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The molecular hydrogens (H2, D„HD, etc.) form the simplest of all molecular solids. The combination
of the light mass, small moment of inertia, weak interactions, and the quasi-metastable ortho-para species
result in a fascinating low-temperature behavior that can be understood to a large extent from
considerations of first principles. After discussing single molecule properties and intermolecular

interactions we discuss in detail the ortho —para properties, conversion and diffusion. This is followed by
a description of the crystal structures and the orientational ordering phenomena. The thermodynamic

properties are reviewed. The article is concluded with a discussion of the translational ground state of the
solid and the effect of the large zero-poirit motion on the solid state properties. A large number of data
are collected in tables and graphs to provide a reference source.
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Rotation matrix
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Most symbols used are listed here with an indication of the
approximate location in the text (indicated by equation number)
where more complete definitions are usually given.
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I. I NTROD UCTION

The hydrogen atom (H) is the simplest atomic species
that exists. As such, it has been extensively studied
and its electronic excitation spectra were fundamental
to the establishm ent of quantum mechanic s in the early
part of the twentieth century. Atomic hydrogen, how-
ever, is unstable under normal conditions on earth,
forming molecular hydrogen (H, ), the simplest of all-
molecular species. The instability of H has retarded
studies of its behavior in a condensed state.

Note added in proof: A gas of atomic hydrogen has re-
cently been stabilized, Silvera, I. F. and J. T. M. Wal-
raven. 1980, phys. Rev. Lett. 44, 164. Thus, until re-
cently, almost all experimental studies on pure con-
densed hydrogen and its isotopes have been on the mo-
lecular species. It is a rather remarkable situation in
physics that such a fascinating and fundamental system
3s condensed H, resisted intensive theoretical and ex-
perimental studies until about the early 1960s. By con-
trast, the properties of condensed helium have under-
gone such a study since the 1930s, although even in this
case thirty years passed between its liquefaction and
the discovery of superfluidity.

In the solid state, molecular hydrogen has a number
of features which distinguish it from other (molecular)
solids. Most important and simplifying is that, even in
the solid, the free rotor states that describe the rota-
tional motions of an isolated molecule are al.most un-
distorted by the interactions with neighbors. Thus the
solid can be visualized as an assembly of molecuIes all
translationally localized at lattice sites but freely rota-
ting even at T =0 Kt This remarkable state is a conse-
quence of the large molecular rotational constant (small
moment of inertia) and the weak anisotropic forces
which are a result of the almost spherical molecular
charge distribution and the relatively large intermolec-
ular nearest neighbor distances ( 3.79 A) in the zero-
pressure solid. To demonstrate this we show the radial
distribution of the electronic charge density of the hy-
drogen molecule in the ground electronic state. In Fig.
1(a) we plot' the contours of equal charge density. The
proton-proton separation is O. V4 A. At the distance
corresponding to nearest neighbor separation in the
solid, the charge density is -3 x 10 ' that at the nuclei,
while the ratio of the minor to the major axis of the
distribution is 0.94. Thus for low densities, the
molecule must be visualized as being almost spherical
rather than dumbbell shaped. The plots in Fig. 1 use a
density function of Stewart et al. (1965) based on a wave
function of Kolos and Roothan (1960).

Due to requirements on the symmetry of the wave

~I thank E. Hartman for programming the density fonction.
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FIG. 1. The electronic charge density of the hydrogen mole-
cule. (a} Contours of equal density. (b) Density along the
symmetry axis.

2 3

function, molecular hydrogen has two species: para and
ortho. The former is characterized by an even rota-
tional quantum number, the latter by odd. Transitions
between these states are forbidden and as a result sam-
ples of almost pure para or ortho species can be pre-
pared. The ground-state para species are spherical
whereas the ortho are anisotropic in charge distribu-
tion. By varying the concentration of these species one
can easily "turn the anisotropic interactions on and
off, " The same properties apply to the isotope deuter-
ium. These molecules interact almost identically to H,
but have a mass greater by a factor of 2. This provides
experimentalists with an enormous isotope effect, which
is extremely useful in sorting out observations.

Another distinction, which hydrogen shares with heli-
um, is that it is a translational quantum solid. In such
solids, at T =0, the particles are not sharply localized
at lattice sites due to the large zero point motion
(ZPM); in H, the rms width of the single particle dis-
tribution function is 181p of the nearest neighbor dis-
tance. This large ZPM is a result of the weak isotropic
intermol. ecular potential and the light mass. Due to the
large ZPM and the accompanying large anharmonicities
the usual quasiharmonic theory of lattice dynamics is
not applicable. Instead one must use the "theory of
quantum solids" in which interactions are renormalized
by performing certain averages over the molecular mo-
tions. So treated, one recovers the usual phonon dis-
persion relations of solids; however, the phonon spec-
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tral functions are n.o longer sharp, as for a harmonic
solid, but rather spread out in frequency.

At zero pressure hydrogen is highly compressible:
a pressure of 10 kbar results in a 100% reduction in
volume, whereas with a nonquantum solid volume
changes of but a few percent would be obtained. This
large compressibility is a characteristic of quantum
solids. The lattice is expanded so that the particles do
not sit in the minimum of the attractive potential wells
of their neighbor. Without this expansion the ground
state energy would be raised substantially since the
large ZPM results in an overlap of the molecular hard
cores. This large compressibility makes studies of the
radial dependence of interactions easily accessible by
performing measurements as a function of pressure.

Indeed, the equation of state (EOS) of hydrogen is of
interest, not only because it provides the density as a
function of pressure, but because it is al. so an excellent
testing ground for the isotropic intermolecular poten-
tial. The EOS of hydrogen is known to 25 kbar: One
of the more exciting ideas concerning H, is the predic-
tion that at sufficiently high pressures it will exhibit an
insuI. ator —metal transition. Moreover, it has been
speculated that the atomic metallic phase will be a
high-temperature superconductor. The pressure at
which the transition takes place is expected to be in the
(1—5) x 10' bar region; however, a sharper prediction
requires a better knowledge of the high-pressure EOS.

Central to all of the condensed phase properties is
the intermolecular interaction. In spite of the fact that
the theory of quantum mechanics has been in existence
for over 50 years, it is only very recently that reason-
ably accurate calculations of the potential over a broad
range of molecular separations have been performed.
The solid has provided an almost ideal. experimental
testing ground for both the isotropic and anisotropic
interactions.

At low temperatures hydrogen has a disorder-order
phase transition in which the molecules align along
certain crystal. line directions. This orientationally
ordered state has been the area of intense study for the
past decade in an attempt to understand the ground state
and its l.ow-lying excitations. This state has been stud-
ied by an assortment of techniques: x- ray and neutron
diffraction, NMR, Raman and infrared absorption, etc.
Currently it is considered to be reasonably well under-
stood, both experimentally and theoretically.

A more recent area of interest takes us back to the
beginning of this introduction: atomic hydrogen. Neu-
tral H is a composite boson with a total spin of & or 0.
Attempts to stabilize H are currently being carried out
with the hope of observing Bose—Einstein condensation
and superfluidity in this magnetic gas.

This article is not the first to review hydrogen in the
condensed phase. An earlier revie~ of the thermal pro-
perties was given by Woolley, Scott, and Brickwedde
(1948); Van Kranendonk and Karl reviewed the rotation-
al and vibrational properties of solid parahydrogen
(1968); most recently Souers (1979) has reviewed cryo-
genic data of hydrogen. A general review of the excita-
tions in solid molecular hydrogen was given by Silvera
(1975); to a certain extent this article can be consid-
ered to be a more detailed expansion and extension of

the latter.
Originally, it was my intention to review al. l, of the

important properties of both molecular and atomic hy-
drogen in one article. A combination of the size and
scope of this project and the many recent developments
has resulted in a change in this plan. In this first arti-
cle I consider the single molecule properties, inter-
molecular interactions, the rotational state in the
solid, ortho —para preparation and related phenomena,
the various structural and orientational states of the
solid, thermodynamic properties, and the translational
ground state of the solid. In a second articl. e, the exci-
tations of the molecular solids will be discussed. The
third article will. be devoted to atomic hydrogen in the
condensed state.

II. ATOIVI-ATOM POTENTIALS AND SINGLE
MOLECULE PROPERTIES

A. H-H interactions

Perhaps the most extensive and accurate first-prin-
cipl. es calculations carried out on a molecul. ar system
are those of Kolos and Wolniewicz (KW) on H, and its
isotopes in a series of papers starting in 1964. One
begins by writing the exact nonrelativistic Hamiltonian
of the two electrons denoted &, and &, and the two nu-
cleii, R, and R» in which the center of mass of the
system is at rest

(2.1)

with

3CO = —h '/2m (V', + V', ) + V,

3C, = —5'/2 VV~, ,

K, = —A '/8 p (V', + V,'+ 2 V, V, ) .

(2.2)

(2.3)

(2.4)

Here m is the electron mass, p. =M/2 the reduced nu-
clear mass, R the internuclear separation, and Vthe
Coulomb potential between all four particles. 3CO is the
Hamiltonian in the clamped nucleii approximation. K,
describes the relative kinetic energy of the nucleii, and

3C, the motion of the center of mass in the coordinate
system fixed to the nucleii; this term couples the elec-
tronic and nuclear motions. The procedure is then to
write

P(r, R) = Q y„(R)+„(r,R) (2 5)

where 4'„(&,R) are the solutions of the electronic prob-
lem:

K,4 (rR„) =
E, „'(R)0„(r,R), (2.6)

and r represents the electronic coordinates. Assuming
Eq. (2.6) to be solved, one gets the equation for y„(R):

In this section we begin by considering the interac-
tions between two neutral hydrogen atoms. The bound
states are the excited states of the hydrogen molecule.
The properties of the ground state and the low-lying
excited states of the H, molecule are of importance be-
cause they are almost unchanged in the condensed state.
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The adiabatic approximation corresponds to setting Eq.
(2.8) to zero for m cn, which reduces Eq. (2.7) to a
Schrodinger equation for the nuclear motion and total.
energy:

[—(1/2p. ) V'„+ U„(R) —E]X„(R)= 0

with

U„(R) = Z„'(R) + (J6, + JC,)„„.

(2.9)

(2.10)

U„(R) is the effective potential for the nuclear motion in
the nth electronic state. The nuclear wave function
x„(R) is composed of a product of oscillator functions
that describe the vibrational motions and spherical
harmonics, PJ„, that describe the rotational motions.

Kolos and Wolniewicz (1964a, b) used a James—
Coolidge type of wave function of the form

krsts =
2

exP[ +( 1+ ~2)]El 91C2 12P
27r

(2.11)

(2.12)

in which they used the 54-term electronic wave func-
tion 11'1 and functions built up of Hermite polynomials
for the X„. The dissociation energies, D, are also
given in Table I. Poli and Karl (1966) ai.so calculated
D, using the effective potentials of KW and obtained
values differing by a few em '. Kolos and Wolniewicz
(1968) improved their accuracy in a later publication;
these are the values given in Table I. Nonadiabatic
corrections [off-diagonal terms in Eq. (2.2)] have been
shown to be quite smail (Poll and Karl, 1966; Orlikow-
ski and Wolniewicz, 1974). A discrepancy between
theory and experiment of a few cm ' out of -36 000 still
remains an unresolved problem

where g and 2i denote elliptic coordinates, and p=2&»/
&, where &„ is the interelectronic distance. They used
54-, 67-, and 80-term wave functions to solve the
clamped nucleii problem, Eq. (2.6), finding adequate
results for the 54-term expansion. Diagonal correc-
tions for the nuclear motion, as well as relativistic
corrections, were calculatedforR= 0.2 Ato 1.96 A(l a.u.
=0.529177 A) for the 'Z2 ground state. Later they
(KW, 1968) used a 100-term wave function and double
precision computer calculations to get a slight increase
in accuracy The b. inding energy @(R) (the reduction in
energy with respect to neutral atoms at R= ~) is given
in Table I for the minimum of Q at R =R;„, as well as
the experimental values (Herzberg, 1960) for H„HD,
and D, . At &;„for H„ the contribution due to the
diagonal nuclear correction and the relativistic correc-
tions are 4.9 cm ' and -0.5 cm ', respectively. They
then calculated (KW, 1964a, b) the ground vibrational
state using the variational method on a 154-term wave
function of the form
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TABLE II. Vibrational quanta of some hydrogen isotopes: &(v)
=Ep(v +1)—Ep(v) in units of cm, after Kolos and Wolniewicz
(1968).

TABLE IV. Experimental values of the rotational constants in
the vibrational ground state. ' Units: cm '

H&, HD Stoicheff
(1957) D2, McKellar and Oka (1978).

H2 HD D2 T2 HD D2

4162.06
3926.65
3696.14
3468.68

3632.84
3455.33
3281.33
3109.80

2993.96
2874.82
2757.79
2642.40

2743.63
2644.02
2546.09
2449.48

JBp

Dp

Hp

59.339
0.0459
5.2 xlO &

44.667
0.0259
2.2 xlO 5

29.9132
0.01151
0.69 xlO

TABLE III. Rotational quanta Sp(J) =Ep J+2 Ep J ln the ground
vibrational state (0). Units: cm ~, reference Kolos and %ol-
niewicz, 1966a, b 1968).

H2 HD
J Expt. Theory Expt. Theory Exp.

D2
Theory

values to about one part in 4000 for the 15 vibrational
levels of H, . Kolos and Wolniewicz (1968) overcame
their convergence problem and determined vibrational
and rotational energies for H, and all of the isotopic
combinations. They found the highest bound vibrational
levels to be v = 14, 21, 25, 17, 18, and 23 for H„D„
T„HD, HT, and DT, respectively (v is the vibrational
quantum number). The 14th vibrational level of H, has
four bound rotational states. A sampling of results is
given in Tables II and IG. Most values agree with ex-
periment to better than 1 cm ' for the vibrational
quanta and 0.1 cm ' for rotational quanta. Waech and
Bernstein (1967) have calculated the spectrum of all
bound and quasibound states for H, using the KW poten-
tial and LeRoy (1971) has done this for H„HD, and D, .

The rotational energies of a diatomic molecule are
given by

y„(g) = S„g(g+ 1) D„g'(J+ 1)'+II„Z'(X+ 1)', (2.16a)

where &„=8'/2pcR'„ is the rotational constant in cm
and p. is the reduced mass. Experimental values of the
constants are given in Table IV for the v = 0 ground vi-
brational state. In the solid, only the lowest rotational
states usually come into consideration, and the rota-
tional kinetic energy operator for the ith molecule is
often approximated by

(2. 16b)

Due to the fact that nucleons of H, (and D, and T,) are
identical, special symmetry restrictions are placed
upon the wave functions, which result in. two symme-
try species. These species are designated ortho (the
species with the largest spin degeneracy) and para.
Although the distinguishing feature for the statistics is
the nuclear spin state, one also finds a distinct separa-
tion of rotational states according to their parity.
Molecular hydrogen is a homonuclear diatomic mole-
cule with nuclear spin I~ =

& on each proton. Because

the protons are indistinguishable and fermions, the
total molecular wave function involving the nuclear co-
ordinates must be antisymmetric with respect to parti-
cle permutation. The relevant part of the wave function
can be written as a product of vibrational, rotational,
and nuclear wave functions. Inversion symmetry pro-

videss

parity as a good quantum number; the vibrational
ground state is manifestly symmetric, whereas the
easily accessible nuclear spin and rotational wave func-
tions are either symmetric (S) or antisymmetric (AS).
The allowed combinations for an AS total wave function
require consideration of only the latter two, and are
given in Table V, al.ong with the nuclear weight and
ortho-para designation. We also give the combinations
for tritium, which is similar to H, (i.e. , I„=~), and
deuterium, for which the total wave function must be
symmetric because the deuterons have spin 1 and are
bosons. The nonhomonuclear molecules such as HD do
not have the ortho-para distinction since the two nu-'
cleons are distinguishable. The classification of states
is of great physical importance as ortho-para transi-
tions (conversion) are forbidden for isolated molecules
and the two species have different properties, as we
shall see. The crystal structure of the solid will be
most strongl. y influenced by the angular distributions of
the mblecules characterized by the rotational quantum
number. This will be discussed in Sec. IV. From
Table I, we would expect similar behavior amongst the
isotopes for the even- J species, p-H, and o-D„or
odd- J species, o-H, and p-D, .

The reason for the large physical distinction between
the species can be seen from considering the rotational
energy levels given by Eq. (2.16) and shown in Fig. 4
for H, . Due to the very large splittings of the rotation-
al levels, at the low temperatures of the solid hydro-
gens (&20 K), only the Z=O and 1 levels are thermally
populated (a J'= 1 molecule will remain metastably in
that level, as conversion to the J=0 level is very slow
in the solid). This brings about a great simplification.
Since the single molecule rotational wave functions are
the spherical harmonics, YJ (8, Q), all para-H, mole-
cules will be in the spherically symmetric F«states,
and all ortho-H, molecules will be in the P-like states,
F, .' One would expect solid p-H, to behave somewhat
like solid helium, interacting isotropically, whereas
anisotropic interactions between molecules should be
important in solid o-H, .

Other interesting single molecule properties of hydro-
0 354.38 354.39 267.09 267.12 179.06
1 587.06 587.07 443.08 443.17 297.52
2 814.41 814.48 616.09 616.21 414.66
3 1034.65 1034.75 784.99 785.15 529.91

179.12
297.63
414.78
530.07

Note that the rotational wavefunctions depicted in Fig. 4 give
the orientational distribution of the molecular axis. One
should be careful to distinguish between this and the charge
density distribution in the molecular frame, shown in Fig. l.
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400 Isaac F. Silvera: Solid molecular hydrogens in the condensed phase

TABLE V. Allowed combinations of nuclear-spin states and rotational states for hydrogen, deute-
rium, and tritium, and the ortho-para designations. Antisymmetric is abreviated by AS and sym-
metric by S; I ~ is the total molecular nuclear spin and J the rotational quantum number.

Molecule and spin of nucleon Imol ~u...~~&~i
Nuclear weight

Designation

Hydrogen
Tl itium
IN =

2

State 0
Symmetry AS
State 1
Symme try S

Even
S
Odd
AS

para

ortho

Deuterium State 1
Symme try AS
State 0, 2
Symme try S

Odd
AS
Even
S

para

ortho

gen are its multipole moments and polarizability. The
first nonzero multipole moment of H, is the electric
quadrupole (EQ) moment which is defined by

tional and rotational states:

Q„'i „, , = fQ(B)@(R)g„, , (R)R dR, ' (2.18)

Q(R) = ~R' —(Bz' —v') (2.17)

j ,
'3 (23+1)

Rotational levels of i 5
1'l

free Hydrogen
fYloIeCUI e

I

I

I

I

I

I

(g)
I

I

(7)
1

844.7 K
2

I

509.9 K I g)
Ypp I 17P.5K

I

I

(5)

Ortho H2
I=)

Para H2
I=p

FIG. 4. The molecular rotational energy levels for an isolated
H2 molecule. . The same diagram applies to D2 but scaled down
by about a factor of 2 due to the larger moment of inertia.
The angular distribution of the two lowest rotational states are
also indicated P'~o and K~~ +7~ ~ are actually shown). I is the
total nuclear spin. Numbers in parenthesis a.re the m degen-
er acxes

for fixed nucleii of separation R, in a coordinate system
with ~ along the internuclear axis. Kolos and Wolnie-
wicz (1965) evaluated Q(R) as a function of R. Karl and
Poll (1967) then determined Q(R) in a given nuclear
state by evaluating the matrix elements of the vibra-

where $„J (R) represents the radial part of the molecu-
lar wave function in the vJ vibrational-rotational state.
Some of their results for the quadrupole moment in the
body fixed frame are tabulated in Table VI.

To obtain the quadrupole moment in a given rotational
state, lorn), represented by the spherical harmonic
Y~ (6, Q), the quadrupole moment must be expressed in
a laboratory frame. Since Q(R) has axial symmetry
and is a second rank tensor one has (see Gray, 1967),

Qvs, u 'r ' = Quz. u 'q' Y20(8~ Q) ~

2o h) (2.19)

Q'„; „, =(zmIQ'„;„„,~z'm'). (2.20)

Matrix elements of spherical harmonics are easily
evaluated (Rotenberg et a/. , 1959). At the low temper-
atures of the condensed phase the most important ma-
trix elements are the diagonal v=O, J=O, and J=1. In
the spherically symmetric ground state Q,«0« ——0; in
the J=1 state Qo', „0, = (5)QO', „. This latter quantity
arises frequently and we shall define Q =Q,'~ » and q

TABLE VI. The electric quadrupole moment in the body fixed
frame of the hydrogen molecule in various vibrational and ro-
tational states in atomic units. (eao =1.3449 &10 6cgs, ao
= 0.529 177 &&10 cm), References: Karl and Poll (1967),
Birnbaum and Poll (1968).

0.484 14
0.485 29
0.487 59
0.491 02

0.535 8
0.537 0
0.539 7
0.542 8

0.485 77
0.487 90
0.491 08
0.495 30

0.537 2
0.539 1
0.541 8
0.545 4

0.476 45
0.477 02
0.478 17
0.479 88

0.477 28
0.478 36
0.479 99
0.482 16

where 8, P are the polar angles of the symmetry axis of
the molecule with respect to the & axis of the laboratory
frame. We shall collectively define 6, Q =Q. The rota-
tional. ly averaged moment is
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so that q=sf. These abbreviated definitions
wiLL be used in liter sections.

The static el.ectric dipole polarizabilities have been
calculated by KW (1967) as a function of nuclear se-
paration R. Polarizabilities parallel (at~= o.',) and per-
pendicular (n~ =—n„=- a,) to the internuclear axis were
determined to provide

(2.21)

These were averaged over nucl. ear states to give quan-
tities such as

oP~~ „,~, = n(R) P„*~/„~ R'dR (2.22)

~2 llj D{2) ~ y ~2' (2.23)

where „'D„(+PE) is a rotation matrix and o'Py are the
Euler angles (Rose, 1957). The relationship between
the spherical components and Cartesian components, in
an arbitrary coordinate system, is given by

(X ' = 2 (CR„—A» k 2EQ„q),

n' "= +(a„,+ i+„),
o.'0= (6) ' '(2n„—n,„—n»),
CV = 3(A„„+CV»+Kg, ) .

(2.24 a)

(2.24b)

(2.24 c)

(2.24d)

For the body fixed frame, due to the axial symmetry,
the only nonvanishing comp&onents are K~= & = c7„&„J~
and n,"= (—,')' 'y„'~~„~.—= (3)' '~K (note that we have sup-
pressed the vt indexing in the spherical components,
for simplification). Eq. (2.23) then becomes

a', = (8w/15)'~'3ga Y', (0), (2.25)

TABLE VII. Dipole polarizabilities in the body fixed framed of
the hydrogen molecule (Kolos and Wolniewicz, 1967). Units:

3ao.

5.4139
5.4235

2.0239
2.0317

5.4255
5.4429

2.0338
2.0488

for H„HD, and D„as well as matrix elements of y(R).
A few of the calculated matrix elements are given in
Table VII for H, . A more extensive tabulation, includ-
ing values for H, and D„can be found jn KW (1967).
Values are in close agreement with experiment [see,
for example, MacAdams and Ramsey (1972)]. At opti-
cal frequencies the dynamic polarizabilities are about
5% higher than those given in Table VI (Victor and Dal-
garno, 1969; Kelly, 1970).

Matrix elements of the polarizability between rota-
tional states must be evaluated frequently, particularly
for the interpretation of optical measurements. Analog-
ous to the handling of the quadrupole moment, we first
express the polarizability, which is al. so a second rank
tensor, in the laboratory frame [see, for example, Coll
and Harris (1970)]. It is easiest to work with spherical
tensors. The transformation between the body fixed
frame & and the laboratory frame L is

where 0 is the same set of angles defined for Eq. (2.19),
and a relationship from Rose (1957) between the rota-
tion matrices and spherical harmonics has been used.
Since the rotational wave functions in the laboratory
frame are YJ (Q), matrix elements of Eq. (2.25) are
easily evaluated. Cartesian components in the labora-
tory frame can be found from the transformations in
Eqs. (2.24). These are also given by Silvera et al.
(1971).

II I. INTERMOLECULAR INTERACTIONS

One of the central problems in the study of the mo-
lecular hydrogen in the condensed state is the inter-
molecular interactions. In part, the interactions are
of interest because they ultimately determine the equa-
tion of state, crystal structures, excitation spectra,
etc. , but most attention is focused here because they
are fundamental, and in principle calculabLe to high
precision from ab initio approaches. The Eoze density
solid is an almost ideal testing ground for theoretical
interaction potentials. The problem is highly simplified
iri that, at least to moderate densities, the interactions
can be fairly well described by a sum of pair interac-
tions between molecules. Since the gas phase single
molecule properties are almost undistorted when con-
densed into the sol. id state, the pair interactions in the
solid can be represented by the interaction between an
isolated pair with very small corrections for the en-
vironm ental effects.

In this section we shall first discuss ab initio calcula-
tions of the intermolecular interaction energy of two H,
molecules. We shall then discuss semiempirical deter-
minations of the isotropic interaction with a comparison
to experiment. Finally the anisotropic part of the po-
tential will be considered both from the theoretical and
experimental point of view.

A. Ab/In/~t/ o calculations

A precision ab initio calculation of the potential. for
four interacting hydrogen atoms is a formidable task
and has recently been reviewed by McMahan et al.
(1974); a general treatment can be found in Margenau
and Kestner (1971). The four-atom Hamiltonian is
given by Eq. (2.1), which must be extended to include
the four protons and four electrons. Calculations are
usually carried out in the Born-Oppenheimer approxi-
mation; the energies at short ranges are determined by
variational. treatments which give upper bounds, where-
as at l.ong ranges, perturbation treatments can be used.
The quality of the results depends strongly on the com-
plexity of the variational. wave function. Energies are
calculated as a function of interactomic distances and
are found to be minimum when the atoms are paired as
molecules, except for the closest ranges.

The anisotropic interaction energy depends on the
mutual orientation of the axes of the H, molecules. An
arbitrary orientation in which a number of useful angles
are defined is shown in Fig. 5. In general an energy
surface, or the energy as a function of molecular orien-
tation and separation, must be determined. Efforts are
usually confined to calculating the energies, @~, for
four or five different geometries, p, as shown in Fig.
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Z

Crystal or Laboratory Frame: X Y Z
Pair Frame: xyz
Molecular Fixed Frames: x. y. z.

t I

techniques: self-consistent field (SCF), Heitler —London
(HL), configuration interaction (CI). SCF and HL are
special cases of CI. In the HL calculations for the wave
function, one takes

g« ——,'[(a—bcd)—(abed) —(abed) + (abed)] . (3.2)

The letters a, b, c, d designate the four nuclear centers
and each {abed) represents an antisymmetric product of
single atom functions, including spin. Hydrogenic Is
state functions, localized on the four nuclei, are used;
the bars over a letter indicate that the spin is opposite
that of an unbarred letter and are chosen such that the
molecules are in singlet spin states. The energy is de-
termined by evaluating

(3.3)

which has no variational parameters.
An improvement over HL can be obtained by including

ionized states such as

4 '= (aacc) (3.4)

FIG. 5. Two H2 molecules with arbitrary orientation and with
a separation A&2 between molecular centers. The letters Q;
or co; refer collectively to the polar angles 0;, P&, shown
only for the orientation of the vector R~2. The orientation of
the molecules with respect to a quantization axis (B~2 here) is
specified by angles m; . Orientations with respect to the crys-
tal frame XVX are specified by 0,- . The molecular fixed
frames are x&y;z; .

6. It is then useful to fit the resulting energies to an
isotropic part Qz and an anisotropic part Q„:

, @(R;,, 0;,Q,.) = P~(R„)+@„(R„,Q.;,Q,.) . . (3.1)

By definition Qz is the spherical average of Q, i.e. ,

( P) = $1 and (P„)= 0; the isotropic part is obtained
from the spherical average of the Q~.

Even for the simplest wave functions, calculation of
the energy involves a large number of electron —nucleus
attraction terms and three- and four-center integrals.
High precision is required as substantial cancellation
amongst terms reduces the energy by an order of mag-
nitude or more than the value of an individual term.
Finally, the intermolecular interaction energy is found
by subtracting off the energy of two isolated molecules.

0
For intermolecular ranges of 3-4 A the interaction en-
ergy is in the fifth or sixth decimal place of a term en-
ergy placing stringent demands on precision. For this
and other reasons the short-range repulsive interaction
is easiest to evaluate.

Calculations have in general. been carried out by three

in which two electrons are located on centers a and two
on c, still restricted to total spin S =0. Wave functions
such as Eqs. (3.2) and (3.4) are called configurations.

A calcuI. ation in which the wave function consists of a
sum of configurations, each multiplied by a variational
parameter, is a CI calculation. For an arbitrary geo-
metry of four atoms there are 20 possible configura-
tions for the 8=0, Is states. If aLL configurations con-
sistent with the geometry are used, one has a full CI
calculation. This can still be improved upon by en-
larging the basis to include different 1s functions or 2P
functions. To obtain an appreciation of the complexity
of the problem, a single configuration can involve the
calculation of 10' integrals; a full CI calculation for
the linear geometry involves 12 configurations for a Is
basis; for a 18, 1s, 2P„, 2P„2lz basis 2172 configura-
tions are involved.

The SCF technique is essentially a Hartree-Fock
calculation in which an incomplete basis set is used.
The trial wave function is determined self-consistently.
It has the advantage of being less laborious, with
shorter computing time, than a CI calculation. The
disadvantage is lower accuracy and insufficient spatial
correlation of the electrons. This means that SCF cal-
culations are totally inadequate for interaction energies
at medium and long range where attractive dispersion
(induced dipole —induced dipole) forces due to electron
correlation are important. In an appendix to their book,
Margenau and Kestner (1971) argue that SCF calcula-
tions do not include dispersion energies. (However,
they are unable to prove that an SCF calculation cannot
give an attractive potential. ) An SCF calculation does
include attractive interactions due to permanent multi-
pole moments, as do the HF and CI calculations.

1. Short range

FIG. 6. Four orientational geometries commonly used in cal-
culations of the intermolecular interaction energy. - Only the X
geometry is noncoplanar.

The results of a number of CI and CI+SCF calcula-
tions of the potential. Q~ for various molecular geome-
tries, p, are shown in Fig. 7 (after the review of
McMahan et al. ) for short ranges. The interactions,
which are essentially exponential in this region, begin
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CL
bJ
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C I Calculations
Bender and Schaefer

4 L e Tapia and Bessis
Silver and Stevens

a, a, o Kochanski et al.

V

interactions. These coefficients have been determined
by direct calculations using perturbation theory or by
semiempirical techniques (Victor and Dalgarno, 1970;
I anghoff et a/. , 1971). For 0 = 6 the isotropic value is
12.1 a.u. (from the semiempirical approach). For k = 8
a value of C8= 116 a.u. has been used in a number of
model cal.culations; this value originates from an esti-
mate by Margenau (1943) based on the C,/C, ratio of
the oscillator model and has become established in the
literature. Recently, Meyer (1976) has reconsidered
the long-range interactions in H, using an optimized
basis set in Rayl. eigh-SchrMinger perturbation theory.
He finds that the "established value" of C, was in error
by almost a factor of 2 and that the C„ term is non-
negligible. His values, which we recommend, are C,
=12.14 a.u. , C, =215.2 a.u. , and C,p'=4813. 9 a.u. Un-
fortunately, Meyer's anisotropic dispersion coefficients
are imcomplete as he omitted some mixed-pole terms
in his calculation (Thakkar, 1977; Mulder and van de
Avoird, 1977).

3.- All ranges

O.OOI—
l

2.0 5,0 4,0 5.0
INTERMOLECULAR DISTANCE (Bohrs)

FIG. CJ calculations of the H2 —H2 intermolecular interac-
tion energy at short ranges (after McMahan et a/. ; 1974). Re-
sults of Bender and Schaefer (1972), Tapia and Bessis +972),
Si]ver and Steven +973), and Kochanski et &E. (1974) are

sholem.

The only calculations of the H, —H, potential over a
broad range of intermolecular separation that predict
reasonable values of the potential in the van der Waals
well region are those of Gallup (1977a), Jaszunski et
al. (1977) and a recently published potential due to
Schaefer and Meyer (1979). Gallup did a restricted CI
calculation with configurations constructed from SCF
orbital. s for the individual. H, molecules. He decom-
posed his potential into an isotropic and anisotropic
part. The isotropic part shown in Fig. 8 has a well
minimum of 34.3 K at & =3.57 A (6.75 a.u. ) (Gallup

to fall off much faster with increasing intermolecular
separations greater than 4.5 bohr, reflecting the grow-
ing importance of the attractive dispersion forces. For
a geometry, p, these potentials can be analytically re-
p res ented by the repulsive fo rm

10

Ip, PRESENT WORK

AHLRICHS ET AL

BAUER ET AL

FARRAR ANO LEE

GALLUP
= e~p(o +P R —ypA') . (3.5)

: 2. Long range

At long ranges, when the molecules are sufficientl. y
far apart so that the overlap of their charge distribution
may be considered to be negligible, it is well known
(Margeneau and Kestner, 1971) that the potential arises
from the interaction of electronic multipole moments
and may be expanded in powers of the interatomic sepa-
ration

(3.6)

10

'l0

0

-10

cc -20
D

Al

1 '.oL!

where we set @(~,Q&, Q&) =0. Just as in Eq. (3.1), this
can be separated into an isotropic and anisotropic part.
The most important anisotropic term is for k = 5 and
arises from the interaction of the permanent electric
quadrupoles of the two molecules; this and other aniso-
tropic terms will be treated in greater detail later.
The leading isotropic terms are for k = 6 and 8 and
arise from induced dipole-dipole and dipole-quadrupole

INTERNOLEI:ULAR SEPARATION [a.u]

10

FIG. 8. Semiempirical isotropic pair potentials of H2. The CI
calculation of Gallup is shown for comparison. Present work
refers to the potential of Silvera and Goldman. The remaining
potentials have been proposed to explain molecular beam scat-
tering crossections {after Silvera and Goldman, 1979).
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B. Semiempirical isotropic potentials

For a number of years, the most significant param-
eters characterizing the isotropic intermolecular po-
tential were the well depth, c, and the position of the
well minimum R =&, or almost equivalently, the
position R = & where the potential crosses the energy
axis and becomes positive; more recently, as more
attention has been focused on solids under pressure,
the details of the repulsive core have become impor-
tant. The most popular form of the potential. that has
been used is the Lennard- Jones (6—12):

@,(R) = 4c[(o/R)" —(o/R)'j. (3.7)

The most recent determination [see Hirschfelder el al.
(1954) for earlier values] of the potential parameters
was by Michels el al. (1960), who used measurements
of gas phase isotherms to determine c/k~ =36.7 K,
=2.96 A (R =3.32 A) for hydrogen, and c/k~ =35.2 K
and &=2.95 A (R =3.31 A) for deuterium. ' However,

Sources of the small isotropic differences as we]]. as depen-
dence on the rotational state have been discussed by Knaap and
Beenakker (1961).

states that R = 3.49 A; however, evaluation of his
spline function yields 3.57 A). Although the depth is
reasonable, the potential appears to be substantially
shifted from the experimental curves (to be discussed
in the next section).

Jaszunski et aE. calculate the potential in the well re-
gion using a SCF-CI and a perturbation approach. The
latter yields a well energy and minimum comparable
with that of Gallup. The well minimum in their SCF—CI
calculation is too shallow with a value of 21 K. Schae-
fer and Meyer find a well minimum of -32.6 K at R
=3.49 A.

Interaction energies arise from a number of sources:
overlap energy including charge repulsion and charge
transfer interactions, attractive dispersion forces due
to molecular polarizability, induction energy due to the
interaction of a permanent multipole moment on one
molecule with the polarizability of the other, and the
interaction of permanent multipole moments. Phenom-
enological or semiempir'ical potentials are often written
as an appropriate (see following section) sum of the
various contributions. Gallup (1977a) makes an inter-
esting analysis of the contributions to his spherical. po-
tential. He shows that in the region of the van der
Waals minimum, about 3 of the attractive energy arises
from charge transfer interaction (configurations with
+1 net electrical charge on the molecules), the rest
coming from the dispersion contribution. He also
shows that the spherically averaged SCF energy re-
mains repulsive at long range as suggested by Mar-
genau and Kestner. From his separation it appears
that for a semiempirical potential made up of a dis-
persive term and an exponential repulsive term, the
latter should be associated with an SCF repulsion.

In the following sections we discuss the decomposi-
tion of Q, given by Eq. (3.1), into an isotropic part P,
and an anisotropic part @„; these are compared to ex-
periment.

the Lennard- Jones (LJ) was inadequate to give agree-
ment to within experimental accuracy within the whole
temperature range. Srivistava and Barua (1965)
achieved a better fit to the data of Michels et al. for
hydrogen using a modified Buckingham exp-6 potential. :

P(R)=
(
—exp a(l — —

)
—

( ) }, R 8

R&R

(3.8)

with c/k~ =38.2 K, R„=3.339 A, o. =14.0, and R
=0.7864 A.

Determinations of the H, -H, potential have also been
made by fitting to the collision cross section obtained
from crossed molecular beam scattering experiments.
Dondi et al. (1972) first attempted to fit their data to an
LJ 12—6 and a softer LJ 9-6 potential but obtained poor
agreement using the LJ family. They found best agree-
ment using a scaled helium —helium potential with s/k
= 34 K and R = 3.45 A. Farrar and Lee (1972) fit their
data to an MSV (Morse spline van der Waals) potential
in which a short-range Morse exponential potential is
connected by a spline function to an attractive multipole
potential of the form of Eq. (3.6) with C, = 12.08 a.u.
and C, =116 a.u. Their best fit yielded s/k=34. 8 K and

=3.49 A. Still another beam determination was
made by Bauer et al. (1976). They fit their data to an
exponential repulsion of the form of Eq. (3.5) added to
an attractive potential of the form of Eq. (3.6), with C,
= 12.0 a.u. and C, = 240.0 a.u. taken from Meyer (1976)
so that C, effectively includes the attraction of th'e C„
term which they did not carry along. They found best
agreement with experiment for s/k =34.8 K and R

0
=-3.43 A. A discussion of these various determinations
will be made shortly. Some of these potentials are
displayed in Fig. 8.

An approach which puts stringent demands on the pgp-

tential is a fit to solid state properties. Given the
structure of the solid at T =0 K, the lattice energy E,
the pressure I', and bulk modulus & can be calculated,
all as a function of molar volume. The results for a
given potential can be compared to the experimental
~, V values at 4.2 K (Anderson and Swenson, 1974;
Silvera el aL. , 1978; and Driessen et al. , 1979) and the
zero-pressure sublimation energy. Krumhansl and %u
(1972) calcul. ated the energy and pressure of solid hy-
drogen as a function of molar volume using a varia-
tional technique for quantum crystals. They examined
the LJ 6—12 and the exp-6 potential, among others.
They found reasonable agreement with experiment at
low density, but serious systematic disagreement at
higher densities. Since some of the calculational ap-
proximations used could be questionable, Bruce (1972)
repeated the calculations for these potentials using, a
Monte Carlo variational technique which enables reli-
able evaluation of integrals without appeal to a cluster
approximation. He found good agreement with the zero-
pressure volume V, = 23.16 cm'/mol and energy/parti-
cle = -85.5 K; however, systematic deviations re-
mained at higher densities. At 10 cm'/mol, the calcu-
l. ated pressure was 40 kbar, approximately twice the
experimental value. This implied that the LJ 6-12 and
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the exp-6 had serious problems in the repulsive core
of the potential.

England et aE. (1974) and later Etters et al. (1975),
with some refinement, succeeded in obtaining good
agreement with the experimental data in the range
10-23 cm'/mol. The potential they used was a com-
posite of the best available theoretical short-range and
long-range potentials. For the short-range part, they
employed the spherical average for the four basic
orientations shown in Fig. 6 using results of a number
'of SCF, CIF calculations. An analytical fit was made.
For the long-range part they used -C,/R' —C,/R', how-
ever, they used the older value of C, =116 a.u. The re-
pulsive and attractive terms cannot just be added to-
gether as the negative multipole term, which is infinite
at the origin, will eventually dominate the finite repul-
sive term at short ranges and give unphysical results.
To alleviate this problem, they damped out the attrac-
tive term with a function

F(R) =(1+exp[ —4(R —3.5)]j (3.9)

with & in a.u. The effect is to attenuate the multipole
term to zero for & &2.5 a.u. with essentially zero atten-
uation in the well region of the potential. . [We note that
Kim and Gordon (1974) have shown that the dispersion
forces are already measurably attenuated in the vicini-
ty of the well minimum due to overlap effects. ] With
this potential. they used a quantum solid theory to cal-
culate E and P (as well as the second virial coefficient).
The calculated pressure agreed with experiment to
within 10% in the high density range; they found a zero-
pressure molar volume of 22.65 cc/mol (experiment

10'

i5 10

I I I

6 7

INTERMOLECULAR SEPARATION [a.u]

FIG. 9. A number of H2 intermolecular potentials. Those of
Etters et +E. (1975), Goldman (1973), and "present work"
(Silvera and Goldman 1978) have been fit to solid properties
{qb& is isolated pair potential, @ is effective solid potential).
The remaining potentials have been proposed to represent iso-
lated pairs. A complete discussion and comparison is given
in the text.

Rf (R) = exp
I
— l 88- —l R &) 88R

R &1.28R (3.12)

where o(=1.713, P = 1.5671, y= 0.00993, C, = —12.14,
C, =-215.2, C, =-4813.9, and C, =143.1, all in a.u.

=3.41 A is the well minimum with C, =O. Their po-
tential is designed to represent pair interactions plus
many-body effects, accounted for by the term with C9.

23.16 cm'/mol), and energy of —89.8 K/molecule
(exptl: —85.5 K). Their potential is shown in Fig. 9 and
has c/k = 34 K and R = 3.4 A.

Goldman (1975, 1976) used a Barker —Pompe type po-
tential of the form

I I

Q(x) =c[A0+A. , (x —1)]exp[—a(x —1)]—,'- —,' (3.10)x'+ 6 x'+ 5
)

with x = R/R, R = 3.44 A, s = 34 K, o. = 9.3, A, = 0.80366,
A g

= —3.902354. His C6 and C8, in atomic units, were
12.08 and 116, respectively. The & = 0.01 serves to
keep the attractive terms finite at the origin. This was
fit, using self-consistent phonon theory, to the zero-
pressure lattice energy and the experimental 4.2 K
P- V solid isotherm of Anderson and Swenson (1974).
The potential is plotted in Fig. 9 and compares cl.osely
to Etters et al.

The solid state properties are highly sensitive to the
values of e, R;„, and the slope of the repulsive core,
making the solid an important testing ground for poten-
t:ials. The potential of Etters et al. (1975) can be criti-
cized for the following. First, they do not examine
corrections due to many-body forces. Second, although
they added the theoretical repulsive and attractive po-
tentials together, this must not be considered as a cor-
rect procedure for generating the theoretical potential,
and depends in fact critically on how the potentials are
patched together [see the damping function, Eq. (3.9)].
As an example, they used the old value of C, =116 a.u. ,
with Cyo:0 If one uses the latest values due to Meyer
(1976), then their potential would be lowered by 21 K at
the well minimum and & would be shifted inwards.
This would then give very poor agreement with solid
state experimental values. Their potential must be
considered as semiphenomenological due to the attenua-
tion function, with a somewhat incorrect long-range
asymptotic form.

The potential of Goldman must to a certain extent con-
tain the many-body forces, hidden in the parameters as
it is a phenomenological potential fit to solid state pro-
perties. This means that to the extent that many-body
forces are important, this potential cannot be used to
represent a pure pair interaction. In addition Goldman
used the old value of C, for the long-range behavior and
use of Meyer's values for C, and C„would require a
new fit.

To overcome these deficiencies Silvera and Goldman
(1978) have used solid state data to determine the fol-

lowingg

potential:

8 (R) = exp (e —fir — r') f(R) rg rf ' CC/RR I(8, 1 l,)'
1=6,
8, 1O

with
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For the pur'e pair potential [Eq. (3.11) with C, =Oj they
constrained the fit to conform to theoretical asymptotic
values. The long-range constants C& of Meyer are
used. These are attenuated by a useful function, given.
by Eq. (3.12) and suggested by Alhrichs et al. (1976),
which we have used earlier in the fit for atomic hydro-
gen, Eq. (2.14). The function f(&) should be considered
as a phenomenological cutoff (Tang and Toennies, 1977).
Note that the attenuation already begins in the vicinity
of the well, unlike that of Etters et aI,. The short-range
repulsive part was constrained to fit the spherically
averaged theoretical SCF—CI potentials discussed earli-
er. It is believed that the dominant many-body forces
in closed shell systems such as H, are the nonadditive
three-body Axilrod —Teller —Muto (ATM) (see Bell and
Zucker, 1976) forces which vary as the inverse third
power of the density (or & '). The effect of these
forces is incorporated in an average way by the C,/&'
term, where C, was determined so that the effective
pair interaction of Eq. (3.11), when summed over the
lattice, gives the same energy as the true ATM forces.
This is about 10% of the energy arising from pure pair
interactions at zero-pressure densities. These forces
are nonbinding and thus C, is positive. It is known that
this term is attenuated at short ranges and then be-
comes attractive (Kim and Gordon, 1975); thus it is
also attenuated here by f(R). The use of this effective
pair potential should provide the most important many-
body corrections for isotropic properties in the solid;
this approach may be inadequate for anisotropic proper-
ties such as sound velocity, etc.

The potential was fit to the P—V data in deuterium
and the sublimation energy of Clusius and Bartholome
(1935) as corrected by Schnepp (19'70). For the pure
pair potential s/k~ = 34.3 K, R = 3.41 A; when the ATM
term is included s/ke =32.2 K and R„=3.44 A. These
two potentials are shown in Fig. 9 (@» is the potential
with Cg= 0; qb, is the solid effective pair potential, C9
wO).

This provides a useful analytic form for the isotropic
potential that can be used in solids as well as for true
pair interaction. Rulis and Scoles (1977) have checked
a number of pair potentials on molecul. ar beam scatter-
ing data, including those of Bauer et al. , Farrar and
I ee, Dondi et al. and the solid potentials, among
others. They find that the potentials of Goldman, and
Silvera and Goldman, fit the beam data better than the
potentials ariginally proposed by the beam workers.
Alternately, Silvera and Goldman (1978) have used the
beam potential of Bauer et al. in the solid and find a
pressure of 37 kbar at 10 cm'/mol in H, substantially
higher than the experimental value (22.9 kbar). Three-
body forces would make the discord greater.

At this time, until. more accurate data is available at
very high density, we recommend the use of Eq. (3.11)
for the isotropic potential. of H, and D, .

Finally, we observe that the ab initio potential of
Gallup is shifted out about 0.16 A from the solid state
potentials. Silvera and Goldman (1978) used Gallup's
potential to calculate solid state &- V values and found
580 bar at Vo and 34 kbar at 10 cm'/rnol in substantial
discord with experiment. A closer analysis of Gallup's
potential shows that his long-range tail has an &

character with a reasonably accurate value of C„but
no & ' or & "character. This is a result of his basis
set, which is made up of s and P functions. To obtain
the higher multipole terms, the basis set would have to
be expanded to include d and f functions.

In criticism of the determination of the potential from
solid state data, recently Chandrasekharan and Etters
(1978) have suggested that small changes in H, vibra-
tional frequencies in the solid and gas phase contribute
about 6% to the T =0 K sublimation energy. This effect
could account for a small difference between the ab ini-
tio and solid state potentials.

C. The anisotropic potential

The anisotropic interactions give rise to an array of
interesting phenomena in the solid state which will be
discussed in detail in later sections. These phenomena
enable a rather precise determination of Q„of Eq.
(3.1). Determination of @„in the solid is advantageous
because the rnolecules are at a fixed separation (except
for zero-point motion) and at low enough temperatures
so that the molecules populate the lowest orientational
states; under certain circumstances the spectrum of
reorientational excitations can be used to determine po-
tential parameters. By contrast, in gas phase or mo-
lecular beam measurements, interactions are aver-
aged over large trajectories in space and consequently
these are usually not very sensitive techniques for de-
termination of the radial dependence of anisotropic po-
tential parameters.

The orientational energy of an H, molecule depends
sensitively on its rotational state and its environment.
In the low density solid, J is a good quantum number,
and we need onl. y consider the J= 0 and 1 states. The
J =0 state is spherically symmetric and thus has no
orientation dependent energy. For the J = 1 state a
number of circumstances can arise, illustrated in Fig.
10. An isolated J= 1 molecule has a threefold orienta-
tional degeneracy (ignoring the intramolecular hyper-
fine interaction and nuclear spin). This degeneracy will
be partially lifted by the crystal field of a J =0 neigh-
bor. In the hcp or fcc lattice, substantial cancellation
occurs in the interaction of the J= 1 with 12 nearest
neighbor; however, the degeneracy is still lifted. When
nearest neighbor J=1 molecules are isolated in such a
lattice by J =-0 neighbors, the ninefold degeneracy of
the pair is partial. ly lifted by the dominant electric
quadrupole interactions; the splitting is further modi-
fied by smaller anisotropic terms and many-body ef-
fects as shown in Fig. 10(d). When more than two J = 1
molecules are interacting the picture rapidly becomes
more complicated, finally simplifying for a lattice of
J= 1 molecules where translational symmetry is re-
covered (to be discussed later).

It is useful to express the anisotropic part of the po-
tential in terms of an analytic function of the orienta-
tions of the molecules which can be fit to the interac-
tion energies of the four (or five) geometries such as
shown in Fig. 6. The most useful expansion is in terms
of spherical harmonics since these are also, to a very
good approximation, the rotational wave functions of
the molecul. es at low density. Such a choice permits
simplification and ease of evaluation of rotational ma-
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(J=O) ( J = I)

(2)
t-O.g CITI -O.OI cm

I, (2)
t4)

(~)

6cm

41, (2)

EQQ only G.neural
Anisofropic

(&) Inc lu din 9
5 —body
terms

FIG. 10. Various environments and energy levels for J=1 molecules. (a) An isolated molecule. (b) Molecule with a single
J=0 neighbor. (c) Molecule with a complete shell of nearest neighbor J=O molecules (only 6 of the 12 neighbors of an hcp lattice
are shown). (d) A pair of J=1 molecules surrounded by J=0 molecules in an hcp solid (only 8 of the neighbors are shown) (after
Hardy, Berlinsky, and Harris, 1977).

+4m g c,.(R„)a,.
j=p, 2, 4,

C 22j; p, , -p. Y," u, Y, " u, (3.14)

trix elements of the potential.
The most general expression for the anisotropic po-.

tential, given by Van Kranendonk (1960), and later dis-
cussed by many authors [I refer also to Harris (1970),
Ng et al. (1976), and Nakamura (1970)], can be written

@~(R. & &.) = Z Z&i i (R,.)~.Yl (~,)*Yl (~.), (3.»)
l I,E2 n

where' w, and ~, specify the angles of the molecular
axes with respect to the vector &» connecting molecular
centers (see Fig. 5), l, and l, are summed over all in-
teger values. Because the molecules are homonuclear,
having inversion symmetry, only even values of l, and
I, occur and a„=a „; the term with Ej l2:0 is the iso-
tropic potential and has been removed from Eq. (3.13).
Terms with l, +l, &4 are generally small', in the
ground state of low-pressure solid H„molecules are
in the rotational state J=0 or 1 and matrix elements of
P„within the ground manifold vanish for terms with l,
or I, &2. We can then write Eq. (3.13) in the form

P „(1,2) = (16' /5) ' i'Il(R „)I Y,'(co, ) + Y,'(~, ) ] Y, (~,) Y, (u, ) = gj .~ -m O.
Yjp'

From this we can see that the second part of Eq. (3.14)
can be written as

where a, =~5, o., =&7/2, a, =F70, and czar~ vanish for
odd j; C(l, l, j; p. , -p, ) is a Clebsch —Gordan coefficient.
The R dependent terms &(R) and c&(R) measure the
strength of the interaction. The term with &(R) arises
from an anisotropic charge distribution on one molecule
interacting with the spherical part of another. The co-
efficients so, s„and s4 arise from charge overlap (and
exchange), referred to as valence forces (v), aniso-
tropic dispersion-induction forces (di), and the per-
manent electric quadrupole-quadrupole (EQQ) interac-
tions.

For completeness we also present the decomposition
of the potential into its irreducible tensorial sets, fol-
lowing van Kranendonk. The second part of Eq. (3.14)
is composed of the product of two spherical harmonics
which are irreducible terisors of rank two. The direct
product space can be decomposed, in general. , into five
irreducible tensors of ranks 0, 1, 2, 3, and 4 by use
of the Wigner 3j symbol, (' '„0):

5 j=p, 2, 4
Aj Yjp

4In later sections, we shaD also use the notation V for the
potential. , i.e., @ =V.

Terms with 1~ =4, 12 = 0, and l~ =0, 12 =4 also arise but are
considered small (Gush and Van Kranendonk, 1966; Noolandi,
1970); the weak quadrupole-hexadecapole interaction corre-
sponding to 1~ +12 =6 has been considered by Gush and Van
Kranendonk (1966).

since odd values of j vanish identically. Again, the co-
efficients Aj can be decomposed into valence, disper-
sion, and EQQ components:

A =A +A' +A, ', A, =A,' +A, , and Ap Ap +Ap'.

In 1955, Nakamura treated @„theoretically and
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408 Isaac F. Silvera: Solid molecular hydrogens in the condensed phase

that a molecule feels due to its environment remains
very small [ V, (R) will be defined later in this section].
The distortion considered by Baich and Kanney is shown
in Fig. 11.

In the low-pressure solid Q„can, to a good approxi-
mation, be taken to be pure EQQ, which is often ex-
pressed as

@E~(A„)=411g —~70 C(224; p. , -iI) 1"(R„)F»(~,) F, „(cd,),
5

FIG. 11. Schematic representation of the local lattice distor-
tion in the neighborhood of a J =1 molecule surrounded by J =0
molecules in an hcp lattice (after Baich and Kanney, 1977).

showed that the EQQ interaction corresponding to j =4
in Eq. (3.14) was the dominant term at nearest neighbor
distances &~ of the zero-pressure solid. This has been
confirmed experimentally. It is also consistent with the
work of Raich et al. (1976), who analyzed a number of
ab initio calculations, the potentials of Gallup (1977)
and Schaefer and Meyer (1979). The results of Raich
et aE. lack accuracy in the interesting region of inter-
molecular separation corresponding to zero-pressure
solid H, (& 3.79 A) as they are based on calcul. ations
which are not accurate in this region; the more optimal
results of Gallup and Schaefer and Meyer' are probably
more accurate, yet still not sufficiently so to be taken
as a standard in this region. Ng et al. (1976) suggest
that the anisotropic interaction should be dominated by
the pure EQQ interaction to ranges 5 a.u. due to the
very small anisotropy in the molecular charge distribu-
tion (see Fig. 1).

In a perfect, rigid, close packed lattice the interac-
tion due to the &(R) term, which is often referred to as
the crystal field term, is zero when summed over the
first and the second shell of neighbors, and alternates
in sign for further shells, resulting in a negligible con-
tribution to the lattice energy. Zero-point motion gives
rise to small distortions from perfect packing which
break the symmetry (Van Kranendonk and Sears, 1966;
Baich and Kanney, 1977, I uryi and van Kranendonk,
1979); however, the effective crystal field term, V, (&),

(3.15)

where I'= (—,', ) e'Q'/R» is the EQQ coupling parameter
and Q is the EQ moment given in Table VIII. At nearest
neighbor distances of the zero-pressure solid (Ro
=3.789 A for H, and 3.605 A for D,) I'/kII =—1",/ks
=0.949 K for H, and 1.175 K for D, . The classical
quadrupol. ar energies of the four configurations of Fig.
6 are given in Table IX; the interaction energy of a
pair of molecules is lowest when in the "T"configura-
'tion and hlgllest ln tile 4 coIlflguratlon (see Flg. 6).
If one of the molecules is in the J=O rotational state,
then it has spherical. symmetry [F (&u ) =const] and the
quantum mechanical average of @EQQ is zero. If both
molecules are in the J= 1 state, due to the angular dis-
tribution of the quadrupoles [see Eq. (2.19)], the classi-
cal energies are reduced by (-,)' when the quantum-
mechanical averages are taken. In Table XX, a special
configuration that is important in the orientationally
ordered state of H, is also considered. Here the two
molecules are oriented along two different body diagon-
als in a cubic lattice. In the last column, we give the
eigenenergies of a pair of molecules, both in J=1 rota-
tional state with a pure EQQ interaction. Each molecule
has 2J+1 =3 possible orientational states resulting in a
ninefold multiplicity. The energies are found by diagon-
alizing the Hamiltonian, Eq. (3.15), within the set of
nine states. The eigenstates are shown in Fig. 12, both
in the representation J,M„J,M, and in the total angular
momentum representations I' =- J, + J„M„. In both cases
the line connecting the molecular centers is the axis of
quantization. Analogies to the cl.assical configurations
can be made by noting that the degenerate ground states
8 and 9 (Fig. 12) are linear combinations of T configura-
tions, i.e. , Q, : g ~- +- II[in a vector picture the
angular momentum J i.s perpendicular to the intermolec-
ular axis; in the m& ——0 state J lies in a plane perpendic-
ular to the quantization direction, &, and thus the mo-
lecular axis is "aj.ong" &. For m = +1, the molecular
axis is "perpendicular" to s. Thus we make the associ-
ation (m, m, ) = (10) with~, )].

In the solid it is often necessary to reference the
orientation of the molecules to the crystal frame, ra-
ther than the vector connecting molecular centers, as
in Eq. (3.13). Gray (1968) has shown in a very elegant
way that

X Y, ~ (0 i) Y, (0~) YI ~ (0 1~)*, (3.16)
GThe EQQ part of the Shaefer-Meyer potential evidently suffers

from some inaccuracy. This has been corrected in an as yet
unpublished improved potential.

where Q„Q„and Q„, specify, respectively, the ori-
entation of the mol. ecular axes and the vector connecting
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TABLE VIII. The best available values for the interaction parameters in zero pressnre solids in the limit that all mo]ecu]es are
in the J=O state.

Quantity

Vp

Rp

&54

I.
5 4

(+~4) = (~4 —~4 )
EO

&cp-in

+cp-out

&za-m

+Qg-out

Units

cc/mole

A

K

K

K

K

K

K

H2

23.16

3.789

0.485

0.488

0.486

0.949

0.942

0.827

-0.057

-0.018

0.016

0.0083 + 0.002

-0.021

0.0068

-0.0082

0.0068

0.0075

-0.0158

HD

20.57

3.642

0.481

0.483

0.482

D2

19.95

3.605

0.477 v =0 J=l J=l
0.478 v =0 J=1 J=3
0.477 v =0 J=0 J=2
1.175

0.968

1.026

-0.094

In the v =0 J=l, state

0.087

Isolated J= 1

p =—pair of J=l rnolecules

Comment

Molar volume hcp structure

hcp J=0 solid at zero pressure, 4.2 K

Reference

a, b, i

e~g~f

Silvera et al. (1978).
Bostanjoglo and Kleinschmidt (1967).
Birnbaum and Poll (1969).
Goldman (1979).
Hardy et al. (1977).

~ Silvera et al. (1971).
g Luryi and van Kranendonk (1979).

Roberts et al. {1976).
Krause and Swenson (1979).

' Schweitzer et al. (1979).

(3.17)

mo1.ecular centers with respect to the crystalline frame
as shown in Fig. 5, and l, +l, = 1. The pure EQQ inter-
action, Eq. (3.15), b ecom es

PE~(R„)= (20m/9)('10m)' 'I'„QC(224;MN)
N, N

+2 Al (+ 1) +2N (+2) +4, Af+N (+ 12)

This form is also very useful in performing lattice
sums.

From the theoretical side P„ is expected to be domi-
tnadeb+ QEQQ Let us now consider the experimental

picture. The coefficient c,, (R) in Eq. (3.14) has been de-
termined in the solid at zero pressure. In interpreta-

TABLE IX. Electrical quadrupole-quadrupole interaction energy normalized to the coupling con-
stant I". The classical case corresponds to quadrupoles with fixed orientations along the molecular
symmetry axes; the semiclassical to the substitution of Q =2/5Q corresponding to the average of Q
in the J= 1 rotational state. This reduces the energy by 4/25. Quantum-mechanical refers to the
energy of an isolated pair of molecules, each in the J=l rotational state; the states are identified in
Fig. 12. BD is a special configuration in which the two molecules are oriented along different body
diagonals in a cubic lattice. This is of importance in discussions of the orientationally ordered state
of H2. This orientation is not an eigenstate for a pair. The QM value is determined within a molec-
ular field approximation (James and Raich, 1967).

Configuration
Classical

(Q) =Q

EQQ Energy/I
Semiclassical
(Q)=Q= 5 Q Quantum-mechanical

H

BD

-12.5
3.125

9.375

25.0

-6.60 -19/18 = —1.056

8, 9

4, 5, 6, 7

2 3

BD
Mol fieLd

—1.056
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ENERGY

(I)
DEGENERACY { ) IF~ MF) lm, m, &

li )I )i
I2, 0&= 1/vs[I' '&+210 0&+I-I 1)]

+»= I+'+»

(4) )I
I)

(2)

I 0,0)= I /v 3 [ I I —» —
I
0 0&+

I

—1 I »
I

1 ~ 0) 1/v 2 [ I
1-1)-

I
—

I 1)]

I I,+1)=1/v/2 [I+1 0)- ID+1&]

12,+»=I//~ [I+10&+ID+1)]

EQQ.
ONLY

GENERAL
AN'ISOTROPIC

PAIR SPECTRUH

FIG. 12. The energy level diagram of a pair of neighboring J=1 molecules in the hcp solid showing the effects of an EQQ and a
cylindrically symmetric {cs) {general anisotropic) interaction. Non-cs interactions can completely lift the degeneracy. Arrows
indicate Haman active transitions. All transitions are ir active {depending on the orientation of the pair axis in the solid). The
quantum number for the end-over-end rotation of the pair does not appear as this degree of freedom is constrained'by the lattice.

tions, this has usually been attributed to the permanent
EQ moment, so that C4(R) = —', I"(R) with I'(R) = —,', e'Q'/R'.
The experimental value of I =—I in the solid is 0.828 K
in H, (Hardy et al. , 1977) and 1.026 K in D, .' We see
(Table VIII) that I' is about 15% smaller than I „ the
value found by evaluating at R =Ra, and referred to as
the rigid lattice value. We write

I'= $1'0, (3.18)

VFor this value I have analyzed the results of Silvera et aE.
(1971), using the theory of Harris et al. +977), estimating D2
co1 1ectloIl values from the H2 results ~

where g is the sol. id reduction factor and I' is referred
to as the effective coupling constant in the solid and can
also include non-EQQ contributions. Values are given
in Table VIII. Harris (1970) (see also Noolandi and Van
Kranendonk, 1970) proposed that the reduction arises
from zero-point motional effects which weight V4 A ' in

such a way that B 'tR, '. Zero-point averages are de-
termined by evaluatin. g the expectation value of the in-
teraction in the ground translational state of the solid
(see Sec. VIII). Such an average of Eq. (3.17) has the
effect that I' can be replaced by

(I")= („r, , (3.19)

where the 5 refers to the power of R and the 4 to the
order of the spherical harmonic that is involved in the
average. Although these averages can be performed
quite accurately from a computational point of view,
knowledge of the many-body ground state wave function
has limited the precision of g„. Until recently it was
believed that $,,= 0.905 for H2 and 0.94 for D, (at zero
pressure). However, Goldman (1979) has reconsidered
the pair distribution function of the solid and finds f54
= 0.94 for H, and 0.968 for D, at zero pressure. This is
a rather significant change when compared to the pre-
cision of present measurements (-10 'cm '). Indeed,
one sees that (I') 0 I' and the c, term of the potential
must have small valence and dispersion contributions,
in addition to that due to the permanent EQ moment.
More accurately, one has

s,(R) = s,'«(R)+ s', (R)+ s,"(R) . (3.20)

In the zero-pressure solid, &4+ 4' must reduce c4 ~ by
5/o —

10%%uo to explain the discrepancy. The non-EQQ po-
tential contributions have been considered in general by
Nakamura (1970) who finds that s', and s4,' have opposite
signs and tend to cancel each other. More recently Ng
et al. (1976) have considered the valence forces and
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Mulder et al. (1978) have reexamined the long-range
dispersion and induction forces. They find agreement
with Meyer (1976) for the isotropic terms, but note that
he omitted cross or mixed multipole terms which se-
verely effect the anisotropic coefficients. At 6.5 a.u.
they find the term d," to be 12% of s~s~~ (and of opposite
sign).

From the experimental side we can write

F=(F)+ —;(&&) = 5 Fo+ —'(«)-=$Fo (3.21)

where (As, ) is the contribution to s, from sources other
than the permanent EQ moment. Evaluating, we find
(&s, )/ks = -0.057 K for H, and -0.094 K for D, . Prob-
ably the largest source of error here is in the deter-
mination of 1 for D, . Vfe note that these values are for
the zero-pressure solids in the limit that C, goes to
zero. A precise analysis of the J = 0- 2 roton spectrum
would provide additional and useful information for pin-
ning down the potential pa.rameters. Noolandi (1970)
has analyzed the roton frequencies; however, his anal-
ysis is incomplete, as a non-negligible contribution
from the interaction with two and three roton states
has not been treated.

The terms s, and s, of Eq. (3.14) have also been de-
termined from the microwave absorption experiments
in solid H, at zero pressure. The analysis of the spec-
trum is quite complex. It was first considered by
Hardy and Beriinsky (1975), who found the existing the-
ory to be incomplete. Harris et al. (1977) extended the
theory by examining a number of subtle and complex
contributions. More recently Luryi and van Kranendonk
(1979) have also analyzed the spectrum and made some
additions and corrections to the analysis of Harris et al.
We use their values in Table VIII.

Let us consider in greater detail the crystal field
which arises from the term B(R„) in Eq. (3.14). For a
J= 1 molecule at site 1, the crystal field arises from the
interaction with the spherical part of all surrounding
molecules given by

@,= Q(16m/5)' 'B(R .)Y'(u) ) (3.22a)

where uy specifies the orientation of the molecule in the
R„ frame. To evaluate Q, one transforms from the R„.
frame to a coordinate system where the z axis is along
the c direction of the (hexagonal) crystal (see Fig. 5).
This is easily done with the spherical harmonic addition
theorem (Rose, 1957) to find

@,=QY, (Q, ) Q —,
' nB(R„)Y,* (Q„). .

m

(3.22b)

(3.22d)

Due to the hexagonal symmetry Y, (Q„.) = Y,„(Q„.)6„o in
(3.22b) and we have

= (~~ 77)~~2Y (Q ) P lk77 )~~2B(R .)Y' (Q .) (3 22c)
i

Finally, we note the c axis is the axis of quantization
and use operator equivalents in the J= 1 manifold of
states (Nakamura, 1955) to write Y,o(Q,)- I/v jm (~ J,' —1)
yielding

With this definition, V, is the splitting between the J, = 0
and + 1 states.

In a rigid close packed hexagonal structure the sum
over Y»(Q,.&) in Eq. (3.22d) is zero when restricted to
the first two shells of neighbors. As a result the crys-
tal field is essentially zero. In a hexagonal lattice, de-
viations of V, from zero occur if c/aW v'8/3. Further-
more, zero-point motion and rotation-lattice coupling
can result in V, xO. In addition B(R) for two J = 1 mole-
cules can differ from that of a (J = 1)-(J=0) pair. The
lattice sum is then no longer zero and the resulting
crystal field term is called V».

Raich and Kanney (1977) and Raich and Albert (1979)
have calculated the crystal field for a single J = 1 in a
J =0 lattice and a nearest neighbor pair of J= 1 mole-
cules in a J=0 lattice, respectively. They determined
the energy splittings of the rotational levels within the
J = 1 manifold due to the local lattice distortions (see
Fig. 11). Luryi and van Kranendonk (1979) have subse-
quently considered the single J= 1 impurity problem.
'They calculate V, arising from differences in the zero-
point motion for in-plane arid out-of-pl, ane pairs in the
hcp lattice, as well as that arising from lattice distor-
tions due to phonon-rotation coupIing. 'They criticize
the approach of Raich and Kanney (this is also applica-
ble to the work of Raich and Albert), showing that the
interaction Hamiltonian they used was incomplete, hav-
ing omitted important terms. They also find that the
rotation-lattice interaction mixes the

t
J = 1,M) rota-

tional. states so that M is of course not a good quantum
number, although the degeneracy imposed by the sym-
metry is not further lifted. Evidently, one must con-
sider J, J, given in Eq. (3.22d) to be an effective spin
one Hamiltonian. Finally we point out that the crystal
fields are not additive, i.e. , the crystal field of a pair
of J =1 molecules is not simply related to that of an iso-
isolated J =1 molecule. 'This can arise from distortion
of the pair separation due to the EQQ interaction, cross
terms in second-order perturbation theory, etc. , as
well as the V» effect already mentioned. The existence
of two pair environments in the hcp lattice, in- plane
and out- of- plane, also means that these pairs can have
differing V,'s.

An experimental determination of B(R) or V, has
turned out to be rather challenging. In the solid it is
very small because of the lattice sum cancellation al-
ready discussed. This cancellation does not occur in
molecular beam scattering experiments and Zandee et
aL (1976) have used polarized H, beams to find B/k~
-2 K. 'This value is characteristic of the region of the
isotropic potential well minimum (-3.4A); the beam
measurements are not very sensitive to the radial de-

pendencee

of B(R ).
For the case of an isolated J = 1 molecule in a J=0

lattice V, has been studied by an analysis of the free in-
duction decay (FID) of NMR signal at low temperatures
for samples with ortho-H, lightly doped in a para-H,
host. Hardy and Gaines (1967) analyzed NMR FID data
taken at 0.3 K in H, to find t V,

~
/k~ = 0.0082+ 0.0021,

showing that
~
V,

~
was at least 5 times smaller than had

been suspected; however, lower temperatures were re-
quired to ease the analysis. They were unable to deter-
mine the sign of V, and thus determine if J,=+ 1 or 0
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was the ground state. Constable and Gaines (1971) re-
peated these experiments at T = 0.045 K and found
V,/k~ = —0.023+ 0.015 K, which would mean that the
ground state was J,=+ 1. 'She most recent work by
Gaines et al. (1978) was on a. sample which they believed
to be single crystal. They found that an accurate analy-
sis of the data to determine V, depends critically on the
crystal orientation; in earlier experiments the state of
the crystal (single —or powder) was unknown. They find
V, =+0.040 K, which "can be considered to be reliable to
within a factor of two. " These results would mean that
J,=O is the ground state.

'The most recent, and probably the most reliable de-
termination of V, is by Schweitzer et at. (1978, 1979),
who studied single crystals of hydrogen with C, & 0.01
at temperatures as low as 18 mK. In their first paper
they reported a value

l
V, ~/ke = 0.025 K which was cor-

rected in an erratum to 0.014 K due to a calculational
error. their most recent and more refined measure-
ments have settled down to

t V, ~/k~ =0.0083+ 0.002 K.
Pedroni et al. (1975) and Buzerak et al. (1977)interpret

their study of NMR linewidth as a function of density in
terms of the crystal field. At zero-pressure density,
p= p„Buzerak et aL found ~V, /k~ ~

~0.023 K. This val-
ue increases by about a factor of 30 at p/p, =1.7. The
theory of Raich and Kanney (1977) discussed earlier
agrees well with the experiment, perhaps fortuitously.

We believe that the measurements by Schweitzer et al.
are the most reliable. Nevertheless, determination of
V, by an alternate technique, sensitive also to the sign
of the interaction, is in want. A critical experiment
would be the direct determination of V, by rf absorption
or by Raman scattering, both of which are, in principle,
feasible.

In the case of an isolated pair of J = 1 molecuI. es, we
write

(t),q
= V,q [3J(,+ 3J(, —

3 1 . (3.23)

A similar expression exists for the V~~ term. 'The V~~

term is cylindrically symmetric about the pair axis,
whereas the V,~ term can have a lower symmetry and a
different quantization axis. As a further complication,
as mentioned earlier, V,~ can differ for in- and out-
plane pairs.

In the case of the ioslated pairs of J = 1 molecules,
determination of V,~ has come from analyses of micro-
wave absorption experiments (Hardy and Berlinsky,
1975). The spectrum is quite complex. Ha, rdy et al.
(1977) interpreted the microwave spectrum with a fit
using a single crystal field term, V,~/k~ = 0.014 K.
Luryi et at. (1977) also interpreted the spectrum finding
values of V~~ and V,~ for the two types of pairs. Harris
and Berlinsky (1977) compared the two theories, criti-
cizing the latter on a number of points, also showing
that it gave poor agreement with a pair transition not
measured in the microwave work, but observed in
Haman scattering experiments by Silvera et nl (1971). .
Luryi and van Kranendonk (1977) have presented refine-
ments in the theory, which differs from that of Harris
et al. in that V,~ differs for the two types of pairs, and
they consider effects of anisotropy in the pair correla-
tion function. In the refined theory there is also agree-
ment with the Baman transition. Their values are given

in 'Table VIII.
In recapitulation, experiments show that in the zero-

pre ssure solid the anisotropic inter actions are domi-
nated by the EQQ interaction. Nevertheless the deter-
mination of the smaller interaction constants ia a useful
and challenging pursuit. 'This should become easier as
density increases. Berkhout and Silvera. (1977) and
Berkhout (1978) have shown that, up to densities p/p,
= 1.8, the anisotropic interactions are still dominated
by EQQ forces which vary as p't'. As we have men-
tioned, Pedroni et al. ( 1975) showed that at these den-
sities V increases by a factor of 30, making it a sim-
pler quantity to measure. However, as the anisotropic
inte rac tions inc re ase at still highe r densitie s, other
complications set in as J can no longer be treated as an
approximately good quantum number. Finally we con-
sider the values of c„c„and the crystal field terms,
all given in Table VIII, to be tentative, as the values
depend critically on renormalization factors which
Goldman has recently shown to be different than those
used in the analyses.

IV. THE ROTATIONAL STATE IN THE SOLID

In Sec. VIII we shall discuss the motion of quantum
solids, i.e. , solids in which the lattice particles have a
large zero-point motion or a broad spatial distribution
around the lattice sites. Such a motion can also be used
to classify solids with orientational order (Silvers. ,
1978). Orientational quantum solids are molecular sol-
ids in which, even at T =0, the angular distribution is
broad, or nonlocalized. Molecular hydrogen and its
isotopes are the most extreme (and only) examples. H,
is an almost free rotor in the solid and in the ground
rotational state has a fully spherical distribution; by
contrast the symmetry axes of N, molecules are well
localized at T =0 K in the solid state.

I.et us confine our attention to linear molecules with
pairwise interactions. Then the Hamiltonian describing
the solid is

The wave function is separable,

/ 0&. =
t
4(&, )& [4(&.)& [4(~„~.)&, (4.3)

and the solution of the angular part is that of the well
known free rotor with E =BQ,,»J, (J,.+ 1) where A=8'/
2I. J~ is the rotational quantum number and the rotation-
al wave function is the spherical harmonic 1'~ „.(9;, (t);)

which we specify as
~
J;.M,.&. Thus returning to the

many-body solid we have an assembly of free rotors
localized at lattice sites to within the translational ze-
ro-point motion of the molecules. For the lowest rota-
tional state, with all molecules in the J =0 state, the
rotational part of the solid wave function is a product

where (t) and (t) were defined in the previous section.
To demonstrate why H, is a free rotor in the solid let
us set &f&„=0 and study two neighboring molecules, 1 and
2, ignoring the rest of the lattice. We solve the pair
wave equation

[v', +v,']+8(J,'+z', )+(,(~„)I]()„z](),. (4.2)=
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state of Y»(Q,.)'s. Since Y'oo is a constant the angular
distribution is spherically symmetric, i.e. , the mole-
cules are not at all angularly localized. For each level
F~~, all (2J'+1) of the M sublevels will be equally popu-
lated and again there is no loca, lization.

To see how valid. this picture is, we now remove the
restriction @~=0. Then if &f&„ is small we can use

first-order perturbation theory to correct the zeroth
order wave function, which we write as a product of
free rotor states.

(
J,M~'. . .JgM~) =

[ J~M,). . .
[ J~M~) .

The many-body perturbed wave function is then

alj ~ ~ ~ Jg Jy ~ ~ ~ Jg

(4.4)

Because the anisotropic interaction p~ is a two-particle interaction we can focus our attention on a two-particle
wave function and confine ourselves to the dominant EQQ anisotropic interaction

where

i i j j j
J'j N~

(4.5)

E~ ~ —E~, ~, =8 [J.(J, + 1) +J)(J + 1) —J'. (J'. + 1) —(J' (J'. + 1)j (4.6)

and J, , J&CJ,', J,'.. Using Eq. (3.15) for the EQQ interac-
tion we see that the coefficient of

~
J,'.M',.J,'. M~), or the

mixing parameter, is proportional to I', ~/B which has a
value of 0.011 for- H, and 0.028 for D, for nearest neigh-
bors in the zero-pressure solid. When we take into ac-
count the 12 nearest neighbors in the solid and the nu-
merical values of the matrix elements and energy de-
nominators we still find about 1% mixing of rotational
states in H, .

Berkhout and Silvera (1977) tested the validity of these
considerations by Baman scattering. The Baman scat-
tering efficiency is proportional to the matrix elements.

where a', is given by Eq. (2.25a). For unmixed states
the selection rules are &J,. =0, +2, &M,. =0, +1, +2. In
the solid, one expects to see the transition J =0-2,
J =1-3 and J =1-1,~cO at frequency shifts corre-
sponding to 6B and 10B, and a band centered around ze-
ro frequency shift, respectively. In Fig. 13 we see the
results of Baman scattering experiments on H, and D,
under a moderate pressure and at nominal ortho-para
concentrations. In addition to the allowed transitions,
very weak transitions are seen at integral values of B.
These correspond in part to double transitions of pairs
of molecules due to mixing and are identified by the in-
itial and final rotational states of a pair,

~
J,J,.)—

~

J,'Jz).
The intensity and selection rules for these double tran-
sitions follows directly by substituting the mixed wave
functions, Eq. (4.5), into the Raman matrix element.
In addition there is a small contribution to the Baman
scattering from a perturbation to the polarizability so
that

+ CV 'Lpg

where the two-particle term arises from intermolecu-
lar interactions. We shall not discuss this effect, re-

ferred to as BIPA (breakdown of the independent polar-
izability approximation). However, the second term in
Eq. (4.V) also gives rise to double transitions.

The ratio of the intensities, I, of the forbidden to the
allowed transition enables a determination of the ad-
mixture of the free rotor states. For double transi-
tions due to mixing I- (I'/II)'- p" ', where p is the den-
sity. The dependence of mixing on density, relative to
that at zero pressure, p/p„was also studied and is
shown in Fig. 14 for the 01)—~23) transition. One
finds a reasonably good accord between theory and ob-
servation supporting the use of J as a good quantum
number, even to pressures of order 5 kbar. The theo-
retical curves used are for a rigid lattice and do not in-
clude the zero-point motion renormalization which
would lower the curves to give better agreement with
experiment. We see that mixing is a larger effect in D„
as expected, since B~ = —,'B„. Eventually, as pres-
sure increases, the anisotropic interactions will be-
come large enough to severely mix the free rotor states
and para-H, and ortho-D, will no longer be spherically
symmetric. One result of this will be discussed-at the
end of Sec. VI.

In the coming sections we shall discuss the orienta-
tional ordering in J =1 H, and D, . At low temperatures
the molecules align along certain crystalline directions
due to the weak anisotropie interactions. However, J
can still be treated as a good quantum number. In the
ordered state the molecules are in a J =-1, M =0 state
where the direction of quantization for M is the order-
ing axis. It is the wave function orbital g

-F»(~) - cos8
that orders and not the molecular axis. By contrast, in
solid nitrogen, B=2 cm ' and (Q„)/Il= 8. Here it is
more accurate to consider the ordering of the molecu-
lar axes. In the extreme case of a "rigidly" oriented
molecule, the wave function is g-6(u —cu, ). The angu-
lar delta function can be written as an infinite sum over
all spherical harmonics, showing that in such a case
all J's are admixed.
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V. ORTHO AND PARA SPEC I ES: P R EPARAT I ON,
CONVERSION, AND DIFFUSION p, =—~ g (2J + 1)exp( E~/kT),

J lt3t ~ o ~

(5.1b)

p, =—~ g (2J+1)exp( E~/kT),
J Ot2t ~ ~ ~

(5.1a)

In. this section we shall discuss in some detail the
preparation, conversion, and diffusion of ortho —para
species. Not on. ly is this a fascinating subject, but con-
trol of the concentration can be a key to a successful
experimental research program. In Sec. III, we dis-
cussed the symmetry classification of the molecules
into the ortho and para species (see Table V). As we
shall see, the ortho —para molar con.centration of the
hydrogens has a profound influence on the low-temper-
ature behavior in. the solid state. The thermodynamic
equilibrium concentrations for even rotational states,
p„and odd rotational states, ' p„are given by (see, for
example, Hill, 1960)

with

J—01 2 t ~ ~ o J=ly 3J ~ ~ ~

(5.1c)

where the g, are the nuclear weights or degeneracies
gi.ven in Table V and EJ is the rotational energy which
can be approximated by the first term in Eq. (2.16) (see
Table IV). The equili@ ium concentrations for H, and

D, are plotted in Fig. 15. In the high-temperature limit
p, /p, = 3 for H, and ~ for D„whereas these ratios go to
zero as T -0. ~e see that room temperature equili-
brium hydrogen, referred to as ~m rnaE-II„ is essen-
tially in the high-temperature limit with p, = 0.749 (for
normal-D„p, = 0.333). In the following we shall also
refer to the nonequil. ibrium concentration of even mole-
cules by c, and odd molecules by c,.'

Note in Table V that para-H2 and ortho-02 refer to even ro-
tational states and ortho-H2 and para-D2 to odd rotational
states. To achieve a uniform notation, we here refer to the
odd and even nature of the rotational states.

~One also frequently encounters the notation c=—x for molar
concentration and, e.g., x~ =—c~ for the molar concentration of
the J =1 species.
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A transition from an ortho to a para state in the hy-
drogens is called conversion. For isolated or nonin-
teracting molecules, conversion is forbidden. . As the
temperature is varied, the population of the respective
even or odd states varies due to interactions between
molecules which can cause conversion. For hydrogen,
a magnetic field gradient (to be discussed later) can
catalyze the transition, whereas for deuterium a mag-
netic or an electric field gradient will suffice. If a H,
molecule is converted by the magnetic field gradient
due to the magnetic dipole moment on another H, mole-
cule, then the conversion is intrinsic or homogeneous.
In the solid state at zero pressure intrinsic conversion
towards equilibrium takes place with a rate constant of
1.90%/h for H, and .060/0/h for D, . In the low density
gas phase conversion is extremely slow and accurate
values are not known as measurements are usually per-
turbed by walls or magnetic contaminants such as 0,.
Out-of-equili. brium samples of H, at NTP will typically
convert a percent or two in a week's time; properly
stored samples of D, at -NTP have been. known to show
little change in. the period of one year.

As a result of the slow conversion rates, if out-of-
equilibrium samples are prepared they will remain so
metastably for long enough periods of time to a].low de-
tailed studies.

A. Preparation of nonequilibrium ortho-para samples

Techniques exist for preparing the hydrogens in con-
centrations &99% even-J to &99% odd-J species. We
shall describe these techniques. Intermediate concen-
trations can be obtained by mixing measured amounts of
gas of known concentrations.

1. High-purity even-J species

The even-J species can be prepared by cooling sam-
ples and allowing them to convert to equilibrium. At
20.4 K the temperature of liquid hydrogen at 1 atmos-
phere pressure) equilibrium concentration is 0.998
para-H, and 0.978 ortho-D, . Normal-H„when liqui. —

fied, will be strongly converted after several days,
but to approach equilibrium would require weeks. This
can be greatly accelerated by bringing the hydrogen in
contact with a paramagnetic salt which acts as a cata-
lyst. The H, comes in contact with the surface, and
strong magnetic field gradients arising from electronic
magnetic moments on ions at the surface of the salt
catalyze conver sion w ith time constants of o rde r s e-
conds to minutes. These processes are first order and
the approach to equilibrium is exponential with the rate
equation in

apparently the most efficient. The salts must be acti-
vated to work effectively. We activate the Apachi salt
by heating to 150—175 C for a few hours and flowing a
slow stream of H, gas over the catalyst. The activa-
tion removes adsorbed water and air which evidently
saturates the active magnetic surface sites, "poison-
ing" the catalyst. Apachi has an effective surface area
of 500—600 m'/'g.

The most efficient conversion technique is to adsorb
about a monolayer of gas on the catalyst and then de-
sorb. A convenient geometry, in the form of a long
stai. nless steel wand (tube) of order 1 cm in diameter
and 70—100 cm in length, as shown in Fig. 16, is em. —

ployed. The catalyst is confined between fine screens.
The wand is immersed in a bath at -20 K (liquid hydro-
gen is an ideal cryogen). H, or D, is flown in the gas
inlet (several. liters NTP are adsorbed) to a pressure
of a few cm Hg. For H„ the wand is then slowly with-
drawn from the bath desorbing the gas which flows out
the inner tube, always having its last contact with the
catalyst at 20.4 K. If the bottom of the wand comes out
of the cryogen and warms up during desorption the
yield of high-purity even J will be reduced, as the last
part of the gas will be at a higher equilibrium tempera-
ture. The converted gas can be produced up to pres-
sures of order 1 atm when desorbing. This pressure
cannot be achieved for D, at 20.4 K as it will liquify
with a vapor pressure of 26.6 cm Hg. In the drawing of
Fig. 16, the small reservoir at the bottom of the wand
serves to collect the converted liquid D, ; in withdrawing
the wand, it can be boiled off to a pressure of order 1
atm for storage.

Out-of-equilibrium samples must be stored in con-
tainers free of magnetic impurities. Pyrex bulbs can
be used for this purpose if they are baked to -400'C
and pumped to remove oxygen impurities. The ortho—
para concentration can be determined by use of an ana-

Detection and Storage
—Ga s Inlet

APACHI or

Activated Alumina

dc, (c, —p„)
1 —Io~

(5.2)
—Liquid H 2

where c, is the concentration of even rotational species,
ppq I s its equ il ibri um value, and K, i s the even-odd
r ate cons tant. Two commonly us ed salts are ferri c
oxide gel and Apachi nickel silica gel. The latter is

Apachi Nickel-Silica catalyst No. 197-CP. Manufacturer:
Houdry, Division of Air Products and Chem. Inc. , Philadel-
phia, Pennsylvania.

FIG. 16. Cryostat and wand for use in the preparation of high
concentration ortho or para H2 or D2.
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lyzer based on the difference in thermal conductivity of
the ortho —para species (Grilly, 1953). A pair of
matched Pirani vacuum gauges are placed in a bridge
circuit which is balanced with both gauges filled with
normal-H, . One arm is then evacuated and filled with
the sample of unknown concentration. If the bridge is
operated at liquid nitrogen temperatures, where the
difference in thermal conductivity of the two species is
large, a bridge imbalance that is almost linear in cori-
centration and large enough to measure with an accu.—
racy of order 1% will be achieved.

Thermal conduc'tivity bridges can be calibrated with
samples with a known concen. tr ation prepared by cata-
lysis at a known temperature. This requires some con-
sistency checks to be assured that the catalyzer is oper-,
ating properly. A direct determination of the concen-
tration can be made by means of Haman scattering. In
this case, the Raman scattering efficiency, S(i-f) is
proportional to

(5.3)

where ~ is the frequency of the incident light, ~' that of
the scattered light, ~,f is the frequency shift, I',. is the
probability that the initial state is occupied, and n„„is
the anisotropic polarizability of the gas. I',. is given by

P, =e sr~" / g. (24+1)exp( —Ez/kT),
ev en
OF

J Odd,

(5.4)

where the even. sum is taken for even i and odd for odd

S(0- 2)/S(l —3)
S(0-2)/S(1-3)+ —,'T[(~ —~ )/(~ —~„)I' (5.6)

For kT«6B, T =1. At T=293 K T= 0.597 for H, and
0.447 for D, .

Ortho —para concentration measurements can also be
made by NMR, monitoring the signal strength arising
from one of the nuclear species. However, this also
requires calibration with a sample of known concentra-
tion.

As a final comment we note that although c,= 0.998
for H, is usually sufficient for high-purity even-J sam-
ples, c =0.978 for D„catalyzed at 20.4 K, can be in-
adequate. By catalyzing at -18.7 K, the melting tern-
perature of D„c can be increased substantially to
0.985. A technique of achieving even higher pur ities
will be suggested at the end of the next section.

2. High-purity odd-J species

At first view of Fig. 15 of the equilibrium concentra-
tions of H, or D, it would seem impossible to produce

The matrix element of the gas is proportional to c,p
for even molecules and (1 —c,) p for odd moiecules
times the matrix element for a single molecule (p is the
number density of the gas). Evaluation of the matrix
e le me nt y ie lds

S(0 2) 5 c ~ ~ 3 L~ 7e lOB/kT+
e 02 (5.5)S(1-3) 3 1 —c (u —u)„1+58 3 " + ~ ~ ~

Ca, lling the quantity in the curly brackets w, we find

concentrations of o-H, higher than 75%, or of p-D,
higher than 33—,'%, without the aid of a Maxwell's demon.
However, Sandier (1954) first noted that at low temper-
ature the ortho-para concentration ratio of H, adsorbed
on TiO, was greater than that of the gas reservoir from
which it was adsorbed. Cunningham et al. (1958) used
this preferential adsorption on y-alumina at 20.4 K to
produce enriched o-H, and p-D, in the gas phase. The
technique was further developed by Depatie and Mills
(1968), who used Alcoa activated alumina11 (AAA).

In order to be effective for enrichment, the separa-
tion coefficient, defined as

S = (c,/c') /(c~/c', ), (5.7)

must be greater than 1, where c',/c' is the ratio of the
adsorbed mole fraction of odd and even rotational
states, and c~/c~ is the corresponding ratio in the gas
phase. Silvera and Nielsen (1976) measured S = 39",
for H, and S= 5.0&0.3 for D, on AAA.

The enrichment process of Depatie and Mills can be
described with the help of Fig. 16, with the wand filled
with AAA. At 20.4 K, the AAA is saturated with nor-
mal H„and at a pressure of about 4 cm Hg, n-H, is
slowly flown through the wand. The effluent, which is
continually monitored for concentration, is initially
rich in even J, as the odd J is "leached" by the AAA.
Eventua. lly the system will come into steady state with
n-H, entering and leaving the wand, and the adsorbed
H, enriched by the separation coefficient (in steady
state equilibrium with n-H, at 20.4 K). It is important
to flow the gas slowly enough so that molecules can ex-
change between the gas and surface and come into equi-
librium. At this point the inlet valve is closed and the
wand is slowly (a few cm/minute) withdrawn from the
bath. Enriched H, desorbs from the top and passes
down the column, further enriching the adsorbed H, .
Finally there remains only a highly enriched zone of
adsorbed H, which is detected by the ortho-para ana-
lyzer at the outlet. When this is achieved a valve is
opened to a storage bulb and the wand is rapidly with-
drawn, desorbing the high-purity ortho-H, . This pro-
cess can yield -5 1 NTP (depending on the volume of
AAA) of purity -0.99 ortho-H, and 0.98—0.99 para-D, .
It is important to withdraw the wand slowly enough to
allow gas —surface molecular exchange. However, too
slow a withdrawal results in a reduced yield or purity
due to slow back conversion on the surface, evidently
due to magnetic impurities.

AAA must be activated by heating to -125 C and
pumping or flowing H, to carry off the desorbed gas.
An x-ray analysis has identified its main constituents
a.s y-AL, 03 and y ALOOH (Silvera. and Nielsen, 1976).

B. Enrichment mechanisms

In order to have preferential adsorption, it is neces-
sary that the adsorbed molecules have rotational energy
levels different than those in the gas phase. This
means that the H, —sur face interaction must be aniso-
tropic, and to be effective the anisotropic potential
barrier must be of the order or greater than the rota-

"Alcoa Chemicals, activated alumina grade F-l, mesh 8-14.
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tional constant, B. To calculate the separation coef-
ficient S, we assume that there is no conversion in the
gaseous or adsorbed molecules. Then we have two in-
dependent systems. The odd species in the gas must
be in equilibrium with those on the surface and likewise
for the even species. If the surface energy states are
known, the ratios p',/p,' and p', /p~ can be calculated using
expressions of the form Eq. (4.1). Sandier (1954) sug-
gested that the molecules might be confined to rotation
in two dimensions (2-D). The rotational energies are
easily shown (Eyring et al. , 1944) to be given by E'D
= Bm' where m = 0, +I, +2, . . . (even-m functions are
symmetric and odd-m functions are antisymmetric).
For ideal 2-D rotor surface states, one finds S =43.8
for H, and 5.45 for D, . White and I assetre (1960) at-
tempted to explain early measurements of S using an
axial surface barrier potential @ that would either have
lowest surface energies if the molecules lay in the
plane of the surfa. ce (2-D model for @-~) or lowest if
the molecular axis was confined to the barrier axis
(1-D oscillator for Q-~). However, they could not fit
the available data to either model. More recently, Sil-
vera and Nielsen (1976) have made a microscopic study
of the surface energy states by inelastic neutron scat-
tering of H, on AAA. Due to its nuclear moment, the
neutron can cause a conversion (ortho-para) transition.
Measurements in solid para-H, show a peak in the J
= 0-1 inelastic group at an energy transfer AE = 2B,
corresponding to the 2-D energy levels Z=BJ(Z+ 1).
Scattering from H, adsorbed on AAA shows a broad
peak at about 4E=B shown in Fig. 1V, and no peak at
2B. Although 4E=B is consistent with a 2-D model,
the large wing going to values of 4E&B is not. Silvera
and Nielsen interpreted this to be arising from a dis-
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FIG. 17. Inelastic neutron scattering groups for (a) solid H2,
(b) H2 adsorbed on graphoil and {c) H2 adsorbed on activated
alumina. Scattering counts from the base AAA are subtracted
off. Sample temperature was 5 K. Energy transfers are given
in units of the rotational constant (BH = 7.35 meV) (after SilveraH2
and Nielsen, 1976).
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FIG. 18. (a) Energy of the low-lying rotational states of a
hindered diatomic molecule as a function of ratio of the bar-
rier height (II) to the rotational constant (the barrier potential
is @ cos 0, where 0 is the angle between the molecular axis
and the normal to the surface). (b) Energy levels in the gas
state and for adsorbed molecules, with @ =GB indicated by the
arrow in (a). 8 represents an isotropic adsorption energy
(after Silvera and Nielsen, 1976).

tribution of adsorption sites with an axially confining
potential. The energy level diagram as a function of
the barrier is shown in Fig. 18(a). In Fig. 18(b) the
energy levels are shown both for the gas phase and for
the adsorbed states with a barrier height P =5B, low-
ered by an isotropic adsorption potential c. This bar-
rier splits the lowest ortho state into a singlet and a
doublet, separated from the ground para state by 4,
and b,„respectively. The inelastic neutron peak was
interpreted as a AE = 4, transition. The main difficulty
in this interpretation is the absence in the scattering
group of the AE= 4, transition. This possibly could
be broadened by strong mixing with translational
states. Using this model and considering only the low-

- est rotational states for low temperature, one calcu-
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lates

[3 exp[(c —n, )/kr]+ 6 exp[(s —b.,)/kT]].
9 exp(-2Il/kT)

c'/c' = exp(c/0 r),
and from Eq. (5.7),

S = —,
' exp[(223 —&,)/k T]+ —', exp[(2B —&,)/kT].

(5.8a)

(5.8b)

and allowed to convert to equilibrium at low tempera-
tures. At 4.2 K, c =0.9996. The D, could then be rap-
idly desorbed with little back conversion due to the
small first-order rate constant for catalytic conver-
sionn.

C. Conversion

A mean barrier potential of &f&
= 5.5Il gives a value of

Do=52 cm ', 4, =184 cm ', and S=39.
The value of S can be determined independently.

Note that if conversion takes plat..e on the surface,
which is the case for AAA, then at equilibrium

Soon after the discovery of the ortho —para species of
hydrogen, experimental investigations (Cramer and
Polanyi, 1933; Farka. s, 1933) showed that the rate
equation governing conversion in the solid or liquid was
second orde r:

pa/pa 3(e-ko/ kT+ 28-61 / k r)/1 (5 9) dc = —Kp
dt

(5.10)

3 0 HYDROGEN

t eq
C. —Ce

where the first excited para state can be ignored. A

measurement of the equilibrium value of p,'/p' on the
surface, combined with Eqs. (5.1), gives S from Eq.
(5.7). Because catalytic conversion rates on AAA are
rather slow, H, can be adsorbed, allowed to convert,
desorbed, and analyzed to determine (5.9). This can be
done repeatedly at time intervals less than 1/K„ the
conversion rate constant, to determine K,. The back
conversion rate constants on H, and D, are K, =0.05
+0.02h ' for H, and 0.2+0.08h ' for D, as determined
from Fig. 19 by Silvera (unpublished). The equilibrium
value yields S=39.', for H, and 5.0+0.3 for D» in
agreement with the neutron scattering measurements.

Finally we suggest here a technique for producing
- high-purity ortho-D, . D, could be adsorbed on AAA

with the solution

1/c.(t) —1/c.(0) = Kt, (5.11)

where K is the rate constant. Conversion requires a
simultaneous change of rotational angular momentum by
&J= 1 and the nuclear spin state must change between
the triplet and the singlet states. An isolated molecule
is stable and will not convert; the perturbation that
causes the transition arises from interactions with
neighboring molecules. In particular, the nuclear spin
transition requires a magnetic field gradient. Classi-
cally speaking the field must vary over the dimension of
the molecule to create a torque on the proton magnetic
moments to reorient them from parallel to antiparallel.
Quantum-mechanically, a uniform field has no matrix
elements between the singlet and triplet spin states,
but a field gradient can mix these states and allow
transitions. Thus anal=1 ortho-H, molecule will be
perturbed by the dipolar magnetic field of another
ortho-H, molecule. This field can arise both from the
nuclear spin magnetic moment and the rotational mag-
netic moment. A J= 0, I= 0 para molecule has no mag-
netic moment and cannot cause conversion. As a con-
sequence the rate is quadratic as in Eq. (5.10).

Kn D, the rate equation is given by

0 8 16 24 32 40

&/I- C Ch3

7 DEUTERIUM

-In C. —
I

K, = 0.2 —0.08 h

3
2
1

0 5 10 15

t/i- C Lh3

20

FIG. 19. Data for the determination of the conversion rate of
H2 and D2 adsorbed on AAA at T =20.4 K. The slope of the
straight line fit provides E~, as can be seen from the solution
of Eq. (5.2) (in the figure ct —=ce, c~ =p ) (after Silvera,
unpublished).

'= -Kc', —K'c,(1 —c, ) . (5.12)

There are two important differences with H, : (1) para-
D, (J= 1,I=1) can interact with not only the dipolar
magnetic field of another para, but also with the I=2
state of an ortho-D, (8 = 0, I=0, 2) molecule giving rise
to the term in K', and (2) the spin 1 deuterons also
bear a nuclear quadrupole moment which couples to the
electric field gradient arising from the molecular elec-
tric quadrupoles of neighboring molecules; this only
contributes to the term in K since the electric field
gradients arg zero for a J=O molecule. In the event
that K= K', then D, obeys the differential equation
dc, jdt= K'c„which has an exponential solution.

Calculations of the intrinsic rate constants for zero-
pressure H, have been carried out by Motizuki and
Nagamiya (1956a) and Berlinsky and Hardy (1973), who
studied conversion in the orientationally ordered phase
of H„and in D, by Motizuki (1957, 1962). The calcu-
lations are quite detailed and w'e shall only present the
important points here. The conversion rate is calcu-
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5~2
52

FjG. 20. Vectors that define the positions of the protons for
two H2 molecules (after Berlinsky and Hardy, 1973).

lated from the golden rule,

P, &;„t i
i, f

(5.13)

where P,. is the probability that the system is initially
in one of the g,. states i, and f is the final state. The
interaction is 8C;„,=K„+K „+K ~+, where K„ is
the spin- spin interaction, K„is the rotation spin in-
teraction, and KE+ the electric quadrupole interaction.
For purposes of discussion, we shall only write down
K„. The magnetic dipole-dipole interaction in spheri-
cal components, after Berlinsky and Hardy, is5, , Ir, +r, —r I'

x g C(112;~n)i, ,i "1', '" (0, , ) ~ (5.14)

The vectors defining the positions of the nucleons are
shown in Fig. 20; p, ~ is the magnetic moment of the
nucleon with nuclear spin i and Q, , ~ specifies the ori-
entation of vector r, + r~ —r~. A similar term can be
writtendown for K„as well as a term for KE@, analo-
gous to Eq. (3.15) with an R ' dependence [this term
differs from (3.15) in that the interaction is with the EQ
moment of each nucleon, not the total molecular EQ
moment]. Conversion involves the change of nuclear
spin coord&nates in the central molecule, p, explicitly
given in (5.14), change of the rotational coordinate of

p, which can be explicitly seen by expanding about r~,
and creation of one or more phonons in the final state,
required to cons er ve the energy 2B which becomes
available from conversion. For H, 2B/k~ = 171 K and
for D„86 K. The largest phonon energy is character-
ized by the Debye temperature 0~= 120 K for H, and

=109 K for D2. As a consequence final states of H,
will involve two phonons, whereas for D, one phonon
will suffice. The phonon coordinates of the interaction
are made explicit by expanding around small displace-
ment u, of the molecule at 6:

X;„,= (u, V)(r~. V) 3C,„,+ —,'(u, V) (r~ V) 36,„, . (5.15)

We can now make a number of general statements.
From (5.14) and (5.13) we see that for the (dominant)
K„ interaction the rate depends on p, ~. Since the mag-
netic moment of the deuteron is about 3 that of the pro-
ton (see Table X), the rate for D, will be -10' slower,
all other things equal. However, D, has more conver-
sion states, the EQ mechanism, and most important,
converts with one-phonon creation, w inning back part of
this reduction due to the smaller magnetic moment.
The explicit density dependence for H, is p"~' [the gra-
dient operator in Eq. (5.15) increases the R dependence
of K„ to R ' so that W-R "]with a more complicated
factor due to the density dependence of the phonon den-
sity of states. For one-phonon conversion W-p'
x (phonon density of states factor).

Motizuki and Nagamiya (MN) calculated K= 1.94/0/h
for H, and Berlinsky and Hardy (BH) found 1.67/o/h.
For D, Motizuki (1962) found K= 0.1269%/h and K'
=0.1779/o/h so that K= K' and dc, /dt= —K'c, . We
shall make a few remarks on the approximation and
contributions of various sources. MN took OD= 91 K
for H„whereas the current accepted value is OD= 120
K. The effect of this is discussed by BH. MN also
used a lattice constant of 3.75 A; the current value is
3.77-3.789 A depending on the ortho —para concentra-
tion. With an R "dependence this can give up to a 12%
reduction in their calculated rate constant. MN also
considered three-phonon final states in H, which in-
creased K by 10%. MN also showed that the rotation-
spin interaction contributes only about 2.5% to the rate
for H, since p.„=0.3p, ~; for D, p, „=0.5p. D. For H, the
nucleon has no quadrupole moment; the contribution of
K E Q to conversion in D, is about equal to the dipole—
dipole contribution.

A number of experimental measurements exist for H,
which are tabulated by Schmidt (1974); in addition there
has been a recent measurement by Berkhout et al.
(1978). All of these are in relatively good agreement.
We find the weighted average of several independent
measurements to give 1.90 a 0.05/o/h. Schmidt per-
formed long-term (-1200 h) NMR measurements on the
conversion rate of H, . At low temperatures and low
concentration of 8=1, he observed deviations from Eq.
(5.11) such that the conversion rate apparently in-
creases with decreasing c,. This is attributed to a

TABLE X. Molecular and nuclear moments. The nuclear Bohr magneton is p&= 5.050 38(36) &&10 erg gauss

Molecule or atom
Mol.ecular rotational

magnetic moment, & = 0, J= 1 Nuclear magnetic moment Nuclear quadrupole moment [cm ]

Hydrogen
Deuterium

0.882 91@,g
0.442 884@,~

2.792 743@~
0.857 407 3pg 0.002 738

' Harric and Ramsey (1952).
Barnes et al. (1954).
See N. F. Bamsey (1956).
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clustering of 8=1 molecules due to attractive EQQ in-
teractions (see following section).

The first measurements of conversion in solid deu-
terium were by Grenier and White (1964); however,
their large experimental error, possibly due to oxygen
impurities, prevented extraction of a rate constant.
Milinko and Sibileva (1974, 1975) have studied conver-
sion in deuterium (as well as in hydrogen) over a wide
eange of concentration and find K= K' with K' = 0.053
+0.003%/h. Berkhout ef al. have also made a. careful
study of conversion in D, for c, & 0.9 and found a rate
constant K' =0.063+0.001%/h. Taking a weighted av-
erage we find K' =0.060+0.003%/h for D2 at zero pres-
sure and 4.2 K. This is more than a factor 2 smaller
than the theoretical value of Motizuki.

The density dependence of conversion in H, was first
studied experimentally by Ahlers (1964). Although he
saw an increase in conversion, due to the paucity of
data points, he failed to observe an interesting dip in
the conversion rate, found later by Pedroni ep aE.
(1974). These data are shown in Fig. 21. Berlinsky
(1975) provided a detailed calculation of the density de-
pendence of K in H„ in reasonable agreement with ex-
periment. As density increases, the width of the pho-
non frequency spectrum increases. When the maximum
is equal to 2B, conversion with one-phonon final states
is allowed, increasing the rate constant. As the density
is increased, the one-phonon density of states is
scanned through the conversion energy. The dip in
K arises from a dip in the phonon density of states.
The density dependence of conversion due to the phonon
density of states evidently dominate s the p" ' depen-
dence due to the gradient of the dipolar fields. This
suggests an interesting (but tedious) technique of study-

I
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FIG. 21. The conversion rate (R) as a function of relative
density in hydrogen. The circles are the data of Pedroni
et aE. , 1974; the crosses those of Ahlers (3.964) (after Pedroni
et al. , 1974).

ing the phonon density of states by final state relaxation
spectroscopy, which is scanned by varying the sample
pressure.

As we have seen from Eqs. (5.13) and (5.14) the con-
version rate depends-on the square of the magnetic mo-
ment of the perturber and the square of the moment of
the converted molecules. If a paramagnetic impurity
such as 02 is present in H„ then since p, o jp, z-—1320,

2
this can have a dramatic effect on the conversion rate.
MN (1956a) have calculated the effect of 0, impurities
on conversion in H, . The formalism is the same as for
homogeneous conversion and they considered only two-
phonon final states, with a resulting Ko = 25 x 10' (Ro/2R)"%/h. The radius of the sphere for which Ko =R„,
is R = 2 7Rp We see that an O2 impurity rapidly de-
velops a sphere of para molecules around it. Since H,
can diffuse, the effective conversion rate can be strong-
ly enhanced as ortho molecules move into the sphere of
influence of an 0, molecule, as has been shown by MN
(1956b).

Although this calculation demonstrates how effective
paramagnetic impurities can be, in a certain sense 0,
in H, is a poor example. Omar and Dokoupil (1962)
have shown that the solubility of 02 in liquid hydrogen
(for T between 27 and 33 K, at pressures close to the
equilibrium vapor pressure) is less than 0.2 ppm.
Schmidt (1974) has also condensed gaseous mixtures
of 0, and H, and found no effect on A' due to the separa-
tion of the two types of molecules It ls possible how-
ever, that rapid cooling can quench 0, in H, or that the
solubility is higher under pressure. A slow cooling of
liquid H, will result in an almost 0, (as well as N, )-
free sample. If, however, 02 condenses on the walls
of the sample container, then this can effectively cata-
lyze liquid H, which rapidly samples" the walls.

02 impurities in gaseous H, are extremely effective
catalyzers. This is discussed in Farkas (1935). Niel-
sen and Dahler (1967) have calculated the rate constants
for this case.

Recently Krause and Swenson (1979) have studied con-
version rates in solid H, for a series of isochores with
molar volumes to about 16 cm'/mol. In warming their
samples they observed enhanced conversion rates for
T z 0.080D. No plausible explanation has yet been pro-
posed, .and it is not clear if this is an intrinsic or im-
purity mechanism. One can consider the possibility
that under pressure the solubility of oxygen impurities
is increased. As the temperature is raised o-H, mole-
cules diffuse (see next section) into the range of the
magnetic impurities and are converted. In any case
further systematic studies are probably required to sort
this problem out.

Conversion on magnetic surfaces is a rather complex
phenomena which requires knowledge of the H, spin and
translational time correlation functions, surface poten-
tials, rotational states on the surface, and the distribu-
tion of surface spins (random or a dense magnetic lat-
tice). We refer to the article by Petzinger and Scala-
pino (1973) for a general treatment.

D. Diffusion

Self-diffusion- in the hydrogens can be separated into
two types: classical translational diffusion which is
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effective at high temperatures and quantum-mechanical
rotational diffusion which is important for low J= 1
concentrations and low temperatures.

1. Thermal l y activated diffusion

Classical diffusion was first studied in H, by Rollin
and Watson (1955) by measurement of NMR nuclear re-
laxation times and subsequently by Bloom (1957), Haas
et a/. (1961), and Weinhaus and Meyer (1972). In H, at
zero pressure, classical diffusion begins to become
important (certainly for NMR relaxation) at T = 10 K.
Diffusion can be characterized by the time between
jumps

(5.16)

where F. is the jump activation energy, and the diffusion
constant

(5.17)

where DO=R'/6wo for a random walk with (lattice) step
R. Weinhaus and Meyer summarize measurements on

H, and find for the activation energy E/k~ = 200+ 10 K.
The value of &o depends on o-p concentration, but an
average value is 7,= 7.9x 10 ' s and D, = 3x 10 ' cm'/s.
At 10 K, this yields a time &= 3.8& 10 s which a
molecule spends on a s ite bef ore it jumps to anothe r.
At 10 K one has D= 6.3x 10 "cm'/s. Weinhaus e/ a/.
(1971) have also studied diffusion in D, . Self-diffusion
begins to become important for T ~ 13 K. They find
E/ks = 288 K, D, = 2.3 x 10 ' cm'/s and z, =9.4 x 10 ' s.

The theory of self-diffusion in H, and D, has been
treated by Ebner and Sung (1972). They considered
two mechanisms: quantum-mechanical tunneling and
thermal activation over a potential barrier or vacancy
motion. The first process could be important in hy-
drogen because the wave functions on neighboring sites
can overlap appreciably (as in helium), allowing the
particles to exchange positions. In their model they
consider the vacancies to be localized. They use a
single-particle quantum crystal calculation to calculate
the energy levels and barrier for a molecule adjacent to
a vacancy in hcp hydrogen, which gives a double well
potential. The resulting diffusion coefficient has a
high-temperature form D= 6x 10 4e '" r cm'/s, due to
classical thermal excitation over a barrier. They also
find a low-temperature term due to quantum-mechani-
cal tunneling with an activation energy of 112 K. The
latter has not been observed experimentally. However,
the high-temperature activation energy of 197 K is in
remarkably good agreement with experiment. Oyarzun
and Van Kranendonk (1971) have shown (see following
subsection) that for most experimental situations, the
J= 1 concentration is sufficient to reduce the quantum-
mechanical tunneling by a factor of order 10" due to
rotational tumblin" which reduces the mass tunneling
rate to a negligible quantity.

In D2, Ebner and Sung find a high-temperature activa-
tion energy of 290 K, also in a good agreement with ex-
periment. They considered the pressure dependence of
D and found Do to be quite insensitive to density whereas
the activation energy E increases sharply, as the mole-
cules are localized with increasing density. Their cal-

culations of E again are in accord with NMR measure-
ments of Z up to 230 bar by Smith and Squire (1958).

2. Quantum rotational diffusion

At 1 K in H, the thermally activated diffusion time is
10'~ seconds f Nevertheless, at low. temperatures Am-
stutz et a/. (1968) detected diffusion of ortho-para
species by means of NMR. Isolated J=0 species have
no NMR spectra, whereas an isolated J=1 molecule or
isolated pair of J= 1 molecules, which exist at low con-
centration c„have distinct spectra. In lowering the
temperature of solid H, from 4.2 K to 0.4 K, they ob-
served a growth of the intensity of the pair spectrum at
the expense of that of isolated J=1 molecules, implying
ortho-para diffusion and clustering of ortho-H, mole-
cules at low temperature. Equilibr ium was approached
exponentially with a time constant of order hours, de-
pending on temperature and concentration. Subsequent-
ly such diffusion has also been observed by pressure
changes at constant volume (Jarvis e/ a/. , 1969), by its
effect on conversion (Schmidt, 1974), specific heat
(Roberts and Daunt, 1970), microwave absorption
(Hardy 8/ a/. , 1977), infrared absorption (Roffey c/ a/. ,
1974), etc.

The effect was explained by Oyarzun and Van Kranen-
donk (1971, 1972). They studied two mechanisms for
quantum diffusion. The first is the exchange mecha-
nism discussed in the preceeding section. Although
the intermolecular exchange rate is reasonably rapid
for an isolated ortho molecule in a para lattice, it is
severly reduced, already for c, = 0.01, due to the EQQ
interaction between ortho molecules. In exchanging,
the orientational energy, which is large compared to
the exchange energy, has to be conserved. If the ortho
molecules are reoriented or would have a different
number of ortho neighbors with a different energy after
a hop, then the hop is energetically blocked. The re-
duction factor of the hopping rate is of order 10', giving
a negligible rate constant of order 10'-10"h.

A second mechanism consists of the conversion of an
ortho into a para molecule with the simultaneous con-
version of a neighboring para into an ortho molecule.
This resonant conversion is also reduced by the factor
-10' due to energy conservation requirements, but was
found to be a much more probable process. The basic
interaction responsible for the resonant conversion is
the same as that due to conversion tsee Eq. (5.15)]. In
a deta, iled calculation Oyarzun and Van Kranendonk give
a lucid description of the process and find a rate con-
stant of order 2 h, in agreement with experiments. For
D, the calculated rate is reduced by about 100, mainly
due to the smaller nuclear magnetic moment; quantum
diffusion has not been observed in D, .

At low temperature, equilibrium favors configurations
with ortho molecules clustered as nearest neighbors
(nn) rather than next nearest neighbors (nnn), as pair
energies arising from the EQQ interaction are lower in
the nn configuration. Since nnn pairs have energy
states which overlap those of nn pairs, resonant con-
version is not blocked by the energy conservation re-
quirement and the ortho-H2 molecules cluster.

In the hcp lattice, two types of nn pairs exist. In the
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microwave experiment of Hardy et al, . (1977) they were
able to observe different rate constants for the two dis-
tinct types of pairs. More recently Schweizer et al.
(1978) have observed a strong unexpected increase in
the clustering rates in samples at =25 mK. They find
a disappearance of the signal due to one of the pair
types, probably due to rotational hopping to the other
pair type in the hcp lattice. However, Cochran and
Gaines (1979) have proposed an explanation which does
not require assuming enhanced diffusion rates at low
temperatures.

Vl. C R YSTAL STRUCTUR ES, OR D ER, AND PHASE
TRANS IT IONS

The path to the understanding of the crystal struc-
tures or the phase diagram of the solid hydrogens has
been long, difficult, and full of pitfalls. In this section
we shall first give a historical description of the struc-
tural determinations. This perhaps sometimes contra-
dictory array of information will then be analyzed to
present a more detailed account of our current know-
ledge.

The first crystal structure determination was an
x-ray diffraction study by Keesom et al. (1930) on pure
para-H, at helium temperatures. Their seven x-ray
reflections could be fit to the hexagonal closest packed
(hcp) lattice. This remained unchallenged for 26 years,
until Kogan et al. (1957) reexamined the crystal struc-
ture. These workers studied n-D, and n-H, at helium
temperatures and determined the structure of n-D, to be
body-centered tetragonal (bct), based on one reflection;
they found the same for n-H„ from two reflections.
They also found the same structure for n-T, (Kogan et
al. , 1960). Neutron studies by Kogan et al. (1961) on
n-H, and n-D, at 12 K also indicated a tetragonal struc-
ture with a unit cell twice the dimension of the previous
cell, interpreted as ordering of odd- J molecules. This
Soviet work was reviewed by Kogan (1963).

In 1962, Van Kranendonk and Gush (1962) argued that
the bct structure was not compatible with optical data,
whereas hcp was. A few years later Kogan et al. (1964)
and Bulatova and Kogan (1964) realized that they had
been plagued by problems of oriented polycrystalline
growth and the screening of important x-ray lines by
the sample substrate: their x-ray patterns could only
be indexed as hcp, consistent with the early I.eiden
work of Keesom et a). The structure of hydrogen was
thought to be understood; however, the story was only
beginning.

Curzon and Pawlowicz (1964a, b) studied H, and D,
solidified from gas on a cold substrate by electron dif-
fraction. Although their first report was in error
(measurements were made on an N, contaminant instead
of D, ), they corrected this to find a face-centered (fcc)
structure for n-D, as grown from vapor at T= 7 K.
Similar results were obtained for n-H, (Curzon and
Mascall, 1965) with some traces of hcp for thicker
samples. Bostanjoglo (1965) and Bostanjoglo and
Kleinschmidt (1967) obta, ined the same result for T
=2.8 to 7 K, also by electron diffraction on n-H, and
n-D, . Thus H, and D, could be prepared in hcp and fcc
structures, depending on the growth technique.

Early measurements by Giauque and Johnston (1928)
and by Simon et al. (1930) signaled a. phase transition
in H, by the anomalous increase in specific heat, down
to temperatures of order 3 K. This implied transition
was discussed by Pauling as a lifting of the rotational
degeneracy of the molecules in the J= 1 state. Much
later, Hill and Ricketson (1954) observed the A. specific
heat anomaly and Reif and Purcell (1953), an NMR
anomaly in n-H, at T= 1.5 K. This was also discussed
as an orientationa, l ordering of the J= 1 molecules. In
a classic paper, Nakamura (1955) discussed the aniso-
tropxc xnteractxons zn H, and analyzed the speczfzc heat
anomaly in terms of the lifting of the degeneracy of the
J= 1 states due to EQQ dominated interactions.

However, the hcp and fcc phases discussed above
had nothing to do with this phase transition t In 1965
Clouter and Gush (1965) observed an abrupt change in
the infrared spectrum of n-H, upon cooling, which could
be interpreted as a change from hcp (high-temperature
phase) jto a structure with inversion symmetry at the
molecular sites, possibly fcc. Shortly thereafter Mills
and Schuch (1965) studied n-H, at low temperatures by
x-ray diffraction and established that the phase transi-
tion involved a change of molecular centers from an
hcp lattice at high temperature to an fcc lattice below

. 1.5 K; however, they could not locate the proton posi-
tions to establish that an orientational ordering of the
J= 1 molecule occurred. Schuch and Mills (1966) and
Mucker et al. (1966) then studied enriched ortho-D, by
x-ray and neutron scattering, respectively, and found
the hcp- fcc transition. They also found the curious
result that some of the cubic phase remained when the
temperature was raised above the A. temperature, im-
plying that the A. anomaly associated with the disorder-
ing of J= 1 molecules was not a consequence of the
hcp —fcc lattice transformation. In a classic experi-
ment, Schuch, Mills, and Depatie (1967) studied the
concentration and temperature dependence of the struc-
tural phase transition by means of x-ray diffraction on
odd- J enriched H, and D„establishing the dependence
of critical temperature, 2'„on concentration, as well
as the approximate critical concentration and the large
hysteresis in 2', . They further showed that cycling a
sample sev'eral times through 2', would stabilize the fcc
structur'e above T,. One could then associate T, with
the orientational ordering of the J= 1 molecules.

The structure of the orientationally ordered state also
attracted theoretical interest and was first correctly
predicted by Felsteiner (1965), classically [and Raich
and James (1968), quantum-mechanicallyj; experimen-
tal proof of this state required several years, however.
Felsteiner showed that an array of ordered EQ moments
would have a lower lattice energy on an fcc lattice than
on an hcp lattice and that the lowest energy, or ground
state, was the Pa3 (T6~) structure with four molecules
per unit cell shown in Fig. 22. Here the molecular
centers sit on the sites of an fcc lattice; the molecular
axes are oriented along the body diagonals. Correctly
speaking, it is the molecular orbitals or the axes of
quantization of the molecular angular momenta that
orient along the body diagonals. The Pa3 structure can
be decomposed into four interpenetrating simple cubic
structures such that on any given sublattice the axes of
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Pa3 Space Group

FIG. 22. The Pa3 space group of ordered hydrogen. and deute-
rium. In the upper drawing the spatial distributions (Ffp) of
the molecular axes of the four inequivalent molecules is
shown. One must bear in mind that the charge distribution
around the molecular axis is that given in Fig. 1. At the re-
maining sites we show the direction of quantization for the
molecules. The division into sublattices is shown in the lower
part of the figure.

the individual molecular orbitals are all parallel. The
phase transition from disordered hcp to Pa3 is evident-
ly driven by the EQQ interaction since the difference in
energy of the hcp and fcc lattice for isotropic interac-
tions (-10 ' K/molecule) is much smaller than the EQQ
energy (-5 K/molecule).

Mucker et al. (1966, 1968) reported that their neutron
diffraction peaks corresponded to the Pa3 structure.
However, this identification did not receive strong ac-
ceptance, as the tmo meak diffraction peaks responsible
for the identification mere strongly masked by two
strong coherent scattering peaks from the Al cell.
Their intensity fit was based on a classical model of
the form factor rather than the smaller quantum-me-
chanical form factor for the J= 1, M ~ = 0 state of D, .
The first clear evidence of the sublattice structure mas
from far-infrared measurements by Hardy pt az.
(1968a) on 99~/& odd-J H, and D, . They observed optical
phonons mhich can only exist if the structure has more
than one molecule per unit cell; this occurs if the
molecules order on the fcc lattice of molecular cen-
ters. However, their spectrum had three peaks where
only tmo phonon peaks had been expected from group-

theoretical considerations for Pa3. They suggested
that anharmonicity could allow for multiphonon peaks;
a definitive assignment to Pa3 could not be made. Next,
Hardy et al. (1968b) measured the librons (collective
reorientational excitations) in high-purity odd- J H, and
D, by Raman scattering. Theoretical considerations
led to a prediction of three distinct peaks; four mere
observed, none of which could be easily fit to theory.
They proposed that either the structure was Pa3 and the
fourth peak was a two-libron band, or the structure was
distorted from Pa3, possibly to R3 (C'„.). The spectrum
could be fit remarkably mell to this latter structure un-
der certain assumptions. This turned out to be a red
herring. " Silvera ef al. (1969) cast doubt on the A3
structure by observing that the J=0- 2 Raman spectra
of even- J impurities was not consistent with the point
symmetry of B3, although calculations of the exci-
tation spectrum could be provided to support the dis-
torted Pa3 (Coll and Harris, 1970a). Nakamura and
Miyagi (1970) supported one of the original suggestions
of Hardy et nl. (1968b) that three of the Raman lines
were single-libron transitions and the remaining inten-
sity was due to a. two-libron band. Coll et af. (1970b),
Coll and Harris (1971a), and Berlinsky and Harris
(1971b) were able to rather accurately account for the
experimental libron frequencies and two-libron inten-
sity using the Pa3 structure. At this time Hardy et al.
(1971, 1975) succeeded in growing large single crystals
of H2 and D, . From the polarization ratios of the Ra-
man spectra, they could unambiguously identify the
one-libron transitions, removing all reservations con-
cerning the Pa3 structure. Finally Mills et al. (1973)
and Yarnell gt al. (1S74) determined the Pa3 structure
from neutron diffraction studies on para-D„using a
technique which had no problems due to background co-
herent scattering from the cell as in the case of Mucker
gt a1.

However, as the problem of the ground state of or-
dered H, and D, was resolved, new phases emerged.
Jarvis gt al. (1969), Amstutz gt al. (1969), and Ramm
pt al. (1S70) carried out careful measurements of
(8P/BT), and NMR to about T = 0.5 K to establish the
critical concentration of odd-J H, and D, for ordering
in the Pa3 structure to be c,= 0.56. Sullivan and Pound
(1972) studied H, by NMR to T = 85 mK and found that
for T & 0.3 K and c & 0.56, a new phase appeared. Th is
phase i.s believed to be a quadrupolar "spin glass, " i.e. ,
randomly distributed orientationally ordered quadru-
poles. This is currently an area of int'ense research.

Still other phase transitions have been reported.
Durana and Mc Tague (1973) detected an hcp- fcc tran-
sition in para-H, at pressures of order 1 kbar, applied
by a piston. This transition cannot be reproduced
(Nielsen et a/. 1975; Berkhout and Silvera, unpub-
lished) in low strain crystals. Evidently the transition
was induced by the large internal strains inherent to
the piston technique.

Roder (1973) suggested that a new phase is present
near the melting line and at moderate pressures up to
a few hundred bars. Manzhelli ei al. (1973), in a ser
ies of papers, have found such a high-temperature
phase and identified it as fcc. This has recently been
discussed by Mills (1978), who presents a, possible new
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phase diagram for P-P-T and concentration. However,
Silvera ei al. (1978) have suggested that the premelting
phase dis cus sed in the Bus sian literature is again a
strain induced nonequilibrium state, as several experi-
menters have been unable to reproduce this phase in
low strain samples. Nevertheless, the possible exis-
tence of an fcc phase, presenting a phase diagram simi-
13r to that of helium as shown in Fig. 29, is 3n intrigu-
ing possibility. Holian (1978) has predicted such a be-
havior for parahydrogen on the basis of a quantum cell
model.

Note added in Proof: Wijrgaarden and Silvera (in
press) have recently pressurized orthodeuterium to
150 kbar and find Baman spectra which are consistent
on.ly with the hcp structure.

For completeness, we mention here new phases that
undoubtedly will appear at higher pressures. As the
density is increased the anharmonic interactions in-
crease and the rotational states are mixed so that they
can no longer be characterized by a single rotational
quantum number. This means that para-H, and ortho-
D, will no longer be spherically symmetric in the
ground state. They have been predicted to have orien-
tational disorder-order phase transitions at pressures
in the range (0.5-4) && 10' bar (Raich and Etters, 1972).
Finally, at pressures of order 3 & 10' bar, molecular
H, is expected to have an insulator-metal transition
and become an atomic solid.

A. The ordered phase of J= 1 hydrogen and deuterium

The phase diagram of pur e 8= 1 H, and Dz xs shown in
Fig. 23. The most thoroughly studied region is at zero
pressure. As temperature is lowered, the bulk liquid
solidifies into the hcp orientationally disordered phase.
At zero pres'sure and T = T,= 2.8 K for H, and 3.8 K for
D„ the solid transforms into the orientation3lly order
dered fcc phase with the Pa3 space group already shown
in Fig. 22. In Fig. 23 the thick line separating the or-
dered and disordered phases indicates that hysteresis

exists in the transition temperature. The transition
has not been studied in great detail for P) 0; however,
recent far-infrared spectroscopic studies of Jochemsen
et al. (1979) indicate that the ordered state remains
Pa3 up to pressures of order 6 kbar, and T, scales as
the density p to the —,

' power. This is consistent with
the idea that the transition is driven by the EQQ inter-
action since the coupling parameter 1"-R '- p'~'. They
also observe the persistence of hysteresis at high
pressures.

The structural phase transition at zero pressure was
first studied in great detail by Schuch et al. (1988) by
elastic x-ray diffraction, which is sensitive to the lo-
cation of the molecular centers, but not the orienta-
tions. They studied the phase transition by monitoring
diffraction lines characteristic of the hcp or fcc
phases. From the disappearance and reappearance of
hcp lines in lowering and raising the temperature, they
could determine the transition temperature T, and its
hysteresis as a function of J= 1 concentration. The
simplified phase diagram is shown in Fig. 24, where
T„, refers to the hcp-fcc transition temperature and
T,„ to that for fcc —hcp. The behavior of H, and D, was
found to be similar. The higher transition temperature
for D, is a result of its smaller molar volume at zero
pressure, resulting in a larger interaction constant I .
This is an indirect result of the mass differences. H,
has a smaller mass and therefore a larger zero-point
motion which expands the T = 0 lattice. A remarkable
observation which Schuch et al. also made was that the
fcc phase could be stabilized above, as well as below,
the ordering phase line by thermally cycling the sample
around T,. After the initial lowering of the temperature
below T„when the temperature was raised above T„
the fcc x-ray line did not completely disappear and the
hcp line only partially recovered its initial intensity.
However, the sum of the two intensitie s normalized to
the virgin intensities did not add up to one, indicating
that part of the lattice was neither fcc nor hcp, but
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3

FIG. 24. Sxmplxfzed phase
diagram of sol~d H2 and 02
at zero pressure. Below
the critical concentration
x =0.56, no cooperative
ordering in the Pa struc-
ture is observed.
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probably translationally disordered regions which will
be called the intermediate phase. As the temperature
was cycled, more and more of the high-temperature
phase was stabilized in the disordered fcc structure.

The behavior can be described with the help of a com-
position diagram for a three-component mixture. ' This
is shown and defined in Fig. 25. In Fig. 26 we show the
behavior of 82/z p-D, with the help of such a dia. gram,
based on the x-ray work of Schuch et al. In this figure
the odd-numbered trajectories represent lowering of
temperature and the even-numbered, r Rising of tem-
perature. In trajectory 1, we see that the crystal
grows from the melt in the hcp phase and transforms
to fcc ordered at T„,. By. cycling the sample several
times up and down around T„,-T,„, we see that the fcc
phase can be stabilized above and below the critical
temperature. Thus one can have disordered fcc and
ordered fcc. If the sample is heated up to the diffusion
region (see Sec. IV), then it anneals ' back to disor-
dered hcp. From the x-ray. measurements, apparently,
the higher the J = 1 concentration the more easily is the
disordered fcc stabilized. The ordering transition ap-
pears to go to completion at T„,. Later, more sensitive
neutron scattering measurements b'y Mills et al. (1973)
and Yarnell et al. (1975) showed that below T„, there
was always a small residual amount of hcp phase that
remained. In the original x-ray experiments of Schuch
et az. , this small hcp component had been interpreted
as background and had been normalized out (R. L.
Mills, private communication). This is also indicated
in Fig. 26. X-ray measurements of H, show the same
behavior as for D» although the fcc phase evidently re-

I would like to thank M. Marrenga for suggesting this pre-
sentation.

intermediate

hcp fee
FIG. 25. Composition triangle for a three-component mix-
ture. The circular point represents a mixture with the frac-
tion x, of fcc, x& of hcp, and x~t~ of the intermediate phase.
Special points. are A, pure hcp; B, pure fcc; and C, pure in-
termediate.

quires substantially more thermal cycling to be sta-
bilized.

Measurements of (8P/BT)„ in H, by Jarvis et al.
(1969) and in D, by Ramm et al. (1970) also support
the thermal cycling behavior. The orientational order-
ing id responsible for a sharp decrease in molar vol-
ume at constant pressure or change in pressure at con-
stant volume, as was studied by the above authors. In
Fig. 27 we show the cycling behavior for 77/g p-D, .
This work supported the x-ray observation and showed
that the orientational ordering took place in the cycled
samples. Thus we arrive at the following picture. H,
in the J= 1 state condenses in the disordered hcp struc-
ture; at T= 2.8 K a phase transition takes place to or-
dered fcc (Pa3). After some cycling the fcc phase can
be stabilized above the ordering temperature so that
orientational ordering takes place on an fcc lattice. The
virgin hcp- fcc structural transition is driven by the
EQQ interaction which can a.chieve the lowest crystal
energy when ordered on an fcc lattice.
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diffusion

intermediate
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orientational ordering is of the order of T, -3—4 K
whereas the barrier is at least of the order of the melt-
ing temperature, -15-20 K per molecule. Hence the
ordering will not be able to drive the planes over the
barrier. The transition probably takes place by the
motion of some type of fault so that the barrier does
not have to be crossed. .In this case, the presence of
faults are fundamental for the transition.

B. Growth of crystals

FIG. 26. The complicated structural behavior of 0.82 p-D2 as
a function of temperature. Use is made of the composition
diagram described in Fig. 25. Thermal trajectories are
numbered in sequential order; odd-numbered trajectories are
for decreasing temperature; even for increasing temperature.
The thermal trajectories are discussed further in the text.

The neutron studies of Yarnell pg ~$. showed that the
transition is martensitic in nature and a substantial
density of stacking faults of the. hexagonal planes was
suggested by shifts and widths of the elastic neutron
lines in both the hcp and fcc phases. Thus the perfect
fcc crystal has a sequence ABCABC. . .of hexagonal
planes along a (111)direction. Faults of the type
ABCABABC or ABCABCBACBAC can arise. In the hcp
structure, the planes are stacked ABABAB along the g
axis. Faults of the type ABABCACA or A, BABCBCB
can arise. Hardy et al. (1975) point out that, in the
ordered state, there are two ways that the molecules
can order with respect to each other to form domains
in the Pa3 structure of perfectly stacked hexagonal
planes.

Very little is actually known about the dynamics of
the restructuring. Schuch cf al, (1968) obs.erved from
intensity measurements that the hexagonal p axis prob-
ably transforms to the cubic (111)direction. Hardy ef
al. (1971, 1975) found this to be consistent with Raman
scattering in the hcp Pa3 structures in a large quasi-
single crystal (a crystal probably containing domains).
Schuch gg aE. suggest that the structural transformation
takes place by a simple sliding of hexagonal planes rel-
ative to one another. However, in a perfect crystal
there is a rather large potential barrier for such a, mo-
tion and at the low temperature of the phase transition
the thermodynamic probability for such a motion is ex-
ceedingly small. The energy gained per molecule by

Single crystals are vital in sorting out the experimen-
ta]. properties of the hydrogen. As discussed earlier,
H, and D, samples tend to grow with a texture of small
crystallites. This evidently plagued the Russian struc-
tural determination work of the 50's. Schuch gg al.
(1967), however, were able to pick out small crystal-
lites and study their single crystal diffraction patterns.
Hardy et al. (1971, 1975) succeeded in growing large
single crystals of o-H„p-H„p-D„and o-D, with vol-
umes of order 1 cm' for Raman scattering experiments.
We shall describe their procedure.

Gaseous samples were condensed in a cylindrical
Pyrex tube (-10 mm i.d. ) with a thin (-1 mm) flat Pyrex
bottom as shown in Fig. 28. A pointed copper rod in-
sulated with styrofoam was attached to the bottom of the
tube so that a point on the bottom was cooled while the
side walls remained warmer. The tube was slowly
lowered in the thermal gradient of the cold gas above a,

liquid helium surface. Crystal growth would initiate at
a point at the bottom and would propagate upwards.
Crystals -10 mm long were grown in 20-40 min; growth
of single crystals could be monitored by viewing the
sample between crossed polarizers. Grain boundaries
of the hcp crystals are easily seen by the light intensity
variations. The hcp e axis tends to grow along the
thermal gradient. Once a single crystal is grown, the
most critical procedure is cooling from the vicinity of
the melting temperature to 4 K. H, has a tremendous
shrinkage, a,s much at 3% upon cooling to 1 K, and
tends to stick to the walls. The induced strain results
in cracked samples. Hardy gf aE. describe an anneal
procedure by which the samples were freed from the
Pyrex walls and were essentially strain free.

C. The question of hcp and fcc structures

At this point we discuss the sometimes unexpected
appearance of the hcp and fce structures. Bulk H, and
D„when grown from the melt in equilibrium with their
vapor pressure, are always found to be hcp for both
ortho and para species. As mentioned in the introduc-
tion of this section, diffraction studies showed that
films of H, or D, grow from the vapor phase at low
temperature in the fcc phase. The structure could
possibly be influenced by the epitaxy. However, Mills
et af. (1978) grew D, at 4.2 K by injecting D-, gas into
boiling liquid helium to achieve a bulk powder of solid
D2. They found that the D, grew in the fce structure
for both ortho and para species. When heated to the
diffusion region, it transformed to hcp and remained
so when again lowered to 4.2 K. Finally, we have the
behavior that J= 1 H, and D, can be driven to the fcc
structure by the orientational ordering and this fcc
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FIG. 27. Isochoric pressure for 0. 77 p-D& during several thermal cycles through the phase transition. Labels on the curves
number the thermal cycle and indicate cooling (c) or warming {w) (after Hamm et al. , 1970).

structure can be stabilized above T, by thermally cy-
cling the sample.

The stable structure of the lattice is that which has
the lowest free energy. At T =0 this depends only on
the lattice energy which has a static and a dynamic part
(zero-point energy). The environment of a molecule in

hcp and fcc is identical for the first three shells of
nearest neighbors (here we are ignoring anisotropic
interactions or orientational ordering), so the lattice
energy will be strongly influenced by the long-range
interactions. The static energies for hcp and fcc are
quite similar: (1 —E&„/E„„)= 3 x 10 ' (Bell and Zucker,
1976) for a I ennard- Jones potential. Although the
static energy is lower for hcp, the rare gases solidify
in the fcc phase except for helium. The difference in
lattice energy is quite small and the balance could be
changed by anharmonic contributions in the dynamic
energy, or non-additive interactions (Niebel and
&enables, 1974), etc. Needless to say, a change in
temperature could affect the balance.

We suggest that the behavior of the orientationally
disordered hydrogens can best be understood by assum-
ing that at high temperatures hcp is the stable lattice
and at low temperatures (of order 4 K) fcc is more sta-
ble. Ordinarily the potential barri. er between these
macroscopic states prevents the appearance of fcc at
low temperature. However, when grown at 4 K, the

stablest state, fcc is favored. At higher temperatures
vacancies and thermal motion enable the crystal to
transform to the more stable hcp phase. Only the J= 1
solids have a low-temperature mechanism —the orien-
tational ordering —which can drive the crystal into the
fcc structure. Upon warming slightly above T„ the
solid has a tendency to remain with the most favorable
disordered lattice —fcc.

lt would not be surprising if at higher densities the
stability Changed in favor of fcc (for the disordered
phase). In the cases of 'He and He at high densities
the fcc structure is favored, as shown in Fig. 29. The
hypothesis discussed above can also provide an under-
standing of the hcp- fcc transition observed by Durana
and McTague (1973) in p-H, under pressure. Evidently
the inhomogeneous strains due to the piston displace-
ment technique of applying pressure enable a partial
transition to the fcc phase, presumably by displacement
of crystal faults. The hcp- fcc phase transition near
the melting line reported by Manzhelli et al. (1973)
bears some resemblance to the behavior of helium.
However, Silvera, et af. (1978), H. Meyer (private com-
munication), and C. Swenson (private communication)
have been unable to reproduce this. Silvera et aE. sug-
gest that this transition may also be strain induced,
possibly due to the presence of helium impurities which
were present in some of the Russian experiments and
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FIG. 28. Apparatus used for growth of single crystals of H2 and 02. See text for description (after Hardy et a/. , 1975).

can dissolve in H, under pressure. " The experiments
in which the transition was not observed were all char-
acterized by conditions of rather uniform density sam-
ples.

D. Theory of the phase transition in J= 1 hydrogens

A large body of theoretical work on the orientational
order-disorder phase transition exists, and we shall
not attempt to provide a full coverage of this work.
Most treatments, are classical or molecular field ap-
proaches. Ordering of quadrupoles on lattices has been
treated by Nagai and Nakamura (1960, general), Fel-
steiner (1965, fcc), Raich and James (1966, fcc),
James and Raich (1967, fcc), Miyagi and Nakamura
(1967, hcp, fcc), James (1968, hcp), James (1968, fcc,
general), Felsteiner ef al. (1971, 1972, general) and
Sivardiere (1972, general). There has been no suc-
cessful treatment of the complete double phase transi-
tion, i.e., hcp- fcc and orientational ordering. Most
treatments study the ordering on an assumed lattice.

We shall outline the quantum-mechanical molecular

'3H. Jochemsen and I. F. Silvera have nonquantitative evi-
dence of He dissolved in 02 under pressure, unpublished.

field treatment of James and Raich (1967). The Ham-
iltonian for the model is

JC =gee, (n,.)+—g V, „(n„n,).,
t

(6.1)

(6.2a)

where BC,. is the rigid rotor energy, Eq. (2.16b), and
V, ,(=—Q~&&) is taken to be the EQQ interaction, Eq.
(3.17). A nearest neighbor approximation is used, and
the molecules are assumed to be on a rigid lattice-
i.e., no zero-point motion exists. J is taken to be a
good quantum number and all molecules are in the
states

~

J= 1,M) with no excitation of higher rotational
states. Thus within the manifold of J= 1 states K,. is a
constant and can be ignored. The EQ moment of a cen-
tral molecule i interacts with the electric field gradi-
ents due to the EQ moments of the surrounding mole-
cules —this is the internal field, U, In general the
state P

' of the central molecule will be a linear com-
bination of the three ~1,M) functions which is deter-
mined by U, Since U,. depends on the states of the
molecules, the states must be determined self-consis-
tently. The main objective is to determine the ground
state of the crystal which is given by the wave function
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FIG. 29. Phase diagram of 3He and 4He.

where p, are the quantum numbers of the zth molecule.
Three real basis functions, P, =2 '~'( —1'»+ Y, ,),
= i2 '~'(I'»+ Y, ,), and @,= I'» can be used to represent
the function P ~:

(6.2b)

where the y ' are real coefficients. The molecular
field at the jth molecule is

or nor malized linear combinations ther eof .
The effect of lifting the restriction of nearest neighbor
interactions is to slightly increase ~c, ~

by a factor
1.116.

The axes of quantization of the self-consistent wave
- function are the symmetry axes of the molecular field,

or the crystalline body diagonals of the fcc lattice. We
can describe the ground state with the wave function
(6.2)

U,-=P&y„'
~ V;, ~q"„&P', ,

J ~ V

(6.3) I „(n.,), (6.6)

where P', is the probability of state g„':

P," = exp( Ps' ) —g exp( —Ps,') . (6.4
Zq V

Here c'„ is the energy of molecule j and P=(kT) '. The
state of the system is determined by the solution of the
equation

where += 1 to 4 indexes the four sublattices and i runs
over the molecules on a sublattice. There are four
axes of quantization, corresponding to the body diago-
nals with threefold symmetry for each sublattice.

The temperature dependence of the molecular field
energies is shown in Fig. 30. A first-order phase
transition takes place at a critical temperature

Ugl u= st 4~ ~ (6 ~ 5) kT, = 21.2I'/41n2, (6.7)

We note that the matrix element of U,. at T= 0 is given
by

&~.~„~ v„(n„n,)~~.q. &=,,v„(n„n,),
where V, ,(n, , n,.) is the classical EQQ energy for qua-
drupoles with fixed orientations, Q, , and Q, In the
quantum-mechanical states P, , the interaction energy
is reduced by (—',)'. James and Raich show that this
factor;, is the principal difference between the classi-
cal and quantum-mechanical calculations. They find
self-consistent solutions to (6.5) on an fcc lattice. One
solution is P„'=-', for all j, p, . This represents the
state of complete orientational disorder and it is easily
seen that U,. =O, for all i. Below a critical tempera-
ture T„ they found a lower free energy state, namely
Pa3, with self-consistent solutions. For the ground
state, eigenenergies are s,(T=0)= -36I'/3, corre
sponding to the state Y,o; the states g, and c~ are de-
generate with s, ,= —19I'/3, corresponding to states

where we include all neighbors in the interaction. Us-
ing the rigid lattice value I' = I', (Table VIII), we obtain
T,= 7.26 K for H, and 8.98 for D, ; using the effective
value in the solid, I =1, which accounts for the effects
of zero-point motion, etc. , we obtain T, = 6.33 K for H,
and 7.85 K for D„about a factor 2 higher than found
experimentally.

More thorough analyses and consideration of lattices
other than fcc have shown that the Pa3 structure has
the lowest energy (Miya. gi and Nakamura, 1967). Sum-
marizing, the molecular field approximation (mfa) does
a good job in predicting the ground-state structure, but
provides a poor approximation for the critical tempera-
ture. . The problem undoubtedly lies in the absence of
correlations in the mfa. The lowest energy for a pair
of interacting molecules is the T configuration with F. ~
= —4I' (see Table IX). However, on the three-dimen-
sional lattice all pairs cannot be mutually perpendicu-
lar. The total lattice energy is minimized in the Pa3
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IO approximately the same value for T, as that of Lee and
Raich. Sullivan treated the dilution problem and found
a critical concentration of c„=0.50 which compares
well with experiment. The approximation used begins
to break down for cy «0.60, so that this theory is prob-
ably inadequate to accurately describe the curvature in
the phase line near cy: cy, .

0-

-IO-

I I

0.2 0.4 0.6 O.S
T/T

IO I2

E. The order of the phase transition

The molecular field approximation of James and
Raich (1967) predicted a first-order phase transition
for the orient3tional ordering of the molecules on the
Pa3 structure. However, in this approximation, the
EQQ Hamiltonian is effectively an Ising treatment and
Harris (1968) rigorously showed that in the Ising limit,
there is no transition. As was just discussed, theories
which go beyond the mfa give varying predictions. Cul-
len ef al. (1972) argued quite generally, using the Lan-
dau theory of phase transitions, to theoretically estab-
lish a first-order phase transition. They showed that
for quadrupoles on an fcc lattice, a third-order invari-
ant exists in the expansion of the free energy in the or-
der parameter and the transition to the Pa3 structure
takes place discontinuously. Thus, independent of the
hcp-fcc structural transition, one expects the transition
from disordered fcc to ordered fcc to be first order.

For a quadrupolar system (J= 1), two normalized
local order parameters can be defined, cr =—

~ (3J'„—2)r
and 7}

—= ( J'„,—J'„.)r. In the configuration of axial sym-
metry that occur for the Pa3 structure, q is zero. A
number of equivalent definitions of the long-range order
parameter have been used in the literature:

FIG. 30. Molecular field energy levels in Pa3 hydrogen. The
upper level is doubtly degenerate (after James and Raich,
1967). (6.8a)

structure in which the energy per pair for nearest
neighbor interactions is --'„I". At high temperatures
short- range order exists. As the temperature is
lowered, there is a competition between short-range
ordering which favors the T configuration and long-
range order favoring the Pa3 structure with the lowest
total energy. The correlations evidently lower the or-
dering temperature predicted by the mfa.

Raich and Etters (1968) attempted to account for cor-
relations by applying the Bethe-Peierls approximation
to hydrogen. They found no abrupt phase transition, in
contrast to the molecular field approximation which
predicted a first-order phase transition. However,
order sta.rts to set in at about the .same (high) tempera-
ture a.s in the mfa. They also treated the ortho-para
dilution problem, but found nothing comparable to ex-
periment. An improvement was made by Lee and
Raich (1972), who used a cluster variation method.
They obtained T, = 3.68 K for H, and T, = 5.03 K for D, .
They predicted a first-order phase transition at T,
from ordered fcc (Pa3) to ordered hcp which existed in
a narrow temperature region. The latter has never
been observed.

Homma and Nakano (1975) and Sullivan (1976) also
extended the mfa and found first-order phase transi-
tions that compare favorably with experiment and yield

(6.8b)

(6.8c)

Here we have included the possibility of dilution for
generality. N is the number of molecules, ()r is a
thermal average, and ~,. =—(6, , P,.), where 6,. is the de-
viation of the molecular axis from the ordering direc-
tion. With this definition 0 is normalized to be 1 with
full order (J', = cos'6= 1) and 0 when completely dis-
ordered (J2 = —',, cos'8 = —,').

The temperature dependence of the order parameter
was first measured by Meyer ef al. (1972) in D, . They
used NMR to study the splitting of the Pake doublet
which is a direct measure of the local order parame-
ter.
Later, Jochemsen ef aI. (1978) showed that the inte-
grated intensity of the far infrared absorption due to
IR active phonons is directly proportional to the square
of the long-range order parameter. The results of both
measurements for D, are shown in Fig. 31. One sees
that 0 is weakly temperature dependent and falls abrupt-
ly to zero at T„characteristic of a first-order transi-
tion. Few measurements are available for H„basical-
ly because of technical problems due to more rapid con-
version. Silvera and Jochemsen (1979) have recently
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F. The very-low-temperature phase

In 1972 Sullivan and Pound (1972a, b) studied the phase
line of H, by means of NMR for 0.40& e, & 0.70 at tem-
peratures below 100 mK, achieved with a 'He-'He dilu-
tion refrigerator. They observed the order parameter
by studying the splitting of the Pake doublet, v». Sam-
ples were held at constant temperature and aged to
lower the value of Qy For 0.55& py +0.60 the splitting
rapidly decreased. Ishimoto et af. (1973, 1976) studied
the free induction decay of the nuclear magnetization
for f-, ~ 0.08 and defined the transition line T*, by the
disappearance of beat structure on their NMR signal.
In this work it was suggested that below e, = 0.56 an
axial single molecule crystal field of the form of Eq.
(3.22d), P„=V,(3j', ——', ), was responsible for the lifting
of the degeneracy of the J=1 molecules and local orien-
tational ordering. However, the implied value of A was
much l.arger than found from other measurements.

T,* was also determined by Sullivan et af. (1975),
Sullivan (1976), Vinegar et al. (1977), Husa and Daunt
(1978), and Sullivan et al. (1978) from changes in the
NMR line shape. The resulting phase line is shown in
Fig. 33 (see also Fig. 36). The low-temperature phase
occurs for T ~ 0. 37 K and obeys the empirical relation

T,*(c,) = 550(c, —0.10)'~' + 10 (mK) . (6.9)

Sullivan (1976) reported on the temperature dependence
of the (local) order parameter as shown in Fig. 34.
The rapid change with temperature in v» was more
characteristic of a collective type ordering than the
behavior expected for depopulation of crystal field lev-

determined v by the infrared technique by aging' of the
sample. The crystal is held at a constant temperature
and allowed to convert which lowers T, and transcends
from the ordered to the disordered phase. Results
shown in Fig. 32 indicate a gentler transition. It is not
clear if this arises from the smearing out of the transi-
tion due to the finite conversion rate or a characteristic
of H, tha.t differs from D, .
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FXG. 32. Temperature dependence of the order parameter in
H2 for P =5.6 kbars andP =O. (A) Determination by variation
of temperature at almost constant x~. (B) Shows a determina-
tion of o. by variation of concentration x~ =—c1 at constant tem-
perature (aging), To (after Silvera and Jochemsen, 1979).

els, indicated by the dotted lines. Although Vinegar
et at. (1977) did not observe the abrupt temperature de-
pendence, their samples probably suffered from ther-
mal inhomogeneity which would smear out the transition.
In cooling from 14 K, H, samples contract arid tend to
pull free from walls, giving reduced therma. l contact.
Sullivan's samples were frozen on fine wires, provid-
ing a better contact to carry away the substantial
amount of heat generated by conversion.

Based upon the abruptness of the transition and the
NMR line shape Sullivan et al. (1978) have suggested
that the very-low-temperature phase is a quadrupolar
glass, in analogy with spin glasses. In this case the
J= 1 molecules are randomly distributed on a close
packed lattice. For Qy + 0 55 the long-range order is
no longer sustained. For low enough temperatures,
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prediction for the Pas phase line (Sullivan, 1976) (after Sulli-
van et al. , 1978).

interactions break the local symmetry so that quadru-
pole moments v,. = (3J'„.—2) and q,. = (J2 —J', ) are
frozen at random from site to site. An example, in
two dimensions, is shown in Fig. 35. For a spin glass,
under certain conditions, one expects a transition at a
critical temperature T,*-(Zy)'~'/k~ where Z is the
number of effective neighbors and y the variance of the
random interactions. For a close packed structure,
taking Z= 12@, gives T~ -e', ' in reasonable agreement
with experiment. However, Sullivan et al. (1978) esti-
mate T,* to be 3 times higher than experiment. Recent-

FIG. 34. Temperature dependence of the order parameter in
the very-low-temperature phase as determined by NMR tech-
niques. The dotted lines show the behavior to be expected if
the temperature dependence were due to the depopulation of
energy levels of 4 =1 molecules in a cylindrically symmetric
crystalline field of strength &~. Here x =—c~ (after Sullivan,
1976).

ly Gates et al. (1978, 1979) have studied the hcp to fcc
(=—cfc) phase transition in single crystals of H, by x-ray
diffraction at very low temperatures. Their results
are shown in Fig. 36 (circles) on a logarithmic temper-
ature scale along with other determinations of T,*. We
note two striking features: (1) the very-low-tempera-
ture phase has an hcp and not an fcc structure as had
been assumed. (2) The critical concentration, as de-
termined by the fcc-hcp structural transition in an
aging experiment, is c„=0.49 (circles). Yet, when
we compare to the data of Sullivan et al. (1978) (open
squares), the low-temperature phase line passes
through the line for T,„ to the phase line T„,. This ap-
parently is a new complication in the phase diagram

FI&. 35. A two-dimen-
sional glass represented
by a square grid. Only
the randomly distributed"J= j. molecules" repre-
sented by ellipsoids which
vary in shape and orienta-
tion are shown (after Sulli-
van et aE., 1978).
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FIG. 36. The phase line of hydrogen as determined by x-ray
diffraction (circles). Here, x= c~. Except for some points
that we have removed, this figure is from Gates et al. (1978).

(excluding a problem of experimental error in the de-
termination of c, and T in different laboratories). One
possible implication is that in the low concentration re-
gions the structural (hcp-fcc) and orientational order-
ing have diff erent phase lines, since x- ray measures
the former and NMB the latter of these phase lines.

All told, the quadrupolar glass state appea. rs to be
the most plausible explanation for the low-temperature
phase. A similar behavior has recently been observed
for D, by Sullivan and Devoret (1978), again by NMR
techniques, for c, = 0.33. However, more experimental
and theoretical work is still required. An early sug-
gestion that aging experiments could result in a non-
random distribution of J= 1 molecules, giving rise to
a new ordering due to next nearest neighbor interac-
tions, seems to be eliminated by a measurement of
Sullivan et al. (1978), who melted and refroze a sample
with c,= 0.32 and found line shape results identical to
that for an aged sample. Anothe'r possibility is that
clustering of J=1 molecules due to quantum diffusion
is playing an important role, and destroys the random
J= 1 distribution in the lattice. Husa and Daunt (1978)
studied samples under varying conditions of cooling and
warming and conclude that clustering does not play an
important role. However, for very low concentrations
and temperatures Schweizer et al. (1978) observe the
rapid disappearance of isolated ortho-H, molecules due
to clustering. Muckerjee et al. (1978) and Gaines ct
al. (1978) have studied single crystals of H, at very low
temperatures with extremely low concentrations, 0.0001
& c, & 0.003, by means of nuclear free induction decay
(FID). From the rapid temperature dependence of the
structure on the FID, they suggest that a cooperative
phase transition occurs for T*=0.18 K. Extrapolation
of the results of Ishimoto et al. (1973, 1976) to low c,
agree with this; however, Sullivan ef al. 's work does
not. It would be of great use in sorting out the very-
low-temperature behavior of H, and D, if techniques

other than NMB were utilized. The recent x-ray work
has been illuminating. We suggest that a FIB study
would be useful as it is sensitive to the long-range or-
der parameter by virtue of one-phonon absorption.
Even if long-range order does not set in, the low-tem-
perature properties can be examined by studying the
temperature dependence of the dipole —dipole correla-
tion function, as absorption occu rs even in the disor-
dered pha, se due to paralibron-phonon processes.

G. The effect of pressure on structure and ordering

Hydrogen is highly compressible and as a conse-
quence pressure causes substantial changes in the rno-
lar volume or density (see following section). This
affects the solid in two important ways: (1) the inter-
molecular forces change and (2) the single molecule
rotational states change. The former is the most im-
portant effect to pressures -20 kbar corresponding to
a variation in (o/po of -2, where po is the zero-pressure
density. For I' &10' bar, the latter, (2), is also im-
portant.

1. Intermediate pressures

Studies of the phase diagra. m to p/pa= 1.7 have recent-
ly been made by Silvera and Jochemsen (1979) by FIR
spectroscopy. They find the spectra to be consistent
with a Pa3 structure for the ordered state. For cy:1,
the phase line scales approximately as (p/po)5~3. This
implies that the EQQ interaction remains the dominant
interaction responsible for. the ordering since the criti-
cal temperature is expected to scale as [see Eq. (3.17)]

T.-«o
I eEoo I o»r

(70 )'&'(I')(g C(224;MN)Y„(D)V„(A,), , ,.

(6.10)

Here &0~ 0& implies an average over the phonon ground
state and & &r, a thermal average. &0~ 0) renormalizes
the radial dependence of the interaction, represented by
&1) =)„I', (see Sec. VIII). From Eq. (6.10) we see

T.—5„(p)I'. [5„(p)/—5,.( p.)l(pip. )'"T,( p.) (6.»)
The experimental results for I-I, are shown in Fig. 3V;
for D, the scaling as @E~~ agrees even better (Jochem-
sen, 1978). A striking result is the density dependence
of the critical concentration shown in Fig. 38. The
measurements show that as p increases, c„decreases.
From the form of Eq. (6.10) we might expect c„to be
independent of density as long as the form of the inter-
action did not change, as appears to be the case. Evi-
dently c„is not just determined by geometric factors.
Percolation certainly does not appear to be an impor-
tant factor as the percolation concentration for an fcc
lattice is 0.195 (for nearest neighbor interactions).
This decrease of c„may arise from a subtle interplay
of the competition between long-range order, which is
optimized on the Pa3 structure for c, =1, and short-
range order which gives a lowest pair energy for the T
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configuration and is the ground state for isolated pairs
which arise for low c,. These studies were limited to
T&1 K so that the density dependence of the low-tem-
perature phase line remains unknown.

2. High pressures

At higher pressures, only theoretical predictions of
the phase diagram exist. Raich and Etters (1972),
Felsteiner and Friedmaii (1973), and England et al.
(1976) have investigated molecular ordering in hydrogen
and its isotopes at high densities. At zero pressure, to
a good approximation, J is a good quantum number. As
a consequence the p-H, and o-D, molecules are spher-
ically symmetric, and these species do not display ori-
entational ordering. As shown earlier, the anisotropic
interactions mix the rotational states, so that even ro-
tational species (p-H„o-D, ) will have a nonspherical
spatial distribution; if the admixture is sufficient, an
orientatiorial. ordering transition will take place.

In the molecular field treatment the transitions con-
sidered (or found) are to the Pa3 structure. For axial
symmetry the molecular field is taken as in Eq. (6.3),
U; = U, Y'„(10,). In this case, in contrast to the zero-
pressure treatment, 3C,. =BJ2 is important in deter-
mining the wave function of the system. The single
molecule ground state is of the form

0

0.4—

0.2—

'0

ORTHO

I I

0.2 0.4 0.6 0.8
R/Ro

l.O

400 0 1Q 3 30 4 40

for even states, and

401 0 10 3 30 5 50

(6.12a)

(6.12b)

FIG. 39. The ordering parameter curves for ortho- and para-
H&, D2, and T2 at T =0 K, as a function of nearest neighbor
distance R, normalized to that at zero pressure, Ro {after
England et al. , 1976). These are obtained within a molecular
field approximation.

for odd states. The coefficients a„' are density depen-
dent and are found from the self-consistent solutions of
Eqs. (6.3) (including gC, ) and (6.5). The T= 0 K values
for the order parameter versus intermolecular separa-
tion normalized to the zero-pressure lattice parameter
are shown in Fig. 39, after England et a/. We see that
the heavier the isotope the larger R/RQ (or lower the
pressure) for a transition of the even species. This fol-
lows since the mixing of rotational states depends on

V„„/B, and the rotational constant B scales inversely
as the ma. ss. England et al. estimate transitions at
375 kbar, 175 kbar, and 24 kbar for H» D» and T»
respectively. We have recalculated the transition pres-
sures using the equation of state resulting from the re-
cent potential of Silvera and Goldman (1978), Eq. (3.10),
a.nd find 270 kbar for H, and 73 kbar for D» for the
critical densities of England et al.

Recently Sharma et al. (1979) have been able to pres-
surize normal-H, to 630 kbar at room temperature in a
diamond anvil cell. They determined the solidification
point to be 55 kbar at 22'C. Rotational and vibrational
transitions were observed by Raman scattering. Al-
though vibrational lines were seen to first increase in
frequency and then decrease as the pressure was
raised, no clear evidence of ordering emerged from
these first studies probably due to the high (room) tem-
perature and mixed ortho —para. nature of the samples.

VI I. THERMODYNAMlc PROPERTlES

Jn this section we present and discuss the substantial
body of work having to do with thermodynamic proper-

ties of the solid hydrogens. We shall attempt to give a
guide to the literature and present a number of useful
representative results in figures and tables. As the
theory is often quite standard, we shall not handle this
in great detail. We begin by presenting the P (or B )——
V—T —C, relations and the sublimation energy; this is
followed by treatment of (BP/sT)~, specific heat, Debye
temperature and elastic constants, and thermal conduc-
tivity.

A. The equation of state

The equation of state (EOS) implies knowledge of the
relationship between P —V-T-C where C is the ortho
(para) concentration. This is known with reasonable
accura. cy for H, and D, to -25 kbar in the solid state.
An accurate knowledge of the molar volume as a func-
tion of P —T —C is vital in the interpretation of proper-
ties of the solid as some properties vary as very high
powers of the intermolecular separation.

Available measurements of the EQS tend to localize
on the melting lines, the 4.2 K isotherms, and the mo-
lar volume at zero pressure Simon e. t al. (1929) mea-
sured the melting line to 5 kbar; Mills and Grilly (1956)
repeated these measurements with greater accuracy to
a pressure of 3.5 kbar. The accuracy was further re-
fined by Goodwin and Roder (1963) at lower pressures.
Kechin et al. (1977) have recently measured to 10 kbar
in H, . Molar volumes on the melting line have been
determined by Dwyer et al. (1965) to pressures of 412
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(7.1)

(7.2)

The free energy can be separated into a zero tempera-
ture part E, and an incremental thermal part E~:

E(V, T, C, ) =E,(V, C, ) +E*(v,T, C, ) (7.3a)

P(V, T) C, ) =Pc(V, C, ) +P*(v, T, C,) (7.3b)

bars and recently by Krause (1978) to 2 kbar. The
4.2 K isotherms of H, and D, were first measured by
Stewart (1956) from 2 —20 kbar and were r(,peated and
extended by Anderson and Swenson (19'l4) from 0.5 to
25 kbar. Durana and Mc Tague (1975) also determined
the 4.2 K isotherm, to 5 kbar, but for para-H, rather
than normal H, . There is a large group of measure-
ments dealing with the determination of the molar vol-
ume at zero pressure. These have been made by ther-
modynamic techniques, x-ray, electron and neutron
diffraction. Silvera et al. (1978) and Driessen et al.
(1979) have recently measured isochores of H, and D, to
2 kbar and have used these, along with earlier mea-
surements, to provide tables of P —V-T —C, to -25 kbar.

Thermal expansion in H, up to pressures of 200 bar
has been studied by Manzhelii et al. (1975).

Ultrahigh pressure measurements on H, are dis-
cussed by Ross (1974). The EOS of the fluid hydrogens
to 20 kbar have been studied by Mills et al; (1977, n-H, )
(1978, n-D, ) and (1978, T,).

Hydrogen is a quantum solid and is therefore highly
compressible. In heavier solids in equilibrium at low
temperature, the atoms (or molecules) sit at the mini-
mum of the potential well presented by the neighboring
atoms (see Figs. 8, 9). When pressure is applied the
atoms are "pushed into" the hard cores of the potential;
as a result of this core, the compressibility is usually
quite small. Typically a pressure of 10 kbar results in
a few percent change in molar volume. For H, 10 kbar
result in a -100%%u() change in volume. The physical rea-
son for this is that at T =0 the lattice is highly expanded
due to the zero-point kinetic energy. Although the min-
imum of the potential well is at -3.44 A separation, the

0
molecules have an average separation of.-3.79 A at ze-
ro pressure. The initial compression is against the
weaker "kinetic pressure" rather than the harder "core
pressure. " At pressures of a few kbar the compress-
ibility of hydrogen is decreased about sixfold and it be-
gins to behave more like a "nonquantum solid. "

Due to the large compressibility, the weak anisotrop-
ic forces have a non-negligible effect on the molar vol-
ume. For example at T =0 K the molar volume of or-
tho —H, is -2%%u() smaller than that of para-H„ for which
the anisotropic interactions are zero.

1. Theoretical considerations: Quadrupolar pressure

We shall be interested in the pressure and the bulk
modulus, B (instead of the compressibility), defined in
terms of the free energy E:

F = F =E +E (7.4a)

We shall restrict attention to Eo arising from EQQ in-
teractions. As a result of (7.4) and (7.1) we see that we
can speak of a normal lattice pressure and a quadrupo-
lar pressure:

P =P~ +Pq. (7.4b)

It was shown by Spain and Segall (1971) that the Mie-
Gruneisen equation of state could be accurately applied
to solid helium; Driessen et al. (1979) have generalized
this to include quadrupolar forces and applied it to H,
and D, . In this picture one assumes that the P —V rela-
tions are known at T =0 and C, =0 and calculates the in-
cremental thermal part E+ of Eq. (7.3) or the analogous
thermal incremental pressure, P~. One has the basic
relations

P*(V, T, C, ) = U~(V, T, C, ) (7.5)

with

—dln8 (V)
dlnV (7.6)

Here y is the Gruneisen constant, 6 is a characteris-
tic temperature, and C~ is the ~th component of the
specific heat at constant volume. The lattice contribu-
tion can be well represented by the Debye model with

C ()', T) =BN,), (
—

) (7.7b)

where N, is Avogadros number and 8D ==8~ is the (tern-
perature dependent) Debye temperature. For the (Iuad-
rupolar pressure Jarvis et al. (1969) have shown that
y@ =d lnI'/d lnV = —V/I" (el /8 V) = —,'.

The reason why the Mie —Griineisen model has been
found to work so well for quantum solids is that a1.1 of
the complications due to zero-point motion and anhar-
monicity are included in E, or Po, which are taken as
measured quantities. The thermal increments are ap-
parently well behaved and can be used to fill in the EOS
from selected measurements of the isochoric specific
heat or isochoric pressure. Intermediate values can be
easily and accurately calculated.

The quadrupolar specific heat C~@ can be obtained
from a semiempirical expression derived by Berlinsky
and Harris (1970) which gives a reasonably good fit to
experimental data in the disordered state for kT/F ~ 8.
Driessen et al. integrated this expression to determine
P@, which is parametrized in terms of I'. Since data
only exist for C~ at P =0 they made the reasonable
scaling assumption that

tional (lattice) contributions (I.) and orientational con-
tributions (Q) arising from the isotropic and anisotropic
interactions, respectively. Because the rotation —trans-
lation coupling is weak, these can be taken to be addi-
tive.

with E~ =P* =0 at T =0. The free energy has transla- r „(v)=r, (v) =154v-'", (7.8)
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where U is in units of cm'/mol and I' in degrees Kelvin.
They present a table which enables a straightforward
evaluation of P@ at a given temperature and volume in
the disordered state.

In the orientationally ordered state, for T «T„P@
can be. calculated from consideration of the ground-
state orientational energy, E@~, which is identical to
the free energy at T =0. Harris et al. (1973) calculated

Zoo =N( 7 3—7I'. —32.02I'2/B), (7 9)

where B is the rotational constant and N the number of
molecules. From Eq. (7.1) it follows that

P = —2.13 x 10' O' V ' '(7.37 + 115.5 V ' '6) (bar)

where 6 =1 for H, and 2 for D„V is in cm'/mol. An

expected quadratic dependence on Cy is taken into ac-
count. The quadrupolar pressure difference between
J=1 and J=0 H:, and D, in the ordered state is shown in
Fig. 40.

(7.10)

2. Zero-pressure molar volume

360-

320

280

240

C3

~ 200
CL

The molar volume at zero pressure is of special im-
portance because so much research has.been done at
this pressure. In spite of the large number of determi-
nations of Vo, there is substantial scatter in the values
and some uncertainty in the best value, in particular
for H, . All told there are some 20 —30 published and
unpublished determinations of V, . Part of the responsi-
bility for the large scatter lies in the improper control
or knowledge of the concentration C, . We shall take the
molar volume of J=0 H, and D, as a reference volume,
following Driessen et al. (1979). At I' =0 and 4. 2 K the

23.20"-

23.10—
4 ~

23.00—

HYDROGEN

22.90—

22.80- hcp, th
o o hcp 4.2K jarvis et al

22.70 —~ fcc ordered, 1K 3arvis et al
EQQ Theory, disordered

22.60: EQQ Theory, ordered
a 22 50 I I I I I I I

DEUTERIUMO

20.00'~)

19.90'"„

preferred values are V, =23.16+0.06 cm'/mol for p-H,
and V, =19.95+0.04 cm3/mol for ortho-D, . The zero-
pressure molar volume as a function of J = 1. concentra-
tion is shown in Fig. 4&. In the disordered phase at
4.2 K, one has Vo(C, ) =23.16 —0.091C, —0.217C', cm'/
mol for H, and Vo(C, ) =19.95 —0.16C, —0.04C', cm'/mol
for D, .

The ear 1le st me asur ements of Vo were indir ect ther-
modynamic measurements by Clusius and Bartholomew
(1935) at the triple point and Megaw (1939) at 4. 2 K.
Neither of the values have been used in the determina-
tion. Megaw's values of 22.65 and 19.56 cm3/mol for
H, and D, are substantially lower than most later deter-
minations. Some problems that can arise in thermody-
namic measurements is the undetected flow of solid H,
or D, in capillaries which are deliberately frozen in
performing isochoric measurements (see discussion of
solid flow by Cook et al. , 1965). The technique capable
of highest accuracy is neutron, x-ray, or electron dif-
fraction. Even in these cases we have been informed
(by private communication) by the authors of some pub-
lished values that the quoted results and accuracy
should be disregarded. For the determination of V, we
have used the average of the values given in Table XI as
corrected to J=0 using values of the bulk modulus and
the quadrupolar pressure. The new measurement by
Krause (1978) on p-H, is the largest value ever re-
ported and comes from direct measurements of the mo-
lar volumes for P c0, extrapolated to P =0. Consider-
ing the long history of changing values, we have used an

160 19.80-.. 0—

120

80

40

I

1.7
0 I I I I I

1.0 1.2 1.3 1.4 1.5 1.6

RELATIVE DENSITY P/P

F&G. 40. The calculated quadrupolar pressure in H2 and D2 in
the Pa3 ordered state at T =0 K (after Jochemsen, 1978).

1g 70- o P
o fcc ordered Mills et al

19 60- a fcc ordered Ramm et al
EQQ Theory disordered
EQQ Theory ordered-

I I I I I I I I I

0 .'I .2 .3 .4 .5 .6 .7 .8 .9 10
Concentration f 3=1 species]

FIG. 41. The molar volume of zero pressure H2 and D2 as a
function of ortho |para) concentration. The lines are calcula-
ted values. For D2 the arrow tips on the data points indicated
by circles point to the most probable values (after Driessen
et al. , 1979). When the recent determination by Krause for
H2 is included, the mean value of Vo for p-H2 becomes 23.16
cc/mole.
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TABLE XI. Zero-pressure molar volumes in the hcp hydrogens at 4.2 K. The recommended average values in cc/mole are H&..
23.16+0.06, HD: 20.57 + 0.12, and D&. 19.95 +0.04.

Ci = 0
Molar volume (cc/mole)

0.75 Comment Reference

Hp

(23.10 + 0.13)
23.14 + 0.08
23.23 + 0.04

22. 91 ~ 0.13 Elect. diff.
The rmodyn.
Ther modyn.

Bostanjoglo and Kleinschmidt (1967)
Silvera et al. (1978)
Krause (1978)

Ci = 0.025 0.33

D2 20.00 + 0.01
(19.95 +0.11)
19.94
19.91

(19.93+0.09)

19.94 + 0.01
19.90 + 0.11

19.87 + 0.09

19.80 +0.01 Neutr. diff.
El.ect. diff.
Neutr. diff.
Neutr. diff.
Ther modyn.

Yarnell et a$. (1975)
Bostanjoglo and Kleinschmidt (1967)
Nielsen (1973)
Mucker et al. (1968) corrected to 4.2 K
Driessen et at. (1978)

HD 20.57 ~ 0.12 Elect. diff. Bostanjoglo and Kleinschmidt (1978)

As corrected from n-H& or n-D& value.

unweighted average for- the value of V, . In Fig. 41 the
values of V, (C, ) for disordered H, are determined using
the measured quadrupolar pressure and the bulk modu-
lus. The solid line is calculated by Silvera et al. (1978)
using the Mie —Gruneisen theory for the quadrupolar
pressure; the broken line representing the molar vol-
ume in the ordered state is calculated using Eq. (7.10)
and the bulk modulus.

Molar volume measurements for P w0 have been made
by Dwyer et al. (1965) to P = 340 bar with corrections
by Younglove (1968); Krause (1978) has made measure-
ments to P= 2 kbar. Values will be given in the follow-
ing paragraphs.

As discussed earlier the EOS can be determined from
a single isotherm and a series of selected isochoric
measurements. The most convenient isotherm is that
measured at 4.2 K since there is a negligible difference
between 4.2 and T =0 for the J=0 species. The most
accurate isotherms were measured from 0.4 to 25 kbar
by Anderson and Swenson (1974) on n-H, and n-D, by
the piston displacement method. This technique pro-
vides values of P vs V/V„where V„ is a reference vol-
ume. To take V„=V, the measurements were extra-
polated to P =0. Silvera et al. determined the 4.2 iso-
chore for P & 340 bar and found differences from the ex-
trapolated curve. They also compared to other existing
data in the literature (Driessen et al. , 1979) and found
that a better overall consistency could be obtained by
refitting the data of Anderson and Swenson. This
yielded a larger reference volume for p-H, .' They also
corrected the Anderson and Swenson data for quadrupo-
lar pressures to present EOS data for o-D, . Their re-
sults are shown in Figs. 42 and 43 for P —V and B —V.
In these figures the points represent values of P, vs V
and E vs V calculated by Silvera and Goldman (1978)
using self-consistent phonon theory and the H, —H, iso-
tropic potential given in Eq. (8.11).

The 4.2 K isotherm can be represented with a Birch
relation

(7.11)

~
&

' ) ' i '
(

' [

23"
EXPERIMENT

21

20(

18

i17
LJ
LJ

16

~15)
14

12

P(V) = Y'Q B„()"—()",
n=l

where 1'=(V,/V)' '. Values of the constants are given
in Table XII.

Driessen et al. used isochoric measurements to pro-
vide P —V—T —C, =0 data to 2 kbars and used a reason-
able extrapolation to 25 kbars. Closely tabulated val-
ues are given for P, V,B, and T „, along with tables
for obtaining values at arbitrary C,. We provide some
selected values of P vs V at 4.2 K for J=0 species in
Table XIII.

' C. A. Swenson {private communication) states that the An-
derson —Swenson isotherm is in good agreement with the low-
pressure isotherm of Krause {1978)when he uses Krause's
value of V0 =23.25 eo/mole.

I ( l i I i l i I ) I i l ) I s L ) I ) l

0 2 4 6 8 10 12 14 16 18 20 22 24
PRESSURE t kbQf']

FIG. 42. Pressure volume relation at T =0 K for para H~ and
ortho D~ {from Silvera and Goldman, 1S78).
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I

22

21
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19

18

ues. A linear extrapolation (Silvera and Goldman, 1978)
to give values corresponding to J=0 solids yielded
-89.8 K/molecule for p-H2 and -132.8 K/molecule for
o-Dz. The sublimation energy is an important piece of
information that has been used extensively in the deter-
mination of the isotropic intermolecular potential.
Etters et al. (1975) calculated -88.76 K/mol for H2 at
P= 0; Silvera and Goldman (1978) found -85.5 K/mol
for H2 and —132.3 K/mol for D2 in fitting their potential
which was discussed earlier.

~ 16

~1S

~~ 1I+

0

12

C. lsochoric pressure dependence on temperature

In a beautiful series of measurements Meyer and co-
workers (Jarvis et al. , 1966, 1968; Ramm et a/. , 1969)
were able to directly measure the quadrupolar pressure
Po lll H2 Rlld D2 Tlley IneRsui'ed (BP/BT)~ Rs R fullc'tloll
of concentration and temperature at pressures slightly
greater than zero. From Elis. (7.4b) and (7.5) we have

10

9 I I I I I I I I

0 10 20 30 I+0 50 60 70 80 90 100

BULK MODULUS [k bur]

PIG. 43. Bulk modulus versus volume at T =0 K for para H&

and ortho D2 (from Silvera and Goldman, 1978).

For higher pressure accurate data does not exist for
the solid hydrogens. A number of shock and explosive
compression experiments have been performed (see
discussion by Ross, 1974); however, the error limits
are quite large, samples are severely heated, and in
some cases only the volume is measured and the pres-
sure is determined from calculations using model po-
tentials. Since many-body forces are expected to play
an important role at high densities and their density
dependence is not well understood, model potentials do
not allow a reliable extrapolation of the EOS data from
-10» bars to -10' bars (corresponding roughly to
-10 cc/mole to -2 cc/mole). However, extrapolation
to -10' bars can probably be done without serious error.

(7.12)

At low temperatures, as the lattice contributions are
frozen out, (7.12) will be dominated by the EQQ term.
Quadrupolar pressures are of the order of 10-10 bars
(see Fig. 40). Using a capacitance strain gauge, they
measured ~ with a sensitivity of 2&10 bar and an
accuracy of 0.1 bar. Examples of the measurements
are shown in Fig. 44. In Fig. 44a we see that by holding
an H2 sample at constant temperature and volume and
allowing it to convert, the pressure changes. Fig. (44b)
shows the effect of temperature. A large jump in P is
observed at the phase transition. This has already
been shown in Fig. 27 where this technique was used for
studying the phase line. With the use of the bulk mod-
ulus the I'= 0 volume changes as a function of C& can be
calculated, &V =(V/J3)~. This has been used in Fig.
41 in the determination of volumes relative to the J =0
molar volumes.

TABLE XIII. I'-V values at T =4 K for 4=0 species of H2 and
Dg.

TABLE XII. Constants for the Birch relation, Eq. (7.11).

Vp

Speoiesgunits
p-H2
o-D2

bar
2786.8
4766.5

bar
6 334.4

10 101

cc/mole
23.14
19.95

B. The sub(imation energy

Very few measurements are available for the lattice
or sublimation energy per particle. This was measured
by Clusius and Bartholome (1935) near the triple point
for D2, and by Simon (1923) for H2. The T =0 K value
is calculated, using thermodynamic relations. Schnepp
(1970) found that the data used for the T = 0 calculation
were questionable and corrected those with modern val-

Volume
(cc/mole)

23.15
23
22
21
20
19.95
19
18
17
16
15
14
13
12
ll
10
9.5

H2

0
12

112
253
448

718
l 094
1 617
2 351
3 392
4 885
7 060

10 290
15 199
22 877
28 329

Pressure
02

0
183
462
868

1 457
2 318
3 583
5 468
8 321

12 730
19732
24 746
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FIG. 45. Heat capacities of para-rich deuterium in the vicini-
ty of the order disorder transition temperature (after Grenier
and White, 1964).

FIG. 44. The quadrupo1ar pressure in H& as determined from.
(8I'/BT)~ measurements. (a) Pressure change as a function
of ortho concentration. (b) Quadrupolar pressure as a func-
tion of temperature found by e&rapolation to ortho concentra-
tion C =1 (after Jarvis ef' al. , 1969).

D. Heat capacity

Specific heat measurements provided some of the
initial indications that interesting phenomena occurred
in the hydrogens at low temperature due to the quench-
ing of the molecular angular momentum. Hill and
Ricketson (1954) and Ahlers and Orttung (1964) have
studied nominally normal H2. Grenier and White (1964)
have studied the phase transition in enriched D& and
White (1976) has studied the ordered state of D, to
T -0.6 K as a function of concentration.

The & anomaly due to the orientational ordering at
I' =0 is shown in Fig. 45. The temperature of the g
peak indicates the critical temperature of ordering; in
Fig. 46, from the concentration dependence of the spe-
cific heat, we see the decrease in T, with decreasing
C& and its disappearance at relatively high C&. Ahlers
and Orttung (1964) studied the temperature and density
dependence of the isochoric specific heat, C„ to 15.9
cc/mole. In the vicinity of the X anomaly, they ob-
served 2 and even 3 peaks in some measurements, in-
dicative of a very complicated phase transition. To our
knowledge no other experiments have detected phenom-
ena corresponding to these secondary peaks; we assume
that they are related to some property of their appara-
tus and should not be taken too seriously without further
systematic study or confirmation.

Theoretically, Nakamura (1955) analyzed the orienta-
tional part of the specific heat measurements of Hill
and Ricketson. The specific heat was fitted with a T
law giving reasonable agreement with experiment but
a somewhat too low value of 1",«. Later Berlinsky and
Harris (1970) calculated the coefficients of terms up to
T- in the high-temperature expansion of C~. They
were able to get good agreement with experiment for
%AT/I = 8 by using a Pade approximant.

For a low concentration of J= 1 molecules there is
also a large number of low-temperature measurements
of specific heat. Ahlers (1964) and Krause (1978) have
made isochoric studies of H2 at several densities.
Other measurements at constant P have been made by
Hill and i,ounasmaa (1959, H2 and D, ), Gonzales et al.
(1957, D2), Roberts and Daunt (1972, H2 and D2, 1974,
D2 to 0.6 K), Roberts et al. (1976, D2), and Grenier and
White (1964, HD). The observations for C, ~ 0.04 are
characterized by three principal parts: (1) a lattice
contribution, (2) a Schottky term arising from the iso-
lated J =1 pairs of molecules (see energy levels, Fig.
12) with a maximum at T = 1.4 K, and (3) a second
Schottky term, probably due to the energy levels of next
nearest neighbor J=1 molecules as determined by EQQ
interactions. For a higher concentration, triples (en-
ergy levels are given by Miyagi, 1968) and larger clus-
ters of J= 1 molecules begin to coritribute significant-
ly. In addition, in H& the specific heat measurements
are sensitive to clustering due to the rotational diffu-
sion discussed earlier. Measurements of the specific
heat have not yet been carried out at very low temper-
atures to study the "quadrupolar-glass" phase.
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length (small k) properties of the solid; experimentally
it can be directly determined in specific heat measure-
ments (which were listed in the previous section) as
well as from neutron scattering (Nielsen and Bjerrum-
Mgller, 1971) untrasonic measurements (Bezuglyi and
Minyafaev, 1967, 1968; Wanner and Meyer, 1973: n-H2
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O
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FIG. 49. The lattice specific heat as a function of temperature
for several molar volumes of para-hydrogen (after Krause,
1978).
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and n-D2) and Brillouin scattering (Thomas et al. , 1978:
p-H2). These measurements also provided elastic con-
stants.

We have taken the average of six measurements in H2
and six in D2 corresponding nominally to the hcp J =0
species at 4.2 K, and find 8D = 120.3 +3 K for H2, and
109.4 +1.5 K for D2, there is only one measured value
for HD: 110+3 K. Ahlers (1963) and Krause (1978)
have measured the density dependence of OD, as shown
in Fig. 50. The solid lines are self-consistent phonon
calculations of Goldman (1979a). Ahlers and Krause as
well as Hill and Lounasmaa (1959) have studied the
temperature dependence of gD, with results shown in
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FIG. 50. Density dependence of the Debye temperature in
para H2 and ortho D2. The lines represent theoretical calcula-
tions of Goldman (after Goldman, 1979).
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FIG. 51. Temperature dependence of the Debye temperature
in para H2 normalized to the value at T =0 K for several den-
sities {after Krause, 1978).

Fig. 51. Driessen et al. (1979) tabulate GD to high pres-
sure; their value corresponds to high-temperature
ave rage values.

The elastic constants in hcp hydrogen have also been
calculated by Goldman (1979). His results are shown,
along with experimental values, in Fig. 52.

F. Thermal conductivity

The thermal conductivity of the crystalline hydrogens
depends dramatically on the J=1 content. To our know-
ledge it has only been measured in the hcp phase. Mea-
surements have been made by Hill. and Scheidmesser
(1958, H2. 0.005 & C& & 0.72), Bohn and Mate (1970, H2.
0,002 & C& & 0.05), Constable and Gaines (1973, HD),
Huebler and Mate (1978, H2: 0.2 & C, & 0.7), and
Gorodilov et al. (1978, D2. 0.22 & C& & 0.30). Ebner and

Sung (1970) have presented a theory for the effect of
J= 1 impurities, a general discussion of thermal con-
ductivity processes is also given by Constable and
Galnes ~

The thermal conductivity, K, in H2 is shown in Figs.
53 and 54 for a series of concentra'ions and in HD for
T & 1 K (Fig. 55) and extrapolated to the case of no im-
purities (H2, D2). Similar results are found in D2 as a
function of concentration. An enormous variation of
more than 200 in the peak value of K is seen with vari-
ation of C&. This data is for the hcp phase. Presumably
the high C& samples of Huebler and Bohn were never
cycled into the ordered state and back, which would
create fcc-hcp mixtures.

The total thermal resistance R" can be written as a
sum of several contributions:

~ =PT~+ ~T"+yT"8-'D &"+ ~, . (7.13)
i

The first term arises from boundary scattering and is
dependent on the size and nature (single crystal or poly-
cristalline) of the sample. The second term arises
from point defect scattering and the third from phonon
scattering by umklapp processes (9D is the Debye temp-
erature). The last term is the thermal resistance due
to J=1 molecules in a lattice of J=0 molecules. Ebner
and Sung calculated the effect of J=1 molecules by as-
suming that the rotational substates of the J=1 mole-
cule allow for an additional scattering mechanism due
to a two-phonon Raman mechanism. The theory is in
qualitative agreement with experiment. They predicted
TV~,

-C ~T for C
&

& 0.1. The concentration dependence
seems to be borne out by the measurements of Bohn
and Mate, although the temperature dependence is
closer to T . The HD samples of Constable and Gaines
also contained H2 and D2 impurities enabling them to
compare to the theory for W~ . They see an anoma-C(
lously large value of 1V~, at low temperatures, which
they suggest arises from one-phonon processes within
the model of Ebner and Sung.
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Vl I I. THE TRANSLAT1ONAL GROUND STATE AND
R ENORIVIAL&ZED INTE RACTlONS

In this section we discuss the translational properties
of solid hydrogen in the ground state. Hydrogen is a
quantum solid, "i.e. , a solid in which the molecules of
the ordered array undergo large rms displacements or
zero-point motion (ZPM) about their equilibrium lattice
sites. Since the dynamical energy is of the same order
as the static lattice energy, these crystals must be
treated quantum-mechanically and so have earned their
name. The fact that the ZPM is large would not pre-
sent a difficulty in the theoretical treatment of these
solids if the interaction potential were harmonic; it, is
the highly anharmonic nature of the real isotropic po-
tentials that creates great diff iculties i.n the theory.

Fortunately the coupling between the rotational and
translational motions in H2 a.re very weak (Mertens and
Biem, 1972). As a. consequence we can treat the orien-

10 12 14 16 18 20 22 24 10 'l2 14 16 18 20
VOLUME (ccrc'moLe )

FIG. 52. Elastic constants in H2 and D2 as a function of molar
volume. The lines are calculations of Goldman (after Gold-
man, 1979).

A number of excellent reviews on quantum solids exist.
See, for example, Horner (1974), Koehler (1974), Guyer
(1969).
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0.015—

~ 0.01— FIG. 53. Thermal conduc-
tivity of hydrogen at con-
stant o-H2 concentration
versus temperature. a)
Ortho concentrations A-E,
0.70, 0.60, 0.50, 0.40,
0.30, respectively (after
Huebler and Bohn, j.978).

0.006 '-

0

tational and translational degrees of freedom of the
ground state independently. As we saw in Sec. VI, for
c0-1, the anisotropic part of the interaction potential
led to an orientationally ordered state. The main effect
of the anisotropy on the ground state is to determinethe
orientational structure. Other than that the effect of
the anisotropy on the ground state energy or the phonon
energies is -1/p and can be ignored or treated pertur-
batively (Jochemsen et al. , 1978; Silvera et a/. , 1979).
Thus we can approximate the interaction potential by
its isotropic part. This approximation is essentially
exact for even 4 species at low pressure.

In the following section we shall examine the current
theories used in the study of the ground state proper-
ties. We shall see that an understanding of the quantum
crystal behavior hinges on our knowledge of the pair
distribution function.

The ground-state translational properties of the hy-
drogens have been studied by Etters and Danilowitz
(1973), Mertens (1972), Krumhansl and Wu (1972),
Bruce (1972), Pollock et al. (1972), Qstgaard (1972),
Anderson et al. (1976, 1977) and Goldman (1979b). This
list is incomplete.

A. The ground state

The ground state of a crystal can be determined,
given the Hamiltonian

(8.1)

where Q is a sum over all pair interactions IEq. (3.1)],

and (r;) means the set of position vectors of all parti-
cles. %e can see the role of the kinetic energy from
the quantum law of corresponding states. By taking
Q, (i,j) in the form of the Lennard-Jones potential, Eq.
(3.7), and rewriting Eq. (8.1) in terms of reduced ener-
gy units, using the well depth & as the unit, we find

(8 2)

where r-r/0 and @,(i,j) =~v(i, j). Here X=h/vv'mz is
the de Boer quantum parameter. Its value is given for
several atoms in Table XIV. We see that the lighter the
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atom and the shallower the potential (smaller q), the
larger is & . As & grows, .the kinetic energy plays a
growing role in determining the total energy of the
crystal at T =0 K, as seen from Eq. (8.2).

It is illuminating to study the quantum solid in terms
of the usual Born-van Karman force constants approach
(Guyer, 1969). Then the potential @ is expanded in a
Taylor series and we retain only the harmonic term ze„:

1V

II„= — V i +— m„ i ju iud j2m

u n
'(i j) = (&.(i)&g( j )@)(~, »

(8.3a)

(s.3b)

where u; is the displacement of particle i from its
equilibrium position, R; -~, . This Hamiltonian can be
solved exactly; the ground-state wave function is a
cor related Gaussian:

Ig„),g ——f(2p)' detA] ~ exp ——QA. ~(ij)u (i)u~(j)

(8.4)
where

cies are imaginary, implying a total breakdown of the
Born-van Karman approximation. On the other hand
long-lived translational excitations with well defined k
vectors and (except for a few points in the Brillouin
zone) rather conventional phonon dispersion relations
have been observed in H2 by neutron scattering (Niel-
sen, 1973). The problem with the harmonic theory for
H2 was that the frequencies were determined by evalu-
ating the force constants, zo„, using an L-J potential
evaluated at the x-ray determined lattice parameter.
However, the mean position of the molecule is far away
from the minimum of the potential due to its neighbors.
As a consequence the single particle well has a hump as
in Fig. 56, so that the curvature, or force constants,
are negative I

.In quantum solids the particles occupy a volume in
space related to the amplitude of the zero-point motion
(not the hard core). This is so large that if the crystal
did not distort there would be strong overlap of the re-
pulsive hard cores. The crystal can lower its total en-
ergy by expanding, reducing the kinetic energy of lo-
calization at the expense of static energy. Only for very
large mass will the particles be localized at the mini-
mum of the potential well.

There are a number of problems with the simple

TABLE XIV. Lennard-Jones potential parameters and the
quantum parameter & .

& (i,j)=u.(i,j). {8.5)
Atom or
molecule

The phonon frequencies are found by diagonalization of
the dynamical matrix and are proportional to the square
root of the force constants, Eq. (8.3b).

De Wette and Nijboer (1965) studied the phonon spec-
tra of rare gas solid lattices and found that for a lattice
such as that of H2 at zero pressure the phonon frequen-

3He
4He

H2

D2
Ne
Ar

10.2
10.2
37
37
35.6

119.3

2.56
2.56
2.92
2.92-

2.74
3.45

0.241
0.182
0.076
0.038
0.0049
0.0027
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FIG. 56. The single particle potential of H2 in an fcc lattice
due to nearest neighbors with a Lennard-Jones potential. The
zero-pressure lattice parameter, ao, is used. The coordinate
q represents a displacement of the central particle in the
(1,0, 0) direction and corresponds to one of the phonon dis-
placements. Such a potential would clearly yieM imaginary
frequencies due to the negative curvature at q =0.
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FIG. 57. The theoretical rms zero-point displacement am-
plitude relative to the nearest neighbor distances for a num. ber
of light solids.

Born-van Karman theory. First of all, the expansion
in u;, usually terminated with the harmonic term, does
not converge for quantum solids. Secondly, the deriva-
tives of the potential, such as Eq. (8.3b), are evaluated
at a point in space rather than being averaged over the
motion of the particles. This averaging could, in a
sense, average out the unpleasant effects of the hump
in Fig. 56. It would also be appealing if the neighbors
had the same motion as the central atom, i.e. , the
problem were solved self-consistently. Finally, the
Born-van Karman approach does not allow for short-
range correlations of the molecules. In a real crystal
short-range correlations must be present so that the
relative motion of neighboring atoms minimizes over-
lap of the hard cores.

The self-consistent phonon approximation (scp) re-
moves all but the last objection in H2. In the scp, the
exact Hamiltonian, Eq. (8.1), is replaced by an exactly
solvable harmonic Hamiltonian

with a tensor width ( ~(u, -u, )(u, —u, ) ~)„,describing the
zero-point motion. Calculations of the rms width of the
pdf have been performed for a number of quantum sol-
ids. In Fig. 57 we show the particle localization defined
as the rms longitudinal zero-point amplitude divided by
the lattice constant, ('u )

~ /Ro, vs. the quantum param-
eter for several solids. The calculations. are by Etters
and Danilowitz (1973) for helium, and by Goldman(1968,
and unpublished) for the remaining points. The value of
O. l8 for H2 agrees well with. the value determined by
neutron scattering (Nielsen, 1973). It is also interest-
ing to note that increasing density deepens the effective
single particle potential well in the solid and localizes
the particle. In Fig. 58 we show further results of
Goldman (unpublished) where localization is plotted as
a function of molar volume. The corresponding pres-
sures can be found in Table XIII.

Although the scp can describe a number of properties
of solid H~ and D2 quite well, especially when corrected

N

+scp= + & + ~scp ~rJ +0 ~ +82m f'7 2

(8.6) 22

A variational principle applied to minimize H (Werth-
amer, 1976) determines the force constant:

(8.7)

where ~|I!„)is defined just as in Eqs. (8.4), (8.5) with
m„-zv„,. This provides the desired self-consistency
and averages the force constants over the zero-point
motion. This is identical to averaging the force con-
stants over the pair distribution function, (pdf), g(i, j):

&&(i,j) = g(i, j)&(i)&(j)@'«;,, (8.8)

where

g(i,j) = g*tl! dr, . . . . . .dr„/dh;dr, /Q)
~
Q). (8.9)

If the many-body wave function ~ti!) is a corr'elatedGaus-
sian, then g(i, j) =-g"(i,j) is also a correlated Gaussian

20—

'
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D
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FIG. 58. The theoretical rms zero-point displacement ampli-
tude relative to the nearest neighbor distance as a function. of
molar volume for H2 and D2.
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for quartic and cubic anharmonicities, it does not deal
at all with the short-range correlations. This is a par-
ticularly severe problem for helium and was first dealt
with by Nosanow (1966) and generalized by Koehler
(1967). Here, in place of using a, correlated Gaussian
as a variational ground-state wave function, one uses

(b)

/1i, „„)= f{/r; r, -/) /g)„) (8.10)

where f(r) is a Jastrow function or pair short-range
correlation function. The Jastrow function has the
property that it goes to zero as the particles approach
each other and goes to 1 as x- ~. Commonly used
functions for f(r) have been e " "1', where Q is the pair
potential and f(r)- exp[—k/r„. ]. The constant k must be
determ ined var iat ionally.

A variational principle can now be applied to the
ground-state energy using Eq. (8.10) to provide expres-
sions for the pdf, energy, etc. The difficulty that this
theory has encountered is that the many-body integrals
can no longer be evaluated as was the case for scp, and
the convergence of cluster expansions is questionable.
Etters and Danilowitz (1973) did avoid these problems
for ground-state properties in helium and hydrogen,
using a noncorrelated Gaussian formalism. Pollack
et 42l. (1972) have examined this problem with the Monte
Carlo technique.

In hydrogen the accurate calculation of renormalized
interactions, to be discussed in the following section,
requires a wave function or pdf, including short-range
correlations. Horner (1974) reformulated the lattice
dynamical problem by assuming a. form for g(r) from
which he calculated the lattice properties, rather than
starting with a variational wave function, and thus he
avoided the problem of the cluster expansion. He took
the pdf to be of the form

g(r) =g "(r)f(r)(a + f1
' r + c ' rr) (8.11)

(8.12a,)

J' d rrg(r) =R, {8.12b)

J d r(r -R, ,)(r -R„)g(r)={u;~u;,) . {8.12c)

Equation (8.12a) preserves normalization and (8.12b) the
density of the lattice. The third constraint preserves
the width of the distribution, which ensures internal
consistency of the phonon spectrum. Horner proposed
that these constraints would be sufficient to determine
the crystal properties, and there was little remaining
freedom to change g(r ).

Goldman (1979b) has recently examined the Horner
approach for H2, with some generalization. He finds
that there is indeed still freedom for modification of

where g" is a. correlated Gaussian, and f(r) is a, Jastrow
function. For short-range f(r) = ~g(r) ~, where S(r) is
the solution of the pair Schrodinger equation,
(-Ii /2m' + p(r))g =0; when the solution 1L =1/r, „, f(r)
is set equal to ~$~~

~

for all larger values of r.
The polynomial in Eq. (8.11) serves to preserve the

zeroth, 1st and 2nd moments of distribution:

O
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O
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FIG. 59. Pair distribution functions along the pair axis in H2
and D2 at two different densities according to several theories:
cg, correlated Gaussian; H, Horner; BF, Bruckner-Froh-
berg. All three distributions have the same zeroth, first, and
second moments. The distributions are shown relative to the
pair potential of Silvera and Goldman (after Goldman, 1979).

g(r), in particular in the form of f(r) which he arrives
at by use of a Brueckner-Frohberg (BF) equation. His
results, using the potential, Eq. (3.11), are shown in
Fig. 59. Although the correlated Gaussian, the Horner
pdf, and the pdf using the BF equation to determine f (r)
are all quite similar, the differences, in particular in
the hard core region of the potential, give significant
differences in the renormalizations.

B. Static renormalization of interactions

%e have already seen that the zero-point motion in
the solid can have a drastic effect on potential param-
eters. Whereas the Born-van Karman force constants,
Eq. (8.3b), give imaginary frequencies for H2, the re-
normalized force constants, Eq. (8.7) give reasonable
values. Similarly the zero-point motion has an impor-
tant effect on the anisotropic interactions in the solid.
The effective or renormalized interactions can differ
significanly from interactions evaluated at separations
of molecules corresponding to the x-ray determined
lattice constant, Ro.

Potentials such as the EQQ interaction, derivable
from a solution of Laplace's equation, are unaffected by
spherically symmetric pdf's. Harris (1970) considered
such interactions for an asymmetric distribution arising
from a single particle Gaussian wave function with a
Jastrow factor. He showed that the EQQ interaction
averaged over the ground translational state maintains
the same tensor transformation properties but is re-
duced in strength by a factor f54:

{ EQQ(R12)) JI g(R12)HECT(R12)d R12 $54HE 4441(RO)

(8.13)

where, in general,

= v 4 /2n + 1 {[1„(012)/(R12/R o) ]) . (8.14)

As a result, we see from Eq. (8.13) and (3.17) that zero-
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TABLE XV. Renormalization constant f54 as defined in Eq.
(8.14). Calculations are by Goldman (1979) for an fcc lattice.

Molar
volume [cc/mole[ H2 D2

22 ~ 73
22
21
20
19.87
19
18
16
14
12
10

0.944
0.947
0.950
0.952

0.955
0.957
0.962
0.966
0.969
0.972

0.968
0.970
0.972
0.974
0.977
0.979
0.980

point motion averaging effectively renormalizes the EQQ
coupling constant, giving us &I"& = F541"0, as in Eq. (3.19).
Harris found a value of f54 ——0.93 for H2 at zero pres-
sure. Noolandi and van Kranendonk (1969) showed that
even if the Jastrow function f(x) = 1, then assymetry in
g"(r) due to the translational symmetry of a lattice
would be sufficient to yield (54= 0.95. Although one
would expect both of these effects to give a value for g, 4

of 0.85-0.90, recent refinements have indicated that,
for H2, the renormalization $54-0.90-0.95. Goldman
(unpublished) found f54 ——0.905 for H2 using a Jastrow
wavefunction formalism and about the same value with a
Horner approach. Luryi and van Kranendonk (1979)have
used a Debye model, with Horner's constraints, to cal-
culate renormalization factors. Goldman (1979b) found

$,4
——0.944 for zero-pressure H2 using a modified Horn-

er approach. We believe these results, which are given
for selected molar volumes in H2 and D2 in Table XV,
are the most reliable values available.

Renormalization factors („ can be greater or smaller
than 1. For exponential radial dependences, motional
averaging can increase the effective strength of the in-
teraction by factors 2-10. Another class of functions
that often arises that must be "renormalized" are inter-
actions squared, for example,

& I" « l'& = Z& I& ~ l~& &m IIf « l& ~

These functions arise in perturbation theory, calcula-
tion of spectral intensities, etc. We stress here that

& I+«~l »&54lH«~(+o)l .
Renormalization of,these functions can result in values
a factor -2 larger than the unrenormalized quantity.

IX. CONCLUDING REMARKS

In the preceding pages I have tried to provide an ex-
tensive picture of the properties of the so1.id hydrogens
along with a compilation of useful data. Much of our
current knowledge is based on studies of the excitation
spectra of these solids, using probes such as NMR,
neutron scattering, Haman and infrared spectroscopy,
etc. In a future article I shall review the excitations in
the hydrogens which in turn is most easily understood
in terms of the picture developed here in part I.
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