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This paper presents a pedagogical review of duality (in the sense of Kramers and Wannier) and its
application to a wide range of field theories and statistical systems. Most of the article discusses systems
in arbitrary dimensions with discrete or continuous Abelian symmetry. Globally and locally symmetric
interactions are treated on an equal footing. For convenience, most of the theories are formulated on a d-
dimensional (Euclidean) lattice, although duality transformations in the continuum are briefly described.
Among the familiar theories considered are the Ising model, the x-y model, the vector Potts model, and
the Wilson lattice gauge theory with a Zy or U(1) symmetry, all in various dimensions. These theories
are all members of a more general heirarchy of theories with interactions which are distinguished by
their geometrical character. For all these Abelian theories it is shown that the duality transformation
maps the high-temperature (or, for a field theory, large coupling constant) region of the theory into the
low-temperature (small coupling constant) region of the dual theory, and vice versa. The interpretation of
the dual variables as disorder parameters is discussed. The formulation of the theories in terms of their
topological excitations is presented, and the role of these excitations in determining the phase structure of

the theories is explained. Among the other topics discussed are duality for the Abelian Higgs model and
related models, duality transformations applied to random systems (such as theories of a spin glass),
duality transformations in the ‘“lattice Hamiltonian” formalism, and a description of attempts to

construct duality transformations for theories with a non-Abelian symmetry, both on the lattice and in

the continuum.
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continuum, although we shall find it convenient to work
almost exclusively on d-dimensional simple hypercubic
lattices. The “almost” of three sentences back ap-
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pears because of the word “simply” in the same sen-
tence. It is always possible to perform a duality trans-
formation on an Abelian theory, but the result may be
rather complicated and not manifestly useful. Unfor-
tunately, it is much more difficult in general to con-
struct a duality transformation for theories with a non-
Abelian symmetry. We shall briefly discuss this prob-
lem in Sec. V.

In those Abelian cases when the duality transforma-
tion can be successfully applied we reap a number of
benefits. First, the theory is expressed in terms of a
new set of variables, the “disorder variables.” These
dual variables have small fluctuations at high tempera-
tures when the original variables have large fluctua-
tions. Thus the original theory is mapped into a dual
theory whose temperature is low when the temperature
of the original theory is high, and vice versa. Since
the statistical systems we are discussing may also be
considered as Euclidean field theories, the field theo-
rist may replace the phrase high (low) temperature by
large (small) coupling constant. In the language of field
theory then, the duality transformation maps a theory
with a large coupling constant into a theory with a
small coupling constant, and vice versa. Clearly such
a transformation can be of great help, especially in
trying to understand the often difficult to handle strong
coupling domains of field theories.

This feature of temperature or coupling constant in-
version is similar to what Kramers and Wannier found
for the d=2 Ising model. But unlike the d= 2 Ising mod-
el which is self-dual, a dual theory in general does not
have the same structure as the original theory to which
it is dual. For example, it sometimes happens that the
dual of globally symmetric theories are locally sym-
metric gauge theories, and vice versa.

Another important benefit derived from duality con-
cerns the topological excitations of a theory. We will
see that in some cases the dual form of a theory is an
intermediate step to a third form in which the variables
that appear in the partition function are the topological
excitations of the original variables of the original
form of the theory. This manifestation of the theory
provides a good deal of insight into many qualitative
features of the theory, especially its phase structure.

Our procedure in most of this review will be to ex-
amine various theories constructed on a d-dimensional
hypercubic lattice. We shall not explicitly discuss
duality for theories on other types of lattices, nor shall
we discuss at any length duality for a class of theories
in which one space-time direction is taken as contin-
uous and the others are latticized (the so-called lattice
Hamiltonian formulations.) Furthermore, we shall only
briefly discuss theories defined in the continuum in Sec.
V. Finally, we will not directly review the large body
of literature concerned with monopoles in the usual
sense, although this subject is very closely related to
the subject of the present review and will be referred
to from time to time. As a partial remedy for these
omissions, Sec. I. B consists of a guide to the litera-
ture and includes references to review articles which
discuss these and other briefly treated topics.

The rest of the review is organized as follows: In
Sec. I. B we present a guide to the literature. Section
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II is devoted to a study of theories with a Z, symmetry.
We begin in Sec. II. A with a fairly complete treatment
of the dual properties of the simplest such theory, the
two-dimensional Ising model. Included in this section
is a brief allusion to spin glasses and the idea of frus-
tration. Sec. IL. B discusses the three-dimensional Is-
ing model and its dual, the Z, lattice gauge theory,
while Sec. II. C covers the four-dimensional Ising mod-
el. Appropriate correlation functions.for the dual the-
ories are introduced and discussed. Using the insights
garnered from these theories we proceed in Sec. IL D
to discuss the fundamental geometrical structure of the
duality transformation. In so doing, we construct the
general duality transformation for a large class of lo-
cally and globally Z, symmetric theories in arbitrary
dimension. In Sec. III we turn to theories witha Z
symmetry. After a short introduction (Sec. III. A), we
discuss in Sec. III. B two-dimensional globally invari-
ant Z , theories. We touch on a variety of theories and
treat in detail the vector Potts model and the “Z ,-Vil-
lain model.” This last model has the interesting prop-
erty of enforcing the periodicity associated witha Z, sym-
metry by employing a set of auxiliary fields. TheU(1) in-
variant version of the model will turn out tobe very use-
ful for interpreting topological excitations. In Sec.

III. C we generalize the results of Secs. IIand III.B and
construct the general duality transformation for a class
of locally and globally Z , invariant theories in arbi-
trary dimension. Section IV deals with theories with a
U(1) symmetry. The introduction, Sec. IV. A, is fol-
lowed by a treatment in Sec. IV. B of the two-dimension-
al x-y model. We describe the duality transformation
in some detail, and introduce the Coulomb gas repre-
sentation of the model.- We then use the “Villain ap-
proximation” to identify the charges of the Coulomb gas
as the topological excitations of the x-y model spins.
Section IV. B concludes with a qualitative discussion of
the physics of the d=2 x-y model which relies heavily
on its Coulomb gas representation. In Sec. IV.C the
contents of Sec. IV. B are generalized to a large class
of globally and locally U(1) symmetric theories in d di-
mensions. The general duality transformation is con-
structed, and the representations of the theories in
terms of their topological excitations are derived. At
this point we see a very pretty pattern emerge which
relates the dimension of the topological excitation to
the nature of the U(1) interaction (in particular, wheth-
er it manifests global invariance or local gauge invari-
ance of the second, third, fourth, etc., kind) and the
space-time dimension of the system. In Sec. IV.D we
discuss three theories of physical interest, the d=3 x-
vy model and the d=3 and 4 U(1) lattice gauge theories.
We use their representations in terms of their topo-
logical excitations to give a qualitative description of
their phase properties, and we argue that the onset of
disorder in these theories (as in the d-Z‘x-y model) can
be understood as being due to a condensation of topo-
logical excitations into something like a plasma phase.
In the final section of the review, Sec. V, we briefly
touch on several topics involving duality, but not cov-
ered in the previous chapters. These include the lat-
tice Abelian Higgs model and related models, duality
for Abelian random systems, topological excitations
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for Z, and Z , symmetric theories, Abelian duality in
the lattice Hamiltonian formalism, duality in the con-
tinuum, and a discussion of approaches to duality for
non-Abelian theories.

B. Guide to the literature

For the convenience of the reader and to correct pos-
sible lapses in referencing in the body of the review,

I present a list of references organized according to

topic. The reader should be aware that since some pa-

pers overlap several categories, there is some arbi-
trariness in their classification. This also seems like

a good time to extend my apologies to those authors to

whose works, through my ignorance or oversight, I

have failed to refer. Sorry folks.

Duality for Z, symmetric systems: Balian et al. (1975);
Horn and Yankielowicz (1979); Kadanoff and Ceva
(1971); Kramers and Wannier (1941); Wegner (1971)

Z , symmetric theories: Cardy (1979); Casher (1978);
Elitzur et al. (1979); Einhorn, Savit, and Rabinovici
(1979); Horn et al. (1979); Korthes-Altes (1978);
Savit (1980); Ukawa et al. (1979); Wegner (1973);
Yoneya (1978)

Duality and the two-dimensional x-y model: Berezinskii
(1970,1972); Chui and Weeks (1976); Jose et al.
(1977); Kosterlitz and Thouless (1973); Luther and
Scalapino (1977); Savit (1978); Villain (1975)

Abelian Higgs model: Banks and Rabinovici (1979);
Einhorn and Savit (1978,1979); Fradkin and Shenker
(1979); Israel and Nappi (1979); Jones, Kogut, and
Sinclair (1979); Peskin (1978)

Other U(1) invariant theories: Banks et al. (1977);
Glimm and Jaffe (1977); Polyakov (1975,1977); Savit
(1977a,1978); Stone and Thomas (1978); Sugamoto
(1979)

Duality and Hamiltonian lattice formulations: Fradkin
and Susskind (1978); Green (1978)

Duality and other Abelian theories: Drouffe (1978);
Fradkin, Huberman, and Shenker (1978); Jose (1978);
Kadanoff (1978); Mittag and Stephen (1971)

Duality for non-Abelian theories: Bellisard (1978);
Drouffe et al. (1979); Englert and Windey (1978);
Goddard et al. (1977); Halpern (1979); ’t Hooft (1978,
1979); Kazama and Savit (1979); Mandlestam (1978);
Montonen and Olive (1977); Seo et al. (1979)

In addition, four other reviews in the literature con-
tain material related to our subject. First, the review
of Syozi (1972) on exact Ising model transformations in-
cludes some discussion of duality transformations on
lattices other than simple square or cubic. Next, the
monograph by Gruber et gl. (1977) contains an exten-
sive discussion of duality, especially as applied to
certain generalizations of the Ising model, such as the
Potts models, the Askin-Teller model, and models on
other than square lattices. Third, the paper by God-
dard and Olive (1977) is an excellent pedagogical re-
view of monopoles in the sense of Dirac, ’t Hooft,
Polyakov, and others. Finally, the recent review of
Kogut (1979) on lattice spin and gauge theories includes
some discussions of duality, particularly in the Hamil-
tonian formalism.
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Il. CASE OF THE Z, SYMMETRY
A. Two-dimensional Ising model
1. Duality transformation

The simplest nontrivial theory with which to illus-
trate duality transformations is the two-dimensional
Ising model on a square lattice. The dual properties
of this model were originally discussed by Kramers
and Wannier (Kramers and Wannier, 1941). We will
give a fairly detailed treatment of this model, since
many of its features will find their counterparts in
other theories we shall discuss.

Suppose we have a two-dimensional square lattice.
On each site of the lattice, labeled by a pair of inte-
gers, i= (i,,1,), we place a variable (or spin) s, which
can take on the values +1. (For simplicity, we will
usually drop the vector symbol on the site index i)
The Hamiltonian of the system is

H=—J2sisj, (2.1)

3

where ( ) denotes a sum over all nearest neighbor
pairs, and J is the coupling strength. J positive (nega-
tive) is a ferromagnetic (antiferromagnetic) coupling.
This system possesses a global Z, symmetry: H is in-
variant under-a change in the sign of all the s,. The
partition function of this system is

Z=Z exp(Bz sis,) ,

{s} [}

(2.2)

where {s} denotes a sum over all spin configurations,
and B=J/kT, with £ being Boltzmann’s constant and T
being the temperature.’ Unless otherwise stated, we
will consider the ferromagnetic case, 8=0. (For the
moment we need not worry about the boundary condi-
tions, but one may suppose that we have spherical
boundary conditions.)

The first step in performing the duality transforma-
tion is to. rewrite Eq. (2.2) in the form

Z=zne"sisj

{s} ¢

=2 IIX ciBxs;sp*,

{s} ¢ ) k=0

(2.3a)

(2.3b)

with
Cy(B)=coshg, C,(B)=sinhB.

In Eq. (2.3a) we have just rewritten the exponential of
the sum over pairs in Eq. (2.2) as a product over pairs
of the exponential. In Eq. (2.3b) we introduce a new set
of variables, {k}, one for each nearest neighbor pair
to rewrite Eq. (2.3a) in the form indicated. Since there
is one variable, %, associated with each link of the lat-
tice, any given . can be labeled by a position and a
direction k&, ;, where p= 1,2 and ¢ labels the position
in the lattice. (By convention, a given link belongs to

IThe expression (2.2) can also be regarded as a generating
functional for a field theory in two Euclidean space-time di-
mensions. In that case, H/RT plays the role of the Lagran-
gian and the global Z, symmetry is a symmetry of the Lagran-
gian. We shall refer again to this correspondence below.
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FIG.1l. Two-dimensional

Kp:i ™ T~ square lattice showing the
' 1 7 location of the &,;; used in
the duality transformation.

Kt

the site at its left or lower end.) Hence the £,’s form
a vector field over the lattice, as shown in Fig. 1.

We now rearrange the product in Eq. (2.3b) so that all
factors of s, associated with a given site are grouped
together. We have

z=-2_21Ic, (8 I1(s )2t
i

{s} {r} 1

=;Hck 108 § OIRCHLES
B} 1 L 1

=Y Ilc. e I125,2:%.).
(k) 1 Lot i

The product over [ (links) is a product of all the

Cku(B), there being one C, (B) associated with each link
of the lattice. The product over i is a product over all
sites of the lattice, and the notation Ezku means the
following: there are four links which impinge on each
site of the lattice. 2 ;k, is the sum of the four k,’s
associated with those four links. Finally, 5,(z) is a
Kronecker delta function mod 2: it is zero if » is odd
and one if n is even.

We now wish to find a representation for the %,
which automatically satisfies the 6 functions in Eq.
(2.4). To do this, imagine constructing a new lattice
from the original one by placing a vertex of the new lat-
tice in the center of each square of the original lattice.
Connecting nearest-neighbor pairs of the new lattice by
links we see that we have constructed a new square lat-
tice displaced from the originial lattice by half a lattice
spacing in each direction. This is the dual lattice.
(Note that if we repeat the process we get back the or-
iginal lattice.) Now, we associate a variable ¢, taking
on values +1 with each site of the dual lattice. Looking
at Fig. 2, we see that to each link of the original lat-
tice, we can uniquely associate a pair of oi’s, namely,
those that lie at the ends of the dual lattice link which
crosses the given link of the original lattice. So, we
can write each &, in the form

(2.4)

ky,,=3l=-0,0,5), p#v. (2.5)

(Remember that the site label on 2 refers to a site of
the original lattice, while the site label on ¢ refers to
the corresponding site of the dual lattice.) Labeling the
four dual sites which surround a given site of the origi-

'
1

-
: _i.f_:-_/o{
}
N = .

_T-_- k/..l;l.

|
i
T
|
T
!

1
1
1
T
il

1
_._+.L:}_._+___
Jibe b

FIG. 2. Two-dimensional lattice (solid lines) and its dual
(dashed lines). The dual variables ¢ ; sit on the sites of the
dual lattice.

Rev. Mod. Phys., Vol. 52, No. 2, Part |, April 1980

nal lattice by 1 through 4, we have

20k, =2 =3(0,0,+ 0,05+ 030, + 0,0) , (2.6)
which is even for any set of {oi= +1}. We must also
show that the representation (2.5) is necessary; i.e.,
that any set of the 2,’s satisfying the 8 functions in Eq.
(2.4) can be written in the form (2.5). This can be done
by writing %,=%(1+ e*®s), with L ,=0,7. Then the &
function can be regarded as a condition enforcing di-
vergencelessness of the L,, and the representation
(2.5) becomes the statement that L, may be written as
a curl. [Actually, Eq. (2.5) is necessary only up to a
sign; see below.] An analogous proof will be carried
out more explicity when we discuss the Z, and U(1)
symmetric theories.

Using Eq. (2.5) in Eq. (2.4), we can therefore drop
the 6 functions, and we have

z= %ZNEH Cu-am)/ AB),
{o} 1

where N is the number of lattice sites (we will even-
tually take N—«), and the product over [, means a
product over links of the dual lattice, which is obvious-
ly the same as a product over links of the original lat-
tice since they are in a one-to-one correspondence.
Finally, the extra factor of 3 appears in Eq. (2.7) since
we now sum over {¢} rather than {£}. From Eq. (2.5)
it is clear that this counts each configuration of {£}
twice (i.e., {o;}~{~0,} gives the same {£}).

From Eq. (2.3) it is easy to see that since £=0,1, the
C,(B) can be written in the form

C,(B)= coshB[l+ k(tanhf —1)]
= coshB exp[k IntanhB]

=(coshp sinhB)/2 exp(-0,0,% Intanhp) ,

(2.7

(2.8)

where in the last line we have used expression (2.5) for
k. Inserting Eq. (2.8) in Eq. (2.7), we have

Z =%(2 coshBsinhp) NZ exp (—% Intanhp Z o,.a,)
{o} (9

= %(sinhzﬁ)‘”z exp(;-ﬂz 0,.0',) ,

{o} (3]
where B= —% Intanhg is the “dual inverse temperature,”
and the sum in the exponent is over nearest neighbor
pairs on the dual lattice.

Now, except for-an overall spin-independent factor,
Eq. (2.9) is in the form of a partition function for a
system of Ising spins but at an inverse temperature B
We note that B is a monotonically decreasing function
of B (shown schematically in Fig. 3) so that the high-
temperature region of the original theory (2.2) is
mapped into the low-temperature region of its dual rep-

(2.9)

A8
FIG. 3. Graph showing,
schematically, the dual
inverse temperature B as
a function of 8.

>
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resentation (2.9). This interchange of high and low
temperatures (or, in the language of field theory, large
and small coupling constants) as we go from the origi-
nal theory to its dual is a general feature of the duality
transformation, and is one of the properties that makes
it so intriguing and so useful. Typically, one is able to
perform some sort of perturbation theory when some
parameter of the theory is small. In field theory it is
the coupling constant. In the Ising model, we can do a
high-temperature expansion when 8 is small. However,
such a procedure may break down when the parameter
gets too large. But since the duality transformation re-~
verses the role of high and low temperatures, we can
easily compute low-temperature properties of the Ising
model by performing a high-temperature expansion in
B using Eq. (2.9).

Another interesting property of Eq. (2.9) is that is has
the same functional form as Eq. (2.2); that is, the dual
of the two-dimensional Ising model is also a two-di-
mensional Ising model. As we shall see, this property
of self-duality is not a general feature of duality trans-
formations, but occurs only for certain theories. In
the present example, self-duality has the following
simple consequence: Consider the free energy of the
two-dimensional Ising model, F/B8)=1im y, ,(1/N)
InZ(B), with Z defined in Eq. (2.2) for a lattice of N
sites. Using Eq. (2.9), we have

FAB)=—sinh2B+ F,(B).

This is evidently a fairly strong restriction on the be-
havior of the free energy. For instance, let us suppose
that F,(B) has only one point of nonanalyticity as a
function of B. Then, since B(B) is a monotonically de-
creasing function, the singularity must occur at the value

(2.10)

B,=—%1ntanhg,=B,. (2.11)

This is, in fact, the critical point of the two-dimen-
sional Ising model. If the model had had more than one
critical point, Eq. (2.10) would not have determined all
their values, but would have determined relations be-
tween pairs of critical points.

2. Interpretation of the dual variables and disorder
correlation functions

How are we to interpret the oi’s that appear in Eq.
(2.9)? We recall that the two-dimensional Ising model
has two phases as a function of 8. At low temperatures
(B>B,), the spins tend to point in the same direction
and the order parameter defined by

(si)=hli_{1(1)+%lnz exp<BZsisj+Zh, sj) (2.12)
] i {s} [ i
is nonzero. At high temperatures, on the other hand
(B<B,), (s;)=0. Because this model has only two
phases and is self-dual, the situation for the g,’s is
precisely the reverse. Defining (o,) using the dual rep-
resentation (2.9) in a way analogous to Eq. (2.12), we
find that for B>pB,, when (s,)#0, (o;)=0, and for B<B,
when (s,)=0, (0,)#0. (o,) is therefore a disorder pa-
rameter—at very high temperatures, when any config-
uration of the {s,} is almost equally likely, most con-
figuration of the {ai}’s are relatively unlikely, and the
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o,’s all tend to point in the same direction. It is impor-
tant to stress that there is no simple one to one corre-
spondence between configurations of the {s,}’s and con-
figurations of the {o;}’s. Rather, as in an ordinary
Fourier transform, one must in general sum over all
configurations of s’s to produce a configuration of the
o’s. Indeed, looking back to the derivation of Eq. (2.9),
we see in Eq. (2.4) that it is the sum over all the s’s
which produces the 6 functions which make the intro-
duction of the o,’s in Eq. (2.5) useful. Roughly speak-
ing, one can say that when two nearest-neighbor s,’s
are equally likely to point in the same or opposite di-
rections (B small), the ¢,’s which are connected by the
dual link which crosses the link between the two s,’s
will point in the same direction, whereas when the two
s,’s are lined up, the corresponding ai’s are with
nearly equal probability aligned or misaligned. This
statement is not precise because all the spins on the

" lattice are coupled, but it is a useful hueristic picture.

To gain some further insight into the meaning of the
dual variables, it is instructive to calculate the disor-
der-disorder correlation function (0,0,), and express
it in terms of the original spin variables by performing
the duality transformation on the dual system defined
by Eq. (2.9). Since B=8 (i.e., —% IntanhB
= —3 Intanh(~ % Intanhp) = B), it should be clear that if
we perform the duality transformation (2.3)~(2.8) on
the expression (2.9), we will just be led back to Eq.
(2.2). But now we wish to perform the same operation
on the object

(0,0,)= % 0,0, exp(}é(z; a,.cr,)/ g): exp(ﬁ(z; a,xr).

(2.13)
Since we know that the denominator just transforms
into something proportional to Eq. (2.2), it is enough
to apply the duality transformation to the numerator.
As in Eq. (2.3), we first rewrite the numerator

Ny = Z 0,0, €Xp (B Z Oiaj)
{o} <)
= E o,amn exp(Bo,0;)

{o} ()
1
= Z 00 HZ Ck(B)(inJ)k ’
{o} () k=0

where the C, are given in Eq. (2.3) and we remind the
reader that the sums and products are over pairs on
the dual lattice, and I and m are two sites of the dual
lattice. Collecting together all factors of a given o,
we rewrite Eq. (2.14) as

Hl.mz z Z ck(ﬁ) E (0',)'“‘E ’k(()'m)l*nmk I-I’Gi
[ {o) {
=27 LI1 cfB6,(1+4 2, 1) 6, (143 )

(k) 14
<10 &k,
i

where the prime on the last product denotes a product
over all dual sites except 7 and m.

Now, if we choose the represention analogous to Eq.
(2.5) (with ¢, replaced by s;) we will not satisfy all the

(2.14)

(2.15)
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6 functions in Eq. (2.15), in particular the ones asso-
ciated with sites I and m. To construct a satisfactory
representation for the 2’s we draw an arbitrary line L
along the dual lattice between 7 and m as in Fig. 4. We
then choose the following representation for the &’s:

By .=t(1=s,;8,.5), k, &L (2.16a)

and

k .eL.

wi=2(les;s,5), ky, (2.16b)
That, is, for each dual link not along the line connecting
! and m we choose the representation (2.15a) which is
analogous to Eq. (2.5), while for each k,,; which lies

on L we choose Eq. (2.16b). As in Eq. (2.5), the s,’s
are spins associated with the sites of the lattice dual to
the one in question—in this case, the original lattice
(2.2). It is easy to see that Eq. (2.16) satisfies all the

6 functions of Eq. (2.15). Inserting Eq. (2.16) in Eq.

(2.15) and recalling Eq. (2.8), we have

N,'m=%(sinh23)'”; exp<§ B,-,S,-s,) s
S

where the sum in the exponent is over nearest-neighbor
pairs of the (original) lattice. B,;=+8 for all lattice
links except for those links which intersect the dual
path connecting 7 and m (see Fig. 4). For those links,
B;;=—B. Thus N, , is a partition function for an Ising
system with a certain specific mixture of ferromag-
netic and antiferromagnetic bonds, and {o,0,,) is the
ratio of that partition function to the partition function
for the system with all ferromagnetic bonds. [This
result was also obtained in Kadanoff and Ceva (1971). ]

There are several comments to be made about this

result. First we note that since the line chosen to con-
nect / and m in Fig. 4 was arbitrary, there should be
an infinite number of choices of sets of B,; which will
give the same result in Eq. (2.17). To see that this is
true, we note that Eq. (2.17) is invariant under the
combined operation of changing the definition of one
spin, s;, to —s;, and simultaneously changing the sign
of all the (four) B;;’s associated with the four links
which impinge on this spin. This corresponds to chang-
ing the path joining 7 and m as indicated in Fig. 5.
Thus the exponent in N,  has a restricted kind of local
Z, gauge invariance analogous to the local gauge invar-
iance of quantum electrodynamics. We shall have more
to say about gauge invariance later.?

Next we observe from Figs. 4 and 5 that the product
of the signs of the B8,; around any elementary square
(or plaquette) of the lattice is +1, except those that sur-
round the dual lattice sites 7 and m, where it is —1.

Let us imagine that the system described by the parti-
tion function N, ., Eq. (2.17), is at a very low temper-
ature (B large) and let us ask how the spins tend to
point. Those connected by a ferromagnetic bond will

(2.17)

20f course the ordinary Ising model ferromagnetic partition
function can also be written such that certain configurations
of the links are antiferromagnetic. The allowed configurations
of antiferromagnetic links are those that correspond in the
sense of Fig. 4 to closed paths on the dual lattice. Note that
this includes the configuration with all links antiferromagne-
tic.
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FIG. 4. Disorder-disorder correlation function for the d=2
Ising model. The bonds associated with the wiggly lattice
links are antiferromagnetic in Eq. (2.17).

want to point in the same direction, while those con-
nected by an antiferromagnetic bond will want to point
in opposite directions. For the most part, the distri-
bution of ferromagnetic and antiferromagnetic bonds

is such that the spins easily lock into place when B> 1.
Consider, however, the plaquette surrounding site 7 in
Fig. 4. Start in the lower left-hand corner of this
plaquette and let the spin on this site point up. Because
of the ferromagnetic bond, the spin on its right will
want to point up also, while the spin above that one will
want to point down due to the antiferromagnetic bond.
Continuing around the plaquette, counterclockwise, the
spin in the upper left-hand corner will want to point
down, and finally, we come back to our original spin
which now wants to point down, contrary to its original
assignment. This phenomenon occurs when there are
an odd number of antiferromagnetic links surrounding
a plaquette and is called frustration (Edwards and
Anderson, 1975; Toulouse, 1977). Certain materials,
notably spin glasses, can be modeled by spin systems
in which a thermal average over spins is performed
for a given distribution of antiferromagnetic bonds and
the free energies thus obtained are then averaged over
different distributions of antiferromagnetic bonds.
Because of the gauge invariance discussed above, it is
clear that different configurations of bonds give rise to
different free energies only if they have different dis-
tributions of frustrated plaquettes. It is also clear that
averages over all the n-point disorder correlation func-
tions (ailoiz' e Ui,,> should be related in certain models
to the spin glass average free energy. In the simplest,
most primitive, version of the Edwards-Anderson mod-
el of a spin glass (Edwards and Anderson, 1975) we
consider an Ising model with a random distribution of
ferromagnetic and antiferromagnetic couplings. Sup-
pose a given coupling can take on only two values and is
equally likely to be ferromagnetic or antiferromagnetic,
independent of the values of the other couplings. The
free energy of a single sample of spin glass with a
fixed distribution of antiferromagnetic bonds is

oo P 3

"""':‘. i
.’_

» —
}
l}
Vy
I

se—3-J

FIG. 5. Gauge transformation under which Eq. (2.17) is in-
variant. This figure shows how the gauge transformation is
equivalent to a deformation of the path joining I and m in
Fig. 4.
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f(B)= ln(Z} exp(Z B, sisj) ,

where B;;=+B. It is clear that there are many sets
{B;,} which are related to each other by a redefinition
of spins and links as discussed above. All these gauge
related configurations will give rise to the same f.
The property that gives rise to different values of f is
different distributions of frustrated plaquettes. Since
one associates a frustrated plaquette with the insertion
of a disorder variable on the corresponding dual lattice
site, it is clear that we can relate f(B) to some »-point
disorder correlation function. But because the two-
dimensional Ising model is self-dual, these are re-

lated to the n-point spin correlation functions. In par-
ticular,
f(B)=F (B)+In(s,** s XB). (2.18a)

F,(B) is the free energy of the usual Ising model with
all ferromagnetic bonds, and the spins in the »-point
correlation function are associated with the dual lattice
sites which are located at the center of each frustrated
plaquette. A quantity of particular interest in spin
glass theory is the average of f(8) over all possible
configurations of ferromagnetic and antiferromagnetic
bonds. Since there are ~2% configurations of different
bonds that have the same distribution of frustrated
plaquettes regardless of the distribution of these
plaquettes, this average free energy becomes (in the
simple case we are considering)

7B = ﬂ Z lnE exp (E Busis,)

{8;5} {s}

=F,(B) +—Z Z Ins

where the sum over the correlatlon functions is a sum
first over all positions of the x spins (i,#,) and then
a sum over all numbers of spins.

Finally, we note that the representation (2.17) is very
useful for calculating (0,0,,) at low temperatures. Sup-
pose |l—m|=L>1 and let us imagine that we choose
to have as few antiferromagnetic B,;’s as possible. It
-is then easy to see (particularly if we imagine toroidal
boundary conditions) that the most important contribu-
tions to Eq. (2.17) will occur when there are only of
order L pairs of spins such that B,;s;s;=—B. Hence,
we find

0,0,)= Ny, ./ Z ~ e”*8L;

-s,.nxﬁ) , (2.18b)

B>1. (2.19)

Thus (0,0, falls exponentially to zero precisely because
the original spin degrees of freedom are in a highly or-
dered state. From another point of view, we can say
that (o,0,,) goes to zero exponentially when B is very
large because the ¢ degrees of freedom think they are
at a high temperature (the dual temperature) and are
therefore in a very disordered state.

B. Three-diménsional Ising model and the Z, gauge theory

1. Dual form of the three-dimensional Ising model

We now consider the Ising model defined by Eq. (2.2),
but on a three-dimensional simple cubic lattice. As in
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two dimensions, the sum in the exponent runs over all
nearest-neighbor pairs on the lattice. In this case the
duality transformation will lead us to a theory which is
much different than the one encountered in two dimen-
sions.

Proceeding as in the last subsection, we first write

Z= Zexp(ﬁZs,) %}(II)exp(ﬁsisj)

{s}

531 IO
{s} ¢ ) k=0

with the C,(B) defined below Eq. (2.3). Collecting to-
gether all the factors of each s,, we have

zZZchH@w

{s} {#} 1
=3 IIc. ® I126.22:%,)
(e} "1 ot i

This is similar to expression (2.4), but since there is
one &, for each link of the lattice, &, is a three vector
in the present case, pu running over the three lattice
directions. Furthermore, the sum Z)iku denotes here
a sum over the six 2’s associated with the six links
which impinge on the site 4.

To satisfy the 6 function in this case is slightly more
complicated than in two dimensions. First we define
the dual lattice by constructing another simple cubic
lattice which is displaced from our original lattice by
half a lattice spacing in each direction. Thus the ver-
tices of the dual lattice lie in the centers of the ele-
mentary cubes of the original lattice and vice versa.
In Fig. 6. we have drawn a piece of the dual lattice
interleaved with the original one. As we see from this
figure each link of the original lattice penetrates an
elementary two-dimensional face or plaquette of the
dual lattice. We associate with each link of the dual
lattice a variable A ., which takes on values +1. We
now write

ky; = 3(1 =4, Ay A i Ay )

___( _

where the 4,’s are those associated with the four dual
links which border the dual plaquette through which
the original link with which &, ; is associated passes.
(Note that the site and direction labels on % refer to the
original lattice while those on the A’s refer to the dual
lattice.) As in two dimensions, the representation
(2.22) is (up to a sign) both necessary and sufficient to
satisfy the & functions. To see that this representation

(2.20)

(2.21)

AJ, LV, (2.22)

plaq ali:te

FIG. 6. Piece of the three-dimensional simple cubic lattice
(solid lines) and its dual (dashed lines).
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for the k’s does automatically satisfy the & functions in
Eq. (2.21) is easy. Note first that the sum is zero when
all the 4,’s are one, and second observe that since
each A, appears in the expressions for two different
k’s in a given sum, changing the value of any A,
changes two k’s in the sum, each by one unit. Hence
the total sum is always even if it is even for any con-
figuration of 4,’s.

We now insert Eq. (2.22) in Eq. (2.21). Following the
development from Eq. (2.7) to Eq. (2.9) we have

=¥ C.,... N
A=2 {kz(;)) H 1/2(1-AV”AMiAu;idAM“ﬁ)(ﬁ)
a

= 2% coshBsinhB)3#/ 2

x z ,exp(B ZAv;iAx;iAv; i A i*lj) ’ (2.23)
{kCA))} P,
where the sum in the exponent is over all plaquettes on
the dual lattice, and B= —% Intanhg, as in Eq. (2.9).
Now, the sum over {£(A)} means that we are to sum
over all distinct sets of 2, which can be obtained from
sets of A, via Eq. (2.22). Another way to say this is
that we are to sum over sets of 4,’s such that each dif-
ferent set of 4,’s produces a distinct set of the %,’s.
As we shall now show, not all sets of 4,’s give dis-
tinct sets of 2,’s. Thus summing blindly over all sets
of A,’s could, in principle, produce an overcounting
problem.

Consider some set {4,} which produces, using Eq.
(2.22), a set {¢,}. Now pick a site of the dual lattice
and change the sign of all the (six) A,’s which lie on the
six dual links attached to that site. Since each of the
12 dual plaquettes which have the chosen dual site as a
corner have had two of the A,’s which lie on their edge
change sign, the k,’s generated by Eq: (2.22) are un-
changed. Since this operation can be done independent-
ly at each dual lattice site, there are of the order of
2% different configurations of the A, which generate the
same {,}. Moreover, since the exponent in Eq. (2.23)
is only a function of {¢,}, we see that the Hamiltonian
[or, if we think of Eq. (2.23) as describing a field the-
ory, the Lagrangjan] is also invariant under the local
operation described in the last paragraph. Thus Eq.
(2.23) is a theory with a local gauge invariance. In
fact, the gauge invariance is very similar to the fam-
iliar gauge invariance of QED. To see this, we de-
fine T, , by

A, =eiTui, (2.24)

i
so that T, ,=0,7. The gauge symmetry described
above can also be expressed by saying that the La-
grangian is invariant under the operation

Ty =Tl =Tyt AA,, (2.25)

where the nearest-neighbor difference operator A, is
defined by A, c;=c,—c,.z, and A, is an arbitrary scalar
defined on the sites of the lattice in question (in this
case the lattice dual to the original Ising model lat-
tice) taking on values O or 7 on each site. If we iden-
tify T,,; with the vector potential of QED and A; with
the arbitrary gauge function, then Eq. (2.25) is the
familiar form of the local gauge invariance of that the-
ory. In ordinary QED the vector potential and the gauge
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function take on all real values, but in Eq. (2.25) these
values are restricted to be 0 and 7. Thus the group of
the local gauge symmetry of Eq. (2.23) is Z, rather
than R [or U(1), in the presence of matter fields] as in
ordinary QED. )

Now there are two ways to deal with the overcounting
problem in Eq. (2.23). The first is the usual procedure
of choosing a gauge. We shall discuss gauge choices
later in this section, and again in Sec. IV, so we shall
say no more about them here. Our second option is to
ignore the overcounting problem. This can certainly be
done in principle since, as is clear, the overcounting
is uniform; that is, by summing independently over all
A,;; we reproduce each distinct configuration of 2,’s
the same number of times (about 2%), and so ignoring
the gauge problem just gives us an extra (B-indepen-
dent) factor in front of Eq. (2.23). Moreover, since Z,
is compact we get no extra infinities (except one over-
all infinity when N-=) when we ignore gauge fixing.
Thus we expect that the procedure of not fixing a gauge
will still allow us to calculate finite values of gauge in-
variant quantities. (We also note that the procedure of
summing over all gauges gives zero when calculating
any non-gauge-invariant quantity.) Thus we can write

Z=2""*(sinh2B)™¥/> Z’ exp(E_ZAV; A5 i Av; 5 Ay m?) ’
{A} Py

(2.26)

where the prime on the sum means that, in principle,
we should choose a gauge, but it can usually be ig-
nored.

2. Dual form of the three-dimensional Z, gauge theory

Before describing some of the physical consequences
of Eq. (2.26), we want to demonstrate that, as in two
dimensions, applying the duality transformation to Eq.
(2.26) brings us back to the original theory (2.20). We
proceed in analogy with the development from Eq.
(2.20) to Eq. (2.23). We write Eq. (2.26) as

Z =27 %/2(ginh 2B)3 /2 }:' HGXP(BAV; iAx; 1 Au; 13 A iﬂ?)
A P,

=27%2(sinh2Bp¥2 )" 3 []c, (B

{4} {#=0 B, V¥

X (A (2.27)

. KT
vi 14 1 Au; 1A Ay )

In the last line of Eq. (2.27), we have associated one
integer k,,,; with each plaquette of the dual lattice [i.e.,
the lattice on which the gauge theory (2.26) is defined].
To define a plaquette, we need two direction indices vy
and A for its orientation, as well as a site index i to tell
us where in the lattice it is. The Ck(}-S)’s are again
those that appear after Eq. (2.3b). Rearranging the fac-
tors in Eq. (2.27) we have

Z =27%2(sinh2B)"22°% Y T] Cu(B)
{r} Py
1
x HZ (A,; )Eviik,
ld A=0

In Eg. (2.28) we have replaced E{A}-Z'”EM), i.e.,
we do an unrestricted sum over the A, ;, dividing out

(2.28)
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the redundancy as discussed above. (Note that this pro-
cedure explicitly does not involve choosing a gauge.)
The symbol Z)V; ;& means a sum over all those k,,.,’s
which are associated with plaquettes which have as one
of their edges the link defined by lattice position i and
direction y. In three dimensions this sum involves four
terms (see Fig. 7).

Summing over the {4}, Eq. (2.28) becomes

z=( sinnBp¥2 3 T c® T126, 2, %) .
{r} Py [ ’
As before we seek a representation for the &,,,,
which automatically satisfies the 6 functions in Eq.
(2.29). Let us denote the lattice on which the gauge
theory is defined by D. The lattice on which the origi-
nal Ising model (2.20) is defined we will call O. Now,
we construct the lattice which is dual to D by shifting
D by half a lattice spacing in each direction. This lat-
tice, O’, clearly coincides with O. We now note (Fig.
7) that each plaquette of D is penetrated by a link of O’.
With each site of O’,. we associate a spin »,, which can
take on values +1. We now use the representation

(2.29)

kv).;i=%(1 "7’17’,'“1'), H#EV,A, (2.30)

where the spins 7 are those that sit on the sites of O’
joined by the link which penetrates the plaquette of D
with which &, ; is associated. The 6 functions in Eq.
(2.29) are automatically satisfied by Eq. (2.30). This
is because each 7, appears twice in the sum Z)V; #, so
if this sum is even for any configuration of #’s, it is
always even (see Fig. 7). [As before, Eq. (2.30) is, up
to the sign in front of the »» term, both necessary and
sufficient to satisfy the 6 functions.] Inserting Eq.
(2.30) in Eq. (2.29), we find after a little algebra

Z= z exp(ﬁ Er,r,) s
{r} (>
where the sum in the exponent runs over nearest-neigh-
bor pairs on O’. This is exactly Eq. (2.20), if we iden-

tify »,=s, and the lattice 0’=0.

It is instructive to carry out the transformation lead-
ing from Eq. (2.26) to Eq. (2.31) once again, ‘but this
time paying attention to the prime on the sum over {4}
in Eq. (2.26) and explicitly choosing a gauge. There
are of course many ways to do this. Here we will per-
form the exercise choosing an axial gauge. Using the
freedom implied by the gauge transformation (2.25), it

(2.31)

aviiv

FIG. 7. Four plaquettes impinging on a lattice link in the
d=3 Z, lattice gauge theory. The dashed lines are links of
the lattice which is dual to ¢kis lattice. Ising spins are asso-
ciated with the sites of the lattice to which the dashed links
belong.

T > T
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is easy to see that we can set all the A, ,’s associated
with all the links pointing in, say, the 3 direction equal
to one. Now, let us suppose that our lattice has open
edge. boundary conditions, so that it is a cube with an
A, ; associated with all the links, even those on the
boundary. (These are the simplest boundary conditions
with which to demonstrate axial gauge.) Then, going to
the face of the lattice which lies at the negative end of
the 3 axis, we can set all the A, ,’s which point in the

2 direction and lie on this end face of the lattice equal
to one. Finally, we can go the edge of the lattice which
is the intersection of the faces at the negative ends of
the 3 and 2 axes, and set all the A, i’s along this edge
(all of which point in the 1 direction) to one. The free-
domto fixthe A,’s onaboundary face and the A,’sona
boundary edge is just a reflection of the usual residual
gauge invariance which one encounters inaxial gauge. In
Eq. (2.25) it corresponds to the fact that after setting all A,
equal toone, we can make additional gauge transforma-
tions with A; which are independent of x,.

Having completely specified a gauge in this manner,
we must sum over all the remaining Au”’s. Now, for
each gauge fixed 4,,;, we will be missing a 6 function
in Eq. (2.29). Let us concentrate on one site of the lat-
tice D. Not summing over A, means that we have &
functions associated only with four of the six links
which impinge on the site in question. There are four
plaquettes associated with each link in the 3 direction.
Label these by a, b, ¢, and d (for one link) and a’, b’,
c¢’, and d’ for the other link. There remain another
four plaquettes which have the chosen site as a corner.
Label these «, B, v, and 6. It is then easy to see that
the four 6 functions obtained by summing over the four
unconstrained 4,’s imply

ky+ky+k, +ks=even,

ky+ky+k,+kg=even,

k,+Fk,+k,+k,=even, (2.32)
Ryt Ry+ kgt ky=even.

Adding these equations together, we find
Ryt Ry+k +Rky+ Ry + Ry + koot By =even. (2.33)

Thus if the sum of %2’s about one x, link is even, so is
the other. )

Now, go to the face of the lattice which lies at the
positive end of the 3 axis. Concentrate on one site on
this face. Repeat the labeling procedure defined above
for this site. Since there is only one link in the 3 di-
rection coming into this site, the plaquettes labeled by
a’, b’; ¢’ and d’ are absent. Hence, we find the analog
of Eq. (2.33) for this site is

k,+Fk,+k,+Rk,;=even, atthe positive x,

(2.34)

Using Eqgs. (2.34) and (2.33) applied to a lattice site one
layer in from the lattice edge, we find that Ro+ky+k,

+ k4 is even for both links in the 3 direction which im-
pinge on this site. Continuing in the same way we find
that the sum of the 2’s around every lattice link in the 3
direction is even. Similar, but simpler arguments

can be used to show that the gauge fixed links (in the 2

face of the lattice.
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and 1 directions) on the lattice boundaries also have the
sum of £’s associated with the plaquettes which impinge
on them equal to an even integer. Thus, all the infor-
mation contained in the (overcomplete) set of 6 func-
tions in Eq. (2.29) is implicitly contained in the smaller
set of 6 functions which we get when we fix a gauge.
Proceeding with this derivation, we find that the nu-
merical factors (i.e., factors of 2% work out just right
(as they must) to give the result identical to Eq. (2.31).

3. Correlation functions

The equivalence between three-dimensional spin and
gauge systems is very intriguing. To help us under-
stand this equivalence better, it is useful to write the
expression for spin-spin correlation functions in terms
of the gauge theory representation, and to write a
gauge field correlation function in terms of the spin
variables.

We begin by applying the duality transformation to
the three-dimensional Ising model spin-spin correla-
tion function:

(sﬂsm)=§ s"smexp(ﬁ(z; s,s,)/% exp <B(z:> sis,>.

(2.35)

The denominator of Eq. (2.35) just transforms into
the partition function for the gauge theory, Eq. (2.26),
so we only need consider the duality transformation ap-
plied to the numerator of Eq. (2.35). Rewriting this
expression in the by now familiar way, we have

N,,'m=z SuSm exp(ﬁz sis!>
{s} [
=2 susp [Lexpifs;s))
s 1
= Z SnSm HZ CB)(s;s,)*
{s} 1 &
—Z Hck(B)Z snsmH(s )B i
1

{k}

=27y Tl cu®s,(1+2, k)

(&} 1

x 8,1+, %) TI 6.22:%),

i#n,m

(2.36)

where there is one k,,; associated with each link of the
lattice. We can satisfy the & functions by choosing the
following representations for the %,,,: we draw an ar-
bitrary line along the lattice connecting the two sites I
and m. For each k associated with a link which lies on
this line we write

T2 (1+ A, A AL LAy L) (2.37a)

while for each % associated with a link which is not on
this line, we write

=z (1 Ay Ay A i Ay s) s Ry L (2.37b)

where the A,’s are associated with the links of the dual
lattice as described earlier in this section.
We can now use Eq. (2.37) in Eq. (2.36) and, following

k€L,

vii
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the steps leading from Eq. (2.21) to Eq. (2.23), we ar-
rive at the expression

N, =27/ 2(ginh2B)3#/ 2

nym
X Z exp (B Z nv)., iA A AV, u-)t l.i-rl:) ’

{A}

(2.38)

where 7,,,; equals -1 for all those dual plaquettes pen-
etrated by links which lie in L, Eq. (2.37a), and equals

+1 otherwise. Thus
(= [ 2 exe(B 3 3 s )]
’ - -1
X [E eXP<B ZA,,”A Ay in A i+3>] (2.39)
(4) P,

and is the ratio of two gauge theory partition functions
which differ only in that some of the complings of the
partition function in the numerator are “antiferromag-
netic.”

This result is reminiscent of the form we obtained
for the disorder-disorder correlation function in terms
of the original degrees of freedom in the d=2 Ising
model. Indeed, many of the comments we made in con-
nection with expression (2.17) have their counterpart
here. In particular, since the line, L, defined in Eq.
(2.37) is arbitrary, the set of dual plaquettes for which
Nyy; ;= —1 is not unique, and can be changed by a redef-
inition of some of the A,’s, analogous to the argument
presented in the paragraphs following Eq. (2.17).

We now want to write a gauge field correlation func-
tion in terms of the Ising model spin variables. We
note first that a simple correlation function such as

A, A, 1s not gauge invariant and so is not a mean-

ingful quantity to calculate. We could compute

Guv;1 Grgyms Where G, =4, A, A 54,0, Which
is gauge invariant, but a more interesting object to
examine is the “Wilson loop” (Wilson, 1974)

r,(8= <I;[ A, ,>
E HA,, iexp

{A} ¢

)| T oo(p Bm)

(2.40)

where the product II, denotes a product around some
closed curve c. That this is gauge invariant can easily
be seen by observing that

ICIAV; i= IaIG:.w; i’

where II, is a product over all plaquettes which lie on
any two-dimensional surface bounded by the curve c.
Since G,,,; is gauge invariant, so is the left-hand side
of Eq. (2.41).

Now, the denominator of Eq. (2.40) is just propor-
tional to Z, so under duality it will be transformed (up
to overall spin-independent factors) into expression
(2.20). To transform the numerator, we write

(2.41)
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Nc = Z, IIA,,; ieXp(B E Guv; i) = E’ IIAV; i HZ Ck(B)(GVX; i)k
{A} ¢ P, {4} "¢ Py &

= z-NZHckw)Z IT ca,; gz TT Ay, 0420

{A} lgqc
= 2-NZ: Hch(ﬁ) II 262l(2u,1k) H262(1+Zv zk)
{r} Py lgace

We now seek a representation for the %,,,,’s which will
satisfy the 6 functions in Eq. (2.42). To do this we first
choose an arbitrary two-dimensional surface on the
gauge theory lattice which is bounded by the curve c.

Call this surface ¢. Then, for each k2,,¢¢, we write

By i=3(L =773 A#u,v (Red), (2.43a)
while for k,,t, we have

Buy,i=3(L+7,7,3); X#p,v (ked). (2.43b)
Equation (2.43a) is the same as Eq. (2.30). The »,’s

sit on the sites of the lattice O’, which is dual to the
gauge theory lattice D, and take on the values +1. That
this representation satisfies all the 0 functions in Eq.
(2.42) can be seen by noting that in all of the sums
Z}v; ;o except those on ¢ there are an even number (eith-
er zero or two) of the 2’s which have the representa-
tion (2.43b). Thus these sums are always even. On the
other hand, each sum Z},; ;& on ¢ has exactly one & rep-
resented by Eq. (2.43b), and these sums are therefore
odd.

Using Eq. (2.43) in Eq. (2.42) and using expression
(2.8) for Ck(TS) we find

N, cc 2 exp (Z B;7; 'rj>

{r}

(Z exp ZB,jr,rj /2 exp Bz'r r,) (2.45)
r}

In Eq. (2.44) we have dropped over all »-independent
factors (these factors cancel in the expression for I',).
B;;=+B for all links except those which penetrate
the (dual) plaquettes which lie on #. For those
links, B;;==B8. As with other correlation functions
we have studied this one too can be represented
as a ratio of partition functions for systems with dif -
ferent distributions of ferromagnetic and antiferromag-
netic bonds. In this case, the antiferromagnetic bonds
of the numerator are associated with and normal to an
open two-dimensional surface embedded in the three-
dimensional lattice. Since the surface was arbitrary
(except for its boundary) we should be able to change
the distribution of antiferromagnetic bonds in Eq. (2.44)
consistent with this arbitrariness. This can be done,
as pictured in Fig. 8, by changing the sign of a spin on
some site and simultaneously changing the sign of all
six Bﬁ’s which are connected to this site. If we choose
a site coupled to one of the links passing through ¢ (as
in Fig. 8) this operation just corresponds to producing
a small dimplelike deformation of ¢.

(2.44)

and

4. Comments

There are several aspects of the equivalence between
the three-dimensional Ising model and the three-di-
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(2.42)

f
mensional Z, gauge theory that deserve to be stressed.
First, remembering that the duality transformation
maps high temperatures into low temperatures of the
dual theory, we are led to the conclusion that the high-
temperature region of the d=3 Ising model is most
simply described in terms of the gauge degrees of free-
dom of the dual form. This is really quite remarkable.
The high-temperature, disordered region of the d=3
Ising model behaves as if it were a very cool gauge
theory. Of course the converse is also true: the high-
temperature region of the Z, gauge theory behaves as
if it were a very low-temperature Ising model. It is
also important to stress another feature of this three-
dimensional duality transformation; namely, we can
transform the gauge theory into a theory with no gauge
invariance without choosing a gauge. The set of vari-
ables of the Ising model is a complete set of variables
which replaces the gauge potentials. One might hope
that some such transformation could be effected for
the gauge theory known as quantum chromodynamics
(QCD). This theory is the leading contender for a the-
ory of the strong interactions, and has interactions
which are invariant under a gauge symmetry. On the
other hand, one might suppose that the set of observed
hadrons constitutes a complete set of variables for the
description of the strong interactions. But there is ap-
parently no gauge principle (at least no obvious gauge
principle) that dictates divectly the interactions be-
tween the hadrons. Is it possible that there is some
transformation, not unrelated to the duality transfor-
mation which takes us from the set of variables of QCD
to the set of observed hadrons? What we have in mind
here is a transformation which would invert the gauge
coupling constant g in the same way that duality trans-
formations invert the temperature in statistical sys-
tems, to produce a representation for the QCD vacuum
which is simple at large g. Because of the non-Abelian
nature of QCD it is not easy to perform duality trans-
formations in a simple way and so this question is a
difficult one. We shall return briefly to this problem
in Sec. V.

Finally, let us briefly describe the phase structure

v
S

FIG. 8. Gauge transformation under which Eq. (2.44) is in-
variant. The wiggly lines indicate the bonds which are antifer-
romagnetic. This gauge transformation corresponds to a de-
formation of the surface subtended by the Wilson loop, Eq.
(2.40), defined on the three-dimensional lattice dual to the one
in this figure.

.
|
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of the d=3 Ising model and the qualitative behavior of
the spin and gauge correlation functions. We recall
that the d=3 Ising model has two phases. In the low-
temperature ordered phase (s;)#0, and in the high-
temperature disordered phase (s;)=0. Moreover, we
expect (s,s, )~ const (#0) as |l —m |=»- in the low-
temperature phase, and (s;s,)~e ™" as v -« in the
high-temperature phase. (This latter behavior is very
easy to deduce by simply expanding the expression for
(s,;s,) in powers of B.)

Now, since we can replace the set of Ising variables
{s} by the set of gauge variables {A,}, we might expect
that some correlation function of the gauge degrees
of freedom should have qualitatively different large dis-
tance behavior in the two phases. Consider, in particu-
lar, T,. Using Eq. (2.45), or Eq. (2.40)_, it is easy to
see that when 8> 1 (which implies that B<«< 1), T, ~e 284,
where A is the minimum area subtended by the curve c.
This can be seen in Eq. (2.40) by expanding the expo-
nents in powers of B and noting that after summing over
{A,}, the lowest-order nonzero contribution to I', re-
quires that the entire surface subtended by c be filled
with factors of G,“,;i. Each factor costs one power of
B, so we have I',~(B)4~¢™284 (B<<1). In expression
(2.45), we note that since 8>>1, all the #; connected by
ferromagnetic bonds will want to be aligned, while
those connected by antiferromagnetic bonds will want to
be misaligned. Suppose we have periodic or fixed edge
(i.e., all »,=+1 on the edges of the lattice) boundary
conditions. Then it is easy to see that the (of order A)
antiferromagnetic bonds in the numerator of Eq. (2.45)
will force a violation of the preferred spin alignment
for a number of nearest neighbor pairs of order A.
Hence for B> 1 the numerator is smaller than the de-
nominator by a factor of order e *#4, So, in the low-
temperature Ising phase, 8> 1 (which is the high-tem-
perature gauge theory phase B<< 1), T, falls like the
exponential of the area enclosed by c¢. [This behavior is
often taken as a signal for quark confinement in lattice
gauge theories based on a non-Abelian group which are
thought to represent QCD (Wilson, 1974). However, the
criterion can only be taken literally in the absence of
quark fields as dynamical variables in the functional
integral. See the section on the Abelian Higgs model
for a clarificatory discussion. ]

The behavior of I', in the high-temperature Ising
phase (B<< 1) could be obtained from the representation
(2.40) or the representation (2.45) by expanding in pow-
ers of B. The expectation is (Wegner, 1971; Balian et
al., 1975) that I, ~ e ¢P, where P is the perimeter of
the curve c and g is a function of 8. This result can
be proven for sufficiently large B (Fontaine and Gruber,
1978; Gallavotti et al., 1978). Furthermore, it is pos-
sible to show that for B<B ..., I', does not decrease
as fast as an area law (i.e., the coefficient of the area
in the exponent is zero) (Bricmont et al., 1979). Thus
the phase transition in the d=3 Z, lattice gauge theory
should be reflected in the qualitatively different as-
ymptotic behavior of I', in the two phases.

C. Duality for the four-dimensional Ising model

We now want to briefly describe the duality transfor-
mation for the Ising model in four dimensions. This is
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a very useful exercise to do before discussing, in the
next section, the general pattern which duality trans-
formations follow.

Starting with the partition function of the d=4 Ising
model

Z=Z exp(ﬁz sisl) s
{s} <)

we rewrite following the pattern developed in previous
sections:

Z= ZHe‘“"SI= EHZ CiB)(s;sy)*
T w

{s} 1 {s}

D3 § XD § (TR
i

{r} 1 {s}

=2 IIcim 125,02, %).

{r} 1 i

(2.46)

(2.47)

As before, we seek a representation for the k,’s
which automatically satisfy the 6 functions in Eq. (2.47).
To do this we construct the dual lattice D in four di-
mensions, obtained from the original lattice O by shift-
ing the lattice by half a lattice spacing in each direc-
tion, Applying a slight strain on the imagination, we
can see that each link of the original lattice penetrates
one elementary three-dimensional cube of the dual lat-
tice. Moreover this elementary cube is oriented ortho-
gonally to the link which penetrates it. (Recall, for
clarity, the situation in two and three dimensions.) Let
us associate a spin L. ;, which takes on values +1
with each plaquette of the dual lattice. Then we choose
to represent the k£,’s in the form

ku; it 2(1 - Lv)«; i Lva; fL).c; iLux; i+&Luu; i»ich;i+7/)

s%(l—Rum;i), VoA, 0# 1, (2.48)

where the six L’s that appear in Eq. (2.48) are asso-
ciated with the six faces of the elementary cube on D,
penetrated by the link on O with which &, , is asso-
ciated. Recall also that the orientation and site indices
of 2 refer to the lattice O, while those on L and R re-
fer to the dual lattice D. It is now straightforward to
use Eq. (2.48) in the expression 23,k to see that the
sum of these eight %2’s is indeed even. As in two and
three dimensions, Eq. (2.48) is, up to the sign in front
of the L’s, both necessary and sufficient to satisfy the
6 functions in Eq. (2.47). Using Eq. (2.48) in Eq. (2.47)
we readily find :

Z = 2 Msinh2B)-2¥ Z ! exp(B ZR"M: ;(L)> s
{L} cq

where R(L) is defined in Eq. (2.48). As in three di-
mensions this dual theory has a local gauge symmetry,
and the prime on the sum tells us that we must re-
strict oursleves to summing only over a subset of the
possible configuration of L’s such that each configura-
tion summed over produces a distinct configuration of
R’s [or, equivalently, of the k’s through Eq. (2.48)].
As in three dimensions, it will usually be possible to
neglect this prime and do an unrestricted sum over all
configurations of L’s, so long as we remember that in
so doing we have (uniformly) overcounted.

Let us now examine the gauge symmetry of this the-

(2.49)
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ory. From Eq. (2.48) we can see that {R} is invariant
under the following operation: choose a link of the dual
lattice D. Attached to this link, there are, in four di-
mensions, six plaquettes. We now reverse the sign of
each of the Lu,,’s associated with these six plaquettes.
By Eq. (2.48) we see that this operation changes the
signs of exactly two of the L’s in the expression for
each R which has the chosen link as one of its edges.
Thus the R’s remain unchanged. This gauge symmetry
is of a “higher” kind than the one present in the three-
dimensional gauge theory of the previous subsection.
If we write, in analogy with Eq. (2.24),

Luv;i= e‘qu;a, (2.50)

with Quu;i= 0,7, then the gauge symmetry just dis-
cussed can be described by saying that the exponent of
Eq. (2.49) (the statistical mechanics Hamiltonian or the
field theory Lagrangian) is invariant under the opera-
tion®

Quu;i"QLvﬂ:qu;i+AuAV;i' (2.51)
Thus the arbitrary gauge function A, , is in this theory
a vector field while in the gauge theory which is dual
to the three-dimensional Ising model it is only a scalar
[see Eq. (2.25)]. If, for comparison, we consider the
gauge theory of the last subsection in four dimensions
then we see the theory of Eq. (2.49) has many more
(four times as many) gauge degrees of freedom as does
Eq. (2.26).

We close this section with two comments. First, we
note that the gauge-invariant correlation functions of
the variables @ in Eq. (2.49) are defined on two-dimen-
sional surfaces embedded in the four-dimensional space
of the theory. In the absence of other fields coupled to
@, these must be closed surfaces. This is just the ex-
tension of what occurred in the gauge theory studied in
the last subsection in which the gauge-invariant corre-
lation functions (the Wilson loop integral) were defined
on closed one-dimensional surfaces (closed loops).
Finally, we remark that the theory defined in Eq. (2.49)
has a gauge symmetry (2.51) similar to that of a theory
studied in a different context by Kalb and Ramond (Kalb
and Ramond, 1974). In the Kalb-Ramond theory the
symmetry group is U(1) rather than Z, in our case. In
their study, Kalb and Ramond found that the spectrum
of their theory was related to that of a theory with one
scalar boson field. We can understand this result
from our point of view by remembering that the Ising
model can be regarded as a lattice analog of a rela-
tivistic field theory of a single scalar field. Since Eq.
(2.49) and the Ising model in four dimensions are dual
to each other [it should be clear that applying the dual-
ity transformation to Eq. (2.49) we get back the Ising
model] their spectra are certainly related. In Sec. IV
we will discuss theories with a U(1) symmetry, one of
which is the U(1) analog of the Z, theory described

3A careful analysis of these theories indicates that the fields
(or spins) should be regarded as antisymmetric in their direc-
tion indices. Thus the gauge transformation should also be
antisymmetrized. We shall not explicitly concern ourselves
with this point here.
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here, and is very closely related to the Kalb-Ramond
theory.

D. Fundamental structure of the duality transformation

In the preceding sections we have begun to see a
pattern emerge in the application of the duality trans-
formation to Ising models in varying dimension. Here
we will describe and generalize this pattern. Our dis-
cussion will be in the context of theories witha Z, .
symmetry, but the basic geometrical content of the
result will persist when we describe theories with
other symmetry groups.

To begin, we introduce the notion of a simplex. For
our purposes, we take a simplex of dimension s to be
an s-dimension element of our hypercubical lattice.
Thus a simplex of dimension zero is a vertex of the
lattice, a simplex of dimension one is a link joining two
nearest neighbor vertices on the lattice, a simplex of
dimension 2 is an elementary face, or plaquette of the
lattice, a simplex of dimension 3 an elementary cube,
and so forth. Obviously, in a d-dimensional lattice
there are simplices of dimension s <d.

Let us next construct the lattice dual to our d-dimen-
sional hypercubical lattice, which, we recall, can be
done by shifting the lattice by half a lattice spacing .in
each direction. With a little thought, we can convince
ourselves that each simplex of dimension s, of the
original lattice, 0, is intersected by one simplex of
dimension § =d -~ s, of the dual lattice D. For example,
in three dimensions, each link of O is bisected by a
plaquette of D. Furthermore, each vertex of D (5 =0)
lies at the center of an elementary cube of O (s =3),
and vice versa.

Now, we can define a hierarchy of theories with a Z,
symmetry, of which the Ising model is the simplest
member. A theory in this heirarchy can be labeled
by a simplex number s. The theory with simplex num-
ber s has a variable, or spin, which can take on values
+1 associated with each simplex of dimension s =1 in
the lattice. The variable, Qq,...q,_,;i, has s —1 direc-
tion labels since it takes that many directions to de-
fine the orientation of an (s — 1)-dimensional simplex.
Now each simplex of dimension s is bordered by 2s
simplices of dimension s — 1. The Hamiltonian (or
Lagrangian, in field theory language) is defined by
multiplying together the 2s variables @, which border
each simplex of dimension, s, and then summing over
all s-dimensional simplices of the lattice. Thus the
Ising model is the s =1 theory, the lattice gauge theory
discussed in subsection B has simplex number s =2,
the dual theory of subsection C has s =3, etc. The
theories with s 22 have a local Z, gauge symmetry as
discussed for the dual theories in the last two sub-
sections. When s =1 (Ising model) the Z, symmetry
is global. As s increases the local gauge symmetry
becomes increasingly directional in that the gauge func-
tions have s — 2 directional indices. Thus, for a given
dimension 4, the number of dynamically independent
variables decreases as s increases. From simple

geometrical considerations it is clear that in d dimen-

sions we can only have theories with s <d; and, in
fact, one can easily use the gauge symmetry to show
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that the theory with s =d is trivial in that there are no
dynamical degrees of freedom, and the partition func-
tion is just a simple product of numerical (S-dependent)
factors. A simple example is the case s =d =2. The
lack of dynamics in this case is just the analog in our
Z, symmetric gauge theory of the well known result that
there are no real photons in two-dimensional QED.
Finally we observe that in the theory with simplex
number s, the “natural” gauge invariant correlation
function is defined on a closed surface of dimension

s -1, as we found for the s =2 and 3 theories earlier.

From our treatment of the two-, and three- and four-
dimensional Ising models the following result should
be clear: the theory with simplex number s in d di-
mensions at an inverse temperature 8 is transformed
by a duality transformation into a theory in d dimen-
-sions with simplex number § =4 —s at an inverse tem-
perature B=—3intanhB. We will go through a proof of
this result in Sec. IV in the context of U(1) invariant
theories. It will be clear at that time that the proof
also applies to the special cases of Z, symmetric
theories. For the moment we just want to note a few
of the implications of this result.

First, the theories with s = 3d are self-dual. The
most important examples of these are the two-dimen-
sional Ising model and the four-dimensional Z, gauge
theory (s=2). As we discussed for the d =2 Ising model,
if these theories have phase transitions the critical
points must all map into themselves under the trans-
formation B—pB. Next we note that the critical be-
havior of a theory must be reflected also in its dual.
We discussed an example of this for the d =3 Ising
model and its dual theory. In general, we might expect
a phase transition in the simplex number s theory to
be signaled by different asymptotic behavior of the
gauge~invariant correlation function of that theory
above and below the critical point (if there is only one).
The kind of asymptotic behavior that is natural to ex-
pect is that '~ e”V above the transition point and I'~e”
below the transition temperature, where I' is a corre-
lation function of fields on simplices of dimension
s =1, defined in analogy with Eq. (2.40) and the dis-
cussion following Eq. (2.51). V is the (minimal) s-
dimensional volume enclosed by the fields defined in
T', and B is the (s — 1)-dimensional surface area en-
closing V. (Note that the s=1 theory also obeys this
pattern if we recall that the boundary B in that case
consists of two points and does not grow as the sep-
aration between spins is increased. Thus (s;s;) need
not approach zero asymptotically below 7,.) Finally,
we refer to the comment made earlier that the theory
with s=d is trivial. This can be seen quite easily by
performing the duality transformation on these theor-
ies. The result is

zZ~ E exp(ﬁ-zsi).

{s;=x1} i

B

(2.52)

The s;’s are just spins on the sites of the dual lattice
and Z is a partition function for a set of uncoupled
Ising spins in an external magnetic field «f. Note
that this theory has “interactions” defined only on the
sites of the lattice, and is therefore consistent with the
simplex number assignment § =d —s =0. Furthermore,
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there is no symmetry associated with Eq. (2.52) (for
fixed E); not even a global Z, symmetry. This is what
we expect, since decreasing simplex number means
decreasing symmetry.

Hi. Zz,, SYMMETRIC MODELS
A. Introduction

Here we will study duality for theories with a Z; sym-
metry. There are several reasons to be interested in
such theories. First, they are the simplest generaliza-
tions of the Z, symmetric theories discussed in the
last section. Since they have a richer set of possible
interactions, these theories provide us with some per-
spective on the structure of the Z, theories—in par-~
ticular, a study of these theories will elucidate which
of the properties of duality transformations described
in the last section are peculiar to Z, symmetric theor-
ies, and which follow from the intrinsic geometrical
structure associated with duality. Next, these theories
are of great interest in the context of condensed matter
physics. The interactions present in a regular lattice
of atoms are usually symmetric though a finite rotation
which brings the lattice back into itself. In two di-
mensions this is just a Zy symmetry for some value of
N. Among the interesting systems where such forces
occur one may mention thin films of He?* on graphite,
and the general problem of melting in two dimensions
[see, for example, Halperin and Nelson, (1978) and
José et al. (1978]. Finally, gauge theories with a local
Zy symmetry are of interest in the problem of quark
confinement. The reason is that the center of the group
SU(), which is Z,, may be of particular importance in
determining whether an SU(N) gauge theory is confining
or not (’t Hooft, 1978, 1979).

Our plan in this section will be to examine in some
detail the duality transformation for Z; symmetric spin
models in two dimensions. In Sec. III.B we will look
first at the vector Potts model and a generalization
thereof which includes other types of Z, symmetric
nearest neighbor interactions. Then we will study
another model, the “Z,-Villain model,” which is
self-dual. This model is in the same universality class
as the vector Potts model (at least for d =2) but is much
easier to analyze. After completing these studies, our
results can easily be extended to other Z; models with
global and local symmetries in all dimensions. This
will be done in Sec. III.C.

B. Two-dimensional Z,, spin systems
1. Vector Potts model

Consider a two-dimensional square lattice with a
complex phase, or spin e'2"M 4 o each site of the
lattice. ¢ can take on integer values 0,1,2,...,N-1.
The vector Potts model is defined by the Hamiltonian
(for a field theory, the Lagrangian)

27
BH =BE COS(N' Auqi> s (3.1)
[
where A, is a discrete difference operator
Audi=qi—4qi-p (3.2)
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and the sum is over all nearest-neighbor pairs of the
lattice. The partition function for this theory is a sum
over all configurations of the system

Z = Z exp[ (‘;cos<%\]—ﬂ Auq;)] .

{a=0}

(3.3)

When N =2, Eq. (3.3) is just the partition function of
the Ising model, Eq. (2.2), and when N—« Eq. (3.3)
can be rewritten as the partition function of the clas-
sical x-y model (see Sec. IV). It is also interesting
to note that when N =4 the partition function (3.3) simply
reduces to the product of two mutually noninteracting
Ising models. For most N>4, however, such wonderful
simplifications do not generally occur.

It is clear that for N =4 there are other Z, symmetric
nearest neighbor interactions which can be written in

addition to the one appearing in Eq. (3.1). These are
just of the form
H,=cos[(2mp /N)A,.q;], (3.4)

where p is an integer 1<p <3N —2). These are all the
simple nearest-neighbor Z, symmetric interactions one
can write down without introducing additional fields.
For N=3 there is only the one term with p =1 (because
a rotation by =7 is equivalent to a rotation by —27.)

There are several other models of common interest,
besides Eq. (3.3) whose Hamiltonians can be expressed
as a linear combination of the H,. The most famous
of these is the Potts model (Potts, 1952) (as distinct
from the vector Potts model) in which the energy as-
sociated with nearest neighbor spins is, say, E, if
the spins are aligned (i.e., if A,q;=0), and E, if the
spins are not aligned (A,q; #0).

Another model, whose Z, symmetry is expressed by
the introduction of a set of auxiliary fields in the “Z,-
Villain model” [Casher, 1978; Elitzur et al., 1979;
Cardy, 1978; Einhorn, Savit, and Rabinovici, 1979;
Ukawa et al., 1979). Its partition function has the form

K = -8 (277 ‘ , )"’]
Z= 2?_’:1 ufz-o)exlj [5— <Z; N Awls = 2] | (3.5)

where there is one integerj, ; associated with each

link of the lattice, and the sum runs over allj,.; from

—o to «, Because this model involves an additional

set of fields, its Hamiltonian can be expressed as a

function of the H, in Eq. (3.4) only after summing over

the auxiliary fields. But then the coefficients of the

H, may be very complicated functions of 8. We shall

return to this model later.

Let us now turn our attention back to the vector Potts
model (3.3), and derive its dual form. First we note
that the argument of Eq. (3.3) can be expanded in a
Fourier series for the group Z,:

exp [Bcos(—zl\TnA“ti :-l C.(B) exp(i%ké.m) , (3.6)

=0

where the C,(B) are determined by inverting Eq. (3.6)
and using the completeness of the expansion, in the
usual way for Fourier transforms. Thus the C.(B) have

the form
N=1
ex co z—Lk]
&= [B S(N )+
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C.(B)~ 3.7)

which means that InC,(B) can be written
2 2
InC,(B) =G4(B) +G,(B) cos—7-T-k +Gz([3)cos2<—n k)

I GN/ZCOSN/ZI(ZW/N)/?] N even,
Gon-vac0s VU B[(2a/N)k], N od.

(3.8)
We can now use these expressmns in Eq. (3.3). We
have

Z = Z exp [ﬁ Z cos( uq;)]

{q}

= %H exp[B COS( )] (3.92)
-2 Z Hck (8) exp<z——k ) (3.9b)
{a} (&, )

=21l m)]Eexp( 2 g k,,)  (.50)

{r} <

D) § (EANEN] § ELMENIRY

[

(3.9d)

The form (3.9¢c) was obtained from Eq. (3.9b) by per-
forming a summation by parts in the exponent. We
assume spherical boundary conditions, so there is no
surface term. In Eq. (3.9d), 6, is a Kronecka 6 func-
tion mod N; i.e., it restricts the argument to be N
times an integer.

We now seek a representation for the &, ;; which auto-
matically satisfies the 6 function in Eq. (3.9d). Since
we do not insist i:hatAukuH.= 0, one might think that the
required representations for the %,;; would be rather
messy. However, we can define another set of vari-

ables k,;;, which are equal to the k,’s modN, and
which satisfy A k ;=0. From Eq. (3 8), we see that
changing ku,, by an mteger multiple of N will leave
the C,’s, and hence Z, invariant. Thus, we will be
able to replace the %k,’s by the %,’s with impunity.

To define the 2,’s we construct in the usual way the
dual lattice D from an original lattice O (see Fig. 2).
With each site of the dual lattice we associate a vari-

able, ¢;, that can take on values 0,1,...,N—-1, We
then define
-k—u;i =8uvAV i . (3.10)

The indices on % refer to lattice O, while those on
the right-hand side of Eq. (3.10) refer to lattice D.
Since Eq. (3.10) is of the form of a curl it follows (iff)
that A %, ;=0. Now, —=(N-1)SE<SN-1. It is easy,
however, to convince oneself that there is a one to one
correspondence between sets of % satisfying A,%, ;=0
and sets of k,; satisfying the & functions in Eq. (3.9d).
Consider, for instance, the example shown in Fig. 9
for N="7. In Fig. 9(a) we have a distribution of &,’s
which satisfy A, %k, =-T at the depicted lattice site.

In Fig. 9(b) we show the distribution of %,’s which sat-
isfy 4,%,=0 and which are equal mod 7 to the £’s in
Fig. 9(a). In Fig. 9(b) we also show the values of ¢;
which generate the required %,’s via Eq. (3.10). (The
¢;’s, of course, are defined only up to an overall con-
stant.)

We can now substitute the %,’s defined through Eq.
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_ K=1
k=1 p=1e ~p=2
K=6 k=3 k=-1 k=-4
k=5 4’"—'0. _ -¢=‘2
k=-2

(a) (b)
FIG. 9. Example of the change of variables &, —k, for the
case N=7. In (a) A k,=—7, while in (b) A,%,=0. Shown also
in (b) are the values of ¢; which generate the %, according to
Eq. (3.10). See the discussion following Eq. (3.9) for more de-
tails.

(3.10) for the k,’s in Eq. (3.9d) and drop the 6 functions.
Equation (3.9d) then becomes, up to numerical con-
stants,

Z= ZH exp[InCe,, 4, 0,(8)]

{o} ¢

)3 exr)[z:i:ct(ﬁ) cos ( ”Au(;)i)]

{o=0}
. P t
2 exp(%‘,tZG,(ﬁ)(si .8)).

where the first sum in the exponent is a sum over all
nearest-neighbor pairs on D, and the sum over ¢ just
represents the expansion in Eq. (3.8). fy is the

largest integer 3N or 3(N —1). In the last form we have
introduced the dual Z spin,

$;= [cos(z—;-¢i>, sin(—zﬁzd)i)] .

There are several important features of this result.
First we note that both the original model and its dual
are Z, symmetric, but the vector Potts model is not
self-dual for general N. We can, however, define the
more general theory whose Hamiltonian is a linear
combination of the interactions of the form (3.4). It
should be clear that some of the models so defined will
be self-dual. At the very least, the model which in-
cludes all terms of the form (3.4) will, for arbitrary
values of the coupling constants, generate a dual theory
which also contains all terms of the form (3.4). Ex-
ceptions to these statements are the cases with N =3
and N =4 for which the vector Potts model is self-
dual. As noted earlier, when N =3 there is only one
independent Z, symmetric interaction, while when N =4,
the vector Potts model reduces to a simple product of
two Ising models.

Next, we note a very interesting feature of the behav-
ior of the G,(8). From Eq. (3.7), we see that when
B>1, we can approximate the sum by
N=1

27

27 2T
ex cos—L+z—-—LK>~ex 2e ( os—>
LE_;O p(ﬁ N N p(B) +2exp\Bc ~/

(3.11)

. 2
Xcosﬁkw-- , (3.12)
and so

1an(B)8_ﬁmB+2exp{B[cost) - ]}cos-zl-vﬁk peee

(3.13)
Hence, neglecting overall (B-dependent) factors
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(3.14)

z =~ 2 exp[G (B)ZCOS( m)]
8>>1 {0}
with G,(B)—~ 0 as 8- . Thus, in the very low-temper-
ature limit the vector Potts model is approximately
self-dual and, as expected, the dual temperature ap-
proaches infinity as the original temperature goes to
zero. It is a straightforward and interesting exercise
to generalize this observation to theories with other
kinds of Z, symmetric interactions of the form (3.4).
Finally, we note that despite the increased number of
independent interactions, the underlying geometrical
relation between the dual theory and the original theory
still holds. That is, all the interactions in Eq. (3.11)
are defined on a simplex of dimension one, and the Z
symmetry is global. According to the discussion in
Sec. IL.D this is what we expect, since $=d-s=1in
this case. It should be clear that the entire geometric
discussion of that section can be carried over to Z
symmetric theories, as long as we remember the
added complexity of several different kinds of inter-
actions. In Sec. III.C we will make this explicit, and
we will introduce theories with a local Z, symmetry.

2. “Zy-Villain model”’

We turn now to the model described by the partition
function (3.5). To see that this model has a global
Zy symmetry, we first observe that the Hamiltonian
is invariant under the operation g; -¢g; + I, where [ is
an integer, independent of . However, to make the
Hamiltonian truly Z , invariant, we must also con-
sider transformations of the form

q;—~q; +l+NL;, (3.15)

where L; is an integer which may vary from site to site.
This is just the statement that in the Hamiltonian, g,

is only defined modN. [It is clear, for example, that
the interactions (3.4) are invariant under this trans-
formation, since the cosine is periodic.] In Eq. (3.5)
the j,.;’s are included to enforce this periodicity. The
transformation (3.15) just amounts to a redefinition of
the ju.._i, S,

ju;L"ju;i-AuLi, (3.16)

but since we must sum over all integer j,.;, the
Hamiltonian, considered as a function of {q} after
summing over j, . ; is obviously unchanged. This can
be stated in another way: The exponent in Eq. (3.5)

is invariant under the local gauge symmetry operation

qi—~4q; +NLi, ju;i"ju;i—AuLiO (3-17)

As stated above, once the {j,} is summed over we can
consider the logarithm of the argument of the sum over
{q} as an (effective) Hamiltonian. This effective Hamil-
tonian has a true global Z, symmetry, Eq. (3.15). It

is the compactness of the group Z that is responsible
for the additional formal freedom to add NL; to any

q; without changing the Hamiltonian. On the other hand,
it is precisely this compactness that is responsible for
the local symmetry, Eq. (3.17), when Eq. (3.5) is con-
sidered as a function of both {g;} and {j,.;}. Thus,

a theory with a global compact symmetry may in some
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sense be regarded as a theory with a local gauge sym- most similar to the formalism we have encountered in
metry.*® previous theories. We begin by making use of the

There are several ways to approach the duality trans- comment in footnote 5. Being cavalier about overall
formation for Eq. (3.5). We will follow a path which is factors of infinity, we rewrite Eq. (3.5) as

= 2
z= 2 exp[— —E( A,q:- anu;i) ] (3.18a)
{g=mw} (j =m0}
_B 217 . 2
= Dq exp A L +12wpiqi] (3.18b)
{P-“’} U - N ’
- Z 2
=(278)"Y ( DqDTu exp - _Tu T N Augqy—2mf,, ;) +i2mpiq; (3.18c)
»l, iu
In Eq. (3.18b) we have used the Poisson summation identity
2 S(x=k)= 2. £2E (3.19)

k== p==co

where x is a continuous variable which in general, ranges over = <x<e, The form (3.19) is introduced for
each g;, thereby turning the sum over g; into an integral over continuous g; times a sum over p;. In Eq. (3.18¢)
we have introduced a continuous Fourier conjugate variable 7,,; for each link of the lattice, and, to avoid con-
fusion, we have defined the number of lattice sites to be V. We now rearrange the terms in Eq. (3.18¢) and we

sum by parts so that 7,,;4,9;~ —¢;A,7T,.; (assuming spherical boundary conditions). We then have

7 = -v
Z =(2mB) z}:fD-ru
-(2775)- ZfDTu

=218 2,

(31 (1,=-=)

(-
exp(Z" 'zl_ﬁTﬁ;i) I:I‘5<277P1 -

In Eq. (3.20b) we have performed the integral over
{4:} to give us a product of Dirac delta functions, one
for each site of the lattice. In Eq. (3.20c) we have used
the identity (3.19) to observe that the sum over {j,.;}
just reduces the integral over continuous 7, to a sum
over integer 7,. The delta functions in Eq. (3.20c) may
thus be regarded as Kronecker delta functions.

We now seek a representation for 7,;: Which auto-
matically satisfies the constraints in Eq. (3.20c). The
content of these delta functions is that 7,,; must be a
curl, modN. This can be expressed by writing

Tu.;izauVAv b (3.213.)

The ¢;’s are integer-valued fields associated with
the sites of the dual lattice, while the #,.;’s are integer
valued fields associated with the links of the dual lat-

=Neu 7y .

“The local symmetry operation (3.17) resembles a local
gauge transformation for a system consisting of an Abelian
gauge field J,; ; and a charge field whose “phase” is ¢;. In
Sec. IV we shall study the Abelian Higgs model after which
study the reader will be able to show that Eq. (3.18a) corres-
ponds to a discrete (Z.) Abelian Higgs model with a “scalar”
field of charge N, in which the coefficient of the discrete gauge
field kinetic energy term has been taken to zero.

5One might worry that adding NL; to q; will take ¢; out of its
range of definition. This is not really a problem though,
since we can formally extend — « <g; <%~ and imagine dividing
Z by the infinite number which counts the copies thereby
produced.
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fquxp[ Z— 2_6 5 i+llIi(27TPz
i =207y, i Ju, 1‘) I;I 5(2”Pi -

2m o
~BuTu, !)'_127’]“:1'7#:‘] (3-203«)
T
—]\-I_A“T“';i> (3.20b)
27
-I;,-Aun;i) . (3.20¢)
[
tice. Inserting Eq. (3.21a) in the argument of the 6

function, we find that

Piz—EuVAurv;i ’ (3.21b)

so that the integer p; is just the curl of the 7,,;’s which
are associated with the links of the dual lattice which
surround the original lattice site ¢, Using Eq. (3.21a)
in Eq. (3.20c), we can replace the sums over p and 7,
by summing over ¢ and 7,, and we can drop the 6
functions. The result is
Z =(2n8)"" PIEEDD

. {0==x} {r, ===}

2

N 27 2
87123 Z( u(P,—Z’IT’Vu l>:"

where the sum in the exponent is over all links of the
dual lattice. As before, in going from Eq. (3.20c) to
Eq. (3.22) we have neglected overall uniform factors
of infinity. In particular, both Egs. (3.18a) and (3.22)
include redundancies, not only in the infinite sum over
q; (¢;), but also in the unconstrained sum over Juyi
(#4.i). This can be seen easily from Eq. (3.21b). The
sum over 7,.; should not, in principle, include sums
over configurations of 7, ; that differ only by a gradient,
since such configuration will produce the same con-
figurations of the p;. However, the overcounting is
uniform, and so produces only a harmless multiplica-
tive infinity. The interested reader can check the

xexp[ (3.22)
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veracity of these statements by redefining Eq. (3.18a)
to keep track of the redundancy and repeating the
steps from there to Eq. (3.22) with less abandon than
we have done.

Up to an overall g-dependent factor, Eq. (3.22) has
the same form as Eq. (3.18a) if we identify the dual
temperature as 38 =N2/8728. Thus the two-dimen-
sional Z,-Villain model is self-dual and possesses
the usual property that high- (low-) temperature re-
gions of the original theory get mapped monotonically
into low- (high-) temperature regions of the dual
theory. (It is also possible to construct a similar
self-dual Z,-symmetric model onatriangular lattice.
See Savit, 1980, for details. For a very useful dis-
cussion of the self-duality of the Ising model on a tri-
angular lattice see Wegner, 1973, and the reviews of
Syozi, 1972, and Gruber, et al., 1977.)

The model (3.5) has sometimes been regarded as an
approximation to the vector Potts model, Eq. (3.3),
especially at low temperatures. For large enough g
one might expect that important configurations in
Eq. (3.3) will be those for which all the A,g; =0,+1
and those in Eq. (3.5) for which all A,q =0,+1, modN.
Thus, up to overall constants, Egs. (3.5) and (3.3) could
well have the same behavior for large enough 8. The
critical behavior of Eq. (3.5) has been studied (Elitzur
et al., 1979; Cardy, 1978; Einhorn, Savit, and
Rabinovici, 1979; Ukawa et al., 1979) and it has been
conjectured that Eqs. (3.3) and (3.5) have a similar
phase structure. In particular, for large enough
N (N =25), Eq. (3.5) is expected to have three phases.
Since the model is self-dual, the two critical points
are related by the duality formula g, =N?/472%8,. The
reader should consult the references above for more
details. In the next section we will study the N—
limits of these models which are the classical x-y
model and its Villain approximation, respectively,
whose critical properties are also thought to resemble
each other.

Let us now ask whether the Z,-Villain model in Eq.
(3.5) can be generalized to include other quadratic terms
which correspond to the H, in Eq. (3.4) with p>1.
Such a theory should have a Hamiltonian with the
general form

2
ZE Vp<-2—QAuq,-+21rJ(j)i> .
s N i

The question is, what are the J(f)’s which enforce the
required periodicity? First we recall that all of the
terms in Eq. (3.4) are invariant under the local trans-
formation q¢; - gq; +NL;, where L; is an integer-valued
scalar field defined on the lattice sites. Suppose we
try to make Eq. (3.23a) invariant under this operation
by setting J(f) =J, for all p (remembering that we must
sum over {J“} in the partition function). It is clear that
this will not work. After transforming ¢;—~¢q; +NL;, we
can shift J, to cancel the extra factors of N in only

one of the terms in the sum over p in Eq. (3.23a); the
other quadratic terms will in general differ, and so
Eq. (3.23a) will not have the required periodicity. How-
ever, if we define J(f) =pj., where j, is the same for
every term in Eq. (3.23a) and takes on all integral
values in the sum in the partition function, then it is

(3.23a)
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clear that each term in Eq. (3.23a) will be invariant
under the transformation ¢q; - ¢q; +NL; if we simulta-
neously transform j,.;=~j,. i —4,L;. Rewriting Eq.
(3.23a), we have

2
Zszvp(ﬁAumzm) )
) N

This is precisely the same form as the Hamiltonian in
Eq. (3.5). Thus a straightforward attempt to generate
addition quadratic terms with periodicity associated
with a subgroup of Z, degenerates immediately into the
form (3.5). This is related to the fact that Eq. (3.5)
[and Eq. (3.23)] are self-dual: The dual form of the
vector Potts model involves different terms with
periodicity N/p. But for the Z,-Villain model these
terms of would-be different periodicity are just pro-
portional to the original interaction resulting in the
model’s self-duality.

(3.23Db)

C. Generalization to locally Z,, symmetric theories and to
arbitrary dimension

In both of the globally Z, symmetric models studied
in the last section the dual formulation possessed a
global Z, symmetry with interactions defined on the
links of the dual lattice. Thus these two-dimensional
spin theories obey the geometrical pattern described
in Sec. II.D for Z, symmetric theories, namely, that
§=d-s=2-1=1, in this case. In the case of the
vector Potts model, we saw that the duality transforma-
tion will induce of order 3N different (linearly inde-
pendent) kinds of Z, symmetric interactions, but all of
them are defined on dual links. Here we will show that,
as in the case of a Z, symmetry, one can define a
heirarchy of locally Zy invariant theories labeled by a
simplex number s. These theories and their duals
obey the general pattern described in Sec. II.D, namely,
§ =d —s. The only difference here is that for each value
of s, there are of order 3N types of interactions; a
theory with simplex number s, which contains some or
all of these 3N interactions will, in general, have a
dual form which may contain all of the $N different
interactions, although each one will have simplex
number d —s. An exception to this are the Zy-Villain
models which, because of their quadratic nature,
have dual forms which contain only quadratic Villain-
type interactions, as in the theory discussed in Sec.
111.B.2,

We turn now to a definition of the Z , symmetric theo-
ries with s>1. In the next few paragraphs we shall
also state some of the results of the duality transfor-
mation. The transformation itself is a straightforward
generalization of what was done for the two-dimensional
Z y spin theories, following the pattern developed for the
Z, symmetric theories discussed in the last section.®

We first discuss generalizations of theories with
cosine interactions (e.g., the vector Potts model). To
generate an interaction with simplex number s, we

6Any questions in regard to these matters can be addressed
to the author. Please include a stamped self-addressed en-
velope and $2 cash, check, or money order to cover the cost
of handling. Upon request responses will be sent in a plain
brown wrapper. No C.0.D.’s.
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associate with each simplex of dimension s -1 (in a
d-dimensional lattice d=s) a Z, field:
Quyugrerugoysi =€XPLERT/N)Gu ceeng_ 5ils (3.24)
with g an integer, 0<¢ <N - 1. As in the Z, case, we
take a product of the 2s factors, @, which lie on the 2s

simplices of dimension s —1 which bound a simplex of [

27

(0 - = 2m
1“1"'“s . ~cos<N(d — )1 sh“‘usal'“%-ssal‘”ad-s'ﬂ-71"'75-1A5q71"'7s-1) = cos(N ssAq> .

As pointed out ‘earlier, this is not the only Zy sym-
metric interaction of simplex number s which we can
write. The others, which are simple generalizations
of the terms (3.4), are

1) =cos[(2mp /N)eeAq],
p=1,2,...,5Nor 3(N-1). (3.26)
Now we can construct a locally (for s>1) Z, sym-

metric theory by summing an arbitrary linear combina-
tion of the terms (3.26) over all s-dimensional sim-
plices of the d-dimensional lattice, and then summing
the exponential of this sum over different configura-
tions of {g}. The partition function is

N=1 2mp
Z= Z exp[ZZA,cos(——ssAq)] .
{e=0!} s P N

Here the coefficients A, are in general arbitrary.” But
if Z describes a statistical system in the usual way,
then the exponent in Eq. (3.27) should be —gH, and all
the A, should be proportional to 8. In analogy to the
Z, symmetric case, the exponent in Eq. (3.27) is in-
variant under a local gauge transformation of the
form?

(3.27)

’
Guiooongoyii ™ Quyeerpgayii

(3.28)

=qu1... "s-],;i +A“1L“2“'“s-1 sy

where L is an integer-valued mod N gauge function as-
sociated with the simplices of dimension s — 2 of the
lattice. As before, the prime on the sum over {q} in
Eq. (3.27) tells us that in principle we should sum only
over those sets of ¢’s such that each set {g} gives a
distinct configuration of ecAqg. That is, we should not
sum over gauge copies. But, as before, we can usually
ignore the prime so long as we remember that in so
doing we uniformly overcount distinct configurations of
celq. i

The duality transformation for Eq. (3.27) proceeds
analogously to those we have already studied. One
writes the sum over simplices in the exponent as a
product over simplices of the exponentials. Perform-
ing a Fourier expansion for each simplex one expands
the exponential of the interaction in a series of the
form

N=1 2
§ ¢ exp 22 cona)
& » €XP szes q),

where & has s direction indices. Summing over the ¢’s,

(3.29)

TNote, though, that if the only nonzero A p’s are those
for which {N/p} is a set of commensurate integers, the the-
ory no longer evidences a Z y symmetry, but only a Z, sym-
metry where M is the largest integer N/p.
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dimension s. Since Eq. (3.24) is complex, we can
choose some of the ’s in the product to be complex
conjugated. Considering the boundary of the simplex
to be an oriented surface one can give a geometric
description of the rule dictating which @’s should be
complex conjugated. It is much easier, however, to
just write the general result. The interaction we seek
is just the real part of this product of 2s @’s and is

(3.25)

[ )
one obtains a set of constraints on the £’s which are

satisfied identically, if and only if the 2’s are param-
etrized in a specific form in terms of some set of
integers ¢, which are naturally associated with sim-
plices of dimensions d —s — 1 on the dual lattice. In-
serting this parametrization in the partition function,
one arrives at the dual form of Eq. (3.27) which is
(up to overall field independent factors)

N-L,
Z = Z exp[ZZBPcos(g-@-zeA¢)] , (3.30)
{o=0! i N
where
EEAP = &y weupyca)rrrasEayarag, B,y 0 7 gasey
X B Dy ey gyt - (3.31)

In Eq. (3.30), the sum over p is from 1 to 3N or

3(NV — 1) depending on whether N is even or odd. The
sum over § is a sum over all dual lattice simplices of
dimension § =d —s. The prime on the {¢} sum in-
dicates the necessity (in principle) to make a gauge
choice (unless §=0, 1) since the exponent in Eq. (3.30)
(and the representation for the %’s in terms of the ¢’s)
is invariant under the local gauge transformation®

Py yoerrgagayit ™ Py rgmsarit +A"1G"2""’d-s-1” ’

where G is an integer-valued modN field associated
with the dual lattice simplices of dimension d —s - 2.
Notice that the geometrical relation between Egs. (3.27)
and (3.30) is precisely the same as that discovered
for the Z, symmetric theories in the last section. The
only difference is that one has several different kinds
of interactions over which to sum.

The coefficients B, in Eq. (3.30) are functions of the
A, in Eq. (3.27). Since we have come to expect duality
transformation to map high-temperature theories into
low-temperature theories and vice versa, it is inter-
esting to ask how the B,’s vary when the A,’s are very
large. Suppose that A,=pa,, and consider the limit
B— . Examining the Fourier expansion of Eq. (3.27),
one sees that in general in this limit, all the B,’s tend
to zero like e™°?, where ¢ is some function of the a,.
This is the expected behavior for the dual theory.

We will describe now generalizations of the Z -
Villain model discussed earlier. To define the (locally
invariant) interaction on a simplex of dimension s, we
again define fields on simplices of dimension s — 1 as
in Eq. (3.28). In addition, we define a field Tuyeorngii
associated with each simplex of dimension s, which
can take on all integer values from —« to +e«, The
Villain partition function is then
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N=1, -]

Z ’ exp[— -gz:(% £EAG + 21TJ>2] .

(J===}

7= (3.33) ‘

{e=0}

As before the sum is over all simplices of dimension s,
The prime on the sum over {g} indicates the existence
of the local gauge symmetry of the form (3.28), which
leaves e€eAg invariant. The prime on the sum over J
indicates the (usually harmless) redundancy involved
in summing over all J, as explained in the last section.
This redundancy just reflects the local symmetry of
the exponent in Eq. (3.33) with respect to the operation
in which €eAq changes by N, and the corresponding J
changes by one. Note that this symmetry is of a higher
kind (i.e., more directional) than the one in Eq. (3.28),
since the arbitrary gauge function has s — 1 rather than
s — 2 direction indices. As we discussed for the global-
ly Zy symmetric models this higher gauge symmetry in
Eq. (3.33) is necessary to ensure that Eq. (3.33), con-
sidered as a function of {g}, is Z, symmetric with the
local gauge symmetry of Eq. (3.28).

The duality transformation for Eq. (3.33) is just a
straightforward generalization of what was done for
Eq. (3.18a). The result is that, up to overall field-
independent factors,

Lok el —N? 27 2
Z= (go) u:z-:-»; exp[m ;(ﬁ eeA¢ +2mf> ] . (3.34)
The sum in the exponent runs over all dual lattice
simplices of dimension § =d —s. The symbol €gA¢ is
that defined in Eq. (3.31) and V=V eeen, 5 1S AN
integer-valued field associated with each simplex of
dimension d —s on the dual lattice. The primes on the
¢ and » sums indicate the existence of gauge sym-
metries in Eq. (3.34), analogous to those in Eq. (3.33),
only here the symmetries are those associated with
the simplex number 3§ =d — s interactions. We note

that the dual form (3.34) of the Z,-Villain theories
(3.33) are again Zy-Villain theories, and that in the
special cases when s =3d (e.g., the d=2 spin system

or the d =4 gauge theory) the theories are self-dual.
This is precisely the situation encountered for the

Z , symmetric theories. The dual inverse temperature,
however, is a different function of the original temper-
ature, and depends on the group.

IV. U (1) SYMMETRIC THEORIES

A. Introduction

Here we will discuss duality transformations for
theories with an internal U(1) symmetry. The
simplest nontrivial model with such a symmetry is
the two-dimensional x~-y model. This is the (appropri-
ately defined) N— « limit of the two-dimensional vector
Potts model described in Sec. III. In Sec. III.B we will
take up this model and show that it isdualinacertainap-
proximationtothe two-dimensional discrete Gaussian
model. We will then show that the model canalsobe written
as a two-dimensional Coulomb gas. With the help of
the Villain approximation introduced in the last sec-
tion, we will demonstrate that the charges in this
Coulomb gas can be understood as topological excita~
tions, or vortex penetrations of the original x-y model
spins. Thus we will demonstrate that for this model,

I
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the topological excitations (plus spin waves) form a
complete set of variables for a description of the theo-
ry. This remarkable property will obtain in all the
theories discussed in this section.

In Sec. III.C we will construct the duality transforma-
tion for the general U(l) symmetric lattice theory with
simplex number s. We will show that such a theory
is dual to a theory with simplex number § =d —s and
possessing an internal symmetry Z., the additive
group of integers. Moreover, we will show how the
theory can be expressed directly in terms of its spin
waves and topological excitations, and we will show
that those excitations have dimension d —s —1, Finally,
in Sec. III.D we will describe in more detail three U(1)
theories of physical interest: the three-dimensional
x-y model, and the three- and four-dimensional U(1)
lattice gauge theories (s =2). In particular we will
show how the formulation of these theories in terms
of their topological excitations can lead to a simple
and illuminating picture of their phase properties.

B. Two-dimensional x-y model
1. Duality transformation

This model is the N— « limit of the model described
in Eq. (3.3). Consider a square two-dimensional lat-
tice, and on each site of the lattice place a spin,

S; =ei9i, —m<@<mw, The spins interact through nearest-
neighbor couplings as in Eq. (3.3). The partition func-
tion of this model can be written

T
Z=f DBexp(B(z:cos(Aueb , (4.1)
-7 )
where the functional integration is defined as
T T
f Desz de;, (4.2)
-7 Fi -7

the product over j running over all sites of the lattice.
We note also that there is a whole sequence of other
simple U(1) invariant interactions of the form
cos(pA,60), where p is any integer. We will not dis-
cuss these interactions further in the present context,
but we refer the reader to Sec. III.B where similar
terms are treated in the context of Z; symmetric
theories. (See also, Jos€, et al., 1977).

To write the dual form of Eq. (4.1), we follow the
recipe used before. First, we rewrite Eq. (4.1) using
the Fourier expansion

eBcos(-r): Z In(B)ei"T-

n==

(4.3)

The I,(B)’ s are the modified Bessel functions. We have

Z=fWDGHe"°°"(A#8)
-7 [
>

1]

fDGHIku_j(m efuiitu?y
¢ ’

{r)
= z: HIkU’j B) f.DGexp(i Zku;j Auej)’ (4.4)
{r,} ¢ ’ )

where we have introduced one %,,; which takes on all
integer values for each link of the lattice. Assuming
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periodic boundary conditions, we may sum by parts
the exponent of the last factor in Eq. (4.4). Doing the
6 integral we find

T
Z = ZH eln [’k“;_:(B)J Hf d@i eieiAu-ku:i
i -7

{r} ¢

(4.5)

-2 exp(Z In[Z, . (B)]) Ilsca,r,;».
(&} ) wid i

The delta functions in Eq. (4.5) are Kronecker delta
functions, and enforce the condition that the 2, ; are
divergenceless at each lattice site. This condition is
satisfied if and only if we are able to write 2, ; as a
curl. To this end, we introduce on each dual lattice
site an integer-valued field ¢ and identify

ku;i=5uuAv¢i, (4-6)

where, as before, the indices on the right-hand side
of Eq. (4.6) refer to the dual lattice, and those on the
left-hand side to the original lattice. Using Eq. (4.6)
in Eq. (4.5), we have, up to an overall uniform in-
finite factor,

Z = Z exP(Zm[IeWA.,@,(ﬁ)]) .
d

{9==c}

4.7)

The field ¢ is the disorder parameter for this system.

As such we expect that when 8<<1 (high temperatures)
and the original variables e¢'? are disordered, large
fluctuations in ¢ will be suppressed and the major
contribution to Z will come from {¢}’s which do not
vary too much over the dual lattice. To see this we
invert Eq. (4.3) and examine the integral representa-
tion for I,,(B):

1,(8)= % fr dx e® <% cos(nx). (4.8)

o
For <1 we can expand Eq. (4.8) in powers of 8. We
find
IL(B)=3m)+3p0(n+1)+5Mm —1)]

+3B2[0(n+2)+00e—2) +26(n)]+++, (4.9)
where the delta functions are Kronecker delta func-
tions. Using Eq. (4.7), we have

2
z=211 (1 + %)5[(%%)2] + -gé[(Au(pj)z -1]
(o} 1, '
2
N %5[(Au¢,)2 —4]40(8%) 4+ e . (4.10)

Thus, at infinite temperature, the only contribution to
Z comes when all the ¢;’s have the same value. As 8
is increased from zero the system becomes more and
more disordered in ¢. First nearest neighbor jumps
by one unit become likely and as B is increased still
further, higher-energy configurations of the disorder
parameter become more likely with |A,¢;| taking on
larger and larger values.

Let us now discuss Eq. (4.7) in the low-temperature
limit, > 1. To do this, we observe that Eq. (4.8)
can be expanded in pdwers of n%. Taking the logarithm
of this series and inserting it in Eq. (4.7) we obtain

2= T en(TL 2B 0,07).

{o} \ 1, p=1

(4.11)
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We can now use the Poisson summation formula (3.19)
to write Eq. (4.11) in the form

Z= Z f D¢ exp(ZZDL('@(Auqu)” +1'211m,¢,).
('”j= =} -0 g p=1 p'

(4.12)
¢ is now a continuous valued field, and there is one
integer m; for each site of the dual lattice.

Now, the coefficients D,(B) can be analyzed in various
limits (Savit, 1978). It is enough for our purposes,
however, tonote that for 3 >> 1, the leading behavior of
the D,(B8)~ 8'"?*, and that the term with p =1 is a good
low-temperature approximation to Eqs. (4.11) or
(4.12). [A priori this might not have been true since
the D,(B)’s alternate in sign and so there could have
been cancellations among large terms when the field
variables become large. But this does not happen
(Savit, 1978).] Thus, for large B, we can keep the
quadratic terms in Eq. (4.11) or (4.12), and treat the
higher-order terms as a perturbation.

In most of the rest of this section we will explicitly

‘keep only the p =1 term in Eqs. (4.11) and (4.12). We

do this primarily for simplicity since, as we shall
see, much of the qualitative physics is already con-
tained in this term. It is also important to realize
that the higher-order terms have the same symmetry
properties as the p =1 term, so by keeping only the
p=1term we do not include any extraneous sym-
metries. Furthermore, the important qualitative fea-
ture that ¢; becomes ordered as -~ 0 is true even if
we drop terms with p>1 in Eq. (4.11). [The rate at
which the system orders in ¢ for small 3 does change,
however. This can be seen by computing D, (B) for
small 3 and comparing the resulting expression with
Eq. (4.10).] On the other hand, one should bear in
mind that this is only a low-temperature approximation
to Eq. (4.1) and that the other terms can by system-
atically included.

In this spirit we now truncate Eq. (4.12), retaining
only the quadratic terms. The integral over ¢ is a
Gaussian integral which we can carry out. The result

is
Z=Z, . Z eXp('L—ZmiVijmj> ‘

4.13
m==w} 2D1(ﬁ) i,i ( a)

’
~2, 2 exp(n8 2 mstali=jlm, - g Fms).
m it i
(4.13b)

In Eq. (4.13b) we have used the low-temperature ap-
proximation to D,(B)~1/28, and we have used a very
good approximation to the lattice Green’s function V;;.
¢ is a constant the value of which is irrelevant for

our purposes. Z, is just the Gaussian integral with

all m;=0. In calculating Eq. (4.13) we have assumed
spherical boundary conditions. With this choice of
boundary conditions, there is a restriction (at least

at low temperatures—see below) on the configurations
of m;’s which are allowed in the functional sum. The
only allowed configurations in the limit of an infinite
lattice are those for which Z,mj=0: There is ac-
tually an extra term in the exponent of Eq. (4.13) of
the form -BE2 ;m,, but E~lns, where s is the total
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volume of the system, so that in the limit s—- all
‘configurations for which ijjaé 0 are energetically
suppressed.

The partition function in Eq. (4.13) has the form of a
partition function for a (neutral) two-dimensional Cou-
lomb gas in which the charges can have any integer
value, multiplied by a partition function for a system
of noninteracting harmonic excitations. We want to ask
two questions about this expression: First, how are
we to interpret these Coulomb charges and harmonic
excitations, and second, what can Eq. (4.13) tell us,
at least qualitatively, about the physics of the x-y
model? We will address the former question first.

2. Interpretation of the Coulomb gas and the Villain
approximation

To understand the fields m and ¢ in Eqs. (4.12)
and (4.13), it is very convenient to introduce an ap-
proximation to Eq. (4.1) which is accurate at low
temperatures. This is the so-called Villain approx-
imation (Berezinski, 1970, 1972; Villain, 1975) and is
just the U(1) generalization of the expression (3.5). Let
us consider Eq. (4.1) in the limit that 8> 1. In that
case, the only important configurations in the par-
tition function will be those for which cos(A,9;) is
close to one. Thus we can expand the cosine keeping
only the quadratic term. However, this is not the
whole story, since if A, 6;=27x and #» is an integer,
cos(A,6;)=1. To take this periodicity into account we
introduce an auxiliary integer-valued vector J, ; as-

J

sociated with the lattice links, and we write

E L
7 o g2NB 2 fLDQexp(—gz}:(Aue‘i_szﬂj)z).

(7 === 7=
(4.14)

Here N is the total number of lattice sites. Now, there
are at least two ways to deal with Eq. (4.14), and these
have to do with different ways of defining the limits on
the sum over J, and the integral over 6. First we note
that the most natural definition for the range of 6 in
Eq. (4.14) is =7 <6 <7, since this is how 6 is defined

in Eq. (4.1). With that definition of L, we evidently
need to sum independently over the 2N J,’s. On the
other hand, we can imagine formally extending the
range of 6 from =« to =, It is clear that, at worst,
this will produce a uniform overcounting of states in
Eq. (4.14). But if we do let L=, then we clearly do
not need to sum over all J,’s independently: shifting
Jyu j=du,;+A,.0;, where p; is an integer-valued scalar
field, just amounts to a redefinition of 6; and counts
again configurations -which have already been counted.
It is instructive to compute Eq. (4.14) with both these
definitions of the range of 6 and J, and show that
formally they give the same result, although a different
interpretation of the fields J, emerge.

First let us take L =7, and imagine doing an unre-
stricted sum over J,. We introduce a new continuous
variable &, ;, associated with the links of the lattice,
and write Eq. (4.14) as

i - 1 .
Z =(2Pe?PW {ZJ; j:,, DGIka“ exp(Z— ﬁki;j +lku;,~(Au9j—27rJu:,.)>

. ©
=(2BQZB)N£”D9( Z exp(Z— Elék:‘z‘?f —iGjAuku;j),

ky==x}

where we have performed the sum over J, and used

Eq. (3.19) to write the integral over k, as a sum. Since
the k,’s are now integers, the integral over the 6; will
just produce a flock of Kronecker delta functions:

Z = (4npe®) 2 eXp<— 21—3 Zl:kig) H oAk, ). (4.16)

(&}
In the usual way, we associate integer-valued fields ¢,
with the sites of the dual lattice and use expression
(4.6) to satisfy the delta functions. We can then use
'Eq. (3.19) again to turn the sum over integer-valued
¢’s into a integral over continuous ¢’s times a sum
over a new integer-valued variable, m. We have

Z = (4nBe P fue % exp<z - 2%3(Au<pj)2 +i2nm,q>,-) .

(4.17)

which agrees with Eq. (4.12) when >>1 [up to overall
factors which were neglected in Eq. (4.12)]. Note that
the J,’s in Eq. (4.15) do not have an obvious interpre-
tation in Eq. (4.17).

Now let us take L =« in Eq. (4.14) and do a restricted
sum over {J,}, avoiding summing over sets of J, which
differ from each other only by a gradient. Once again
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(4.15)

I
we introduce a continuous Fourier conjugate variable

k,, and write Eq. (4.14) as
Z = (28" Z'f Def Dk,
{7} -0 -

1 .
XeXpZ - -Z_ékf‘ +iky; (AL 6; =21, ;)

.
=(4ﬂBeZB)”(Z) [ br,
J -c0

1 ;
xexp(E— ——zﬁki —ZZﬂku:]Ju”) I | (AR, 1),
i

(4.18)
where we have done the integral over the 6; to produce
Dirac delta functions. To satisfy these delta functions,
we associate a continuous variable ¢; with the sites of
the dual lattice., We can now use Eq. (4.6) to satisfy
the delta functions, remembering that &,;; and ¢, are
now continuous valued functions. Substituting into Eq.
(4.18) and doing an integration by parts, we have

2=y ' [ Do exo( T~ Liaso,r
7} Jew 28
+i2nqb,-au,,A“J,,;j> . (419)

If we identify
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my= eubud, ), (4.20)

then this is identical to Eq. (4.17), since we recall that
the prime on the sum over J, in Eq. (4.18) means pre-
cisely a sum over distinct configurations of €,,A,J,
(i.e., we do not sum over {JM}’S that differ from each
other only by a gradient).

Equation (4.20) tells us how to interpret the fields
m; in Eqs. (4.17) and (4.12). From Eq. (4.14), we see
that J,,; represents an “integer-valued piece” of the
angle difference A,6;. Furthermore, interpreted this
way, we see that we can define an angle ©,, that is not
necessarily single-valued, by writing

8,0;=0,0;=27],;; . (4.21)

It is a simple matter to see that if we compute a phase
sum around a closed loop c of A,©;, the result is

EA#GJ' = Zs: mj,

wherem; is givenin Eq. (4.20), andthe sum over s is over
all dual lattice sites contained in c¢. Thus the m,’s are
just the vortices of the angles ®;. On the other hand,
we can effectively identify the ®; with the angles of the
original x-y model, Eq. (4.1). This requires some
discussion: First, examining Eq. (4.1) we see thata
state of the x-y model is defined by assigning a unique
value to the phase e'% at each site of the lattice. In
Eq. (4.1), we have defined —w<6;<7. We can, how-
ever, formally extend the range of 6; to =mA<6;<Am,
where A is some integer. Then we see that 6; need

not be single valued. That is, we could go around
some closed loop on the lattice in which the spins were
varying (even slowly) from site to site, and have the
quantity »; A, 6; be nonzero. (Consider, for example,
a simple circular configuration in which the head of
spin chases its neighbor’s tail in a clockwise direc-
tion.) The possibility of allowing 6; in Eq. (4.1) to be
non-single-valued exists precisely because the ac-
tion is periodic, which is also the reason we had to
include the J,’s in the model (4.14) to make it a good
low-temperature approximation to Eq. (4.1). Now a
good large 8 approximation to Eq. (4.1) is just to re-
tain the quadratic term in A, 6;, if we remember that
we must not lose the periodicity of the original action.
Using Eq. (4.21) we see that the action in Eq. (4.14)

is approximately (Aue,)z, and properly takes account
of the periodicity, as explained before. Thus we may
effectively identify ®; with the angles appearing in Eq.
(4.1), and so the m; can be interpreted as representing
the vortices of the original x-y model degrees of free-
dom. Note that this interpretation requires use of the
Villain form (4.14) and is completely obscure in the
argument leading to Eq. (4.12). In fact, in that presen-
tation, the m,’s (and the ¢;’s) appear as a complete
set of fields replacing the original x-y model spins,
whereas in the derivation leading to Eq. (4.19), the
m;’s appear as a piece of the effective x-y model
angles ©;,

The existence of vortexlike excitations in this model
follows from very general homotopy arguments. The
vortices are topologically stable and exist because the
symmetry of the model (4.1) is U(1). [Equation (4.14)

(4.22)
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is effectively U(1).] Following the philosophy of the
duality transformation leading to Eq. (4.12), we are
led to the interpretation that the x-y model can be
completely and exactly expressed in terms of the
topological excitations (the ;) plus a set of spin
waves (the continuous-valued ¢;). This same result,
that the theory can be written exactly in terms of
topological excitations, will obtain in the other U (1)
theories we shall study in this section, Further inter-
pretive comments on this topic may be found in ‘
Kostelitz and Thouless (1973), Jose et al. (1977), and
Savit (1978).

3. Qualitative physics of the two-dimensional x-y model

The vortex field m; plays an important role in de-
termining the behavior of the x-y model at various
temperatures. For the purposes of this discussion, it
is enough to limit ourselves to the quadratic approxima-
tion. The quantitative effects of higher-order terms
are discussed in Jose et al. (1977). [See, however,
Luther and Scalapino (1977) for a divergent treatment.
It should be pointed out that the conclusions of this
paper are in contradiction with those of Jose ef al.
(1977), and are generally believed to be incorrect.
Nevertheless, the approach is very interesting.]

From Egs. (4.12) and (4.13), we see that the model
can be described by the vortex field and another, con-
tinuous field ¢;. Using the Villain approximation, one
easily sees that this continuous Gaussian field is just
the Fourier transform field (in the sense of the duality
transformation) of the Gaussian spin waves which ap-
pear when we approximate cos(A6)~1— 3(A6)? and ig-
nore the periodicity. From Eq. (4.13), we see that at
any nonzero temperature we can excite the noninter-
acting, massless Gaussian spin waves (whose partition
function is Z,), while for large enough 8 there is sup-
pression of certain vortex excitations. In particular,
because of the “chemical potential” term in Eq.

(4.13) the density of vortices will be small at low
temperatures, and due to the logarithmic potential

the vortices will tend to be bound in vortex-anti-
vortex pairs. In this region the spin-spin correlation
function, (e*%e'%), will fall to zero like a power of the
spin separation with a temperature dependent exponent.
[Consistent with the Mermin-Wagner theorem (Mermin
and Wagner, 1966), (¢'%) =0 at all nonzero tempera-
tures in this (infinite) two-dimensional system. ]

Above a certain temperature T',, the situation is
dramatically altered. To understand this let us focus
on the behavior of a vortex-antivortex pair. It is easy
to see that the entropy of a vortex-antivortex pair sep-
arated by a distance 7 is proportional to Inr. There
is therefore a competition in the free energy for such
a pair between the entropy and energy terms. For
T >T, the entropy term dominates and the free energy
for a single vortex-antivortex pair has its minimum
at ¥ =, Thus for T> T, the vortex-antivortex pairs
become unbound, creating a plasma of vortices with
arbitrary separation. This plasma “screens” the
spin-spin correlation function, causing it to behave
like e”*", where # is the spin separation. The be-
havior of the theory at 7T, is nonanalytic, and this
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phase transition is due precisely to the unbinding of
the vortex-antivortex pairs and the concurrent con-
densation of the plasma of the “free” topological ex-
citations (vortices) of the system. It is also interesting
to note that for T> T, the prime on the sum over {ns}
in Eq. (4.13) can be removed. This can be seen by
placing the system on a finite lattice of linear dimen-
sion s. The energy of a single vortex «Ins. However,
the entropy of a single vortex is also proportional to
Ins. Thus in the free energy of a single vortex there is
also a competition between energy and entropy. For
T>T, the entropy dominates, and taking s -« we see
that we no longer have a suppression factor for con-
figurations with }5;m; #0.

The picture painted in this section is only impres-
sionistic and the arguments crude and qualitative, but,
nonetheless, substantially correct. It will be useful
to keep in mind the idea of a phase transition induced
by a condensation of topological excitations as we study
other theories with a U(1) symmetry.

C. Dual forms of general U (1) invariant theories

Here we will generalize the results of Sec. IV.B
and derive the duality transformation for a U(1) in-

(1) = ——
Iyleeengsi —cos<(d__s)l Eperengagreragag Eapreeagag, 8,7, *

as in Eq. (3.25). The partition function of the simplex
s theory is

z ;f”' Dexp <,3 > cos(ssA6)> ,

where the sum in the exponent runs over all simplices
of dimension s on the d dimensional lattice. The prime
on the integral indicates that there is (except for the
case s =1) a harmless, uniform, and usually ignorable
gauge redundancy in the functional integral over 6.
This redundancy follows from the existence of a local
gauge invariance in Eq. (4.25). The Hamiltonian therein
" is invariant under the operation®

(4.25)

4
eul---us-lzi" euln-us-l

(4.26)

= 6“1"'“3-1” +Au1Au2'°'u3_l;i ’

where A is an angle valued field associated with the
simplices of dimension s — 2 [see, by analogy, Eq.
(3.28)]. As in the case of the two-dimensional x-y
model, we can define a whole sequence of U(1) in-
variant simplex number s interactions according to
the formula ‘

](,fl)...us;i =cos(peeAd), (4.27)

where p is any integer. We shall have no more to say
about these interactions here. See Secs. III.B and
II1.C for a discussion of similar interactions in the
context of Zy symmetric theories.

We now rewrite Eq. (4.25) by Fourier expanding
each factor in the partition function. We have

z :fw‘DGH i Ik(B) eik-eeAe

k==

(4.28a)
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variant theory with simplex number s in d dimen-
sions (Savit, 1977). As in the discussion of the two-
dimensional x-y model, we will be able to write these
theories directly in terms of their topological excita-
tions. As we shall see, a very pretty pattern for these
topological excitations will emerge. The derivation
we present will be somewhat loose in that we shall not
pay careful attention to problems of gauge redundancy.
As in previously discussed theories this redundancy
gives rise to overall infinite factors and while harm-
less, should in principle be removed. We will post
appropriate warning signs at slippery places in the
derivation. For a careful treatment of gauge problems
in one U(1) invariant theory, the d =3 x-y model, see
Savit (1978).

We begin by introducing the U(1) invariant theory with
simplex number s. It is defined in precise analogy with
the Z symmetric theories of Sec. III.C. Consider a
d-dimensional lattice. On each simplex of dimension
s — 1 place a complex phase

(4.23)

with —m<é<mw. These phases interact according to the
form

Qupoeeng, ;i =€XPE0L e 20),

"75-1A89n"-vs-1;i) = cos(eead), (4.24)
I
- {Zk):ISIIk(B)f,DBexp<i sZk-saAG) (4.28b)

= (Zk;ISIIk(B)f'Deexp <—i zt: 6. ssAk). (4.28¢)

We have introduced a set of integer-valued Fourier
conjugate variables &, ceengii associated with the s-
dimensional simplices of the lattice. In Eq. (4.28c)
we have summed by parts in the exponent to produce

E :9 vee s ooe .
radii! BsayiiEuyeeeng Boay eray g

XEal"'ad-sv71"'7sABk71'"7s"i’ (4.29)
where the sum ¢ runs over all simplices of dimension
s-1.

Next, we want to integrate over 6, and so we must
decide what to do with the prime on the functional
integral. The simplest procedure is to ignore it. This
will just produce extra factors of 27 (an infinite num-
ber in an infinite lattice). The situation here is ex-
actly analogous to that encountered in our treatment of
the d =3 Z, gauge theory (with simplex number 2) dis-
cussed in Sec. II.B.2. In that case we found that failing
to choose a gauge just produced extra factors of the
volume of the gauge group (for Z, extra factors of 2)
as well as introducing redundant Kronecker delta func-
tions in Z. It is a straightforward matter to show that
the same thing happens here. Thus we will formally
ignore the prime on the integral over 6 secure in the
understanding that in so doing we just change Z by a
constant factor.
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Proceeding with the 6 integrals and dropping overall
factors of 27, we find for Eq. (4.28),

Z= % exp(Zs: ln[Ik(B)]> ItI 5(ecAk).

To satisfy the Kronecker delta functions, it is neces-
sary and sufficient to write % in the form

1

k”’]_“‘“s;i = (d -5 — 1)! 8“’1'"”‘8'5'”‘1’"“41-8-1

(4.30)

XAB‘Po‘l-"ad-s-l;i = €A, (4-31)

where the ¢’s are a set of integer-valued fields as-
sociated with the simplices of dimension d ~s —1 on
the dual lattice. {The factor [(d~s —1)!]""* is for
normalization; the k’s and ¢’s may be taken to be
antisymmetric in their direction indices.}

For simplicity, we now make the same low-tempera-
ture approximation to In/,(8) that was made before Eq.
(4.13) |i.e., keeping only the quadratic term in the ex-
ponent of Eq. (4.11) and approximating D, (8)~1/28 for
B>1]. Using Eq. (4.31) in Eq. (4.30), we can write

1
VA zexP(NSB){szA:qa} exp(— 35 Z (€€A<p)2>, B>1,
(4.32)

where N is the number of s-dimensional simplices on
the lattice. In the exponent we have written k2 =(cA¢)
=(eeA)? [with an extra normalization factor included

in €eA¢, in analogy to Eq. (3.25)]. Writing #* this way
makes it more apparent that the sum in the exponent
can be considered to be over all §=d — s dimensional
simplices on the dual lattice since €eeA¢ has § direction
indices, naturally associated with the dual lattice.
Finally, the sum over states in Eq. (4.32) is understood
to be a sum over the largest set of configurations of
¢’s such that each configuration gives a distinct con-
figuration of k=€A¢.

Equation (4.32) possesses the expected characteris-
tics for the theory dual to Eq. (4.25). First, it has dual
lattice interactions defined on simplices of dimension
§ =d — s, which are similar in form to the interactions
in Eq. (4.25) (compare eeAf with ecA¢). Second, high-
temperature regions of Eq. (4.25) are mapped into low-
temperature regions of Eq. (4.32) and vice versa.
Finally, the symmetry group of Eq. (4.32) is Z., the
additive group of integers, which is the natural group
to associate with the indices which label the Fourier
expansion on the group U(1). All of these characteris-
tics are independent of the low-temperature approxi-
mation made in Eq. (4.32) and hold for the full theory
as well.

Next we shall introduce the topological excitations.
This is done by using the Poisson summation formula
(3.19) to replace the sum over {€A¢} in Eq. (4.32) by
an integral over €A¢ times a sum over another integer-
valued variable. We have

Z zexp(NSB) fw D(ead)

w©

><{ Z }exp(z - %(EGAd))z +i271LeA¢) ,

LS

4.33)
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where

1

Lemp;s!(d—s—-l)!

XLyowpsii€uyes "pgiBoys e

XAB ¢a1'

Qg as -y
g gyt (4.34)
(Note that th_is could also have been written f,eemp, in
which case L would have d — s indices and be defined

on the dual lattice.) Now we rearrange the last term
in the exponent of Eq. (4.33) by summing by parts. Re-
calling that we have spherical boundary conditions
there is no surface term, and the last term becomes

. . 1
2m Z(L€A¢)=— 2m Zsz(d— s— 1)!“1’0(1. Carggyi

XE€y e ugiBroy - 'ad_s-lABLux' . epssi

_ R 1
=—2m Z (-————————d_ s—1) ¢a1. o gy

X oye g g yii == 2T 3 (@),

4.35
with ¢ )
1
J"‘l' ogs_gii —s—léul. “ g Biclyt  tOlgos o
XAgLy «epgsi- (4.36)

J is an integer-valued current associated with the
simplices of dimension d — s — 1 on the dual lattice.
From Eq. (4.36) we easily see that J satisfies the
property that

Ay, d oy o =0 (4.37)

potrogsogii
for any v between 1 and d — s—1. So finally we may

write Eq. (4.33) as
Z ~exp(NsB) f_: sz%’exp( Z%(eemp)z +i211¢>J)

(4.38a)

—exp(N,8)Z, Y exp<BZ JiVi]Jj). (4.38b)
. i,J

{7}

The prime on the integral over ¢ reminds us that we
should integrate only over ¢’s that produce distinct
configurations of eA¢, i.e., we should choose a gauge.
The prime on the sum over J means that we should
sum over integer J’s from —« to +%, but only over
those J’s satisfying Eq. (4.36), or, equivalently, Eq.
(4.37).

The J’s are the topological excitations of the model
and are just generalizations of the m’s in Eq. (4.12),
which represented the vortices of the two dimensional
x-y model. In this context the geometrical significance
of Eq. (4.37) is clear: The J’s are associated with
d — s -1 dimensional dual simplices. Our interpreta-
tion of the J’s tells us that the allowed topological ex~
citations of the theory have dimensiond — s—1, and
Eq. (4.37) tells us that these excitations are defined
on closed manifolds. Consider, for example, the d =3
x-y model. In that case the J’s are just vortex string
bits, and Eq. (4.37) tells us that we can have only
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closed vortex strings, since A,J, #0 at the end of a
string. Similarly, the d =4 x-y model has topological
excitations which are two-dimensional surfaces em-
bedded in the four-dimensional dual lattice. If we try
to lay down a configuration of J’s which has boundaries,
we will find that A J, 4 #0 at the boundaries. Thus we
are allowed to have only closed two-dimensional sur-
faces.

These topological excitations interact with each other
and with themselves. The interaction is expressed in
the exponent of Eq. (4.38b), wherein we have suppressed
the direction indices on the J’s and on the matrix V;;.
V;; has a diagonal piece which is just the self-energy
of the J’s. For large separations, V;;~|i—jl ~**2 for
d+2, and V;;~1nli — j| for d =2. The factor Z just
represents the dual spin waves of the system, which
are described by antisymmetric d - s—1 forms, in
precise analogy to the scalar spin waves of the two-
dimensional x-y model.

We have stated that the J’s represent the topological
excitations of the original degrees of freedom, but that
interpretation is certainly not obvious. To make it
clear, one should go back and construct the analog of
the Villain approximation for the general case con-
sidered here and follow the steps leading to Eq. (4.19).
The calculation is quite straightforward and we shall
not perform it. Those interested will have little dif-
ficulty in confirming our interpretation.

Before continuing, we wish to make an important
technical comment which concerns the gauge invariance
of a given configuration of J’s and the derivation of Eq.
(4.38). To perform the Gaussian integral over ¢ in
Eq. (4.38a) requires a gauge choice (for s>1), Sup-
pose, for instance, that we choose an axial-like gauge.
This would mean setting some of the ¢’s equal to zero
and integrating over the rest. The argument of Eq.
(4.38b) will therefore not contain some factors of J, in
particular, these which are coupled in Eq. (4.382a) to
the ¢’s which have been set equal to zero. One might
then be concerned that the energy of some of the al-
lowed configurations of J’s would have been changed by
the gauge choice. However, this is not the case. Re-
call that the only allowed configuration of J’s is that
satisfying Eq. (4.37). Suppose we consider open edge
boundary conditions, and let us choose a complete axial
gauge, eliminating all residual gauge invariance. One
can show that even with such a complete gauge choice,
any configuration satisfying Eq. (4.37) will still have
some of its J’s appearing in the exponent of Eq. (4.38b).
(That is, a complete axial gauge fixing does not involve
eliminating all degrees of freedom on a closed mani-
fold.) Moreover, the energy associated with each al-
lowed configuration of J’s will -be independent of the
gauge choice. This will be enforced in Eq. (4.38b) by
the appearance in V;; of long-range Coulomb potentials
in special directions, depending on the gauge choice.
Thus each allowed divergenceless configuration of J’s
has a gauge invariant meaning, as we formally expect
from Eq. (4.38a), and as it must if our interpretation
of the J’s as topological excitations is to be correct.

A detailed discussion of this question for the three-
dimensional x-y model can be.found in Savit (1978).
It may be helpful to conclude this section with a brief
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summary: We have studied the large class of U(1)
invariant lattice theories in d dimensions with simplex
number s. We have derived the dual form for these
theories. The dual theory is a Z.. invariant theory,
also in d dimensions, with simplex number § =d — s.

It has the usual property of a dual theory, namely, that
the high- (low-) temperature region of the original
theory is mapped into the low- (high-) temperature
region of the dual theory. Furthermore, we have found
that the dual theory can be easily converted into a third
form. In this form the physical degrees of freedom
that appear are the spinwaves [actually, their dual (Four-
ier) conjugates] and the topological excitations of the or-
iginalU(1) invariant spins. These topological excitations

‘exist on closed manifolds of dimensiond - s~1.

In the next subsection we will discuss some of the
physics of these U(1) invariant theories. In Sec. V we
will briefly describe the Abelian Higgs model which is
a kind of hybrid of the theories treated in this section,
and we will also briefly address a question which may
have occurred to the reader: What are the topological
excitations of the Z, and Z, symmetric theories?

D. Some physical comments: Phase transitions and
topological excitations

We have already remarked that dual formulations of
a theory are useful for obtaining a simple qualitative
picture of the behavior of a theory at high temperatures,
when fluctuations in the disorder parameter are small,
Furthermore, one can perform a “high-temperature”
expansion in /§ which corresponds to an expansion about
T =0, in terms of the original variables of the theory.
In addition to these benefits, the formulation of the
theory in terms of its topological excitations (4.38) can
provide very important qualitative (and quantitative)
understanding of other aspects of the behavior of the
theory, in particular its phase structure. We have al-
ready seen this in our discussion of the two-dimensional
x-y model. Here we shall present variations on that
theme for three theories of physical interest: the
three-dimensional x-y model and the three- and four-
dimensional U(1) gauge theory (s =2) (Banks e/ al.,
1977; Savit, 1978; Peskin, 1978; Einhorn and Savit;
1979).

Consider first the d =3 x-y model. Among other
reasons, this theory is of physical interest because its
critical behavior is thought to be related to that of
superfluid *‘He. The theory has topological excitations
which are closed vortex strings, or vortex strings
which terminate on the boundary of the system. In its
application to *He, these strings represent the vor-
tices in bulk superfluid. It is interesﬁng to note that
if the model really does have something to do with “He,
then we have an example of an extended system with
macroscopic excitations which interact through a gauge
principle. The reason is that when s=1,d =3, Eq.
(4.38a) has the form of the generating functional for
three-dimensional QED without electrons, but coupled
to conserved (integer-valued) currents.

For this theory the exponent in Eq. (4.38b) takes the
approximate form
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T b, (4.39)

-8 ; al,.; ll
where a and b are positive constants and D, =6,
+gauge terms which do not contribute so long as

A,J, =0. From this we see that vortex currents with
the same sense (both positive or both negative) repel
each other, while those with opposite sense attract.
This is the opposite of what happens with electric cur-
rents in real QED and can be traced to the factor of ¢
in front of the J term in Eq. (4.38a).

Now, suppose B is very large (low temperatures).
Because of the term bJ 2 in Eq. (4.39) we expect to have
only a low density of small vortex loops, in addition to
the spin waves represented by the Z factor in Eq.
(4.38b). As B decreases, we pay a decreasing penalty
in probability for creating vortex strings, and we ex-
pect their size and density to grow. We now ask
whether we expect this size and population increase to
occur smoothly or nonanalytically. To answer this
question, consider the free energy of a closed vortex
loop of total length L and unit flux. Neglect for a mo-
ment the ! interaction term in Eq. (4.39). In that
case the energy of the loop is just proportional to L.
The entropy of the loop is (up to logarithmic cor-
rections) also proportional to L. To see this just
notice that the number of configurations of the loop of
length L are those of a modified nonrepeating non-
overlapping random walk which returns to the origin.
This number is of the form e*f(L) where F(L) is a
slowly varying function (powers and logarithims), and
p is a numerical constant. The log of this is propor-
tional to the entropy, and so the free energy has the
approximate form

BF =BbL —pL +0O(nL). (4.40)
For large B, this has a minimum at L =0, while for
© B<p/b=B,, the minimum is at L=, If we believe
this argument, then we expect a phase transition at
B=pB,. For low temperatures we have a soup (alphabet)
of small vortex rings with some_density. As we raise
the temperature the density and size of the rings in-
creases, until suddenly at 8 =8, we find that the rings
grow dramatically, and we leave the alphabet soup
phase and enter the spaghetti phase. This high-tem-
perature phase can therefore be described as a con-
densation of topological excitations. We expect that
this transition is the usual order-disorder transition
of the d =3 x-y model, but looked at in a rather dif-
ferent way. In the spaghetti phase, therefore, the x-y
model spin-spin correlation function should fall ex-
ponentially to zero for large separations, while in the
alphabet soup phase it should approach a nonzero con-
stant. From this point of view we can say that the
phase transition and accompanying disordering is
caused by the condensation of the topological excita-
tions. '

This picture is clearly quite similar to that which we
presented for the.d =2 x-y model, and is very attractive
and reasonable. However, there is an important dif-
ference in its derivation: In the d =2 case, the vortex-
vortex interaction was crucial in determining the criti-
cal temperature. Indeed, it was the competition be-
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tween this term and the entropy which indicated the ex-
istence of a phase transition. In Eq. (4.40) we have ig-
nored the current-current interaction term, keeping
only the self-energy piece. If the interaction energy
fell off very rapidly with distance [like an exponential,
say, as in the Abelian Higgs model (see Sec. V)] this
would probably be a very good approximation. How-
ever, the interaction in Eq. (4.39) is long range, and
this could affect the veracity of our picture. Although
one can generate arguments on both sides, to firmly
resolve the issue requires a careful renormalization
group treatment. Nevertheless, it is the considered
opinion of the author that the picture presented here is
essentially correct, and that while including the inter-
action term in Eq. (4.39) will certainly have a (perhaps
strong) quantiative effect, it will not change things

_ qualitatively.

In a very similar way, one can discuss the d =4 U(1)
lattice gauge theory (s =2). The dual form of this
theory has § =2, just as in the d =3 x-y model. Here
again, the topological excitations are closed vortex
loops,® and in this case the exponent of Eq. (4.38b) has
a form very similar to Eq. (4.39), viz.,

B2 al,, 'lz Tyis +0IE, . (4.41)

i= le

If we neglect the interaction term in Eq. (4.41), we
can clearly repeat the arguments leading to Eq. (4.40)
for this theory. Thus we are led to expect a phase
transition here also.

Now, a useful gauge invariant correlation function
for the s =2 theory is the Wilson loop integral (of the
original U(1) spins),

ol T

where ¢ is some closed contour on the original lattice.
In the low-temperature (alphabet soup) phase, (which
should have properties very much like those of real
QED) we expect that ' .~¢~F, where P is the perimeter
of the contour, while in the spaghetti phase I',~e™,
where A is a (minimal) area subtended by ¢.® The dif-
ferent behavior of I', signals the analog of quark con-
finement in the spaghetti phase, and the absence of
quark confinement in the alphabet soup phase; see
Banks et al. (1977), Einhorn and Savit (1979), Peskin
(1978), and Banks and Rabinovici (1979) for further
discussion. As with the d =3 x-y model, one must re-
member that our argument for the phase structure of
this system neglects the 2 interaction term in Eq.
(4.41) and therefore must be handled gingerly.

Finally, we briefly describe the physics of the d =3
U(1) lattice gauge theory (s =2). The dual form of this

4.42)

8When factors of the lattice spacing are appropriately in-
cluded, and a naive continuum limit is taken, only quadratic
terms survive and the theory becomes just a theory of free
photons [the Z, factor (4.38)]. In this limit the U (1) symmetry
group becomes the group R, and the topological excitations
disappear.

%Since the dual theory of the d=4 s=2 theory is also a gauge
theory, we can define an analogous “Wilson loop” also for the

dual variables 1"~ We expect that when T, ~e” P T~ ~e 4,
and vice versa.
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theory has § =1, and pointlike topological excitations
(a kind of monopole). The exponent in Eq. (4.38b) has
the form

B amy—— m, s bm? . (4.43)

=i lZ -l

The behavior of this theory hasbeen analyzed by Polya-
kov (1975,1977). We will not repeat his analysis here, but
will just state the results. The d =3 U(1) lattice gauge
theory has, for any nonzero temperature, only one
phase, a “quark confining” phase characterized by
I'.~e™*. In this phase, the topological excitations in
Eq. (4.43) are condensed into a plasma of unbound
monopoles which causes the original U(1) degrees of
freedom to be sufficiently disordered to produce the
area law fall off for I'.. The situation here should be
compared with that of the two-dimensional x-y model.
In that case, the logarithmic monopole-monopole po-
tential was strong enough to bind monopole-antimono-
pole pairs at sufficiently low temperature. InEq. (4.43),
the »~! intermonopole potential is not sufficiently strong
to do this: the entropy of a monopole-antimonopole
pair separated by a distance 7 is proportional to In7,
and that term dominates over the energy term in the
free energy for such a pair at any nonzero temperature,
causing the free energy to have its minimum at » = «©,

'V. OTHER TOPICS
A. Abelian Higgs model and related models

A model of broad physical interest is the Abelian
Higgs model. In the continuum (Euclideand-dimensional
space) this model is described by the Lagrangian

£=fd“xéFwF“u\(au-iqA“)qblz+V(¢), (6.1)
where F, =98,A,-08,A,, A, is the electromagnetic
vector potential, and ¢ is a complex scalar field. ¢

is the charge of the scalar field in units of the funda-
mental charge e. We take for the potential

V(@) =r( ol -f2F,

with A= 0,

If f? is negative, V has its minimum when | ¢| =0, and
Eq. (6.1) describes massive scalar QED in the sym-
metric phase with a | ¢|* interaction for the scalar
field. If /2 is positive, V is minimized when | ¢| =f.

In this case Eq. (5.1) is forced into a broken sym-
metry phase, and by the usual Higgs mechanism the
massless photon field and part of the scalar field com-
bine to form a massive vector field. In the broken
symmetry phase, Eq. (5.1) takes on the form of the
Ginzburg-Landau theory of superconductivity.

Now in the theory of superconductivity, strings of
magnetic flux play a central role. These magnetic
flux lines can be understood as topological excitations
of the degrees of freedom in Eq. (5.1). These remarks
suggest that duality transformations may be useful in
‘studying this theory. To this end it is convenient to
formulate the theory on a lattice. There is no unique
way to do this, but one simple and elegant procedure
is to parallel the philosophy of Wilson for pure gauge
theories (Wilson, 1974) and start in the broken sym-

(5.2)
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metry phase, freezing the radial degree of freedom of
the ¢ field. This roughly corresponds to taking A— <,
The precise presciption for doing this can be found in
Einhorn and Savit (1978). The result is

L= EBcos(A“ Oy, — Ay 0,,;) +kcos(A,T; —q6,,;),

(5.3a)
with the partition function
m
Z= f DTDoex, (5.3b)
-

B and «k are coupling constants related to the coupling
constants in Eq. (5.1) and the lattice spacing ¢. ¢ in
Eq. (5.32) is an integer which is the charge of the Higgs
field in Eq. (5.1). The lattice theory has two kinds of
fields or spins. On each link of the d-dimensional
hypercubic lattice is a phase e*®t:/, ¢, ; is related to
the original gauge field A, by 6, ~aeA,. Thus, as
a=0,-1/a<A,<1/a, while - 1< g, <7. On each site
of the lattice is another spin ¢4/, This is just the
phase of the original Higgs field ¢ and so we have
- m<7;<T7 independent of a. The sum in Eq. (5.3a) runs
over all plaquettes for the first term and all links for
the second term. This model is therefore a kind of
hybrid of the simplex number one and two models dis-
cussed in the last section, since the interaction pro-
portional to B is an s =2 interaction, while the one pro-
portional to « has s=1. Note that because of the form
of the « term (5.3a) does have a local gauge invariance
of the form

T T Ay, Oy O+ (/AN

where A; is an angle-valued gauge function.

The duality transformation for Eq. (5.3) is a relatively
straightforward generalization of the technique de-
scribed in the last section (Einhorn and Savit, 1978,
1979; Peskin, 1978). The result is that the dual of
Eq. (56.3) in d dimensions is another hybrid theory which
is Z. invariant and has two interaction terms. One
term, defined on a simplex of dimension d - 2, is gen-
erated by the plaquette interaction in Eq. (5.3) and has
a coupling constant which for large 3 is proportional to
1/B. The other term associated with the link inter-
action of Eq. (5.3) sits on dual simplices of dimension
d -1 and for large « has a coupling constant proportion-
al to1/k. As in Eq. (5.3a), these two dual interactions
are not independent of each other, but are connected
by a local gauge invariance appropriate to the simplex
number of the dual interaction. Note that for 4 =3, the
dual of Eq. (5.3) is another (Z..) Abelian Higgs model
in which the plaquette interaction has heen generated
by the link interaction of Eq. (5.3) and vice versa.

As with the pure theories of Sec. IV, the model (5.3)
can be written in terms of its topological excitations.

It is found that these are of two types: one type lives
on closed manifolds of dimension d — 2, and the other
type lives on open manifolds of dimension d — 2, in-
cluding the boundary, which is of dimensiond — 3. For
example, in three dimensions we have closed vortex

(5.4)

. strings (of dimension d — 2 =1) and open vortex strings

with monopoles on the ends (the boundary in this case
having dimension d — 3 =0). Roughly speaking, the
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strings exist because of the link interaction in Eq. (5.3)
and the monopoles exist because of the plaquette in-
teraction. Note, however, that because the terms in
Eq. (56.3) are related by gauge invariance, there are

no free monopoles.'® As for the theories discussed in
Sec. IV.D, the formulation of the Abelian Higgs model
in terms of its topological excitations is very useful
for describing the phase properties of the model. For
d>2 and q>1, there is apparently, in general, a phase
transition as a function of, say, B for fixed 8/k. Below
the transition (8 large) a Wilson loop correlation func-
tion of a “test charge” A, with A an integer less than ¢,
behaves like e~F, where P is the perimeter of the loop,
while above the transition (8 small), it behaves like
e~*, where A is the minimum area subtended by the
loop. This is the analog of quark confinement for this
theory for a quark of charge A/q. The transition can
be understood as being caused by a condensation of the
topological excitations of the theory. The case of two
dimensions in special, there being only one phase.
Furthermore, when g =1, the phase structure of the
model (for d >2) is problematical. In this case, the
smallest possible test charge is A =4, and the Wilson
loop behaves like e~ for all 8. In addition, from a
result of Osterwalder and Seiler (Osterwalder and
Seiler, 1978; Fradkin and Shenker, 1979) one can show
that it is possible to go analytically between the low-3
and high-B regions of the theory. However, it is still
possible that a phase boundary between these two
regions exists, extending over some finite region of
the coupling constant plane, and terminating in a
critical point as in the usual PT diagram for a liquid-
gas transition. More work is needed to resolve this
issue.

In closing this section we note that one may construct
other kinds of hybrid theories. It is possible, for ex-
ample, to cross-pollinate interactions with simplex
number s and s —1 (and so forth), and to construct such
theories based on the Z, as well as the U(1) symmetry
group. An especially interesting case is the Abelian
Higgs model based on the Z, group (Balian e? al., 1975;
Horn and Yankielowicz, 1979). For d =3 this model is
self-dual.

B. Random systems

Duality transformations have yielded some insight
in the study of random systems displaying the property
. of frustration. The simplest way of imposing frustra-
tion on a ferromagnetic system is to make some of the
bonds antiferromagnetic. (This was described for the
d =2 Ising model in Sec. II.A, in connection with dis-
order correlation functions.) Duality has been applied
to such theories with a U(1) and Z, symmetry (random
x-y and Ising models) by Fradkin, Huberman, and
Shenker (1978) and with a U(1) symmetry by Jose
(1978).

01t is also possible to put Eq. (5.1) on a lattice in such a way
that the gauge field interaction [proportional to 8 in Eq. (5.3)]
is not periodic. This has the consequence that there are no
topological excitations on open manifolds with boundaries.
For example, when d =3 there would be no open vortex strings
with monopoles on the end—only closed vortex loops.
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A rather nice picture emerges for the U(1) case in
two dimensions. One can show that frustrated plaquettes
give rise to topological excitations of half-integer
winding number. This is very easy to understand when
we remember that as we circumscribe a frustrated
plaquette at low temperatures, we find a mismatch in
the spin orientation when we return to our starting
point (see Sec. II.A). In the U(1) case a configuration
of spins which rotates through 7 as we traverse a closed
contour has this property, and can also be thought of
as a vortex with half-integer winding number. Like
their integer-valued counterparts, these half-vortices
are located on the sites of the dual lattice. They ap-
pear in pairs so that the total winding number is still
integral, and at low temperatures are bound in pairs
by a logarithmic potential. In three dimensions, the
picture is a little more complicated, but is a natural
extension of the two-dimensional case. Frustration
gives rise to magnetic flux tubes of fractional flux, in
addition to the integer-valued flux tubes which exist in
the ordinary ferromagnetic case.

The random Ising model in two and three dimensions
has properties not too dissimilar from the random x-y
model. In two dimensions (as we saw in Sec. II.A)
frustrations occur in pairs. At lowtemperatures, these
are bound by a linear potential. When d =3, frustra-
tions in the Ising model give rise to simple closed
tubes of “frustration flux” on the dual lattice. These
flux lines penetrate the frustrated plaquettes of the
original random Ising model lattice.

The dual forms of these theories are helpful in
analyzing the effects of frustration on various quanti-
ties of physical interest. The reader should consult
Fradkin, Huberman, and Shenker (1978) and Jose
(1978) for details of these calculations.

C. Topological excitations in Z, and Z,, symmetric theories

In our treatment of U(1) symmetric theories (Sec.
1V) we found that we could write the theories directly
in terms of their topological excitations. Here we want
to describe the topological excitations one expects in
theories with a Z, symmetry and their effect on the
physics. The Z, case is real straightforward, but the
Z y case with N>2 is somewhat more complex.

In theories with a Z, symmetry the topological ex-
citations are “kinks” and generalizations thereof.
Consider, for instance, the d =2 Ising model. The
model can be described in terms of domains of aligned
spins. A single up spin with all its neighbors pointing
down is just a very small domain. Suppose we now con-
sider the dual lattice and draw a line along each dual
lattice link which crosses an original lattice link join-
ing two oppositely aligned spins. It is easy to see that
for any configuration of spins, we will have drawn a
set of closed loops. These are the domain boundaries
of the Ising model. They are also the linelike topologi-
cal excitations. If we think of one direction of our lat-
tice as time, these domain boundaries can be thought of
as the world-lines of kinks, or solitons (actually, in the
case of a closed domain boundary, soliton-antisoliton
pairs) in a one-space-dimensional world.

In three dimensions, the Ising model has domain
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boundaries which are closed two-dimensional surfaces
(again associated with the dual lattice). Consider now
‘the Z, lattice gauge theory (s =2) in two dimensions.
This theory has pointlike topological excitations as-
sociated with the sites of the dual lattice. These appear
whenever the product of the four Z, gauge potentials
(associated with an original lattice plaquette) which
surrounds the given dual lattice site is —1. Note that
_this is the natural extension of the Ising model. In that
case, we placed a topological excitation on a dual lat-
tice simplex associated with an original lattice link
whenever the product of the spins bounding that link was
—1. In the d =3 Z, gauge theory, the topological exci-
tations become closed strings, in four dimensions
closed two-dimensional surfaces, etc. From these
considerations it is clear that the Z, invariant theory
with simplex number s in d dimensions has topological
excitations which are of dimension d — s and live on
closed manifolds on the dual lattice. Notice that the
topological excitations are of one higher dimension than
those that appear for the corresponding theory with a
U(1) symmetry. This can be understood by remember-
ing that the spins in the Z, theory take their values on
the zero-dimensional surface of a one-dimensional
sphere (i.e., two points) while the U(1) spins take their
value on the one-dimensional surface of a two-dimen-
sional sphere (a circle). A general homotopy analysis
indicates that these are the first two members of a
family of spins defined on the surface of an n-dimen-
sional sphere. Each time we add one component to the
spin variable, the dimension of the topological excita-
tion decreased by one for fixed d and s.

As with the U(1) invariant theories, the phase transi-
tions in the Z, invariant theories can be understood as
being due to a condensation of the topological excita-
tions. This is most easily seen in the d =2 Ising model.
In the low-temperature ordered phase, most spins are
aligned and domains of misaligned spins are small and
scarce, resulting in a low density of small topological
loops. At the critical point, they condense into a spa-
ghetti phase consisting of a relatively high density of
arbitrarily large loops. This is the disordered phase
in which nearest neighbor spins can easily be mis-
aligned. Qualitatively similar arguments apply to
other Z, invariant theories.

We turn now to theories with a Z, symmetry for
N>2. For definiteness, let us focus on the d =2 vector
Potts model discussed in Sec. III.B. Since N is finite,
it is clear that we can define domain boundaries be-
tween regions of differently oriented spins. If the angle
difference between two nearest-neighbor spins is
(2m/N)k, we can associate a piece of a domain boundary
of strength (or flux) 2 with the dual lattice link which
crosses the link joining the two misaligned spins. If
we think of the boundary of strength % as being made
up of a superposition of £ boundaries of strength one,
then one might suppose that these boundaries of strength
one just form closed loops onthe dual lattice, in analogy
with the Ising model. But this is not quite correct as
we shall see in a moment.

Suppose for the moment that N is very large, but finite.
As N increases the vector Potts model looks more and
more like the x -y model. But we know that the x -y model in
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two dimensions has topological excitations which are
vortex points. Can we make such an excitation in the
vector Potts model? The best we can do is shown
schematically in Fig. 10 for the case N =7. The dashed
circle has a diameter of order N lattice spacings. In-
side that circle the Z, spins rotate (as smoothly as pos-
sible, to try to minimize the energy) through 27 as we
traverse a closed loop surrounding the dual lattice site
that sits (roughly) at the center of the circle. If we
look only at the spin configurations inside the circle,
we will not be able to tell whether we are looking at a
U(1) vortex or at a configuration of Z y spins. The
reason is that the minimum energy configuration for
the spins making up a vortex in the x-y model is ob-
tained when the rotation through 27 is shared equally
among the spins as we traverse a circle of any radius
surrounding the vortex. Thus, for a distance from the
x-y model vortex center less than N lattice spacings,
nearest-neighbor spins will on the average not have
angle differences less than 27/N, so the configurations
will look roughly like the minimum energy configura-
tions of the Z, model close to the Z, vortex center.
For a distance greater than about N lattice spacings
away from the vortex center the situation is different.
In this region the Z, spins cannot rotate through a
small enough angle to share equally a rotation of 27 as
we pass around a circle surrounding the vortex. In-
stead, for the Z, model, the minimum energy con-
figuration is effected by forming approximately wedge
shaped domains of spins all of which point in the same
direction. The spin orientation changes by 27/N as

we pass from one domain to its neighbor as shown in
Fig. 10. In general (for example, in the vector Potts
model), the domain boundaries radiating from a vor-
tex center have a finite energy per unit length, and the
energy of a single Z, vortex increases linearly with
the size of the system. However, one can produce
finite energy configurations of a vortex-antivortex

pair bound by N strings.

Thus the d =2 globally symmetric Z, theories in
general have two types of topological excitations:
strings and vortices. Considering Fig. 10 it is clear
that the 7, strings only form closed loops in the ab-
sense of vortices; N units of string flux (e.g., N strings
of unit flux) can coterminate in a small region around
a vortex center. The extension to higher dimensions
and to Z theories with other simplex numbers is clear:
The Zy symmetric theory in d dimensions with simplex
number s has topological excitations defined on closed
manifolds of dimension d - s and, in addition, topologi-
cal excitations defined on N (or fewer) open manifolds

FIG. 10. Vortex in a two-dimensional globally Z, symmetric
theory such as the vector Potts model. See Sec. V.C for an
explanation.
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of dimension d — s which coterminate on a closed mani-
fold of dimensiond — s—1. (These are similar, in
some ways to the topological excitations of the Abelian
Higgs model; see Sec. V.A.)

As with the other theories we have studied, these
topological excitations have a strong influence on the
phase properties of Z, theories. For example, one
can understand the two phase transitions that occur
(for large enough N) in the d =2 vector Potts model as
sequential condensations of these two types of excita-+
tions. This is discussed in more detail elsewhere
(Einhorn, Savit, and Rabinovici, 1979).

D. Duality in the lattice Hamiltonian formalism

In Secs. II-IV, we have discussed duality in the con-
text of d-dimension lattice theories. These theories
can be regarded either as classical statistical mechan-
ics systems in d space dimensions, or as Euclidean
cutoff quantum field theories in d space-time dimen-
sions. In the former case, the argument of the parti-
tion function should be thought of as the exponential of
the Hamiltonian of the classical statistical system,
while in the latter case the partition function’s argu-
ment is the exponential of the Lagrangian of the quan-
tum field theory. If we adopt the latter interpretation,
we can rework the lattice theory so that it is expressed
in terms of the Hamiltonian of the quantum field theory.
(This is not the same as the Hamiltonian of the classical
statistical system described above.) This formalism
was developed by Kogut and Susskind (1975) as an al-
ternative formulation of Wilson’s lattice gauge theory
(Wilson, 1974). Some aspects of duality have been
studied using this method. We will first briefly de-
scribe how one develops the Hamiltonian formalism,
and then remark on its use in conjunction with duality.

In the Hamiltonian formulation of latticized quantum
field theory, one space-time direction is identified as
time, and the lattice spacing in that direction is sent to
zero. Thus the d-dimensional lattice becomes a (d —1)-
dimensional lattice plus one continuous time axis. In
order to have a chance of retaining the same (large dis-
tance) physics when the time direction lattice spacing
is sent to zero, it is necessary to allow lattice coupling
constants in the time direction to vary with the lattice
spacing so that the effective interaction over some
fixed distance is unchanged. Details may be found in
Kogut and Susskind (1975) and Kogut (1979). Since time
is now continuous, it is relatively straightforward to
define momenta which are canonically conjugate to the
coordinates (the fields) of the theory. The Hamiltonian
can then be written, in the usual way, in terms of
these coordinates and momenta. Thus, unlike the
Lagrangian or the classical statistical mechanics
Hamiltonian, this field-theoretic Hamiltonian contains
noncommuting operators. As an example, let us look
at the Hamiltonian derived for the d =2 Ising model by
this method. It can be written

H=— ) 2 ®c8) +0®, (5.5)
7
where the Pauli matrices are
1 0 01 .
@) - Q) _
o _[0 _1], g —[l 0]. (5.6)
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The matrices act on states in which a spinupis repre-
sented by () and a spin down by (?). The sum over i is
a sum over points on a one-dimensional lattice and
matrices acting on different sites commute. A is a
coupling parameter which is related to the original
coupling constants (and temperature) of the d =2 Ising
model. The first term in Eq. (5.5) is just an operator
representation for the original nearest neighbor spin-
spin interactions in the x (space) direction, while the
0(}) term results from the process of taking the y (time)
direction lattice spacing to zero.

The Hamiltonian (5.5) can be rewritten in a new set
of variables p{, defined-as

H?) =0(is)o(3)

i+l

)
we =ITow.

i<i

(5.73)
(5.7b)

The u{”’s sit on the sites of the dual one-dimensional
lattice, i.e., the bonds of the original lattice. The
product in Eq. (5.7b) runs from the left-hand side of
the one-dimensional lattice up to the site ¢. [The
cognoscenti will recognize this as a kind of Jordan-
Wigner transformation (Jordan and Wigner, 1928).]
Using Eq. (5.7), Eq. (5.5) becomes

H==2A2  Atp®p6) 4p®) (5.8)
which, up to an overall factor of A is the same as Eq.
(5.5) with A== A", It is easy to check that the com-
mutation relations among the u’s is the same as those
among the ¢’s, and so this formulation of the d =2
Ising model is self-dual. Writing A in terms of the
original two-dimensional lattice formulation of the
theory, one sees that the point A =1 corresponds to the
correct dual temperature (critical point) of the d =2
Ising model. (Since the Hamiltonian procedure requires
from the beginning the introduction of an anisotropic
two-dimensional lattice, one finds that the condition
A =1 actually generates a line of critical points in the
space of the horizontal and vertical nearest-neighbor
couplings.) A little reflection reveals that the u’s
really can be regarded as disorder operators. For in-
stance, aneigenstate of ¢{*’ is a state inwhich the spin
at site ¢ has a definite orientation, while an eigenstate
of u%”) is a superposition of states in which all spins
to the left of link (dual site) ¢ have opposite orienta-
tion.

Similar duality transformations have been constructed
in the context of the lattice Hamiltonian formalism for
the Z, lattice gauge theory in four dimensions (Fradkin
and Susskind, 1978) and the Z, lattice gauge theory in
three and four dimensions (Horn ef al., 1979; Green,
1978). As expected, the d =3 Z, lattice gauge theories
are dual to spin systems with a global symmetry, while
the d =4 gauge theories are dual to gauge theories with
a local symmetry.

E. Abelian duality in the continuum

There are two related but distinct questions to be
asked about duality transformations and Abelian theor-
ies defined on a continuous manifold. First, if we start
with an Abelian theory on a lattice and proceed to the
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continuum limit via the renormalization group, what
happens to the dual representation of the theory as the
limit is taken? The second question is, can we sensi-
bly formulate the duality transformation directly in

the continuum? These questions are related because
they essentially involve the fate of integer-valued fields
on a continuous manifold.

As for the first question, it is likely that the follow-
ing scenario will be generally true: Suppose we con-
sider some theory with more than one phase, for in-
stance the d =3 x-y model. We now imagine starting
our renormalization group calculation with some value
of the temperature 7,. If T <T, the critical tempera-
ture of the model, then we expect that as we scale to
larger and larger distances (or smaller and smaller
lattice spacings)the large distance physics willbe that
which we expect to find in the low -temperature phase of the
lattice model. Alternatively, if T > T,, we expect that the
renormalization group will lead us to a theory whose
large distance physics is that of the high-temperature
phase of the lattice theory. Now, the large distance
structures of the two phases of the d =3 x-y model dif-
fer because for T'> T, the closed vortex strings are
condensed and can with high probability be arbitrarily
large, while for T'<T,, only small closed vortex
strings exist, and these will not strongly affect the
large distance structure of the theory. Hence, we
might expect that for T,<T, the renormalization group
will lead us to a continuum theory without topological
excitations (for the d =3 x-y model, just a theory of a
massless scalar field), while for T,> T, the renorma-
lization group will lead us to a continuum theory with
vortex strings. Thus in this sense, the integer-valued
fields should have a sensible continuum definition in
this phase. Renormalization group studies of the d=2
x-y model have been done by Jos€ et al. (1977). The
reader is referred to that paper and references therein
for more insight.

We turn now to the second question, whether a dual
transformation can be performed directly for a theory
defined in the continuum. Whatever problems arise
here are not related to any intrinsic difficulty of de-
fining duality in the continuum, but, as before, are re-
lated to the problem of handling integer-valued fields
in the continuum. To see this graphically, we note
that one can easily construct the dual form of a con-
tinuum free field theory. For instance, the generating
functional for free photons in three Euclidean dimen-
sions can be rewritten as the generating functional for
a massless scalar field in three dimensions, following
the by now familiar routine of Fourier transformation.
On the other hand, one quickly runs into trouble trying
to work with a theory with integer-valued fields, for
example, some sort of analog of the Villain approxima-
tion (say, for a scalar theory) defined in the continuum,
Although one may formally proceed by simply replacing
discrete differences by derivatives, one does not really
know what one is doing: for instance, if #(x) is an in-
teger-valued field, what does 8,7(x) mean? To have a
chance of controlling these objects some sort of short
distance cutoff is evidently necessary. Of course, such
a cutoff is provided by the lattice formulation.

These comments notwithstanding, it is sometimes

Rev. Mod. Phys., Vol. 52, No. 2, Part |, April 1980

possible to use duality arguments profitably in con-
tinuum models with vortexlike structures. An example
is the paper by Sugamoto (1979) in which he studies

the Abelian Higgs model in four dimensions in the con-
tinuum. His duality transformation is related to, but is
not identical with the one discussed by Einhorn and
Savit (1978,1979) and by Peskin (1978) for the latticized
Abelian Higgs model. Sugamoto introduces a Fourier
variable conjugate to F,, and then integrates over the
vector potential A,. Since the Lagrangian still con-
tains terms quadratic in A, (coupled to the Higgs scalar

- field) integrating over A, does not produce the familiar

delta functions; instead we are left with a kind of mag-
netic field strength formalism. Sugamoto describes a
classical solution for this formulation of the model and
discusses its relation to the Nielsen-Olesen vortex
string. However, questions of renormalization and the
ultimate fate of these classical solutions are nottreated.
See his paper for more details.

F. Approaches to duality for non-Abelian theories

Many important theories in condensed matter and
high-energy physics have non-Abelian symmetries, and
so it is natural to try to generalize duality transforma-
tions which have been so successful for Abelian theor-
ies to non-Abelian theories. Unfortunately, one en-
counters tremendous difficulties in the program. Here
we will briefly describe some of the work that has been
done on these problems.

Let us first discuss the most straightforward gen-
eralization of Abelian duality. To illustrate the pro-
cedure, consider the two-dimensional 0(3) Heisenberg
ferromagnet. We place on each site of a square lattice
a “spin” which takes its value on the surface of a
sphere. The Hamiltonian of the system is

H= —JZcos(AuQi) ,

(5.9)
O .

where the sum runs over all nearest-neighbor pairs on
the lattice, and A,R; is the angle between the orienta-
tions of the nearest-neighbor spins. The partition
function is

7 = fDQexp(BZCOS(AuQi)> »
O

with 8 =J/kT. Z may also be considered to be the
generating functional (on a square lattice) for the 0(3)
nonlinear sigma model in two Euclidean dimensions
with BH playing the role of the Lagrangian.

For Abelian theories we recall that the first step in
constructing the duality transformation was to Fourier
expand the exponential of the interaction. For the
theory (5.10), the natural set of Fourier expansion
variables is the set of spherical harmonics Y, ,(Af).
Writing Eq. (5.10) as a product over all lattice links of
exponentials of the interaction in the usual way one can
carry out such an expansion. Next, one can use the ad-
dition formula for spherical harmonics to write
Y,,,,,(A“Qi) as a sum of products of spherical harmonics
that depend separately on £; and 2, _;. Rearranging
the factors, Eq. (56.10), can be written in the form

(5.10)



Robert Savit: Duality in field theory and statistical systems 485

Z= 2 F(B;{l,m})n fDQ.- HY,j,mj(Sz,-). (6.11)
{1,m} . i Jj=1

F is essentially a product over the lattice links of the
coefficients of the Fourier expansion in Y, ,’s, times
some factors coming from the use of the addition -
formula. The last factor in Eq. (5.11) is a product over
all lattice sites of integrals over the spin orientation.
For each integral there are four factors of Y, , because
there are four lattice links that impinge on each lattice
site. Equation (5.11) should be compared with, say,
Eq. (4.5) for the x-y model. The point is that the in-
tegral over the 6; in Eq. (4.5) gives a set of delta func-
tions which allow us to use in Eq. (4.5) the represen-
tation (4.6) for the integers k. In Eq. (5.11), on the
other hand, no such simple result emerges: the in-
tegral over 2 gives constraints on the set of four I’s
and m’s, but nothing as simple as a delta function (ex-
cept, of course, for the m’s). It is thus difficult to
find a representation for the integers {, which will
automatically satisfy the constraints imposed by the
integrals over ;.

Despite the failure of this approach to produce an
elegant dual theory in the usual sense, one does gene-
rate a representation for Z in terms of the /’s and
m’s which is relatively simple at high temperatures.
The key to understanding this representation is the ob-
servation that since the spins are almost completely
disordered at very high temperatures, they are all
predominantly in a relative s state, and so the domi-
nant contribution to Z will be from values of I/ near
zero. Hence it is possible to do a kind of configuration
expansion in / and m about {/ =0, m =0} (Savit, 1977b).
This expansion is related to (but is not the same as)
the high-temperature expansion of statistical mechan-
ics. ’

The complication described for the 0(3) case per-
sists generally for non-Abelian theories regardless
of dimension or whether the theories have a global or
a local symmetry. However, in the special case of
solvable non-Abelian groups, Drouffe, Itzykson, and
Zuber (Drouffe ef al., 1979) have shown that for a
globally symmetric theory of spins with nearest
neighbor interactions it is possible to construct a dual
theory. The procedure is to first show that the theory
with a solvable non-Abelian symmetry is equivalent
to a theory with an Abelian symmetry, and then to apply
a duality transformation to the Abelian theory. Bel-
lisard (1978) has also demonstrated this transformation
for the special case of the group Ss.‘ Unfortunately, the
procedure is apparently not useful for (lattice) gauge
theories. .

For theories with a non-Abelian symmetry group
which is not solvable, a number of workers have tried
to construct some sort of dual representation using a
variety of approaches. Most of the work we shall de-
scribe has been done for gauge theories. A major
motivation has usually been to find a simple calculable
representation for the theory in the strong coupling
regime. However, some authors have suggested that a
simple dual representation may not exist,

The first paper we shall mention is one to which other
papers (particularly those of 't Hooft, Mandelstam,
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and Englert and Windey) may be related. This is the
work of Goddard, Nuyts, and Olive (Goddard ef al.,
1977) who have noted that for any of the classical Lie
groups there exists a dual group whose generating al-
gebra is associated with an inversion of the root dia-
gram of the algebra of the original group. They sug-
gest that in a gauge theory this dual group may be the
symmetry group appropriate to a description of the
theory in terms of its magnetic degrees of freedom.

In the specific case of the Georgi-Glashow model,
Montonen and Olive (1977) have presented circum-
stantial evidence to support the conjecture that (at least
in some limit) the monopole of the theory may be the
gauge boson of the theory when expressed in terms of
its dual (magnetic) degrees of freedom. Unfortunately,
one has not yet been able to complete the program and
express the theory directly in terms of its dual de-
grees of freedom, but the evidence gathered so far in
support of the conjecture is tantalizing.

Halpern’s approach to duality for non-Abelian gauge
theories involves two steps (Halpern, 1979). First, he
argues that with a completely fixed axial gauge the vec-
tor potential A is a unique function of the field strength
G. He then shows that with a completely fixed axial
gauge the generating functional for a gauge theory can
be written in the form ’

Z = fDGC(I(G)) exp(—% szd‘x) (5.12a)

e fDGDBexp(-—% sz +iBI(G)>. (5.12b)
1(G) is the Bianchi identity for G with the vector poten-
tial A regarded as a function A(G). Equation (5.12a)
follows from Eq. (5.12b) by integrating over B. Final-
ly, Eq. (5.12b) can be integrated over G to obtain Z
purely in terms of B. It is the field B in Eq. (5.12b)
that Halpern identifies as the dual potential. He argues
that B can be interpreted as a potential for a kind of
disorder field, as one should expect for a dual variable.
Many more properties of the representation (5.12) are
contained in his paper which the reader should consult
for more details.

Another approach to non-Abelian duality which relies
heavily on first-order formalism is the paper by Seo,
Masonori, and Sugamoto (Seo ef al., 1979). This paper
is essentially a generalization of the paper by Sugamoto
(1979) described in Sec. V.E. In it two non-Abelian
Higgs models, one with a single Higgs doublet, the
other with two Higgs triplets, are studied. The dual
transformation in this paper is defined by introducing a
variable conjugate to F,, and writing

exp<~~}z jFLf,, Fg, d"x)

ochW,j‘,, exp(—- fw;u W, +iF &, W, d"x). (5.13)

The functional integral of the Higgs model will now be
quadratic in the vector potential A}, and so the inte-
gration of A}, can be done. What results is a functional
integral over the exponential of a rather complicated
Lagrangian which is a function of the fields Wi, the
Higgs fields and their derivatives. This formulation is
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of interest because there is some hope that one could
define a sensible strong coupling expansion using it.

Another approach to a dual theory has been studied
by Kazama and Savit (1979). They start from the ob-
servation that, in the dual transformation for an
Abeliantheory, integrating over the original variable pro-
duces a delta function which enforces a kind of “Bianchi
identity.” For example, the delta functions in Eq.

(4.5) tell us that the ku;i must be expressible as a curl.
To mimic this in a non-Abelian gauge theory one first
uses the identity (5.13) so that the functional integral

is quadratic in Af,. Next, one isolates the terms quad-
ratic in Aj, and Fourier transforms these again with
respect to Aj;. Now the theory contains two Fourier
variables, but the functional integral is linear in Af.
Performing the integral over Aj produces functional
delta functions which have the form of a kind of

Bianchi identity. This procedure results in a form
with some very intriguing properties one of which is the
possibility of defining a strong coupling expansion. De-
tails will be reported elsewhere.

Finally, we briefly mention the work of 't Hooft
(1978, 1979) and Mandelstam (1978). Work along simi-
lar lines has also been done by Englert and Windey
[Englert and Windey (1978) and references therein].
These authors study non-Abelian gauge theories and
try to construct magnetic operators which are dual to
gauge invariant operators of the electric degrees of
freedom. The latter may be taken to be the Wilson loop
operators (Wilson, 1974). In four dimensions the dual
(magnetic) operators are certain kinds of Nielsen-
Olesen vortex loops associated with the non-Abelian
theory. By examining the commutation relations be-
tween the magnetic flux loops and the Wilson loops,

’t Hooft and Mandelstam, in their related, butnot identical
approaches, delineate possible phases in which the
non-Abelian gauge theory could find itself. One of
these phases is the long-sought quark confinement
phase. Whether this phase is in fact realized de-
pends on the dynamics of the theory. Unfortunately,
both ’t Hooft and Mandelstam conclude that the non-
Abelian gauge theory expressed in terms of their mag-
netic vortex string operators (and the corresponding
dual vector potentials) is terribly complicated. Thus,
while one may gain much insight from these studies,
the magnetic variable may not be computationally use-
ful, even for strong coupling.
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