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The monitoring of a quantum-mechanical harmonic oscillator on which a classical force acts is important
in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. This
paper reviews the standard techniques for monitoring the oscillator, and introduces a new technique
which, in principle, cd determine the details of the force with arbitrary accuracy, despite the quantum
properties of the oscillator. The standard method for monitoring the oscillator is the "amplitude-and-
phase" method (position or momentum transducer with output fed through a narrow-band amplifier).
The accuracy obtainable by this method is limited by the uncertainty principle ("standard quantum
limit" ). To do better requires a measurement of the type which Braginsky has called "quantum
nondemolition. " A well known quantum nondemolition technique is *'quantum counting, " which can
detect an arbitrarily weak classical force, but which cannot provide good accuracy in determining its
precise time dependence. This paper considers extensively a new type of quantum nondemolition
measurement —a "back-action-evading" measurement of the real part X, {or the imaginary part X2) of
the oscillator's complex amplitude. In principle X, can be measured "arbitrarily quickly and arbitrarily
accurately, " and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the
classical force. The authors describe explicit Gedanken experiments which demonstrate that X, can be
measured arbitrarily quickly and arbitrarily accurately. In these experiments the measuring apparatus
must be coupled to both the position {position transducer} and the momentum (momentum transducer)
of the oscillator, and both couplings must be modulated sinusoidally. For a given measurement time the
strength of the coupling determines the accuracy of the measurement; for arbitrarily strong coupling the
measurement can be arbitrarily accurate. The momentum transducer" is constructed by combining a
"velocity transducer" with a "negative capacitor'" or "negative spring. " The modulated couplings are
provided by an external, - classical generator, which can be realized as a harmonic oscillator excited in an
arbitrarily energetic, coherent state. One can avoid the use of two transducers by making "stroboscopic
measurements" of X„ in which one measures position (or momentum) at half-cycle intervals.
Alternatively, one can make "continuous single-transducer" measurements of X, by modulating
appropriately the output of a single transducer {position or momentum), and then filtering the output to
pick out the information about X& and reject information about X2. Continuous single-transducer
measurements are useful in the case of weak coupling. In this case lang measurement times are required
to achieve good accuracy, and continuous single-transducer measurements are almost as good as perfectly
coupled two-transducer measurements. Finally, the authors develop a theory of quantum nondemolition
measurement for arbitrary systems. This paper (Paper I) concentrates on issues of principle; a sequel
(Paper II}will consider issues of practice.

CONTENTS

I. Introduction
A. Message of this paper in brief
B. Technological applications of quantum asciUators

coupled to classical forces
C. Detailed summary of this paper

Summary of Sec. II
2. Summary of Sec. III and Appendixes A-D
3. Summary of Sec. IV

II. Formal Discussion of Measurements of Harmonic
Oscillators
A. Mathematical description of the oscillator
B. U'ncertainty principle and ways to measure the

oscillator
C. Monitoring a force by the amplitude-and-phase

method
D. Mon. itoring a force by the quantum-counting

method

352

"Supported in part by the National Aeronautics and Space Ad-
ministratian {NGH, 05-002-256 and a grant fram PACE) and
by the National Science Foundation {Grant Na. AST76-80801
A02).

)Also at Department of Natural Philosophy, Glasgow Univer-
sity, Glasgow, Scotland.

f Chaim Weizmann Research FeOow.
58obert A. MGlikan Fellow.

360
361

370

E. Monitoring a force by the back-action-evading
method 354

F. Interaction Hamiltonians for back-action-evading
measurements of X& 356
I. Continuous two-transducer measurements 356
2. Stroboscopic measurements 357
3. Continuous single-transducer measurements 358

G. Zero-frequency limit of back-action-evading
measurements 358

III. Gedanken Experiments for Arbitrarily Quick and
Accurate Back-Action-Evading Measurements of
X& or X'2 359
A. Measurements of a free mass 359

1. Standard quantum limit 359
2. Momentum sensors can be arbitrarily quick

and accurate
B. Measurements of a harmonic oscillator

IV. Formal Discussion of Quantum Nondemolition Mea-
surement 363
A. Definition of quantum nondemolition. measure-

ment and its implications 363
B. Interaction with the measuring apparatus 366
C. Comments and caveats 368

Appendix A: Capacitors with Negative Capacitance 368
Spring-based negative capacitor 368

2. Gedan, ken, experiment to measure the momentum
of a free mass

3. Alternative viewpoints on the spring-based nega-

Reviews of Modern Physics, Vol. 52, No. 2, Part l april ')980 Copyright 'i 980 American Physical Society



342 Caves, Thorne, Drever, Sandberg, and Zimmermann: On the measurement of a weak classical force

tive capacitor
4. Amplifier-based negative capacitor
5. .Narrow-band negative capacitor

Appendix B: Physical Rea3. izations of Hamiltonian
(3.16) for Arbitrarily Quick and Accurate Measure-
ments of K&

1. Mechanical oscillator
a. Physical description
b. Derivation of the Hamiltonian
e. Quantum generator compared with classical

generator
2. Ele ctromagnetic oscillator

Appendix C: Arbitrarily Quick and Accurate Back-Action-
Evading Measurements of X&.. A Detailed
Quantum-Mechanical Analysis
l. Over view
2. Description of the measuring apparatus
3. Foundations for the analysis
4. Analysis of a single measurement
5. Analysis of a sequence of measurements
6. Discussion of results
V. Analysis of imprecise readout systenl. s

Appendix D: Single- Transducer Back-Action-Evading
Measurements of ~~-. A Fully Quantum-Mechanical
Analysis
l. Introduction
2. The analysis
3. Discussion

Reference s

371
372
373

373
373
373
374

376
377

378
378
379
379
381
383
384
385

388
388
388
390
392

I. INTRODUCTION

A. Message of this paper io brief

Consider a very classical incoming signal —i.e., a
signal carried by a boson field with occupation number
(number of quanta per quantum-mechanical state) huge
compa, red to unity. The s-ignal is coupled weakly to a
quantum- mechanical harmonic oscillator —so weakly
in fact that, if the oscillator is initially unexcited, the
signal can deposit into it an average of only a few
quanta per cycle; perhaps even much less than one.
The objective is to measure the time dependence of the
incoming signal by monitoring some aspect of the oscil-
lator's motion. Question: With what accuracy can the
signal be measured& A.nszen": With arbitrary accuracy,
in principle. As long as one concerns oneself only with
limitations imposed by nonrelativistic quantum me-
chanics, and as long as the signal is arbitrarily c].as-
sical, then no matter how weak the coupling of the sig-
nal to the oscillator may be, it can be measured arbi-
trarily ac curately.

However, to obtain good accuracy when the coupling
is weak, one must not monitor the os cilia tor' s state
using currently standard electronic methods. Those
methods ask the oscillator "What is your amplitude and
phase of oscillation?" —and because amplitude and
phase are noncommuting observables, the uncertainty
principle forbids a precise answer. For such "ampli-
tude-and-phase" methods the amplitude error, ex-
pressed in terms of the number of oscillator quanta ~,
always exceeds (bN);„= (N+ ,')'~'; the phase erro—r (for
large N) always exceeds (AQ),.„=—,'N '~' (Serber and
Townes, 1960; Braginsky, 1970; Giffard, 1976). These
errors prevent accurate measurement of the incoming

signal, and prevent any measurement at all in the case
of weak signals.

To measure the signal more accurately, one must ask
the oscillator for less information about itself —"less
is more" I' Specifically, one must ask the oscillator for
the value of only one observable, and it xnust be an ob-
servable whose future values are precisely predictable
(in the absence of forces) from the result of an initial,
precise measurement. The signal is then detected by
the changes it produces in the values of this observable.

A well known technique of this type is "quantum count-
ing. " This technique asks the oscillator, "How many
quanta N do you have in yourself 7—But don"t tell me
anything about your phase. " In principle the query can
be repeated over and over again, and the answers can
be completely precise and predictable (no uncertainty! )
in the absence of external forces. When N» 1, quan-
turn counting can reveal, in principle, an incoming
signal far weaker than those detectable by the "ampli-
tude-and-phase" method. - However, it cannot detect
signals so weak as to change N by less than unity; and
for strong signals, it cannot measure the signal strength
more precisely than a factor -3 (cf. Sec. II.D).

Recently, the authors of this article have proposed
new methods of measurement (Thorne et a/. , 1978,
1979). In these methods one says to the oscillator,
"What is the real part X, of your complex amplitudeV-
But don't tell me anything about the imaginary pa, rt
X,." Iri principle, the query can be repeated as often
as desired, the answers can come through with arbi-
trary accuracy, and they can lead to an arbitrarily ac-
curate monitoring of an arbitrarily weak, classical in-
coming signal. We call such measurements "back-
action-evading" because they permit the real part of
the complex amplitude A", to evade the back-action
forces of the measuring apparatus (at the price of in-
creasing the back-action forces on the imaginary part

) 2

~ "Less is more" is an aphorism popularized in this century
by architect Ludwig Mies van der Hohe. It appears earlier in
Robert Browning's poem Andrea del quarto (1855), 1.78.
Wyler (1974) has used "less is more" and related ideas as
fundamental conceptual tools for exploring the frontiers of
modern physics and cosmology.

Hollenhorst (1979) has pointed out that back-action-evading
measurements of X~ are analogous to sending an electronic
signal through a degenerate parametric amplifier. Such an
amplifier takes the input signal Ref(V~ + iV2)e ' ] from an
ideal voltage source, and preferentially amplifies the real
part of the complex amplitude while attenuating the imaginary
part; the amplifier's output is AVt sjncut —(V2/A) cosset (Ta-
kahasi, 1965). %bile this is analogous to a back-action-evad-
ing measurement of the real part X~ of the complex amplitude
X~ + iX2 of an oscillator, it is by no means the same. For ex-
ample, if one simply attaches a capacitive position transducer
to a mechanical oscillator, and follows it by a degenerate par-
ametric amplifier, the amplifier wB1 act back on the oscillator
through the transducer to drive directly the X~ oscillations
which it seeks to measure. Such a measurement is not back-
action-evading. On the other hand, by a clever nonstraight-
forward use of degenerate parametric amplification, one can
perform back-action-evading measurements of changes in X~
tHollenhorst (private communication); see Paper II]. For
comments on the related issue of "phase-sensitive detection"
and its relationship to "back-action evasion, " see Sec. G.F.3.
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Braginsky has used the phrase quantum nondemoli-
tion" (QND) to describe a measurement which, in
principle, can be made time after time on a single sys-
tem, giving always the same precise result in the ab-
sence of external forces (signals). When external
forces are present, quantum nondemolition measure-
ments are an ideal tool for monitoring them. Quantum
counting can be done accurately and predictably in
either a demolition or a nondemolition mode: Photon
counting with x-ray proportional counters is demoli-
tion; nondemolition methods of counting microwave
photons have been proposed by Unruh (1977, 1978) and
Braginsky, Vorontsov, and Khalili (19'77). Our pro-
posed back-action-evading measurements of the real
part of the complex amplitude are nondemolition in
principle. For further discussion of the phrase "quan-
tum nondemolition" see Secs. II.E and IV.

B. Technological applications of quantum oscillators
coupled to classical forces

The problem of measuring classical signals with a
weakly coupled oscillator arises in a variety of con-
texts —e.g. , in experiments to detect gravitational radi-
ation; in the reception of long-wavelength electromag-
netic waves using antennas that are very small com-
pared to a wavelength; in experiments to test general
relativity (e.g. , Edtvos experiments); in gravimeters,
gravity gradiometers, accelerometers, and gyroscopic
devices (inertial navigators, gyrocompasses, guidance
systems); and elsewhere. In most of these areas quan-
tum-mechanical properties of the oscillator are not an
issue at present or even in the near future; but they
may become an issue in the more distant future —and,
equally importantly, the back-action-evading methods
of measurement described in this paper may improve
the signal-to-noise ratio even in the classical regime.

The task of detecting gravitational waves (Thorne,
1980; introductory review in this issue of Reviews of
Modern Physics) was the immediate motivation for our
interest in quantum-mechanical oscillators as detectors
of classical signals. A long-range goal is to detect
millisecond-duration bursts of gravitational waves from
supernovae at a sufficient distance (the Virgo cluster
of galaxies) to guarantee several events per year [see,
e.g„Thorne (1978) or Epstein and Clark (1979)].
Bursts from that distance are predicted to have a quan-
tum-mechanical occupation number n-10" for states
with the wave vector inside the solid angle, AQ -10 "
sr, subtended at Earth by the source [cf. Eqs. (6)-(8)
of Thorne et al. (1979)].The occupation number aver-
aged over all states in the roughly 45-deg beamwidth
of the antenna is n -10". This is also the mean number
of gravi. tons that interacts with the antenna during one
cycle as the wave burst passes. Clearly, the force of
these gravitons on the antenna should be highly clas-
sical. Unfortunately, a resonant-bar antenna of mass
rn couples so weakly to these waves that they can change
the number N of phonons in its fundamental mode by
only 5N& 0.4 (N+ —,')'t'(m/10 tons) (cf. Thorne, 1978)—a
change so small that with standard "amplitude-and-
phase" methods of measurement, the uncertainty prin-
ciple prevents detection. The 1979 gravitational-wave
detectors will be several orders of magnitude away

from the amplitude-and-phase limit ~=(N+4)'h, but
the limit might be reached within 5 years.

A Russian experimenter, Vladimir Braginsky, called
attention to this problem in 19'l4 in a series of lectures
at American centers for experimental relativity (Stan-
ford, I SU, NIT, Princeton, and Caltech; see Braginsky,
197'7). Braginsky and Vorontsov (1974) proposed cir-
cumventing the problem by replacing amplitude-and-
phase methods with "phonon counting. " It did not, and
does not, seem practical to count the phonons directly.
Instead one might, as Braginsky and Vorontsov sug-
gested, couple the bar to a microwave cavity, thereby
converting phonons into microwave photons; measure
the number of microwave photons; and thereby monitor
changes in the number of phonons in the bar. Braginsky
and Vorontsov (1974) proposed a specific method of
measuring the number of microwave photons; see also
Braginsky, Vorontsov, and Krivchenkov (1975). Three
years later Unruh (1977,1978) proved that this Bra-
ginsky-Vorontsov method is flawed, and Braginsky,
Vorontsov, and Khalili (197'7) found the flaw in their
original, unpublished analysis. However, in these
same papers Unruh (1977, 1978) and Braginsky et al.
(1977) proposed new "quantum-nondemolition" (QND)
methods of measuring the number of microwave pho-
tons —methods that still look viable in principle.

Unfortunately, any QND quantum-counting technique
at acoustical or microwave frequencies, including the
new Unruh and Braginsky techniques, may be ex-
tremely difficult to implement in practice. This is be-
cause, to avoid perturbing the number of quanta N
while measuring it, one must construct an interaction
Hamiltonian that commutes with N; such a Hamiltonian
must be quadratic (or quartic or . . . ) in the amplitude
of the oscillator; and at these frequencies it is ex-
tremely difficult to construct quadratic couplings with
negligible linear admixtures.

In response to this dilemma the authors (Thorne
et al. , 1978, 19'79) proposed using linearly coupled,
"back-action-evading" measurements of the real part
X, of the oscillator's complex amplitude. Such mea-
surements can be performed by modest modifications
of the amplitude-and-phase electronic techniques now

in use [Eq. (6) of Thorne et al. (1978); Sec. 7.2 of
Thorne et al. (1979); next-to-last section of Braginsky
et al. (1980); Sec. II.F.3 of this paper]. It now (August
1979) is widely assumed by gravity experimenters that
third-generation bar antennas will incorporate back-
action-evading electronic techniques.

C. Detailed summary of this paper

This paper serves two purposes: First, it reviews
those aspects of the measurement of classical signals
with a quantum-mechanical oscillator which we think
are important (i) for a conceptual understanding of the
subject, and (ii) for the future development of the sub-
ject. Second, it presents in detail our own new ideas
on back-action-evading measurements of oscillators.
This paper does not attempt a review of efforts to de-
tect gravitational waves. For that topic in brief see
the companion paper (Thorne, 1980); for greater detail
see Tyson and Giffard (1978), Braginsky and Rudenko
(1978), Douglass and Braginsky (1979), Weber (1979),
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or Weiss (1979).
This is Paper I of a two-paper treatise. Paper I

deals with issues of principle; and it takes the view-
point of a theoretical physicist, who enjoys proving
theorems by Gedanken experiments, and who believes
firmly in nonrelativistic quantum theory —including the
reduction of the wave function when measurements are
made. Paper G will be published in a future issue of
Reviews of Modena Physics It w. ill deal with practical
realizations of back-action-evading measurements; and
its viewpoint will be more nearly that of anexperimental
physicist or electrical engineer. The two papers will
rely little on each other. It should be easy to read one
without reading the other, but it may not be easy to
wade through either one.

Readers who are awaiting the publication of Paper II
may find Thorne et al. (1979) and the last few sections
of Braginsky, Vorontsov, and Thorne (1980) useful.
These two references describe briefly some of the ma-
terial that Paper II will cover in greater detail.

The body of this paper consists of three major sec-
tions: II, IG, and IV.
't. Summary of Sec. Il

In Sec. Q we discuss measurements of a quantum-
mechanical oscillator from a somewhat formal mathe-
matical viewpoint.

Section G.A gives examples of the types of oscil-
lators, both mechanical and electromagnetic, that we
consider; it explains our neglect of fluctuations due to
Nyquist forces (internal friction); and it introduces
a single, unified mathematical description of the var-
ious oscillators. The most important items in this
description are the oscillator's mass .rn, frequency ~,
position X', Momentum P, number of quanta. N, phase
P, and complex amplitude X, + iX„which@re related by

x +ip/m(u = (X, +iX,)e

N=(m~/2@)(X', +X', ) ——, , q =tan-&(X, /X, ).
[Carets (""")denote quantum-mechanical operators. ]

Section G.B first considers the Heisenberg uncertainty
principle, which in three equivalent guises states that

~, as small as one wishes, in principle.
(1.5)

If the experimenter prefers, he can. make a back-action-
evading measurement of X,.

These three types of measurement are analyzed, each
in turn, in Secs. II.C, II.D, and II.E with emphasis on
the accuracy with which each type of measurement can
monitor a classical force E(t). The action of the force
between time t, and to+a is characterized by the di-
mensionless force integral

(1.6a)

which is simply related to the change of complex amp-
litude that the force would produce if the oscillator were
classical:

5(X, + iX2) = (2a/mar) ~one' (1.6b)

For amPlitude-and-Pkase measurements (Sec II.C).
the force is detectable if and only if

standard quantum limit:
I aI ~ 1;

made by standard electronic techniques. The second
type is "quantum counting" (measurement of N). Since
the outcome of a quantum-counting measurement is al-
ways an integer N and the measurement leaves the
phase g completely indeterminate, one ca i think of
quantum counting as having an annular error box [Fig.
3(c) below], which encompasses at least the region
between N —2 quanta and N + 2 quanta:

g(X'+X')'i' ~N ' (k/2mcu)' for N»1
(1.4)

g completely indeterminate .
Note that if the oscillator is highly excited, N»1,
quantum counting can determine the absolute value of
its complex amplitude, IXI = (X', +X22)'~', far more ac-
curately than the standard quantum limit. The third
type of measurement is "back-action-evading measure-
ment of X„"for which the error box is a long, thin
ellipse [Fig. 3(d) below], with

cf. Eqs. (1.6b) and (1.3).
For quantum-counting measurements (Sec. II.D) the

force is detectable if and only if

Heisenberg Ax. ~ ~ 2k,

.Inl ~ (N+1) "', (1 6)

where N is the number of quanta in the oscillator; cf.
Eqs. (1.6b) and (1.4). Note that if the oscillator initially
is arbitrarily highly excited (N- ~), then arbitrarily
weak forces can be detected by quantum counting. How-
ever, quantum counting measurements can never mea-
sure the details of the force (can never determine the
precise value of Io. l) with a precision better than a
factor -3—unless the force is so strong thatitincreases
the energy by an amount large compared to the initial
energy. This is because in an N-quantum state the
initial phase g of the oscillator is completely indeter-
minate; so one cannot know whether the force was act-
ing in such a way as to change predominantly the oscil-
lator's amplitude (number of quanta), or acting in such
a wa, y as to change predominantly its phase.

uncertainty ) M, bX, ~ li/2mcu, (1.2)
!principle ll ~.b. /~ —,'.

Here 2&5 is Planck's constant. A simple consequence
of the uncertainty principle is that the "error box" in
the (x„P/mes) [or {X„X,)] phase plane, associated with
any measurement of the oscillator, has a minimum area
~Ii/2m&v (Fig. 1 beLow). Section II.B then introduces
three types of measurement. The first type is "amPli-
tude-and-Phase rneasu~ement, " for which the error box
is round [Fig. 3(b) below]:

standard!I ~,=~, - (k/2m( )'~'

quantum )
!

(1.3)

limits ~I b,N~ (N+ —)~~2 a/~ N~~2 for N» 1—!

Its minimum errors (1.3) are called the "standard quan-
tum limits" because it is the type of measurement
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For back a-ction-evading measurements of K, (Sec.
II.E), the force can be detected and measured with a
pr eci sion

tt[Rs(tte' ' )[=e((2mtett)
to+ y

x R(t') ststet' dt )&& 1',
tp

and, in principle, the measurement, can be arbitrarily
accurate, b, [Re(ne'"")]—0, for any measurement time

By a sequence of arbitrarily quick and accurate
measurements of ~„one can monitor the, details of
&(t) with arbitrary accuracy —except at times t, near 0,
w/(d, 2m/&u, . . . when sin(dto= 0 [cf. Eq. (1.9)] To g«
good accuracy near these times one can couple the
force to a second oscillator on which one measures ~,
rather than'„ thereby monitoring Im(o. e' '()) with a
precision

d[tm(tte' ")]=d((2mtes) 't'

'o+7
x R(t') sestet'dt') &et. (1.10)

t tp

~,R 2m k/m c = 2 && 10 4R cm for m = 1 ton

(a limit that is completely irrelevant for macroscopic
systems). Second, at some level of accuracy one will
discover that the force &(t) is not classical, but rather
is carried by discrete bosons (gravitons if + is due to
gravitational waves). At this level one's measurements
are sensitive to vacuum fluctuations in the system that
produces E(t). For measurements that last a time
&~ co ' this "real quantum limit" is

real
)1 ~,~ (k/2m(u)' '((uv/nso„)' ',

1

quantum&

1o1~ (~~/n, ,)' '.
Here ns« is the mean occupation number in the quan-
tum-mechanical states associated with +, when + is
just barely strong enough to be detected in one cycle
by amplitucte-and-phase techniques. In the case. of to-
day's resonant-bar gravitational-wave antennas
ns« = 10" (cf. Sec. I.B), so the real quantum limit is
a factor 10"smaller than the standard quantum limit-
so small as to be ridiculously irrelevant in the twen-
tieth cen.tury.

Any actual measurement is carried out by coupling
the oscillator to an external measuring apparatus. The
details of that coupling are embodied, mathematically,
in an "interaction Hamiltonian. " Section II.F describes
three types of back-action-evading measurements of
A', and writes down their interaction Hamiltonians. The
first type, a continuous tsoo-A'ansduce~ measurement,
requires both a position transducer and a momentum
transducer. This type of measurement can measure
X I arbitrari ly quickly and arbi trari ly accuratel y, in

(1.12)

Having argued that nonrelativistic quantum theory per-
mits back-action evasion to monitor X, and the classical
force &(t) with arbitrary accuracy, Sec. II.E then notes
two limits of principle: First, relativistic effects pre-
vent A, from being measured more accurately than the
oscillator's brompton wavelength:

principle; and it can lead to an arbitrarily accurate
monitoring of a classical force. The second type, a
sA oboscopic measurement, uses a single transducer
(position or momentum) with stroboscopically pulsed
coupling to the oscillator. For nonzero pulse durations
At, the back-action evasion is imperfect, and the mea-
surement precision is limited to

(k/m (d) '~R(ut) t) '~' . (1.13)

The third type, a continuous single-transducer rnea-
suwernent, uses a single transducer with sinusoidally
modulated coupling to the oscillator, followed by a fil-
ter which averages the transducer output over a time
»& 27)'/(d. For noninfinite averaging times v the back-
action evasion is imperfect, and the precision is
limited to

~2m (5/2m(u)2~2((d7) ~~R. (1.14)

Section II.G discusses back-action-evading measure-
ments for zero-frequency (m=0) oscillators —i.e., for
"free masses. " In this ease the quantities analogous
to X, and%, are x —(P/m)t and P (where x is position
and P is momentum). By back-action-evading mea-
surements of either of these quantities, one can moni-
tor an external force with arbitrary accuracy —in prin-
ciple.

2. Summary of Sec. ill and Appendixes A-D

All of the above limits on measurement accuracy
[Eqs. (1.2)-(1.14)] are derived, in Sec. II, from a rather
formal viewpoint. This viewpoint pays no attention to
the details of the measurement method. Instead it as--
sumes —in line with Neils Bohr's interpretation of non-
relativistic quantum theory —that in an instantaneous
measurement any observable, by itself, can be mea-
sured arbitrarily accurately, leaving the oscillator
afterward in an eigenstate of that observable with eigen-
value equal to the measured result (see footnote 6).
This viewpoint assumes, further, that any two ob-
servables A. and B can be measured simultaneously
with precisions constrained only by the Heisenberg un-
certainty principle

(1.15)

Moreover, it assumes that such a measurement can
leave the oscillator in a state with expectation values
(A) and (B) equal to the measured values to within pre-
cisions ~ and ~, and with variances of order ~
and ~.

Because Bohr's viewpoint is not universally accepted
(see footnote 6 below), some physicists have worried
whether the measurement limits derived from it [Eqs.
(1.2)-(1.15)] can actually be achieved in principle. Are
there, perhaps, other more stringent limits which show
up only in a more detailed analysis of the measure-
ment process? Section III and Appendixes A-D prove,
for back-action-evading measdurements, that more
stringent limits do not exist; the limits described above
are actually achievable in principle. The method of
proof is to present Gedanken experiments that actually
achieve those limits. The Gedanken experiments are
sketched in Sec. III; the rather complicated details of

Rev. Mad. Phys. , Vol. 62, No. 2, Part l, April 1980



Caves, Thorne, Drever, Saodberg, and Zimmermann: Gn the measurement of a weak classical force

the experimental apparatus are presented in Ap-
pendixes A and B; and detailed mathematical analyses
of the experiments are given in Appendixes C and D.

It is crucial that we be able to analyze our Gedanken
experiments fully and exactly using the mathematical
techniques of quantum theory. This means, unfortu-
nately, that their details must differ from realistic ex-
periments, with real amplifiers and real electronic
readout systems. Realistic experiments will be ana-
lyzed using semiclassical techniques in Paper II [see
also Thorne et al. (1979) and Braginsky et al. (1980)].

A crucial feature in our full quantum analysis of the
Gedanken experiments is the "reduction of the wave
function" at the end of each measurement. Most quan-
tum mechanics textbooks talk about this reduction, but

they do not present examples or exercises in which the
reduction occurs. Therefore, the reader may find in-
teresting in itself our use of the reduction of the wave
function in Appendix C. There we analyze a sequence
of measurements of ~„and the reduction of the wave
function allows us to carry the quantum-mechanical
analysis from one measurement to the next. Of similar
interest may be our mathematical model for an impre-
cise "readout system" in Sec. 7 of Appendix C.

A key element in our Gedanken experiments is the
coupling of the oscillator to the measuring apparatus.
In. practice that coupling occurs in a transducer; mathe-
matically it is embodied in the interaction Hamiltonian
III; in either case the strength of the coupling can be
described by a dimensionless coupling constant

energy stored in measuring system due to transducer coupling
energy of oscillator's motions (1.16)

standard quantum limit: a+~ (m&/~')' '. (1.17)

Here m is the mass and 7 is the duration of the mea-
surement. This is the analog of the standard quantum
limit for amplitude-and-phase measurements of an
oscillator [Eq. (1.7)]. It is derived in Sec. III.A for two
types of free-mass measurements: measurements of
position x and measurements of velocity. By contrast,
back-action-evading measurements of momentum P
(analogue of X,) can be arbitrarily accurate in princi-
ple

&P-O, v-o.
This is proved by a Gedanken experiment in Sec.
III.A.2. A by-product of that proof is the limit

DER(mh/T )' P'

. (1.18)

(1.19)

To achieve the limiting pl eclsions of Sec. II [Eqs ~

(1.2)-(1.15)], one must use very strong coupling: P ~ 1
typically; P-~ in some cases. When P is fixed at some
modest value by practical considerations, the limits of
Sec. II get replaced by new "weak coupling measure-
ment limits. " These new limits are revealed as by-
products of the Gedanken experiments of Sec. III and
Appendixes A —D. Alternative derivations of the weak
coupling limits will be given in the sequel to this paper
(Paper II), using realistic models for the measure-
ments and using electrical-engineering techniques of
analysis. Some of our alternative derivations are also
sketched by Braginsky, Vorontsov, and Thorne (1980).

Turn now to a blow-by-blow overview of Sec. III and
Appendixes A-D.

Section III.A analyzes measurements of a free mass
(oscillator with a=0). As a prelude to the analysis,
Sec. III.A. l derives a standard quantum limit for the
monitoring of a constant force & acting on a, free mass:

easy to construct, but negative capacitors are not. Ap-
pendix A presents models for several types of negative
capacitors and shows that one type —the "spring-based
negative capacitor" (Appendix A. 1)—can perform the
required role in a momentum transducer, without in-
troducing any noise into the back-action-evading mea-
surement of P (Appendix A.2). For the reader who feels
uneasy about negative capacitors, Appendix A.3 de-
scribes several. alternative viewpoints that may allay
his uneasiness. The reader who is still unhappy per-
haps can find some- comfort in Appendix A. 5, which
shows that in slightly modified Gedanken experiments
an inductor can do an adequate job as a negative ca-
pacitor.

Section III.B analyzes continuous two-transducer back-
action-evading measurements of an oscillator. A
Gedanken experiment is sketched, which proves that ~,
can be measured arbitrarily quickly and accurately;
this, in turn, allows an external force to be monitored
with perfect precision. Section III.B gives the Hamil-
tonian for the Gedanken experiment [Eq. (3.16)], and
Appendix B shows how that Hamiltonian could be rea-
lized with physical measuring apparatus for the case of
a mechanical oscillator (Appendix B.l) and for an elec-
tromagnetic oscillator (Appendix B.2). The physical
realization requires a noise-free negative capacitor
(Appendix A) for the mechanical case, and a noise-free
negative spring (Fig. 11) for the electromagnetic case.
A mathematical analysis of the Gedanken experiment is
sketched in Sec. III.B, and is presented in detail —in.-
cluding reduction of the wave function after each mea-
surement —in Appendix C. A by-product of the
Gedanken experiment is the following limit on the pre-
cision of a continuous two-transducer back-action-evad-
ing measurement of X, when the coupling constant P is
finite [Eq. (3.21)]:

[Eq. (3.15)] for back-action-evading measurements of P
with finite coupling constant P. Back-action-evading
measurements of P require a momentum transducer.
Section III.A.2 shows that a momentum transducer is
equivalent to a velocity transducer plus a capacitor
with negative capacitance. Velocity transducers are

LuC, & (8/2m(d)' '(PCVT) ' '. (1.20)

Here v is the duration of the measurement.
It is not likely that in real experiments one can con-

struct negative capacitors or negative springs with the
low-noise performance required by momentum trans-
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ducers. Consequently, experimenters may be forced
to perform back-action-evading measurements with
only a position transducer. Such measurements can be
of two types: stroboscopic (pulse duration n. t «1), or
continuous (filter averaging time v»2m/&u); see above.

Appendix D presents a Gedanken-experiment analysis
of continuous single-transducer measurements of ~,.
That analysis distinguishes two different averaging
times: (i) the averaging time 7 of the filter, which
follows the modulated transducer and (in a realistic
experiment) precedes the amplifier; (ii) the total time
7 over which the experimenter averages the filter's
output, in order to arrive at a final result for X,. In
realistic experiments the total averaging time v is
greater than or equal to the filter averaging time 7.
The filter partially protects X, from back action. Its
failure to give complete protection leads to an absolute
limit

~ ~ (h/2mco)' '((uw) (1.21a)

on the precision of the measurement [Eq. (1.14); Eq.
(D21)]. When the coupling is weak, P ~ v/v ~ 1, Ap-
pendix D reveals a more stringent limit

~,& (8/2m u)) ~t'(Pu)T) (1.2 lb)

[Eq. (D19)]. For fixed P, the longer the experimenter
averages his signal, the greater will be his accuracy
(~,~ 7 '~') —until he hits the "accuracy floor" (1.21a)
determined by the averaging time 7 of his filter.

This paper does not give an explicit Gedanken-ex-
periment analysis of stroboscopic measurements. How-
ever, the limiting stroboscopic precisions can be -read
off other analyses given in the paper. The limiting pre-
cisions involve two time scales: (i) the duration of each
stroboscopic measurement (the "pulse time") &t
«m/ur; and (ii) the total time v over which the experi-
menter averages his measurements —or, equivalently,
the total number ot = ~7'/m of measurements that he
averages to get a single value for A, . The finite pulse
time 4t leads to imperfect evasion of back action and an
absolute limit

~,& (@/m 47)' '(coat)' ' (1.22a)

on the measurement precision [Eq. (1.13); Sec. II.F.2].
When the coupling is weak, P ~ (X' 'ub, t) ', there is a
more stringent limit. This limit can be read off that
for measurements of free masses-, since the oscillator
behaves essentially like a free mass during each pulsed
measurement (b, t«m/u). Specifically, the free-mass
weak coupling limit (3.15a), with v- At and 5P, -m&u~„
and with an added factor ~ '~' to account for averaging
of M data points, becomes

~,~ (h/m~) "(mP~~t)-". (1.22b)

(This limit will be derived more carefully in Paper II.)
For fixed P and b.t this weak coupling limit improves
as Jt ' ' until one hits the "accuracy floor" (1.22a).
Note that there is an optimal pulse time At which leads
to an absolute minimum for the sum of the errors
(1.22a) and (1.22b):

This absolute minimum stroboscopic limit improves
only as 9l ', when one combines the results of many
measurements. By contrast the limits (1.21) for con
tinuous single-transducer back-action-evading mea-
surements improve as (averaging time) ' '. The con-
tinuous measurements are better because of their
larger duty cycle.

In real experiments one must face not only the above
quantum limits, but also limits due to (i) noise from a
real a,mplifier in the readout circuit, and (ii) noise
from Nyquist (frictional) forces in the oscillator.
These will be discussed in Paper II. Here we sum-
marize the results: Amplifier noise modifies all of the
above limits by the simple replacement

tt —2kT „/0, (1.23)

where T„ is the "noise temperature" of the amplifier
and 0 is the frequency at which it operates (Braginsky,
Vorontsov, and Khalili, 1978; Thorne et al. , 1979;
Braginsky et al. , 1980). Nyquist noise produces a
change in ~„during time v, given by

~ = (uT/m cu')' '(cuT/q)' ' (1.24)

Here T is the oscillator's physical temperature and Q

is its "quality factor. "
Equations (1.20)-(1.24) are a complete set of limits

on the accuracy of realistic back-action-evading mea-
surements of oscillators. However, to apply them in
a specific case one must be able to evaluate the cou-
pling constant P in terms of the actual experimental
parameters. This issue will be discussed in Paper II;
see also Braginsky, Vorontsov, and Thorne (1980).

3. Summary of Sec. lV

[~x(t)]'= [~x(0)]'+ [~p(O)/m] t'

Section IV develops a formal mathematical theory of
quantum-nondemolition measurements —a theory which
generalizes to arbitrary quantum-mechanical systems
the oscillator and free-mass results of Secs. II and III.

There are two different, but closely related view-
points on quantum nondemolition measurement.

The first viewpoint focuses on the uncertainties which
are built into a quantum-mechanical description of the
measured system, and it ignores the details of the
system's coupling to a measuring apparatus. This
viewpoint is most easily introduced, perhaps, by con-
sidering a particularly simple system —a free mass.
For a free mass there is a sharp difference between
position x and momentum P. Either can be measured
arbitrarily accurately in an instantaneous measure-
ment. However, an initial precise measurement of x
perturbs P strongly (~P ~ k/2~); during subsequent
free evolution, p drives changes in x [x(t) =x(0)
+p(0)t/m]; and, as a result, the accuracy of a second
.measurement of x is spoiled:

(at),p, „-(u '(PJt) ' ', . —

~,~ (k/m~)'t'(Pm, ) 't'.
(1.22c)

» [m(0)]'+ [0 2/m~( )0]'t' ~ kt/m . (1.25)
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By contrast, an initial precise measurement of p per-
turbs x strongly; but since x does not feed into P during
free evolution, a second measurement of p at a later
time can be just as accurate as the first —arbitrarily
accurate, in fact. The first viewpoint generalizes to
arbitrary systems this special property of P. It char-
acterizes a "quantum nondemolition (QND) observable"
as an observable which, like p, can be measured over
and over again with arbitrarily great accuracy. The es-
sential feature of aQND observable is that its free evolu-
tion, like that of p, is isolated from observables with
which it does not commute. For an oscillat:or the QND
observables include ~„X„and the number of quanta

¹

Section IV.A adopts this first viewpoint. It defines
precisely the concept of a QND observable; it derives
from the definition several important formal proper-
ties of QND observables; and it. delineates various
types of QND observables: stroboscopic QND observa. -
bles, continuous QND observables, generalized QND
observables, and QNDF observables. The last of these
are "QND" in the presence of a classical force as well
as in its absence; they can be used, in principle, to
monitor the details of the force with arbitrary accuracy.
An example is X,. Observables which are QND but not
QNDF can be used to detect the presence of an arbi-
trarily weak force, but they cannot determine its pre-
cise strength. An example is the number of quanta N
in an oscillator .

The second viewpoint on quantum nondemolition mea-
surement focuses on the quantum-mechanical nature
of the measuring apparatus. It characterizes a QND
observable as one that can be completely shielded from
the back action of the measuring apparatus. Any observ-
able one chooses to measure can be free of direct back ac-
tion from the measuring apparatus, provided the inter ac-
tion between the system and the measuring apparatus is de-
signed properly (the measured observable being the only
observable of the system which appears in the interaction
Hamiltonian). However, for most observables the
measuring apparatus will act back indirectly through
observables which do not commute with the measured
observable. For example, in a measurement of free-
mass position x, the measuring apparatus acts back
onP, which then drives changes in x via free evolution.
Clearly, this second viewpoint is closely related to the
first; the essential feature of both is that the evolution of a
QND observable is isolated from observables with which it
does not commute. Section IV.B shows that the two
viewpoints are essentially equivalent by proving that
any QND observable (defined using the first viewpoint)
can be completely shielded from the back action of the
measuring apparatus. The second viewpoint has been
used by Unruh (1979) to characterize quantum non-
demolition measurement.

Section IV.C, which concludes this paper, discusseg
the application of the general QND theory of Secs. IV.A
and IV.B to real experiments. A warning is given that
the general theory is too simplistic. That theory gives
sufficient conditions for an experiment to have high
precision, but not necessary conditions. By being
clever one might be able to violate that theory's con-
ditions and still achieve high accuracy.

ll. FORIVIAL DlSCUSSION OF MEASUREMENTS OF
HARMONIC GSCI LLATGRS

A. Mathernaticai description of the oscillator

The oscillators that we study are macroscopic in size.
An example is the fundamental mode of mechanical os-
cillation of a monocrystal of sapphire with mass
M- 100 kg. Such crystals, cooled to a few millidegrees,
might be used 5 to 10 years hence as third-generation
resonant-bar detectors for gravitational waves [cf.
Braginsky (1974) and the lectures by Braginsky,
Douglass, and Weber in Bertotti (1977)j. Such a crystal
contains -3&& 10" atoms, and therefore its mechanical
oscillations have -3&& (3&& 10") degrees of freedom. The
fundamental mode is one of those degrees of freedom,
and it is almost completely decoupled from all the
others. The strength of its coupling to other modes is
quantified by its "Q"—which is the number of radians
of oscillation required for its energy to decrease by a
factor 1/e (due to "friction" against the other modes),
from an initial energy far above thermal. A Q of 4.2
&& 10' has been achieved with a small doubly convex
quartz lens at 2 K by Smagin (1974); a Q of 5&& 109 has
been achieved for a 1 kg sapphire crystal at 4.3 K by
Bagdasarov et al. (1977) [see also lecture by Braginsky
1I1 Bel'tottl (1977)]q a Q of 2 && 10 has been achieved WIth
a 4.9 kg silicon crystal at 3.5 K by McGuigan et al.
(1978); and it is not unreasonable to hope for Q- 10"
at a temperature of a few millidegrees.

The coupling to other modes produces not only fric-
tion; it also produces fluctuating forces ("Nyquist
forces") which cause the amplitude of the fundamental
mode to random walk. In thermal equilibrium the mean
number of phonons in the fundamental mode is N= kT/
Aw- 104 for T- 0.003 K and cu/21I 5000 Hz. In a time
interval ~t «Q/Id the number of phonons random walks
by AN-N(2~At/Q)'~'. Hence, a, change of unity re-
quires a mean time of b, t- Q/(2uAI')- 1 sec if Q- 10".
This is very long compared to the 0.2 msec period of
the fundamental mode —so. long, in fact, that for such a
crystal Nyquist forces should be totally negligible com-
pared to noise and quantum-mechanical uncertainties
in the device that measures the crystal's oscillations.

Unruh (1980) has recently analyzed quantum-mechan-
ically the effect of thermal (Nyquist) fluctuations on a
harmonic oscillator. In his analysis Unruh considers a
simple model of an oscillator coupled to a heat res-
ervoir; the heat reservoir consists of. a large number
of oscillators, each of which is coupled linearly to the
primary oscillator.

An obvious second example of a macroscopic oscilla-
tor is an electrical LC circuit.

A third example is a normal mode of electromagnetic
oscillation of a microwave cavity with superconducting
walls. Such cavities are being used as displacement
sensors for resonant-bar gravitational-w'ave detectors
(Braginsky, Panov et a$. , 1977), and they have been pro-
posed as the fundamental element in anew type of gravita-
tional-wavedetector (Braginsky et al. , 1973; Grishchuk
and Sazhin, 1975; Pegoraro, Picasso, and Radicati, 1978;
Caves, 1979) and in other gravity experiments (Bra,—

ginsky, Caves, and Thoyne, 1977). The normal modes
of such a cavity have Q's of -10"to 10" (Pfister, 1978;
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[x,p] =i~;
its Hamiltonian is

Ho =P /2m + 2 m c0 x

its creation and annihilation operators are

(2.1)

(2.2)

a~ = (m(u/M)'~'(x —ip/m (u),

a = (m tu/M)'~'(x+ip/m(u);

and the operator representing the number of quanta is
jh

N= a~a = Ho/Acu —~ . (2.4)

In addition to these standard operators, which one
finds in most quantum mechanics textbooks, it is us'eful
to introduce the quantities

X,(x,P, t) =x cosset —(P/ma) sinut,
r

X,(x,P, t) —=x sinut+ (P/mar) cosset .

It is straightforward to show that

x+ip/m(u = (X,+iX,)e '"'.

(2.5a)

(2.5b)

Thus X, +i%, is the quantum-mechanical analog of the
oscillator's classical "complex amplitude. " As in the
classical limit, so also in the Heisenberg picture of
quantum mechanics, K, and K, are conserved in the ab-
sence of interactions with the outside world:

--~=~ ——[X,H]=O.
Bt k (2 7)

X, and X, are Hermitian operators and are therefore

Allen et a/. , 19VI)—high enough that for some purposes
one can ignore thermal (Nyquist) fluctuations in the
electromagnetic field.

Nyquist forces not only are negligible in some con-
texts of interest; they are also irrelevant to the issues
of principle which this paper addresses. Therefore we
shall ignore them until Paper II—i.e., we shall assume
that the one mode of interest can be treated as a har-
monic oscillator which couples only to (i) the weak
classical signal which we seek to measure, and (ii) our
measuring system.

The oscillator is characterized by its canonical co-
ordinate x and momentum P, which are Hermitian op-
erators (observables), and by its mass m and angular
frequency cu. If the oscillator is the fundamental mode
of a resonant bar, we shall normalize x to equal the
displacement from equilibrium of the end of the bar.
Then m will be roughly half the mass of the bar; and,
when the bar is decoupled from the measuring ap-
paratus, P will be approximately the momentum of the
right half of the bar relative to its center. If the oscil-
lator is an LC circuit, we shall normalize x to equal
the charge on the capacitor. Then m will be the induc-
tance, and P will be the magnetic flux in the inductor.
If the oscillator is a normal mode of a microwave
cavity, we shall normalize nz to equal unity. Then x
can be (V/4m~')'~'&& (mean magnetic field in cavity), and

p can be (V/4m)' 'x (mean electric field in cavity),
where V is the cavity volume.

No.matter what the nature of the oscillator may be,
its coordinate and momentum have the commutator

observables. One can show that they, and linear com-
binations of them with constant coefficients, are the
only conserved observables that are linear functions
of x andP. Note that/, and/, have explicit time de-
pendence [Eqs. (2.5)]. In this they differ from all the
other observables considered above (x,P, HO, P) and
from most, but not all, observables that one encounters
in quantum theory.

B. Uncertainty principle and ways ta measure the
oscillator

m, m, - —,'i([X„X,]) ~
=h/2m~, (2.9a)

which is the complex-amplitude analog of the Heisenberg
uncertainty principle for pos'ition and momentum:

Ax~ ~ 2A. (2.9b)

One can think of x and P/mw as Cartesian coordinates
in a phase plane (we divide by m~ to make both coordi-
nates have dimensions of length}. Then X, and X2 are
Cartesian coordinates that rotate clockwise with angu-
lar velocity cu relative to the (x,P/mes) coordinates [cf.
Eqs. (2.5}and (2.6}]. The uncertainty relations ~,~2

tt/2mcu, ~xbp/mes ~ h/2m~ are equivalent manifes-
tations of the fact that any quantum-mechanical state
is characterized by an "error box" in the phase plane
with area at least &tt/2m&v; see Fig. l.

The standard method for measuring the motion of a
macroscopic osc'illator is to couple it to a canonical-
coordinate (x) transducer whose output is proportional
to x, and to feed the output into an amplifier. Figure 2
shows a simple example where the oscillator is an I.C
circuit (part a, to left of dashed line). In this example,
x is the charge on the capacitor, P is the flux through
the inductor, no transducer is needed, and the ampli-
fier (part b) produces an output voltage A. Q propor-
tional to the total charge Q that flows through it ("zero-
impedance charge amplifier" ). The amplifier neces-
sarily is noisy. As a minimum, it has noise due to un-
certainty-principle constraints on its internal dynami-
cal variables. If this is its only noise, it is called an
"ideal amplif ie r." Viewed non-quantum- mechanically,
the noise is of two types: (i) a stochastically fluctuating
noise current I„(t)=—dQ„/dt which, in the case of Fig. 2,
gets superimposed on the amplifier's input [so V,„,
=A. (x+Q„)J; a,nd (ii) a noise voltage V„(t) which, in
Fig. 2, produces a driving force on the oscillator and
thereby changes its momentum (p =I.X = V„).

It is useful to distinguish two types of measurements
that can be made with such a system: "quick mea-
surements" and "amplitude-and-phase measurements. "

In a quick measmengent one reads out the amplifier
output in a time v short compared to the oscillator
period (ce T« I; "broad-band amplifier" ). From the
output one infers the instantaneous coordinate x of the

In classical theory it is possible to measure the oscil-
lator's complex amplitude X —=K, +i%, with complete
precision. Not so in quantum theory E.quations (2.1)
and (2.5) imply that X, and X, do not commute:

[X„X,] =i@/mes. (2.8)

Therefore the variances of X, and X, in any oscillator
state must satisfy
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p/fTl oL)
"back-action" noise voltage V„(t) kicks the oscillator,
producing an unpredictable momentum change:

V„dt= —', (S ~/2~)' 'v, (2.10b)

area & vr(g//P(7)~)

where S~ is the spectral density of the noise voltage
V„(t).' The Heisenberg uncertainty principle places the

6

constraint

(S~,)» - 2k (2.11)

on the noise performance of any zero-impedance charge
amplifier [cf. Weber (1959); Heffner (1962); Eq. (3.7)
belowj. Thus, even with an ideal amplifier, a quick
measurement produces an uncertainty product

5xo &Po= «(SvSo) +~ 25. (2.12)

FIG. 1. "Error box" in the phase plane for a quantum-me-
chanical oscillator. This error box is an ellipse, with cen-
troid at the expectation value ((x), (p/mes)) of the position
and momentum. The principal axes of the error ellipse are
the eigendirections of the variance matrix

x + ip/mes = (Xt + iX2)e

oscillator to within a precision, for the example in Fig.
2

6x = (So/27')'+ (2.1Oa)

Here S is the spectral density of the amplifier s noise
charge Q„(t)=—jI„dt, and 1/2v is the bandwidth of the
measurement. During this measurement the amplifier's

I

[I [&n
= on

v„~ (~p/m(u) 2

l

and the principal radii are the square roots of the correspond-
ing eigenvalues. Here a„&

=—(1/2mco) ((x —(x) )(p —(p) )
+ (P —(p) ) (x —(x) )) . This error box has the property

&p .1 kex ~ ~ —(area of box) ~
tPEGO 7l 2'fPIQ3

1
&X& o .&X2 ~ —{area of box) ~

r 2m co

(as one can verify by elementary calculations). Here X~ and
X2 are the real and imaginary parts of the complex amplitude,
and the PC~, X'2) coordinates of the phase plane are related to
the (x, p/me@) coordinates by a simple time-dependent rotation

This simple example illustrates how the Heisenberg
uncertainty principle is enforced in any quick measure-
ment of precision &xo: Back-action forces from the
measuring system always perturb the oscillator's mo-
mentum by an amount &Pa~ (—',k)(1/6x, ).

A quick measurement produces an uncertainty error
box which, for &xo«&P, /mes, is a long thin ellipse in
the phase plane [Fig. 3(a)]. As time passes, the oscil-
lator's "system point" rotates clockwise in the phase
plane:

x+iP/m&u =(X, +iX,)e '"' X +iX =const (2.13)

LEqs. (2.6) and (2.7)]; and thus its error box also ro-
tates clockwise; see Fig. 3(a). As a result, if one
tries to predict the outcome of a second quick measure-
ment of x, the error in the prediction oscillates in
time between &x, and &Po/m(u~ (5/2m6 )(1/6xo):

&x(t) =I(()x )' cos'cut+ (6P,/m&u)' sin'&utj' ' (2.14)

If one wants the maximum of these oscillations to be as
small an error as possible, one must arrange for the
error box to be round and to have the minimum allowed
radius 5x, =5P,/m&u =OX, =OX, =(h/2m&v)'~' An ideal
measurement with these uncertainties will necessarily
drive the oscillator into a quantum-mechanical "co-
herent state" —i.e., a state with a minimum-uncertainty
Gaussian wave packet that undergoes classical, oscil-
latory motion without spreading; see, e.g. , Merz-
bacher (1970).

Turn now from "quick measurements" to "amPlitude-
and-phase measurements. " In such measurements one
uses an amplifier that amplifies only a narrow band of
frequencies A~«co centered on the oscillator frequency

Such an amplifier produces a sinusoidal output with
complex amplitude (V, + i V, ) =A (X, + iX,), where X', + i X2
is a time average of the oscillator's amplitude

(c[) (b)
FIG. 2. Simple example of an oscillator coupled to an ampli-
fier. Part (a) (to left of dashed line) is the oscillator, an LC
circuit; part (b) (to right of dashed line) is a zero-impedance
charge amplifier whose "Thevenin equivalent circuit" is
shown. See text for discussion.

3A more carefu]. discussion would pay attention to the back-
action kick [Eq. {2.10b)] which occurs du&ing the initial quick
measurement of x. That kick modifies the initial measure-
ment error (2.10a) to read dxo ——(So/2m+ [(dP p/m)v'] j
= (So/27+Svw /8m ) / . The discussion in the text implicitly
assumes that the second term is much smaQer than the first.

Later (Sec. III.A.1) we shall discuss the case where the two
terms are of comparable size. This case leads to an absolute
minimum value for the error in our initial quick measure-
ment: dxok [(SSv)-/2~/2m]~/2~ (kg/m)~/2 [cf. Eq. (2.11)].
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p/mba

Sx, Sp /me)&hj2mu)

2

radius & (h/2mcu)

(c)
FIG. 3. Error boxes for various types of measurements of a harmonic oscillator. {a) The error box characterizing the results
of a "quick measurement" of position. After the measurement the error box rotates clockwise in the phase plane with angular
velocity ~, which means that it remains fixed as seen in the "rotating" (X&, X2) coordinates. (b) The error box for "amplitude-
and-phase measurements" as seen in the (X&, X&) coordinate system. (c) The error annulus (6N—:1) for "quantum-counting mea-
surements. " (d) The error box for a "back-action-evading measurement" of X, .

(averaging time r = &/Aa»& 1/cu). The accuracy of the
measurement is constrained by the amplifier's super-
imposed noise (Q„ in Fig. 2), and by its back-action
noise (V„ in Fig. 2). These noises affect the measured
amplitudes X, and X, equally (neither phase is pre-
ferred), producing the following probable error when
S~/Sz is optimized:

5X, =PX, = [—,'(S ~S~)'~2/2m'&J'~'~ (5/2m'))'+ (2.15)

4For a discussion of difficulties with making rigorous the
quantum-mechanical concept of the oscillator's phase g see,
e.g. , Carruthers and Nieto (1965). We circumvent these dif-
ficulties by working with the real and imaginary parts of the
complex amplitude, X~ and X2, instead of the amplitude and
the phase.

In the complex-amplitude plane (phase plane) the error
box is round; see Fig. 3(b). We call such measure-
merits "amplitude-and-phase" because they attempt to
determine both the oscillator's absolute amplitude
IXI = lX', +iX2! = (X,'+X22)'+ (or equivalently its energy
or number of quanta), and its phase~ /=tan '(X2/X, ).

An "ideal" amplitude-and-phase measurement (one
with the minimum possible noise) will drive the oscil-
lator into a quantum-mechanical coherent state with a
round error box of radius ax=bP/mes =~, =b2C, standard Ex = bP/mu& =~, = 62' = (8/2m')'+

!
1 2

(2.16)quantum )
!limits ~! ~=(N+~)'+, bg= 'N '~' for N»1. —

The fact that these are the very best measurement pre-
cisions achievable by the amplitude-and-phase method

= (h/2mco)'+. Moreover, for such an ideal measure-
ment the probability distribution of the measured values
of +, and X, is a two-dimensional Gaussian, centered
on the expectation value ((X,), (Xg) of X, a,nd X, with
variances ~, =~, =(h/2mcu)'+. From the measured
values of X, and X„one can infer the oscillator's num-
ber of quanta and its phase. It is easy to verify from
the Gaussian distribution that the expected value of the
inferred number of quanta is N = (~co/2k)((X;) +(X2) ),
and the variance is ~=(N+~)'+. For large N the ex-
pected value of the inferred phase is /=tan '((X,)/
(X,)), and the variance is Lg= —,'N '+. These variances
associated with a coherent state are the minimum pos-
sible errors obtain, able by the amplitude-and-phase
method.

Henceforth, we shall call these minimum errors the
standard quantum limits" for amplitude-and-phase

measurements:
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was first discovered, in the context of mechanical os-
cillators and gravitational-wave detection, by Bra-
ginsky (1970), and was first proved with generality by
Giffard (19'76). However, these amplitude-and-phase
limits have long been known in the field of quantum
electronics; see, e.g. , Serber and Townes (1960).

For amechanical oscillator of the type to be used in
gravitational-wave detection (m & 10 tons, u/2&= 1000
Hz), the standard quantum limit is ~, = (k/2m~)'+
~ 1 &10 '9 cm. This is slightly larger than the ampli-
tude changes one expects from a gravitational wave
burst due to a supernova explosion in the Virgo cluster
of galaxies. Thus amplitude-and-phase measurements
of resonant-bar antennas do not look promising for
gravitational-wave astronomy [Braginsky (1977); cf.
Sec. I of this paper].

"Quantum counting" is an alternative method of mea. —

suring a harmonic oscillator. An ideal quantum counter
can measure the number operator N of the oscillator
with complete precision, and can give repeatedly the
same result for a sequence of measurements of N if no
external forces are acting on the oscillator. Equations
(2.4) and (2.5) imply

7V =-,'(m& /a)(X2+X,') ——,'. (2.1'7)

Hence, a measurement of X is equivalent to a measure-
ment of the absolute amplitude (Xj =- (X,'+X22)'~' of the
oscillator. -Such a measurement, with complete pre-
cision, must leave the phase /=tan '(X,/X, ) compl«ely
undetermined. In the phase plane the error box for such
a measurement is an annulus [Fig. 3(c)J. If one at-
tributes to this error annulus a thickness corresponding
to 6N =1, then its area is 4&(h/2m') —i.e., four times
the minimum allowable area.

Quantum counters with high efficiency (high precision)
are common devices for photons of optical frequency
and higher —e.g. , photodiodes and x-ray proportional
counters. These counters are all demolition devices;
they destroy the photons they count. For photons at
infrared frequencies and lower, and for phonons at acoust-
ical frequencies „quantum counters with reasonable effic-
iency are not yet available. Unruh (1977, 1978) and
Braginsky, Vorontsov, and Khalili (19'7'7) have sug-
gested designs of nondemolition devices for measuring
the number of photons in a microwave cavity; and Bra-
ginsky and Vorontsov (19'74) have proposed that one
couple such a cavity to a resonant bar, thereby can-
verting bar phonons into cavity photons, measure the
number of cavity photons, and thus monitor changes
in the number of bar phonons.

Recently the authors (Thorne et at. , 19'78, 1979) have
proposed yet another method of measuring an oscilla. tor:
a "back-action-evading" measurement of the real part
of the complex amplitude, X, (or, if one prefers, of
the imaginary part X,). In this method one measures
X, with high precision; and in the process, in accord-
ance with the uncertainty principle, Eq. (2.9a.), one
perturbs X, by a large amount. In other words, the
measuring appara. tus is carefully designed so its back
action force drives X2, leaving X, largely unscathed;
and because X, and X, are separately conserved, the
resulting large uncertainty in X,, does not feed back onto
A~ Rs the oscillator evolves. This means thRt R Se-

C. Morlitori~g a force by the amplitude-and-phase
method

I et an oscillator be driven by a weak classical force
E(t), so that its Hamiltonian is

H =Ho —xE(t), H, =[expression (2.2)J. (2.16)

The classical nature of the force is embodied in the fact
that + is a real function of time I; rather than an op-
erator. The unitary evolution operator U(t, to), which
governs the evolution of the state vector in the Schro-
dinger picture, satisfies

i'd U/8 t = JI(t)U, U(t„ t, ) =1. (2.19)

It is straightforward, using the techniques of Sec. 15.9
of Merzbacher (1970), to show that

I7(t, t, ) =exp[- ~ (t —t,)H, /@J

x exp(—g j3+ ~a —~+a), (2.20a)

a(i; t, ) = ( m(li) 2~ fs(t ),~:'''
to

p(t, t, ) =

x exp[+i c (t' —t )J d t',

~i(o.*a —nb*)dt .

(2.20b)

(2.20c)
'o

Here a dot denotes a time derivative; a and 6~ are the
oscillator's annihilation and creation operators [Eq.
(2.3)J; and an asterisk (*)denotes complex conjugation.
Notice that n is complex, but P is real. The effect of
the force on the oscillator is characterized by the di-
mensionless quantity cv. It will play an important role
below.

Now suppose that the oscillator is being studied by a
sequence of "amplitude-and-phase" measurements,
each of duration ra 1/cu. How large must the driving
force be to produce a measurable change in the oscil-
lator's complex amplitude'P Classically the change in

quence of high-precision back-action-evading measure-
ments can give the same result for X, time and time
Rg Rln.

The error box for a back-action-evading measure-
ment is a long, thin ellipse [Fig. 3(d)], and it becomes
a vertical line (~, =0, 62', =~) in the limit of a "per-
fect measurement. " It is instructive to compare the
back-action-evading error box [Fig. 3(d)J with the error
box for a quick high-precision measurement of x [Fig.
3(a)]. If a first measurement is made at t =0, when
x =X,„ the subsequent error boxes are qualitatively the
same. As the oscillator evolves, these error boxes
remain fixed in the (X„X,) coordinate system (X, and
X, are conserved); but they rotate as seen in the
(x, P/m~) coordinate system. It is this simple fact which
makes possible a sequence of arbitrarily accurate
measurements of X, all giving the same result, and
forbids a similar sequence of arbitrarily accurate mea-
surements of &.

In Secs. II.C-G.E we compute, for three types of
mes. surements (amplitude-and-phase, quantum counting,
and back-action-evading), the maximum precision with
which one can monitor a weak, classicat force E(t) that
drives the oscillator.
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complex amplitude during the time v. is

P(X, +iX,)= ie' ' dt'
1r y il)

This change is measurable if its absolute magnitude
exceeds the diameter of the error box 2(lz/2m&v)'+
(standard quantum limit) —i.e., if

standard quantum limit: I n(r, o)l & 1.
(2.21)

Note that lo. (r, o)l has the physical meaning

(2.22R)

I o.(~, 0)l' =2 1
total energy that the force E'(i) would deposit
in a classical oscillator during time 7, if
the oscillator was initially unexcited
the mean number of quanta that the force would
deposit in a quantum-mechanical oscillator, if
the oscillator was initially in its ground state

(2.22b)

A fully quantum-mechanical derivation of the mea-
surability criterion (2.22a) proceeds as follows. As-
sume that a previous, ideal amplitude-and-phase mea-

t

surement has left the oscillator in a coherent state
(Merzbacher, 1970) at time f =0:

amount ~ (k/2m')' '. Viewed heuristically, a sequence
of zi measurements produces a "Mzz" random walk of
the error box location that cancels the usual "I/Wri"
improvement of measurement accuracy.

lq(0)& =exp( —zlpl'+pa~)lo), (2.23) D. Monitoring e force by the quantum-counting method

(X, +zX', ) = (2h/m(u)'+p

~, =~, = (k/2m(u)'~'. (2.24)

Then in the SchrMinger picture the oscillator's state
at time T is I g(T)) = U(z', 0)l $(0)), which by virtue of Eqs.
(2.23), (2.20a), and the commutator [a, St

J =1 is

I g(7)) =exp(—i WHO/Iz)exp[ i P + —,'(—op+ —o. +p) J

x exp[——,
'

I zz + p
I' + { +p)zz~ ]I 0) . (2.25)

Here o. =a(z', 0) and P =P(7, 0) are given by Eqs. (2.20b)
and {2.20c). This final state, like the initial, is co-
herent. It has (X, +iX, ) =(2k/m~)'~'(p+o. ) and ~,=~, =(8/2m'&)'&. Thus the force E(t) displaces the
center of the oscillator's uncertainty circle by

25
u(x, +ix, ) = n(~, o)m co

(2.21')

where p is a complex number and Io) is the ground state.
This coherent state has

Next consi.der quantum-counting measurements of an
oscillator on which a classical force is acting. Assume
that at time t =0 a precise measurement of the number
of quanta puts the oscillator into an energy eigenstate
IN) with N quanta. Then in the Schrodinger picture the
oscillator's state evolves to I g(r)) =U(v, o)IN) during the
time interval T. From Eq. (2.20a), the commutation
relation [a, a~] =1, and the raising and lowering rela-
tions at IN) = {N +I)'+IN+1), a)N) =N'+IN —1), one can
derive the probability P(Ã-N'; r) that in the time in-
terval v the number of quanta changes from ~ to N':

I' {N-N'; z) —= I(iv'I U(7, 0)IN&l'

(2.2S)

where s =—max{N, N'), z'=-min(N, N'), and LP (x) is the
generalized I ague rre polynomial.

The probability that the force has induced any change
at all is

1 —P{N-N; T) =1 —e ' [L~(lo.l')J'

while leaving the size of the error circle unchanged.
As expected, this displa, cement is the same as that de-
rived classically [Eq. (2.21)]; and because the error
circle does not change size, the minimum measurable
force [Eq. (2.22a)] is also the same. This minimum
measurable force has been derived and discussed in the
context of gravitation experiments by Braginsky (1970),
and with much greater generality by Giffard (1976);
see also a recent, very elegant treatment by Hollen-
horst (19'79).

One might have thought that by a sequence of n measure-
ments one could determine the center of the error circle
with accuracy (8/2mcu)'+(1/r~)'~', and thereby could
measure a force (I/n)'~' smaller than Eq. (2.22a). This
is not the case be cause each measurement of prec is ion
(Iz/2mcu)'~' perturbs the location of the error box by an

+-,'N(iv —1)l ~I'- - ~ ~ J'

This probability is significant if and only if I al'
~ (N+1) ", i.e. ,

I~(T, o)l o (N+I)-'~ (2.2S)

This is the criterion for measurability of the force by
quantum-counting techniques. It has been derived and
discussed by Braginsky (1970) and by Braginsky and
Vorontsov (1974); see a.iso the elegant recent treat-
ment by Hollenhorst (1979).

A semiclassical derivation of criterion (2.28) pro
ceeds as follows: Orient the axes of the complex fre-
quency plane so the (unknowable) phase of the initial
state is &=0; then the initial energy is E =2m( 'X»
the initial number of quanta is N =E/he@ —2
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= —,'[(mw/k)X', —1]; the force-induced change in ~is 0~
= (mr /ff)A;6X, =[(2& +1)(mrs/5)J'~'0X„, where 6(X, +iX2)
is given by the classical expression (2.21) except for
an unknowable phase; to within a factor of order unity,
which is fixed by the unknowable phase, &X,
= (@/m~)'+I o. (T, 0)I; the criterion of measurability,
M1 ~ 1, then comes out to be (2.28), to within a factor
of order unity.

Criterion (2.28) implies that, no matter how weak the
force I' may be, and no matter how short the time in-
terval 7 between measurements may be, one can detect
the force by preparing the oscillator in a sufficiently
energetic initial state (state of sufficiently large ~).

When E is large enough to be measured [criterion
(2.28) satisfied], then the probability distribution, Eq.
(2.26), is not narrowly peaked. Even under the best of
circumstances it can reveal

E(f')e' 'at' =(2 mrna)'+I o(~, o)I

only to within a multiplicative factor of -8 at the 90%
confidence level; cf. fig. 4. This is far from enough
information to permit reconstruction of E(t).

On the other hand, if one had an infinite number of
oscillators all coupled to the same classical force
(e.g., to a. gravitational wave), and all excited to suf-
ficiently high energies, then from the statistics of
quantum-counting measurements one could compute the
probability distribution (2.26) and from it one could
infer )n(t„ t, ))' for any desired t, and f, Equiv. alently
one could infer ) f, 'E(&')e'"' dt'I' —which is sufficient
to reveal all details of E(&) except an overall, time-
independent sign.
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FIG. 4. Harmonic oscillator, initially in an energy eigenstate
with% =30 quanta, is driven by a classical force for a time 7.
The integrated strength of the force is characterized by the
dimensionless number ( o.' (v, 0) ( [Eqs. (2.20b) and (2.22b)) .
Here we show the probability&(30 ¹;v) that after the force
acts the oscillator is in an eigenstate with ¹ quanta [Eq.
{2.26)j. The va.rious probability distributions are labeled by
the strength ( n(v, 0)( of the force. Notice that, if one makes
a quantum-counting measurement and discovers a transition
from N =30 to ¹ =29, one cannot with confidence determine
the strength of the force that acted. One can only conclude
that 0.05~ ( n(~, O) ~

~O2.

E. Monitoring a force by the back-action-evading method
Turn next to our proposed "back-action-evading"

method of measuring the X, of an oscillator on which a
classical force acts.

In principle, nonrelativistic quantum theory permits
X, to be measured "arbitrarily quickly and arbitrarily
accurately. '" By this we mean that, if the oscillator
begins the measurement in a near-eigenstate of X„ then
the measurement can determine the eigenvalue with
arbitrary accuracy for any measurement time, no mat-
ter how short. We also mean that, regardless of the
initial state of the oscillator, the measurement can
leave the oscillator in a state arbitrarily close to an
eigenstate of X, whose eigenvalue is the measured value
['measurement of the first kind"; Pauli (1958), and
Footnote 6].

Such an "arbitrarily quick and accurate" measure-
ment can be achieved by a measuring system which sat-
isfies two requirements: (i) the measuring apparatus
must be coupled precisely to X,—i.e., it must be
coupled to X, and to no other observable of the oscil-
lator; and (ii) the coupling between the measuring ap-
paratus. and the oscillator must be arbitrarily strong. '

5Relativistic quantum theory is not so kind. It places firm
constraints on the precision with which certain observables
can be measured. For example, the position of a particle (or
the X~ of a harmonic oscillator) cannot be measured with a
precision better than the Compton wavelength h/mc. BougMy
speaking, the reason for this constraint is the following: If
one tries to localize a particle within a region smaller than
its Compton wavelength, then its momentum uncertainty will
be so large that its kinetic energy will be of order its rest
mass, and particle-antiparticle pairs will be created. For
the X& of an oscillator the situation is similar: If one tries to
localize X~ within a Compton wavelength (2&& 10 cm if m
=1 ton), then X2 will be so uncertain that the oscillator's en-
ergy wiQ be of order its rest mass. Clearly, this constraint
is completely irrelevant for the macroscopic systems con-
sidered in this paper.

6These two requirements on the measuring apparatus —pre-
cise coupling to the measured observable and arbitrari1y
strong coupling —are also the basic assumptions behind a con-
troversia1 general "theorem" which asserts, "Nonrelativistic
quantum theory permits arbitrarily accurate, instantaneous
(often called impulsive) measurements of the first kind for
any observable. " [A measurement of the first kind (Pauli,
1958) is one for which, if the system is in an eigenstate of the
measured observable at the instant of the measurement, the
result of the measurement is equal to the eigenvalue, with ar-
bitrary accuracy; and regardless of the system's initial state,
the measurement leaves it in an eigenstate of the measured
observable with the measured eigenvalue. ] For a concise re-
view of the literature on this "theorem, " see Aharonov and
Petersen {1971). This "theorem" is implicit in the viewpoint
of Bohr, and it has been championed in recent years by David
Bohm. Bohm discusses and gives a proof of the "theorem"
in his textbook; see Sec. 22.5 of Bohm (1951). He regards the
"theorem" as an immediate consequence of the two require-
ments on the measuring apparatus. However, one can ques-
tion the generality of Bohm's proof because of his neglect of
the measured system's free Hamiltonian Ho during the course
of the measurement. In particular, by means of strong forces
embodied in the interaction Hamiltonian, the measuring ap-
paratus acts back on variables which do not commute with the
measured observable A. These variables then drive A via Ho,
and the resulting disturbance of A might preclude (for some
observables) arbitrarily aeeurate measurements even in the
[footnote continued on next page].
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When requirement (i) is satisfied, X, is completely
shielded from noise in the measuring apparatus; then
the arbitrarily strong coupling of requirement (ii) can
lead to arbitrarily good accuracy for any measurement
time, no matter how short. [The crucial property of
X,—that it is completely shielded from the measuring
apparatus when requirement (i) is satisfied —is a gen-
eral property of "quantum nondemolition observables";
for a precise definition of "quantum nondemolition ob-
servable" and a proof of this property, see Sec. IV.]

A skeptic will mistrust this justification of our claim
that ~ycanbe measured arbitrarily quickly and ac-
curately. He might worry about the perfection with
which one can achieve the time-dependent coupling (Sec.
II.F) required for a measurement of X„orhe might
not believe that X, can be isolated from the measuring
apparatus. To alleviate such worries, we describe in
Sec. III.B a Gedanken experiment which shows that
arbitrarily quick and accurate measurements can be
made.

Qf course in Practice there are limits to the quick-
ness and precision with which A; can be measured—
limits imposed by the strengths of real materials, vol-
tage breakdown in capacitors, etc. In Paper II we dis-
cuss some of these practical issues. Until then„how-
ever, we restrict attention to Iimits of principle which
are imposed by nonrelativistic quantum mechanics.
In this context the crucial point is that, whereas the un-
certainty principle of nonrelativistic quantum theory
places severe restrictions on the accuracy of ampli-
tude-and-phase measurements, it places no restriction
whatsoever on the speed or accuracy of measurements
of X,.

We now compute the precision with which one can
monitor a classical force E'(f) by back-action-evading
measurements of A, . Our computation is carr ied out
in the Heisenberg picture. Suppose that an initial pre-
cise measurement of X„at time f = to, gives a value g,
and leaves the oscillator in the corresponding eigen-
state ( $g of X;. (The spectrum of X„ like the spectra

of x and P, is continuous; thus $0 can be any real num-
ber. ) As time passes the state of the oscillator re-
mains fixed in the Heisenberg picture, ( g(t)) =—

( Q, but
X, evolves:

dX, i - - BX, E(t)' = ——[X,IIJ+ ' = — singletBt m (2.29)

[Eqs. (2.18), (2.2), (2.5a), and (2.1)J. Integrating this
equation, we obtain

X, (f) =X, (f,) — sin(cut') dt'.
' E(t')

'0

Because I i((t)) =
( (g is an e igenstate of X, (fo), and be-

cause J, [E(t')/m& Jsin(cut')dt' is a real number, (g(t))
is also an eigenstate of X, (t) with eigenvalue

(2.30)

g(t, fo) = $o — sin(ut')dt'.
' E(t')

(2,31)
0

A precise measurement of X, (t) at time f must then

yield this eigenvalue g(t, t, ) and mus& leave &he s&a&e of
the oscillator unchanged (except for overall phase).

This remarkable fact —that even when a classical
force is acting, successive perfect measurements of

A, leave the oscillator's state unchanged —means that
perfect measurements of X, are "quantum nondemoli-
tion" in a stronger sense than quantum-counting mea-
surements can ever be. In the quantum-counting case
the classical force drives the oscillator away from
eigenstates of the measured operator N, and a subse-
quent perfect measurement then "demolishes" the os-
cillator's evolved state —i.e., it "reduces the wave
function" back into an eigenstate of Ã. Perfect quan-
tum-counting experiments are truly nondemolition only
in the absence of an external driving force.

By a sequence of arbitrarily quick and accurate back-
action-evading measurements of X, one can monitor,
in principle, the precise time evolution of the oscil-
lator's eigenvalue g(f, to) [Eq. (2.31)J; and from g(t, tc)
one can compute the precise time evolution of the driv-
ing force (signal):

E(t) = —

(mend)/at)/(singlet)

. (2.32)

limit of zero measurement time. To prove the "theorem" in
a particular case, one must include the effects of A0 and one
must show that the measurement error goes to zero in an ap-
propriate limit where the coupling strength goes to infinity and
the measurement time goes to zero. In general, the error can
be made to go to.zero only in the limit of an instantaneous
measurement. Fortunately, for the observables considered in
this paper (such as the position of a free particle or harmonic
osciQator) the theorem is undoubtedly true. Indeed, for
"quantum nondemolition observables" the theorem holds in the
stronger form given in the text for X& (arbitrarily accurate
measurements even for nonze~o measurement times). The
"theorem" has long been controversial because it implies (in
its stronger form) that the energy of a system can be mea-
sured arbitrarily quickly and accurately, in violation of a
common misinterpretation of the energy-time uncertainty re-
lation. [For a specific Gedanken experiment that proves the
possibility of arbitrarily quick and accurate energy measure-
ments, see Aharonov and Bohm (1961, 1964). The latter is a
valid special case of Bohm's (1951)proof of the general "the-
orem. "] The misinterpretation of M.~t &5 has generated so
much confusion in the physics community that even Von Neu-
mann (1932; Sec. V.1) regarded it as a counterexample to the
"theorem. "

Of course, in the realistic case of imperfect measure-
ments, the inferred E(t) will be highly inaccurate at
times f= nm/cu, when sin&et= 0. However, when the
force is produced by a classical field (e.g. , a gravita-
tional or electromagnetic wave) whose wavelength is
long compared to the si2', e of the measuring apparatus,
one can couple two different oscillators to I'. On the
first oscillator one can measure X, getting ((f, tc), and
on the second one can measure X, getting

t E iii)
g(t, to) —= pc+ cos(c t')dt'.

to

One can infer E(t) independently from the two measure-
ments, and the accuracies of the two methods will be
comp?ementary: The second is good at t=«/m when
the first is bad; the first is good at f = (n + —,')&/w when
the second is bad.

This technique of measuring X, on one oscillator and

A, on another completely circumvents the uncertainty
principle. In the complex amplitude plane the vertical
error line associated with 2, (first oscillator), and the
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horizontal error line associated with X, (second oscil-
lator), intersect in a point. This point moves, under
the action of E(t), in precisely the same manner as the
system point of a single classical oscillator driven by
E(t); see Fig. 5.

That measurements of X, can reveal all details of
E(t), while qua. ntum-counting measurements cannot, is
intimately connected with the fact that measurements
of X, are quantum nondemolition even in the presence
of a classical force while quantum-counting measure-
ments are not. For further discussion see Sec. IV.

Of course, in practice there are limits to the ac-
curacy with which back-action evasion can monitor an
external force E(t) The. most serious limits arise from
Nyquist noise in the oscillator, and from constraints on
the strength of coupling of real transducers to the oscil-
lator —constraints due to the finite strengths of real
materials, voltage breakdown in real capacitors, and
superconducting breakdown in real circuits; see Paper
II. Less serious in practice, but important in princi-
ple, are limits due to special relativistic effects (see
footnote 5}, and a, limit due to the quantum-mechanical
properties of any real external force.

The latter limit, which we shall call the "~ca/ quan-
turn limit, "arises when one is monitoring the external
force E so accurately that one discovers it is not clas-
sical, but rather is being produced by a boson system

ith a finite occupation number per quantum-mechani-
cal state. 'The magnitude of this real quantum limit on
the force E is a function of the strength of coupling of
the boson system to the oscillator: The weaker the
coupling, the smaller will be the magnitude of the force
at which the system's quantum properties are felt. To
quantify the strength of coupling unambiguously, con-
sider the case where the boson system produces a force
whose duration is approximately one cycle of the oscil-

Xp X-p

(g/2 )i/
Xp

Xi X
I

(a) (b) (c)
FIG. 5. (a) Classical harmonic oscillator is described by a
single "system point, "which moves about in the complex am-
plitude plane in response to an external driving force fEq.
(2.21)]. (b) Quantum-mechanical oscillator in a coherent
state is described by a minimum-uncertainty wave packet. In
the absence of measurements the center of that wave packet
moves about in the comple~ amplitude plane, in response to
an external driving force, with precisely the same motion as
the system point of the classical oscillator [Eq. (2.21')]. Hove-
ever, it is impossible to measure that motion more precisely
than &Ki =~2 = {S/2mco) ~ . {c) Two quantum-mechanical os-
cillators, one in an eigenstate of X~, the other in an eigenstate
of X2, are described by two orthogonal error lines in the corn-
plex amplitude plane. Under the action of an external driving
force the intersection of the two error lines moves in exactly
the same manner as the system point of a classical oscillator.
In principle, this motion can be measured with complete pre-
cision, and without perturbing the error lines, by means of
back-action-evading ineasur ements.

lator —i.e., a broadband force with bandwidth 2 ~ —~.
Then consider all quantum states associated with this
driving force (e.g. , if the force is produced by electro-
magnetic or gravitational radiation, consider all states
in the beam pattern of the antenna with frequencies in
the range Aa&-&u). Let &s«be the average occupation
number of these states when the force is just strong
enough to be detectable in one cycle by amplitude-and-
phase methods [force at level of "standard quantum
limit, "Eqs. (2.16) and (2.22a)]. Then Hs«charac-
terizes the strength of coupling of the oscillator to the
boson system. In the special case of an antenna for
electromagnetic or gravitational waves, one can show
that

s s«A' /c'

= 10" for resonant-bar
gravitational-wave antennas (2.33)

(cf. Sec. I.B). Here &=e/~ is the reduced wavelength
of the waves and o'0 is the cross section of the antenna
[equal to cu '1o(u') du&' where the integral is over the
antenna's resonance and cr(m') is the cross section at
frequency u'; cf. Chap. 3'7 of Misner, Thorne, and
Wheeler (19'73}].

Now consider an arbitrary force and a measurement
of X, that lasts a time v~ ~ '. The real quantum limit
for such a measurement is reached at a level that is
sma. lier than the standard quantum limit by (ur/&s«)'~a:

real
~

ax, = (6/2m&v)'~'((ur/ns«)'+,

. quantum

limit I n(T, 0)I = (~7/~s«)'~.
If one were monitoring the force E(t) by back-action-
evading techniques at this level of accuracy, one' s
measurements would be sensitive to zero-point (vac-
uum) fluctuations in the system that produces the force

Henceforth, as previously, we shall ignore these is-
sues and shall regard the force E(t) as truly classical
(+4S« =

(2.34)

F. Interaction Hamiltonians for back-action-evading
measurements of X,
1. Continuous two-transducer measurements

(2.35)

A back-action-evading measurement of X, is made by
(i) coupling the oscillator to a measuring apparatus
which produces an output large enough to be essentially
classical, (ii) reading out the output of the measuring
apparatus, and (iii) inferring a value for X, from that

, output. The coupling of the oscillator to the measuring
apparatus is embodied, mathematically, in the "inter-
action part" of the Hamiltonian H~. To prevent back
action of the measuring apparatus on X, it is necessary
that H~ commute with X,. To make the measurement
of very small X,'s experimentally feasible, it is advan-
tageous to use a linear coupling of the measuring ap-
paratus to the oscillator's position and momentum.
These constraints of linear coupling and commutation
with X, force H~ to have the form

HI ——KX;Q =R[x cos cut (p/m a)sinu t]Q . —
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2. Stroboscopic measurements

If one is willing to make measurements only twice per
cycle, then one can avoid the necessity for both coordi-
nate and momentum transducers. In particular, if one
pulses on the coupling at times t =rrrr/cu, so K
=K05(sin(et), then the interaction Hamiltonian (2.35)
becomes

III ——K, cosset &(sinmt) xQ

(2.37a)

which requires only a coordinate transducer for its
realization. [The factor (—1)", i.e., the sign change in
the coupling between even and odd pulses, compensates
for the sign change in the relation between x andKy'.
Ã, = (-1)"x.] If one pulses on the coupling at t = (n+ ~)rr/

then

Ifr = (K,/m(d) [- sin(()t &(cosset)]p4, (2.37b)

which requires only a momentum transducer. The pos-
sibility of such pulsed measurements was discovered
independently and simultaneously by Zimmermann in our
research group (see Thorne et al. , 1978), and by Bra-
ginsky, Vorontsov, and Khalili (1978) in Moscow. Bra-
ginsky et al. call such measurements "stroboscopic. "

Stroboscopic measurements with the interaction
Hamiltonian (2.37a) can be described semiclassically
as follows: One measures the oscillator's coordinate
x ~y at t = 0, obtaining a precise value (, and in the
process giving the momentum a huge unknowable un-

Here K is a "coupling constant" that may be time de-
pendent, and Q is an operator (observable) of the mea-
suring apparatus. (Q commutes with all the oscillator
observables. ) The total Hamiltonian for the coupled
system consisting of the oscillator, the measuring ap-
paratus, and the classical driving force has the form

II=II,@q. (2.2)] —E(t)x+II,[Eq. (2.35)]+a„. (2.38)

Here II~ is the Hamiltonian of the measuringapparatus-
i.e., it is the part of the Hamiltonian that depends only
on measuring apparatus observables.

When K is time independent, the interaction Hamil-
tonian (2.35) can be realized as follows: One couples
the oscillator to a coordinate (x) transducer, and one
sinusoidally modulates the transducer output at the fre-
quency co of the oscillator; one also couples the oscil-
lator to a momentum (P) transducer and modulates its
output sinusoidally with a phase which leads that of the
coordinate transducer by a quarter cycle; one adds the
two outputs and sends the sum into an amplifier. (The
sinusoidal modulations must be produced by a classical
signal generator —e.g., another oscillator with the
same frequency as the primary oscillator, vibrating in
a large-amplitude coherent state. ) Specific designs for
this type of measuring apparatus will be described in
Appendix B, and in Paper II. In Sec. III.B we shal, l see
that, if the coupling constant K is made arbitrarily
large, then in principle the measurement of 2C, can be
made arbitrarily quickly and arbitrarily accurately.

We shall characterize such measurements as "con-
tinuous two-transducer measurements. "

certainty-pri. nciple kick. The kick causes x to evolve
in an unknown way. However, because the oscillator's
period is independent of its amplitude, after precisely
a half-cycle x must be precisely equal to —$, in the ab-
sence of an external force, or equal to

—((—,0) = —
(F

—„f —sintdi' i)i') (2.38)

in the presence of a classical force & [cf. Eq. (2.31)]~

At & =rr/cu a second pulsed measurement is made, giving
precisely this value for x = -~„and again kicking the
momentum by a huge, unknowable amount. Subsequent
pulsed measurements at t=nw/u give values

Zx = f(ax,)' cos'&et+ (aP,/m (u)' sin'(dt]'/'

= [c'+ (frat/2m(r)']'/' for Zt «rr/(u. (2.40)

This is the minimum possible uncertainty for the next
measurement. It is minimized (optimal strategy. ) by
setting o = (frAt/2m)' ', which gives

~,= m = [(fr/m(d)((oat)]'/2 (2.41)

for the best possible accuracy of stroboscopic mea-
surements with timing imperfections ~t. This result

(2.39)

which are unaffected by the unknown kick of each mea-
surement.

In the Schrodinger picture of quantum mechanics
these stroboscopic measurements are described as fol-
lows: A precise measurement of x at I;=0 gives the
value g, and collapses the oscillator's wave function
(J)(x, 0) into an arbitrarily narrow function peaked at
g,—i.e. , ()r(x, 0) = [&(x —$0)]' '. Immediately after the
measurement the wave function g(x, t) spreads out over
all space; but as t approaches rr/&u, g gathers itself
into an arbitrarily narrow function again, now centered
on x = —((m/&u, 0) [Eq. (2.38)]. A precise measurement
of x at this time gives this precise value and leaves the
oscillator's state unchanged except for phase (no col-
lapse of wave function; quantum nondemolition mea-
surement). Just before each subsequent measurement
(t =nw/&u) the wave function again collects itself into an
arbitrarily narrow function, and a perfect nondemolition
measurement can again be made.

In practice, of course, no measurement can be made
perfectly. The following simple argument reveals the
limit of accuracy for stroboscopic measurements which
require a finite time 2At, or which are made at times
that differ by At from precise half-cycle timing. (A
more rigorous calculation gives the same limit. ) I.et o
be the precision of such a measurement at t= 0. Then
immediately after the measurement the oscillator's
wave function must have variances r) xo=o', bPO~ fr/2o.
The next measurement will have optimal accuracy only
if the first measurement has put the wave function into
a minimum-uncertainty wave packet (AP, = fr/2o'). Then,
as time passes, the variances of x and P feed each other
so that, at the time t = (7r/((ra At) of the next measure-
ment,
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has been derived independently by Thorne et al. (1978)
and by Braginsky, Vorontsov, and Khalili (19V8).

+X, sin2ut) (2.42a)

ol

HI = (K/m u) QP sin(ut = ——,KQ(Ã, -X', cos2(et
JL—W, sin2(ut); (2.42b)

cf. Eq. (2.6). The first of these is achieved by a coordi-
nate transducer with sinusoidally modulated output;
the second, by a momentum transducer with modulated
output. Measurements with such Hamiltonians we shall
call "continuous single-transducer measurements. "

In such single-transducer measurements, the ap-
paratus which follows the transducer must average over
a time 7. »2m/~ in producing its output —i.e., it must
contain a "low-pass filter" with high-frequency cutoff
at &u =7t/v. «&u. Then the sinusoidal output due to the
sinusoidal terms in HI [Eqs. (2.42)] will average away
to near zero. To free X, from back-action forces of
the measuring apparatus, one must ensure that the back-
action forces have negligible Fourier components at
frequency 2(d. This can be arranged, for example, by
placing a low-pass filter between the transducer and
the subsequent appara, tus. See Paper II for full de-
tails.

Such a continuous single-transducer back-action-
evading measurement is similar to a lock-in amplifier.
In the lock-in amplifier a slowly changing signal S is
given an initial "carrier" modulation S cos~t before it
acquires (through amplification and other signal pro-
cessing) a noise N. The noisy signal S cosurt+N is then
subjected to "phase-sensitive detection" —i.e., it is
multiplied by cosset and then is sent through a low-pass
filter to give a signal &S which is nearly free of the
noise N. By contrast, in our back-action-evading mea-
surement of an oscillator, the oscillator itself provides
the initial modulation of the "signal" ~, to produce a
"carrier" x =~, cosset+A, si.n(dt —which then enters the
signal-processing apparatus through a transducer. The
subsequent modulation and filtering of the carrier are
identical to the phase-sensitive detection of the lock-in
amplifier, except for this key difference: In the lock-in
amplifier the phase-sensitive detection follows amplifi-
cation, and its purpose is to remove from the signal
the noise inserted during signal processing; in our
back-action-evading measurement the phase-sensitive
detection precedes amplification, and its purpose is to

3. Continuous single-transducer measurements

Return now to continuous measurements. The more
rapidly one seeks to measure, the larger must be the
coupling constant K. This fact will be quantified in Eq.
(3.21) below and in Paper II. In many situations, prac-
tical considerations will force K to be so small that
measurements of the desired accuracy will require a
time w far longer than one cycle. In such cases, as in
stroboscopic measurements, one can avoid the use of
two transducers. For example, one can construct an
interaction Hamiltonian of the form

HI =K' cos~t =2ICQ(X, +X,cos2cot

HI = K@x = —'KQ [(2k/I (u) (N+ —)

+ (2P, -K',) cos2~t + (X'Q, +~,X,)sin2&ut]

(2.44)

[cf. Eqs. (2.17) and (2.5)], which is analogous to our
equation (2.42); and they measure N by averaging over
a time Y» 2m/cu.

G. Zero-frequency limit of back-action-evading
measurements

In the limit u-0 a mechanical oscillator becomes a
"free mass, " and the real and imaginary parts of the
complex amplitude become

w, =x —(p/m)t, rn &ex, =p . (2.45)

For a free mass these quantities, P and x —(P/m)t, are
conserved in the absence of external forces; and one
can monitor a classical external force by "back-action-
evading measurements" of either of these quantities.

To measure p requires only a momentum trans-

make one's measurement insensitive to the noisy back
action of the amplifier on the oscillator, which was the
source of the initial modulation. (For comments on the
related issue of the similarity between our back-action-
evading measurements and the operation of a degenerate
parametric amplifier, see footnote 2.)

The modulation in our single-transducer interaction
Hamiltonian (2.42) need not be sinusoidal, nor need it
be at the oscillator frequency. A variety of other types
of modulation will do the job—if they are accompanied
by appropriate filters placed between the transducer
and the subsequent apparatus. For details see Paper II;
for practical examples see Thorne et al. (1979) and
Braginsky et al. (1980).

It seems likely to us that (at least for gravitational-
wave detection) the most practical type of back-action-
evading measurement will be continuous single-trans-
ducer measurements. A practical variant of a single
transducer measurement involves only modest modifi-
cations of standard "amplitude-and-phase" electronic
techniques. The essential feature of a practical design
is the following: The modulation of the transducer out-
put and the subsequent filtering must precede amplifi-
cation. It is this that allows ~, to evade the ampli-
fier's back-action noise.

In Appendix D we show that continuous single-trans-
ducer back-action-evading measurements with aver-
aging times v» 2m/~ are capable of accuracies

LAC = (@/2m')»2(l/a7)»

[Eqs. (D16) and (D21)]. (Appendix D is best read after
Sec. III and Appendix C.) Paper II will discuss practical
limitations on modulated measurements —including
limitations due to finite strength of coupling K; see also
Eqs. (D19)—(D21) of this paper.

Continuous single-transducer back-action-evading
measurements of X» are analogous to the single-trans-
ducer quantum-counting measurements proposed by
Unruh (1977, 1978) and by Braginsky, Vorontsov, and
Khalili (197V). The Unruh-Braginsky interaction Hamil-
tonian has the form
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ducer —i.e., a transducer whose interaction Hamiltonian
1s

III =KPQ. (2.46)

To measure ~, requires both a position transducer and
momentum transducer

II~ = KX,Q = Kx Q —Kp Qt/m . (2.47)

As in the case of a harmonic oscillator, so also for a
free mass, a measurement of ~, or P =ma~, can be
arbitrarily quick and arbitrarily accurate in principle
(as long as one ignores issues of strengths of materials,
relativistic effects, etc.). This we demonstrate in
Sec. III.

III. GEOANKEN EXPERIMENTS FOR ARBITRARILY
QUICK AND ACCURATE BACK-ACTION-EVADING
MEASUREMENTS OF X~ OR X2

Here we describe and analyze Gedanken experiments
by which, in principle, one can measure arbitrarily
quickly and accurately (i) the momentum P
= lim, (mt', ) of a free mass, and (ii) the real part
X l of the complex amplitude of a harm oni c oscillator.
Throughout this section, as above, the phrase "in
principle one can measure arbitrarily quickly and ac-
curately" implicitly contains the caveat "within the
framework of nonrelativistic quantum mechanics and
ignoring constraints due to strengths of materials, vol-
tage breakdown in capacitors, relativistic effects, etc."
Consequently, in this section and related appendixes
we shall, without further comment or shame, take
limits in which sizes of capacitors go to infinity, ener-
gies in electromagnetic frequency generators (clocks)
go to infinity, etc. To alleviate queasiness caused by
this cavalier approach, we shall administer a strong
dose of practical constraints in Paper II.

In this section we shall first (subsection A) discuss
measurements of free masses, and then (subsection B)
measurements of oscillators.

(3 2)

7 = —,'mx'+ —,'l.Q' —(1/2C) Q' —Kmx Q+ Fx . (3.3)

Here + is the force on m, which one seeks to measure;
Q is the charge that has flowed onto the upper plate of
the capacitance C; Q is the current in the circuit; and
for the system of Fig. 6(a) the coupling constant is
K=aB/mc, where a is the height of the magnetic-field

h

T

("standard quantum limit for free-mass position"). In
this same time 7 a constant force + produces a change
of position 6x = ,'(&—/rn)v' Comparing the signal 5x with
the noise (3.2), we obtain the standard quantum limit
(3.1) on the force E, to within a factor 2. A laser-
interferometer detector for gravitational waves is an
example of a system which studies weak classical
forces by position measurements, and which is there-
fore subject to the constraint (3.1); see, e.g. , Drever
et al. (1977) or Edelstein et al (197.8). For laser de-
tectors this constraint is a serious potential problem
at low gravitational-wave frequencies, f~ 1 Hz.

Another measuring system that is subject to the con-
straint (3.1) is a "velocity sensor. " By "velocity sen-
sor" we mean a measuring system in which, viewed
classically, the velocity x of the mass m produces an
emf in a circuit, and the effects of that emf are mea-
sured using a voltage or current or charge amplifier.
An idealized simple-minded version of such a sensor
is shown in Fig. 6(a). For that sensor or any "velocity
sensor, " the Lagrangian of the entire system, with
amplifier disconnected, has the form

A. Measurements of a free mass

1. Standard quantum limit

Gedanken experiments described in the literature sug-
gest a possible limit

II

-Kp(t)

Vn

J

standa. rd quantum limit: (b &) = (m@/~')' ' (3.1)

on the accuracy with which one can measure a weak
classical force + acting on a free mass nz, with a
measurement of duration v.

This "standard quantum limit" is correct and un-
avoidable (Braginsky and Vorontsov, 1974) if one tries
to study & by measurements of the mass's position
[analog of "amplitude-and-phase" method for an oscil-
lator; cf. Eqs. (3.1) and (2.22)]. An initial position
measurement of precision ~, produces, by the posi-
tion-momentum uncertainty relation, a variance
~P ~ AP . = h/2~, in the mass's initial momentum,
which in turn produces the following variance of posi-
tion after a time T:

FIG. 6. (a) Idealized velocity sensor. The "free mass" m
has a wire (dark vertical bar} rigidly attached to it. The wire
is hooked up to an LC circuit; and it passes through a region
of uniform magnetic field (stippled region). The velocity x of
the mass produces an emf Bax/c in the LC circuit. During a
measurement one either attaches a voltage amplifier in paral-
lel with the capacitance C (dashed part of figure) and makes
C as smaQ as possible (open circuit), or one attaches a
charge or current amplifier in series {not shown) and makes
C as large as possible (short circuit). In any case, to achieve
minimum noise one makes the stray inductance L as small as
possible. As discussed in Sec. III.A.2, one can turn this ve-
locity sensor into a momentum sensor by inserting a negative
capacitance —C~ = —1/mK2 = —mc /(aa)2 at the location indi-
cated by a dotted arrow. (b) Equivalent circuit for the veloc-
ity sensor of (a); see text for discussion.
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region, B is the field strength, and c is the speed of
light. The generalized momenta of this system are

Bg Bg
P =—.=m(x —Kq), ll = - =I q;Bx ' BQ

(3.4)

and the Hamiltonian H =Px+IIQ -2, after quantization,
ls

p2 ji2 jH= + + —,' mK'+ —q'+Kpq Fx-.

Wagoner, Will, and Paik (1979) have proposed a de-
sign for a free-mass gravitational-wave detector which
makes use of a velocity sensor. Their technique for
coupling the circuit to the mass is essentially equiva-
lent to the technique shown in Fig. 6(a), but is a more
practical variant of it. Their Lagrangian has the stan-
dard velocity-sensor form of Eq. (3.3), and therefore
its performance can ne~ex exceed the "standard quan-
tum limit" (3.1).

Here a tilde denotes a Fourier transform, and for
simplicity we have assumed that the amplifier has in-
finite input impedance and that initially there is zero
charge on the capacitor and zero current through the
inductor. For a quick measurement of duration & (fre-
quency and bandwidth f- Af- 1/2v), the signal-to-noise
ratio (SNR) is optimized by setting C =L = 0; then

K(P, + ,' ET)—
([Sv(f)+Sr(f)/(»fC») ]&f7 ' ' (3.6b)

Here Sr(f) is the spectral density of the amplifier's
voltage noise V„and Sl(f) is the spectral density of its
current noise I„. The Heisenberg uncertainty principle
constrains the noise temperature of the amplifier to be
T„~ 2vrkf/kln2 (Weber, 1959; Heffner, 1962) which, by
virtue of Eq. (12.33) of Robinson (1974), is equivalent
to the constraint

Note that the velocity coupling —Kmxq in the Lagran
gian is equivalent to a momentum couPling KPq in the
Hamiltonian plus a capacitance C» =—1/mIP in the read
out circuit. It is the capacitance CE which prevents such
a velocity sensor even in principle from monitoring the
momentum P and force + with arbitrary speed and ac-
curacy.

A semiclassical derivation of the quantum limit (3.1)
for such a velocity sensor proceeds as follows: If the
mass is initially in an eigenstate (or near eigenstate)
of p with eigenvalue po, then the form (3.5) of the Ham-
iltonian guarantees it will remain in an eigenstate of
P but with eigenvalue P(t) =Pa+Et. (Here F is assumed
constant, for simplicity. ) Figure 6(b) is then an equiva-
lent circuit for the measuring apparatus. Simple
analysis of this circuit, with voltage amplifier in-
cluded, shows that the output V, of the amplifier at
frequency f is

—KP+I„(-i2mfL 1/—i2vrfC»)
1+C/C» —(2' )'CL

2. Momentum sensors can be arbitrarily quick and
accurate

Its velocities and momenta, are related by Eq. (3.4),
and its quantized Hamiltonian is Eq. (3.5) with negative
capacitance inserted:

IJ =p /2m+ll'/2L+ (1/2C)q'+Kpq Fx. —(3. 10)

In principle, the positive capacitance C and the induc-
tance I. can be adjusted to whatever values one wishes.

Such a measuring system can make arbitrarily quick
and accurate measurements of p, and of the classical
force I which drives p. One way to see this is by a
semiclassical voltage-amplifier analysis of the type
sketched in Eqs. (3.6)—(3. 8). Another way is by a fully
quantum-mechanical analysis corresponding to the case
of a charge or current amplifier in series with the cir-
cuit (which now has C = ~), rather than a. voltage am-
plifier in parallel. In this analysis we leave the am-
plifier out of the circuit initially; we let the circuit
evolve freely until a reasonably strong current is flow-
ing; and we then insert our amplifier and quickly mea-
sure that current, or measure the charge on the in-
finite capacitor C. The free evolution of the system
is governed by the Heisenberg equations for Hamil-
tonian (3. 10):

From a velocity sensor such as that in Fig. 6 one can
construct a momentum sensor by inserting into the cir-
cuit a capacitor with negative capacitance —C» = -1/mK'.
A negative capacitor is not a common electronic
component. Nevertheless, such capacitors can exist
in principle, and in principle their internal noise can be
made negligible; see Appendix A for details.

The momentum sensing system, which one obtains
from the velocity sensor of Eq. (3. 3) by inserting the
negative capacitance -C» —— 1/mK-2, has the Lagrangian

2=—~mx + ~Lq + (pmK2 —1/2C)q2 —Kmxq+Fx. (3.9)

Sv(f)SI(f) & (4&@f)'

[cf. Eq. (2.11)]. The ratio Sv/S~ can be adjusted by
preceding the amplifier with a transformer. The op-
timal SNR occurs when Sv/Sl = 1/(2mfC»)', which —to-
gether with f- Af- 1/2v —gives

(SNR), - (C»v/fi)' 'K(PO+, F~) . (3.8)

Since C» = 1/mIP, this optimal SNR does not improve
as K-~. In fact, independent of K the minimum de-
tectable force (SNR= 1) is the "standard quantum limit"
(3.1). For the case of a. charge or current amplifier in
series with the circuit (and for optimization of the cir-
cuit impedances to C =~, L=0), a similar analysis
gives the same limit.

dq fl
dt I. '

(gal

dt
=-Kp.

(3. 11)

p(t) =p(0)+st,
i(t) = TT(0) —K[p(0)t+ —,

' Ft'],
q{t)=q{0)+ (1/L) [fl(0)t —~~KP (O) t2 —1';KFta],

x(t) =x(0) +P(0)t+~Ft'+ Kq(0)t

+ (K/L) [~h(0)t' —&Kp(0) t' +Km t']. -

(3. 12)

From these integrals we can infer the following. If

These Heisenberg equations are easily integrated to
give
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the circuit is initially (at f = 0) prepared in a Gaussian
wave-packet state with

«(0)& = &4(0)& = o,
&II (0) = (Lk/2T)' nQ(0) = (8~/2L)'~

(3. 13)
/

and if the "free mass" is initially in a near-eigenstate
of p with eigenvalue po, then after time ~ has elapsed
the expectation values and variances of the circuit vari-
ables are

(11(r))=—K(p, 7 +Yt-y r'), nli(T) = (LS/2T)"',

(q(T)) =- (IC/L)(&P, ~'+ ,'Fr'-), ng(T) = (@T/L)"'.
(3. 14)

At tj.me T we go into the circuit, disconnect it from the
transducer if we wish, and measure either II (the flux
in the inductor), or II/L (the current in the circuit), or
Q (the charge on the infinite capacitor). With appro-
priately designed amplifiers, inprinciple we can make
one or another of these measurements to within the
variances (3. 14), in a time ~ ~. [This can be verified
using the standard quantum limit on the noise perfor-
mances of amplifiers. Note, moreover, that the pre-
cisions desired, 6II- (Lh/2T)'~ and 6Q- (hT/L)' 2, are
sufficiently modest that the uncertainty principle
6II6Q ~

~ A even permits us to make the II and Q mea-
surements simultaneously!] From the measuredvalue
of II or II/L or Q we can infer po, in the absence of an
external force I', to within probable error

nq (~) nrl (v-)

3(Q(7)&/&pa & &it(~))/&pa

LA "' ~e (3. 15a)

or, if po is known to this precision from previous
measurements, we can infer the external force I" to
within probable error

6F-(L8/&'v )"'- ( h/v )'~'P-'~'
Here

energy in circuit
energy of free mass

(11(~))'/2I. ~'m T'

p', /2m

(3. 15b)

(3. 15c)

is a Gibbons-Hawking- (1971) type dimensionless cou-
pling constant that will be discussed in Paper II. Equa-
tions (3. 15) reveal that, no matter how quick (7) the
entire experiment must be, we can make the coupling
constant K' (or P) large enough in principle to produce
any desired accuracy for our inferred values of the
"free-mass" momentum po and force I".

The above argument is similar to the one by which
Ahanonov and Bohm (1961, 1964) refute a common mis-
interpretation of the energy-time uncertainty relation;
cf. footnote 6. The Aharonov-Bohm argument has been
criticized by Fock (1962) because it involves turning the
coupling constant K on and off at t = 0 and t = T, so that
the mass m will be truly free of all coupling before and
after the experiment. [It should be emphasized that, for
the design of Fig. 6(a), one cannot turn K on and off
merely by turning the magnetic field on and off, because
doing so induces a position coupling which perturbs P.
In addition, one must modify Fig. 6(a) by adding a po-
sition coupling which is designed to cancel precisely

the induced position coupling. ] Fock suspects that the
turn-on and turn-off cannot be done with the required pre-
cision. We, like Aharonov and Bohm (1964), disagree with
Pock—but Pock's worries and our disagreement are
irrelevant to the present analysis, because our objec-
tive here is merely to measure the momentum po and
force. E with arbitrary accuracy, and that can be done
without any time changes in the coupling constant K.

B. Measorements of a harmonic oscillator

(3. 16b)

We now return' to our discussion of harmonic oscil-
lators, and present a Gedanken experiment which shows
that the Xq of an oscillator can be measured arbitrarily
quickly and accurately, in principle. Here we shall
describe our Gedanken experiment in somewhat abstract
terms —focusing attention on the dynamical variables
of the system and measuring apparatus, on the Ham-
iltonian which governs their evolution, and on a mathe-
matical sketch of the measurement process and its po-
tential accuracy. In Appendix 8 we describe apparatus
which, in principle, could give a, physical realization of
the experiment; and in Appendix C we present a full
mathematical analysis of the measurement process,
complete with "reduction of the wave function" and re-
petitive measurements.

The oscillator to be measured is described by the
variables of Eqs. (2. 1)-(2.5), including coordinate x,
momentum p, complex amplitude Xq+ UC2, frequency ~,
and mass pÃ.

The measuring apparatus consists of three parts:
a "generator, " which provides energy for and regulates
the sinusoidal coupling of the interaction Hamiltonian;
a "meter, " which is coupled to Xq by the generator'; and
a "readout system" for studying the X&-induced motion
of the meter.

The generator is a quantum-mechanical oscillator,
which has precisely the same frequency ~ as the os-
cillator being measured. Before the measurement, the
generator is prepared in a coherent state of arbitrarily
large amplitude. As is discussed in Appendix B.1.c,
this means that the generator can be treated classically,
and that it is not loaded by the experimental apparatus-
and, consequently, that it produces perfect "coscot" and
"sin~t" terms in the Hamiltonian.

The meter is a one-dimensional quantum-mechanical
"free mass, " with generalized coordinate Q generalized
momentum H, and generalized mass L. The coupling
of the meter to the oscillator's X& will be so strong that
a tiny change 6Xq will make Q "swing" by an amount
large compared to the width of its wave packet [cf.
Eqs. (3. 19)]. This swinging can then be observed with
a classical readout system —i. e. , we can put the "quan-
tum-classical cut" of our analysis between the meter
and the readout system, thereby avoiding the necessity
to describe the readout system quantum mechanically;
see discussion in Appendix C.

The total Hamiltonian for the coupled system, ex-
cluding the readout, is

H =IID+He +H (3. 16a)

Ho ——P2/2m + ~ m &u~ x2,

H~=ii /2L, (3. 16c)

Hz ——K'[x cosset —(p/mu) sin&st] Q = KZC~Q . (3. 16d)
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Here II0 is the Hamiltonian of the free oscilla. tor, H~ is
the Hamiltonian of the meter, and H, is the interaction
Hamiltonian for the oscillator coupled, via the classical
generator (cos~t and sin~t terms), to the meter. In the
Heisenberg picture of quantum mechanics the state of
the system is constant, and the observables X& ——x cosset
—(p/nlco) sincot, X2 =x sinMt+ (p/mM) coscot, q, and II
evolve in accordance with the Heisenberg equations

dX~/Ch = 0,
dX2/dt = —(K'/m m) q, (3. 17b)

dq/dt =II/L,
dII/dt = —KX~ . (3. 17d)

(3. 17a)

These are algebraically identical to the classical Ham-
iltonian equations of the system. Note that A& is com-
pletely unaffected by the coupling to the measuring
apparatus.

%e presume that at time t= t0, before the measure-
ment begins, the oscillator is in a state (perhaps pure;
perhaps mixed) with probability distribution 5'(X&) whose
expectation value is (X,(to)) = $0 and whose variance is
DXg(to) = Z. At t = tp the meter is prepared in a pure
Gaussian wave-packet state with (q(tp)) = (11(to)& = 0,
~q(to) = (gT/2L)'/2, &II(to) = (5L/2T)' ~, where v is the
duration of the planned measurement. These variances
are chosen to minimize the variance of q after a time
7.. The preparation of the meter can be done either
with the oscillator-meter coupling turned on (in which
case K is a cons tant bef or e, during, and af ter the entire
experiment), or with the coupling turned off (K'=0 for
t & to, K= const for to & t & tp+ 7), The probability dis-
tribution 6'(Xq) is left unaffected by the physical mani-
pulations of Q and II involved in the preparation; cf.
Eq. (3. 17a).

After preparation of the meter, the system is allowed
to evolve freely [Eqs. (3. 17)] for a time 7. During this
interval X~ is conserved, and the evolution of Q is given
by

q(t) = q(t, ) + L' (t —t, ) — , ' (t —t,)' . (3. 18)

The interaction produces a strong correlation between
the states of the oscillator and meter: At time t&

=t0+ T the meter's mean coordinate gets displaced to

(q(tt)) = —(K7'/2L) 50 (3. 19a)

[cf. Eq. (3. 18)J, while its variance grows to

Dq(t&) = [(KT/L) + (K7 /2L)2Z2]~/~ (3. 19b)

At time tq the readout system "reads out" a value
q for the meter coordinate, where q is likely to lie
somewhere in the range (q(t&)) + (a few) x Aq(t, ). (This
readout can be done leaving the coupling K on, or
turning it off, as one wishes; it makes no difference. )
Using formula (3. 19a) the experimenter infers from

To achieve a Hamiltonian of the form of Eq. (3.16), the mea-
suring systems described in Appendix B must incorporate a
negative capacitor or a negative spring, which converts a ve-
locity sensor into a momentum sensor (cf. Sec. III.A.2). For
these systems the fusee meter is a "mass on a negative
spring"; the coupling to the oscillator converts the meter into
a "free mass. "

Q a value

(„=—(2L/K~')q (3.20a)

for Xq. In a set of measurements on an ensemble of
identical systems, the mean of this inferred value is

and its variance is

= (2L/Kv )Dq(t)) = (Z + 4hL/K 7 ) (3. 20b)

Of course, as Eq. (3.20b) shows, one cannot determine
$0 accurately if the probability distribution 6'(X&) has a
large spread; however, if z(X, ) is highly peaked about
$0 [Z «(4AL/K2v ) /2], the measurement can determine
$0 with a probable error

(4@L/K2 P)1/ 2 (@/2~~)1/ 2

(PLEAT)

1/ 2 (3.21a)

Here

energy in circuit
energy of A& motion of oscillator

sin&et' dt'
'~ F(t')

'fPg h)

[cf. Eq. (2. 31)]; and the meter's mean coordinate gets
displaced to

(q(t, )) =- (K~'/2L)(g, + S),

(3. 22)

(3. 23a)
I,'~ /,

' t" F(trri)
dt' dt" dt"' sinmt"', (3. 23b)

0 t 0 0
Wl (d

while the variance of q(t, ) is still given by Eq. (3. 19b).
For measurement times short enough that F(t) sinmt is
nearly constant during the measurement

& = ~ 5g ——~ v'[F (to)/m &u] sincoto .
If $0 is known from previous measurements to within
the error (3. 21), a measurement of q at time f& allows
one to determine 5 (or 5$) with accuracy

~s —(I'LL/K'7')" ' . (3. 24)

Such a measurement permits one (in principle) to
monitor the force I" arbitrarily quickly and accurately,
in the limit as ~ and (hL /K 7 ) are made arbitrarily
small.

The preceding analysis is rigorous, but it is far
from complete. In Appendix C we present a more de-
tailed analysis; in particular, — we analyze a sequence
of measurements of A&, including the "reduction of the
wave function" at the end of each measurement. This
more detailed analysis allows us to investigate the
behavior of A& and X2 during a sequence of measure-

~L(q(t, ))'
~~2 (2 LM40

is a dimensionless coupling constant. No matter how
small the measurement time T may be, by choosing
K2/L large enough (i. e. , P large enough) one can make
the measurement error D$ as small as one wishes.
[Note that this remains true even if the readout of q
is much less accurate than (Rr/L)'/2; see analysis in
Appendix C. 7. ] The measurements can be "arbitrarily
quick and arbitrarily accurate. "

If a weak, classical force is driving the oscillator
[term —xE'(t) added to the Ha. miltonian; cf. Eq. (2. 18)],
then during the time T the expectation value of A& changes
by an amount
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ments. The most important results concern X,. We
show that a "feedback force" on the meter can keep the
expectation value of X2 close to zero. However, the
variance of 2C2 inevitably increases during a sequence,
and the increase is proportional to the square root of
the number of measurements. Practical implications
of this "random walk of X2" are discussed in Paper II.

IV. FORMAL DISCUSSION OF QUANTUM

MOND EIVlOLITION MEASUR EMENT

Here we shall distill from our analysis of oscillators
and free masses the essence of "quantum nondemolition
measurement" and label that essence using the formal
end precise language of nonrelativistic quantum mech-
anics. The final product may be unpalatable to the
practical-minded reader, but we hope it will clarify
the fundamental principles underlying "nondemolition
measurement. "

A. Definition of quantum nondemolition measurement
and its impIications

Our investigation of quantum nondemolition mea-
surement was stimulated by the desire to monitor a
classical force acting on a harmonic oscillator with
better accuracy than can be obtained using standard
"amplitude-and-phase" techniques. Braginsky (1970),
and la, ter Giffard (1976), had pointed out the limitations
of the standard techniques (see Sec. II.C), and Braginsky
and Vorontsov (1974) had proposed overcoming these
limitations by making what they called "quantum non-
demolition measurements. " In such a measurement
one monitors a single observable of the oscillator, and
it must be an observable that can be measured over and
over again with the result of each measurement being
completely determined (in the absence of a classical
force) by the result of an initial, precise measurement.
The force is detected by changes it produces in this
sequence of precisely predictable values.

The key feature of such a nondemolition measure-
ment is xepeatability —once is not enough t If one can
couple strongly enough to a physical system, then any
of its observables can be measured (in principle) with
arbitrary precision at a particular instant. (This is
the content of a controversial general "theorem" in
nonrelativistic quantum theory; see discussion in foot-
note 6). Such a precise measurement "localizes" the
system at the measured value of the observable. An
initial, precise measurement can be regarded as pre-
paring the system in a state with a nearly definite value
of the measured observable. The goal of a subsequent
measurement is to determine this value. However,
the initial, precise measurement inevitably produces
huge uncertainties in observables that do not commute
with the measured observable, and in general, these
uncertainties "feed back" into the measured observable
as the system evolves. Consequently, the result of a
subsequent measurement is uncertain. If one wishes

The ideas and prose of this section are due entirely to
Carlton M. Caves, and constitute a portion of the material
submitted by him to the California Institute of Technology in
partial fulfillment of the requirements for the Ph.D. degree.

to make repeated precise measurements whose results
are completely predictable (no uncertainty!), one must
measure an observable that does not become contam
inated by uncertainties in other, noncommuting obser-
vables.

It is easy to formulate a general condition for making
such a sequence of completely predictable measure-
ments: The system being measured must be in an
eigenstate of the measured observable at the time of
each measurement. Then the result of each measure-
ment is exactly equal to the eigenvalue at the time of the
measurement, and immediately after the measurement
the system is left in the same eigenstate ("measure-
ment of the first kind"; cf. footnote 6). This condition
clarifies the nature of nondemolition measurement and,
at the same time, makes it clear that what is not being
demolished is the state of the system; it is left unchanged
by each measurement except for an unknown (and ir-
relevant) phase factor,

To formalize these ideas, consider an arbitrary
quantum-mechanical system with free Hamiltonian Ho.
The objective is to measure an observable A of this
system. (A is a Hermitiari operator; it may have ex-
plicit time dependence, ) For a resonant-bar grav-
itational-wave detector:, the system would be the fun-
damental mode of the bar, which can be idealized as a
simple harmonic oscillator; and A might be the number
of quanta in the oscillator or the real part of the oscil-
lator's complex amplitude. For such a detector, one
measures A in order to monitor the classical force on
the oscillator produced by a gravitational wave; to allow
for that possibility here, we include in the Hamiltonian
a term DE(t), where D is some observable of the sys-
tem and E(t) is the "classical force. " To ensure that
A responds to E(t), we require [A, D] 4 0.

In order to measure A, one must couple the system
to a measuring apparatus. The details of the system's
interaction with the measuring apparatus are described
by the interaction Hamiltonian III, which contains all
terms in the Hamiltonian that depend on variables of
both the system and the measuring apparatus. The total
Hamiltonian —including the system, its coupling to the
"classical force, " and the measuring apparatus —has
the form

H =Ho + DE(t) + HI + Hu, (4. 1)

where H„ is the Hamiltonian of the measuring appara-
tus —i. e. , that part of the Hamiltonian which depends
only on measuring apparatus variables [cf. Eq. (2. 36)].

We now define a quantum nondemolition (QND) mea-
surement of A as a sequence of precise measurements
of A such that the result of each measurement (after
the first) is completely predictable (in the absence of
a classical force) from the result of the preceding mea-
surement. If an observable can be measured this way
(in principle), we call it a quantum nondemolltion ob

securable.

This definition can be used to derive a condition for
a QND observable —a condition most easily formulated
by ignoring the details of the interaction with the mea-
suring apparatus. This is not to say that these details
are unimportant: For example, the strength of the
coupling between the system and measuring apparatus

' determines how quickly a given measurement precision
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where f, is an arbitrary real-valued function. Equation
(4. 2) guarantees that the result of a measurement at
t = t~ will be f~(AO), because ~e(to)) will be an eigenstate
of A(tq) with eigenvalue fq(AO) for arbitrary c„'s.

By assumption, the result of the initial measurement
can be any of the eigenvalues of A(to). Thus Eq. (4. 2)
must hold for all values of Ao, and A(t&) must satisfy
tbe operator equation A(t&) =f~[A(to)]. In a sequence
of measurements a similar operator equation must hold
at each step in the sequence. Therefore one obtains the
following set of requirements for a QND observable that
is to be measured at times t = to, . . . , t„:

A(t, ) =f, [A(to)] for k = 1, . . . , n, (4. 3)

~One might wish to require that there exist a one-to-one cor-
respondence between the possible measured values at t = t &

and t = t~, in which case f'~ must be invertible.

can be achieved (see Sec. III). However, the funda-
mental limits on the predictability of a sequence of

Jh,

measurements of A are determined not by the inter-
action with the measuring apparatus, but by uncer-
tainties (variances of observables) which arebuilt into
a quantum-mechanical description of the free evolution
of the system. Of course, the interaction with the mea-
suring apparatus, if chosen poorly, can ruin a QND
measurement by increasing the variance of the mea-
sured observable; however, as we demonstrate in Sec.
1V. B, the interaction need not degrade the measurement
at all in principle. Therefore, for the remainder of
this subsection, we ignore the interaction term in the
Hamiltonian; we simply assume that there is a way to
measure A with arbitrary precision at any instant (in-
finitely strong coupling! ) and that such a measurement
leaves the system in an eigenstate of A whose eigen-
value is the measured value ("measurement of the first
kind"; cf. footnote 6). We also ignore, for the moment,
the classical force.

We now consider a sequence of measurements of A.
The analysis proceeds most smoothly in the Heisenberg
picture of quantum mechanics, which we use throughout
the rest of this subsection. The initial measurement is
made at time to, and we assume that the experimenter
has no control over the state of the system before this
initial measurement. (This may be a bad assumption;
see discussion in Sec. IV. C. ) The normalized eigen-
states of A(to) are denoted by ~A, e), where A(to) ~A, o'.)
=A ~A, o.') and where n labels the states in any degen-
erate subspaces of A(to).

The result of the initial measurement is one of the
eigenvalues Ao of A(to), and the state of the system
immediately after the measurement is an eigenstate
of A(to) with this eigenvalue: ~+(to)) =g c ~AO, o'),
where the c 's are arbitrary (subject to normalization)
constants. In the interval before the next measurement
the system evolves freely, and in the Heisenberg picture
the state of the system does not change: ~e(t)) = ~e(to)).
If a second measurement at t =f& is to yield a com-
pletely predictable result, then all of the states ~AO, e)
must be eigenstates of A(t&) with the same eigenvalue,
although the new eigenvalue need not equal Ao. Hence,
one obtains the requirement

A(tg) )Ao, n) =ff(AO) (Ao, n) for all n, (4. 2)

where each f, is some real-valued function. These
formal constraints on the free evolution of A in the
Heisenberg picture embody the fundamental principle
of QND measurement: If the system begins in an eigen-
state of A, its free evolution must leave it iI an eigen-

A

state of A at the time of each measurement. The con-
ditions (4. 3) for a QND observable were given pre-
viously by the authors (Thorne et al. , 1978).

One is usually interested in making QND measure-
ments at arbitrary times or continuously. Then Eq.
(4. 3) must bold for all times:

(4. 8)

For example, the continuous QND observables we have
considered for a harmonic oscillator —Xq, X2, and A—
are conserved. Note that the free Hamiltonian Ho is
always a QND observable (provided BHO/Rt = 0).

It is harder to find nontrivial examples of noncon-
served continuous QND observables. One system which
has such observables is a mass m on a "negative

rh

spring" —i. e. , a mass with Hamiltonian Ho —p2/2m
—& ma'x'. For such a system the observablesx + (p/m&u)
are QND observables, but they are not conserved.

It is useful to note here an important commutation
property satisfied by any continuous QND observable
As

[A(t), A(t')] =0 for all times t and t'. (4. 6)

This property follows immediately from the QND con-
dition (4. 4). Equivalent to Eq. (4. 6) is the statement
that A commutes with all its derivatives —i. e. ,

d"A

dye

(4 7)

where

C, pg=o, .

(4. 8)

n D's
~=1,2, 3, . . .

The latter equality in Eq. (4. 7} can be obtained (pro-
vided BH, /Bt=0) by using tbe operator equations of

(4. 4)

An observable that satisfies Eq. (4. 4) we call a con-
tinnons QND observable. An observable that satisfies
Eq. (4. 3) only at carefully selected times we call a
stroboscopic QND observable. Examples of stroboscopic
QND observables are the position and momentum of a
harmonic oscillator (stroboscopic measurement; see
Sec. II. F.2). Because of their importance, we restrict
our attention to continuous QND observables for the
rest of this section.

The simplest way to satisfy Eq. (4. 4} is to choose an
observable which is conserved in the absence of inter-
actions with the external world;
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A(t) =-f [A(to); B„.. . , B„;t, to], (4 9)

where the Hermitian operators S; commute with one
another and with A(to). In writing Eq. (4.9), it is as-
sumed that none of the operators B& can be written as
a function of A(to) and the other B s; otherwise, the
functional dependence of A(t} could be simplified. Note
that if A(to) has no degeneracies, the only operators
which commute with it are functions of itself; hence,
a nondegenerate general. ized QND observable is auto-
matically a QND observable.

Generalized QND observables can be compared most
tellingly with QND observables by using Eq. (4.9). The
key difference is the following: A system which begins
in any eigenstate of a QND observable remains in an
eigenstate of that observable; this is true for a gen-
eralized QND observable only if the initial eigenstate
is a simultaneous eigenstate of A(t, ) and the B s. An
equivalent manifestation of this difference is that the
result of a given measurement of a generalized QND
observable cannot be predicted solely from the result
of one preceding measurement of that observable. How-
ever, it can be predicted from the results of several

motion in the Heisenberg picture.
Unruh (1979) has recently considered the problem of

nondemolition measurement. He discusses many of the
issues considered in this section, but from a somewhat
different point of view. He has proposed that Eq. (4. 7)
[or, equivalently, Eq. (4. 6)] be used to characterize
QND observables. LActuaily, Unruh considers only
observables with no explicit time dependence —a serious
restriction which rules out such very important ob-

A

servables as the X& of an oscillator. Because of this
restriction, Unruh's quantum nondemolition condition is

[A, [A, HO]'"']=0 for n=1, 2, 3, . . . (4. 7')

which is the specialization of Eq. (4. 7} to the case
aA/af =0. )

The motivation for Unruh's definition is discussed in
Sec. IV. B, but fornowit is important to note that, al-
though Eq. (4. 7) is an immediate consequence of the
QND condition (4. 4), the implication cannot be reversed.
The observables satisfying Eq. (4. 7) constitute a more
general class than the QND observables; we call such
observables genewaLized (continuous) QND observables

Examples of observables which satisfy Eq. (4. 7), but
not Eq. (4. 4), can be obtained by considering a system
suggested by Unruh (1979): a charged particle (charge
e, mass m) moving in a uniform magnetic field B
= Boe, and an electric field E = (eBO/Sm)V(x + y
—2m~). If the vector potential is chosen to be A
= ~ Bo(—ye„+xe„), then p„and p (x and y components
of the particle's canonical momentum) are generalized
QND observables, but they do not satisfy the QND cri-
terion (4. 4). [For this system the observables x
—(P„/m)t and y —(p, /m)t are also generalized QND
observables. ]

Any generalized QND observable A does obey an evo-
lution constraint similar to the QND constraint (4. 4).
Successive differentiation of Eq. (4. 7) shows that all
derivatives of A mutually commute, and a Taylor ex-
pansion of A about some initial time t, shows that the
free evolution of A. must have the form

A(t) =f [A(to); 5'(t'); i, toj for to&t' &i, (4.10a)

where A(t) is the Heisenberg-picture evolution of A.
A A

under the action of H=H, +DR. Here f is a function of
A(to), f, and to, and is a functional of F(t'). (iv) From
the time history of the measured values of A(t) one
must be able to compute uniquely the time history of
8'(i). The measured values will be

A (i) =f[A 0; E'(t'); i, to],

where Ao is the (arbitrary) eigenvalue of A(to) obtained
in the .first measurement. Thus condition (iv) is equiv-
alent to the deman. d that

A(t) =f [A„&(t'); i, i,] must be a uniquely invertible
functional of &(t'), for every eigenvalue A,
that is a possible result of the first mea-
surement of A(t, ) . (4.10b)

preceding measurements of A —enough to specify the
values of A(to} and each of the B s; alternatively, it
can be predicted from a simultaneous measurement of
A(to) and all the B s.

It should be clear that generalized QND observables
provide the key to extending the concept of quantum
nondemolition to,sets of observables. Such a set of
QND observables would have the following properties:
(i) the observables could be measured simultaneously
with arbitrary precision; and (ii) in a sequence of pre-
cise, simultaneous measurements of all the observa-
bl.es, the results of each set of measurements could be
predicted from the results of the preceding set. A
set of QND observables A; would obey the commutation
constraints [Aq(t), A~(t')] =0 for all observables in the
set and for all times t and t'. In the above charged-
particle example, p„and p, form a set of QND ob-
s ervab les.

Having defined QND measurement, we now consider
its application to the problem of monitoring a classical
force E(t}. The procedure for monitoring 5'(t) is to
make a sequence of measurements of a QND observa-
ble and to detect the force by the changes it produces
in the precisely predictable values which would be
measured in the absence of the force.

One would like to do more than simply "detect" the
force: Ideally, one would like to monitor its time de-
pendence with arbitrary accuracy; and if the force is
arbitrarily classical, there is no reason in principle
why one cannot do so. In fact, a sequence of measure-
ments of the observable A. can reveal. with arbitrary
accuracy the time evolution of 5'(t) if and only if the
following conditions are satisfied: (i) The measuring
apparatus and its coupling to the measured system
[H~ and H~ of Eq. (4.1)] must be chosen so as to produce
instantaneous and arbitrarily precise measurements
of A. (see Sec. IV.B). (ii) The measurements must be
made at arbitrarily closely spaced times. (iii) The
result of the (0+ 1)th measurement at time t„must be
un. iquely determined by the result of the initial mea-
surement at time to plus the time history 5'(t') of the
force between to and t~. This is possible if and only if
A is a continuous QND observable in the presence of the
driving force I' [Eq. (4.4)]:
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Of these conditions only Eqs. (4.10a) and (4.10b) are
constraints on the choice A of the observable to be
measured. Thus, for a given system and a given cou-

A

pling to the classical force 5' (i.e., for given H =H,
+DR), conditions (4.10) are necessary and sufficient to
permit in principle measurements of A. that reveal with
arbitrary accuracy the time evolution of 5'(t). To such
an observable A we shall give the name "QNDF." Be-
cause a QNDF observable is QND in the presence of the
force E, it will necessarily satisfy Eq. (4.6)—
[A(t), A(t')] =0—and also the first equality of Eq. (4.7).
These same two equations are also satisfied by "gen-
eralized QNDF observables" —i.e., observables for
which the functional f of Eqs. (4.10) depends also on a
set of mutually commuting Hermitian operators B;
which all commute with A(to).

The distinction between QND and QNDF observables
arose earlier in comparing quantum-counting measure-
ments and measurements of X, as ways of monitoring
a, force acting on a harmonic oscillator (see Secs.
II.D and II.E). Measurements of X, can be used to
monitor an arbitrarily weak force P(t) with arbitrary
accuracy, in principle; quantum counting can "detect"
an arbitrarily weak force, but it cannot provide good
accuracy in monitoring the force's precise time de-
pendence. The fundamental. reas on for this difference
is that X, is a QNDF observable, while N is not.

In his recent treatment of nondemolition measure-
ment Unruh (1979) has also drawn attention to the im-
portant distinction between QND and QNDF observables
(QNDR and QNDD, respectively, in his notation).

B. Interaction with the measuring apparatus

Up until now we have neglected the details of the
measuring apparatus which is actually used to measure

A

a QND observable A. We now rectify this omission.
Our main concern is to demonstrate our earlier as-
sertion that the interaction between the system and the
measuring apparatus need not degrade the quality of
a QND measurement at all, in principle. The analysis
in this subsection is restricted to continuous observa-
bles, but it can easily be modified to handle stro-
boscopic observables.

In a real experiment the measuring apparatus con-
sists of a series of components. Each component is
coupled to the preceding component, and only the first
stage in the series directly "contacts" the system.
Fortunately, we need not concern ourselves with this
entire complicated structure; its complexities can
remain buried in the measuring apparatus Hamiltonian

We need only consider the first stage of the mea-
suring apparatus and its interaction with the system-
an interaction whose mathematical manifestation is

A

the interaction Hamiltonian H&.
The measuring apparatus must actually respond to A,

and this demand means that Hl must depend on A. and on
one or more variables of the first stage of the measur-
ing apparatus. In addition, the measuring apparatus
ought not to respond to observables of the system other
tha, n A. , and this desire means that A. ought to be the
only observable of the system appearing in HI. The
simplest interaction Hamiltonian of this form is

(4.11)

The assumption in the text —that% is the only observable of
the system which appears in the interaction Hamiltonian —is
more restrictive than necessary. The argument given in the
text actually proves the following more general theorem: The
evolution of an observable A is unaffected by the interaction
with the measuring apparatus if [Al(t), SCAN(t')] =0 for all times
t and t', where

Al (t ) =—Up (t,t p )A. (t ) Up (t,t p )

are the interaction-picture forms of A and H . gn the defini-
A I

tions ofAl and Kl, A and III are Schrodinger-picture obser-
vables. ) This theorem allows one to loosen the text's assump-

A

tion about the nature of III. For example, ifA is conserved
in the absence of the interaction with the measuring apparatus,
then it remains conserved in the presence of the interaction
if [A,Hz] =0. As a more general example, one can make the
following statement about a "set of QND observables" (see
Sec. IV.A): The evolution of each observable in the set is un-
affected by the coupling to the measuring apparatus, provided
that the only observables of the system which appear in 5& are
members of the set.

a, =KB@,
where Q is some observable of the measuring apparatus
and E. is a, coupling constant. This is the type of inter-
action Hamiltonian which was used in Secs. II.F.1 and
III.B to analyze continuous two-transducer measure-
ments of X,.

If A. contains exPEicit time dependence, the coupling
between the system and the measuring apparatus must
be modulated so as to supply the proper time dependence
in Hl. The modulation must be provided by an external,
classical "clock." Unruh (1979) has pointed out that
any "clock" is an inherently quantum-mechanical device
whose quantum properties cannot be ignored a pyioyi,
however, the "clock" can always be excited into a high-
ly energetic, essentially classical state, where un-
certainties due to its quantum-mechanical nature are
unimportant. This issue is discussed in the context
of measurements of ~, in Appendix B.l.c.

We now turn to the main concern of this subsection-
to demonstrate the following fundamenta, l property of
QND observables. The evolution of a continous QND
observable A (in the Heisenberl, picture) is completely
unaffected by the interaction uith the measuring aP
paratus (in the absence of a classical force), provided
that A is the only observable of the system which ap-
peat's in the interaction Hamiltoni&n. The proof of
this property relies on only one feature of A—that it
satisfies Eq. (4.6) in the absence of the interaction with
the measuring apparatus. Thus the property holds for
generalized QND observables, and for QNDF observa-
bles even in the presence of the classical force.

Proving the property is not difficult, but it is suf-
ficiently important that it is worthwhi1. e to sketch the
proof in some detail. We consider the case of a, QND
observable in the absence of a classical force, and
we now let A denote the QND observable in the Schro-
dinger picture. The total Hamiltonian, now considered
to be written in the Schrodinger picture, is given by
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Eq. (4.1) with the classical-force term deleted. We
l.et U, (t, t,), Urr(t, t, ), and U(t, to) be the unitary time-
development operators for H„H~, and B, respectively
[cf. Eq. (2.19)]. The assumption about the nature of
the interaction means that Hr has the form

Hr =Mr[A(t); Q„.. . , Q„;t],
where the operators Q; are observables of the measur-
ing apparatus.

The two operators of interest are the interaction-
picture and Heisenberg-picture forms of the QND
obs ervab 1.e:

(4.12)

A, (t) =- U,'(t, t,)A(t)U. (t, t,), (4.13a)

A„(t) =- U'(t, t,)A(t)U(t, t.) .
dd)),

The interaction-picture operator Ar(t) gives the evolu-
tion of the QND observable in the absence of the inter-
action with the measuring apparatus; thus it is the
operator which satisfies the QND condition (4.4) and
which, in particular, also satisfies Eq. (4.6). The
Heisenberg-picture operator Arr(t) gives the evolution
of' the QND observable in the presence of the measur-
ing apparatus. The object of the proof is to show that
Arr(t) =A.r(t).

The operators Ar(t) and Arr(t) are related by

(4.13b)

A„(t) =ut(t, to)Ar(t)'u(t, to) . (4.14)

Here u(t, t ) =Ut(t, t,)U„(t, t, )U(t, t ) satisfies

ih '=Xr(t)-u-(t, to), 'u(t„ to) =1, (4.15)

where

~r(t) = &r[Ar(t)i (Q )r(t) ~ ~ ~ (Q )r(t)i t]

(Q;b(t) -=Ut~(t, t.)Q;U (t, t.).
(4.16a)

(4.16b)

The solution for 'u(t, to) ean be written in the form
~ g.

'd(t, t )=.Tsxp(—— JCi(t )dt ), ''
to

(4.17)

where T means that all products are time ordered (see,
e.g. , Sec. 18.7 of Merzbaeher, 1970). The fact that
Ar(t) satisfies Eq. (4.6) guarantees [Ar(t), 'U(t, to)] =0,
which with Eq. (4.14) implies that A„(t) =Ar(t). As
claimed, the QND observable is completely isolated
from the measuring apparatus. A trivial extension
of this argument proves the result for QNDF observa-
bles in the presence of the classical force.

The meaning of this fundamental property should be
emphasized. The property says that the evolution of a
QND observable, calculated using the equations of mo-
tion in the Heisenberg picture, is unaffected by inter-
action with the measuring apparatus. This means thai
the expectation value and variance of A evolve during
a measuremen. t exactly as they would have had the
measuring apparatus been disconnected. "Noise" in the
measuring apparatus does not feed back onto A and
increase its var iance. However, a, complete descrip-
tion of a measurement -requires more than just a calcu-
lation of the quantum-mechanical. evolution: At some

time the measurement must end, the quantum-mechan-
ical evolution equations must be suspended, and the
quantum state of the coupled system and measuring
apparatus must be "reduced" to be consistent with the
results of the measurement.

If the system begins the measurement in an eigen-
state of A, it remains in an eigenstate of A throughout
the measurement, and the "reduction of the wave func-
tion" leaves it in the same eigenstate. This is an im-
mediate consequence of the above fundamental property.
However, in any real measurement the probability
distribution of A has some variance, and at the time
of "reduction" the expectation value of A "jumps" a
distance which can be as large as the variance. In
this sense the measuring apparatus does affect the QND
observable. However, these "jumps" are a conse-
quence of the fact that the measuring apparatus is not
making absolutely precise measurements; they do not
affect our conclusion that in principle the measuring
apparatus need not degrade the predictability of a

Ps

sequence of measurements of A. . For a, detailed analy-
sis of this issue in the context of measurements of

s App nd~ C
It is now clear why the details of the interaction with

the measuring apparatus could be ignored in Sec. IV.A.
There we assumed infinitely strong coupling so that
precise measurements could be made instantaneously.
For a realistic interaction, the coupling strength is
finite, and a certain amount of time is required to
achieve a desired measurement precision. However,
no matter what the coupl. ing strength may be and hoW
long the measurement may last, a QND observable is
completely unaffected by the coupling to the measuring

A

apparatus if HI has the required form. Indeed, for
any measurement time one can achieve any desired
accuracy by making the coupling strength large
enough —i.e., the measurements can be arbitrarily
quick and arbitrarily accurate. Gf course, it may be
difficult in practice to design an interaction which is
sensitive only to A; and if other observables of the
system appear in 8r, the time a measurement can take
before it disturbs A significantly may be limited.

It is interesting to note here that if the right kind of
interaction ean be designed, a QND observable is iso-
lated not only from "quantum noise" but also from
"classical noise" in the measuring apparatus (thermal
noise in resistors, shot noise in ampl. ifiers, ete. ).
fn this sense any QND measurement is a "baek-
action-evading" measurement, because the measured
observable evades the back-action noise from the
measuring apparatus.

As mentioned earlier, Unruh (1979) has proposed
that Eq. (4.7') be used to characterize nondemolition
measurement. . He considers only observables with no
explicit time dependence, he assumes an. intera, ction
Hamiltonian of the form of Eq. (4.11), and he char-
acterizes nondemol. ition measurement by the demand
that the measured observable be completely isolated
from the measuring apparatus. As we have shown, any
generalized QND observable meets this demand. Thus
it is not surprising that Unruh's. QND condition is Eq.
(4.7')—the condition for a generalized QND observable
with no explicit time dependence.

Rev. Mod. Phys. , Vol. 52, No. 2, Part l, April 'l 980



Caves, Thorne, Drever, Sandberg, and Zimmerrnann: On the measurement of a weak classical force

C. Comments and caveats

The discussion of nondemolition measurement in this
section has been presented in the formal language of
nonrelativistic quantum mechanics, and. the description
of the measurement process has been highly idealized.
The reader can be forgiven for asking whether these
idealized descriptions have anything to do with weal
experiments. We think so, and the best evidence for
our affirmative answer is in Paper II, where specific,
practical schemes for making nondemolition measure-
ments on harmonic oscillators and free masses are
discussed. All of these practical schemes are founded
firmly on the fundamental principles outlined in this
section. Perhaps the best thing we can do here is to
indicate in a very general way the rel.evance of these
fundamental principles to real. experiments.

The objective of this section was to devel. op a simple,
unambiguous criterion for identifying those observables
of any system which, in principle, can be measured
repeatedly with no uncertainty in the results. The QND
condition (4.3) provides that criterion. Given this
criterion, the experimenter faces a clear-cut choice.
If he chooses to measure an observabl. e other than a
QND observable, he knows that, as he improves the
precision of his measurements, he will eventually run
"smack-dab" into an impenetrable barrier —impene-
trabl. e because it is constructed from quantum-mechan-
ical uncertainties dictated by the uncertainty principle.
On the other hand, if he chooses to measure a QND
observable, he knows that nonrelativistie quantum
mechanics erects no such barr ier. The r eal value of
the principles outlined in this section is that they do
this job of clarifying what quantum mechanics al. lows.

Once the QND observables of a given system have
been identified, the experimenter has a variety of
options. If he is ambitious, he might try to design a
measuring device which couples nearly exactly to a
particular QND observable, as in continuous two-trans-
ducer measurements of 4', (see Sec. II.F.l). This task
might prove to be quite difficult, so the experimenter
might rein in his ambition and choose instead to design
a measuring device which couples to the QND observ-
able only in a time-averaged sense, as in single-trans-
ducer back-action-evading measurements of 4; (see
Sec. II.F.3 and Paper II). The essential point is that
all these options flow from the fundamental principles
of nondemolition measurement.

Powerful, simple, clear-eut —these are words that
describe the QND condition (4.3). Yet these virtues
are purchased at the expense of certain assumptions
about the measurement process, and under some cir-
cumstances these assumptions may make the QND con-
dition too restrictive. Despite our belief in the util. ity
of the QND condition, it is important to register here
a couple of caveats which warn against using it care-
less ly.

Caveat f. The definition of QND measurement is
formul. ated in terms of arbitrarily precise measure-
ments. No real experiment can achieve such perfect
measurements, so the QND criterion (4.3) ls always
more stringent than necessary. The virtue of QND
obs erveb les is that, for any desired measurement

accuracy, a QND observable can do the job in prin-
ciple; the caveat is that it may be possible to find an
observable other than a QND observable which can also
do the job.

Cavea& 2. The strict operator constraint (4.3) fol-
lows from Eq. (4.2) only if one assumes that the ex-
perimenter has n, o control over the state of the system
before the initial measurement. In most experiments
this is not the case; the experimenter usually prepares
the system in some way before beginning his .measure-
ments. The second caveat is that, if the experimenter
does have some control over the possible initial states
of the system, the QND condition (4.3) need only hold
in the subspace of states which the system can actua, lly
occupy. For a simpl. e system such as a harmonic oscil-
lator this caveat is probably unimportant, but for more
compl. icated systems it may make a difference.

If these caveats are kept in mind, the experimenter
should be able to apply the QND condition to arbitrary
systems. He can then face the experimental future free
from uncertainty —. about quantum-mechanical un-
certainties.

APPENDIX A: CAPACITORS WITH NEGATIVE
CAPACITANCE

In the text of this paper one occasionally encounters
the concept of a capacitor with negative capacitance.
The physical structure of such a capacitor and the de-
tails of its noise are discussed in this Appendix.

We present three models for such a capacitor. The
first utilizes a mechanical spring. It will please
theorists because it can be analyzed fully quantum
mechanically, but it will annoy experimenters because
it may not be realizable in practice. The second and
third will please experimenters because they are con-
structed from standard electronic components; but they
will annoy theorists because one (the third) functions
as a negative capacitor only over a very narrow band
of frequencies, and the other (the second) uses an
amplifier whose internal structure is unspecified and
gives a noise performance not as good as that of the
first model.

In Sec. A. l we present our first "spring-based" model
capacitor; in Sec. A.2 we show that in principle it can
function perfectly, introdu'cing absolutely zero noise
into the Gedanken experiments of Sec. III of the text;
and in Sec. A.a we present several alternative view-
points about the nature and role of this negative capac-
itor. In Sec. A.4 we present our second, "amplifier-
based" model capacitor; we derive an expression for
the spectral density of its voltage noise; and we show
that its noise is too great to do the job required in
Sec. III. In Sec. A.5 we present our third, "narrow-
band" negative capacitor —which also cannot do the
job required in the Gedanken experiments of Sec. III,
unless one alters them by inserting a frequency upcon-
version.

SPI'Ing-b8sed negBtlve c8PBcltoI'

Our first "spring-based" model eap3citor is shown
in Fig. 7(a). It consists of three:parallel plates with
arbitrarily large areas. The top and bottom plates are

Rev. Mod. Phys. , Vol. 62, No. 2, Part I, April 1980



Caves, Thorne, Drever, Sandberg, and Zimmermann: On the measurement of a weak classical force

'= k/4I

',I- k/4

vo

k/4, 'I
2D

~r4 I
+Vo

area 8 of the capacitor plates finite but large; the
capacitance Co=—2(8/4ffD) of the central plate relative
to the outer plates, finite but large; and the mass p
of the central plate, finite but tiny. The motion of the
central plate is described by the dynamical variable
z(t) —= (height above central position); the charge that
sits on the central plate is denoted by the dynamical
variable Q(t). The entire system shown in Fig. 7(a) is
then described e'lassically by the Lagrangian

~ 2 i 2 vo Qz Q—2kz + —Qz+
0 0

(A2)

"B

FIG. 7. (a) Model of a spring-based capacitor with negative
capacitance. (b) Model for the perfect, noiseless batteries
that appear in (a). For details see text.

rigidly fixed. The middle plate has negligib'le mass,
and is free to move in response to the combined action
of springs (total spring constant k) and electrostatic
forces. Two batteries produce a potential difference
2Vo and an electric field Vo/D between the outer plates.
When a charge +Q moves onto the central plate from
terminal A, the central plate gets pulled adiabatically
upward a distance z = V,Q/kD; and terminal A thereby
acquires a potential (-Vo/kD')Q relative to terminal
B. Thus the system functions Bs a capacitor with
negative capacitance -CN, where

C» =—kD'/V' (A 1)

(The charge Q,„=+kD'/V„which is sufficient to drive
the central. plate into contact with the upper or lower
plate, can be made arbitrarily large in principle while
holding C» fixed. )

This capacitor has two possible sources of noise:
noise in the batteries, and noise in dynamical motions
of the central plate.

The battery noise can be made zero in principle.
Figure 7(b) shows a model for a noiseless dc battery.
It consists of two parallel plates with finite separation
D', infinitely large areas 8' and charges + Q', and
finite surface densities of charge ff'=+ Q'/8' = + V,/
4ffD'. Any finite charge Q that flows through terminals
A' and B' produces zero fractional change in the plate
charges (Q/Q' =0 since Q' =~), and therefore produces
zero change in the battery voltage V,. (Here, as
throughout this paper, we ignore relativistic effects
such as speed-of-light limitations on how fast the elec-
trons can redistribute themselves on the plates near
the terminals. )

Dynamical motions of the central plate of our capaci-
tor are a delicate issue. We shall analyze them with
care, first giving a heuristic semiclassical. analysis
and then (in Sec. A.2) giving a fully quantum-mechani-
cal analysis. In our 'analysis initially we make the

This Lagrangian serves two purposes: (i) its Euler-
Lagrange equations 5Z/5z =0 describe the motion of
the central plate; and (ii) the voltage of terminal. A.
relative to terminal. B is given by

V~ —Vs = -8$/&Q ~ (AS)

We now simplify our Lagrangian by making the plates
infinitely large (Co-~); we replace Vo/D by (k/C»)''
Icf. Eq. (Al)]; and we make the replacement

(A4)

where 0 is the very high natural frequency of oscilla-
tion of the central. plate. The Lagrangian then reads

2 = —,'pz' - —,
'

p.Q'z'+ (p.Q'/C»)'~'Qz;

and the Euler-Lagrange equation of z becomes

2+0'z = (0'/p, C»)' 'Q . (A6)

We assume that 0 is extremely large compared to the
rate at which Q changes. Then the central plate moves
nearly adiabatically in response to changes of Q:

z —(jJQ C») Q +z„, +zf, (A7)

Here we include a correction term z„, to account for
nonadiabatic effects due to finite 0;

\

z„,/z-0 as 0-~; (A8)

and we include a term z„ to account semiclassically
for fluctuations of the central plate demanded by quan-
tum theory.

The voltage drop between terminals A and B, as
computed from Eqs. (AS), (A5), and (A7), is

V~ —Vs =-(p, Q2/C») 'z =-Q/C»+V„, + Vff .
The first term is that for'a perfect negative capacitor.
The second, nonadiabatie term vanishes in the limit
Q~ oo~

V„./(V„-V, ) =z„,/z-0 as a,--.

I V„ I
= (p, 0'/C„)'f'I z „ I

- (hQ/C )'f' . (A Bc)

In See. A.2 we shall. show rigorously that, for the
Gedanken experiments of Sec. III, the quantum fluc-
tuations V„produce no charge flow in the circuit, Qf,
—0, in the adiabatic limit 0-~. The following argu-
ment explains, heuristically, why this is so: The zero-
point oscillations of the central plate have a magnitude

I zn I -(@/~&)'", (A 10)

corresponding to an energy 2AQ. These produce a
fluctuating voltage
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The characteristic frequency 0 of these fluctuations is
far higher than the natura, 1 frequencies of the circuit
to which our negative capacitor is hooked up. There-
fore these fluctuations have great difficulty driving
oscillations of the circuit:

Q fl
(x: [(natural frequencies)/0]'V fl

~0 '~'-0 as Q-. (A 11)

In summary, our heuristic argument shows that the
model negative capacitor of Fig. 7 functions perfectly
(no noise) in the Gedanken experiments of Sec. III.
However, this is so only in the idealized limits that
(i) the area of the capacitor's plates is infinite
(8-~, Cfl- ~); (ii) the natural oscillation frequency of
its central plate is infinite (0 =k/p. -~); and (iii) one
ignores rel.ativistic corrections, issues of strengths
of materials, etc.

We now sketch a fully quantum-mechanical analysis
of one of the Gedanken experiments of Sec. III, re-
placing the ideal negative capacitance of See. III by the
spring-based model negative capacitance of Fig. 7(a).
The Gedanken experiment we choose is the measure-
ment of the momentum of a free mass (Sec. III.A.2).
The reader can perform a similar calculation for the
Gedanken. experiment to measure the ~, of an oscil-
lator (Sec. III.B). The result will be the sa,me: In the
adiabatic limit Q- ~, the negative capacitor produces
z ero nois e.

The physical setup of our momentum-measuring ex-
periment is that of Fig. 6(a) with (i) the noisy amplifier
(dashed part) removed; (ii) the capacitance C set to
infinity; and (iii) our negative capacitor (Fig. 7) in-
serted at the location of the dotted arrow. The La-
gr3ngian of everything except the negative capacitor
is Eq. (3.3); the contribution of the negative capacitor
is Eq. (A5); and the value of the negative capacitance
which we require to convert our velocity sensor into a
momentum sensor is

-C~ = -1/mE'. (A 12)

[See the sentence preceding Eq. (3.9).] The total La-
grangian then becomes

2. Gedanken experiment to measure the momentum of a
free mass

2 = ~zmx'+ 21.Q' -EmxQ+ Fx

+ —,'(J.z' ——,
'

p.SPz' + (m p E'0')'~'Qz . (A13)

—Ex+EpQ —(m p,E'0')~'Qz . (A15)

This Hamiltonian will give the same results, when
Q- ~, as did the Hamiltonian (3.10) with a, perfect neg-
ative capacitor.

The Heisenberg equations for the Hamiltonian (A15)
are

dp dx P—= —+EQdt ' dt m

(A16)

2 uh= -EP —mE2Q + (m p.E'0') 'z,

These equations describe coupled, driven harmonic
oscillators. They can be decoupled by the change of
variables

(m p. )'~'E - - (m/g)'~'E-
Q

(A17)

IIere y, has eigenfrequency zero, and in the adiabatic
limit (0- ~) it becomes Q; y, has eigenfrequency

a =- (n'+ mE'/f. )'" (A18)

and in the adiabatic limit it becomes z. By changing
variables to y„y„ then solving the'Heisenberg equa-
tions, and then rewriting the solution in terms of Q and
z we obtain

p(t) =p, +et, (A19a)

We shall see that, in the limit Q- ~, this Lagrangian
gives the same quantum-mechanical results for the
measurement of the momentum P, and force F', as did
the Lagrangian (3.9) which contained a perfect negative
capacitor -C~ = -1/mE'.

The canonical momenta for the Lagrangian (A13) are
Bgp= . =mZ -EmQ, li= . =f.Q, fl= . =qz. (A14)X BQ ' Bi

The Hamiltonian H =Px+IIQ+ wz —2, after quantization,
ls

A,

p2 II2 p, ~2
H = +:— +-,'mtC*()* + +-,'gn'z*)

2m 2I. 2 p,

(0)'I(@ (mu) *&

) (~D
(mg)'~'E ~ir

)
(IR' (mv V&*K .

)

(A19b)

0 2 „(m/p, )'~'E - 7)fl (m/g)'~'E fop sinat mE' (m/p. )'~'E-

(
mE' m, (m/p)"E II() (m/p, )"E' p, P sinat
L,Q' g 0 1. I.D o'+ —1-coso't + —t — ——,'p t' ——Ft'a2 o 2 0 6 (A19c)
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The remaining variables can easily be computed from
these using the Heisenberg equations (A16). In these
solutions a subscript "0"means the vafue at t =0:

pa=—p(0), Qo=—Q(0), etc. (A20)

The solution (A19b) for Q(t) il. lustrates, fully quantum
mechanically, the phenomena sketched semiclassically
in the preceding section: (i) In the exact adiabatic limit
0- ~, the charge Q(t) that flows in the circuit is iden-
tical to that obtained with a perfect, noiseless negative
capacitor [compare Eqs. (A19b) and (3.12)]. (ii) When
0 is finite but &» (mK'/L)'~' = (natural frequency of
circuit without negative capacitor), there are correc-
tions in Q(t) due to nonadiabatic behavior; but these
corrections vanish as 0- .

Quantum-mechanical fluctuations in Q(f) show up
when one computes the variance &Q(t) =((Q —(Q))')'' in
terms of the variances at time t =0. Because Q(t)
reduces to the "perfect-capacitor" form [Eq. (3.12)]
when Q- ~, we are guaranteed that bQ(t) will reduce
to the perfect-capacitor variance [Eq. (3.14)] when
0-~. Thus, in the adiabatic limit, quantum fluctua-
tions of the central plate have no effect on the charge
(Q(t)) that flows, oronits variance &Q(t). Our negative
capacitor does its job perfectly and noiselessly.

3. Alternative vievvpoints on the spring-based negative
capacitor

We have argued in the text (Sec. III.A.2) that, in
monitoring the motion of a mechanical system, a mo-
mentum sensor is equivalent to a velocity sensor plus
a negative capacitor. Similarly (Appendix B.2), in
monitoring an el.eetromagnetic system, a sensor for
generalized momentum is equival. ent to a sensor for
genera, lized velocity pl.us a negative spring.

In designing practical. variants of such sensors, it
may be useful to keep in mind several different view-
points about negative capacitors and negative springs.
One viewpoint is that embodied in the phrases "capaci-
tor with negative capacitance" and "spring with nega-
tive spring constant. " Two other viewpoints are pre-
sented in this section.

Our second viewpoint on negative capa, citors is this
(the extension to negative springs should be obvious):
A velocity sensor is equivalent to a momentum sensor
plus a restoring force in the sensor's circuit [term
z~mR'Q' in the Hamiltonian of Eq. (3.5)j. The stronger
is the coupling of the velocity sensor to the mechanical
mass (coupling constant R), the stronger is the restor-
ing force in the sensor's circuit. If one wishes to
measure the mechanical momentum more accurately
than the standard quantum limit, one must make A so
strong that the restoring force causes the circuit to
oscillate through several cycles during the measure-
ment time v. Because of these oscillations, the effects
of the driving signal (voltage -RP) do not accumulate
monotonically in the circuit. Consequently, the signal-
to-noise ratio is debilitated, and the measurement can-
not beat the standard quantum limit [cf. Eq. (3.8)]. To
rectify the situation one must modify the sensing cir-
cuit so that it contains a low-frequency (fa 1/v) normal
mode in which the signal can accumulate monotonically.
Our so-called "spring-based negative capacitor" ac-

compl. ishes just this. It gives the readout circuit two
dynamical degrees of freedom instead of one; and when
it is properly tuned to the rest of the sensor [kD2/V2
= I/mR'; Eqs. (Al) and (A12)], one of the degrees of
freedom (y, =@+[(mp)''R/I Q]2] has zero eigenfre-
quency. The signal builds up monotonically in this
degree of freedom giving, in principle, an arbitrarily
large signal-to-noise ratio.

Our third viewpoint on negative capacitors builds
on this second viewpoint. When our "spring-based
negative capacitor" is included in the sensor, then the
sensor circuit has two normal modes. It is essential
that one of the normal modes have a low enough eigen-
frequency, fa I/r, for the signal to accumulate mono-
tonically. However, it is not essential. that the other
normal mode have such a high eigenfrequency that it
decouples from the rest of the system (Q- ~; adiabatic
limit; situation assumed in all previous discussion).
For example, we might let 0, the natural frequency of
the central plate in the "negative capacitor, "be of
order (mR2/I )', the natural frequency of the circuit
in the absence of the negative capacitor:

n = (mR'/L, )'" (A21)

Then, it turns out, the mechanical motion of the cen-
tral plate 2(t) is influenced sufficiently by the zero-
frequency normal. mode y, (t) that one can read out from
that motion the signal contained in y, (t). More specif-
ically, for the Gedanken experiment of Sec. III.A.2,
with initial conditions

&llo) =&Qo) =(&o) =&zo) =o &Po) =Pa

~II, = (aL,/2~)'", ~Q = (ni/2L, )~2,

~v, = (nq/2~)'~, ~z, = (aT/2q)", ~P, = 0,
no correlations of above variables,

(A22)

the expectation value and variance of the central plate's
position at time 7. are [Eq. (A19c)]

~z(T) = (o/&)'(kT/p)"[1+0(1/O, 'T')j.

(A23a)

(A23b)

(A24)

where again Eq. (A21) has been used. For a given r, if
the coupling is stronger than R' =L/m~', then the mea-
surement can be more accurate than the standard quan-
tum limit [5Po&(hm/T)'']; and if R- ~, then the mea-
surement can be arbitrarily accurate.

In this variant of the experiment the "spring-based
negative capacitor" functions a,s a readout device
("charge meter") which is carefully tuned [kD'/Vo
=1/mR'; Eqs. (A1) and (A12)] to the rest of the sensing

Here use has been made of Eq. (A21), and for simplici-
ty the classical driving force has been omitted (9'= 0).
One can attach a pointer with a scale to the central
plate, and in principle one can read out z(j) from that
pointer with probable error &z(r) From the. result
one can infer the free-mass momentum Po to within
probable error

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 1980



Caves, Thorne, Drever, Sandberg, and Zimmermann: On the measurement of a weak classical force

circuit. The pointer attached to the central. plate gets
displaced by an amount (2(v)), which is proportional to
the charge that has flowed onto the central plate —and
thence proportional to the momentum pp of the free
mass. A person adopting this "third viewpoint" should
realize that the careful tuning (kD'/V', = I/mR') is re-
quired to produce a zero-frequency mode in which the
signal can accumulate ("viewpoint two"), but he need
not be aware that his charge meter is functioning, in
effect, like a negative capacitor ("viewpoint one")."

C~ = Cc(C,/C, ) . (A26)

It is straightforward to show that the voltage-current
relation for this device is

(A27)

voltage divider. %hen a voltage V is applied to A. , the
amplifier forces a negative charge -Co(C, /C, )V to flow
in at terminal A and onto the capacitor Co. Thus the
system exhibits a negative capacitance -C~ given by

4. Amplifier-based negative capacitor

Figure 8(a) shows a model negative capacitor con-
structed from standard electronic components, includ-
ing a voltage amplifier with infinite input impedance.
The amplifier has arbitrarily large amplification at all
frequencies of interest, and its equivalent voltage and
current noise sources V„(t) and I„(t) have spectral den-
s ities constrained by the quantum limit

Sv(f)Sr(f) -(4rr@f)'

[Heffner (1962); Eq. (3.7) of this paper]. (For simplic-
ity we assume zero correlation between the voltage and
current noises. ) The capacitors C, and C, act as a

0'$l
I I

S „(f)=(1+C' Sv(f)+ ', —+ (A28)

This noise is minimized for fixed C~ by setting C, /C,
—~, 'C, /C„- ~, and by impedance matching the am-
plifier so that Sr/Sv ——(2rrf C~) . (In principle the im-
pedance matching can be achieved at any chosen fre-
quency by a transformer that immedia, tely precedes
the amplifier input). Then the spectral density of the
equiva, lent noise source V~ becomes

Sv„= (SvSr)" /7rf C~ (A29)

The quantum limit (A25) for the amplifier then implies

where a tilde denotes Fourier transform at frequency
f(A(f) = J „&(&)e' ' 'dh]. This is identical to the volt-
age-current relation for the "Thevenin equivalent cir-
cuit" of Fig. 7(b). The voltage noise source V„(t) for
that circuit has spectral density which we can read
off Eq. (A27):

Sv ~4k /C». (A30)

(a)

FIG. 8. (a) Model of an amplifier-based capacitor with nega-
tive capacitance. (b) Thevenin equivalent circuit for this
model negative capacitor. For details see text.

This is the very, best noise performance that the model
negative capacitor of Fig. 8 can possibly achieve. It
is instructive to compare this noise, which has a
white spectrum, with that of our spring-based model
for a negative capacitor. [Eq. (A9c)], which is con-
centrated at the very high frequency Q.

Unfortunately, the noise performance (A30) is too
poor to permit use of this negative capacitor in the
"arbitrarily quick and accurate" Gedanken experiments
of Sec. III. For example, in the momentum measuring
experiment of Sec. III.A.2 we require C~ = 1/mR', where
m is the mass of the "free mass" being measured, and
A is the coupling constant in the transducer. In dc
measurements of du'ration 7 our model capacitor would
superimpose on the transducer output a fluctuating
voltage with variance

In our original article in Physical Review Letters (Thorne
et al. , 1978), we discussed a Gedan&e& experiment for an ar-
bitrarily quick and accurate back-action-evading measurement
of the X'~ of an electromagnetic oscillator (cf. Appendix B.2 of
this paper). In that discussion we asserted that a torque I" in
the sensing system could be read out with precision ~I'
= (Ik/v ) I . We had invented the required "torque-balance
readout system" at the time of our Letter (though we did not
describe it in the Letter). Our viewpoint on that torque bal-
ance was the third viewpoint described above; and we were
unaware that our balance was functioning, in effect, like a
negative spring. The reason we presented in Thorne et «.
(1978}a Gedanken experiment for measuring an electro-
magnetic oscillator, rather than a mechanical oscillator, was
that we had not yet invented the "negative-capacitor" readout
system of Fig. 7.

(A31)

(A32a)

in one's measurement of P, and a corresponding un-
certainty

6F = 6p/r = (2@m/r')'" (A32b)

in one's knowledge of any classical force acting on the

For comparison, the signal voltage produced by the
transducer is V, =-RP [cf. Eq. (3.11) with V, =dll/dt],
where P is the momentum to be measured. Evidently
the voltage noise V~ of the negative capacitor produces
an uncertainty

6p = (Mm/z)'"
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free mass. These uncertainties are equal to the stand-
ard quantum limit for a free mass. Thus the noise of
our second negative capacitor [Fig. 8(a)] is too great
to permit its use in measurements designed to beat
the standard quantum limit.

Z = -i2vfL =[-i2mf (-C~)] '[I+0(«d/Q)]. (A33)

In principle such a "narrow-band" negative capacitor
can be noiseless.

he "arbitrarily quick and accurate" Gedanken experi-
ments of Sec. III require a negative capacitor that op-
erates over a broad band of frequencies, 0&fa1/2v.
Thus an inductor cannot do the required job. However,
one can invent a more complicated version of those
Gedanken experiments, in which, for a measurement of
the momentum of a free mass, the output of the veloci-
ty transducer is multiplied by cosQt with Q» I/v.
Similarly, for a measurement of the X, of an oscil-
lator, the outputs of both the coordinate and velocity
transducers can be multiplied by cosQt. Then the
readout is at frequencies =Q in the band &ur = m/r, and
a narrow-band negative capacitor (i.e., an inductor)

5. Narrow-band negative capacitor

When one is performing measurements in a narrow
band of angular frequencies &co around a high "carrier"
frequency Q, one can use an inductor as a negative
capacitor. Aside from fractional corrections of order
&~/Q, an inductor with inductance I =— (Q'C~) ' has
the same impedance in this band as a negative capacitor

does an adequate job of converting the velocity trans-
ducer into a momentum transducer. Such a measure-
ment can determine the momentum of a free mass with
accuracy 5P, = (Qv) ''(hm/7)'', or the X', of an oscil-
lator with accuracy 5X, = (&u7) '~2(Q7) +'(h/2m~)~.
This trick of "upconversion" of the signal to a carrier
frequency 0 is discussed in detail in Paper II.

APPENDIX 8: PHYSICAL REALIZATIONS OF
HANIILTONIAN (3.16) FOR ARBITRARILY QUICK
AND ACCURATE IVIEASUREIVIENTS OF K~

Here we describe Gedanken apparatus by which, ~n

principle, one could make the "arbitrarily quick and
accurate" measurements of X, described abstractly in
Sec. III.B. Our objective is not to describe practical
apparatus for real experiments. (Practical issues are
discussed in Paper II.) Rather, we seek to demonstrate,
in the manner of a mathematician proving a theorem,
that in principle there can exist apparatus governed
precisely by the Hamiltonian oI Sec. III.B [Eq. (3.16)].

Section B.1 of this Appendix describes apparatus for
measuring a mechanical. oscillator, and discusses the
relationship between classical generators tobe used in the
apparatus and quantum mechanical generators. Sec-
tion 8.2 describes apparatus for an electromagnetic
os cillator.

1. Mechanical oscillator

a. Physical description

Figure 9 shows a physical realization of the coupled
oscill. ator and measuring apparatus which were de-

5Cg 5Cg
I

(Position Transducer)

Do Do—+X X2 2

!Readout
System

I

3Cg
@81 -—

I, ) ~

D l+ g g.goNZ

Dg-y

Spring
x~ e OCi

Transducer)
g g

Osc i I I a tor)

FIG. 9. Idealized physical
realization of a system for
measuring the X& of a me-
chanical oscillator arbi-.
trarily quickly and accu-
rately. See text for dis-

cussionn.

(Compensati
Capacitors}
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scribed abstractly in Sec. III.B. In this figure our
mechanical oscillator is drawn with very thick lines.
It consists of a mass (stippled square) coupled by a
spring to a rigid wall.

Our electromagnetic generator circuit is drawn with
lines of medium thickness. It is an LC circuit with a
single lumped inductance Lg and with total capacitance
Cg split up among three capacitors in series —two at
the top of the diagram; the third at the lower right-
hand side. This generator will be excited into a highly
classical, coherent state, thereby producing voltages
proportional to cosset across its capacitors, and a
current proportional to -sin~t through its inductor.
These voltages and this current will provide the sinu-
soidal couplings for our position and momentum trans-
ducers.

The meter of Sec. III.B (a circuit with self-inductance
I. but no net capacitance) and the txansducexs which
couple the meter to the mechanical oscillator are drawn
with thin lines. The position txanducex is the three-
plate balanced capacitor labeled Cp in the upper part
of Fig. 9. The outer plates will be biased with voltages
+ (const) cos~t by the generator's capacitors 3C~; and
as a result the central plate, which is attached rigidly
to the oscillator, will acquire a voltage proportional to
x cosset. The momentum tyansdncex consists of two
parts: a velocity txansducex [mutual inductance Mx
between L and L, which, because of the generator cur-
rent &g ~sinut through Lg will. produce a voltage across
I. that is proportional to d(xsin&ut)/dt =x sin&et
+ &uxcos&ut]; and a complicated system of compensating
caPacitoxs which convert the velocity transducer into a
momentum transducer [net output voltage proportional
to (P/m&u)sin~t+xcoscut]. We adjust the relative
strengths of the couplings in our position and momentum
transducers so that the total signal voltage in the meter
(thin-line circuit of Fig. 9) is K-[xcos~t —(p/m~) stuart]
=- ~ -X,.

The readout system measures the total. charge Q that
the signal voltage EX, has driven through the meter
circuit. In the limit of very strong coupling, we can
put. the quantum-classical eut between the meter and
the readout system, and we can forego any detailed
mathematical. description of the readout system;
ef. See. III.B and Appendix C.2.

pling of the oscillator to the meter, and from the mass
m and frequency u of the oscillator, we can construct
a characteristic length scale s:

s = mr@'/K'. (B2a)

We shall choose the generator's capacitance Cg to be
huge compared with s, and we shall introduce the
small dimensionless parameter

c =- s/3C, . (B2b)

Before each measurement the generator, regarded
quantum mechanically, will be excited into a coherent
state with

(g) =Qocos&ut, &0 =(5/2I~&u)",

s2/c3 /2

(B3a)

(B3b)

The mean number of quanta in the generator, (N) = 1U,
and the fractional width of its wave packet will then be

g'„/2C, 3 m((us)'
A(d 2 c AM

~ g/g & ~ -1/2

(B3c)

(B3d)

In the limit c- 0, the generator will contain an infinite
number of quanta, Np-~, and it will become fully
classical, AC/g, —0. We shall keep c finite but small
in our analysis, until we have obtained our Hamiltonian.
Then (Sec. B.l.c) we shall take c-0, thereby bringing
our Hamiltonian into the form [Eq. (3.16)] studied in
Sec. III.B and Appendix C.

We now construct the Lagrangian for our system,
choosing the magnitudes of various parameters along
the way so that in the limit c —0 the corresponding
Hamiltonian will reduce to Eq. (3.16).

The mechanical oscillator (thick lines in Fig. 9) has
the familiar Lagrangian

(B4)

The generator's inductance Lg is fixed in inertial
space. The meter's inductance L is partly attached to
the mechanical oscillator, and partly attached to in-
ertial space —with the details of the attachments de-
signed to produce a mutual inductance between I and
Lg which is proportional to the oscillator's displace-
ment x. The proportionality constant M is chosen to be

b. Derivation of the Hamiltonian M=c' '(~s) '. (B5)

L~C~ = I/M2 . (BI)
The m, etex is characterized by its self-inductance L
and its current Q (t) = dQ/dt.

From the constant A, which characterizes the eou-

Initially we analyze the system of Fig. 9 in the La-
grangian formalism of classical mechanics; then we
compute the Hamiltonian and quantize it.

In the Lagrangian formalism the mechanical oscil-
)atox is characterized by its mass m, frequency u,
and time-dependent position x(t). The electromagnetic
genexatox, which produces the sinusoidal coupl. ings, is
characterized by its total. capacitance C, and inductance
I~, and by the current C(t) —= dC/dt which flows in it.
The eigenfrequency of the generator is identical to that
of the mechanical oscillator:

The resulting Lagrangian. associated with the induc-
tanees is

~ ~ 0 ~

2; = 2 LQ'+;I,l'+MxQZ.
,' I.q'+ ,' kI.' +f(C—qx/~)(4—/~&,) .

(B6R)

(B6b)

Consider next the circuitry above the mechanical
oscillator in Fig. 9—i.e., the position transducer, plus
two-thirds of the generator's capacitance. The two
capacitors labeled 3Cg are fixed in inertial space, as
are the outside two plates of the capacitor Cp. The
central plate of C, is rigidly attached to the mechanical
oscillator, so that its separations from the outside
plates are 2Dp*x. We define Cp to be the capacitance
between the outside plates at a moment when there is no
charge on the central. plate (Q =0). We set
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, =- s/s'~4, D, =- s/s'b (87)
so that in the limit s- 0, (i) the plate separation D~ gets
arbitrarily large, leaving plenty of room for the oscil-
lator to move, and (ii) the linear size of the plates,
(DOCO)' ' CC s ' 8, gets far larger than their separation,
Do~ c ''. The total energy in the capacitors, ex-
pressed in terms of Q, g, and x, is equal to minus the
Lagrangian, , -Z„of the capacitors. A straightforward
computation gives

g2

3C (1+2C /3C )

Q' 2CO 4(x/Do)'
8C, 3C 1+2C /BC, )

D, /(C, D,)"-0, (D, —X)/(C, D,)"-0,
Dl/(CiDi)'"- o, (D, +y)/(C, D, ) '- 0.

A straightforward computation gives for the Lagrangian
of these two variable capacitors (equal to minus the
energy in the springs and capacitors)

g2 1 g2 q2 1 q2
6C 12 kC D2 2C 4 )eC,D2

1 QQ~
12 kC,D,Cg Dg

'

Using Eqs. (811), (82), and (83b), and discarding
terms in Zvc that vanish when c- 0, we bring this into
the form

2 Qqx/Do
3C (1+2C /3C )

(88a) (812b)

By using Eqs. (87), (82b), and (83b), and discarding
all contributions to 2, which vanish in the limit c- 0,
we bring this into the form

-, Z, = - g'/3C, (1+2s") —2SCxq(g/g. ) . (88b)

[Eqs. (82) and (83) imply f20/C~ ~ 1/c', which forces us
to keep c'~ correction in Eq. (BBb).]

The mutual inductance of Eq. (86) produces a time-
dependent velocity coupling. As in Sec. III.A.2, so
also here, a negative capacitor is needed to convert
this velocity coupling into a pure momentum coupling-
but now the negative capacitance must be time depen-
dent. It is achieved by the compensating capacitors at
the bottom of Fig. 9. These include (i) a constant neg-
ative capacitance -s, which has the internal structure
discussed in Appendix A. 1 and which contributes

2, =+~Q /s (89)

y = (1/k)(Z'/6C~D~ —Q'/2C, D, ) .
%e set

k = -'&»'nz2 D z-5/ss
g

(810)

to the Lagrangian; and (ii) the variable positive capaci-
tor "C,." The left plate of C, is fixed in inertial space
and the right plate of C, is attached rigidly by an in-
sulator to the movable left plate of the generator's
capacitor "3C~"—which in turn is attached by insulated
springs (total spring constant k) to the right plate of 3C .
This arrangement enables the generator to modulate the
plate separation of C, and thereby modulate its capaci-
tance. The total mass of the movable plates is vanish-
ingly small (eigenfrequency of vibration infinitely large)
so that, like the central plate of the model negative
capacitor in Fig. 7(a), they move adiabatically and they
inject zero noise into the electrical system. When no
charge is on the capacitors, the movable plates have
pos ition y = 0 and the capac itanc es are 3C~ and C, .
When charges g and Q are applied, the equilibr'ium
position is

(The s~ ~ correction must be kept here because f20/C~"1/s'. )
The total Lagrangian is the sum of Eqs. (84), (86b),

(88b), (89), and (812b):

3/4g2 1 + ~1/4

2C~ 1+2@

~ Q2 g 2

+&IQ + —1 ——
2s

-'"'(-:) ".(-.)(.'* ) (813)

The terms multiplying —P'/2C produce only a slight re-
normalization of the generator frequency and a slight
anharmonicity in its oscillations —and these effects
vanish in the limit c-0. Therefore we may discard
these terms, thereby bringing our Lagrangian into the
form

2= 2mx' —2m' x'+ 21 t' —&'/2C + ~I Q

+ (Q'/2s) [1 —(g/g, )'] —2Xxq(g/g, )+ Kx(Q/(u)(j/(ug, ) .

Z.«= g„.„-(Z/g, l.,~')xq (815)
—a change which becomes g„d= g„,„in the limit c -0
(Zo/C -~). By making this change of coordinate, and
by discarding terms in Q which vanish as 6-0, we
bring our Lagrangian into the final form

2= ~2mx' ——,'m(u'x'+ 2&~g' —g'/2C, + r~L Q'

+ (Q'/2s) [1 —(k/g. )'] -Ifq[x(g/g. )+ (x/~) (4/~g. ) ] .
(816)

We next introduce the generalized momenta

A slightly prettier form can be obtained by the change of
generator coordinate

C, =g ~'s, D = gi/4S (8 11)
ag . ECQ g Bg

P I 1%X =&Q ~sx co co+0 QQ
so that in the limit c, —0 the linear sizes of the plates
become large compared to their equilibrium separa-
tions and large compared to their displaced separa-
tions:

8g ~ Kqx
(d g

compute the Hamiltonian H= px+ flq+ gg —g, discard
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terms that vanish as c-O, and quantize. The result is
A2

g2 g2 g p+ + +KQx —+——
2C gp Al(d LgG0p

(B18)

c. Quantum generator compared with classical generator

(g)/g, = cos(ut, (g) /I(ug, = —sin&et,

b,g/g = bg/L &ug

(B19)(g'/2L, + g'/2C, )=(N, + —,')h(u,

((g/L, ~g,)'+ ( g/g, )' —1) = —,'N, ',
~[(C/L, ~q.)'+(q/q. )'-1]=N /'.

Comparison of Eqs. (B19) and (B18) shows that, in the
»mit No-~ (i.e. , E-0), the generator behaves com-
pletely classically and is not loaded at all by the rest

Equation (B18) is the Hamiltonian of our oscillator
plus measuring apparatus, with the generator treated
quantum mechanically. Unruh (19"l9) has pointed out the
importance of treating ihe generator quantum mechan-
ically rather than classically in any fully rigorous anal-
ysis of measurements of X, , and he was the first per-
son to write Hamiltonian (B18) for such a, fully rigorous
analy s ls.

We now show that the quantum generator can be re-
placed, in principle, by a classical generator without
loss of accuracy in our analysis —thereby justifying our
use of classical generators throughout the text of this
paper. Specifically, before any measurements begin
the quantum generator is prepared in the coherent state
of Eq. (B3), which ha, s a, mean number of quanta N„
and has

of the system —i.e. , it is governed by the uncoupled
Hamiltonian

II,= g'/2L, + Z'/2C, ; (B20)

and it always remains in the infinitely-sharply-peaked
coherent state of Eq. (B19). The Hamiltonian for the
rest of the system, when Np- ~, is obtained by remov-
ing the decoupled generator Hamiltonian (B20) from Eq.
(B18), and by replacing g/g, and y/L ~go by their
sharp classical values, cos cot and -sinn(. The result,

II= p'/2m+ —,'m~'x'+ ll'/2L

+ KQ[x cosset —(p/rn~) sin~t], (B21)

4@L / g / 8~1 ~ /
(B22)

[cf. Eq. (3.21)]; if the probability distribution of K, be-
fore the experiment begins is peaked about a value g,
near zero, with variance Z= n(h/2m~)' ' where ns p. ,
then the measurement (i) can determine g, with a prob-
able error

is identical to Hamiltonian (3.16) with classical genera-
tor, which was analyzed in Sec. DI. B of the text.

Suppose that the generator is not fully classical, i.e. ,
that Np is finite. Then to what extent will a measure-
ment of X, be marred by quantum fluctuations in the
generator and by loading of the generator by the exper-
imental apparatus' The answer, when the 'exact Ham-
iltonian has the form of Eq. (B18), can be computed by
a pertu. rbation-theory analysis of the Gedanken experi-
ment of Sec. III.B. Such R computation reveals the fol-
lowing, for the case where orle wishes to measure X,
with accuracy better than the standard quantum limit
(ti/2m~)'~' and with measurement time r: Let ti be the
fractional distance below the standard quantum limit
which the experiment could achieve with a perfect,
classical generator:

1/2 - ~2= p, — 1+~+ terms of order
2%2 co p, p.'(~~) N, ' p'(~7)N, ' pn'N. „,

and (ii) increases the variance of X', to
1/2 " j. /2

AX~ —n 1+ terms of order '(~T)N, '
p. 'n'N, .

(B23a)

(B23b)

Evidently the quantum properties of the generator cause
negligible error in the experiment if the generator is
excited in a coherent state with mean number of quanta

A ],
(N):No ++ max g 2 y 2 2 ~u'(~~)' ' ti'n'

Note that for measurements near the standard quantum
limit ( p,

—n-1) in times not much shorter than one cy-
cle (~v. ~ 1), the generator does not need to be highly
excited.

Unruh (1979) pointed out that one can design a quan-
tum-mechanical generator which is protected entirely
from loading (back action) by the experimenta. l appara-
tus, even when the level of generator excitation is fi-
nite. To achieve such a "loading-free" generator one
uses not a harmonic oscillator (II =P/2L + g'/2C;.

I

[g, g] = ih), but rather the following system with two dy-
namical degrees of freedom:

2 A A

[q, g]=N, [j,jj=ie,

(B25a)

(B25b)

all other commutators vanish. Equation (B25a) is the
Hamiltonian of a charged particle in a suitable constant
magnetic field with a quadrupole electric field to cancel
the quadratic&' and q' terms in the magnetic Hamilton-
ian [cf. the example between Eqs. (4.7') and (4.9), with
the change of notation m-1/(L w'), ', eI3, -1/(L &u), x-- q, p„- e, y -L ~j, p, -g/L ~]. If such a generator
is used in our Gedeygken experiment [replace g'/2L
+ P/2C in (B18) by (B25a)], the resulting Heisenberg
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equations for p and g will be precisely those of a free
harmonic oscillator:

'dg/dg= -I,~'g, dg/dg=g/I, (B28)

This shows the complete absence of loading of Unruh's
generator by our experiment, independent of the state
of the generator. However, quantum fluctuations (un-
certainties) are still present in Unruh's generator and
can affect the experiment —unless one puts Unruh's
generator into a state with arbitrarily small variances
of 0 and 3 (possible because [C,g] = 0). Such a special
state

v, (t)P~
b- aQ~Q~

Qb-aQ

&&&=&Ocos&vg, &g&= -I &ug, sin~g,

Ag=L wA=const-O,
(B2V)

is the analog of the arbitrarily energetic coherent state
(ga-~) which our generator requires in order to avoid
quantum fluctuations. Our generator's coherent state
has an arbitrarily large expectation value and variance
for its energy:

&H )=(N, +2)hm

6H = N', ~'@cd=(g,/2b. k)h~- ~. (B28a

Unruh's special state (B27), in principle, can have a
finite mean energy &H ); but its energy variance is ar-
bitrarily large and, in fact, for given g, and Ag is of
the same magnitude as our variance:

[&,H, l& I
=(h-/ 1.,)

1

smug

~H,~P--,' i&[g, H, ]&i=,'hl. ,~'i&j&i-
= 2h(d(L ca)go) icos(dg i,

whence

&H o- 2 "'(g,/2&g. )h~- (B28b)

Unruh's generator [charged-particle system described
by Eq. (B25)] was mentioned in Sec. I&.A as an illus-
tration of the concept of a "generalized QND observ-
able. " The observables g and g are a pair of such ob-
servables, and it is precisely this fact that allows Un-
ruh's generator to avoid back action (loading) from the
expe r iment.

Unruh's generator is important because it shows that
in principle one can design a generator which is com-
pletely free of back action. However, it is not clear
how one could realize physically the desired coupling of
Unruh's generator to our experiment.

2. Electromagnetic oscillator

%e now turn to a physical realization of Hamiltonian
(3.16) for the case of an electromagnetic oscillator.
Such a realization was given in I"hysica/ Dewiest' Letters
(Thorne eg al. , 19"i8) and is reproduced with minor
changes in Fig. iO.

The oscillator whose X, is to be measured is an "LC
circuit" consisting of the two coils (total self-induc-
tance m) near the bottom of Fig. 10, and the four ca-
pacitor plates Q, Q', R, E' near the top. The oscillator
is coupled, via coordinate (charge. x) and momentum

& U~

4 IQ(t)

FIG. 10. Idealized physical realization of a system for rnea-
A

suring the X~ of an electromagnetic oscillator arbitrarily
quickly and accurately. See text for discussion.

(magnetic flux p) transducers to a torsion pendulum
(vertical central rod in Fig. 10, and paraphernalia at-
tached to it). The coupling produces a torque -KK, on
the tors ion pendulum, caus ing it to swing through an
angle Q. The coupling to 2C, =xcoscug —(p/me@) sincug re-
quires a sinusoidal voltage V,(g) ~ cos&ug in the coordi-
nate (charge x) transducer, and a sinusoidal current
I,(g) ~ sinu&g in the momentum (magnetic flux p) trans-
ducer. The sinusoidal voltage and current are produced
by an electromagnetic generator analogous to that in
Sec. B.l, which is excited into an Brbitrarily energet-
ic coherent state. As sketched in Sec. B.l, this
generator produces a perfect, classical output. For
simplicity we here ignore its details and replace it by
ideal classical voltage and current sources V,(g) and
I,(g).

We now describe the Gedgpgkeyg apparatus in greater
detail. The LC oscillator (coils m and capacitor A-B-
A' B' in Fig. 10)-is described mathematically by the
charge g on plate Q, the current g that flows through
the coils, the total self-inductance re of the coils, the
total capacitance C between plates A and A' (via B,B',
and the zero-impedance voltage source connecting
them), and the eigenfrequency &u= (1/mC)' ' of the cir-
cuit's oscillations. The coordinate (charge x) trans-
dncey consists of plates B and B', to which are applied
a sinusoidal voltage difference V, —= —(h/a)Kcos&ug, and
which are mechanically attached to the torsion pendu-
lum. This voltage, together with the oscillator's
charge x, produces a torque 1 = -Kx cos~g —(K'/m~')Q
cos'&ug on the pendulum. The velocity (curreng) grans
ducer consists of the thin wire loop at the bottom of Fig.
10, through which a sinusoidal current I, =—(K/M&u) sin~g
is driven. The loop is attached to the central rod so
that its mutual inductance with the oscillator MQ is
proportional to the angular displacement Q of the tor-
sion pendulum. Current in the oscillator produces a
torque F = K(x/~) sin&kg on the pendulum. The gorsion
pendulum (consisting of the central rod and parapher-
nal ia attached to it and the torsion fiber that suspends
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2 = —,
' m(x' —&u'x') + 2 L(Q' —&'Q')

,'(—K—'/rn(u')(Q' cos'(ut)

—K[x cosset —(x/~) sin~&] Q.

The generalized momenta of the oscillator and pendu-
lum are p= &2/Bx= mx+(K/cu)(sinut)Q and II= 9L/9Q
= LQ; and the Hamiltonian, after quantization, is

H= p'/2yyg + ~~co'x'+ KÃ, Q+ 11'/2L+ 2LQ'Q('. (B30)

Here the eigenfrequency Q of the pendulum is shifted
from its natural value Q by coupling to the coordinate
and momentum sensors:

5'= n'+ X'/m~'I .
The frequency renormalization (B31) comes from two

sources: liest, the velocity (current) transducer used
in the apparatus is equivalent to a momentum [p= mx
+ (KQ/~)

singlet]

transducerplus apositive spring onthe
torsion pendulum with spring constant (K'/m&u') sin'wt.
(This is the analog, for measurements of electromag-
netic oscillators, of our "velocity sensor equals mo-
mentum sensor plus positive capacitance" in Secs. III.
A. l and III.B.) Second, the "concentric-tin-can" shape
of our capacitor-plus-coordinate-transducer (Fig. 10)
is carefully designed to produce on the torsion pendu-
lum a restoring torque with spring constant (K'/m&u')
cos.'c t. This was done so that the net renormalization
of the pendulum's eigenfrequency would be time inde-
pendent.

Hamiltonian (B30) will have the desired form [Eq.
(3.16)] for a quick and accurate measurement of A„ if
we set Q'= 0. This requires that the natural eigenfre-
quency Q of the torsion pendulum be imaginary

0 =-K/mw I,
i.e. , that the pendulum possess a noiseless spring with
negative spring constant —K'/m&u'. This nega. tive

it) is characterized by its moment of inertia. L, torsion-
al spring constant LQ', natural frequency (in the ab-
sence of couplings) 0, and generalized coordinate (equal
to angular displacement) Q.

The complete apparatus —LC oscillator plus trans-
ducers plus torsion pendulum —is described by the clas-
sical Lagrangian

spring is the analog of the negative capacitors needed in
Secs. III.A. 2 and B.1; cf. also footnote 11 in Appendix
A. Figure 11 shows an idealized example of such a
noiseless negative spring.

APPENDIX C: ARBITRARILY QUICK AND
ACCURATE BACK-ACTION-EVADING
MEASUREMENTS OF X~ . A DETAILED
QUANTUM-MECHANICAL ANALYSI S~2

1. Overview

This Appendix builds upon and expands the discussion
given in See. III.B; the objective is to give a detailed
quantum-mechanical analysis of a sequence of measure-
ments of the X, of a harmonic oscillator. The analysis
is exact quantum mechanically, and it should satisfy a
theorist s desire for rigor. However, this rigor is pur-
chased at the price of a highly idealized description of
the measurement process, and this idealization may
make an experimenter uneasy. He may prefer the more
realistic, but semiclassical, measurement analyses
given in Paper II.

Presenting two different analyses to appeal to two dif-
ferent constituencies may seem more like politics than
physics, but we plead principle as well as pragmatism
for the practi. ce. We give an exact quantum-mechanical
analysis of a simple, idealized version of a real mea-
surement. We then ask whether a semiclassical treat-
ment of a similar, simple system gives the same re-
sults. If it does, we gain. the confidence to apply semi-
classical techniques to complicated, realistic measur-
ing systems —systems so complex that an exact quan-
tum-mechanical treatment would be exceedingly diffi-
cult.

The key word in this Appendix is sequence. Section
III.B of the body of this paper described apparatus for
measuring X, and analyzed a single measurement of Xy
using this apparatus. The analysis proceeded by calcu-
lating the free evolution of the coupled oscillator-meter
system [Eqs. (3.17)-(3.19)], and it demonstra. ted that
X, can be measured arbitrarily quickly and arbitrarily
accurately [Eq. (3.21)]. In this Appendix we string to-
gether a sequence of measurements of the type consid-
ered in Sec. III.B. To analyze the sequence, we must

FIG. 11. Idealized example of a negative spring attached to a torsion pendulum. A dc bias voltage -Vo is applied to the upper
plate P, and a voltage +Uo to the lower plate P', of a parallel-plate capacitor. The middle plate R is held at ground potential
by the wavy wire, and is physically attached by a lever arm of length b to the central shaft 8 of the torsion pendulum. When the
shaft rotates through a small angle Q from equilibrium, plate R moves upward by a distance bQ; and the batteries Vo drive a
charge q=(bQ/d)CVO onto R. (Here C.=28/4&d is the capacitance of plates P-P' relative to plate R, and we assume bQ «d. )
The charge q couples to the electric field Uo/d in the capacitor, producing an antirestoring torque I' = bq Vo/d =(b/d) C V()Q.

The ideas and prose of this Appendix are due entirely to Carlton M. Caves, and constitute a portion of the material submitted
by him to the California Institute of Technology in partial fulfillment of the requirements for the Ph. o. degree.

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 1980



Caves, Thorne, Drever, Sandberg, and Zimmermann: On the measurement of a weak classical force 379

do more than just calculate the free quantum-mechan-
ical evolution of the system; we must also have a rule
for carrying the quantum state from one measurement
to the next. That rule is the "reduction of the wave
function" at the end of each measurement [see Eq.
(C28)]. Free evolution and reduction of the wave func-
tion —together, these two allow us to follow changes in
the state of the oscillator from measurement to mea-
surement, and with this knowledge we can investigate
the behavior of the oscillator during a sequence of mea-
surementss.

One important issue is the question of how X, changes
during a sequence. Two results of our analysis bear on
this issue. The first is that between measurements the
expectation value of X, ean change, with the expected
change always less than or equal to the variance of X,.
The second is that the variance of X, always decreases
from one measurement to the next, for the type of
measurement we analyze. Putting these two results to-
gether, we show that the expected change in the expec-

ts
tation value of X, during a sequence of measurements
is approximately the variance of X, before the initial
measurement.

Another, perhaps more important, issue is the ques-
tion of how X, changes. In each measurement of the
type in Sec. III.B, the expectation value of X receives
a large "kick" because the meter coordinate Q gets
displaced a large distance from zero [cf. Egs. (3.1V)-
(3.19)]. These kicks accumulate from one measurement
to the next, and the expectation value of X, runs away.
However', these "expectation-value kicks" are essen-
tially classical and predictable, so one might think that
the resulting "classical runaway of X," could be avoided
by applying a "feedback force" to the meter —a force
whose purpose is to keep the meter coordinate close to
zero. We investigate this issue using a model for the
feedbaek, and we show that feedback can indeed keep the
expectation value of X, from running away. However,
only part of each kick is classical. The feedback, no
matter how good it may be, cannot eliminate the huge
unpredictable quantum-mechanical. kick given X, by each
precise measurement of X„akick whose size is de-
termined by the uncertainty principle, Eq. (2.9a). One
might expect these "uncertainty principle kicks" to add
randomly, thereby causing X, to random malk. We ver-
ify the existence of this "random walk of X," by showing
that, during a sequence of measurements, the variance
of X, increases as the square root of the number of
measurements.

We choose to ignore the classical driving force E(t)
in this Appendix. Its effect on the oscillator could be
included in the analysis. However, Sec. III.B has al-
ready shown that the classical force can be measured
arbitrarily quickly and arbitrarily accurately. In addi-
tion, the classical force is irrelevant to the issues ad-
dressed in this Appendix. Its inclusion would only com-
plicate the analysis without adding any new insights.

Sec. III.B. The oscillator to be measured is charac-
terized by the variables of Eqs. (2.1)-(2.5), including
coordinate x, momentum p, complex amplitude X, + jX„
mass m, and frequency ~. The oscillator is coupled to
a measuring apparatus whi. ch consists of three parts:
a generator, a meter, and a readout system. The gen-
erator provides the sinusoidal coupling in the interac-
tion Hamiltonian. The meter is a one-dimensional
quantum-mechanical "free mass" with generalized co-
ordinate Q, generalized momentum II, and generalized
mass I.; the meter is coupled by the generator to X, of
the oscillator. The readout system is coupled to the
meter in such a way that at designated moments of time
it "reads out" a value for the meter's coordinate Q and
that at all times during each measurement it applies a
constant "feedback force" to the meter. The feedback
force is included to prevent the classical runaway of X,.

Of the three parts of the measuring apparatus, only
the meter will be treated quantum mechanically. As is
discussed in Appendix 8.1, the generator can be
treated classically if, before the initial measurement
in the sequence, it is prepared in a coherent state of
arbitrarily large amplitude. Then the generator is
completely unloaded by its coupling to the rest of the
system, and it produces perfect "cosset" and "sinut"
terms in the Hamiltonian.

The readout system wil. l also be treated classically-
i.e. , we place the "quantum-classical cut" of our analy-
sis between the meter and the readout system. This'
choice is legitimate if inclusion of all or part of the
readout system in the quantum-mechanical analysis
mould not substantially degrade the calculated accuracy
of the measurement. For example, the readout system
can in principle be a device mhich is so strongly
coupled to the meter that it makes arbitrarily precise,
essentially instantaneous measurements of the meter
coordinate (see discussion in footnote 6). This is the
model we shall adopt. Then a "readout" of Q by the
readout system is described as follows: The readout
system determines a value for the meter coordinate Q
at a particular instant, thereby localizing the meter
precisely at the measured value; formally this means
that the quantum state of the oscillator-meter system is
"reduced" to an eigenstate of Q whose eigenvalue is the
measured value [see Eg. (C28)].

In practice the readout system will not make infinitely
precise measurements of the meter coordinate. We
shall consider the case of a finite-precision readout
system in See. C.'7, where we sketch a density-matrix
analysis of a sequence of measurements of X,.

Finally, we also treat the feedback force classi. cally.

3. Foundations for the analysis

The Hamiltonian for the coupled oscillator-meter
system has the form of Eg. (3.16) with the addition of a
term describing the feedback force:

2. Description of the measuring apparatus

We now turn-our attention to a detailed description of
the measurement process. We begin by describing the
physical system, which is nearly the same as that in

H= Ho+H@+HI,

Ho = p / 2BZ + 2 f7' CO X

a„=II'/21. ,

a,= If(X, —o.)Q.

(Cla)

(Clb)

(C1c)

(C1d)
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Here H0 is the Hamiltonian of the free oscillator, H~ is
the Hamiltonian of the meter, and K is a coupling con-

A,

stant. The interaction Hamiltonian H» consists of two
terms: a term KX,Q which describes the coupling of
the oscillator to the meter via the classical generator,
and a term -Ko.Q which describes the classical feed-
back force on the meter. The size of the feedback force

- is determined by the parameter n ("force"=Ko). The
feedback is under the control of the experimenter; in
general, n will change from measurement to measure-
ment in the sequence. Designs for physical systems
which are governed in principle by the Hamiltonian
(C1) are considered in Appendix B. Here we do not
concern ourselves with any specific physical system.
The Hamiltonian (C1) is the starting point of the analy-
sis, which applies to any system governed by that Ham-
iltonian.

The analysis in Sec. III.B uses the Heisenberg pic-
ture. It is the most convenient picture for calculating
the evolution of the expectation, value and variance of Q
[Eqs. (3.19)], and those are the only results really nec-
essary for that analysis. In this Appendix we work ex-
clusively in the Schrodinger picture. This is not be-
cause the Heisenberg picture could not be used; rather,
it is because the Schrodinger picture is more conven-
ient and more natural for analyzing a sequence of mea-
surements. In particular, the reduction of the wave
function can be handled more easily in the Schrodinger
picture.

In the Heisenberg picture the complex amplitude of a
free harmonic oscillator is conserved [Eq. (2.7)]. In
the Schrodinger picture the operators X, and X, are
time dependent, and whenever it is necessary, we shall
indicate explicitly the time at which they are evaluated:

X,(«) = x costa« —( p/m(d) sin&a«,

X,(«) = x sin&a«+ ( p/m(d) cos~«.

(C 2a)

(C2b)

U (««) e-i(t to)BO( h- (C3)

Hence, conservation of the complex amplitude of a free
oscillator translates into the following identity in the
Schrodinger picture:

x,(«) -=U,(«, «,)x,(«,) U,'(«, «, ) . (C4)

Equation (C4) holds for arbitrary times «and «, .
In the Schrodinger picture the information about the

state vector jg(«)& of the coupled oscillator-meter sys-
tem is conveniently expressed in terms of an evolving
"wave function, "which is defined by projecting jg(«)&
onto appropriate basis states. For the meter the choice
of basis states is obvious. Since we are interested in
the behavior of the meter coordinate, we choose the
eigenstates

I
Q& of Q with delta-function normalization:

Q IQ&= Q IQ&, &Q IQ'&= &(Q —Q'). (C5)

For the oscillator the most convenient basis states are

The corresponding Heisenberg operators for a free
harmonic oscillator are given by

(x,) («) = U,'(«, «,)x,.(«)U,(«, «,-),

where U, is the time-development operator for the free
oscillator:

eigenstates of A;(«). To define such states we begin
with the delta-function normalized eigenstates I(, 0) of
x,(o) =x:

x(o) I(, 0&=(j(,o&, &(, oj(, o&=~(( (). (C6)

We then define new states

jg, «&-=U,(«, 0) Ig, o&. (C'«)

These new states have delta-function normalization,
and as one shows using Eq. (C4), they are also the de-
sired eigenstates of X,(«):

x,(«) I», «&=~I~, «&, «, «I~', «&=~(~ —~). (c8)
An important property of these states is that

I&, »= U.(«, «.) I&, «.&.

A complete set of states for the oscillator-meter sys-
tem can be obtained by taking the tensor product of the
states

I
( «& a"d

I
Q&:

I~, Q'«&-=l~, «& IQ& (C10)

Given this complete set, we can define a wave function
corresponding to the state vector jg(«)& by

(C11)
The wave function has the usual interpretation:
jg(g, Q; «)

I
d$ dQ is the probability at time «of simul-

taneously finding the meter coordinate between Q and
Q+ dQ and the oscillator with X, between $ and )+ dg.

In the Schrodinger picture the evolution of the state
vector jg(«)& is determined by the unitary time-devel-
opment operator U(«, «,) [not to be confused with
U,(«, «,)]—i.e. ,

jg(«)&= U(«, «.) Ig(«, )&,

where U(«, «, ) satisfies the Schrodinger equation

i@dU(«, «,)/d«=B («)U(«, «,), U(«„«,) =1.
For Hamiltonian (Cl), the solution for U(«, «o) can be
obtained using the techniques employed to solve for the
time-development operator of a forced harmonic oscil-
lator [Eqs. (2.20)]. We omit the details and simply
give the solution:

(C12b)

U(tt, )=U,(t, t,)a,xp ——(t —t)' ( '(') )
)0 0 ~ 0 P 6L,

xexp —— t —t, KX, t —n

x exp —(« —«,)' ' ' II U„(«, «,),i,K[X,(«,}—n]-

(C13)

where

(««) ie(f to)B~/ )) (C14)

is the time-development operator for the meter Hamil-
tonian.

The abstract operator equations (C12) and (C13) gov-
erning the evolution of the state vector can be trans-
lated into an equivalent equation for the evolution of the
wave function. In the case of interest to us the oscil-
lator and meter are in states jy& and Ic), respectively,
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x exp

x x(()4„,(Q+ (t —t, )' x, t) . (C)6R),K(g —n)

Here C„„(Q,t) is the wave function which gives the
evolution of a "free mass" whose initial state is ~C),
A

~.e. ,

e„..(Q, ()=fdQ'x„..(Q, Q', x, x,)e( )Q, (C 16b)

where

x„..(Q, Q', t, t.) =- (Q ) &„(t,t.)
~

Q') (C16c)

is the kernel of the free-mass Schrodinger equation.
The explicit form of x„„is given in many standard
quantum mechanics text books [see, e.g. , E(l. (8.91) of
Merzbacher (1970)].

The wave function (C16) shows particularly clearly the
effect of the interaction on the meter. The probability
distribution of the meter coordinate at time I, is

2

&(Q ~() = x'„..(Q+ (( —x,)* x-, t (C 17b)

Here P(Q
~
g) can be regarded as a conditional proba-

bility distribution —i.e. , the probability distribution of
Q given that 2C, = g. The important feature of P(Q ~g) is
this: It has the same shape as the probability distribu-
tion for a "free mass, "but it is displaced a distance
-K(P, —n)(t —tc)'/21 —precisely the displacement pro-
duced by a classical force —K(g —n).

4. Analysis of a single measurement

We are now ready to analyze a single measurement in
detail —the first task in constructing a sequence of
measurements. For generality we let the particular
measurement under consideration be the pgth in the se-
quence. The measurement process can be described in
general terms as follows. Before the pgth measurement
the meter is prepared in an appropriate initial state,
and the oscillator is in some state left over from the
preceding measurement. At time I;„, the interaction is
turned on, and the oscillator and meter are allowed to
interact freely for a time v. At time t„= t„„,+ r the
interaction is turned off, the readout system makes an
infinitely precise measurement" of the meter coordi-

at time t, ; the corresponding wave functions are g($)
—= (g, tc ~y) and @(Q)—= (Q jC). The initial state vector is
~g(tc))= ~x)(8) ~c), with associated wave function
g(g, Q; tc) = y(()@(Q). Since e "" " is the displacement
operator for the meter (see, e.g. , Sec. 14.7 of Merz-
bacher, 1970), it is easy to show that

e '"' "o' '" ")g, Q;t,)= i&, Q+v(g —n);t,), (C15)

where v is any real number. Using Eqs. (C5), (C8)-
(C13), and (C15), one can derive the following e(luation
for the evolution of the wave function:

y(g, Q; t) = exp ——(t —t,)',ff'(g —n)'

nate, and the wave function is reduced. (We shall call
this precise "measurement" of Q a "readout" to avoid
confusion with the "measurement of X,"which lasts
from t„, to t„.) The reduction of the wave function is
the link that connects this measurement to the next one.
It allows us to identify the state of the oscillator after
the measurement —a state which becomes the initial os-
cillator state for the next measurement.

Two aspects of this process deserve special attention, .
The first is that the oscillator-~eter coupling is on only
during the interval from t„, to t„: The interaction is
turned on abruptly at time t„, and turned off abruptly
at time t„(functional form of K for nth measurement:
K= 0 for t & t„, and t& t„, K= const WO for t„,& t& t„).
The step-function form of K is not the important issue;
less abrupt. forms for K could be used without changing
the results significantly. The important point is that
preparation of the meter is done with the interaction
turned off. In a real experiment one would probably
leave the interaction on while the meter is prepared.
One could do so without affecting X„because X, is
completely isolated from the meter; however, X, would
be affected [cf. Eqs. (3.17)]. Since one of our objec-
tives is to investigate the behavior of X„we choose to
prepare the meter with the interaction turned off. Then.
X, is unaffected by meter preparation. Indeed, while
the interaction. is turned off, the oscillator's X, wave
function is constant.

The second important aspect is that we regard each
measurement in the sequence as beginning at the in-
stant when a readout terminates the preceding mea-
surement. This is purely a matter of convenience. If
the reader wishes to insert a time interval between
measurements to allow for meter preparation or any
other activity, she can do so. Our results will not be
affected, because the oscillator's X, wave function is
constant while the interaction is turned off.

All quantities characteristic of ihe time interval
f,„,~ t& t„will be denoted by a subscript n —1.—e.g. ,
state vector ~g„,(t)), wave function P„,(g, Q; t), feed-
back parameter n„,. The values measured ai time t„
will be denoted by a subscript n.

We now consider in turn each of the four components
of the nth measurement: specification of the initial
state, free evolution of the coupled oscillator-meter,
readout of the meter coordinate, and reduction of the
wave function.

At time t„, the oscillator is in some state ~x„,)
with wave function X„,(g) = (g, t„,~y); except for the
first measurement, this state is left over from the pre-
vious measurement. The associated expectation value
and variance of X,(t„,) we denote (K,)„,and (~,)„,;
similarly, for X',(t„,), (K,)„,and (EX',)„~. The
meter is prepared in a Gaussian (minimum-uncertainty)
wave-packet state,

~
C) with wave function

@(Q)= [2 (&Q).'] "'exp [-Q'/4(&Q).'] . (C18)

This state has (Q) = (II)= 0. We choose the variances
(&Q)c= (AT/2I-)' ', (b II),= (hI-/27)' '—a choice which
minimizes the variance of Q at time t„. The initial
state vector is

~
g„(t„))=

~
X„)R

~

4 ), with wave
function g„,((, Q; t„,) = X„,(g)C(Q). Finally, the ex-
perimenter must also choose a value n„, for the feed-
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Q' . ux exp —
( )

1+i— (c19)

where u = t —t„,. The eff ect of the interaction is to pro-
duce a strong correlation between the states of the
meter and oscillator: At time tn= tn, +& the expecta-
tion value of the meter coordinate gets displaced to

(Q&(t„)= —(Kr'/2L)((W, &„,—u„,),
and its variance becomes

~Q(t„) = [(nT/L)+ (KT'/2L)'(t w, )'„,]"'

(C2Oa)

(c2ob)

Equations (C20) can be calculated directly from the
probability distribution of the meter coordinate [Eqs.
(C17) and (C19)] or, perhaps more easily, from a
Heisenberg-picture analysis of the free evolution. of the
oscillator-meter system [cf. Eqs. (3.17)-(3.19)].

At time t„ the readout system reads out a value Q„ for
the meter coordinate, and using Eq. (C20a) the experi-
menter infers a value

back parameter.
The interaction is turned on at time t„,, and the

coupled oscillator-meter evolves freely for a time v.
The evolution of the wave function during this interval
can be obtained by specializing Eqs. (C16) to quantities
characteristic of the nth measurement. Integration of
Eq. (C16b) using the parti. cular form of Eq. (C18) for
e(Q) yields

-1j2
O„„(Q,t) = [2tr(EQ),') '~' ((+ (—

perfectly coupled to A; with coupling constant K. No
matter how small v may be, cr can be made as small as
one wishes (in principle) by choosing Ã'/L large enough;
the measurements of X, can be arbitrarily quick and
arbitrarily accurate.

This situation is to be contrasted with, for example,
a measurement of the position of a free mass. There the
feedback of momentum uncertainty onto position prevents
a measurement of duration 7 from having an accuracy bet-
ter than (h7/m)' [standard quantum limit for free-mass
position; Eq. (3.2)].

A useful dimensionless characterization of the accu-
racy of X, measurement is provided by the ratio g of
the standard quantum limit for amplitude-and-phase
measurement [Eq. (2.16)] to o".

7l -=(I/o)(h/2m(d)'~', q'= IPT'/SmLa; (C26)

~(Q) -=IQ&(Q
I

= f«((, Q; ~.&((, Q; ~. l, (c2v)

which projects the meter onto the eigenstate jQ&. The
state vector of the oscillator-meter system immediately
after the readout is

q ' is the factor by which measurements with given K,I, and -~ beat this standard quantum limit.
When the readout determines a value Q„ for the meter

coordinate at time t„, it localizes the meter at Q= Q„.
This localization is described formally by projecting the
state vector jg„,(t„)& onto the eigenstate corresponding
to the measured value (reduction of the wave function).
We define a projection operator

g„= o.„,—(2L/Kr')Q„ (c21)
for ZC, . The probability distribution of g„, obtained di-
rectly from the probability distribution of Q [Eqs.
(C17)], is given by

jc.&= &~(Q„) jt„,(t„)&

tn n-Z ~ n~ tn n (c28)

~((„)=,(2~v') '" f«(x. ,(()l'~m(- „*") (C22)

where

a =(4hL/K2T')'t '. (C23)

This probability distribution refers to an ensemble of
identical systems which begin the nth measurement in
the same state. The mean and variance of $„(averages
over this ensemble) are

(„=o(„,—(2LIK~')(-Q&(t„) = (W, &„,,

~(„=[~'+ (~x,)'„,]'~'.
(C24a, )

(C24b)

Note that xf IX -~(&)
j

is a Gaussian, then P(E„) is also
a Gaussian.

Equations (C24) tell us that the nth measurement can
determine the expectation value (X,&„,with probable
error E$„. The error is miriimized when jx„,(g) l' is
highly pea.ked about its mean value [(E2C,)„,«cr]; in
this situation it makes sense to talk about X, having a
particular value —a value which can be determined with
error

~), („=o = (4hL/K'~')" '.
Since (ddsc, )„,can be arbitrarily small, o is the funda
mental measure of the accuracy of X, measurements of
duration &, made with a meter of "mass" L which is

[wave function g,(g, Q) = &p„,(k, Q„; t„)6(Q —Q„)), whe~~
g is a normalization constant. (6 also contains an un-
known, but irrelevant, phase factor which we shall ig-
nore. ) The state vector (C28) splits cleanly into oscil-
lator and meter states. The oscillator state after the
measurement becomes the initial state jx„& for the
(n+ l)th measurement; its wave function is

x„(k)= fthm„, (k, Q.; t.).
This wave function can be put in the form

(C29)

X„(()= dlX„,(k) exp( —((' —2&„()/4o'

+(i/h)m~q'[(3&„— —', o.„,)(——,
' (']j

/

(c3o)

[Eqs. (C16), (C19), (C21), (C23), and (C26)], where (Ii

is another normalization constant.
Equation (C30) is the fundamental equation of our

analysis. It tells us how the oscillator wave function
changes from one measurement to the next, and from it
all our results will flow. One immediate consequence
of Eq. (C30) is the following: If the oscillator begins
the nth measurement in an eigenstate of XC, [jX„,&
=

j
g', t&, X„,(()= 6($ —g') ], then it remains in an eigen-

state of X, with the same eigenvalue after the measure-
ment. As is discussed in Sec. IV, this is the essential
feature of quantum nondemolition measurement.
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+~pm'(a„, g —g„,g')), (CSI)

where a„, and p,„,are real constants U pp 1 O,

X„,(g) is a minimum-uncertainty wave packet. Using
the fact that in the g representation X, is equivalent to
(k/imu)(8/9$), one can readily evaluate the expectation
value and variance of X,(t„,) associated with the wave
function (Csl):

(r x,)'„,=(a/2m~)'(~, )-„;+4l '„,(~,)'„, .
(C32a)

(C32b)

The reason for the choice (C31) should be clear. As a
glance at Eq. (C30) shows, the form (Csl) for the initial
oscillator wave function is preserved from one mea-
surement to the next in a sequence; the only things that
change are the constants characterizing the wave func-
tion

(~,)„-'=(~x, )„',+ o-',

(x,)„&x,)„,
(~x,)2„(~x,)'„, + o' '

a„=a„,+ q'(3&„—-', o.'„,),

(Cssa)

(Cssb)

(Cssc)

(C33d)

The first of these equations has a couple of immediate
consequences. The fir st is that (b X,)„~(EX,)„„.hence,
as a sequence of measurements proceeds, ~Z„($)~

' becomes
more and more highly peaked. The second is that if the
oscillator is in a state with ~,» cr, one measurement
is sufficient to prepare it in a state with ~, =g.

By manipulating Eqs. (C33) with the help of Eqs.
(C24), one can show that the change in the expectation
value of K, in the nth measurement is

&x,)„-&x,)„,= [(~x,)„,/~g„]'(g„g„) . (C34)

This expression for the change in &X,) is exact, but it
depends on the value actually measured in the nth mea-
surement. More useful for discussing the behavior of
X, would be some sort of expected value for the change
in &X',). Indeed, throughout the rest of this Appendix,
we shall want to deal with such expected changes be-
hveen measurements and with expected changes over an
entire sequence of measurements.

Defining such expected changes requires introducing
a new type of average, which we shall denote by a
superposed bar. A superposed bar was used previously
in Eq. (C24a) to denote the mean value of $„. There it
meant an average over an ensemble of identical oscil-
lator s which began the nth measurement in the same
state; such an average is, of course, equivalent to an
expectation value. In all other applications throughout

5. Analysis of a sequence of measurements

Having completed our analysis of a single measure-
ment, we turn next to analyzing a sequence of mea-
surements and, in particular, to investigating the be-
havior of X, and X, during a sequence of measurements.
To do so requires specifying a particular form for
g„,((). The form we choose is

the rest of this Appendix, a superposed bar will denote
an average over an ensemble of identical oscillators
which begin in the same state before the initial mea-
surement in a sequence; this "barred average" is a
generalization of the usual notion of expectation value.

One must keep in mind that the mean value („ is not
an average over this second type of ensemble; rather,
each oscillator in the ensemble has its own value of
$„—a value which depends on the results of previous
measurements for that particular oscillator [see Eq.
(C40)]. On the other hand, all oscillators in the en-
semble do have the same set of values for the uncer-
tainties (Dx,)„[Eq. (C33a)] and the measurement errors
Dg„[Eq. (C24b)]. This makes it easy to apply the av-
erage to the differences ((„—&„); these differences are
statistically independent quantities with mean zero and
with correlation matrix

(&a- 4)(&i &i—) =(&&8'6.r (c36)

= (~X,)„,[1+o'/(~X, )'„,] "' (C 36)

[cf. Eq. (C24b)]. Note that (6A;)„~(bA;)„,—i.e. , the
expected change in &X,) is always less than or equal to
the variance of X, at the beginning of the measurement.
If (~,)„,& o, then (KC,)„-(KX,)„,; however, if
(Bx,)„,«cr, then (&X,)„=(AX,)'„,/o «(bx, )„,.

To make further progress, we must specify the oscil-
lator state ~xo) before the initial (n= 1) measurement in
the sequence. We choose a state of the form of Eq.
(C31): a minimum-uncertainty state with &X,)0
= 0 (a, = p, = 0), with (ckX,), » a, and with &X,)0 arbi-
trary. A good example of such a state is a coherent
state [(bA;), =(AX2), =(h/2m~)'~'» o if q»1]. The os
cillator can be prepared in a coherent state using high-
precision "amplitude-and-phase" techniques (see dis-
cussion in Sec. II. B). Throughout the following we neg-
lect terms of order o/(Ex, ),.

The first measurement in the sequence serves essen-
tially as a "state-preparation measurement. " Its re-
sult is highly uncertain, but it leaves the oscillator in
a state with &X,), = F„a n(ax, ), = o [Eqs. (Css)]. We
assume there is no feedback during the first measure-
ment (n, = 0).

Subsequent measurements are the ones of real inter-
est. Equations (C33) can be iterated to obtain the con-
stants describing the oscillator state after the nth mea-
surement:

(~x,)„=o/Wn, (CS7a)

(C37b)

(C37c)

(C37d)

We can now return to Eq. (C34) and apply the concept
of a barred average. We first note that the mean change
of &X,) in a given measurement is zero (&X,)„-&X,)„,
= 0). However, the change does have an rms value,
which can be thought of as the expected magnitude of the
change in &A;):

(~x,).-=[(&x,)„—&x, &. ,)']'/'
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n

(X.&.= ;n'—g(&„-~„,),
0=1

(&X,)„=-'&34n q(h/2m &d)'~ ' (n ~ 1).

(C39a)

(C39b)

6. Discussion of results

Equations (C37)-(C39) provide a complete description
of the sequence of measurements; our task now is to
discuss their implications.

We first note that the 'variances of X, and X2 change
in a completely deterministic way, independent of the
actual measured values. On. the other hand, the changes
in the expectation values are entirely dependent on the
measured values. Indeed, the expectation value of Xg
after a given measurement is simply the arithmetic
mean of all previously measured values. This last
statement means that the experimenter knows in ad-
vance the expected result of each measurement after
the first —i.e. ,

{C40)

This is the finite-coupling analog of the situation ana-
lyzed in Sec. IV. A. There we assumed infinite cou-
pling, and the experimenter could predict exactly the
result of each measurement after the first. Here we
have finite coupling, the experimenter knows the ex-
pected result of each measurement, but the actual re-
sult is likely to differ from the expected by an amount
Ag„= o. Equation (C40)' also describes the situation one
wants for measuring a classical force, because one de-
tects the force by looking at the difference between the
actual measured value and the (known) expected result
(cf. Sec. III.B).

Given a set of measured values, one can calculate the
changes in the expectation value of X, using Eq. (C37b).
Exact this may be, but enlightening it is not. To gain
insight we look at expected changes in (2C;&, and to do
that we begin by writing Eq. (C34) in the form

(x,&„-(x,)„,= (g„g„)/n.
The expected change in (X,& is

(6X,)„=~gjn= o/[n(n —1)]"'. (C42)

The expectation value of (X;& "jumps" at each measure-
ment. The "jumps" add randomly, but their expected
size decreases so rapidly that after many measure-
ments (X,& is likely to have wandered only a distance
(~,), = o from its value after the first measurement—
l.e. )

(n ~ 1); Eq. (C24b), together with (CSVa), gives the like-
ly error of the nth measurement:

dk(„= o[n/(n —1)], n - 2; (C38)

and Eqs. (C37) applied to Eqs. (C32} give the expecta-
tion value and variance of X2 after the nth measurement:

[cf. Eqs. (C41), (C35), and(C38)]. This means that the
results of all measurements after the first cannot de-
termine (X;), more accurately than (~,)~. [One can
easily show that the jumps prevent measurements after
the nth from determining (X,&„more accurately than
(~x,}„.]

This behavior of X, can be summarized as follows:
After the first measurement the oscillator is in a state
with (X,),= g, and (~,), = o. For the next few mea-
surements (X,& jumps around within a, region g, a(a few)
x cr, while 4X, gets smaller at each measurement. As
the sequence proceeds the jumps of (X,& become small-
er and smaller, (X',) "zeros in" on some particular
value (X,&„, ~, goes to zero, and the probability dis-
tribution ~x(() ~' approaches a delta function at (X,)„.
The final value (X,&„ is likely to be within the region
g, +(a few) x g.

We now turn to the behavior of X„and we begin by
noting that one can associate with X2 a characteristic
"quantum step size"- o '(8/2m'&) = q(K/2m~)'~ ', ob-
tained from the basic accuracy 0 of X, measurement
and the uncertainty principle, Eq. (2.9a).

The expectation value of X2 changes at each measure-
ment, and the change is given by

(x,&„—(x,)„,= -', q'((„—n„,) .
These "kicks" to X2 are essen. tially classical. Indeed,
Eq. (C44) is precisely the classical displacement of X„
which our measurement system would produce in a
classical oscillator with X, = („, during the time inter-
val between t„, and t„= t„,+ r; cf. Eqs. (C1) viewed
classically, together with Q(t„,) = II(t„,) = 0, and Eq.
(C26). In the absence of feedback, the kicks (C44) ac-
cumulate and (X',& runs away. However, feedback can
eliminate this "classical runaway of X„"because the
measured value g„of X, tells one precisely the kick
given (X,& during the nth measurement. The simplest
feedback is to let o.'„= 8, „; then the feedback between t„
and t„„cancels the kick given X2 in the nth measure-
ment.

Gne can do much better by choosing the feedback so
that a,t each measurement it not only cancels the pre-
vious kick but also attempts to cancel the current kick.
The feedback cannot cancel the current kick precisely„
because to do so would require knowing the result of
the measurement. However, one can try to guess the
result, and the best guess is the expected result (C40).
The resulting feedback has the form

(C44)

ni 1
o'.„=g„— Q $~+ —Q $„, n& 1. (C

With this feedback the expectation value of X2 after n
measurements is

(X,&„= -', n'((„—4) (C46)

a displacement with mean zero and with rms value

«&») —&»&Pl"= p«'')
k=2

1 (C43)

[(X.&'„]"=
—; ~P~&„

= -', [n/(n —1)]' 'q(h/2m&d)' ', n~ 2.
(C47)

The effectiveness of the feedback is evident from its
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ability to keep (X',) within one "quantum step" of zero.
Effective though the feedback may be, it cannot pre-

vent the huge, unpredictable, quantum-mechanical kicks
given X', by precise measurements of X', . As Eq. (C39b)
shows, the effect of these kicks appears in the variance
of 2C„which grows as ~n —behavior which suggests that
of a classical random-walk variable. The step size is
s v 34 7)(R/2m~)~~ 2, in agreement with what one predicts
from the uncertainty principle. This "random walk of
K,"means that the energy in the oscillator grows as
the sequence proceeds:

(H,)„=2m&v'(~, )'„= —,
" g'nm&u (C48)

[Eqs. (2.2) and (2.6)]. The source of the energy is the
generator. Interaction with the generator can add en-
ergy to or remove energy from the oscillator, but on
the average energy is added. Practical implications of
the random walk of X, are considered in Paper II.

The analysis in this Appendix has emphasized the
possibility of making quick measurements of X„but
nothing restricts the analysis to this case. It applies
equally well to measurements of 2C, which, because of
weak coupling, require a long time to achieve good ac-
curacy. This point is made clear by introducing a new
constant

impossible.
Fortunately, there is an ep,sier and more general ap-

proach. In this approach the imprecision of the readout
system is described by a (classical) conditional prob-
ability distribution W(Q ~Q„). The distribution W(Q ~Q„)
can be thought of as giving the probability W(Q ~Q„)dQ
that, when the readout determines a value Q„ for the
meter coordinate, the meter is actually located between
Q and Q+ dQ.

The introduction of W(Q ~Q„) can be justified by con-
sidering a simple model for the readout system. The
first three-quarters of this section [through Eq. (C59)]
will present that model and will show how it gives rise
to W(Q ~Q„). The last quarter will assume a simple
form for W(Q ~Q„), and from it will derive results for
the measurement errors and variances in a sequence of
measurements with an imprecise readout system.

In our simple model for the readout system, the first
stage is a "readout meter". a one-dimensional, quan-
tum-mechanical "free mass" with generalized coordi-
nate g, generalized momentum 6, and generalized
mass M. The readout meter is coupled to the meter by
coordinate-coordinate coupling; hence, the total Ham-
iltonian for the oscillator, the meter, and the readout
meter is

c'=—q'((ur) '= K'/8mL, (u', (C49) Hr =H[Eqs. (Cl)]+XQ g+ (P'/2M, (C51)

which is a dimensionles's measure of the coupling
strength. Written in terms of c, the fundamental ac-
curacy becomes

o= c '((u~) ' '(h/2mcu)' '. (C 50)

7. Analysis of imprecise readoot systems

One possible objection to the above analysis is its
treatment of the readout system. We have assumed
that when the readout determines a value for the meter
coordinate, it localizes the meter coordinate precisely
at the measured value. Of course, no real readout
system can achieve such arbitrarily good precision.
One way to handle this difficulty is to do a better job of
analyzing the readout: Specify in detail the design of
a realistic readout system, and include all or part of
the readout in the exact quantum-mechanical analysis.
The resulting analysis is l.ikely to be difficult, if not

~SFor quick measurements (7% u ~) it is more reasonable to
compare the accuracy o to (Rr/m) ~, the standard quantum
limit for measurements of free-mass position [Eq. {3.2)j.
Beating this standard limit requires even stronger coupling
than is required to beat the standard quantum limit for ampli-
tude-and-phase measurements.

If c» I, a measurement much shorter than a period can
beat the standard quantum limit, Eq. (2.16)"; but if c

beating the standard limit requires a measure-
ment many periods long. Regardless of how small c,

may be, the basic accuracy (C50) can be made as small
as one desires (in principle) by choosing 7 large enough.
Long measurement times yield arbitrarily good accu-
racy because 2C, is completely isolated from noise in
the measuring apparatus (cf. Sec.IV.B). The constant
c plays an important role in Appendix D, and it and its
relatives are considered extensively in Paper II.

where X. is a coupling constant. We shall include the
readout meter in the quantum-mechanical analysis.
The readout meter is coupled to subsequent stages of
the readout system in such a way that, at designated
moments of time, the subsequent stages can "read out"
a value for the readout-meter coordinate. We shall
idealize these readouts of g as a,rbitrarily precise, es-
sentially instantaneous measurements. Then we need
not treat the subsequent stages of the readout system
quantum mechanically —i.e. , we can place the quantum-
classical cut of our analysis between the readout meter
and the subsequent stages of the readout system.

The scenario envisioned for the nth measurement di-
vides neatly into two parts. During the first part, last-
ing from t„, to t„,+ ~, the oscillator and meter inter-
act via the interaction Hamiltonian K(X, —n„,)Q [Eq.
(Cld)] just as in the previous analysis. During the
second part, lasting from t„,+ r to t„= t„,+ v+ T (note
that t„ is defined differently than in the previous analy-
sis), the meter and the readout meter interact via the
interaction Hamiltonian XQg [Eq. (C51)]. (The coupling
"constants" have the following functional form for the
nth measurement: K=30= 0 for t& t„, and g& g„; K
= const ~ 0, X = 0 for t„,& t & t„,+ v', E= 0, X= const+ 0
for t„,+ r &t&t„.) At time f„ the subsequent stages of
the readout system read out a value of g, from which
the experimenter infers a value of Q (and A~). The
three operations of (i) interaction between meter and
readout meter, (ii) readout 'of 0, and (iii) inference of
a value for Q, together constitute what was called the
"readout of the meter coordinate" in the previous anal-
ysis. After the youth measurement the meter is thrown
away; a new meter is used for the next measurement.

The discarding of the meter at the end of each mea-
surement is an important feature of our analysis. Un-
less we keep track of the states of the meters discarded
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in previous measurements, it will turn out that the en-
tire system cannot be described by a pure state; in-
stead it must be described by a mixed state. Thus the
analysis is most conveniently carried out using density
operators. During the nth measurement the state of
the total system —oscillator, meter, and readout
meter —is specified by a density operator pr(t) with as-
sociated density matrix

where the states
~
$, Q, g; t) are the obvious generaliza-

tion of the states j$, Q; t). The density matrix has the
interpretation that pr((, g; Q, Q; g, g; t) dg dQ dg is the
probability at time t of simultaneously finding the read-
out meter between 0 a.nd g+ dg, the meter between Q
and Q+ dQ, and the oscillator with X, between g and (
+ d(. The total density operator evolves according to

pT(t) = Uz, (t, to) pr(to) Ur(t, to),

where Ur(t, t,) is the time-development operator for the
total Hamiltonian (C 51).

During the first part of the nth measurement (t„,& t
& t„,+ 7), we need only be concerned with the state of
the oscillator and meter. Their state is specified by a
density operator p„,(t), which evolves according to

p„,(t) = U(t, t„,)p„,(t„,)U'(t, t„,)
[cf. Eg. (C13)], and which has density matrix

We now analyze the components of the nth measure-
ment in greater detail. The oscillator begins the mea-
surement (at time t„,) in a state with density matrix
Y„,(g, g'), and the meter is prepared in the (pure)
Gaussian state (C18). The initial density operator
p„„,(t„,) has density matrix

p„,((, 0', Q, Q', t„,) = T„,((, h')C(Q)C*(Q')

The oscillator and meter interact as in the previous
analysis for a time ~; the evolution of p„, during this
time can be inferred from the evolution of the corre-
sponding wave function [Egs. (C16) and (C19)].

At time t„,+ w the readout, meter is prepared in a
(pure) state with wave function 8(&), which has (&)
= (5')=0. For the moment we leave the precise form of
0(&) unspecified. The total density matrix at time t„,
+T ls

1/2
AssumPtion iii: — & (ag. ) . «

M M

„(a~}"'(sM~}"

Here the subscript "i"denotes the value at t„,+T.
These assumptions guarantee that the meter coordinate
remains essentially undisturbed by the evolution of the
entire system during the time 7. Assumption i guaran-
tees that the meter does not evolve significantly under
the influence of its own Hamiltonian. Assumptions ii
and iii guarantee that the "back action" of the readout
meter onto the meter coordinate is negligible.

Assumptions ii and iii can be viewed in another way.
They imply that the readout meter does not do a very
good job of measuring the meter coordinate —i.e. , the
readout meter is far from being a "quantum-limited
measuring device. " Assumption ii guarantees that, in
measuring Q, the best accuracy the readout meter can
achieve is far worse than the standard quantum limit
(h7/1. )'~' [cf. Eq. (3.2)]. Assumption iii allows (AP),.
and (4P),. to be much greater than the optimum uncer-
tainties for a measurement of duration V. Thus we do
not place stringent demands on the performance of the
readout meter. That this is intimately connected with
the absence of back action onto Q should not be sur-
prls1ng.

With assumptions i-iii, the evolution of the total sys-
tem is precisely analogous to the evolution of the meter
coupled to X„of the oscillator [Eqs. (C16)]. The total
density matrix is given by

p, (&, &', Q, Q', z, Z', t)

= p„,(4, 4', Q, Q'; t„,+ ~)

x exp ——

2 2

f(Q, g, t) =(X v /6M)Q + XvQ, (C 52b)

where v —= t —t„,—r, and where O~„,(g, t) gives the evo-
lution of a free readout meter with initial state B(g)
[analog of Eqs. (C16b) and (C16c)].

During the interval 7 the readout meter "swings" due
to its interaction with the meter. At time t„ the expec-
tation value and variance of g become

p&(5, 5', Q, Q', 0, Z', t„,+ &)

= p„,((, 5', Q, Q', t„,+ &)O(Z)e*(Z') .
(g)(t„)= —(XV'/2m)(Q), ,

~g(t„)= [(~g);...(t„)+(xv-'/ze)'(~Q);. ]'~',
(C53a)

(C 53b)

The expectation value and variance of Q at time t„,+ r
are denoted (Q),. and (b,Q),.; they are given by Eqs.
(C20). During the subsequent interval of duration r (t„,
+ a & t& t„=t„,+ a+i), the meter and the readout meter
interact; the total Hamiltonian is given by Eg. (C51)
with E= 0. We make three assumptions about the evolu-'
tion of the system during this time:

Assumption j: T &&7';

X'7'
+ssQmpti Opg jj: IM „X2g3 I

where (Kg)„„(t„)is the variance of a free readout
meter.

At time t„ the subsequent stages of the readout sys-
tem read out a value g„ for the readout-meter coordi-
nate. Using Eq. (C53a) the experimenter infers a value

Q„= (2m/X7-2}g„

for the meter coordinate. In the terminology of the
previous analysis, Q„ is the result of the "readout of
the meter coordinate. " From Q„ the experimenter in-
fers a value („for 2C, just as before [Eg. (C21)]. The
probability distribution of $„(referred to an ensemble
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of identical systems which begin the zth measurement
in the same state) is easily obtained from the prob-
ability distribution of 6):

I'(( ) .Z=~Z f d(&Q p, ((1;Q,, Q;2„,2„;I.)
=(»e') "'J &(&QT.-,(2, 1)

[cf. Eq. (C22)], where the conditional probability dis-
tribution W(Q ~Q„) is defined by

)p(Q(Q)= eI -.( I (Q —Q l I) (&2

W(Q ~Q„) has mean Q„and variance a~
= (2M/X T')(~ g)„..(t„).

The mean and variance of g„(averages over the en-
semble) are

g„= (~,)„,,
~g„= [(2L/IfT')'o'+ v'+(~X, )2„,]'~'

(C 57a)

(C57b)

[cf. Eqs. (C24)]. The measurement error Ag„ is the
same as in the previous analysis, except that it is aug-
mented by a term which accounts for the imprecision of
the readout meter. Even if the readout meter is ex-
tremely imprecise [o~»(SY/L)' 2], it is still true that
the measurement of X~ can be arbitrarily accurate when
K is made arbitrarily large.

When the subsequent stages of the readout system
read out the value g „, they localize the readout meter
precisely at „. This "reduction of the wave function"
means that immediately after the readout the density
matrix of the oscillator-meter system is

p.(5, 5', Q, Q', t.)=[-p,(5, &', Q, Q', Z., Z.;t.), (C58)

where is a normalization constant. After the readout
we throw the meter away, and we prepare a new meter
for use in the next measurement. Throughout all subse-
quent measurements in the sequence, we shall not be
interested in computing any expectation values which
involve observables of the discarded meter. To com-
pute any other expectation value we must "take the
trace" of the density matrix on Q. Therefore, insofar
as any future expectation values of interest are con-
cerned, we can take the trace on Q now —i.e. , we can
replace the density matrix (C58) with a density matrix
that describes only the oscillator:

T.(2 (')= f 0 ((. (,', Q, Q; I.)dQ

where 6 is another normalization constant. Equation
(C59) gives the initial oscillator state for the (n+ 1)th
measurement [cf. Eq. (C29)].

The key results of our analysis of an imprecise read-
out system are Eqs. (C55) and (C59). They. justify our
claim that the imprecision of the readout can be de-
scribed by a classical probability distribution: Eq.
(C55) shows how the readout imprecision contributes to
the measurement error, and Eq. (C59) shows how the
readout imprecision "smears out" the "reduction of the
wave function. " In the limit that the readout meter is
arbitrarily precise [W(Q ~Q„) = &(Q —Q„)], Eqs. (C55)
and (C59) reduce to the corresponding equations of the
previous analysis [cf. Eqs. (C22) and (C29)]. Indeed,
this analysis justifies our previous treatment of an ar-
bitrarily precise readout system —i.e. , it justifies the
procedure of "reducing the wave function" after each
arbitrarily precise readout.

Two features of this analysis deserve special empha-
sis. The first is that we have made assumptions which
guarantee that the meter coordinate is essentially un-
disturbed by the interaction with the readout meter.
Formally, this means that the total density matrix
(C52) splits cleanly into a product of two terms: (i) a
density matrix for the free oscillator-meter system;
and (ii) a function which depends only on the meter co-
ordinate and the readout meter coordinate. The second
feature is that we throw away the meter after each
measurement. Both these features are necessary for
defining W(Q ~Q„); and it is the loss of information that
occurs when the meter is discarded which allows us to
identify the oscillator state after the measurement, and
which converts an initial, pure oscillator state into a
mixed state.

We must specify a particular form for W(Q ~Q„) in
order to use Eq. (C59) to analyze a sequence of mea-
surements. A reasonable form is a Gaussian with mean
Q„and variance (T~=y(1 —y') ' '(hr/L)' ' (0 ~y&1).
This is the form W(Q ~Q„) would have if 8(g) were a
Gaussian wave packet. When y'=0. 5 the readout im-
precision contributes about the same amount to the
measurement error as the meter uncertainty [cf. Eq.
(C57b)). Using this Gaussian for W(Q ~Q„), we have
integrated Eq. (C59) to obtain

T(2, (')=12T„,(2, (') eePI—,[(1+4y )(2*+ ('*) (Oy'22' 2(1 y )2 ((e 1')]

+(Iya)yetep [2( (I y. ')(( —*2 ) —„—', e„,((-—(') —'-'. (( ——;y')(2*-(")]I, (C60)

where is a normalization constant. This equation is
a generalization of the fundamental equation (C30); it
simplifies to (C30) when y= 0.

Equation (C60) can be used to analyze a sequence of
measurements. In particular, it can be used to analyze
a sequence in which the oscillator begins in the same
(pure) state as in the previous analysis. The results

l

for the expectation va. lues (Ã, )„and (A",)„are the same
as before [Eqs. (C37b) and (C39a)]; but Eq. (C38) for
the measurement error becomes

&g„= [o/(1 —y ) ] [n/(n —1)] for n ~ 2, (C61)

and Eqs. (C37a) and (C39b), which give the evolution of~, and ~„are changed to
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(~X,)„=o/[n(1-y')]"', (C62a)

(~,)„= -', (34n)'~'q(h/2nxu)' '[(1 —
—,', y')/(1 -y') J"'

(C62b)

(n~ 1). For reasonable values of y (y' =0.5), the de-
crease of ~, and the growth of 4X, are not markedly
different from the results of the previous analysis.

APPENDIX D: SINGLE-TRANSDUCER BACK-ACTION-
EVADING MEASUREMENTS OF X~ . A FULLY
QUANTUM-MECHANICAL ANALYSIS

1. Introduction

In this Appendix we give a fully quantum-mechanical
analysis of a singIe-transducer back-action-evading
measurement of the A; of a harmonic oscillator (see
Sec. II.F.3). We consider a simplified version of a
real measuring apparatus, analyze the measurement
process quantum mechanically, and thereby demon-
strate that in principle such single-transducer mea-
surements can beat the standard quantum limit AXy
= (0/2m(u)"' [Eq. (2.16)].

Single-transducer back-action-evading measurements
are considered extensively in Paper II, where they are
analyzed using semiclassical techniques. Those serni-
classical analyses are to be preferred in almost every
way over the analysis given here: They are more real-
istic and more adaptable, and they provide more de-
tailed information. However, the reader might, harbor
lingering doubts about the validity of applying semi-
classical techniques to measurements which purport to
beat the standard quantum limit. The purpose of this
Appendix is to remove such doubts by analyzing quan-
tum mechanical. ly a simple example of a single-trans-
ducer back-action-evading measurement.

The analysis we give here is similar to the analysis
in Sec. III.B and Appendix C. In particular, the mea-
suring apparatus is the same. It consists of a genera-
tor, which provides the time dependence in the inter-
action Hamiltonian; a meter, which is a one-dimen-
sional quantum-mechanical "free mass" coupled to the
oscillator by the generator; and a readout system,
which reads out the position of the meter. Only the
meter will be treated quantum mechanically.

The difference between here and Sec. III.B lies in the
way the meter is coupled to the oscillator. In Sec. III.B
the meter was perfectly coupled to X,; here the meter
is coupled to Zy only in a time-averaged sense. The
total Hamiltonian for the oscillator coupled to the meter
via the classical generator is given by Eqs. (3.16), ex-
cept that in the interaction Hamiltonian the momentum
coupling is omitted:

considered here; essentially, the modification consists
of deleting the momentum transducer.

The motivation for considering single-transducer
back-action-evading measurements is the problem of
weak coupling. In Sec. III.B and in Appendix C we
showed that back-action-evading measurements with

eke

perfect X, coupling can achieve arbitrarily good. accu-
racy in an arbitrarily short time. However, such quick
measurements (short compared to an oscillator period)
r eq uire that the measuring apparatus be str ongly
coupled to the oscillator. In Appendix C we introduced
a constant

—:K /BmI. (u

[cf. Eq. (C49)], which provides a dimensionless mea-
sure of coupling strength for a simple "free-mass"
meter coupled to an oscillator. Quick measurements
require c, »1. If c~ 1, beating the standard quantum
limit of Eq. (2.16) requires a measurement time longer
than a period.

In real experiments it is often quite difficult to
achieve strong coupling. If one is stuck with weak cou-
pling (c «1), then the required long measurement time
allows one to avoid coupling perfectly to X, and permits
one instead to couple to X, in a time-averaged sense.
In particular, one can omit one of the two transducers
(position or momentum) required for perfect coupling,
with a consequent simplification in the design and con-
struction of the measuring apparatus. One modulates
the output of the remaining transducer so that at some
frequency the modulated output carries the desired in-
formation about X, with very little contamination from
X„and one then runs the modulated output through a
filter which picks out the desired frequency. (See
Paper II for details; and see Thorne eg ~/. , 1979 for a
semirealistic example. ) The Hamiltonian (3.16a)-
(3.16c), with interaction term (Dl), is the simplest ex-
ample of this procedure: The momentum transducer is
omitted, the modulation of the position transducer is a
sinusoid at the oscillator frequency, the desired X, sig-
nal is at zero frequency, and the meter —a zero-fre-
quency harmonic oscillator —serves as a filter at zero
fr equency.

Since single-transducer measurements are useful
only in the case of weak coupling, we assume c «1
throughout this Appendix.

The analysis proceeds by solving for the evolution of
the appropriate operators in the Heisenberg picture.
The Hamiltonian (3.16a)—(3.16c), with interaction term
(Dl), yields the following Heisenberg equations of mo-
tion:

H~= KQx cosset= —,KQ[&,(1+ cos2uM)+X, sin2~t] (Dl)

[cf. Eq. (2.42a)]. Systems which in principle are gov-
erned by Hamiltonian (3.16) are considered in Appendix
B. They can. be modified easily to have the Hamiltonian

dJ, /dt= (K/2m')Q sin2u&t,

dX,/dt = —(K/2m')Q(1+ cos2&ut),

dg/dt = II/L,
dII/dt= —2 K[PC,(1+cos2&ut) + X, sin2cut] .

(D3a)

(D3b)

(D3c)

(D3d)
The ideas and prose of this Appendix. are due entirely to

Carlton M. Caves, and constitute a portion of the material
submitted by him to the California Institute of Technology in
partial fulfillment of the requirements for the Ph.D. degree.

The crucial difference between these equations and
those for perfect X, coupling [Eqs. (3.17)] is that 2C, is
not completely isolated from the measuring apparatus.
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Equations (DS) cannot be solved exa, ctly with any ease,
but when c is small a good approximate solution can be
obtained. The key to the approximation is the realiza-
tion that the operators of Eqs. (DS) are nearly periodic
with period w/&u. We implement the approximation by
writing X„X'„and Q as "Fourier series" with slowly
varying "Fourier coefficients".

K (t.) P b (t) e2i &nut

X,(t)= g c„(t)e'* (D4b)

Q(t) Q d (t)e2incvt (D4c)

Of course, these expansions are "quasiunique" only for
times greater than an oscillator period (&ut& 2m), but
we are interested in the solutions only for such times.
Hermiticity of X„X„and Q implies that b „=b~, etc. ,
and as we show below, the assumption of slowly varying
Fourier coefficients is satisfied because db„/dt-cid8„,
etc. [see Eqs. (DV)].

To proceed, we plug the expansions (D4) into Eqs.
(DS) and. equate terms with the same rapid time depen-
dence. The result is a set of coupled differential equa-
tions for the Fourier coefficients. We then simplify
these equations by neglecting time derivatives in all
equations except the n= 0 equations —a step justified by
the slowly varying character of the Fourier coefficients.
The resulting coupled equations are all algebraic, ex-
cept the yg= 0 equations.

Little would be gained by expansions {D4) if we had to
consider all terms in the expansions. Fortunately, we

need not do so. We are interested only in the largest
terms in each expansion; and beyond the first term or
two, each expansion becomes a power series in the
small quantity c. Indeed, using the coupled equations
for the Fourier coefficients, one can easily show that,
for yg ~ 1 and for ur» 1, b„-c" 'b„e„-c"c„andd„- s"d,. Consequently, the only coefficients of interest
are those with yg= 0 and n= 1; and the n= 1 terms can be

cA

neglected in the expansions for X', and Q, but they must
be retained in the expansions for X, and II. The n= 1
equations can then be used to write the remaining &= 1
coefficients in terms of n= 0 coefficients. Putting all
this together, one finds, at this level of approxima-
tion,

K, = b, —(K/4m(u')d, cos2(ut,

~2= &O

Q= do,

II/L, = (dd, /dt) + (K/41. (u) c,cos2(dt,

(D5a.)

(D5b)

(D5c)

(D5d)

where the operators bo, c„and do satisfy the coupled
equations

I

dbo/dt= 4a &co ~

dc,/dt = -(K/2m(u)d, ,

d'd /dt'= c id'd —{K/2L)b, .

(D6a)

(D6b)

(D6c)

In Eqs. (D5d), (D6b), and (D6c) terms proportional to
b, and do have been omitted because they are negligible.

Equations (D6) can be solved easily. When the solu-
tions are written in terms of appropriate initial values
at t= 0', they have the form

V Sb, = X',(0)(v2 coshv, u+ v,'cosv, u)+ ~ cX,(0)(v, sinhv, u+ v, sinv, u)

+ (K/8m&v')Q(0) [(2v', —1) coshv, u+ (2v,'+ 1) cosv,u]

—(K/BmL QP) 8 II(0)(vi slnhviu —v2 8mv2u) ~

v Sc,= 4@ 'X', (0)(v, v', sinhv, u —v,v,'sinv, u)+X,(0)(v,'coshv, u+ v,'cosv, u)

+ (K/2m'')c 'Q(0) [v,(2v,' —1) sinhv, u —v,(2v,'+ 1) sinv, u]

—(K/2mL, id')c '11(0)(coshv,u —cosv,u),
WSdo = -(4m (u'/K)K, (0)(cosh v, u —c os v,u) —(2m (u'/K) aX,(0)(v,

' s inhv, u —v', sinv, u)

+ Q(0)(v', coshv, u+ v,'cosv~)+ s '[II(0)/L, a)](v, sinhv, u+ v, sinv, u),

(Dva. )

(D7 c)

where M —= s~t, and where

v =—(v 3+ 1)'~'/v 2 v =—(WS —1)"i'/W2 (D8)

Note that the characteristic time scale of these solu-
tions is (a&u) ', so the Fourier coefficients do indeed
vary slowly in. time. The reader might be bothered by
the exponential instability of these solutions, but she
should not be. As we show below, any real measure-
ment will not last longer than a time r-( &)c'd.

Equations (D5) and (DV) give the free evolution of the
coupled oscillator-meter system, and they can be ap-
plied to analyzing a measurement. The measurement

process we consider is similar to that described in Sec.
III.B and Appendix C. The measurement begins at t =0;
the oscillator and meter interact via the interaction
Hamiltonian (Dl) for a time v; and at the end of this
time the readout system reads out a value for the meter
coordinate, from which the experimenter infers a value
for X~.

To analyze the measurement, we must first specify
the initial (t= 0) states of the oscillator and meter. Our
objective in this Appendix is to find the best possible
performance of single-transducer back-action-evading
measurements, so we shall choose the initial states to
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optimize the measurement accuracy. %e assume that
at t=, o the oscillator is in a Gaussian (minimum-un-
certainty) wave-packet state (in 4;) with (X,(0))= $,
and (K2(0))= 0. The meter is prepared in a Gaussian
wave packet (in Q) with (Q(0))= (11(0)}=0. The initial
variances (~,), and (b Q)o are chosen to minimize the
variance of the meter coordinate at t= r:

(~,)', = c(h/4m(u) CD ',
(EQ) = E (h/2L~)AB

where

A. =—v sinhccov, r+ v, sinGwv r,
& =—v,'cosh&(dv, r+ v,'cos&Nv2r,

C = v~ sinhccuv~r —v2 sinccov, &,

D—:coshC(d v~r —cosc cov2r

(D9a)

(D9b)

(DIOa)

(D10b)

(Dloc)

(D1Od)

[Eqs. (D5c) and (DVc)].
The oscillator and meter interact for a time r, dur-

ing which the expectation value of the meter coordinate
gets displaced to

(Q(1.))= -(4m~'/KW3) ~,D, (D11a)

and the variance of the meter coordinate grows to

bQ(v) = c '/2(h/SLED@) / (AB+ CD)'/' (D1lb)

[Eqs. (D5c), (D'tc), (D9), and (D10)]. At time 2 the
readout system reads out a value Q for the meter co-
ordinate. Using Eq. (D11a) the experimenter infers a,

value

= -(Kv 3/4m ~') Q D ' (D12a)

for X,. In a set of measurements on an ensemble of
identical systems, the mean of this inferred value is
g„. and its variance is

c1/ 2(@/2m ~)1/ 2(ABQ 2+ CD 1)1/ 2 (D12b)

The measurement can determine g, with probable error
In Eqs. (D11b) and (D12b) the first term on the

right-hand side comes from the initial uncertainty in
the meter coordinate and the second from the initial un-
certainty in X,.

3. Discussion

Interpretation of Eqs. (D11) and (D12) is obscured by
their complicated dependence on r. Their meaning is
made a great deal clearer by looking at their form for
short and long measurement times. For short mea-
surement times (c~r «1 but cur» 27/) the meter dis-
placement (Dlla) and the probable error (D12b) are

(Q(T)) = -(K~'/4L) ]., (D13a)

= 2c '(~r) ' '(I1/2m~)' '=(1 6j1L/Kr )' '. (D13b)

[One can verify from Eqs. (D3) that these expressions
are also valid to within factors of order unity when. mr
-21/. ] The probable error (D13b} is due entirely to un-
certainties in the meter; for short measurement times
minimization of the uncertainty due to the initial os-
cillator variances is unimportant. Indeed, as long as
(~,},' is somewhat greater than its optimum value
[(~,),&((u7') ' (h/2m(u)' ', cf. Eq. (D9a)], the prob-

able error has the form

b, $ = [(16kL/K T )+ (hX1)0] (D13c)

(Q(T)) = -(2m cu2/KW3) $,e'""1', (D14a)

(D14b)&&„=(s1,v 3)"'(If/2m(u)' '.
In the case of a perfectly coupled measurement, one
can choose the initial variance of X, as small as de-
sired (in principle); then the measurement becomes
more and more accurate as 2 increases [Eq. (3.20b)].
However, for a single-transducer measurement, the
accuracy does not continue to improve; instead it hits
a "floor" at approximately c'/2(0/2m')' ' for times T
~ (c,~) ', because X', no longer successfully evades
"back-action" noise from the measuring apparatus.
Note that for long measurement times T»( &su) ', the
measurements are not repeatable because ~,(T}
»n( [cf. Eqs. (D5a) and (D'I)].

The dependence of the measurement accuracy (D12b)
on r can be conveniently summarized by using only the
small and large v forms:

c '(cu7) ' 2(5/2m(u)' ', c c s(u7'a 1, (D15a)

c'/'(I1/2m (u)'/' y. (uv ~ 1. (D15b)

This behavior is similar to what one expects for ampli-
tude-and-phase measurements. The accuracy of an
amplitude-and-phase measurement should improve as
r increases, but it must eventually hit a floor at the
standard quantum limit (h/2m&v)' '. The floor must be
at the standard quantum limit because X, and X, are
measured with equal precision, so they are equally af-
fected by back-action noise. The accuracy floor for
single-transducer back-action-evading measurements
is lower because X, is partially shielded from back-
action noise.

If this measurement of X, is to be repeatable to within
the error b.g, then the condition ~,(r) K Eg. must be
satisfied; otherwise, at the time of the readout of Q,
the expectation value of X, will "jump" an unknown dis-
tance greater than E( . That this condition holds for r
& (c~) can be easily verified using Eqs. (D5a) and (DV).

The important feature of Eqs. (D13a) and (D13c) is
that they are virtually identical to the comparable equa-
tions for measurements with perfect coupling to Xy
[cf. Eqs. (3.19a) and (3.20b)]. The only difference is a,

factor of 2 in each equation; and this factor can be
traced to the fact that, with the momentum coupling
omitted, the mean force on the meter is cut in half
[cf. Eqs. (3.1Vd) and (D3d)]. Just as in the case of per-
fect X, coupling, single-transducer back-action-evad-
ing measurements beat the standard quantum limit when
(ur ~ c . Conclusion: For short measurement times
2 «(ceo) ' (but 7 ~ &u ') the imperfection of coupling to
X, has no significant effect on the measurement accu-
racy, because there has not been time for "noise"
in the measuring apparatus to "feed back" onto X, and
disturb it signif icantly.

The difference between single-transducer and per-
fectly coupled two-transducer back-action-evading
measurements shows up at long measurement times
(c&u1»1), when the meter displacement (D11a) and
measurement error (D12b) become
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Up to now we have operated under the assumption
that the coupling constant c is fixed, and we have in-
vestigated the dependence of the measurement error on
~ for fixed c. One can adopt a different point of view—
that the coupling strength is under the control of the
experimenter. Given this freedom, the experimenter
will choose the value of c (by choosing L) to optimize
the measurement accuracy for a given measurement
time x (~ ~ ). The choice he will make is c =(vr)
and the measurement error (D15) will be

= ((dr) 1/2(h/2m (u)1/2. (D16)

This is the optimum performance for a single-trans-
ducer measurement of the simple type considered in
this Appendix [cf. Eq. (2.43)].

So far in this Appendix we have considered a meter
with no "restoring force. " In practice this is not usu-
ally the case; in a typical design such as that in Appen-
dix B.1, the meter is an LC circuit (term Q'/2C added
to meter Hamiltonian, where C is the total capacitance
in the circuit including that associated with the position
transducer). In this situation the analysis given in this
Appendix will apply approximately for measurement
times smaller than the characteristic time of the cir-
cuit —i.e. , 3 c v = (LC)'/'. —If v & (c~) ', i.e. , K'C/Sm~'
~ 1, the effect of the capacitor can essentially be ig-
nored, because the preceding analysis applies for times
long enough to hit the accuracy floor. However, in
practice it may be difficult to make the capacitance
large enough, and one may be stuck with the case 7
«(c(u) ', i.e. , K'C/Smu)'«1.

To analyze this case in detail requires a more sophis-
ticated model for the measuring apparatus than we have
used here. %e consider more sophisticated measuring
systems in Paper II, and we analyze their performance
using semiclassical techniques. However, we can get
a good idea of the potential performance from the pre-
ceding analysis.

A measurement of duration T has accuracy
= c '(uv') '/2(h/2m')'/'. A measurement of duration r
& 7 can be regarded as a sequence of measurements of
duration 7. Before the i.nitial measurement in the se-
quence, the oscillator is prepared in a Gaussian wave-
packet state (in 2C, ). Appendix C analyzed a sequence of
measurements with perfect coupling to X,. In that anal-
ysis the variance of Z, always decreased during the se-
quence. Here, with imperfect coupling, we expect the
variance of X, to decrease until it is approximately
equal to the optimum value for measurements of dura-
t1011 3 (~,),".='((O'F) '/'(5/2m(u)'/' [cf. Eq. (D9a)]. Thus
we shall choose the initial variance of X, to be this op-
timum value; then the variance should not change sig-
nificantly during the sequence.

The results of all the measurements in the sequence
are used to determine the initial expectation value of
X,. The accuracy of this determination improves as
the square root of the number of measurements. Thus
the measurement error for a sequence of total duration
v. & 7 is given approximately by

1(~~) 3/ 2(@/2m ~)1/ 2(~/~)1 / 2

=(p(dr) '/'(I/2m(u)'/2, (D17)
where P is a dimensionless coupling constant defined by

P =—(c(sT)'= K'C/Sm(u'. (D18)

The improvement in accuracy of Eq. (D17) does not
continue forever, because the expectation value of X,
changes during the sequence. In particular, the expec-
tation value of X, "jumps" at the time of each readout;
the detailed analysis in Appendix C suggests that the
expected magnitude of each jump is approximately

(~,).' 1/2

r. '(rB) 'r*(li/2mrr)'r* 3m~)

[see Eq. (C36) and accompanying discussion]. (The
expectation value of ~, also changes-during each mea-
surement in the sequence because of the imperfect
coupling to 2C, [Eqs. (D5a) and (D7) ], but these changes
are negligible for 7 «(c(d) 1, provided that one uses a
"feedback force" on the meter like that in Appendix C.]
The jumps add randomly, so that after a time v ~ 7, the
expectation value of X, will have wandered a distance
= s((u~)' 2(h/2m&v)'/2. The measurement accuracy im-
proves as in Eq. (D17) only until the distance wandered
becomes comparable to the measurement error. Thus
the accuracy hits a floor at approximately
(cuT) ' /(2h /2 m~)' /' for measurement times r ~ 7/P. The
accuracy floor is approximately equal to the initial
variance of X,—i.e. , the entire sequence allows one to
determine the initial expectation value of X, with an
error of order the initial variance.

The dependence of measurement error on ~ can be
summarized as follows:

(P~r) ' 2(7/r)(h/2m(u)' ', 7 & T,

(pC07) ' '(h/2m')' ', 3 & 3 & T/p, (D19b)

(D19c)

Note that Eqs. (D19) simplify to Eqs. (D15) when P =1.
Just as in the previous case (P& 1), so in this case

(pc 1), the optimum performance is achieved by ad-
justing 3 (adjusting L) to obtain the best accuracy for
a given T. The optimum choice is pr c 7 c T, and the
resulting optimum accuracy is

&( =(P(u~) ' '(e/2m'))' '. (D20)
It should now be clear that P is the really important
measure of coupling strength for this type of single-
transducer back-action-evading measurement. For P
& 1 the optimum performance is given by Eq. (D16);
for P& 1, by. Eq. (D20).

The constant P is (to within factors of order unity) a
Gibbons-Hawking (1971) coupling constant. In Paper II
we give an exact definition of the Gibbons-Hawking con-
stant for an arbitrary measuring system coupled to an
oscillator; we present a semiclassical derivation of the
limiting accuracy (D20) for such a system; and we gen-
eralize that accuracy to the case where the system con-
tains an amplifier with noise temperature greater than
the quantum limit (I1- 2kT„/&u); cf. Braginsky,
Vorontsov, and Khalili (1978), Thorne et al. (1979), and
Braginsky et al. (1980).

In deriving the optimum performances for strong (P
'2 1) and weak (pc 1) coupling [Eqs. (D16) and (D20)),
we assumed that 3' (or equivalently L) ean be adjusted
so as to match the measurement time r. It is impor-
tant to remember that, , if v is fixed by practical con-

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 1980



Caves, Thorne, Drever, Sandberg, and Zimmermann: On the measurement of a weak classical force

siderations, then a measurement with either strong or
weak coupling will hit an accuracy floor

b, g =( ) ' '(h/2 )' ' (D21)
as r increases [cf. Etl. (D19c)]. This accuracy floor is
an absolute limit for continuous single-transducer mea-
surements. For a. realistic continuous single-trans-
ducer measurement, 7 is the averaging time of the fil-
ter which pl ecedes the amplifier and which averages
the modulated transducer output (see Sec. II.F.3 and
Paper D).
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