. The final approximate expression for
the cross section is in this case

Tw ¢ Tig)

~ ~ 2%‘2
Tnt 2 g(J) r(n)+ r(r) " DII

(6.55)
Alternatively, if the class-II fission width is much
greater than the coupling width, Ty, replaces I'y,

in Eq. (6.55).
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On the other hand, if fission saturates the center of
the intermediate resonances [Fw) ~T,; Eq. (6.25) then
applies to the intermediate areas], the fluctyation fac-
tor '~ 2/m. Hence

T,p ™ 2T K28 (J) T +r_

% [2(r<n>+ r(r))fnmfn(f)]l/zls
D, Dgorr”

Again, fluctuations must be expected in the local

d. Very weak coupling

average cross section. In the former case (Tre)<TH)
these fluctuations will be of the Porter—Thomaﬁ type,
so

var{o, ), ~ 202, . (6.57)
In the second case (T, 4, ~T, at the center of intermedi-
ate resonances)

The local average fission cross section is obtained from Eq. (6.36):

T°H*T (y T
(0100 ™ 212K2g(J) 0 - M 5oy
" DiDyy (m

As discussed in Sec. VI.C.1.d the variance of this
quantity is high.

The average fission cross section over a large num-
ber of class-II spacings is [see Eq. (6.41a)]

_ 1H| Trwl
G, 5=~ 2m%X3g(J) —BT —“f)’_n_n_‘ﬁ

1 1 4
X{'f‘-—n +r—l+m}. (6-60)
Note that this is higher by a factor DI/2112|H| than the
expression one would obtain from a picket-fence model,
with the class-II state always at the median position
(§D;) with respect to the nearest class-I level.

If the mean class-II or class-I width is greater than
the modulus of the coupling matrix element we must
derive the average cross section from Eq. (6.41b); it is

442 fI(n)
DI DlI

1 Tx+Fn)2 1
X{rrfn+2(f1—rn FIFH ’

D. The class-Il radiation width and fission by the two-
step (yf) process

T~ 22X (J) Thy)

(6.61)

1. General remarks

In the interpretation of the fission cross section ob-
served in intermediate structure phenomena and in
analyzing the class-II level parameters that are ob-
tained due allowance must be made for the radiative
deexcitation of the class-II level. This enters not only
as a competition factor, but may also lead to delayed
fission following radiative cascades to the class-II
shape isomer (or isomers). It depends on the half-life
of the shape isomer and the method of measurement
whether or not this two-step fission process will con-
tribute to the measured cross section. If it does con-
tribute then an assessment of its importance must be
made before an interpretation of the outer barrier pa-
rameters can be deduced from the prompt fission
width.

If measurements of the fission yield are made using
time-independent processes, i.e., the incident beam is
monoenergetic, or the method of analysis (as in bre-
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(6.56)
m2—4 \ _
var((r",)h,c%( - )of,, . (6.58)
J
[1 - (7®H?/D?) csc2nx] . 1 (6.59)
*H?/DYT; esc’nx + Ty ([1 - @°H*/DY esc’nx] " I ’

msstrahlung experiments) can give an effectively
monoenergetic result, the delayed fission contribution
is completely contained within the measured yield.
Most neutron fission cross sections are measured with
pulsed neutron beams and time-of-flight methods,
however. In such measurements delayed fission will
be contained completely within the total fission yield
only if the half-life of the shape isomeric state is
much less than the time resolution interval of the neu-
tron energy determination or the time-interval equiva-
lent of the resonance width (whichever is the greater).
If the shape isomer half-life is much greater than the
time resolution then the delayed fission yield will al-
most certainly be lost in the background effects, unless
special care is taken to suppress instrumental back-
ground and prompt fission is very weak compared with
delayed fission. If the shape isomer half-life is rough-
ly equivalent to the time resolution or resonance width,
delayed fission will be observable as a tail or skew ef-
fect in the resonances in the time-of-flight spectrum.
Alternatively, it may be possible with careful mea-
surements (no successes have been definitively reported
to date)to observe the gamma-ray transitions between the
class-II levels directly. These will mostly be prompt,
of course, and the complete cascade of gamma rays
will show a spectrum quite different from that of the
class-I transitions; the maximum energy will be lower
than that of a class-I spectrum by the excitation energy
of the shape isomer, and discrete primary gamma
rays will be observable at energies which only show a
dense effective continuum in the class-I spectrum. The
difficulties of measuring such a spectrum will depend
on the magnitude of prompt fission deexciting the initial
class-II state and on the degree of admixture of the
class-II state into the class-I states. Gamma rays ac-
companying the prompt fission will tend to mask the
characteristic class-II spectrum, as will gamma rays
from the deexcitation of admixed class-I states into a
quasi-class-II resonance.

2. Magnitude of the class-l1 radiation width

Estimates of radiation widths depend on theoretical
models of the radiative transition matrix element and
the level density of final states. For a review of the
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topic see Lynn (1968a). Two relatively simple models
of the radiative transition process are commonly fav-
ored. In both, electric dipole transitions are normally
assumed to be predominant. In the strong coupling di-
pole model due to Blatt and Weisskopf (1952) the transi-
tion matrix element is assumed to be independent of the
energy ¢, of the transition and proportional to the level
spacing of the initial state. Thus the energy dependence
of the radiative width for the transition is proportional
to the phase-space factor 3. In the giant dipole reso-
nance model the same dependence on level spacing is
assumed, but the energy dependence is that required to
give the form of the photonuclear cross section accord-
ing to the Goldhaber—Teller (1948) collective model.
Combined with the phase-space factor the radiative
width becomes
4 NZ €% (1+0.8x)

S 7 v e

TaonC) =3 T e bic?

~ I"GS‘,‘
(e2—E%)*+ (Tge,)?

D,, (6.62)

where N, Z, and A are the neutron, charge, and mass
numbers of the nucleus, respectively, M is the nucleon
mass, E; is the energy of the giant resonance (of the
order of 13 MeV for very heavy nuclei), and I'; is the
width of the giant resonance (~4 MeV). The quantity x
is the fraction of exchange force in the internucleon
force (Levinger and Bethe, 1950). It is normally as-
sumed to be 0.5, but there is some evidence that it
may be lower.

Two relatively simple level density formulations are
also adopted. In the constant temperature form a pure
exponential rise of level density with excitation energy
is assumed:

P(E¥)=DY(U)=C exp(E*/6) . (6.63)

" C is a simple proportionality constant. Alternatively,
the Fermi gas form is favored, in which the nuclear
states are assumed to be built from a superposition of
independent particles moving in a potential field:

1 1 ez(aE*>1/2
19V 3 o8 ar/Ag#s7a -

p(E*)= (6.64)
The excitation energy E * is usually adjusted to an ef-
fective value according to the parity of the nucleon
numbers; this is a semiempirical adjustment to allow
for the highly correlated nature of the nucleon ground
state due to pairing interactions among the nucleons.
The Fermi gas parameter a is proportional to the den-
sity of single-particle states at the Fermi energy of
the unexcited nucleus. Normally parameters like a, C,
and the temperature 6 are adjusted so that the chosen
formulation reproduces observed level densities at low
excitation energies and at the neutron separation ener-
gy, where neutron resonances give convenient refer-
ence data. The difficulty of fitting data at widely differ
ent excitation energies has given rise to the use of hy-
brid models [see, e.g., Gilbert and Cameron (1965)] in
which the constant temperature model is used for the
first few MeV of excitation, above which the Fermi gas
formula follows without discontinuity. The dependence
of level density on spin is a common choice to most
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work:

p)=3(2J+1) exp [—“’—C)—] p(E).

= (6.65)

The spin dispersion coefficient o has values of the order
of 6 for actinide nuclei.

Simple estimates of class-II radiation widths are ob-
tained from the combination of the strong coupling di-
pole model and the constant temperature level density
model. The total radiation width depends on excitation
energy and temperature according to

T,y < 66— e B*/0{gE* ¢ 302E*2

+66PE*+ 66}, (6.66)

The effective excitation energy of class-II states is
lower than the true excitation energy by the energy of
the class-II shape isomer, Ej. If the effective excita-
tion energy is considerably greater than the tempera-
ture the class-II radiation width is essentially equal to
the class-I radiation width unless the temperature for
the class-I and class-II radiation widths differ.

If the Fermi-gas model is adopted for the level den-
sity we may still employ Eq. (6.66) to obtain a rough
estimate of the class-II radiation width relative to the
class-I width. The effective temperature to be substi-
tuted in Eq. (6.66) is 6~ 2(E */a)'/2. Therefore,

r [(E*~Ez\? a; r
A~ E* ag A () -

For low to moderate energy transitions the energy
dependence of the partial radiation width in the giant
resonance model lies between €7 and £5. Thus the lead-
ing term in the radiation width dependence approaches
12065, and, for the Fermi-gas model, the total radia-
tion width of class-II states is more nearly represen-
ted by

(E*~EgV/ a 3/21,
FA“(T)N E* an AL () e

More exact calculations of the class-II radiation width
require numerical integration. A detailed survey of da-
ta on the actinide nuclei (Lynn, 1974b) leads to the con-
clusion that the giant dipole resonance model in con-
junction with a constant temperature level density mod-
el (6= 0.5 MeV) up to a few MeV excitation followed by
the independent particle model can give a good repre-
sentation of the deexcitation of these nuclei. From this
representation we have calculated some typical results
on the value of the class-II radiation width and show
them in Table XIV. In all cases we have assumed that
the level density parameters of the class-II states are
the same as those of the class-I states. The details of
the level density parameters that we have adopted [from
Lynn (1974b)] are given in Sec. VII.

(6.67)

(6.68)

3. The class-I radiation width to class-Il final states

Cross transitions from class-I states to class-II
states may also lead to prompt or delayed fission and
contribute to any background fission observed between
intermediate resonances. Such transitions have been
considered by Lynn (1969). The electromagnetic per-
turbation operator in the Hamiltonian may be split into
a collective part and a single-particle operator. Tran-
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TABLE XIV. Total radiation widths calculated on the giant dipole resonance model [parameters
given in report by Lynn (1974b)] over a range of effective excitation energies appropriate to class-

II states.

Effective excitation

Typical even
nucleus (*¥Pu)

Typical odd-A
nucleus (¢*U)

Typical odd
nucleus (*33Np)

energy E*-Eqp F(YT) P(YT) F(yr)
MeV) (meV) MeV) (meV)

1.0 2.0

1.5 0.1 2.6 8.0

2.0 1.9 6.1 17.4

2.5 7.5 12.0 27.5

3.0 15.5 19.5 36.7

4.0 32.1 24.1 48.9

5.0 34.2 54.5

sitions involving the latter are not allowed because of
the orthogonality of the vibrational states of the basis.
Collective transitions of the electric monopole type be-
tween vibrational state components or electric quadru-
pole type between members of the rotational bands
based on such vibrational states are allowed but are
weaker, by a factor of the order of the transmission
coefficient across the inner barrier 7,, Eq. (3.139),
than the corresponding transitions within the set of
class-I states.

The simple factor 7T, was estimated on the assump-
tion that only the “tail” of the final vibrational wave
function, having similar character to the main part of
the initial wave function within the primary well, would
contribute significantly to the matrix element

fdn Sv (mndvy(n) .

We have checked this assumption numerically by inves-
tigating these matrix elements within a double potential
built up from rectangular components. The difference
between primary and secondary well depth was postula-
ted to be 3 MeV, the barrier between them was 6 MeV
above the primary well, the barrier width An, =0.38,
and the width of each well An; =An; =0.19. The inertial
parameter B was chosen so that 2 B/#2=1156.4 with the
energy in MeV units. We calculated the lowest class-I
vibrational states to have eigenvalues 0.209, 0.834,
1.869, and 3.297 MeV. The eigenvalues of the two low-
est class-II states are 2.674 and 3.199 MeV. Calcula-
tions of the matrix element between the 2.674 and

1.869 MeV states and the 3.297 and 3.199 MeV states
compared with a standard class-I transition between
the 3.292 and 1.869 MeV states show one to two orders
of magnitude increase in radiative strength over the
value estimated on the simple assumption.. This can be
attributed to the contribution from the wave function in
the barrier region. This result still implies that at
sub-barrier energies cross transitions can normally be
neglected.

4. Branching ratio of the shape isomer

In Sec. IV.D.3.d we presented examples of shape iso-
mer decay in which there is clear evidence that the pre-
dominant mode of decay is electromagnetic radiation to
lower states of class-I character rather than fission.
Here we indicate how the radiation strength, and hence
the branching ratio to fission, is quantitatively related
to the barrier parameters.

If we assume that the isomer state is described by a
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wave function of the type

onq’clyl)(o. (6.69)

it has the possibility of decaying to lower class-I states
by collective EO or E2 transitions through the beta-
vibration-rotation bands, the relevant matrix elements
being of the type

(@& n|@ly.

A contribution to this matrix element will come from
the primary well region I of the deformation parameter,
where the wave function ®1' has a very weak tail of
class-I type (®}'~c®! in region I; see Sec. II.C.4.c). The
intensity of this tail c2 is estimated as being of the ord-
er of the transmission coefficient 7, [Eq. (3.148b)].
From this component alone we estimate the radiative
half-life of the isomer as

(6.70)

Ty~ 10717, (sec). (6.71)

Numerical studies of the matrix element (6.70) in a
rectangular well model (see Sec. III.C.4.b and Sec.
VI.D.3) show that the barrier region also gives a major
contribution to the matrix element, and the transitions
of this type'can be 1 to 2 orders of magnitude faster
than the estimate (6.71).

The isomeric wave function will contain very small
components of nearby class-I states owing to the coup-
ling term H, in the Hamiltonian, Eq. (3.64) (Lynn, 1971).
The mixing process will be one of extremely weak coup-
ling and is described by the perturbation theory of Sec.
II1.C.5.c (). The isomeric wave function is thus

(@8, | H 1 XT)
X @ By +2 :
is 0 Ao =

E, - El
The small class-I terms give a contribution to the ra-
diation width of
(q,él |H IXI 2

th(n‘n

and the class-I radiative transitions comprised in

T, ;¢ will normally contain electric dipole as well as
magnetic and higher multipolarities. Because of the
statistically fluctuating character of both the coupling
matrix element and the energy denominator in this
equation the isomer radiation width is expected to fluc-
tuate strongly from one nucleus to another (to a con-
siderably greater extent than the fission width). Most

> ¢ (6.72)

(6.73)

’ ~
ris('r) =
A
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fluctuation comes from the energy denominator. If x
denotes the separation of the isomer from the nearest
class- I state relative to the mean class-I spacing Dy,

s = o rte cselnx . (6.74)
Dt
For the median value of x (x=%), Tl *2m°HZT, )/

D2, but this is not the expectation value. An expecta-
tion value cannot be calculated from Eq. (6.74) alone,
consideration of the possibility of accidental degeneracy
between the isomer and a class-I state being necessary.
If accidental degeneracy occurs the value of the isomer
radiation width is %FM «wr+ This is the approximate val-
ue of I'{;(,, to be expected within the range of x from
zero to ZTH | /Dy, Eq. (6.74) being relevant (approxi-

mately) in the region ¥ >2|H_| /D, to x=%. The expec-
tation value of I'{,,, is, therefore,
31H,| ‘
r;s(v)z—b-f——r‘ll(yi‘) s (6.75)
with variance
2 S
varris(v) I‘iez(',') |H | (6.76)

which is expected to be very large.

This “mixing” contribution to the shape isomer radia-
tive width is much greater than the pure collective
component, Eq. (6.71), even at the “median” level. The
dependence of the isomer partial half-lives (including °
flss1on) on energy and barrier parameters is shown in
F1g 112. The couplmg matrix element is deduced from
the strong coupling model in terms of the transmission
coefficient T, through the intermediaté barrier [see Eq.
(3.161)]. Mean class-I level spacings and radiation
widths are deduced from the recommended level den51ty
parameters discussed in Sec. VII. Note that the “me-
dian” value of the half-life shownin Fig. 112 is alsothe ex~
pectation value (to a good approximation). The variance
of the half-life is just half the square of the median val-
ue.

5. The two-step (yf) process through class-| states

The two-step (¥f) process was recognized before the
concept of the double-humped barrier as a possible,
though rather weak, fission decay mechanism of the
compound nucleus (Lynn, 1965). The primary y-ray
transition takes place throigh compound nucleus states
of normal deformation (now described as class-I states).
This is not related to the intermediate structure phen-
omena of course. The fission decay of the final state
reached 1n the gamma-ray transition is governed by the
nature of the fission barrier. Intermediate structure
phenomena may be involved if the final state lies below
theé barrier peaks. Intermediate resonance phenomena
as such will not be observable in this reaction (except,
in principle, by very sophisticated experxmental meth-
ods not yet undertaken), but the probability of the fis-
sion stage of deexcitation may be affected appreciably
by such structure. In the uniform picket-fence model
of the final states after gamma-ray deexcitation the
branching ratio for fission is (Lynn and Back, 1974)

TAT 4 +Tp)?
TiT%

coth[3(T, + TB)]}_” : s
(6.77a)

T (T,+Tg)
= o1 _A B
Pf(E)_{1+ +2 TaT,
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where T,, Ty are the transmission coefficients [ Eqs.
(3.139) and (3.140)] for a state at excitation energy E
across the inner and outer barriers, and 7, is the
class-I transmission coefficient in the absence of fis-

sion
r
T, =———12; (6.7b)
I

This fission probability is to be integrated over the
primary gamma-ray deexcitation spectrum to obtain
the width for the (yf) process:
E

Ty on =_£ de, Fxlm(S-,)P;(E —g,)P(E~¢g,). (6.717¢c)

There is some experimental evidence for the («, vf)
reaction. Ryabov et al. (1973) have measured the mean
energy of gamma'rays and the mean number 7 of prompt
neutrons emitted in association with fission for several
of the slow neutron resonances in the neutron cross
section of #*°Pu, and have correlated the results with
the resonance fission widths. For resonances identi-
fied as being J "=1*, apparent linear relationships be-
tween these quantities and the reciprocal fission width
were observed, the mean total gamma-ray energy in-
creasing from 13.8 MeV for resonances with large fis-
sion width to 14.7 MeV for those with very small T',,
and ¥ decreasing from 2.87 (very large T'(;,) to 2.65
(very small T',).

These results can be interpreted as evidence for the
(n,yf) reactionas follows. The total energy E® of the
gamma rays emitted by fission products is known to be

Ly
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FIG. 112. Median estimates of shape isomer radiative and fis-
sion half-lives.
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comparatively insensitive to the excitation energy of the
fissioning compound nucleus. The variationingamma-ray
energy observed in these measurements can therefore
be attributed to the primary gamma rays of mean energy
g, emitted in the part of the total fission occurring by
the (yf) route, giving

(P) Py, = =
7 E Ly + (B, +sy)1‘(m_E<p> L on

r = T T et 4 +1-\ ’
H+Lon (f,eff)

where T, ., is the (observed) total effective fission
width, T, +T'(,;). The neutron emission number does
depend appreciably on the excitation energy of the fis-
sioning nucleus. If this dependence is assumed to be
linear, as observed in neutron-induced fission at higher
energies, )

(ST 4y +[v(S, =) o)
Ty + T

—v(S) - €,dv/dE)T

(fyeff)

V obs

The experimental results can therefore be analyzed to
give the quantity €,T,;,. For J"=1*" resonances of **°Pu
it is 4.6+ 0.4 MeV.meV (Shackieton, 1974). The mini-
mum observed resonance fission width is T'¢; o4, =3.5
+0.6 meV (for the 35.5 eV resonance), giving an upper
limit for the (/) width of T',;,<Z 3.5 meV, and a mean
primary gamma-ray energy of €,5 1.3 MeV. (The earl-
ier results of Ryabov ef al. gave I'(,;,=4.1+0.9 meV. °
€,=800+90 keV.)

If only electric dipole primary gamma-ray emission .
is assumed then fission will take place through inter-
mediate states of spin and parity J"=07,17,27, and of
these the J"=1" states are expected to have the lowest
fission barrier. The barrier parameters for J"=1" are
expected to be V,(17)~V,(0*) +1.0 MeV, U, (17)~ Vg (0*).
Using the 0* barrier parameters assessed in Sec. VII we
have done cascade calculations [based on Eq. (6.77c)] of
the partial yf width of the 1* resonances of #°Pu+n. If
the primiary gamma-ray deexcitation is assumed to be
by the giant dipole resonance mechanism (see Sec.
VILB.2) the result is T',;,=1.0 meV, and the mean pri-
mary gamma-ray energy €, =0.83 MeV.

It is known, however, that magnetic dipole primary
transitions are quite significant in the deexcitation of
neutron resonance states of heavy nuclei (to the order
of 10%). In this case the intermediate fission states can
have spin and parity J”"=0*,1*,2*. Hence fission is es-
pecially favored. The primary gamma-ray M1 strength
was assumed proportional to the cube of the gamma-ray
energy in our cascade calculation for this process. The
partial width was calculated to be T',;,=2.4 meV (E1
+M1) and the mean primary gamma-ray energy &, =0.98
MeV. These values are a little lower than the experi-
mental data suggest, but this could reflect a deficiency
in our understanding of the primary gamma-ray de-
excitation mechanism rather than uncertainty in the fis-
sion barrier parameters.

Attempts to make more direct measurement of the
primary gamma rays emitted in the (n, vf) reaction have
been reported (Dlouhy ef al., 1976). A small fraction
of the primary radiative transitions will undergo elec-
tron conversion, and these are detected by observation
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of the sequential characteristic K x-rays in coincidence
with fission. Measurements of this kind on the neutron
resonances of >*U suggested a correlation of the intens-
ity of each coincidence with the reciprocal fission width,
but unfortunately the statistical significance of the cor-
relation is weak. ‘

E. Experimental data on intermediate structure and its
analysis

1. Very weak coupling

The formal treatment of very weak coupling between
class-I states and narrow class-II states has been de-
scribed in Sec. III.C.5.c(?). The treatment is by per-
turbation theory, and the significant feature of the fine-
structure resonance pattern that emerges is the occur-
rence in each intermediate group of a single state, car-
rying the bulk of the class-II strength, with large fis-
sion width and small neutron width; a few neighboring
levels, all essentially class-I in nature, have signifi-
cant, but comparatively small fission widths and normal
neutron widths.

a. Intermediate structure in 2*'Pu

A particularly good example of the phenomenon is
found in the slow neutron fission cross section of ?*°Pu
(Fig. 7). The intermediate structure in this cross sec-
tion was originally discovered by Migneco and Theo-
bald (1968). The original resonance parameters that
they deduced from their data allowed a range of inter-
pretations. One was indeed the weak coupling phenom-
enon, a few of the intermediate groups having a reson-
ance with fission width of the order of 100 meV (but with
large standard errors) dominating its neighbors. In
some analyses, however, the widths of the groups were
found to be consistent with values of the order of 20-50
eV, and this was held to be evidence of either moderate
coupling [see Sec. III.C.5.¢(iii)] or very weak coupling
to a broad class-II state. An intermediate case was pos-
sible (Lynn, 1968b) in which the quasi-class-II level
with a width of the order of a few eV lay unidentified,
because of its relative weakness as a peak, among the
observed structure.

In the most definitive data to date (Auchampaugh and
Weston, 1975) the last possibility has proved to be the
correct one. The three lowest intermediate resonances
(at 782, 1405 and 1936 eV) were measured with high
resolution and sensitivity in both total and fission cross
sections. The measurements on the 1405-eV group con-
firmed the observation of Migneco and Theobald that the
bulk of the fission strength in the group was divided
roughly equally between the 1402 and 1408 eV resonances
but the fission widths of these are much larger (~2 eV)

_ than originally believed; this is in fact a case of acci-

dental degeneracy (Lynn, 1968b). The measurements on
the other two groups (see, e.g., Fig. 113) revealed
resonances that were missed in the earlier work; in
each group a resonance with large fission width (~2 eV)
and weak neutron width was revealed, ideal candidates
for the role of the quasi-class-II state.

We have analyzed the data for the 782 and 1936 eV
groups using the perturbation theory of Sec. III.C.5.c(:).
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FIG. 113. Intermediate structure in the slow neutron fission

cross section of *%py in the regions of 782 and 1936 eV [from
Auchampaugh and Weston (1975)].

In each group we summed the fission widths of observed
resonances to give the best estimate of the class-II fis-
sion width [Eq. (3.165b)]. We used them to find the coup-
ling matrix elements [Eq. (3.169)] and finally, from Eq.
(3.167) and the values of reduced neutron widths of the
quasi-class-I levels, we deduced a range of possible
“values of the reduced neutron width of the quasi-class-II
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level and compared this with the experimentally mea-
sured value.

The results of the analysis are shown in Table XV.
We analyzed 16 quasi-class-I levels in each group. The
mean squared coupling matrix element for each class-II
level is represented in the table in the form of the coup-
ling width '

Trjpter =2"(Hc)rilxn/D1 .
From the total cross-section resonances D; has been
found to be 15 eV. The possible values of the reduced
neutron width of the quasi-class-II level were found, as
expected, to have a distribution highly skewed in favor
of very small values (resembling a Porter—Thomas dis-
tribution). The mean of the possible values (the expec-
tation value), dand the maximum value possible (all con-
tributions to the amplitude from the 16 analyzed class-I
levels having the same sign) are quoted in the table,
and it is apparent that for both cases the observed width
is of the order of the expected value and much less than
the maximum possible value, lying in fact in the center
two quartiles of the distribution; these values are very
much smaller than the mean reduced neutron width of
class-I levels, i.e., 15x10™ eV.

The following information on barrier heights can be
deduced from the information in Table XV. By substi-
tution of the mean class-II fission width I'y; ¢, =2.5 eV
into Eq. (6.3) with the Hill-Wheeler barrier penetrability
formula [Eq. (3.140)] for T ; we find the value of
2i(Vg—S,)/ wg to be 3.6. Here, S, is the neutron sep-
aration energy. . The assumption of Zw z=0.52 MeV,
which is the consensus of evidence described in Sec.
VII.D:1, gives Vz=5.54 MeV. Note that this is the bar-
rier height for fission channels of total angular moment-
um and parity J"=4* and may not be the nominal bar-
rier height for the lowest channels. Similarly, from
Eq. (6.5) the inner barrier (for J "=3*) has the numeri-
cal relation 2m(v, - S,)/%Zw,=3.8, which, for Zw,=0.8
MeV yields U4 =5.73 MeV. As can be seen from the
data on barrier heights compiled in Sec. VII, the values
of U, and U for J "=3* channels are quite consistent
with the overall picture..

Several intermediate resonances have been observed
in the fission cross section of 2*°Pu at neutron energies
greater than 2 keV, but the fine structure of these has
not been measured in any detail. Because the class-II
fission widths appear to be so very large it is clear that
analysis of the areas of these higher energy intermediate
resonances will not give any extra useful information.

From the density of class-II states we infer the ex-

TABLE XV. Weak coupling analysis of intermediate structure of the neutron fission cross section
of 20py. Data from Auchampaugh and Weston (1975). For completeness, details of the 1405 eV
class-II level (analyzed as an accidental degeneracy in Sec. VLE.2 has been included in this table.

Units are eV.

Quasi-class-II level
Observed properties

Calculated neutron width

Class-II level
Deduced properties

0) 0)
Exr Txrery l-"E’)(") CIN () Doxp (TN max Txue) Traice
782.4 1.45 1.3x1074 0.84x 1074 3.3x1074 1.53 1.60
1936 2.2 4.5x107° 1.2 x1074 5.7x1074 2.4 3.7
(1405) 3.54 1.5
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FIG. 114. Intermediate structure in the slow neutron fission

cross section of 8V in the region of 720 eV [from Difillipo et
al. (1977)].

citation energy of the lowest state of the secondary well
to be 1.85 MeV. This is based on the assumption that
the level density law of class-1II states is similar to
that of class-I states; the parameters for the latter
can be found in Sec. VII.B.3.

b. Intermediate structure in 29U

Because of the known fact that barrier height(s) in
23U are much higher relative to the neutron separation
energy than those of #*'Pu it was expected that fission
intermediate structure in the cross section 238U at low
neutron energies would be much weaker in magnitude
than that of 2*°Pu. This is indeed so, and it took many
years of searching before definitive evidence was dis-
covered, commencing with a crude resolution measure-
ment (using a lead slowing down spectrometer on the
electron linac of the Rensselaer Polytechnic Institute)
and measurements of fine-structure resonance param-
eters appearing later from RPI (Block et al., 1973) and
Oak Ridge (Difilippo et al., 1977).

Below 60 keV neutron energy 28 groups of fission

resonances have been discovered. Seven of these lie
below 10 keV, giving a mean spacing for class-II states
of ~1.4 keV. Only for the groups at 720 and 1213 eV
has the resonance fine structure been partly elucidated
(Difillipo et al., 1977); it is shown in Fig. 114 for the
720 eV group and resonance parameters are given in
Table XVI. We can make alternative deductions about
the properties of the class-II state; one deduction de-
pends on the hypothesis that the resonance at 720 eV in
the fission cross section is different from the resonance
observed at about the same energy in the total cross
section, and the other is that they are identical. The
data of Difillipo et al. (1977) and De Saussure et al.
(1978) indicate that there may be about 0.5 eV discrep-
ancy between the observed resonance at this energy in
total and fission cross sections when the energy scales
of the other resonances are matched.

For the first hypothesis our analysis of the data sug-
gests that 'y, lies between 23 meV and about 500
meV, the maximum value being governed by the resolu-
tion width, while the minimum value is derived from
the area of the fission resonance and the experimental

“upper limit for the neutron width of a resonance that

would be unobservable in the total cross section. The
mean squared matrix element will lie between about
0.37 and 0.02 eV?, and hence the coupling width Ty, (,
lies between 0.13 and 0.05 eV. For the second hypo-
thesis, Ty ) =1.6 meV, Iy (,=2.5eV.

The first hypothesis indicates barrier heights for
states of total angular momentum and parity J*=3*, as
V,~1.0 MeV (for 7w ,=0.8 MeV), Vz~0.75 MeV (Zwy
=0.52 MeV) relative to the neutron separation energy.
The second hypothesis indicates V,~0.6 MeV, Vz~1
MeV. Both these sets or parameters are considerably
lower [by about 3 MeV on hypothesis (i), and up to 1
MeV on hypothesis (ii)] than those assessed for 23U +xn
by fitting the fast neutron fission cross section (see
Sec. VII). ’

There are two possibilities for explaining this dis-
crepancy. One is that the class-II states at low neutron
energy in the cross section of 2*®*U may be considerably

TABLE XVI. Resonance parameters of fine-structure resonances in the fission cross section of

238—1721 eV group. Units are eV or eV? (last two columns).

0 HE.M A1
Ey I‘)\(f) I\(n) Remarks (I‘mw =0.023) ch')\l Ay
(i) (ii)

708.3 2.4x1075 8.2x1074 0.18 .2.7
721.0 21.4%x1074 6.4x1075 Hypothesis (i)
721.6 >0.023 <3.7x107¢ } —quasi-class-II <1.8x1073 —
: <0.5 >1.7x1077 level unobserved =g

in total cross

section.
721.6 1.4x1073 6.4x1075 Hypothesis (ii)— — =X,

quasi-class-II

level with

neutron width

as observed in

total cross .

section
730.1 1.2x1074 3.6x1075 0.36 5.4
765.0 6.1x107¢ 2.8x 107 0.49 7.3
856.0 1.1x107¢ 2.9%x1073 0.84 12.7
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enhanced in strength by a damped vibrational resonance
effect. The other explanation concerns the possibility
of shape isomeric fission. This is not expected to be
observed in the neutron time-of-flight measurements of
the fission cross section if either the branching ratio
for fission (in competition with gamma-ray decay to the
normal ground state) is very small or the half-life of
the isomeric state is very much greater than the effec-
tive time resolution of the measurement (which was
about 0.25 pusec). If neither of these conditions are ful-
filled then the expected magnitude of the class-II state
radiation width (~20 meV on the giant dipole resonance
model, described in Sec. VI.D.1) implies that delayed
fission from the isomer as well as prompt fission is
contributing to the observed cross sections. The true
class-II fission width will therefore be less, probably
much less, than the values deduced above, and barrier
B will consequently be much higher. To account fully
for the discrepancies both possibilities are probably re-
quired. It does seem, however, that hypothesis (i) is
greatly favored if isomeric fission does indeed consti-
tute the bulk of the observed fission, the inner barrier
height being nearer to the value required by the statis-
tical analysis of fast neutron cross sections by some
400 keV. In this case the fission branching ratio of the
shape isomer is about unity. On hypothesis (ii) the
branching ratio will be about 0.1.

Information may also be obtained from the areas of
the intermediate resonances at higher energies. As ex-
plained above, the hypothesis (i) employed in the analy-
sis of the 721 eV intermediate resonance leads to the
further hypothesis that most of the observed fission is
delayed fission following class-II radiation and the
branching ratio for fission at the isomer state is almost
unity. With this assumption we can analyze the areas
using the very weak coupling formula, Eq. (6.36), sub-
stituting rhu =r7*n<7> ~0.023 eV. Because the areas of
the intermediate resonances up to 25 keV or so do not
appear to fluctuate abnormally we do not use the expec-
tation value formula derived from Eq. (6.36), i.e., Eq.
(6.41a), which is dominated by the effect of near de-
generacy, but rather the median formula, Eq. (6.37).
The intermediate resonance areas and the deduced coup-
ling widths Iy, , =27HZ2/D; are listed in Table XVIL.
The mean value of the coupling width (including the 721
eV group) is 0.012 eV, which implies a barrier height
V,~1.25 MeV.

The second hypothesis that may be adopted in the anal-
ysis of these areas is that moderately weak coupling
applies, in which case Eq. (6.20) may be employed to
give the class-II fission width. These fission widths
are also listed in Table XVII. The mean value is _f;‘u(f,
=3.9%10"%, which implies an outer barrier height of
Vp~1.1 MeV. These widths may still be interpreted as
the class-II state radiation width multiplied by the iso-
mer branching ratio. - Although the fluctuation of the
values appears at first sight to rule out this interpreta-
tion it is possible that the fluctuations are determined
by the fluctuations of the neutron widths of the few re-
sonances in each group carrying significant fission
strength. For sufficiently strong coupling to allow the
validity of Eq. (6.20), the quasi-class-II state must
pick up a neutron width of normal value from its class-
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TABLE XVII. Analysis of intermediate resonance areas in the
neutron fission cross section of 233U, Hypothesis (i): very
weak coupling with class-II fission widths composed predomi-
nantly of the radiation width leading to delayed fission. Hy-
pothesis (ii): moderately weak coupling.

Hypothesis (i) Hypothesis (ii)

Eyxy (€V) Ay (b.eV) Txy ey V) Tx )(eV)
1213 0.221 4.75x1073 1.07x1074
5715 0.0134 6.9 x1074 2.4 x1075
7090 0.0382 2.2 x1073 8.3 x1075
7430 0.094 5.6 x1073 2.1 x1074
7804 0.093 5.7 x1073 2.2 x1074
9358 0.025 1.7 x1073 6.9 x107°
11432 0.199 1.5 x1072 6.7 x1074
14479 0.031 2.7. x1073 1.3 x107¢
15228 0.223 1.96x10"" 9.7 x1074

© 15558 0.189 1.68x1072 8.4 x1074
18119 0.0405 3.9 x1073 2.1 x10™
23067 0.029 3.2 x1073 1.9 x1074

I neighbors, and this implies 27°H?/D%2 1. From this
condition the mean coupling width should be at least 6
eV, implying an inner barrier height, v ,~0.45 MeV,

which is certainly much too low and indicates that the
first hypothesis is more satisfactory.

The spacing of the class-II states suggests that the
“ground” state of the secondary well is about 1.85 MeV
above true ground. This is considerably lower (by ~0.7
MeV) than the shape isomer state of the neighboring

nucleus 238U,

c. Intermediate structure in %3Py

Intermediate structure in the neutron fission cross
section of ?**Pu was first discovered by James (1969)
who found weak fission groups at 767 eV and 29 keV.
Auchampaugh ef al. (1971) and Bergen and Fullwood
(1971) were able to make much more sensitive measure-
ments with higher energy resolution and discovered many
more fission groups, giving an estimate for the class-II
level spacing of about 720 eV. Auchampaugh and Bow-
man (1973) deduced parameters of the fine-structure
resonances in the five lowest energy groups with the

_aid of high resolution total cross-section measurements.

The parameters of the quasi-class-II levels apparently
revealed by these data are not as definitive as those for
the 24°Pu cross section; the deduced properties of the
class-II states, with comments, are given in Table
XVIII.

It is apparent that the properties of only the lowest
two class-II levels are reasonably well established.
From these we deduce that the mean class-II fission
width, I'y;,~ 0.3 eV, and the coupling width, Trrree
~2.7 eV. These values (with class-II spacing ~900 eV)
would correspond to barrier heights U,, Uz~0.5 MeV
above the neutron separation energy of 2*3Pu (assuming
7w, =0.8 MeV and 7%wy=0.52 MeV), and these are
reasonably consistent with the parameters established
in Sec. VIIL

Intermediate resonances at higher energies do not
completely confirm the above coupling width. If the
areas are analyzed using the formula for moderately
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TABLE XVIII. Deductions on properties of class-II levels re-
vealed in cross section for #2Pu(n,f). Based on resonance
parameters of Auchampaugh and Bowman (1973). Units are eV.

onHL

Exy Txun Dy = Dl"‘c Comment

762.5 >0.26 <1l.1 Neutron width

I‘)\" () of
quasi-class~-II
resonance satisfies
constraints

of perturbation
theory by factor

2 below maximum
for P)\" )= 0.26
S D)2 0.5

Iap(e)S0.5

1836 >0.11 <4.4 Iy (ay very close

to maximum allowed
by perturbation
theory .’. stated
limits are probably
very close

to actual values

2741 ~0.002 ~60 Has the quasi-

class-II resonance
been observed ?

3112 >0.021 <30
3568
3670

Do these contribute
one or two class-II
levels?

>0.015 <70
~0.007 ~60

weak coupling, Eq. (6.20), as the value of 2.7 eV for the
coupling width suggests they could be, the deduced fis-
sion widths of the 1836 and 3112 eV class-II states are
4 and 2.5 meV, respectively, in disagreement with the
values given in Table XVIII. The reason is that the
neutron widths of the quasi-class-II resonances in these
groups are much lower than the average class-I neutron
widths, thus showing that the coupling is not strong )
enough, in these two cases at least, for the application
of Eq. (6.20) to be valid. The mean class-II fission
width deduced in this way from the areas up to 30 keV
is 15 meV. Much of the contribution to this average
value comes from a group of three strong intermediate
resonances around 28 keV.

To use the very weak coupling formula for the inter-
mediate resonance areas, Eq. (6.27), we need to have
an estimate of the class-II fission width. With an as-
sumed value of Ty ; ¢ =0.2 eV the mean value of the
coupling width is T’y (,=0.14 eV and with T,  (,=0.025

eV it is 0.28 eV. With this value of the coupling width
the inner barrier height U, is 0.8 MeV above the neu-
tron separation energy.

d. Intermediate structure in 2*Puy

- Intermediate structure is apparent in the cross sec-
tions of 2*Pu (Auchampaugh et al., 1971), but this is too
weak, and the first group at too high an energy, for it to
have been possible to investigate the underlying fine
structure in any detail. The areas of the intermediate
resonances up to 20 keV have been measured, however.
On the assumption that very weak coupling is operating
we have analyzed these areas using the “median” for-
mula, Eq. (6.27). The value of the fission width was
assumed to be (i) 0.025 eV (i.e., class-II radiation fol-
lowed by delayed fission) and (ii) 0.2 eV in turn. The
results for the coupling widths T, (o, =27H%/D; are
shown in Table XIX. The mean values are 0.21 and 0.1
eV for the two cases, respeciively. With a class-II lev-
el spacing of 2.7 keV, this implies (V4 ~S,)/fiw, =~ 1.21,
1.34, or V4 —-S,~1.0, 1.07 MeV, respectively, for

7iw, =0.8 MeV.

2. Very weak coupling with accidental degeneracy

The formal theory for accidental degeneracy is de-
scribed in Sec. III.C.5.c(i7). There is now one well-
established example of the phenomenon, already men-
tioned, the 1405 eV intermediate resonance in the cross
section of **Pu (Fig. 115). Here, two fine-structure
resonances ai 1402.2 and 1408.3 eV share almost equal-
ly a large total fission width of ~3.5 eV. All neighbor-
ing resonances have fission widths no larger than 5
meV, so it is clear ihat these two resonances share
almost equally the bulk of the class-II siate wave func-
tion. This can be attributed to the accidental degener-
acy (or very near degeneracy) of a class-I and class-II
level, the actual levels that are the result of diagonal-
ization being repelled by the coupling interaction.

The actual analysis of the 1405 eV intermediate reso-
nance, based on Eq. (3.170) onward, can be simplified
by noting that the sum of the fission widths of all other
resonances in the group is only of the order of 1% of
those of the two central resonances and therefore forms
an extremely weak perturbation. Our approach is to
assume that the class-II level has been diagonalized
with all class-I levels except the nearly degenerate one,
and we now consider the diagonalization of this approx-
imate class-II level denoted by xy; = 1'(II) with its de-
generate class-I neighbor, denoted by x;=2(I).

TABLE XIX. Intermediate resonance areas in the fission cross section of Pu. Analysis is on the

assumption of very weak coupling [Eq. (6.27)].

Tajice) (€V) T e) (eV)
Eyy (eV) A*u (b.eV) Assn. (i) I'y; ¢5)=0.025 Assn. (ii) Ty, (5 =0.2
1650 6.4 0.146 0.050
5500 5.1 0.24 0.098
7700 3.6 0.20 0.088
11300 0.94 0.065 0.031
12000 1.9 0.135 0.064
15600 1.2 ‘ 0.10 0.050
18000 6.4 ‘ 0.58 0.30
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FIG. 115, The 1405 eV intermediate resonance in the neutron
fission cross section of 0py showing two fine-structure res-
onances interpreted as being due to the accidental degeneracy
of a class-I with a class-II level. Data are from Auchampaugh
and Weston (1975).

We obtain the mixing coefficients Wy, Wy, from the
values of I', 4, using Eq. (3.173b), by the use of

T
oy (6.78a)
TIPS
Ty
=wi, . (6.78b)
Ty + T 12

Thus, from Eq. (3.172), the repulsion A(=E —E,y) is
relaied to the coupling matrix element between the
class-II state and the state x;=2(I) by

ar wi T
== (6.79)

E%z— Wu Ty

We deduce the separation of the class-II and class-I

state from Eq. (3.171), giving

Exy —Ey qn)? Do (1 T )“

(6 .80)
Hi, Tap Ty

By successive approximations, starting with ]A[ ~3 eV,
T, =2.0eV, T, =1.5 eV, it turns out that HZ,,
=9.8(x0.5) eV® and E, 1, — E;» 11, =0.9 eV with an accu-
racy of the order of 20%.

We deduce the reduced neutron width of the approxi-
mate class-II level from

(0) (0
e 1/2— w, Fx (u)(n) - szrz(%%nz) s (6.81a)
01/ (0)1/ )
sz()n% 2= W21F 9(%1)2(71) + Wllrz((‘l%(/nz) s (681b)
giving
1/2 (0)1/ T/
T2 = Wy T2 + W, T 4032 (6.82)

The observed values of the reduced neutron widths are
0.22Xx10™ and 0.23x107 eV!/2, glvmg possible values
0f 3.1x10™ and 4.5X10™ eV*/? for T9%{2, . This re-
duced width can only be picked up by the very weak mix-
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ing with the remaining class-II levels, and therefore
the lower value is likely to be the valid one.

Our analysis of the remaining fine-structure reso-
nances follows the perturbation procedure outlined in
the previous section, the quasi-class-II level being set
at 1405.3 eV with a fission width of 3.5 eV. The aver-
age squared matrix element H‘,,,‘x,‘Ix (including the near-
ly degenerate class-I level) is found to be 3.6 eV2 and
hence the class-II coupling width T, () =1.5 eV. The
expectation value of the reduced neutron width of the
approximate class-II level is 1.4x107 eV*/2; this is to
be compared with the value of 3.1X107® eV!/2 inferred
above, which is in fact quite close to the median value
for the distribution of possible reduced width values.

One more interesting comparison can be made be-
tween the degeneracy analysis and the cross section
data. This concerns the interference to be expected be-
tween the two central resonances in the cross section.
From the two-level analysis we have

TiR=w,T a0y, (6.83a)
rz(f) =W, F Ya&nag - (6.83b)

From these expressions and the corresponding ones for
the neutron widths [Eq. (6.81)] we have

THATHA =W T & T & i = W Wo, THEL 0 T o
(6.84a)

ré(/nz)r‘é(/fz) = W rl (II)(f)r‘i'/(zﬂ')(n) + Wllwzlri'/(zll)(f)ré(/lz)(n) .
(6.84Db)

The deduced value of T/ &y, [3.1X107%(E, o1y eV)] im-
plies that the first term on the rhs of these two equa-
tions can be neglected, giving opposite signs for the two
products that control the interference; hence construc-
tive interference is expected for the fission eross sec-
tion between the resonances [destructive outside: see
Eq. (3.131)]. This is in agreement with Auchampaugh

and Weston’s multilevel fit to their data.

3. Moderately weak coupling

a. Analysis procedures

For narrow class-II states (fission widths much less
than the class-I state spacing) moderately weak coupling
is defined by the spreading of the class-II state into the
neighboring states to sufficient extent that no single
state carries the bulk of the original class-II state.
However, there is insufficient spreading to allow com-
parable and significant amounts of two or more class-
II states to be found in the final states. The mathemat-
ical formulation of this mixing problem was outlined in
Sec. III.C.5. The condition for the matrix elements
was shown to be

211H

D, < ¢ <Dpy .

For an idealized picket-fence model with uniform class-
I level spacing and uniform squared matrix elements
the pattern of fission widths for the resonant states is
Lorentzian [see Eq. (3.185)], and most analyses of data
are based on this fact, the assumption being made that
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in a realistic case the actual fission widths of the reso-
nances will fluctuate according to a Porter-Thomas
distribution [see Eq. (6.10)] about a Lorentzian profile.
While this assumption is certainly reasonable in prac-
tice for the values far out on the wings of the Lorentz-
ian (and can be demonstrated on the more basic as-
sumption of Gaussian behavior of the matrix elements)
it is much more questionable near the center of the
group, particularly if it is rather narrow; the individual
distributions are truncated (maximum value is the
class-II fission width) unlike the Porter—Thomas dis-
tribution, which extends to infinity, and there must be
some degree of correlation amongst the widths.

The most straightforward approach to analysis of this
kind of data is a “differential” one. The fission widths
of the resonances are treated as experimental observa-
tions of the Lorentzian function, and the parameters of
the latter (centroid energy, peak height, and half-width)
are determined by fitting a curve to the “observations”
using the method either of least squares or of maximum
likelihood. Because of the highly skewed distribution
function of the “observations” relative to the ideal pro-
file, the latter method is the more satisfactory. The
procedure has been described by Werz et al. (1973) and
James et al. (1977).

Differential fits turn out to be unsatisfactory if there
are only a few levels within the half-width of the Lor-
entzian profile. This is because the strong central
levels dominate the fit (the faraway levels only deter-
mine the product I",n(f,l",‘n(c)) and these few can be
wildly untypical owing to the Gaussian spread of the
small number of matrix elements that govern their
properties. Numerical tests of the fitting procedure
based on stochastically generated simulations of reso-
nance widths (Lynn, 1972) indicate that little confidence
can be placed in the method.

Fitting procedures of an “integral” kind turn out to be
better (Lynn, 1972; Lane et al., 1974). The cumulative
sum of fission widths is plotted as a function of energy.
This “staircase” function is then fitted by an idealized
smooth function derived from a Lorentzian:

Tarn Ty fE 1
11 11(0) . S
o o d By = By P+ WP

11 (E —Exn>] rxn(f)r).nm
=|z+=
[2 - arctan W W ,

(6.85)

where W:%l",‘u(c,. Numerical trials on simulated level
sequences show that the square root of the variance in
the determination of the width ranges from about 50%
for I"AH“,)/DI:I.S to about 30% for T, (o)/Dr=12.5.
The concept of the coupling width is more of an aid to
discussion than a physical reality. The quantity that we
really wish to know is the mean squared matrix element
for the coupling. It is just this quantity that is ex-
tracted from the data on very weak coupling, by the de-
termination of the individual matrix elements. It is
also possible, in principle, to extract the individual ma-
trix elements from data on moderately weak coupling.
The equations to be solved are (3.184b) and (3.184c)
[substituted into Eq. (3.190)] together with the sum rule
Z),I‘Mf, =Ty« to give the unknowns E, , E, , F,Lu(f),
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and (A; |H.|Ap)?, exactly equal in number to the ob-
served quantities E, and T',;,. A numerical procedure
has been established for doing this (Lynn and Moses,
1980). From the basic Egs. (3.181) for the mixing of a
class-II state with a set of N class-I states, together
with the normalization conditions, (3.182) and

S Clhp=1, u=1-N
by

2 —
Z thu) =1,
y

we obtain
RRPATW .
A H O = _86a.
114l M Z)‘: Ci("u)/(E"[ -E)’
c; 1
Agp) [ , ]
- Ey -2. BEC 6.86b)
z)‘: EAI _E)\ <KI !Hcl KII>2 AL z); 2 Mhl) » (
Ekn —Zl E)Lci(xu) =z); [E"x —z)‘: Elci()‘l )] . (6.86¢)
1

The sum 7(E) =2, Ciyp)/ (E - E,), which features on the
lhs of Eq. (6.86b) for E=E, , has N +1 poles at E =E,.
These, by Eq. (3.184b), are also the poles of the func-
tion

| £(E) ,
E-E, +25 (\IHINY/(E, —E)

[f(E) veing regular], and hence this may be identified
with 7(E). By Liouville’s theorem f(E) must then be a
constant and it turns out to be unity by calculating the
residue of 7(E) at any pole E,. Thus

2

E Croopp _ 1

¥ (E-E) E-B +25 O H N/ (B -B)

giving
2
Crogp

—=0. 6.86d)
by EAI -Ex (

Substituted into Eq. (6.86b) this gives the sum rule

EAI =Z Excf(xl) ) (6.86e)
A
which in turn in (6.86c) gives
E,_ =2 ECiop- (6.86f)
A

These two sum rules and the normalization conditions
lead to

> E\-)_E, =K, .
x e i

In practice the class-I eigenvalues are found from the
numerical solution of Eq. (6.86d). Once these are de-
termined the matrix elements can be calculated from
Eq. (6.86a) and the class-II eigenvalue from Eq. (6.86f).
A check on the convergence of the numerical process
can be provided by evaluating

1 T, )
X2 =2 g_f[ 11

2
) -T
2 E)g:[(XI |HCI)\II>2/(E>‘I _E)‘)Z +1 )(f)] ’

(6.86g)
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where the ¢, are the experimental errors on the ob-
served fission widths. The procedure has been tested
on simulated resonance parameter sets, including sets
with stochastically generated errors. The recovery of
the initial values of the matrix elements has been shown
to be remarkably good.

b. Intermediate structure in %°U

Narrow intermediate structure was discovered in the
neutron fission cross section of 2**U by James and Rae
(1968). The first attempt at determining the resonance
parameters in the lowest intermediate resonance was
made by James and Slaughter (1969), and a much more
comprehensive study of the cross section was later
carried out by James ef al. (1977).

The intermediate resonance at 580 eV in this cross
section seems to be the best known example of moder-
ately weak coupling between a class-II state and its
class-I neighbors. The fission widths of the fine-
structure resonances up to 1000 eV total 190 meV,
while the largest individual value is 8.7 meV (for the
resonance at 515.9 eV). There are several more indi-
vidual fission widths of similar magnitude, e.g., 4.1
meV (at 455.3 eV), 4.0 meV (at 518.9 eV), 5.0 meV (at
560.9 eV), 7.0 meV (at 582.4 eV), 5.0 meV (at 643.5
eV), 5.1 meV (at 690.0 eV), and 4.9 meV (at 726.1 eV)..
A tight cluster of strong fission resonances around
1100 eV appears to constitute a second, narrower, in-
termediate resonance.

In analyzing the data James et al. (1977) employed
both the method of least-squares fitting to a cumulative
sum of fission widths and the differential fitting method
with maximum likelihood. They improved the latter
method by weighting the likelihood function for each in-
dividual fission width according to the experimental
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uncertainty in the value of that width. In applying the
maximum likelihood method they tested the hypothesis
that two class-II levels are present as well as the hy-
pothesis of a single class-II level. The former hypoth-
esis is indicated at a significance level of 98.7%. Fits
to the data are shown in Fig. 116.

The parameters deduced for the class-II level are
given in Table XX. The width of the resonance at 580
eV encompasses- 13 class-I levels (D;=10.6+0.6 eV),
and it can be presumed in consequence that the differ-
ential method of fitting these data is fairly sound. The
parameters of the 1227-eV level must be considered
‘much more doubtful, because, in particular, a moder-
ately strong fission resonance observed at 1134 eV has
not been seen in transmission and its fission width
could therefore be much more substantial than the val-
ue assigned to it in the analysis.

James et al. have also observed intermediate struc-
ture at higher energies (see Fig. 117). Assignment of
individual class-II levels is difficult, because two or
more observed groups may belong to the same class-II
state owing to the fluctuation phenomenon (see, e.g.,
the clusters between 4.0 and 4.6 keV, which probably
constitute one or at most two class-II states). James
et al. give an upper limit of 2.1 keV for the class-II
spacing. Using Eq. (6.19) with an additional fluctuation
factor [Eq. (6.22b)] the class-II fission widths can be
extracted from the areas of the intermediate fission
resonances. These values are listed in Table XX. The
mean class-II fission width of 81 meV, together with
the class-II spacing, imply, on the strong damping as-
sumption, barrier parameters of

(Up=S,)/liwy =1.32

(Ug=S,=0.7 MeV, on the assumption that Zwg, = 0.52
MeV).
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FIG. 116. Fission width in the neutron fission cross section of U as a function of neutron energy. The full curve is a fit using
experimentally weighted maximum likelihood, and the dotted curve is based on unweighted maximum likelihood (giving a width for
the higher class-II state 40% lower than that from the “weighted” analysis). Data and fit from James et al. (1977).
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TABLE XX. Properties of class~II levels in the cross section
for 2%yU(n,f). From James et al. (1977) (an arithmetical error
occurred in this paper and has been corrected in the values
listed below, supplied by G. D. James).

Ex Taxied )
(eV3 (meV) (eV) Comments
580+ 16 85+ 20 136+ 20 Analysis by Lorentzian
fitting to fission
width of fine-
structure resonances.
1227+65 5.1%33 1743 Ditto
3100 15 Value obtained from
area of intermediate
structure resonance
(neutron width assumed
constant).
4575 50 Ditto
7845 263 Ditto
11886 58 » Ditto
13076 130 Ditto

The much sparser data on the coupling width suggest
that

(Va=S,)/Bw,y~0.25,

allowing for an effective number of transition states at
the inner barrier of ~2.4 (see Sec. VII.C.1.). Analysis
of the overall features of the fast fission cross section
(see Sec. VII) suggests that the inner barrier is much
higher than this. It would appear therefore that a
damped vibrational resonance may be enhancing the
coupling width in the slow neutron energy region.

¢. Intermediate structure in 2*Np

The neutron fission cross section of 2*"Npwas the first in
which narrow intermediate structure was discovered

(Payaetal.,1968; Fubinietal.,1968). Sincethe first mea-
surement agreat deal of precise work has been done (Paya
et al., 1969; Brown et al., 1970, Kolar et al., 1971,
Keyworth et al., 1973, Plattard et al., 1976), so that
by now many intermediate resonances have been ob-
served and the fine-structure resonance parametérs of
the group at lowest energy are almost completely
known. .

The remaining uncertainties in the lowest energy
group, at 39.9 eV (shown in Fig. 118), are such, how-
ever, that it is not clear whether this group should fall
into the classification of very weak coupling or that of
moderately weak coupling. The fission cross section is
dominated by a resonance at 39.9 eV with a fission
width of 3.3 meV (Plattard et al., 1976); the neighbor-
ing resonances have fission widths of the order of 0.4
meV at most. But a careful examination of the shape
of the central resonances has revealed another weak
unresolved resonance with a fission width similar to or
greater than that at 39.9 eV; the magnitude of this
width appears crucial to the interpretation of the inter-
mediate resonance. The analysis of Plattard et al. sug-
gests that the fission width of the resonance at 39.7 eV
is ~1.6 meV; with this value the fission width of the
resonance at 39.9 eV is reduced to ~0.9 meV.

The spacing of the resonance fine structure is 0.69 eV
(Paya et al., 1968) for s-wave resonances of both spins.
It is fundamental to the theory of fission intermediate
structure as developed in this article that the total
angular momentum of each class-II state, like that of
each class-I state, i$ a good quantum number, and no
coupling between the two classes of states can violate
this property. It has been checked that the important
fission resonances in the region of 40 eV do have the
same spin (Keyworth ef al., 1973) and its value is J=3.
Hence, the relevant class-I spacing D,(J=3*)=1.17 eV
(spin and parity of 2*'Np are I"=3 ). It is clear from
the dominance of the fission widths of the two central
resonances that the width of the intermediate resonance
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FIG. 117. Neutron fission cross section of 234U above 2 keV neutron energy. From James et al. (1977).
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cannot be much greater than the class-I spacing.

A very rough and simple analysis of the data con-
firms this. We have extracted the product (>\1|Hc|)\n>2
Typ«) for all the J=3 resonances from 20 to 55 eV
(together with a few of unknown spin but significant fis-
sion width) using the simple Lorentzian formula, Eq.
(3.185), for a class-II level at 39.7 eV, and two as-
sumptions about the half-width W, i.e., (i) W=0 and
(ii) W =1.5 eV. With assumption (i) we find that
20 | Ho | Ag)*Thy r)/Dy=8.4x 107 eV?, and with assump-
tion (ii) the same quantity=10x 107 eV2. The smaller
of the two widths T', ', Ty, ) should equal 5.3 meV
(the sum of the observed fine-structure fission widths)
and this indicates 2W=~ 1.7 eV for either assumption (i)
or (ii). Notice that no a p7iori assumption about mod-
erately weak coupling of a narrow (fission width) class-
II level or of very weak coupling of a broad class-II
level [see Sec. III.C.5.c(v)] has been made.

Apart from the disagreement between the initial input
(W=0) and the result, assumption (i) would be untena-
ble on statistical grounds; the central ten resonances
give a mean squared coupling matrix element only one
quarter of that from the full range. The probability of
this, or a smaller value, occurring can be calculated
from the X? distribution with 10 degrees of freedom;
it is ~10™.

The data have also been analyzed by fitting an inte-
grated Lorentzian curve to the cumulative sum of the
fission widths (Moses, 1976). The result depends on
the value assumed for the fission width of the 39.7 eV
resonance, ranging from 2W =1.3 eV for very small
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values through 2W =0.55 eV for I} ,,=1.5 meV to

2W =0.18 eV for I, ;,=9 meV. The overall error in
these results due to experimental uncertainties

in the fission widths of the other resonances is of the
order of 10%. It is clear from the variations in the ex-
tracted values of the envelope width 2W that the central
widths are unduly affecting the determination of the re-
quired quantity. In the procedure of Lynn and Moses
(1980), which is least sensitive to the details of the
central levels, 2W is 1.88 eV for the data of Plattard
et al. (1976).

Some other interesting properties of the 40 eV inter-
mediate resonance have been measured. Kiuken et al.
(1972) measured the angular distribution of fission pro-
ducts from the (n,f) reaction with the target nuclei
aligned. They attempted to interpret these data in
terms of unique values of total angular momentum J
and projection of angular momentum K along the cylin-
drical symmetry axis of the nucleus as it passes
through the deformation channel at the outer barrier.
The pair of values implied by experimental data were
J=2,K=2. The J value is in conflict with that of Key-
worth et al. (1973) determined by polarization methods.
The discrepancy can be resolved if it is assumed that
two or more deformation channels, with different K
values, are about equally penetrable at this excitation
energy. This accords with current ideas on the density
of deformation channels at the outer barrier of an odd
nucleus (Lynn, 1974b). An expression for the effective
number of available channels at given excitation energy
below the barrier energy is given in Sec. VII.C.1. [Eq.
(7.30)]. With the barrier level density parameters also
given in that section this number is 3.6 in the present
case.

This factor for the effective number of channels must
also be taken into account in interpreting the inter-
mediate structure parameters in terms of barrier
heights. If the average value of I‘,‘n(,) is assumed to be
5.3 meV (and this value appears to be borne out by the
approximate fission widths deduced from the areas of
the higher-energy intermediate resonances) and the
class-II level spacing for one spin only is taken as
80-eV (twice the observed spacing (Paya ef al., 1969);
see Fig. 119), the outer barrier height relative to the
neutron separation energy is

(Up=S,)/Hwy =143,

giving Uy —S,=0.65 MeV for Zwy =0.45 MeV. Note that
in this interpretation it has been assumed that the ob-
served fission width is entirely due to prompt fission.
The smallness of its value does put this assumption in
doubt. The observation could be that of delayed fission
from the shape isomer of 23®Np (if its half-life is sub-
stantially less than 1 usec), but this is not likely be-
cause the observed isomer of the neighboring nucleus
of 2"Np only has a branching ratio to fission of ~1073,
In interpreting the value of the coupling width an even
larger number of effective channels (7.2) must be al-
lowed for the inner barrier (see Sec. VII.C.2.). With
this the barrier height relation is

(Va=S,)/fiw,=0.72
giving U,~S,=0.47 MeV for Zw,=0.65 MeV. These
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FIG. 119. Neutron fission cross section of 2'Np in region 100~
500 eV [from Plattard et al. (1976)].

barrier heights both lie within 300 keV of the values re-
quired to fit the fast neutron cross section (Sec. VII).

If the roles of the barrier heights are reversed [i.e.,
the intermediate resonances are interpreted as very
weak coupling of the class-I states to a broad class-II
level as described in Sec. III.C.5.c(v)] the discrepancy
with barrier parameters required to fit the fast neutron
fission cross section becomes very much worse.

It should be noted that the above interpretation, in
which it is assumed that both possible angular momen-
tum states for s-wave neutron resonances J"= 2*,3* are

TABLE XXI. Areas of intermediate resonances in the fission
cross section of 25'Np [data from Plattard (1973)] and analy-
sis.

ey (V)
(assuming I‘)‘Il )= 0.003 eV,

EXIX €eV) A i (b.eV) r)\n =0.03 eV)
119 0.78 0.061
200 1.6 0.17
233 0.49 0.054
253 0.50 0.058
283 0.43 0.055
335 0.31 0.043
372 0.74 0.11
426 0.50 0.076
474 0.34 0.056
553 0.13 0.023
584 0.26 0.048
669 0.52 0.105
719 0.41 0.083
808 0.51 0.11
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about equally fissionable on account of the density of
deformation channels available for odd nuclei, is in
some conflict with observations on the distribution of
spacings of the intermediate resonances at higher en-
ergies (Fubini et al., 1968). This appears to satisfy
the Wigner relationship for a single set of levels with
good quantum numbers [Eq. (6.6)]. However, because
of the Porter—Thomas fluctuations of the fine-structure
components, there is a clear conceptual difficulty in
distinguishing uniquely one intermediate resonance
from another. Further development of methods to as-
sign “signatures” of class-II states to the individual
fine-structure resonances (e.g., of the type mentioned
above in which the angular distribution of fission pro-
ducts is measured) will be required to resolve this
question.

We have analyzed the areas of the intermediate reso-
nances at higher energy as measured by Plattard (1973),
see Table XXI. Because the data on the 40 eV inter-
mediate resonance indicate that this is an intermediate
case between moderately weak coupling and very weak
coupling we have in the first place used the very weak
coupling area formula, Eq. (6.37), for the median po-
sition of the class-II level. We have assumed a class-
II radiation width of 0.027 eV and a class-II fission
width of 0.003 eV in this analysis. The average value of
the coupling width, including the value of 0.55 eV for
the 40 eV group, is 0.107 eV. This leads to the value

(Vg=S,)/Bw,y~1.12

(allowing seven effective channels), or V,~8,~0.73
MeV (assuming Zw, = 0.65 MeV).

4. Weak coupling to class-I| states with broad fission
width

a. General

This case bears many similarities to that of moder-
ately weak coupling to a class-II state with narrow fis-
sion width. In particular the pattern of fine-structure
fission widths is expected to be basically Lorentzian
(with Porter—Thomas fluctuations about the Lorentzian
envelope). In fact there is better justification for this
expectation than there is in the alternative case. The
areas of intermediate resonances are expected to be
governed by the same general formulas (see Sec.
VI.C.l.a).

The differences should be found, in principle, in the
details of the microscopic cross section. The presence
of another S-matrix pole, in addition to those governing
the fine-structure resonances, lying at a comparatively
large distance below the real axis in the complex ener-
gy plane, must give rise to some interference effects.
In practice such interference effects can hardly be ob-
servable in any but the most precise of measurements
and analysis. This is illustrated in Fig. 120 in which
are shown the cross sections calculated from a simula-
ted set of R-matrix parameters generated from a sto-
chastic set of class-I parameters and coupling matrix
elements and a postulated class-II state. The details
of some of the class-I and R-matrix parameters are
given in Table XXII together with parameters of the
S-matrix poles to which they give rise. As expected
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FIG. 120. Simulated cross sections and fits for weak coupling of class-I states to a class-II state with large fission width (rln‘f)
> D;). Parameters are given in Table XXII.

the R -matrix and S-matrix parameters have little re- could be procured and shows considerable discrepancy
semblance. An R-matrix fit to the cross section leads with the simulated cross section.

to a set of R-matrix parameters which are similar to We conclude therefore that the interpretation of

the S-matrix poles, except that the distant pole is ab- broad intermediate resonances (I'y > D;) is generally
sent. The fit is good and the similarity between the ambiguous and is likely to remain so for some time in
fitted R matrix and the S matrix indicates that the the present state of the experimental art. There are

cross section has almost the exact appearance of mod-

some data extant, however, for which there seem to be
erately weak coupling.

good reasons for interpreting as weak coupling, strong

Effects that obviously cannot be described by a simple fission rather than vice versa.
R -matrix fit based only on the apparent fine-structure
resonances do occur if the class-II coupling and fission b. Intermediate structure in ***Pu
widths are comparable in size. A simulated example L . 238
is shown in Fig. 121 with parameters listed in Table The neutron fission cross section of **Pu has been
XXIII. The fit shown in Fig. 121 was the best that measured in the low- and medium-energy ranges by

TABLE XXII. Part of the set of level parameters describing the simulated cross sections of Fig.
120. The class-II state has fission and coupling widths F"u(f) =20, Fx“ ©) =4.3. The unit for all
parameters is the mean class-I level spacing D;.

Class 1 Coupled Poles Cross~-section fit
H ’ ’ ’
Ex I‘>~1(") Hz)‘l)‘ll Ex rX(n) Txe) Efnﬂ) I‘(m) EX Tx(n) Txe)
-0.932 0.0070 0.387 -1.011 0.0089 0.299 —~0.947 0.091 —0.947 0.0077 0.0665
-0.037 0.0147 0.032 -~0.056 0.0156 0.222 —0.038 0.041 -0.037 0.0182 0.0050
0.256 0.(3)3  2.813 0.792 15.154
0.928 0.0022 1.89 0.903 0.414 0.928 0.0024 0.390

1.072 0.0051 0.0056 1.072 0.0048 0.(3)57 1.072 0.025 1.072 0.0048 0.009
1.934 0.0046 2.574

2.246  0.0070 0.274 2.250 0.082 2.25 0.0070 0.053
2.369 0.(3)2 0.605

2.585 0.0248 0.577 2.577 0.164 2.58 0.0259 0.125
3.141 0.0353 4.503

3.465 0.0051 0.015 3.478 0.0016 0.255 3.465 0.028 3.47 0.0049 0.0036

4.632 0.0158 0.066 4.649 0.0130 0.084 4.635 0.047 4.64 0.0128 0.0125
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FIG. 121. Simulated cross sections and fits for coupling of class-I states to a class-II state when the coupling and fission widths
are of comparable magnitude. Parameters are given in Table XXIII.

Silbert et al. (1973). At low energies (to a few hundred
eV) the capture cross section has also been measured
and this has enabled Silbert and Berreth (1973) to ana-
lyze the fine-structure resonance parameters across

the intermediate resonance at 285 eV.

The central resonance in this group, at 285 eV, has a
fission width T, +,~ 3.5 eV. The other resonances all
have fission widths of the order of or less than 100 meV,

the two largest being at 192 eV (T, ;,=130 meV) and

300 eV (T, 4,=102 meV). This case could apparently be
one of very weak coupling analyzable with first-order
perturbation theory (see Sec. VI.E.1). We have carried

out an analysis of this kind over the central 16 reso-
nances, and this results in an estimate of the coupling

width

T = 21HZ/Dy =17 eV,

which is a little too large for very weak coupling to be

a good description. More importantly, however, this
detailed analysis gives I'{2),,=1.46 x 107 eV'/2 for the
maximum value of the reduced neutron width of the
hypothesized quasi-class-II resonance, 3.06 x 107 eV!/2
for its expectation value, and 1.7x 10™ eV!/2 for the
median value of the distribution of possible reduced
neutron widths. The observed value for the 285 eV
resonance is 1.54 X 107 eV*/2 which seems to rule out
the very weak coupling interpretation.

The hypothesis of a broad class-II fission width
therefore seéms the only tenable one. The 285 eV reso-
nance would then be interpreted as essentially a class-I
resonance close to the class-II state and having a large
coupling matrix element to yield a fission width with a
value that has fluctuated well above the expectation
value at that energy. The appearance of the next two
substantial fission resonances at'a separation of the
order of 100 eV suggests that the Lorentzian, hence

TABLE XXIII. Part of the set of level parameters describing-the simulated cross-section of Fig.
121. The class-II state has fission and coupling widths of I\“ F)=20, I‘x"(c) = 17; the unit for all
parameters is the mean class-I level spacing D .

Class I Coupled S-matrix poles Attempted fit

Ey Dy . Ex Txny Tne B T Ghey Gy Ex Tewm Txwn

2.822 0.0110 2.822 (=)0.0112 0.(4)5 2.822 0.031 0.012 0.(4)7 2.82 0.011 0.(4)4

3.895 0.0114 5.601 0.0797 0.146 5.632 0.132 0.081 0.023 5.63 (=)0.114 0.011

5.626 0.0980 5.655 (—)0.0263 0.134 5.706 0.241 0.0044 0.296

5.788 0.0006 6.055 0.0146 0.306 6.053 0.419 0.024 0.589 6.1 (~)0.019 0.379

6.421 0.0217 7.788 (—)0.0142 1.49%90 7.622 2.153 0.0075 3.5

8.015 0.0036 8.047 0.(3)3 0.202 8.019 0.038 0.0034 0.017 8.02 0.003 0.018

8.596 0.(7)4 8.598 (—)0.(5)4 0.(3)2 8.598 0.035 0.(4)2 0.(3)1

9.247 0.0135 .

9.638 0.0087 9.624 0.0129 0.0104 9.627 0.041 0.012 0.009 9.62 0.012 0.009
10.267 0.0158 10.267 0.0055 1.455 9.853 1.210 0.0077 1.62 9.87 0.0039 0.791
11.657 0.0097 11.667 (—=)0.0079 0.066 11.651 0.071 0.0086 0.042 11.65 (—)0.0088 0.040
12.167 0.(6)23 12.178 0.(4)4 0.0387 12.170 0.047 0.(4)7 12.18 0.(4)3 0.027
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class-II, width approaches this order of magnitude. A
reasonable guess at the parameters of the Lorentzian
might be (I‘W))(Eln)~400 meV, T, +,~50 eV, giving

H2~7.5eV?, T, (,~4.5eV.

The fitting procedure of Lynn and Moses (1980) yields
Type=43¢eV, T 4 =28eV.

Silbert and Berreth (1973) point out that the overall
statistical distribution of fission widths in this inter-
mediate group is peaked (at about 5 meV). This sug-
gests that the distribution of squared coupling matrix
elements may not be as broad as a Porter-Thomas
form, and this could be explained by the hypothesis
that there is more than one effective “channel” for
coupling across the intermediate barrier. (Note, how-
ever, that this is a physical concept that is not con-
tained naturally within the theoretical development of
the coupling matrix element, as outlined in Sec.
II1.C.5.0). The low-lying density of J"=3" states at the
inner barrier is expected to be about 14 MeV™, and the
effective channel number [see Eq. (7.30), Sec. VII.C.1)
might therefore be expected to be ~2.4. However, if
the measured fission widths from 18 to 500 eV are di-
vided by the Lorentzian expectation curve with the pa-
rameters given above, the peak in the distribution re-
ported by Silbert and Berreth is largely washed out,
and the distribution is not too dissimilar from a
Porter-Thomas form. Therefore this case does not
provide us with definitive evidence of “multichannel
coupling.”

The areas and widths of the intermediate resonances
at higher energies have been determined from the data
of Silbert (1969). From the evidence of the detailed
fine structure of the 285 eV intermediate resonance as
well as the apparent size of the higher resonances, it
is clear that fission usually saturates at their center.
Therefore the apparent width of these resonances is
not their true width. The true width is given by the ex-~
pression

s T 1/2
~9lL 2 T (c) - AD ()
) 2[4 Tager+ r"n(f’) * ZN(I',LI(")-% Ty (,))] ’

(6.87)

which is obtained by substituting a Lorentzian form for
the fission width into the competition expression T, ,/
T,.

Another relation between the coupling and fission
widths of the class-II states is obtained from the inter-
mediate resonance areas by use of Eq. (6.19), together
with a fluctuation factor for which we have adopted Eq.
(6.24b). The results of the complete analysis are
shown in Table XXIV. The mean coupling width an ©)
=17.1 eV; this yields (with Dy ~900 eV)

(Va=S,)/Hw,=0.48 ,

or Uy~S,=0.38 MeV if Zw,=0.8 MeV. The mean fis-
sion width Fxn(f) =180 eV is sufficiently large to sug-
gest that the outer barrier for spin J"=3" states is near
or lower than the neutron separation energy. These
values are in qualitative agreement with the deductions
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made in Sec. VII from the behavior of the fast neutron
fission cross section.

c. Intermediate structure in 2*°Pu

239pu is normally considered to be fissile by slow
neutrons, and as such would not be expected to display
narrow intermediate resonances in its neutron fission
cross section. Because the compound nucleus ?4°Pu is
even, however, compound nucleus states having cer-
tain values of spin and parity may still lie near or be-
low the lowest appropriate deformation channel, at
both: the inner and outer barriers. The J"=1* states,
which can be formed by absorption of s-wave neutrons
by 2%°Pu (J"=3"), are expected to be such a set. The 1*
state is not expected as a simple low-lying collective
state in the spectrum of an even nucleus for either
normal or barrier deformations; the lowest candidate
for the intrinsic state in the description of a deforma-
tion channel at the barriers is a combination of a
mass-asymmetry vibration (K"=0") and a bending vi-
bration (K"=17), or a two-quasi-particle (broken pair)
excitation coupled to K"=1*,

For this reason intermediate structure in the 1*
resonances of the 2*°Pu cross section, overlying the
broad 0* resonances in which no more than very rudi-
mentary intermediate structure is expected, has been
sought (Patrick and James, 1968; Paya et al., 1969).
The assumption that the structure is indeed confined to
the 1" resonances has been confirmed by Trochon et al.
(1970) who determined resonance spins by measurement
of the elastic scattering cross section of *°Pu. The
early attempts at analysis employed the autocorrelation
method first applied to neutron cross-section data by
Egelstaff (1958). In this, a sequence of normalized lo-
cally averaged cross sections are defined for a standard
energy interval W by

w o(E)WVE ]
= ————— = 1|dE 6.88
(") [i-z W [(U(E)‘/f> ’ ( )
and serial correlation coefficients
7’k(W)= cov[af(W);ah-k(W)] (6.89)

[vara,(W).vara,,(W)]"/2

are determined. The data can thus be reduced for a

TABLE XXIV. Areas and widths of intermediate resonances
in the fission cross section of **®¥Pu [data from Silbert (1969)].

E)‘Il eV) A)\“ (b.eV) W, (eV) r)\“(n (eV) F)\” (€) (eV)
2000 965 ~400 350 1.8
2900 1340 ~170 48 10
3300 706 ~300 200 2-
4000 950 ~100 ~15 ~25
5600 1200 ~300 180 7
6000 560 ~100 ~17 ~11
6200 360 ~200 170 1.6
6400 460 ~200 160 2.2
6900 ) 630 ~200 130 4
8700 1300 ~600 440 9
9600 970 ~500 370 7




S. Bjérnholm and J. E. Lynn: The double-humped fission barrier 865

1 w’w s

I 1 1 1 1 I 1 1 b |

0 : 50

k
FIG. 122. Autocorrelogram from data on the neutron fission
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range of values of W. A typical correlogram thus pro-
duced from the 2*°Pu neutron fission cross section is
shown in Fig. 122 for W=33.3 eV. The peaks that ap-
pear at energy intervals of typically Ak W= 450 eV are
taken as indications of intermediate resonances with a
local spacing of about that value. Perez et al. (1969)
have shown that this is not a good measure of the av-
erage spacing of the intermediate resonances; if the in-
dividual spacings are assumed to have a quasi-Wigner
distribution with long-range correlations, as described
in Sec. VI.B.3, then the correlogram would rise mono-
tonically to an asymptotic value with increasing k.
Nevertheless, Fig. 122 is strongly indicative of in-
termediate structure, and several of the peak values in

TABLE XXV. Parameters of intermediate resonances and
deduced properties of class-II state in the neutron fission
cross section of 239Py.

Exy (€V) Tjepe (6V) Ky (b.eV¥?) Ty (c) (6V) T s (€V)

982 317 372x10% 6.0 222
1350 133 53x104 1.9 102
1800 150 101x104 4.2 92
2416 266 154x 104 2.7 222
2800 266 264 x 104 5.7 185
3200 - 233 227x104 6.2 151
3817 266 248x% 10? 5.5 190
4517 600 1140 x 104 11.0 449
5217 200 164 %104 5.5 131
5617 316 217x 104 3.7 264
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the correlogram have a probability of occurring from
a purely statistical grouping of fine-structure resonan-
ces of less than 0.1%. James and Patrick (1969) have
returned to the original cross-section data, averaged
in 33.3'eV groups, and attempted to define the inter-
mediate resonances by fitting a curve of the form

10 K)»II
‘ ‘/E =704 Z: , 6.90a
0V Edsss ov T Erg= BN+ (%rln.eff ) ( )
where
89, a0 a0
= g2 1(n) 11te 11
Ky =T4,8%(J) D, T (6.90b)
v 2Iw)\ ¢ T D\1/2
=(rz + 22Au@ - ANy
. (ranr = ) . (6.90c)

The numerical term 706+ eV!/2 is an estimate of the
contribution from the spin O resonances. The para-
meters of the intermediate resonances are given in
Table XXV, and the data are shown in Fig. 123. If the
data are divided by the fitted curve, a relatively
structureless correlogram is obtained.

The average coupling and fission widths from the da-
ta in Table XXV are T, (,=5.2 eV, T, ,=200eV.
The class-II level spacing is D;=515 eV. These re-
sults indicate that the inner barrier for J"=1* states is
about 0.45 MeV above the neutron separation energy
(S,=6.52 MeV). Reference to the barrier height (for 0*
states) of 2*°Pu, quoted in Sec. VII, indicates that the
first 1* inner barrier state lies ~1.4 MeV above the in-
ner barrier. On the other hand the class-II fission
width indicates that there are already about two defor-
mation channels of J"=1* fully open over the outer bar-
rier at the neutron separation energy. This indicates
that the lowest 1* states may occur at a considerably
lower energy in the spectrum of states at the outer
barrier deformation than at the inner barrier, and may
well be related to lack of reflection symmetry in the
shape of the nucleus as it passes over the outer barrier
(see Sec. VII).

The data on intermediate structure in the neutron
fission cross section of 2*°Pu together with that in the
region of 5 MeV excitation energy from the (d,pf) re-
action in the same nucleus give fuller evidence on the
level density behavior of class-II states than we have
for any other nucleus. From the neutron fission cross
section we find that the class-II spacing of ?*°Pu at ex-
citation energy 6.5 MeV is ~500 eV (for spin and parity,
J™=1*). The class-II spacing at 5 MeV in 2*°Pu is de-
duced from the intermediate structure to be ~11 keV
(Glassel et al., 1976); it is inferred [from the strength
of quadrupole fission observed in the angular distribu-
tion of photofission products of 2*°Pu (Rabotnov et al.,
1970), and the angular distributions of the d,pf peaks]
that the spin and parity of these states is J"=2*.

If we assume that the dependence of the class-II level
density on effective excitation energy is similar to that
of class-I levels we can infer (from the level density
parameters in Sec. VII.B.3) that the energy of the shape
isomer state of **°Pu is E; ~2.6 MeV.



866

S. Bjérnholm and J. E. Lynn: The double-humped fission barrier

w
o
o

o

FISSION CROSS-SECTION 0(VE , (beV'2)

s 2 j o % o © o
0%,
NN T Rl S ASR
oo Obo ° ]
, 239py (n,f)
0 1 1 ] / 1 ]
1 2 3 X 4 5
N NEUTRON ENERGY (keV)

FIG. 123. Neutron fission cross section of 3%Pu [averaged over 33.3 eV intervals and fitted according to Eq. (6.90)] with parame-

ters given in Table XXV.

VIl. GENERAL TRENDS IN FISSION ABOVE AND
BELOW THE BARRIER

A. Introduction

In Secs. IV-VI we have discussed all the special in-
termediate structure phenomena that can be expected
as features of the double-humped barrier, and we have
analyzed the considerable amount of data on these.
Apart from such data there is a large amount of fission
cross-section measurements available that do not show
structure related to spectroscopic features of the sec-
ondary well, but nevertheless are directly dependent on
the double barrier and can be made to yield important
information for testing the theoretical development of
deformed nuclear structure and for future use in appli-
cations of nuclear reaction theory.

Because of the wealth of parameters implied by the
double-humped barrier, no single fission cross section
and its functional dependence on excitation energy can
be made to yield a unique set of barrier parameters for
the relevant nucleus. Rather we must assume general
trends for the barriers over the full set of actinides;
being guided to some extent by the theoretical expecta-
tions, and, more importantly, by the deductions al-
ready made from the study of structure effects, prin-
cipally those on yields of spontaneously fissioning iso-
mers. Even with this use of systematic trends we still
find it necessary to assume that certain parameters
are unchanged over the full range of the actinides.
These are principally the barrier penetrabilities (Fw,
and Zwg) and the level densities of intrinsic states at
the barrier deformations. With this assumption of no
variation (other than that due to the odd-even character
of the nucleus) the barrier heights of a large number of
the actinide series of nuclides can be deduced.

B. Statistical transmission coefficients
1. Elastic and inelastic neutron channels

The general concepts of the statistical treatment of
cross sections of reactions that proceed through a
compound nucleus mechanism were introduced in Sec.
III.B. The simplest form of general equation for a re-
action cross section integrated over all angles of emis-
sion of the outgoing particle is written in terms of the
transmission coefficients introduced there as
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07 =08 i - magtr) LT
Z;C”T(ﬁ") 2—/c"T(c")

where the sum over ¢” is to be made over all open

channels. In applying this expression to fission cross

sections in the barrier region of actinide nuclei the

chief competitive processes are neutron emission to

the ground and excited states of the target nucleus,

and, to a lesser extent, radiative transitions to lower

states of the compound nucleus.

If the compound nucleus is excited by the bombard-
ment process to an excitation energy not too much
above its neutron separation energy, and the magnitude
of the compound nucleus formation cross section for
each total angular momentum and parity J" can be cal-
culated fairly accurately, it is possible to use Eq. (7.1)
in a full Hauser—Feshbach (1952) treatment in which the
transmission coefficient for each excited state of the
target nucleus is calculated from its energy of excita-
tion and spin and parity quantum numbers. The full
compound nucleus formation cross section for neutron
bombardment at energy E, of a nucleus of spin I and
parity 7, for example, is

Is1/2 J '
0 pen(E ) = TA? E Z" g &W, DT yr(pisy(E,)  (7.22)
J s=lT-1/21 ¥=1J~sl

from which the components of given J" are deduced. In
Eq. (7.2a) the quantity s is the channel spin in the en-
trance channel and [ is the neutron orbital angular mo-
mentum. The parity 7 of each term within the sum on
the rhs of Eq. (7.2) is implied by the condition

(-1)m=m,.

o =2 g(J) (7.1)

(7.2b)

The contribution of the neutron channels to the sum in‘
the denominator of Eq. (7.1) is
I"+1/ 2

w gw sn=lrm1/2] el d-s%l

T+s*

T 1 o,y (Ey— €500, (7.32)

where €, is the excitation energy of the state #” of the
residual nucleus defining the channel »” and I” is its
angular momentum. The sum over orbital angular mo-
menta !” on the rhs of (7.3) is further limited by the

condition
-V)r=m,., (7.3b)

T ,» being the parity of the excited state of the residual
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nucleus. The subscripts i” and 1”, which with s”, col-
lectively define the channel, will often be denoted simply
by n”.

Expressions for the individual neutron transmission
coefficients can be obtained from R-matrix theory as
follows. The basic expression for the ratio of average
neutron width (in a single channel) of the R-matrix
states to their level spacing is

me<_,2 2P (E,)s ;,/(E,), (7.4)

Jir :

in which P, is the penetration factor of Eq. (3.108) gov-
erning, in this case, the penetration through the centri-
fugal barrier, and's;,; is the strength function describ-
ing the intensity of the R-matrix states just within the
barrier, i.e., ratio of average reduced width ¥3;r,, s
to level spacing D,r; it is governed in principle by the
total angular momenta and excitation energies of the
compound and target (or residual) nuclei, and the or-
bital angular momentum of the emitted neutron, but is
much less sensitive to these factors than is the penetra—
tion factor.

At the relatively low bombardmg energies at which
cross sections are dominated by narrow resonances
the transmission coefficient is deduced by averaging
the cross section [of Eq. (3.41)] over the single-level
Breit—Wigner form to give

T g7 ay =27 ju(yd Dyr . (7.5)

In fissile nuclei at low neutron bombarding energies,
and at higher energies in other nuclei, the resonances
are broader (relative to the level spacing) and the cross
sections have interference, or “many-level” terms that
lead to the breakdown of the simple linear relation
(7.5). From simple considerations of statistical fluc-
tuations in cross sections Feshbach et al. (1954) have
proposed the expression

0 e =R = | T, |?) (7.6)

for the definition of the compound nucleus formation
cross section, T,, being the collision matrix element
averaged over many levels. If U,, is calculated from
R-matrix theory, with the possibility of direct reactions
being ignored, Eqgs. (7.6) and (3.41) lead to

ZWTJ‘II(’”/DJV
(1 +7T—f‘J1r(")/2DJ1r)2 :

TJT(")= . (7.7)
This expression is also obtained by Lane and Thomas
(1958) as a result of deriving [using the reduced R-ma-
trix formulation described in Sec.III.C.3.g(¢i)] the aver-
age cross section for a specific entrance and exit chan-
nel. Their derivation rests on the restrictive assumption
that in all other channels ¢”, which are eliminated from
the reduced R matrix, 270,/D << 1. '
Equation (7.7) is approximated by Eq. (7.5) for small
values of T'(,,/D. Equation (7.7) reaches a maximum
value of umty for 2111"(")/ D=4, and then diminishes to
approach the value of 16/(2711“(”,/D) This asymptotic
part of the behavior of the transmission coefficient is
still a slightly dubious feature. Moldauer (1967) has ex-
amined its behavior through the intermediary of S-ma-
trix theory [see Sec.IlI.C.3.g(iv)], calculating it for
various simple models of the R-matrix parameters. He
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finds that relation (7.7) holds for one, two, and three
channel models with uniform or harmonic behavior of
the reduced widths of the levels. He also finds the re-
lationship

T () ‘
_2_77&9.)_) ('7.8)

T(c,=1—exp(— D

between the transmission coefficient and the S-matrix
partial strength function T (#)/D, giving a connection
between S- matrix and R-matrix strength functions:

27| T | _(nr ) 7T
a3 LA 1 — ) <
4tanh 2 if °D 1
= ~1{Z= () _._(m
4 coth ( 2D> if 5D >1. (7.9)

Numerical parameters for the transmission coeffi-
cients are usually calculated from an optical model of
nuclear reactions, often with specific channels included
by a coupled channel treatment. There are few experi-
mental data to fully validate such calculations, and
since the bulk of our calculations are expected to be
rather insensitive to the details of the individual trans-
mission coefficients we have chosen to use certain ex-
perimental data directly and apply them to a wider range
of nuclides; orbital angular momenta, and excitation
energy of the residual nucleus by the simplest possible
extrapolation. The chosen experimental data are the
neutron strength functions measured in low-energy neu-
tron resonance cross sections of some of the commoner
actinides. These are limited to s- and p-wave nettrons
and have values of s,=0.025 and s, =0.045 for an as-
sumed channel radius of 9 fm. For calculations at
higher neutron energies, for inelastic channels and for
other actinides, we have simply assumed that for all
even values of orbital angular momentum the strength
functions have the value of s, above, and for odd values
of 1 the strength functions take the value of s,.

At higher neutron energies our knowledge of the spec-
troscopy of the residual nucleus involved in such proc-
esses becomes incomplete or nonexistent except in a
statistical sense, describable by a level density func-
tion. It is then necessary to make statistical estimates
of the sum in Eq. (7.3a). A discussion of such estimates
has already been given in Sec.IV.D.1l.a, in connection
with the competitive effects in the process of excitation
of shape isomers. The relevant equations for the total
transmission coefficient for neutron channels is Eq. (4.4)
[note also the extra factor in Eq. (4.6)]. With the com-
mon assumption of a constant temperature form for the
level density,

P(U) =C, exp(U/86,) (7.10)
Equation (4.4) takes the simple form
. 2mao, (o
TJ" (n,tot) = .n,hz 0191(2J+1)felf(Jy 291)
E, .
X 16, exp 5.)" (E,+6,)]. (7.11)

The level density parameters to be used in conjunction
with these equations are described in Sec.VII.B.3. The
value of the compound nucleus formation cross section
can be calculated for one (entrance) neutron channel
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using the strength functions adopted above; as implied
in the derivation of Eq. (4.4) the value of this quantity
is essentially constant above neutron energies of about
100 keV, its value being about 2.9 b.

2. Radiative transitions

At the present state of knowledge the competitive role
of radiative transitions in the compound nucleus pro-
cess must be treated entirely on a statistical basis. An
individual transmission coefficient for y-ray emission
of energy ¢, from highly excited states of energy E and
total angular momentum and parity J* can be written

27T« y
TJw(y)(E)’—‘*—Ef"—(—)' =2nF(E, y), (7.12)
where F(E, ¢,) contains the energy dependence of the
transition matrix element as well as the phase space
dependence s%**! depending on the multipolarity Lm L
of the transition concerned. The total radiative trans-
mission coefficient is therefore

27 v
_ J (Y, tot)
TJ”(r.tot)(E)“ Dﬂ
J+L
=f e, F(E &) 2. 22 pOE-end}),
(o] L J,:IJ Ll

(7.13)

in which p‘?(U,JY) is the level density of the normal
states of the compound nucleus at excitation U.

There is still a choice of model for the transition ma-
trix element and its related energy dependence F(E,¢,).
There are two principal models of practical use at the
present time.

In the Weisskopf strong coupling (SCD) model it is as-
sumed that the spectral behavior F(¥,¢,) depends only on
the phase space factor, E,Z,L ", For the purposes of com-
petition by radiation in particle emission and fission
reactions we consider only dipole radiation, L =1, as
being a significant contributor to the radiative process,
so-we set

‘ F(E,a,)=Cys§ (7.14)

and calculate the total radiative transmission coefficient

from Eq. (7.13). The constant C, can be determined for

actinides by adjusting the radiation width for slow neu-

tron capture by 23%U to the .experimental value of 24 meV

(s-wave resonances corresponding to levels in 2**U with
=3).

The alternative model that is in general use is the
giant dipole resonance (GDR) model. A more plausible
model than the SCD, it is based on collective models of
the giant dipole resonance observed in photonuclear ab-
sorption. From the form of the photonuclear cross sec-
tion as given by the model of Goldhaber and Teller (1948)
it can be deduced that the appropriate spectral factor is

_8NZ e? (1+0.8x)
"3 A fic  mc?

Ty

F(E,¢
( @)+ (T

(7.15)

where e is the electron charge, c the velocity of light,
x the fraction of exchange force between neutron and

proton in the nuclear Hamiltonian [ Levinger and Bethe
(1950)], and m the nucleon mass. For uranium and its
neighbors the photoresonance narameters have values
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E; ~13 MeV, I; %4 MeV. A more exact form of the
spectral factor that is suitable for deformed nuclei is

8 NZ €* (1+0.8x) 8x) T,.e!
FE &) =3 1 70 ™ me? Z( >(a2 BTy e
(7.16)

Veysiére et al. (1973) give the following parameters for
the two dipole components:

E ;=11 MeV, T, .=2.9 MeV
E,;=14 MeV, T,,=4.5MeV.

The two models can be tested by their ability to repro-
duce the energy dependence of neutron capture cross
sections and the capture gamma-ray spectra resulting
from thermal neutron capture. However, the choice of
level density model and parameters strongly affects
the results of the calculations. Hence, the first kind of
experimental datum is used to establish the effective
temperature 6 for the low-energy level densities of
actinides (see Sec. VII.B.3), this temperature thus being
dependent on the radiative model. It turns out that the
SCD model requires a temperature 6 of 0.55 MeV to fit
the neutron radiative capture cross section of 2*®U up to
3 MeV neutron energy. The temperature for the GDR
model is 0.5 MeV, and this is much closer to the value
implied by other evidence on the level density (such as
neutron inelastic scattering).

With the appropriate value of the level density tem-
perature taken as a fixed parameter for the model, the
gamma-ray spectra can be calculated. In these calcu-
lations it is assumed that the secondary gamma-ray
transitions of the cascade are governed by the same
model as the primary transitions. The calculation for
the SCD and GDR models are compared in Fig. 124 with
experimental data from thermal neutron capture by
238y. Agreement is not very good for the SCD model,
but is distinctly better for the GDR model. Therefore
the GDR model is adopted for the purposes of further
analysis of fission cross-section data in this review.

3. Level densities for neutron and radiative channels

It is generally believed that the main contribution to
the nuclear level density at moderate to high excitation
energies comes from the combinations of nucleons (or
quasinucleons) independently excited from the nuclear
“vacuum” or ground state. To first order the indepen-
dent-nucleon model gives rise to the well-known Fermi-
gas type of level density relation:

(2J+ l)e-(l+l/2)2/202

o(U,J7™) = PP GTyve o(0), (7.17a)
‘/— 2U)t/ 2

o) = 5 Sragara - (7.17b)

02=0.088q6A%%, (7.17¢)

6=(U/a)*'?, (7.174)

a=m%p,/6. (7.17e)

The predominant parameter here is g, which is related
to the average density p, of single-nucleon states
around the Fermi energy of the nucleus; the width of
the averaging function being of the order of the temper-
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FIG. 124. Gamma-ray spectra resulting from low-energy neutron capture by 38y and ¥%Th compared with calculations on the

strong coupling dipole and the giant dipole resonance model.

ature 6. The spin-dispersion parameter ¢ is also re-
lated to p, as well as to the spin distribution of the sin-
gle-nucleon states; the numerical coefficient adopted in
Eq. (7.17¢) comes from a gross assessment of the spins
of all the bound single-particle levels and is not ex-
pected to be an accurate value for individual nuclides,
because the actual coefficient depends most strongly on
the spins of the single-particle orbitals around the
Fermi level. '

The effective excitation energy U appearing in Eqgs.
(7.17) is adjusted from the true excitation energy E by
an amount which depends on the odd or even nature of
the nucleus. This adjustment was originally introduced
empirically (Hurwitz and Bethe, 1951), but is now
understood as an asymptotic consequence of the more
realistic model of independent quasinucleons. The
quasinucleons emerge as a consequence of the short-
range pairing force between nucleons which results in
all nucleons paired in single-particle orbitals becoming
involved in a correlated motion which depresses the en-
ergy of the correlated state. It costs energy to create
the quasiparticles by placing unpaired nucleons in par-
ticular orbitals. This energy cost is over and above
that from the single-particle energies due to different
occupation of the orbitals, and at the lowest level it
amounts to an energy gap 2A. In an even nucleus this
gap separates the ground state from the lowest of the
noncollective states, which have the character of two
quasiparticles. In an odd-mass nucleus it separates
single quasiparticles from three quasiparticle states.
The availability of an increasing number of quasiparti-
cles to form independent quasinucleon states gives rise
to a rapidly increasing density of such states (by simple
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combinatorial considerations). According to this model
there are sudden jumps in density at energy intervals
of approximately 24, but numerical calculations indi-
cate that the sharpness of the jumps becomes very
much reduced at the higher excitations. Because of
this smearing it appears that the level density can be
approximated by a constant temperature form, Eq.
(7.10). An odd nucleus is already expected to have a
high density of two quasiparticle states at very low ex-
citation energy. This density will be roughly equal to
that of an even nucleus just above the energy gap at E
= 2A, although rather lower than that of an odd-mass
nucleus at this excitation energy. Thus even at low ex-
citation energies an odd-even effect in level densities,
and hence the need for a possible adjustment in effec-
tive excitation energy, is found to exist.

At somewhat higher energies a certain “critical en-
ergy” is expected in the quasiparticle model, above
which the single-particle orbitals around the Fermi en-
ergy are mostly occupied (statistically) by unpaired
nucleons, and the operation of the pairing interaction
in forming a correlated state is thereby inhibited.
Above this critical energy the independent-nucleon mod-
el, described by Eq. (7.17), of level densities gains a
certain validity. However, the depression of the corre-
lated ground state by the pairing force gives rise to a
modification of the effective excitation energy to be
used in Eq. (7.17). For an even nucleus the effective
lowering of the ground-state energy, and hence the cor-
rection to be subtracted from the true excitation energy
to give the effective excitation energy U, is

E-U=

B

PAZ. (7.18a)
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TABLE XXVI. Values of empirical even proton and neutron
number excitation energy corrections for the independent-
particle model level density formulation. Bracketed values
are assumptions; other values from Gilbert and Cameron
(1965).

z P(Z) N PN)
90 0.78 138 (0.60)
92 0.69 140 0.60
94 0.61 142 0.57
96 0.72 144 0.49
98 0.78) 146 0.43
148 0.50
150 0.39
152 (0.45)
154 (0.45)

For odd mass and odd nuclei this correction should be
reduced by the amounts A and 2A, respectively, as
discussed above. In practice empirical corrections are
usually employed for the effective excitation energy.
Gilbert and Cameron (1965) give

U=E - P(Z) - P(N), (7.18Db)

the P functions being zero for odd values of proton and
neutron number. The values of P for even Z and N,
which we use in our own analyses, are given in Table
XXVL In normal use, the Fermi-gas level density for-
mula employs the effective excitation energy Eq.
(7.18b), and the constant a is empirically adjusted to
observed level densities from neutron resonance spec-
troscopy.

Direct numerical calculations of level densities in
both the independent nucleon and quasinucleon models
have been made, the actual density of combinations
from the detailed spectrum of single-particle orbitals
being computed. For deformed nuclei such calculations
describe the density of intrinsic states; they therefore
fall far short of the level density actually observed be-
cause there is a large contribution of collective states
of rotational character (Bjornholm, Bohr, and Mottel-
son, 1974). The contribution of these depends directly
on the density of the intrinsic states, the latter being
assumed to be the bandhead states of the rotational lev-
els. To obtain the full functional dependence on energy
and angular momentum it is necessary to know, or as-
sume, a spin dependence for the bandhead states. In a
deformed nucleus with axial symmetry the projection £
of the angular momentum of a particle or quasiparticle
on the symmetry axis is a good quantum number. Sev-
eral independent particles summing their spin projec-
tions in a statistical manner to give a total spin projec-
tion K can therefore be expected, to good approximation,
to give rise to a Gaussian distribution for the depen-
dence of the bandhead level density on this quantity:

peu(U) )
ox(2m)

-Kz/za?{

peu(U,K)= e (7.19)

In this expression both positive and negative values of
K are implied. Infact, for a reflection and axially
symmetric nucleus (the latter is a necessary condi-
tion for K to be a good quantum-number) the allowed
states must necessarily be a correctly phased combina-
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tion of a wave function of positive K and its conjugate
form with negative K. By convention these states are
assigned positive K values only, and in this case an
extra factor of 2 must be included on the right-hand
side of Eq. (7.19) to achieve normalization. In the spe-
cial term with K =0 this would seem to imply an imbal-
ance in the density of such states. In fact, the condition
of symmetry on rotation through 7 about an axis per-
pendicular to the symmetry axis of the nucleus, which
is assumed to be a normal condition of the states we
are discussing, leads to the omission of every alternate
state from the rotational sequence built on the K=0
bandhead. Invariance of the eigenstates to the operation
of rotation through 7 implies the existence of a quantum
number » with eigenvalues +1. The members of the ro-
tational band have allowed angular momentum (-1)/=7.

Thus, to a good degree of accuracy, the total density

of bandhead and rotational states will be obtained by us-

ing Eq. (7.19) for K =0 states without the extra factor of

2 required for K # 0 states by the condition of m-rota-

tional symmetry.

Examination of the Nilsson model of single-particle
schemes in the actinide region indicates that for single-
particle neutron levels (2%)!/?~3.5 and for single-par-
ticle proton levels (£22)1/2~3.0. This leads to an esti-
mate of o,~(2r)'/2X 3.25 at about E~(2x+1)A for an
even nucleus, and at correspondingly lower energies
for odd mass and odd nuclei.

The total density of nuclear states as a function of ex-
citation energy and total angular momentum I is finally
determined by adding to the bandhead density the con-
tribution of the rotational states:

I-1

pU,D=poy(U,K=D+ 35 p (UK, D)
)

K==(I~1

(7.20a)

Dear Uy K, 1) = P [U-{z<1+1>_Kz}g,K], (7.200)

where 9 is the effective rotational moment of inertia of
the nucleus about an axis perpendicular to the symmetry
axis. If the bandhead density has a simple constant
temperature form [as Eq. (7.10)] then we obtain

AR B (¢ 41 1)11—1’2"

__Ce -
ox(2m)172 e pl_ 290 S

7z 1 >]
X (L
e"p[K (299 202/)"
For small values of the coefficient (%2/296 —1/202)
(compared with I?) this expression tends to the form

(7.21)

oAU, I)= (21 + 1) 141/ 2% (7)) | (7.22a)
where

o=(96/n?"2, (7.22b)
and

polU) = ?,{Cz%”" ev’e, (7.22¢)

For states of low angular momentum this represents an
increase over the density of bandhead states alone by
a factor of approximately 20%.

With this rotational enhancement effect it is possible
to make explicit calculations of level densities from the
independent-particle and quasiparticle models that can
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be usefully used in analysis of cross-section data. This
is the approach adopted in the work of Gavron et al.
(1976). In our analysis of data for this review we have
preferred to adopt empirical information on level den-
sity parameters, using the formulations outlined above
for purposes of interpolation and extrapolation.

In this spirit we employ a level density analysis based
on the approach of Gilbert and Cameron (1965), but with
a special treatment of the very low-energy regions of
even and odd-mass nuclides. This very low-energy re-
gion is just the energy gap E=0-2A. For even nuclides
the energy gap contains only a very few levels of col-
lective type, such as beta, gamma, and octupole vibra-
tions with their accompanying rotational bands. The
levels of odd-mass nuclei consist mainly of single
quasinucleon excitations, again accompanied by rota-
tional bands. A crude level density approximation to
these spectra would be, in first order, simply indepen-
dent of energy, and this we have adopted, except that in
very many of our analyses the detailed spectra them-
selves have been used in this energy gap region. With
an energy-independent level density form

p(U, J7)= C(2J+ 1)e- W1/ 2%/ 2% (7.23)

the values of C and ¢ have been chosen as C= 0,225
MeV ™, o=~4 for even nuclides, and C~0.625 MeV ™, ¢
= 4.5 for odd-A nuclides. '

At intermediate energies we have adopted Gilbert and
Cameron’s suggestion of a constant temperature form

B, dT)= C(2J + 1)e™ W1/ 2%/ 20%E /6 (7.24)

The data required to parametrize this formula for the
actinides are very sparse. In particular, for the value
of the spin-dispersion coefficient 0 we have resorted

to calculated estimates as given by the independent-par-
ticle formula, Eq. (7.17), and the rotational band en-
hancement, Eq. (7.21). The consensus of such values is
collected in Table XXVII. Some theoretical guidance is
necessary for the values of the constant C also. Ex-
périmeéntal spectroscopic evidence (which again is much
sparser than we would wish) indicates that C= 3.5 for
odd actinides. Our discussion of the quasi-independent
nucleon model indicates that this should be reduced by

a factor of approximately e™/¢ for odd-A nuclides and

e ?2/8 for even nuclides. The temperature 6 has been
determined from a selection of nuclear reactions, sub-
jected to statistical theory analysis. The spectra of in-
elastically scattered neutrons from ***U and ***Th, with
neutron bombarding energies up to 5 MeV, have been
measured by Batchelor et al. (1965) and analyzed to
give 6~ 0.45-0.5 MeV. We have analyzed the neutron
radiative capture cross section of ***U up to 3 MeV [as

TABLE XXVII. Level density parameters for the actinides at
intermediate excitation energies (except where temperatures

are modified by Table XXVIII). Constant temperature forms

of type p(d™) = (2J + 1) e~ (741/2)2/20% Ce®/® are assumed.

c e
Type Energy range = (MeV ™) (MeV) o
Even 1 MeV—Ep ©0.225 0.5 5.3
0dd-A 1.2—Ep 0.9 0.5 6.1
Odd 0—Ep 3.75 0.5 6.1
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evaluated by Sowerby et al. (1974)]. This depends on
the temperature representing the level density of re-
sidual states in #*°U involved in inelastic neutron com-
petition as well as the temperature of the final states
excited by primary radiative transitions in #°U, The
calculation of the radiative transmission coefficient
from the latter level density also involves an assump-
tion about the radiative mechanism. With the assump-
tion of the GDR model (see Sec. VIIB.2) the final (com-

. mon) temperature for the two level densities that best

fits the data is 6=0.5 MeV. The choice of the SCD
model is 6=0.55 MeV. We consider that the best con-
sensus of experimental data for the actinides yields 6
=0.5 MeV. The collected parameters for this inter-
mediate energy region are given in Table XXVII.

At higher energies the independent-particle model
formulation, described by Egs. (7.17), has been adopted
for our analysis. The value of the Fermi-gas param-
eter g has been fixed by the data from neutron reso-
nance cross sections at an excitation energy equivalent
to the neutron separation energy of the compound nu-
cleus. The Fermi-gas parameters of nuclides for which
neutron resonance data have not been measured have
simply been assumed by extrapolation from neighboring
nuclides. We have defined the energy E;, demarcating
the intermediate energy regime from the higher-energy
regime by the simple condition of equality between the
density given by the constant temperature formula to
that of the independent-particle formula. In some cases
the energy E;, cannot be so defined, the density from
the latter formula being everywhere lower than that of
the former at excitation energies lower than the neutron
separation energy. In these cases we have assumed
the intermediate energy region to include the neutron
separation energy and we have adjusted the tempera-
ture so that Eq. (7.24) reproduces the neutron reso-
nance density. The collected parameters for the acti-
nides are given in Table XXVIII,

C. Transmission coefficients for fission

1. Statistical expressions

The statistical theory for fission decay through the
double-humped barrier has been treated in Sec. IIL.B.
From Eq. (3.49) for the fraction of decay by fission we
see that the statistical transmission coefficient for fis-
sion can be written in terms of transmission coeffi-
cients across barriers A and B separately as

TwTw)

(7.25)
T+ T z) )

T 4=

(with neglect of the very small transmission coefficient
for decay of class-II states by particle or radiative
emission). The calculation of the statistical transmis-
sion coefficients T 4, and T, is based on the original
statistical theory of Bohr and Wheeler (1939) and the
transmission coefficient of Hill and Wheeler (1953) for
quantal tunneling through an inverted parabolic barrier
[see Sec. IIL.A.1.b(iii), Eq. (3.17)]. Denoting either A
or B by D the required expression is
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TABLE XXVII. Level density parameters for the actinides at higher excitation energies. Brack-
eted entries of 2 and Ejp are assumed values. Entries labeled + are from Gilbert and Cameron

(1965). Neutron separation energies S, are from the tables of Wapstra and Gove (1971).

I
(ground 6 Ep @ S, D(0%,S,) DS, Dy (S,)

Nucleus  state) MeV) (MeV) (MeV?) (MeV) (V) eV) (eV)
28Th 0* 7.134

229 .g.* (3.27)  (31.6) 5.233

230 0* 4.7 29.31 6.787 4.13 0.39 0.41
231 (.25.*) 3.27 31.6 5.129 16.5 8.25 7.7
282Th o* 4.45 29.44" 6.431 7.56

233 @ 3.27 31.6 4,789 36.0 18.0 16.7
4 0" (4.45)  (29.44) 6.179

2ipy % 3.82 28.76* 6.863 (1.033)

22pgy 2,3) 3.6 29.0 5.567 3.46 0.46 0.41
233pgy % 4.0 28.88* 6.511 (1.79)

2py 4" 3.1 29.8 5.197 5.26 0.69 0.69
22y 0* 5.0 27.97* 7.278 2.41 0.22

283y -;.* 44 29.05 5.737 (8.54) 4.31 4.1
By 0* 0.519 26.79* 6.840 8.43 0.804 0.6
5y 5 4.4 29.05* 5.307 (22.7) 11.5 10.6
236y o* 4.17 28.51% 6.536 6.43 0.49 ~0.5
My % 4.4 29.05 5.129 (32.9) 16.9 17.3
238y 0* 3.87 28.51 6.144 12.4 3.1 2.5
29y .25. 3.36 30.5 4.863 (36.6) 18.3 20.8
20y (3.87)  (28.51) 5.924

24 Np 0% (0.518) 6.119 1.98

235Np % (0.5) 6.992

236 Np 69 (0.518) 5.691 4.53

23TNp ¥ ' 5.0 27.37* 6.591 2.6 0.45

238 Np 2* 0.518 28.0 5.486 6.85 0.59 0.69
239Np .g_* 6.227

235py g. 6.25

236py o* 7.357

23Tpy (%’) 5.859

288py 0* 3.97 28.51 6.998 2.32

29py ¥ 5.4 28.0 5.657 14.5 7.3 9.5
240py 0* 4,15 27.41* 6.524 7.99 2.0 2.25
Uipy ; 4.4 28.5 5.243 28 14.0 12.7
22py 0* 3.6 29.0 6.305 7.44 0.67 ~0.65
U3py 3.5 29.5 5.043 29.6 14.8 17
epy o* (3.6) (29.0) 6.018 10.7

#5py 2.66  32.0 4.76 23.6 11.8 <14
240 Am 37) 5.94

21 Am -:- 0.518 26.0 6.66 (2.54)

242 Am 1- 0.528 27.2 5.535 7.5 0.75 0.77

(I.S. 57)
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I
(ground 9 Ep a S, D(0*,S,)  D;_y(S,) D, (S,)

Nucleus state) (MeV) (MeV) (MeV) (MeV) (eV) (eV) (eV)

23 Am g 0.518 26.0 6.425 (4.57) 0.33 <0.67
¢0.049 (refers to
for #2™Am) 1.S. target)

24 Am 0.509 28.2 5.365 7.07 0.70 0.67
U5Am (0.528) 6.047
U6 Am (0.528) 5.06
AT Am (0.528) 5.86
2icm (.12:) 0.521) 6.07 9.71)
#2cm 0* (0.534) 25.7 6.972 9.53
3cm % 0.521) 275 5.705
Uem 0" (0.534) 25.7 6.796 13.2
A5cm £ 0.521 27.5 5.52 28.4 14.2 14.8
#6cm 0* 0.520 25.7 6.452 18.2 1.54 1.55
247cm 0.544 27.0 5.156 85.3 42.7 40.8
U8Cm 0" 0.504 26.5 6.209 20.0 1.33
9cm 0.495 29.5 4,713 81.7 41.3 35
%0cm (0.504) 26.5 5.91
9Bk % 0.5) 6.214 (4.46)
250K 2" 0.5) 4.968 12.9
U8 cf 0" 7.03
29 o 3 5.60
250cf o* 0.51 27.5 6.62 10.3 0.68 <1.2
281 cf Y 5.11
252 cf o+ 6.17
2588 Cf (.;.*) 3.4 32.0 4.83 (33.8) 16.9 16.0

TyrpNE)= f de pple,J™) [1 + exp (—
[

7wy

2m(E — v, e))]'l,

(7.26)

where p,, is the density of intrinsic states x, at the bar-
rier deformation n,. We assume henceforth, unless
specifically stated, that this has the constant tempera-

ture form

Tyripy= 0pCp(2T + 1)e™ 01/ 2%/ 20%{ [exp<E '9;”"

. [2' (ym

)—1]+2ex

fiwp

pp(U, I7) = Cp( 2+ 1)e™ I *1/ 2)%/205,U/6p ,

873

(7.27)

the effective excitation energy U being measured from

the

peak barrier potential V.

By using Eq. (7.27) simple approximations can be

2mn 8, +nwy,

The terms neglected in the second square bracket of the
rhs are of order (%w,/276p)* and higher, and those neg-
lected in the third square bracket are those remaining
after the practical computational summation at n=n_.

For E<V,

Rev. Mod. Phys., Vol. 52, No. 4, October 1980

found for the barrier transmission coefficients. For E
> Up
E-Up fiwp 2 "
p(——)(_> m2/124++ -
9D 2179D [ ]
— 2mn(E —‘UD)) ]
XP( A R 7.28)
nwp (
T —
Trrpy=0pCp(2J +1)e~ W1/ 2"/ 205
2mn(E - Vp)

x Z (=)™t nwp
n=l

2mnb, -nw,

exp (

W,

).

('7.29)



874 S. Bjérnholm and J. E. Lynn: The double-humped fission barrier

If we consider only the leading term of this we see that
for E <V, the transmission coefficient can be de-
scribed as the product of the Hill-Wheeler transmis-
sion factor and an effective number of (degenerate)
channels equal to

Opliwp )

36, —nw, (7.30)

Nege™ Pp(E —Vp, J”)(

2. Level densities of intrinsic states at barrier
deformations

It is believed that the density of intrinsic states at ex-
tended deformations of the nucleus, such as those of the
barriers, can be accounted for by models such as the
independent-particle models discussed in Sec. VIL.B.3
with the addition of rotational state enhancement. Such
models have been used directly in analysis of fission
cross-section data, notably by Britt et al. (1973), the
basic single particle level schemes required for the
computations being taken from the work of Bolsterli et
al. (1972) [described briefly in Sec. IILA.1.c(i4)].

As a consequence of the Strutinsky theory on nuclear
energies as a function of nuclear deformation it is ex-
pected that the single-particle state densities at the
Fermi energy for the barrier deformations of actinide
nuclei should be considerably higher than those at the
stable or meta-stable deformations. This has two con-

' sequences for the density of intrinsic states. One is
that the energy gap in the density of barrier states
should be greater than those at stable deformations.
The other is a tendency to an increase in the level den-
sity owing to the increase in the Fermi-gas parameter
a, Eq. (7.17e). Calculations based on the independent
quasiparticle model that include both these effects indi-
cate that the net effect is a reduction in level density at
the barriers at effective excitation energies up to about
8 MeV (Britt et al., 1973). These effects are expected
to be greater at barrier A than at barrier B, at which
reflection asymmetric shapes are calculated to have
several MeV greater stability than symmetric shapes,
with consequent decrease in single-particle state den-
sity. At barrier B, therefore, it can be expected that
the density of independent quasiparticle states will be
quite similar to that of the stable nucleus.

On the other hand, lack of symmetry of the nuclear
shape at the barrier deformations can increase the
contribution of the rotational states built on each inde-
pendent particle bandhead (Bjgrnholm, Bohr, and Mot-
telson, 1974). The simplest enhancement of rotational
states is exhibited by a deformed shape which violates
both the parity operation ® and that of rotation through
m about an axis perpendicular to the symmetry axis &,
but invariant to the product of these operations, which
describes reflection § in a plane containing the sym-
metry axis. This invariance implies that eigenstates
with K (spin projection on the symmetry axis)= 0 have
quantum number s=x+1, Unlike the states with & in-
variance (discussed briefly in Sec. VILB.3) with quan-
tum number »=x1, the rotational bands built on these
states have a complete sequence of angular momentum
but their parity is constrained by the condition 7
=s(-1)%. States with K> 0 also have a complete se-
quence of angular momenta in the rotational band and
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" also have both parities for each rotational state. Thus

the density of rotational states is just twice that in
which the nuclear shape is invariant to the ® and & op-
erations. The nuclear energy calculations described
in Sec. IL.A.1.d(iii) indicate that § invariance but lack of
& invariance is the condition to be expected for the nu-
clear shape at the outer barrier deformations.
Maximum enhancement of the rotational states is ob-
tained when the nuclear shape is completely lacking in
symmetry. In this case the nucleus will be able to make
collective rotations about the three (perpendicular)
body -fixed axes, with the result that there will be 27+ 1
different states for every value of rotational angular
momentum ] in each rotational band. If each of these
states is labeled by a number 7, the total level density
based on a density of bandhead states pg(U) is

2I+1

pE,1)= 2 paylE —E(r,D)]

T=1

~(2I+1)pgy(E) (7.31)

if E_ (7, ) is much less than the temperature 8 of the
level density formula for pgy. For this expression we
note that the density of bandhead states will be approxi-
‘mately double that of axially symmetric nuclei because
K is no longer a good quantum number and states of
negative K therefore contribute independently to the ba-
sis. Equation (7.31) is thus higher by a factor ~o,(8m)*/?
than the density for an axially symmetric nucleus with
® invariance, Eq. (7.21).

The rotational states of the completely asymmetric
nucleus can be built up from basis states of specified
symmetry with respect to rotations through 7 about the
three body -fixed axes. The quantum numbers for these
rotations fall into four sets: (»,7,7;)=(+1,+1,+1),

(+1,-1,-1), (-1,+1, 1), (-1, -1,+1). Any one of these

sets is appropriate for the description of a single ro-
tational band of a nucleus that lacks axial symmetry but
otherwise possesses the symmetry of an ellipsoid. This
is expected to be the condition of the deformed nucleus
as it passes over the inner barrier A. The density of
its rotational states therefore is expected to be one
quarter of the density for the completely asymmetric
nucleus, i.e., 0,(7m/2)'/? times that of the normally de-
formed nucleus with axial and ® symmetry [Eq. (7.22)].

These theoretical expectations on the intrinsic state
densities at the barrier deformations are at least semi-
quantitatively confirmed by an analysis of the data on
fission cross sections. In this analysis we are guided
by the relative heights of barriers A and B as deter-
mined by the study of shape isomer yields (Sec. IV.D),
and, where these give no information, the calculation of
energy surfaces, (Sec. ILA.1). From this evidence it
is clear that the outer barrier of Cm, Am, and, toa
lesser extent, of Pu, nuclides is much lower than the
inner barrier.

The trend of this evidence indicates that the two bar-
riers will be of comparative height for U and Np nu-
clides. The theoretical evidence indicates a higher
outer barrier for the Th nuclides. The magnitudes of
the cross section, well above the barrier, depend main-
ly on the higher barrier, both on its height and the den-
sity of intrinsic states, Neutron competition, the main
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factor in which is the normal level density, provides the
measure of the latter quantity. After making due allow-
ance for the effect of barrier height it appears that the
fission cross sections of Th and Pa nuclides are rela-
tively weaker than those of the Pu and higher charge
nuclides. The numerical factors for enhancement of the
barrier state densities over the level densities of nor-
mally deformed nuclei turn out to be ~4 for barrier A
and ~2 for barrier B.

Owing to the wide range of numerical parameters,
chiefly of the rotational enhancement effects, permitted
within our current theoretical understanding of the bar-
rier level densities, we have based our analysis of fis-
sion barriers, so far as possible, on experimental
evidence for these densities. This experimental evi-
dence is essentially limited to the fission cross sec-
tions themselves. But the deduction of su