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This paper is an introduction to the study of spontaneous symmetry breaking and topological
classification of defects. The latter topic has aits foundation in the former one; both subjects requires

some mathematics not familiar to many physicists: group action and hoshotopy theory. These
mathematics are introduced from examples and their main results, to be used for physics, are explained.

It is hoped that this paper will enable the non specialist to read the physics literature which has very

recently appeared on topological classification of symmetry defects. Some appendices (A,C,D,F,G) gives

more mathematical details; the other appendices {B,E,H) explain some applications to different fields of
physics, while mesomorphic phases are treated in the text (He superfluid phases have been treated by

Mermin, 1979)..
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Within the last three years a new topic seems to have
arisen in condensed matter physics: application of
homotopy theory to the study of defects in ordered me-
dia. ' Of course physicists studying crystal dislocations
by the Burgers circuit or the Volterra construction
were using homotopy just as Moliere's Monsieur Jour-
dain was "speaking in prose" (Kleman, 1977). But the

explicit use of powerful topological methods has brought
a new understanding to the subject and produced some
theoretical predictions.

Homotopy theory has also been used explicitly by
physicists in other fields: for the "kinks" of Finkel-
stein (Finkelstein, 1966; Finkelstein and Rubinstein,
1968), for the classification of t'Hooft-Polyakov mono-
poles (Tyupkin et al. , 1975; Monastyrskii and Perelo-
mov, 1975), and for instantons (Beliavin et al. , 1975).
A common mathematical technique can be applied suc-
cessfully to these different domains of physics because
they all share in the occurrence of broken symmetry.
(This is at least my personal opinion. )

Of course one could write a book with the same title
as this paper. Although. the paper gives, I hope, a
fairly complete list of refere'nces for this new topic
born three years ago, its purpose is not to give a review
of the existing literature, but rather to enable (and en-
courage) the reader to go to the original papers. For
this I try to present here the simple, but fundamental
concepts underlying the application of homotopy theory
to symmetry defects, broken symmetry, and hidden
symmetry. I also list the results obtained; it must be
clear to the reader that the subject is not closed; it is
just opening, and many questions wili appear in this
paper. What is sure is that the topological approach
will become the classical introduction to the study of
defects in ordered media. Will it be fruitful? I would
guess so; I hope to help the reader to form his own
opinion.

I. BROKEN SYMMETRY

A. Historical introduction

In most civilizations, the earliest pottery decoration
is generally in geometric patterns; since prehistoric
times men have been very sensitive to symmetry con-

A brief bibliography tracing the rise of this topic would in-
clude the following references: Rogula, 1976; Toulouse and
IQeman, 1976; Toulouse, 1976; Volovik and Mineev, 1976b,
Kleman, Michel and Toulouse, 1977; Kleman, 1977; Toulouse,
1977; Poenaru and Toulouse, 1977;Kleman and Michel, 1977;
Kukula, 1977; Michel, 1977; Volovikand Mineev, 1977a, 1977b;
Cross and Brinkman, 1977; Garel, 1978; Kleman and Michel,
1978; Mermin, 1978; Merminetag. , 1978; Bouligandetag. , 1978;
Poenaru and Toulouse, 1979; Volovik and mineev, 1979.
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Louis Michel: Symmetry defects and broken symmetry

cepts. The lV crystallographic groups in two dimen-
sions appeared in decorations (e.g. , in the Granada
Alhambra) long before their list was established sci-
entifically. Also, from high school the majority of us
were taught how to exploit the symmetry of a problem:
in general it greatly simplifies the search for solu-
tions. %hat a shock then to discover that the equilib-
rium state of the ozone molecule O„made of three
identical oxygen atoms, is not an equilateral triangle
but only an isosceles with an angle of 63 20' (+30') and
two of 58' 20' (+30').

Of course symmetries play a great role in science,
and it is fundamental to discover and to use the sym-
metry of the laws of nature (Galilean invariance,
Poincare invariance, gauge invariance, etc. ). How-
ever, the symmetry of physical states might be much
smaller: For instance, the interactions between atoms
or ions are Euclidean invariant (i.e. , invariant by trans-
lations and rotations), but crystals do exist and their
groups of'invariance {the 230 classes of crystallographic
groups) contain only discrete translations and rotations.
Indeed symmetrical problems might have solutions with
different and lesser symmetries. During its evolution
(e.g. , through phase transitions) a physical system may
pass from a symmetric to a less symmetric state:
symmetry is spontaneously broken.

Some examples of broken symmetry are fairly ob-
vious. Consider a straight homogeneous iron bar whose
constant section is a circle. Compress it by two forces,
equal but opposite, di.rected along the bar and applied
at its extremities. The symmetry group of the problem
is D„„;it is generated by the group of rotations around
the axis of the bar [=C„=SO(2)]and the reflection h

through theplane perpendicular to the bar at its middle,
or reflections v through a plane containing the axis of
the bar. (Note that the group contains all reflections v

and that the product of a reflection z and the reflection
h is the rotation of m around the intersection line of the
two planes. ) When the compression becomes large
enough, the bar will no longer stay straight but will
flex, and its equilibrium shape is. then a sine curve.
This solution is also contained in the partial differen-
tial equation governing the problem of elasticity, as
demonstrated by Euler in the eighteenth century.

As far as I know, the next historical example was
found by Jacobi in 1834 (Jacobi, 1834). Consider a
rotating mass of an incompressible Quid in gravitating
self-interaction. Newton had already proved that the
equilibrium figure is an oblate ellipsoid axially sym-
metric through the rotation axis; he applied it to the
Earth and got a good approximation of its shape. The
symmetry group of its vertical angular momentum isC„„.However, when one puts the problem in equations
(see Appendix B) one sees that the shape of the surface
depends only on the square of the angular momentum,
so the symmetry group of this problem is also D„„.
VVhen the angular momentum ~ is large enough, another
type of solution appears and is more stable: the equi. -

The traditional notation for these groups assumes the bar to
be vertical and this plane, therefore, to be horizontal. See
Appendix A for the complete description of closed subgroups
of 0(3).
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FIG. l. Among all possible graphs joining the four vertices
A, &, C, D of a square, (a) and @) are the shortest ones.
The symmetry group of the square is C4„.The graphs (a) and
(b) have less symmetry: their little group is C». They form
an orbit of C4„., i.e. , they are transformed into each other by
any operation of C4„which does not belong to C2„(forinstance
the rotation by ~/2 around the center of the square A. BCD).

I

librium shape is a three-unequal-axis ellipsoid. With
increasing 1 other types of solutions with convection
currents can appear (see Appendix A for their sym-
metry); such solutions were first studied by Riemann
and Dedekind and they compete with the hydrostatic
equilibrium in the rotating frame. Poincare (1885)
found a new broken symmetry at higher J: one half of
the long equatorial axis becomes longer than the other
half (there is no center of symmetry left). [Later
E. Cartan (1922) proved the stability of this solution. ]
Poincare had even found an enumerable infinity of suc-
cessive symmetry breakings. Recently it was shown
(Constantinescu et a L, 19V9) that the Jacobi solution is
only the first of another infinite family of symmetry
breakings, from D„„into D„„(onefor each n).

B. A nutshell example of symmetry breaking

The above two examples conclude my historical intro-
duction. They and a third easy problem that I suggest

Its symmetry group is D2„.all these groups are defined in
Appendix A.
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to the reader are sufficient to illustrate the simple but
fundamental notions of group theory we shall need to
use throughout this article.

Pxoblem: Four towns are situated at the vertices of
a square with p, miles per side. What is the shortest
road system which could join these. four towns?

I leave to the reader to prove that a shortest solution
is givenby Fig. 1(a). It represents (1+W3) p = 2.732 p,

miles of road (instead of 2@2 p, =2.828 p for the two di-
agonals of the square). Of course another solution
(Fig. 1(b)) is obtained from Fig. 1(a) by a rotation of
s/2. We also remark that the problem has the sym-
metry of the square: C~„(C~generated by the rotation
of 2m/4 and 4 symmetry axes) while the solutions have
only the symmetry C2„(rotations of a multiple of 2w/2
= s and 2 orthogonal symmetry axes). It is by using the
rotation of w/2 (or any operation of C~, which is not in
C,„)that we pass from one to the other equivalent so-

lutionn.

We see that if a problem has a symmetry group G,
the set of all its solutions is invariant under G, but a
given solution s might be invariant only under a sub-
group G, of G; G, is called the isotropy group or the
little group of s. Then by the action of the group G on
s one can build a family of solutions: it is called the
orbit of s and denoted by G(s). By construction this
set is invariant under G. We remark that if G is a finite
group and ~G

~

and ~G, ~
are, respectively, the number

of elements of G and of G„the number of elements of
G(s) is IG I/IG I i in our third example of the road sys-
tem, ~C,„~=8, ~C,„~=4; so we have two solutions. When
G and G, are topological groups we have an example of
a principal fiber bundle, as we shall explain later G is
the bundle, G, the fiber, and G(s) the base. When G is
a I ie group and G, a closed subgroup, the dimensions
of the manifolds G, G„G(s)satisfy Eq. (3') below. I
leave the reader to verify the nature of broken sym-
metry in our examples.

Example 1 (the iron bar): G, -C,„generated by the
reflection h and the rotation of m around the horizontal
line in the plane which is perpendicular to the bar.
G(s) can be represented by a horizontal circle, cen-
tered on the midpoint of the bar; the topology of such
a circle is often denoted by 8„the one-dimensional
sphere.

Example 2 (Jacobi's rotating ellipsoid): G, is D,
„

(defined in Appendix A), and G(s) can be represented
by a horizontal circle positioned at the extremes of the
long axis of the equatorial ellipse of the Jacobi ellipsoid
with the two points on a same diameter identified. This
is P„the one-dimensional projective space. (The def-
inition of P

„

from S„is s imilar. )
Often the set 8 of solutions is infinite; the solutions

depend on parameters (e. g. , 4' in the third example) so
8 has generally a topology; it can even be a smooth
manifold or a vector space. The fundamental concepts

4A warning to physicists: many physicists refer to the surface
in the n-dimensional Cartesian space Z& &

x;=1 as an n-di-
mensional sphere; here we follow the mathematician's conven-
tion of calling this (n —1)-dimensional surface the (n -1)-di-
mensional sphere 8„

describing such group actions appear through all phys-
We review them here. '

C. The basic concepts of group action

Given mathematical objects with the same mathe-
matical structures (e.g. , a set, a topological space,
a smooth manifold, a group, a vector space, etc. )
a map f from one object M to another M' which pre-
serves the structure is denoted by I-I' and is simply
called nowadays a morphism (before, there were as
many names as structures: map, continuous map,
smooth map, homomorphism, linear map). When the
morphism is one-to-one onto (one says "bijective"),
it is inversible and it becomes an isomorphism. When
M'=I the set of isomorphisms form a group Autl,
the group of automorphisms on M. An action of G on M
is defined by a homomorphism G -Autl. For example,
when M is the n-dimensional real vector space g„,
Ante„=GJ (n, ft) the n-dimensional general linear group
on A; it contains all inversible n &&n matrices; an action
of G on 5„is a linear representation of G. The first
question to settle is, when are two G actions equivalent?
Given two actions G-Autl and G —Autl' on two mathe-f f'

matical objects of the same nature, one says that a
morphism M-M' is equivariant if for all gc G (denoted
by vg~G)

@ f(g) =f'(g), @

II f(( )
M = M Diagram 1

Another way to express (1) is to say that the dia-
gram 1 of morphisms is commutative. The two G
actions f and f' are equivaLent if and only if there exists
an equivariant isomorphism between them. (The reader
can check that for linear representations this is the
usual. definition of equivalence. )

A warning: on the same set one may consider several
structures. For instance G acts naturally on itself by
G —AutG where 4 (g)x =gxg '; 4 (g) is an inner auto-
morphism; ImC. (the image of the homomorphism 4) is
the group of inner automorphisms, and Kerb (thekernel
of 4 is the set of elements of G which yield the trivial
automorphism) is &(G), the center of G. The orbit
G(x), i.e. , the set fgxg ',g c G) is called the con-
jugation class of x, and the little group G„is called
(for this action) the centralizer +o(x). But one can
just consider the set G of elements of G, forgetting the
group law (AutG is just the group of permutations of the
elements of G); then an interesting action of G on G is
that by left translations G-AutG, i.e., r(g)x~gx. Then
G is a unique orbit for this action (one says that the
action is transitive) and, for any x, the little group
G„is equal to (Ij, the trivial subgroup (one says the

~Most of these concepts are taught in many junior high
schools in the U. S. Those who know them can skip to the next
subsection. Older physicists should learn them for speaking
with their children and teaching their students.
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620 Louis Michel: Symmetry defects and broken symmetry

action is fusee).
Given G actions on M, M', M", . . . , for any object one

can build from some M's, there is a "natural" G action
on this object. Here we can only give some references
telling the reader what must be "natural. " (Bourbaki,
1958; Cartan and Eilenberg, 1956; MacLane, 1975).
Let us treat two simple examples. If G acts on the set
G it acts on all subsets of G: The set of subsets of G
is denoted generally by +(G). In the first G action we
defined (that by inner automorphisms), the elements
of the orbit of a subset H are called the conjugate sub-
sets: kg ', (gc G), and the little group of H is called
the normalizer of H and denoted by N~(H). When H is
a subgroup of G and NG(H) =G, H is an invariant sub-
group of G. N~(H) is therefore the largest subgroup of
G which has H as invariant subgroup. In the second G

action, that by left translations when H is a subgroup,
the elements gII of the orbits of II are called the 1.eft
cosets of H; and the little group G„is II itself. In that
case we shall denote the orbit of H by [G:H]. When H
is an invariant subgroup of G, there is a natural group
law on [G:H]; this group is usually denoted by G/H and
is called the quotient group of G by H.

Consider now an arbitrary G action on M and the orbit
G(m) of m, an arbitrary element of M. Little groups
of elements of an orbit are conjugated: indeed, if we
simply denote by g m the t.ransform of m by g, we
have

(2)

Is it possible that different points of an orbit have the
same little group'? The answer is G . =G iff (if and
only if) g c N~(G ) (the normalizer of G in G). As an
exercise the reader should apply this result to our three
examples of symmetry breaking.

(1) N~ (C,„)=D», so a flexed bar a.nd one rotated by
m around the vertical axis have the same symmetry
group.

(2) D» is its own normalizer in D„„;all other el-
lipsoids have different symmetry groups, all conjugates
of D2„.

(3) C2„is an invariant subgroup of C,„:the two so-
lutions have the same symmetry group.

It is easy now to have a complete classification of G

orbits because the orbits of the type G(H) in the action
by left translation of G on the set of left cosets of a
subgroup are prototypes of each equivalent class of
orbit. Indeed let G(m) be an arbitrary orbit of G in an
arbitrary action; we define the equivariant isomor-
phism @ (between sets) with the orbit G(G ) by P(g .m)
=gG and it becomes easy to prove the fundamental
theorem.

Theo&em 1: The types of G orbits are in bijective
correspondence with the conjugation classes of sub-
groups of G.

So we shall simply denote a type of orbit by [G:H];
remember that it is equivalent to [G:H'] iff H'=xHx ',
i.e. , H' and B are conjugate.

There is a partial ordering, by inclusion, among the
subgroups of a group G (G is the largest, (lI the
smallest), hence also a partial ordering of the con-
jugation classes of subgroups of a compact (or finite)
group. This yields, in the inverse order, a partial

if G is a Lie group:

dim[G: H] = dimG —dimH . (3')

All these concepts are illustrated by the simple example
of Fig. 2 and Diagram 2.

C~4y

Cpy t C

2 Cs 2 Cs

Cl Diagram 2

It is time to give one last definition concerning group
action; one calls the union of all orbits of the same type
in one action "the stratum, " i.e., rn and m' of M are on
the same stratum iff G and G, are conjugate. The first
thing to do in studying a group action is to decompose it
into strata and orbits. For instance the action of the
full Lorentz group [O(3, 1)] on p space, the four-dimen-
sional real vector space of energy momenta, has four
strata:

(1) The timelike vectors p2&0 have orbits of the type
[O(3, 1):O(3)] (two-sheet hyperboloids).

(2) The spacelike vectors p&0 have orbits of the type
[O(3, 1):O(2, 1)] (one-sheet hyperboloids).

(3) The lightlike vectors p2 =0, P w 0 have one orbit
only, the surface of the light cone minus its vertex,
of type[0(3, 1):E(2)] where E(2) is the Euclidean group
in two dimensions (up to an isomorphism).

(4) The null vector p=0, invariant under the whole
Lorentz group, has one orbit of one point.

In Appendix C we apply these fundamental concepts to
the study of some properties of compact Lie group
actions. In Appendix 0 we give other examples of de-
composition of linear group actions into orbits and
strata. We also introduce the "natural" equivariant
algebras which arise from these actions. With the back-
ground of definitions and fundamental concepts given
here, and always assumed in. the literature on group
actions, the reader can understand the wording of the
many theorems on group actions he can find in the
mathematics texts (Bredon, 1972; Palais, 1960;
Montgommery, 1951; Mostow, 1957; Michel, 1971)
or physical papers (e.g. , Michel, 1970, 1972; Michel
and Radicati, 1970, 1971a, 1917b).

To return to symmetry breaking: let us consider a
G-invariant problem and 6 its set of solutions (e.g. ,
the equilibrium states of a system). When one varies
one parameter of the problem (e.g. , temperature T or
pressure f, or as in Sec. I.B, angularmomentumsquare
&') one follows a trajectory in S; when this trajectory

ordering of orbit types: indeed, as we saw for finite
groups

number of points of orbit [G:H] =- I«» I
= IG If IH I '

(3)

Rev. Mod. Phys. , Vol. 52, No. 3, July 1980
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FIG. 2. The symmetry group C4„ofthe square (a) contains the reflections s&, sv, sj, s2 through the four symmetry axes 0, v,
d f d 2 and the four rotations I, x, r, x =x around the center of 0 of the sq uare and by an angle 0, 7t /2, 7F, 37t /2, respectively.
The five conjugation classes of elements are: I, x2, r and r, &I, and z„,and z& and z2. The group C4„has three subgroups of
four elements: C2„(I,r, sp„sv),C4(I &, &, & ), and C2„(I,x, sg, s2). These subgroups are their own conjugate; i.e., they are
invariant subgroups. That is also true of C2(I, r ), center of C4„. The four other subgroups with two elements —C"(I, si,),
C"(I, „), C'(I, sj), C2(I, s2)—are conjugated by pairs; we denote by C, the conjugate class of C" and C" and by C" that of C and
C . The group 4„is the norma]. izer of its invariant subgroups. The subgroups C and C have a common normalizer C2„while

S
is the normalizer of both C and C . The partially ordered set of conjugation classes of subgroups of C4„is shown in Diagram

dV

2; on the left of each class symbol is given the number of subgroups it contains (when this number is 1, we use the same symbol
for the subgroup and for its conjugation class). To each element of this set corresponds a type of symmetry for the graphs' join-
ing the four vertices of a square; each one of these eight symmetry types is illustrated by one graph of the figure according to
the table:

graph
symmetry class
number of elements

in the orbit
little group
other different little

group of the orbit

2 2

C4v C2v

2 4 4 4 8
C2v Cs C2 Cs C

Ch
S

C'l

(b) (c) {d) (e) (f) (g) (h) '(k)
C4„C2v C4 C 2v Cs C2. C s C i

passes from one stratum to the other there is a sym-
metry change. Most often, neighboring strata can be
relatively ordered, that is, the symmetry changes one
way from a subgroup H to a group G in accordance with
the Curie principle (P. Curie, 1894), "the symmetry
of causes must be found in the symmetry of their ef-
fects"; but going the other way along the trajectory, the
symmetry is "spontaneously" broken from 6 to H.

It is easy to show (e.g. , Palais, 1960; Bredon, 1972;

Michel, 1970) that for the continuous actions of topo-
logical groups, the strata with the larger isotropy
groups (i.e., smaller orbits) appearing in these actions,
are closed. So generally by going to a limit (e.g. ,
T -0 or T- ~) for a parameter the trajectory inside a
stratum may go to its boundary, i.e., a closed stratum
Kith higher symmetry. Indeed symmetries are stable
(this helps to make science possible) and symmetry
breaking is the exception. However we misled the reader

Rev. Mod. Phys. , Vol. 52, No. 3, July 1980



622 Louis Michel: Symmetry defects and broken symmetry

when we spoke of a trajectory; more correctly, when
we vary the external parameters as a continuous function
of one variable &, then for critical values of &, we ob-
serve that a bifurcation can appear to an orbit of so-
lutions with lower symmetry. This is the case in the
two first b roken s ymme try examples we presented; for
instance in the second, when ~' increases from zero,
one has the trajectory of axially symmetric solutions;
on this trajectory, at the critical 4 value, start also
the orbits of triaxial ellipsoids, so the set of solutions
is like an umbrella.

When symmetry breaking appears at a bifurcation, it
is irrelevant to know which direction the system will
take; in practice the direction taken is due to inhomo-
geneities, impurities, fluctuations. What is important
is to know that there exist different strata of solutions
and the interesting question is which orbit type they
contain or, what is equivalent, into sehich snbgroups
H can the symmetry G be broken'7

This is one of the questions the Landau theory of
second-order phase transitions (Landau, 1938; Landau
and Lifshitz, 1958) tried to solve. (Although this phe-
nomenological theory does not give the right critical
exponents, it does give good-predictions on the nature
of symmetry breaking. )

D. Variational problems and symmetry breaking

The Landau theory is an example of the following type
of problems: their solutions are given by the extrema
of a G-invariant function or a functional, depending also
on external parameters. In the Landau theory, one
looks for extrema of the free-energy thermodynamic
potential E, functional of the crystal density p(x),
dependant on temperature T and pressure p and in-
variant under Go the crystallographic group of the higher
symmetry phase. Assume that at T„P,the absolute
minimum of E is at po(x). What can happen when T
decreases from To? The different minima E(p;(x)}
vary with T, so we denote them by E(p, (x); T)), and o. ne
of the other minima may become equal to that at p„
i.e., E'(po(x); To) =E(p, (x); T,) at a, temperature T, and
becomes the new absolute minimum when T & T,. This
situation describes a first-order phase transition [or,
as some say now, it is an example of Thorn's catas-
trophe (Thorn, 1974; Poston and Stewart, 1978). A
priori there are no relations between the symmetry
group Go and G, of the respective minima E(p„T,),
E(p~, T, ) and no prediction can be made on the sym-
metry change. (Note, however, that the Morse theory
does impose some relations on the extrema of most
functions on a compact manifold) (e.g. , Michel and

6It may also happen that Nature does not choose; this occurs
when the orbit [G&j is finite. For instance, in a second-or-
der phase transition from a monocrystal with G symmetry,
into a less symmetrical crystal (H &G), the resulting crystal
may have "macles, "i.e., subdomains which in general pave more
or less regularly the whole crystal. Each subdomain corres-
ponds to a point of the orbit, i.e., to a piece of crystal with
symmetry H, and the different points of the orbit (each one
representing different "positions of this crystal) are equally
represented. Examples are known with 24 point orbits; they
are frequent in natural rocks in the case of two point orbits
{twinning), e.g. , Dauphineite in quartz.

Mozrzymas, 1977).
Another situation may also appear'. the minimum

E(po(x); T)), as a function of T, may remain the lowest
minimum but its symmetry may change at a critical
temperature T,. Of the two groups Go and G„onemust
be a subgroup of the other, and the I andau theory gives
a restrictive list of possible subgroups of symmetry
b re aking.

Consider the simplest model of this type of problem.
+ depends only on one real variable X and one param-
eter T:

E =-,'X'+-,'o(T —T.)X', o. &0. (4)

E(X)=E(-X'), i.e. , 'E is invariant under the two-element
group Z, which changes' into -X. So one expects an
extremum at X=O (one stratum with one orbit around
one point; all other points X c 0 form the other stratum,
with two-point orbits). For T ~ T, this extremum E'(0)
=0 is a minimum, but it is a maximum for T & T» and
for each such value of T there are two minima (not
invariant under Z, but forming an orbit of Z, )

X = o.(T, T), X = -a.(T, —T) . (5)

[This simple model provides a qualitative explanation
for symmetry breaking in many phenomena, e.g. ,
spontaneous magnetization where X is the magnetic
susceptibility, but then the critical exponent P in
(T, —T) is —,

' instead of —,.] See Fig. 3.
The fact that X = 0 is an extremum is easy to gen-

eralize: R is replaced by an arbitrary manifold M, and
Z2 by an arbitrary compact Lie group G. Then one has
the following theorem (Michel, 1971).

TIEeorenz 2: All G-invariant real valued functions on
M have in common orbits of extrema: these critical
orbits are completely characterized by the property-of
being isolated in their strata, i.e., in their neighborhood
there are no orbits of the same type. (Hints for the
proof of this theorem are given in Appendix C.)

Of course each function may have other orbits of
extrema. ' However, in nearly all the physics papers
I have read, presenting a variational model of sym-
metry breaking, the solution was given by such acritical
orbit; the solution thus obtained was not a success of
the model(to vary any other function would have given
the same extremum), but a verification of this useful
theorem.

It is worth noting that most of the directions of sym-
metry breaking in the inner symmetry space of the
fundamental interactions of physics are on critical
orbits. (Michel 1970, 1972; Michel and Radicati, 1970,
1971a, 1971b). This is presented in Appendix E.

YIf a G-invariant function has an extremum at x, it has the
same extremum at all points of G(x), the G orbit of x.

E. Bifurcation theory and symmetry breaking

The simple example of a function ~ to be varied,
given by Eq. (4), is also a simple example of bifurcation
of solutions (see Fig. 3). When one goes along the flat
bottom I" =0 of the valley formed by I" for T &T, and
decreasing T value, one meets at T =T, a bifurcation
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at ~=X, and compute the Freehet derivative

FIG. 3. This figure represents the simplest model of spontan-
eous symmetry breaking in phase transition: ~ is a thermo-
dynamic potential (e.g. , Gibbs free energy) depending on the
temperature T and on another external parameter X (e.g. ,
magnetization) but is independent from the sign of X. Follow-
ing the minimum of the function F'(X, T) for a fixed value of T,
when the parameter T decreases from a value larger than To,
one meets at T = To a bifurcation between two valleys. Actual-
ly, the function +(X, T) plotted in (a) is that of Eq. (4). Its
minima in the plane ~, T are plotted in (b).

For each v, & pair, we have a morphism &,-&,. If
P„(0,Xt) is not inversible there is a bifurcation at the
solution u„X,and in the "good" cases the subspace
KerE (0, Xo) is finite dimensional and tangent to the
manifold of solutions in B, in the neighborhood of u, .
To my astonishment it seems that only recently a sys-
tematic study of equivariant bifurcation theory has been
made (trodi and Ambrosetti, 1973; Burger, 1963;
Sattinger, 1977, 1978a, 1978b). The symmetry group
G acts linearly on B, and B, and trivially on the ~space,
and Sis anequivariant map. Then G acts on KerE', (0, Xo)

by a linear representation which is irreducible if one
excepts the case of accidental degeneracy (for a sim-
ilar, detailed study of example 2, the rotating ellipsoid,
see Constantinesu et a/. , 1979). Hence, a prior. i, the
broken symmetry subgroups will be little groups of
"irreps" (irreducible linear representations of G).
Assuming good hypotheses, e.g. , that I'„is analytic in
A., Sattinger (1977) found that the breaking directions in
KerE„(0,Xo) are idempotents of the G-equivariant al-
gebras I had the occasion to consider earlier with
Radicati (Michel 1970; Michel and Radicati, 1970,
19Vla, 1971b), showing that the breaking directions
of the internal symmetry of hadronic physics are idem-
potents (or nilpotents) of such algebras (see Appendix
E). The Gell-Mann (1962) and Biedenharn (1963) d al-
gebras on the adjoint representation of SU(n) are an
example of such algebras, as explained in Appendix D.

Our three examples of symmetry breaking, as well
as those of the Landau theory, can all be considered as
applications of equivariant bifurcation theory. In all
cases the symmetry is broken into an isotropy group
of an irrep. I do not know of any published list of the
isotropy subgroups of the irreps of the rotation group
SO(3) and the three-dimensional group O(3). Such a
list is so useful that I give it in Appendix A.

What are the other mathematical schemes for sym-
metry breaking?

into two valleys' sloping down at the same rate [sub-
stituting in Eq. (4) the value of x from Eq. (6)],

Bifurcations ean be studied in a larger setting than
variational problems. Indeed bifurcation theory is part
of the framework of integral-differential equations;
even more generally one considers a nonlinear differ-
entiable map S between Banach spaces B„B,(which
might be identical) depending on a point X of a param-
eter space, and the solutions of the problem must
satisfy S(u, X) =0. Let us assume that uo is a solution

It is true that the delta of a river displays many bifurca-
tions, but valley bifurcations are rather rare on Earth. The
best known example is probably that of Orinoco in Vene-
zuala (Amazonas): one arm of the bifurcation flows into the
Casiquiare of the Amazon basin.

F. Other symmetry breaking meehanisrns. The
decorapositiori into pure states

Two other mathematical processes for obtaining
broken symmetry in physics are (1) going to the ther-
modynamic limit, i.e., replacing a system that has a
very large but finite number of constituents by an in-
finite system, and (2) renormalization in field theory.

One can cite historical papers for obtaining broken
symmetry by either process (Peierls, 1936, Lee, 1969;
Lee and Gervais, 1969) and a review paper for each
process (Frohlich, 1978; Symanzik, 1970). These two
mechanisms have not yet been related to the study of
symmetry defects. Surely this will happen. I shall skip
them here mainly on the grounds of present incom-
petence.

The processes of symmetry breaking that we review
last apply to classical and quantum statistical dynamics,
quantum mechanics, field theory, and more generally all
domains of physics in which the results of observations
can be described by expectation values of the operators
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of an algebra g, the algebra of observables. This al-
gebra is Abelian for classical statistical mechanics,
non-Abelian in the other cases.

Consider quantum mechanics: the pure states are
represented by normed ((x ~x) = 1) vectors ~x), of aHilbert
space ~; Hermitian operators on ~ form the algebra of
observables; (x ~A ~x) =trA ~x)(x

~

is the expectation value
of the observable A for the state ~x). We recall that
when A is a positive operator, by definition its expec-
tation values for all ~x) are positive. Most often, one
has only partial information on the state of the system;
in that case one must use a density operator p to de-
scribe it; p is a (discrete or continuous) linear combi-
nation with positive coefficients of rank one projectors
such as ~x)(x ~. It is only when we have a complete
knowledge of the state of the system that p = ~x)(x

~

= p';
then the system can be represented by the normed vec-
tor ~x) defined up to a phase. In this latter case the
state is said to be a pure state; otherwise itis amixture.

I et us consider the example of spin polarization. As
long as all information we have and all observations we
make on the ground state of an atomic nucleus of spin
j ~0 are rotationally invariant, this state is described
by a density operator p, invariant by rotation. Since
the total Hilbert space of state vectors for this nucleus
can be written as the linear product of Hilbert spaces
for each type of coordinate, let us concentrate on the
2j+1 dimensional space K,. corresponding to spin co-
ordinates; on this space pa=[1/(2j+1)]I; indeed the
rotation group [or more exactly its covering SU(2) when

j is a half-integer] acts on p, by p, -D&(r)pD, (r) ', .

where r-D, (r) is the 2j.+1 dimensional irrep of SU(2).
This action can be extended to the whole special unitary
group SU(2j+1) by p- UpU '. The pure states p= p'
form one orbit [SU(2j+ 1):U(2j)] homeomorphic to
P(2j, C), the complex projective space in 2j dimen-
sions, so its real dimension is 4j. The set of all density
operators is the polarization domain X),. (Minnaert,
1971; Doncel, Michel, and Minnaert, 1972; Doncel
et al. , 1973). This set is the complex hull of the orbit
of pure states in the real vector space e,. [of dimension
(2j+1)'] of Hermitian operators acting on 3'.z. The pure
states density operators are the extremal points' of the

~Pure polarization states are "different" if they cannto be
transformed into each other by the orthogonal group 0 (3) when
the particle is at rest. However, the decomposition of the
manifold P (2j,C) of pure polarization states into 0(3) ort. its
does not seem intuitive to most physicists for spin j&1j2.
Consider the simplest case j=l, with K, three dimensional;
let f &

i= 1, 2, 2, the coordinates of
~ x) in an orthonormal

basis Z$ &$;= (x~ x)=1. The pure states depend on four real
parameters I indeed real dim P (2, C) = 4j. So there is an infinity
of 0 (3) orbits, which can be labeled by the 0(3) invariant
)Z& g & ~

= p. There are three strata, the open dense stratum
(see Appendices C and 0) Q& p& l with an infinity of orbits, and
two strata of one orbit each, the orbit p=l of longitudinally
polarized states and the orbit p= 0 of circularly polarized
states. The statement is often found in good books on quantum
mechanics that-you can transform spin-1 pure polarization
states into each other by rotation and/or space reflections.
Not only is this statement wrong, but it is onlyfor the special
cases @ = 0, l that one can find a (real) triedra such that the
polarization state vector is an eigenstate vector of J3 [the ei-
genvalue is + (l —p)j.

convex polarization domain X)J.
We now transpose these well known remarks on quan-

tum mechanics to the general situation of an algebra 8
of observables (see above, with quantum and classical
statistical mechanics or field theory as examples).
Technically g is chosen as a C algebra with a unit I;
we do not need to go into too much detail here: 8 is an
associative algebra built on a complex vector space
with a norm such that IRBII = IR II IIBII, an anti-involution
(AB)*=B*A" satisfying Ilk*All = I(All'. (C is a one-
dimensional C algebra with llzll = [z (

and z* =z, the
complex conjugate of z.)

The positive observables are of the form AA (or
A*A). A state is a normed 1 positive linear form @ on

i.e. , (t(()(.A+ p,B) =)(.(t(((-'()+ p, @(B), @(AA") &0, y(1) =1
(in the particular case of quantum mechanics, @(A)
= Trpb, where p is the density operator representing
the state (t). The set X) of such P is convex (i.e., if

o.; ~ 0, Zn; = 1, then Qo', (t(,. (= D) and it:s ex-
tremal points are the pure states. "

From this general scheme there is a way to recon-
struct a Hilbert space by the well known GNS (Gelfand-
Neimark-Segal) construction sketched in Appendix F.
One generally starts from a state 4 (=& which will
play the role of vacuum, or lowest-energy state

~

fl)
in K~, and one also obtains a linear representation on
BCs, A —ve(A) of the algebra it of observables. If C is
a pure state, the representation ~~ is irreducible.
Let G-Aut8 be the action of the symmetry group G
on the algebra of observables. Such an action can be
transposed to the set of states n Apur. e state (t( may
not be invariant by G. Then one can consider its orbit
G(g}. If there exists a G-invariant measure" dp, (g) on
this orbit and if the total measure of the orbit is finite
then, normalizing f«& »idj, (g) =1, by averaging over the
orbit one obtains a G-invariant state

for every (8)

A e n, ss, (A}= mg. s(A) dp(g) .

One has the choice of working with the reducible repre-

They may be only primary states instead of pure states; we
do not explore these technicalities here.

This is always the case when G is discrete or compact or
Abelian or a semidirect product of them, such as the Eucli-
dian group E{3)= T O(3). It might not be true for some orbits
when G is a noncompact Lie group such as the I orentz or
Poincare group.

((&u(r)
c (g)

which is of course a mixture.
The GNS construction starting from the G-invariant

mixture state f, yields a reducible representation
A. —m&, (A) of 8 on the Hilbert space Ã&, with funda-
xpental state ~Qo), while the same construction for any
state g Q of the orbit G((C() would have yielded an irrep
m«of 8 on K, .&. As in Eq. (7) we have direct integral
decompositi on:
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sentation and the Hilbert space &, with a degenerate
vacuum (i.e., a full G orbit of the fundamental state)
or of choosing one of the i rreps, for example, that on
the Hilbert space BC&, on which the G symmetry is ex-
plicitly broken, since the automorphisms f(g) of a,
when gg G&, cannot be implemented as operators on
~& (they transform ac& into 3C~.&). As an example, take
an infinite system of atoms whose fundamental equili-
brium state (at given T, P) is a crystal: then any
Euclidean-invariant equilibrium state will be a mixture.
However, one generally prefers to fix the position of
the crystal. Its fundamental state is then a pure phase,
not Euclidean invariant, since its symmetry group is
crystallographic, i.e., a discrete subgroup H of E(3)
such that the orbit [E(3):H] is compact.

Conversely, given a G action on the C+ algebra of
observables OI. and a G-invariant state go which is a
mixture, how does g, decompose into pure states'?
%ith a minimum'of physical assumptions" in this gen-
eral mathematical frame, one canprove (Kastler and Rob-
inson, 1966; RobinsonandRuelle, 1967; Haaget al. , 1969;
Ruelle, 19VO; Kastler et a/. , 1972; Emch, 1972) that any G-

invariant equilibrium state go can be decomposed into
pure states by an integral on X), the set of states, with
a G-invariant finite measure dp (normalized to 1). The
group G acts on the support of the measure dp either
transitively (i.e., the support is a G orbit) or by an
ewgodhc action (the support can be decomposed into
orbits, all ef zero measure, except one whose measure
is one). We have described the transitive case. This is
the only possible case when G is compact; then every
closed subgroup H of G can appear in symmetry break-
ing. There are selection rules on H when G is a non-
compact Lie group, as the example of E(3) treated in
the next section will show. Moreover thereisthesecond
possibility, that of "ergodic states. " No general clas-
sification of such states exists as yet, although more
and more are actually being found and studied;

G. The mesomorphie phases of matter

The symmetry breaking scheme explained in the pre-
ceding section has been applied to E(3), the three-di-
mensional Euclidean group in Kastler et al. (19V2); it
classified the possible little groups of transitive states.
All orbits corresponding to smooth actions of E(3) (i.e.,
those with closed isotropy groups) carry an invariant
measure, which is finite if (and only if) the orbit
[E(3):H] is compact. These equilibrium states of mat-
ter are often called mesomorphic phases; in the ap-
proximation of infinite extension their symmetry group
is a subgroup H of E(3), defined up to a conjugation and
such that [E(3):H] is compact. When H is discrete, the
phase is a crystal. For the purpose of classifying
crystal symmetries, crystallographers were not in-
terested in the characteristic lengths of the crystal,
but they wanted to distinguish eventually between left-
handed and right-handed crystals. So they classed the

~2The main physical assumption made is that of asymptotic
Abelianness (Kastler and Robinson, 1966) for the space direc-
tions, i.e., two observables with compact support commute
when one of the supports is translated to infinity by a space
translation.

TABLE I. The broad classes of the. symmetry groups H of
mesomorphic states of matter: [E(3):II]compact, Hp = largest
'connected subgroup of H, TH =H A T. The family label of
Kleman and Michel (1978) to which we refer for more details. ~

Family TH Hp

Ia
Ib
II a
II b

IIc,d
V
III
IV

R3

R
XQ
XZ

R2XZ
R2

R Xg2
Z3

R3 x U(1)
R
R

R2 x U(1)
R
R
R

Ordinary nematics
Exceptional nematics
Cholesterics (chiral)
Smectics A
Smectics C (can be chiral: II.d)
Chiral smectics C (chiral}
Rod lattices (e.g. , lyotropics)
Crystals

An independent classification of the symmetry groups of
mesornorphic phases has been given by Goshen gI; aL (1975):
it also gives an earlier reference to Hermann.

The affine group is the inhomogeneous general linear group
(including the translations). We denote it by Aff(3) and its
connected component by Aff p(3).

H's up to a conjugation in the connected affine group
Aff, (3)." This yielded 230 crystal symmetries (they
are not all represented in nature). By the same clas-
sification there are an infinity of other H subgroups.
They can be put in families according to the topology
of their largest connected subgroup Ho and their inter-
section H A T = TH with the translation subgroup of E(3).

Each broad class had already a generic name that we
give in Table I.

Very few symmetry classes are represented in nature
[although families I„,II, „Veach have an infinity of
subgroups H nonconjugated in Affo(3)]. The polar mole-
cules which have no symmetry planes can form the
chiral families; conversely those families of phases
are never observed for chemicals made from nonpolar
molecules. Let us give for the nonspecialist a brief
description of the mesomorphic families.

In nematics, the molecules are aspherical; their
positions are distributed at random as in a liquid, but
they are aligned. In ordinary nematics H is the semi-
direct product A~D „.That is, the orientation of the
molecules causes them to yield only axially symmetric
quadrupole (second-rank tensor) effects (e.g. , light re-
fraction index, magnetic susceptibility, etc )e.v,en when
the molecules have no axial symmetry. Probably, near
the solidification temperature, very aspherical mole-
cules may rotate less easily, and one expects "excep-
tional nematics" (e g. , birefring. ent quadrupoles with
three unequal axes). An exceptional nematic with symme-
try A3DD, „may have been observed (Billard et al , 19V8). .

Cholesterics are constructed of polar molecules;
their symmetry group H contains all the translations
in a plane and, with a perpendicular axis, a continuous
helicoidal group. They appear frequently in biological
tissues. In smectics the molecules are distributed in
parallel monomolecular or bimolecular layers, and they
are aligned either perpendicularly (smectics A) or
obliquely (smectics C) to the layers In clziwa. l smectics
C inside each layer the polar molecules are oriented
with a constant oblique angle, but the azimuth of this
orientation turns by a constant angle 0 from one layer
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to the next; the division in subfamilies II„orV depends
upon whether 8/m is rational or not. Family ill is illus-
trated by the hexagonal rod lattice of lyotropics
(I uzzati and Tardieu, 1974; Chandrasekhar et al. ,
1977) and also by the lattice of vortex lines in a type-II
superconductor (Essman and Trauble, 1967).

The "ergodic" E(3) broken symmetry states have not
as yet been classified. The classification of the heli-
magnetic crystals or of the modulated crystals is under-
stood (Kastler et al. , 1972; Janner, 1977; Janner,
19V9). However, many incommensurate phases in
crystals are presently found (Aalst et al. , 1976; Tizumi
ef af. , 1977; Pouget et al. , 1979) and they will surely
require a deeper study of the general problem of sym-
metry. There are also quite a number of smectic
phases, labeled B,E, II, . . . , which are locally like
crystals, but in which the order correlation disappears
rapidly along the direction orthogonal to the layers.
How shall we describe their order~ Are they ergodic
states~ Many questions are unanswered in this active
field of research.

H. Concluding remarks to Part I

Euclideansymmetry is only a part of the geometrical
symmetry in physics: the culminating role of geometry
is found in general relativity. Moreover, there are
nongeometrical invariances, related to internal, dy-
namicaI symmetries: that is the case of gauge invari-
ance in supraconductivity, suprafluidity, and electro-
dynamics, in the unified theory of weak and electro-
magnetic interactions. We all hope that these well
understood cases of symmetry breaking will be helpful
for understanding the approximate symmetries of had-
rons (isotopic spin, SU(3) flavors, charm, and new
flavors suggested by the upsilon) broken by the weak
interactions, the electromagnetic interaction, and the
quark masses along well defined patterns.

11. TOPO LOG I CAL CLASSI F ICATION OF
SYMMETR Y 0E FECTS AND CONF I 6ORAT IONS

A. Symmetry defects and configurations

By the end of Sec. I we reached an understanding of
the "transitive" equilibrium states; these ideas, when
applied to the breaking of Euclidean symmetry, yielded
a classification of known mesomorphic states of.matter,
with room for new phases with different symmetries in.

the already known families of Table I. To reach this
classification we had to make an idealization that the
ordered phase was extending indefinitely in space in
order to be globally invariant under an allowed sub-
group H of E(3) That idealiza. tion is not bad if the
sample to be studied is large enough so that its sym-
metry can be recognized. Actually, in nature, samples
are not only limited in size, but also far from "perfect, "
i.e., they have a lot of defects whose very existence
makes them a topic of physics. So we are led, after
the study of broken symmetries, to study imperfect
symmetries.

Consider an ordered medium, with. symmetry group
H, broken from 6, occupying a spatiaL domain V. If in
every subdomain O'C: V, the state of the phase S& can

be obtained from the state S„in a given subdomain
QC: V by an operation of the symmetry group H (H is
defined by idealizing the subdomains Q, O, . . . as in-
finite'~), this sample of a phase of matter occupying V
is said to be in a perfect state.

If this is not the case, there is a domain 0' whose
local state S„cannot be obtained from the local state
S„bya transformation of H. However, since it is the
same phase, we assume" that there is an element
g e G (the unbroken symmetry group) which transforms
the Local state S„into the local state S„.Note that all
elements of the coset gH willtransformit too. In short,
given the state S„,with broken symmetry group II&G,
the local states S„,at domains smalL enough can. be 1.a-
beled by the left cosets of gH, i.e. , as explained in.

Sec. I.C, by the points of the orbit [G:Hj. For ex-
ample, in the case of a mesomorphic phase, G=E(3),
the different cosets gH will rotate and/or translate
the locaL state S„,and the set of positions of the
state 8„is the orbit [Ggfj; another state S„,must
be one of these positions. Hence to describe the im-
perfect state of the ordered medium we define a func-
tion @ from the occupied dOmain V to the orbit of local
states (i.e., positions for a mesomorphic phase) [G:HJ."
The perfect state is described by a constant function
(i.e., a point of [G:Hj). If by continuous deformations"
the function can be made constant, we say thatthe medi-
um is in a nearly perfect state. More likely, in prac-
tice, the function @ cannot be defined everywhere on V.
Those subsets of V on which P cannot be defined are
called defects. Still there might be continuous deforma-
tions of the function @, which extend it over a defect;
we then say that the defect is topologically unstable.
As we shall see, it might even happen that @ can be
made continuous everywhere (i.e., no defects in V), but
still cannot be deformed continuously into a constant;
we then say that the global state of the medium in V is
in a, topologically stable configuration. "

There is a full-fledged mathematical theory which
tells when a continuous function defined on a subdomain
~ of V can be continued everywhere on V. Of course
this will also depend on the space [G:Hj in which the
function takes its value. We need this theory. Two
basic books on it are Hilton (1961) and Steenrod (1957).

This would not be necessary if pseudogroups were being
used, but I decided to avoid their use in this paper.

This is the natural assumption when G is a local gauge
group. When 6 is the Euclidian group, the local deformations
of mesomorphic phases may not be restricted geometrically
to translations and rotations. I do not know yet how to include
linear, even diffeomorphic geometrical deformations in the
abstract scheme presented here. See, however Sec. (5a) of
Kleman, Michel, and Toulouse {1977).

As we explained in Ftn. 6 such composite ordered media
occur naturally in crystals when the orbit I G ~] is finite.

~We shall soon give a precise definition of this concept.
In the literature "configurations" are also called "kinks"

and "textures. " Since these words have been used for 20
years with a precise but completely different meaning in the
study of dislocations (the defects arising in crystals from lack
of translational invariance), we avoid them here.
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B. Why we need homotopy for studying topologicat
stability of symmetry defects

We consider two topological spaces T,X and the con-
tinuous functions f,g, . .. from T to X; By definition,
f can be continuously deformed into g (one can also say
f is homotopic to g) if there exists a continuous function
F(t, a) in the two variables t c T, 0 & o. & 1, valued in X
such that F(t, 0) =f(t), F(t, 1) = g(t)." We shall simply
note "fhomotopic to g" by f-g. Of course f- f; if
f-g, then the continuous function F(t, P) with P = 1 —a
shows that g- f. Moreover if f- g and g- h then f- h:
(the reader should either verify this or read the proof
in Hilton (1961) or Steenrod (1957).

Since the relation "to be homotopic" is reflexive,
symmetric, and transitive, it is an equivalence rela-
tion, and the continuous functions from T to X fall into
equivalence classes called "homotopy" classes. As an
illustration, Let us study a sufficient condition for the
existence of a unique homotopy class. A topological
space I'is contractible if the identity function Y- Y
is homotopic to a constant function c, (i.e. , every
ye Y, co(y) =y~ a fixed point of Y'); the continuous func-
tion YxA~ Y deforms I continuously to c, [i.e., F(y, 1)
=y, F(y, 0) = Y,] and shows that I' can be continuously
shrunk to one of its points. This is the case of R", for
instance. If F is a contractible topological space, and
X an arbitrary topological space, it is easy to prove
that the continuous functions from X to P form only one
homotopy class; indeed given A"- Y, the function
XxA —I' defined by G(x, n) =F(f(x), n) where YxA —Y
has been defined above, satisfies G(x, 1) =f(x), G(x, 0)
= Xp.

As an immediate application, if the orbit of local
states [G:H] is contractible, there are no topologically
stable defects or configurations. It is a simple exer-
cise to check that if Z = V& C is the topological product
of F and the contractible space C, then the homotopy
classes of continuous functions from X to Z and X to 1
are in bijective (one-to-one onto) correspondence. If
we denote by M(X, Y) the set of continuous functions"
from X to Y and by 3CM(X, Y) the set of homotopy
classes, we then have

C,&&„t„,t,.bh., ~3CM(X, YX C) = 3CM(X, Y) (9)

(= between sets means that there is a well defined and
"natural" bijective map between them).

Similarly if X is contractible the continuous function
X ~ Y' is equal to f=foI„=f~F(x,1) where the continuous
function X„-X,as defined above, satisfies F(x, 1) =x,
F(x, 0) =x~, so f is homotopic to the constant function
f(x) =f(x,)." This is not helpful for our study of defects,

since defects make V noncontractible. As an exercise
one should check that

C,o„ti,~t;bi, ~ 3CM (X X C, Y) = 3CM(X, Y) . (10)

This expression suggests that the defects we want to
study can be shrunk geometrically to isolated points
(dimensions d = 0), lines (d = 1), or walls (d = 2). A line,
topologically equivalent to a segment, with both ends
inside V, can be shrunk continuously to a point; thus
topologically stable line defects must either be closed
(topologically equivalent to a ring S) or have their two
extremities on other line or wall defects or on the sur-
face BV of V (for instance, the walls of the container of
a liquid phase). "

Consider an isolated point defect; from our knowledge
of the function g around it, we must be able to decide if
P can be continued at the point. For instance, taking
the point as the origin of coordinates assumes that the
continuous function @ is known on the domains
D« .0 e, - x, +x,'+x,' - e» with e, arbitrarily small.&yF2 '
One feels intuitively that if g is homotopic to a constant
function, it can be extended continuously in the complex
ball x', +x~+x', ~ c2 since it is trivial to do it for a con-
stant function, and conversely, if Q is not homotopic
to a constant function, it is impossible to extend it con-
tinuously over the point defect. This intuition is right
and can be made mathematically rigorous. We also
remark that D,„,is a topological product S,&& [e„s,]
and since the segment [e„e,] is contractible, according
to Eq. (9) the homotopy class of P is given by our
knowledge of this function on a sphere S, enclosing the
point defect. "

Similarly, topological stability of line defects will be
studied by enclosing each such defect with a sphere S,
(i.e., x', +x,'= 1); the study of wall defects requires only
two points (one on each side of the wall), i.e., "en-
closing" the wall with the sphere S„i.e., x', =1. More
generally, a d dimensional -defect in a v-dimensional
space is topologically stable if tke [G:H] valued function
g (gehiclE describes the imperfect state of the phase)
westrzcted on a S,„,sphere enclosing the defect is not
honzotopic to a constant.

Of course we are mainly interested in v= 3, but there
is also a great interest in v = 2 phases (surfaces) and
v &3 might be interesting in some mathematical models
of statistical mechanics; v &3 is also used for studying
the symmetry of uncommensurable crystals (Zanner,
1977, 1979).

Finally, isolated d-dimensional topologically stable
defects in a v-dimensional ordered phase can be classi-
fied by the homotopy class of @~s in 3CM(S„,[G:H]) with

n= v —d —1 ~

These are equalities of continuous functions from T to X,»
one also says that F is defined on the topological space T «,
as the topological product of T and A, the closed unit interval
I0, 1]; then for a fixed e = no, I"(t, no) = E'I ~~~~ ), the restric-
tion of E' to the subs pace T x $ n 0) of T && A.

This set can be given a topology and thus made a topologi-
cal space

As we shall see, this does not forbid the existence of con-
figurations when V is contractible, but it shows that we have
to state the concept precisely. See Sec. II D.

These details of our assumption are admittedly arbitrary.
Why not then remove the whole line on the surface and squeeze
it to a point'P These conventions seem the best fitted for our
study when surface effects can be neglected: Then the lines
extend to infinity. See Ftn. 39 for surface defects.

23It might be useful to specify thatZ"; &x;= I is the equation
of a sphere S„&,which is itself the boundary of the ball I3„
defined by Z"; &x; &l. Indeed, S„&is an (n —I)-dimensional
manifold.
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628 Louis Michel: Symmetry defects and broken symmetry

C. Some highlights of homotopy theory

(12)(g*f)(x) =g(x) 'f(x)

where ~ is the group law on G. The unit of this group
is the constant valued function f(x) = 1E' G. One has to
prove that if f'- f, g'- g then g' f'- g*f (easy to verify),
in order that Eq. (12) also define a, group law on
~M(X, G). For every X', such a group is defined —for
instance when X =S„.

We a.re interested in the case in which [G:H] is not a,

group, so we have to explain how the natural group
structure is defined on BCM(S„,X) for any n and any
topological space X. We have first to deal with two
technical points: we have to choose provisionally a
fixed point xoc X, and it is technically advantageous
to remark that an n-dimensional cube I „=(t;,0 ~ t; ~ 1,
1 ~ i ~ n) with all the points on its boundary 8I"„(i.e.,
points with at least one t, = 0 or 1) identified, is topo-
logically "isomorphic" to a sphere. " Then the set

~4See in particular the pedagogical paper of Mermin in Hev.
Mod. Phys. (1979) and also Thomas (1978); I myself provided
a four-page summary in Michel (1977).

And on the union, for all n, of these sets, there is a' graded
Lie algebra structure (Poenaru and Toulouse, 1979).

~6This is the case in our study of symmetry defects when H
is an invariant subgroup; then [GW] has a natural group struc-
ture, that of the quotient group G/H.

~YIsomorphisms between topological spaces, i.e., bijective
(one-to-one onto) continuous maps, whose inverses are also
continuous, are called homeomorphisms.

There is no point in reproducing here homotopy
theory which is explained in many books and many
courses (Hilton, 1961; Steenrod, 1957; Gray, 1976).
Some popularization of it has been made by
physi cists. ' lt i s more important to explain
here the main trends of the theory and the specific re-
sults we need to apply in this paper. However, a, full
understanding of mathematical. results requires that we
know their proof. All proofs missing here can be stud-
ied by reading at most 20 pages of two "old" mathe-
matics books: The Topotogy of Fiber Bundtes by Steen-
rod (1957) (and most physicists probably need an intro-
duction to the basic concepts of fiber bundles), and the
small book by Hilton (1961). Here I shall also indicate
some broad features, that the reader will not find im-
mediately or explicitly in books. Milnor's book (Milnor,
1965) proves some homotopy theorems and is strongly
recommended for its pedagogy.

To classify symmetry defects by homotopy class, as
we explained at the end of Sec. II.B, might seem to be
amusing but not necessarily very fruitful for physics
if it does not help us to make predictions about the
physica, l properties of the defects. This is not the case,
as we shall show. The reason is that each set
~M(S„,[G:H]) of homotopy classes has a natural mathe-'

matical structure, that of a group with an action on
25

When the order parameter space is a topological
group" G whatever the definition space X i.s (see Sec.
II.B), there is a natural group structure on the set
M(X, G) of all continuous functions from X to G. This
group law on M(X, G) is denoted by " and defined by

0

FIG. 4. Given the images f(~) and g(~) of the oriented segment
~f0, 1] by two continuous maps f and g which satisfy f(0)=f(1)
= xo =g(0) =g(1), one can cons ider their union as an image of 1"

by a continuous map g *fwhich does satisfy g*f(0)=g*f(1)=+0
(the fact that there is a A, (=l such that g f(A.)= xo is irrele-
vant) .

M(I'„,BI'„;X,xo) of continuous maps f from I"„to X with
f(BI'„)=x, can be identified with M(S„,X;x,) of maps
f' from the sphere S„to X such that x, belongs to the
image of f.

Given two such functions f, g, one defines the "prod-
uct"

O(t (—'

g(2t~ —1, t2, . . . , t„) 2
~ t~ ~ 1.

For n= 1 this means that, as a function of t„the closed
path g*f(t,) is obtained by running successively along
the two paths, first f(t), then g(t) with double speed (see
Fig. 4)."

This product induces a group law on the set
3CM(S„,X;x,) of homotopy classes. Let us prove first
that it is compatible with the homotopy equivalence re-
lation, i.e. , f- f' and g- g'~g«f- g'«f'. We use the
shorthand t for t„t„.. . , t„,and consider the continuous
functions F(t, n), G(t, a) cM(S„xA,X;xo); for each value
of n, they are functions of t; in particular F(t, 0) =f(t),
F(t, 1) =f'(t), G(t, 0) =g(t), G(t, 1) = g'(t). Defining for each
value of a, H(t, n) = G(t, n)«F(t, n) one verifies that
H(t, o.) c M(S„&&A,X;xo) and that H'(t, 0) = (g« f)(t), H(t, 1)
= (g'«f')(t). Although the «product has no neutral ele-
ment and is not associative on M(S„,X;x,) it is not dif-
ficult to verify that the law induced on ~M(S„,X;x,) has
a neutral element, the homotopy class of constant func-
tions; that it is associative and that the class of
f(1 —t„t„.. . , t„)is the inverse class of that of f(t).
(The complete proof is in Hilton, 1961, or Steenrod,
1957). This group formed with the homotopy classes of
M(S„,X;xo) is traditionally denoted by m„(X,xo) and
called the nth homotopy group of the space X' ("pointed"
by xo).

The definition of vr, (X, x,) is known to many physi-
cists. For example, if X=R'-(Ot, i.e., a plane minus
a point, the homotopy class will be labeled by the alge-
braic number of turns around this point, so its m, (one
also says its fundamental group or its Poincare group)
is Z, the additive group of the integer. Since R' -(0]
is homeomorphic to the topological product S,&R, one

Since the variables t 2. ..t „arenot directly involved in
Eq. (13), everything which is proven forn =1canbe immediately
extended to any n, thanks to the tdchnical use of I'„,8 I

„

for
Sn ~
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0 n&k
a„(S„x,) =

Z n=k'

(14}

(14')

(cf. Hilton, 1961; Steenrod, 1957; Milnor, 1965; Gray,
1976; Thomas, 1978),"and the reader can also con-
vince himself easily that any image of S„ona circle S,
can be shrunk to a point for n & 1

has m, (S„x,) =Z. (It is easy to check it directly. ) Any
circle S, on S&, k'& 1, can be shrunk to a point, and this
is true also of S„,n& k. It is not hard to prove generally
that m, (G; 1) is Abelian. (16b)

Indeed K(t, n) =f(nt, ) g(t, ) f(t,) f '(nt, ) for o. = 0 and
a = 1 is equal to g«f and f*g, respectively.

We shall give explicit values of a„(n= 1, 2, 3) when G

is a Lie group.
Finally we can also define m, (x) as the set of con-

nected components of X. For a topological group G,
the connected component of 1(= G is an invariant sub-
group Gp of G; consequently mp is a group

that of Eq. (13) when o. = 1. Moreover, for topological
groups:

n&1 ~„(S,) =0. (15a) a,(G) = G/G, . (17)

The corresponding problem for a„(S~),n & k is much
more difficult. (It is not yet solved for all pairs n, k.)

A general result is that for any topological space X,
for n & 1, a„(X,xo) is Abelian. (15b)

2 Milnor (1965), Topology ft'om the differentiable viewpoint,
is not strictly a book on ho~otopy. However, it does prove
Eq. (14'), whose complete proof is not given in Steenrod
(1957). As we shall observe at the end of this paper, it is not
obvious that the function (t) should be required only to be con-
tinuous; physics also seems to require some differentiability.
IVlilnor's very pedagogical, 64-page book studies smooth (i.e.,
differentiable) maps between manifolds, while homotopy the-
ory usually uses continuous maps between topological spaces.
But Milnor does explain that results for smooth maps can also
be valid for continuous maps when the latter can be approxi-
mated (uniformly) by the former. It will be useful here to re-
call the defini. tion of the Brouwer degree. Letf be a smooth
map between two n-dimensional compact manifolds: X—Y.
If the Jacobian df /dx off at x does not vanish, the corres-
ponding value y =f'(x)e Y is called a regular value off; for
such regular values y, the set f (y) [I.e., fxaX, f'(x) =y) j is
finite; by convention when f (y) is empty, we also say that y
is a regular value off . Then the set of regular values of any
smooth map X—Y is dense in P. Assume that X and Y are
orientable and orient them; then deg(f ) =Z «&-1 &„~sin(df /dx)
is independent of the regular value y and it is the Brouwer
degree off . Hopf has proved that, if Y=~„,two mapsf p, f 2-
X—S„aresmoothly homotopie if and only if they have the
same degree. Moreover every continuous map X—S„canbe
uniformly approximated by a smooth map. So here and for
most physical applications we can use differentiable maps.
This, however, is to ignore a subtlety: in this approximation
of differentiable maps it might be impossible to also require
inversibility. Indeed Milnor proved in 1956 that on the topolo-
gical space S& there are several nonequivalent differentiable
manifold structures. This extends to most topological spheres
of higher dimension.

(Indeed a rotation of a in the plane t„t, induces a map
I„-I"„homotopic to the identity, but which transforms
g+ f into f ~ g.) One should also verify that when X is a
topological group G, then the group laws defined in
the homotopy classes by Eqs. (12) or (13) are identical.
Indeed with the convention that f(t„t„.. . , t„)= 1cG,
when t, ~ 0 or t, & 1 is added to the convention f(sl"„)
=1EG,

~lf t2& ' ' ' 0 tnt +)
= g ((1+n) t, —n, t„.. . , t„)f ((1+n)t„t„.. . , t„)(16a)

reduces to the product g*f of Eq. (12) for a= 0 and to

For our problem, we need to know the homotopy
groups of the orbit [G:II], and we are led to the ques-
tion: can we determine them from our knowledge of the
homotopy groups of G and of II~ The answer is yes.
This answer is based on fundamental aspects of modern
mathematics which I shall merely popularize blare. '

All mathematical objects with the same mathematical
nature —(e.g. , topological spa. ces, groups, pointed sets,
i.e., sets with a specified element, etc.—) and all
"morphisms" between these objects, i.e., all maps
preserving the mathematical structure [respectively,
continuous maps, group homomorphisms, map from ~
to 1' with f(x,) =y„etc]for.m a category

If 5 and g are two categories, a covariant functor +
is a function W

~ 8 such that any map ~ ~ Y in & is
transformed into a. map E(X)" ~ E(I') in g, this func-
tion I' preserving the composition of maps, i.e.,
E(g of ) = E(g) o E(f), and if I„is the identity map on X,
E(I„)=I„&x). Hence more generally, E transforms iso-
morphisms into isomorphisms, and commutative dia-
grams of morphisms of F into commutative diagrams
of morphisms of Q." We verify that for a fixed n, the
m„are covariant functors defined on the category of
pointed topological spaces and valued in the category
of Abelian groups when n& 1, the category of groups
for n = 1, and the category of pointed sets for n = 0.

Indeed, given two pointed topological spaces:
xp c:~ pp ( Y, and a continuous map X & Y satisfying
@(xo) =yo, one defines a map: Q„:M(S„,X;xo)
-M(S„,I';x,) by &f&„(f)= Pe f. It is compatible with the
homotopy equivalence; then one has to verify that the
corresponding map between m„(X,xo) and m„(1',y, ) is a,

group homomorphism, generally denoted by Q„".
Moreover if g is an isomorphism X'- I, then @„is a
group isomorphism.

In a category of "pointed" objects 7' (in which each

3 I checked and found that such popularization is made pre-
sently in the best high schools in the U. S. and Europe, and
that the corresponding general ideas belong to undergraduate
studies in many universities. I feel they should belong to the
scientific culture of physicists in. this last quarter of the twen-
tieth century.

3'Particular families of commutative diagrams of a category
can be themselves the objects of a new category whose particu-
lar famQies of commutative diagrams can form the objects of a
new category whose . .. . A contravariantfunctor reverses the ar-
rows, i.e. , if X&Y, then I (X) I (Y). One can also define
functors of several variables.
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630 Louis Michel: Symmetry defects and broken symmetry

FIG. 5. This is a visualization of an exact sequence of a pointed set [Eqs. (18) and (18')] or of any richer mathemat-
ical structure with a distinguished element: group, vector space ~ ~ ~

Imf„=Kerf„,, (18')

object has a distinguished point, either naturally —e.g. ,
a group neutral element 1 in multiplicative notation, 0
in additive notation for Abelian groups —or by conven-
tion —x, cÃ, base point of the topological space A), the
kernel Kerf of the morphism f:A —Y is the inverse
image of y, :f '(y, ) C X, i.e., the set (x cX,f(x) = y j..
The kernel is a substructure of X and so an object of

Given a sequence of morphisms in T

(18)

this sequence is exact if for all n,

1- H- G- [G:H]- 1 (20)

is an exact sequence of pointed topological spaces
where 1 is a one-point space, the distinguished points
of JI and G are their units, and II is the distinguished
point of the sets [G:H] of left cosets of H. When H ~ G

(H an invariant subgroup of G), then we have the exact
sequence of groups:

mean that the morphism i is injective (one to one), the
morphism p is surjective (onto), and f is bijective (i.e.,
injective and surjective) so f is an isomorphism.

For exa.mple, when II is a topological subgroup of a
topological group G,

1-A.-'B,A. ~ B- 1, 1-A ~ B- 1 (19)

Figure 5 is an illustration of an exact sequence between
four objects. When 1 is the one-point "pointed set, " the
exact sequences

1- H-' G ~ G/H- 1.
A diagrammatic definition of a topological product of
pointed topological spaces is given in Diagram 3.

(21)

=(X;xo)
'X

(Y; yo)

Y

= (XxY;xox yo) = (Yeyo)

) ~x

(X;x )

Diagra~ 3

Equation (20) can also be interpreted as a principal
fiber bundle G with base [G:H] and fiber H. Indeed a,

(topological) fiber bundle F. of base B is a surjective
continuous map E ~B- 1 such that for every point b cB,
the inverse images p '(b) c E are all homeomorphic to
a topological space, the fiber +. If the homeomorphisms
P '(b)-P '(b') are obtained by the action of a group G
on E, one has a G fiber bundle. Then G acts onB, and
P is G equivariant, Fiber bundles are mathematical
objects more and more needed by physicists. A well.
known example of a nontrivial fiber bundle is a
M'obius strip. (The basis is a circle S„the fiber a line
segment. ) There is no global continuous section, i.e.,
no continuous map B-'E such thatP o +=I~, the identity

I

on B. If such a section s exists, it must be injective.
A topological product X&& Y has two fiber bundle struc-
tures of base X and Y with, respectively, the injections
i~ and i~ of Diagram 3 as global continuous sections.
In the case of groups [Eq. (21)] if there is a continuous
section s which is a group homomorphism, then G is
the semidirect product of H and G/H [we will denote
it by G =Ho(G/H)] and, as pointed topological space,
G=H&&(G/H). Moreover G is a direct product of the
groups H and G/II when s(G/H) is an invariant subgroup
of G and is in the centralizer Cz(H) of H in G, i.e.,
the subgroup of G whose elements commute with every
element of II.

To return to the main features of homotopy theory,
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Louis Michel: Symmetry defects and broken symmetry 631

the functor m„ transforms the exact sequence (20) into
the sequence of group homomorphisms

1-w„(H)-'"v„(G)~m„([G:H])-1 (not exact) . (22)

The sequence (22) is not exact in general, but it is not
difficult to show its exactness at 7i„(G), i.e., Imi
= Kerp*. To make it exact at m„(H) and v([G: H]) one
proves (see Steenrod, 1957) that the sequence has to be
changed into an exact sequence

—m„„[G:H]—~t„(H)—m„(G)—m„[G:H]—m„,(H) —. (23)

This is true for all n. In summary, the homotopy
groups of Eq. (20) satisfy the long exact sequence (we
shall need it only for connected G's, so it stops at m, (G)
=1):

—v, ([G:H])—~, (H) —~, (G) —v, ([G:P])—~, (H) —v, (G)

—v, ([G:H])—vr, (H) —1 . (24)

A fascinating resultt The functor m„ transforms the
commutative diagram of Diagram 3 into a similar dia-
gram of group homomorphisms. Since i„~op„»=I„(A
=X or Y), where the i„N are injective and the p„+ are
surjective, one can prove that a sequence of aligned
arrows is exact at (Xx Y;x, xyo). This implies that

~„(XxI ) =~„(X)x m„(I'). (25)

32See Steenrod (1957). There is, however, a nontrivial action
of 7|o(G) on &„(G);but we will not have to use it.

(We recall that & between topological spaces means the
topological product, while && between groups means the
direct product of groups. )

We have dropped the base point in the notation. Can
we really drop it? What happens if we change the base
point of X from xo to x, ? Any closed loop f (i.e. , an
image of a map

fromm

S,) containing x, can be trans-
formed into a closed loop containing x, by choosing a
path x,x, and counting it both ways (see Fig. 6). So to
each homotopy class KM(S„X;x, ) corresponds a class
3CM(S„X;x,) by f-x,x, U fU x,x,. However, this corre-
spondence may depend on the chosen path. Indeed, if
we choose another path x,x„the new element of m, (X, x, )
corresponding to f, i.e. , x,xo U fUxox„ is a conjugate
of the class of x,x, Uf Uxox, by the element x,x, x,x, of
m, (X„x,). More generally, to the image f of the sphere
S„wecan add a path x,r, . The result is again an image
of S„,containing x„.the choice of two paths xpx'g and
x,x,' will define an action of v, (X, xo) on v„(X,x, ). [For
this, one has to show that this action respects the group
structure of v„(X,x,).] We then conclude that, if we
forget the base point, homotopy groups are defined up
to an isomorphism, and the choice of different base
points corresponds to actions m, (X) -Autm„(X). (When
n= 1 the action is by inner automorphism. ) Hence,
without base points, the homotopy classes are only de-
fined up to an orbit of m, on m„(conjugation classes when
n= 1). However when G is a topological group, m, (G) is
Abelian, so the action of z, on itself is trivial. This is
also the case for all actions m, (G) -Autw„(G) when G is
a I ie group. '2 In applications, when H is not an invar-
iant subgroup, [G:H] cannotbe given a group structure;
an isolated defect can only be labeled by an orbit of m,

FIG. 6. The space X is the plane minus the two points A and
Given any base point, say, xp let a (respectively, b) be the

elements of 7t
&

corresponding to a loop around A (respectively,
&) with positive orientation. An arbitrary closed continuous
curve is described by an element of 7t &-. . . . Q"2a~~g"&a

{m&, n; c&) which specifies that, this curve has turned ( m J
times around & (the sign of nz& corresponds to the common
orientation of these turns), then n~ times around B, then m2
times around & . . . . One says that &~ is isomorphic (-) to
+(2)—the "free" group with two gener ators. Since this is true
for any base point, 7t &(X, xo) -7t

~ (X, x&) -~(2). A path x&xo, say,
x zxp, between xo and x& allows us to transform a curve fo
with base point xo into a curve with base point x~..

4 (fo) —xgzxo fe xpzxj,

and a curve with base point x& into a curve with base point xp

g(fg)= xozxg- fg- x,zxo ~

These correspondences define the two isomorphisms

7t'( (X,xo) 7r) (X, x()

Another path x&z'xp defines another isomorphism @'. The cor-
respondence 4 (fp) C''fo), which can be written explicitly

'xo
W

xgz xozxf + xf zxo fo xozxg ~ xgzxoz' x(

= (x,zx,z ~,)-~.C (fp) - (x,z xoz&, ~,

defines an inner conjugation in 71~(X,x~) by the element defined
by x~zxoz'x~, i.e. , the inner automorphism 4'a 4 of 7t

&
@'x&).

Inthis figure fo is homotopic to a counterclockwise turn around
& followed by a counterclockwise turn around J3 (see the dotted
lines), so it corresponds to ba&7r&(X&xo}. Similarly x~zxo
fp xpzxg ba and x&z'xp -fp - xpz'x& ab. Since x&zxpz'x& a,

one has indeed ah= a(ba)a

on z„.But with several defects, more detailed informa-
tion can be expected, as we shall see.

In Appendix G we apply Eq. (24) to the computation of
all homotopy groups that we need.

D. The previsions and successes of the classification
of defects by Homotopy Theory

o my knowledge, the first paper written explicitly
on this topic wa's tha. t of Hogula (1976). Its title was:
"Large deformations of crystals, Homotopy and De:-
fects. " This paper was unnoticed by the next publica-
tions on the subject. (Toulouse and Kleman, 1976;
Toulouse, 1976, 1977; K16man, 1977; Kldman et aL,
1977; Volovik and Mineev, 1976; Poenaru and Toulouse,
1977; K16man and Michel, 1977; Kukula, 1977). How-
ever, I do not believe that this paper takes the right

Rev. Mod. Phys. , Vol. 52, No. 3, July 1980



632 Louis Michel: Symmetry defects and broken symmetry

approach to the subject. (The m, it defines and does not
compute is huge; it has Gl. (3, Z)r,,Z' as an homomorphic
image and is independent of the crystallographic group. )
Toulouse and Kleman (1976) introduced a general
scheme for all ordered phases and made a prediction
(not yet verified! ) that the vortex lines of the super-
fluid phase A of 'He will annihilate by pairs, just as the
line defects in nematics do, and not as the vortex lines
of 'He superfluids do, since they carry an integer n
which is a topologicall. y conserved quantum number.
They classified defects by the homotopy groups of the
manifold of "internal states" which contains the set of
Landau parameters [as they are, for instance, defined
in Landau and Lifschitz statistical mechanics (Landau
and Lifschitz, 1958)]. In fact the manifold of internal
states to which they referred is the orbit [G:H] of
"positions" (when G is the Euclidean group) or of "in-
ternal states" (when G is more general, e.g. , when G

contains some gauge transformation). Of course physi-
cists studying def ormations and def e cts of orde red
phases, for instance with the use of the Burgers circuit
or the Volterra construction, were using homotopy just
as "Monsieur Jourdain was speaking in prose, " as is
welt explained in Kleman (1977); but the explicit use of
homotopy for topological classification of defects re-
sulted in interesting and new applications. Some were
immediately made by Kleman, Michel. , Pohnaru, and
Toulouse (Toulouse, 1976, 1977; K16man et al. , 1977;
Poenaru and Toulouse, 1977, 19'79; K16man and Michel,
1977; Michel, 1977) in France" and by Volovik and
Mineev (1976, 1977a, 1977b) in the USSR."" In the
last 12 months the list of publications on this subject
has more than doubled; it includes Kldman's book (1978)
and several papers by Mermin (1978, 1979; Mermin,
Mineev, and Volovik, 1978). Here I give only a sum-
mary of published applications of the homotopy theory
to the classification of topologically stable defects.
'This will be a guide to the original literature that the
reader, by now, should be able to enjoy reading. Up
until now the two main fields of application have been
superfluid helium and mesomorphic phases.

The gauge group U(l) is completely broken in local
states of the superfluid 4He phase, so the orbit of in-
ternal states is [U(l):(1}]= S, (just a phase!). Equa. -
tions (14), (15) [i.e. , rr„(S,) =(lj except 7r, (S,) =Z], and
(ll) show that the only topologically stable defects a,re
lines characterized by one integer. Both groups,
Toul ouse-Kldman (1976) and Volovik-Mineev (1977a),

33My first work on the subject was done, and lectures on it
presented, at the University of Montreal-CHM summer school,
June 1976, and at the University of Michigan, Ann Arbor. The
work of Kleman, Michel, and Toulouse (1977) was a prepdint
of this latter institution (October 1976), submitted to Physical
Review Letters and refused.

34Although their first letter (Volovik and Mineev, 1976b) was
submitted six months after that of Toulouse and Kleman, they
did this work independently.

35I heard from Professor P. W. Anderson that a Princeton
student, J. Kukula, gave in hi. s senior thesis (1977) the topo-
logical classification of defects in cholesterics; this work was
not published, since the beautiful preprint by Volovik and
Mineev had appeared in. the meantime.

used this simple and known example to illustrate their
general scheme before applying it (Toulouse and Kld-
man, 1976; Volovik and Mineev, 1976b, 1977a) to the
superfluid 'He-A phase for which they both predicted
that the only stable defects are line defects annihilating
in pairs: indeed, for this phase, the orbit of internal
states is [SO(3):fl]]=P(R, 3), so ~, =(l],
This prediction is different from those made before
[see references in Volovik and Mineev (1976b), includ-
ing one of their own publications); it has not yet been
checked experimentally. Moreover Volovik and Mineev
(1972, 1976b) also studied the defects of the 'He-B
superfluid. The orbit of internal states is [U(l) x SO(3):
(IH =S, x P(R, 3) so rro =f1), v, = Z x Z» rr, =(l], i.e. , we
have only line defects, which are grouped in two types.
These authors pointed out that, if the sample size of
the superfluid 'He is small enough (10' to 10' the co-
herence length, i.e., 10-' cm), so that the spin-orbit
interaction can be neglected, more topologically stable
defects can appear, including point defects (see Table
II for a summary of all results).

For mesomorphic phases, the case of ordinary ne-
matics is the simplest to study (Toulouse and Kleman,
1976; Kleman, Michel, and 'Toulouse, 1977; Volovik
and Mineev, 1976b; 1977a): the orbit of internal states
is [&(3) R x D„„]=[O(3):D„„]=[SO(3):D„]=P(R,2) so
rr, =(l), rr, =Z„m,=Z (see Appendix G). That is, there
a, re line defects which annihilate by pairs (vr, = Z, ). They
are easy (Fig. 7) to see in a microscope; indeed, the
etymology of nematics is from the greek vga, a for
"thread, " The point defects are also easy to see; what
is their topological character'? &s we explained in the
previous section, when the base point is forgotten, the
homotopy classes of continuous maps of S„arenot
classified by the elements of TI„but only by the orbits
of the action of m, on m„. Here, when the orbit space is
P(2, R), rr, (P(2, R)) = Z, = [1, n$ acts on rr, = Z by a ~ n = -n
(since AutZ = Z„this is the only nontrivial action).
Physically, the base point is irrelevant, and an isolated
point defect in an ordinary nematic can only be given
the absolute value of an integer, as a topological quan-
tum number, e.g. , ~n

~

= 1 for the most usual case.
However, when two point defects A, and B are near each
other, their relative sign can, in principle, be ob-
served: for instance, if ~n„~= ~n~ ~

= 1, and if they
coalesce, will they annihilate (n„+n~= 0) or form a new
point defect with tn

~

= ~n„+n~
~

= 2'? Moreover, as ex-
plained by Volovik and Mineev (1977a), if a line defect
is passed between two point defects, their relative sign
is changed [see the end of Sec. IL D and Fig. 3 of Volo-
vik and Mineev (1977a)].

More generally, for al.l mesomorphic phases, there
exist topologically stable point defects if, and only if,
the global symmetry group H of the phase contains all
rotations around an axis [i.e., H has a. subgroup SO(2)
= U(l)]. This is easily proven in Appendix G; more
precisely, in that ease m, ([E(3):H])=Z. According to
Table E this occurs only for ordinary nematics and for
smectics A. For this latter phase, 71, is the semi-
direct product ZoZ, (see Kleman and Michel, 1977, or
Appendix G); all its Z, subgroups also act nontrivially
on m, =Z. So we can repeat for the topologically stable
point defects of smectic s A what has been said about the
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TABLE II. Topological classification of defects in superfluids and mesomorphic phase. Groups r„([G:H]),yg =0, 1, 2, 3.

Phase

'He

3HeA (small size)

3HeB

3HeB (small size}

U(1)

SO(3) x SO(3) x U(1)

SO(3) x SO(3) x U(1)

U(1) x SO(3)

U(1) x SO(3)

SO(3) x U(1)

SO(2) x U(1) x Z2

1 x SO(2)

ZX Z2

ZxZ

Mesomorphic Super fluid s

Nematics ordinary

Nematics exceptional

Cholesterics (chiral)

Smectics A

Smectics C

Smectics C (chiral)

Bod lattices usual

Bod lattices exceptional

Crystals

E(3)

E(3)

Eo(3)

~(3)

-Eo(3)

Z(3)

S(3)

R;-; (RI,„.j D2)

(R xZ)~ D

(R xZ)~ C2~

(R xZ)L-, C2

(R Z )~ DGIt

Ext(R x Z2, E') =H

Z2 if I" =I"p
~

~

1 if I" &%0

D2 =Q

Z=. Z2

Z ~ Zg

Z) ) Z4

Z.~ D6
2

Ext( Z E'
p)

Ext(Z3, E'o)

G is the broken symmetry group of physics, H the subgroup of (preserved) symmetry of the phase, x is direct, semidirect,
group product. E(3) =R;,, O(3) is the Euclidean group in 3 dimensions, Eo(3) =R~ SO(3) its connected component subgroup. E' is a
finite subgroup of O(3)'9"p =&A SO(3). For the list and specific notation (e.g. , D2, D6, C2&, C2) see Appendix A (where D z is also
defined). Let 0 be the covering homomorphism SU(2) SO(3) —1, then E'0=0 (Fo) (e.g. , C2 =Z4, D2=-Q, the quaternionic group
generated by jT„where 7& are the Pauli matrices). Ext/, means a group ~ which has the Abelian groupA as invariant sub-
group and E=~/A. All gran are defined when the action E—Auth is given; here E=E' or E'o the action is imposed by ~& E(3) or
&Eo(3) =R.—.SU(2). Note that SO(2) —U(l). Topologically stable (t.s.) wall defects exist only in some crystals; t, s. line defects and
t.s. print defects are classified, respectively, by the homotopy groups ~& and ~2 of the orbit [G:Hj, while its ~3 classifies the con-
figurations.

ln Volovik and Mineev (1977a), slightly after their earlier work (1976), these authors added the prediction of surface defects,
represented by ~0( SO (3) x Z2) = Zz.

point defects of ordinary nematics, with the following
qualifications: the elements of m, can be written (n, c)
with e'=1; they obey the group law (n, e)(n', c')
= (n+ e n', se ); o'utside the identity (0, 1) there is an in-
finity of conjugation classes with two elements (n, 1)
and (-n, 1), and two conjugation classes with an infinity
of elements; we denote these classes (even, -1) and
(odd, —1) and label them "e" and "o". Therefore the
topological types of isolated line defects for smectics
A can be denoted by ~n ~, e, o. The relative sign of two
points defects changes when ones passes an e or an o
line defect between them.

While for superfluids and ordinary nematics m, ([G:H])
is Abelian, for all other mesomorphic phases (except
for crystals with the lowest symmetry among the 230
symmetry classes and for the few hypothetical lowest
symmetry classes of exceptional nematics) the first
homotopy group is non-Abelian. As we already ex-
plained, isolated line defects are then classified by the
conjugation classes of z, . When two line defects A and
B are observed, there are more observables than their
conjugation classes a and b: indeed, when a is chosen
arbitrarily in the conjugation class a, the representa-
tive b of B in the conjugation class b is fixed up to a
conjugation by a c 6(a), the centraiizer of a in w„. so
ab and aaba. ' are conjugates and they are al.so conju-

gate to ba (take o. = a-'): all these conjugate products
define the conjugation class of the line defect obtained
when A and E coalesce. Moreover, if, for any a c 6(a),
a and nba ' commute, i.e., aebn-'a-'&b-'n-' = 1, then
ah = ba and this commutation (or noncommutation) pro-
perty is independent of the choice of representatives
when the classes of a, b, and ab are known. I'oenaru
and Toulouse (1977) have established the physical inter-
pretation of this mathematical property: the commuta-
tivity or the noncommutativity corresponds to the possi-
bility or the impossibility for the two line defects' to
cross each other. "

In Table II, for all families of mesomorphic phases
we characterize the global symmetry group H and give
the corresponding homotopy groups vr„([E(3):H])for
ran=0, 1, 2, 3. We have still to clarify the physical mean-
ing of w, ([G:H]) and of m, ([G:H]). As we have seen, w,

will classify topologically stable surface defects. If
the broken symmetry group G is connected, the orbit
[G:H] of positions or of local states is also connected
since it is the image of 6 by a continuous map; then

36These authors have also generalized this mathematical pro-
perty to p- and q-dimensional defects in a (p+q+1)-dimensional
space by considering the graded Lie algebra constructed by
Whitehead on the set of all homotopy groups of [G:H].
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FIG. 7. Line defects in nematics. This photograph has been made by M. Kleman. Here we see clearly two kinds of line defects:
the thin lines, which represent topologically stable defects (index + 1/2), and the thick lines with bright sides, which represent
topologically unstable defects with a probable index + 1. We have defined in Ftn. 26 the Brouwer degree of a map S„—S„:it is
very intuitive in the simplest case Si &S&, since degree {h) is the algebraic number of turns on the circle SI of the image h(y)
when the azimuth y makes one positive turn (from 0 to 2x). Similarly one defines the index of the zero y(xo) of a continuous
vector field on a two-dimensional surface: in any local coordinate system in the neighborhood of x 0, it is the degree of the cor-
respondence g: azimuth of x (near xo) —azimuth of v (x); these two azimuths are defined modulo 2~. In the case of a field of
directors n (x), corresponding to the local orientation (in a plane) of a nematic, the azimuth of n (x) is defined modulo g and the
custom in physics is to define the index of a zero z (xo) multiples of 1/2. Examples of index 1/2, -1/2, 1, and -1 are given in
Fig. 7(b), 7(c), 7(d), and 7(e), respectively. These figures represent the field of orientation of a nematic near a line defect and
in a plane perpendicular to it. The index is conserved when the perpendicular plane is moved along the line defect. It is a good
exercise to verify that all half-integer indices correspond to topologically stable line defects while the integer indices describe
topologically unstable line defects.
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vo([G:H]) =0: there are no wall defects. This is the
case for superQuid states and more generally for all
liquid or liquid crystal phases; as a general rule singu-
larity surfaces in liquid do not seem to be stable, as is
predicted by the homotopy classification for mesomor-
phic phases made with chiral molecules. In these cases
the isotropic liquid phase has a rotating power for opti-
cal polarization, so its symmetry group cannot contain
reflections: it is E,(3), the connected Euclidian group,
generated by rotations and translations. 'These opti-
cally active chemica1, compounds often have chiral
mesomorphic phases (chiral smectic C or choiesterics),
whose rotating power can be larger by several orders
of magnitude than that of the isotropic phases. Homo-
topic classification would predict wall defects if non-
chiral molecules [G = E(3), e.g. , racemics] could form
chiral phases [i.e. , with a global symmetry group H

&Ec(3)]. No such phases have yet been observed: they
seem to be fundamentally unstable. 'The situation is
very different for crystals. Crystal atoms or ions have
no chirality. Among the 230 crystallographic classes in
three dimensions, 65 correspond to crystallographic
groups H «Eo(3) [among these 65 there are 11 pairs of
isomorphic groups, conjugate in Aff(3) but not in
Affc(3)]. Crystals belonging to these 65 crystallographic
classes do have topologically stable wal. 1. defects, call.ed
"twin boundaries": indeed they annihilate by pairs as
required by mo([E(3):H]) = Z, .

We define at the end of Sec. II. A "topologicall. y stable
configurations. " The continuous function @:V—[G:H],
describing the local states of the medium in the volume
U, is defined everywhere on V but it is not homotopic
to a constant. This can happen when the domain V oc-
cupied by the phase is not contractible —for instance,
if V is the volume between two coaxial vertical cylin-
ders, bounded by two horizontal planes. Consider this
volume filled with a nematic whose molecular long axis
(the director) is horizontal and everywhere orthogonal
to the horizontal radial direction: hence on the bound
ary U this axis is tangential; this is actually the case
in many physical situations where. the nematic mole-
cules prefer to be parallel to the wall of the container.
W'e have described a configuration; it is topologically
stable and has no defects. If U is contractible, we have
proved, in the same fashion as Eq. (29), that every con-
tinuous function U-X, valued in an arbitrary topologi-
cal space X, is homotopic to a constant. This would
exclude the existence of topologically stable configura-
tions if we were not imposing some bound'any condi-
tions (making V equivalent to a noncontractible space)
which are naturally suggested by physics. Here we de-
fine and discuss what we shall call the normal" con-
figurations: those which may exist inside an ordered
medium otherwise in a perfect state. Consider a (con-
tractible) domain V occupied by an ordered phase in a
perfect state everywhere outside a ball B, of radius a,
so that the function $:V- [GM] describing the local.
states is constant on V-B. Of course V can be ex-
tended (continuously) over B with the same constant
value. Given a function @, constant on the boundary
~B, =S, of the ball B„arethere any ways to extend it
continuously inside B, which are not homotopic to the
constant? Since the ball B„withall points of its sur-

face identified, is homeornorphic to the sphere S„the
homotopy classes of the continuous extensions of @ are
given by w, ([G:H]). For mesomorphic phases all the
m, ([G:H]) a,re isomorphic to Z (see Table II).

Here is a classical construction of a configuration
bel. onging to the homotopy class n c=- Z. Take as the
origin of coordinates the center of B„the ball. of
radius a. Choose a continuous function f(t) such that

f(0) = 0 and f(t) = 1 for / ~1; such a function can even be
infinitely differentiable, e.g. ,

e-t2/(1-t ) {)(g (1
X(f) =

1 1 ~f,
(26)

Then, the position of the local state at the point r is ob-
tained from that of the local state everywhere constant
in V —B, by a rotation of axis r and angle 2mnf(r/a). 37

As Table II shows, the values of ~, homotopy groups
predict no such configurations in superfluid 'IIe but do
predict them for the two superfluid phases of 'He.
These configurations may have been observed, but not
the line defects, yet.

37We have just defined smooth maps S3—"&(g, 3)-SO(3).
The reader can easily verify, from the definition we gave of
the Brouwer degree in Ftn. 26, that deg (g„)= 2n. Since S3
is the universal, double covering of P(R, 3), the homotopy class

8is n. We could have defined g„=gok„:Q~ SU(2) SO(3); in
Appendix G we define 8 and we give an explicit identification of
S3 (given by B3with all boundary points identified) with the ele-
ments of SU|2). With this identification, kq is the identity map
and deg(h„)=n.
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FXG. 8. Example of a configuration in a two-dimensional "ne-
matic" vertically oriented outside the configuration. VAth the
origin of coordinates at the center of the figure, the orienta-
tion at the point r makes an angle f{r)with the vertical, where
f(0)=0 and f(r) =m for x~a. This configuration is not topo-
logically stable; it can be continuously transformed back into
the perfect "nematic" vertically oriented. Note indeed that
tG:H]= Sg and 7t2(Sg) =l.
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FIG. 9. Dislocation in a germanium crystal. This electron
microscope photograph has been obtained by A. Bourret
(CENG, Grenoble). The plane of the picture is perpendicular
to the 110 axis; the Burgers vector of the dislocation is 110.

E. Limitations and extensions of the topologicaI stabitity

It is outside the scope of this paper even to summa-
rize the abundant literature on defects and configura-
tions of the supe rfluid phase s of 'He bef ore and af te r
the explicit introduction of homotopy. " But it can be
said that homotopy has become essential in the study of
this subject. Not only has it corrected past errors, but
it does help, by the tool of the long exact homotopy
sequence, to relate defects inside the phase to defects
on the su rface (boj um s)."

Representative articles from before the introduction of
homotopy are Ambegaokar et al. , 1974, 1975; Mermin, 1976;
Chechetkin, 1976; Volovik and Mineev. , 1976a; Maki and Kumar,
1977. Articles written since the introduction of homotopy in-
clude Toulouse and Kleman, 1976; Volovik and Mineev, 1976b,
1977a, 1977b, 1979; Kukula, 1977; Cross and Brinkman, 1977;
Anderson and Toulouse, 1977; Shankar, 1977; Mermin, 1977a,
1977b; Bailin and Love, 1978, 1979; Garel, 1978; Stein et al. ,
1978; Mermin et al. , 1978; Volovik, 1978. This list is by no
means intended as complete. See the excellent review by
Mermin (1979).

39Indeed one has also to study the defects on the surface, both
from the energetic and from the topological point of view. For
the latter, one can use relative homotopy: instead of the base
point xo one considers a subspace A of X (e. g. , the boundary
BX); the elements of n (X;A) are the homotopy classes of func-

f n

tions T'„—X such that f(BP„)~A. One proves (e. g. , Hilton,
1961) for the homotopies &(A. ), w(X), &(X;A) a long exact se-
quence similar to Eq. (24).

The study of defects in the mesomorphic phases is
much older. The importance of crystal dislocations
(Fig. 9) has made of them a whole chapter in solid state
physics, and, as we mentioned in the introduction, im-
plicit use of homotopy methods has been made to study
them (Volterra construction, Burgers circuit). One
could say that, for a given crystal symmetry, a clear-
cut classification of the topologically stable defects is
provided by the homotopy groups of [E(3):HI where FI is
the crystallography group. But this is only of academic

. value: the energetic considerations are much more im-
portant for the existence and stability of these defects
than their topological classification. The situation is
quite different for liquid crystals; to deform them re-
quires very little energy. Their defects show up im-
mediately under a microscope; they are easy to create,
to move, to coalesce. Historically, it is from their
study that G. Friedel (1922) deduced the symmetry of
some liquid crystal phases (e.g. , from the most easily
seen defects of smectics, the homofocal conies, he de-
duced their layered structure). Nematics defects were
easily classified. However, the classification of de-
fects in cholesterics was not achieved until 1970 by
J. Friedel and Kleman (1970). It is now clearly under-
stood that the explicit homotopy method (vr, = Q) will
surely be the one to use from now on for pedagogical
purposes. The experimental study of defects and con-
figurations in cholesterics and smectics led to a rich
variety of phenomena whose classification was more
akin to a zoological approach (see, for instance, the
series of six beautiful papers by Bouligand (1972a.,
1972b, 1973a, 1973b, 1974a, 1974b). Thescale of the ob-
servation is relevant for the topological classifica-
tion of defects: e.g. , a cholesteric seen in a scale
small compared to the helicoidal period (but large
compa. re to the molecula. r size) is just a smoothly
deformed nematic. This scale effect has also been
taken in account in Table II for superfluid 'He. The
homotopy approach has shed new light on the sub-
jects of cholesterics and line defects in nonchiral
smectics C, as shown by the studies of Bouligand (1978)
and Bouligand and Kleman (1979), respectively. How-
ever the situation is not so clear for smeetics A; the
point defects do not seem to have been observed. New
mesomorphic phases, with symmetries not yet ob-
served, will surely be discovered, and the homotopy
classification of their defects will a priori be useful.

The topological classification of defects and configura-
tions of ordered phases is less than 4 years old. It has
still to be applied to many other ordered media in
which topological stability is relevant and not com-
pletely eclipsed by energetic considerations. 'This is a
very broad domain of applications: 'superconducting
phases, magnetic phases, two-dimensional phases-
e.g. , crystallike, supe rfluid phases, magnetic bubbles
and lines, even fingerprints. . . . There are two other
obvious extensions of the domain of applications: First
are ordered phases in the presence of external fields
which produce dynamical effects. Such external fields
generally decrease the symmetry of the phase, induc-
ing a new classification of the topological stability of
defects and configurations. Second, we must study the
transitions between two ordered phases with global

Rev. Mod. Phys. , Vol. 52, No. 3, July 1980



Louis Michel: Symmetry defects and broken symmetry 637

symmetry groups H, and 8„then, as in Klbman and
Michel (1977), we must ask the question: what happens
to the defects of phase 1 after the transition to phase
2? 'This is especially relevant when the transition is
second order with spontaneous symmetry breaking from
H, to H, . Relative homotopy and the l,ong exact sequence
are the natural tools for answering this and similar
questions (e.g. , defects in a phase with core made from
another phase).

Of course, like any other method, the homotopy ap-
proach must have limitations. There are several of
these; to know them will help us to evaluate better what
can be expected from homotopy and how the method may
be used to greatest advantage.

(1) Homotopy. is only a crude topological classifica-
tion. When a function Q: 0- [G:H] is homotopic to a
constant, and, when 0 is not simply connected (and this
is always the case when the volume V itself is not
simply connected), there might be other topological
obstructions to extend the function P from 0 to V. In
that case there are other topologically stable defects
given, not by homotopy, but by classes of cohomology
of Q with coefficients in m, ([G:H]). When this homotopy
group is not Abelian the general mathematical theory is
dif ficult.

(2) In the usuaL case homotopy is applied to arbitra. ry
continuous deformations. But some deformations of our
Q function might require too much energy: for instance,
the layers in many smectics are mono- or bimolecular,
so their mutual distance cannot be increased beyond
some elastic limits. If very strong continuous deforma-
tions are imposed upon the medium they may produce,
temporarily, an increasing set of new defects; note
that, if @ is still continuous on S, or S, considered in
V, this does not change its homotopy class and there
occur no contradictions to the proposed scheme for the
topological classification of defects. However, one may
wonder if there is not a better scheme based on a more
refined homotopy theory, using smooth deformations
and preserving some differential structure or some
integrability conditions. This is the case for the homo-
topy of foliations, "a field in which much progress has
been made recently; but no compl. ete classification has
yet been achieved for foliations of codimension one, and
particularly for measured foliations which seem re-
quired by the smectics, except for the dimension 2

(Poenaru, 1978) (this result is essentially due to Thurs-
ton). See also a relevant paper of Thorn (1978). Let
n(x) be a unit normal vector at x to the smectic layer.
The integrability condition for the existence of layers is
n ~ rotn=0 [see, e.g. , KLdman (1978), Chap. 5]. To have
parallel layers (measured foliation) rotn = 0 is required.
It is a theorem of Reeb (1952)4' on foliation that no non-
trivial smectic configuration can satisfy either inte-
grability condition. Similarly one can establish the im-
possibility of smooth, topologically nontrivial configura-
tions in crystal. s.

(3) Obviously, topological methods should not be based
only upon our knowledge of the symmetry groups 6 and

40For reviews oh this subject see Reeb (1952), Haefliger 0.962).
'This was pointed out to me by V. Poenaru.

II, but also upon the dyriamical equations. An example
of this combined approach is the work of Finkelstein
and Weil (1978) on plasmas and magnetic fields, which
has produced a suggestion to explain the spiraling of
galaxies by the configurationS (they say kinks) of the
magnetic field. For Hamiltonian dynamics, as well as
for arbitrary differential equations, topology offers a
rich variety of differential applications [for an interest-
ing elementary book on this subject, read Arnold
(1974)]. However, the situation is quite different for
systems of partial differential equations (Thorn, 1978).
Meanwhile, there has been intense activity in non-
Abelian gauge field theories and other domains of non-
linear physics, mainly in an effort to find soliton-type
solutions (they are topological configurations) and solu-
tions with given types of singularities (Dirac monopoles,
merons). Most of these problems require topological
considerations, mainly homotopy, and physicists are
becoming increasingly eager to use these mathematical
tools.

(4) Finally, topological stability is limited by quantum
effects (tunneling). In ordered media local states have
fluctuations which increase when one approaches T„the
critical temperature for the transition to the more
symmetric (i.e., the isotropic) phase, and topologically
stable defects have a much larger probabil. ity of dis-
appearing (KL6man et a/. , 1977), for example, in the
annealing process. Instantons are topol. ogical configura-
tions in space-time, which correspond to quantum ef-
fects. Also there are intimate relations between topo-
logical-quantum numbers, quantization of Dirac mono-
poles and vortex lines in superfluids and supercon-
ductors.

F. Hidden symmetry

Defects in solids are technologically very important.
They are naturally found in all materials and they have
a great influence on most of the physical properties of
.the crystals. Symmetry defects and configuations ap-
pear also in many natural materials and biological
tissues, as well as in purely synthetic phases of matter;
they form a fascinating subject of physics which will
greatly expand. Homotopy is only one, and will continue
to be only one, of the theoretical tools used by physi-
cists for the study of this subject; but it comprises such
fundamental concepts that it is absolutely indispensable.

In conclusion I should like to emphasize one of the
more important implications of the simple relation
between the type of symmetry breaking, that is from
G to 0, and the topological classification of defects and
configurations by the homotopy groups m„([G:H]),0 ~n ~3;
its converse (from H to G) can also be used efficiently.
'This has alreadybeen done historically; more and more
it will be from topological classification of defects and
configurations that one wil. l obtain the symmetryII of
new mesomorphic phases, with the hope that many new
subgroups H&E(3) will appear in the different broad
classes of 'Tabl. e I.

This is even more important when the invariance
group 6 is not known, as is the case for the internal
symmetry of the fundamental interactions, Spectacular
progress has already been made since 1961: with con-
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tributions mainly by Goldstone, Higgs, Glashow, Salam,
Ward, Weinberg, and t'Hooft, the local gauge invariance
U(1) of quantum electrodynamics has been extended to
U(2). This unification for leptons of the electromag-
netic and weak interaction has to be used identically for
the charged leptons c, p. , &, except for one parameter,
their masses. This U(2) group is broken into U(1).

Just as van der Waals forces between molecules are
secondary effects of the Coulomb interaction between
nuclei and electrons, the present strong interactions
between baryons and mesons are probably secondary
effects of the fundamental interaction between the quarks
and antiquarks which constitute them. This interaction
has an exact symmetry, the SU(3) local gauge group; it
is mediated by an octet of massless colored gluons.
Presently, we know only that the number f of colored
triplets of quarks and of antiquarks is at least five.
Quarks have different masses; and the flavors of f
quarks are quantum numbers of an unknown broken
group: the unified weak and electromagnetic interaction
breaks this group in a very specific manner (e.g. ,
Cabibbo angle) not compl. etely known. Most particle
physicists think that the exact inva. riance group H = U(3)
is the preserved subgroup of the most funda-
mental invariance group, G, which acts on the degrees
of freedom outside space-time. Any choice of candidate
for G predicts the existence of possible singularities
and configurations (among them t'Hooft-Polyakov mono-
poles and instantons).

Why not also include gravitation, the only other known
interaction (and the first observed by man!)'? lt may be
that we shall then have to replace the Lie algebra of the
invariance group by a graded Lie algebra generating a.

"supersymmetry. " All this is based on the hypothesis
that the physical laws of our universe come from a
broken symmetry solution of a much more symmetrical
physics that we are trying to discover.
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APPENDIX A: CLOSED SUBGROUPS OF SO(3) AND
O(3); I ITTLE GROUPS OF THEIR IRREDUCIBLE
R EP RESENTAT IONS

In this appendix we use the concepts of orbits and little
groups (or isotropy groups) which are defined in Sec.
I.C of this paper.

V, e first establish the list, up to a conjugation, of the
finite subgroups of SO(3), the three-dimensional rota-
tion group. Let G be one of them, and nontrivial: its
order, i.e., its number of elements, is fG f

&1. A non-
trivial rotation acts on the unit sphere, leaving on it two
fixed points that we call the poles of the rotation axis.

Let (PJ. be the set of poles of G; the group G acts itself
on (PJ- dividing it into N orbits that we label with the
index a. A little group G~ can only contain rotations
around the pole axis: the rotations by angles 2wk/v,
0~9& v form the cyclic group C -G~ . Since all

mlittle groups of an orbit are conj ugated, the

n. = fG f/v. (A1)

poles of the orbit a have same multiplicity v —1&0.
By summation over the orbits one obtains

These two equations can be summarized as
N ] 2

v ~2, N — —=2-
, v fGf' (A3)

60

N ~o,3)G

C„ D„

We have already said that C„is the cyclic group gene-
rated by the rota. tion of angle 27t/n; if one adds a rota, -
tion by z around an orthogonal axis one generates D„.
The groups T, 0, Y are, respectively, the symmetry
groups [&SO(3)J of a tetrahedron, a cube or an octa-
hedron, a dodecahedron or an icosahedron; the first

is the numbe r of edge s, the othe r two ~ are the
numbe r of ve rtice s and face s.

Finally, up to a conjugation, there are two infinite
closed subgroups of SO(3): the group of all rotations
around an axis, C„and, when one adds the rotations by
p around the orthogonal axes, D„.From the complete
list we obtained, we remark that two isomorphic closed
subgroups of SO(3) are conjugated.

We define in Sec. I.C the normalizer X~(H) of a sub-
group H of G; since we will need them, we also gave
the list of the normalizers of the closed subgroups of
SO(3).

We proceed now to the study of the closed subgroups
of the three-dimensional orthogonal group O(3), which
is generated by SO(3) and the inversion through the ori-
gin: -I. That operation commutes with all rotations of
SO (3), so 0 (3) . is the di re ct product:

O(3)= SO(3) x Z, (I, -I). (A4)

For each closed subgroup H of SO(3), we can form the
direct product:

G = H x Z, (I, -I) .
Their traditional notation (due to Schonf lies) is

C„D„T0 Y C„D„
n even C„„D„„

G h h Yh ~h h
yz odd S2n D~

(A5)

Since fG f
and v are integers larger than one and N is

a positive integer, the only possible values of N are 2
or 3 and the only possible solutions for v, n are

v &1 yzn 2 2 yz 2 3 3 2 3 4 2 3 5

1 1 n e 2 6 4 4 12 8 6 30 20 12
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SlnM(d COS'PR M

cosmco slnvl Go

Sinm (d —cOSm co

or one-dimensional and labeled [+] or [-]
[+]: r„-1,p„-1;[-]: r„-1,p„--l.

(Ae)

(A6 )

We have denoted by x„the rotation by cu around the
vertical axis and by p„the rotation by z around the hori-
zontal. axis of azimuth &u/2. The kernel of the repre-
sentation [m] is C; given a, point x w of azimuth co/2 in
the representation space, it is invariant under p„.
Hence the C 's never appear as little groups of irredu-
cible representations of D„;only the subgroups D, C„,
D„doappear.

The irreducible representations of SO(3) are all real;

42Every real linear representation of a compact group 6 is
equivalent to an orthogonal representation. If such a repre-
sentation is irreducible on the real, it might be reducible on
the complex into two complex representations. Conversely,
given an irreducible comple~ representation of 6 nonequivalent
to a real representation, by taking its direct sum with its com-
plex conjugate one obtains a representation equivalent to an
orthogonal representation irreducible on the real.

When G&O(3) does not contain -I, if we multiply by I-
the elements of G which are not in H =GA SO(3), we ob-
tain a groupof SO(3) of same order ~G ~. Conversely,
given a closed subgroup of SO(3) which has a subgroup
H of index two (i.e. , ~FI') =2~H ~, when H' is finite), if
we multiply by -I the elements of H' which are not in
H, we obtain the other closed subgroups of O(3) not in
SO(3):

C,„D„D,„Q D„
C„C„D„TC„

~ even S
„

'C„,D„~
G Td C

n odd Cng Cnv Dna

'The n-fold rotation axis is thought to be vertical. ; the
index Pg indicates a reflection through the horizontal
plane; the groups C„„,D„„,L)„ghave n reflections through
vertical planes containing the n-fold rotation axis;
these vertical planes contain the horizontal axes of ro-
tations by w in D„„andthey are bisectors of them in
D„„.The group S,

„

is cyclic; it is generated by the pro-
duct of -I and of a rotation by an angle m/n; The group
T~ is the complete symmetry group of a tetrahedron.

One can show (e.g. , Mostow, 1957) that every closed
subgroup H of a compact (or finite) group G appears as
a little group of a finite-dimensional. orthogonal repre-
sentation. However, only a partial list of these sub-
groups (defined up to a, conjugation) may appear as little
groups of the orthogonal irreducible~3 (on the real) re-
presentations of G. This partial list gives a first family
of selection rules for the possible spontaneous sym-
metry breakings occuring in Landau theory (see Sec.
LD) or bifurcation theory (Sec. I.E). As an example,
consider the group D Its irreducible representations
are all real; they are either two-dimensional and
labeled [m] where m is a positive integer:

up to an equivalence there is only one such representa-
tion for each odd dimension 2l+ 1, where l is the angu-
lar momentum. It seems rather extraordinary that the
list of their little groups is not available in the physics
literature, but the only attempt I know to produce it is
rather recent (Ovrut, 1978); it is obtained by a compli-
cated method and the only explicit results are given for
0 ~1 &4; there seems to be an error for l =3. Another
paper, Mickelson and Niederle (1970) deals with the
complex representations of SU(2) (2l integer~0); they
are complex representations of SO(3) when I is integer.
However, as is not the case for finite groups, the com-
plex ve rsion of a real representation of a compact group
contains in general more little groups than that real re-
presentation (for l =1 compare the result of this appen-
dix to that of Sec. I.F, where we deal with the polariza-
tion states of a spin 1 particle). Projective representa-
tions are useful in quantum mechanics, and Bacry
(1974) gave a very elegant and powerful method to obtain
the list of little groups of the projective space of the
irreducible representations of SU(2) (thsre is an error
for the group T which a.ppears for all integers k ~4 and
for I = 2).4'

Before studying SO(3) we make some general remarks
about little groups of real representations of compact
Lie groups. Any such representation g- &,(g) yields,
by restriction, a real representation of any subgroup
H & G; one usually calls the degree of subduction, c, (H),
the multiplicity of the trivial representation of H in

if H is finite:

(A7)

In all cases, c, (H) is invariant by conjugation in G. Of
course H cannot be a little group when c, (H) = 0. We
denote by $ the set of vectors of the representation
space $, invariant under H; they form a vector sub-
space of dimension c, (H). Obviously:

Lemma 2. In a real representation l of the compact
group G, if there is a subgroup P', strictly larger than
H:H'&H, such that c, (H')=c, (H), then H is not a little
group.

Indeed every vector invariant under H is also in-
variant under the larger group O'. The converse of this
lemma is true only for finite groups:

Lemma Z. In a representation / of a finite group, if
for all subgroups H'&H, c, (H')& c, (FI), then H is a little
group.

This is also true for some subgroups H of a compact
group G:

Lemma 2'. In a compact Lie group G, if the set of
subgroups larger than a given subgroup H is finite or
enumerable, H- is a little group of any representation of
G such that H'&H implies c(H') & c(H).

Indeed, the space $ ' of vectors of 8 invariant by H'
is a strict vector subspace of 8 . Since the 8 ' are at
most enumerable, they cannot fill g~; so there are

43It is easy to restrict Bacry's results to real projective ir-
reducible representations: one requires that the 2l-point con-
steQation has the origin as symmetry center; since changes of
sign are aQowed, the list obtained is not that of little groups.
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vectors of 5" which are not invariant by any subgroup
H'& H.

This lemma applies to all closed subgroups of SO(3)
but the C„.For the latter, the representations of D„
already gave us a counterexample: for the irreducible
representation [)n], we have

c„(C) = '2, c (L ) = 1;n) )n, c (C„)= c (D„)= 0. (AB)

E(x) = (largest integer &x) (A9')

c, ( T) = b (l) + 2E 3, c, (0) = b(l) + E — + E—l

c, ()') = 5 ()) x x(—
)x x (-..) .

with

b(I) = [3+(-1)' —2I]/4.

(A 9")

(A9 III)

It is easy to find (and probably well known to the reader)
thai

c, (C„)= 1, c, (D„)= [1+(-1)']/2 . (A 10)

SO(3) is the little group of the 0 vector in all its repre-
sentations and it is the unique little group of its trivial
representation l =0. We now assume l & 0 and apply
lemma 2'; we obtain, from the values of the subduction
degrees and the fact that D,„&D„,the resuults of Table
AI, except for the C„.For those groups we just look
for the possibi3ity to find a vector which has one of them
as little group. When l =1 and odd, take vectors x and
y with little groups C„andD„,1 &n ~ l, respectively;
then x+y has C„for its little group. 4'hen l&2 and
even, choose x and y such that their little groups are,
respectively, D„and D,„,2&2m ~ l, with the same "ver-
tical" rotation axis and their azimuths are irrational
relative to one another; then x+y has C„aslittle group.
Finally, when l» 3, we can choose three vectors x,y, z
in the subspaces of the representation [1], [2], [3], of a
subgroup D„such that x+y +z has the trivial little group
C~.

Lemma 2' applies to D: it is a little group. It does
not apply to C„since the (whole conjugate class of) sub-
groups D~ contain C as subgroup; and we have seen
that C is not a little group.

The character y, (g) of the irreducible representation
I of SO(3) is 1+2ZI, , cosk&u where ~ is the angle of the rota-
tion g. We use (A7) to compute the subduction degrees
of the finite subgroups

c,(C„)= 1+ 2E(l/n), c,(D„)= —,'[1+ (-1)']+E(lln), (A9)

where

TABLE AI. I itile groups of irreducible representations
of SO(3).

SO{3)
D
C

0
T
D„
C

O (ail I)
even E&0
odd l
l = 6, 10, 12 and l & 14 except 17, 19,23, 29
l » 4 except 5, 7, 11
l » 3 except 4, 5, 8
l» Iz

odd l » n & 1, even l » 2n & 2.

APPENDIX B: ELLIPSOIDAL F IGURES OF
EQUILISRIUM OF A ROTATING FLUID AND
BIFURCATIONS FROIVI IT

We consider the simple case: an isolated mass m of
an incompressible fluid of density p. We look for equi-
librium states whose shape is an ellipsoid with semi-
azis lengths a„a„a3so m = 4;)a,a2a, p/3, and which are
in static equilibrium in the rotating frame. One proves
thai the rotation axis is one of the symmetry axes of the
ellipsoid: we label it "3"and denote by Qo the angular
velocity. The equilibrium surface is an equipotential:
potential energy+ kinetic energy = constant

( 3

t )x)lx —P x)!"x')x-', ))„'(x,'xx', ) = C, (Bl)

where G is the gravitational constant and

u"gw
A,-'~' = a, .z,a3

~g) (u+a', )(u+a,'-) ... (B2)

with D= (u+a,')(u+a', )(u+a', ). If the volume occupied by
the fluid is S(x) ) 0, the angular momentum j is

J = Qop x, +x,' d'x. (B3)

Equation (B1) can be identified with the equation

x'
S(x) = —t-1=O

g Qg
(B4)

The irreducible representations of O(3) are labeled
1+ or 1- depending whether the symmetry through the
origin is represented by +1 or -1. In the former case,
the little groups are obtained from those of Table AI,
by taking their direct product with Z, (I, -I). We leave to
the reader the study of the representations 1-.

In Table AII, we give explicitly the list of nonconjugate
little groups for the irreducible representations of
SO(3) with 0 & I & 6.

TABLE AII. Little groups of the irreducible representations of SO(3) with 0 & I & 6.

I SO(3) D„C„I' 0 T D, D~ D4 D, D, C, C4 C, C, Ci

X

X X X X X X X X X x x x
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(a,' —a', ) (0' —2A,",)) = 0. (B6)

It is verified by all axially symmetric ellipsoids
(a, =a,). Those which moreover satisfy (B5) are called
the MacLaurin ellipsoids. However, Eq. (B6) has non-
axia. lly symmmetric solutions when 0' = 2A,",). They
form a one-parameter family of three unequal axis
ellipsoids, the Jacobi ellipsoids. The bifurcation point
of the Jacobi sequence from the MacLaurin sequence
is defined by

a, =c, and 0 =24,", . (B7)

Bertin and Radicati (1976) showed that this bifurca-
. tion with symmetry breaking could also be well de-
scribed by the Landau theory of second-order phase
transitions (Landau, 1938). Poincare (1885) found a bi-
furcation from the Jacobi sequence with breaking of the
symmetry through the center; he also found an infinity
of bifurcations, each one from the sequence defined by
the previous bifurcation. Constantinescu, Michel, and
Radicati (1979), with the use of group theoretical ineth-
ods, showed how to obtain symmetry breaking bifurca-
tions and found an infinity of them from the MacLaurin
sequence; they occur when the following equation is
satisfied:

a+,"'=a,' AP„) „(mindices 1). (B8)

At each bifurcation a new sequence starts with a spon-
taneous symmetry breaking from D

„

to D „.
It can also be predicted that some symmetry may

never be broken: a theorem of Liechenstein (1933)
states that the symmetry through the plane orthogonal
to the rotation axis (the I) of D„„)cannot spontaneously
cilsappearo

Many books have been written on the equilibrium
states of a rotating fluid. Appell (1932) and Chandra-
sekhar (1969) are almost complementary. In his lec-
tures, Bardeen (1972) has extended this problem to gen-
eral relativity.

APPENDIX C: INVAR lANT VECTOR FIELDS IN THE
SMOOTH ACT ION 0F COMPACT L I E 6ROUPS ON

IVIANI FOLDS

We give some properties of the smooth action (i.e. ,
infinitely differentiable) of a compact Lie group G (a
finite group is a particular case of it) on a finite-di-
mensional real smooth manifold M (of course these as-
sumptions are not all necessary for many of the results
presented here). In that case, the orbits are closed
submanifolds of M A linear action is an interesting
example of this situation: Mis a real vector space 5
carrying a linear representation of G. This case is
rather general: indeed, Mostow (1957) has shown that
when there is a finite number of strata in the action of
G on M, there is an injective equivariant map M' g,
where 5 is a, real vector space carrying an orthogonal
representation of G (Mostow proved also that if M is

whose semiaxis lengths a„a„a,satisfy:

(f12 2~(0))/2 —(g2 2/0&))/2 — 2/(0)/2

where Q is the dimensionless Qo/)) Gp. The first equal-
ity ca,n also be written:

compact, the number of strata is finite).
Taking the average by G of any Riemann metric on M

endows this manifold with a G-invariant metric (one
also says that G acts isometrically on M); in the partic-
ular case where M= E, any linear representation of G
can be made orthogonal. Then one proves that, given
any orbit G(m), there exists a G-invariant neighborhood
V= G V a G(m), such that for any point x~ V, there is a
unique nearest point of the orbit; we denote it by r(x)
Since the correspondence x-) (x) is obtained from an
invariant metric, the map ~ is equivariant

vg F G, g )(x)=r(g x).
Furthermore, if g~ G„;then g. ) (x) =~(x), i.e. ,

VxF V, G„&G„&„&.

(c1)

(c2)

This means that in a neighborhood V of the orbit G(m),
all little groups are, up to a conjugation, equal to or
smaller than those of the orbit. By definition of the
stratum, the equality occurs only for the points of the
stratum S(m). Let 8 be the set of strata, i..e., the set
of conjugation classes of little groups a.ppearing in the
action G&AutM. We have seen that this set is partially
ordered; if II is a minimal little group, and G =H, then
U C: S(m), and one proves that S(m) is open. When G is
finite, it is easy to prove (see, e.g. , Michel and Moz-
rzymas, 1977) that S(nz) is open and dense and G =Kerf.
When G is compact it can still be proven that S(m) is
open dense, so there is a unique minimal little group,
up to a conjugation, in S [keep in mind that in general it
is not an invariant subgroup of G, so it varies with m in
the stratum S(m)]. Finally, one defines locally the slice
N()))) = r '()))) c: V, i.e. , the set of points x M V, such that
) (x) =rn.

The isometric action of G on M defines at each point
m an orthogonal representation of the little group G on
T (M), the tangent plane to M at ))). This representation
is reducible since, among the subspaces of T (M), it
leaves invariant T (G(m)), T (S(m)}, T (K(m)), the tan-
gent pla, nes to the orbit, the stratum, and the slice at
rn. Note that T„(Ã(m))is the subspace orthogonal to
T„(G(~));we write it as a direct sum of orthogonal sub-
space

T.(M) = T.(G(m))„,T.(.V(m)).

VAth the definitions

(c3)

T (M) = T (G(m)), W()))) ~eK(m),

T.(S(m)) = T„(G(m))~(m).
(c5)

(c5 }

We can now make precise the nature of the 1inear rep-
resentation of G on the tangent plane T (M). From (C2)
we see that this representation is trivial on &(m): all
vectors of E(m) are invariant by G, whereas K(m) has
no invariant vectors. The representation of G on T
x (G(m)), the tangent plane to the orbit, depends only on
G and G: for example, when G is a semisimple Lie
group, this representation is obtained from the adjoint

S'(m) = T (S(m))n T (m(m)), Z(m) = T„(X(m))gT„
x (S(m)) (C4)

we have the following direct sum of orthogonal sub-
spaces:
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representation of G (this is the natural representation of
G on the vector space of its Lie algebra 9) by the action
of G on the space g (& defined by the Cartan Killing
metric on g), where g is the Lie algebra of G; for in-
stance, if G contains a. Cartan subgroup H of G (see
Appendix D) there is no G invariant vector g0 in
T (G(m)). Of course, for the generic stratum, K(m) =0.
If E(m) = 0, the orbit G(m) is isolated in its stratum, that
is, there is a neighborhood V of the orbit G(m) which
contains no other orbit of the same type.

A smooth G-inva, ria, nt vector field on Mis a smooth
function from .M to T(M), the tangent bundle of M; it de-
fines a correspondence .:n- v(m) H T (M) such that

yg~ G„, v(n) = v(m). (C6)

So vs) is in T (S(n)): every G-invariant vector field
is tangent at each point m & M to the stratum S(m).

If the vector field is the gra, dient field of a G-invari-
ant function, it is moreover orthogonal to the orbit
(since the funeti. on is constant on each orbit) so it is in
E(m). Hence when F(m) =0, i.e. , on orbits isolated in
their stratum, the gradient of every G-invariant func-
tion vanishes. The converse is also true (Michel,
19'lla). This leads to Theorem 2 of the paper.

For finite groups T (G(m))=0 this theorem applies to
any G-invariant vector field; this is also true when m is
a fixed point (G = G) of the compact Lie group G. We
do not make here a complete list of the eases when
every G-invariant vector field has to vanish at rn; we
have seen that this is the case when G contains a Car-
tan subgroup; this is also the case if the Euler charac-
teristic of the orbit G(m) does not vanish (e.g. , in the
case of even-dimensional spheres).

We already noticed that the strata corresponding to
maximal little groups are closed. If M is eompa, ct, these
strata are also compact. When such a stratum contains
only a finite number of orbits, these orbits are critical
(see Theorem 2). If not, the restriction of any invariant
function f to such a stratum must ha.ve at least one orbit
of maxima and one of minima; since the gradient of f
is tangent to the stratum, these two orbits are orbits of
extrema, for the whole function f. Hence the following
theorem.

Theorem C. In the smooth action of the compact Lie
group G on the compact manifold M every G-invariant
real smooth function on Ihas at least an extremum on
every stratum corresponding to maximal elements in the
set of conjugation classes of little groups, which appear
in the action.

APPENDIX D: INVARIANT POLYNOMIALS AND
EQUIVARIANT ALGEBRAS ON AN ORTHOGONAI
REPRESENTATION OF A GROUP

Given an action of G on M we can consider its set of
orbits: it is usually called the orbit space and denoted
by M/G. When G is compact and M is a manifold, the
G-inva, riant Riemann metric on M induces a natural me-
tric on M/G. By the canonical map 'M-' M/G, which as-
signs each orbit in M to its representation point in M/G,
the image of the generic stratum is open dense. In the
action of the rotation group, SO(3) on the five-dimension-
al phase space of the three pa, rticles produced in a decay

at rest, the orbit space is the (two-dimensional) Dalitz
plot. There are two strata, generic and exceptional.
The generic stratum corresponds to the interior of the
Dalitz plot; the three momenia of the particles form a
triangle, and the little group is trivial. The boundary of
the Dalitz plot is the image of the exceptional stratum;
the three momenta are collinear, and the little group is
SO(2).

We consider now, as a very interesting example, the
a.ction of a simple compact Lie group G on its Lie al-
gebra g: thi. s is the adjoint linear representation of G.
The Cartan Killing bilinear form defines its invariant
orthogonal product. The simplest case is the rotation
group SO(3) acting on the three-dimensional space 8
(the Lie algebra law is the vector product that we de-
note xhy). Every direction of 6 can be transformed in-
to any other direction, i.e. , the unit sphere is an orbit
of G [the little group is SO(2)]. This is an exceptional
situation: in the general case, there are exceptional
strata. - The generic, open dense stratum has for little
group a. Cartan subgroup ?I: it is a maximal Abelian
subgroup of G, so it is isomorphic to U(1)" [the direct
product of r groups U(1)], and r is called the rank of the
group G. The slice (see Appendix C) N(m) at a point
m of the generic stratum can be extended globally; it is
the normal subspace to the orbit and a Cartan subalge-
bra K, as well as a Lie algebra of the Cartan subgroup
H= G . (More generally, at every mug, x~g, x*m

"= 0).
Every smooth invariant function on g is a smooth

function of the invariant polynomials. These polyno-
mials form a ring (their sums and their products are
invariant polynomials) generated by r polynomials 8„,
1 & 4 & x: one of them is the Cartan Killing scalar pro-
duct, 8, (x) = (x, x). More. precisely, and this is not true
in general for other linear representations of G, every
invariant polynomial p is a polynomial in the t9~'s. On
the generic stratum the 19„'sare algebraically indepen-
dent and therefore their gradients d8, /dx are linearly
independent. The semialgebraic equations of the ex-
ceptional strata are given by inequalities and/or equali-
ties among polynomials in the I9~'s; they yield linear re-
lations among the gradients d8, /dx. On the one-dimen-
sional strata, all gradients are collinear to x, and the
intersection of these strata with the unit sphere are
critical orbits: they correspond to maximal little
groups

There is some freedom in the choice of the basic
polynomials 0, but their degree is well defined

2, 3, 4, . . . , r+1 for A„=SU(r+I),
2, 4, 6, . . . , 2r, r ~ 2, for R„=SO(2r+ I) and C„=Sp (2r),
2, 4, 6, . .. , 2(r —1) and r, r~ 4 for D„=SO(2r),
2, 6 for G„2,6, 8, 12 for I'; 2, 5, 6, 8, 9, 12 for E, ,

for E' .
There is a unique (up to a factor) invariant of degree 2,
namely (x, x); only the groups SU(n), n ~ 3 have a, third
degree invariant. The quotient group

W= m, (H)/H,

where K~(H) is the normalizer of a Cartan subgroup, is
called the Weyl group of G. It is a finite group whose
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u&SU(n), uu =I, x~ SU(n), x~ = x, trx= 0,
X~ ZEXQ

The Lie algebra law is

x„y=-2i(xy -yx) .

(D2')

(D3)

The n-1 basic invariant polynomials can be chosen as

order is the product of the degrees of the e~'s. It acts
on the Cartan subalgebra ~, is generated by reflections
through hyperplanes, and has exactly s-r such reflec-
tions where s is the sum of the degrees of the 8~'s. The
intersections of the orbits and strata of G acting on g
with the Cartan subalgebra 3'. are exactly the orbits and
the strata in the action of S' on ~, and the restriction
of the 0 's to ~ are the generators of the 5-invariant
polynomials on 3'.. (This situation ca.nnot be generalized
to many linear representations. For instance, if the di-
mension of the orbits of the generic stratum is smaller
than or equal to half the dimension of the representa-
tion, the slice of a generic point, which always cuts lo-
cally each G orbit at one point, contains, when it is ex-
tended to the whole subspace normal to the orbit, a con-
tinuous part of at least one orbit. )

We consider now the case of SU(n). Its n'-1 dimen-
sional Lie algebra can be realized as the vector space
of Hermitian n by n traceless matrices; the adjoint ac-
tion of SU(n) is defined by

which is G invariant

&(g.x Z y Z z) = 8(x y z)

In an orthogonal space, every linear form such as z
-t)(x,y, z) can be written as a scalar product

8(x,y, z) =(x„y,z) . (D9)

The map (x,y) —x„ydefines an algebra on the space 8
of the group representation since the most general de-
finition of an algebra is by a homomorphism 8 R h - h.
Moreover, the G invariance ensures the G equivariance
of this algebra: it has G as group of automorphisms.

Let us apply this general method to obtain equivariant
symmetric algebras of SU(n), n~ 3, the only simple Lie
groups having a third degree invariant in their adjoint
representation. It is 8 =trx'/3. One can normalize the
algebra to be

~n Ix„y= (xy+yx) —~ trxy. (D10)

This is the "d algebra" introduced by Gell-Mann (1962)
and Biedenharn (1963). As we have seen, if x belongs to
a one-dimensional stratum, i.e., x/v'(x, x) is on a criti-
cal orbit of .the unit sphere, it has only two distinct
eigenvalues; so it must satisfy a second-degree equa-
tion. Such an equation has to be SU(n) equivariant so
its only possible form is

1
8, (x) = — trx'+' I:=- k-~n- I.4+1 (D4) -(D11)

8 (g x) = 8(x) and 8(zx) = Z'8(x) . (D5)

It is well known how to make a bilinear completely
symmetrical scalar product by polarization of a qua-
dratic form:

(x,y) = (1&2') [(x+y, x+y) —(x, x) —(y, y)]. (D6)

Similarly, from the 8(x) of (D5) one obtains a complete-
ly symmetric trilinear form

9(x,y, z) = (1j31)[8(x+y +z) —8(x+y) —8(y +z)
—8 (z + x) + 8 (x) + 8(y ) + 8 (z) ] (D7)

A Cartan subalgebra, i.e., a maximal Abelian subalge-
bra, is, from (D3), a maximal set of commuting ma-
trices, so it can be chosen to be diagonal and, because
of the trace condition, it forms an n-1 dimensional vec--
tor space K. The %eyl group is g„,the permutation
group of n objects: it permutes the eigenvalues of the
diagonal matrices. Hence the generic stratum is the
set of matrices with n distinct eigenvalues; its little
groups are isomorphic to U(1)" '. The different strata
are defined bythe multiplicities k„k„.. . , k,„,Q, , k,. =n,
of the eigenvalues; their little groups are S(U(k, )
x U(k, ) x. . .x U(k ))whose elements are the direct sum of
block diagonal 4,. by k,. unitary matrices u,. satisfying

,detu, . =1. The one-dimensional stratum contains
the Hermitian matrices with only two distinct eigen-
values n, P such that kn+(n —k)P=O a.nd the correspond-
ing little group is S(U(k) x U(n —k)); note that S(U(1)
x U(n —1))= U(n —1).

Let us go now to a general situation, where an ortho-
gonal representation of a group G has a third degree
invariant:

i.e. , x is an idempotent (nilpotent when X =0) of the sym-
metric algebra ~. As noticed by Michel and Radicati
(1970, 1971a,b) these idempotents are favored as direc-
tions of symmetry breaking for the internal symmetry
of hadronic physics (see Appendix E). Sattinger (1977)
also found these idempotents as symmetry breaking di-
rections in the theory of bifurcations. These SU(n)
equivariant symmetrical algebras have been studied by
many physicists [see, e.g. , Michel and Radicati (1973),
who also give a list of previous references]. Let us
give some results here. The roots of the SU(n) Lie al-
gebra are the matrices x with the characteristic equa-
tion

~" '(~' —1) =0 (D12)

They are of unit length. For m&2 the unit vectors:

q =r„r(n—2) '~'

are the pseudoroots of SU(n). They play for the sym-
metric algebra & a role similar to that of the roots for
the Lie algebra +. Moreover, they are idempotent of the
symmetric algebra:

n —4
&V&=q (D14)

Their little group is S(U(n —2) x U(2) ).
Of course, from the quartic invariant, one can form

by polarization a completely symmetrical tr ilinear alge-
brag g SJ- b and so on. . . [see, e.g. , Mott, 1975, Michel,
O'Raifeartaigh, and Wali (1977) and also Appendix E].

Rev. Mod. Phys. , Vol. 52, No. 3, July 1980



Louis Michel: Symmetry defects and broken symmetry

APPEND IX E: D I R ECTIQNS FOR BREAKING OF THE
INNER SYMMETRY OF THE FUNDAMENTAL
INTE RACTIONS

%e recall first the definition of tensor operators in
quantum mechanics. Let g- U(g) = U ' (g), the unita, ry
representation of the invariance group G on the Hilbert
space ~ of state vectors. We denote bye(K) the vector
space of linear operators in ~. The group G acts lin-
early on g{~)by

g A = U(g)AU(g) (E1)

~ U(g)(. )U(g)
L(H)

Note that a "tensor operator" is not an operator on
3C, but ImT, the image of T, is a set of operators which
is called "irreducible tensorial set of operators" (e.g. ,
the book of Fano and Hacah) when the representation of
G on 5 is irreducible. Given two operators T„T,of
variance $, g„weform new tensor operators, defined
by

ya, e8,-, (T, e T,)(a, ea, ) = T, (a)+ T, (a), T, @ T,

has variance $, S $»
Va, ~ $, , (T,R T,)(a, a,) = T, (a)T, (a),'T, e T,

has variance g, e g, .
%e give now some applications to the physics of fun-

damental interactions. This subject is in full evolution.
The following assumptions are the most commonly
made: the elementary constituents of matter are quarks
and leptons which have spin 1/2. There is an exact
symmetry group

G.= U(3) (E2)

which corresponds to the conservation of color and
electric charge. There is much confusion on this pre-
cise point in the literature; one generally sees that G,
=SU(3) x U(1). Let us explain the difference between
U(n) and the direct product SU(n) x U(1), repeating es-
sentially the reference Michel (1962).

The direct product G= G, xG, of the groups G» G, of
elements x,-,y,-, . .. , i=1,2, is the group whose elements
are pairs (x„x,) and the multiplication law is

(x»x2) (X.»2) =(x.y. x2X.). (E3)

Conversely, if G,&G, G,&G (reads: invariant sub-
group G- G, x G,), if and only if G, A G, = $1)and every
element of G, commutes with every element of G,. The
group of unitary n xn matrices is divided by U(n).
There is a group homomorphism U(n) '=' U(l) =(e'~)
since the determinant of a product of matrices is the
product of their determinant. By definition SU(n)
=Ker"det"; it is the subgroup of U{n) whose matrices

It transforms Hermitian operators into Hermitian oper-
ators. Given a linear representation g —A(g) of G on
8, a tensor operator T of variance $ is a G-equivariant
linear map 8 - g(oC), i.e. , it satisfies the commutative
diagram of linear maps:

L(H)

have determinant 1. The center e{U(n)) is the set of
matrices zI„multiple of the unit n xn matrix I„with ~z(
=1 and, by defi. nition of the center, every matrix of
e(U(n)) commute with those by SU(n). However, U(n) is
not the direct product U{1)xsU(n) because t.'(U(n)) and
SU(n) have a nontrivial intersection:

&{SU(n))=Z„=fe,I„,c„=e'"'i",0& k&n). (E4

So U(n) is isomorphic to the quotient group:

U(1) xSU(n)
n

or we could divide all groups by Z„,to obtain a direct
product

U(n) e(U(n)) SV(n)
z z z

The representation of SU{ .) can be labeled by "Young
diagrams" with n —1 lines, i.e. , by n —1 integers

)p )p 0 ~ o)p )~ 0 (E7)

For instance, for the n-dimensional representation, P,
=1 and p,- =0, 1&i&n, while for its complex conjugate
p,. =1. For the adjoint representation (see Appendix D)
p, =2, p,. =1, 1&i-&n, it is seU-conjugated. More gen-
erally, the complex conjugate irrep (irreducible rep-
resentation) ofp„.. . ,p„,is p,'. =p, -p„„,. ; 1 & i& n —1.
The trivial representation corresponds to p,. =0. By the
Schur lemma, in an irrep of a group, the elements of its
center are represented by a multiple of the unit matri-
ces. For SU(n), c,I„of(E4) is represented by

n-1
(c I ) = e2mikr/n ~ QP

i =1
(Ea)

q =—xmodulo n. (E9)

Note that if u-b. (u) is an irrep of U(n), (detu)~6(u) is
another irrep with q'=q+kn; this is compatible with
(E9). Hence the fact that the fundamental colored
states, i.e., the quarks, have an electric charge which
is —', or ——,

' that of the fundamental electric charge car-
ried by uncolored states [trivial representation of
SU(3)], is well described by the U{3) symmetry group of .

chromodynamics and not at all by the group U(1) xSU(3).
All other symmetries of the fundamental particles are

broken, but the directions of breaking belong generally
to exceptional strata of the group representation, and
one can guess that this feature may also be true in the
theoi y unifying all interactions. %e do not know yet how

For instance, when x is a multiple of n, as is the case
in the adjoint representation, the center C(SU{n)) is rep-
resented trivially, so b, is a representation of SU(n)/Z„,
which is called the adjoint group. For n = 2 the adjoint
group is SQ(3) -SU(2)/Z, . The irreps of the direct pro-
duct are the tensor product of the irreps of the factors.
For instance, the representations of SU(n) x U(1) are
labeled by the p,. 's satisfying (EV) and the integer q
which caracterizes the irrep u- e"~ of U(1). Since U(n)
is an homomorphic image of U(1) xSU(n) [Eq. (E5)]
every irrep of U(n) is an irrep of the direct product
U(1) xSU(n) but the inverse is not true As Eq.s. (E4)
and (EB) show, the irreps q, p, . . .p„„ofU(1) xSU(n),
which are irreps of U(n), satisfy
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Inany quark flavors there are in Nature; five are al-
ready known: u, d, s(strangeness), c(charm), b(beauty
or bottom). We will consider here the four best known:
zi, d, s, c. These four quark flavors form an orthonor-
mal basis of the fundamental representation of dimen-
sion 4 of SU(4). We shall choose the basis c, u, d, s. In
this basis, the electric charge operator is

Every matrix with only two distinct eigenvalues satis-
fies a second degree equation. For a non-Hermitian
raceless matrix x of the Lie algebra of SU(n) with ei-
genvalues ~»X, of multiplicity n» n, we have the rela-
tion (see Appendix D)

1
n, +n, = n, n, A, + n,A, = 0, (x, x) = 1~—(n,A,'+ n, A,') = 1;

'c u d si
2 0 0 0

1q= — 0 2 0 0
3 00-10

,0 0 0 -1

(zlo)

2xvx=gx with q = (n, —n,).
Pl g B2

(Z15a)

(E15b)

The little group of x is the subgroup of matrices of
SU(n) commuting with x. It is

S(U(n, ) x U(n, ) ) = ju, H U(n, ),u, H U(n, ), detu, detu, = 1]

C~ = C~+ 2C2

0 0

-sin8 cos8

cos8 sin8

-sin8 cos8

cos8 sin8

0

0 i sin8 -i cos8

0 -i cos8 -i sin8 (z11)
—2 sln8 2 eos8

i cos8 i sin8 0

0

0

are the vector part of the charged weak current. The
axial vector parts of these currents are the values of
another tensor operator in these same directions c,.
The angle 8 is (E11) in the Cabbibbo angle. There exist
also particular hadronic currents in the direction

C3= CgAC2=

1 0 0 0

1 1 0 0

00-1 0

0 0 0 -1

(z12)

[The Lie algebra law A and the law of the symmetric
algebra v have been defined in Egs. (D3) and (D10}.]
Note that there is no neutral current between the d and
s quark. This fact is verified with a high accuracy in
the K, decay and it was one of the bases of the hypothe-
sis of the c quark and the erst bne and first column
structure of (Ell) (Glashow et al.). Then we verify the
relations [see (D3)]

vQ' Op cg v cz 0& 2 1
p 2p 3op cy v c2 = 0

Hence

(z13}

Sj.nce try = —,
' =O, q is not in the Lie algebra of SU(4) but

in that of U(4).
The electromagnetic current of the quarks is the value

of a tensor operator in this direction q of the adjoint
representation of U(4) while the values of the same ten-
sor operator in the directions

I

D„A„(x)= S„A„+e[A„(x),A„(x)l, (EIV)

(E16)

[and not SU(n, ) xS(U(n, ) x U(1)), as too often found in the
literature]. Note that if n, = 1, n, = n —1, S(U(n —1)
x U(1)) = U(n —1). Such directions in the Lie algebra,
i.e. , in the adjoint representation of SU(n), are those of
the minima of the degree four, SU(n) invariant polyno-
mials built on this representation. Such polynomials
are simply the generalization of the polynomial of Eq.
(4): they have x=O and are positive when (x, x) is large
enough. The restriction to degree four is necessary
for the renormalizability of the theory. The matrix
equation dP/dx = 0 giving the extrema is a third degree
equation so, for the group irreps as the adjoint repre-
sentation of SU(n) or SO(n) whose space is realized by
matrices these xDatriees have at most three distinct
eigenvalues. For the SU(n) adjoint representation, the
x extrema an minima only for matrices with two dis-
tinct eigenvalues. These polynomials introduced by
Landau (1938), for second-order phase transitions in
crystals, are called, in particle physics, Higgs poly-
nomials. For a study of their minima for a arbitrary
representation of a compact Lie group G, see Michel
(1979).

The Higgs polynomials on an m-dimensional repre-
sentation is built with a scalar field with m internal de-
grees of freedom. So to break symmetry spontaneously
one has to pay the price of introducing m Higgs bosons.
Xf II is the little group of a minimum and the dimension
of G and H are, respectively, g and h, the orbit [G:H]
has dimension g-h. . In the broken symmetry scheme the
mass matrix of the Higgs bosons is proportional to
9 P/Bx, Bx, , the Hessian . of the polynomial. This mass
matrix has a kernel: the tangent plane to the orbit; the
corresponding g-I2 massless particles are the Gold-
stone bosons.

Finally we have to deal with the case of local gauge
theory. The compact invariance group G depends on
space time G(x). The gauge field A" (x) is valued in g,
the Lie algebra, of G, so it has g internal components
and forms a representation of the Lie algebra g at ~.

The local gauge invariance of the theory requires one
to replace derivative a„=8/Bx„by the covariant deriva-
tive Du defined by

where e is the coupling constant of the theory. Similar-
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ly, for every field @(n) which is transformed into
A(g)P(x) by the representation ef G, there is a corre-
sponding representation A of the Lie algebra and the
covariant derivative for P is

D„P(n)= a„P(r)+ eA(A~ (x))P. (E18)

For a realistic model one should also introduce at
least a matter of field (Dirac spinor) with a similar-co-
variant derivative. The simplest Lagrangian with spon-
taneous symmetry breaking is built only with the vector
gauge field A„and the Higgs fields p; its density is:

-& = l(Fp. , &p')+ l(Dt 4, Dp4)+&(4)
where

Fq„———[Dq, D„]= sqA„—8+„+e[Aq, A„].1

(E19)

(, ) is the G invariant scalar product on the Lie alge-
bra and on the space of the representation of P and
P(P) is the degree four Higgs polynomial. The only
mass term is in P(P), so we start with g gauge vector
massless bosons and m scalar particles. Thanks to lo-
cal gauge transformation A,„-A.„+8@/Bp the g-h Gold-
stone scalar fields can be merged with the g-h gauge
vector fields in the space orthogonal to the I ie subal-
gebra, of II so the spontaneously broken symmetry
theory has, finally, h massless gauge vector bosons
generating the Lie algebra of , the preserved symme-
try group, g-li massive vector bosons, and m —(g —h)
massive Higgs scalars.

An example of such theory with G~= U(2), g=4 is the
unified theory of weak and electromagnetic intera, ctions
for the leptons. This model was elaborated succes-
sively by Glashow (1961), Salam and Ward (1964), Wein-
berg (1967) and its renormalizability was established
by t'Hooft (19'72). After the symmetry breaking H
= U(1), so h =1. The corresponding massless vector bo-
son is the photon. The g —6=3 massive vector bosons
are the 8'+8' Z' mediating the parity-violating V-A
weak interaction. The Higgs bosons are in the spin —,

'
irrep of U(2); it has a unique stratum with little group
U(1), complex dimension 2 and therefore real dimen-
sion 4, so m=4 and m-g+h=l, which means that the
theory requires only one massive Higgs boson, which is
not yet identified in Nature. The matter fields are the
right helicity electron which is a singlet of SU(2), and a
doublet of SU(2) formed by the left helicity electrons
and neutrinos, and the corresponding antiparticle fields
(e, and e„',v,). Because U(2) is not a simple group,
there are two coupling constants f and g; they are gen-
erally defined through the observables e =fg

~
(f'+g')

~

the electric charge and tan8 =f/g, where 8 is the
Glashow-Vf einberg angle.

This model canbe extended to the quarks u and d,
and there exists two other copies of it, one for p.v„cs
and the other for vv bt, where 7. and b are the more re-
cently discovered leptons and quarks. and t is an ex-
pected 6th quark flavor.

A candidate group for unification of chromodynamics
and weak and electromagnetic interaction is SU(5)
whose first breaking, in the 24-dimensional adjoint rep-
resentation, could be into S(U(3) x U(2)), the two factors
inside the bracket being the color symmetry group 6,

= U(3) and the group G = U(2) we have just presented.
The condition of determinant merges the two electro-
magnetic subgroups into a unique one. The problem of
unification of all four known fundamental interactions
(weak, electromagnetic, chromatic, and gravitational)
is better and better understood. Its solution will surely
involve non-Abelian gauge theories but it might be in a
form very different from what is studied now.

yA, Bcg, p(aA + p B ) = o'p(A) + p p(B),
which is positive:

vAca, p(A"A)& 0.

(Fl)

(F2)

For convenience one also requires p to be normalized:
p(I) =1. Note that the set 6 of states is convex.

Then p((A+ XB)*(A+M))~ 0 yields the Schwartz in-
equality:

I
p(A'B)I'- p(A"A)p(B*B) . (F3)

So p(A B) would be a Hermitian scalar product on 3c
except that it may vanish for nonzero vectors. Let X
be the set of K such that p(K"K) = 0; then, from (F3)

vXc&, p(X*K)=0, e.g. , p((AK)*AK) =0 . (F4)

In short, 8X =X: one says that X is a left ideal of ~.
Moreover, for any

K„K,e X,p((A+ K,)*(B+K,)) = p(A*B) (F5)

So p induces a t~e Hermitian scalar product on the
quotient vector space 3C =8/X defined by the exact se-
quence of vector spaces

(O) -X-a-'X-(Oj. (F6)

Denoting Q(A) shortly by Q„,the Hermitian scalar
product on 3C is

&y. , y, ) = p(A B )

and after topological completion, is a Hilbert space.
For each AcQ we can define a linear operator ~(A )-on
x:

vA, Bca, ~(A)y (F8)

One easily proves that

v(nA+PB) =ax(A)+Pm(B), w(A)n(B) = vr(AB),

x(A*) = ~(A)", (F9)

APPENDlX F: THE GELFAND-NEllVlARK-SEGAI
CONSTR UCTION

The GNS (Gelfand-Neimark-Segal) construction is
well known by some physicists and yet ignored by. a
majority. It deals with a basic problem of quantum
physics: how to obtain a Hilbert-space and a repre-
sentation by operators on 3'., of the algebra 8 of obser-
vables, from a given state p. In the text we have de-
fined the C algebra~. A state is a linear forme-C,
l.e.)
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so ~ is a ~ representation of the algebra 8 onset. Since
p is normed, $1 is a unit vector and the expectation
value of any n(X) for @~ is simply the expectation value
of X for the state p:

(e„(I~)y, ) = p(X) . (Flo)
Physically, one generally chooses for the state p the
vacuum or the fundamental state of the system; when it
is not an extremal state of |,the representation 7t is
reducible. This generally occurs when there is spon-
taneous symmetry breaking and the vacuum is then de-
generate.

APPENDIX 6: COMPUTATION OF w [6:H] for
n = 0, '|,2,3

As we explained, ~,([G:H]) is the number of connected
components of this orbit. The image projected by a con-
tinuous map of a connected topological space is connect-
ed. So when G is connected w, ([G:H] ) =(1}. More gen-
erally it is a pointed set, homomorphic image of the
discrete group G/G„where G, is the connected compo-
nent of 6 containing the identity. Each connected com-
ponent of the orbit [G:H] has the same homotopy. So to
compute the other homotopy groups 7I„,n&0, we need
only to consider the connected orbit [G,:H'] where

n&l, ~„(G)=~„([Gz])

(1}-,(G),([G:b,])—b, -$1}
since ~,(6) = a and n, (G) = 1 (G is connected).

Since (G2) is an example of (G5) we have

(66')

the ball B„bythe point ur, and all points of the bound-
ary BB, (i.e. , co = 2~) are identified since they represent
u = -I. Since SO(3) is the quotient group SU(2)/Z,
=SO(3), where Z, =/I, I}—is the center g ((SU(2)), its
group manifold [SU(2):Z,] is obtained by identifying in
S, the opposite points u, -u, since such pairs of points
have the same image under the mapping 6. This des-
cription shows that, by definition of the real projective
space, the manifold [SO(3):,(1}] of SO(3) is P(3, B).

From the very definition of the homotopy groups, for
a discrete set of points b. , n &0, x„(b.) =(1}. So if b.
is a discrete subgroup of a connected group G, the long
exact sequence (24) when applied to

(1}—a-G-[G:S]-1 (65)

breaks into the short exact sequences n &1, fl}-~„(G)
—~„[G:a])-(1},i.e.,

II'= G, na. (61) n&1, w„(SO(3))= ~„(SU(2))=~„(S,) . (67)

(1}-Z, —SU(2) —SO(3)-(1} (62)

with:

8[exp(- iv nu/2) = rotation of axis n and ingle cu.

For most of our examples we could have tried to guess
7I., and ~2 by intuitive geometrical arguments. We feel
that it is better for the reader to enable him to learn on
these simple examples how to use the powerful tool pro-
vided by the long homotopy exact sequence [Eq.(24)]. It
is also a strong motivation to study its proofs; this re-
quires the study of very few pages of Hilton (1961) or
Steenrod (1957). Before applying Eq. (24), we need to
know the lowest homotopy groups of G. For superfluid
and mesomorphic phases we need only the cases G =O(3)
and G=E(3).

(i) G =O(3). Then G, = SO(3). As every physicist knows,
SO(3) is the homomorphic image of SU(2) by the mapping
8(where 8 is given by Eq. (63)]:

We have referred the reader to any basic book for
the proof of Eq. (14), n& )r, ~„(S~)=(1} and m„(S„)=Z.
So we deduce

b. cfC„,n o- 1;D„,n & 2; T, 0, Y}
or a one-dimensional I ie group

C - SO(2)- U(1), D

Then, by application of (66) again,

~,([SO(3)]:a)=Z, m, ([SO(3)]:a)=f1}.

For the w„we note that [SO(3):A]=[SU(2):Z], where

(610)

2=8 '(~),

,(SO(3))=Z, (SO (3))=(l), ,(SO(3)) =Z, ; (66)

the last result is obtained from (GV') with n, (G) = ~, (S,)
=(1}.

In Appendix A we gave the list of the closed sub-
groups H of O(3). From the remark made at the be-
ginning of this appendix, n &0, ~„([O(3):H])=
~„([SO( 3):H']) where H'= HAS O(3) is either a discrete
group

(612)

Since ( v. neo} is the set of all 2X 2 traceless Hermitian the preimage of b, under 8 defined in (62). The appli-
matrices, SU(2) is the set of all 2&& 2 unitary matrices of cation of (66') to SU(2) and Z yields
determinant 1 when 0~ u& ~ 2n. Such a matrix ueSU(2)
can also be written

g j tE 2

—2'
with detu = [z,['+ (z,['=x,'+y,'+x', +y', =1 .

2 l

This shows that the group manifold of SU(2) is the
sphere S,. This sphere can also be obtained by the
following construction: every ucSU(2) is represented in

For instance, when 4 is the four-element group D,
generated by the three rotations of ~ around the three
orthogonal axes n„n„n„(G3)shows that D, is genera-
ted by ~i7„+is.„+iT,and its other elements are

.I, -I. This eight-element group is called the quater-
nionic group and is often denoted by Q.

Obviously, [SO(3):SO(2)], the orbit of a vector for the
rotation group, is S,. Since SO(2) -S, and ~„(S,) =(1},
n & 1 we deduce from the long exact sequence (24)
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n &2,w„(S~)= w„(S,) = w„{[SO(3):SO(2)]) (G13)

and verify, from w,(SO{3))=flj, that w, (S,) = w, (S,)

w, (S,) = w,[SO(3}:SO(2)]=Z;

w, ([SO(3):SO(2)])=w, (S,) =(1]. (613')

E (3) =R SO(3); (616)
so as a topological space, as we explained in Sec. IIC,
it is the topological product R'x SO(3); since w„(R')
=(Ij, {R' is contractible),

(617)

Similarly, the homotopy groups w„(n& 0) of the closed
subgroups H of Z(3) are those of the subgroups of SO(3).
The characterization of these subgroups H is partially
given in Table I and more completely in Table II. We
need again to consider only H'=HAE, (3). It is also
convenient to consider the universal covering of Zo(3):

Eo(3) =R~SU(2), Eo(3)-Eo(3)-1 (G18)

and its subgroup

H'= & '(H') . (619}
Let IIO be the connected component of H~which conta, ins

(1}.Table I shows that except for ordinary nematics
. and smectics A, Ho =R (0 & & & 3), so

In three-dimensional space, if we replace a vector by
a "director, " i.e., a nonoriented direction, by definition
of the projective space, we obtain as orbit of SO(3)

P(2, R) =[So(3):u ] .
One can consider 8, as a fiber bundle, whose base is
P(2, R) and whose fibers have two points. More gener-
ally, a fiber bundle X, whose fiber is a discrete set of
points b, , is called a covering of its basis X. Moreover,
if X is simply connected, i.e., w, (X)=(lj, then for ev-
ery continuous surjective map F-"X one can find a sur-
jective map X- F such that non =P, the projection
X-X of the bundle; by an easy corollary, X is found to
be unique (up to an isomorphism) so X is called the uni-
versal covering of X. The long exact sequence applies
also for general fiber bundles [with some care for the
wopart; see Steenrod (1957)]. We have for n&1, w„(X)
= w„(X)and w, (X') =b.. In particular

[SO(3):D ]=P(2,R), w, (:.{2,R})=Z, w,(P(2, R))=Z,

w, (P(2, R))=Z, . (6»)
For superfluid helium phases, we need only the case

where G is U(l), SO(3) or a direct product of such fac-
tors; in the latter case we use Eq. (25), w„(Xx 1')
= w„(X)x w„(Y') in every term of the long exact sequence.

(ii) G=Z(3). This is the case we need for mesomor-
phic phases.

The connected Euclidian group Z, (3) is the semidireet
product

will yield the homotopy of the orbit of local states
[E,(3):H']. Indeed from (G16) and (67) when

H,'=R, n& 1, w„([E(3):~HJ}=w„(Z (3))= w„(S,) (G22)

and from w, (Z, (3))= w,(Z, (3))= 0

w,([E.(3):H ])=w, (H'), (623')

which explicitly reads (using (61V), (68), (G20))

M = [Eo(3):H' ], w3(M) =g, w2(M) =(1), w~(M) = H'/Ho .

(623)

We are left with the two cases (ordinary nematics and
smectics A) in which H' contains a group C„-U(1) of
rotations around an axis. Note that 8 '(U(l)) is again
isomorphic to U(l). In that case (621) must be modified
for w„ indeed [see Eqs. (14), (15)]

, (H ) =&,[=,(U(1))l. (624)

Since the long exact sequence applied to(621) contains
trivial (1)for w„(H'),n & 1, w, (ZO(3)), w, (E,(3)), we obtain
directly for M= [E,(3)Jf'], using Eqs. (617) and (68)

n&2, w„(M)=w„(S,), w, (M}=Z, w, (M) =H'/~~.

w„([G:H])= w„([Ko:H'])with H'=HAKE. (62V)

The structure of the compact (finite-dimensional) Lie
groups is well known. It is the quotient of a direct pro-
duct of simple, simply connected, Lie groupsK„.. . ,K„and U(l)'s by a finite (discrete) group E in
the center of this direct product

(iii) G is a Lie group, H a closed sub''oup. This will
cover most of the physical applications. At the begin-
ning of this appendix we explained how to compute
w, (G/H). For the other w's we need only to consider G
connected. Assume that it is a real Lie group (a com-
plex Lie group is a real Lie group with twice this di-
mension). Iwasawa (1949) proved that every element g
of a semisimple real Lie group" G can be written as a
product g=kan, ac%, acA. , n(=N where K, A, N are
three disjoint (except for 1 in common!) subgroups
such that: K is a maximal compact subgroup (all such
subgroups are conjugate), A is an R" subgroup, and
N is a nilpotent subgroup (all elements x of its Lie al-
gebra satisfy x' = 0 for a given integer q). Hence,
topologically,

G =Ko x A o xylo =K xR", w„(G)= w„{K).
Similarly for the connected Ho Ho' K~ AH N~ One
can choose KG containing K„.Then

n&0, w„(H )=$1], w. (H )=H )H, =H'(H,'. (620) Ko =(U(l)'x K,. (628)

1-H'-E (3) [Z (3):H'] 1, (621)

Since [Eo(3):H']= [Z,(3):H~], the long exact sequence,
applied to For a general real Lie group the Imasawa decomposition

may not hold, but the topological decomposition of (G26) is
still true.
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Equation (G28) also says that the direct product is a
covering of K~. The universal covering of it is

R x K) U(1) x
i=7

so

(G29)

~,(c)=0. (Gso)

Bott (1954) has proved that for any K, , ~,(K,. ) =Z, so

w, (c) = ~,(K,) =z"

The known homotopy groups of semisimple connected
Lie groups have been tabulated. For two review papers
see Samuelson (1952) and Borel (1955). But .we need
here only the second and third homotopy group. tartan
(1936) has proved that the second homotopy group of all
compact Lie groups is trivial (Hint: X is the Lie algeb-
ra of K, and the exponential map g-K is surjective;
so every g(=K belongs to at least a one-parameter sub-
group and the set R of regular elements, i.e., those g
belonging to only one parameter subgroup, is contract-
ible; one proves that the set of nonregular elements is
of codimension 3.) So for all Lie groups

subgroup of preserved symmetry. This function be-
longs to a homotopy class of m, ([G:H]) and one expects
O'Hooft and Polyakov monopoles i:f this class is not the
zero element of m, ([G:H] ) (functions homotopic to a
constant).

So from the knowledge of the broken gauge group G
and its subgroup H of preserved symmetry, one can
deduce the existence or nonexistence of t'Hooft-Poly-
akov monopoles. One could also give the order of mag-
nitude of their mass (137 times that of the W-Z bosons)
if they existed in the unified weak-electromagnetic
theory). For instance, if H is the invariant subgroup
of G, [G:H] becomes a Lie group G/H, and as Cartan
(1934) showed (see Appendix G) ~,(G/H) =0. So there
are no such magnetic monopoles in the unifield theory
of Glashow-Salam and Ward-Weinberg: indeed G = U(2),
H=U(1), ~d G/H=SO(S).

In Appendix G one explains how to compute [G:H] for
arbitrary compact Lie groups. Let

G 6 1

be the universal covering of the connected subgroup.
G, of G (G, is the group carried by the connected com-
ponent of the unit element of G) and

There are four infinite series of simple simply connect-
ed Lie groups and five exceptional ones (G„F„E„E„
E,). The four series of K,. are (where n is the rank of
the group):

H= e-'(H) .

~,([c:H])= ~,([c.:H] )

(H2)

(as)

n & 0, A „=SU(n+1), n & 1, B„=spinor (2n+ 1):
n&1, C„=symplectic (~); .

D„=spinor (2n) (with the isomorphism B,= C„A,=D,),
where spinor (m) is the double covering of the special
orthogonal group SO(m).

It is easy to show that the maximal compact connected
subgroup of GL(n, c) or SL(n, c) is SU(n) of Aff (n) or
E(n) or GL(n, R) or SL(n, R) is SO(n); so

~,(GL(n, R)) =Z, ~,(CL(n, R))=(1), w,(GL(n, R)) =Z,.
(Gsl)

Stewart (1960) proved that the group Diff, (R") of diffeo-
morphisms of R„alsohas SO(n) as a maximal compact
subgroup, so (G31) can even be extended to this group.

APPENDIX H: CONFIGURATIONS IN NON-ABELIAN
GAUGE FIELDS (MONOPOLES, INSTANTONS)

t'Hooft (1974) and Polyakov (1974) have independently
proved that there exist static solutions of the equations
derived from the Lagrangian (E19), which are every-
where regular, with total finite energy and carrying a
magnetic monopole. These solutions are solitons whose
stability is due to a topological selection rule. This
was explicitly proven by Tyupkin et al. (1975) and Mon-
astirskii and Perelomov (1975).

At infinity in the space directions, the Higgs field
value has to be on the orbit of the lowest minimum of
the Higgs polynomial V(Q); this defines a continuous
function from S„the sphere of directions in three-
dimensional space, to the orbit [G:H], where H is the

A„(x)=g '(x)s„g(x), (a5)

where g(x) is a continuous function defined on space-
time and valued in the group. Assume that at times

(H6)t, , i=1, 2, F„„(x,t, )=0
and that at any time t

tlat& t, .
E»(x, t) vanishes at infinity ([x( -~). These physical
conditions require that A„(x,t) be of the form (H5) on a
domain which is homeomorphic to a sphere S,; then the
function g(x) belongs to a homotopy class of ~~(G). As
we tell in Appendix G, for any compact Lie groups

~,(c)=z", (H8)

where & is the number of simple factors in G. If g(x)
belong to a nontrivial homotopy class, it cannot be con-

and from the long exact homotopy sequence and w, (co)
= 0 = ~,(G, ), we obtain

~,([c:H])= ~, (H) .
Since U(3) is the exact symmetry gauge group of the

fundamental interactions, in any grand unification of
these interactions with a semisimPle gauge group, U(3)
will be isomorphic to U(3) and then we do expect the ex-
istence of t'Hooft-Polyakov magnetic monopoles with
integer magnetic charges.

We now explain the topological stability of instantons.
To simplify we consider the case of pure gauge vector
fields, with the Lagrangian —,'(F», F"") (see Appendix
E for notations). For the vacuum, i.e., Z„„(x)=0, the
gauge field A„(x)is of the form
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tinued everywhere inside the ball whose boundary is
S3, i.e., in space-time between the times t, and t,;
hence A. „(x)cannot be everywhere of the form (H5), and
somewhere or sometime t between t, and t, one must
have Ez„(x)00. This is incompatible with energy con-
servation in classical physics; quantum-mechanically,
transition between vacuum at t, and vacuum at t, is
possible, but the nontriviality in ~,(G) of the homotopy
class of g(x) corresponds to the presence of instantons.

REFERENCES

Abellanas, L. , 1972, J. Math. Phys. 13, 1064.
Alexander, S. , and T. C. Lubensky, 1979, Phys. Bev. Lett.

42, 125.
Ambegaokar, V. , P. G. de Gennes, and D. Rainer, 1974,

Phys. Rev. A 9, 2676.
Anderson, P. W. , and G. Toulouse, 1977, Phys. Bev. Lett.

38, 508.
Appen, P. , 1932, Traite de mecanique rationelle (Gauthier-

Villars, Paris), Vol. IV, fasc. 2.
Arnold, V. , 1974, Equations differentielles ordinaires (Ed.

Mir, Moscow).
Bacr, H. , 1974, J. Math. Phys. 15, 1686.
Bailin, D., and A. Love, 1978, J. Phys. A 11, 219, 821, 2149.
Beliavin, A. A. , A. M. Polyakov, A. S. Schwartz, and Yu. S.

Tyupkin, 1975, Phys. Lett. B 59, 85.
Berlin, G. , and L. A. Radicati, 1976, Astrophys. J. 206, 8l5.
Biedenharn, L. C. , 1963, J. Math. Phys. 4, 436.
Billard, J. ', J. C. Dubois, Nguyen Huu Tinh, and A. Zann,

1979, unpublished paper presented at the Conference on the
Physics and Application of Smectic and Lyotropie Liquid
Crystals, Madonna di Campiglio, Trento, Italy, January,
1978.

Borel, A. , 1955, Bull. Am. Math. Soc. 61, 397.
Bott, B., 1954, Proc. Nat. Acad. Sci. USA 40, 586.
Bouligand, Y. , 1972a, J. Phys. (Paris) 33, 525.
Bouligand, Y. , 1972b, J. Phys. (Paris) 33, 715.
Bouligand, Y. , 1973a, J. Phys. (Paris) 34, 603.
Bouligand, Y. , 1973b, J. Phys. (Paris) 34, 1011.
Bouligand, Y. , 1974a, J. Phys. (Paris) 35, 215.
Bouligand, Y. , 1974b, J. Phys. (Paris) 35, 959.
Bouligand, Y., B. Derrida, V. Poenaru, Y. Pomeau, and

G. Toulouse, 1978, J. Phys. (Paris) 39, 863.
Bouligand, Y. , and M. Kleman, 1979, J. Phys. (Paris) 40, 79.
Bourbaki, N. , 1958, EEements de Mathematiques, Livre 1,

Ch. IV, "Structures, "Actual. Sci. Ind. 1258 (Hermann,
Paris) tEnglish edition: Elements of Mathematics, Vol. 1,
1966 (Addison-Wesley) ].

Bredon, G. , 1972, Introduction to Compact Transformation
Groups (Academic, New York).

Burger, M. S., 1963, in Bifurcation Theory and Nonlinear
Eigenvalue Problems, edited by J. B. Keller and S. Antman
(Benjamin-Cummings, New York), p. 197.

Cartan, E., 1922, Bun. Sci. Math. 46, 317.
Cartan, E., 1936, "La topologie des espaces representatifs

des groupes de Lie,"Act. Sci. No. 358.
Cartan, H. , and S. Eilenberg, 1956, IIomological Algebra

(Princeton University, Princeton, N. J.).
Chandrasekhar, S. , 1969, Ellipsoidal Figures of EquiEibrium

(Yale University, New Haven).
Chandrasekhar, S. , B. K. Sadashiva, and K. A. Sureeh, 1977,

Pramana 9, 471.
Chechetkin, V. R. , 1976, Zh. Eksp. Teor. Fiz. 71, 1463.
Coleman, S. , 1975, in Secret Symmetry in Eases of Hadronic

Matte~, Ettore Majorana School (Academic, New York).
Constantinescu, D. , L. Michel, and L. A. Badicati, 1979,
J. Phys. (Paris) 40, 147.

Cross, M. C. , and W. F. Brinkman, 1977, J. Low Temp.

Phys. 27, .683.
Curie, P. , 1894, J. Phys. Theor. Appl. 38 ser. 3, 393.
Doncel, M. G. , P. Mery, L. Michel, P. Minnaert, and K. C.

Wa3.i, 1-973, Phys. Rev. D 7, 815.
Doncel, M. G. , L. Michel, and P. Minnaert, 1972, Nucl.

Phys. B 38, 477.
Emeh, G. G. , 1972, Algebraic Methods in Statistical Mechan-
ics and Quantum Field Theory (Wiley, New York).

Essman, U. , and H. Trauble, 1967, Phys. Lett. A 24, 256.
Finkelstein, D. , 1966, J. Math. Phys. 7, 1218.
Finkelstein, D. , and J. Bubinstein, 1968, J. Math. Phys. 9,

1972.
Finkelstein, D. , and D. Weil, 1978, Int. J. Theor. Phys. 17,

201.
Friedel, G. , 1922, Ann. Phys. (Paris) 18, 273.
Friedel, J. , and M. Kleman, 1S70, in FundamentaE Aspects

of Dislocation Theory, edited by J. A. Simmons, R. de Witt,
and R. Bullogh, Natl. Bur. Sta,nd. (U. S. ) Spec. Publ. 317,
1, 607.

Frohlich, J. , 1978, Bull. Am. Math. Soc. 84, 165.
Garel, A. T. , 1978, J. Phys. (Paris) 39, 225.
Gell-Mann, M. G. , 1962, Phys. Bev. 125, 1097.
Glashow, S. L. , 1961, Nucl. Phys. 22, 579.
Glashow, S. L. , J. Iliopoulos, and J. L. Maiani, 1970, Phys.

Rev. D 2, 2285.
Goshen, S. , D. Mukamel, and S. Shtrikman, 1975, Mol.

Cryst. Liq. Cryst. 31, 171.
Gray, B., 1976, Homotopy Theory: An Introduction to Alge-

braic Topology (Academic, New York).
Gunn, J. M. F. , and K. B. Ma, 1978, "Description and

classification of defects and fixtures in crystals" (preprint),
Cavendish Laboratory, Cambridge.

Haag, R. , D. Kastler, and I. Michel, 1969, preprint, Uni-
versite Luminy, Marseille.

HaeQiger, A. , 1962, Ann. Scuola Norm. Sup. Pisa 16, 367.
Hilton, P. J., 1961, An Introduction to Homotopy Theory, Cam-

bridge Tracts in Mathematics No. 43 (Cambridge University,
Cambridge, England).

Iwasawa, K. , 1949, Ann. Math. 50, 507.
Jacobi, C. G. J., 1834, Poggendorf Ann. Phys. Chem. 33,

229.
Janner, A. , 1977, in Group Theoretical Methods in Physics,

Proceedings of the Fifth International Colloquium, University
of Montreal, July 1976, edited by Robert T. Sharp and Ber-
nard Kolman (Academic, New York).

Janner, A. , T. Jansen, and P. M. de Wolff, 1979, A. I.P.
Conf. Proc. (USA), No. 53.

Kastler, D. , G. Loupias, M. Mekhbout, and L. Michel, 1972,
Commun. Math. Phys. 27, 195.

Kastler, D. , agd D. W. Robinson, 1966, Commun. Math.
Phys. 3, 151.

Kleman, M. , 1977, J. Phys. (Paris) Lett. 38, L-199.
Kleman, M. , 1978, Points, I.ignes, Parois, Tome II (Editions

de Physique, Paris).
Kleman, M. , and L. Michel, 1977, J. Phys. (Paris) Lett. 39,

L-2S.
Kleman, M. , and L. Michel, 1978, Phys. Rev. Lett. 40, 1387.
Kleman, M. , L. Michel, arid G. Toulouse, 1977, J. Phys.

(Paris) Lett. 38, L-195.
Kukula, J., 1977, senior thesis, Princeton University (unpub-

lished).
Landau, L. , 1938, Phys. Z. Sowjetunion 11, 545.
Landau, L. , and E. M. Lifshitz, 1958, Statistical Physics

(Pergamon, New York).
Lee, B. W. , 1969, Nuel. Phys. B g, 649.
Lee, B. W. , and J. L. Gervais, 1969, Nucl. Phys. B 12, 627.
Lichenstein, H. , 1933, Gleichgesoi ght figuren roherender

FEussi gkeiten (Springer, Berlin).
Luzzati, V. , and A. Tardieu, 1974, Annu. Rev. Phys. Chem.

25, 79.
Lynksyutov, I. F. , 1978, Sov. Phys. -JETP 75, 358.

Rev. Mod. Phys. , Vol. 52, No. 3, July 1980



Louis Michel: Symmetry defects and broken symmetry

MacLane, S. , 1975, Homology, Gdundlehren der Mathemati-
schen Wissenschaften, Vol. 114 (Springer, Berlin).

Maki, K. , and P. Kumar, 1977, Phys. Bev. Lett. 38, 557.
Mermin, N. D. , 1977a, Physica {North-Holland) 90B, 1.
Mermin, N. D. , 1977b, in Quantum E'Ends and Solids, Pro-

ceedings of the Second International Symposium on Quantum
Fluids and Solids, Sanibel Island, Florida, January, 1977,
edited by Samuel B. Trickey, E. Dwight Adams, and James
W. Dufty (Plenum, New York).

Mermin, N. D. , 1978, J. Math. Phys. 19, 1457.
Mermin, N. D. , 1979, Rev. Mod. Phys. 51, 591.
Mermin, N. D. , and T. L. Ho, 1976, Phys. Rev. Lett. 36,

594.
Mermin, N. D. , V. P. Mineev, and G. E. Volovik, 1978, J.

Low Temp. Phys. 33, 117.
Michel, L. , 1964, in Group theoretical concepts and methods

in particle physics, edited by Gursey (Gordon and Breach,
New York).

Michel, L. , 1970, Applications of Group Theory to Quantum
Physics, Lecture Notes in Physics, Vol. (Springer, Ber-
lin).

Michel, L. , 1971, C. B. Acad. Sci. (Paris) 272, 433.
Michel, L. , 1972, "Nonlinear group actions, smooth action of

compact Lie groups on manifolds, " in Statistical Mechanics
and I"ield Theory, edited by B. N. Sen and C. Weil (Israel
University, Jerusalem), pp. 133-150.

Michel, L. , 1979, CEBN preprint TH 2716.
Michel, L. , and J. Mozrzymas, 1977, in Group Theoretical

Methods in Physics, Sixth International Colloquium, Tubin-
gen, edited by P. Kramer and A. Rieckers, Lecture Notes in
Physics, Vol. 79 (Springer, Berlin), p. 447.

Michel, L. , and J. Mozrzymas, 1978, VI International Callo-
quium on Group Theoretical Methods in Physics, Lecture
Notes in Physics 79, 447.

Michel, L. , and L. A. Badicati, 1970, in Evolution of Parti-
cle Physics, edited by M. Conversi (Academic, New York),
p. 191.

Michel, L. , and L. A. Badicati, 1971a, Ann. Phys. (N. Y. ) 66,
758.

Michel, L. , and L. A. Badicati, 1971b, Mendeleev Sympo-
sium, Acti Accad. Sci. Torino Sci. Fis. Mat. Natur. , 372.

Michel, L. , and L. A. Badicati, 1973, Ann. Inst. H. Poin-
care, 18, 185.

Mickelson, J., and J. Niederle, 1970, Commun. Math. Phys.
16, 191.

Milnor, J. W. , 1965, Topology from the Differentiable Point of
Viezo (University of Virginia, CharlottesviQe).

Minnaert, P. , 1971, in Les Houches Lectures, edited by
C. de Witt and C. Itzykson (Gordon and Breach, New York).

Monastyrskii, M. I. , and A. M. Perelomov, 1975, Zh. Eksp.
Teor. Fiz. Pis'ma Red. 21, 94 [JETP Lett. 21, 43 (1975)].

Montgommery, D. , 1951, "Differential analysis, "Bombay Col-
loqUlum e

Mostow, G. , 1957, Ann. Math. 6Q, 432 and 513.
Mott, B. E. , 1975, Nucl. Phys. B 84, 260.
O'Haifeartaigh, I... 1979, Rep. Prog. Phys. 42, 159.
Ovrut, B. A. , 1978, J. Math. Phys. 19, 418. '

Palais, S. , 1960, Mem. Am. Math. Soc. 36.
Pegoraro, F. , and J. Subba Rao, 1972, Nucl. Phys. B 44, 221.
Peierls, B., 1936, Proc. Cambridge Philos. Soc. 32, 477.
Poenaru, V. , 1978, Seminaire Bourbaki No. 529.
Poenaru, V. , and G. Toulouse, 1977, J. Phys. (Paris) 9, 887.
Poenaru, V. , and G. Toulouse, 1979, J. Math. Phys. , to ap-

pear.
Poincare, H. , 1885, Acta Math. 7, 259.
Polyakov, A. , 1974, JETP Lett. 20, 194.

Poston, T. , and I. Stewart, 1978, Catastrophe Theory and Its
Implications (Pitman, New York).

Pouget, J. B., G. Shirane, J. M. Hastings, A. J. Heeger,
N. D. Miro, and A. G. MacDiarmid, 1979, Phys. Rev. B,
19, 1792.

Prod/, G. , and A. Ambrosettx, 1973, Analzsz non i&near Pubic
cazioni della classe di scienze, Sc. Norm. Sup. , Pisa.

Reeb, G. , 1952, "Varietes feuilletees, "Actual. Sci. Ind.
Robinson, D. W. , and D. Buelle, 1967, Ann. Inst. Henri Poin-

care A6, 299.
Bogula, D. , 1976, "Large Deformations of Crystals, Homo-

topy and Defects, " in Trends in Application of Pure Mathe-
matics to Mechanics, edited by G. Fichera (Pitman, New
York).

Buelle, D. , 1970, J. Funct. Anal. 16, 48.
Sa1am A. , and J. Ward, 1964, Phys. Lett. 13, 168.
Samelson, H. , 1952, Bull. Am. Math. Soc. 58, 2.
Sattinger, D. H. , 1977, SIAM J. Appl. Math. 8, 179.
Sattinger, D. H. , 1978a, J. Funct. Anal. 28, 58.
Sattinger, D. H. , 1978b, Arch. Ration. Mech. Anal.
Shankar, R. , 1977, J. Phys. (Paris) 38, 1405.
Steenrod, ¹, 1957, The Topology of Iiber Bundles (Prince-

ton University, Princeton, N. J.).
Stein, D. L. , R. D. Pisarski, and P. W. Anderson, 1978,

Phys. Hev. Lett. 40, 1269.
Stewart, T. E. , 1960, Proc. Am. Math. Soc. 11, 559.
Symanzik, K. , 1972, Cargese Lectures in Physics, Vol. 5,

Cargese Summer School 1970, edited by M. Froissart (Gor-
don and Breach, New York), p. 179.

Thorn, B., 1974, Modeles Mathematiques de la Morphogenese
(Editions 10/18, Paris).

Thorn, R., 1978, "Stable Defects in Ordered Media, "Structuraj
Stability in Physics, edited by W. Gultinger and H. Eckemeier
(Springer, Berlin}.

Thomas, G. H. , 1978, "Introductory lectures on fiber bundles
and topology for physicists, "Argonne National Laboratory
Preprint HEP-23 to appear in Bevista del Nuovo Cimento.

t'Hooft, G. , 1971a, Nucl. Phys. 8 33, 173.
t'Hooft, G. , 1971b, Nucl. Phys. B 35, 167.
t'Hooft, G. , 1974, Nucl. Phys. B 79, 276.
Tizumi, M. , J. D. Axe, and G. Shirane, 1977, Phys. Rev.

B 15, 4392.
Toulouse, G. , 1976, Bulletin Soc. France Physique, Oct.

1976.
Toulouse, G. , 1977, J. Phys. (Paris) Lett. 38, L-67.
Toulouse, G. , and M. Kleman, 1976, J. Phys. (Paris) Lett.

37, L-149.
Tyupkin, Yu. S. , V. A. Fateev, and A. S. Shvarts, 1975, Zh.

Eksp. Teor. Fiz. Pis'ma Bed. 21, 91 [JETP Lett. 21, 42 (1975)].
van Aalst, W. , J. den Hollander, W. J. A. Peterse, and P. M.

de Wolff, 1976, Acta Crystallogr. B32, 47.
Volovik, G. , 1978, "Topological defects in the surface of

ordered systems, "preprint, L. D. Landau Institute for Theo-
retical Physics, Moscow.

Volovik, G. E. , and V. P. Mineev, 1976a, Zh. Eksp. Teor.
Fiz. Pis'ma Red. 23, 647.

Volovik, G. E. , and V. P. Mineev, 1976b, Zh. Eksp. Teor.
Fiz. Pis'ma Bed. 24, 605.

Volovik, G. E. , and V. P. Mineev, 1977a, Zh. Eksp. Tear.
Fiz. 72, 2256.

Volovik, G. E. , and V. P. Mineev, 1977b, Zh. Eksp. Teor.
Fiz. 73, 767.

Volovik, G. E. , and V. P. Mineev, 1979, Phys. Bev. B (to
appear).

Weinberg, S. , 1967, Phys. Bev. Lett. 19, 1264.

Rev. IVlod. Phys. , Vol. 52, No. 3, July 1980






