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A pedagogical discussion of the Yang-Mills quantum theory is presented. A somewhat unconventional
description makes use of physical, quantum-mechanical ideas, rather than of formal, mathematical
developments. The purpose is to highlight those aspects of the model which have been exposed in the last few
years by semiclassical methods, but without using semiclassical approximations. This requires a careful
treatment of the non-Abelian gauge symmetry present in the theory.
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t. INTRODUCTION

Non-Abelian gauge theories, of the kind developed by
Yang and Mills (1954), have become the focus of wide-
spread interest, owing to their central role in two cur-
rently popular models for fundamental physical pro-
cesses: the "electroweak" quantum flavor dynamics'
and the "strong" quantum chromodynamics. ' We have
arrived at Yang-Mills gauge theories from both phys-
ical. , phenomenological as well as theoretical, abstract
considerations.

The history of the gauge principle begins with the
analysis by Weyl (1950a) of gravitational theory and
electrodynamics. Motivated by a desire to extend this
principle to isospin transformations, and evidently un-
aware of the interesting precursor Klein (1939), nor of
simultaneous work by Shaw (1955), Yang and Mills pro-
duced the celebrated model. However, successful ap-
plication of their ideas had to await the maturation of
our understanding. Qn the one hand, the practical im-
portance of vector meson partic les, which bec arne evi-
dent through the work of Sakurai (1960) and others,
pointed again to Yang-Mills theories, since they involve
vector fields. On the other, theorists learned how to
quantize and renormalize non-Abe lian gauge theories; and,
most importantly, it was shown that the gauge sym-
metry can be spontaneously broken by the Goldstone-
Higgs mechanism, so that the gauge fields can describe
massive vector mesons, while still retaining their re-
normalizable interactions. This then led to the first
successful description of physical reality in terms of
SU(2) S U(1) Yang-Mills fields coupled to fermions and
symmetry-breaking Higgs scalars (quantum flavor dy-
namics): the Weinberg-Salam model, unifying electro-

magnetic with weak interactions, where the gauge fields
are identified with the massless photon, and with the
hypothetical massive vector mesons mediating weak in-
teractions (Weinberg, 1967; Salam, 1968).

The importance of Yang-Mills theory for strong in-
teractions derives from the fact that. this is the only
dynamical model whose forces become negligible at
short distances, a phenomenon called "asymptot'ic
freedom" ('t Hooft, 1972; Gross and Wilczek, 1973;
Politzer, 1973). Consequently, SU(3) Yang-Mills
fields coupled to quarks (quantum chromodynamics)
appear to provide the only realistic framework that
can accommodate the MIT/SLAC experiments on
high-energy lepton-nucleon scattering. The further
discovery by MIT/SLAC experimentalists of the J/g
particles left few skeptical about the physical impor-
tance of non-Abelian gauge fields, which, however, are
not identified with observed particles, but merely pro-
vide the "glue" that keeps the quarks bound inside had-
rons, so strongly that they are permanently confined.
(These ideas about strong interactions await definitive
theoretical proof. )

Of course the Yang-Mills field equations ha.ve not
been solved exactly, not even in the context of classi-
cal field theory. Our understanding was originally
achieved by perturbative methods. 'The initial ap-
proaches to the quantum theory made much use of our
knowledge of the completely solvable noninteracting
limit, as well as of the well-understood, perturbatively
solvable quantum electrodynamics, which was perceived
as a simple paradigm. This approximate, perturbative
development yielded a picture of the quantum theory
which possesses many physically desirable features,
but still leaves much uncertainty about how thoroughly
successful is the account of natural phenomena. '

In an attempt to uncover further properties of the
theory, we turned to nonperturbative, semiclassical
approximation methods, which showed the model to
possess a much richer physical content than had been
heretofore appreciated. ' Thus while we still cannot
say that we know completely the physical predictions of
Yang-Mills theory and that they agree with observed
phenomena in all aspects, we have in hand an excellent
candidate for a model of fundamental physics.

The recent nonperturbative results have been largely
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02139.

~For a review, see Taylor (1976).
For a review, see Marciano and Pagels (1978).

For a review of Yang-Mills quantum theory, ' which however
does not cover the recent results summarized here, see Fad-
deev and Slavnov (1980).

4For a review of the recent nonperturbative results, see
Coleman (1977, 1979), Jackiw (1977), and Zackiw, Nohl, and
Rebbi (197S).
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F"'—0

~, = 8,+@[A„,

(2)

(3)

The diagonal metric which we use, g~, has diagonal entries
(1,—1,-1,-1); &~ is the totally antisymmetric Levi-Civita
tensor with & =1. Throughout 5 and c are set to unity.

viewed as additions, corrections, and modifications of
the initially developed physical picture. Yet it is pos-
sible now, with the hindsight of the semiclassical an-
alysis, to realize that the original development suf-
fered from omissions and oversights which can be cor-
rected without recourse to any approximation method.
Rather, when closer attention is paid to the canonical
derivation of the quantum theory, we can find much of
the recently discovered behavior, not as a semiclass-
ical feature of the quantum theory, but as a conse-
quence of general quantum-mechanical principles when
realized in the Yang-Mills model.

In this article, I present a pedagogical discussion of
how to quantize Yang-Mills theory, with emphasis on
the unexpected aspects, which, however, will be seen
to arise quite naturally when the derivation is carried
out in a definite way. Analogy will be drawn to famil-
iar, quantum-mechanical examples exhibiting similar
behavior in simple, well-understood settings. I shall
not be following the operator route to the quantum
theory based on the electromagnetic, Coulomb-gauge
analogy. Nor shall I begin with the functional integral,
which leaves properties of the states obscure. However,
as will be seen, both these conventional approaches can
be found at the end of the present development.

Few new results, save the unified framework, are of-
fered. Nevertheless, I trust that an audience including
not only particle physicists, but also relativists and

mathematicians, will find the presentation instructive.
I suspect that a similar development can be carried
through for the recently posited CP" models, as well
as for gravity theory. This should be done since it may
very well produce new insight into these difficult-to-
solve examples. Some initial investigations already ex-
hibit this (Deser, Duff, and Isham, 1980; Friedman and

Sorkin, 1980; Isham, 1980).

II. DESCRIPTION OF THE YANG-MILLS
THEORY

The basic dynamical variables of the Yang-Mills
theory are the vector potentials A~, carrying space-
time index p. , and internal symmetry index a.' Al-
though several Lie groups occur in physical applica-
tions [SU(2) x U(1) for the electroweak interactions,
SU(3) for the strong, larger ones in speculative models
that attempt to unify the strong with the electroweak],
we shall confine the discussion to SU(2), as the phe-
nomena which we wish to highlight depend only on the
non-Abelian nature of the group. Thus a ranges over
1, 2, and 3. 'The component notation, A,", will be used
interchangeably with the matrix notation, A~=A,"(o'/
2i), where o = Pauli matrices. The Yang-Mills fields
F„v are related to the potentials A, by

E„„=8 „A„—B,A„+g[A, A, ] .
Here g is the coupling constant. The fields satisfy Bn
equation of motion

which is also the Euler-Lagrange equation for the con-
dition that the action I

(4a)

(4b)

m'F. "= 0 (8)

The theory is gauge invariant, i.e. , it is invariant un-
der the transformation

A„-U 'A U+g 'U '& U, (7)

where U is an element of the group —a 2 && 2, space-
time-dependent, unitary matrix with unit determinant.
Indeed the equations were constructed so that this in-
variance would be present. In infinitesimal form the
symmetry transformation, P, .

U = e" =I+ ~3, &&' = -~~

5A„=g 'X)„Q

(8)

(9)

with W being related to the infinitesimal, local param-
eters of the transformation, I9,.

(10)

The field strengths are not gauge invariant; rather
they are gauge covariant. They transform homoge-
neously under gauge transformations, in contrast to the
potentials which follow the inhomogeneous transforma-
tion law (7)

P" P. v U-ly ~vU

E~v [Euv IZ] (12)

Note that the various equations which the fields satis-
fy cannot be written in terms only of F"", as is the
case for the Abelian Maxwell theory, since the covar-
iant derivatives ~ involve the potential A„. This re-
flects the fact that the non-Abelian potentials play a
more fundamental role in the Yang-Mills theory than
do their Abelian counterparts in the Maxwell theory.

he physical content is not coded completely in the field
strengths, which are not even gauge invariant. An ob-
ject that does contain all the gauge-invariant informa-
tion is the nonintegrable phase factor (Wu and Yang,
1975)

P(C)= trP expg dz'A (z) .
C

The integration is path ordered by the symbol P, and it
runs over a closed contour C. 'The resulting quantity is
gauge invariant, but path dependent. Knowledge of
P(C) for arbitrary contours allows one to reconstruct
the potentials, up to gauge transformations. At the
present time there are many attempts to write the
theory solely in terms of these objects, but this pro-

be stationary against arbitrary variations of the poten-
tials. The dual fields ~E"", defined by

QV — g ILV&6
ng

satisfy the Bianchi identity, which is a consequence of
the definitions (1), (3), and (5)
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gram has thus far not been completed, and will not be
discussed here.

It is also interesting to discuss how the potentials
transform under coordinate transformations.

(17)8 f,+ B,f -,'g, a„f = 0

that the transformation (16) [or (14d)] is a symmetry
operation for the action (4).

x"-x"(x) . (14a) 5f I = 0. (18)

A conventional statement is that the transformed poten-
tials, evaluated at the transformed point, A (x), satisfy
a formula appropriate to a coordinate vector quantity.
This is the familiar transformation law which is pos-
tulated in Riemannian geometry.

'The corresponding conserved current, which follows
from an application of Noether's theorem, is

JP —gQ&f (19)

where 6f'" is a symmetric and traceless energy-mo-
mentum tensor. '

A (x) =A„(x) . (14b) e gv 2 tr(FpnFv x

yves

nBF (20)

When the coordinate change is represented infinites-
imally

+ Q+u

5x"= -f"(x)
(14c)

then Eq. (14b) reduces to a formula involving the Lie
derivative L~.

A„(x)=A„(x)+ 5iA„(x)
(14d)

5yA =f 8 A +(8 f )A =L~A

5~A„=f E +~ (f A ). (15)

Since the last term in (15) is a gauge transformation,
which certainly may be adjoined at will to any transfor-
mation, we may adopt as a coordinate transformation
law, instead of (14d), the following gauge-covariant ex-
pression (Jackiw, 1979):

5~A„=f F~ „. (16)

The gauge-covariant transformation law (16) of course
produces no conceptual change from the conventional
law (14d). Nevertheless it allows a more elegant dis-
cuss ion of var ious formal questions conce rned w ith
Noether's theorem, supersymmetry, fiber bundles,
and the like. These are beyond the scope of the present
review and are summarized in the literature. ' [The
finite transformation corresponding to the infinitesimal
Eq. (16) is nontrivial. It involves the nonintegrable
phase factor (Jackiw, 1979).]

One verifies when f is a conformal Killing vector,
i.e. , when f satisfies the equation

For a review, and application to the study of symmetry and
invariance in a gauge theory, see Jackiw (1980).

[Within this general expression, we recognize familiar
special cases. For example, for translations f is a
constant, a, and 5„„„,«,„A = a 8 A„, which is of
course the standard result. Similarly for Lorentz
transformations f = cu ~xz, ~ ~= -uP, and 6„,„„„A
= =,' ~ '[(x a, -x,e )A„+g „A, -g, „A ], which again is
the usual Lorentz transformation law for a. vector field. ]

However, because we are dealing with a gauge theory,
there is the possibility of modifying the conventional
transformation law (14d), which was invented for arbi-
trary, vector fieMs, not necessarily gauge fields. Ob-
serve that the Lie derivative in (14d) may also be writ-
ten as

This is just the conformal symmetry of the model. It
gives rise to the 15-parameter 0(4, 2) invariance group
of the Yang-Mills theory, corresponding to the 15-pa-
rameter solution to (17).

f"= a + uF ~x~+ cx + b x' —2x x ~ b . (21)

When the modified transformation (16) is applied to Fermi
fields, the conserved tensor generated by Noether's theorem
is gauge invariant, but not symmetric. It is in fact the ener-
gy —momentum tensor which occurs in the Kibble —Sciama (Ein-
stein —Cartan) gravitational theory with torsion; see Kibble
(1961) and Sciama (1962).

For a summary, see Jackiw (1972).
The study of symmetry properties of gauge fields was init-

iated by the mathematician H. Wang; for a mathematical sum-
mary see Kobayashi and Nomizu (1963). Becent investigations
by physicists include Schwarz (1977), Bergmann and Flaherty
(1978), Trautman (1979), Forgacs and Manton (1980), Har-
nad, Shnider, and Vinet (1980), and Jackiw and Manton
(1980). A discussion from the point of view of infinitesimal
gauge-invariant coordinate transformations is in Jackiw
(1980).

Here a, c, b, and ~ are constants, the latter being
antisymmetric. As mentioned already, a describes
translations, ~ Lorentz transformations. These are
the Poincare invariances that one expects to hold in
any rea, listic field theory. C lassical Yang-Mills theory,
however, possess further invariances, described by c
and b; these are the dilatations and special conformal
transformations which are present owing to the absence
of mass terms in S.' In the quantum theory, the dila-
tations and special conformal transformations are ab-
sent, owing to renormalization effects which neces-
sarily introduce a mass scale; the symmetries acquire
anomalies. ' But this symmetry is controllable and an-
omalously broken scale invariance is exploited with the
help of the renormalization group. I shall not be re-
viewing this topic here. '

Equation (16) may also be used to discuss configura-
tions of classical Yang-Mills fields which are invariant
under a, coordinate transformation. In a conventional
field theory one would say that a. field configuration is
invariant when its infinitesimal variation vanishes.
However, in a gauge theory, the concept of invariance
should be extended to allow for a possible noninvariance
which can be compensated by a gauge transformation.
Thus according to Eqs. (9) and (16) we see that a cri-
terion for coordinate invariance in a gauge theory is'
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(22)

Cf = C~ t„,— dr p, 4f'.

Here f labels the coordinate transformation which gives
rise to the symmetry in question; the first term on the
right-hand side is the matter contribution to the total
conserved quantity; the second is the contribution of
the external gauge potential, with p, being the matter
"charge" density, p, = j', (Jackiw and Manton, 1980).

A special case of (23) is a familiar result from clas-
sical magnetic monopole theory in electrodynamics.
A magnetic monopole potential

A. A"= 0, A = 0, A~ = -(g'/x) ctn8 (24a)

is not manifestly spherically symmetric, but gives
rise to spherically symmetric physics since the mag-
netic field possesses that property.

B= V x A =g(r/y') .

Formula, (22) in this application to Abelian gauge fields
reads

which may be interpreted as the statement that certain
projections of a coordinate invariant field strength are
total (covariant) derivatives of a scalar field. "

he quantities Cf have the following physical signi-
ficance. Consider a "matter" system of particles or
fields (either classical or quantum-mechanical) moving

, in space and (possibly) undergoing self-interactions.
As a consequence of various invariances of the matter
dynamics against specific coordinate transformations,
various constants of motion govern the time-evolution.
Examples are the energy, arising from time -trans la-
tion invariance, the angular momentum coming from
rotational invariance, etc. When the same system is
put in a prescribed, external, classical gauge field,
the constants will in general disappear, since a generic
external field breaks all invariances. However, when
the external field is itself symmetric, in the sense
(22), the constants remain, but in modified, form.
Specifically, if the matter-gauge field interaction is
described by the Lagrange density —j'„A,", where j'„ is
the matter current, then the constant of motion C~, in
the presence of the symmetric external potential A,"
which satisfies Eq. (22), is

particle [p(r) = e5(x —r) j moving in this background field,
has, in addition to the usual, kinematical matter con-
tribution xx p, a term coming from the external gauge
potential,

8= xx p -ge(x/x) . (26)

III. CANONICAL FORMALISM FOR GAUGE
THEORIES

We now turn to a derivation of the canonical theory.
This development will be deemed successful if we can
identify canonical variables, coordinates and momenta,
define a Hamiltonian, and regain the field equations (1)
and (2) as Hamiltonian equations. Since we are dealing
with a gauge-invariant theory, we expect complica-
tions —a straightforward approach wil. l fail, as it. also
fails in electrodynamics. When careful attention is
paid to the subtleties of gauge invariance, it will be
possible to identify in the formal, canonical develop-
ment many of the features which have been recently
exposed by semiclassical reasoning.

We look for the canonical momentum, but immedi-
ately we encounter the familiar gauge theory problem
that the momentum conjugate to A,' vanishes, since 2
does not-depend on B,A,'. In order to circumvent this
initial obstacle to quantization, we make use of gauge
invariance to set A,' to zero. 'The canonical variables
are therefore the coordinates A,' and their conjugate
momenta

(27)

The Hamiltonian

K=H'8 A,' —g
coincides with the energy; see Eq. (20).

(28a)

This is the celebrated formula of Poincare for the total
angular momentum of a charged particle in a magnetic
monopole field.

For a derivation of the above and a discussion of fur-
ther developments on symmetry and invariance in gauge
theories, the reader is referred to the literature. "

f: f'= 0, f= r x n; n= axis of rotation

(rx n) x B= VC

4 =gn r/~.
Qlp p4 Ql —g 2k+

a a a~ a ajk
(28b)

Correspondingly, according to Eq. (23), the constant
of motion —the angular momentum —of a charged point

~ Equation (22) shows that a scalar field arises naturally from
a (symmetric) gauge iield. This result and its geheralization
have been used in attempts to construct from gauge fields the
Higgs fields that a.re used in quantum flavor-dynamical models.
One begins with gauge fields in a space-time of dimensionality
greater than the physical four, but requires invarianee against
some coordinate ransformations in the additional dimensions.
One thus arrives at a Yang-Mills theory in four dimensions
supplemented by scalar fields that play the role of Higgs fields.
For this modern reprise of the Kaluza-Klein idea, see Fairlie
(1979), Manton (1979), and Mayer (1980).

When the obvious canonical commutation relations
(Poisson bracket relations in the classical theory) are
posited

[A,'(r, t), A~~(r', t)j= 0

[E,'(r, t), E,'(r', t) j= 0

[E,'(r, t), A,"(r ', t)j =i 6„5"6 (r —r')
(29)

one finds that the Hamiltonian equations reproduce the
definition of E, .

e, A. = f[H, A. ]= -E. . (30a)

Also Ampere's law [the spatial component of the Yang-
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X),b ~ Eb = 0 (30c)

(There is no need to seek among the Hamiltonian equa-
tions a definition for B. That quantity is not a funda-
mental variable, but is given in terms of A by the con-
ventional formula B,= V x A, —(g j2)c,~,A~ x A, .) In a
sense, the Hamiltonian theory is a larger theory than
the Yang-Mills theory. It gives rise to an entirely
consistent quantum mechanics, which, however, does
not coincide with the desired gauge theory since Gauss'
law is not incox'porated.

Let us for the moment ignore this problem and con-
tinue the analysis of the Hamiltonian model. It is
noted that the theory possesses a symmetry which
leaves the equations of motion invariant. In infinite-
simal form, the symmetry transformation is

(3l)

where ~b is an arbitrary function of r, but not of t. Qf
course we recognize this as just the gauge freedom
(7) which respects the A'= 0 condition, but now we view
it as a conventional symmetry which leaves the action
invariant. By Noether 's theorem we can derive the
conserved generator. Since 6), is an arbitrary local
function, one finds local (r-dependent) conserved quan-
tities.

G. =& ~.b'Eb. (32)

(At this stage G, is nonvanishing since Gauss' law has
not as yet been satisfied. ) The G, 's are constants of
motion, as is verified by commuting with the Hamilton-
ian.

(33)

Gauss' law can now be incorporated into the Hamilton-
ian quantum theory by demanding that of all the states
in the Hilbert space only those that are annihilated by
G, are relevant to the Yang-Mills theory. "

G. ~k)=0.
Qbserve that the G, 's do not commute.

[G,(r, t), G~(r', t)]= is„,G,(r, t)5(r —r') .

(34)

(35)

Hence Eq. (34) is the only possible eigenvalue condi-
tion.

An analogy with a simple problem may help in gain-
ing understanding. Consider a particle Hamiltonian
for two-dimensional motion, II = T+ V, T = —,'p„'+ 2p,',
but with the potential depending only on x, V = V(x).
In other words y is an ignorable coordinate in V and
the problem possesses a symmetry 6y = a, whose gen-
erator is p, . Suppose further there is a physical're-
quirement on the theory that p, = 0, a condition which

~The earliest use of the present method for quantizing a
gauge theory is by Weyl (1950b). Hence the gauge choice A =0
should be called the "Wey1. gauge. "

Mills equation (2)] is rega, ined.

s,E,=i[H, E,]=~„,x B, . (30b)

But Gauss' law [the time component of the Yang-Mills
equation (2)] is not found.

IV. GAUGE TRANSFORIVlATIONS,
TOPOLOGY, AND THE VACUUM ANG LE

In this section, I shall remain with the formalism as
developed thus far, and study further the action of the
gauge symmetry. We have remarked already on the
invariance of the quantized theory, when A =0, under
transformations which in infinitesimal form are des-
cribed by Eq. (31), and in finite form by

(36a)

Here U is a 2 x 2 unitary, c-number SU(2) matrix, de-
pending on position, but not on time. We shall make a
very important hypothesis concerning the physically
admissible finite transformations. While some plaus-
ible arguments can be given in support of this hypo-
thesis (see below) in the end we must recognize it as
an assumption, without which the subsequent develop-
ment cannot be made. We shall assume that the allowed
gauge transformation matrices U tend to a definite
limit as x passes to infinity.

lim U(r)= U„.
M OO

(36b)

can only be imposed on the states p, P= 0. This condi-
tion is analogous to our Gauss' law Eq. (34); it states
that the wave function g is independent of the ignorable
coordinate y and invariant under the symmetry trans-
formation. Thus similarly Gauss' law (34) requires the
Yang-Mills states 4'(A), viewed as functionals of dy-
namical variables A, , to be independent of those coor-
dinates which are ignorable and which lead to the con-
servation of G, . The state must be invariant against
transformations generated by G, .

'There is one inconvenient aspect to this develop-
ment —the states are not normalizable. In the quan-
tum-mechanical example the problem is clear: the in-
tegral of P "P over y diverges when P is y independent.
'This is a trivial complication which can be removed by
simply legislating that the y integration will. not be per-
formed, but y will everywhere be set to some preas-
signed arbitrary value, say 0. Over the remaining var-
iable, x, the normalization integral is still done. (The
wave function of course does not depend on y. ) The an-
alogous development in the gauge theory will be ex-
plained in Sec. V.

Equa. tions (28), (29), and (34) are the basis of a Yang-
Mills quantum theory. Qne may develop from them a
perturbative expansion and compute various amplitudes
of physical interest. Qne may also use the above equa-
tions to study further properties of the states in theory.

In fact it is convenient, however, to rearrange the
perturbation theory, so that it may be represented in
te rms of conventional diagrams, w ithout cons tr aints
like Eq. (34). Indeed in practical computations one uses
Faddeev-Popov ghosts, Feynmann Dyson graphs,
etc. In Sec. V I, shall show how one passes from the
above formulation to the common diagrammatic one.
'That derivation is useful also for exposing different
approaches to the problems of gauge choice in the the-
ory. Before embarking on this route, I wish first to
discuss in greater detail the structure of gauge trans-
formations.

Rev. Mod. Phys. , Vol. 52, No. 4, October 'l980
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Here U„ is a global (position-independent) gauge trans-
formation matrix. With this hypothesis, we are exclud-
ing gauge transformations which do not have a well-de-
fined or unique limit at x-~. Equivalently, we are in-
sisting that all physically relevant vector potentials
fall faster than 1/r at large distances. [By "physically
relevant" vector potentials we have in mind those po-
tentials which are arguments of the quantum wave func-
tionals 4(A). Alternatively, they may be the potentials
over which a functional integration is performed in a
function integral formulation. ]

Qur reasons for adopting this boundary condition are,
firstly, the suspicion that potentials not satisfying it are
separated by an infinite energy barrier from those that
do; hence there will never be any classical transition,
and probably no quantal transition either, between
them (Jackiw, 1977). Second, the only known physical
effects which would require potentials that persist as
1 ~x at Large distances involve magnetic monopoles;
but these have not yet appeared in Nature, and if they
did they would reside in a topologically distinct sector
of the Hilbert space, and not in the ". vacuum" sector to
which the present discussion applies. 'Third, the total
charge

@,=g dry„,A, E, (37a)

is well defined only when gauge transformations are re-
stricted. To see this, we use Gauss' Law to express
Q, as an integral over a surface at spatial infinity.

with

f(~)=~, f(0)=0. (38b)

his cannot be continuously deformed to I without vio-
lating Eq. (36b). The paradigm for class n can be taken
to be the above raised to the nth power. Also an analy-
tic expression for the winding number of any gauge
transformation is available. It is

dry "~tr(U 'B,.U)(U-'a, . U)(U-'s, U) .1
(39)

[Here again we see the need for Eq. (36b); otherwise the
integral may diverge. ] For gauge functions U satisfy-
ing Eq. (36b), zv takes on integer values. The existence
of gauge transformations which are not homotopic to
the identity is what distinguishes the non-Abelian theory
from the Abelian one. In the latter, all gauge transfor-
mations fall in the homotopically trivial class.

Having classified the gauge functions, we can now

i+quire how the quantum theory responds to these
transformations. It is important to. recognize that only
gauge transformations which are continuously deform-
able to the identity, viz. those belonging to the n= a
class, can be built up by iterating the infinitesimal
transformation generated by G, ; see also below. Since
the infinitesimaL generator annihilates the states, the
effect of gauge transformations in the trivial homotopy
class is to leave the state invariant. Calling the unitary
operator which implements the gauge transformation
in the nth homotopy class 8„, we conclude

dr V ~ E, = dS ~ E, . (37b) 9,+(A) = 4 (A) . (40)

Under a local gauge transformation Q, changes into

dS ~ U 'EU (37c)

which equals U„'QU„when U has a global limit at spatial
infinity. Thus for U's satisfying Eq. (36b), Q transforms
by a global gauge transformation. If U has no limit,
then the transformed charge has no simple relation to
the original charge and we must coriclude that the
charge is not well defined.

We shall henceforth adopt the hypothesis (36b); the
gauge structure of the Yang-Mills theory without this
hypothesis has not been thus far determined, though
some (isolated) investigations of the monopole sector
are available [Witten (1979); Christ and Jackiw (1980);
for a. review, see Jackiw (1980)].

he insistence on a well-defined limit at spatial in-
finity is equivalent to compactifying the spatial mani-
fold A' to S' (the surface of a four-dimensional
sphere). The manifold of the SU(2) gauge group is also
S', so the matrix functions U provide a mapping S'-S'
which can be categorized into homotopy classes labeled
by an integer, called the "winding number" of the map-
ping (Jackiw and Rebbi, 1976). In class n= 0, we place
all gauge functions U which are homotopic (continuously
deformable) to U =I; inclass n= 1, we place those that
are not homotopic to I, but rather to some other pa-
radigm, etc. For the n= 1 paradigm we can choose
any gauge function of the form

Equation (40) is presented in an explicit Schr'odinger
picture, where the states are functionals of A(r). Next
we consider the action of 8, . 'This quantity cannot be
obtained by iterating G, , and we cannot conclude that
the state is left invariant, . However, since 8, does
commute with observables (they are gauge invariant),
the only effect it can have on physical states is to leave
them phase invariant. We conclude therefore that

9P(A) = 8"'4(A)

9„4(A) = 8 '"'4(A) .
(41)

'F'~'F + (g /32'—2—) 8*F1'"F (42)

'This is the origin of the famous angle in the Yang-Mills
theory (Jackiw and Rebbi, 1976; 't Hooft, 1976a, , b;
Callan, Dashen, and Gross, 1976).

We have no a priori computation of 0; however, one
should not entertain the notion that it is an artificial
quantity, arising from some peculiarities of our treat-
ment of gauge transformations. Indeed there is another
way to see that an arbitrary angle is present in the
theory. Let us for a moment suppose that there is no
angle in Eq. (41), and that the states are invariant un-
der "large" gauge transformations (those with n w 0),
as well as under "small" gauge transformations (those
with n= 0). We can still find an ambiguity in the choice
of the Lagrangian density. Instead of Eq. (4b), one may
use

U io rf &r) (38a)
The new term is a total divergence; it does not influ-
ence the equations of motion.
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—'tr E' "E =8 ~"4

X»=s» '"tr[-,'A B,A„+-,'gA AQ„].
(43)

Consequently, the energy (Hamiltonian) is the same as
before, Eq. (28). What is different though, is the rela-
tionship between the canonical momentum conjugate to
A.,' and E', W. ith Eq. (42) we find

an independent definition of CI' can be given).
Finally, let us demonstrate explicitly that a large

gauge transformation cannot be obtained by iterating
an infinitesimal one. If it were possible, one could
write the operator 9, which implements the finite trans-
formation U, as

II' = -E'+ (g'/8v') 9B'

'Thus the functional Schr'odinger equation reads

(44)
9=exp —i drg ' ~, e, ~ II

where

(51a)

dr — . , —,9B', + —(B,')' 4'(A) =E4'(A) . (45) (51b)

The state functionals have been primed to remind that
by hypothesis they are invariant under large gauge
trans formations.

9„+'(A)= 4"(A) . (46)

'The additional, 8-dependent term in the kinetic ener-
gy operator can be eliminated so that the Schrodinger
equation acquires the conventional form. To achieve
this, we seek a functional of A, W(A), with the property
that

QW(A) = W(A)+ g, drg '(&,~9„) ~

n+1 ! a

x
~~~ drg '(5)„9,) ~ W(A) .

Q

(52a)

and for a large transformation 9, approaches a nonzero
limit at spatial infinity. Let us see whether we can
with Eq. (51a) obtain Eq. (50).

5 W(A) g'
5A.'( )

=
8 ' '(')

'Then the states

@(A) 8 iHw (A) @-r (A)

satisfy a Schrodinger equation without &-dependent
terms. Equation (47) may be integrated.

(47)

(48)

The last factor above can be evaluated with the help of
Eq. (47), and we obtain for it

dr n, ~P~ ~ B,

dS ~ B,9, —
8 2 dr 9,&,~

~ B~.

2

W(A)= - c'' Artr -'A'9 A =', AAiA~A
)4w

2 (49a)

Note that W(A) is essentially the "charge" associated
with the "current" X'», defined in Eq. (43)

2

W(A) = —,dr%'. (49b)

We call W(A) the "winding number" of the gauge poten-
tial A.

Next we inquire how 4'(A) transforms under gauge
transformations, given that 4' (A) is invariant; clearly
that question comes down to determining how W(A)
transforms. Upon performing a gauge transformation
on W(A), one finds (with the assumed large distance
behavior of the relevant quantites)

W(U 'AU -g 'U 'VU)= W(A)+u . (50)

Here W(A) changes by the winding number of the gauge
transformation, and the states 4(A), which satisfy a
simple Schrodinger equation, are only phase invariant
when a large gauge transformation is performed on
them.

'Thus we see that the angle in the Yang-Mills theory
cannot be escaped by simply postulating gauge in-
variance of the states. It reappears as an ambiguity
in the definition of the Lagrangian and of the canonical
variables. This alternate point of view has the ad-
vantage of demonstrating very clearly that our con--
siderations are gauge invariant —9*.+~" I,„„is a gauge-
invariant quantity. Also since *I',""I'„„is CP-odd,
the angle is seen to be CP-violating (in theories where

The last term in Eq. (52b) vanishes by the Bianchi iden-
tity [the time component of Eq. (6)]; a result which is
just the statement that G, W(A) =0. In the next-to-last
term, the integration is over a sphere at infinity where
8, attains a nonzero limit. However, in the absence
of monopoles, when the potentials fall faster than x '
and the magnetic field falls faster than x ', the integral
over the infinite surface vanishes, leaving

9W(A) = W(A) . (52c)
Comparison with Eq. (50) shows that the correct result
has been obtained by the above only for gauge transfor-
mations with zero winding number. In other words, Eq.
(51a) is a correct representation for the operator im-
plementing a gauge transformation belonging to the
trivial homotopy class, while gauge transformations
in nontrivial homotopy classes cannot be achieved by
exponentiating the infinitesimal generator. "

The results (41), valid for the Yang-Mills theory,
have an analog in a familiar quantum-mechanical prob-

' lem: particle motion in a periodic potential, e.g. an
electron in a crystal. The quantum-mechanical system
admits a finite symmetry transformation, translation
by the period of the potential. (This is analogous to the
large gauge transformation in the Yang-Mills case. )
The states are not invariant under this symmetry trans-
formation; rather they are phase invariant, wher e the

~ When magnetic monopoles are present and one is working in
the monopole sector of the theory where magnetic fields fa11. as
r and potentials as & ~ at large distances, the situation is
obviously different; see Witten (1979}, Christ and Jackiw
{1980},and Jackiw (1980}.

Rev. tVlod. Phys. , Vol. 52, No. 4, October 1980
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phase involves the Bloch momentum. (The Yang-Mills
angle is here the analog. )

Our discussion thus far makes no approximation. But
of course, just as in the quantum-mechanical case, a
further approximate analysis aids in gaining physical
understanding. (In the crystal problem the analogous
approach is called the "tight binding" approximation. )
One expands the 9-dependent state in a Fourier series.

The individual u„'s, which are shifted by a large gauge
trans formation,

1 n n+j & (54)

may be considered, in the semiclassical approximation,
as describing the system localized in class n of the con-
figuration space. In the crystal these classes are the
zones of the periodic potential; in the field theory, they
are homotopy classes of the A function space. For
sufficiently low energy, there is no classical transition
between the individual classes, since an energy barrier
separates the classes. However, there are quantum-
mechanic al, tunneling transitions, and the ins tanto ns-
imaginary time classical solutions" —interpolate in
imaginary time between the physically allowed real-
time configurations. [It is known that a semiclassical
description of tuneling makes use of classical, c-num-
ber solutions to dynamical equations, however, not in
real time (classically there is no real-time tunneling
transition) but in imaginary time. " See, for example,
Freed (1972) and McLaughlin (1972).] The tunneling
picture is certainly useful for a better understanding
of the physics of our problem, ' but it must be em-
phasized that semiclassical calculations based on in-
stantons and on the instanton gas approximation are
reliable only for weak coupling and may not be relevant
to the problem at hand when the coupling constant is
large. The exact results, based on general considera-
tions sketched above, of course do not rely on any

See Belavin, Polyakov, Schwartz, and Tyupkin (1975), Wit-
ten (1977), Chia (1977), 't Hooft (1977), Jackiw, Nohl, and
Reb» (1977), and Atiyah, Drinfeld, Hitchin, and Manin (1978).

4This is easily seen in the WKB approximation to one-
particle quantum mechanics. The real-time classical dynam-
ical equation for a unit-mass particle moving in a potential
V(q), q = —V'(q), becomes in imaginary-time ft —iTJ q =V'(q).
The first integral gives the imaginary-time energy, which
should be zero if we are studying the lowest-lying state. (It is
assumed that V(q) has a barrier shape, so that no real-time
motion can occur at zero energy. ) Hence the equation to solve
is 2q —V(q) =0 or q =+(2~~(q)) ~ (A). The quantum-mechan-
ical transmission coefficient for penetrating the ba, rrier is
determined by e, where I is the classical, imaginary-time
action evaluated with the solution to (A). I= JdT(2q +V(q))
= J d7q = Jdq~q~ = Jdq[2l (q)]; this is the usual WKB result.
Analogously, in the Yang-Mills theory, the imaginary-time
energy 2 J dr((E~) —(B,) j vanishes for E, =+B,. Thus quantum-
mechanical tunneling is here described semiclassically by
self-dual or anti-self-dual Euclidean [imaginary- time j Yang-
Mills fields I"I' =- +*X'I" . By virtue of the Bianchi identity,
self-dual and anti-self-dual Yang-Mills fields obviously solve
the field equations; they are the celebrated Yang-Mills instan-

whose further properties are summarized by Jackiw,i3

Nohl, and Rebbi (1978).

g g +2 tr gP'4 vQ
~ (56)

The constant c depends on the number of fermion
species, while the matrices I''" over which the trace
is taken refer to the representation matrices of the
fermions. For one species of fermions in the funda-
mental (isospin I/2) representation, c = 1 and F~" is
constructed from the Pauli matrices as above. From
Eq. (43) we see that Eq. (56) implies that a conserved
current. is

2=j.— X'
5 5 2 2 (67a)

and the conserved charge involves the quantity already
e ncounte red in Eq. (49).

Q, = q, + 2 W(A) . (67b)

The total, time-independent chiral charge '-?, has two
pieces: q„which arises from the fermions and is
gauge invariant; 2W(A) the gauge field contribution,
which according to Eq. (60) is not gauge invariant. This
means that also Q, is not gauge invariant against large
gauge transformations; it changes by twice the winding
number.

There are now three operators to consider: &, 9„,
and Q, . The Hamiltonian commutes with the other two,
but they do not commute with each other.

[9„,q, ) =2n9„. (56)

The three cannot be simultaneously diagonalized.
Gauge invariance requires that g„be diagonalized, as
in Eq. (41), but that means that Q, acts as a raising
operator and changes 0

semiclassical, weak coupling approximation.
While the quantum-mechanical analogy is a good one,

there is an important difference from the Yang-Mills
theory. In the crystal, all values of 0 are attainable,
and 9 is a measure of the energy in an energy band.
In the Yang-Mills theory, when gauge-invariant quan-
tities are considered, 0 cannot change, so that even
though one can imagine states with different 9, a com-
plete physical theory is characterized by a single,
unique, but as yet undetermined angle. (It is as if in
the crystal example, all physical observables were
translationally invariant; in that case only one state
per band would be physically realizable. )

The coupling of other fields to the Yang-Mills theory
does not significantly alter the physical picture pres-
ented here, except when the additional fields include
massless fermions. In that case, there is a dramatic
change. In the presence of massless Fermi fields $,
there is a riew symmetry in the system, chiral invari-
ance, described by the infinitesimal transformation

(55a)

Noether's theorem gives rise to the axial-vector current.

4; =igy'y'P.

However, as is well known, quantal renormalization
effects interfere with the conservation of this current.
Bather than being conserved, j5~ is afflicted by the
axial-vector current anomaly. '
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'+e = +8.2e (59)

dqq, =q, ( ) —q, (- )= qq q(q) jq'qa —j,", =
w qc)

The energy eigenvalues of H, which commutes with Q„
can no longer depend on 9; tunneling is suppressed and
the entire energy band collapeses to one level. More-
over, the chiral symmetry is spontaneously broken
since the states are not chirally invariant. The cal-
culational, practical consequences of all this are limited
by the approximations that are used, but again we see
that certain exact results can be established.

While the main thrust of this review is to present a
development of the Yang-Mills quantum theory, and not
to discuss the role that it plays in phenomenological
applications to model building for strong chromo-
dynamics or electroweak flavor dynamics, the topo-
logical results presented in this section are sufficiently
novel and subtle that it is quite appropriate here to
remark on their physical significance. In fact, the un-
expected intrusion of topology into quantum physics
served to resolve a long-standing conflict between the
(apparent) predictions of the Yang-Mills theory as
applied to particle phenomenology and physical reality.
The puzzle, called the U(1) problem, was the following.
[For a review, see Weinberg (1975).j The quantum
chromodynamical Lagrangian, posited as governing
the dynamics, is constructed from Yang-Mills
fields and massless Fermi fields. Consequently it po-
ssesses a high degree of chiral symmetry which is not ob-
served in Nature, and theorists have supposed that the
observed particle spectrum reflects the fact that this
large symmetry is not realized in Wigner —Weyl multi-
plets, but in the Nambu —Goldstone fashion based on
spontaneous symmetry breakdown. In this way one
avoided most of the undesirable consequences of the
large symmetry, but one particular symmetry trans-
formation remained unaffected, giving unwanted and un-
observed predictions. The symmetry, a universal
chiral rotation of all the massless Fermi fields in the
theory, described by Eq. (55a), appears to give rise
to a conserved, singlet axial vector current, Eq. (55b),
which in a Wigner-Weyl realization predicts the con-
servation of the number of right-handed fermions minus
that of the left-handed ones. This regularity is not ob-
served, but the Nambu-Goldstone realization also leads
to an unacceptable result: there should be a massless
Goldstone boson degenerate with the pions. (In the ap-
proximation that we are using the pions are massless. )
Unfortunately, no such particle is observed.

The first indication that something unexpected may be
transpiringcame with the discovery of the anomaly (56)
in the axial-vector current. Yet this did not imme-
diately resolve the difficulty since the anomaly appeared
too "soft" to remove the unwanted predictions. Spec-
ifically, if one computed the total change in fermion
chirality q, (t) = f drj,'(x)

nonconservation-since ~E""E„„is a total divergence
and one believed that surface terms can be ignored.

'The next step was the discovery by Belavin, Polyakov,
Schwartz, and Tyupkin (1975)of self-dual Yang-Mills con-
figurations in Euclidean space, called "instantons" or
"pseudoparticles, " for which the integral of tr*E~"
E„„is nonvanishing. Indeed, they drew the attention
of the physics community to the fact that the integral of
*E""E„„,known as the "Pontryagin Index" to mathe-
maticians, is a measure of the topological properties
of gauge fields; its nonzero value is quantized. Then
't Hooft (1976a, b) suggested that these configurations
be used in an approximate, semiclassical evaluation
of the functional integral, continued to Euclidean space.
He calculated various chirality-changing amplitudes,
and showed that in this approximation they were non-
vanishing, indicating an absence of the unwanted chiral
symmetry. In the notation of Eq. (60), &q, does not
vanish, since the integral is nonzero for instantons.
This provided a resolution of the U(1) problem, a res-
olution which may now be offered independently of the
semiclassical approximation, when it is realized that
the vacuum structure of the theory prevents states from
possessing the chiral symmetry; see Eq. (59).

While the general considerations remove the U(1)
problem, the calculational, practical consequences of
the nontrivial topology are limited by the approximations
that are used. Specifically, the semi'classical results
are numerically reliable only for weak coupling, and as
yet it is not clear whether the physical theory can in
fact be described by such a small coupling constant.

Finally, mention need be made of the angle 8. Since
it is a CP-violating parameter, the experimental limits
on the value of the neutron electric dipole moment put
strong constraints on its value: it must be vanishingly
small. " This presents something of a conceptual prob-
lem since at present we do not know what determines
the value of 8, and what mechanism assures its negligible
magnitude. It should be realized that one cannot set
it zero ab initio. The reason is the following. When we
consider massive quarks, as we must, the mass arising
from spontaneous symmetry breaking and from radi-
ative corrections appears in the Lagrangian in the form
C, gg+ C, (T)y'g. In order to isolate the CP-violating
portions of the theory, one needs to remove the apparent
P violating mass term involving C,. This can be done
by a chiral rotation, which formally leaves invariant
the remainder of the Lagrangian (kinetic terms for the
quarks, Yang-Mills terms, quark-gauge field inter-
action terms). However, because of the axial-vector
anomaly, the chiral rotation produces a contribution
in the Lagrangian proportional to tr*F "F„(Gross and
Jackiw, 1972), and comparison with Eq. (42) shows that
even if 9 is initially set to zero, a new angle emerges
when the mass is rediagonalized. In other words, in
order to have physically vanishing 9, one must fine-
tune a "bare" angle so it precisely cancels the effects

d x tr*E""E
lL V (60)

it did not seem that the anomaly gave rise to chiral
Crewther, DiVecchia, Veneziano, and Witten (1979) find 8

&10
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of-a mass rediagonalization. The mechanism for this
fine tuning is at present unknown. "
V. SOLVING GAUSS' LAW CONSTRAINTS

We return now to the main line of development of the
canonical theory. Our purpose here is to show how one
can eliminate the ignorable variables in the problem,
viz. we set to zero the momentum conjugate to the
ignorable coordinate, thus explicitly satisfying Gauss'
law, and we evaluate the ignorable coordinate at some
definite value, thus removing the divergence in the
normalization integral. These calculations are most
easily done with the help of the functional integral, and
we begin by writing that integral in Hamiltonian form. "

Z= dE, d'A, , AG, Gab

xexp —i dx E, ~ 8A+2 E, +~ 8,
Here the exponent involves the field-theoretical gen-
eralization of fdt [pq —H]; we take the canonical mo-
mentum to be the negative of the electric field. The
first delta function enforces Gauss's law, viz. the
vanishing of the components of G; the second evaluates
the ignorable coordinates conjugate to G at some pre-
assigned value, in order to remove the non-normaliz-
ability of states. 'The ignorable coordinates have here
been designated by y, quantities which are to a large
extent arbitrary. Indeed, they need not even be con-
jugate to G; provided the Poisson bracket h„y~j van-
ishes, we may use X's for which the Poisson bracket
(G„x~) is not the identity, but then an additional factor
appears in the functional integral. In this more gen-
eral case we use (Faddeev, 1970)

Z= dE dA. . ~G, ~y, detG. Xb

xexp —f d& E ~ 8 A +p Eg +2 (61)

where the functional determinant compensates for any
noncanonical structure in X. 'The value of the functional
integral can be shown to be independent of the choice of
y (Faddeev, 1970).

Let us now convert the above Hamiltonian formulation
into the more familiar Faddeev-Popov Lagrangian
theory (Faddeev and Popov, 1967). To do this, we
assume that X depends only on the coordinates
A, but not on the momenta E. Since G is the generator
of infinitesimal gauge transformations, (G„y~]. is
nothing but the infinitesimal gauge transform of X, hence

~6The above remarks discuss the physical role of topology in
quantum ehromodynamics. 't Hooft (1976a, b) pointed out that
also quantum flavor dynamics is affected, by topological non-
eonservation of conventional. quantum numbers. This may in-
duce for example proton decay, but with exceedingly small
probability, hence it is practically irrelevant.

~~e shall use the functional integral heuristically, not paying
attention to questions of well definition. Consequently the cor-
responding questions of operator ordering will be here ignored.
By using operator methods or by careful analysis of the func-
tional integral one may of course regain these terms. A recent
study of this topic for Yang-Mills theory is by Christ and Lee
(i@80).

also independent of E. In an obvious notation, we may
designate that Poisson bracket by 6, Xb. Thus the E
dependence resides quadratically in the exponential and
also in 6(G, ), allowing for an evaluation of the functional
E integral. This is achieved by first writing

t'(G, )= J(dAQexpi f d'xA, G, . (62)

Then the E integral in Eq. (61) is Gaussian; after it is
performed one is left with

Z = ~&M", 5 X det 5, xb expi d' g (63)

with 2 = —,
' (E,' —B',) and E no longer an independent vari-

able, but given in terms of the potential, E= —8'A
—7'A'+g [A, A ]. Equation (63) is recognized on the
familiar Faddeev —Popov expression: the delta function
is the "gauge choice, " the determinant is the "gauge
compensating" factor which may also be represented
by a Faddeev-Popov ghost integral (Faddeev and Popov,
1967).

There are two reasons why I took so many steps to
arrive at the Faddeev-Popov formula, which usually is
"derived" by starting from the Lagrangian functional
integral J (dA, f expi fd„'2 and "canceling" an infinite
factor coming from the integration over the group.
Firstly, I wanted to show how Eq. (63) follows from the
Hamiltonian formalism, which is the only one that is
entirely reliable. When one begins with the Lagrangian
formulation, which is obviously more elegant and com-
pact, mistakes can occassionally be made, which are
rectified only when it is realized that the (correct) Ham-
iltonian formulation does not imply the naive (incor-
rect) Lagrangian formulation in the general case.
Bather a modification must be made. [The most recent
example of this recurring phenomenon. had to do with
the 4-ghost interaction in supergravity, which was
initially missed in the Lagrangian formulation. ] A sec-
ond reason for beginning with the canonical Hamiltonian
is that it sometimes happens that the integration over
E is not as straightforwardly carried out as inthe above
example and a Lagrangian formulation cannot even be
attained; see below.

The next subject to discuss is the choice of X. In the
Abelian, Maxwell case the most natural choice, and the
one most frequently made, is X=V ~ A, i.e. , one sets
to zero the longitudinal vector potential. 'This "Coulomb-
gauge" choice is indeed appropriate since the longi-
tudinal component of the vector potential is the ignorable
coordinate: B' does not depend on it. Also & ~ A is
virtually canonically conjugate to the Abelian Gauss'
law generator & ~ E: their Poisson bracket is just the
Laplacian, a constant quantity which may be ignored
in the functional integral. In this way one arrives from
Eqs. (61) and (63) at the usual, Coulomb-gauge, quan-
tization of the Maxwell theory.

When Yang-Mills theory was first considered, the
Coulomb gauge was again used for quantization
(Schwinger, 1962); the analogy was drawn with electro-
magnetism, but the question of whether this was an
appropriate and natural choice was not addressed. It
is, however, clear, that unlike in the Abelian model,
the longitudinal vector potentials are not ignorable co-
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~a ~ajb b (64a)

i.e. , the three ignorable coordinates are taken to be the
antisymmetric portion of E, viewed as a 3 && 3 matrix
in the combined space, isospace components. It fol-
lows that the gauge compensating term is det9g„

SR.„(x,y) = (E;—6„E',)5(x —y) . . (64b)

In order to find the Hamiltonian for the unconstrained
variables, which are E(,,), the symmetric portion. of
the 3 &&3 matrix E,', and A(,,), the symmetric portion of

See Mandelstam (1977) and Gribov (1977, 1978). These dif-
ficulties with the Coulomb condition are a consequence of the
nontrivial topology carried by the Yang-Mills potentials; see
Jackiw, Muzinich, and Rebbi (1978) and Ademollo, Napolitano,
and Sciuto (1978). Indeed, even in the Maxwell theory, the
Coulomb gauge condition becomes beset by intricacies in the
presence of topologically nontrivial structures, viz. magnetic
monopoles. That these problems arise also when any other
gauge condition is imposed on A has been shown, under addi-
tional hypothesis, by Singer (1978). For a summary, see
Jackiw (1978).

ordinates; V A does occur in 8 through the terms
quadratic in the potential. Also V'-A is far from being
conjugate to G; 6, xb is , b- V' which depends on A.
There are additional difficulties with this choice of y
since detI)„~ V can vanish for some (large) values of
A and the whole procedure becomes ill-defined. '
spite of these shortcomings, the Coulomb gauge (or
its various generalizations and modifications) is widely
used in perturbative calculations for the Yang-Mills
theory. Of course perturbation theory is an expansion
around an Abelian, Maxwell-like limit and for this
reason one can make a case for this gauge choice. Also
in perturbation theory one never sees the zeroes of
I),~

~ V. With the Coulomb gauge choice for X, Eq. (63)
provides the conventional Faddeev-Popov quantization
of the Yang-Mills theory. It is these perturbative cal-
culations that have given us all the evidence for the
relevance of Yang-Mills theory to a description of phy-
sical processes.

However, one wants to look beyond perturbation the-
ory. An interesting problem is to find the proper
ignorable coordinates and to construct an effective
Hamiltonian in terms of u'nconstrained variables. This
problem has been solved both by direct quantum-me-
chanical methods (Goldstone and Jackiw, 1978; and
Baluni and Grossman, 1978) and by functional integral
techniques (Izergin, Korepin, Semenov-Tian-Shansky,
and Faddeev, 1979). A convenient choice for the X's
expresses them in terms of the E's and not in terms
of the A' s. Although the effective Hamiltonian can then
be given explicitly, precisely because the approach is
nonperturbative, no practical applications of the for-
malism have thus far been made. 'The Hamiltonian con-
tains inverse powers of the coupling constant which
frustrate naive approximation methods. We present
here only a brief outline of these ideas, as realized by
functional methods. Those interested in more details
are referred to the cited literature [see Goldstone and
Jackiw (1978), Baluni and Grossman (1978), and
Izergin et al. (1979)].

In Eq. (61) y is chosen as follows

the 3 && 3 matrix &,', we perform the integration in Eq.
(61) over the corresponding antisymmetric parts. The
electric field integral is trivial. , since the delta func-
tion simply sets the antisymmetric part to zero, leaving

dE(, ,)
dA' 6 G, det',

&&exp —i d~x E( )8 A( )+ ~ E(

5(G, ) det(SR, ~) = 5(,E(,,)-gs, i„A(,i)&(,,i-gSR,~A )det(9R, ~)

= &(g '5R,~i(8,E(,,)
—g g„,A(, ~) Ei„))-A') .

(65c)

We see from Eq. (65c) that the product of the Gauss'
law delta function with the gauge compensating deter-
minant yields a delta function which evaluates &', the
antisymmetric part of A,', without any further deter-
minant. Thus we find from Eq. (65a)

d+(~ a) ~+(~ a)

&& exp-i d'x E(.,)8,A. (. )+~ E„-,
&

'+~ B,' ' .

(65d)

This shows that the unconstrained canonically con-
jugate variables are A (,.„and —E( „, while the Ham-
iltonian governing dynamics is

a = — dr((Z„. ,}'+(a.)'},1
(66)

where it is understood that B,' is constructed in the con-
ventional way from the full A,', whose antisymmetric
part p,.„A' is a dependent quantity, given intermsof the
canonical variable by

~bc( i (ic) + ~cd'e (id) (ie)) ' (67)

The Hamiltonian is singular at those points in E(,.„
function space where gab, has no inverse. These are
of course the same points where detgg, b vanishes. It
does not seem that this singularity has any direct dy-
namical significance. Rather it is of kinematical origin,
aris ing from the fact that the coordinates in func tion
space that we are using cannot be defined on the entire
space without singularities. Analogy with radial co-
ordinates in a one-particle quantum-mechanical prob-
lem may be drawn. There too the origin provides a
kinematical singularity where the angles cannot be
defined. Correspondingly, the Hamiltonian is singular
at that point (centrifugal barrier), but these effects
do not have a dynamical origin.

Note the occurrence of the coupling constant in the

(65a)

Next we decompose A,' into its symmetric and anti-
symmetric parts and use the remaining delta function to
integrate over the latter.

(65b)
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demoninator. The limit g = 0 is no longer attainable;
this is a reflection of the fact that we have integrated
out completely and exactly the non-Abelian gauge sec-
tor of the theory, which necessarily involves non-
vanishing g. (When g =0, the theory does not possess
a non-Abelian invariance; rather it supports a direct
product of Abelian symmetry groups. ) While it is sug-
gestive to speculate that this formalism is relevant to
strong coupling investigations, it has not been possible,
as yet, to effect any useful calculations. Nevertheless
it appears that our gauge choice will be employed in
approximation schemes which do not rely on expan-
sions in the coupling constant. For example, it has been
used in large N analyses of SU(N) gauge theories by
Baluni (1980).

Vl. CONCLUSION

The development here has been formal, but based on
elementary, familiar principles of quantum mechanics.
In this way we have reached by canonical quantization
methods the usual Faddeev- Popov formulation, Eq.
(63), which is then the starting point of perturbative
investigations. Because of asymptotic freedom these
have had successful application to high-energy phen-
omenology in quantum chromodynamics. Also because
of the smallness of electroweak couplings, perturbative
calculations have correctly described the low-energy
regime of quantum flavor dynamics. Within the can-
onical framework, we exposed in Sec. IV some of the
unexpected richness in the theory which is a consequence
of nontrivial topology. Here numerical calculations are
based on the semiclassical technique whose reliability
is uncertain, hence it is good to have some exact results
which emerge without approximation. Finally, in the
second half of Sec. V, unconventional approaches
to the quantum theory were suggested. These have not
as yet produced further illumination of the model,
though Baluni's (1980) work is an interesting attempt in
that direction.
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