
Multipole expansions of gravitational radiation"
Kip S. Thorne

W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125
and Center for Radiophysics and Space Research, Cornell Uniuersity, Ithaca, New York 14853

This paper brings together, into a single unified notation, the multipole formalisms for gravitational
radiation which various people have constructed. It also extends the results of previous workers. More
specifically:

Part One of this paper reviews the various scalar, vector, and tensor spherical harmonics used in the
general relativity literature —including the Regge —Wheeler harmonics, the symmetric, trace-free ("STF")
tensors of Sachs and Pirani, the Newman —Penrose spin-weighted harmonics, and the Mathews —Zerilli
Clebsch —Gordan-coupled harmonics —which include "pure-orbital" harmonics and "pure-spin"
harmonics. The relationships between the various harmonics are presented. Part One then turns attention
to gravitational radiation. The concept of "local wave zone" is introduced to facilitate a clean separation
of "wave generation" from "wave propagation. " The generic radiation field in the local wave zone is
decomposed into multipole components. The energy, linear momentum, and angular momentum in the
waves are expressed as infinite sums of multipole contributions. Attention is then restricted to sources
that admit a nonsingular, spacetime-covering de Donder coordinate system. (This excludes black holes. )
In such a coordinate system the multipole moments of the radiation field are expressed as volume
integrals over the source. For slow-motion systems, these source integrals are re-expressed as infinite
power series in L/X= (size of source)/{reduced wavelength of waves). The slow-motion source integrals
are then specialized to systems with weak internal gravity to yield (i) the standard Newtonian formulas
for the multipole moments, (ii) the post-Newtonian formulas of Epstein and Wagoner, and (iii) post-post-
Newtonian formulas.

Part Two of this paper derives a multipole-moment wave-generation formalism for slow-motion systems
with arbitrarily strong internal gravity, including systems that cannot be covered by de Donder
coordinates. In this formalism one calculates, by any means, the source's instantaneous, near-zone,
external gravitational field as a solution of the time-independent Einstein field equations. One then reads
off of this near-zone field the source's instantaneous multipole moments; and one plugs those time-
evolving moments into the standard radiation formulae given in Part One of this paper.

As building blocks for this formalism, Part Two also does the following things: (1) In the Iinearized
theory of gravity, for the vacuum exterior of an isolated system, it derives the general solution of the
field equations (a result due to Sachs, Bergmann, and Pirani). (2) In full nonlinear general relativity, for
the vacuum near-zone exterior of an isolated system, it derives the structure of the general solution of the
Einstein field equations. That structure is expressed as a sum of products of multipole contributions. It
also matches this near-zone fieId onto an outgoing-wave radiation field. (3) In full nonlinear general
relativity, for the vacuum exterior of a stationary isolated system, (a) it presents a definition of multipole
moments which meshes naturally with gravitational-wave theory; (b) it introduces the concept of
"asymptotically Cartesian and mass centered" {ACMC) coordinate systems; and (c) it shows how to
deduce the multipole moments of a source from the form of its metric in an ACMC coordinate system.
As an example, the lowest few (l (3) multipole moments of the Kerr metric are computed.
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PART ONE. THE GENERAL MULTIPGLE-IVIQMENT
FORMAL ISM

INTROOUCTION ANO SUMMARY

A. Motivation and relation to previous work

Spherical-harmonic multipole expansions are used
throughout theoretical physics, astrophysics, and engi-
neering —indeed, wherever one deals with fieMs, be they
electromagnetic, gravitational, hydrodynamical, solid-
body. . . .

In linear theories, such as vacuum electromagnetic-
wave theory, life is simple: the field "s multipole com-
ponents evolve independently of each other; there is no
coupling. However, in nonlinear theories like general
relativity, life is difficult: The multipole components
are coupled together by the field equations; they mix
with each other as they evolve.

When dealing with scalar fields (e.g. , Newton's poten-
tial 4), life is simple: one ca.n use scalar spherical
harmonics Y, (8, y). When dealing with vector fields
(e.g. , the vector potential A,. of electromagnetism), life
is more difficult: one must use vector spherical har-
monics. And when dealing with tensor fields (e.g. , the
spatial metric g, » of genera. l relativity), life can be very
difficult indeed: one must use tensor spherical har-

monicss.

Qeneral relativity embodies both diff iculties: nonlin-
earity and tensorial fields. Perhaps that is why multi-
pole expansions have been a less popular tool in general
relativity than in most field theories.

Despite their infrequent use, general relativistic mul-
tipole expansions can be powerful —especially in studies

of gravitational radiation. Indeed, their use dates back
to Einstein's (1918) original paper on gravitational
waves. Einstein used a linear approximation to general
relativity ("linearized theory") to show that the waves
emitted by slowly changing, weakly gravitating systems
a,re predominantly quadrupolar. Not until 40 years
later did anyone compute the other multipole contribu-
tions (Sachs and Bergmann, 1958; Pirani, 1964); and
those computations were also restricted to weakly grav-
itating systems (linea. rized theory), for which nonlinear
coupling can be totally ignored.

Since 1956 a number of researchers have used spheri-
cal-harmonic expansions for a variety of problems in gen-
eral relativity, including problems where nonlinearity
shows up; see pox 1 (page 302). Unfortunately, the vec-
tor and tensor harmonics used have not had any standard
form. Each major "school" of relativity theory has in-
vented its own notation and formalism, leaving us today
with a legacy that includes Regge-Wheeler (1957) har-
monics; the Sachs (1961)-Pirani (1964) symmetric
trace-free ("STF")harmonics; the Mathews (1962)-
Zerilli (1970) Clebsch-Gordon-coupled harmonics of
two types--"pure orbital" and "pure spin"; and the
Newman-Penrose (1966) spin-weighted spherical har-
monics. Moreover, the normalizations used in some
of these formalisms are not terribly rational.

Since 1966 people have stopped inventing new formal-
isms, but there has been no attempt at consolidation.
Consolidation is one of the main purposes of this review
article. Section II presents each of the spherical-har-
monic formalisms (with improved norrnalizations in
some cases), and exhibits the relations between them.
Many of those relations are very simple. Section II also
discusses the relative advantages of the various formal-
isms for various types of problems. It then selects two
sets of harmonics for use in the remainder of this arti-

clee:

STF and Clebsch-Gordan- coupled (pure-orbital
plus pure-spin). The other harmonics (Regge-Wheeler
and Newman-Penrose) are trivially expressible in
terms of these.

Because the relativistic multipole -expansion litera-
ture abounds in a plethora of notations and formalisms,
it is difficult to read. Box 1 presents a historical over-
view of that literature; and the remainder of this article
(Secs. III —XII) consolidates the main results of that lit-
erature into two unified notations: STF and Clebsch-
Gordon-coupled. The two notations are carried along
side by side; and the main results are quoted separately
in each notation. This is because the notations are so
different, and because each has strong advantages in
special situations.

In addition to consolidating and reviewing the litera-
ture, this article derives a number of new results.
Most importantly, it shows that a number of formulas
that previously were derived only in linearized theory,
or only for systems with Newtonian self-gravity, actu-
ally have much wider realms of validity; ef. Box 1.

This article's presentation is self-contained: the
reader is told how to derive every equation presented.
However, many pages of calculations are sometimes
embodied in a phrase like "insert (4.14 ) into (4.18) and
(4.19), and then integrate with the help of (2.5) and
(2.6)."

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 'l980
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The reader should be warned that this article and its
author do not aspire to the high level of mathematical
rigor and elegance that characterize much of mathe-
matical relativity [e.g. , Penrose's (1964, 1968) confor-
mal treatment of null infinity, and the Bondi et al.
(1962)-Sachs (1964)-Newman and Penrose (1968) treat-
ment of the asymptotic properties of gravitational-wave
fields. ] Instead, the author seeks a level of rigor that
is (i) high enough to give him confidence in the results
derived, but also. (ii) low enough to permit the treat-
ment of real astrophysical systems in the real, nonas-
ymptotically flat universe. This philosophy shows up
most strongly in Sec. III, where the concept of "local
wave zone" is introduced to permit a separation of the
theory of wave generation from wave propagation. That
separation sacrifices the elegant rigor of the Bondi-
Sachs-Newman-Penrose approach in order to treat,
e.g. , sources embedded in galaxies, with neutron stars
and black holes nearby and with a distant, inhomoge-
neous universe that may curve up into closure.

B. Outline of this article

In large measure this article is a compendium of use-
ful formulas about spherical harmonics and gravita-
tional waves. Box 2 (page 304) is an index designed to
help the reader locate specific formulas. Box 2 can
also be useful in getting an overview of this article: I
suggest that the reader read each paragraph of the fol-
lowing outline, and then before going on to the next par-
agraph read the corresponding parts of Box 2 and of the
Table of Contents.

Section I.C introduces the notation to be used in this
article. It is crucial to read Sec. I.C carefully before
proceeding on to any other part of the article. This is
because the notation is somewhat special —e.g. , tensor
indices always raised and lowered with flat metric;
comma used for flat-space covariant derivative; abbre-
viations S, STF, T, and TT for special parts of a tensor;
capital script letters for STF tensors; and condensed
tensor index notation S~, .

Section II is a compendium of formulas about scalar,
vector, and tensor spherical harmonics and about their
use to solve I aplace's equation and the flat-space wave
equation. As discussed above, this section presents and
compares the various types of spherical harmonics that
abound in the relativity literature, and it selects for use
in this article the "STF"harmonics, and the "pure-or-
bital" and "pure-spin" harmonics. STFharmonics have
not been used much elsewhere; and at first sight they
seem somewhat forbidding because of their weird nota-
tion. However, I have found them to be a very powerful
tool; see, e.g. , the calculations in Sec. VIII, and also
my use of them (Thorne 1980) in a moment formalism
for relativistic radiative transfer.

Section III lays the conceptual foundations for this
a,rticle s approach to gravitational radiation. In partic-
ular, in Sec. III we define the concept of an "isolated
source" of gravity waves, and argue that every source
in the universe today is probably an isola)ed source.
Vfe then split up spacetime around such a source into
"strong-field region, " "weak-field near zone, " "local
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wave zone, " and "distant wave zone;" and we argue that
it is adequate in discussing wave generation to ignore
the distant wave zone, and with it to ignore in a cavalier
fashion the delicacies of curved-space characteristics
versus flat-space characteristics.

Section Q7 analyzes gravitational radiation in the local
wave zone of an isolated source. No restrictions are
placed on the strength of the source's internal gravity
or on the speed of its internal motions. The gravita-
tional-wave field AT~T is expanded in tensor spherical
harmonics, with multipole-moment coefficients. Two
families of multipole moments are required: "mass
moments" (denoted I' or 8„)and "current moments"
(denoted S' or 8„,). The energy, linear momentum, and
angular momentum carried by the waves are expressed
as sums of multipole contributions. The multipole for-
mulas of this section are useful in a wide variety of
gravitational -wave calculations.

Section Q restricts attention to sources that admit a
nonsingular, spacetime-covering de Donder coordinate
system. 'This probably includes all realistic astro-
physical sources except black holes. Section V uses a
Green's function from Sec. III.G to express the multi-
pole moments I', S' (or 8„,8„)of the radiation field&s
as integrals over the source s effective stress-energy
tensor 7 ~. These source integrals are valid for
sources with strong internal gravity and fast internal
motions; but they are probably not useful in the generic
case, because the source's effective stress-energy 7 ~
includes contributions from the gravitational-wave
fieM k&~ . In the special case of weak-gravity slow-mo-
tion sources, h. ~~ can be removed from T ~, and the
source integrals become quite useful. Qne then can
describe the source's internal structure and evolution
by Newtonian theory, or post-Newtonian theory, or
post-post-Newtonian theory; and the source integrals
involve only quantities peculiar to those theories. For
example, in the Newtonian case the integrals involve
only the mass density and angular momentum density-
and, in fact, 8„is the STF part of the lth moment of
the mass distribution; S~ is the STF part of the Eth mo-

lment of the angular momentum distribution.
Part Two of this article (Secs. VII-XII) has two pur-

poses: 9'A st, it studies the multipole structure of the
full exterior gravitational field of a source (by contrast
with previous sections, which studied only the radiation
field). For slow-motion sources, this multipole study
extends into the "near zone" and examines the nonlin-
ear superposition of the multipoles. This study is the
foundation for the second purpose of Part Two: to de-
rive a new multipole-moment formalism for calculating
the generation of gravitational waves. This formalism
is valid for slow-motion sources with arbitrarily
strong internal gravity (e.g. , for slowly rotating,
deformed neutron stars).

Section &II describes the historical motivation for
the new slow-motion wave-generation formalism.

Section XII (end of the. article —intervening sections
will be described below) presents the details of the new
slow-motion wave -generation formalism. In this for-
malism one calculates, by any means, the source's
instantaneous near-zone external gravitational field as
a solution of the time-independent Einstein field
[Text continues on Page 807]
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BOX 1

A NONCOMPREHENSIVE HISTORICAL OVERVIEW
QF THE L.ITERATURE ON MULTIPOLE EXPANSION QF GENERAL

RELATIVISTIC GRAVITATIQNAL FIEI DS

[Citations in square brackets refer to sections and equations in this article]

A. In Linearized Theory (which totally ignores gravitational forces inside the source
of gravitational waves), augmented by "pseudotensor" descriptions of the en-

ergy-momentum in the waves:
l. Einstein (1918)derived the "quadrupole-moment formalism" for gravita-

tional-wave generation, including formulas for the metric in the wave zone
and for the energy carried off by the waves; but see Ftn. 1 on page 318
[Eqs. (5.27)-(5.30), (4.9), (4.16')] .

2. Peters (1964) computed the total angular momentum carried by the quad-
rupole waves; but see Ftn. 2 on page 319 [Eqs. (4.23)].

3. Papapetrou (1962, 1971)extended Einstein's formalism to include current-
quadrupole and mass-octupole radiation, and the energy, linear momentum,
and angular momentum carried by the waves [Eqs. (5.27)-(5.30);Sec. IV] .

4. Sachs and Bergmann (1958), Sachs (1961), and Pirani (1964) decomposed
the general, linearized, vacuum gravitational field into an infinite series of
multipole components [Secs. IV.A and VIII].

5. Mathews (1962), Campbell and Morgan (1971),and Campbell, Macek and
Morgan (1977) performed this same decomposition, but in different nota-
tion; and they augmented it with expressions for all the multipole moments
as integrals over the source [Secs. IV.A, VIII, and V.C] .

6. Curtis (1978) used Penrose's twistor formalism to define multipole moments.
B. For Slow-Motion Sources with Newtonian Internal Gravity:

1. Landau and Lifshitz (1941) showed that Einstein's quadrupole-moment
formulas are valid for such sources [Eqs. (5.27)-(5.30), (4.9), and (4.16')] .

2. Alternative derivations of the quadrupole-moment formulas —with emphasis
on or exclusive attention to radiation-reaction in the source and the reaction-
induced changes in the source's energy, angular momentum, and linear mo-
mentum —were given by Peres and Rosen (1960), Peres (1962, including
current-quadrupole and mass-octupole contributions), Peters (1964), and with
vastly improved rigor by Chandrasekhar and Esposito (1970) [Secs. V. C and
IV] .

3. Burke (1969, 1971)developed a radiation-reaction formalism that includes all

multipole components.
4. This article extends the wave-generation formalism —including the energy,

angular Inomentum, and linear momentum in the waves —to include all

multipole components [Secs. V.C and IV].
C. For Slow-Motion Sources with Post-Newtonian Internal Gravity:

1. Epstein and Wagoner (1975) and Wagoner (1977) developed a wave-genera-
tion formalism including mass 2-, 3-, 4-, and 5-poles and current 2-, 3-, and 4-
poles [Secs. V.D and IV].

D. For Slow-Motion Sources with Post-Post-Newtonian Internal Gravity:
]. . This article sketches an Epstein-Wagoner type of wave-generation formalism

including all multipole components [Secs. V.E and IV].

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 1980
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BOX 1 (Continued)

E. For Time-Independent Sources with Arbitrarily Strong Gravity:
1. Van der Burg (1968),Geroch (1970),Hansen (1974), Clarke and Sciama

(1971),and this article [Secs. X and XI] gave definitions of complete sets of
multipole moments ("mass moments" and "current moments" ) and proofs
that they fully determine the structure of the vacuum gravitational field, in-

cluding its nonlinearities. However, nobody has yet elucidated the relation-
ships between the various definitions of multipole moments.

2. Xanthopoulos (1979) proved that a time-independent system is static (its
Killing vector is hypersurface orthogonal) if and only if its current multipole
moments all vanish.

3. Hoenselaers, Kinnersley, and Xanthopoulos (1979) developed a method for
generating the exact solution to the vacuum Einstein field equations with any
arbitrary choice for the values of the multipole moments. For further details
see Cosgrove (1980).

4. This article [Secs. IX. D, IX. E, -IX. F, and X] develops a "nonlinearity ex-
pansion" for the general exact solution to the vacuum field equations —an

expansion that exhibits the nonlinear coupling of the multipole moments.
5. Dixon (1970, 1977) defined multipole moments for a source that resides in a

curved background spacetime rather than being alone in asymptotically flat

spacetime.
F. For Slo~-Motion Sources with Arbitrarily Strong Internal Gravity:

l. This article shows that the Einstein quadrupole-moment wave-generation
formulas, and their generalizations to include higher multipole moments
[Secs. A and B of this Box] are valid for such sources [Part Two].

2. Bonnor and Rotenberg (1966), Morgan (1971),and this article [Sec. IX]
investigated some features of the nonlinear structure of the near-zone gravi-

tational field.
3. This article [Sec.V.B] expresses the multipole moments as integrals over

the source —under the restrictive assumption that the source can be covered

by a nonsingular de Donder coordinate system.
G. For Sources with Arbitrary Time Dependence and Arbitrarily Strong Internal

Gravity:
1. Janis and Newman (1965), Lamb (1966), Bonnor and Rotenberg (1966),

and this article [Sec. IV] gave definitions of complete sets of multipole
moments for the radiation field.

2. Bondi, van der Burg, and Metzner (1962) and Sachs (1962) gave an expres-
sion for the total energy carried off by the waves and proved theorems
about the asymptotic structure of the gravitational field at future null

infinity. For reviews of this and later, related work see Sachs (1964) and
Penrose (1964, 1968).

3. This article [Sec. IV] gives expressions for the total energy, linear momen-
tum, and angular momentum carried off by the waves.

4. Newman and Penrose (1968) and Bardeen and Press (1973) analyzed back-
scatter and tails in the radiation field.

5. Bontz and Price (1979)and Wagoner (1979) investigated the low-frequency
portion of the gravitational-wave spectrum.

6. Ashtekar and Hansen (1978) developed the beginnings of a unified treatment
of spatial and null infinity.

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 1980
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BOX 2
KEY EQUATIONS IN THIS ARTICLE: AN INDEX

Description

PART ONE

Sec. I.C. NOTATION
~ "STF"subscript notation introduced (S~t, Ngt, X~t)

"S,""T,""TT," and "STF"parts of tensors defined . .
Commas used as covariant derivatives. . . . . . . . . . . .

Secs. II.A and II.B. MANIPULATIONS OF STF TENSORS
~ "S"(symmetric) part of an arbitrary tensor evaluated

"STF"part of an arbitrary tensor evaluated. . . . . . . . . .
Integrals of STF expressions over a 2-sphere. . . . . . . . , .

~ Expansions of [r (B~t(t+r)J &
Sec. II.C. SCALAR SPHERICAL HARMONICS

~ w de fined ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t t ~ ~ ~ ~ ~ ~ ~

Y~~ orthonormality, parity, and complex conjugation. . .
~ 'JJtg defined and related to Y™.. . . . . . . . . . . . . . . . .
~ F ~ and'f~t (m, ultipole components of an arbitrary scalar

field on 2&phere) defined and related to each other
Sec. II. D. VECTOR SPHERICAL HARMONICS

~ Yt t~ ("pure orbital" Clebsch-Gordan-coupled harmonics)
d fgeeflned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I

Y I~ orthonormality, parity, and complex conjuga-
tion e ~ ~ y ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~

~ Y+ t~, Y+ t~, YR t~ (pure spin harm-onics) defined and
I

related to YI ~ and to 7 ~. . . . . . . . . . . . . . . . . . . .
~ Y~ I orthonormality, parity, and complex conjuga-

ion o ~ s ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

e Q
tm and 4t~ ("Regge Wheeler-" harmonics) defined in

~X,Imterms of Y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ l'™(Newman-Penrose spin weighted harmo-nics) defined
f YX, Imln terms of Y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

STF vector harmonics related to Y~ ~~. . . . . . . . . . . . .
r&

STF vector harmonics related to Y' "
STF vector-harmonic, algebraic orthonormality rela-
lons ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

h~ (multipole components of an arbitrary vec-
I

Equation Number

(1.6), (1.12)
(1.7)-(1.1 1)
(1.1 3)-(1.15)

(2.1)
(2.2)
(2.3)-(2.6)
(2.5 3)

(2.7), (2.8)
(2.9)
(2.11),(2.12)

(2.1 3), (2.14)

(2.15), (2.16)

(2.17)

(2.18)

(2.20)

(2.21)

(2.22)
(2.23)
(2.24)

(2.26)

tor field on 2-sphere) defined and related to each other . . (2.25)
Sec. II.E. TENSOR SPHERICAL HARMONICS

0

0

r

T x™(pureorbitaL Clebsch-Gordan-coupled harmonics)
d feflned y ~ ~ ~ e ~ ~ o ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ s s ~ ~ ~ ~ e ~ ~ ~ ~ ~, ~ ~ ~

r ~ orthonormality, parity, and complex conjuga-
tion o ~ o ~ ~ ~ ~ a ~ o ~ ~ ~ ~ o o ~ ~ ~ ~ s ~ ~ ~ ~ o ~ ~ ~ o o ~ ~ ~ ~ ~

T+~ t~ (pure spin harmonics) defined and related to
Tat l~ and to Y~ l~ and to &
T~~ ~ algebraic and directionality properties
T-+~ ~~ related to Newman-Penrose tetrad components of
Riemann tensor of a gravitational wave. . . . . . . . . . . . .
T~~ I~ orthonormality, parity, and complex conjuga-

t10n o ~ ~ ~ ~ ~ ~ o ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ t i ~ ~

(2.27), (2.28)

(2.29)

(2.30), (2.33)
(2.34)

(2.35)

(2.36)
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BOX 2 (Continued)

Description Equation Number

(4.8)
(4.6), (4 7)

~ 4™,Q™,g™(Regge Whee-ler harmonics) related to
T .xs, lm

~ ~ I ~ ~ ~ ~ ~ ~ ~ 0 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ (2.37)
~ Y™("Newman-Penrose spin weight-ed" harmonics) de-

fined in terms of T gS ™.. . . . . . . . . . . . . . . . . . . . . (2.38)
STF tensor harmonics related to Txs ™.. . . . . . . . . . . (2.39)

0 STF tensor harmonics related to T~t tm. . . . . . . . . . . . (2.40)
Secs. II. F and II. G. SOLUTIONS OF LAPLACF, 'S EQUATION AND WAVE
EQUATIONS

~ Y™Yt tm, and T~t tm as eigenfunctions of L . . . . . . . (2.42)
Laplace's equation: General Solutions
~ in terms of Y™Ql',™Tkl,™ (2 43)
~ in terms of STF expansions . . . . . . . . . . . . . . . . . . (2.44)
Wave equations: / I

~ complete sets of "basis" solutions in terms of If™,
/t, tm Th. l tm (2 45) (2 48)
Green*s functions in terms of basis solutions . . . . . . . (2.50)

~ general solution in terms of STF functions . . . . . . . . (2.51), (2.53)
Sec. IV. GRAVITATIONAL WAVES FROM ARBITRARY SOURCE, IN LOCAL
WAVE ZONE

~ hTT expandedfk
in pure-spin harmonics T~~ l~ with multipole moments
I:le elm

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ (4 3)
in STF harmonics with multipole moments

~ I,8 related to +,gt, g4t. . . . . . . .
I ~, Slm, S~l, S~l expressed as angular integrals
of h TikT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.10), (4.11)

~ dE/dQdt=(energy flux) in terms of moments . . . . . . . . (4.14), (4.14 )
~ dE/dt—:(power radiated) in terms of moments. . . . . . . . (4.16), (4.16 )
~ dP&/dt =(linear momentum radiated) in terms of mo-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.20), (4.20 )
~ dS&/dt —= (angular momentum radiated) in terms of mo-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.23), (4.23 )
Sec. V. MULTIPOLE MOMENTS EXPRESSED AS INTEGRALS OVER SOURCE
IN DE DONDER COORDINATES

r~t =(effective stresswnergy tensor), which enters into
j.ntegrals

~ I ~,S, ~&, ~gl as integrals over 7
&

or over p and v.

for arbitrary sources with interior coverable by
de Donder coordinates. . . . . . . . . . . . . . . . . . . . . .
for slow-motion sources with arbitrary internal gravity,
and interior coverable by de Donder coordinates:

exact expressions
~ approximate expressions. . . . . . . . . . . . . . . . . . .
4 errors in appr'oximate expressions. . . . . . . . . . . . .

(5.3)

(5.7)-(5.9)

(5.22)-(5.24)
(5.18), (5.19)
(5.20)
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BOX 2 (Continued)

Description Equation Number

for slow-motion sources with Newtonian internal
gravity

errors
for slow-motion sources with post-Newtonian internal
gravity

errors

(5.27), (5.28)
(5.30)

(5.31)-(5.33)
(5.34)

PART TWO. THE GENERAL, VACUUM, EXTERIOR GRAVITATIONAL
FIELD FOR VARIOUS TYPES OF SOURCES

Sec. VIII. LINEARIZED SOURCES (NO SELF-GRAVITY) IN LORENTZ GAUGE
7 g and g'

p
defined . . . . . , . . . . . . ;. . . . . . . . . . . . (8.1); (8.2)

~ 7'& in terms of multipole moments ggt, S~t. . . . . . . . . (8.12)
~ g~p jn terms of 84t, S~t. . . . . . . . . . . . . . . . . . . . . . (8.13)

Sec. IX. SLOW-MOTION SOURCES WITH ARBITRARY SELF-GRAVITY
IN DE DONDER COORDINATES (WHICH NEED NOT COVER SOURCE'S
INTERIOR)

~ h
&

defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.4)
&

(linear part of h &) expressed in terms of multipole
oments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m (9.5), (8.12),

Sec. IX.C

(11.1), (11.4)
(11.26)
(11.27), (11.28)

Near-zone gravitational field:
~ 7t'&~"t defined (multiparameter expansion of h &). . . (9.15), (9.16)
~ g "&"t defined (multiparameter expansion of g &). . . (9.15), (9.16)
~ 7'

nest
derived from 7'&. . . . . . . . . . . . . . . . . . . . (9.19), (9.20)

y "&" expressed in terms of radius ~ and time-dependent
multipole moments. . . . . . . . . . . . . . . . . . . . . . . . (9.25), (926)

~ g" &" expressed in terms of radius r and time-dependent
multipole moments. . . . . . . . . . . . . . . . . . . . . . . . (9.28)

Wave-zone gravitational-wave field h k in terms of mul-TT.
gk

tipole moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9.31d)
~ Wave-zone multipole moments related to near-zone mul-

tipole moments: the effect of nonlinearities . . . . . . . . . (9.32)-(9.34)
Sec. X. TIME-INDEPENDENT SOURCES WITH ARBITRARY SELF-GRAVITY
IN DE DONDER COORDINATES (WHICH NEED NOT COVER SOURCE'S
INTERIOR)

g» (linear part of metric) expressed in terms of multipole
moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10.5b), (8.1 3)

~ gt'nt defined (multiparameter expansion of g „).. . . . . . (10.5a), (9.16)
~ g&"„texpressed in terms of r and multipole moments. . . . (10.5)

g „expressed as a multipole expansion. . . . . . . . . . . . . (10.6)
Sec. XI. TIME-INDEPENDENT SOURCES WITH ARBITRARY SELF-GRAVITY
IN ACMC-N COORDINATES

g expressed as a multipole expansion. . . . . . . . . . . . .
~ g

„

for Kerr metric in ACMC-2 coordinates
multipole moments of Kerr metric. . . . . . . . . . . . . . . .
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equations. One then reads off this near-zone field the
source's instantaneous multipole moments; and one
plugs those time-evolving moments into the radiation
formulas of Sec. IV.

The intervening sections, which lay the foundation for
this formalism, are the following:

Section VIII restricts attention to "linearized theory"
(the linear approximation to general relativity). Using
S'TF techniques it derives a multipole expansion for the
general outgoing-wave solution to the vacuum field
equations of linearized theory (external gravitational
field of an arbitrary source).

Section IX turns attention to slow-motion strong-
gravity sources in the full general theory of relativity.
'The vacuum exterior gravitational field is analyzed
using a, de Donder coordinate system (Sec. IX.A. ). The
analysis is based on a "nonlinearity expansion" of the
gravitational field (Sec. IX.B)—i.e. , an expansion in
powers of the gravitation constant G —for which the
first-order contribution is the linearized solution of
Sec. VIII (see Sec. IX.C). The near-zone gravitational
field is studied in Sees. IX.D, IX.E, IX.F, and IXeG us-
ing a simultaneous expansion in powers of G, in (size of
source)/(distance from source) =—L/r, in (distance from
source)/(wavelength of waves) = L/X, and in—spherical
harmonics. This multiparameter expansion gives in-
sight into the general nonlinear structure of the near-
zone field. It turns out that the details of the near-zone
field are fully determined by two sets of multipole mo-
ments: "mass moments" and "current moments. " In
Sec. IX.H the near-zone field is matched onto the gener-
al radiation-zone gravitational-wave field (Sec.IV).
'This matching shows that, aside from negligible cor-
rections, the multipole moments 8~, , S~ that charac-

r
terize the radiation field are identical to those that cha-
racterize the near-zone field.

Section X specializes the near-zone results of Sec.IX
to the case of a stationary (time-independent) source.
The result is a multipole expansion, in de Donder coor-
dinates, for the general, stationary, asymptotically flat,
vacuum solution of the Einstein field equations. 'The

resulting stationary multipole moments are very spe-
cial: If the source starts to evolve slowly in time and
radiate, they become the moments that characterize the
radiation field. It is not known whether previous defi-
nitions of stationary multipole moments (e.g. , Geroch,
1970; Hansen, 1974) have this property.

If one is given a stationary, vacuum solution of the
Einstein field equations (e.g. , the Kerr metric), how can
one compute its multipole moments? One way is to
transform to a de Donder coordinate system and then
read the moments off the metric coefficients. However,
in typical cases (e.g. , the Kerr metric) this is prohi-
bitively difficult. Section XI introduces a new, very
broad class of coordinate systems in which one can
easily read the moments off the metric coefficients.
'These coordinates are called "asymptotically Cartesian
and mass centered to order X" or "ACMC-¹" As an
example, in Sec. XI.D the Kerr metric is transformed
to an ACMC-2 coordinate system, and its monopole,
dipole, quadrupole, and octupole moments are then read
off the form of the metric.

This completes our outline of this article.

or

8 8 8 8

8X 8X 8$ 8Z
(1.2a)

8 8 1e = ——,e =-—,ee=——
p ee= ~ (1.2b)Bx'' " Br' e r B8 c xsi n8 Bp

Indices are raised and lowered using the Minkowskii
metric, which in either basis (1.2a) or (1.2b) has com-
ponents

q, = —1, q»= 5»= (Kronecker delta).

Repeated Latin down indices are to be summed as
though an q~~ = 5» were present:

AqB)=A„B„+A,B,+A+, =A+„+AeBe+AcBo.

(1.3)

(1.4)

We shall try, wherever possible, to use down indices
for components of vectors and tensors; up indices for
everything else. We shall represent the radial vector
with length z by x, the unit radial vector by n, and their
components by x&, n&,

x =t'e~~ x~ = x ~ xy =g ~ xg =z
~

x„=y', xe= 0, X~=0;
(1.5a)

n= e„;nz=x~/x. (1.5b)

Often we shall encounter a sequence of many (say I)
indices on a tensor. For ease of notation we shall ab-
breviate it as follows:

(1.6a)S~ =Si ~ ~ ~ .~l 1 2 l

Similarly we shall abbreviate the tensor product of l
radial vectors by

l 7b.T
Lv g —Rb Sb ~ ~ Rb p Xgy X Iv g —Xb Xb ~ ~ Xb ~

l 1 2 l l l 1 2 l

In this abbreviated notation,

Al+B l a~a2 ~ ~ al+b~+b2' +bl

(1.6b)

(1.6c)

Thus, capital subscript letters denote sequences of
lower subscript indices, and the number of indices in a
sequence is denoted by a subscript to the capital sub-
script.

We shall denote the symmetric part of a tensor either
by parentheses on its indices

Sab(oge) —(Szb~ 8+ Szb&ez+ Szb

abdca+ abedc ahead ) s (1.7a)

or, when all of the free indices are being symmetrized,
by a superscript "S,"

C Notation

Throughout this article we use geometrized units
(c = G = 1); and we use the mathematical notation of flat-
space tensor analysis unless otherwise stated. The
coordinates (t,x,y, z) = (xc,x',x', x') are treated in our
notation as though they were Cartesian (Minkowskii)
coordinates in flat space, and (t, r, 8, @) is the corre-
sponding spherical coordinate system

x=r sin8cosg, y =xsin8sin@, z =xcos8.
Greek indices run from 0 to 3 and Latin from 1 to 3.
We always use orthonormal bases —either
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Tabcde+a+b ~ Tab(cdeÃa+b (1.7b)

The fully symmetric and trace-free part of a. tensor
will be denoted by "STF,"

i ISTF-
Tabcg - T(abc)- 55abT(j jc)

Here the summation goes over all l t permutations
z of 1, . . . , l. (ii) Remove all traces [cf. Eq. (2.44) of
Pirani (1964)]:

l:t /23

] = a5 5 S

1 1
5~acT(jbj) 5 bc (ajj)

the transverse part will be denoted by "T,"
[Tahe] +ai+'C j+c0~i JO ~

l!(2l, —2n —1)!!
(l —2n)! (2l —1)!!(2n)!!'

(2.2)

jk +j+k

= ("transverse projection tensor");

and the transverse traceless part will be denoted by
&CTT

Here [l/2] means the largest integer less than or equal
to l/2.

B. Integrals over a sphere

The following integrals are useful when doing multi-
pole calculations:

We shall reserve capital script letters to denote ten-
sors that are fully symmetric and trace-free, and that
may be functions t and x but are independent (in Carte-
sian coordinates) of 8 and &f&,

N dk? =0,1
&2t+Z

~ ~ ~

+2l 2)+ 1 (ala2 a2l -la2l )

(2.3a.)

(2.3b)

a ~ a La a~& (1.12)

Commas will denote partial derivatives with respect
to (t,x,y, z) or flat-space covariant derivatives along
the orthonormal basis vectors e„e„,e6, e~; 8 will al-
ways denote partial derivatives

(1.13a)

(1.13b)

[Recall definition (1.6b) of NA .] The completely sym-
metrized product of Kronecker deltas has the form

a s a

(a,a2 a2) -ya2l )

1
2.4a(2l 1)!t ciao aiaa, a ai2i, ai ij2 ~ 4' ' 2k 2l

That RA, is independent, of 8, Q means (see above)

(1.14)

j, is summed from 2 to 2t, ,

j, is the smallest integer not equal to 1 or j2,

+j,k ~jk & (1.15)

and this is true in the orthonormal spherical basis as
well as in the Cartesian basis.

For any integer l we shall denote

l! =—l(l —1) ' 2 ' 1,

l!!=—l(l —2)(l —4) ' (2 or 1) .

(1.16a.)
I

(1.16b)

Note that the gradient of the unit radial vector has com-
ponents

j4 is summed over all integers, 2 to 2L, not

equal to j, or j, ,

(2.4b)

= 0 if 6 and have different rank, p+q

j, is the smallest integer not equal to 1 or

~ 0 0 ~

From Eqs. (2.3) and (2.4) it follows that, for any two
STF tensors 8 and ,

(QA NA )(S~ Ns )dQ
1

II. SPHERICAL HARMGNICS: SCALAR, VECTGR,
ANI3 T ENSQ R

pt
1)ii A A (2.5)

In this section we state, without proof, a. number of
formulas that are useful in tensorial multipole analyses.
The proofs are straightforward, if tedious.

A. Symmetric, trace-free tensors
Following in the footsteps of Sachs (1961) and Pirani

(1964) we shall make extensive use of symmetric trace-
free tensors ("STF" tensors). One can calculate the
STF part of a. tensor which is not STF by two steps: (i)
C onstruct the symmetric part:

gg. Q~ pf~ ~ +~ d'Q

= 0 unless 8 and diffe-r in rank by 1

Q ~f g P 1 a
pf

(2p 1)i i iA &
A

C. Scalar spherical harmonics

(2.6)

S 1
+k,(,) - k„(,).

77

(2.1) The usual representation of scalar spherical harmon-
ics is in terms of complex functions of 8 and @,
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FIm C lme am4~lm (cosg) for mo 0
E(t-m)/23

(e'~ sing)" g a™(cosg)'" '~ for m~ 0,
j=O

( 1)mal lml + form & 0.
(2.&)

(2.6)

Here * denotes complex conjugation; [(l -m)/2] means
"the largest integer less than or equal to(l -m)/2"; and

y lm y'tm lm' y tm4dg p pf ytmgdQ
m'=- t

/1
(2l + 1)l (»Pxl™& (2.13b)

Here the integral is over a sphere surrounding the
origin, and the integral was performed with the help of
Eqs. (2.11) and (2.5).

In practical calculations one can use spherical ha,r-
monics and STF-l tensors interchangeably: Consider
any sphere centered on the coordinate origin, and on
that sphere consider any scalar function f(g, &f&). One
can expand f(g, @) in. spherical harmonics with complex-
number expansion coefficients

These scalar harmonics are orthonormal
eo I

f(g @) g g Flmyfm(g y) .
l=O m=-t

(2.14a)

tmy t'm'gdg lt' mm'~ (2.9a)

they have parity m = (-1)' (' electric-type" parity); and
under complex conjugation they transform as

alternatively, one can expand it in powers of the unit
radial vector n, with coefficients that are STF-l ten-
sors

y tm8 ( 1)mal -m (2.9b) (2.14b)

n „+in, = e'~ sin~, n, = cos6; (2.1o)

The set of all symmetric trace-free tensors of rank l
("STF-l tensors") generates an irreducible representa-
tion of the rotation group, of weight l [Gel'fand et al.
(1963), Courant and Hilbert (1953)]. Hence, there
exists a one-to-one mapping between them and the .
spherical harmonies of order l; see Pirani (1964), pp.
289-290. To exhibit that mapping one expresses the
Cartesian components of the unit radial vector n in the
form

The expansion coefficients of the two schemes are re-
lated by Eqs. (2.13a) and (2.13b).

D. Vector spherical harmonics

Several different conventions for vector spherical
harmonics exist in the literature. That of Rose [(1955),
p. 22], Edmonds [(1957), p. 62], and Mathews (1962) is
the most closely tied to the rotation group. It is ob-
tained by coupling scalar harmonics of order l' to the
basis vectors

and one then inserts these expressions into Eq. (2.7),
obtaining

0'= e, , 0"= +(e„+-ie,)/~& (2.15)

F tm(g @) ~im~
Kl Kl ' (2.11)

Here &» is the following (location-independent) STF-l
tensor:

l[(t-m) /23
=C'- a~-~(&' +i6' ) ~ ~ ~ (6' +i6' )kt (k (k1 k k

j=0 1 m m

~ ~ ~ 6& (6'x 6'~ ) ~ ~ ~ (6's 6's )km+1 k t-2g t-2J+1 l 2/+2 kt 1 kl)

( 1)m(q l lml )m for n& g 0
1 l 1 l

for no~ 0

(2.12)

~ ~tmytm
Kl

m=-l
(2.13a)

The tensor components SK are real if and only if I" t

= (-1) E'™*.Expansion (2.13a) can be inverted as fol-
lows:

where &k& is the Kronecker delta.
S

The tensors pK™with -l - e.- +l serve two roles:
l

fi~st, they generate the spherical harmonics of order l
[Eq. (2.11)];second, they form a basis for the (2l +1)-
dimensional vector space of STF-l tensors; i.e., any
STF-l tensor 5 can be expanded as

Yt LN- Yt' L'N'~dn=ntt, 6LL, ONE (2.17a)

Y' ' has parity w = (-1)' "[which means that, because
the Cartesian basis vectors e„,e„e,reverse direction
under parity inversions, the Cartesian components
satisfy Y'& ' (-n) = —(-1)' "Y,'. ' (n)]; and under com-
plex conjugation it transforms a,s

Yl', lmg ( 1)f'+l+m+1Yl', l-m (2.1Vb)

These pure-orbital vector harmonics are nicely re-

(which transform under an irreducible representation of
order 1), thereby obtaining harmonics Y' ' that trans-
form under a representation of order l =l'a (1 or 0),

l'
Y''-(g, y)= P P (Ii'm"m'ill)g "Z1™

m'=-t~ m" =-1
(2.16)

l'=l+ (1 or O).

Here (l "l'm "m'~lm) are Wigner (Clebsch-Gordan) coef-
ficients. (Edmonds and Mathews use the notation Y», ,'
Hose uses T„,.) We shall eall Y' ~ ' and the corre
sponding tensor harmonics (Sec. II.E) "pure-orbital
harmonics" because they are eigenfunctions of the or-
bital angular momentum operator L' [Eq. (2.42b)]. For
fixed l' and l they transform among ea.ch other accord-
ing to an irreducible representation of order l. These
harmonics ar e orthonorm al
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YB, lm (2l + 1)-1/ 2[(l + 1)1/2Yl-1, tm+ I 1/2Yt+1, lm]

= [l (l +1)] / 2./I'tm = n X YB.tm (2.18a)

Y '' =iYI™=i[l(l+1)] LI'™=n&& Y '', (2.18b)

YR, tm (2l + 1)-1/ 2[l1/2Yl-l, lm (I + 1)1/ 2Yt+1, lm]

= nV™. (2.18c)

Here V is the gradient operator of Euclidean three-
space, and L is the angular momentum operator

L=- (1/i)x && V. (2.19)

Y '' and YB™are purely transverse; Y '' is purely
radial; Y ' ' and Y~™have "electric-type parity"
7t = (-1)'; YB ' has "magnetic-type parity" tt = (—1)'";
these Y's are orthonormal

lated to solutions of I aplace's equation and the vector
wave equation (Secs. II.F and II.G). However, they are
not optimally designed for describing radiation, in the
radiation zone, because Y" ' is neither purely radial
nor purely transverse. The following "pure-spin vector
harmonics" are better suited for describing radiation:

Here e,.~, is the Levi —Civita tensor (antisymmetric
symbol), and the superscript T means "transverse part
of" [Eq. (1.9)]. By comparing with Eqs. (2.18) one can
derive the relationship between the pure-orbital har-
monics and the STF harmonics

I/ (@tmFZ, lm+ ~tmIt B, lm+il tmI/R, tm)j j 7

l, m

(2.25a)

—[I/(2l + 1)]1/2+t (2.24a)j
I"~ 'm= —i[l/(l+1)]1/2E. n yt N

I't+1. lm — [(2!+ 1)/(l + 1)]»2

&&(n,.+At NA —[l/(2l +1)]'ll'Am NA j . (2.24c)

An arbitrary vector field V(&, tt ) can be expanded in
terms of pure-orbital harmonics or pure-spin harmon. —

ics or Regge-Wheeler harmonics or spin-weighted har-
monics, ' and one can read off the relationships between
the expansion coefficients by examining the relation-
ships between the harmonics themselves. For example,
the pure-spin and STF expansions have the forms

YJ, lm ~ YJ, l'm'g dg JJ' l l' mm'~

and their complex conjugates are
YJ', tmg ( 1)m YJ', l -m

(2.2Oa)
(2.25b)

and by comparing with Eqs. (2.23) one deduces that

[The factor i was included in Eq. (2.18b) in order to
produce this complex conjugate relationship. ] We call
these harmonics "pure spin" because they enter in pure
form into the description of the polarization of pure-
spin zero-rest-mass vector fields (Y ~ ' and Y ~ ' for
transverse spin-one —i.e. , electromagnetism; Y
for longitudinal spin-zero). These pure-spin vector
harmonics are intimately related to the Begge-Wheeler
(1957) vector harmonics:

YB, lm [I (I + 1)]-1/21Ittm

YB, 1 [lm(l + 1)] 2/2@ tm

Y&, lm nylm.

(2.21a)

(2.21 )

(2.21c)

YZ, tm 2
—1/2( y. tmm ytmmm)—1 1

Y ™=2'/'i (,I'™-m+I" m*)

g&, lm y lmn
0

m—= 2 "'(e,+ie, ), m*=2 "'(e, —ie, ) .

(2.22a)

(2.22b)

(2.22c)

(2.22d)

The STF version of vector spherical harmonics can be
obtained by inserting expression (2.11) for I'™into the
second expression in each of Eqs. (2.18a—2.18c) for
Y '™Y'' andY ''

and also to the Newman —Penrose (1966) spin-weighted
spherical harmonics, l" [for details of which see Gold-
berg et al. (1967)]:

(2.25c)

~Q lm qualm
l

One can invert these relations using Eqs. (2.13).
In calculations with STF spherical harmonics the

following identities are useful:

(2l+1)!!5
m m (2.26a)

=0 if /&0 or+1,
i 2l+1 t!

if p, =0 or ~1

(2.26b)

(2.26c)

i (2l +1)!!nz
/P2QPAt 1 92At 1 4tt l l I ~ j t (2.26d)

(2.26e)

~lm~y(l+~) (iJ +m) 1 (2l+3)!! l+1
(lilt, m~i+1 p, +tn)$'

4tt (l +1)' 2l+3

B, lm [I/(I + 1. )]1/2[g tm N ]&
j Al ~

[tt = (-1)'],
= [I/(!+1)] / &. n atmj i've

[.= (-1) "],
/'tl™N [ = (-1)'] ~

(2.23a)

(2.23b)

(2.23c)

(2.26f)~lime pl(m+&) 0 if ~g 0 Or gyjpe ~ 0& l-y

Equation (2.26a) can be derived by combining the ortho-
normality relation for scalar harmonics with Eqs.
(2.11) and (2.5); Eq. (2.26b) follows from Eqs. (2.6),
(2.23c), (2.18c), (2.11), (2.16), and orthonormality for
scalar harmonics; Eqs. (2.26c)—(2.26f) follow from Eqs.
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(2.5), (2.24a), (2.16), (2.15), orthonormality for scalar
harmonics, and algebraic expressions for the relevant
Clebsch-Gordan coefficients.

Q (11m'm" ~2m)(-'Sg. ",
m =-lm It

(2.27a)

E. Tensor spherical harmonics

Mathews (1962) has constructed a set of "pure-orbit-
al" tensor spherical harmonics which, like the Y''',
are closely tied to the rotation group. He first couples
the basis vectors g to obtain five symmetric basis
tensors t, which transform among each other under an
irreducible representation of the rotation group of or-
der 2q

tensor of a pure spin state. The following "puxe-spin
tensor harmonics" introduced by Zerilli (1970) [and for
spin 2 by Mathews (1962)], do behave like pure-spin
states (note Zerilli's sign error on the second term of
Eq. (2.30a)—his Eq. (Gc); also note that the fourth line
of his Eq. (6a) should read x [J(J—1)]'/'[(2J —1)
(2J+ 1)] J', z-2, tt]

(l+1)(l+2)
(2l + 1)(2l + S)

2l(l+ 1)
S(2l 1)(2l + 3)

2l-1 2l+1

g (11m'm" lOO)g-'S g-".
m'= -& m" = -&

(2.27b)

and a single basis tensor —the unit tensor (equal to 3 '/'
times the Euclidean metric) —which gives a representa-
tion of order zero

=n(In'' .

(l+1)(l+2)
2(2l + 1)(2l +3)

l(l+1)'
S(2l —1)(21+3)

(2.3Oa)

The analogous tensors that give a representation of or-
der 1 are antisymmetric, and are thus of no interest
for gravitational-wave theory. See Zerilli (1970) for
details. In terms of Cartesian basis vectors e„,e„e,
these symmetric basis tensors are

t"=2(e„Se„—e, S e,) +Si(e„Se, + e,S e„),
t"=+2(e„Se,+e,S e„)—Si(e,S e.+e, Se,),
t'= 6 '/'(-e„Se„—e, S e, + 2e, S e,),
3 '/2&=3 '/ (e S e„+e,S e, + e, S e,).

(2.27c)

Mathews then couples these basis tensors to the scalar
spherical har monies to obtain the six basis harmoni cs

l' 2

T t '™=Q Q (l'2m'm'
~

lm) y t'm'tm"'
m'= -l'm"= -2

Tol, lm y lm3-1/ 2g

l'=la(0, 1, or 2);
(2.26a)

(2.26b)

(2.29a)

they have parity tt = (-1)'; and under complex conjuga-
tion they transform as

[Mathews (1962) uses the notation T„,for T" '; and
actually, he never introduces or uses T '''; Zerilli
(1970) defines the analogous, antisymmetric, T" ~ ',
and he uses the notation TI~t, for our T~t ~ ' .] The pure-
orbital harmonics T~' ' with fixed &, l', and l trans-
form among each other under rotations according to an
irreducible representation of order l. These harmonics
are orthornormal

22l 1 2l+1
T"" —

3 T

2-t. / 2 (6 n S n) y l m . (2.sob)

[ 2n X TBt, lm] s.

B2, lm ( ) 2t+2, tm

2(2l+ 1)(2l+ S)

S(l —1)(l + 2)
(2l —1)(2l+ 3)

(l + 1)(l + 2)
I
'/' .. . ,.

2(2l —1)(2l + 1)/
1/2

[~~~B, tm] STT

(I -1)(l+2)
Z/2

[i L~B, tm] STT
(l -1)(l+ 2)

l —2~
2 ( '

[ 2pr~y l ]STT
(l+ 2)!

[I LF lm]STT
(l+ 2)!

(2.30c)

2l(l + 2)
{2l+1)(2l + 3)

2 t, tm

I,(2l —1)(2l+ 3)

2(l —1)(l + 1)
(2l —1)(2l + 1)

2 l /2
2t/2 [ns~E. lm] s

~
[ us&a' 1lm]s

l(l+ I))

Tt t', tm+ ( I) t'+t+m T&t', l ™for y = 0 or 2 (2.29b)
[ nX TB2, tm]s. (2.30d)

These pure-orbital tensor harmonics are nicely re-
lated to solutions of Laplace's equation (Sec. II.F) and
the wave equation (Sec. II.G). However, they are not
optimally designed for describing radiation in the radia-
tion zone because, under local rotations about the radi-
al vector, their tensor components (for fixed &, l', l, m)
do not transform as the components of the polarization = [2n x T B' ™]s (2.30e)

l+2T», lm 2 l+1, lm T2 l-l, lm

2l+ 1 2l+ 1

X //2

21/2 [ n S~B, l m] s [nS&LI t ]'
l(l + 1)
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B2, lm T2 &+1, lm T2 l-1, lm

21+ 1 2l + 1
)+2 '/' . l —&

T2 l+1, lm TB1, lm + j TB2s lm

2l+ 1 2I, + 1
1/2

[iL~B, lm] STT
(l —1)(l + 2)

2 1/2
[rTt+B, lm] STT

(f 1)(&-+2)
1/2

[iLrV 1"™]"'
(t+ 2)!

2( )'
[ prLylm]STT

(E+ 2)!

[n)& T B2 lm] s (2.30f)

(f+ l)(f+ 2)
(2f+ l)(2f+3)

(t+ 1)(t+ 2),
2(2l + l)(2l + 3)

2t(t+ 2)
(2l+ l)(2l+ 3)

t{f-1)
2(2f + l)(2f + 3)

(2.33e)

(2.33f)

Here a superscript S means symmetric part of" and
superscript TT means "transverse traceless part of"'

[Eqs. (1.7b) and (1.11)]; V is the gradient operator and
L is the angular momentum operator [Eq. (2.19)].
[Zerilli (1970) uses the notation

TI 0, lm b T&12 lm
lm lm lm

j T t
lm 7

T&2, lm 9 T &0, lm.
lm lm

and Mathews (1962}uses the notation

2 TB2, lm
lm lm

(2.31}

(2.32)

0

(t 1)f-
(2l —l)(2l+ 1)

(f -1)t
2(2E 1)(2l+ 1)

2(& —1)(t+ 1)
(2l —l)(2l + 1)

(f+ 1)(f+2)
2(2f —l)(2t+ 1)

E 1 1/2 )+ 22 l-]., l ~ TBl, l TB2, lm

2~+ 1 21+ 1

(2.33a)

(2.33b)

(2.33c)

2l(i+1)
3(2t —i)(2t + 3)

t(i+ 1)
3 2$ —1 2)+3

3 1/2
TE1, lm

i -x»}
3(f 1)(f+ 2)
(2f —1)(2t + 3) (2.33d)

Zerilli and Mathews, and also Wagoner (1977) use the
terms electric-type parity" and magnetic- type parity"
to refer to ll=(-1)'" and 7l= (—1)', respectively —which
is opposite to our terminology and to that found every-
where else in the general relativity literature. Their
terminology leads to the objectionable convention that
the gravitational waves produced by a slow-motion
source are predominantly of magnetic quadrupole"
type; our terminology makes them 'electric quadru-
pole. "] The transformation (2.30) from pure-orbital to
pure-spin harmonics is unitary; therefore it is easily
inverted:

For fi~ed l, m, t&, p the pure-spin harmonics have the
following algebraic and directionality properties:

pure longitudinal" (i.e., pure radial);

pure transverse; proportional. to the
transverse projection tensor P,„;

TB 1 ™and TB" ': mixed longitudinal and transverse;
T ' 'm and T ' 'm: transverse and traceless.

These algebraic and directionality properties are the
same as those of the following pure-spin (i.e., pure-
helicity) states of radially propagating gravitational
waves in general metric theories of gravity [Eardley,
Lee, and Lightman (1973); Eardley et al. (1973)],
which in turn correspond to the following Newman-
Penrose (1962) tetrad components of the Riemann ten-
sor of a wave

T y' Tjy~ ' ™& QD ~JJ ~SS'~ll

and their complex conjugates are given by
TJS, imp ( 1)m T&S, lm

(2.36a)

(2.36b)

[The factor i was included in Eqs. (2.30e) and (2.30f) ln
order to produce this complex-conjugate relation. ]
These pure-spin tensor harmonics are intimately re-
lated to the Regge-Wheeler (l957) tensor harmonics
[see Zerilli (1969, 1970), Sandberg (1978)]:

T1.0, lm y imp . @lm

T1'0, lm 2-1/2@lm

1/2T», tm [n g, @lm] S

t(i+1)
) l&2T"' = —

i
[nee' ]',t(i+1)&

(2.37a)

(2.37b)

(2.37c)

(2.37d)

T Lo' ™longitudinal, spin 0 (Newman-Penrose ll& )

TT' ™transverse, spin 0 (Newman-Penrose 4»),
l~ ™and T ' ': spin 1 (Newman-Penrose 42),

T ' 'm and T ' ': spin 2 (Newman-Penrose 4,).
(2.35)

e h»mo»cs T ' 'm T ~ ' 'm T~' 'm and T~' lm have
"electric-type" parity 7l= (—1)', while TB' ™and TB2 ™
have magnetic-type ' parity lt =(—1)'". The pure-spin
har monic s are orthonor mal
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2
(t —2)! '~*, t(t+ tt,

)(/+ 2)! 2

, (l-2)t '",.
(/+ 2)'

(2.37e)

(2.37f)

yk +g+k~ A l+Al

TEl. tm [2//(/+ 1)]t/2

(2.39a)

(2.39b)

The STF version of tensor spherical harmonics can be
obtained by inserting expression (2.11) for y™into
Eqs. (2.30) for the pure-spin harmonics:

T I 0, l m y 'l tnn (3 n0

T&O tm 2-t/2 y t (m6 n(an)

""=[," — ™
2[ y™m(8(n+ly. ™m*n]

TE2, tm 2-t/2 [ y' tmm (3 m+ y (mme (I m4]

TE2, tm 2-l/2 [ y' tmm @m y (mme(8( mw]

(2.38a)

(2.38b)

(2.38c)

(2.38d)

(2.38e)

(2.38f)

and also to the Newman-Penrose (1966) spin-weighted
spherical harmonics [for details of which see Goldberg
e/ a/. (1967)):

I+('VktAt l At l +j+kSAt At ] &

k(/+ l)(l+ 2)

(2.39c)

(2.39d)

(2.39e)

(/+ 1)(/+ 2) t+2 k (jjkt At 2 At 2]

(2.3M)

By comparing with Eqs. (2.33) one can derive the re-
lation betwe en the pure- orbital har monies and the STF
harmonics:

TO lk lm ~ l+1 "1
imp lm~jk 31/2(2/ 1) t t

( ), At 9 At jk 3l/2' BAt At jk 1

(-1)'" 6/(2l 1)
T',"™=(2,—

1), , (/+, )(2/+3)
~'"'[(~'

,)A, ,(,W ™k)A,, -2(~'), A, WA", 6,k]

(2.40a)

T2 l-2,
jk

rp2 l+2,
jk

6l(2/ —1) '/, / —1
(l, + l)(2l+ 3) " "'"t-l "t-l 2/ —1 ~ j™t-2

(—1)'(2l —3) (/ —1)l '/' . . . , (/ —1)l
'(2l —3)!! (2l —1)(2l + 1) At-2~I" t-2 (2l —1)(2/ + 1)

(-1)' (2l+1)(2/+ S) '/' „,, (2/+1)(2/+ S) ' '
(2/+ 3) t t (/+1)(/+ 2)- ' ',

, ~k~A = (/+1)(/+ 2)

N
2l . N + l(l 1) . N9At At j k 2/+ 3 (j 9k(A( l At l (2/~ 1)(2/+ 3)j jkAt 2 At 2 2/+ 3 jAt At jk

. ( —1)' '(2/ —1) 2l(l —1) '/', , , 2l(l —1)
(2/ —1)!! (/+ 1)(2/+ 1) " - 2 2'& j~"" t-2 (/+ l)(2/+ 1)

(2.40c)

(2.40d)

(2.40e)

(-1)' -2/(2/+ 1)
jk (2/+ 1) t t (/+ 1)(/y 2),A P(j ktk At t

2) 2)+ ] 1/2 ) —1= —.Z + ~ +2, (j k)pq p ~ qAl-1 Al 1 2) + p pq(Z ~k)qA l-2 P Al-2 (2.40f)

F. Solutions of Laplace's equation

When solving Laplace's equation or the flat-space
wave equation it is most convenient to use sets of
spherical harmonics which are eigenfunctions of the
"orbital angular momentum" operator

L=-x V'+ x~r r (2.41)

An arbitrary tensor field W(0, (/t) can be expanded in
terms of pure-orbital harmonics or pure-spin harmon-
ics or Begge-Wheeler harmonics or spin-weighted
harmonics; and one can read off the relationships be-
tween the expansion coefficients by examining the re-
lationships between the harmonics themselves and by
invoking Eqs. (2.13). The situation is fully analogous
to the vector case [Eqs. (2.25)].

The pure-orbital harmonics are eigenfunctions of I ',

Z2y tm /(l + 1)y'tm

Z 2~t', tm ~ l t(/z + 1)~t', tm

L2 XT', tm t/t(/t+ 1) Tkt', tm.

(2.42a.)

(2.42b)

(2.42c)

~(& g @) g (~tm&-&t+l&+Gt &t) y.mtm (2.43a)

g(y. 6( p ) Q (F t ' tmy('+ )t+lQ t,.tm2 t ')gt, tm (2.4Sb)

but the pure-spin harmonics, the Begge —Wheeler har-
monics, and the spin-weighted harmonics are not.

By virtue of Eqs. (2.42), the general scalar, vector,
and tensor solutions of Laplace's equation V't/(= 0 are
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U{+ g ~) g (P')cf'r lm+-(f'el) ~ QXl r'™+f')Tkt's lm (2 48C)
X, l', l, rn

kl'r
(t & g ft)) —(I (dl/2ll)~l 28 c cfu

&(kel'(~~)Z'il', lm(g y) (2.45c)
Qne can construct the STF form of these solutions by
inserting expressions (2.11), (2.24), and (2.40) into
Eqs. (2.43), by using the relation x, =n, , by using the,

symmetry and trace-free features of 'jj~, and by mak-
ing suitable changes of notation. The result for the
general solution that is well behaved at infinity is

(2.44a)

+C.p g ~

Here cu is a real frequency and e is either + (outgoing
waves) or —(ingoing waves). We use the unconven-
tional notation k" (x) for spheri'cal Hankel functions

h" = h") -j'+ iy ' h ' = h.'"=j' -iy ',
where j' and y' are the spherical Bessel functions.
Some useful formulas are

(2.47a)

(2.44b)

(-ei)f" k(3+k)! 1
2kk! (l -k)! xfm' '

( 1)kx i+2k

, , 2"k! (2I +2k+ 1)!!

(2.47b)

1
+6PQ1 ~Q+ )-2 y

(-1)"(2I + 1)!! 1
~2kk! (—1- 2l)(1 —2l) ' ' '(2k —1 —2!) '+' 2k '

(2.47c)

+ &,p, &,~, ,
In addition to the outgoing and ingoing basis solutions,
it is useful to define standing-wave basis solutions

(2 44c)

The solutions which blow up at infinity are less simply
expressed in STF form. It is easy to see from V'(1/~)
= —4ll5, (x) that the STF expressions (2.44) do satisfy
Laplace's equation everywhere except at the singular
point x= 0.

G. Solutions of the wave equation

4, 8 culm ~
(@,eculm+ C,-culm)

C, 8(ul'lm f (4etul'lm g,-eel'ilm)

(2.48a)

(2.48b)

(2.48c)g 8 uXl'gm I (g,+uk''jm + @,-cvk. l'lm)

Note that they are given by expressions (2.45) with
k" ((f)l ) replaced by j ' (&ux) = Re[k

"(mx) ]
From the basis solutions (2.45) and (2.48) one can

construct scalar, vector, and symmetric-tensor
Green's functions which satisfy

It is useful to introduce the following "basis" solutions
to the vacuum wave equation q~ = (-Sf2+ V')g = 0:

ee"'"(t,~, 6, @)—(l(u l/2l[)' 'e c"'k"(~x)I" (& y)

(2.45a)

oG'(, x') =-5,( -x'),
G', ,(x, x') = -5,k5, (x -x'),
G',„(x,x') = ——,'(5,.k(')k, + 5„5k/5,(x -x'),

(2.49)

4.'"' '"(t &, p) = (l l/2 )' '
X kg 1'(~~ )Il lcm(sg y) (2.45b)

and which have outgoing waves at infinity for & =+1, in-
going for e = -1. The Green's functions are given by

Ge(x, x') =ex Q d~gsgn(~)C, l (x)[4» l (x')]*),f ~)~'

=ci Q fdtn[sgn(tu)e' ' (x)[e' " ' (x')] ] ff r&r';
l, m

e', ,(x, x')=cf Q fdtn[sgn(tn)e]"" (x)[e' '' (x')] ] if r&r'
l'im

fun[sex(ts)es " (x)[e' """(x')]'] if r&r'.
l'Em

Gt r, (x, x')=ci P fdts[sgtl(ts)e'"" (x)[e " (&')] [ if r&1"
Xl' Em

(2.50a)

(2.50b)

(2.50c)fdtn(sgn(tn)es„"' (x)[et.'t "' ( )]xi[i r&r'. '
Xg'&m

Here sgn((d) is the sign of &u(+1 or -1). One can derive these factorized expansions of the Green's functions by the
same standard method as Chrzanowski and Misner (1974) use in the Kerr metric; see their Eqs. (2.15)-(2.19).

The basis solutions (2.45), (2.48), and Green's functions (2.50) do not have simple forms when written in STF
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language. However, the general solutions of the vacuum wave equations do have simple forms [Sachs (1961),
Pirani (1964)]:

z(t, ~, e, y) = QQ[~-'~„' (t «)]„,
2=0 6 2

&~« ~, ~ 0) = QZ&[~ '~~, « —«)7,~,+ [~ '+gk. &'.~, ,«- «)1,,~,]+ ZZ[~ '&~ « —«)],g~g,
2=1 6 l-"O

V„(t,~, e, y) = gg &„[r'S-„' (t e-r)] „,
l=G 6

+ J' ~~ E —&J,~ + J cp(& „)& t —cJ
l=2 6

+ ZZ&[~ '3'&, (,«-«)],»& +([~'~„,&.'a «-«)],„&,)']+ZZ[~ '3'x «-«)],» .
2=j l -"0

Here the capital script coefficients are arbitrary functions of t —&x. That these expressions satisfy the wave
equation follows trivially from the fact that x f (t —er) satisfies it:

[x 'f (t —«)]=0, except tar =0.

(2.51a)

(2.51b)

(2.51c)

(2.52)

In manipulating STF solutions of the wave equation, the following relations —which are valid for any STF tensor-
are useful:

at all ~ (2.53a)

( 1) (2l+ 1)l '1

~~ 2kk ( (-1 -2l)(l —2l) ' ' (2k —1 —2l) ~&+' 2k-
~ i+20'

(2l+1+2k)
~ko 2'ki (2l+1+2k) t t

in near zone. (2.53b)

Here a prefix superscript in parentheses means differ-
entiation

d'"'(u) =
d
—(s(u) . (2.54)

Equation (2.53a) is given on p. 299 of Pirani (1964) for
the case t =+1 of outgoing waves [except for an error of
(-1)']; it can be derived by straightforward differentia-
tion. Expression (2.53b) is derived most easily by com-
parison of (2.53a) and (2.53b) with the corresponding
expansions of spherical Bessel functions, Eqs. (2.47).

r~—= "inner radius of local wave zone"
(see below) .

y =—"outer radius of local wave zone"

Source:

Strong-field region: ~~ CPM if ypM~L
typically does not exist

if L»10M, (3 2)

Weak-field near zone: «r, 10M «x, r «L,

Corresponding to these length scales, w'e shall divide
space around a source into the following regions:

III. REGIONS Of SPACETIME AROUND AN
ISOLATED SOURCE

Local zouave zone:

distant suave zone: r, &r.
We shall characterize a source of gravitational

waves, semiquantitatively, by the following length
scales:

L —= "size of source"

radius of region inside which the
stress-energy & ~ is contained

2M —= "gravitational radius of source"

2 &mass of source in '

,units where ~ =c = 1

4 —= "reduced wavelength of waves"

1/2m &&characteristic wavelength
of gravitational waves emitted
by source

(3.1)

The "local geane zone" is the region in which (i) the
source's waves are weak, outgoing ripples on a back-
ground spacetime, and (ii) the effects of the background
curvature on the wave propagation are negligible.

The inner edge of the local wave zone (rz) is the loca-
tion at which one or more of the following effects be-
comes important: (i) the waves cease to be waves and
become a near-zone field, i.e., w becomes &'X; (ii) the

. gravitational pull of the source produces a significant
red shift, i.e. , r becomes -2M = (Schwarzschild radius
of source); (iii) the background curvature produced by
the source distorts the wave fronts and backscatters
the waves significantly, i.e., (x'/M)'~' becomes ~L;
(iv) the outer limits of the source itself are encount-
ered, i.e., x becomes && =(size of source). Thus, the
inner edge of the local wave zone is given by
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~~= n x max(%, 2M, (MX2)'~ 3, I],
some suitable number
large compared to unity

(3.3)

some suitable numbers
large compared to unity

(3.4)

Of course, we require that our large numbers o', P, W

be adjusted so that the thickness of the local wave zone
is very large compared to the reduced wavelength:

(3.5)
Previous work in gravitational-wave theory has not

distinguished the local wave zone from the distant wave
zone. I think it useful to make this distinction, and to
split the theory of gravitational waves into two corre-
sponding parts: Part one deals with the source's gen-
eration of the waves, and with their propagation into
the local wave zone; thus, it deals with the spacetime
region r &xo (all of spacetime except the distant wave
zone). Part two deals with the propagation of the waves
from the local wave zone out through the distant wave
zone to the observer, i.e., with the region y &r (all of
the wave zone). The two parts, wave generation and
wave propagation, overlap in the local wave zone; and
the two theories can be matched together there.

By making this split one can simplify the (semi)rigor-
ous theory of wave generation. No longer must
that theory face logarithmic divergences due to phase
shifts produced by the mass of the source, or the ener-
gy in the waves; and no longer need one be terribly
careful about choosing coordinates that avoid those
divergences, a la Bondi, van der Burg, and Metzner
(1962). Rather, one can use any naive, asymptotically
Minkowskii coordinate system one wishes in the theory
of wave generation. Such a coordinate system will
serve just fine to get the waves out of the source and
into the local wave zone. One can then leave to wave
propagation theory the delicate task of getting the waves
out of the local wave zone, through the region of dang-
erous logarithmic divergences, and on into the observ-
er's detector. Moreover, for almost all realistic situa-
tions wave propagation theory can. do its job admirably
well using the elementary formalism of geometric opt-
ics [e.g. , exercise 35.15 of Misner, Thorne, and
Wheeler (1973)—cited henceforth as ' MTW" —or last
section of Thorne (1977)].

Throughout this paper we shall confine attention to
sources which possess a local wave zone —and we shall
call such sources "isolated. " It seems likely that every
source of gravitational waves in the Universe today is
"isolated. " However, in the very early Universe the
background curvature 1/A~' was so large that sources

The outer edge of the local wave zone r, is the loca-
tion at which one or more of the following effects be-
comes important: (i) a significant phase shift has been
produced by the "~/r" gravitational field of the source,
i.e., (M/L) in(r/rz) is no longer «vr; (ii) the background
curvature due to nearby masses or due to the external
universe perturbs the propagation of the waves, i.e. , x
is no longer «As = (background radius of curvature).
Thus, the outer edge of the local wave zone is given by

r, = min [r~ exp(LIP~), &~/y],

might not have been isolated.
In complex situations the location of the local wave

zone might not be obvious. Consider, for example, a
neutron star passing very near a supermassive black
hole. The tidal pull of the hole sets the neutron star
into oscillation, and the star's oscillations produce
gravitational waves [Mashoon (1973); Turner (1977)]. If
the hole is large enough, or if the star is far enough
from it, there may exist'a local wave zone around the
star which does not also enclose the entire hole. Of
greater interest —because more radiation will be pro-
duced —is the case where the star is very near the hole
and the hole is small enough (M„~100Mo) to produce
large-amplitude oscillations, and perhaps even disrupt
the star. In this case, before the waves can escape the
influence of the star, they get perturbed by the back-
ground curvature of the hole. One must then con.sider
the entire star-hole system as the source, and con-
struct a local wave zone that surrounds them both.

IV. IVIULTIPQLE EXPANSION QF THE RADIATIQN
F I E LI3

A. Radiation field itself

aT,.;=~ 'A, ,(f ~, e-, @). (4.1)

Here A,.~ is a transverse, traceless function which, in
the local wave zone, varies rapidly (length scale X) in
the radial direction but slowly in the transverse direc-
tions

A,.~ „-AJ~/%.»A, , 0 -A,.~
[Recall the definition, Eqs. (1.13), of the comma. ]

We shall resolve the angular dependence of the wave
amplitude A,.~ into tensor spherical harmonics. The
best set of harmonics to use is the pure-spin set since
it has well defined transversality and helicity proper-
ties [Eqs. (2.34) and (2.35)]. Because A,.~ is transverse
and traceless, it can contain only the TT harmonics
T~' ' and T~"; hence, the radiation field must have
the form [Mathews (1962)]

ce

HATT
&-& (3)IIm t & T@2, gm

(4.2)

l=2
-1 (g)s jm(g )TB2, tm]

10 (4.3)

The expansion coefficients I™(f—r) will be called the
"mass multipole moments" of the radiation field, and
S' (t —y) will be called the "current multipole mo-
ments. " The quantities '"I'~ and '"S'~ are the Lth time

Consider any isolated source of gravitational radia-
tion. Throughout its local wave zone yo&~&&I, by vir-
tue of definitions (3.3) and (3.4) of r, and r„wecan
treat the waves as linearized metric perturbations
propaga, ting on a flat background. To characterize this
flat background we introduce Minkowskii coordinates
f, x, V, z with the source at rest at the origin ("asymp-
totic rest frame of source"; cf. Chap. 19 of MTW);
and we introduce the corresponding spherical coordi-
nates [Eqs. (1.1)]. In this coordinate system the trans-
verse, traceless part of the metric perturbation —which
characterizes the radiation completely (Secs. 35.4-
35.7 of MTW) has the form
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irma ( 1)mf t m-S trna ( 1)mS& -m (4.5)

In comparing this radiation field with the properties
of the source (Sec. V and Part Two), STF notation will
be useful. In STF notation, the mass and current l-
pole moments of the radiation are real, STF-E func-
tions of g-y".

derivatives of these moments; i.e. , we use the notation

'"G(u) =——G(u).
d (4.4)

dt's

The mass moments generate the electric-parity part
of the field, r=(-1)'; the current moments generate
the magnetic-parity part. The fact that h,.kT must be
real, together with the complex-conjugate property
(2.36b) of the TT ha.rmonics, implies that the mass and
current moments must satisfy

{l)llm I TTT&2, imp dgjk jk (4.10a)

contain only multipoles of quadrupole order and higher
(I ~ 2). This is because for i=0 and 1 the TT tensor
spherical harmonics T~~ ™and TB ' ' are nonexistent.
One can verify their nonexistence either from the STF
formulas (2.39e) and (2.39f), where the '9's must have
at least two indices; or from (i) Eq. (2.30d), where
T' ' "'m obviously does not existwhenl =0 or 1 andwhere
the other terms in T~' ' vanish for i = 1, and (ii) the
relation T~'' = [nx T~''"]~ [Eq. (2.30f)].

If the radiation field is known, one can project out
its multipole moments using the following integrals
over the sphere of constant g —&..

(l)S lm + p TTTB2, lmgyg.
jk (4.10b)

4 (i 1)(i 2)
i t 2(t 1)t

m= l
STFi(i —1)(2t+1)!!~

~ &»
„2(i+ l)(i+ 2) 4~ J """ea

(i+1)! 2(t 1)i
8t (t+ 1)(t+ 2)

(4.6b)

[The i-dependent coefficients are chosen to make 8~
and 8~ have simple links to the theory of the source

l
in the slow-motion limit; see Eqs. (5.19) and (5.28),
below. ] Relations (4.6) can be inverted by comparing
with Eqs. (2.13):

16m (t+ 1)(t+ 2) '
g

(2i+ 1)!! 2(i —1)i (4.7a)

32nt (i+ 1)(i+ 2) '~'8
(I+ 1)(2t+ I)!! 2(i 1)t &t'

By comparing Eqs. (4.6), (4.3), (2.39e), and (2.39f) we
obtain the STF multipole expansion of the radiation
field [Sachs (1961), Pirani (1964)]

OO

l=2

(l)
(~+ yh~ &I (j k)it~, 2l.

(4.7b)

(4.8)

(4.9)

[Eqs. (25) and (26) of Einstein (1918); Eq. (36.20) of
MrW].

Expressions (4.3) and (4.8) for the radiation field

Note that this is the radiation-zone form of the most
general outgoing-wave transverse-traceless solution
of the flat-space wave equation kr~ar=O [Eqs. (2.51c)].
Note also that the mass-quadrupole part of the field
has the familiar form

(4.11a)

B. Energy in the waves

The energy and linear momentum carried off by the
radiation field (4.3), (4.8) are most easily evaluated
using the Isaacson (1968) stress-energy tensor for
gr avitational waves

(4.12)T.,"=(I/32~)&t ". I '„',)
(cf. MTW, Secs. 35.7 and 35.15). Here the brackets
( ) denote an average over several wavelengths. The
power radiated into a unit solid angle about the radial,
n, direction is

GW Ger—y n~T~ =+y Too, (4.13)

which —by using Eqs. (4.3), (4.8). and (1.11)—works
out to be

"&8 -( ' ~ ~ . n h"n ~ ~ n dn"'
A 4(i+ 2) 4~ el& 4 &ea aa e(

(4.11b)

See Eqs. (4.3) and (2.36a); also Eqs. (2.39e), (2.39f),
and (4.7).

It is trivial to generalize this multipole expansion to
any other metric theory of gravity if one knows the
"E(2) classification" of the theory [Eardley et at.
(1973)]. One need only include in the expansion of
Qarav wave (or of it eagarav wave) those pure spin
tensor harmonics which belong to the spin states of that
E(2) class. For example, in Brans-Dicke theory (class
K,) one must include the harmonics T~' ' (transverse,
spin 0 state), T~" ' (TT, electric-parity, spin 2
state), and T~'' (TT, magnetic-parity, spin 2 state).

dE & (l+1)Jim (l'+l)ll'm'T&2, lmT&2, l'm'

l~2 l'= 2 m m'

( l+1)c lm (l'+1)c l m mB2 lmTB2, l'm' + 2 (l+1 )Ilm ( l'+1 )S t'm T&2 ™TB2l m' $+ X - j!k (4.14)
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OO OO

~ ~

ll'
(4 (l+1)g (l'+l)g ~ ~ 8 (1+1&g (l'+1)g

. .., , 4)T(l+ 1)!(l '+ 1)! Bl Al BP A l-i l'-i

a ( T 1+) 0 (T'+l)o ~ &,T 4 (1+1&g (1 + )g n m j)/ f(T )

OO OO

/ ((+1)g (T'+1)g.
&)T ~ + ( 1+1)g (l'+1)g n~ f(T ) (4 14T)Z Z 4 lr/lT jAg j kBg„y W'A) 1 Bg j jkg jiA)-,p kiBj 2 P Ag 2 Bg„2

l=2 l'=2 + ~ K

The total power radiated is the integral of this energy
flux over a sphere lying in the local wave zone: , = l(g'. g );dt mass quadrupole (4.17)

dE dE
dg dQdt (4.i5)

Expression (4.14) is easily integrated using the ortho-
normality of the pure-spin tensor harmonics [Eq.
(2.36a)] and the complex-conjugate behavior (2.36b),
(4.5):

OO

(/+1)11m 2+ (l+i)s lm 2

dt 327t'
g 2 g

(4.16)

This result is due to Mathews (1962) [beware, however,
his peculiar notation, e.g. , g„=&!„+(32&GT)' /'

/„T,] Th.e
analogous STF expression can be found either by in-
serting Eq. (4.14') into Eq. (4.15) and integrating with
the help of Eqs. (2.5) and (2.6); orby taking the claimed
answer (4.16') and transforming back to Eq. (4.16) with
the help of Eqs. (4.6) and (2.26a). The result is

(l+ 1)(l+ 2) 1 ((„,) („,)g )dt ~ (l —1)l l!(2l + 1)!!
4l(l+ 2) 1 (

(l i) (l+ i)!(2l+ i)!r

The mass quadrupole part agrees with Einstein's (1918)
formula. (30), after correction of his factor-2 error':

C. Linear momentum in the waves

The waves from our source carry linear momentum
out radially; and, as with any locally plane-fronted ra-
diation field, the magnitude of their momentum flux is
the same as that of their energy flux

dgdt' + k kj dgdt (4.18)

[cf. Eq. (35.77j) of MTW]. The total rate at which the
sour ce feeds momentum into the radiation fie ld

dP,. dP~
df. dQdt (4.19)

can be calculated by inserting (4.14) into (4.18) and
(4.19) and then using group-theoretic methods
(Racah recoupling, etc.) to bring the integrand into do-
able form; the result is

[cf. Eq. (36.23) of MTW]. The mass octupole and cur-
rent quadrupole parts agree with Papapetrou's (1962,
1971) formulas~fter one invokes Eqs. (5.19) below and
changes notation.

(( l+1)I T !T/[{1 m + 1}(l m + 2) ]1/2 ( T +2)I !+1 -1
(.

-1
„32~(l+1)(2l+1)(2l+3)

~ [2(l m + 1 )(l + m + 1) ]1 /2 ( T+2 )f l+1 m (0 + [(l + m + 1 ) (l + + 2) ]1/2 (1 +2 )f1 +1 m+1 (1})
2() ] l/$+, 3h &&r'2( )( ) ((1+1)Slm)1([(i + 1)(l + 2) ]1/2 (l+2)S l+1 m-1 g-1

, , ~32T((1+1) (2l+1)(2l+3)
+ [2(l —m+ 1)(l+m+ 1)]'/' '""S'"m( + [(l+m+ 1)(1+m+ 2)]'/' "'&S'+' m'('])

+ g g —2 ((1+1&1(mg/[1 (1 +m)(l m + 1)]1/2 (1+1)Sl m-1g-1
8&Tl(l+ 1)

+ m (1+1)STm(0 [1 (l m)(l + m+ 1 )]1/2 (1+1)sl m+1 gl]) (4.20)

(4.20 ')

Alternatively, one can insert Eq. (4.14') into Eqs. (4.18) and (4.19), and then integrate with the help of Eqs. (2.5)
a.nd (2.6). The result is

dP/ ~ 2(l + 2)(l + 3) ((l+2)g (1+1)g ) 8(1+» &(l+2)g (l+1)g )l(l+ 1) r (2l+ 3)! i /& 1 1 (l+ 1)!(2l+ 3)!!
8(l + 2) (l+1)g ( l+l)g

(l —1)(!+ 1)!(2!+ 1) & i

~~Einstein (g9g8) makes a factor 2 error in going from Eq. (9) to (16); and, as a result, his Eqs. (27) and (30) for the energy in
the waves are a factor 2 too small.
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Once one has derived either Eq. (4.20) or (4.20'), then
one can obtain the other from it with the aid of Eqs.
(4.6), (4.7), and (2.26). A general expression for
dP//dt, presumably equivalent to these but in rather
different notation, was derived by Campbell and Mor-
gan (1971). Papapetrou (1962, 1971) derived the lead-
ing terms (those involving mass quadrupole, current
quadrupole, and mass octupole) —but also in rather
different notation.

~sou rcej ~ — ~c ab
dt dt ' ~'" dt

LI
cg gx tg p' Q. (4.21)

Here t~~~~ is the Landau-Lifshitz pseudotensor and
S&'"'" is the intrinsic angular momentum of the source.
By expressing t~, in terms of the metric perturbation,
and by then averaging &&, x,t„~n,over several wave-
lengths, one ultimately winds up with the simple DeWitt
formula

An equivalent formula, , obtained from Eq. (4.22) by in-
tegration by parts, is

D. Angular momentum in the waves

'The dependence of the wave field @» on angle causes
its wave fronts to be not quite precisely spherical —and
thereby enables the waves to carry off angular momen-
tum. One might hope that the angular momentum loss
could be calculated by integrating &ga&x Tpp over a
sphere surrounding the source. Unfortunately, such a
procedure fails —for this reason: The averaging pro-
cess that underlies Eq. (4.12) for To~~ treats as zero the
"tiny corrections" which die out as 1/r'. However, it is
precisely the 1/l" part that carries off the angular mo-
mentum. I was vaguely aware of this fact when writing
the relevant sections of MT', but was not sufficiently
certain to spell it out explicitly. Subsequently Bryce
DeWitt /1971) derived a simple, correct expression for
the flux of angular momentum. An alternative deriva-
tion, which I have carried out as a check, begins with
the fact [MTW Eq. (20.26)] that

OO

QQ ((t)Ilm+ ([l(E+ 111)(f ill+ 1)]1/2(1+1)fl m-lg-1
dt 32m) 2

+ ill(l+1)f1 mgo [ 1(E llew)(l + 111+1)]1/2 (1+1)11 m+1 pl })

+ g ((l l5'™~([I($+ ill )($ 111 + 1)]1/2 u+1)s l m 1$
j=2 nt

+ ill (1+1 l$™$0 [ 1
($ m )($+ ~+ 1 )]1/2 ll+1)S l nt+1pl]. ) .

(4.23)
dS/ ~ (l+ 1)(l+ 2)

( (,) (, ,)

~12 ($ —1)l!(2)+ 1)!! /&& 1' l-l

As far as I know, general expressions such as these
have not been given before; but the leading term (mass
quadrupole) was given by Peters (1964),' and the next two
terms (current quadrupole and mass octupole) were
given by Cooperstock and Booth (1969).

E. Discussion

Of what use are the above formulas? I view them as
tools to be used in studying the generation of gravita-
tional waves from explicit sources: Given a source,
one identifies the local wave zone. Using any technique
one can dream up (and this is the tough part of the anal-
ysis! ), one calculates the time-changing multipole mo-
ments of the source. One then plugs into the above for-
mulas to get the radiation field and the rate it carries
off energy, momentum, and intrinsic angular momen-
tum.

As an alternative application, one can calculate the
radiation field of a given source (the tough task; above
formulas not necessarily useful); one can use Eq. (4.10)
or (4.11) to resolve it into multipole pieces; and one can
then use the other formulas above to read off the energy,
momentum, and angular momentum radiated.

Once the radiation field hT&T is known in the local wave
zone, one can propagate it on outwards to Earth using
the propagation equation of the shortwave formalism
[MTW, Sec. 35.14 and exercise 35.15; Thorne (1977)
last section]. For typical situations the dominant parts
of the waveforms (4.3) and (4.8) will remain highly ac-
curate all the way to Earth, except for uninteresting
phase shifts caused by background curvature and the
waves' self-energy.

A word of interpretation is needed. This equation is
correct only if the integral is evaluated in the asymp-
totic rest frame of the source. (Similarly for all pre-
vious formulae in this section. ) As the source's linear
momentum changes [Eq. (4.20)], its asymptotic rest
frame gradually changes; and one must gradually change
the reference frame in which one evaluates Eq. (4.22)
(and all previous integrals).

Return to Eq. (4.22). An exceedingly long and t'edious
calculation, using techniques similar to those for eval-
uating the energy and momentum integrals, brings Eq.
(4.22) into the forms

V. MULTIPOLE MOMENTS EXPRESSED AS
INTEGRALS OVER SOURCE

A. General sources

For any asymptotically flat system one can introduce
an asymptotically Minkowskii coordinate system in
which the quantity

jcx8 —
( g ) 1 /2g cx8+ ll

Ot 8 (5 1)

~~Note DeWitt's correction of an error in the Peters formula
for the angular Inomentum density in the waves, as detailed on
p. 992 pf MTW.
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satisfies the de Donder gauge condition

k —0'
, j3 (5.2a)

see, e.g. , Fock (1964, p. 193). In these de Donder co-
ordinates the exact Einstein field equations take the
form

~ns
y 6&&cx8 (5.2b)

where U is the flat-space scalar wave operator .-8', + V',
and the "effective stress-energy" 7 has the form

=( g)(T —+t ] L) +(16]]) '[It""
) jz "

]t
—T.

t"
])) & '] . (5.3)

Here f L„is the Landau-Lifshitz pseudotensor [MTW
Eq. (20.22), or Landau and Lifshitz (1971) Eq. (101.7)].
The effective stress-energy and its two individual
piec es are coo rd inate-dive rgenc e- free

[(—g)(T '+f].L)],8=o (5.4)

Far from the source„where ~h ~
«I& It" reduces to

the trace- reversed metric perturbation:
h ng 1 qnBI

For systems with extremely strong internal gravity-
e.g. , systems involving black holes —the de Donder co-
ordinate system may not cover all. of spacetime in a
nonsingular manner. In the rest of Sec. V (but only
here) we forego treating such systems; i.e. , we re-
strict ourselves to systems which admit nonsingular
spacetime-covering de Donder coordinates. We can
then invert the Einstein field equations using the flat-
space outgoing-wave Green's function Gt'~. t„(x,x ) [cf.
Eqs. (5.2b) and (2.49)]

),,{*)= ){) jG;, .„{, (5.5)

Note that this in fact is an integral equati. on for h,-~, be-
cause 7't„depends on ft;„[Eq.(5.3)] .

We now restrict attention to field points x in the local.
wave zone; we take the transverse-traceless part of
the radiation field h;„=h,.~; and we use the factorized
form (2.50c) of the Green's function to obtain

x 4p~ g Tpq JY d x ~ (5.6)

Again this is an integral equation; ~p, depends on @,~
as well as on other parts of the gravitational field. Of
the basis outgoing-wave solutions 4,+-~

' ' only those
with A. =2 have nonzero TT part; and of these, the ones
with / = 1 —2, l, 5+2 contribute to the mass multipole,
while the ones with E = E —1, I+ 1 contribute to the cur-
rent multipole. More specifically, upon inserting into
Eq. (5.6) expressions (2.45c) and (2.48c) for the 4's,
and upon using Eqs. (2.33) and (2.34) to compute the TT
parts of the pure-orbital harmonics T,.„'', and upon
using the leading I/~ term in expression (2.47b) for
ft" ({t)r), one obtains the standard radiation-zone expan-
sion (4.3) for h,.~, and the following expressions for the
multipole moments of the radiation field (where we have
changed the names of the integration variabl. es from t,
~, Q to f, &, Q):

{1]It )))(f) ( t) ) +28 e-iu{t-t '] ( ) ( )
[ T2 t -2, tm(fl)]*. i -2(~&) ( ) ( ) [T3 t 1&))(Il))*.t (~&)

I/2
(5.7a)

I/2"8' {t)={—i)'"{)jr ' " '' [r'' " {)))])' '{~r)
21+ i

~

~[T2~,""(0)] j'"(re&) Tt„(t,&, fl)~'dQ drdt der. (5.7b)

In these expressions the integral over frequency can be performed expl. icitly using-the fact that the Fourier trans-
form of a spherical. Bessel function is a Legendre polynomial. The result is

(5.8 a)

(5.8b)

where P' is our unconventional notation for the Lengendre polynomial of order /. These types of gravitational
source integrals involving Legendre polynomials were first constructed by Campbell, Macek, and Morgan (1977).

The corresponding source integrals for the STF moments g„,and 8„,can be constructed by inserting expressions
(2.40) for T' ' '" into Eq. (5.7), and by then comparing with Eq. (4.7). (In making the comparison one should note
that, because Q ~, is STF on its E indices, only the STF parts of the quantities contracted into g'„,* can contribute
to I' and 8™.) The result is
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l(l 1) (2l —3)!!,.
(6 6,),, 6(l —1)(2l + 1) ., (l —1)l (2/ —1)

'2 '" "- ' - ' (/+ l)(2l+3) (/+1)(l+2)(2l+3)

6 (2/ —1)(2l + 1) ., 2l (2l —1) (2l + 1) ., +2 2 (2l —1)(2l + 1) ., (2/ —1) (2l + 1)
(/+l)(2/+3) (/+l)(l+2)(2l+3) "t 't (l+1)(2l+3) (l+1)(l+2)(2l+3)

(2/ —1) (2l + 1)
+ V ttt tt„T

(l 1)(l 2) j d(2)d xdt

(1 —1)(21 —1)" f
~
SVF

~ Lx ~ I .l+x 2E+ ~ l+x 3
» n&T&, j — j + Ng 6, pg plp7;-I, nr, j d~d xdt

(5.9a)

(5.9b)

Here j —=j' (mr) and 7,.~=—r»(t, x). These are the STF
analogs of Eq. (5.7). The analogs of Eq. (5.8), invol. —

ving Legendre functions rather than spherical Bessel
functions, can be derived by performing the integral
over &u in Eq. (5.9).

The source integrals (5.7)—(5.9) for I', S™,8„,and
A~ ~

S„arenot particularly useful when the source has
strong gravity and fast motions. This is because the
integrals involve 7;~, which in turn depends on the
gravitational field /t„8 [Eq. (5.3)]. It may be prohibi-
tively difficult to compute h„8for insertion. into the
source integrals.

( iur)—' e ' (' ' f(t ) dt d&u =27( ' f(t) (5.13)

and we express Tt„'(//) in STF form using Eqs.
(2.40). The result is

I,I, )6II (1 —1)l(1+ 1)(1+2) )'
(2/+ 1)!! 2

jj))A %At 2 Jt)(t& x) d x I
v'

(5.14a)

We now perform the integral. s over u and t using the
relations

B. Slow-motion sources

We now specialize to slow-motion sources —i.e. , to
sources which are confined to the deep interior of the
near zone. For such sources

16II 2(l —1)l(l+ 2))'I'(2 )St
(2l+1)!! / +1

(5.14b)

~x«1 for r such that v 8 is non-negligible By virtue of the "differential conservation laws" v 8=0
of the source —which we can rewrite

in size, and

for w such that non-negligible radiation
(5.10) Oo Oq. j ~ t Oj jE/, .k

—the source satisfi'es the identities

(5.15)

emerges at this frequency.

Hence, we can expand the spherical Bessel functions
j' ((dr) in powers of (dr [real part of Eqs. (2.47c)] and

keep only the leading term

j' ((dr) = [(2/ +1)11] '(~t )' [I +0((d'r')]. (5.11)

& l -2 -fee(t-t') T21-2, l ~ g

The dominant contribution to the mass moment ' I'
comes from / =l —2; l =l is down from it by ((d&)',
and l = l+ 2 is down by ((dw) . The dominant contribution
to the current moment ' S'~ comes from l = / —1; E

= /+1 is down by ((d&)'. Hence, aside from fractional
errors in the integrands of order ((2)t')',

(t)ft~ t 8(—i)'" (/+1)(/+2)
(21 —2)!! 2(21 —1)(21+1))

(5.16a)

(5.16b)

16t( (/+ 1)(l+ 2) 't '
(2l+ 1)!! 2(/ —l)l ~~t » &2

—32)T l (l+ 2)
(21 + 'I) II 2(l —1)(l y 1})

(5.17a)

(l —1)l,. 2C„

+ 2l(T,.~Ã„)„.y'„*

~t)qt 9qAt &( t Oj) tI A
i

+ ~t)qt SqAt 2( J)) t ~A
2

1) t) '

By inserting these identities into Eqs. (5.14) and inte-
grating out the divergences to zero, we obtain

x qt, q(t, x) d x dt'd(u

(t)S(~() 8(-i)'" l +2
(2l —1)!!2l + 1

(5.12a)
1m 4

tqxt ( zoq)~~—I (5.17b)

X ((gK)i -1e—iq}(t—t') [T2 t —). , l m(E/)]q

&& r~, (t, x) d'xdt d~. (5.12b)

By then comparing with Eqs. (2.11), (2.24a), and (2.23b)
we obtain

16tr (l+1)(l+2) 't '
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—32@ (l+ 2)(2/+ 1)
(2l + 1) /! 2 (/ —1)(l + 1)

x q. x —7 P'. '' *y''dxi Pq 0 0q

I+2
( T ) y.Bi lmd r'

(2l+ 1)!!2(l —1)

(5.18b)

Expressions (5.18) and (5.19) for the radiation mo
men. ts are not exact. If M is the mass of the source, I.
is its characteristic size, X= 1/(d is the characteristic
reduced wavelength or time scale of the radiation it
emits, and Xd- L

l r~/rc, l
is the characteristic dynami-

cal time scale for internal motion. s of the source, then
Eqs. (5.18) and (5.19) make errors of magnitude

STF
A 00 A

l
(5.19a)

Similarly, by comparing Eqs. (5.17) with (4.7), and by
noting that because yA™~is STF on its l indices only the
STF parts of the integrais in Eqs. (5.1'la) and (5.17b)
contribute to I™and S', we obtain

(5.2 0K)

(5.20b)

si
l

l

-
I
bg„ l

-/!fl. '(I./~)',
6s(

I l«~ I
Ml-(«&.)«&)'

cf. Eq. (5.11) and'associated discussion. For typical
systems

P STF
(5.19b)

(5.21)

Thus, the mass moment 8„(t)which characterizes the
radiation field is equal to the STF Part of the lth mo
ment of the effective mass distribution v;c; and the
current moment S„(t)is equal to the STF part of the
(/ —l)th moment of the effective angular momentum
distribution e,.», x»( 7.„)= &,.», x» v', . The general ex-
pressions (5.18) were derived in iinearized theory by
Mathews (1962). The mass quadrupole term dates back
to Einstein (1918); and the current quadrupole and mass
octupole terms, in rather different notation, are due to
Papapetrou (1962, 1971).

so that the fractional errors are of order (L/X)'. How-

ever, for highly symmetrical systems the actual mo-
ments of interest may be much smaller than (5.21); and

the fractional errors can be dangerously larger than

(L,/X)'.
It is straightforward to derive from Eqs. (5.7) or

(5.9) higher order corrections to the slow-motion mo-
ments (5.18) and (5.19). One need only keep higher-
order terms in the expansions of j' (&ur) By k.eeping
all terms in the expan. sions one obtains the following
exact infinite series for the moments of a slow-motion.
source

167) (l + 1)(l + 2) ' i '
(2l + 1)!! 2(/ 1)l 00

16m'
( )2» „2» (2l+ 2k+1) (l+ l)(l+ 2)

~~2 k!(2l+ 2k+ 1)!! ' ~ 2(k+ 1) 2(2/ —1)(2/+ 1)

3(l —l)(l+ 2) '~2 2, , ~ 2k l(l —1) '~2
2 „2,„'i

(2/ —1)(2l+ 3)»' 2l+2k+3 2(2l+ 1)(2l+3)
—327) (l + 2) (2l + 1)

(2l+ 1)!!2(/ —1)(l + 1)

(5.22 a)

2»n). ln2»nl " T2 t-l, (mg T2 )+12 fmg d3
,2»k!(2l+ 2k+ 1)!! ' »' „2(k+1) 2/+1»' 2l+2k+ 3 2l+ 1

STFOQ

x x x P(xx, ) (d' xx x, , +B xx x, , x,'+ c'x'x x,, +D+ nxnx, x& ))dx'
~-2 l & $-1 l l

In expressions (5.23) the coefficients A' , . .». , F' are»

(l —l)l(2l+1)!! (2l+2k+ 1)(2l+ 2k+3) 6(/ —l)(2l+2k+ 3) 2(l- l)lk
2»k!(2l+ 2k+ 3)!! 2(2l —l)(2l+ l)(k+ 1) (/+ 1)(2/ —l)(2l+ 3) (l + l)(l + 2)(2l + 1)(2l + 3)J '

(l —1)/(2/ + 1)!! 2l k

(l + 1)(2l +3)2 'k!(2/ +2k+ 1)!! . (/ + 2)(2/+ 2k+3)

(l —1)l (2l + 1)!! k
(l + 1)(2/ + 3)2 'k!(2l + 2k+ 1)!! (l + 2) (2/ + 2k+ 3)

1—

STF3„= X„c,», x»( r~) + (r&,)' —(E»X'„)»e, », x»r, r+ F'»A„e,. x»r,. n,)d'x.A)—
g 1 l

(5.23a)

(5.23b)

(5.24a)

(5.24b)

(5.24c)

(l —1)l(2/+ 1)!!k
(l + l)(l +2)2" 'k!(2L+2k+ 3)!! (5.24d)

(L —1)(2/ —1)!! (L —1 (2/ + 2k+ 3)
2 k!(2l +2k+3)!! ),/+2 2(k+ 1) (5.24e)
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(l —1)(21+ 1)!!
(E +2)2"0!(2E + 2k+ 3)!! (5.24f)

Although the exact source integrals (5.22) and (5.23)
were derived using Fourier-transform techniques [Eqs.
(5.6)-(5.9)], they are valid independently of the Fourier
transformability of hTT. Fourier transforms are noth-
ing but a trick to simplify algebraic manipulations that
can be performed equally well in the time domain.

It is straightforward to verify that, if the multipole
moment OR&, (=—8~, or 3&,) is the largest contributor to
the radiation field (4.8), then one can ignore "gravita-
tional pseudotensor" contributions to QR» from radii
&- x; i.e., one can confine the integrals (5.18), (5.19),
(5.22), (5.23) for Ott~, to radii deep inside the near zone.
In doing so, one makes errors

I 59R~, I
—(M/X) IOR~, I;

cf. Eq. (9.34) below.
As we shall see below, Eqs. (5.22) and (5.23) can be

used to generate post-Newtonian and post-post-Newton-
ian formulas for the radiative moments.

C. Newtonian sources

Specialize now to slow-motion sources with weak in-
ternal gravity and small internal stresses. Character-
ize the slow motion by a velocity parameter

maximum of typical IT»I
internal values of ITool

' I~ a,~ I

characterize the weak gravity by

& =—maximum over entire source of kpp,.

and characterize the small stresses by

(5.25a)

(5.25b)

q- (L/K)'-v'-S «I; (5.26)

(iii) restricting attention to the near-zone neighborhood
of the source, x&L; and (iv) expanding the equations
of motion (5.4) to lowest order in e and linearizing the
Einstein field equations, (5.2b); see, e.g. , Chap. 18
of MT%.

$'or Newtonian sources, the theory of gravitational-
wave generation is obtained by carrying out the proce-
dures of Secs. V.A and V.B, and ignoring fractional
corrections of order e-(L/K)'-v'-S. The result is
Eqs. (5.18) and (5.19) for the multipole moments of the
radiation field, with r« =p =(Newtonian mass density)
and —r» =pvz = (Newtonian momentum density):

16' (E+ 1)(l +2)&!' '

—32m (l +2)(2E +1)l'
(2l +1)!!2(l —l)(l +I)&

x Jt (6 x pv ) Y' l-', E tn+x l -~ d 3~ .
JPa P e (5.2Vb)

s —= maximum over entire source of
I Tz» I

/ I &oo
I
.

(5.25c)

One obtains the Newtonian theory of gravity by (i) be-
ginning in de Donder gauge [Eqs. (5.1)-(5.4)]; (ii) re-
stricting attention to sources with

STF
p~~, d x

STF
d x

(5.28a)

(5.28b)

Of course, the general expressions (5.2V) are familiar
from Mathews (1962) and the leading terms are familiar
from Einstein (1918) and Papapetrou (1962, 1971). Note
that the integrands of these source integrals are free of
any reference to the gravitational field. They depend
only on the source's material mass density and angular
momentum density.

For typical Newtonian sources the multipole moments
will have magnitudes (5.21) and will therefore produce
radiation fields of strength

(5.29a)

(5.29b)

where we have assumed that the source's dynamical
time scale and gravitational-wave time scale are the
same, X„-X.For such sources, the Newtonian frac-
tional errors e - (I /&) —v'-S in computing the various
moments are such that

y ~4-l

(1 TT4 3-l"jk ~current 7-yale

Thus, only the mass quadrupole, mass octupole, and
current quadrupole fields are larger than the dominant
(mass quadrupole) error.

(5.30a)

(5.30b)

D. Post-Newtonian sources

@or sources with &
—(L/X)'- (L/K~)'-v'-S small, but

not extremely small, one may want to compute the ra-
diation field with higher accuracy. One can do so using
a post-Newtonian wave-generation formalism derived
by Epstein and Wagoner (1975) and Wagoner (197V).
[See Turner and Wagoner (1979) for an application of
the formalism to collapsing stars. ]

The Epstein-Wagoner procedure for deriving this
formalism is the same as in the Newtonian case: (i)
One constructs a near-zone post-Newtonian formalism
for analyzing the source's motions; and one forces the
formalism to satisfy the de Donder gauge condition
(5.2a) to post-Newtonian order. (ii) Then one computes
the radiative multipole moments, accurate to post-
Newtonian order [fractional errors -(L/K)4] from Eqs.
(5.22) and (5.23).

The resulting expressions for the multipole moments
are

16m (l +1)(l +2)
(2l +1)!!'

2(l —1)l

X V, yam~ + j + T2 r-2. re 7-
2l —1 jk jk

l+1 2l —1 2l +3 )I
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STF

Here

~ STF
+ E'~Ã~ q, ~xP"8 ~7'~qnp)d x

Ag ~ ~lgk

(I —1)I (l +9),0 6(l —1)I
2(l+ l)(2l+ 3)' (l+ l)(2l+ 3)'

—32m (I+ 2)(2l+ 1)&i'i'

(2l + 1)!! 2(l —l)(I + 1)]
x lI Ii, ~ ~ i[2(l —1)(l+ I)]' '

1/2
~ &m++ TS &+i, lm+'

Z& Z2l+3 l+2

(5.Slb)

(5.S2a)

(5.S2b)

(5.34) will not apply; and one will be justified in keeping
post-Newtonian corrections in one or more of the high-
er moments.

E. Post-post-Newtonian sources and beyond

If one wished, one could construct a past-post-New-
tonian wave-generation formalism by the same proce-
dure used at Newtonian and post-Newtonian orders.
The first step would be to reformulate the Chandra-
sekhar-Nutku (1969) near-zone post-post-Newtonian
formalism in de Donder gauge, and evaluate the effec-
tive stress energy w ~ [Eq. (5.3)] in terms of the vari-
ables of that formalism. Then the radiative multipole
moments, to post-post-Newtonian accuracy [fractional
errors -(L/4)'] will be given by Eqs. (5.22) and (5.23)
with the k = 0 and k = 1 terms kept, and 0 ~ 2 discarded.

In principle one could proceed beyond post-post-New-
tonian. order by the same procedure; but in doing so
one would have to face, and carefully handle, issues
of radiation reaction in the source; see Chandrasekhar
and Esposito (1970).

VI. CONCLUSION
2(I —l)l, o (I —1)(l+ 4)

{I+I)(2I+ 3)' 2(I+ 2)(21+ 3)'

{I—1)
(I+ 2)(2I+ S)

(5.33)

[cf. Eq. {5.24)]. In these expressions v.
~ is the effec-

tive stress-energy tensor (5.3), evaluated at post-New-
tonian order in the post-Newtonian de Donder gauge
[Eqs. (37) of Epstein and Wagoner (1975), with indices
lowered using the Minkowskii metric]. These ~

~
de-

pend on the source's Newtonian gravitational poten-
tial 4, but they are free of any reference to the gravi-
tational-wave field h,.~~.

For typical post-Newtonian sources the multipole mo-
ments will have magnitudes (5.21) and will therefore
produce radiation fields of strength (5.29). When this
is the case, the post-Newtonian fractional errors
(L/4) in computing the various moments are such that

c
hTTik ICurrent &-IIOle

error in (hTT) „,„„~,„„,. I (5.34b)

If one is willing to drop all terms in hTkT smaller than or
comparable to the (mass quadrupole) errors, then for
such sources one need only compute mass multipoles of
order l ~ 5 and current multipoles of E» 4; and in. doing
the computations one need keep the post-Newtonian
corrections only in the mass 2-pole and 3-pole and in
the current 2-pole. [For the other moments the New-
tonian expressions (5.27) and (5.28) produce radiation
f'ields accurate to post-Newtonian order. ] This is the
procedure followed by Epstein and Wagoner (1975); see
also Wagoner (19VV).

On the other hand, for some special sources [e.g. ,
torsaonal osclllatlons of neutron stars, Schumaker and
Thorne (1980); also the collapse of a. very slowly ro-
tating star, Turner and Wagoner (1979)], the mass
quadrupole moment will be strongly suppressed; Eqs.

In Part One of this paper we have examined the mul-
tipole structure of the generic gravitational-wave field
of an arbitrary source. In doing so, we placed only
one very mild restriction on the nature of the source:
that it be "isolated", i.e. , that it possess a local wave
zone.

However, when we derived formulas for the coupling
of the multipole waves to their source, we had to im-
pose a much stronger restriction: that the source be
coverable by a single nonsingular de Donder coordinate
system. Moreover, the resulting formulas are not ter-
ribly easy to apply (except in the Newtonian and post-
Newtonian limits), because the calculations must be
performed in a de Donder coordinate system —which
one may not have readily available in a given theoret-
ical study —and because the integrands of the source
integrals involve the gravitational-wave field itself
(& z depends on h» ). Obviously, a, better theory of
coupling to the source would be useful.

In Part Two a new coupling formalism will be pre-
sented. It is valid for sources with arbitrarily strong
internal gravity (including black holes); but it requires
slow motions, L/X«1.

PART TWO. SLOW-MOTION SOURCES OF
GRAVITATIONAL WAV ES

V I I. INTRODUCTION

In 1969, James Ipser (19VO) computed the gravita-
tional radiation emitted by a slightly deformed, slowly
rotating, fully relativistic neutron star. His result was
somewhat startling: He found that the multipole mo-
ments which governed the radiation field were pre-
cisely the same as the "mass multipoles" which one
reads off.the star's weak-field near-zone Newtonian
potential. 'This led Ipser to conjecture that one can
compute the gravitational waves from any strong-field
slow-motion system by first computing (using full
nonlinear general relativity) the system's asymptotic
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Newtonian potential, by reading the source's multi-
pole moments off that potential, and by then inserting
those moments into the gravitational-wave formulas
of Part IV.

Soon thereafter, while writing the first draft of Chap.
36 of MTW, I found what I thought was a simple proof
of Ipser's conjecture. That proof appears in the pre-
liminary versions of MTW [Misner et al. (1970,1971)]
and is referred to in my review article with Bill Press
on gravitational-wave astronomy [Press and Thorne
(1972)I. However, much to my horror, in March 1973
while checking page proofs of the final version of MTW,
I found a subtle but fatal flaw in my proof of Ipser's
conjecture. After much agony I managed to rewrite the
relevant material [Secs. 36.7 and 36.10 of Misner
etal . (1973)t with a restriction to sources that have
weak internal gravity —and without changing by even
one the total number of lines of text.

In Part Two of this article I shall try to redeem my-
self by presenting a correct formulation and proof of
Ipser's conjecture. 'This formulation will avoid the
concept of the asymptotic Newtonian potential of a
source; in its place will appear a prescription for
reading the multipole moments of a source off its near-
zone general relativistic metric. However, in all
other respects the formalism will conform to Ipser's
original ideas.

Part Two of this paper consists of five sections. 'The
first four (Secs. Vill —XI) develop foundations for the
strong-field, slow-motion wave-generation formalism.
The last (Sec. XII) presents the formalism itself and
describes a few applications.

Each of the four foundations is a derivation of the
vacuum exterior gravitational field of a general iso-
lated system. Section VIII derives that field for time-
dependent systems in linearized theory. Section IX
derives it in the near zone of slow-motion time-
dependent systems in full general relativity using de
Donder coordinates, and also matches that near-zone
solution onto outgoing waves in the radiation zone.
Section X specializes to time-independent general
relativistic systems in de Donder coordinates; and
Sec. XI extends the time-independent general relativ-
istic case to any "asymptotically Cartesian and mass-
centered" (ACMC) coordinate system.

For a more detailed overview see Sec. I.B, Box 2,
and the table of contents —all in Part One of this
article.

1
gas ~as+ g as ~ (8.1)

We shall denote by y s the trace-reversed perturbation
1 1 1 p, p 1

Yas —8 as 29as ~ R pu (8.2)

(The reason for our "superscript 1" notation will be-
come clear in Sec. IX. The nature of our coordinate
system and basis vectors, and the rules for raising and
lowering indices, are discussed in Sec. I.C.)

We introduce Lorentz gauge y' ~ &=0 for our grav-
itational field. Then, expressed in terms of covariant
components, the gauge conditions and linearized vac-
uum field equations (Egs. 18.8 of MTW) read

(8.3a)

~00 + A + Al &

l=o
(8.4a)

&op = ~ yA
l =1

+ y1$ t —y (s.4b)

y'J„=g6,„[~'8„,(t —~).]
„

l =0

+ ([~ ' s,„„,,(t —r) j „,,
=2

+ J' 3(.' ~

l=1

S,

1 1
&ao 0 &ay, y &

»'s =--&'s,oo+ &'s, g&=o ~ (s.sb)

%'e seek the most general symmetric gravitational field
y's =yz which satisfies these equation. s, and which
has only outgoing waves (no incoming waves) at infin-
ity; and we write that field as a sum over its multi-
pole components.

The general outgoing-wave solution to the field equa-
tion y~ s = 0 in multipole notation has the following
form [see Eg. (2.51), where we must set &= +1 (out-
going waves) and we must make the identifications
&oo=» &op= &y &g.= &g.l:

V I I I. L INEAR I ZED THEOR Y

+
l=0

(S.4c)

Here we express, in terms of time-dependent multi-
pole moments, the linearized external gravitational
field of an arbitrary isolated system. Similar expres-
sions, but in different notation, have been given by
Sachs and Bergmann (1958), Sachs (1961), Pirani
(1964), and Campbell and Morgan (1971). The notation
used here is designed to fit in with that of Part One
and with the remainder of this paper.

In linearized theory (e.g. , Chap. 18 of MTW), the
metric of spacetime g s is written as the Minkowskii
metric q s plus a smaQ perturbationg's:

Al Al Al Al Al Al 2 Al

A A 2 A "~ A. A '-Al Al 2 Al Al P Al Al Al'

(8.5)

Here &, ,~ is the completely antisymmetric Levi-Civita
tensor; the capital script quantities are the multipole
moments, which are arbitrary functions of retarded
time t +and are symme—tric and trace-free (STF) on
all their tensor indices; and all other details of nota-
tion are explained in Sec. I.C. The gauge conditions
(8.3a) place the following constraints on the STF ten-
sors appearing in the solution (8.4):
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By evaluating the surface integrals (20.6) of MTW
[and in the evaluation using II z

——y'z, Eqs. (8.5), (8.6),
(2.3), and the symmetric, trace-free nature of the cap-
ital script tensors] we learn that the source has total
four-momentum

= q (Ct —53), P ' = —q (Ct I —&.—2 ~I) . (8.7a)

Here a dot means time derivative. Because for I = 0
all STF coefficients in Eqs. (8.4) are absent except
&, X), 8, and X., and for l = 1, &»d 8 are absent,
Eqs. (8.5) for l = 0 and 1 imply

a-e= 0, g —++X= 0,
(8.6)

(8.5), (8.6), (8.8b), (8.10), (8.11)]:

1
VQ

-2q; pq 8I,n~
y-'

l=2

y';, = Q (- I)'I I [& 'i;~A, ,(f - &)],A, ,
l=2

y'„=—+ Q(-I)' —,[1 'fIA (t —1)],A,
l=2

(8.12a)

(8.12b)

(8.7b)

In this reference frame, from Eqs. (20.8) and (20.11)
of MTW we learn that the source's center of mass is
offset from the origin of coordinates by the vector
displacement

Thus, the first and last of Eqs. (8.6) are the law of
four-momentum conservation. Henceforth we shalI. re-
strict attention to sources with timelike four-momen-
tum; and by a Lorentz boost (Sec. A. l of Box 18.2 of
MTW) we shall put ourselves in the rest frame of the
source, where

—,'(n,. n,. —,'~,.) = 0.

—Q (—1) )
[& CI q(J Sy)pA (t —&)],qA(

l=2

(8.12c)

g,' = —+ Q (-1)'El [w '8„(t—r)]
„

(8.13a)

g & — SPa'42g. 3 rs

~2

l=2

Here n = x,./x [cf. Eq. (1.5)]. The corresponding linear
correction to the metric is [cf. Eq. (8.2)]

, (g ~) - I (6, X), —,'3C, ) . (8.8a)

We now translate our origin of coordinates to the center
of mass, thereby achieving

(8.8b)

(8.13b)

(y~)„.„=(y'„,).„+5 ~+ 5I —n 8C"„,
where the generating functions f are given by

(8.9a)

Next we simplify our expression for the gravitational
field by the change of gauge (infinitesimal coordinate
transformation; part A2 of Box 18.2 of MTW)

8l'g ( 1)
( )t [+ ep (jSR&pA (t )],

(8.13c)

(,= Q[ y 'S)„(t—1.)], + [—,'1" 'X„(t—1)],„,
+ [—,'r 'e,.p, a,A, ]. . .]

(8.9b)

8 =-M = (mass of source) = constant,

S,.= S,. = (angular momentum of source)

(8.1,4a)

A few comments about this general linearized out-
going-wave solution are in order: (i) The mass mon-
opole 8 and current dipole 8,. are independent of time by
virtue of Eqs. (8.6), (8.10), and (8.11); and 8 is the
total (active gravitational) mass M of the source,
while 8,. is its total angular momentum:

= constant. (8.14b)

(Note that, because g„=0, this gauge cllange pre-
selves tile de Dollclel' gaLlge collclltloI1. ) This gaLlge
change brings to zero the following functions in the
gravitational field of Eq. (8.4):

A A A. Al l l

We now change notation, setting

~A, = (—I)'(4/fl)@A,

CA = (—1)'[4//(I + I)!]SA,

(8.10)

(8.11a)

(8.11b)

and thereby obtain our final form for y'z [Eqs. (8.4),

cf Eq. (19..5) of MTW. (ii) In this coordinate system
there is no mass dipole moment,

g,.= 0, (8.14c)

because the origin of coordinates lies at the center of
mass of the source, and the coordinates are at rest
relative to the center of mass. In other words, the
coordinates are "mass centered. " (iii) For l - 2, gA."l
and SA are the mass and current moments of the lin-
earized gravitational waves, as one can see by taking
the transverse-traceless ("TT")part of Eq. (8.12c)
or (8.13c) in the radiation zone and comparing with Eq.
(4.8):
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Consider an isolated general relativistic system with
arbitrarily strong internal gravity, but with internal
motions sufficiently slow that the entire system resides
well within its own near zone

I —= (size of system)

characteristic reduced wavelength
of gravitational waves it emits (9.1)

We seek the general external gravitational field of such
a source, in its near zone

L««A. , (9.2)

but with the demand that the near-zone field match onto
purely outgoing waves (no incoming waves) in the wave
zone.

We shall construct the general near-zone field and
examine its match to the wave zone, using a de Donder
coordinate system which is asymptotically Minkowskii
at spatial infinity. Such a coordinate system can ob-
viously be made to cover the entire weak-field region
around the source (weak-field near zone plus local
wave zone). It will not bother us that the coordinates
might go bad in the deep, highly nonlinear interior of
the source.

In our de Donder coordinates general relativity
theory can be characterized by the following [cf. Sec.
II of Thorne and Kovacs (1975)]: (i) the gauge con-
dition

&oo, o= I oj.j' I jo.o= &&k. k

(ii) the vacuum field equations

(9.3a)

g~ (f) = ma. ss E-pole moment of radiation field,

(8.14d)

8~ (t) = current /-pole moment of radiation field.
l

(8.14e)

IX. DYNAMICAL SOURCES IN DE DONDER GAUGE

A. de Donder eqUations

(9.3c)

where t~z~, the Landau-Lifshitz pseudotensor, and g,
the determinant of the metric tensor, are both ex-
pressible as infinite power series in lz ~[cf. Eqs. (2),
(9b), and (9g) of Thorne and Kovacs (1975)], and all
indices are raised and lowered with the Minkowskii
metric; (iv) the asymptotically Minkowskii outgoing-
wave boundary conditions

h q
——r'A q(t —r, &, y) atr (9.3d)

and (v) equations for computing the metric g z from
the gravitational field K z,

9"-=( g)g"= n' &"' (-g)= (—det llg" II)
'

llg, ll=-llg 'll ' (9 4)

[cf. Eqs. (2) and (9d) of Thorne and Kovacs (1975)].
Note that the definition llg„@II= Ilg II (Eq. 9.4) is the
only place in these equations where indices are not
raised and lowered with the Minkowskii metric. For
example, the Minkowskii metric is used to obtain
t~q (Eq. 9.3c) from t~~ (Eqs. 2c and 9g of Thorne and
Kovacs, 1975).

B. Nonlinearity expansion

In solving the field equations and gauge condition
(9.3a) and (9.3b), we begin by making a "nonlinearity
expansion" of the gravitational field h ~:

h g
=— G~y~g. (9.5)

Here G is Newton's gravitation constant, which has
numerical value one in our units, but which serves as a
bookkeeping device in the expansion. Note that y z is
the linear part of h ~; y'~ is the quadratic correction;
y'~ is the cubic correction, etc.

By inserting (9.5) into the infinite series (9.3c) we ob-
tain a nonliriearity expansion of the source term S' 8. Be-
cause +' is of quadratic order and higher in h„8, its
nonlinearity expansion begins with P = 2,

+I'+a=-@et oo+ I ~a jj= ~et ~ (9.3b)

(iii) the expression for the "source" in terms of Tz „: (9.6a)

a sum of terms which each have the form

ze~
a a2 a

~ ~ ~ y n ajan a2 . . . na
- = y-.", '. ,'y..; yp, , py

where a, + ~ ~ ~ +a„=Pand where n ~ 2 so aj ~p —& for all j . (9.6b)

The gauge condition and field equations (9.3a) and
(9.3b) must now be satisfied order-by-order in the non-
linear ity expansion

all the y& are known up to some desired order, one can
calculate from Eqs. (9.4) the corresponding terms in a
nonlinearity expansion of the metric

y00~0 & 0j~ j& y jodo y jk~kp (9.7a)

(9.7b)
gee ~~8 G + e8 (9.8)

Because zeal'~ is constructed only from y' with q ~p —1,
these equations can be solved first for y' ignoring all
higher-order y's; then for y' which is generated by y'
via the field equations (9.7b); then for y', which is gen-
erated by y' and y' via the field equations; etc. Once

It seems almost certain to me (but I do not claim to
have proved it) that this procedure will generate a non-
linearity series (9.5) that converges throughout the
weak-field near zone, the local wave zone, and the re-
gion linking them [see Eq. (3.2) for terminology].
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328 Kip S.Thorne: Multipole expansions of gravitational radiation

However, one cannot expect convergence either in the
strong-field region where nonlinea. rities are huge, or
in the distant wave zone, where nonlinearities will pro-
duce large phase shifts of the waves

&Q —(M/X) In(r/K)» 1

[Eq. (3.4)].

(9.9)

C. Linear part of the gravitational field

The linear part y'„,of the general nonlinear field h„,
satisfies the field equations and gauge conditions of
Linearized Theory [compare Eqs. (9.7) for p =1 with
Eqs. (8.3)]. Consequently, with an appropriate special-
ization of the de Donder coordinates [that nonlinear
generalization of Eqs. (8.7b), (8.8b), and (8.9) which
leaves the de Donder gauge condition (9.3a) unaffected
to all orders], the most general y'„„canbe put into the
same form (8.12) as our general linearized-theory
field.

Note that this general y'„,is determined by a constant
I

mass @ =M, a constant angular momentum g~ =S» and
two sets of time-dependent multipole moments g~ (t)
and 8~ (t) with I » 2.

D. IVlultiparameter expansion of the near-zone
gravitational field

Thus far our analysis has been valid throughout the
local, wave zone, the weak-field near zone, and the
transition region which links them. We now restrict
attention to the weak-field near zone and initiate a study
of the nonlinear corrections y('~ (P» 2) to I( ~ there.

For this purpose we introduce three length scales M,
R, X which characterize the near-zone field: M is the
mass of the source at bnear order

(9.10a)

R is a length scale characterizing the nonspherical de-
formations of the source's gravitational field

R=- maximum over all E«1 and
over all times of interest

of g M ' ' 8 M 'i' ~ 910b

and & is the characteristic time scale on which the mul-
tipole moments change

typical value
over all/«2 gA,

' ~~,

For a realistic source of size L it is reasonable to ex-
pect R « I.; cf. Eqs. (5.19); and in general the defini-
tions (9.10) guarantee

quire s

K»M, X»L «R. (9.12)

The "weak-field near zone" [Eq. (3.2)] is the region

x»M, ~&L «R. (9.13)

We regard the multipole moments 8~, (t) and S~,(t) as
freely specifiable so that one can scale up or down each
of the parameters M, R, and X while leaving the others
unchanged. In such scaling

H~ a,nd g~ scale as MR';

&& g„and s, g( scale as MR'/%.
(9.14)

y pnu&

py Tlp uy l

g pnu7

pt nous ~

pn
vv ~ gv

(9.15)

Here
.y'""' scales as M('R "(1/X)"

and has spherical-harmonic order /; (9.16)

and similarly for so~"„"',g „"„"'.These expansions should
converge in the weak-field near zone, and only there,
since they actually turn out to be expansions in powers
of 8~, /x '", S~,/x '", and x/K —or, equivalently, in

powers of M/r, R/x, and x/K; and all of these quanti-
ties are «1 in the weak-field near zone [except ex-
tremely near the source; Eqs. (9.13)], but some of
them are «& in any other vacuum region of spacetime.

In addition to the quantities yP","', zeP„"„"',g P „',which
have pure scale properties, we define the sum over one
or more of the parameters in these quantities, and we
denote a summed parameter by a dot:

, pnu —~„,pnul ~ g''u' = ~
p, e, l

(9.17)

Since all the multipole moments scale as M, the y'„„of
our nonlinearity expansion also scales as M, and —as
one can see from Eqs. (9.6), (9.7)—y~, sca.les as M ~.

Thus the y(„'„ofour nonlinearity expansion (Sec. IX.B)
is equal to y „„";and similarly for se and g:

p po ~ 0 p p 0 0 s

yf v=yf v ~ ~pv=~f v ~ g pv=&f v . (9.18)

By comparing Eqs. (8.12), (2.53), (9.14), and (9.16),
we can read off the various subpieces of the linear-
order field y&, . For example, the only nonzero pieces
of yoo are

%e expand h„„,S'„„,and g„„in infinite series of terms,
each term of which scales (at fixed r) as a definite pow-
er of M, of R, and of 1/%, ; and each of which has a defi-
nite spherical-harmonic order k:

MR',
f S„)~MR',

f
g

/

«MR'/~, )6, /

«MR'/X.

+ 1000 —4 g/+,
1 l {2k)1
00

4 (2E + 1) !!~2k-(-1

I!2~0! (—1 —2l) (1 —2l) ~ ~ ~ (2k —1 —2l)

(9.19a)

(If we wished, we could introduce a '*rotational velocity
parameter" v to distinguish current moments from
mass moments; but such a parameter would make the
discussion overly complicated. ) Our slow-motion
assumption (source deep within its own near zone) re-

for I o 2, k o 0; (9.19b)

(((2k+1)1 — ( ) (2k+1) (t+00 E!2lh-((P I)!(2P +1)!! ((( A(

for 0» I o 2. (9.19c)
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Here a prefix superscript in parentheses means differ-
entiation with respect to time &'~'g =- (8 ) '"8 and
N~ means n„n„n„;see Sec .LC and Eq. (2.54). It
is straightforward to verify that the only nonzero parts
of yap al e [Eq. (8.12)]

y10 y1 (2k)l fOr )) 2 k) 0 ~
00 P 00 7

y"""+'" for k~ l ~ 2 ~

00 7

(9.20)

E. IVlultiparameter expansion of the near-zone gauge
condltlons and faekl equations l

The various y~„7 are coupled together by the field
equations, the de Donder gauge condition, and the match
of the near-zone solution onto outgoing waves in the lo-
cal wave zone. Because a time derivative 8, increases
by 1 the (1/3C) order of a quantity, and because diver-
gences and Laplacians leave unchanged the spherical-
harmonic order of a quantity, the gauge conditions and
field equations (9. I) say

1101 ~ 17[k l,
yoj j yoj for E~ 2, k~ 0 ~

yllkl for I) 2 k) g

annul pn(u-1) l . annul pn(u-1) l .yoj j yoo o ~ yjkk yjo o

~2~ annul pn(u-2)7 +~pnul
yQv pvOO p p

The source term ze&"„"7has the form

(9.21a)

(9.2lb)

a sum of terms, each of which has the form

(
N

y~'"j""j ' "" ', with v time derivatives v ~ 2 and 2 —v spatial

derivatives interspersed among the terms of the product; and with
(9.22a)

p~ =p ~ 2, pn, . =n, @+au,. =u, QI,. ~ I, minlI, +I, + ~ ~ +I„I~ I

pn(u-1) l .

~annul

—~pn(u-1) l
oj ~ j Oooo P jkek joe 0 (9.22b)

The nonlinear terms y ~„"„"7with p ~ 2 can be calcula. ted
one after another from the known linear terms and from
already-calculated nonlinear terms by solving Eqs.
(9.21). At each stage in the solution the right-hand side
of (9.21b) is known explicitly, and the higher-order
left-hand side must be calculated subject to the con-
sistency conditions (9.21a). For example, it is
straightforward to find from Eqs. (9.3c), (9.19), and
(9.20) that

cf. Eqs. (9.3c), (9.15), (9.16), and the "angular momen-
tum coupling rules. " Because 8'"",= 0 andbecause the
decomposition (9.15) of W"'is unique, m~0"„"'satisfies the
necessary conditions for simultaneous integration of
(9.21a) and (9.21b):

in (9.19c) is an example; it is not generated by the
near-zone field equations or gauge conditions; and it
would change sign if one were to switch from an out-
going-wave boundary condition to ingoing waves. ] The
homogeneous part which one adds onto y~nu' must scale
as MI'I-"X ", must be dimensionless, must have vanish-
ing Laplacian, and must have spherical-harmonic or-
der E. Therefore, unless the homogeneous piece is a
"tail term" (see Appendix), its radial dependence must
be ~ ~ "'"=y', where l'~ 0, l'=l if p, and v are both
temporal, / —1 & l' & I+ 1 if only one of p, and v is.tem-
poral, and E —2 ~ 7' ~ l+ 2 if p, and v are both spatial. Thus

y&~' can contain a homogeneous matching-generated
piece only if u ~ p +n+l',
I' = max[0, I —(number of spatial indices on y)].

~2000 —7 yl000 +000 —14' 3/~ 4
00 8 Oot j Oosj (9.23a)

Inserting this into the field equations (9.21b) one obtains
F. Structure of the general near-zone term in the
multiparameter expansion

(9.24)

y 2000 —7 g &/~2 (9.23b)

which presents no problems in (9.21a) since 8 is time
independent.

At eaCh Step in thiS prOCedure, One CalCulateS yo~o""'

from its known Laplacian; or one calculates y„"," from
its known Laplacian and divergence. In the calculation
one must use care to discern whether to add on a Lap-
lacian-free and divergence-free piece (homogeneous
solution). One never adds on such a piece with radial
behavior x ""', l' ~ 0, since such a piece could per-
fectly well have been included in the linea. r part of the
field y'„„.However, one is sometimes forced to add on

l

a homogeneous solution with radial behavior x ' in order
to guarantee that the near-zone field matches onto out-
going waves in the local wave zone. [The term y0",~"""

The general term y&~' generated by the above proce-
dure must be a sum of quantities which each have the
following form:

K

y~"."'= '"'~ ], 'alt" '~~ ~ ' " QC, (ln —) (925)
j«-,1 ' k=o

(Matching-generated tail terms are the sole exception;
see Appendix. ) Here '"o'(. ~ ) means the u0th time deriva-
tive of the quantity in parentheses, and uo can be negative;
9R j j is the multipole moment of the linear part of the field
w i.th order /j an,d pari. ty pj:

5II '"= 8„ if n,. =(—1) ',
7.+1

g n if' =(—1)'
i&a PAl

' 5R ' ' is the u~th time derivative of ~ ' '; [ ] means
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(9.26b)

(9.26c)

~2y2 4 104 [(4&g ((()g ]STFA( ~2
pp a 1a3 asa& A4 (9.27R)

that the components of the P multipole moments are
coupled together to give a spherical harmonic of order
7 and parity m; and C„andR are constants.

There are P moments DR present in (9.25) so as to
guarantee that the right-hand side scales as Ml'.

Scaling in L, and K requires

gl, . =n, gu, . =u,
j=l j=p

[cf. Eqs. (9.14) and (9.16)]. The laws of angular mo-
mentum coupling require

gl,. =n-l, min~g +l, ~- l.
/=1 j=l

The radial dependence of Eq. (9.25) is forced on us by
the demand that y„,, be dimensionless. A logarithmic
term, ln(r/A), is created whenever one inverts the
field equation (9.21b) with a source term of the form
(Laplacian-free function)x&' '; for example,

struction of the "source terms" ze
„

from the y's in-
volves only simple products without any parity changing
e, ,.~'s [cf. Eq. (9.3c)]; and since the parity of a product
is the product of the parities, the coupling of multi-
poles in Eq. (9.25) must produce a harmonic with over-
all parity

P 7I 7l 7T p (9.26e)

There is a minimum value which each integer p, n, u,
l must have in Eq. (9.25) in order for y~"„"to be non-
zero. Obviously p & 0 [otherwise there will be no 8"s or
(i's in Eq. (9.25)j; n~ 0 [since n =El and spherical-
harmonic indices l, can never be negative]; l ~ 0 [same
reason]; and u~ 0 [this one proves by induction: it is
true for y', „[Eq.(9.20)j; if it is true for all p up to
p0 —1 then 1(&~0""' is zero unless u~ 0 [Eq. (9.22)], so the
inhomogeneous solutions to Eq. (9.21) for y~0""' vanish
unless u ~ 0,' and Eq. (9.24) guarantees that the "non-tail"
homogeneous terms produced by matching have u ~ pp+ z
&0; thus u o 0 for all nonzero y~0""']. In summary:

is inverted to give
y~"„"= 0 unless P & 0, n ~ 0, u & 0, l ~ 0 . (9.26f)

y;:"'= —["a . '"g, .]""A„~'In(F/ll) . (9.27b)

pgu-2) t, i '+ ~ ennui, ~
'

~P V, PQ Plj

= {Laplacian-free function)xl 'g C, [l (nr/A)]".
4=p

Before that source term is encountered, the y~, " will
have at most P —2 logarithms. That special source
term, like (9.27a), will generate one new logarithm—
giving at most P —1 logarithms in any of the y~&,

'' .
Thus K ~P —1. QED

Since the parity of a quantity [Eq. (2.17)] is not
changed by the linear manipulations involved in com-
puting y~~"„"'(taking the time derivative, divergence,
Laplacian, or inverse Laplacian; matching out into the
wave zone and then back in, selecting out a part with
specific spherical harmonic order); and since the con-

One can show that the maximum number K of logarithms
in Eq. (9.25) is bounded by

(9.26d)

The proof is by induction: There are no logarithms
present at linear order [Eqs. (8.12) and (2.53b)j, so
(9.26d) is true for l&=1. Assume it true for
1, 2, . . . ,P —1. Then the maximum number of logarithms
in u'~","', which has the form (9.22a), is

QZ -g(p; —(&=( N ( —2—. -
7=1

Imagine solving the field equations (9.21b) for y~, ''
= (that. part of y~~,

' with "pure-orbital" spherical-har-
monic dependence Y/™for pv both temporal, or

(Sec. II.D) for one of gv spatial, or T ' ' (Sec.
II.E) for p v both spatial). These field equations, with
P, n, l, I' fixed, can be solved in two sequences: the
first for u =. . . , -2, 0, 2, 4, . . . ; the second for
z =. . . , -1, 3., 3, 5, . . . . Along each sequence, precisely
once (at u —l& —n = —l' —1 or at u —P —n = l'; cf. Eq.
[2.42]) we will encounter a source term of the form

By noting how g~"„"'is constructed algebraically from
the y~ s

" ' [Eqs. (9.4) and (9.15)], a.nd by then applying
the same considerations as above to g~","', one concludes
that the "non-tail" g~"„"'has the same structure [Eqs.
(9.25) and (9.26)] as y~"„"'. It is a sum of terms each
having the form

+pnu$

where

'$4'' v ~"'" C~ ln—
(9.28a)

all of the properties (9.26) hold for g~„" (9.28b)

~~- 2 (1 ) g (2 1+i )gjig l

t a perfect time derivative of a
+ quantity quadratic in time

,
derivatives of g„

(9.29K)

[cf. Eqs. (9.22a) and (9.19)]. This piece describes, in
the near zone, an outward flux of energy associated

3)A delicacy occurs in situations like Eq. (9.29c), where a
J aplacian-free &&n(u- )~ or +On(u-1)r is generated, through the
gauge conditions, by Vpo~"Q~ or 7 p~kngi. However, this "lowering
of u by one" occurs only when the original I is greater than
zero; so it presents no problems.

G. Secular changes of mass, linear momentum, and
angular momentum

It is instructive to see how the above formalism pro-
duces a secular change in the mass, linear momentum,
and angular momentum of the source which is equal and
opposite to the mass, linear momentum, and angular
momentum carried off by the waves. {That such a,

change must occur is proved, e.g. , in Chap. 20 of
MTW. ) In the term 2(&01'2'"2' '0 there is a piece

2(21 &(2t+2 &0 = 0 t X[ 1l01 11(2l+1&l ]0
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with the mass I-pole part of the radiation field. By way
of the field equation (9.21b) it generates

2(2 )(2 +2)0 t / (l 1)g (l+1) 8Y0~

pTT p + (() )@1Rd (t +)~
4

~»g 2 A&2
l =2

+(perfect time derivative); (9.29b) &-2 h j.
and then, by way of the gauge condition (9.21a),
gene rates

2(2) )(2)+()0 i O t I ) &&
(-)b ()+1) ()+()F00

+ (oscillatory quantity) . (9.29c)

H. Radiation field

Turn attention now to the "transition region" of space
which includes the outer reaches of the near zone and
the inner parts of the local-wave zone:

&F ««/a2, o'( and n2 constants with u, c(1
but. n(X» max(M, L, ,ll),

~/&2 "&o [Eq. (3.4)] . (9.30)

Throughout this transition region gravity is so weak,
j@,j

« I that we shall ignore nonlinearities in the field
equations. Consequently, in a suitably chosen gauge
K„willhave the form (8.12) characteristic of the gen-
eral outgoing-wave solution of the linearized field equa-
tions

4g rad
I)oo= + Q( —1)

)
[2" 8„,(f —r)] ~) (9.31a)

-2e;), Sp' n
oy

4lZ( ') (I+I)) [~ ~.P, @)~, ,(t-2)]

+ Z(-I)'I, [& 'g,"~', , (t -2')],~. . .
k=2

&g) = Q(-I) I) [& jg)~, 2(t —2)],~, 2l=2

(9.31b)

Sl(-I) (I+1)—,[«~(,S»), ,(~ -2)]„~,
2

throughout transition region. (9.31c)
In the local wave zone itself, r»X, the radiation field
[obtained by evaluating the derivatives in Eq. (9.3lc)
with the help of Eq. (2.53) and by keeping only terms
of order I/2] is

This term has the same form as the linear mass mono-
pole part of the field, 4g/~. When averaged over sev-
eral characteristic time scales g, it and other similar
terms represent a tiny, secular correction to the mass
of the source. The tiny, secular change of linear mo-
mentum shows up as an analogous term in the (origin-
ally zero) I/2 mass dipole part of y»., and the tiny
secular change of angular momentum shows up as an
analogous term in the 1/r current-dipole part'of yo, .

This manner in which our formalism generates the
secular, "radiation-reaction" terms is analogous to
the manner in which the Bondi-van der Burg-Metzner
(1962) formalism does so. For insight, including a
"nonlinearity expansion " similar to the one given here,
see Bonnor and Rotenburg (1966).

Comparison with Eqs. (4.8) shows that@"'d and 8"„~d are
the mass and current moments of the radiation field—
hence the superscripts "rad."

The relationship between the radiation-field moments
8A ~ ~i and the near-zone moments 8A» ' 5A
inferred by comparing the transition-region solution (9.31)
forh „with thenon-tailnear-zone solution(9. 5), (8.12)
at radii in the domain of overlap n(g ~w ~& (method of
"matched asym ptotic expansions"):

a nonlinear correction of magnitude
equal to the l-pole, electric-parity

A) HA)

part of g y~~ evaluated at x =~
p=2

(9.32a)

a nonlinear correction of magnitude
equal to the l -pole, magnetic-parity

~A +
l'

part of X y, evaluated at x=g
p 2

(9.32b)
Comparison with Eqs. (9.25) and (9.26) then shows that
near-zone the nonlinearities contribute the following
amounts to the multipoles of the radiation fieM:

4OR" =OR,",d -OR"=a sum of terms with magnitudes
p g

OR' '
~ J k

Q J
(9.33a)

P~ 2, Ql ~ l, K~p l. (9.33b)

It is straightforward to verify, from Eqs. (9.33),
(9.26a), and (9.11) that those radiative moments which
dominate the radiation field —the ones with the largest
values of j"'hatt"

j

—will contain negligible nonlinear
corrections:

)

This means that throughout the local wave zone the ra-
diation field is equal to the linear-order field [Eq.
(8.12c)] to within fractional errors ~(M/X)in(%/A):

)2;, = (&„) x/I+ 0[(M/y)in(g/fl)]]
in local wave zone

(9.34)

(9.35)

l. Summary

The above formalism shows explicitly, in de Donder
gauge, how the full nonlinear near-zone external grav-

[One can show —but this is not the appropriate place to
do so—that the only radially cumulative nonlinear ef-
fects in the local wave zone which exceed M/L, a.re
trivial phase shifts (Sec. III) and gauge changes. Among
the nonlinear local-wave-zone effects of magnitude
cM/X are the tails of the waves; see Appendix for dis-
cussion. ]

Rev. Mod. Phys. , Vol. 52, No. 2, Part I, April 1980



Kip S. Thorne: Multipole expansions of gravitational radiation

itational field of the source is determined by its time-
dependent multipole moments, together with the out-
going-waveboundary condition. That the multipole mo-
ments plus outgoing-wave condition do fully determine
the field has been known for a long time )Janis and
Newman (1965) Bonnor and Rotenburg (1966)j. I have
gone into this great detail on a well-known subject in
order to obtain the form (9.28) of the general non-tail
term in the expansion (9.15) of the metric, and in order
to relate the near-zone field to the wave-zone field tEq.
(9.35)]. We will need these relations below.

terms which each have the form
p

~Pn $ ~lg W ~ -P-f76 P!e ~ w ~ wj
with

p

p) 1 Ql, =n~ l&0,

min ++I; -I, =w„m,~ ~ ]7
j=i

5]I' ~ = 8„, if ~, =(-I)'~,

(10.5c)

(10.5d)

(10.5e)

Consider next a stationary, isolated system residing
in asymptotically flat spacetime. Introduce coordinates
(x ] such that B/Bxo is the Killing vector field which
generates the stationary time translations, and such
that the metric coefficients are asymptotically Lorentz

g, =q„~+0(1/r). (10.1)

Then perform a coordinate transformation of the form

x„=x„~+f(x'„~);f =constant+0(1/y) . (102)
This keeps B/Bxo =(Killing vector) and maintains the
asymptotically flat form (10.1) of the metric. Adjust
the four functions f"(x'„~)so that the metric in the new
coordinate system satisfies the stationary de Donder
gauge conditions

(10.3)

where I! is the metric density [Eq. (9.4)]. In this
stationary de Donder coordinate system the metric is
independent of xo.

Now us@ the same procedure as was used for the dy-
namical case (Sec IX) to construct the general external
gravitational field of such a stationary, isola, ted sys-
tem. The result will be the same as in Sec. IX f Eqs.
(9.15), (8.13), and (9.28)] with these exceptions: (i) Be-
cause of stationarity, the general term (9.28) in the so-
lution must have

2g 2g
zoo = —&+- — z-

'Y 'V

r

+ g —„& .
,

&„N~ +)(l —1)pole]
1 2(2l —1)!!

+ +[monopole]

1 4l(2l —1)!!
f~+ yet ~J&~~3»~ i&-i + /

(10.6a)

+][l —i]pole] + ' '+ [mooopole] I,

28 g'
g, , =5;, 1+ +-.;(5]q+n~n„)r

+ —„~,9„,N„,5;, +[(I —1)pole]
1 2(2l —1)!!

lt

or("&=a;~8~,n, if m=(-1)"',
]"means "coupled to give a sphericalharmonic

of order I and parity ~." (10.5f)

The general stationary metric coefficients g,„[Eq.
(10.5)] are known to be analytic functions of the de Don-
der coordinates (Muller zum Hagen, 1970).

This gene ral stationary metric in mass -centered de
Donder gauge ean be written more explicitly (but with
some loss of information) as

Q = Z4() =Zt'i = ~ ~ ~ =Q = 0 . (10.4a.) + + f monopolej (10.6c)

pal
(10.5a)

expression (8.13) with g~
and 3& independent of t -y; 10.5b

and where the nonlinear corrections g„"„'are sums of

(ii) Because of stationarity w~","' always has radial
dependence r 'p'"" with p+@~ p+I. ' ~ l'+2. This
guarantees that situations like (9.27), which produce
logarithmic terms, never arise; i.e., the logarithmic
terms are completely absent in Eq. (9.28); i.e.,

(10.4b)

(iii) Because of stationarity there are no tail terms.
These considerations show that the general sta-

tionary metric can be written in the form

[The quadratic 9'/x terms follow from Eq. (9.23) and
from a, similar equation for y, „o.]

Note that one can read the mass /-pole moment off
the I/x"'part of goo, and the current I-pole moment
off the 1/x'" part of g».

Janis and Newman (1965), Van der Burg (1968),
Geroch (1970), Hansen (1974), and Clarke and Sciama
(1971) have previously given definitions of multipole
moments for stationary systems, and have proved that
the moments completely fix the structure of the gravi-
tational field, including its nonlinearities. However,
it is not evident how the multipole moments which they
define mesh with gravitational-wave theory, whereas
the link of our moments to gravitational-wave theory is
very simple and clear (See. XII). The moments in each
set (Janis and Newman's, Van der Burg's, Geroch and
Hansen' s, Clarke and Sciama's, and mine) must be some
combination of the moments ln each other set. However,
nobody has yet exhibited those relationships explicitly.
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XI. STATIONARY SOURCES IN AN "ACMC"
COORD INATE SYSTEM

A. Motivation

Suppose that one is given a stationary, asymptotically
flat, vacuum metric in some arbitrary coordinate sys-
tem. How can one compute its lowest few multipole
moments '?

One way would be to transform to a de Donder coordi-
nate system, and then read off the moments by compar-
ing with Eqs. (10.6). However, to perform such a coor-
dinate transformation would be horrendously difficult
for almost all metrics. (Try the Kerr metric, for ex-
ample).

Fortunately, a full de Donder transformation is not
necessary. There exists a wide class 'of coordinate sys-
tems in which one can readily read off the lowest few
moments. I shall call such systems "asymptotically
Cartesian and mass centered, " or ACMC. It is rather
straightforward to transform an arbitrary stationary
metric into ACMC form and then read off its moments.
The Kerr metric is treated as an example below (Sec.
Xr..D).

B. Metric in ACIVIC coordinates

A coordinate system will be called "asymptotically
Cartesian and mass centered to order N" (ACMC-N) if
and only if the covariant metric components in it are
time independent and have the following "1/r" and
spherical harmonic structure:

28 (0 pole)
+GO 2

1 4(N + 1)(2N+ 1)!!+ 6+2 (N ~ 2) ) j)ttt)p. ( )tA))t ANS

+ %+1 pole with parity z = -1

+ (poles with / wN + 1)
J

+ (terms that die out faster than 1/r, ) ~

(11.1b)

E

g» —6,.~+ „&[(/ pole)+(/ —1 pole)
l=

+ ' ' '+ (0 pole)]

1 (any angular (terms that die out)+ +2 +ir '2 'gdependence . I, faster than r ' "'
»

'

(11.1c)

Comparison of Eq. (11.1) with Eq. (10.6) shows that
de Donder coordinates are ACMC-X for all N —i.e.,
they are ACMC-~. Below (Sec. XI.C) we shall prove
that for l ~%+1 the STF coefficientsg» andS» in ex-
pressions (11.1) are invariantunder transformations from
one ACMC-N coordinate system to another. Since in de
Donder coordinates g~ and g, & are the multipole mo-

l l
ments of the source, this means that in any ACMC-N
coordinate system the coefficients //„, and p, z, saith

l ~ N+1 axe the source's multiPole moments.
One may prefer to use conventional spherical-har-

monic notation rather than STF notation. The multipole
moments I' and S' of conventional notation are re-
lated to those of STF notation by [cf. Eq. (4.7)]

1 2(2/ —1)!!+ &+(

+ (l —l pole) + ' ' '+(0 pole))

+ 1 2(2N+ 1)!!
@y"' (N+ 1,)! ")(P

Igm 16~ (/+ 1)(/.+ 2)
I(2/ + 1)!! 2(/ —1)/

32m/ (/+ 1)(/+2)
(/ + 1)(2/ + 1)!! 2(/ —1)/

(1&.2a)

(11.2b)

+ (potch with l e N + t))

+(terms that die out faster than 1/x""),
(11.1a)

+ l pole with parity z =

+ (/ —1 pole) + ' ' + (0 pole)

1 4/ (2/ —1)!!
gp' ( e(

(/ + 1)! p,aha& )
&
(A-

l=

where 'jj~ are the STF tensors which generate the sca-
Ag

lar spherical harmonics [Eqs. (2.12)] and * denotes
complex conjugate. The inverse relation [Eqs. (4.6)] is

/! 2(/ —1)/

/+1 ! 2 —1)/
8/ (/+ 1)(/+ 2)

By comparing Eqs. (11.1), (11.3), (2.11), and (2.23b)
we obtain the following expression for the metric in an
ACMC-N coordinate system:

2M 0 pole " 1 2/ —1!! 2/ —1/
(/+1)(/+ 2)

I ' Y™+(/—1 pole)+ +(0 pole)

+ ))(,2 I ' Y' ' + (poles with / 4N+ 1)
'(2N + 1)!! 2N{N + 1)

m= E+f )

+(terms that die out faster than 1/v"' ), (11.4a)
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]. pole with
go, = ——

2 g, ~S~n, + —,x
—(2l —1)!! 2(l —1) '~' ', s, l pole with

~ ~ ~

l + 2 ' parity m = (-1)'

y L. + ' parity & = -1 ~"
rn= -(&+ 1)

+(terms that die out faster than I/H' ), (11.4b)

g, ,=&,, + —,,~f(l pole)+(l —1 po!.e)+ .+(0 po!e)]
l=

any angular 1
8+2 +- terms that die out faster thandependence (11.4c)

Here I" =Y™(8,@) is the standard scalar spherical
harmonic; Y, ' is the magnetic-parity pure-spin vec-
tor spherical harmonic of order l IEqs. (2.18b), (2.21b),
(2.22b), and (2.23b)]; M = 8 is the mass of the source;
and S, = $, is its intrinsic angular momentum.

C. Transformations between ACMC coordinate systems

We now study the coordinate transformations which
link two ACMC-N coordinate systems, with the objec-
tive of proving the invariance of the multipole moments.

I.et fx }and $x }both be ACMC Ncoord-inate sys-
tems which are related by the coordinate transforma-
tion

x (a ) =x ((p) +flax'((I')], (11.5)

f()= & '""fo(~ 0)
n=-

(11.6a)

The expansion cannot include n & —1; if it did, then one
or both coordinate systems would violate g
+O(1/r) as w-~. We then expand the angular functions
fo in scalar spherical harmonics F™denoting by l„the
maximum order that appears in the expansion; and we
expand the f~ in pure-orbital vector harmonics y J~~'™
—= Y&' " (Sec. II.D), denoting by l„~the maximum
order thai appears:

'n lnJ'

fD= Qfr'(&, 0), f, = Q Qf" (& 0") (() 6b)
)=0

Here fo is a linear combination (sum over m with suit-
able coefficients) of F'; and f," ' is a linear combina-
tion of Y&+ ' ' . We seek to determine the values of l

„

and l „Jwhich make f the most general coordinate
transformation linking two ACME-N coordinate sys-
tems.

We define the functions h 8 by

()(x' ) —=g . 8, (x~ ) —7! (11.7a)

where g' is an event in spacetime. The f cannot depend
on x since we want 8/Bx = 8/Bx =(time-translation
Killing vector). We expand the functions f (x~)
= q 6fo(x') —and everything else in this section —in po-
wers of I/x anddenote by f"„the part of order

I

and we expand h ()(x')—the same functions but with x'
replaced by x' —in powers of I/x,

h, , (x') =fr '""'h",g(e, 0) . (11.7b)

The ACMC Nnatur-e of the tx }coordinates is equiv-
alent to (i) the demand that no terms with n & 0 appear
in Eq. (11.7b), plus (ii) the following spherical-har-
monic properties of the h" 8.

boo and h, „contain only monopoles; ho, ——0; (11.8a)

~g J and h, „contain monopo les and dipo les
(11.8b)

boo contains only monopoles;1

h"
~ contains only poles of order l ~n

for 2~yz~N. (11.8c)

We expand h"
8 in spherical harmonics subject to these

constraints

g,„(x)=, , g, (),[x'(x)] . (11.10)

Upon inserting expression (11.7a) for g, ~, and expres-
sion (11.5) for x'(x), we obtain

g,.(x) =r!.„+h„(x)+ a„(x)+ b,„(x),
a„(x)=—(5"„+f"„)(5s~f8 )

(11.11a)

x (n. ) f, f, , ~ ~ . f,.„V,V, , ~ .. ~ V,„h8(x)
n=

—h. ,(x) +f g. ..
b,„(x)=f, „+f„, —

(11.11b)

(11.11c)

Here V',. is the covariant derivative with respect to the
flat background metric V;k 8 —=h„~,; cf. Eq. (1.13) and
associated discussion. We now expand g, , a,„and b,

„

in powers of (I/x) in the manner of Eq. (11.6a)

Here R denotes the type of pure-orbital harmonic (sca-
lar, or vector with given value of /', or tensor with
given values of X and l', see Sec. II); and l denotes the
order of the harmonic.

The coordinate transformation (11.5) produces the
following relationship between g„„(x)and g, 6.(x'):
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+ (n+f ) n

n=p
(11.12a.)

second has l =1 in violation of conditions (11.13b). To
preserve (11.13b) we must set f,' '" "& =0—i.e., we
must revise downward our value of l«)( i)..

n=
l(, )(, )

——0. (11.17a,)

b„„=r '"' b"„„(e,p) .
n=

(11.12b) Returning to Eqs. (11.11), (11.6), (11.15a), (11.7b), and
(11.8) we infer that

Then the demand that {x'], like (x ] be ACMC-N is
equivalent to the demand that g&, satisfy the same con-
ditions (11.8) as h"„—and this, by virtue of Eq. (1l.1la),
is equivalent to the demand that

Qpp + bpp and 0j pp b jp contain only monoPoles;0 0 0 0

ap + b() ——0;0 (11.13a)

a»+ b» and aj„+bjI, contain only monopoles and dipoles;i i i

app+ bpp contain only monopoles; (11.13b)

a" z+ b"
~ contain only harmonics with 0 & l & n

for 2 ~n &N. (11.13c)

We shall now determine the limiting l values, l„and
lnJ, which are equivalent to these ACMC-N conditions,
and in the process we shall prove the equality of the
multipole moments which one reads off the two ACMC-
N coordinate systems.

We begin with conditions (11.13a) on ao „+bo„.Equa. —

tions (ll. lib), (11.7b), and (11.6a) imply that a„„—1/ro,
so a„„=0.Equations (ll.llc) and (11.6) imply

boo =o bo~ = rfo„0 -il

(11.14)l =0

f ~(-f )J
0 iJ/bj 2rf &j) k) '

s=p

Since an l = 0 scalar harmonic is constant but all. others
depend on 6 and g, the condition aport+ bo, ——boo, ——0 is-

equivalent to

lg ——0. (11.15a)

For bj~ the situation is more delicate. For fixed l ~ 2
the three different types of vector harmonics 7,'
(4= 0, +1) have linearly independent gradients Y'&,

'
&', ~'

but for l =1 F(,'. , „&vanishes, while 7'(,". „&and 7„"~&are
linearly independent [see Eq. (2.24)]. This fact, togeth
er with Eqs. (11.14) and a;0=0, means that ]a&o+ b,

„

contains only monopolesf is equiva, lent to

( i)( f ) = ~ ( i)0 = ( i )1 — ~ (11.15b)

00 00 00 (fi i)( 00)
i i 2 -i -i 0

I ) ~f( l)( l)l )y)
J

(11.16)

The first term has l =0 and is thus acceptable; but the

Thus, conditions (11.15) are equivalent to the n=0
ACMC-N conditions (11.13a). Moreover, when these
conditions are imposed (and even if they are not!)
Qpp + bpp vanishes —w'hich means that both coo rdinate
systems exhibit the same mass monopole moment.

We turn next to conditions (11.13b) on a'„+b'„,. Equa-
tions (11.11), (11.6), (11.7b), (11.15b), and the fact that
hpp is a constant (the mass monopole), imply

2ap;+ b&»
——bpg:r Vg r fp (11.18)

This will be pure monopole and pure dipole [condition
(11.13b)] if and only if

lp ——1. (11.17b)

Returning again to Eqs. (11.11), and combining with
Eqs. (11.7b), (11.6a), and (11.15a) we see

a,', + b,', =r'I (f, 'V, )(r 'h,'„)+ (f, '„)(r'h,'o)

+ (f, )(r 'h';, ) +(f, ,)(f,' )

+ ( f,') ,.( 'f', ),,] .
Since f and hp, a.re both pure monopole, the first four
terms are pure monopole and thus acceptable. The
last two terms, by virtue of Eqs. (11.6b), reduce to

j j[(r 'f,'"),.+(r 'f'.")„),
which is monopole a.nd dipole (the required form) if and
only if

(11.17c)

ln-f l (n f )J (11.19)

and (ii) the taboo coordinate systems exhibit the same
mass and current moments of order n. We have al-
ready proved these properties for n = 1. We now as-
sume that they have been proved for 1, 2, . . .(n —1), and
we then prove them for order n: Equations (11.11b),
together with the fact that gradients do not change multi-
pole order, together with the expansions (11.6), (11.7),
(11.9), and (11.12) imply that a"„„containsthe following
types of terms:

f0«'&f. o 0'0, withP, +Po+3=n, (11.20a)

foo~o'oh'x~ with p + '+p +2h+q =n
&1

h ~ 1. (11.20b)

Here wherever f, ' & '& is written, the term could equally
well be ff&,'& (i.e. , scalar harmonic rather than vector).
The first term, when coupled to form pure harmonics,

lpJ ——1.
Equations (11.17a)-(11.17c) are thus equivalent to the
n = 1 ACMC-N conditions (11.13b). Moreover, ao, + bo;
as given by Eqs. (11.18) involves only harmonics of
electric-type parity & =(—1)'. Thus, the two coordinate
systems exhibit the same magnetic-type l = 1 component
of g&I,

—i.e. , the same current dipole moment (angular
momentum). And since both systems are mass centered
(gpp pure monopole), both exhibit vanishing mass dipole
moments.

Turn next to conditions (11.13c) on a"
0 + b"

0 for
e ~¹ We shall use induction to prove the following:
(1) the indices l „&and l &„&,z satisfy
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gives harmonics of order l ~ l, +l2; and since Eq.
(11.20a) together with p; & —1 says p, ~ n —2, p2 ~ n —2

we can use our induction assumption to infer thai

+l2 l +l ~ ——P( +1+P2+1=8 —l .
Thus, the first term contains only terms of order
l ~ n —1—which is permissible under the ACMC-N con-
straints (11.13c). Similarly Eqs. (11.20b), together
with the induction hypothesis and the ACMC-N property
L ~ q of h'„z, implies that the secondterm[Eq. (11.20b)]
consists of harmonics

l- l, +. +l„+I.-l, , +. +l, , +L

- p, +. +p„+k+q=n—k- n —1.

2ma sj[ng 2ma sang
On r~ +~acos29 rB

2ma singcos 8+ +4 6

,2 + a2 cos2g 2m 4m2 a2 sin2g=&+ -- -+grr —r2 —2m' + a2

8rn3 —2ma (2 —cos 9) 1=+0—
4 r

&+a cosg a -a singgee=---- 2
= &+

'V 'V

y2 + a2 2m a2 sin28

(11.23b)

(11.23c)

(11.23d)

Thus, the second term contains only harmonics of or-
der l ~ n —1—which is permissible under the ACMC-N
constraints (11.13c). Since these two terms in a"„pre-
sent no problems, we turn to 5"„.Equations (ll.1lc)
and (11.6) imply

~00
l

f
n n+([ -nf(n-( ))]

(11.21a)

(11.21b)

J 1=0
(11.21c)

D. IVlultipole moments of the Kerr metric

By virtue of these relations the ACMC-N conditions
(11.13c) are equivalent to conditions (11.19) on the in-
dices I( f)g and I(„(),and Eqs. (11.2la) and (11.21b),
together with the fact that a"

& contains only harmonics
of order l ~ n —1, implies that the two coordinate sys-
tems will exhibit the same mass n-pole moment (l =n
part of I)oo) and the same current n-pole moment
(7) = (-1)"',l =n part of ko). This completes ourinduc-
tive proof of properties (i) and (ii) above, for n ~ &.

If we turn our attention to n =N + 1, the constraints
(11.13c) no longer hold, so l„and L„~can be arbitrarily
large. Nevertheless, Eqs. (11.21) still hold, and a"

~

still contains harmonics only of order l ~ ~ —1. Conse-
quently it is still true for n =N+ 1 (but not for n =% + 2)
that the mass and current n-pole moments exhibited. by
the iwo coordinate systems are the same.

(11.23e}

(For discussion of how one uses spherical coordinates,
such as these, interchangeably with Cartesian coordi-
nates, see Sec. I.C.)

Since g00 has no 1/r2 terms, the coordinates are mass
centered. At order (1/r) g () contains only monopoles;
but at O(l/r ) it contains monopoles, dipoles and quad-
rupoles (the -a sin 9/r terms in g„„andg()~ are both
quadrupole). Thus, the coordinates are only ACMC-O,
which means that we can read off only the mass mono-
pole moment and the current dipole moment of the
source. Direct comparison of Eqs. (11.23a) and(11.23b)
with Eqs. (ll.la) and (ll. lb) or (11.4a} and (11.4b) re-
veals that these moments are

M =—g =m =mass;
S == 6 = mae, = (angular momentum) .

(11.24)

which leads to

2m 3ma cos'8'

googol

+ j3 +
'V

2m 2ma 1= —1+, —,g [2 ++ (cos9 )] +0

To determine the quadrupole moments we must trans-
form to an ACMC-I coordinate system —i.e. , we must
get rid of the offending -a sin 9/r quadrupole terms in
g„„andg». This can be accomplished by the transfor-
mation

r =r'+a cos 9'/2r', 9 =9' —a cos9'sin9'/2r'

I shall now illustrate, using the Kerr metric, how
one uses ACMC coordinate systems to compute the
multipole moments of a stationary metric.

In the "flat-space normalized" basis
2ma sing' 5ma3 sing' cos 8'

go~ y' j2 j4 j6
'V

(11.26a)

-1e~= ~ ) Qe ='V Be

e =(r sin9) '8 ~,
(11.22)

2maP ~ ma
( I

g
) 0 ~ (l I 26b)

associated with Boyer-Lindquist coordinates, the non-
zero metric coefficients of the Kerr metric are (cf. p.
877 of MTW)

2m 4m —a Bm —4ma -ma cos 82 2 3 2 2 2

g„,„,= 3. + ——;— + —;2—+-

(11.26c)
y,2 + 2m@ a2 cos2g 2m 2ma2 cos2g

— ==—= —1+ -- — +Q—r2+ a' cos'8

(11.23a)

a
gelet 1 +~j + 0 (11.26d)
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a 2ma sin&' 1 la+ tz +0 r41~r j
2ma cos8' sin~'

g

zest

~ 3 +0 t4 ~

(11.26e)

(11.26f)

I 2g„„=g~ = Sma 2 28„=—~3a
all other 8,.k=0;

gjk 0 ~jkl

S = ——ma4
egg )5

(11.28a)

(11.28b)

Note that these moments have the following properties:
g„,= 0 if l is odd; g„,= const. &ma' if l is even; g~ = 0
if l is even; g„,= const. & ma' if l is odd. Janis and
Newman (1965) and Hansen (1974) find these same prop-
erties for their versions of the multipole moments —as
does Hernandez (1967), who defines moments only for
the Kerr metric and not for general spacetimes. This
suggests that there might be some simple gerieral re-
lationship between our moments and theirs.

XII. FORMALISM FOR CALGULATING WAVE
6EN ERAT ION

A. The formalism

The foundations are now laid. Redemption is at hand.

Consider any system zenith slose internal motions

B ~L —= (size of source)

M «&.

time scale for change of((g=
external gravitational field (12.1)

One can calculate the gravitational craves the system
emits by the follozoing procedure: (i) Analyze the struc
ture and evolution of the system in any convenient coor
dinate system and by any fairly accurate approximation
sclzeme (ii) From t.hat analysis obtain an approxima
tion to tlze external gravitat'ional field zohich, at any mo
ment, satisfies (to some degree of accuracy) the time-
independent, vacuum Einstein field equations. (iii) By
transforming that external field to an ACIVlC coordinate
system, read off its dominant multipole moments (the
moments zoith the lar gest values of "'5tl''). (iv) Plug

Here P' =P z( cos8) is the I.egendre polynomial of order
Not only are we now rid of the 1/r quadrupole terms;

we also have a I/r part devoid of octupole and higher-
order terms. Thus, this coordinate systemisACMC-2;
and we can read off the mass and. current quadrupole
and octupole moments. Comparison of expressions
(11.26) and (11.4), and invocation of the spherical-har-
monic relations (2.7), (2.8), (2.18b), and (2.19), re-
veals

1/2
ma', I'o=o if p. ~o, S'"=0; (11.27a)15

1/2S»=', ; ma', Sz"=0 if i «, I'"=0. (».27b)
3 t

These same moments in STF notation, as computed
from Eqs. (11.3) and (2.12), a.re

L error due to ignoring
retardation across source (12.2)

The radiation field computed from those moments will
then have fractional errors L/X and (M/L)ln(g/B).

B. Examples of applications

The shear modulus of the crust of a neutron star pre-
sumably is small enough that the eigenperiods of tor-
sional oscillations of the crust are long compared with
the light-travel time across the star. Hence, for such
torsional oscillations the instantaneous -gravity approx-
imation and the above slow-motion wave-generation
formalism should be fairly accurate. Schumaker and
Thorne (1980) analyze torsional oscillations using these
fo rmalis ms.

These formalisms are also nicely suited to slowly
rotating, deformed neutron stars (e.g. , the Crab pul-
sar). The analysis of such stars usingthese formalisms
would closely parallel Ipser's (1970) analysis and, of
course, would produce the same results.

Consider two black holes in a binary orbit around
each other, with the distance of closest approach large

those dominant moments into the gravitational-suave
formulas of Sec. IV.

That this calculational procedure will give a good ap-
proximation to the waves actually emitted, one can see
as follows: Suppose that one were to compute the struc-
ture and evolution of the system in de Donder gauge. Then
the radiation field would be described, to fractional ac-
curacy (M/x) in(X/R), by the formulas of Sec. IV with
the near-zone, de Donder multipole moments fed in
(for proof see Sec. IX.H). The near-zone, de Donder
moments are determined uniquely by the "stationary
part" g"„0'of the source's metric [cf. Eqs. (9.16) and
(9.17)]—which stationary part approximates the full
metric in and near the source, to within fractional er-
rors L/& and M/g. In the source's exterior g~„'satis-
fies the time-independent vacuum field equations; so
its multipole moments can be read off its line element
in any ACMC coordinate system (for proof see Sec.XI).
If the approximation scheme chosen for steps (i) and
(ii) of the calculational procedure gives an external me-
tric that closely approximates g „',then the moments
computed in step (iii) will closely approximate those ofg„'„'—i.e. , they will closely approximate the de Donder
moments; and, consequently step (iv) of the procedure
will give a good approximation to the radiation.

One attractive approximation scheme for use in steps
(i) and (ii) is the "instantaneous-gravity" approxima-
tion. In this scheme one sets to zero all time deriva-
tives of the metric (but not of the matter variables)
when solving the Einstein field equations G„„=87TT„„.
This has the effect of removing all dynamical freedom
from the gravitational field and making gravitational
interactions within the source instantaneous rather than
retarded. One automatically obtains an external gravi-
tational field which satisfies the time-independent vac-
uum field equations; and, unless one has made a foolish
choice of coordinate system, the moments which one
computes from that external field should contain errors
no larger than
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compared to their Schwarzschild radii. The analysis
by O'Eath (1975), which used matched asymptotic ex-
pansions, shows that the orbital motion will have the
same Keplerian form as for two normal stars with the
same masses as the holes. Application of the above
formalism then shows that the gravitational waves
emitted will be the same as for a binary system made
of normal stars [see Peters and Mathews (1963)].

l5r,'„'l./l(~,'.,)'"l~~/x
in the computation of the gravitational-wave field.
Thus, the tails do not change Eqs. (9.34) and (9.35).

(A4)
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These are the tails of the outgoing waves; they are
characterizedby a power-law fall-off in the time t, -I, '
since generation of the waves. In the specific tail term
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going wave y'„„-(I/z") ' '3II "'(f"—x") backscattering,
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off the static monopole field y', „-8/y". For details of
how this backscatter leads, through matching, to a
near-zone tail of the form (Al) see, e.g. , Price (1972),
Thorne (1972), Bardeen and Press (1973).

In the "transition region" y -X (Eq. 9.30), where our
matching of wave zone to near zone occurs, and at
epochs when the radiation is strongest, the tail terms—
being nonlinear —are small compared to the linear-or-
der outgoing waves. More specifically, for the domi-
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at r -X and at times f; when the radiation is strongest.
In the discussion of Eqs. (9.32)-(9.35) these tail terms
will lead to fractional errors
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APPENDIX: TAILS OF THE GRAVITATIONAL WAVES

In the paragraph preceding Eq. (9.24) we discussed the
matching of the near-zone gravitational field onto out-
going waves. That discussion sloughed over delicacies
associated with "tails" of the outgoing waves. %e de-
scribe those delicacies here.

The near-zone tails are caused by nonlinearities in
the wave zone. If one ignores those nonlinearities —i.e. ,
if one sets W 8 (Eq. 9.3) to zero in the wave. zone —then
the wave-zone field has the linear form (9.31), and
matching of wave zone to near zone then generates "non-
tail" near-zone terms of the form discussed in the text
(Eqs. 9.24, 9.25, 9.28). If, on the other hand, one com-
putes the tiny nonlinear corrections y'8, y ~, . . . to the
wave-zone field using the procedure of Eqs. (9.7), one
discovers that they include terms in which the outgoing
y &

scatters off itself to produce ingoing waves. These
ingoing waves get converted in the near zone back into
outgoing waves, and the resulting "matching-generated"
near-zone fields contain terms such as
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