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Dynamical processes in macroscopic systems are often approximately described by kinetic and
hydrodynamic equations. One of the central problems in nonequilibrium statistical mechanics is to
understand the approximate validity of these equations starting from a microscopic model. We discuss a
variety of classical as well as quantum-mechanical models for which kinetic equations can be derived
rigorously. The probabilistic nature of the problem is emphasized: The approximation of. the microscopic
dynamics by either a kinetic or a hydrodynamic equation can be understood as the approximation of a
non-Markovian stochastic process by a Markovian process.
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I. INTRODUCTION
A. Microscopic dynamics and kinetic equations

Dynamical processes in many-body systems are often
approximately described by kinetic equations. Ex-
amples are the Boltzmann equation for a dilute gas, the
Vlasov equation for a plasma, the Landau equation for
a weakly interacting gas, the Euler equations and the
Navier-Stokes equation for a compressible fluid, the
Rayleigh-Boltzmann equation for neutron transport in
solid materials, the Fokker-Planck equation for a
Brownian particle, the diffusion equation, the Pauli
master equation for atoms or molecules emitting and
absorbing radiatioh, the laser equations, and the phonon
Boltzmann equation for weakly interacting phonons. In
many cases these kinetic equations serve as the basic
equations for whole subfields of physics. Their common
feature is that they describe the dynamics of single-
particle distributions. The complicated interaction with
other particles and/or the surroundings is approximate-
ly taken into account by collision terms, effective po-
tentials, and the like. Of course, these approximations
are valid only under certain physical conditions. But if
these conditions are met, then the kinetic description is
in excellent agreement with observed experimental
facts. :

Since we believe, not without reason, in the micro-
scopic description of a many-body system, the use of
kinetic equations poses the problem of how to under-
stand their approximate validity, starting from micro-
scopic dynamics. Ever since Boltzmann this has cer-
tainly been one of the central themes of nonequilibrium
statistical mechanics. This review is intended to cover
just one aspect of this problem, namely, those models
for which the approximation by a kinetic equation can be
rigorously controlled.

Let us outline the general program.
fy.

One has to speci-

(i) The microscopic model

A model is regarded as admissible, if it satisfies the
following: (a) The dynamics of the model are governed
by Hamilton’s equation of motion (by the Schrodinger
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equation for a quantum-mechanical system). There-
fore the model is specified by a Hamiltonian, supple-
mented, if necessary, by proper boundary conditions.
(b) Initially (at £=0) a statistical state is given (i.e.,
either a probability measure on the phase space asso-
ciated with the classical system or a statistical opera-
tor on the Hilbert space associated with the quantum-
mechanical system). We emphasize that all statistical
assumptions enter through the initial conditions.

On second thought, one would like to understand why
certain statistical assumptions work so well, or, more
ambitiously, to try to reduce or even to avoid statisti-
cal assumptions altogether. This is a rather difficult
subject about which we have very little to say, although
once in a while we will hope to provide some interesting
piece of information. We propose here to take the point
of view of statistical mechanics and to regard the justi-
fication of a statistical ensemble at the initial time as a
separate problem.

(ii) The approximation

As already mentioned, kinetic equations are good ap-
proximations only under certain physical conditions.
This is translated into the theoretical framework. by
performing a certain limit. For example, the Boltz-
mann equation is known to be valid for a dilute gas.
Therefore, in order to derive the Boltzmann equation,
one should let the density of the system go to zero, this
being a condition on the initial state. However, the
mean free path and the mean free time, which are the
typical length and time scale of the system, will then
tend to infinity. To obtain a well-defined limit, one
therefore has also to adjust the length and time scale
appropriately.

It will turn out that the approximations can always be
chosen in such a way that the Hamiltonian and the initial
state are scaled. So, if we denote the scaling para-
meter by €, then for each ¢ one has a well defined
microscopic dynamics, and—provided the scaling is
appropriately chosen—in the limit as £ — 0 one obtains
a limiting dynamics governed by a kinetic equation. We
emphasize that in many cases finding the proper ap-
proximation is already a nontrivial problem.

(iii) The proof of convergence

This is the more mathematical part of the program.
Here one has to prove a theorem which assures, under
certain conditions on the scaled Hamiltonian and the
scaled initial states, the convergence to a limiting
dynamics in a certain sense.

The kinetic equations mentioned in the beginning have
a remarkable common feature: they are all first order
in the time derivative, i.e., they have no memory
terms, or the future state of the system is completely
determined by its present state. This fact leads to a
deeper probabilistic interpretation of the approximation
leading to a kinetic equation.

Let us try to explain this point of view in the context
of a well-known example. We consider the motion of a
Brownian particle of mass M in a fluid. Let ¢(¢) be the
position and p(f) the momentum of the Brownian particle
at time ¢{. As usual, we assume that g(0)=¢q, that p(0)
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=p, and that initially the fluid is in thermal equilibrium
conditioned on the Brownian particle being located at
the position g. If the initial configuration of the fluid is
specified, then the path ¢~ (q(¢), p(¢)) of the Brownian
particle is determined. Since, however, a probability
distribution over the initial configurations of the fluid is
given, one has accordingly a probability distribution
over all possible paths of the Brownian particle.
Therefore, in a natural way, (g(t),p(#)) is regarded as
a stochastic process starting at (g,p). The motion of
the Brownian particle can be thought of as being gov-
erned by the stochastic differential equation

Mg -p0), Lpwr=F@) (L.1)

dt > dt i .

with initial conditions q(0)=q, p(0)=p. F(t) is a time-
dependent random force whose statistical properties
are completely determined by the initial fluid distribu-
tion, (gq,p), and the dynamics of the system.

(q(), p(t)) is a non-Markovian process due to recolli-
sions with one and the same fluid particle, which give
rise to a memory effect. The future of ¢(¢),p(t) depends
on its whole past. Now, the idea is to consider physi-
cal conditions under which the memory effects become
negligible. One such possible Markovian approxima-
tion, which goes back to Langevin, is to assume that
F(t) can be written

F(t)==yp(t)+ aw(t), (1.2)

where v>0 is a friction constant, >0, and w(t) is
Gaussian white noise. Under this assumption the pro-
cess (q(¢),p(t)) is Markovian, and the probability dis-
tribution f(q, p, t) of (q(¢),p(¢)) is governed by the Fok-
ker-Planck equation

<] 1 a? 1
gf(q,iht): —M‘P'Vq"'yvp'p""z'Ap f(q,P,t)- ( .3)

A formal procedure (see Sec. IL. B. 1) indicates that
as M - «, together with a proper rescaling of space,
time, and momentum, the motion of the Brownian parti-
cle should indeed be governed by a Markov process de-
fined by Eq. (1.3). The otherwise phenomenological
parameters ¥y and « are then proportional to the time
integral over the time-dependent force-force equili-
brium correlation function of the fluid, i.e., to a micro-
scopically defined quantity of the fluid. The proof that
the properly scaled stochastic motion (1.1) converges
to the stochastic motion defined through (1.2) has been
given recently (see Sec. ILB.1).

The example just described turns out to be generic.
All approximations leading to a kinetic description can
be understood as approximating a non-Markovian sto-
chastic process by a Markovian one. It seems therefore
to be appropriate to call these approximations Marko-
vian limits.

In recent years there has been considerable progress
in proving the existence of Markovian limits. At this
stage it seems therefore to be worthwhile to try to
collect the results obtained in a more or less coherent
framework, to see what has been achieved and where
the open problems are. We will focus predominantly on
classical continuous systems, since in this area our
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understanding has advanced farthest, and since no
coherent review seems to be available. On the other -
hand, such an undertaking would be rather incomplete
were I not to mention, to some extent at ledst, classi-
cal lattice systems and quantum-mechanical systems.
[Certain aspects of Markovian limits for quantum-
mechanical systems have been reviewed by Gorini,
Frigerio, Verri, Kossakowski, and Sudarshan (1978),
by Davies (1976a, 1977b), and by Spohn and Lebowitz
(1978). Martin (1979) discusses Markovian limits for
three particular models. | '

Already at this stage I want to emphasize the dis-
tinction between two classes of Markovian limits.

(a) There are Markovian approximations, where a
physical parameter goes to zevo (or to infinity). Typi-
cally, one has (i) a weak coupling limit (the coupling
goes to zero), (ii) a low-density limit (the density goes
to zero), (iii) a mean-field limit (the range of the po-
tential goes infinity), and (iv) a Brownian motion limit
(the mass of the Brownian particle goes to infinity).

Although there are still many relevant open, possibly
rather difficult, problems left, it seems fair to say
that one has reached a certain understanding of these
limits.

(b) Physically, one studies a system at finite density
and coupling strength, in which case the Markovian ap-
proximations just mentioned may become inappropriate.
The fascinating fact is that there are other Markovian
limits, although of a somewhat more subtle nature,
where the physical parameters are kept constant. One
summarizes these approximations as hydrodynamic
limits. )

For a fluid the point is to study only the slowly vary-
ing hydrodynamic fields, i.e., the density field, the
velocity field, and the energy field, assuming that
locally the velocity has approximately reached a Max-
wellian distribution. The general belief is that on the
time scale £-'f and on the spatial scale £-'¢q the Eulerian
equations for a compressible fluid should be obtained,
whereas on the time scale £-?f and on the spatial scale
£-lq the Navier-Stokes equations should be obtained.
More generally, hydrodynamic limits are understood as
involving the system at constant physical parameters
over long time and large spatial scales.

The hydrodynamic limit is poorly understood, the
only progress in understanding it consisting of two ab-
solutely remarkable results by Bunimovich and Sinai:
For the two-dimensional Lorentz gas with a fixed peri-
odic configuration of scatters (which has to satisfy a
certain geometric property; see Sec. II.C.1) they show
the validity of the analog of the Euler equations and of
the diffusion approximation, which corresponds to the
Navier-Stokes equations. A better understanding of the

hydrodynamic limit seems fo be the real future challenge.

Let me summarize somewhat the scope of this review.
The first part discusses the Brownian particle in a fluid
and in related models. These models have the advant-
age of conceptual and, under certain simplifying as-
sumptions, also of physical, as well as mathematical,
simplicity. Their study should always be considered
from two points of view. On one hand, the Brownian
particle in a fluid is of independent interest. This
model illustrates many important concepts in nonequili-

Rev. Mod. Phys., Vol. 52, No. 3, July 1980

brium statistical mechanics, and its various Markovian
limits are easily understood. In particular, we will
discuss the hydrodynamic limit and the related problem -
of the existence of finite transport coefficients at some
length. On the other hand, most ideas developed for the
Brownian particle in a fluid immediately carry over to
interacting particle systems, once the idea of a non-
linear Markovian process is accepted. Therefore the
study of the Brownian particle in a fluid forms a natural
gateway to the interacting particle systems in which one
is ultimately interested. The second part discusses
interacting particle systems, in particular the Landau
equation, the Boltzmann equation, and the Vlasov equa-
tion. The classical continuous models seem to be
rather standardized, and I believe that this list of
Markovian limits is essentially complete.

The third part discusses classical lattice systems.
Markovian approximations for harmonic lattices have
been studied extensively from different points of view.

I try to link their discussion to that about classical con-
tinuous systems. The weak coupling limit for anhar-
monic lattices is an interesting problem on which there
exists a large physical literature. But it seems to be
hard to extract even a consistent set of conjectures.

The final section discusses quantum-mechanical
models. For quantum-mechanical models the whole
idea of a Markovian approximation has to be thought
over again. In particular, it is not so clear what the
quantum analog of a stochastic process should be. How-
ever, one concept generalizes, namely, the concept of
a classical Markovian semigroup. This leads to the
theory of quantum-dynamical semigroups. Implicitly
they have been used in physics for some time, but their
mathematical properties have been studied only in re-
cent years.

As a natural boundary condition for the selection of
the material covered we consider the requirement that
the model should be of Hamiltonian form and that the
approximation by a kinetic equation should be controll-
able in a rigorous fashion. In this way we do not do
justice to the large physical literature on the derivation
of kinetic equations and their higher-order corrections.
We also deliberately disregard the fact that the idea of
a Markov approximation is also used when the under-
lying dynamics is already stochastic, in particular for
stochastic differential equations. This field has been
excellently reviewed by van Kampen (1976a), covering
the more physical aspects, and by Papanicolaou (1977),
covering the more mathematical aspects.

This work took its origin at a course given in the
“Interuniversitaire Derde Cyclus Programma ‘Velden-
theorie en Statistische Mechanica’” at the University of
Leuven during the winter 1978-1979. It is a great plea-
sure to thank here André Verbeure and the theoretical
physics group for their friendly hospitality during that
snowy winter. I am deeply indebted to Michael Aizen-
man, Brian Davies, Vittorio Gorini, Oscar Lanford,
Joel Lebowitz, and Elliott Lieb for all they have taught
me about the subject, and in particular to O. E. Lan-
ford for a number of useful suggestions regarding the
convergence proof for the Lorentz and Rayleigh gases,
and to J. L. Lebowitz for his constant and never-ending
encouragement.
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B. Some classical continuous models

Here I want to introduce some classical models where
the particles are allowed to move under their mutual
interaction in some region ACR? in space. (Classical
lattice models and quantum-mechanical models will be
introduced in Secs. IV and V.)

The model of ultimate interest is a system of N point
particles interacting through a central pair potential V.
The Hamiltonian of this system is given by

1
H- gmpf+ T vai-a). (1.4)

(q;,p;) stands for the position and the momentum of the
ith particle with mass m. The equations of motion have
to be supplemented with an appropriate condition at the
boundary A of A.

There are other models which, for lack of a better
name, we call system + reservoir models. One con-
siders a test particle (= system) in a fluid (= reservoir).
The Hamiltonian reads

1, $1
H—sz + g V(q_qj)+ £t Zmp"

Y vl-a). (1.5)
<j=1

(q,p) stands for the position and the momentum of the
test particle with mass M, while (q,,p,;) denotes the
position and the momentum of the ith fluid particle with
mass m. V is the central interaction potential between

the test particle and the fluid particles, and U is the
central interaction potential amongst fluid particles.
The system could be constructed in a somewhat fancier
manner by allowing an external field, several system
particles, etc. But a single free moving particle will
suffice for our purposes.

We now distinguish three different cases. If U=0, the
reservoir is called ideal, and if U+ 0, the reservoir is
called nonideal (or interacting). In (1.5) one can for-
mally take the limit of infinitely heavy fluid particles,
m —o. The fluid particles then simply stay wherever
they were put initially. In this case one sets U=0. If
m <o, then the system is called the Rayleigh gas [see
Rayleigh (1891)], and if w =, then the system is called
the Loventz gas [see Lorentz (1905)].

Usually, the reservoir is assumed to be in thermal
equilibrium under the condition that the test particle be
located at q. But other initial conditions will be con-
sidered as well.

Clearly, the test particle can be chosen identical to
the fluid particles, i.e., with M =m and U=V. Then one
is back to the interacting particle system. Therefore,
a full understanding of fluid + test particle models auto-
matically includes an understanding of the fluid. On the
other hand, (1.5) allows for simplifications such as U
=0 or m =«, which result in models much less compli-
cated than interacting particle systems.

A little chart indicating the model, the Markovian
limit, and the kinetic equation governing the limiting
dynamics may be helpful:

interacting particle system

Landau equation
Boltzmann equation

1
Markovian limit Lorentz gas Rayleigh gas
weak coupling limit linear Landau equation
low density limit linear Boltzmann equation
mean field limit linear Vlasov equation

effective Hamiltonian
Brownian motion limit linear Fokker-Planck

equation (Ornstein-

Uhlenbeck process)
hydrodynamic limit analog of Euler equations

diffusion equation

1l. SYSTEM + RESERVOIR MODELS
A. The Lorentz gas

Vlasov equation

Euler equations of a compressible
fluid

Navier-Stokes equations of a
viscous and thermally conducting
fluid

scatterers. So @ is assumed to be locally finite. Let
¥ denote the space of all locally finite configurations.
The interaction between the Lorentz particle and the

The Lorentz gas consists of a particle moving through scatterers is specified by a central potential V¢ of

infinitely heavy, randomly distributed scatterers. Let
x=(q,p) € R®* X R® denote the position and the momentum
of the Lorentz particle. The mass of the Lorentz parti-
cle is set equal to one. We could restrict the motion of
the Lorentz particle to some finite region, but it would
be more convenient not to do so. Then @ =(q,,9,,...)
will denote a configuration of scatterers in R®, where
q; is the center of the jth scatterer. (g,,¢q,,...) is
either a finite or countable sequence in R%. In every
bounded region there should be only a finite number of
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finite range. V. is assumed to be twice differentiable.
€ is a scaling parameter which is introduced already
here for convenience. Then the motion of the Lorentz
particle is defined through the solution of Newton’s
equation of motion

%qc (t, XaQ)=DE (t; Xy Q) )
' (2.1)

d
Zi.t—pz (f" Xy Q):_Z Vq‘VE (qt: (t’ Xy Q)—qj)’
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Q=(q,, 4z - - - )€ %, with initial conditions ¢ (0, x,Q)=q,
pe (0,x,Q)=p. Since the scatterers are infinitely heavy,
@ does not change in time. The sum in (2.1) makes
sense, since V; is of finite range and since @ is locally
finite. However, it may happen that the Lorentz parti-
cle reaches infinity in a finite time. For the distribu-
tion of scatterers to be considered below the set of such
exceptional configurations is of measure zero. Although
this is quite obvious, we emphasize that the joint sys-
tem “Lorentz particle + scatterers” is of Hamiltonian
form.

As initial distribution we choose 6, X u¢ -6  is the point
measure concentrated at x € R®. So the Lorentz particle
starts at x=(q,p). For simplicity u¢ is chosen to be
the ideal gas distribution with varying density, or equi-
valently to be the Poisson distribution. It is determined
by the correlation functions

Dﬁ(llu---,qn)=ﬁpf(qj)- (2.2)

0i(q,s--.,9q, is the expectation to find an n-tuple of
scatterers at q,,...,q,.

In the physical literature it is customary to study the
motion of the Lorentz particle through the veduced (or
averaged) dynamics. The initial distribution of the
Lorentz particle is assumed to be f(x)dx. Then for a
fixed configuration @ the distribution of the Lorentz
particle at time ¢ is

Axe(=t, x,Q)Ndx, xt(t,x,Q)=(q%(t,x,Q), 0% (¢, x,Q))

and the averaged distribution of the Lorentz particle at
time ¢ is
7o 0= f e @ (1, %, @) 2.3)

The evolution f(x) ~ f(x, t)= (S§f)(x) defines the reduced
dynamics. A few simple properties of the reduced dy-
namics follow immediately from its definition: S§f=f;
S¢ is linear, i.e., S§(f,+/,)=Sif, +Sif,; S preserves
positivity, i.e., /=0 implies S§f>0; and S{ preserves
mass, i.e., [dx(S§f)(x)= [dxf(x). In particular, iffis
a probability density, then S{f is a probability density
at any time.

fE(t) satisfies an integro-differential equation familiar
from the theory of generalized master equations

o@D, 0= =p -V 5,0, 0

t
+f ds KE(t— s)f¢(q,p,s). (2.4)
o
K&t - s) (which cannot computed explicitly) is some
complicated operator acting on f¢(s). (d/dt)f¢(¢) depends
on the averaged distributions f%(s) of the Lorentz parti-
cle for 0 <s <f. This constitutes a memory.

The observation basic to our whole enterprise is that
the motion of the Lorentz particle can be scaled in such
a way that the memory kernel K¢(¢ — s) almost reduces
to a 6 function in time. One may scale the strength of
the interaction, the range of the potential, the density
of scatterers, time, space, etc. For the Lorentz gas
it will always be possible to find a scaling where only
the potential and the density are scaled, as already in-
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dicated.
If the scaling is chosen appropriately for a Markovian

_approximation, then

lai-lngff=S,fsf(t) (2.5)
will exist and S, will have the form S, = e* with some
linear L. The limiting f(¢) then satisfies the kinetic
equation

d

/W =L11), (2.8)
with initial condition f. To rephrase: for ¢=0, S, satis-
fies the semigroup property S,N2=St15t2, s t,20,
whereas for € >0 this was not the case because of the
memory term. (2.5) constitutes an enormous simpli-
fication. In many cases L can be computed explicitly.
Then solving the kinetic equation (2.6) one obtains the
time evolution of the average distribution of the Lorentz
particle in the limit—a rather hopeless task for finite

€,

Jadx f% (x,t) is the probability of finding the Lorentz
particle in the set A CR® at time ¢, given that it started
at time zero with distribution f(x)dx. One may be in-
terested in a more complicated piece of information,
such as the probability of finding the Lorentz particle at
time ¢, in A,,..., at time ¢, in A,, given that it started
at x initially. For this purpose it is then natural to re-
gard the motion of the Lorentz particle as a stochastic
process. For a fixed configuration @ the position and
momentum of the Lorentz particle are determined
through (2.1). But since the distribution of scatterers
is random, the position and the momentum of the
Lorentz particle at time ¢ are also random. We denote
these random variables by X *(t),

XE(t): @ ~qc(t,x,Q),pe(t,x,9). (2.7)

By definition, X®(0)=x, i.e., X%(¢) starts at xe RS. Let
us introduce the path space 2 consisting of all functions
t-(q(®),p(t)). A point we Q is a possible history (a
possible path) of the Lorentz particle. Since to each
configuration @ of scatterers there is a unique path
t-xt(t, x; @), the Poisson distribution u¢ induces a
probability measure P¢ on Q. PZ simply weighs the
probability a certain set of paths is realized by the
mechanical motion. The subscript x indicates that with
probability one the path starts at x. X®(¢) may now be
thought of as being defined on £, and the above-men-
tioned probability is

PE(XE(t) e Ay, ..., X () EA,). (2.8)

The fact that X®(¢) is non-Markovian can be seen
directly without referring to (2.4). Clearly, the pro-
bability of finding the Lorentz particle in a region A at
time f+s, given its precise path in the interval [0, s],
is different, in general, from the probability of finding
the Lorentz particle in the region A at time f+s, given
only its position and momentum at time s, since in the
first case only those configurations of scatterers are
taken into account which do not destroy the specified
path of the Lorentz particle.

The idea of a Markovian approximation may now be
understood on a deeper level than before: The non-



574

Markovian process X ®(¢) is scaled in such a way that
XE(t) converges to a Markov process X(¢) as € - 0.
Technically, the measure P¢ converges weakly on £
to a measure P, which determines a Markov process.
Let us suppose that the limiting Markov process is
homogeneous in time and that it is given through the
transition probability p,(x’[x)dx’. [[,dx’'p,(x’ |x) is the
probability of finding the particle in A at time ¢ given its
having started at x initially.] From the reduced dy-
namics,

S, 0= SN0 = [’ p e[ x7)f )
So p;(x’ |x) is the kernel of S,. Then, up to some techni-
cal points, the convergence to a Markov process is de-
fined by
UmPE(XE(t)cA,. ..., XE(t,)€A)

£-0

:‘/,;1 Ay« - ];1 dxlptn-tn_l (|t - - ‘XDzl(xl Ix)

=P X(I,)€A,,...,X(t,)cA,) 2.9)

for all measurable sets A;,...,A4,, and all 0<{, <---
<t,(weak convergence of all finite-dimensional distri-
butions). .

Thus, the kinetic equation should be understood as the
forward equation of a Markov process. In a Markovian
limit one then wants to approximate the stochastic dy-
namics of the Lorentz particle by the stochastic dy-
namics as governed through the kinetic equation.

An analogy from equilibirum statistical mechanics
might be helpful at this point: Physically, the first and
second equilibrium correlation functions already con-
tain all the information one is interested in for practi-
cal purposes. However, from a theoretical point of
view it has proved to be extremely useful to think in
terms of probability distributions on the space of all
possible configurations, i.e., in terms of Gibbs mea-
sures. In the same vein, for practical purposes the
reduced dynamics suffices in most cases. Neverthe-
less, the full physical information is given by a pro-
bability distribution on the space of all possible histor-.
ies of the Lorentz particle. So, under scaling, con-
vergence of the process is the natural notion.

Before turning to specific examples of Markovian
limits and their limiting Markov process, let me men-
tion the neat survey article about the Lorentz gas by
Hauge (1974), emphasizing the low density corrections,
and the detailed numerical studies of the Lorentz gas
by Bruin (1972), by Lewis and Tjon (1978), and by
Alder and Alley (1978).

1. The weak coupling limit

The idea of the weak coupling limit is that, by some
kind of central limit effect, very many, but weak colli-
sions should lead to a diffusion type evolution. There-
fore, the strength of the potential is scaled as

Velg)=€*"v(q).

The momentum of the Lorentz particle is deflected on
the order £*/2 in a collision. To have £ collisions per
unit time interval, the time ¢ is scaled as

(2.10)
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)

te=g"lt. (2.11)

In a {/-time interval the Lorentz particle travels over a
large distance. Not to lose sight of the particle, space
also has to be scaled according to

ge=e7'q. (2.12)

In particular, the initial position is scaled. The scaling
(2.12) is such that the free motion ¢¢— g+ pt, remains
invariant. Equations (2.10) through (2.12) define the
weak coupling limit for a constant density of scatterers,
Instead of rescaling time and space, the density p, of
scatterers may be scaled. This leads to the equivalent
scaling: #,q unscaled

Velg)=€"2V(g/c), (2.13)

pe=€3p. (2.14)
(pc=€™% in d dimension.) Physically more intuitive
seems to be a scaling where £,q,p is kept fixed and the
potential and the density of scatterers are rescaled.
But this is largely a matter of taste and of the physical
application in mind.

Let X%(¢) be the process of the motion of the Lorentz
particle under the scaling (2.13) and (2.14). Since a
finite fraction, (px range V)3, of the volume remains
filled with scatterers, the Lorentz particle typically
travels freely a time span ¢ and then interacts with a
scatterer for another time spari €, in which its momen-
tum is deflected on the order &'/2, etc. The force act-
ing on the Lorentz particle in a collision is ~¢™/2,
Since the average force is zero, fluctuations in the
force just produce an effect of the order unity. As
¢ -0 the scatterings should become independent. Since
in a collision |p| is conserved, and since the Poisson
distribution does not single out any particular direc-
tion, one therefore expects that p&(t) converges to p(t),
where p(¢) diffuses on the sphere with radius |p| with a
diffusion constant D([p|). By the central limit theorem
D(|p|) should be proportional to the average of the
square of momentum change in one collision, which for
small € is given by

(apP=cp | “at [ daqFlq-pn-Fg), (2.15)
[0
where F=-V _V is the force. Therefore,
D(|p))=pa/|p| (2.16)

with @ =47 [ dk |k||V(%)[?, where V is the Fourier trans-
form of V. Since the free motion is unchanged under
scaling,
t
qﬁ(t)=q+j ds pe(s), (2.17)
0

and one expects g®¢) to converge to g(t)=g+ f;dsp(s).
(I learned this argument from S. Goldstein.)

A more formal second-order perturbation expansion

leads to the same result. Under the scaling (2.13) and
(2.14) let S¢ be the reduced dynamics. Formally,

lin(r)l(S’,:f)(x) = (S )X =f(x, 1), (2.18)

where f(x,?) satisfies. the linear Landau equation
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i,j=1

o ) i 3
37 p((l,p’t)={—P'Vq+ P Z @:Di,(P)a}f(q,l’,l‘)-

(2.19)

The three Cartesian coordinates of p are p,, p,, and
ps, and the diffusion matrix is given by

D;(p)=a(1/2|p|)8;;=p.p,/|p[*)- (2.20)
In spherical coordinates the diffusion term is
(oa/|p])A, £, 6], 0, 8), (2.21)

where A, is the Laplace-Beltrami operator on the
sphere with radius Ip], which is just the result we
claimed before. .

Let us now assume that the Lorentz particle is con-
fined to a region A C R®, that the particle is specularly
reflected upon reaching the boundary 8A of A, and that
the density of the Poisson distribution of scatterers is
not necessarily constant, i.e., that p is a function of g.
Then the scalings (2.13) and (2.14) are still meaningful.
Since the collision term of the linear Landau equation
is local, in the weak coupling limit one obtains (2.19)
with p replaced by p(g) and with the boundary condition
for —p-V, corresponding to specular reflection at 9A.
If the scaling (2.10) to (2.12) is adopted, then A and p
also have to be scaled. :

An interesting phenomenon occurs in the case the
distribution of scatterers is not Poisson: We adopt the
scalings (2.10) to (2.12) and assume that the scatterer
distribution is given by the equilibrium state of a gas
with a bounded, rapidly decreasing, central pair po-
tential U at inverse temperature g and at fixed density
p. B is chosen to be so small that the Mayer expansion
converges, i.e., the system of scatterers will be deep
inside the gaseous region. Let p, be the second corre-
lation function and g be the pair correlation function of
the equilibrium distribution of scatterers, p,(q,,q.,)
=p?(1+g(q, — g,)). Since on the g.-scale the Lorentz
particle travels very far, it samples the correlations
between scatterers. On the other hand, since g decays '
exponentially, the independence of scatterings in well
separated regions is not destroyed. Therefore in this
case only the diffusion constant changes through re-
placing o by

a'=—72I fdk(1+p§(k))]k[|17(k)[2. (2.22)

2. Convergence of the weak coupling limit

Recently, Kesten and Papanicolaou (1979) proved the
convergence of the weak coupling limit. They studied
the more general problem of the motion of a mechanical
particle in a time-independent stochastic force field
which may be velocity dependent. (This general case is
of interest for the motion of charged particles in inho-
mogeneous electric and magnetic fields.) Specializing
their result to the particular case described in the pre-
vious section, one obtains:

Theorvem 2.1: Let V be of finite range and three times
continously differentiable with bounded derivatives. Let
the distribution u¢ of scatterers be a Poisson distribu-
tion with constant density p,=€p. Let X*(¢) be the
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stochastic motion of the Lorentz particle starting at x
with the potential scaled as in (2.12). Then

lim X&(¢)=X(¢),

£—>0

(2.23)

where X(¢) is the diffusion process corresponding to
(2.19) starting at x. The convergence is in the sense
of weak convergence of the corresponding path mea-
sures on C((0, ©), R*xR?). For the validity of Theorem
2.1 it is important that the dimension d> 3. In one di-
mension X ¢(¢) converges trivially to free motion. In
two dimensions the problem of convergence is open.
The difficulty results from the recurrence of the limit-
ing diffusion process.

The proof of Theorem 2.1 is technically much more
involved than those of the low-density and mean field
limits. An outline of the proof for a related problem
can be found in Kesten and Papanicolaou (1978).

3. The low-density (Grad) limit

We consider a situation with a low density of scatter-
ers. So the constant density p, of scatterers is scaled
as

(2.24)

Then typical spatial and time variations of the distribu-
tion of the Lorentz particle are on the order of a mean
free path and a mean free time, i.e., on the order l/p8
=1/ep. To obtain a nontrivial limit, therefore, space
and time have to be scaled as

pe=Ep-

q.=€7q, te=€7't. (2.25)
Again there is aﬁ equi‘valent scaling

t,q (unscaled)

Velg)=Vig/e), (2.26)

pe=€7p.

(pe=€™"p in d dimensions.) Note that the normalized
differential cross section is invariant under the scaling
(2.26). The volume occupied by scatterers tends to
zero as £ = 0.

Let X%(¢) be the motion of the Lorentz particle scaled
according to (2.26). For ¢ —0 the probability of collid-
ing with the same scatterer again goes to zero. The
scatterings become independent. Therefore one ex-
pects pe(t) to converge to p(t), where p(t) is the follow-
ing jump process (a proof can be found in the next sec-
tion). p(t)=p for an exponentially distributed time with
parameter 7p|p| Then the Lorentz particle collides
with a scatterer, which causes the momentum to jump
instantaneously from p to p, with probability o(p, lp)dpl,
the normalized differential cross section of the potential
V. By conservation of energy, o(p,|p)dp, contains the
5 function 5(|p|~|p,|). Then p(f)=p, for an exponentially
distributed time with parameter 7p|p,|, etc. By (2.17)
one expects that ¢°(¢) converges to q(t)=q+fédsp(s). In
terms of the reduced dynamics,

1im (S5 )(x) = (S, £)(x) = f(x, £) ,

£-0

(2.27)

where f(x,¢t) satisfies the linear Boltzmann equation
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57 /@0, 0= =Y (g, p, )

caolol( J ap oto19) 0,270 = Fla0,0)

(2.28)

(2.28) is also known as the Rayleigh-Boltzmann equation,
the Lorentz-Boltzmann equation, or the transport
equation.

For actual calculations, the difficulty of computing
the differential cross section remains. A particular
simple case is the hard-core potential. In that case
o(p']p)dp’ is the normalized uniform distribution on the
sphere with radius |p

If we choose a nonideal scatterer distribution, as
discussed already for the weak coupling limit, then,
because the density goes to zero, the dependence on the
pair potential is lost in the limit. Of course, by a dif-
ferent scaling of the equilibrium distribution of scat-
terers, one may, by force, so to speak, retain long-
range correlations. In this case the stochastic motion
of the Lorentz particle still converges as £ =0, but the
Markov property is destroyed by fluctuations (see Sec.
II.A.4). ‘

Starting from the linear Boltzmann equation, we may
take the weak coupling limit again. The weakening of
the potential proportional to €'/2 is then compensated by
decreasing the mean free path as ¢, i.e., by increasing
the collision rate as ¢™'. This can be seen by taking the
weak coupling limit in two steps by scaling

Ve lg)=€'"2V(g/e"), pge=(e")2"p.

Then £’ —~0 leads to the linear Boltzmann equation, and
€ — 0 subsequently leads to the linear Landau equation
with the dependence (2.22) on the pair correlation func-
tion lost.

.

(2.29)

4. Convergence of the low-density limit

The proof of the convergence of the low-density limit
will become particularly transparent in the case of a
hard-core potential. Therefore, for this section only,
we assume that the scatterers are hard spheres of
radius ¢ from which the Lorentz particle is scattered
by specular reflection.

A configuration of scatterers is assumed to be locally
finite, i.e., in any bounded region there will be only a
finite number of scatterers. Let us denote by ¥ the
space of all locally finite configurations. Then the dis-
tribution of scatterers is given by a probability mea-
sure ut on ¥X. We assume that u® will be determined by
its correlation functions {p¢ [#=0,1,...}. ptlg,...,q,)
is the probability density of finding an n-tuple of scat-
terers at ¢q,,. ..,q,. See Ruelle (1969) and Gallavotti,

An

T\ T ()

FIG. 1. Path of the Lorentz particle.
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FIG. 2. Path in I‘% (mechanically possible path for some
choice of g).

Lanford, and Lebowitz (1970) for details.

We fix a finite, but arbitrary, time 7>0. (The ex-
tension to T'=< is a -well-known measure theoretical
procedure which we want to avoid here.) Then a typical
path of the Lorentz particle has the form illustrated by
Fig. 1. ¢, is the time of travel from g to the first colli-
sion point g+ pt;, 9, €S? is the solid angle by which the
particle is scattered in the first collision, ¢, is the time
of travel from the first collision g +p#, to the second
collision point g +pt, +|p|t,, etc. The path space has a
particularly simple structure. Wedenote itby I'=U,,,T,,
where ', C R is the set of all paths ‘with exactly » col-
lision points

T={(t;, Q.. ., ,92)ER"|Q,€S%,0<t,+ -+ +1, < T}.

The probability measure uf induces the path measure
PZon T. Both I and Pf depend on 7. Not to overload
the notation we suppress this dependence.

Theovem 2.2: Let u® be a probability measure on %*
determined by its correlation functions { p§|n> 0} which
satisfy

(CO) pilgy,. .-

(C1) There exist constants M and z such that for all
£>0,

,q,) =0 for fq..qj|ss, ji=1,...,n.

€2"08(qys e o 0 5 q,) <MzZ".

(C2) There exist continuous functions 7, on R* such
that

HUme®p8(qy, .-+ 5 q0) =7a(qrs -« 5a,) 5

£-0
uniformly on compact sets of {(g,,...,7,) €R"|g#q,,
a;#q; 1#j, 1,j=1,... ,nt. Then PE converges weakly
to a probability measure P, on T.
Remark: For the single time distribution this result

FIG. 3. Path in I;,\I'} (mechanically impossible path for any
choice of g).
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was proved by Gallavotti (1969, 1972). Using the method
of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy, Spohn (1978) proved the result for a general
class of potentials. Van Beijeren (unpublished) obtained
by the same method the convergence of the single time .
distribution. The present proof was suggested to the
author by O. E. Lanford. In spirit the proof is close to
Gallavotti’s ideas.

Remark: (CO) guarantees that the initial position g of
the Lorentz particle is not overlapped by a scatterer
and that, therefore, the dynamics become well defined
with probability one. (C1) and (C2) replace (2.2) with
scaling (2.26) for scatterer distributions which are not
necessarily Poisson. For the uniform convergence we
excluded sets on which it could fail—e;g., if the distri-
bution u® is such that the scatterers may not overlap,
then uniform convergence can hold only on compact sets
of {qi¢ qj,i#:j}.

Proof: The key to the proof is to realize that there
are hypersurfaces of ‘“bad” points in I" which should be
avoided. Away from these bad points the convergence
is controllable.

Let T=1{(t,9,,...,t,9,)€T,|{,>0,...,£>0, each one
of the »n collision points having exactly one point in com-
mon with the path corresponding to #,9,,..., t"S?,.}, and
let I°= U I? Since (see Figs. 1, 2, and 3) [ )\I} is
of lower dimension than I',, I\I'° has Lebesgue mea-
sure zero. We want to show that for each compact
AcCTy,

lim P£(A) = P (4).

£—0

(2.30)

Since A is compact, we may as well choose AC rg.

Let A C R® be a bounded region containing ¢ such that
in time 7T the Lorentz particle cannot leave A. Then the
probability of finding exactly » scatterers at ¢,,...,q,
in A is given by the absolutely continuous probability
measure

1
f;:.A(qu coe ,q,,) n—' dql. . 'dqn

N A MR )

x%dql--»dq", n=0,1,.... (2.31)
T'? was constructed in such a way that for compact
ACT?, & can be chosen so small that each of the n
collisions is necessarily effected by a different scat-
terer. Note that the closer one comes to 8(I'?), the
smaller € has to be. Then, for € so small that there
are no recollisions for paths in A, P£(A) is the proba-
bility of having exactly » scatterers in A such that a
path in A is produced, plus the probability of having ex-
actly n+ 1 scatterers in A such that » of them are lo-
cated as to produce a path in A and such that the re-
maining scatterer has to lie outside a tube of radius &
around the path, plus -... If one sums up all these con-
tributions and takes the combinatorial factors into ac-
count, then one arrives at
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Pf(A)=f~dq1-~~dan—1—f dql---dq!,
A m=0

m! (A\A™

€
xfrﬂm,A(qu Y P Y] ql” e ,q,',,)

o~ (=) ,
:_[.dql"'dq"z: pooy f dql---dq!,
A m=0 * )ym

(Ag

XPEm(@1s e v e s Qur@ise v rdm) - (2.32)
A is the set of all ¢,,...,q,, such that a path in A is
produced. Agis the tube of radius € around the path
corresponding to (g,,...,q,) €A. The equality uses a
well-known identity between probability densities and
correlation functions.

" We consider now the position ¢,,...,q, of the scatter-
ers as functions of £,9Q,,...,4,%, (see Fig. 1).

The volume element transforms as dq,,...,dq,
=IT"..{n|p|e® dt;d2 } because of isotropic scattering in
three dimensions. (For smooth potentials, the differ-
ential cross section would enter at this stage.) There-
fore,

Pﬁ(A):ffI{wlpldt,dQ,} f: S;ml—zme-z'"

¢ f dqi- - 'er’r‘SZ(mm)pr?*m(‘I1> ce s us s Q).
(Ag)™

_ (2.33)

By (C1) the sum (2.33) is bounded by
= 1
IAf Z: — (WazlplT)ms-zmMz(mm)___ IAIZ"Me“MTz'

m=o0 M:

(2.34)

Therefore, by Lebesgue’s dominated convergence and
by (C2),

lim PE(A) = g .
Lim P£(4) Lg{ﬂp;d@m,}

X (_l)m mJ‘T T
XZTn!—W o dsl.”J; dsmrrum

m=0

X(q+pty, ..., q+pt + ---+|pr."

X(T =ty =+ or =1,),q(5)), e 0, q(s))=P(A).
» (2.35)

t -~ q(#) is the path corresponding to #,9,,...,%, 2,.

Weak convergence follows now from (2.30) together
with P (T\T?) = Om.

There is a moral to the proof. If the scatterers are
such that there is a finite probability for exact back
scattering, then one still has convergence of P -~ P_ on
I'°as e—-0, but P(I'°)<1. A part of the path measure
P_ corresponding to the linear Boltzmann equation lives
on T'\I'° and cannot be reached in the low-density limit.
For a smooth potential the probability for back scatter-
ing is zero. But if the scatterers are small crosses all
orientated at 45° with respect to P, then the phenomenon
just described occurs. ‘

Proposition 2.3. Let p¢ satisfy the conditions of
Theorem 2.2 and let #(A) be the number of scatterers
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in the bounded region A.

(i) 1If
lime®n(A) = [ dg, () (2.36)
£->0 A
in probability, then
n(ql,---,qn)=f1 r.q;). (2.37)
7=l

(ii) If 7,(q,, g.) =7.(q,)7.(q;), then e2n(A) converges in
probability to (2.38), and therefore 7,(q,,...,q,)
ZH';'=1 ’rl(qj)'

Remavrk: The condition in (i) means that the rescaled
number of particles has no fluctuations as ¢ - 0.

Proof: By (C1) and (C2),

lim us(szn(Al)---szn(A,,))=f dq,---dq, 7,
£->0 AgXeerXAy
X(Grye @) (2.38)

and by (C1), (C2), and the condition in (i),

lim Ha(ezn(Al)...gzn(An))zlnI(f dq]-'r(qj)>. (2.39)
£—-0 7=1 A]-
This implies the factorization.
If 7,(q,,92) = 71(q,)7:(gq,), then
lim pé(e*n(A)?) = f dq, dq, 75(q:, q5)
£-0 AXA
2
= <f dq, r(q1)> , (2.40)
A

which together with (2.38) for n=1 implies that the
variance of £%;(A) — u&(e®n(A)) vanishes as € -0 m

Covollary 2.4. The limit process corresponding to
the path measure PZ on I' is Markov for all 7 if and
only if

lim azn(A)=f dq, v,(q,) (2.41)

£-0

in probability. In this case, the forward equation of the
process is the linear Boltzmann equation

'537 f(q:pyt)‘= —p-qu(q,p,t)

+n<q)wtpl(f as’' f(g, lpla’,t)—f(q,p,t)>-

(2.42)
Proof: Only for the factorization (2.39),
P (A)= i dt.dQ;
(@)= [ T] {rlplar,an,}
Xvlg+pt) - vlg+pt,+ - +|p|Q,
T
X(T =ty =+ = £,)) exp(..fn-[p[f ds 1’(&[(8))> .
[¢]
(2.43)

Equation (2.43) is known as Poisson formula. If one
computes E ( f(x(2)))= f(x, t) using (2.43), then one re-
covers. the usual time-dependent perturbation series
for the equation adjoint to (2.42); where {p-Vq
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~7.(g)n] pI}F (g, p) is regarded as the unperturbed part=

For a twice continuously differentiable, central scat-
tering potential of finite range, a result analogous to
Corollary 2.4 can be proved, provided that the correla-
tion functions pg are, in addition, continuous. Boundary
conditions may be added, as already discussed, for the
weak coupling limit. The results are valid for any di-
mension d = 2.

However, for potentials of infinite range, even fastly
decaying, the method developed so far does not seem
to apply (see also Sec. IL.A.5).

5. The mean-field limit

The spirit of mean-field approximation is to take into
account external influence (e.g., scattering) by an ef-
fective mean force. '

In order not to obtain a trivial answer we now choose
a spatially varying density p%(g) of the Poisson distribu-
tion. One assumes a weak potential by scaling

Velg)=eViq). (2.44)

(Note that in contrast to the weak coupling limit the
range of the potential is not scaled.) The density of -
scatterers is increased only very slowly as

pi(g)=€"r(q) . (2.45)

Since the range of the potential is not scaled, the scat-

terers will overlap and conservation of p is no longer

expected. (2.44) and (2.45) define the mean-field limit.
One can also use the equivalent scaling

ps(g)=7»("3q),
Ve(g)=eV(e'/3q),

te=eM3%, q.=c /3.

(2.46)

(% is replaced by 1/d in d dimensions.) Just consider-
ing the potential scaling, one sees that the mean-field
limit corresponds to the motion of the Lorentz particle
through scatterers with a weak, long-range potential.
Note that for the Coulomb potential V(g)=|g|™V¢(q)
=g?/3|¢|™. In this case the scaling corresponds to a
small charge.

Let X%(¢) be the scaled process. It is easily verified
that the force on the Lorentz particle converges in
probability to —qu"r(q’)VqV(q —¢q’). Therefore, one
expects X¥(¢) to converge in probability to (g(z), p(¢)),
where ¢(¢) and p(¢) will be the solutions of

2 4=,

%P(t) = —qu g’ riq"\Vig(®)-q", (2.47)
with initial conditions ¢(0)=gq, p(0)=p (this proof is
worked out in the following section). Thus, in contrast
to the case in the weak coupling and low-density limits,
in the mean-field limit the motion of the Lorentz parti-
cle is deterministic and governed by the effective Ham-
iltonian ’

Holg,)=3p%+ [ dg’ a"V(g=q). (2.48)

The mean-field limit is of some interest, since it
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provides a tool for dealing with the long-range part of
the interaction. The potential V is split as V,+V,,
where V, is of finite range and V, of infinite range.
Then, for the low-density limit, the potential is scaled
as

V@) =V,(q/e), V,.(q)=€*V,(q), (2.49)

and the density as pf (q) =€ 2»(q). In the limit € -0, V,
leads to the collision term of the linear Boltzmann
equation, whereas V, gives an effective force accord-
ing to (2.47).

6. Convergence of the mean-field limit

The proof simplifies considerably in the case that the
total number of scatterers is finite with probability one.
w¢ is then a probability measure on U,,,R>.

Theorem 2.5: Let n(A) be the number of scatterers
in the set A C R® and assume that

(C1) there exist constants M and z such that for all
>0,

uE([en(R®) M < Mz™;
(C2) there exists a bounded measure » on R® such that

lim pf(en(A))=7»(A),

£—0

lim p&(en(A)en(A))=r(A)r(A7)

€0
for all »-continuous sets A, A’C R®. Let X%(¢) be the
stochastic motion of the Lorentz particle starting at x
with the central scatterer potential Vi (q)=eV(q), where
V € C? with bounded derivatives. Then X®(t) converges
in probability to X (#)=(q(#),p(#)). q(#),p(t) is the solu-
tion of

L ah=pt), L pt)=Fq) (2.50)

i 1\0=p0s b ‘v, ‘
with initial conditions x=(g,p). F is the average force
F(q)= [ r(dq")F(q - q"), with F(g)=-V V(q).

Remark: The proof follows Neunzeirt (1975) and Braun
and Hepp (1977), who studied the derivation of the Vla-
sov equation (see See. III.D).

Proof: Let us denote Flg,Q)=2J,F(q - q,) for
Q=(q,,43,.-.). Then for /=0,

lgs(t, @) = q(8)|+ |pE(2, Q) = p(2))|

< ftdslpa(s,Q)—P(S){
+ftds €| F(g%(s, Q),Q) = F(q(s), Q)|

+ [ "as|eF(als), @ - Fla(s)), (2.51)

where we suppressed the dependence on the initial x.
Since F is globally Lipshitz continuous, then

[F(g,Q) - F(g’, Q)| < cn(R®)@Q)|q - g’ |. (2.52)

Inserting (2.52) in (2.51) and iterating, one obtains
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lg%(t, Q) = q(B)|+ |pe(t, @) — p(1)]

< [ asle Fa(s), @) = Flq(s))] expl(en®)@)+ De].

(2.53)
By Schwarz’s inequality, we get
HE(|g®(t, ) = a )]+ |p(z, ) = p(D])
< f Las(ui(EF (g(s), ) = Flg(s)P /2
X (ue(eten Rz /e, (2.54)

By assumption (C1) the second factor of (2.54) is
bounded. Let pf(dg,) and pf (dq,, dq,) be the first and
second correlation measure of yuf. Assumption (C2)
implies the weak convergence limg,,ep(dg,) = »(dq,),
lim,,,e%0% (dq,,dq,) = v(dq,)»(dgq,). Therefore,

g¢(g)= 1E((e F(q, ) - F(g))®)

=g? f ps (dq,, dq,)Flq - 4,)Flq - q,)
ve® [ pildg) (Flg - ,)F

-2sf pt (dql)F(q-ql)f r(d7,)F(q - q,)

+ (f r(dg,)Flg - qu)2

converges to zero as € = 0.

Since g¢(q) is bounded, this implies that the first fac-
tor of (2.54) tends to zero as £ —0. Therefore (2.54)
tends to zero, proving the L!-convergence of X°(¢) — X(f) m

(2.55)

B. The Rayleigh gas -

The Rayleigh gas consists of a test particle moving
through a fluid. In contradistinction to what happens
with the Lorentz gas, the scatterers now move and
suffer recoil upon collision with the Rayleigh particle.
The formal Hamiltonian is given by

H=

1 .. 1
ZMP +;V(q—qj)+;zmpj+;<jU(qi—Qj)'

(2.56)

q,p denotes the p\osition and the momentum, and M is
the mass of the Rayleigh particle. x;=(g;,p,) stands
for the position and the momentum of the jth fluid
particle. m is the mass of a fluid particle.

Initially, the Rayleigh particle is at g with momentum
P, and the fluid is in some state. As for the Lorentz
gas, the initial state of the fluid will be scaled ap-
propriately. However, the choice of the sequence of
fluid states is severely restricted by the fact that in
order to obtain a Markovian behavior for the particle,
the properly scaled number of particles in any bounded
region should not fluctuate in the limit. Therefore,
if pE(¢) denotes the nth correlation function of the fluid
at time ¢, by Proposition 2.3 the sequence of fluid
states has to satisfy

n
Lm e"pl (X, ..., %,,1) = II r(x,;,t), a.e..
=1

£E>0

(2.57)



580

N

To discuss the scalings more precisely we will have
to distinguish two cases.

(a) U=0, ideal fluid. In this case » will evolve
freely, i.e., r(x;,t)=v(q; —p;t,p;) with »(x;) =r(x;, 0).
All we said about the Lorentz gas basically carries over
to the Rayleigh gas. (Of course, the proofs will have
to be reconsidered.) The scaling of the potential V and
of the density of the fluid is the same as for the Lorentz
gas. The limiting processes will differ somewhat from
the ones obtained for the Lorentz gas: First, the re-
coil of the fluid particle has to be taken into account.
In particular, the conservation of energy is lost. Sec-
ondly, the density of the fluid may be time dependent,
which will give rise to a nonhomogeneous Markov
process (the transition probability depends not only on
the time difference).

(o) U +# 0, nonideal fluid. Now one has the freedom to
scale U also. The condition (2.57) seems to leave open
only the following two cases: (i) U is scaled away fast.
Then one is back to (a). (ii) U is scaled according to
the weak coupling, the low-density, or the mean-field
limit. Then, as will be discussed at length in Sec. III,
7(x,t) evolves according to the Landau equation, the
Boltzmann equation, or the Vlasov equation. The
scaling of V may differ from the scaling of U. De-
pending on whether one scales V according to the weak
coupling, the low-density, or the mean-field limit, one
obtains either a diffusion process, or a jump process,
or adeterministic process in the limit. As for (a), since
the fluid density may depend on time, the limiting Markov
process will be nonhomogeneous. The case of a
nonideal fluid is, of course, more difficult than the
case of an ideal fluid, since one must first control the
corresponding limit of the interacting fluid.

Another possibility for the initial state of the fluid
consists of requiring that the fluid be in thermal
equilibyium at inverse temperature § and density p
conditioned on the Rayleigh particle being located at g.
Again, the density and the pair potential U have to be
scaled properly. Since the equilibrium state is time
invariant, the limiting Markov process will be
homogeneous.

It should come as no surprise that, since another
parameter, namely, the mass M of the Rayleigh
particle, enters the Hamiltonian, there is yet another
Markovian limit, associated with M-, This limit is
called Brownian motion limit and will be discussed in
the following section.

1. The Brownian motion limit

Brownian motion is presumably the oldest and most
studied stochastic model in nonequilibrium statistical
mechanics. [Nelson (1967) presents the subject
beautifully.] This kind of phenomenon is observed for
a heavy particle suspended in a fluid. To model this
situation we assume that the Brownian particle is
initially at ¢ with momentum p and that the fluid is in
thermal equilibrium at inverse temperature 8 and
density p, conditioned on the Brownian particle being
located at g. The mass M of the Rayleigh particle is
increased as

M=¢"2M. (2.58)
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To keep the kinetic energy of the Rayleigh particle
finite,

De=€"'p.

Equivalently, the velocity scales asv =¢v, i.e., the
Rayleigh particle becomes very slow. Under (2.58)
and (2.59) the velocity of the Rayleigh particle changes
on the order ¢ in a collision. The number of collisions
per unit time should therefore be on the order £~2
which is achieved by scaling time as

(2.59)

—— (2.60)

As for the other limits, the free motion should be left
invariant under the scaling, which implies that space
has to be scaled as

q,=¢£"'q. (2.61)

(2.58) to (2.61) define the Brownian motion limit.

As before, there is an equivalent scaling which
scales properties of the fluid rather than of the Rayleigh
particle: Mass, momentum, space, and time of the
Rayleigh particle remain unscaled. (2.61) is trans-
lated to scaling the potential as

Ve (g)=V(q/e) (2.62)
and the density as
p,=£"%p. (2.63)

To have a momentum transfer of the order € in a
collision, the mass of a fluid particle becomes small

me =€*m (2.64)
and the kinetic energy of a fluid particle remains
constant

Dije =€Dhj. (2.65)

Equivalently, the velocity scales v ;¢ =€™'v;, i.e., the
fluid particles become very fast.

Let X® (¢) be the process of the motion of the Rayleigh
particle scaled according to (2.62) to (2.65). Then in
the limit €~ 0, the fluid particles are so fast that
recollisions with the same fluid particle become relatively
unlikely. The force on the Rayleigh particle consists
of a systematic part, which.slows down the Rayleigh
particle proportional to its momentum, and a fluc-
tuating part, which is almost like white noise. There-
fore, one expects X (¢) to converge to X(¢), where
X(¢) is the Ornstein-Uhlenbeck process. This process
corresponds to the Fokker-Planck equation

2] 1 D
57,0, 1) ={— 3P Vet 2Ly, -p+DA,,}f<q,p,t)

(2.66)

for the probability density f(q, p,t) of the Rayleigh
particle.

Formal derivations by Lebowitz and Rubin (1963)
and by Lebowitz and Resibois (1965), using second-
order perturbation theory, show that the diffusion con-
stant D (in velocity space) is given by the time integral
over the force autocorrelation function

. =%£wm«zm-mFxmw. (2.67)
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Here F=-V,V is the force and ZF=3; F(q;). () in-
dicates the dynamics of the fluid given formally through
the Hamiltonian

=2LmZP?+ Z Ulgi—a,)+ 2_V(g,).
7 i<j i

This is the dynamics of the fluid in the presence of the
Brownian particle kept fixed at the origin. ( ), denotes
the equilibrium average with (2.68) as Hamiltonian in
the thermodynamic limit at inverse temperature 8 and
density p. Needless to say, even the existence of D is
not known except in the case of an ideal fluid, U =0.
In one dimension, Holley (1969) has shown the con-
vergence of X® (¢) to the Ornstein-Uhlenbeck process
(see Sec. II.B.4). For higher dimensions the conver-
gence was proved recently by D. Diirr, S. Goldstein,
and J. L. Lebowitz (1980) in the case of an ideal fluid
with a general momentum distribution.

As for the weak coupling limit, the Brownian motion
limit may be taken in two steps. One scales as

Velg)=Vig/e"),

Pe,er=(€€%)1p,

(2.68)

(2.69)

& =EPfuia -

Then ¢’— 0 leads to the linear Boltzmann equation,
and, subsequently, £— 0 leads to the Fokker-Planck
equation (4.11). The second limit has been proved by
II’in and Khas’minskii (1964). In this order of limits,
the dependence on U is lost. '

Pwia

2. Convergence of the low-density limit of a tagged particle
in an ideal fluid

To prove the convergence of the low-density limit
for the Rayleigh gas we use the same technique as for
the Lorentz gas. We choose the simplest possible case:
The Rayleigh particle interacts with the fluid particles
via a hard-core potential, and the fluid is noninteract-
ing and initially Poisson distributed with constant
density. The remarks on continuous potentials,
boundary conditions, Markov property, fluctuations,
etc., made for the Lorentz gas also apply to the
Rayleigh gas.

Let X be the space of configurations (q,,,,dssPp «- )
in R locally finite in the positional coordinates
@,,4,, -..). If the Rayleigh particle is initially located
at ¢, then the initial state u® of the fluid is assumed
to be spatially Poisson with density

€%pxs @,),

where x§ is the indicator function of the set
{4, €R3|lq, ~¢| =€} and to have independent momenta
with distribution z(p,)dp,, which satisfies

[ ap, )1+ 1p,[) < . (2.70)

The Rayleigh particle is a hard sphere of mass M
and diameter g, and the fluid particles are hard
spheres of mass one and diameter €. The fluid
particles simply pass through each other, whereas
the Rayleigh particle collides elastically with the
fluid particles. From the results of Alexander (1975),
it follows that the Rayleigh particle suffers only a
finite number of collisions in a finite time with
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probability one. Simultaneous collisions with two or
more fluid particles are of zero probability. There-
fore the motion of the Rayleigh particle is well de~
fined. Let us denote by X°(¢) the corresponding pro-
cess with the Rayleigh particle starting at x =(g,p).

Let us fix some finite 77>0. Because of the hard
collisions the paths have a simple structure. They
are piecewise of the form s — ¢+ (1/M)ps with a finite
number of “pieces.” Let ¢, be the time of flight from ¢
to the first collision point, y, the momentum after the
first collision, ¢, the time of flight from the first
collision point to the second collision point, etc. For
notational simplicity let p =y, and T'=#;, — - - - —t, =¢,,,.
Then the path space of the process X* (¢) is I'=U,», T,
Wity eeny Vnpt,) €T, C RY, with the restriction that
0st{ +++++t,<T. u® induces the probability measure
P on I'. We will show that P% converges weakly to
P, on I' and that P, is the measure of a Markovian
random jump process.

The first thing to show is that the limit process is
well defined.

Lemma 2.6: Let

Mp)=mo [ avi(n)| Lo -] (2.71)

and

K(p'lp)=>~(p)"(%7+w—l)2p

X fdyh(y)é((p’ =p)(p' =)+ I‘LA,}--I-(p2 —P'2)> >
(2.72)

with 2 satisfying (2.70). Let p(f) be the jump process
constructed from A(p) as inverse waiting time and
dp’K(p’|p) as jump probability: p(t)=p for 0<¢<t,,
where £, is exponentially distributed with parameter
A(p). Independently of £, p(¢) jumps from p to dp,,
with probability dp, K (p,|p). p@)=p, for ¢, <t<t +t,,
etc. [see Breiman (1968) for the notion of jump pro-
cesses]. Then p(¢) is well defined in the sense that it
has a finite number of jumps in any finite time
interval,

Proof: Let p, be the Markov chain with transition
probability dp’K(p’|p) and P, be the corresponding
path measure with p,=p. According to Breiman (1968),
Proposition 15.43, p(t) is well defined if

YA, as.

2.73
n=0 A'(pn) ( )
" Since Mp)<a+b|p|, (2.73) is implied by
lim sup % [pal <1, a.s.. (2.74)
n
Let A, ={|p,| =n}. Then, by the Lemma of Borel-
Cantelli, 5. P,(A,)<= implies (2.74). Now
Py(A,)< (1/n®)E,(| pal ®) (2.75)

by Chebyshev’s inequality. Therefore, (2.73) holds,
provided that E,(|p,|?)s ¢ independent of #.

The uniform bound on E,(| p,|?) results from conserva-
tion of energy. One computes that
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(JZ +11)2P2+>t(1>)' npfdyh(y)lép—yl
2M2 M(M—-1)
((M+1)23’2+ M+ 17 21"3’)'

By (4.15), M(p)* [ayh(DI(L/M)p -yl 9|%, @=1,2, is
uniformly bounded in p Therefore,

M2+1
E(p)< Gy +ou+ 2010l

E,(p))=

(2.76)

<<(1111442+1)2 +52)p +c(5). (2.77)

Iterating (2.77) yields
2 M?%+1 M?+1 m
Ep(p")\p2<(M+1)2 +52> +c(5) Z ((M+1)2 2)

(2.78)
Since M2+1< (M +1)?, 6 can be chosen so small that
(M2 +1)/(M +1)> +82<1, Therefore, E,(|p,|?) is uniform-
ly bounded in z for all p € R®a
Theovem 2.7: Let P be the path measure cor-
responding to the motion of the Rayleigh particle as
introduced above. Then

§

lim Pt =P, (2.79)

€-0
weakly on I'. The limiting probability measure P, is
the path measure of the jump process p(t) starting at
p up to time T constructed in Lemma 2.6.

Proof: Let AC T, be compact. Let us split

PZ(A)=Bg(A)+PE(A),

where f’f(A) is the probability of paths in A such that
each one of the n collisions is produced by a different
fluid particle. We will show that lim, _, ,P% (A) =P, (A).
By the normalization of P_, then lim ., ,P%(A)=0.
FOr (V1,81 ..-,Vnta) =Y € A, let A, (v,p’) be the tube
of radius & around the path defined by the collision
points q,q +[(L/M)y,=p' 1ty ..., q +[(1/M)y,-p']t,
+eoe[(1/M)y,—p"]t.,. A fluid particle with mo-
mentum p’ will not collide with the Rayleigh particle
moving along y, if and only if at time £ =0 it is out-
side A (y,p’). Let us consider y as a function of the
initial positions and momenta of the fluid particles.
Then by the same argument as for the Lorentz gas

PE(A)= 11{dq, ap, e2oxs @ n(ps)}
{r@g,py,eeas an,Pn) €AY} i=1
Z H < f f dqle™?p
m=0 i=1 (7";")
X XE (q:)h(pz)) . (2.80)

(g, b;) is the initial position and momentum of the fluid
particle which gives rise to the Zth collision.

In a collision, energy and momentum are conserved,
i.e.,

(1/M)y3., +pF = (1/M)yi +3,
Yi-y +Di =i +bi,

where p; is the outgoing momentum of the fluid particle
in the #th collision. Eliminating p; yields

(2.81)
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0 = Yi-y) s Bs =p) +[(M = 1)/2M)(¥3., = ¥7) =0. (2.82)

Therefore, to have a collision with given y;., and y;,
p; has to lie in the plane defined by (2.82). This plane
is denoted by E(¥;.,,;), the Cartesian coordinates in
E(yi-,,:) by e;, and the Lebesgue measure on
E(¥;i-1,9:) by de;. Once p; € E(¥;.,,;) is fixed, ¢q; is
determined by the time of flight ¢, +++++#;. There isa
one-to-one correspondence between (¢,,P,, -+ - » dnyPn)
and (Vy,£,, €5 -+ + s Vns bny €n)-

In (2.80) the (¢,,,, - - . s dn, P,) coordinates are now
transformed to the (y,,%,, €,, ..., Y L, €,) coordinates.
Elastic collision is defined by requiring that, in ad-
dition to (2.81), the momentum transfer be parallel to
the vector from the center of the Rayleigh to the center
of the fluid particle. Using this obtains for the volume

element
A M+1)\? 1
dq;dp;r = dt;dy;d 82( ) ]
H{ q; dp;} g[ idy;de; 2 ) T3 =il
(2.83)
Inserting (2.83) in (2 80) yields
£ M+1>
PE(A) = ffh 1] {dt dyide,< =
X T o (@ ()
[ETEET R
w om
H(f dp:[ dqie™®p
i=1 R3 A (7r.0!)
X x§ (@(pD) - (2.84)

Here (q,,P,, - .- 90, D) is considered a function of
(Y1815 €15 003 Vnstns e,). A CX71, I(¥i.,,9:) is the set
of all incoming momenta (p,,...,p,) of fluid particles
such that there are no recollisions.

The second integration is estimated by

npfngdp'h(p')g;
< l' ’ ’ y .l. )<
<o [ apnon (1216 o il tan ) <

(2.85)

There-
The first integration

1
My-p"ti¢1

on A, since A is compact and by using (2.70).
fore, the sum is bounded by e°.
is then bounded by

n
2
f f H[dti dx, de, (.”itl)
A VX Iy ) i oM V

1 (3
ler—ye-llph(pi)]e

Using (2.70) and (2.72) and since A is compact, the
integral (2.86) is bounded. Clearly, A% —X7. I(¥;-,,¥;)
up to a set of IIf., de; measure zero and, x&(g’)—~1

for g’ # q as €~ 0. Furthermore,

lim f

£—>0

(2.86)

tiny. (2.87)

n
1
P e"20,E (1) = —_— =D
,)dq £7%E(@") n‘;’lMy. b

Therefore, by Lebesgue’s dominated convergence,
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limPe(a)= [ [
£—0 A x"-’ﬂl(yi_l,yi)
n
M +1\? 1
X dt;dy;de ( > 73 ]
I}[ ANy Iyi"yl-l_lp (#4)

2.

(2.88)

X exp [—

which, after some manipulations, turns out to be
equal to the path measure P.u

One may also consider a situation where the initial
distribution of the fluid is not stationary. If at ¢ =0 the
correlation functions of the fluid are given by

n
g{s'zxg @b,
with 7(g,p) continuous and
J ap suplria, )t 415 <=, (2.89)
then the stochastic motion X%(¢) of the Rayleigh particle

converges to X(¢). X(¢) is a Markov process which is
governed by the forward equation

??t-f(q"b’ t)=-p 'vqf(q’p, t)

‘M 2
[ [ ap,ra —plt,m)( 2;11)

xa((p -0 (p=p)+ 2=

Lipn- Pz)f(q,p )

fla,p,t).

1
-fdplr(q"ﬁ1tvpl)" 'Mp -b,

(2.90)
X(t) is homogeneous in time if and only if »(g,p) =k(p).

3. Convergence of the low-density limit for a tagged sphere
in a hard-sphere fluid

We consider a hard sphere of mass M and diameter ¢
immersed in a fluid of hard spheres of mass one and
diameter €. The whole system is restricted to the
bounded region A with smooth boundary 8A. Particles
collide elastically and are specularly reflected upon
hitting the boundary. (Other boundary conditions can
be handled easily). If one tries to prove the conver-
gence of the low=density limit for this system following
the lines of the last section, one realizes that, since
now the history of a fluid particle before and after a
collision with the tagged particle is so much more
complicated, there is no simple way of writing the
analog of (2.80). [In fact, it would be of great interest
to obtain such an analogue for a hard-sphere fluid,
which is a problem connected with extending Wild’s
sum (Wild, 1951) to the spatially inhomogeneous case.
This might possibly shed some light on how to extend
Lanford’s analysis of the Boltzmann equation to longer
times.] Therefore we will use here differential equa-
tion techniques as developed by Lanford for the deriva-
tion of the Boltzmann equation (see Sec. III.C). The
nice point about the present proof is that this is one
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case where Lanford’s theorem can be used iteratedly
to show convergence for all times.

It is convenient to use the grand canonical prescrip-
tion for the fluid. Initially the fluid is in thermal equi-
librium at inverse temperature $ and fugacity z, con-
ditioned on the tagged particle being located at g.
Therefore, the equilibrium measure has the densities

{A(q) Y2 V'xa (g, ql,...,qn)ﬂhﬁ(pinnao}, (2.91)

-where Z(gq) is the normalization constant. #&;g is the

normalized Maxwellian at inverse temperature g and
X5(g,qys -« - »4n) =0, whenever either two arguments are
closer than € or one of the arguments is closer than
Le to A or outside of A, and x5@,4,,..-.,4q,) =1 other-
wise. The fugacity is increased as z, =¢”%. (Since
as £— 0 the fluid becomes ideal, although at an infinite
particle density, this is basically the same as increas-
ing the density as £72p). Let X®(¢) be the stochastic
process of the motion of the Rayleigh particle starting
at x =(q,p). By the results of Alexander (1975), X°(¢)
is well defined. p® (t) is a jump process with a finite
number of jumps in any finite time interval, and ¢°(¢)
=q + [ ds(1/MP*(s).

Theovem 2.8: Let X© (¢) be the process corresponding
to the motion of the tagged particle starting at x =(g,p)
with the hard-sphere fluid in conditioned equilibrium
according to (2.91). Then

Lim X () =X(t) = @(®),p (),

£E—>0

(2.92)

in the sense of the convergence of all finite dimensional
distributions

Um ES(f (X (¢,)) * + ful X" ) = B, (FL(X(?)) * =+ Fo(X(E)))

€0
(2.93)

for allm, 0<¢,<-e- < t,, and bounded continuous func-
tions fi, ...,f, of compact support. (With respect to x
the convergence is uniform on compact sets in A X R3.)
p(t) is the Markov jump process of Lemma 2.6 with

h =hg and specular reflection at 9A added, and g(¢)
=q+ [ ds(1/M)p(s).

Proof (The proof uses the method of time-dependent
correlation functions. This technique will be ex-
plained in Sec. III.C.1 in the context of the Boltzmann
equation. The reader is kindly advised first to consult
this section.) We consider the joint correlation func-
tions of the tagged particle and the fluid,

(pﬂ(x)’pl(x’xl)y .. -), x=(q,1)), X;= (q; P)- (x,x1, e ’xn) is
the expectation to find the tagged particle at x and an
n-tuple of fluid particles at x,,...,%,. The evolution of
the correlation functions is denoted by {(V§p),ln = 0},
where p is considered the vector (pg, P, .. .).

One obtains

EE(AXEENI=p%, o))V Zi(FPE)) ™) - (2.94)

P =%, 0 PEq,15s - - - ) are the unconditioned equilibrium
correlation functions of the fluid +tagged particle sys-
tem at inverse temperature 8 and fugacity z.. fp%q is
shorthand for (f(x)p‘éq,o(x),f(x)p:'q,l(x, x]_), N X

The idea is to study the convergence of VE&,(fpg;)
using Theorem 3.1. One has to check the two conditions
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(C1) and (C2) [Egs. (3.52) and (3.53)]. Now, using the
invariance of the equilibrium measure, we obtain

[V E(fPEI (e, %5 vy %)

< (supl f(®) Vg () I:I{hm,-)}r»sq(q,ql, e dy) -
‘ (2.95)

Here B¢, , are the spatial parts of the unconditioned
equilibrium correlation functions of the fluid +tagged
particle at fugacity z_, for which it is known (Ruelle,

1969) that
_p:q,n(q,qu . -yqn)$ (Zg )n. (2-96)

Therefore, V§(fpg,) satisfies the bound (C1) for all

times. Furthermore,
Lim €27(fp%, )%, Xy, « « « , %) =F (Ohg(*) [T { phax, )},
€0 i=1

(2.97)

uniformly on compact sets of I',,,(0). [The definition
of I',(s) in Sec. III.C uses n particles of unit mass.
Here we use the obvious alteration, where the first
particle has mass M.]

Let S; be the backward semigroup of the limiting
Markov process ¢(t), p(¢), and S, be the forward semi-
group of the Markov process p(¢), q(¢t)=¢
- fcfds(l/M)p(s). For continuous functions of compact
support they satisfy the detailed balance property

(Stf)hB:§t(th) .
By Theorem 3.1 and Property 2,
lim £V 2, (f pE, X, - ..+, %) = (S o(F))@) TT{ a3},
-0 j=1

(2.98)

(2.99)

uniformly on compact sets of I',,,(—¢) for 0<t<t,(p, B).
Since (C1) is valid for all times, Theorem 3.1 can be
applied again with VI, (fpg) as initial condition, etc.
Therefore, (2.99) is valid for all times. In particular,
using (2.94) and (2.98),

1im ES (f (X% ()= (hg(x)) (S (f1g))(x)
£—2>0

=SS )x)= EL(f(X(1)),

uniformly on compact sets of A XR? for all £= 0.
We turn to the second finite distribution. One ob-
tains

E{(f (X5 @) (X (¢, +1,)))
= (%o MV E, (Fi(VEL,(fope))(®),  (2.101)

t,,t,>0. For fixed t,, we regard f,(V_,,(f,0%)) as
initial condition. As before, VI, (f,(VE 1,(/2P%))) sat-
isfies the bound (C1) for all ¢, = 0. By (2.99)
(L(VE,,(fp%))), satisfies (C2) with T,,,(~¢,). There-
fore, by Theorem 3.1 and Property 2,

Lim e2™(VE, (fi(V I (f0a)))a(x, %, . ...
€0

(2.100)

» %n)

=G (LG ) IIonsceh, (2.102
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uniformly on compact sets of I',,,,(—¢, —¢,) for all
t,= 0, where we have already used the iteration argu-
ment. Using (2.101) and (2.98)

lsiir:)Ei (AEEENLEEE +25))) =(S e, (FiS 1, f))

:Ex(fl(x(tl))fz(X(tl +t2)));
(2.103)

uniformly on compact sets of A XR3,
Convergence of the higher finite-dimensional distri-
butions is proved in the same way 5.

4. One-dimensional hard rod systems

The Rayleigh gas in one dimension has been studied
in some detail. One considers an infinite system of
hard rods of mass m on the line and inserts at the
point ¢ a test hard rod of mass M. All rods have zero
length. - The system evolves by elastic collisions.
Initially the fluid is Poisson distributed with density p,
and the fluid particles have independent momenta +«
with probability 3. Holley (1969) proves under these
assumptions that the motion of the Rayleigh particle
converges to the Ornstein-Uhlenbeck process in the
Brownian motion limit. The extension of this result to
two dimensions by Hennion (1973) does not start from
the mechanical model.

In the case M =m, so all rods have the same mass,
a number of other results have been obtained. As-
suming that the Rayleigh particle starts at the origin,
one considers only the spatial part g(¢) of its stochastic
motion, which is scaled as

gt =¢eq(e”%). (2.104)

Equation (2.104) is the hydrodynamic limit to be dis-
cussed in the next section. If the fluid is initially
Poisson distributed with density p and has independent
momenta identically distributed as Z(dp) with
Jr@p)lpl=(Ipl) <=, [h(dp)p=0, then Spitzer (1969)
proves that ¢°(¢) converges to the Wiener process with
diffusion constant D = (| p|)*2p~*/2 as ¢ ~ 0. Inparticular,
in the limit the spatial part f(q, ¢) of the probability dis-
tribution of the Rayleigh particle is governed by the

diffusion equation

;,a—tf(q,t) =3DAf(g,t). (2.105)

An interesting, apparently open, problem is the ex-
tension of this result to the case M # m. If the distance
between fluid particles is still independent but no longer
exponential, then ¢°(¢) still converges to a Gaussian
process but with a covariance differing from the one of
the Wiener process (Major and Szdsz, 1979). Szisz
(1979) also studies the joint motion of two Rayleigh
particles inserted at different points in the fluid.
Scaling as in (2.104) he again obtains a Gaussian process
with possibly nontrivial dependence between the two
particles, depending on how their initial distance is
scaled.

There are some other results on the infinite equal
mass hard rod system on the line which, although not
directly connected to Markovian limits, I want to men-
tion briefly. The hard rod system has very good
ergodic properties: As before, the stationary mea-



Herbert Spohn: Kinetic equations from Hamiltonian dynamics

sure is spatially Poisson with constant density and

has independent momenta identically distributed

as h(dp). If all rods have the same length, Sinai (1972)
and Aizenman, Goldstein, and Lebowitz (1974) have
shown this system to be a K system; and if, in ad-
dition, zero momentum is excluded, then Aizenman,
Goldstein, and Lebowitz (1974) have shown this system
to be a Bernoulli flow. A system with a mixture of
hard rods of different lengths is a K system (Aizenman,
1975). The self- and total-equilibrium time corre-
lation functions have been computed by Jespen (1965),
Lebowitz and Percus (1967), and Lebowitz, Percus,
and Sykes (1968), for hard rods of equal length and by
Aizenman, Lebowitz, and Marro (1978) for a mixture
of hard rods of different lengths.

C. The hydrodynamic limit

For the limits discussed so far, a Markovian ap-
proximation was obtained by letting a certain physical
parameter (i.e., the interaction strength, the fluid
density, or the inverse mass) go to zero. Physically
one is interested in analyzing properties of the motion
of the tagged particle beyond these limiting situations
at constant interaction strength, fluid density, and
mass. Amazingly enough, in this situation there is
also a Markovian approximation, although of a some-
what more subtle nature than the ones before: For long
times one expects the spatial density of the tagged
particle to be governed by the diffusion equation. The
hydrodynamic limit is just the scaling appropriate to
destile this long-time behavior of the tagged particle.

Let us again use the simplicity of the Lorentz gas.
The intuitive idea behind the hydrodynamic limit is
that after a few mean free times the Lorentz gas is
already very close to local equilibrium, which means
that at each point in space the direction of the mo-
mentum is almost uniformly distributed, and that
subsequently the spatial density of this local equi-
librium state evolves slowly according to the diffusion
equation. For the Lorentz gas the diffusion equation
is all there is to hydrodynamics, since the only con-
served quantity is the particle number (different en-
ergies do not couple). ’

To motivate the scaling appropriate for the hydro-
dynamic limit and to provide some intuition we start
with a very simple and well-known stochastic model:
A particle travels on the real line. Its position is de-
noted by ¢(¢) and its momentum by p(¢), |p(¢)l =1. The
mass of the particle equals one. At every integer point
of the lattice there is a scatterer. In between scatter-
ers the particle moves freely. Whenever the particle
reaches a scatterer, it is transmitted with probability
1 —w and reflected with probability w independently
of its past history. If w is close to zero, the mo-
mentum of the particle is only rarely reversed and it
will travel straight for long time periods, whereas
for w close to one the particle stays almost at its
original position with continuous momentum reversals.

One can define something like a weak coupling limit
for this stochastic model. The probability of re-
flection is scaled as

w, =Ae ., (2.106)
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and time and space as

t,=€"t, q.=¢""q.

(2.107)

Equivalently, w, =€) and the scatterers are placed at
€z={...,-¢,0,¢g,...}. If ¢° (¢), p°(¢) denotes the mo-
tion scaled according to (5.1) and (5.2), then it is easily
verified that p®(¢) converges to p(¢), where p(¢) is the
jump process on {-1, 1} with waiting time A~! and

c7(t)=q+f0tds}5(s). (2.108)
A probability distribution evolves accdrding to
7@, b,6)==D * Vo fld, b, 1)
+M{fla, -p,0) - fla,p, 1)} . (2.109)

The idea of the hydrodynamic limit is to study the
long-time behavior of the spatial part of the motion for
Jfixed w. Since diffusion is expected, the motion is
scaled in such a way that the asymptotic mean-square
displacement

lim 7 3 385,((¢° () - 0)) =D(w) (2.110)

t—>o
is kept constant. The long-time behavior of the motion,
so to speak, is preserved under scaling (2.110). Since
by (2.110) the particle travels in a time span ¢ roughly
a distance ¢ 2, for long times, the appropriate scaling
is

£”2¢
q“(t)=q+af dsp(s), (2.111)
1]
or, equivalently,
a®(t)-q=¢lg(e™?)-q). (2.112)

Then ¢° (¢) jumps on the lattice £Z (the stepsize equals
€) €72 times per unit time interval. As is well known
from the symmetric random walk, such a situation
should lead to diffusion. Indeed, one can prove—e.g.,
with the methods described by Papanicolaou (1975)—
that independently of the initial momentum distribution
q°®(¢) converges to ¢°(t) as ¢~ 0, where ¢°(t) is Brownian
motion starting at ¢ with diffusion constant
Dw)=(1-w)/w. In particular, the distribution f(q,?)

of g(¢) is governed by the diffusion equation

57/, 1) = 3Dw)af(@, 1).

Also for the G(¢),p(¢) process the hydrodynamic limit
can be studied. Then (2.108) is scaled according to
(2.111) as

(2.113)

£72¢

Es(t)=q+af dsp(s). (2.114)

(¢} -
Then, in the limit £~ 0, §¢ converges to g° where
g° is Brownian motion starting at ¢ with diffusion
constant D =A"!, Thus, the long-time behavior of the
weak coupling approximation is the same as the long-
time behavior for finite w, although with the wrong
diffusion constant. Clearly,

lim £ D@w, ) =A"* =D (2.115)
£€—=0
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The weak coupling approximation, therefore, yields the
lowest nonvanishing order in w of the diffusion constant
D@w). This is a general fact to be discussed in detail
in the next section.

It is clear now how to proceed for the Lorentz gas.
For simplicity we choose a hard-core potential. The
Lorentz particle starts at ¢ with a certain momentum
distribution. The scatterer distribution is Poisson with
density p conditioned not to overlap ¢q. Since | p(?)] is
conserved, it is convenient to fix |p(¢)|=1=|p|. The

.other energies follow then by scaling of . The pro-
cess p(t) is a (non-Markovian) jump process on the
unit sphere, which is stationary for the uniform dis-
tribution on the unit sphere.

Because of the mechanical motion

t
q@)=q +f dsp(s), (2.116)
o
which as in the foregoing example is scaled as
e=2t
qﬂ(t)=q+8f dsp(s). (2.117)
)

Equation (2.117) defines the hydrodynamic limit. The
hope is that, independently of the initial distribution,
g% (¢) will converge to ¢°(t) as £— 0, where ¢°(¢) is
Brownian motion in three dimensions with diffusion
constant D. '

The initial velocity distribution should approach its
stationary distribution as { - <, Therefore the dif-
fusion constant D is defined by the asymptotic mean
square displacement starting at g with a uniform ve-
locity distribution

. tlf dp;f—,, 8(1pl - DE, (@) -q))=dD,  (2.118)
where d is the dimension of the space (usually d =3).
Using the stationary nature of p(¢), one obtains

D=2 ar [ apLollpl-DE., GO)-p),  (2.119)

o m
which is the well-known Einstein formula (Einstein,
1905). Equations (2.119) and (2.67) are examples of the
Green-Kubo formula which relate the transport coef-
ficient to the time integral over the corresponding
current correlation function.

To prove the hydrodynamic limit a necessary pre-
requisite is to show that the diffusion constant D is
finite, which by (2.119) means to show the integrable
decay of the velocity autocorrelation function. This
is an open problem. Series expansions by van Leeuwen
and Wejland (1967), and Wejland and van Leeuwen
(1968), mode-mode coupling arguments by Ernst and
Wejland (1971), and computer experiments by Bruin
(1972), by Lewis and Tjon (1978), and by Alder and
Alley (1978) indicate a long-time decay of the velocity
autocorrelation function as ¢™¢*%2*!) in d dimensions.

For a real fluid the analog of the diffusion equation
is the hydrodynamic equations of the Navier-Stokes
form. As is well known from the Chapman-Enskog
expansion, they already constitute the second-order
approximation in an expansion in terms of the mean
free path. The first-order approximation is the Euler
equations of a compressible fluid, which just reflect
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the conservation laws. For the Lorentz gas the Euler
equations are trivial, namely,

o /@, 1)=0. (2.120)
The corresponding scaling is

qﬂ(t>=q+sfos-ltdsp(s>, (2.121)
or, equivalently,

q, =€7'q, t =€, (2.122)

On this scale diffusion is suppressed. In fact, Nishida
(1979) shows that if the five hydrodynamic fields of a
Boltzmann fluid (the one-particle distribution evolves
according to the Boltzmann equation) are scaled as in
(2.122), then they converge to the solutions of the
Euler equations as £- 0.

We remark that for a higher density of scatterers
trapping may occur which will invalidate the diffusion
approximation altogether. Alder and Alley (1978)
studied this region in their computer experiments.
For the related wind tree models there are some
analytical results by Gates (1972a,b) and Aarnes
(1974). Lieb and Hauge (1974) use a Peierls type of
argument to show trapping for the Lorentz gas with
overlapping scatterers at high enough densities.

1. The diffusion approximation for the Lorentz gas with
a periodic configuration of scatterers

Bunimovich and Sinai (1979,1980) prove under certain,
purely geometrical, assumptions the validity of the dif-
fusion approximation (2.111). I want to explain here the
results without attempting to enter the complexity of the
proofs, see Sinai (1980) for a review.

One considers a certain configuration of hard disks on
a square with periodic boundary conditions, i.e. on a
two dimensional torus. (The results are, in fact, valid
for arbitrary convex scatterers). This configuration
has to satisfy:

(i) The disks do not touch or overlap.

(ii) Starting from any point of the square outside the
disks in an arbitrary direction, there is a uniform
upper bound on the time until the first collision (as be-
fore, speed one of the Lorentz particle is assumed).

One now repeats this elementary square periodically
over the whole plane and thereby obtains the Lorentz
gas with a periodic, fixed configuration of scatterers.
The simplest configuration satisfying (i) and (ii) we
could imagine is the following: The centers of the disks
with radius R,@a<2R <a, are located at the points of a
triangular lattice with nearest neighbor distance a. [If
2R <VZgq, (ii) is violated, and if 2R = q, (i) is violated.]
A stationary probability measure for the mechanical
motion on the torus with scatterers is the uniform spa-

‘tial distribution outside scatterers and the uniform velo-

city distribution. We denote this probability measure
by dqdp.

Sinai (1970) [see also the lectures by Gallavotti
(1975)] has shown that this system has very good
ergodic properties. The ergodicity of the system
alone implies the validity of the “Euler equation”
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€™l
qg(t)=q+sf ds p(s)~q (2.123)

0
as £~ 0 for dgdp—almost all initial conditions (g, p).

If the particle starts initially with the distribution
g(g, p) dqdp with differentiable density g(g, p) in the ele-
mentary square at the origin, then Bunimovich and
Sinai (1979) show that

£72¢

q‘(t):ef dsp(s)-b(t) (2.124)

o
as € — 0, where b(¢) is the two dimensional Wiener pro-
cess with diffusion matrix D. In particular, this re-
sult implies the existence of a finite diffusion constant
in the sense of (2.118) and the validity of the diffusion
equation in the following sense: If flg,¢) denotes the
spatial distribution of the Lorentz particle at time ¢,
given that it had the initial distribution g(g, p) dgdp in
the elementary square at the origin, then !

N |

quE}q,)

2
Fig,t) =e e g, e7%) ~ (27 detDf) "t exp (—
e

(2.125)

weakly as £ ~0. (g;,g2) are the cartesian coordinates
of g.

As an aside, I might note that according to Bloch’s
theorem a quantum-mechanical particle travels freely
in such a periodic potential.

D. The physical meaning of the weak coupling and
low-density limits

The hydrodynamic limit can be studied also for the
diffusion process corresponding to the linear Landau
equation (2.19) and the continuous random walk process
corresponding to the linear Boltzmann equation (2.28).
When these processes are scaled according to (2.117),
their spatial part ¢° (¢) converges to Brownian motion
in three dimensions with diffusion constants D, and D,,
respectively (Nelson, 1967; Papanicolaou, 1975). To
a large extent the success of the linear Landau and the
linear Boltzmann equations presumably comes from the
fact that these equations describe qualitatively correct-
ly the long-time behavior of the Lorentz gas, although
with the wrong diffusion constant.

The computation of the diffusion constants D, and
D, is straightforward, since p happens to be an eigen-
vector of the collision operator. For the linear Landau
equation one obtains

D, =(1/2n)|pl*/pa, (2.126)

with « given either by (2.16) or by (2.22) in the case

of a nonideal scatterer distribution. |p|3 results from
averaging over the uniform momentum distribution on
the sphere of radius |p|. For the linear Boltzmann
equation, when conservation of energy and the fact that
V is central are used, the differential cross section
can be rewritten as

ap’ o(p’|p) =(1/4n|p|2)s(| pl = [p' o p1(¢" + @),
(2.127)
with ¢’ =p'/|p’|, ¢ =p/|pl. Let
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1

a(‘P|)=1—%f duo,w)u>0, (2.128)

-1
with normalization [ *,du 0, () =2. [Note that for
purely forward scattering a(|p|)=0, since 0,,@) is
then concentrated at # =1, and that for purely back-
ward scattering a(|p|)=2, since 0),,() is then con-
centrated at # =—1.] Then the diffusion constant D,
for the linear Boltzmann equation is given by

D;=(1/2n%p)|pl/o(| p|).

Let us consider the Lorentz gas with a smooth
scatterer potential V. If the scatterer distribution is
Poisson with density p(g") =pe 7 *""9 then p(?)
starting at ¢ with Maxwellian distribution kg(p) is
stationary. Therefore, in a natural way, the diffusion
constant is considered as a function of V, p, and B,

(2.129)

9 (=
DV, 0,8)=32 [ atp@)-p(o)s, (2.130)

o
where ( )z indicates the average fdp‘ Ro(p)E,,»(+). If
hydrodynamics is valid, then

(@)= q)2s ~ 3tD(V, p, B)
for large ¢. :
Now scaling (2.131) according to the weak coupling
limit
(@° ()~ q)) s~ 3teD(¥2V, p, B) . (2.132)

As £— 0, the left-hand side converges to ((¢°(t) — ),
where ¢°(t) is the spatial part of the diffusion process
corresponding to the linear Landau equation, for which
it is known that ((¢°(t) — ¢)3 s~ 3tD,(p, B) for large ¢.
Therefore one expects that

(2.131)

lim £ D(2V, p, B) =D, (p, B)

€0

= [ a2l

2n0p” (2.133)

Thus the weak coupling limit describes the behavior
of the Lorentz particle at zero coupling, however
extrapolated from the region of small coupling in a
nontrivial (i.e., including the prefactor €£) way. Sim-
ilarly, one concludes that the linear Landau equation
gives the leading € dependence of other physical
quantities for small coupling strength gV,

The physical meaning of the low-density limit is
analyzed in the same way. Scaling (2.131) according
to (2.25), we obtain

((g® @)= a)*)s~teD(V, €p, B). (2.134)

By the same argument as before, one expects that

lim eD(V, ep, B) =D (V, B)

£—>0

_ |2l
= fdphe(p)m. (2.135)
Thus the linear Boltzmann equation describes the
motion of the Lorentz particle at zero-density non-
trivially extrapolated from the low-density region.

We summarize the situation by means of the following
diagram:
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D=

coupling
strength

region with "trapping"

D=®
density

linear Boltzmann equation .
. ) Markov process in q,p-space
linear Landau equation

diffusion equation Markov process in g-space

D denotes the diffusion constant

We should add a word of warning: For some models
the diagram may be completely degenerate. For ex-
ample, in the case of the two-dimensional wind-tree
model with overlap of scatterers allowed, van Beijeren
and Hauge (1972) argue that, because of the formation
of paths which almost retrace themselves, the mean-
square displacement grows more slowly than {. Their
result is confirmed by a computer study of Wood and
Lado (1971). This means that for this model D always
equals zero. Despite this fact, the linear Boltzmann
equation can be derived in the low-density limit and
will predict a finite diffusion constant.

E. The problem of the existence of transport coefficients

The proof of the existence of finite transport co-
efficients is one of the outstanding problems in non-
equilibrium statistical mechanics. For ideal sys-
tems, i.e., ideal fluids, and ideal crystals, the trans-
port coefficients, such as thermal conductivity and
diffusivity, are infinite (Rieder, Lebowitz, and Lieb,
1967; Casher and Lebowitz, 1971). The one-dimen-
sional Rayleigh gas has a finite diffusion constant
(see Sec. II.B.4). An impurity in a one-dimensional
harmonic chain with nearest-neighbor coupling has a
finite diffusion constant (see Sec. IV.A). For a one-
dimensional harmonic chain of length L with random
masses, the thermal conductivity grows as VL
[Papanicolaou (1976); Verheggen (1979); see also
O’Conner and Lebowitz (1974) and O’Connor (1975)].

A real breakthrough was the proof of Bunimovich and
Sinai of the existence of a finite diffusion constant for
a two-dimensional Lorentz gas with a periodic con-
figuration of scatterers (see Sec. II.C.1).

As pointed out in the previous section the existence of
a finite diffusion constant for the Lorentz gas is equiva-
lent to an integrable decay of the velocity autocorrela-
tion function. Another way to attack the problem is to
use a kinetic definition of the diffusion constant (Lebo-
witz and Spohn, 1978). The idea is to choose a set-up
as in an actual diffusion experiment. We consider a
slab of height L in the g, direction and infinitely ex-
tended otherwise. The slab is filled with scatterers
which are distributed according to a Poisson distribu-
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tion with density p. Outside the slab there are no
scatterers. At the bottom wall there is a constant
incident flux of Lorentz particles with isotropic mo-
mentum distribution (1/4a| p|2)6(|pl - [p’|)dp’. The
Lorentz particles diffuse through the slab. Some of
them will leave the slab at the top wall, some of them
at the bottom wall. [In a more mechanical picture,
one could imagine the half-space g, < 0 filled with an
ideal gas of density p and with an isotropic momentum
distribution (1/47|p|2)5(| p| - |p’|)dp’. For a fixed
configuration of scatterers the system then would
evolve according to Hamiltonian dynamics.] In the
steady state, which is reached in the limit as ¢ — =,
there will be a steady flux j(L) of particles from bottom
to top wall depending on the height L of the slab. By
Fick’s law

j(L)=(@1/L)D

for L sufficiently large compared to the mean free path.
Experimentally, (2.136) defines the diffusion constant.
In the case of hard-sphere scatterers there is an
intuitive expression for the steady state. Let p/|p| =¢
and let d¢ be the normalized surface measure of the
sphere S? in three dimensions. Let Pabs(g, ¢; L) be the
probability for the Lorentz particle to reach (in other
words, to be absorbed at) the bottom wall, given that
it started at ¢ in direction ¢. If initially g was over-~
lapped by a scatterer, the probability of the Lorentz
particle’s being absorbed is zero. Then the steady
state f(q, ¢)dgd¢ (density 5 of the incident flux) is given
by

fla, )dgdo =Pavs(q, —¢; L)dgdo . (2.137)

By translation invariance of the Poisson distribution,
f(g, ¢) is independent of ¢, and q,, q =(¢4,4,,4;). (A
similar expression holds for a smooth scatterer po-
tential. Again the basic quantity which enters is the
probability of the Lorentz particle to be absorbed at
the bottom wall, given that it started at ¢ with mo-
mentum p.)

Therefore, the steady-state current j(L,R, p), de-
pending on the radius R of the hard sphere scatterers
and on their density p, at the point g through a cross-
sectional area parallel to the 1-2 plane is given by

(2.136)

iR, 0) =18l [ docosoPinte,~930),  (2.138)
where ¢, is the component of ¢ in the g, direction. By
conservation of mass and by symmetry of the Poisson
distribution, the steady-state current is independent of
g. Therefore, setting ¢ =(q,,4,, L) in (2.138), the
steady-state current is just proportional to the proba-
bility of getting all the way through the slab—as ex~-
pected. The diffusion constant D(R, p) is then kinetically
defined by

D(R,p)=lim Lj(L,R,p). (2.139)
L —»>®

Clearly, the problem is to show that the limit (2.139)
exists and that it is different from zero and infinite.
Basically, one has to get a handle on the absorption
probabilities for a non-Markovian process. This is
a poorly understood subject, and it should be no
surprise to learn that the existence of the limit (2.139)
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is an open problem. Physically, one would like to
argue in the following way: Divide the slab into N
horizontal layers of constant thickness L/N. Roughly,
if the Lorentz particle is in the layer ¢, after a typical
mean time interval, it will have an equal probability
of being in either the layer ¢ +1 or the layer ¢ — 1. Be-
cause of long-range dynamical correlations-this will
not be strictly true. There will always be some mem-
ory left. In any event, roughly, the Lorentz particle
performs a symmetric random walk for which it is
well known that the probability of a particle’s being
absorbed at ¢ =1 before reaching ¢ =N, given that it
started at ¢, is (N—¢ — 1)/N, which gives the desired
1/L dependence.

For fixed height L the diffusion current j(L,R, p)
close to the Boltzmann-Grad limit was investigated
by Lebowitz and Spohn (1978). This is a nontrivial
problem, since the time of absorption is unbounded,
whereas convergence of the process always involves
a largest, although arbitrary, time. One finds the
expected result, namely, that under the scaling
(2.26),

lim ](L’ ER, Sdzp) :j(L,R)

£—>0

(2.140)

exists and that j(L, R) is the diffusion current computed
with the same boundary conditions as before, but with
the dynamics of the Lorentz particle inside the slab
governed by the linear Boltzmann equation. Further-
more, Aizenman and Spohn (1979) prove that

; _ ol 1 L)]

jm=g2sLlio(L)],
i.e., for the linear Boltzmann equation the limit (2.139)
exists and the kinetically defined diffusion constant
coincides with the one defined by the Green-Kubo
formula. For a fixed interval [L,, L,], p"* < L,, one
can choose &€ small enough (and p, =£7%p) such that for
L,<L<L,, Fick’s law of diffusion is satisfied to
within an error €. Experimentally, so to speak, the
result is fine. However, the interchange of the limits
L -~ and £—~ 0 has not been proved. In principle, there
could be a nonuniform dependence on L.

Using the kinetic definition of the diffusion constant,
it can also be argued that physically the Boltzmann-
Grad limit indeed corresponds to a low-density situa-
tion. If Fick’s law of diffusion is valid, then according
to (2.139),

(2.141)

J(L,R,p)~D(R, p)(1/L), (2.142)
which under the scaling (2.25) becomes
j((1/€)L, R, ep) ~D(R, ep)e/ L . (2.143)

By (2.140), where an equivalent scaling is used,

. .f1 . D; 1 1
llm](-éL,R,sp) =](L,R)=R——;-Z[1+O<-ﬁ)]. (2.;44)

€0
Therefore, one expects that

lim e D(R, £0) = =30, , (2.145)

E—>0

which is the result obtained already in (2.135).
The kinetic definition of the diffusion constant im-
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mediately poses the problem of whether it yields a
result identical to the one obtained from the Green-Kubo
formula. We have not been able to settle this question
by means of simple formal manipulations. In our
opinion, the equivalence of the two definitions is just
another facet of the hydrodynamic limit. If g% (¢) in
(2.117) converges in a sufficiently strong sense to
Brownian motion, then one would also expect that the
absorption probabilities of g¢(¢) are close to those of
Brownian motion which are known to behave as 1/L.

F. Fluctuations

So far we have studied average (with respect to the
distribution of scatterers) properties of the Lorentz
particle. However, many results should in fact be
true for a typical configuration of scatterers. This
also corresponds more closely to the physical situa-
tion, where one thinks of one typical configuration of
scatterers being realized, say, by the impurities of
a crystal. The averaging over scatterer configurations
is then just a device to obtain typical properties of
the Lorentz gas. An example is given by the mean
field limit: If we choose a sequence (¢,,...,qy) of
scatterer positions such that

N
+2ra)- [ rawan)

as N— « for all continuous functions f, then in the
limit e~ 0, N =¢~!, the motion of the Lorentz particle
is governed by the linear Vlasov equation (2.47) (cf.
Theorem 2.5). Here we want to discuss two other
examples.

The first one can be extracted out of Braun and
Hepp (1977). In Sec. II.A.6 it was shown that in the
mean-field limit

q* ()~ q(), p*@)=p(t)

in probability as £€— 0, where ¢(t),p(t) are the solutions
of (2.47) with initial conditions ¢,p. Let us consider
the fluctuations of position and momentum around their
deterministic path ¢g(¢),p(¢), i.e., the “fluctuation
observables”

5@t =e2@" ) - q(t)),

n () =" Y2(pe () - p(2)).
Let ‘

£5 (xa) = €¥2[n(A) = ¥ (n(A))]

be the fluctuations in the number of scatterers in A.

In addition to the assumptions of Theorem 2.5 we as-
sume that £° (xa) converge jointly to a Gaussian process
with mean zero and covariance kernel 7,(dg,dg’). In
particular, for the covariance

(2.146)

(2.147)

(2.148)

lim kS (€ e )= [ 7,(dg,da"). (2.149)
£—0 AXA’'

Furthermore, the scatterer potential ¥V should be four
times differentiable with uniformly continuous deriv-
atives. Then in the mean-field limit

as a process. &(t),n(t) is a Gaussian stochastic process
defined as the solution of the stochastic differential

(2.150)
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equation

d
=7 E@) =n(),
a (2.151)

Z 10 =AGEED w0 (@),

with initial conditions £(0)=0, n(0)=0. A(q) is the
matrix with matrix elements

A0 =50, @ == [ a0 gV )@=,

(2.152)

q=(9,,49,,95)- w() is a Gaussian stochastic process
with mean zero and covariance

@iOwe) = [ v,da’,dg" i) )

X Fi(q(s)=q"), (2.153)

i,j=1,2,3. For small £, we may set heuristically
¢ ) =aO)+ L), pEO)=p(t) +e¥ (). (2.154)

The fluctuations around the deterministic path are
Gaussian with a tendency to spread in the course of
time.

Our second example refers to the Lorentz gas in the
low-density limit. We consider hard-sphere scatterers
with Poisson distribution conditioned on the Lorentz
particle being located at ¢. The initial distribution
of the Lorentz particle is g(x)dx =0,k(p)dp with the
momentum distribution being absolutely continuous
with respect to Lebesgue. For a bounded and con-
tinuous observable f, the mean

6°:q~ [ sttt (-1, %, Q) (2.155)
is considered as a random variable on the space of
configurations. Then the distribution of G® tends to
a 0 function in the limit £~ 0.

Proposition 2.9: Under the assumptions of Theorem
2.2 and Corollary 2.4,

lim G® =fdxf(x)g(x,t) (2.156)

€0
in probability. g(x,t) is the solution of the linear
Boltzmann equation (2.28) with initial conditions g.
Proof: We have to show that

lim f dp ap’ h(p)n(p’)u® (dQ)
E—>0
xf(E(t,qa,p, QN W, a,p',Q))

=[fdxf(x)g(x,t)]2. 2.157)

Equation (2.157) is regarded as coming from a Lorentz
gas with two particles both starting at ¢ but with dif-
ferent momenta p and p’. In principle, one should now
repeat the proof of Theorem 2.2. If p #p’, then one
considers paths for which each collision comes from a
separate scatterer, Since the fluctuation in the number
of scatterers vanishes, the motion of the two particles
becomes independent and this contribution converges
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to E, » (FXENE,,,  (f(X(2))) ase~ 0. [X(¢) is the sto-
chastic process corresponding to the linear Boltzmann
equatijon.] By normalization the contribution of the re-
maining paths has to go to zero. Since the set {p =p'}
has dp dp’'-—~measure zero, the assertion follows by
dominated convergencenm

Close to the limit, up to an exceptional set of small
measure, all configurations yield practically the same
result as the linear Boltzmann equation. Note that the
motion of the Lorentz particle is deterministic for a
fixed configuration of scatterers, whereas the motion
is stochastic for the linear Boltzmann equation. How-
ever, with regard to expectation values over some
absolutely continuous initial momentum distribution,
there is practically no difference. A specific example
is the diffusion current discussed in the previous
section [for which the same fluctuation result is proved
in Lebowitz and Spohn (1978)]. For small densities,
the diffusion current j(L, ¢R, £"%p, @) for a fixed con-
figuration @ is practically the same for most config-
urations. The current fluctuates only very little
around the diffusion current j(L, R) computed from the
linear Boltzmann equation.

1. INTERACTING PARTICLE SYSTEMS

A. Nonlinear Markov processes

An interacting particle system is specified by its
Hamiltonian

H= Y 5%+ 2 V(g —q;) .
j=1 i<j

(¢;,p;) =x; stands for the position and the momentum of
the jth particle. The mass of a particle is set equal

to one. V. #0 is a central, twice continuously dif-
ferentiable potential of finite range. Since, as for the
Lorentz gas, the potential will be scaled later on,

have already introduced here the scaling parameter €.
The system is assumed to be enclosed in the bounded
region A with smooth boundary 8A. (Under some cir-
cumstances it may be desirable to admit an unbounded
region A. The infinite volume limit would have to be
discussed separately.) It turns out to be convenient not
necessarily to fix the number of particles. Then the
classical phase space is I'=U,, (A XR®%". A state of the
system is described by a probability measure on I'.
The initial state of the system is denoted by K®, where
the scaling parameter € is introduced here already for
convenience. The solutions of Hamilton’s equation of
motion with Hamiltonian (3.1) and specular reflection
at 8A define the evolution of the jth particle

t—~ xf (t’x) = (qf(t,x),pf(t,x)),

depending on the initial condition x = (x,, ..
and on € through V.

On a macroscopic level, physically one is interested
in the average number of particles in an arbitrary cell
ACAXR? at time ¢. In other words, the object of in-
terest is the time-dependent one-particle correlation
JSunction pE(x,,t), defined by

(3.1)

3.2)
LX) ET

[ a5, 0= [ w@oma, e (3.3)
A r
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for all Borel sets A CAXR?3, where n(A,t) denotes the
number of particles in A at time ¢{. [In general,
P%(x,,t)dx, is a measure on A X R3] Of course, for
various quantities the two-particle correlation function
will be important. Also, instead of studying the aver-
age number of particles in A at time ¢ one may ask for
the actual number of particles in A at time ¢t. All these
refinements will have to be discussed later on.

Let us adopt the point of view of veduced dynamics.
For a given initial one-particle correlation function
P%(x,) we simply assume that the system is completely
uncorrelated, i.e., that the correlation functions of the
initial measure are

psy, -y x) = [T Po ) . (3.4)
J1=1
At a later time, of course, correlations will build up.
But the evolution

St:pfx)—~pLlxy, 1)

is well defined for any initial p¢. S} preserves posi-
tivity and normalization. However, in contrast to the
Lorentz gas, S§¢ is nonlinear. i

With the same reasoning as for the Lorentz gas we
adopt the following scalings:

(i) Weak coupling limit,

Velq) = €2V (q/€) ,

(3.5)

(3.6)
PEx ) =7 (x) ;
(ii) Low-density limit,
Ve(9)=V(q/¢),
(3.7)
- PE) =€ (x,);
(iii) Mean-field limit,
V(@) =¢V(qg),
(3.8)

Pilx)=€e"Y(x,).
Therefore, also at time ¢, p&(x,#)~ e ¥(v=1,2,3). One
then expects that

lim €%p% (x,, 8) =7 (x, £) = (S7)(x,)

£€—>0

(3.9)

exists and that the change of the limiting scaled one-
particle correlation function 7 (x , ) should depend only
on the present one-particle correlation function,
%r(xl, )= (L), 1) . (3.10)
L is a nonlinear operator and S, should be a semigroup
of nonlinear transformations. On general grounds, L
has to be quadratic and has other properties which to
elucidate is one of the objectives of this section.

For system + reservoir models it turned out to be ex-
tremely useful to study the probability distribution of all
possible histories of the tagged particle. Here we try
to adopt a similar point of view for an interacting parti-
cle system. (A different approach will be discussed in
Sec. III.E.) Physically, we will study the dynamics of
the system of particles through the collection of all its
time ~-dependent self-correlation functions.
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Let © be the space of all possible paths
t- @@),pE)EAXR. The motion of the jth particle
t— xf(t,x) defines a path in . For any given initial
conditionx =(x,,...,x,) & I', one has then n distinct
paths in 2, one for each particle. We define a measure
P% on © by giving weight one to each one of the x paths.
The process corresponding to the probability measure
(1/%)P®) is denoted by X*(f). Clearly, X® () is deter-
ministic. For every initial x € I" its time evolution can
be reconstructed from X* (t) immediately. The analog
of X®) (1) for the Lorentz gas is the motion of the
Lorentz particle for a fixed configuration of scatterers.
X" (t) is, so to speak, one possible history of the inter-
acting particle system.

We define a probability measure P? on Q by averaging
P% over all initial configurations

Pe= <[dxlpf(xl))-lj; WS (dx) P

Since [Kf(dx)P® (@)= [dx,pS(x,) by definition, P® is
normalized to one. The process corresponding to the
probability measure P¢ is denoted by X ®(t). (This is
the analog of averaging over all configurations of scat-
terers in the case of the Lorentz gas.)

The significance of the process X°(t) is the following:
The single time distribution

(3.11)

Pa(XE(t)EA)=<fdxlpi(xl))_lfA dx, pS(e,, ) (3.12)

is the (normalized) one-particle correlation function,
the quantity of central interest. [The analogy to the
Lorentz gas should be clear. There P{(X°(l) € A) also
defined the reduced dynamics.] The multitime distribu-
tions

PUXEU)EA,, ..., X (L) EA,) (3.13)

give the probability of finding the same particle at
timef,inA,,..., at time {,inA,. This is just the
definition of the time-dependent self-correlation func-
tions.

If X®(¢) is conditioned to start at y € A X R?, then

P | X5(0)=y) (3.14)

describes the motion of a test particle (which has the
same physical properties as all the other particles)
immersed in the fluid, where the test particle starts
at y and the fluid has the distribution u® conditioned on
one of the fluid particles being located at y. For ex-
ample, if » is fixed and ué=f(x,,...,x,)dx,...dx,, then
an arbitrary fluid particle is picked as a test particle
and initially fixed at y and the remaining (z — 1) fluid
particles have the initial distribution

f(y:xlp L ':xn-l)dxl- . .dx,,_l
1

><(fdxl...d.oc,,_l f(y',...,x,,_l)>_ .

The motion of a test particle in a fluid was studied
all the way along in Sec. II. Here, the fluid is inter-
acting and initially not in thermal equilibrium. But the
reasoning from Sec. II should carry over. One expects
that the scaled process X°¢(¢) with measure
Pe(- | XE(0)=y) will converge to a Markov process X (t)
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as ¢~ 0. However, the limiting Markov process will be
nonhomogeneous in time, since the fluid evolves by it-
self. In Sec. II the forward equation of the limiting
Markov process depended linearly on the scaled one-
particle correlation function of the scatterers. Assum-
ing the same behavior here, the limiting Markov pro-
cess X(t) should be governed by the forward equation
23, 0= Ly 5, ). - (3.15)

L, is a linear operator acting on f depending itself
linearly on the scaled limiting one-particle correlation
function 7(¢) of the fluid.

How does 7(t) itself develop in time? This is easily
answered by noting the identity

PEXE(t+T)EA)= fdyps(XE(tw)EAlxs(t):y)

XPEXE()=y).

Inserting (3.12), we obtain
s"f dx, PE(x , t+7)
A

=&"fdyP5(X5(t+'r)€AIXE(t)=y)P§(y,t). (3.16)

By (3.9), €'p§(x,,t+T) converges to »(x,, t+7), whereas
the right-hand side of (3.16) converges to
fA dx f(x,,t+7), where f({ +7) is the solution of (3.15)
with initial conditions 7(¢) at time ¢{. Taking the deriva-
tive at 7=0, one obtains the evolution equation
L () =L =L (). (3.17)
If the test particle has the same initial distribution as
all the other fluid particles, then (3.15) yields the non-
linear evolution equation for the one-particle correla-
tion function.

The structure just uncovered was studied on an ab-
stract level first by McKean (1966, 1967) and called by
him a nonlinear Mavkov process. This is a process
in which the transition mechanism depends on the pres-
ent state of the system itself. Since the understanding
of this structure is of some importance, let us depart
for a while to the abstract setting.

To avoid measure theoretical complications, let us
choose a process X (¢) with finite state space S. The
path space © then will consist of all right continuous,
piecewise constant functions from R, to S with a finite
number of jumps in any finite time interval. A Markov
process P on Q is defined by

PX(t+71)=x|X(s),s<t)=PX(t+7)=x|X@1)

for allx& S and any ¢, 7= 0. The Markov processes
usually encountered are really a family of Markov pro-
cesses {P,|x € S} having the following structure. To
each x €S there exists a Markov process P, with

(3.18)

P,(X(0)=y)=0,, (3.19)
(the process starts at x) and
PX(t)=2|X(s)=y)
=P,(X({t+1)=2|X(s+7)=y) (3.20)
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forall x,y,z€S, 0<ss<s/{; 720 (homogeneity in time).
The transition probabilities p,(y|x) are defined by

P:(ylx) =P, X (t) =)
and satisfy, by Eq. (3.20), the semigroup property

(3.21)

Derrep@lx) = yZe)SpQ(zw)ptl(ylx) . (3.22)
The (forward) Markov semigroup S, is defined by
SN = Z Ppelx) F) (3.23)
on £(S) and can be written, by (3.22), as S,f=e"’.
As is well known, L has the structure
(LF)6x) = 5;3 O (| 9)F () = W (v ), (3.24)

where W (y|x) = 0 is the transition probability per unit
time from x to y. Conversely, if L is of the form
(3.24), then (e“*f)(y) =20, p,(y|x)f(x) defines transition
probabilities from which the measure P, is build up by
the Chapman-Kolmogorov equations as
P.X(t)=x,,...,X(t,)=x,)
=Ptn—tn_l(xnlxn—1)' * 'ptl(xllx)' (3'25)

A nonlinear Markov process on  is again a family
of Markov processes {P;}, but is now indexed by
probability distributions fon S [i.e., f(x) = O,Z,esf(x)
=1]. P; has the properties

Py(X (0) =x)=f(x) (3.26)
(the initial distribution is f) and
PLX (1) = yIX(s) =x)= P, (X(t — ) =p|X (0) =x)  (3.27)

(homogeneity in time) for all x,yE S and 0< s< ¢, where
(S f)x)=P,X(t)=x). (3.28)

Let me explain the meaning of (3.27). The distribution
of the system (= fluid) evolves as f—S,f. If the initial
distribution of the system is f, then the probability of
reaching y at time ¢, given x at time s (for a test parti-
cle to reach y at time #, given it started at x at time s),
equals the probability of reaching y at time ¢ -5, given
x at time 0, provided the initial distribution of the sys-
tem is corrected to S, f. S,f satisfies the semigroup
property

(S;lstzf)(x):Ps tf X(t,)=x)
= 2 Pe X(0) =x1X(0) = )51, 0)
= 2 P+ 1) =3IX (1) = ) P (1) =)

=Pp(X(t, +1) =x)= (Szlwzf)(x), (3.29)

where the Markov property of P, was used in the last

step. However, S; is in general nonlinear. Formally,
one can still write

d

;l'i'stszStf: (3.30)

where L is a nonlinear operator on £(S). However,
from (3.30) alone, one cannot recover the nonlinear
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Markov process. To a nonlinear forward equation one
can associate many nonlinear Markov processes. What
is needed is the forward equations for each P;. Clearly,
if in addition

P, = };s P, f(x)

is assumed, then one is back to the familiar (linear)
case described before.

The simplest example of a nonlinear Markov process
is provided by the Carleman equation (Carleman, 1957).
In that case, S=(-~1,1), and the forward equation for
P, is

(3.31)

5780, 0= (U, 1) +16, D) (g(=x,0 =gl 1), (3.32)
where f(x, t) is the solution of
3710, 0=, ) +f=x%, V=%, 0 =06, 1), (3.33)

with initial condition f(x). The formal analogy with the
(spatially homogeneous) Boltzmann equation is of course
no coincidence, since (3.33) was meant as a simple
model for understanding the structure of the latter.
[The illuminating article by McKean (1975) is strongly
recommended. There the main point is a study of hy-
drodynamics for the Carleman equation. This is the
nonlinear analog of the problem discussed in Sec. II.C.]

Let me summarize where we now stand: We consider
an interacting particle system characterized by its
interaction potential V, and with initial state U® corres-
ponding to the correlation functions {pZ|n= 0}. The po-
tential and the initial states are scaled as (3.6), (3.7),
or (3.8). Then to each » = 0 the process X(i) (t) with path
measure P¢) is constructed as above. One expects that
weakly on 2,

lim P(f)=PT >

€0

(3.34)

and that the collection {P,|» = 0} will form a nonlinear
Markov process. In other words, the processes X(i) ®)
should converge to a nonlinear Markov process as
e-0.

B. The Landau equation

Landau (1936) studied a weakly coupled gas in order
to understand the evolution of a plasma and arrived at
an equation for the one-particle density. An excellent
source on the Landau equation is the books by Balescu
(1963, 1975).

From our experience with the Lorentz gas and from
what I will say about the Boltzmann equation in the
following section, the way to proceed is rather clear.
One chooses a sequence of initial states uf such that
their density increases as £ (¢™% in d dimensions) and
such that they are essentially uncorrelated, i.e., such
that the nth correlation function of u® satisfies

lim &*'pg (xl,...,xn)=nv(xj). (3.35)
J=1

£—0

HE evolves according to the dynamics given through the
Hamiltonian (3.1) with potential £/2V(g/€). Then the
correlation functions {pg(¢)|n > O} of u&(t), the time
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evolved measure at time £, should satisfy

EOES ) EC
J=1

7(x,t) is the solution of the Landau equation

lim €%p¢(x,, . (3.36)

£—>0

S 7@ 0, 1) ==V, 7 (6,5, 1)
3
_ — ) _
d , ,t( - - > 2Dt
+ [ dbr@5 0 X 5praite =)@,

+ fdir(q,ﬁ, £)
3

9 — 0
X(i,;n é},‘;Dij(P —P)a_';j')r(q,lb,t) (3.37) .

with initial datum 7(g,p), where D;; is the diffusion
matrix (2.20) and q; is the drift term,

a;(p)=-ap;/Ipl®.

The Landau equation has properties which formally
are similar to those of the Boltzmann equation; in
particular, the usual Htheorem is valid and the Max-
wellians are the only stationary solution of the collision
term.

The evolution of a test particle in the fluid is
governed, in the weak coupling limit, by the linear
Landau equation

(3.38)

3
S @b, )= {-p v+ [ @rah (2 5 a -7)

+ [dpra.5,0

3
X(Z 5270“@ —5)537)}f<q,p,t>.

ig=1
. (3.39)

(3.39) together with (3.37) has the structure of a non-
linear Markov process.

The Landau equation seems to be rather neglected
in the mathematical physics literature; in comparison
to the Boltzmann equation, at least, it is rather sur-
prising how little is known rigorously about it. To
my knowledge, one of the few results is the proof of the
existence and uniqueness of the solution of the spatially
homogeneous Landau equation in a finite time interval
by Arsen’ev and Peskov (1978).

C. The Boltzmann equation

In 1872 Boltzmann introduced an equation, later to
bear his name, which describes the time evolution of
the one-particle density of a dilute gas. The Boltzmann
equation is still the cornerstone of the kinetic theory
of gases. From the beginning the problem of the rela-
tion of the Boltzmann equation to the underlying dy-
namics was pressing. [The Ehrenfest article (Ehren-
fest and Ehrenfest, 1911) gives a vivid account on the
conceptual difficulties raised by the irreversible char-
acter of the Boltzmann equation.] On a formal-level,
Grad’s careful analysis (Grad, 1958) seems to be the
most satisfactory answer. He also introduced the limit
in which the Boltzmann equation becomes exact. The
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close relationship between the full BBGKY hierarchy
for hard spheres and the Boltzmann equation was
pointed out by Cercignani (1972). Lanford, 1975, gave
a proof that, for short times, the solutions of the
BBGKY hierarchy converge to the solutions of the
Boltzmann hierarchy. This is one of the gems in the
field. We will give here only a short summary em-
phasizing certain aspects. The reader is urged to con-
sult the articles by Lanford (1975, 1976a) and the thesis
of King (1975).

1. Convergence of the solution of the BBGKY hierarchy
to the solution of the Boltzmann hierarchy

We consider a system of hard spheres of diameter ¢
and unit mass inside a bounded region A with smooth
boundary dA. [The restriction of A being bounded will
be lifted below. The results referred to later on extend
to positive potentials scaled as V. (q) =V (g/€) with cer-
tain regularity properties (King, 1975).] The number
of particles is not necessarily fixed. So the classical
phase space is I'=U,., (A X R%". Not all points of the
phase space can be realized because of the hard-core
exclusion.

The spheres (particles) are elastically reflected
amongst themselves and at the boundary 8A. For pair
collisions and collisions with the wall the dynamics
are thereby well defined. For grazing collisions and
triple and higher collisions the dynamics simply re-
main undefined. Alexander (1975) has shown that the
(complicated) set of initial phase points which lead to
such higher collisions at any later or previous time is
of Lebesgue measure zero. Therefore, if the initial
distribution of hard spheres is absolutely continuous
with respect to Lebesgue, such exceptional sets are of
probability zero and can be discarded.

Let the initial state U® of the system be specified by
the absolutely continuous probabilities of finding exactly
n particles at dx,- « - dx,, {f,(xy,...,%,)

X (1/nY)dx,* + + dx,|n=0}. The scaling parameter € has
already been introduced for convenience. Then the
correlation functions {pZ|n > 0} corresponding to this
state are defined by

— 1
E(X,yeen,Xp)= —f dy,* * At pem
pn( 1 n) mzzo m! (AXR3)’" yl y f +

»Xny Vys oo Vm) - (3.40)

The time evolution of a state of the hard-sphere sys-
tem is studied by means of the time evolution of the
corresponding correlation functions. A straightforward
computation which is, however, nontrivial to justify
rigorously (Cercignani, 1972; Lanford, 1978) leads to
the following evolution equation:

XXy ene

9
apf(xly ""xmt)=H§pr?(x1: "';xmt)

n
+82{Z LS dPle dU:CG'(pn+1_pn)
=1 52
X PE (K gy e e ey Xny 0+ EDy Pru 1y t)} .
(3.41)
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Here & is a unit vector in R® and d® the surface mea-
sure of the unit sphere S? in three dimensions. H
describes the evolution of » hard spheres of diameter ¢
inside A. (11.2) is the BBGKY hievarchy for hard
spheres. The solutions of the BBGKY hierarchy are
denoted by

p?cl(x_l’ e ’xn’ t)—__(VEpE)Yl(xl7 .. ’)x")

for the initial vector of correlation functions
pE= (P, PE, .. .).

At this stage we can formally lift the restriction that
A has to be a bounded region. So A may be, for ex-
ample, a slab or the whole three-dimensional space.
It is also clear that specular reflection at 8A is only
one choice out of many possible boundary conditions;
we could consider, for example, a stochastic boundary
condition at 8A corresponding to a wall with a certain
temperature. All these boundary conditions would be
included in the definition of HE.

We want to study the low-density (Grad) limit of the
solutions of the BBGKY hierarchy. The hard-core
diameter was scaled already as €. As for the Lorentz
gas, the density of particles should then increase as
€72, (On this scale the mean free path ~ £2¢~2 remains
constant, whereas the volume occupied by spheres
~ %72 tends to zero as £~ 0.) Therefore for each
hard-sphere diameter € one chooses an initial state
with correlation functions p¢ such that pg ~ £~2", With
this in mind, we define the »escaled correlation func-
tions

(3.42)

VEW oo, X)) =EPPE (X, vy x,) . (3.43)
Then (3.41) reads

d

E”f(t)=H57’f(t)+cﬁ,n+ﬂ’fﬂ(t), (3.44)

where the collision term in curly brackets is abbrevi-
ated as Cg ,.,. Regarding the sequence {rZ|n=> 0} as
vector 7¢ one can write (3.44) compactly as

—d%—rs(t):HWE(t) +CEre(), (3.45)
where H¥® is a diagonal matrix with entries H¢ and C*
is a matrix with entries C; .., and zero otherwise.

Let us consider H® as the unperturbed part of the
operator H®+C® and C®¢ as the perturbation. The time-
dependent (Dyson) perturbation series for the solution
of (3.45) then reads

re@)= 2 f iy~ -+ dt,SE(t —t,)
m=0 Jo=t,=: -+ =ty=t

XCE« -« CESE({,)re, (3.46)
where ¢ stands for »£(0), and where (S¥(¢)7¢),
= (9”8‘78),‘=e”'§ v gives the evolution of #» hard spheres
of diameter € inside A, always including the specular
reflection at 8A. Solutions of the BBGKY hierarchy are
always understood in the sense of (3.46). Of course, one
has to say in what sense (3.46) converges.

To see what the formal limit £~ 0 of (3.46) should be,
let us consider the typical term
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SE(S)CF e SEWI Sy (3.47)

with ¢, s >0. Expression (3.47) describes the evolution
of » hard spheres for a time s, adjoining the (z + 1)st
sphere with momentum p,,, and position such as to
touch the jth sphere, the evolution of #» + 1 spheres for

a time {, and finally the sum over allj=1,...,n,
momenta p,,, and possible touching points g; +£&. Be-
sides the possible collision at time s at the point, where
the jth and (z + 1)st sphere are joined, other col-

lisions may occur. These are, however, of zero
probability in the limit € — 0 and (3.47) converges to

S(S)C"’”+lS(l‘)’rn+1 » (3.48)

where S(f) is the free motion including specular reflec-
tion at the boundary and

(C,,_,,+1’)’"+1)(x1, e xn)

= 2 [ APy 1B & '(pj _pn+1)
T=L @ (pj=pp41) =0

csGisDisees ?qj’p;H-L)
3 @D )} (3.49)

S T TP

- n+1(x1)' .. ’qjypj,' .

pj,P )+ are outgoing momenta to the incoming momenta
D jsPp+y and momentum transfer in direction &@. There-
fore, formally, as € -0 (3.46) goes over to

7(t)=mf:=o ’/0.

St S

dt,«-dt, S(t-t,)

=t, st

XCe++CS(t)7. (3.50)

Differentiating (3.50) with respect to £ one obtains the
Boltzmann hievarchy for hard spheres

9

giyn(xl’ ooy Xy t)

== i.pj'vqjyn(xl" .- ,x;,,t)
Jj=1

+ (Cn,n*‘llyyﬁl) (xl’ oo ’xn’ t) . (3'51)

—pj-qu includes the specular reflection at oA.
For #<0 the same reasoning leads again to (3.51),
but with the sign of the collision term reversed.
To prove (that 7°(¢) defined by (3.46) indeed converges
to 7(¢) defined by (3.50) as € -0 we need two conditions.
First, the initial correlation functions 7€ have to be
bounded uniformly in €. This guarantees the uniform
convergence of the perturbation series (3.46) for some
interval |¢| < ¢, [Heuristically, the finite radius of con-
vergence comes from the following fact: For =1, in
(3.46) the time integration yields #"(1/m!), whereas the
wm collision operators yield roughly m!. For a better
result, cancellations have to be taken into account.] If
h g denotes the normalized Maxwellian at inverse tem-
perature B, then a suitable choice for this bound is as
follows:

(C1) There exist a pair (z, ) such that

VL AR | P o C A |

SMZ; {ehg(x,)} (3.52)
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for all e <¢, with a positive constant M independent of €.
Second, 7§ has to converge to 7, in such a way that the

series (3.46) converges term by term to the series

(3.50). For the initial phase point x™ = (x,...,x,

€ (AXR" let ¢,(t,x"™),j=1,...,n, be the position of

the jth point particle at time ¢ under the free motion.

Then

T, ={x™=(x,...

#q,(s,x™)

s %) € (AXRY)|g; (s, x™)

fori#j=1,...,nand =t<s<0,if {>0,0ss<-¢,if ¢
<0

In words, T',(¢) is the restriction of the n-particle
phase space to the set of all phase points that under
free backward streaming over a time ¢, if ¢ is positive,
(or free forward streaming over a time [Z], if ¢ is nega-
tive) do not lead to a collision between any pair of par-
ticles, regarded as point particles. By this restriction
only a set of Lebesgue measure zero is excluded from
(A xR¥)",

Note that (i) I',(/) depends only on the free motion;

(ii) T () D T, () for ¢’ = at, a = 1; (iii) T,(#) #T,(-?); and
(iv) that x™ € T,(/) is equivalent to x™ & T, (-¢), where
x™ is the phase point obtained from x‘ under the re-
versal p;~p,. In particular, T',(¢) is not invariant under
reversal of velocities.

The suitable choice of convergence is then as follows:

(C2) There exists a continuous function », on (A xR?%"
such that

lim e?pé=tmrE=7,, (3.53)
€0 £->0
uniformly on all compact sets of I',(s) for some s> 0.

Theorem 3.1 (Lanford): Let {pZ|n> 0} be a sequence
of initial correlation functions (not necessarily coming
from a positive measure) of a fluid of hard spheres of
diameter ¢ inside a region A and let {p&|n > 0} satisfy
(C1) and (C2). Let p&(#) be the solution of the BBGKY
hierarchy with initial conditions p& and let »,(¢) be the
solution of the Boltzmann hierarchy with initial condi-
tions 7,,.

Then there exists a #,(z, 8) >0 such that for 0<¢
< ty(z, B) the series (3.46) and (3.50) converge pointwise
and such that p&(¢) satisfies a bound of the form (C1)
with 2>z, B’<B. Furthermore,

lim €% ,,(¢) =lim 75(¢) = 7,(2) , (3.54)
£—>0 €0 .
uniformly on compact sets of T',(s +£).

For —¢,(z, ) <t<0, (3.54) holds, provided that s<0
and that in the Boltzmann hierarchy the collision term
Cp,n+1 is replaced by -C, ...

¢,(z, ) may be chosen as + V3 /mzv 3. The second
factor has physically the meaning of the mean free time
of a Boltzmann gas in equilibrium at inverse tempera-
ture B and density z.

Lanford (1976a) shows how to construct initial states
satisfying (C1) and (C2). One chooses a continuous one-
particle density » bounded by the Maxwellian and a fi-
nite partition A? of A XR?, which becomes finer and fin-
er as £—~0. Then in each cell, A} particles are uni-
formly distributed such that their hard-core exclusion
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is respected and such that their number is s‘zf,y%dxl
X7(x;), up to a relative error of the order €. This de-
fines an initial state with correlation functions p%. Un-
der certain regularity .assumptions on the sequence of
partitions, (C1) and (C2) with s=0 are fulfilled.

The reader may wonder how Lanford’s theorem es-
capes the conflict between the reversible character of
the BBGKY hierarchy and the irreversible character of
the Boltzmann hierarchy. The point is that if for the
sequence of states V§p®, 0<f< 34y(z, ), we reverse all
momenta at time ¢ and thereby form a new sequence of
initial states p®, then p° does not satisfy the condition
(C2) of Lanford’s theorem and therefore the theorem is
not (and, moreover, should not be) applicable to this
sequence of initial states.

We describe now three interesting properties of the
Boltzmann hierarchy. The first one is the well-known
“propagation of chaos.”

Property 1: If the initial conditions of the Boltzmann
hierarchy factorize

V(Xiyeee, X,) =z; r(x;) ,

then the solutions with this inital condition stay facto-
rized

(3.55)

Py e e By D=3 (3, 8). (3.56)
!
7(x, ) is the solution of the Boltzmann equation
o]
B't'}’(q b s t) ==p ‘Vq"’(q Dy t)
+f dp, & &+ (p —p,)
@ (p-p1)=0
X{T(q 1y ’ t)'r(q D1y ?)
-7(g,p,07(q,p1, 1)}, 3.57)

with initial conditions 7(g,p).

Property 1 implies the validity of the Boltzmann
equation in the following sense. Assume that the initial
correlation functions {p%|n > 0} satisfy the bound (C1)
and that

lim e?pi(xy, ..., x,) =H r(x;) , (3.58)
751

€0

uniformly on compact sets of {(x;,...,x,) € (AXR?)"|
q;#q;,t#j=1,... ,n} with some continuous ». Then,
for 0< t<t,(z,p),

lim €%5 (x;, 1) = (%, 8) ,
£—>0

(3.59)

uniformly on compact sets of AXR®, where 7(x,, ) is the
solution of the Boltzmann equation (3.57) with initial
condition 7(x,).

The second property comes from considering one of
the fluid particles as a test particle. This property was
used already in the proof of Theorem 2.8.

Property 2: If the initial conditions of the Boltzmann
hierarchy are of the form

Vp(Xyy o ooy %) =f(xy) IH_I2 r(x;),

then its solutions are

(3.60)
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n
Vltysenes Xy ) =flxy, 8) T 75,8 (3.61)
7=z
7(x,t) is the solution of the Boltzmann equation (3.57)
with initial condition 7»(x), and f(x, #) is the solution of
the linear Boltzmann equation

2 Hasb, D=0V flg,p,0

+f Ap, di 3+ (p —py)
©- (p=p1)=0

x{r(a,b1,0f(q,p’,1)

- 7{g,p1, )f@,p, 1)}, (3.62)

with initial condition f(g,p).

The third property will be important for discussing
fluctuations.

Property 3: If the initial conditions of the Boltzmann
hierarchy are of the form

I (Zl f(x,.)) IiI1 {zhg(x,)}, (3.63)
then its solutions are
Vl%yy e Xy ) =<Z S, t)) I’:I1 {zhg(x))}. (3.64)

flx,?) is the solution of the linearized Boltzmann equa~-
tion

%f(qJ”t):'—p“qu(q’p;t)

S0 PR LS ULV

{Fla,p1, 0 +flg,p’, t) =flq,p1, D) —Flg,p, 1)}
= (Lf)(q,P} t) b

with initial condition f(g,p).

Property 3 is proved by inserting the Ansatz (3.64) in
the Boltzmann hierarchy and by then using repeatedly
the fact that the collision operator acting on the Max-
wellian vanishes. Note that (3.65) corresponds to lin-
earizing the Boltzmann equation around the stationary
Maxwellian as % g(1 +f).

1t should be understood that Properties 1-3 are sub-
ject to the restrictions of Theorem 3.1; in particular,
the initial conditions have to satisfy the bound (C1) and
the results are valid only up to #,(z, ).

2. Convergence to a nonlinear Markov process

With the support of Theorem 3.1 it is only a small
step to prove that in the low-density limit the process
P ®® constructed in Sec. III. A converges to a nonlinear
Markov process as € —0—within the limitations im-
posed by Theorem 3.1, of course.

Let © be the path space already introduced for the
Rayleigh gas: Q=U,=,R,, where (y,,4,,...,9,,%,)
ER™isin Q,, if 0<t,+++++1,< T=1,(z,H. On Q, a
probability measure is constructed in the following way:
Let p® be the initial distribution of the hard spheres
with diameter ¢ and let {p%|n=> 0} be the corresponding
correlation functions. For each initial configuration x
=(%y,+..,%,) € T, the motion of the jth fluid particle ¢
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- (q,(t,%),p;(t,%)), 0< t< T, defines in the obvious way a
path.in Q. This path is given weight one. Since xis a
configuration of » fluid particles, a measure P%) on
is thereby defined with total mass #. Then

P5=(fdxlp§(x1)) _1j;us(dx)P"".

We denote a process corresponding to P® by X*(¢)
={g5(8),p*(t)). p°(¢) is a jump process on R® with a finite
number of jumps in any finite time interval, Because of
the mechanical motion,

(3.66)

13
W =g+ [ dsp(s). (3.67)
o
Theovem 3.2: Let u®be a sequence of initial states
with correlation functions {pZ|n > 0} satisfying condition
(C1) and

lim e*p (x5 . o, 20 = [ (%))

>0 7=

(3.68)

uniformly on compact sets of I',(0) with some continu-
ous 7, 7(x;) <zhglx,).
Then

X&)~ X0, (3.69)

as € -0 in the sense that all finite-dimensional distri-
butions of X%(¢f) converge weakly to the finite-dimen-
sional distributions of X(¢). X(¢) is a Markov process.

Let P, be the path measure corresponding to the lim-
iting Markov process X(f). Then {P,|r<zh,} form a
nonlinear Markov process in the sense that

P(X() € A|X(s)=x)=P, ,(X(t - 5) € A|X(0) = x),
C(3.70)

O0sssits T. 7(s)is the solution of the Boltzmann equa-
tion (3.57) with initial condition 7.

Proof: Let Vip be the solution of the BBGKY hierar-
chy (3.41) in the sense of the perturbation series (3.46)
with initial conditions p = (p;,p5,...). Let V,» be the
solution of the Boltzmann hierarchy (3.51) with initial
conditions 7. If f is a bounded and continuous function
on A XR3, then fp is shorthand for (f(x,)p,(x,),f(x,)
XPalxy, Xa)y e e s Do )

We have to show the convergence of

E*(f, (XE(t) * ol XE@))

for continuous f;,...,f, of compact support, 0 < ¢,
s+e+st,s7T. From Sec. III. A, we have

(3.71)

1

ES(F(X ()= (52 f dxlpi(x1)>_
x &2 [ dn f0a) (V09 0) . (3.72)
Therefore, by Theorem 3.1,

L B (X (0)) = (f @)™

x f dx, () (V7)1 (1) « (3.73)

A straightforward calculation shows that
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G = (e f axpie)

x [ anf,(0)e* (Vi (A(VEPIL (n), (3.74)

0<t <t,<4,(z,8. By Theorem 3.1, £"(V{ p®), conver-
ges to (V, #),, uniformly on compact sets of I',(4). The
same is true for e*'f(V§ p°),. Since { </y(z,p), there
exists a pair z’g’ such that f(VflpE) satisfies (C1) with
z', B, Therefore,f(VflpE) satisfies the conditions of

_Theorem 3.1. Since ¢, < ¢,(z, B), one has £, -, <t,(z’, 8).

From Theorem 3.1 one concludes, then, that

Lim E5(f, (X°(4,))f2(X"(2,)))

£—>0

=(f avr)) " [ @5 £l Ty, V)
. (3.75)

Convergence of the higher-order: correlation functions
is proved in the same way.

We denote by S,,, the propagator corresponding to the
solution of the linear Boltzmann equation (3.62), where
¥(x, t) is the prescribed solution of the Boltzmann equa-
tion with initial condition #(x). Then, using Properties
1 and 2 and the fact that the initial distribution of X(#) is
7(x,)/ [dx, r(x,), one obtains

Eq. (3.73):(]‘ dx, 'r(xl))_l [ % ) 61,00 ) (3.76)

and

Eq. (3.75)=(fdx1 V(xl))_l

x [ @ faba)(St e, (S, M) 5 (3.77)

~ and the analogous expression for the higher correlation

functions. This proves that X*(¢f) converges to X(¢),
where X(¢) is the Markov process with (3.62) as a for-
ward equation and with initial distribution 7(x,)/ [dx,
X7(x,).

Equation (3.70) follows from the form of the linear
Boltzmann equationas

D. The Vlasov equation

The Vlasov equation (Vlasov, 1938) describes the mo-
tion of an interacting particle system in the mean field
limit, thereby taking into account the influence of weak
long-range forces. Often a collision term of Landau
type is added. The Vlasov equation is of central impor-
tance in plasma physics and in stellar dynamics.

The convergence of the mean field limit was shown by
Neunzert (1975 and 1978) and independently by Braun
and Hepp (1977). Their results are essentially com-
plete and point for point match the heuristic discussion
of Sec. III. A; in particular, the convergence to a non-
linear process can be proved for this limit. One sim-
plifying feature comes from the fact that the limiting
nonlinear Markov process is deterministic.

The correct limit can be easily guessed from either
Sec, II. A.5 or from the BBGKY hierarchy. We consider
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a (finite) particle system in R® interacting via the twice
continuously differentiable pair potential Ve. Vg is
scaled as in Sec. II.A.5 as V. =€V, F=-VVis the
force. Then the BBGKY hiervarchy for the time-depen-
dent correlation functions reads’

9 .
3P (Fus e e ey X )

= {_Z:lpj-vqj-eg:_ F(qz,‘th)'ij}

<

XPa(Xps e e e s XnyB)
- 2',: fdxn+1F(Qj -qnu)'Vp]PfIﬂ(xn ooy Xprry D)o
=

(3.78)

In the mean-field limit the force between two individual
particles goes to zero, whereas the force on a particu-
lar particle exerted collectively by all others stays fi-
nite. As in Sec. II A.5, this is achieved by increasing
the density as £~!. Therefore

lim g"ps=7,. (3.79)

£—>0

Then, as £ -0, (3.78) formally converges to the Viasov
hievarchy

9
a,rn(xu' ce s Xps t)

= {__ 5:17,-'V.,j}7’n(x1: ... s Xy £)
J=1

- i: f dxn+1F(qj - ‘In+1)' ijr(xl, cee s Xy, b). (3.80)
=

If initially the factorization

V(XpyennyXg) = ﬁ 7(x,;)

is assumed, then the scaled one-particle correlation
function of the fluid evolves according to the Vlasov
equation ‘

%V(CI,P, t) = —P 'VqT(q 7p ’ t)

'fdfhdpﬂ'(quput)F(q_q1)°Vp
X (g,p,t), (3.81)

with initial condition »(g,p). The existence and unique-
ness of solutions of the Vlasov equation have beenestab-
lished by Neunzert (1975) and, independently, Dobrushin
(1979). A test particle in the fluid evolves according to
the effective Hamiltonian

Helg,p,0) =3p% + fdfh ap,riq.,p1,)Vig - q1)
as

4 =

240 =p ),

200~ [ daydprasp,OF @) ~a,) (3.82)

dat 14P1V\915P q q1)- .
Equation (3.82), together with (3.81), defines a (deter-
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ministic) nonlinear Markov process.

One can prove the convergence of the solution of the
BBGKY hierarchy to the solutions of the Vlasov hier-
archy in the mean field limit for arbitrary times and
for a large class of potentials (Braun and Hepp, 1977).
A particularly nice result is the following, since it does
not use any statistical assumptions at the initial time.

Theovem 3.3 (Neunzert, 1975; Braun and Hepp, 1977):
Let V be a twice differentiable potential with bounded
derivatives. Given N(g) particles interacting via the
potential eV, let

N(E)
LE(dx) = N(g) : 80x = x,(0). (3.83)
=
5(x — x,) is the point measure concentrated at x, & R?
xR® x;(t) is the position and the momentum of the jth
fluid particle at time £. [u(dx) is the normalized sum
of N(¢) delta functions concentrated at the locations of
the fluid particles at time ¢ in the one-particle phase
space.| If N(e)e=1 and if

lim pS(dx) =7y (dx) (3.84)
£>0

weakly on RS, then
lim & (dx) = 7, (dx) (3.85)

£>0

weakly on R® and 7,(dx) is the weak solution of the Vlas-
ov equation with initial conditions 7,(dx).

If v,(dx) has a differentiable density, »,(dx) = r,(x)dx,
then so has 7,(dx) =r(x, f)dx and r(x, t) is the classical
solution of the Vlasov equation with initial conditions
7o(x).

Miirman (1978) considers a degenerate type of mean
field limit. The central finite range potential Vis
scaled as V.(q) = V(g/€), and the number of particles
increases as £~? (in three dimensions). In the limit the
BBGKY hierarchy formally converges to the Vlasov
hierarchy with a & potential. {F(g;-q,+,) in (3.80) is
replaced by [qu Vig)16(q; —qn“)anﬂ.} Under certain
assumptions Miirman shows the existence of a subse-
quence of the solutions of the BBGKY hierarchy which
converges weakly in suitable spaces to a solution of the
degenerate Vlasov hierarchy.

E. Fluctuations

So far we have studied the dynamics of the fluid by
choosing an arbitrary fluid particle as a test particle
and by then considering its stochastic motion through
the changing fluid as in the case of the Lorentz gas. If
the test particle has the same initial distribution as all
the other fluid particles, then this procedure yields the
dynamics of the one-particle correlation function.
Physically, the fluid is studied through its ¢ime-depen-
dent self-correlation functions.

There is a complementary point of view, which is ad-
vocated by Hepp and Lieb (1973c) in a somewhat differ-
ent context (see Sec. V. E) and by Lanford (1975), and
which I want to develop now. Here the dynamics of the
fluid are studied via its time-dependent total corvelation
Junctions. [A definition of these correlation functions
can be found, among other places, in Appendix A of
Lebowitz and Percus, (1967)].
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Let us consider an interacting particle system in the
bounded region A. We scale the potential and the initial
state according to the weak coupling limit, the low-den-
sity limit, or the mean-field limit. Let A C AxXR®be a
bounded region. Then the average number of particles
in A at time #is [,dx,pi(x,,#. If the molecular chaos
assumption (the assumption that the limiting scaled cor-
relation functions factorize) is satisfied, then under
some further conditions,

lim svfdxlpl(xl,t) fdx1 7(x,, 1), (3.86)

£—>0
where r(xl, t) is the solution of the Landau equation, the
Boltzmann equation, or the Vlasov equation. So the
properly scaled average number of particles in A at
time ¢ can be computed from the solution of the kinetic
equation. (The way the scaling was introduced in Secs.
II1. B, III. C, and III. D, v =3 corresponds to the weak
coupling limit, v=2 corresponds to the low-density lim-
it, and v=1 corresponds to the mean field limit.)

The actual number of particles in A at time ¢ will, of
course, differ for different initial configurations of par-
ticles. Since a probability distribution of the initial
configurations is given, the number of particles in A at
time ¢ is a random variable on I'. To discuss its prop-
erties we have to introduce some notation. For a (mea-
surable) one-particle function f: AXR®*-~R, let X°(f) be
the following sum function on T':

%) = jﬁ; £,

and let X*(f, ?) be the function X*(f) evolved under the
dynamics with pair potential V.. X°(f,#) is a random
variable on (T, 1), where pf is the initial measure.
XE(f, t) depends on ¢ through the dynamics and through
u® If fis chosen to be the indicator function x, of the
set A [xalx) =11if x, € A, xalx;) =0 otherwise], then
X%(xa,?) is the number of particles in A at time ¢,

Let us compute the variance of e”X°(f, {) for a contin-
uous f of compact support,

“‘C(l SUXE(f, t) - IJ-E(EVXE(f’ t)) 12)

X (%, .. (3.87)

=g {f dox, dx, p§ (x5 %z, )f (%, )F (%)

+f dxlpf(xl, t)lf(’ﬁ)lz - (f dx, pi (%, t)_f(xl)>2}-
(3.88)

Since for the chosen scaling £*p§(x,, %25 1) ~7(x,, t)
X 7(x,,%) as € -0, the variance of "X*(f, f) converges to
zero as € - 0. Thus, the distribution of €’ X*(f,?) be-
comes sharply peaked around f dx, v(x,, t)f(x,) for small
€. This result offers the following interpretation of a
Markovian limit for an interacting system: For small €
and for a typical initial particle configuration (x,,...,x,)
(typical with respect to the initial measure uf),

Xy 8) (2,000 ,x,) 2™ _[dx1 (%, 8)f (1) « (3.89)
So the kinetic equation yields information about typical
initial configurations rather than about average quanti-
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ties. In passing, let me note that (3.88) offers a neat
solution to an old and puzzling problem: Inasmuch as
the kinetic equation becomes valid, the actual and the
average number of particles in the region A at time ¢
coincide.

On the other hand, assume that for an initial measure
u® with correlation functions satisfying (C1) and (C2),
the variance of €’ X%(f) tends to zero as €~ 0,

lim pf(|e? XE(F) — uS(e? X 5())|*)=0 (3.90)
£—>0
for all continuous f of compact support. Then, by Prop-
osition 2.3, necessarily

3Ky = ﬁrl(x

Thus no fluctuations in the scaled number of particles in
arbitrary regions are equivalent to the assumption of
molecular chaos. The theorems of Lanford and of
Braun and Hepp imply then that if initially the scaled
number of particles does not fluctuate, it will also not
fluctuate at a later time.

To study the fluctuations in more detail one has to
magnify them tremendously: One subtracts out the av-
erage value and studies the fluctuations only on a scale
proportional to £~?/2, Therefore one defines the fluc-
tuation field

(3.91)

(g (xl)

E°(f, 1) =& 2[XE(f, ) = u5(XE(F, D] (3.92)
Conjecture 3.4: Under further assumptions on the ini-
tial state u, on the scaled potential V,, and on f,

(R D —=E(F, 1)

as €~ 0, where £(f, ) is a Gaussian random field.

means that the joint distribution of £°(f,,4,),...

x&¥(f,, t,) converges weakly to a Gaussian distribution. ]
Therefore one expects that

(3.93)
[This

e X°5(f, f) = f dx, v(x,, OF (x,) + €2 7% (£, ) (3.94)
for small €. The scaled number of particles in a re-
gion A evolves to first order deterministically accord-
ing to the kinetic equation, and its fluctuations around
the deterministic path are Gaussian. This picture is
quite familiar from other areas of statistical physics;
see, for example, the survey article by van Kampen
(1976b).

It is believed that the Gaussian random field £ (f, t)
has the following structure. If one writes formally
£(f,t)= [dg dp flg,p)E(q,p, 1), then £(g,p, t) should satis-
fy the linear, time- dependent stochastic differential
equation

'—ig(q,pyt)=(Lr(t)£)(qa.b7t) +F(q’p;t)~ (3.95)
L, ., is the time-dependent linear operator obtained by
linearizing the Kinetic equation at »(¢), and F(q,p,?) is a
Gaussian white noise fluctuating force with mean zero.

There are two instances where the formal picture can
be justified rigorously.

Theovem 3.5: (Braun and Hepp 1977). Let V,=¢V,
where Vis four times differentiable with uniformly con-
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tinuous derivatives, and let the sequence of initial
states u® be such that its correlation functions "% con-
verge weakly to the product I] 7., » and such that

eVHXE(f) = LS(XE (N =£5(f) (3.96)
converges to a Gaussian random field £(f) as ¢ — 0 for
all three times differentiable f with uniformly contin-
uous derivatives. [The joint distribution of £%(f,),...,
£° (f,) converges weakly to a Gaussian.] Then

EE(f, )= E(f, 1) (3.97)

as £ - 0 in the sense of weak convergence of all finite
dimensional distributions. &(f,¢) is a Gaussian random
field determined by the stochastic differential equation
(3.95) with initial conditions £(f). The fluctuating force
is identically zero, and L, is the linearized Vlasov
operator

(L)@ p) == -9 2y p) = | dadp* viar, b, 1)
XF(g-q") +V,t(q,p)

-f dq’dp’ £(q’,p V(@ ~q") - Verig,p,t),
(3.98)

where 7(f) is the solution of the Vlasov equation (3.81)
with initial condition ».

For the low-density limit, one has only a very re-
stricted result (van Beijeren, Lanford, Lebowitz, and
Spohn, 1979). One considers a system of hard spheres
of diameter ¢ in thermal equilibrium. p# is then the
grand canonical equilibrium distribution at inverse
temperature 8 and fugacity z, =€-2z. (This corresponds
to increasing the density as £2.) The distribution of
€2X¥(f, t) concentrates at qu dp zhg(p)fig,p). The sys-
tem approaches the state of an ideal gas in equilibrium
as ¢ - 0. As regards the fluctuations, at least the co-
variance of the fluctuation field can be shown to con-
verge as ¢ - 0.

Theorem 3.6: Let f,gec L*(A X R3, zh, (p)dq dp)=3C
with scalar product( | Y, ,, and let 0<t—s <ty (ez, B).
Then, we have

Lm (E°(f, $)E° (g, t)g, ., = (g | X9 D5, 2 (3.99)

where L is the linearized Boltzmann operator (3.65).
[{e**|t=0} is a contraction semigroup on 3 (Klaus,
1975).]

If one assumes the limiting fluctuation field to exist
and to be Gaussian, then its covariance (3.99) implies
that it is of the form (3.95). Since 7(¢)=zhg, L, is the
linearized Boltzmann operator. The fluctuating force
F(q,p,t) has the covariance

[ v Bp)e ) Fa,p, 0F @ B, 1)
Z35(t =Bl - )
x [ ap ap, 43 G - (b = p)2hy(p,)2ig ()6 - (b = £1) =0
< (AP +1(p7) = F(py) = ()
(3.100)

x(g(p])+g(p’) —g(p,) - g(p)).
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One notices that the covariance has the form —(ff (L
+ L*)g),, . as derived from the fluctuation-dissipation
theorem.

Outline of the proof: One notes that

(& (f, $)E (g, D0, my =% | 05 (e, D), (3.100)

where pf (x,, )= (VEp?), (x,), with

PE(Xyy e, X,)= <Z; f(x,))pﬁq,n(xl, ey %)

+f dxn+1f(xn+1)(pgq,n(xl) M xn+1)

_pgq,n(xl’ cee xn)pgq,l(xnwl)) ’ (3-102)

and pg, the equilibrium correlation functions. An equili-
brium estimate shows that the second term vanishes in
the low-density limit. To the first term one applies
Lanford’s theorem using Property 3= )

IV. LATTICE MODELS
A. The harmonic lattice

A general crystal lattice is specified by a basic
underlying lattice and by a unit cell (which may contain
more than one particle). For simplicity, and since we
are not going to do real lattice dynamics, anyhow, let
us choose the simple cubic lattice Z? and one particle
per unit cell (Bravais lattice). Then g; € R” denotes the
displacement of the jth particle from its equilibrium
position j € Z and. p; € R” its conjugate momentum. For
physical systems, usually d=v=3. In the harmonic
approximation the equations of motion read

d 1
Lq(t)=—p,1),
dt m; @.1)

d
—=p;(t) =~ Visa; )
a0

m; is the mass of the jth particle, and £2J, ; V,;q,q is
the potential energy which is assumed to be positive
with V;;=V,,. (V,; is a v X v matrix.) For the study of
Markovian limits Poincaré recurrences have to be
avoided, which is achieved by considering an infinite
harmonic lattice. We describe briefly how the dy-
namics of the infinite harmonic lattice are constructed.

Let M be the matrix with matrix elements m;5;;, and
let V be the matrix with matrix elements V;;. Then the
equations of motion read schematically

a o) [o -V

ol Imr o |]aw|

(4.2)

where ¢(¢) stands for the vector (q;(¢) |j € %) and p(¢)
for the vector (p,(t)|je Z%. Equation (4.2) should be
solved for a class of initial data which is large enough
to support interesting states, but which is small enough
to guarantee uniqueness of solutions. A convenient
growth condition is to require that g;,p; are polyno-
mially bounded. Then the classical phase space of the
crystal is s’(I"), the space of polynomially bounded se-
quence over I'=Z%U - . - U Z? (2v times). s’(I') is the
dual of s(I'), the space of sequences decreasing faster
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than any polynomial. To construct the dynamics on s’(I")
the idea is to solve the equations dual to (4.2):

a [tw]_[o m][zw

(4.3)
Winey| J-v o ||nw

is s(I’). Sufficient conditions for the solutions of (4.3)
to stay in s(I") are, e.g., (i) M is bounded above and
below and (ii) |V,;|<be-*'i-! with suitable constant
b,c>0. Then, if T} denotes the solutions of (4.3),
their dual T, are solutions of (4.2) and therefore define
the time evolution (phase flow) of the harmonic crystal
on s’(I').

The thermal equilibrium state of the crystal at inverse
temperature B8 is described by the Gaussian measure on
s’(I") with mean zero and convariance

aM 0

B 4.4)

o v?

For this measure to be well defined, (4.4) has to be a
continuous, strictly positive, bilinear form on s(I").
(4.4) is obtained by taking the infinite volume limit -
through a sequence of finite volume canonical equili-
brium states with tied down boundary conditions. (If
AC Z° is a bounded region, then having tied down
boundary conditions will mean g; =0 for j € Z*\A.) For-
other boundary conditions other equilibrium states may
be reached. These are still Gaussian but not mean
zero. Additionally, there are many other Gaussian
measures invariant under the dynamics T, (Spohn and
Lebowitz, 1977).

The approach described here is found in the article
by Lanford and Lebowitz (1975) and also in the thesis by
van Hemmen (1976).

Customarily, one particle, say the one indexed by
zero, is regarded as a test particle. For the study of
heat flow and other probléms, it is convenient to con-
sider several test particles. So we choose a bounded
simply connected region AC Z% and-consider the parti-
cles in A as the system (of test particles) and the parti-
clesin Z?\ A as the infinite reservoir. Initially, the
positions and the momenta of the particles in A are
fixed at x=(q;, p, |ic A) and the reservoir is in thermal
equilibrium conditioned on the system particles being
at x. Then, as for the Lorentz gas, the motion of the
system is described by the stochastic process X&(t). ¢
is a scaling parameter coming from scaling the inter-
action, the mass, etc. Since the dynamics are linear,
and since the equilibrium measure is Gaussian, X°(¢) is
a Gaussian stochastic process; but non-Markovian, in
general. In the spirit of our enterprise, the process
XE®(¢t) is scaled in such a way that

XE(t) - X(t) 4.5)

as ¢ -0, where X(¢) is Markovian. Since X(¢) is Gaus-
sian and Markovian, its generator has a linear drift
term and a constant diffusion term. Thg task of prov-
ing (4.5) is greatly simplified by the fact that for a se-
quence of Gaussian processes it is sufficient to show
the convergence of the mean and the covariance,
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lim E (X (1)) = E(X()),

&-0 . (4.6)
lim E (X® ()X (s)) = E (X (t)X(s))

£-0

for all ¢, s (Nelson, 1967).
Two cases have been studied in some detail.

(i) The single impurity

In this case, v=1,d arbitrarily, and V,, is a nearest-
neighbor interaction potential with coupling constant «,
i.e., V,;;=2k and V ;=-«, if ¢ and j are nearest neigh-
bors, and V,;=0 otherwise. The mass of all the reser-
voir particles is equal to m, and the mass of the im-
purity at the origin is M. The reservoir is in thermal
equilibrium at inverse temperature 8 conditioned on
the impurity being located at g,. In a certain sense this
model is exactly soluble. Therefore, the effect of a
finite reservoir, the duration of Poincaré recurrences,
memory effects, approach to equilibrium, etc., can be
studied quite explicitly (Hemmer, 1959; Rubin, 1960,
1961; Mazur and Montroll, 1960; Cukier and Mazur,
1971; Morita and Mori, 1976). Certainly, this model
helped to understand some of the features of nonequili-
brium statistical mechanics. .

In one dimension the scaling (2.58) to (2.61) for the

. impurity leads to the Ornstein-Uhlenbeck process

determined through the stochastic differential equation

d 1
—=qo(t)==p,(t),
dt °° M “o @.7)
2V km
M

po==22 5 (1) F (),

with initial conditions 4,,p, (Rubin, 1961). F(¢) is
Gaussian white noise with mean zero and covariance
(F(t)F(t')) =4V km B~*6(t — ¢’). For fixed mass M =,
scaling the positional part of the process according to
(2.117) leads to the Wiener process with diffusion con-
stant 2D = (28vVm«)"! independent of M (Morita and Mori,
1976). Ford, Kac, and Mazur (1965) scale to a long-
range interaction while keeping the mass of the im-
purity fixed. This scaling also leads to the Ornstein-
Uhlenbeck process.

(ii) The singular and weak coupling limits

These limits are motivated by quantum-mechanical
models. They can be handled by the methods of Davies
(1974a,1974b, 1976b). Some examples have been worked
out by Spohn and Lebowitz (1977).

The interaction matrix V is split into

V=VS4 VSR yR (4.8)

by combining all couplings between system and reser-
voir particles in V5% and by combining all couplings
between system particles themselves and external po-
tentials on system particles in V5. The interaction
between system and reservoir is assumed to be weak,
VSR = gVSR, To obtain a nontrivial effect for the sys-

tem, time has to be rescaled as
e =€2t. (4.9)

Since the coupling to the reservoir is weak, the system
particles will make far excursions and will oscillate
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rapidly relative to each other on the ¢-time scaled.
There are two different ways to compensate for this.
One possibility is to increase the system masses and

to decrease the interaction between system particles.
If MS denotes the (diagonal) mass matrix of system
particles, then

MSE =g-2MS (4.10)
and

Ve=e2VS + eVSEL VR, (4.11)

Equations (4.9) to (4.11) define the singulay coupling
limit. The origin of the name can be seen by going to
the ¢-time scale. Then

Ve=VS 1t VSR L g2VR

Meg=MS + ¢2M® |

4.12)

The motion of the reservoir and the couplings between
the reservoir and the system are scaled in such a way
as to produce in time d-correlated Gaussian forces
(= white noise) acting on the system.
Computing the expectations (4.6), one observes that
one has to prove the existence of
lim PT%¢P.

€~0

(4.13)

T% is the time evolution defined by (4.2), with Ve and
Mg as in (4.12), and P projects onto the system. In
words, one has to study, for small &, the dynamics of
the system particles with V. and M. as in (4.12) for the
particular initial condition, where all reservoir parti-
cles are at rest at their equilibrium position. Under.
certain conditions on V and M, (4.13) can be proved
using the methods of Davies (1976b). In the limit the
effect of the reservoir is local in the following sense:
Only to the dynamics of those system particles which
are directly coupled to the reservoir are a friction term
and a stochastic force as in (4.7) added. The friction
coefficients and the diffusion matrix depend on the de-
tails of the reservoir and the interaction.

The other way to compensate for the fast motion of the
system on the t-time scale is simply to subtract out
the uncoupled motion of the system. (This method is
frequently used for quantum-mechanical systems.) The
dissipation due to the coupling to the reservoir is stud-
ied relative to the uncoupled motion. We keep the
masses fixed and scale the interaction as

Ve=VS +gVSE L VR, (4.14)

We denote the stochastic motion of the system with this
scaling as X¢(¢) and the deterministic dynamics of the
uncoupled system by T9. (79 are the solutions of (4.2)
with M5 and VS inserted.) Then one wants to study

Um 70, _,, X (e-21). (4.15)

€-0
The rescaling of time as tg=¢"?f is introduced since the
dissipation is-expected to be of the order €. Equation
(4.15) is a Gaussian process, since it is a linear com-
bination of Gaussian processes.
Computing the expectations (4.6) one observes that
essentially one has to prove the existence of
lim T(:g‘thTg-th .

€0

(4.16)
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Here, T is the dynamics of the harmonic crystal with
Ve as in (4.14). Again the Davies methods can be used
to prove (4.16) under certain conditions on V and M

[see Spohn and Lebowitz (1977)]. In the limit, the effect
of the reservoir is nonlocal: Every system particle
diffuses in position and momentum space. Physically
the origin of nonlocality can be understood in the follow-
ing way: An excitation of the system travels back and
forth inside the system many (~£-%?) times until it dissi-
pates into the reservoir. In the meantime the excitation
has completely forgotten from where it originated.

B. The anharmonic lattice

I include this section only to remind the reader of yet
another open problem.

If one goes beyond the harmonic approximation for a
crystal, then anharmonic terms are included in the
interaction. A typical example is the crystal with weak
anharmonic nearest-neighbor interaction defined by the
Hamiltonian function

1
Z"‘“Pf+ Z {(61,-—67,)2+E(q,~-q,)4}-,
7 2m {6d)

where (i, j) denotes a pair of nearest neighbors. For
infinite anharmonic crystals with strong restoring
forces the existence of the time evolution for a large
class of initial data has been proved by Lanford, Le-
bowitz, and Lieb (1977). Their results have been ex-
tended, as to include (4.17), in addition, by Marchioro,
Pellegrinotti, Pulvirenti, and Suhov (1979) and by
Marchioro, Pellegrinotti, and Pulvirenti (1979). One
would like to study the evolution of initially “uncorre- .
lated” states for weak anharmonicities. Our previous
study of interacting particle systems suggests the fol-
lowing analogy to the propagation of molecular chaos:
If the initial state of the crystal is a Gaussian pro-
bability measure, then, in the limit of small coupling,
at a later time it will still be a Gaussian measure with
mean and covariance determined by a nonlinear equa-
tion.

In the treatment in the physical literature of problems
of this kind (Peierls, 1955; Prigogine, 1963), the re-
sulting nonlinear equation has been called a phonon-
Boltzmann equation. This stems from the following
picture: The harmonic crystal is thought of as a gas of
noninteracting normal modes (= phonons). The anhar-
monicities then introduce some interaction between
phonons. For small ¢ the interaction is weak and one
expects some kind of Boltzmann (or rather Landau)
equation to be valid.

At present, even to extract a consistent set of con-
jectures from the literature seems to be hard.

(4.17)

V. QUANTUM-MECHANICAL MODELS

A. Some general remarks

It is clear how to write the quantum-mechanical ver-
sion of the models discussed so far. Physical ques-
tions, too, such as determining mean square displace-
ment of a test particle, are easily formulated. How-
ever, one should not draw the analogies too closely.
There are many quantum-mechanical models without a
classical counterpart. A good example is provided by
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the quantum theory of radiation [see, e.g., Louisell
(1973)], which in a very practical sense is the main
field of application of the weak coupling limit. There
an atom is coupled to the electromagnetic field (a coup-
ling which in comparison to the other physical para-
meters is indeed weak, namely, of the order of the
fine-structure constant), and one is interested in the
transition rates between different bound states. Addi-
tionally, the classical model may behave qualitatively
differently from its quantum-mechanical counterpart.
For example, for the Lorentz gas with a periodic con-
figuration of scatterers the mean-square displacement
of the classical Lorentz particle is proportional to ¢,
whereas the mean-square displacement of the quantum-
mechanical Lorentz particle is proportional to #* (as for
a free particle) because of coherence effects.

The broad classification of models is the same as in
the classical case. One has interacting particle sys-
tems. For these only mean-field-type limits can be
handled. This leads then to reversible, but nonlinear,
evolution equations (Sec. V.E). In particular, the pro-
blem of the quantum-mechanical (nonlinear) Boltzmann
equation is open, despite extensive investigations on
the formal level (Kadanoff and Baym, 1962; Fuijita,
1966).

The models primarily considered are of the system
+ reservoir type. If 3¢, denotes the Hilbert space asso-
ciated with the system, and 3¢, the Hilbert space as-
sociated with the reservoir, then the formal Hamil-
tonian of such a model is

H=H;®1+Hsp+1®Hg (5.1)

on jCs ®ICz, where Hsy is some interaction term. An
important distinction with no classical counterpart is
between models where the system Hamiltonian Hg has a
discrete spectrum and those where Hg has a continuous
spectrum. In physical terms it is the distinction be-
tween a spatially confined particle (=bound states) and
a spatially unconfined particle (= states in the continuum,
extended states), i.e., where the particle can move in
all of R®. The Markovian limit for systems with an Hg
with a discrete spectrum, is, in essence, understood,
whereas the case of an Hg with a continuous spectrum
still presents certain difficulties.

For classical models we argued that the dynamics of
the test particle (= system) is in a natural way regarded
as a stochastic process. A Markovian limit is then a-
certain scaling for which the process becomes Marko-
vian. Could the same point of view be adopted for a
quantum-mechanical system ?

Let us first consider the single-time correlation func-
tions, or, equivalently, the reduced dynamics. We de-
note by 7'(3Cs) the set of all trace class operators on
¥s. Then a state of the system is described by a den-
sity matrix p e T(3¢s) with p = 0 and trgp=1. Suppose
that at =0 the state of the joint system is p® py, Where
p is an arbitrary state of the system and p; a fixed
state of the reservoir, e.g., py is the thermal equili-
brium state at a certain temperature. If trp denotes the
partial trace of the reservoir, then thé reduced dy-
namics T'§ corresponding to the scaled Hamiltonian H®
is defined by

Tip=trg(e ¥t p pre?®t) (5.2)
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for all pe T (). By definition, 7% is linear, T%p =0,
if p=0, and trg(T%p)=trgp. In particular, a state is
mapped onto a state.

If the scaling is appropriate for a Markovian limit,
then one expects, as in the classical case, that

UimT§{=T,, (5.3)
€-0

and that T, satisfies the semigroup property
Tt1+t2:Tt1Tt2! (5.4)

ty, t,=0. {T,]1=0} is the quantum-mechanical analog of
a Markov semigroup. The structure of T, has been in-
vestigated only in recent years. We review some of the
results in the following section.

The higher-order correlation functions are organized
in a particular way. One imagines that at times 0<#,
<t,' ' '<t, measurements are performed on the system.
As a generalization of the von Neumann projection pos-
tulates, one assumes that the effect of a measurement
is given by ’

p—~ApA*, (5.5)

where A is a bounded operator on 3¢s. (More generally,
the effect of a measurement is given by a completely
positive map p -»E,.AjoA ¥.) Then the nth time corre-
lation function is constructed by evolving the state
p®pg for a time span t,, performing a measurement
at time £,, evolving the new state for a time span ¢, - #,,
ete., i.e.,

tr[(4, @ U (t, = t,,)" " " US(t,— £,)(A, 9 1)
XU (t,)(p®pg)
XUS(t)* (A, ®1)*

XUS(ly = )% - US (=1, )*(A, ®1)%], (5.6)

where U® ()= e-##°t is the dynamics corresponding to
the scaled Hamiltonian H®. By the polarization identity

BpA*=4{(A +B)p(A*+ B¥) -~ (A -~ B)p(A* ~ B*)

—i(A +iB)p(A* —iB*)+i(A —iB)p(A*+iB*), (5.7)

an arbitrary time-ordered correlation function is ob-
tained in this fashion. )

If the scaling is appropriate for a Markovian limit,
then one expects, again as in the classical case, that

limtr[(4,@ VUS(t,—t,,)" " "US(ty—1,)
XA, @ 1)U (,) (p® pp)U® (8,)* (A, ® 1)*UE (¢, - t,)* . - -
X UE(t,—t, )¥A,1)*]

=trs [An(Ttn-t"_

T, AT E)AD) AR,

(5.8)

where T, is the semigroup of the limiting reduced dy-
namics.

The structure (5.8) is generally assumed in the physi-
cal literature [Haake (1973), for example]. Lindblad
(1979a, and 1979b, cf. also 1979c) uses (5.8) as the de-
finition of a quantum stochastic process. Equation [(5.8)
is the quantum version of the Chapman-Kolmogorov
equations.] There are also somewhat different pro-
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posals by Accardi (1975 and 1976), extended by Frigerio
(1980) and by Lewis (1980), and by Davies (1976a).

B. Quantum-dynamical semigroups

Quantum-dynamical semigroups are the generaliza-
tion of Markov semigroups to noncommutative alge-
bras. Large parts of the theory have been developed on
the level of von Neumann and C*-algebras. Since we
want to apply the theory to quantum systems with a
finite number of degrees of freedom, we restrict our-
selves to the case of all bounded operators on a separa-
ble Hilbert space.

There is associated a separable Hilbert space 3Cto
the quantum system consideration. Let B(3¢) be the
algebra of all bounded operators on 3¢, and let 7°(3¢) be
the set of all trace class operators on 3. 7(X) is a
Banach space under the trace norm

loll,=trlp]. (5.9)

States of the system are described by density matrices
pc T(3) satisfying p=0 and trp=1.

We imagine the system somehow coupled to its sur-
roundings. Then the Hamiltonian dynamics e-##peit#
appropriate for an isolated system are to be replaced
by a more general class of linear dynamical maps 7';:
T(3c) - T(30), +=0. If the total probability is conserved,
then the minimal requirements on 7, are (i’) that T, be
positive, i.e., p=0 implies T,p>0, and (ii) that 7', pre-
serve the trace, i.e., tr[T,p]l=trp. (i’) and (ii) just
ensure that a state is mapped onto a state. The Marko-
vian assumption®’ is formalized by the semigroup pro-
perty (iii):

Tt1+t2p = Ttthzp ’ (5.10)
t,, t,=0. This allows us to write T,=e%f, where L is a
‘linear operator on 7'(3¢), provided there is some con-

tinuity in f£. Typically one requires strong continuity
(iv):

lim || 7,0 -pl,=0. (5.11)
t-0
We translate (i) to (iv) to the Heisenberg picture. One
defines the dual time evolution 7F by
tr[A(T,p)] = tr[(T*A)p] (5.12)

for all pe T(3¢),A € B(3¢). Then (i) to (iii) translate to
(") T} is positive,
(i) T¥1=1,
(Wil T,, = TETY, -
The appropriate continuity to require is
(iv) ltim tr[p(TFA —A)]=0
-0

for all pc 7'(3¢), A € B(3¢) (ultraweak continuity). Fur-
thermore, one would like to have (as the notation sug-

IFor a classical Markov process the single-time distribution
evolves by a semigroup. The converse is not true, however.
There are examples of non-Markovian pfocesses with the sin-
gle-time distribution evolving by a semigroup. This situation
may occur also for a quantum stochastic process (Lindblad,
1979c¢).
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gests) T} the dual of a map on 7'(3). This is guaranteed
by

(v) T¥ is normal.

This means that if tr(p4,) - tr(pA), then also tr(pT*A,)
—tr(pT }A) (ultraweak continuity of T}).

The example of the previous section suggests a
stronger kind of positivity, called complete positivity.
The importance of this property has been realized only
in recent years (Kraus, 1971; Gorini, Kossakowski,
and Sudarshan, 1976; Lindblad, 1976a). Complete
positivity makes the mathematical theory really go.
Physically it is not an additional assumption—at least,
if one believes that the system, together with its sur-
roundihgs, is described by Hamiltonian dynamics.
Imagine that there is another system associated with
the Hilbert space 3, of finite dimension, n, which is
regarded as dynamically uncoupled to the system of
interest. Then the dynamics of the joint system are
described by T}® 1, on B(3¢)® B@c,). One would also
expect T}® 1, to be positive. However, in general,
this is not the case. One then calls the map T} n-
positive if T¥® 1, is positive, and calls T} completely
positive, if T} is n-positive for all ». Since one can
always imagine the system of interest to be coupled to
an n-level system in such a trivial way, it is natural to
strengthen (i) to (i):

(i) T ¥ is completely positive.

For dim3c=2, linear maps on 7(3C) are 4 X 4 matrices.
In this case, Gorini, Kossakowski, and Sudarshan
(1976) parametrized the positive and completely posi-
tive semigroups explicitly and found that complete
positivity is a considerable restriction.

In passing we note that (i) up to (v) imply that 7, and
T'X are contractions, i.e.,

ITewlli= Mol [ITea) <A

(i) up to (v) define a (Quantum) dynamical semigroup.

Two problems have been studied in detail. (a) We
know that T,=e%*f. What is the form of L? Can we see
directly from the infinitesimal generator L whether or
not it generates a dynamical semigroup? (b) Can one
say something about ergodic properties of T',, in par-
ticular, about

lim Tp
t->o
from the knowledge of the generator L?

The first problem was answered by Lindblad (1976a)
for dynamical semigroups with.a bounded generator
(which is equivalent to the norm continuity of the semi-
group) and independently by Gorini, Kossakowski, and
Sudarshan (1976) for a finite dimensional Hilbert space
[cf. also the simplified proof by Paravicini and Zecca
97N '

Theorvem 5.1: T,= et is a quantum-dynamical semi-
group with bounded generator L if and only if

Lp==ilt,pl+ 2 [V,0,V 1+ V.0V 11, (5.13)
where H=H*, V,c B(}), jel. The decomposition into
the two parts in (5.13) is not unique. There are other
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canonical forms of the generator which are sometimes
useful. L* can always be written

L*A)=KA+AK*+ ®(A) (5.14)

with bounded K € B(JC) and bounded completely positive
map ®: B(¥)— B(¥C) such that K+ K*+ &(1)=0. Another
form is the one given by Gorini et al. (1976), which is
valid for a finite (N-) dimensional Hilbert space.
Choose a basis {(1/VN)1,£;|i=1,2,... ,N* -1} in T(3C)
such that tr#, =0, trF*#;=6,,. Then

. 18 e g :
Lp==ild,pley 3 cufllFspF )+ o, FiT, (515)

where H=H* and c;, is a (complex) positive matrix.
For a given L, H is uniquely determined by trAd =0 and
the c;;’s are uniquely determined by the choice of the
F;’s.

For unbounded generators, L is of the standard form
(5.14) on some appropriate domain in all known cases.
Davies (1977c) shows that semigroups with a certain ex-
tension property are all of the standard form. It should
be remarked that, as is well known from the commuta-
tive case, for unbounded L, in general, one can con-
struct many dynamical semigroups with L as generator,
depending on the choice of the boundary conditions, i.e.,
on the choice of the domain.

The ergodic properties of dynamical semigroups are
interesting and nontrivial extensions of the classical
ideas on time-continuous Markov chains. Let us denote
by {-}' the commutant of the set {-} in B(J), e.g., {A}
is the set of all operators commuting with A. Then
Frigerio (1978) proves the following result, [cf. also
Davies (1970), Evans (1977), Frigerio (1977), Watanabe
(1978), and Frigerio and Spohn (1978)].

Theorem 5.2: Let T,= elt be a dynamical semigroup
with bounded generator L of the form (5.13). If there
exists an invariant state p,, T,0,=p,, with Ranp,=3C
(i.e., no zero eigenvalues), then the following two prop-
erties are equivalent: (i) p, is the unique stationary
state and (ii) M(T)={H,V,,V},jel}' ={C1}.

If the Hilbert space I is finite dimensional, then
there always exists at least one stationary state. How-
ever, it might have zero eigenvalues and it is not known
whether Theorem 3.8 applies in that case. For an in-
finite dimensional Hilbert space it may happen that all
initial states move out to “infinity” and that no station-
ary state exists at all._

Approach to equilibrium is not guaranteed by the ex-
istence of a unique stationary state, since purely os-
cillating solutions may occur. Using in a stronger way
the effect of the dissipative term, Frigerio (1978)
proves the following result, [cf. also, Davies (1970),
Spohn (1976), Spohn (1977a)].

Theovem 5.3: Let T,=e™" be a dynamical semigroup
with bounded generator of the form (5.13). If T, has at
least one stationary state p, and if the linear span’
1in{V;,i I} is a self-adjoint set with {vV;,ie I} ={C1},
then Ranp, =3C and

lim tr(AT,p)=tr(Ap,)
t >
for all A € B()C) and states p< T'(5C).
If there are several stationary states, their struc-

(5.18)
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tures can still be analyzed. If M(T) of Theorem 5.2 is
not trivial, then there exists a family {P"} of pairwise
orthogonal projections with Z"Pn= 1 such that M(T)
NM(T) ={P}". Two extreme cases together with all
their linear combinations may occur. If {V;|ic I}’
=M(T)=4{P}’, then for all A € B(iC) and all states
peTEC),

- lim tr(AT,p)= ) tr(pP,AP,). (5.17)

t >
In particular, all states of the form P oP =p are sta-
tionary. If{V;|icl}’=M(T)={P,}", then for all A € B()C)
and states pe T(3C),

lim tr(ATp)= Y tr(P,pP ) tr(p,P ,AP,)

t >

X [tr(P,pP )™ . (5.18)

In that case, P, p,P,/tr(P,p,P,) are stationary states.
Note that the asymptotic effect of T, is a reduction of
the wave packet corresponding to the measurement of
an observable B=2, b P,.

We end this section with some, in a certain sense,
exactly soluble dynamical semigroups. Other examples
of semigroups will naturally arise in the following sec-
tion.

For self-adjoint H,

d
has the solution
‘* T,= (Zﬂt)-llzf ds e s/ 2tgmifispgifls | (5.20)

sometimes called Gaussian semigroups.
of a similar type is

An example

d
7 PO =UpWU ~p(t) (5.21)
with unitary U. Its solution is
S " =ty7 xn n .
= Z — . .22
T,p 2 ¢ U *"pU (5.22)

Kossakowski (1972) studied in detail dynamical semi-
groups of this structure.

Another class of “exactly soluble” semigroups has
received considerable attention recently (Davies, 1972;
Lindblad, 1976b; Evans and Lewis, 1977; Davies,
1977a; Damoen, Vanheuverzwijn, and Verbeure, 1977,
1979; Vanheuverzwijn, 1978; Evans, 1978; Frigerio,
Gorini, and Pulé, 1979), and these are now known as
quasifree dyhamical semigroups. Recall that if for a
quantum particle in one dimension the Hamiltonian is
quadratic in x,7d/dx, then the explicit solution is easily
found (e.g., free particle, harmonic oscillator, etc.).
Interestingly enough, if one adds a dissipative term of
the form (5.13) which is quadratic in x,id/dx (the V,’s
are linear combinations of x and id/dx), then one can
still write down the solution in closed form (Lindblad,
1976b). More generally, if for a Bose or Fermi field
the Hamiltonian is quadratic in the creation and annihil-
ation operators, the solution is obtained in terms of
unitary transformation on the one-particle space of the
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system. If a dissipative term is added which is quad-
ratic in the fields as in (5.13). (the V;’s are linear
combinations of the creation and annihilation operators),
then the solution is obtained in terms of a bounded semi-
group on the one-particle space of the system together
with a numerical factor to guarantee positivity. Spe-
cific examples of quasifree dynamical semigroups,

such as the Bloch equation for spin relaxation and the
harmonic oscillator with emission and absorption of one
energy quantum only [cf. Haake, 1973], have been used
in physical applications for some time.

C. System coupled to a thermal reservoir
1. The weak coupling limit

First I will describe the standard model and then will
comment on possible extensions later.

The dynamics of the uncoupled system, associated
with the separable Hilbert space JC, is given by a self-
adjoint Hamiltonian H on C.

The reservoir is assumed to be an ideal Fermi gas in
a stationary quasifree state, typically in thermal equil-
ibrium. The construction is well known [see, e.g.,
Davies, (1976a)]. Let @ be the CAR algebra over the
complex reservoir one-particle Hilbert space ¥Cgz. This
is the C * algebra generated by the bounded operators .
a(f) which are conjugate linearly with respect to fe 3¢,
and which satisfy the anticommutation relations

a(fla*@)+a*g)a(f)=(g|M,
a(f)a(g)+ a(g)a(f)=0

for all f,g=¥;. A quasifree evolution on @ is defined by
a,a(f)=a(e™™f),

where . is the one-particle Hamiltonian of the reser-
voir. The formal Hamiltonian of the reservoir is then

(5.23)

(5.24)

He= 2 fi|nfpa*Falf) , (5.25)
ivi

with f; an orthonormal basis in JC;. Typically, Cg

= L*R2,dk) and (e"'"f)(k)= e ***f(k). States on @ for

which all truncated correlation functions of order larger

than two vanish are called quasifree. They are defined

by ’

wg@X(f,) - a*(f)alg,) " * * alg,))=35,,detRf; | g},
(5.26)

where 0< R < 1 is the defining operator. The equili-
brium state at inverse temperature 8 and chemical po-
tential u corresponding to the one-particle Hamilton-
ian % is given by

R= (P14 1)1, (5.27)

The dynamics of the uncoupled reservoir are as-
sumed to be the quasifree evolution &,, and the initial
state wy of the reservoir is assumed to be stationary
and quasifree. This implies that the defining operator

R has to satisfy
e MR oitt=R (5.28)

which, in particular, is true for the thermal equili-
brium state (5.27). The system-reservoir interaction
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is of the form

QR @, (5.29)

where ®=a*(f)+ a(f) for some fe€ ¥, and Q=Q*ec B(i).
Then the average force on the system vanishes

we(®)=0. (5.30)

Let us assume that the coupling between the system
and reservoir is weak, i.e., eQ ® ®. Then, as pointed
out already for the harmonic lattice, there are two
types of weak coupling limits. The first one treats the
motion of the system on the order one and the dissipa-
tion on the order £2, whereas the second one scales in
such a way that the uncoupled motion of the system and
dissipation are of the same order of magnitude. The
limits correspond to the scaling

H*=H®1+eQQ® &+ 1®Hy (5.31)
and
H.=¢?H®1+eQ®®+1QHy . (5.32)
Let
h(t) = wg (2, ®), (5.33)

which is a time-dependent equilibrium correlation func-
tion of the reservoir. The crucial condition for the ex-
istence of the weak coupling limit (in either form) is

fwdtIh(t)[(1+t)"<oo

for some 6> 0. For the usual free dynamics in three
dimensions the typical fall-off of an equilibrium corre-
lation function is £/2, so (5.34) is satisfied. Equation
(5.34) shows that in order for the weak coupling limit
to exist, the reservoir has to be infinitely extended.
(This is a necessary, but certainly not a sufficient con-
dition.) For a spatially confined system (5.34) cannot
be satisfied. ’ .

Let us first consider the scaling (5.31). If initially
system and reservoir are uncorrelated, then the re-
duced dynamics T¢ is defined by

tr(ATSp)= (p® wg)(AFA® 1)

(5.34)

(5.35)

for all A€ B(¥), pe T(¥), where a§ is the dynamics of
the coupled system corresponding to the Hamiltonian
(5.31).

Since the dissipation is of order £2, the evolution has -
to be studied on a time scale &2,

Theovem 5.4 (Davies, 1976b): Under the assumption
(5.34),

lim sup “Tfp_e(-i[fl.'hssz)tp”1=0
£—>0 Osg2t=<T

(5.36)

for all pe T'()C), where

Kp= [ at{n® (=), pR1+ h(1)[@p, (-0,  (5.37)

with Q(#)= eitﬂpeﬂ'th and e-i[H.-J:p= e iHtpglHt

In parentheses, it should be remarked that the usual
second-order perturbation theory applied to the differ-
ential form of the equations of motion leads to

Kp= [ at{r(®)Q, &' p@e™ ] + D)l Qpe Q)
° (5.38)
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[cf. Haake (1973), Agarwal (1973)]. In general, the
semigroup exp{(—i[H,* ]+ €2K,)t} neither preserves posi-
tivity nor satisfies an approximation as (5.36) (Dimcke
and Spohn, 1979).

From simple examples it can be seen that the semi-
group exp{(-i[H, ]+ £2K)t} does not preserve positivity,
in general, and therefore is not a candidate for a bona
fide limiting dynamics. A way out is to study the dis-
sipation relative to the uncoupled motion of the sys-
tem. Let T9p=e 4" 15 Then one has to investigate
the limit of 7% -3, T5-2, as €~ 0. From (5.36),

Tgc'zte (=i€ “2[H,+ ]+K)tp p+f ds T-z:‘z KT 'ZsT-C'zs

(5.39)
X e(-tﬂ 2[H,°]+K).sp .
Therefore one expects that
lim Tz, e CE82H 1B g oK Ve (5.40)
£€—>0
with
K'p= hm—-— dtT"KT° (5.41)
T—>
Indeed, if the spectrum of A is discrete, then Theorem

5.4 holds with K replaced by K" , equivalently, for
t=0,

lim 7°

€0

e2s TE-ap=eX"tp (5.42)

in trace norm.

In general, the limit (5.41) exists only if the spectrum
of H is discrete. So, a Markovian limit, where free
motion and dissipation are on different scales, is a
somewhat delicate object, to say the least, if the spec-
trum of 4 is continuous [cf. Davies (1978) for an illum-
inating discussion].

From (5.42) it is clear that e¥ "t is completely posi-
tive and that {e*' f|t> 0} is a dynamical semigroup. It
is not hard to compute K ' explicitly. Let H=2;.¢ P,
be the spectral decomposition of H, let

Q@)= 2 PP, (5.43)
and "
./;wdtei”‘h(t) Lh(w)+is(w), (5.44)
with real 2(w), s(w). Then
K'p= zw: {is(0)[Q *(w)Q(w), p]
+ R(wX[Q(w)p,Q (w)*]+ [Q(w), pR(w)*N}.  (5.45)

;I‘he w sum runs over all energy differences. Since
h(w)= 0 as the Fourier transform of a two-point func-
tion, (5.45) is seen to be of the general form (5.15).
The time evolution generated by K ' is well understood.
Let us assume that the reservoir is in thermal equili-
brium at inverse temperature 8, that h(w)> 0, and that
e is of trace class. If the system Ham1ltoman H and
the coupling operator @ are sufficiently incompatible,
i.e., if {#,Q}' ={C1}, then as ¢—~ =, every initial state
approaches the canonical equilibrium state e™## /tre™##
(Spohn, 1977a). In the energy representation off-dia-
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gonal elements of a statistical operator decay exponen-
tially with oscillations superimposed. If the spectrum
H is nondegenerate, then the statistical operators dia-
gonal in the energy representation form a set of states
invariant under ef ¢, On these states e*"! induces a
classical Markov jump process which is governed by the
Pauli master equation

FTAGED D USRGELAVET (5.46)

where an=tr(P,,,QP"Q)fL(am -g,), i.e., the transition
probabilities per unit time are given by the golden rule.
(5.46) implies that the diagonal elements of a statistical
operator reach their equilibrium values exponentially
fast.

There are a number of straightforward extensions.
The interaction term may be a finite sum 2, Q; ® &; and
® could be a product of field operators. The reservoir
could be chosen as a quasifree Bose system. The sys-
tem may be coupled to several reservoirs at different
temperatures simultaneously (Spohn and Lebowitz,
1978). The generator is then a sum of generators, one
for each reservoir. A much less simple task is the
case of a reservoir which is not quasifree. A particu-
lar model has been treated by Davies and Eckmann
(1975). The weak coupling limit can be extended to a
time-dependent system Hamiltonian (Davies and Spohn,

.1978).

Let us return to the scaling (5.32), where the free
motion of the system and the dissipation are of the
same order of magnitude, namely, £%. One should im-

mediately go over to the rescaled time by g =¢"%. Let
T§ be the reduced dynamics defined as in (5.35) but
with A scaled as

H¢=HR®1+e Q@ ®+c?1QHy . (5.47)

Theorvem 5.5 (Palmer, 1976b):
if n(t) satisties (5.34), then

If H is bounded, and

limT¢p=elip, (5.48)
£—>0
the limit being understood in trace norm, where
L=-i[d,pl+is[Q? pl+n[Q,[@,p]], (5.49)
with [ di h(t)=h+is, h,s real.
Note that the spectrum of H may be continuous. The

dissipative part of L is independent of H. This is an-
alogous to what we found for the Lorentz and Rayleigh
gas. The friction acts locally, in the sense that the dis-
sipative part acts only on states in support of . This
should be contrasted with K *, which does not act local-
ly, since it is intertwined with H in a complicated way.

The higher-order correlation functions follow the ex-
pected pattern (R. Dumcke, oral communication). For
the scaling (5.47), (5.8) is valid under the same assump-
tions as Theorem 5.5. For the scaling (5.31) one has to
remember that the Markov approximation is taken re-
latively to the uncoupled motion of the system. So the
measurement p—-ApA * at time ¢ should be replaced by
p—~A(—-t)pA(-t)*, where A(f)=e*#?Ae™ 4t is A evolved
under the uncoupled system dynamics. This then leads
to
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lmtr[(A (=72 )@ U (e 2(t, = ¢,.,)) * * " US(E™(t, — £,)KA,(=£7%,) @ 1)U (£7%,)(p® wp WU & (e7%,)*

£>0

X (A, (=€72)) @ DU (—e 2ty — £, - US(e(t, =1, )*A,| —£7%,)® 1)*]

L] k L]
= trglA (e Crte (K Gt (A, (X 1p)AR) - IAF],  (5.50)

provided that the spectrum of H is discrete and that
(5.34) holds. '

2. The singular coupling limit

The singular coupling limit was used by Hepp and
Lieb (1973c¢), in their work on the laser, and studied
in detail by Gorini and Kossakowski (1976) and by Frig-
erio and Gorini (1976).

The system + reservoir Hamiltonian is assumed to be
of the form

He=H®1+Q®®(fE)+1QH,, (5.51)

where the reservoir is a quasifree Fermi (or Bose)
field, and where ®(f%)=a*(f%)+ a(f%), as before. With
an appropriate scaling of ¢ and, possibly, of the res-
ervoir state wg, one can let the two-point function

WE(@(f %), 2(f°))
converge to a -function at =0 as € - 0. In this sing-
ulay coupling limit one expects the motion of the sys-
tem to be Markovian.

Under the scaling (5.47), the reservoir two-point
function

(5.52)

(5.53)

tends to a 6 function at £=0. Therefore, for this kind
of weak coupling limit precisely the phenomenon ex-
pected for the singular coupling limit happens. Indeed,
Palmer (1976b) has shown that scaling H¢ as in (5.51) is
equivalent to scaling the Hamiltonian in the form (5.47).
Therefore in the limit as € - 0 one obtains the evolu-
tion (5.48).

8-2WR(<I>ag-2t¢)

3. N-level system in a low-density gas

This problem has been studied by Palmer (1976a) in
his thesis. The analysis is not quite complete, and
properties of the limiting Markovian dynamics remain
to be investigated.

One considers an N-level system immersed in an in-
finite ideal Fermi gas. Collisions between the system
and the gas particles are assumed to be elastic

H=Hgs®1+Q®{a*(f)a(f.))+ a*(f)alf)}+1Q Hy .
(5.54)

f1sf-1 € L*(R3,dx) is the one-particle space of the Fermi
gas. Initially the reservoir is in thermal equilibrium
at fugacity z. =¢? and inverse temperature 8. Note
that the interaction conserves the reservoir particle
number. ‘

The idea is to use the representation space of the
thermal equilibrium state, i.e., to work in the Hilbert
space provided by the GNS construction. Let F,F, be
two copies of the fermion Fock space over L%(R?,dx)
with annihilation operators a,, a, and vacuum vectors
Q,, ,. Let N; be the number operator and (-1)¥ =9,
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f
¢=1,2. Then it is known (Araki and Wyss, 1964, Bal-
slev, Manuceau, and Verbeure, 1968; Balslev and Ver-
beure, 1968) that the representation space is §,® F,.
The equilibrium state is represented by 2, ® &, and the
annihilation operator by

a(f)=a (T, f)®1+ 6, ®@aXNT,f), (5.55)

with some bounded linear operators T,,T, depending on
zg and B. On F,®F,, H is represented by H® which de-.
pends on ¢ through 7', and T,. By expanding in €, one
obtains

Hf=Hs®1+Q®(A+eB+e’C)+ 1@ He+O(e®), (5.56)

where A, B, C, and Hy are bounded operators acting
on § ® F,. The initial state of the reservoir is Q,® ,.
Dropping the term of order £® one is back to a weak
coupling type of problem. Palmer shows that the re-
duced dynamics of the system with H ¢ as in (5.56)

[with the term O(e?®) dropped] has a limit as € — 0 on the
time scale £7%.

4. The polaron

The polaron (Frohlich, 1954; Feynman, 1955; Fey-
nman and Hibbs, 1965) is an electron moving in an
ideal solid, which is represented as a Bose field (with
one component for simplicity) over the lattice Z?. The
formal Hamiltonian of the polaron reads

HE = _—2-:-’;A+ e?E'x+¢ néZZdV(x —nla*(n)+ a(n))

+w Z a*(n)a(n). (5.57)

. ne2zd

The Hilbert space of the electron is L%(R?%,dx). A
stands for the Laplacian. m is the mass of the electron.
E is a constant external electric field. V(x) is a
smooth, rapidly decreasing interaction potential.
a*(n),a(n) stands for the creation and annihilation of the
nth oscillator. Note that we simply have a lattice of
independent oscillators (which might pass as a model
for the optical mode). So far, the analysis has not been
extended to a harmonic solid with couplings.

Let T'¢ be the reduced dynamics (in the Heisenberg)
picture defined by

TEA= wei (AR 1)e %) (5.58)

for any bounded operator A on L%(R?,dx) with wg the
thermal equilibrium state of the ideal solid at inverse
temperature 8. (7f may be defined by first restricting
the interaction to a finite sum over the bounded region
A CZ? and then taking the infinite volume limit A —Z¢.)
We want to study 7% for small coupling £ — 0. Note
that this problem is quite different from the ones we
had before. The electron is allowed to-move in the
whole d-dimensional space (the spectrum of its Hamil-
tonian is continuous) and interacts with the reservoir
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at infinitely many different points. The results men-
tioned before cannot be applied to the polaron.

Theovem 5.6 (Spohn, 1977Tb): Let C (R%) be the Ban-
ach space of bounded continuous functions on R* vanish-
ing at infinity equipped with the sup-norm. On C,(R?)
let e*?, t= 0, be the semigroup generated by

rXp)=E5> fp)+ [ K@’ D)) =Ap)},  (5.59)

where the kernel K(dp’[p) is defined by
K(dp'|p)=|V(p -p")| L a —e"‘)"é(L P w)
2w 2m 2m

=l

V is the Fourier transform of V. et is a contraction
and preserves positivity.

Let p stand for the momentum operator. For fe
C,(R?), let f(p),(e**f)(p) be regarded as bounded opera-
tors on L*R%,dx). If d=> 3, then there exists a #;>0
such that for all O0s¢s¢;:

Lm T g2, f(p) = (e*1)(p)

8 SWa s 1
+(ef =1) 6(2mp2 (5.60)

T 2m

(5.61)

weakly as operators on L%(R?,dx).

Theorem 5.6 proves only the convergence of the
momentum distribution. It is an open problem how to
scale and how to prove convergence of the spatial dis-
tribution (or of the whole statistical operator).

The polaron illustrates a typical quantum effect.
Classically, one obtains a diffusion equation in the weak
coupling limit (cf. Secs. ILA.1 and IL.A.2). Quantum
mechanically, however, in the limit, the motion is
described by a jump process: The electron interacts
in a unit time interval weakly with many oscillators.
Mostly nothing happens. But once in a while a finite
quantum of energy is transmitted causing a finite change
in the momentum. [The two terms in (5.60) correspond
to the emission and the absorption of one energy quan-
tum.]

I should comment somewhat on the technique of proving
Theorem 5.6. For the weak and singular coupling limits
described before, one always uses the sufficiently fast
decay of the reservoir correlation functions in order to
control the limit. For the polaron the estimates rely
on the spreading of the freely moving wave packet, which
is on the order ¢ /2, The restriction d > 3 comes then
from the fact that quantities as (¢ |e?**}) should be in-
tegrable as a function of time.

Instead of (5.57) one can study the motion of an elec-
tron through random impurities with

H€=--—1— A+ e?E -x+¢ Z v)Vix =n), (5.62)
2m nezd

where v(z) is a Gaussian random field with mean zero

and rapidly decreasing covariance (v ()v(m))=g(n - m).

For this model Martin and Emch (1975) investigated

e i#%%) in the weak coupling limit. Their ideas were

used by Spohn (1977b) to extend the results to the form

of Theorem 5.6.
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D. Effective Hamiltonians

The mean-field limit (cf. Sec. II.A.5) is an example
of the stochastic motion’s becoming deterministic in
the Markovian limit. Here we take up this theme again,
which is of independent interest in quantum mechanics,
since it allows one to obtain the static (potential) inter-
action between quantum mechanical particles from a
field theoretical model (Davies, 1979a).

One considers two nonrelativistic particles with Ham-
iltonian

H,+H,=-(1/2m)A, - (1/2m,)A, (5.63)

on L*(R% dx,)® L?(R®, dx,). They interact through a free
boson field with mass m = 0. The field Hamiltonian F
acts on the one-particle space as

FEP®R) = m2+ 2 2Y(k) . (5.64)
The particles and the field are coupled by
2
A=Y [ ax v, -00lax(r) valr,)}. (5.65)
=1 “r®

Here a*(f), a(f) are the boson field operators and
f.(R) =f(k) e ™" is a suitable chosen test function shifted
by x.

One assumes that the coupling to the field is weak and
that the particles are very heavy. Sotheproperlyscaled
total Hamiltonian reads ‘

H®=¢2%(¢®H, +’H,+eA +F), (5.66)

which is just of the form encountered before. In this
static limit the interaction of the two particles is taken
into account by an effective potential V. If W denotes
the two-point function of the field in the vacuum state
Q

W —y) =(Q [{a*(fy) +a(fy}FHa*(f,) +a(£,)}2),
(5.67)

then, up to a constant, the effective potential is given by
1 )
Ve, —x,) =~ o Lsdx Ay V le, =x)Wx =) V,(x, - ).

(5.68)

So, in the limit, one expects thedynamics of the particle
to be governed by

H=—(1/2m)A - (1/2m,) A+ V(x, —x,) . (5.69)
Indeed, Davies (1979a) proves that for all
he LER?, dx,)®L3(R?, dx,),
lim e ¥ Yo Q = (e o Q. (5.70)

€40

E. The mean-field limit for interacting quantum
systems

The standard model for a mean-field limit is a lattice
spin system, where each pair of spins interacts with the
same strength independently of their relative location.
The strength of the interactiondecreases proportionately
to the size of the system. This system can also be
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thought of as a usual interacting particle system dis-
regarding statistics, where the strength of the inter-
action decreases in inverse proportion to the number
of particles. We will show that, if the initial state is

a product state, then in the limit it will remain a prod-
uct state. The single-site dynamics are given by a non-
linear equation of Hartree type, i.e., by an effective
Hamiltonian which itself depends linearly on the state
of the single site at time £.

On the other hand, as with the physical analogue of
the classical system discussed in Sec. III.D, one may
consider either bosons or fermions interacting by a
pair potential. If by appropriate scaling, the mutual
interaction between any pair of particles can be ne-
‘glected, but the “collective” interaction is retained,
then an initially quasifree state will stay quasifree.
The one-particle density (two-point function) is governed
by the Hartree-Fock equation including the exchange
term. The convergence of the mean-field limit with
statistics included is an open problem.

Let us first consider the mean-field limit for the
lattice model. . Since there is no geometry, the sites
are labeled 1,...,N. At each site sits a quantum-
mechanical system associated with the Hilbert space
J¢. The Hilbert space at site j is denoted by ic¢; = 3.

As usual, the quantum system at site j is called the
spin at site j, although 3¢ need not to be finitely di-
mensional. (We will give an example of more compli-
cated single-site structure later on.) Let A be a
bounded self-adjoint operator on 3¢ and V a bounded
self-adjoint operator on 3¢® 3. Let A;=A be considered
an operator acting on j¢; and V,; =V an operator acting
on ¥;®3¢;, i#j. Then for a system with N lattice sites
the Hamiltonian is given by

N
1
He= DA T Vi

t#j=1

(5.71)

Each pair of spin interacts via V. In order to have
H,=N, the strength of the interaction is scaled as 1/N.
Let try, y; denote the partial trace over the Hilbert
spaces labeled by n,n+1,...,N, and tr, the partial
trace over the nth Hilbert space.

Theorvem 5.7: If the initial state of the system is a
product state

py=p®-.-®p (N times), (5.72)
with pe T'(3), then
lim tre,,,, yi(e"vtp, e ) = p()® - - -®p(t), (5.73)

N-w
in trace norm on T (®7_,3¢;) for all n. p(t) € T(3C) is the
solution of the Hartree equation

d

i a—p(t) =[A, p@)] +tr,{{ Vi + Vo, pO)@p O]}, (5.74)
with initial condition p.

Proof: Let p¥’e T®Y,3c;) be invariant under per-
mutations of the labelmg and let
)

Pn

Then e~ i#xt pW) Nt j5 also invariant under permu-
tations of the labeling and p{V’(¢) =tr,,,, yi{e ##¥¢
p'M) eifnt) gatisfies the differential equation

(5.75)

- )
=tre,.a,npP
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at P;N)(t) (ZAJ+ 2 Vison' ”)

n
N-n
+ ( N )2 trml {[ Vj n+l + Vn+1 i p ml)(t)]} ’
j=1
(5.76)
which is written more compactly as
d A N -
o PO = =i [H0), o O] + ( N")cn,m, i),

(56.77)

defining the n-particle Hamiltonian H,f”) and the collision
operator C, ,.,.
Let S (t)p, =e i #n"’ Then the formal time-
dependent perturbation series reads
N-n

e
tpnetﬂ,, ¢,

SUOEDD f At ST~ 1)
N-n N-n-m+1
x N Cnlm-l e ——_7\,— cer-l,er
XS (t,) pat - (5.78)
Let || - Il, denote the trace norm on T(®7.,3¢,). Since
S{¥)(¢) preserves the || - ||, norm, the mth term of the
series (5.78) is bounded by
" /mimn+1) -« (n+m— 1)(4||V|I)’"Hp,fi",,1 lpam - (5.79)

If one assumes

(cy) e, <am,

then the series (5.78) converges in trace norm for
[t] <t, with t,<4l|Vlla.

Let S,(t)p,=e it p eifn? with H,=27".|A,. Clearly,
S (¢) p, converges to S,(t) p, in trace norm as N —.
If one assumes
(C2) limllp™ - p,ll, =0,

N oo

then p{"’(¢) converges as N~ in trace norm to

o

pat)= 2 dt, -

m=0 O<t,<«..<t)<t

dt, S, —t,)

xXC : Cn+m-1,n+m Sn+m (tm) Prsm (5'80)

nyn+l * 7
for |t| <t,.

Let p¥ be a statistical operator. Then |Ip" (1),

=|lp{"|l,, by preservation of positivity and trace. There-
fore, if for the initial state the bound (C1) is satisfied,
it remains valid for all times, and the argument just
given can be iterated to prove convergence of p{"’(¢)
as N —o for all times.

One checks that for the particular initial state p, the
conditions (C1) and (C2) are satisfied with p,=p®..-®p.
Differentiating (5.80) with respect to ¢, one obtains the
limiting hierarchy equations

i 20, 0=( 354 mi0))

+ Z trm—l {[ Vj'n+1 + Vm»l Fil pm-l(t)]} M (5‘81)

i1,
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For these the product property is preserved in timem

An example of Theorem 5.7 is the strong coupling
BCS model. In the quasispin formulation the Hamil-
tonian reads

N N
HN=5203_?‘\‘7— 3 o103,

i#j=1

(5.82)

03 o*, 0~ are the Pauli spin matrices on C? satisfying

{0 o7}t=1, {0*,0*'t=0={0",07}, 0%=[0*,07]. There-
fore we have the 1dent1flcat10n
3=C%, A=¢03 V=3(0*'®c +0 ®c*).
The Hartree equation then becomes
i ip(t) =elo® p@)]
dt © ’
+[tr{o*p@}o” +tr{o p)}o*, p®)].  (5.83)

From a somewhat different point of view this model has
been studied by Thirring and Wehrl (1967), Thirring
(1968), and van Hemmen (1978). Buffet and Martin
(1978) studied the BCS model, where, in addition, each
spin is weakly coupled to its own thermal reservoir.
This leads to an interesting dynamical behavior in the
limit as N =0,

Another extensively studied example is the Dicke-
Haken-Lax laser model. Strictly speaking, this model
is not covered by Theorem 5.7, since A and V are
unbounded. Without reservoirs, in the rotating wave
approximation, the Hamiltonian reads

N N

= * 3

H,,,-vz ajaj+g§ o;
j=1 J=1

N
A -
+ Z (a*oj+a;03).

i#j=1

(5.84)

a*, a are the creation and annihilation operator of a
harmonic oscillator acting on 3., (one boson). They

satisfy [a, a*] =1. Therefore we have the following
identification:

=3 .. ®C% A=va‘a+so®, V=Aa*oc +ac*).
’ b

osc

The Hartree equation then becomes
d - 3
= pt) =—i[va*a + 03, p(t)]

—iNtr{a*p)} o™ +tr{ap®)}o*, p®)]

—i\tr{o"p@)}a* +tr{o*p@®)}a, p@)] . (5.85)

To take losses of the radiation field and the pumping
of the two-level atoms into account, one couples each
photon mode and each spin to its own reservoir. We
perform now first the limit N—-<. Then the single-site
dynamics are governed by the Hartree equation (5.85)
with the term —i[H g, +1®H, p(t)] added due to the cou-
pling to the reservoir (see Sec. V.C). Then the singular
coupling limit is taken as described in Secs. V.C.1 and
V.C.2. The nonlinearity of the uncoupled system motion
does not enter the dissipative part. In the limit the fol-
lowing terms have to be added to the Hartree equation
(5.85):
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k(a, p@t)a*] +[ap@), a*])

+vG+m)(o*, p®o T +[0*p@), o))

+yE =m0, pl)o*] +[o"p),0*]). (5.86)

The first term drives the photon mode to its ground
state with rate x™!. The two other terms pump the spin
to

e=G+moto + (G -noor.

Averaging (5.85) and (5.86) over a, a*, 67, o*, o?
(and possibly also a*a), one obtains the laser equations
as a closed set of first-order differential equations. It
should be noted that the solutions of these equations
have a very complicated structure. For asuitable choice
of parameters the laser equations are, after some re-
scaling and subtracting out of phase factors, equivalent
to the equations of the Lorenz system (Haken, 1975).
[Lorenz (1963) approximated the hydrodynamic equations
for convection in a fluid layer which is heated from
below and cooled from above. He obtained a set of three
first-order (in time) ordinary differential equations
with a quadratic nonlinearity. Although rather innocent
looking, these equations display many nontrivial and
hardly understood mathematical phenomena. Recently,
the Lorenz system has been studied extensively, [cf.
Lanford (1976b) for a survey.]

A third example is an interacting particle system with
Hamiltonian

N
1
H,=- - A+
v ;Zm

acting on L2(A") for some region AC R¢. For the Lapl-
acian, suitable boundary conditions at 8A are assumed.
If V is bounded, then the proof of Theorem 5.7 can be
modified to apply to the Hamiltonian in (5.87). Aninitial
state of the form (5.72) means that statistics are dis-
regarded. In the limit as N —« the evolution of the
reduced density matrix is given by the usual Hartree
equation

32 V%), (5.87)

i#j=1

d 1
Z %p(t)=[—'§;z— A4V, 4y p(t)]. (5.88)
The effective potential V, is
v, )= fdy Vix =3)p(y,5), (5.89)

where p(y,v’) is the integral kernel corresponding to

The dynamics of various mean-field models were
studied in great detail by Hepp and Lieb (1973c, 1973d,
1975). Their point of view has been described already
in Sec. IIL.E in the classical context. Let B be abounded
operator on ¢, and let B; =B be considered as an oper-
ator acting on3C;. Then Hepp and Lieb consider the in-
tensive observables

N
1 o 1
— = — . .90
T X@) = Z;B, (5.90)
on®%, 3¢, and their time evolution
__I_X(N)(B, t)=eiHNt ']‘\[];‘X(N)(B)e-i”Nt. (5'91)
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Under the same assumptions as in Theorem 5.7,

1
lim —- try, v 1oy XV B, )} =tr, {p()B}, (5.92)

New N

where p(¢) is the solution of the Hartree equation (5. 74)
The variance of (1/N)X“(B, t) vanishes as N —~w,

}vi_rg tr[l,N]{pN Z%
(5.93)

So, in the limit intensive observables do not fluctuate.
Additionally, intensive observables commute in the
limit as N —-«. In this sense the intensive observables
become classical and evolve deterministically as N -,

Since intensive observables do not fluctuate in the
limit, one is naturally led to consider the fluctuation
observables

ENB, 1) =1/ IWAXN (B, 1) - trey, vy {oy X (B, D).

(5.94)

Formally, the commutator [ (B,,t,), £V (B,,t,)] is

of order one. The fluctuations should therefore remem-
ber the underlying quantum-mechanical structure. In-

deed, Hepp and Lieb (1973c) show that under the same

assumptions as in Theorem 5.7,

lim ¢V (B, 1) = £(B,1),
N~

(5.95)

where £(B,¢) is a quasifree Bose field. So quantum-

. mechanically a quasifree Bose field substitutes for the
classical Gaussian random field. More precisely, £(B)
is a Bose field over the one-particle Hilbert space ob-
tained by the closure of B(3C), the set of bounded op-
erators on 3¢, equipped with the scalar product

(A|By =tr{pA*B} —tr{pA *tr{pB}.

£(B) is in the Fock vacuum. The time evolution of the =~

field is quasifree and determined through the linearized
Hartree equation

£(B,t)=£(B@), (5.96)

where B(t) is the solution of
]

1 2
X‘N’(B,t) - tr[I’N]{pN ¥ xX"(B, t)}\ }:0.
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;—t B)=1A +tr, {p@)(V,,+ V,)}, BE)]

+itr, {(Vo+ Vo X B®), p@)}, (5.97)

with initial condition B. Here, p(t) is the solution of the
Hartree equation (5.74) with initial condition p. The
convergence (5.95) is then understood as the conver-
gence of all moments

lim tr[l,N]{pN EN(B, ) - -

N=oo

'g(N)(BN9tN)}

=(EBy, 1) - EBy, 1y)  (5.98)
where ( ) denotes the vacuum expectation.

The fluctuation theory exactly follows the classical
pattern. If the mean-field model is coupled to reser-
voirs, as in the case of the laser, the time evolution of
the Bose field is more complicated and is determined,
in addition to the linearized Hartree equation, by the
quantum analog of fluctuating forces.

I would note that the equilibrium properties of mean
field models have been studied by Hepp and Lieb
(1973a, 1973b), de Vries and Vertogen (1974), Fannes,
Sisson, Verbeure, and Wolfe (1976), and Fannes,
Spohn, and Verbeure (1979) and that they have been
exhaustively reviewed by van Hemmen (1978).

If we want to include statistics in the third example
with Hamiltonian (5.87), then Theorem 5.7 is not appli-
cable. A formal argument of how to proceed is as fol-
lows. Assuming either Bose or Fermi statistics, the
Hamiltonian in (5.87) is written in second-quantized
form as.

#= [ axay hte, va*a()
+ [ axdy v - vaxar(ya(ylaty), (5.99)

with k(x,v)=h(y,x), acting on the Fock space over

L2(A). For a state w the correlation functions w, are

defined by

Wy ey X3 Vyy e e e,y =wla*x,). . a*x)a(y)). . .a(y,)
(5.100)

Their time evolution is governed by the quantum-mechanical BBGKY hierarchy

th wn(xv‘ "xn;yu'“’yn;t)

F=1

+ Z (V(x{_xj) - V(yi _yj))wn(x]J R

i<i=1
+ 22 f dx(V(x, —-x)— V(y, —x))w,,,,1(xu ..
i=1

We assume that initially the system is in a quasifree
state with defining operator R corresponding to the
integral kernel R(x,y) [cf. 5.26]. Then
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N
=Z {fdxh(x xl)w (xl""’xj-ux9---;xn;yn---ayn;t)_fdyh(yj’y)wn(xu""xn;yu-°-’yj-1’y1"'
,X";yl,.--

"xn’x;yl"'

Vs t)}

)

Y X3) . (5.101)

WKy oo s Xy Vg e e ey V3 0)=25{R(x;,9,)}. (5.102)

For bosons w,, is the permanent of the » X» matrix
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{R(x;,v,)} and for fermions w, is the determinant of the
same matrix.

In a mean-field limit the force between any pair of
particles should tend to zero, whereas the total force
on one particular particle should stay finite. Forbosons
this is achieved by scaling

(5.103)
J
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R.=¢"'R, (5.104)

just as in the classical case. For fermions, (5.104)
does not make sense because of the Pauli exclusion -
principle. The proper mean-field scaling is open in
that case.

In the mean-field limit the BBGKY hierarchy formally
goes over to ' ’

n

.9

za_tw,,(xl,.,.,x";yl,...,yn,t)=2 {fdxh(x,xj)wn(xl,...,xj_l,x,...,x";yl,.-.,y,,;t)
=1

- jd))h(yj;y)wn(xu sy X3 Vs e e e s Va1V oo Vs t)}

+ Z 2 fdx{V|xj—x)— V(y; =9w,,x,, ...
=1

The Ansatz

W00y e e Ky Vs e s V3 D) =R R (X, 95, 8) (5.106)

satisfies (5.105). Therefore a state which is initially
quasifree stays quasifree. The evolution of the defining
operator R(#) with integral kernel R(x,v,t) is governed
by the Hartree-Fock equation
d

i ER(t):[h+VR(,),R(t)] . (5.107)
Equation (5.107) should be considered a nonlinear evo-
lution equation on T(L2(A)). & is the operator on L3*(A)
with integral kernel z(x,y), and the effective potential
Vg is the operator with integral kernel

st =y) [ ax 2V —0RG,x0) £ Vi ~3)R G, ).

(5.108)

The plus sign stands for bosons and the minus sign for
fermions. The second term in (5.108) is known as ex-
change term. The existence and uniqueness of solutions
of the Hartree-Fock equation have been studied by Bove,
da Prato, and Fano (1974, 1976) by Davies (1979b), and
by Ginibre and Velo (1979).
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