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This paper is a subjective review of experimental progress in the field of continuous phase transitions
over the last decade or so, and is based primarily upon the author's own work and experiences in the
field,
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I. INTRODUCTION

*Based on the author s Tenth Fritz London Memorial Award
Lecture given August 23, 1978 at the 15th International. Can-
ference on Low Temperature Physics in Grenoble, France.

/Present address: Dept. of Physics, University of California,
Santa, Barbara, California 93106.

I was first introduced to low-temperature physics
nearly two decades ago as a beginning graduate student
in the chemistry department of the University of Cali-
fornia at Berkeley. During the intervening years I have
witnessed a number of major developments in this field,
as a result of the work of extremely outstanding experi-
mentalists and theorists. I am indeed deeply honored
that my own contributions have been deemed sufficiently
important for me to be chosen as the recipient of one of
the two 1978 Fritz London Memorial Awards.

My thesis project at Berkeley consisted of a, thermo-
dynamic study of the rotational states of o-H, in the
solid state under pressure up to several Kbars ~Ahlers
and Orttung, 1964). This problem was suggested by
K. S. Pitzer, and completed under the direction of
Norman Phill. ips, who had a number of other students
doing high-precision low-temperature calorimetry. In
addition to Phillips' work, there was a long-standing
tradition of high-precision thermodynamic measure-
ments in the G. F. Giauque Low Temperature Labora-
tory at Berkeley. The dail. y contact with Phillips' and
Giauque s students instilled in me a firm conviction
that, given the right circumstances, qualitatively new
physics can emerge from highly quantitative measure-
ments pertinent to problems which, at a less quantita-
tive level. , had been examined and perhaps considered

"solved" at a much earlier time. This appreciation for
quantitative measurements has largely stayed with me
throughout my scientific career, and to a great extent,
I believe, is responsible for whatever contributions I
may have made to Low-temperature physics.

Having completed my Ph. D. I left Berkeley in 1963
and joined the staff of Bell 'Telephone Laboratories in
Murray Hill, New Jersey. At first I worked on the
equation of state of solid 4He, an interest which had
evolved during my student yea.rs. But the stimulating
atmosphere at Bell Laboratories soon channeled my
activities in new directions. I consider myself very
fortunate that, in large part because of interactions
with my colleagues, I started experiments in the field
of continuous phase transitions, an area of statistical
mechanics which was to witness remarkable advances
in the years to come. Similarly, in the early 1970's it
was to a, large extent the influence of my co-workers,
particularly of Paul Fleury, that initiated my interest
in convection and turbulence in fluid fl,ow, a topic in
nonequilibrium statistical mechanics that has seen a
great revival in the physics community in recent years
a,nd tha, t remains a, fascinating, although largely un-
solved, problem to this day.

Although the award citation included my work in both
critical phenomena and fluid turbulence, I shall sum-
marize in the remainder of this lecture only that part
of my activities which falls into the former category.
The reasons for this are twofold. First, although there
is a ce rtain correspondence between phase transitions
and hydrodynamic instabilities, any connection with the
evolution of weak turbulence is not at all clear. Second,
the phase transition problem has reached a certain
level of maturity which warrants a review from a some-
what broader perspective. Investigations of chaotic
fluid flow, on the other hand, are still largely in their
infancy and, although recent experiments have provided
us with a large number of pieces, the puzzle has not
nea, rly been a,ssembled.

In no sense will this account be an exhaustive review
of experimental investigations of critical phenomena.
It will prima. ril. y summarize my own contributions, and
the very extensive work of others will be referred to
only when it has a direct bearing upon my activities. It
will also be somewhat superficial. in that only the major
results will be described but I will attempt to present

An in-depth review of static critical phenomena near the
superfluid transition in 4He is given by Ahlers (1978). A more
extensive review of properties near the superQuid transition in
He and He —He mixtures is given by Ahlers (1976). A sum-

mary of results for the evolution of turbulence in convecting
He I is given by Ahlers and Behringer (1978).
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490 Guenter Ahlers: Critical phenomena at low temperature

these results in the perspective of the time at which
they were obtained, and to relate them to concurrent
theoretical developments.

'The equation of state is

= 2a„(T —T,)7l + 4a„7i3+ (5)
II. CRITICAL PHENOMENA

A. Background

a,.(T) = a,, + a,,(T —T,) + (2)

Only the coefficients of the lowest-order nonvanishing
terms need be retained. For a„we thus have a, = app
because A(T, q) is finite and nonzero at T„where q
vanishes. We obtain a, (T) by considering the inverse
isothermal susceptibility

= 2a2+ 12a~'lj

Since g diverges at T, where g = 0, we must. have a2p: 0
and thus to leading order a, = a»(T —T,). Similarly, to
leading order, one can show that a~=a„. Now, Eq. (1)
becomes

A (T, 7l) = a„+a„(T—T,)7l'+ a„q&+ (4)

The study of critical phenomena is now over 100
years old, and usually is thought to have started with
the discovery of critical opalescence near the liquid-
gas critical point of carbon dioxide by Andrews (1869).

his experimental work was followed almost immedi-
ately (Van der Waals, 1873) by the first of the several
mean field theories which were to evolve over the next
50 years or so. Most of these theories were designed
to describe the critical behavior of a pa.rticular type of
physical system, such as the liquid-gas critical point,
the Curie point of a ferromagnet, or the order-disorder
transition in alloys. A crucial. common feature of all of
them, however, was that the underlying assumptions
resulted in a, thermodynamic potential of the system
which was an analytic function of an order parameter
q and of the temperature T. This analyticity yielded
identical results for the essentia/ feature of the critical
behavior in vastly different physical systems because
these features were a consequence of the existence of
a series expansion for a free energy in T and g. 'The
most general, and perhaps simplest and most elegant,
formulation of a theory of continuous phase transitions
based on an analytic thermodynamic potential is due to
Landau (1937a, b, c, d, 1965). It is not the purpose of
this account to elaborate upon theoretical developments;
but a, brief discussion of the Landau theory in its
simplest form will acquaint the reader with the con-
cepts of critical exponents and universality, and will
tend to put into pe r spec tive some late r developments in
the field. A more detailed discussion of the Landau
theory is given by Stanley (1971).

he Landau theory assumes that the Hel. mholtz po-
tential A(Z', 7l) can be expanded about T = T, (T, is the
critical temperature) and q = 0 in the Taylor series

A(T, 7l) = a, (T)+ a, (T)q'+ a, (T)re+

In Eq. (1), odd powers of Vl are omitted because a, chan-
ge in the sign of the order parameter does not affect
the free energy of the system. The functions a, (T) are.
analytic in T, and can be expanded as

In the absence of an external field, H = 0 and for T (T,
we have

7l = (a„/2a40)'~'(T —T)' '+ ~ (6)

for the order parameter as a function of the tempera-
ture along the coexistence curve [for T &7'„ the stable
solution of Eq. (5) with H = 0 is g= 0]. Equation (6) to
leading order is usually written as

(7)

where

The parameter P is one of the critical exponents which
have pl. ayed such an important role throughout the re-
cent history of the field. We see that the Landau theory
predicts P= 1/2. Similarly, writing the susceptibility
as

(8)

we have y= 2P = 1 from Eqs. (3) and (7). These simple
examples illustrate two general results of the Landau
theory which have been of considerable conceptual im-
portance in later years although they are not applicable
in detail to most real physical systems. 'The first is
the prediction that, rega, rdless of the details of a,

particular system, there is only one set of values for
the critical exponents, and thus only a single class of
critical behavior. This universa. lity of the Landau
theory is admittedly somewhat )rivial because there is
only a sing le universality class; but later, when it be-
came apparent that the theory was not applicable in de-
tai:1, the concept of universality became entirely non-
trivial. and provided an important unifying scheme for
the classifica. tion of phase transitions. Much of the ex-
perimental work to be discussed below has been devoted
to its study. 'The second result of the Landau theory
which I wish to mention is the prediction that the criti-
cal exponents are given by ratios of small. integers.
The notion of rational critical exponents seems to have
survived for a long time after it was generally recog-
nized that the exponent values given by the theory do
not apply to real systems. Thus even in recent yea, rs
P has been quoted to have such value s as 3 8 or yg.

Bather quantitative experimental measurements on
liquid-gas critical points existed already near the turn
of the century, and they provided substantial evidence
for the existence of departures from-the Van der Waals
equation of state. ' However, the conflict between
theory and experiment was to some extent ignored for
many years to come. Nonetheless, the compilation of
quantitative experimental data in the ].940s by Guggen-
heim (1944, 1967) was in part responsible for a revival
of interest in the field and for the beginning of what may
now be considered the modern era. of the study of criti-

A recent review of the early history of the field, with an em-
phasis on the interactions between experiment and theory, is
given by Levelt Sengers (1974).
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cal, phenomena. Guggenheim's examination of data for
the shape of the coexistence curve near liquid-gas
critical points made it widely known that P had an ex-
perimental value rather closer to 3 than to the clas-
sical result ~. The other major simultaneous devel-
opment in the field was of course the exact solution of
the two-dimensional Ising model by Onsager (1944)
which had yielded a logarithmicall. y divergent specific
heat, ' in disagreement with the Landau theory.

By the early 1960s, when I first became aware of the
field, the renewed interest in continuous phase transi-
tions had resulted in considerable experimenta, l and
theoretical activity. ' This effort was stimulated by a
realization that critical phenomena involved very gene-
ral, and still in some sense universal, properties in
spite of, and perhaps associated with, the breakdown
of mean field theory. The theoretical work initially led
to the development of a new phenomenological theory,
often known as scaling. ' We shall not discuss the scal-
ing theory in any detail here. 'The interested reader
will find an excellent account of it in the book by Stan-
ley (1971). In essence, the Landau assumption of
analyticity of a thermodynamic potential is replaced in
this theory by the more general postulate that the free
energy is a homogeneous function of its arguments.
This homogeneity assumption is less restrictive than
the analyticity postulate; and consequently the pre-
dictions of the new theory are less specific. The values
of the exponents are no longer given; but the theory
predicts relationships, known as scaling laws, between
two or more exponents describing the singularities of
different properties near the same critical point. The
theory also predicts the general form of the equation of
state. Another major parallel theoretical effort con-
centrated on obtaining numerical solutions by series
expansion technique for specific model systems such as
the three-dimensional Ising and Heisenberg models
[see Fisher (1967) for a reviewj.

Experimental. efforts during this period were directed
towards more and more refined measurements of criti-
cal point parameters such as exponents, as well as to-
wards measurements of the equation of state over a
broader range of temperatures and fields. 'This was
also the time when the newly developed techniques of
laser light scattering and neutron scattering were first
being applied to the study of both spatial. and temporal
fluctuations near critical points. These experiments
resulted in important new information (see, e.g. ,
Heller, 1967); but I shall not discuss them further here
because they made relatively little contact with my own
work.

By the middle 1960s, it became evident in part from
the experiments, but especially from the model cal-
culations, that widely differing physical systems often

The exponent describing the specific heat singularity is
given the symbol, o, . Since lim~ 0 [e (t —1)]=—ln(t), a
logarithmic specific heat corresponds to a = 0.

For reviews of the field up the middle 1960s, see Heller
{1967);Fisher (1967); Kadanoff et aE. {1967).

Various formulations of the scaling theory are given by Es-
sam and Fisher (1963), Widom (1965), Domb and Hunter
(1965), Kadanoff (1965), Patashinskii and Pokrovskii (1966),
and Griffiths {1967).

but not always shared the same critical behavior. The
conviction evolved that there exists a, small number of
universality cia.sses to which critical. points can be as-
s igned; but a systematic me thod of clas sif ication was
still lacking. 'The experimental results for the ex-
ponents were used to test the predicted scaling laws.
This was an important undertaking because the scaling
theory was a phenomenological theory, and therefore it
was natural to ask whether its predictions were exact
or whether they were merely a good ~/proximation to
the behavior of re al s ys tern s.

Some of the early experiments were misleading with
regard to both the scaling predictions and the question
of universality in spite of their high level of sophistica, —

tion. For instance, liquid-gas critical points almost
always yielded values near 0.355 for P (Levelt Sengers
and Sengers, 1975; Sengers and Levelt Sengers, 1978),
whereas numerical calculations for the three-dimen-
sional Ising model yielded results rather closer to 0.32
(see, for instance, Fisher, 1967). We now believe that
these two systems belong to the same universality
class, and that P for liquid-gas critical points is ap-
preciably lower than the early experiments had indi-
cated (Hocken and Moldover, 1976; Balza. rini and Ohrn,
1972). In retrospect, the reason for this problem is
clea.r. The universality of critical behavior manifests
itself only when T, is approached very closely. For
finite values of the reduced temperature t there are
contributions to the thermodynamic functions which are
not included in pure power laws like Eqs. (7) and (8).
These contributions may be singular and may remain
large even for very small t, although they vanish for
t =0. A fit of the data at nonzero I to Eq. (7), for
instance, will in that case result in systematic errors
for I3. We shall return to the experimental study of
these higher-order singular terms l.ater on when we
consider measurements of the superfluid density near
1", in 'He.

The above example illustrates the need for making
measurements extremely close to the critical tempera-
ture. For most systems, this becomes very diff icult
not only because of limitations imposed by measure-
ment techniques, but perhaps primarily because the
samples must be sufficiently homogeneous to avoid
"rounding" of the phase transition on the scale of the
temperature resolution of the measurements. 'The
problem of obtaining sufficiently good samples has in-
deed been a major one since the revival of experimenta. l
interest in the field because the requirements are so
severe.

Sample inhomogeneities have been responsible also
for apparent conflicts between experimental results for
exponents on the one hand and scaling predictions on
the other. 'This problem is well illustrated by specific
heat measurements for magnetic systems. We expect a
singularity of type C~- ~f~ as T T, from above, and
oftypeC~- ~t~

' asT-T, frombelowT, .' Scalingpre-
dicts that n = n', whereas many early experiments
yielded n & n'. Often, the reason 'was an incorrect
choice of a representative T„provoked by "rounding"

6&e follow the usual convention of identifying exponents per-
tinent to properties below T by a prime.
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of the transition and a consequent shift of the maximum
in C~ to temperatures below the T, for the pure system.
In addition, in some cases possible asymmetry about
T, in the size of higher-order singular contributions to
C~ may also have contributed to the problem.

I have tried to outline so far some of the objectives of
experimental. work on continuous phase transitions, and
some of the problems faced by the experimentalists, in
the middle 1960s. Two major objectives seem to have
been to test the scaling theory, and to provide more
and more detailed information which could be used in
the development of a theory for the assignment of
critical points to universality classes. 'Two major pro-
blems were the need for extremely homogeneous mate-
rials, and the influence of higher-order singular terms
on the values of parameters derived from data. 'The
latter was actually not widely appreciated at that time.
Although theorists knew that in principle very compli-
cated confluent singularities can exist (Fisher, 1967),
a certain optimistic belief prevailed that nature in some
sense would be simple and that'an analysis of data in
terms of pure power laws like Eqs. (7) and (8) would
yield good results for the parameters which describe
the asymptotic behavior of the measured variable. The
problems associated with sample inhomogeneities were
much more generally appreciated, but in most cases
there were no easy solutions.

B. Sample inhornogeneities and the superfluid transition

Even the best solid materials have phase transitions
which are obviously rounded over a range of about 10 4

in the reduced temperature. Liquid-gas critical points
are appreciably affected by the gravitational field over
a similar temperature range (see, for i.nstance, Bar-
m3tz ef. al. , 1975; Sengers and Levelt Sengers, 1978;
Moldover et a/. , 1979). Departures from the behavior
of the uniform system on the scale of highly quantita-
tive experiments extend to even larger values of

~

t . It
became apparent in the early 1960s that the superfluid
transition in He provides the near-ideal system that is
needed to test some of the predictions of the theory in
the greatest possible detail. For that system there are
no strains because the sample is a liquid, and the only
significant impurity is 'He, which occurs naturally only
to the extent of 1 part in 10', and which at that level has
a negligible effect. 'The major source of an inhomo-
geneity is the gravitational field. Its effect is much
smaller, however, than it is near-liquid-gas critical
points. For liquid-gas critical points, the density
difference between the two phases is the order para-
meter, and therefore the pressure (or chemical po-
tential) is the field which is the thermodynamic con-
jugate to the order parameter. This implies that the
compressibility is the strongly divergent susceptibility
given in Eq. (8). Thus the compressibility becomes ex-
tremely large and density gradients in the fluid under
the influence of gravity are appreci. able and vary with
the height. For the superfluid transition, the corn-
pressibility has only a weak singularity (of type f ") and
in practice remains nearly constant even when the
transition is approached very closely. 'Therefore the
gravitational. field induces a small, nearly-constant
density gradient in samples of nonzero height. This re-

suits in a height-dependent transition temperature, but
the effect is numerically almost negligible. Thus, at
saturated vapor pressure, T„ is expected to be shifted
by only 1.3 p, K for a 1 cm change in fluid height. Work-
ing with a sample which is 1 mm tall, one would have a
two-phase system over a range of only 6 && 10-' in

~
t~.

Outside this range, it is not difficult to use the known
pressure dependence of T, to correct data for the slight
departures from the properties of a uniform system.
'The material is in fact so nearly uniform that to this
day the temperature resolution and stability which
would be necessary to fully exploit its potential have
not yet been developed.

Although liquid helium has unparalleled advantages
for experimental investigations, its potentials in some
sense are quite limited. First, it represents only one
type of critical behavior, and a study of the difference
between distinct classes of critical points has to rely
in addition on investigations using less favorable mate-
rials. Further, only a small number of relevant re-
sponse functions are accessible to experiment. 'This is
because the order parameter of the system is a pro-
perty associated with the ground-state wave function
which is not readily accessible to experiment. The
field conjugate to this order parameter also cannot be
varied in the laboratory. Nonetheless, we shall see
that important, highly quantitative expe rimental in-
formation about continuous phase transitions has been
derived from work on this system

C& ——A. logt+ B

for T&T, andby

C~ =A' log( —f)+B'

(9a)

(9b)

for T & T„. Here f = T/T~ —1. The experiment indicated
that to a good approximation A =A'. 'This equality be-
tween the amplitudes for a logarithmic C~ is one of the
consequences of the scaling theory; but ef course the
experiment had preceded the theory by several years.
The experimental result wBs very similar to the exact
theoretical prediction for the two-dimensional Ising
model (although the Ising model has a completely sym-
metric specific heat with B=B'). A few years after the
A-point measurement, the divergence of the specific
heat at constant volume C~ at liquid-gas critical points

This'work was reported in a number of places, including
Fairbank et al. (1958), Ke11ers (1960), Buckingham and Fair-
bank (1961), Fairbank {1963), and Fairbank and Kellers (1966).

C. Heat capacity near the superfluid transition

In 1965, when I first became interested in doing ex-
periments near T„we already had the very bea.utiful
specific heat measurements of Buckingham, Fairbank,
and Kellers' which had been part of the reason for pre-
senting the 6th Fritz London Award to William Fairbank
(coincidentally, this work was presented for the first
time in 1958 at the 5th International Conference on Low

emperature Physics, which was the conference at
which the first London Award was given to N. Kurti).
'They yielded the famous ".logarithmic" singularity in
the specific heat at constant pressure C~ which can be
expressed by
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Guenter Ahlers: Critical phenomena at low temperatore

was discovered (Bagatskii, Voronel', and Gusak,
1962), and those data were interpreted initially in
terms of a logarithmic singularity. 'The feeling evolved
that a logarithmic specific heat was perhaps a common
feature of many different types of critical points, '
although alternate interpretations of the liquid-gas
specific heat were considered already in the middle
1960s (Fisher, 1964a, b). Since the measurements by

'

Fairbank and co-workers, some progress had been
made in the techniques of high-resolution thermometry
and thermal isolation; and in view of the new scaling
predictions and the expectations of universal behavior
near critical points it was very exciting to attempt a
new, pe rhaps even more precise se t of me asure ments.
There was one problem with ~He, however. As men-
tioned earlier, the transition temperature is pressure
dependent and thus the gravitational field induces an
inhomogeneity in samples of finite height. Estimates
based on the phase diagram indicated that this effect
would be small and that corrections could easily be
applied. On the earth's surface and at vapor pressure,
one would expect isothermal 'He II and 'He I- to coexist
over a narrow temperature interval, with an interface
between the two phases which moves vertically by 0.79
cm per 1 p.K temperature change. But in 1966, a
theoretical paper appeared which claimed that this
classical, situation would not prevail, and that the two
phases could not coexist even in the presence of gra-
vity because a proximity effect would prevent it. 'This
prediction turned out to be based on an incorrect ap-
plication of the Landau theory; but it provoked me to
carry out a preliminary experiment on a very tall
sample of'He. This experiment (Ahlers, 1968a) showed
clearly the coexistence of the two phases, and de-
monstrated an interface movement of 0.81+ 0.03 cm/
p.K, in excellent agreement with the phase diagram. Of

course, one does expect the existence of a proximity
effect in this system; but a correct application of the
Landau theory indicates that this results in a thick-
ness" of about 10-2 cm for the interface (Hohenberg,
1968); and to this day experimental skills and ingenui-
ties have not been sufficient to detect this thickness.

During this work on the gravity effect I benefited
greatly from the theoretical guidance which was so
generously given by my col.league Pierre Hohenberg. I
consider myself very fortunate indeed that Pierre has
been closely associated with my work ever since; and

he has never tired of expl. aining to me those conse-
quences of theoretical developments which were per-
tinent to. my experiments.

It was time now to seriously attempt the specific heat
measurements; but while the apparatus for this was
being designed, Ferrell and co-workers (1967, 1968)
and Halperin and Hohenberg (1967, 1969) developed a
scaling theory for transport properties which predicted,
among other things, that the thermal conductivity A. of
He I should diverge upon approaching I, from above

according to the power law A. -g-" ', where v is the ex-
ponent of the correlation length ( for spatial fluctua-

C~ = (A/n) i

for I&0, and to

C;=(A /n )~f~ '+a- (lob)

for t &0. The logarithimic singularity then corresponds
to the specific case n = n'=0; but equal amplitude
ratios are predicted only for vanishing exponents.
When the data were fitted to power laws, they yielded
very slightly negative values of n and n', and A/A'
= 1.1. The small but negative exponents imply that C~
becomes very large but remains finite at T, . 'This was
a result which seemed difficult to accept on intuitive
grounds; but intuition failed us there and we shall see
below that we now have convincing experimental and
theoretical reasons to believe in a negative n. 'The

very small value of n = n' also seemed rather disturb-
ing because of the strong prejudices for the idea that
critical exponents should be expressible as ratios of
small integers. This prejudice to a large extent had its
roots in the Landau theory which I discussed above;
but it was further supported by the feeling that it would
be very difficult to construct a theory which would
yield irrational exponents. A well known theorist said
to me at the time: "How can you expect me to make a
theory which predicts one-fiftieth, or even one one-
hundredth'?" Well, as we shall see shortly, ther'e is
such a theory now and the notion of ratios of small in-
tegers for critical exponents finally seems to have
disappeared.

tions in the order parameter. ' Qualitative indicators
of a divergence of A. already were given by the mea~
surements of Kerrisk and Keller (1967, 1968); but
quantitative results were lacking. A thermal conduc-
tivity cell was therefore incorporated in the specific
heat apparatus. I will return to the results for A. later
on; but the thermal conductivity measurements also
made it possible to determine T, with the very high
precision of 10-' K; and this was important for the in-
terpretation of the C~ measurements because it reduced
the number of parameters to be determined from these
data by one.

Some of the results (Ahlers, 1969, 1971) for the heat
capacity at saturated vapor pressure C„which is
virtually equal to C~, are shown as solid circles in
Fig. l. The measurements of Fairbank ef al. are shown
as open circles. 'The agreement is obviously excellent.
Near T„where errors due to temperature resolution
dominate, the new data are more precise by only per-
haps a factor of two or three; but for

~
f [ ) 5 && 10 ' the

improvement in precision is about an order of magni-
tude. 'To our great surprise, these more precise data,
when fitted to a logarithmic singularity, no longer per-
mitted A. =A' as predicted by theory. The onl. y way to
reconcile these results with the predictions was to
abandon the logarithmic functional form, and to fit the
data to the more general power law

This is well illustrated by the contents of the 1965 confer-
ence on critical phenomena held in Washington, D. C. (Green
and Sengers, 1966).

No confusion should arise from the use of the symbol A. both
for the thermal conductivity, and as a subscript of T to denote
the superfluid transition temperature T~.
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FIG. 1. Heat capacity at
saturated vapor pressure
of liquid 4He near T~ as a
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The upper set of data is
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D. The supsrfluid transition and universality

Already around 19'70, the conviction that critical be-
havior involved rather general phenomena had cul-
minated in a concrete formulation of a hypothesis of
universality. ' According to the new postulate, all
phase transition problems can be divided into a small
number of different classes, with each class deter-
mined by the dimensionality of the system and the sym-
metries of the ordered state. Within a class, exponents
like n or n' and certain amplitude ratios like A/A'
should be constant and thus independent of the details
of the interactions of the particular system. Simple
examples of members of the same universality class
are all Ising models, regardless 'of the spin or under-
lying lattice type. Here the type of lattice for instance
is an irrelevant detail of the interactions. A Heisen-
berg model, however, would belong to a. different class
because the symmetry of the ordered state is different.
For the Heisenberg system the order parameter (mag-
netization for instance) is a vector, where as for the
Ising system it is a scalar. Physically, the irrele-
vance of the details of the interactions of a particular
system arises from the fact that critical phenomena
are the result of fluctuation in the order parameter
over a spatial range which becomes larger and larger
as the critical point is approa'ched. The associated

Early statements of the hypothesis of -universality may be
found in Fisher (1966), Watson, (1969a,b), and Jasnow and
Wortis (1968). More recent references are Kadanoff (1971),
Griffiths (1970), Betts et al. (1971), and Stauffer et ag. (1972).

averaging over domains which are large compared to
the scale of the de tailed interactions renders the de-
tails unimportant; but it remains important whether the
fluctuating quantity is, for instance, a scalar or a
vector. For liquid helium, universality meant that
A/A' and n should be independent of pressure and of
the 'He concentration because these parameters do not
change the symmetry of the ordered state. Again, the
superfluid transition provided a flexible testing ground
of this theoretical idea. There was a problem, how-
ever, for in~He a andA/A' pertain to C~; and under
pressure it is difficult to measure C~ because the size
of the container or the amount of sample would have to
be varied as the temperature is changed. Instead, the
heat capacity at constant volume C„was measured, and
C~ was obtained from C„, by making the appropriate
corrections (Ahlers, 1973). This worked well at small
I, where C~ —C„was small, and for P ( 15 bars yielded
universal parameters. But at larger pressure the ex-
periment seemed to yield pressure-dependent values of
A/A' ~ The reasons for this are still not entire'ly clear,
but it is likely that this result was in error and attri-
butable to an underestimate of the uncertainties in the
rather large corrections which were necessary to con-
vert C„ to C~. The question of universality along the
entire X line in 4He therefore wa. s not settled by the C„
measurements, but rather considerably later by pre-
cise determinations of the thermal expansion coeffi-
cient P~ (Mueller et af. , 1975, 1976). Since P~ is an
asymptotically linear function of C~ near T~, P~ has the
same exponents and amplitude ratios as C~. A direct
measurement of P~ is easier than one of C~. This work
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O.OO
I

Q=Q' = —0.026 t 0.004

-0.02— 0

-0.04—

1.2 I,
A/A =1.112 x 0.022

was started in 1973, when I was fortunate enough to be
able to spend a year at the Kernforschungsanlage in
Julich, West Germany, working in collaboration with
Frank Pobell and Karl Muell. er. By this time, we al-
ready knew from measurements of the superfluid den-
sity tobe described in Sec. F below that an analysis of the
data in terms of simple power laws like Eq. (10) did
not always give those values of critical point para-
meters like n and A/A' which pertain in the limit as

~
tt vanishes. Thus the data. were fitted to the function

~, = (A/~) (tl-. tl+D~ t ~.].~
for t&0, and to the same function with primed para-
meters for t&0. Here x&0, and thus the term D~f("
vanishes at T, . For the measurements at elevated
pressure, the temperature variable t must of course be
defined in terms of T, (P). The values obtained for n
= a', A/A', and D/D' are shown in Fig. 2. The error
bars are standard errors (68/q confidence limits).
Since most of them overlap the mean values which are
indicated by the dashed lines, universality is strongly
supported by these measurements along the X line in
He. The best universal values of the parameters are

n = o."= -0.0(26 + 0.004,
A/A' = 1.112 + 0.022,
DID' = 1.29 + 0.25.

(12a)

(12b)

(12c)

Since n is negative, these results confirm the earlier
conclusion that C~ remains finite at T~. But the mea-
surements extrapolate to a very large, only mildly
pressure-dependent value near 30 ke for C~(T, ).

E. Effective exponents

Equation (ll) above, which was used to analyze the
thermal expansion data, includes the confluent singular
term D

~
t I" in addition to the leading power-law singu-

larity (see also Sec. F below). One can hardly over-
state the difficulties which are involved in extracting
meaningful parameters from a fit of experimental data
to such a complicated function. This problem of data
analysis is reviewed in some detail elsewhere (Ahlers,
1978). Only the most precise data extending to the
smallest possible values of

~

t
~

are at all suitable for
the purpose. In practice, this means that measure-
ments near most other critical points besides the
superfluid transition will yield errors for the para-
meters of Eq. (11) which are so large that different
universality classes could not be distinguished. This
explains the popularity in the past of fits to the much
simpler pure power laws. 'The results can be extreme-
ly misleading, however. For instance, a pure power
law fit of P~ will result in values of n which vary from
about -0.0]. at vapor pressure to about 0.07 at 30 bars
(Ahlers, 1978}, even when only data with

~
f~ c 3x 10-'

are used. " This pressure dependence is of course not
a variation in the exponent which describes the asym-
ptotically dominant singularity, but rather a variation
in an effective exponent a which has no particular
significance except that it reflects the strength of the
confluent singular terms. These effective exponents
have beeri discussed recently by Aharony and Ahlers
(1980)andby Chang and Houghton (1980) (see also Ahlers,
1978). It is interesting to note that many early experiments
on liquid-gas critical points have yielded "universal"
values for I3 and y when the data were fitted to pure power
laws (I evelt Sengers and Sengers, 1975). The values of P
and y were not those, however, which are now believed to

1.0
2.0

).0

0

I

D/D'=l. 29 4 0.25

() e

I

10
p

/

bar/

I

20
I

50

be appropriate for the leading singularity (Hocken and
Moldove r, 1976). The apparently "universal" nature of P
and y is thus an indication that many liquid-gas critical
points obey a law of corresponding states in the sense that
they all have similar values for the equivalent of the
amplitude D in Eq. (11). This law of corresponding
states is of course not the same as universality, be-
cause within the universality postulate individual ampli-
tudes like D and A are permitted to depend upon the
details of the interactions for the particular system.
The dependence of e upon the pressure along the super-
fluid transition line indicates that this transition does
not obey a law of corresponding states and that D is a
function of I'. However, there is no evidence against
universality because n and A/A' are pressure inde-

FIG. 2. The exponent a= ~', the ratio of the leading amplitudes
A/A. ', and the ratio of the amplitudes of the confluent singul-
arity, for the thermal expansion coefficient P~ near T& as a
function of pressure. After Mueller et al. (1976).

~~For many other systems with phase transitions, measure-
ments which are not affected by sample imperfections are ob-
tainable only for

I
t I &3 x1P 3.
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pendent. For smallP, D is nearly equal to 0 and there-
fore 6 is nearly equal. to n. I do not know why D should
vanish near I' = 0; but that it does is a lucky accident
because much of the early work on liquid helium was
done at vapor pressure. Analyses in terms of pure
power laws gave nearly the correct results for the
leading singularities. It is also interesting to note that
D is nearly equal to zero for th'e spin-1/2 Ising model,
but greater than zero for other spins (Saul ef al. , 1975).
So far, theory can tell us very little about the size of
nonuniversal parameters like D.

While the work on the thermodynamics of the super-
fluid transition which I have described was slowly pro-
gressing, a major new theoretical development oc-
curred in the field when K. G. Wilson (1971) applied
renormalization group methods to the problem of con-
tinuous phase transitions. " The renormalization group
theory (RGT) of critical phenomena is now believed by
many to be exact. It provides a derivation of the re-
sults of scaling and universality from a more micro-
scopic starting point; It also supplies the methods for
deciding which symmetry properties of the ordered
state are relevant for the determination of the uni-
versa, lity cia.ss, and it makes it possible a,t least in
principle to calculate the values of exponents and ampli-
tude ratios. In a sense, the stakes became consider-
ably higher for the experimentalist after the advent of
the BGT, and the claim that the existence and nature of
singularities in systems with regular microscopic in-
teractions had been explained in a fundamenta/ way de-
served the most careful experimental scrutiny. 'These
theoretical developments certainl. y had a highly sti-
mulating effect upon our investigations of the A. point.

F. Superfluid density and confluent singularities

So far, I have discussed the experiments pertinent to
the specific heat exponent a and amplitude ratios A/A'
and D/D'. The other parameter which is accessible to
experiment and relevant to critical phenomena is the
superf&uid density p, . The exponent & of p, is related to
o. through a scaling law (Josephson, 1966). An accurate
determination of g in addition to n therefore would pro-
vide the dpportunity to test a scaling prediction at an
unprecedented level of accuracy. In addition, the ratio
2'/p, is proportional to the correlation length $ for
spatial fluctuations in the order parameter, with the
proportionality constant given by theory. Measure-
ments of p, therefore yield both the amplitudes 8, and
the exponent v' of g. As we shall see below, a, know-
ledge of (, will enable us to test additional predictions
of universality.

Historically, the p, measurements actually preceded
the determination of n from the thermal expansion
measurements. I would therefore like to go back a
few years, to the beginning of 1970, when. Dennis Grey-
wall joined the staff of Bell. Laboratories. Dennis and
I collaborated for two years on the measurement of
second-sound velocities in He and 'He-~He mixtures.
For pure He, the second —sound velocity u, is related
to the superfluid density p, by two-fluid hydrodynamics,

For reviews of the renormalization group theory, see, for
instance, K. G. Wilson and J. Kogut (1974) and M. E. Fisher
(1974).

and is given by"

~2=S Tps/pnC~. (13)

Here S is the entropy, and p„=p —p, is the normal-
fluid density. We used the measured u, and Eq. (13) to
determine the superfluid fraction p, /p (Greywall and
Ahlers, 1972, 1973). From previous measurements at
vapor pressure by Tyson and Douglass (1966), and by
Clow and Heppy (1966), we already knew that to a good
approximation near T~

p, /p=uit[' (14)

with g close to —', . In order to have a sensitive graphi-
cal representation of the data,

'
we therefore plotted the

nearly constant (p, /p)t '' vs -f on logarithmic scales.
'This is shown in Fig. 3. 'The results surprised us for
two reasons. First, we had expected from an exami-
nation of the earlier measurements at several pres-
sures but not very near T~ by Romer arid Duffy (1969)
that to a good approximation p, /p would obey a Iaw of
corresponding states in the sense that the data at all
pressures a,s a function of t would fall on a single curve.
The a.pplicability of a, law of corresponding states to
p, /p has been shown with greater precision than that of
the Homer and Duffy results more recently by May-
nard et al. (1976), but again only for temperatures not
very close to T„. We see from Fig. 3 that this law does
not hold in the immediate vicinity of the transition.
There is of course no known fundamental reason why it
should, arid its a,pplicability at lower temperatures,
although remarkable, may well be only approximate. "
The second source of surprise was the considerable
curvature exhibited by the data in Fig. 3 for the higher
pressures. If it were possible to represent p, /p by a
power law like Eq. (14), the measurements should fall
on a straight line, with a slope equal to ( ——,. The

Oil)sO p y
SVP
r.2

0.5-
o l8.0

24.

0.2-
29.09

3See, for instance, I. M. Khalatnikov (1965).
4I already discussed departures from a corresponding

states law earlier in this paper in connection with the effec-
tive specific heat exponent n; but those results were not yet
known to us when we made the p~ measurements.

-2
io['~

FIG. 3. High-resolution plot of the superfluid fraction p /p,
as a function of f =T/Tz —1 on logarithmic scales. The data
for p, /p were multiplied by i f i

/ in order to remove most
of their temperature dependence. The numbers near the data
indicate the pressure in bar. After Greywall and Ahlers (1972}.
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curvature at the higher pressures therefore indicates
that a pure power law is not a good representation of

p, /p, even for values of
~

/( as small as, say, 10-'.
hus it became necessary to interpret the results in

terms of the more cqmplicated function

(15a)

where g(/) is singular and vanishes at T, . When is was
assumed that g(t) has the form

g(/)=dI/~"

those data yielded

x = 0.5+ 0.1.

(15b)

G. Exponent values and scaling

The amplitude 0 of the conf l,uent singular contribution
to p, is smallest at vapor pressure. 'This is clear from
Fig. 3 where the data, labeled SVP nearly fall. on a
straight line. For that reason, those data permit the
most accurate determination of the leading exponent g.
When fitted to Eq. (15), they give

& = 0.6749+ 0.0007.

he resul. ts at higher pressure are consistent with this
value and therefore with universality; but they do not
give g as accurately The inf. ormation about x [Eq.
(16)] of course comes primarily from the high-pres-
sure data where the term dP contributes appreciably
to p, . The result Eq. (17), together with the result
Eq. (12a) for o., can be used to test the scaling law
(Josephson, 1966)

These measurements therefore clearly indicate that
there are correction terms to the leading power law
singularly, and that these terms have a singular tem-
perature dependence. 'They provided part of the moti-
vation for the use of confluent singularities for the
thermal expansion analysis [Eq. (11)]which I discussed
above. Since there is no reason to assume that the
superfluid transition is a, special case, the p, results
demonstrate that confluent singular terms in general
have to be assumed to contribute to properties near
critical points. The presence of such terms makes the
comparison of measurements with theoretical pre-
dictions extremely difficult because of the additional
parameters which they introduce into the analysis.

Prior to our measurements of p„strong indications
for the existence of confluent singula, rities had already
been obtained f rom high-temperature series expansions
for the Ising model. " Simultaneously with our p, mea-
surements, the existence of confluent singula. rities near
phase transitions, as well as some of their properties,
were predicted from the RGT (Wegner, 1972), and this
additional theoretical information has somewhat re-
duced the problem involved in the interpretation of ex-
pe riments.

TABLE I. Experimental and theoretical results for the
measurable exponents and amplitude combinations near &y
in 4He.

I'a ra meter Experiment

-0.026 + 0.004
0.6749 + 0.0007

0.5+ 0.1
1.112+ 0.022
1.29 + 0.25

0.527+ 0.016

-0.007+ 0.006
0.669 + 0.002
0.522+ 0.017'

very small errors. This comparison of exponents for
different quantities via scaling is the only one I know of
with values determined from fitting to functions which
include confluent singular terms; and it therefore pro-
vides important new quantitative support for the theory.
It is especially interesting that the particular scaling
law Eq. (18) is confirmed so well by the data because
the high temperature series expansion results for the
Ising model have long been regarded a,s inconsistent
with it (see, for instance, Camp et a/. , 1976). The
Ising exponents are, however, still under active in-
vestigation.

In addition to providing a derivation of scaling and
universality, the BG'T in principle can al.so be used to
calcul. ate the values of exponents and of the universal
a,mplitude combinations. 'These calculations usually
have to be ca.rried out by approximate mathematical.
techniques, however, and thug are subject to errors
which are difficult to estimate. Only the exponents have
so far been calculated with relatively high accuracy"
(LeGuillou and Zinn-Justin, 1977), and their values
are compared with the experimental results in Tabl. e I.
Although the differences are small compared to the un-
certainties of most experimentally determined ex-
ponents for systems other than helium, the theoretical
and experimental values in 'Table I do differ by con-
siderabl, y more than their estimated errors. It is
somewhat questionable at this time to what extent the
discrepancy may be due to underestimates of the un-
certainties. However, it seems unlikely that the ex-
perimental errors were appreciably underestimated
because the values of + and &, although they come from
two completely independent experiments, satisfy the
scaling law Eq. (18) well within the quoted errors. It
seems that the possibility of a fundamental problem
with the applicability of the theory in its present form
and on a highly quantitative level to real physical sys-
tems cannot be discarded altogether. Additional evi-
dence for similar problems comes from the high-tem-
perature series expansions for the Ising model (see,
for instance, Camp et a/. , 1976), which yield, for ex-
ample, , a value of 1.250 for y, to be compared with the
BGT value of 1.241+ 0.002. In this case, however, I
al.ready mentioned that the size of the errors for the
series results are still the subject of a current debate.

~' = (2 —n)/& (18)

because g = v'. For the rhs of Eq. (18), we get 0.6753
+ 0.0013, consistent with the experimental g within the

M. Mortis, private communication, and Saul et al. (1975).

LeQuillou and Zinn- Justin (1977).
At saturated vapor pressure.

See Bervillier and Godreche {preprint), however, for the
calculation of an amplitude combination rvhich happens not to
be accessible to measurement in liquid helium.
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In addition, the series exponents do not satisfy the
scaling law Eq. (18) and the comparison of the ex-
ponent values with the BGT is clouded by that problem.

Table I also contains a summary of the experimental
results for those universal amplitude combinations
which are accessible to measurement in liquid helium.

H. Superfiuid density in sHe-4He mixtures

In collaboration with Greywall, the second sound mea-
surements were extended also to 'He-'He mixtures
(Ahlers and Greywall, 1972, 1974; Ahlers, 1976). In
the region near the tricritical point, the results along
the coexistence curve were consistent with p, —(T
—T,)", where T, is the tricritical temperature. Along
the X line, we found that the amplitude k(X) vanishes
upon approaching X, (X is the 'He concentration), with
an exponent of about 0.34. Both of these results follow
from RGT calculations (Riedel and Wegner, 1972).

I. Two-scale-factor universality

0.8

0.7—

10%

0

I

10
I

20

0
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We have seen that the scaling law Eq. (18) is satisfied
by the experimental values of n and ( at a highly
quantitative level, and that the lack of pressure depen-
dences of A/A', a, and D/D' are consistent with uni-
versality. The minor differences between the theoreti-
cal and experimental values of cv and g require addi-
tional investigation, and cannot be regarded as con-
crete evidence for a breakdown of the theory at this
time. Unfortunately, quantitative agreement does not
extend to all pertinent parameters which are measure-
able near T„. An additional quantity which is predicted
to be universal is the free energy, divided by the tem-
perature, for a volume of fluid which is equal to the
cube of the correlation length (Stauffer et ai. , 1972;
Hohenberg et al. , 1976). This parameter is given by a.

combination of the specific heat amplitude A' and the
superfluid density amplitude P, and can be written as

yyz ', A' T'
4

B y 3y3 (19)

he experimental values of au are shown in Fig. 4.
'They increase by a. factor of 1.5 as the pressure
changes from 0 to 30 bars. Whereas a variation of per-
haps 15% could be attributed to experimental errors,
it is difficult to see how the experiments could be off
by 50/o at high P. However, in view of the other very
excellent agreements between the RGT predictions and
experiment, it seems prudent to reserve judgement on
the significance of this problem until additional, more
quantitative measurements of jp and A' have been made.

J. Other universality classes of the n-vector model

The work which I have described so far has yielded a
considerable amount of quantitative information about
the behavior of thermo-hydrodynamic parameters near
T, in 4He. But the superfluid transition represents only
one particular universality class. Specifically, the
order parameter in this case is isotropic and has two
degrees of freedom (a magnitude and a phase). Thus it
is representative of the case n = 2 of the n-vector model.
In order to learn about the differences in the critical
point parameters of different universality classes, it

P [bar]

FIG. 4. Experimental values of the parameter nu, defined by
Eq. (19), as a function of pressure. From theory, eu is ex-
pected to be universal and thus independent of pressure.

e = n' = -0.14+ 0.02 (20a)

A/A' = 1.4*0.1. (20b)

These values are clearly quite different from those for
He, as was expected.

'The third repre sentative of the isotropic n-vec tor
model which is accessible to laboratory experiments is
the case n = 1. Examples are Ising magnets or liquid-
gas critical points. These systems have been widely
studied by others, and have yielded the values" ~
=0.10 and A/A. '=0. 54. Thus we see a monotonic trend
in o.'and A/A' with spin dimensionality. This is shown
explicitly in Fig. 5, where the experimental-vat. ues of
& = o' and A'/A are shown as a function of n ' The.

For a summary, see, for instance, Barmatz et al. (1975).

is necessary to make measurements on systems other
than superfluid helium in spite of the experimental dis-
advantages. 'Therefore, in 1971 and in collaboration
with Avinoam Kornblit, we started a program of speci-
fic heat measurements near magnetic phase transitions.
The first material chosen for these investigations was
BbMnF„of which very high quality crystals were
available, and which had long been regarded as the best
representative of isotropic Heisenberg systems. A
Heisenberg magnet without Ising or cubic anisotropy
corresponds to the case n = 3 of the n-vector model. We
found that appreciable rounding of the specific heat due
to inhomogeneities in the sample was confined to

~
t~

&10-'. Although this is extremely good for solid mate-
rials, it of course cannot rival the sharpness of the
superfluid transition which is limited only by gravita-
tional effects in the regi. on

~
t~ (10 '. Nonetheless, we

were able to determine A/A' and o. with reasonable ac-
curacy, and found (Kornblit et al. , 1973; Kornblit and
Ahlers, 1973)
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FIQ. 5. Experimental
(circles) and exact theo-
retical (squares) results
for n (solid symbols, left
ordinate) and A'/A (open
symbols, right ordinate)
as a function of the inverse
spin dimensionality n ~.

The smooth lines through
the data cross ~= 0 and
A '/A = 1 when n = 1.80.

squares at n-' = 0 represent exact theoretical results
for the case n = 0 (Stanley, 1971; Abe and Hikami,
1975). We see that the four known values of A/A' and
n fall on smooth, monotonic curves. 'These curves
cross o = 0 and A/A' =1 for n = 1.80; and thus only for
this physically meaningless case would we obtain the
logarithmic singularity with equal amplitudes above and
below the transition which was originally envisioned for
the superfluid transition in 4He. From the RGT we
would expect a smooth variation of o. and A/A' with n
because the theory gives the exponents and amplitude
ratios as continuous functions of n and the dimensiona-
lity d without any known singularities near d = 3. 'The

numerical values given by the theory (LeGuiliou and
Zinn- Justin, 1977) for n at n= 1, 2, and 3 coincide
with the experimental points in Fig. 5 on the scale of
that figure.

K. Dipolar Ising systems

Our investigation of magnetic transitions was extend-
ed to a number of other materials, primarily to study
the effect of dipolar interactions upon the critical. be-
havior (Kornblit and Ahlers, 1975; Ahlers and Korn-
blit, 1975; Kornblit et al. , 1978). This work was
undertaken because it had been predicted from the RG'T

that the universality classes of dipolar systems would
be different from those of the corresponding isotropic
short-range-force n-vector model, mainly because of
the anisotropy of the dipolar interactions. Particular-
ly noteworthy are the experiment+1 results, obtained
in collaboration with A. Kornblit and H. J. Guggenheim
(Ahlers et a/. , 1975) for the dipolar Ising ferromagnet

LiTbF, . It was first called to my attention through a
seminar given. at Bell Laboratories by J. Als-Nielsen
that the dipolar Ising system is particularly interesting
from the viewpoint of the RGT. 'The theory predicts
that for every universality class there is a marginal
dimensionality d* which separates Landau-like be-
havior for large d from "scaling" behavior for small
d. For d'= d*, the critical behavior is given correctly
to leading order in the temperature and the field by the
Landau theory; but the RGT predicts that there will be
corrections to the leading singularity which a.re pro-
portional to fractional powers of the logarithm of the
reduced temperture f or the field. For the isotropic
n-vector model, d*=4, and therefore these logarithmic
terms are not accessible to experiment; but in the case
n= 1 (Ising) the anisotropy of the dipolar forces reduces
d~ by one. Thus, in that case, d*= 3 and the logarith-
mic terms are accessible in the real physical world.
It is remarkable that these theoretical. predictions
largely had been made already in 1969 by Larken and
Khemelnitskii (1969), prior to Wilson's (1971) work on

the RG'T. 'These logarithms for d=d* are now recog-
nized to be one of the central results of the RGT; but
even for d*= 3 they are very difficult to measure be-
cause the very weak temperature dependence of the
fractional power of a logarithm is usually nearly neg-
ligible compared to that of a strong leading singularity.
The best chance of observing them quantitatively exist-
ed in specific heat measurements because the Landau
specific heat has only a discontinuity instead of a
stronger leading singularity at T,. Our results for
LiTbF, could be fitted by expressions which to leading
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order in the logarithms are given by

C~ = A In'(a/f) (21a)

C;=A' In*I~«l+~' ~

'The data yielded

A. /A ' = 0.24 a 0.01

(21b)

(22a)

4.0
0

'5.5

z = 0.34 + 0.03 . (22b)

'The theoretical predictions for the dipolar Ising sys-
tem are 1/4 and 1/3 respectively, in remarkable
agreement with the experiment. 'The agreement is
particularly significant because in this case the theo-
retical values are exact and not dependent upon ap-
proximate methods of calculation.

I . Dynamics of the superfluid transition

As a final topic, I would now lj.ke to turn briefly
from static properties to the dynamics of the super-
fluid transition. As mentioned above, measurements
of the thermal conductivity A.

- of He I near 7, were
started in 1967 when the dynamic scaling theory had
predicted a divergence in A. with a critical exponent
equal to v/2. Since v is expected to be equal to the ex-
ponent f for p„we have v/2=0. 337. The theory also
predicted certain correction terms which are dependent
upon the specific heat, however, and these terms in-
troduced some complications into the interpretation of
the data. Nonetheless, when these terms were included
in the analysis, the measurements yielded a leading
exponent equal to 0.334+ 0.005 (Ahlers, 1968b), in re-
markable agreement with the prediction. 'This agree-
ment was illusory, however. More precise measure-
ments, and especially experiments at higher pressures
carried out in 1971 (Ahlers, 1971), revealed that the
thermal conductivity cannot be represented within ex-
perimental error by a power law with the specific heat
corrections given by dynamic scaling. Systematic de-
viations of the data from the theoretical expression in-
dicated that additional singularities like g(t) in Eq.
(15a) had to be included to fit the results. This is il-
lustrated in Fig. 6 by the upper set of data. The dashed
lines were obtained by fitting the results for t ~ 10-' to
the dynamic scaling prediction, with the exponent treat-
ed as an adjustable parameter. For 10-' ~ t ~ 10-', the
measured values are higher than the dashed lines, and
the excess &X is shown as the lower set of points in the
figure. It is apparent that &X is singular since it has
an exponent less than unity. This evidence of confluent
singular terms somewhat preceded their discovery in
the superfluid density; but at the time we did not real. —

ize that their occurrence was a general phenomenon
and instead thought that they were a peculiarity of
transport properties. When a single additive term at',
z +0 was included in the analysis, the most precise
data yielded a leading exponent equal to about 0.40 and
significantly higher than the value of v/2. The early
measurements at vapor pressure (Ahlers, 1968b) were
not precise enough to warrant a detailed analysis in

log, ~ (t)
FIG. 6. Thermal conductivity A, (upper set of data), and AA.

(lower set of data), in erg sec cm K, as a function of I;

on logarithmic scales. The dashed lines are an extrapolation
of a fit for I; ~10 to the dynamic scaling prediction. The
difference between this extrapolation and the data is ~X.

terms of this very complicated function with many
parameters; but within their scatter they were consistent
with the l.ater measurements (Ahlers, 1971).

'The conflict between the experimental value of the
leading exponent of X and the theoretical prediction has
not yet been fully resolved; but recent applications of
renormalization group methods to the dynamics of the
superfluid transition have yielded much additional in-
formation (Hohenberg and Halperin, 1977). From these
calculations, it foll.ows that there are not one, but in
fact four separate origins of confluent singular contri-
butions to A. , each generating terms with their own ex-
ponents. At least one of these exponents is predicted to
be quite small, and therefore the corresponding term
may remain sizable even for very small t. In addition,
when the theory predicts terms of order, say, t", it
also would yield terms of order t"" where n is a positive
integer. If x is small (say of order 0. 1), clearly one
cannot neglect terms with n &1 as is usually done. An
anal. ysis of thp data in terms of combinations of power
laws may therefore be meaningless in such a compli-
cated case, and it may be necessary to go back one step
in the theory and compare the data directly to numeri-
cal integrations of the recursions relations (the usual
power laws are the result of linearizations and expan-
sions of these relations). Attempts to do this are at
the present under way in collaboration with Hohenberg
and Kornblit. We do not yet know the result of such an
anal. ysis; but the predictions for the dynamics are so
complicated that a definitive test of the theory at a
highly quantitative level. may never be possible. It is
somewhat reassuring, however, that both theory and
experiment indicate a complicated behavior. It is of
course unfortunate that these complications exist
particularly for the system most suitable for high-pre-
cision experimental work.

'Thermal conductivity measurements were also ex-
tended to 'He-'He mixtures near 2', (Ahlers, 1970). In
this case, there are two modes, and dynamic scaling
(Halperin and Hohenberg, 1969) predicted that the dif-
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fusivity of Bt least one of them should diverge as T„
was approached from higher temperatures. 'The ex-
perimental results, some of which are shown in Fig. 7,
revealed that the thermal conductivity remained finite
at T„although it was singular. 'This behavior has now
been explained on the basis of the RGT (Siggia, 1977).
Since A. , and thus the thermal diffusivity D~, remained
finite, it followed from the scaling theory that the mass
diffusivity D had to diverge. Frank Pobell and I were
able to demonstrate the existence of this divergence
during my stay in Jiilich (Ahlers and Pobell. , 1974). We
found an exponent for D which, although not very ac-
curate, was consistent with the predicted v/2. An in-
teresting problem in this area that remains to be
studied experimentally is the manner in which the
finite thermal conductivity of the mixtures evolves into
a divergent one as the concentration vanishes (Siggia,
1977).

Another transport property which can be measured
near 7'~ is the damping constant D, of second sound.
Dynamic scaling predicted that D, —

~
t~

"~' as T is ap-
proached from below. Over a decade ago, when dy-
namic scaling was first proposed, J. A. Tyson (1968)
reported experimental values for D, which were gen-
erally consistent with the predicted divergence. Be-
cently, however, RGT calculations (see, for instance,
Hohenberg and Halperin, 1977) have yielded not only
the exponent, but also a universal ratio of amplitudes
which made it possible to estimate the amplitude Do in
the equation

D =D t- ~2.

The theoretic3l estimate of D, was considerably small-
er than the early experimental value. This disagree-
ment between theory 3nd experiment was rather serious
because it involved not the kind of subtle quantitative
features which I discussed for the thermal conductivity,
but rather consisted of a gross difference in the pre-

dieted and measured value of D,. This problem was
eliminated very recently (Ahlers, 1979) by new mea-
surements of D, which were smaller than the early ones
by a factor of about five and in good agreement with the
predictions. Even these new data are not very precise,
however, and we are not yet in a position to ask the
kind of detailed questions involving confluent singul. ari-
ties that I discussed for the thermal conductivity.

III. SUMfVIARY AND FUTURE DIRECTIONS

Looking back over the last decade or two, one cannot
help but notice how turbulent a path was followed by the
experimental study of continuous phase transitions.
'There have been a number of occasions when early
conclusions derived from the experiments were mis-
guided. I have mentioned a few examples (universality
of liquid-gas critical points with P = 0.355; a universal
logarithmic specific heat, a pressure dependent specific
heat amplitude ratioA/A. ' along the X-line, etc. ). In no
sense, however, do these occasional erroneous interpre-
tations cast a shadow upon the quality of the experimental.
work. I think it is fair ta say that experimental studies of
critical phenomena gene rally have been highly quantita-
tive, very innovative, and extremely careful throughout
and evenbefore the modern era of the field. Bather, the
blind alleys into which experimentalists on occasion
were led illustrate the extreme difficulties which were
involved in making real, substantial progress. These
difficulties are in a sense attributable to the nature of
the theoretical approach that was dictated by the pro-
blem. 'The theory predicts the asymptotic behavior of
the system, i.e. , the behavior in the limit as the tem-
perature approaches T, and as the relevant field
vanishes. By their very nature, experiments can only
be done at nonzero values of T —T„and the condition
of zero field can be rigorously satisfied only when
special symmetry properties of the system under in-

~ ~ 0 ~ ~ ~

I ~

.I.
Ct'
O

Flo. 7. The thermal con-
ductivity X of 8. 3He- He
mixture with a molar 3He

concentration X= 0.15 near
the superfluid transition.
The indicated two-phase
region exists because the
thermal gradient used in
the measurement induces
a concentration gradient
and thus a transition tem-
perature gradient.

I- 2QQ Q 20Q
(T-T } x iQ6

4QO
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vestigation require it. More specific manifestations of
these problems are the influence of higher-order, or
confluent, singularities, and the effect of sample in-
homogeneities, which I have discussed in some detail.

In spite of the great difficulties which are involved in
the interpretation of experiments, progress over the
last decade or so really has been quite substantial. Let
me list some of it. We know from experiment that con-
fluent singularities exist and can be important, and to
some extent we have learned how to include them in
the data analysis. It is well established that the speci-
fic heat of three-dimensional systems is not logarith-
mic, and we have overcome the preconceived notion
that critical exponents are rational. We have learned
to appreciate the significance of universal amplitude
rati. os in addition to the exponents, and have at least a
few highly accurate values of exponents and amplitude
ratios. 'These results give us a very detailed test of at
least one of the scaling laws [Eq. (18)]. The difference
in the critical point parameters for different univer-
sality classes is in several cases well established and,
for instance, the trend of o. and A/A' with spin dimen-
sionality of the isotropic n-vector model is known from
experiment (see Fig. 5). There is good quantitative ex-
perimental evidence for the fractional powers of loga-
rithms which occur in systems of marginal dimen-
sionality. Although the dynamics of critical points has
not been investigated as extensively as the statics, it is
clear that certain transport coefficients diverge in a
manner which is at least semiquantitatively in agree-
ment with theoretical estimates. There have been, of
course, many other advances in the field which I have
not discussed because I was not deeply involved in them.
Examples are very beautiful studies of multicritical.
phenomena, , highly illuminating experiments on two-
dimensional systems, particularly on helium films,
and measurements on critical phenomena. in random
systems.

'There remains the question of where we will go from
here. 'The field has become very large and diversified,
and no doubt there will be progress in many directions.
There willbe investigations of more and more exotic and
complicated types of critical phenomena for which theo-
retical predictions will evolve. Much of that work will be
extremely valuable, and it will. tend tobe excitingbecause
many of the results will be qualitatively new. But Ibelieve
that it is equally as important to continue ref ining the kind
of highlyquantitative experiments on simple systems that
I have described here. In practice, this can perhaps
be done only for a very few systems, including the
superfluid transition in liquid 'He. For the superfluid
transition, we must, of course, reinvestigate experi-
mentally the problem of two-scale-factor universal. ity.
It should be possible to reduce the experimental un-
certainty in the free energy per correlation volume by
an order of magnitude without the development of ex-
tensive new experimental methods. If the pressure de-
pendence of the parameter nu shown in Fig. 4 persists
thereafter, then we do have a serious problem which
must be addressed by the theorists. If that problem
somehow. gets resolved, then we are in a position with
this particular system to utilize two more orders of
magnitude in temperature resolution before serious

problems with sample inhomogeneities due to the
earth's gravitational field are encountered. There is
good reason to believe that the techn'ology of nK ther-
mometry and temperature stability can be developed
within a reasonable time span. Eventually, it should
therefore be possible to test the scaling prediction Eq.
(18) to say, + 1 in the fourth digit behind the decimal
point rather than in the third'. At the same time one
should be able to obtain a and v with an uncertainty of
perhaps +1 & 10-4. This would be most helpful in clari-
fying the somewhat marginal disagreement with the
theoretical exponent values which is illustrated by the
numbers in Table I. I believe that this kind of highly
quantitative work is very important. Either it will
strengthen our belief that the ROT is an exact theory of
phase transitions in real, physical systems, or it will
demonstrate that the theory provides only a very good
approximation to critical phenomena in the real world. "

I ignore here the fact that true singularities exist only in
infinite systems. The finiteness of real samples need not
come into play even when the resolution in t is of order 10
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