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The current state of the theory and its application to low-energy electron—molecule collisions is
reviewed. The emphasis is on elastic scattering and vibrational and rotational excitation of small diatomic
and polyatomic molecules. New and traditional theoretical approaches are described, and the results of
calculations are compared with. existing experimental measurements.
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I. INTRODUCTION

Electron—molecule collision processes are important
in determining the energy balance and transport prop-
erties of electrons in low-temperature gases and
plasmas under a wide variety of conditions. Important
applications of the basic knowledge of these collision
processes include MHD (magnetohydrodynamic) power
generation, electron lasers such as the CO, laser, the
upper atmospheres of the Earth and other planets,
the interstellar medium of outer space, and other
examples of nonequilibrium plasmas.

In the case of MHD power generation (see Spencer
and Phelps, 1976) the electrical conductivity of the
coal-fired plasma is limited by electron—-molecule
scattering, including important contributions from
polar molecules such as KOH introduced into the
plasma. Success in modeling such plasmas, and there-
by optimizing operating conditions, will require de-
tailed knowledge of the momentum-~transfer cross sec-
tions for electron collisions with strongly polar mole-
cules. Since direct experimental determination of such
data is very difficult, theory plays a particularly im-
portant role here.

The situation is similar in applications to laser sys-
tems. For example, the CO, electron laser involves
electron-impact excitation of vibrational and rotational
states of the CO, molecule and other species introduced
to “tune” the laser’s operating characteristics (see,
for example, Demaria, 1973). Knowledge of the rele-
vant electron collision cross sections is essential to the
computer modeling and optimization of this laser sys-
tem. The direct experimental determination of these
data, for example, by electron swarm techniques
(Bulos and Phelps, 1976; Lowke, Phelps, and Irwin,
1973), is difficult, so that at present cross sections for
even the most important processes are uncertain. The-
ory is just beginning to make real progress on this
complicated problem.

In the interstellar medium, rotational excitation of
molecules in electron collisions is felt to be an impor-
tant mechanism for cooling the electrons and establish-
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ing the rotational-state populations and the intensities
of related emission lines of the interstellar molecules
(see, for example, Dalgarno and McCray, 1972;
Thaddeus, 1972; and Dickinson et al., 1977). Closer
to home, in the upper atmospheres of the Earth and
other planets, inelastic electron—molecule collision
processes contribute to the slowing down of photo-
electrons and other electrons produced by particle
(i.e., cosmic-ray or secondary-electron) ionization of
atmospheric constituents (see, for example, Dalgarno,
1968, and Takayanagi and Itikawa, 1970a). Vibrational
and rotational excitation are particularly important at
electron energies below electronic-excitation thresh-
olds. Our knowledge of the relevant cross sections is
still far from complete.

A. Nature of the review

This review does not deal directly with broad appli-
cations such as those described above, but rather with
the underlying physical principles of the electron—
molecule collision phenomena. The purpose of the re-
view is to discuss, in some detail, recent theoretical
progress in the theory of low-energy electron—-mole-
cule collisions, and to place in some perspective the
large number and variety of theoretical studies that
have been carried out, especially in the past ten years.
In order to limit the scope of the project, emphasis
has been placed on elastic scattering and rotational and
vibrational excitation of simple neutral molecules (see
Lane, 1979). Only a few brief comments are made on
recent advances in the theory of electronic excitation.
Positron scattering is not included. An entire class of
interesting and important rearrangement processes,
e.g., ionization, dissociation, dissociative attachment,
etc., has not been included. Also missing from this
review is the class of very interesting “core-excited”
(or Feshbach) resonance phenomena (see reviews by
Chen, 1969; Bardsley and Mandl, 1968; Taylor, 1970;
Massey, 1969; and Schulz, 1973, 1976). While a
considerable amount of experimental data is included
for comparison, no attempt is made here to evaluate
or critically analyze these data.

Relatively recent reviews of electron—-molecule scat-
tering phenomena include: “Effective Potential Ap-
proach to Electron—Molecule Scattering Theory”
(Truhlar, Onda, Eades, and Dixon, 1979); “Electron
Collisions with Highly Polar Molecules: Comparison
of Model, Static, and Static-Exchange Calculations for
Alkali-Metal Halides” (Collins and Norcross, 1978);
“Resonances in Electron—Atom and Molecule Scatter-
ing” (Golden, 1978); “Electron Scattering by Polar
Molecules” (Itikawa, 1978a); “Electron Scattering by
Atoms and Molecules” (Burke and Williams, 1977);
“Electron Scattering” (Truhlar, 1977); “Vibrational
Excitation of Molecules by Electron Impact at Low
Energies” (Schulz, 1976); “Low-Energy Electron Scat-
tering from Strongly Polar Molecules” (Takayanagi,
1974); “Momentum-Transfer Cross Sections for Elec-
tron Collisions with Atoms and Molecules” (Itikawa,
1974c); “Resonances in Electron Impact on Diatomic
Molecules” (Schulz, 1973); “Low-Energy Electron
Scattering by Polar Molecules” (Garrett, 1972); “Low-
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Energy Electron-Molecule Scattering Experiments and
the Theory of Rotational Excitation” (Golden, Lane,
Temkin, and Gerjuoy, 1971); “Models, Interpretations
and Calculations Concerning Resonant Electron Scat-
tering Processes in Atoms and Molecules” (Taylor,
1970); “Scattering of Electrons by Diatomic Molecules”
(Chandra and Joshi, 1970); “The Rotational Excitation
of Molecules by Slow Electrons” (Takayanagi and
Itikawa, 1970b); “Electron Impact Spectrometry”
(Trajmar, Rice, and Kuppermann, 1970); “Theory of
Transient Negative Ions of Simple Moleculés” (Chen,
1969); “Resonant Scattering of Electrons by Molecules”
(Bardsley and Mandl, 1968); and “Resonances in Elec-
tron Scattering by Atoms and Molecules” (Burke, 1968).
In addition, electron—molecule scattering was the topic
of the first George J. Schulz Memorial Symposium, and
the proceedings are to be published (Brown, 1979). The
proceedings of the 1978 Asilomar Workshop on Electron
and Photon Collisions will also be published (Rescigno,
McKoy, and Schneider 1979).

This review is divided into three sections: I Intro-
duction; II Theory; and III Applications. In subsection
B of the Introduction, an overview of the “nature” of the
electron-molecule collision process is discussed in
order to motivate some of the “physical pictures” and
related approximation schemes discussed in the body
of the review. In Sec. II, a brief description of the
formulation of the problem is presented, and a limited
selection of the more familiar approximation methods
is presented. Other new techniques, such as the
Glauber approximation and the X @ multiple scattering
method, are included in Sec. III along with applications
to specific systems. An attempt is made throughout
Sec. III to distinguish two types of theoretical investiga-
tion: (i) calculations aimed at testing a new method
(e.g., “T-matrix expansion”) or a new model approx-
imation (e.g., “semiclassical exchange approximation”)
against accurate calculations, but at a level where only
exchange effects are included and correlation effects
are missing; and (ii) calculations where the goal is to
apply the best available method to obtain an accurate
physical result. In the first case, one compares “the-
ory with theory,” but with a well-defined purpose in
mind. In the second case, one is interested in an ex-
perimental comparison. With a few exceptions, the
work described was published prior to January 1979.

B. Overview of electron-molecule collisions

The scattering of electrons by molecules can provide
information about the geometry and state structure of
the molecular target as well as about the negative ion
temporarily formed during the collision (Massey, 1969).
At relatively high energies E>1 keV, corresponding to
de Broglie wavelengths A 0.6 @, (0.3 4), it is possible
to probe interatomic separations and overall nuclear
geometries. However, unless the molecular targets
are somehow aligned, as in a crystal, on a surface, or
in a strong external field, the total scattered electron
angular distributions reflect statistical averages over
nuclear variables including the overall orientation of

‘the molecule. In order to recover detailed information

about nuclear geometry and state structure it is nec-
essary to separate the scattered electrons according to
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energy loss and to correlate a given energy loss with a
particular molecular transition. Thus, electron
energy-loss spectroscopy is a valuable companion to
conventional spectroscopies and provides information
about molecular states not readily accessible by the
latter, since the electron—molecule interaction con-
tains important contributions beyond the dipole term
which dominates photon interactions. At the high
electron energies relevant here, the theory is relatively
straightforward since the speed of the projectile elec-
tron greatly exceeds the speeds of the nuclei and the
bound electrons. Thus, an impulse approximation is
appropriate, in which the internal coordinates of the
target (in the present case, both bound electron and
nuclear coordinates) are held constant throughout the
collision. The Born approximation, valid when the
scattering is weak, defines the differential scattering
cross section in terms of a generalized oscillator
strength. In the high-energy limit, the latter reduces
to the ordinary radiative oscillator strength, for
optically allowed transitions. At high energies the
molecule “sees” the passing electron as a time-
changing electric field.

As one lowers the electron energy, the theory be-
comes more complicated. The impulse approximation
no longer applies to the bound electrons (although often
the nuclei can still be treated in this manner). The
bound electrons now must be allowed to respond to the
approach of the projectile electron. This “response”
is complicated and can take on different forms. At very
low energies E =10 eV, the bound electrons tend to
relax adiabatically as the projectile approaches, thus
setting up a temporary dipole moment, proportional
to the dipole polarizability of the molecule and .pointed
in the direction of the approaching electron. This so-
called “polarization interaction” strongly influences
all low-energy cross sections especially small-
angle scattering. The importance of polarization is
particularly evident in connection with strong inter-
ference features, e.g., the Ramsauer minimum in the
electron—CH, total cross section (Christophorou and
McCorkle, 1976; Kleban and Davis, 1977; Gianturco
and Thompson, 1976). The adiabatic picture breaks
down when the electron is near the nuclei and at high
energies in general. A striking example of this break-
down at particular energies is evident in the core-ex-
cited resonances, completely analogous to the narrow
Feshbach resonances that are observed in electron—
atom scattering (Burke, 1968; Bardsley and Mandl,
1968; Chen, 1969; Taylor, 1970). These arise from
temporary electronic excitation of the target followed
by a resonant capture of the projectile electron to form
an autoionizing state of the negative ion. The capture
is probable only over a narrow energy range, so the
resonance can be characterized by a mean energy E,
and width I, the latter related to the lifetime 7 of the
resonance by 7=7%/I". A second type of resonance, the
“potential resonance,” does not involve this strong non-
adiabatic response of the target electrons, but simply
arises from the temporary capture (attachment) of the
projectile electron in its own centrifugal barrier, pres-
ent in the effective electron—molecule interaction poten-
tial energy. Regardless of the precise capture mech-
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anism involved, the projectile electron is strongly in-
fluenced by the target at any energy near the resonance,
and weak-scattering approximations fail. If the life-
time 7 of the resonance is comparable to, or exceeds,
the classical period for a particular nuclear degree of
freedom, it is necessary in general to properly allow
for response of that nuclear variable during the col-
lision; i.e., the impulse approximation is inappro-
priate for that particular nuclear variable. For most
potential resonances in small molecules such as N,
CO, and CO,, the impulse approximation is valid for
rotation of the molecule but fails for vibration (Schulz,
1973, 1976). When attachment occurs in a dissociating
negative-ion state, the molecule may dissociate into
fragments, stabilizing the electron attachment in the
process. This “dissociative attachment” process is
strongly enhanced by resonant scattering (Schulz,

1973; Bardsley and Mandl, 1968; Chen, 1969; Taylor,
1970; O’Malley, 1971; Hall, 1977). Since there is al-
ways a chance that the electron will escape (autodetach)
before it is stabilized, the magnitude and variation of
the lifetime of the molecule state with respect to inter-
nuclear separation are crucial in determining which
process dominates. Little progress has been made in
the actual calculation of dissociative-attachment cross
sections; however, semiempirical studies have been
successful (see, for example, Wadehra and Bardsley,
1978; Allan and Wong, 1978). The analogous process
in electron collisions with molecular ions is dissocia-
tive recombination (Bardsley and Biondi, 1970; see the
recent work of Dubois, Jeffries, and Dunn, 1978, and
references therein).

In attempting to properly allow for electronic re-
sponse of the molecule to the approaching electron,
one is faced with precisely the same complicating ex-
change and correlation factors as encountered in the
molecular structure problem. The full wave function,
including spin coordinates, must be antisymmetric with
respect to interchange of any two electrons. The re-
sulting exchange integrals complicate solution of the
differential or integral scattering equations just as
they do in electron—-atom scattering (Mott and Massey,
1965; Massey and Burhop, 1969; Burke and Williams,
1977; Bransden and McDowell, 1977, 1978). However,
here the problem is much worse. The strong non-
spherical character of the target molecule complicates
the partial-wave analysis and thereby renders it more
cumbersome than in the electron—atom case. In the
more conventional theoretical treatment of low-energy
electron—-molecule scattering, the partial-wave expan-
sion is still employed. However, the partial-wave
angular momenta are strongly coupled to one another
(Fano, 1970b), and, as a result, the numerical compu-
tations are quite involved even for relatively simple
model-potential representations of the full electron—
molecule interaction. New approaches, sometimes
called “L? methods,” are based on a partitioning of
configuration space in such a way that the region of
space near the nuclei is treated by quasimolecular-
structure methods and the region away from the nuclei
by more conventional means. These methods include:
R-matrix, 7-matrix expansion, pseudobound state,
stabilization, and complex coordinate rotations. So
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far, no single method has distinguished itself as the
“best” approach. However, the field is active and
much progress has already been made.

Examining the characteristic features of a number of
specific scattering processes one is led toa few rela-
tively safe generalizations. Near threshold, the rota-
tional excitation cross section is dominated by long-
range electron—molecule interactions, in particular
the dipole interaction for polar molecules, quadrupole
interaction for alarge class of nonpolar molecules, etc.
With the exception of strongly polar molecules (dipole
moment d =1.0 a.u) the scattering near threshold is
weak and the Born approximation, with its accompany-
ing selection rules, is valid, even in the limit of a
“zero-energy” outgoing electron at threshold. At high
‘energies and/or large scattering angles, other inter-
actions, including exchange, become important and the
scattering is not weak in general. Near a resonance,
the rotational-excitation cross section can be large for
a number of rotational transitions, i.e., rotational se-
lection rules are less restrictive. If it were not for the
existence of long-range anisotropic interactions to
provide a “long lever arm” on the molecule, or res-
onances to capture the electron in the short-range vi-
cinity of the nuclei for an appreciable period of
time, rotational excitation cross sections would be very
small. The unfavorable electron/nucleus mass ratio
prevents efficient transfer of energy from scattered
electron to nuclear motion. The same general argu-
ment holds for vibrational excitation. However, in this
case, it is not the anisotropy of the interaction, but
rather its dependence on internuclear separations,
that determines the size of the cross sections. Near
the vibrational threshold, the Born approximation may
be useful and several such calculations have been made.
However, a spectacular failure is evident in the vibra-
tional excitation of HC1, HF, HBr, H,0, SF;, and a
number of other molecules, where sharp resonances
appear just above threshold (Linder, 1977). These
resonances may be due to a virtual-state enhancement
of the final~state interaction. Whatever the cause, the
scattering is strong and the Born approximation fails.
Broad potential resonances are evident in many mole-
cules at somewhat higher energies (e.g., ~2 eV for N,
and CO, and ~4 eV for CO,). The lifetimes associated
with these resonances are comparable with vibrational
periods so that considerable nuclear relaxation occurs
during the collision. This nuclear response gives rise
to a fine structure in elastic as well as rotational-
and vibrational-excitation cross sections. In all such
cases, the adiabatic-nuclei approximation applied to
nuclear vibration fails. Resonant scattering can induce
vibrational transitions between a number of levels so
that no precise selection rules apply.

In attempting to formulate a practical theory for
electron—molecule collisions, one is motivated to take
every advantage of reliable approximations, and oc-
casionally a few unreliable ones. An attempt has been
made in Sec. II to describe the theory in a palatable
manner. In the compromise, a certain amount of rigor
and completeness has been sacrificed. It is intended
that this material serve as a simple introduction to the
methods used in the applications of Sec. III.
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Il. THEORY OF ELECTRON-MOLECULE COLLISIONS

The time-~independent theory of electron scattering
is based on a stationary-state description of continuum
states of the electron plus target system (Mott and
Massey, 1965). The objective is to calculate wave
functions, more precisely eigenfunctions, of the elec-
tron—-molecule Hamiltonian

H:—EL!Vf‘*'Vem(r,x)*'Hm(x); (1)

where the three terms represent the kinetic energy of
the projectile electron, the electron—molecule inter-
action potential energy, and the Hamiltonian of the
isolated target molecule, respectively. In a space-
fixed (laboratory) frame of reference, usually with the
origin chosen as the center of mass of the molecule, r
stands for the spacial coordinates of the projectilé, and
x, collectively, for all coordinates (electron plus nu-
clear) of the target molecule. (Spin coordinates will
be suppressed in general expressions. Atomic units
will be used throughout, where e=7%7=m, =1, and
length, mass, charge, and energy are given in units of
@,=0.529 A, m,=9.110 X 1073 kg, .¢=1,602 X 107'° C,
and 2 Ry=27.2 eV, respectively.) The continuum states
relevant to the scattering problem are described by
wave functions ¥(r, x), finite for all values of the co-
ordinates, that satisfy the particular asymptotic bound-
ary conditions

U(r,x) ~ WINC(r x)+TSCATT (r ), (2)

7>

/

where the first term represents an incident plane wave
on a particular initial molecular state

YING (r, x) =exp(ik, * 1)y (%), ®)

and the second term consists of a superposition of
outgoing waves associated with all possible (i.e., ener-
getically accessible) molecular states n

VAT (1,2) = 2 5 explik,n) frolln kM), (4)

where k, and k, are initial and energetically allowed
final-state momenta of the scattered electron (defined
asymptotically), whose magnitudes are related by en-
ergy conservation

ki=k:~2(E, - E,), ‘ (5)

where E; and E, are initial and final energies of the
molecule. The label #n represents all quantum numbers
necessary to specify a state of the isolated molecule.
The scattering amplitude f,,(k,, k,) describes a quantum
scattering event 0—# in which an electron incident with
momentum k, upon a molecule in state ¥ (x) is scattered
by the molecule and leaves with momentum k,, the
molecule being left in state ¥,(x). The differential
cross section for this event is expressed in terms of
the scattering amplitude by the usual expression

do & \ A |
(E)M = 7 Vnollen, ko) 7. | )

Because of experimental difficulties in resolving small
energy losses or otherwise distinguishing between final
molecular states, it is often more appropriate to cal-
culate and compare partial summations or averages
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over certain initial and final states of the target, e.g.,
the “magnetic” states m; of a rotating molecule, or
closely spaced rotational states j of large molecules.
When the final direction of the scattered electron’s
momentum IAe,, is of no interest, an integral cross sec-
tion .

By [ on
o’o*n:k_ofdknlfno(kn; ko)lz (7)

is calculated, where the integration is over all values
of the angles 6, and ¢, that define %, (of course this
integration is always carried out analytically). A
special class of “swarm experiments” measure trans-
port properties such as the drift velocity of electrons
in gases (Huxley and Crompton, 1962, 1974). These
measurements are most conveniently interpreted in
terms of momentum-transfer cross sections, which
emphasize large-angle scattering as evident in the
definition

o, = :—; [ k(1= cos )| Fuolitr, kP @)

The angular weighting may be understood from simple
classical considerations of the momentum transferred
to the molecule during a single collision.

A. Coupled-states expansion

Alternative theories of electron—molecule scattering
simply reflect different approaches to solution of the
Schrddinger equation

(H - e (r,x)=0 9)

for electron—molecule system eigenfunctions ¥.(r, x)
at total energies ¢ of interest. The most natural ap-
proach would seem to be a “coupled-states” (often
called “close-coupling” or “eigenfunction”) expansion
in terms of the complete set of unperturbed states of
the isolated molecule, viz.

Fo(r,x) =@ Y F,(r),x), (10)

where, assuming proper spin couplings have been
carried out, @ is the usual antisymmetrization opera-
tor. In principle, the summation in Eq. (10) includes
continuum as well as bound states of the target. The
one-electron “scattering functions” F,(r) corresponding
to bound target state » play something of the role of
continuum molecular orbitals, except that they depend
on the initial target state specified in the boundary
conditions given by Eqs. (2)-(4); these functions satisfy
the set of coupled equations

(VE+R2)Fo(1) =2 D [Vine(£) + Wi o(£)] Fpo(x), (1)

nt

where the dirvect matrix elements are defined by
V(X)) =(n|V pln’
= [ U,V e, W), SNET)
and the exchange matrix elements W,,.(r) are operators

which interchange bound orbitals in ¥,.(x) with “con-
tinuum orbitals” F,.(r) to the right in Eq. (11). All ex-
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change terms decay exponentially in the asymptotic
region -« in the same manner as the bound orbitals.
Thus, exchange effects are characterized as short
range; they will have died away long before the direct
matrix elements are negligible. According to Egs.
(2)-(4), the asymptotic boundary conditions on the
solutions of Eq. (11) regular at the origin are

. 1 .
F,,o(r) ~ eXp(Zko * r)Gm) + ; exp(zk,,r)f,,o(k,,, ko) ) (13)
o>

where the second subscript on F,, has been appended
to designate the initial target state.

The solution of Eq. (11) for electron—atom scattering
is already a formidable challenge (Mott and Massey,
1965; Massey and Burhop, 1969; Bransden and
McDowell, 1977, 1978; Burke, 1977). A partial-wave
expansion of the functions F,(r) in terms of the
spherical harmonics Y,,,(6, ¢) reduces Eq. (11) to a
set of coupled second-order differential equations which
must then be truncated before numerical solution is
possible. In low-energy scattering the major role of
the infinity of high-lying electronic states in the ex-
pansion (10) is to participate in the electrical polariza-
tion of the atom during the collision (Castillejo et al.,
1960; Drachman and Temkin, 1972). One scheme for
the truncation of Eqs. (10) and (11) is to replace an in-
finity of excited states by a few “pseudostates” care-
fully chosen so that the full adiabatic polarization of the
atomic target is accounted for (see discussion in
Bransden and McDowell, 1977). The resulting finite
set of coupled equations can then be solved numerically.
While this procedure is possible for electron—molecule
scattering, several additional complications arise.
First, the number and the nature of the target states
in Egqs. (10) and (11) are very different for molecular
targets. In N,, for example, there are far more mo-
lecular states within 1 eV of the ground state than can
reasonably be included in even the most ambitious
coupled-state expansions. A second compliéating factor
in Eq. (11) is the strong nonspherical nature of the
matrix elements V,,.(r) and W,,.(r). This feature
causes a partial-wave expansion of the scattering func-
tion F,(r) to be very slowly convergent as compared to
the atomic case. Finally, the molecular target may
possess large permanent electric moments which re-
sult in large long-range contributions occurring in both
the diagonal and off-diagonal (“coupling”) matrix ele~
ments V,,.. In such circumstances important contribu-
tions to the scattering cross sections can arise from
very large electron—-molecule separations. [This
effect is particularly striking for polar molecules,
where the rotational-excitation cross sections are
strongly enhanced and tend to dominate all forward
(small-angle) scattering as well as the total integral
cross section at low energies. (See Sec. IIL.E.)]

As in other applications of theory, we seek approx-
imations that include all important effects and permit
calculations to be performed. A particularly important
example is the approximation of separation of vari-
ables, here applied to electronic and nuclear coordin-
ates. When the scattered electron is near the mole-
cule, exchange effects are expected to be important
and the electron—-molecule interaction and the related
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matrix elements are strongly anisotropic. However,
in this region of space the electron’s “motion” is de-
termined more by the instantaneous positions of the
nuclei and the associated bound-electron charge distri-
bution than by the velocities of the nuclei and the
vibrational or rotational states that determine the lat-
ter. Thus, for small » the fixed-nuclei approximation
is appropriate, and one need not take explicit account
of the large number of rotational and vibrational states
that would be required in Egs. (10) and (11). When the
electron is far from the molecule, we naturally expect
its behavior to be influenced by vibration and rotation
of the nuclei, but in this region of space exchange ef-
fects are negligible and the interactions are much less
anisotropic than near the nuclei. So, by conceptually
dividing space into two regions, we can expect a sig-
nificant reduction in complexity. This is the philosophy
of Chang and Fano (1972) in their exposition of the
frame transformation. The power of such an approach
rests on the separation of electronic and nuclear vari-
ables and the applicability of the Born—-Oppenheimer
(adiabatic) separation to the electron—molecule sys-
tem; this is the subject of the next section.

B. Born-Oppenheimer approximation

In this and future sections it will be necessary to
distinguish between electronic and nuclear coordinates
within the molecule. We will continue to represent the
coordinates of the scattered electron by r, or r’, and
the electronic and nuclear coordinates of the molecule,
collectively, by r,, and R,, (in the case of a diatomic
molecule, R,, becomes the relative-position vector of
the two nuclei R). From here on, we will follow the
convention that primed coordinates r’ refer to the LAB
frame and unprimed r to the BODY frame. Both frames
are coordinate systems having a common origin at the
center of mass of the system. The LAB frame has a
space-fixed z axis (often chosen along the initial mo-
mentum k,), whereas that of the BODY frame is di-
rected along a symmetry axis of the molecule, e.g.,
for a diatomic molecule, 2 =R. We seek wave functions

¥ (r’,r,, R,) satisfying Eq. (9) and the asymptotic con-
ditions given in Eq. (2), where the molecular Hamil-
tonian in Eq. (1) can be written

H,(rh, R, =H (¢}, R +H P (R,), (14)

with the electronic contribution given by

Ny N,
B e )= 3571 5 5
1 a=1 Jlrf

Ne Ne

1
*2 ]}_;‘; r{-r]

1=1

(15)
and the nuclear contribution by

N N
Z;é— Z ———T (16)

for a molecule containing N, electrons and N, nuclei
with charges and masses Z, and M,, respectively
(see Fig. 1). The interaction potential energy is

M‘

H(B) R,)

1.\.7|r—l
™

>a
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FIG. 1. Nuclear and electronic coordinates in the LAB frame.

Ny . N,
’ ’ —_ ‘404 £ 1
Vem(r, Tomy Rm)“ O‘Z:;]r"RJ +§ lr'_l‘j’l . (17)

In the theory of molecular structure, the powerful
Born—Oppenheimer approximation permits a separation
of nuclear and electronic variables so that one can first
solve the electronic problem with the nuclei fixed, ob-
taining electronic wave functions and energies that
depend parametrically on the nuclear coordinates [see,
for example, Flygare (1978), Chap. 6]. The nuclei
are then assumed to move in response to the adiabatic
potential energy corresponding to the stationary elec-
tronic state. The wave function is written as a simple
product of electronic and nuclear functions. Perturba-
tion theory may then be used to correct for the “break-
down” of the Born—Oppenheimer approximation (Herz-
berg, 1950; Flygare, 1978). These corrections are
found to be especially important for highly excited vi-
brational states (large nuclear speeds), high-Rydberg
electronic states (small electron speeds), or “curve
crossings” where two or more electronic energy curves
(or surfaces) cross or come very close to one another.

In the electron—molecule scattering problem, we are
dealing with continuum (scattering) states for which the
total energy is positive with respect to the ground state
of the target molecule. We seek a product form for the
wave function (Herzenberg and Mandl, 1962; Shugard
and Hazi, 1975; Schneider, 1976)

U o(T, Ty R) =5V (2, T3 Ru)X(R,) (18)

where the fixed-nuclei (FN) electronic function TN
depends only parametrically on the R,,. The most con-
venient electronic coordinates here are those referred
to the BODY frame. The approximate form given in
Eq. (18)'is clearly valid in two limiting cases. When
the electronic wave function ¥V is highly localized in
the vicinity of the molecule, as in the case of a nar-
row (long-lived) resonance, the nuclei respond adiabat-

. ically tothe potential energy of the “negative-molecule-ion

complex,” and well-defined rotational-vibrational
states, described by “resonant” wave functions x, are
established. Herzenberg and Mandl (1962) refer to
this as the “compound molecule limit.” At the other
extreme is the “impulsive limit” appropriate for non-
resonant scattering at energies sufficiently high that
the velocities of the incident and outgoing electrons
are considerably larger than those of the nuclei (Chang
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and Temkin, 1969, 1970, Hara, 1969b; Temkin and
Faisal, 1971). (The impulse limit may be appropriate
for nuclear rotation when it is not for vibration.) In
this limiting case, the nuclear wave function y is
simply the unperturbed nuclear wave function for the
molecule. When neither the adiabatic nor the impulse
limits apply, it is necessary to treat the nuclei and
electrons on a more equal footing. This can be ac-
complished by a full coupled-state (LAB-frame) ap-
proach, in which the system wave function is expanded
in terms of unperturbed target wave functions as in
Eq. (10), or more efficiently by some type of frame~
transformation procedure wherein one takes full ad-
vantage of (Born—-Oppenheimer) separation of electronic
and nuclear variables when the electron is near the
molecule, but relaxes this assumption at larger elec-
tron—-molecule separations. When the scattering is
dominated by a resonance, a “decaying electronic
state” formalism is appropriate. The electronic state
is represented as a bound state immersed (and decay-
ing into) an adjacent continuum. In the Born—Oppen-
heimer separation of Eq. (18), ¥IN represents the de-
caying (nonstationary) state, and the nuclear wave
function x is determined by a complex nuclear poten-
tial energy (Herzenberg and Mandl, 1962; see re-
view by Bardsley and Mandl, 1968). The next section
will describe the fixed-nuclei formulation of the
electron-molecule scattering problem.

C. Fixed-nuclei formulation

If the nuclei are held fixed, we need only consider
the electronic Hamiltonian for the electron—molecule
system, viz.,

HO =iv2.eqg @4 v, (19)

where V2 is the Laplacian in terms of BODY-frame co-
ordinates r, and where the target contribution and the
electron-molecule interaction potential energy are
given by Eqgs. (15) and (17), respectively. We will re-
strict the development to diatomic target molecules

in order to simplify the formalism. It is convenient

to refer all electronic coordinates to the BODY frame,
where the polar axis is taken along the internuclear
line, i.e., 2=R, as shown in Fig. 2. The electronic
states of the target molecule are represented by the
functions zp(j)(rm;R) [we recall that r,,=(r,,r,,..., ry,)
represents all target-electron coordinates, collectively
(spin is implicit)], where « stands for all electronic

@

y
FIG. 2. Electronic coordinates in the BODY frame.
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quantum numbers. These N,-electron wave functions
satisfy the target electronic Schrédinger equation

HE -EQLR)W (xr,,R) =0, (20)

where the eigenvalues E{(R) are the electronic
“curves” for the molecular states.

In the electron—molecule scattering problem one
seeks solutions of the N, +1 electronSchrdinger equation

(H® =)™ (r,r,;R)=0, (21)

where (r,r,)=(r,r,,...,ry ) denotes all N, +1 electron
coordinates, collectively. In Eq. (21) the entire nuclear
Hamiltonian is omitted, and this approximation even-
tually must be justified. For now, we will simply make
the following observation. When the electrons are all
close to the nuclei, their motion is dominated by the
potential energy V,,, and any corrections arising from
nuclear momentum terms are expected to be small,

on classical intuitive grounds. In the asymptotic re-
gion, say as -, it is much less clear how such ef-
fects can be ignored; in fact, in certain cases to be
discussed, they cannot.

In the frame-transformation procedure (Fano, 1970a;
Chang and Fano, 1972), one makes the fixed-nuclei
approximation only in the proximity of the nuclei and
performs this portion of the calculation with electronic
coordinates referred to the BODY frame of the mole-
cule. At some carefully chosen boundary, one trans-
forms the solutions to the LAB frame, and introducing
the nuclear Hamiltonian, continues solution of the
resulting equations into the asymptotic region. The
hope is that a transformation radius can be found such
that H™ can be safely ignored in the inner region and
complicated exchange interactions (always short range)
can be ignored in the outer region. {In general, we
require that the commutator [H‘®), #("], and there-
fore [V,,, H™], be small in comparison with
H) _ g for all values of the coordinates (see Chang
and Fano, 19’72).} The details of the frame-transfor-
mation procedure will be saved for the next section, in
which the LAB-frame development will be given.

There are circumstances in which the inner region
can be extended to infinity, i.e., the entire problem
can be solved to a very good approximation in the
BODY frame, ignoring H ™ entirely. The frame trans-
formation then reduces to a single step at the end of the
calculation. This procedure is formally equivalent to
the adiabatic approximation applied to the nuclear
motion (Chang and Temkin,. 1969; Hara, 1969a,b;
Herzenberg and Mandl, 1962; Temkin, 1976). It is
generally valid under the following circumstances: (1)
the incident electron energy is well above threshold;
(2) the scattering is not dominated by strong long-
range interactions; (3) the scattering is nonresonant.
These conditions are imprecise and somewhat am-
biguous. The examples to be discussed later will
provide some clarification. In the remainder of this
section, we shall concentrate on solution of the fixed-
nuclear Schrddinger Eq. (21). These solutions will be
used to extract cross sections in the adiabatic nuclei
approximation, and in the next section will provide the
“inner solutions” for use in the more precise frame-
transformation procedure.
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A “close-coupling” solution of this problem involves
an expansion in terms of electronic target wave func-
tions of Eq. (20), viz.,

YIN(L, 0, Ty O3 R) =@ J_ Caym, Fa,m (T3 R)

@,mg

X Xm (OW (€ my Oms R) 5 (22)

where the spin coordinates ¢ and 0, (of the scattered
and bound electrons) are shown explicitly. The coef-
ficients Ca.,,‘s depend on the choice of spin coupling, and
Xms(") is a spin-3 eigenfunction. The angular depen-
dence of Fy g is treated by the usual partial-wave
expansion

Famg(CR)=7" D i m (73 R) Y (?) . (23)
i,m

For problems in which the Hamiltonian does not contain
magnetic (spin—spin or spin—-orbit) terms it is con-
venient to couple the electron spins at the outset. In
order to simplify notation throughout, we define a
“channel index” p which labels all possible combina~-
tions of quantum numbers. Thus, the close-coupling
expansion (22) becomes

¥, 0,1, 0, R)=C ) v u ()OI, 0,1, 0nsR),
b 4
(24)

where the “channel wave functions” are

N (7,0, T, O3 R)=Y1(®) D C(3SaS;my(M)s)

my( M)y
XXms(c)Zpgf) (rrm Oms R) s (25)
where p =(a, I, m,S, M,). The radial functions u,(r)
satisfy the coupled integro-differential equations
a2 I(l+1
[E;,—z e —('rT)] ufN@p) =2 E [VEN () + Wpe(r) ] ub™r)
g

(26)
where the total energy
e=k/2+E'P R)=K./2+ E (R) (27

is given in terms of the electronic energies of the tar-
get at the fixed internuclear separation R. The “direct”
matrix elements are given by

VE;"(Y) =<¢P(/;" 0" rm, cm; R)lvem(r9 rm; R)i
X(}p‘('f’, 0, Ty am;R» 1 (28)

where integration (summation) runs over all electronic
spatial (spin) coordinates except ». These matrix ele-
ments vanish unless all spin quantum numbers are the
same in channels p and p’ (i.e., no “direct” singlet—
triplet coupling, etc.). The range of these matrix
elements determines the way in which they influence
the scattering wave function. In general, the matrix
elements that are diagonal in a, i.e., a,=0ay,, possess
asymptotic »"2,#73, ... behavior, with coefficients
proportional to the electric dipole, quadrupole, etc.,
moments for the particular electronic state involved.
These long-range interactions are characteristic of
electron—-molecule scattering (even elastic scattering
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from closed-shell ground-state molecules), in con-
trast to the atomic case. An effective »™* “induced
polarization interaction” arises from virtual excita-
tion of optically allowed electronic transitions of the
molecule [i.e., from coupling in Eq. (26) with ener-
getically inaccessible states through V,F,P‘l] just as in
electron—atom scattering (Castillejo et al., 1960;
Drachman and Temkin, 1972),

The “exchange” matrix element W,,. is an operator
that interchanges coordinates of the radial part of the
“scattering orbital” u,.(r) with those of the occupied
bound orbitals; this operation may be written
schematically as

WiN @) uy(v) = ): [f Kypepr, r’)ul;r:l(yl)d'r'] Py(r),
8 o

(29)
where Pg(r) is the radial part of a bound molecular
orbital [more precisely, in the case of electron—
molecule scattering, Py(7) is a single coefficient in a
single-center expansion of a bound molecular orbital]
and K,,s(,7’) is an “exchange kernel.” From Eq. (29)
it is apparent that the exchange terms are constrained
to fall off exponentially as -, This is why exchange
is generally regarded as a short-range effect.

The coupled equations (26) for N channels [i.e.,
p=1,...,N in Eq. (24)] possess N linearly independent
regular vector solutions %,,.(r), where the first index
labels the component of the vector and the second index
labels a particular linearly independent solution. Thus,
the radial solutions, i.e., radial parts of the “scatter-
ing orbitals,” form a square N XN matrix u(») and the
coupled equations may be written simply as

[1 ;:2 +k% - ;li-z-Lz] u(r) =2[V(@r)+W(r)a@), (30)

where diagonal matrices k® and L? are defined with
elements k3 and I(l +1), respectively.

In principle, Eqgs. (30) can be solved numerically by
any one of several efficient methods. In practice, ac-
curate solution of (30) is very difficult for several
reasons: (i) The expansion in Eq. (24) must be trun-
cated at some finite number of terms and convergence
with respect to the number of electronic states is often
slow as in the case of electron~atom scattering; (ii)
even for a finite number of electronic states, conver-
gence in I is often slow due to the nonspherical nature
of the electron—molecule interactions (Burke and
Chandra, 1972; Morrison, Lane, and Collins, 1977,
Morrison and Collins, 1978); (iii) the exchange terms
require iteration of the solutions, or alternatively,
generate many more coupled equations via a nonitera-
tive procedure (Marriott, 1958; Omidvar, 1961, 1974,
see Smith, Henry, and Burke, 1966). Simply stated,
the fixed-nuclei electron-scattering problem possesses
all the complexity of the corresponding electron—atom
problem plus the added feature that even the static field
of the molecule is not spherically symmetric. Of
course, when nuclear motion is properly included,
additional complications arise. In the region of con-
figuration space near the nuclei, i.e., the region where
the fixed-nuclei approximation is valid, the scattering
problem is most difficult. Some procedure other than
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solution of the coupled equations (30) is called for.
Formally, the R-matrix method (see reviews by Burke
and Robb, 1975; Schneider, 1977a; Fano, 1977) and
related “eigenchannel” (Fano and Lee, 1973; Lee, 1974,
and references therein) and “T-matrix expansion”
(Rescigno, McCurdy, and McKoy, 1974a,b; 1975a)
methods are designed for this task. Several applica-
tions have been successful, and the methods appear to
hold promise for future studies. Applications will be
discussed in Sec. III.

One approach that significantly reduces difficulties
related to the multicenter character of the electron—
molecule scattering problem is the “multiple-
scattering method” (MSM), which is discussed in more
detail in the applications in Sec. III.C.1. (See Johnson,
1973; Dill and Dehmer, 1974, 1977; Siegel and Dill,
1976; Siegel, Dill, and Dehmer, 1978. Also, see the
recent article by Dehmer and Dill in Rescigno, McKoy,
and Schneider, 1979.) Applications to electron—mole-
cule scattering have been limited to fixed-nuclei calcu-
lations where the electron—molecule interaction is
approximated by a local potential energy function of the
“muffin-tin” form. Indeed, the convenience and ef-
ficiency of the method derives from the “muffin-tin”
approximation, where a region of constant potential
energy separates other regions in each of which the
potential energy is spherically symmetric with re-
spect to the respective nuclear center. The MSM is
particularly useful in treating large molecules,
clusters or surfaces, where there are many scatter-
ing centers.

Regardless of how the fixed-nuclei problem is solved,
it is still not complete. The motion of the nuclei must
be incorporated. This is properly done by means of a
frame transformation from the BODY frame (with fixed
nuclei) to LAB frame (with moving nuclei), to be
described in Sec. II.E. However, there are many cir-
cumstances under which the adiabatic-nuclei approx-
imation is valid, and rotational- and vibrational-ex-
citation cross sections may be obtained directly from
the fixed-nuclei scattering amplitude by simple numer-
ical quadrature (Abram and Herzenberg, 1969; Chang
and Temkin, 1969, 1970; Faisal and Temkin, 1972;
Hara, 1969b; see discussions in Golden et al., 1971;
Takayanagi, 1973, 1975a,b; and Temkin, 1976). The
general problem of an electron collision with a poly-
atomic molecule has been formulated by Burke,
Chandra, and Gianturco (1972) and by Onda (1974).

D. Adiabatic nuclei approximation (nuclear impulse
approximation)

From a classical point of view a “fast collision,” in
which the collision time £, is much less than the periods
for nuclear rotation, 75 (21072 sec), or vibration,

7, (~107** sec), should be well represented by a fixed-
nuclei approximation. The “fast-collision” case is
alternatively described as the “impulse” and “adia-
batic nuclei” limit by different authors. Indeed it is
appropriate to say that the nuclei experience an
impulse due to the collision (Herzenberg and Mandl,
1962; Bardsley and Mandl, 1968). On the other hand,
the electron adiabatically responds to the instantaneous
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position of the nuclei, and therefore is not sensitive
to the instantaneous momenta of the nuclei (Oksyuk,
1966; Chang and Temkin, 1969, 1970; Temkin, 1976).
We will consider the terms “adiabatic nuclei” and
“nuclear impulse” to be synonymous. The Born—
Oppenheimer approximation is valid and the total
(electronic and nuclear) wave function may be ap-
proximated by Eq. (18), rewritten for the diatomic
case (suppressing spin coordinates) as

‘I’eaovo(r) rm’ R)g w;g(o(r’ rm; R)XQOVD(R) b (31)

where xaoyo(R) is the umperturbed initial nuclear-state
wave function of the target, and v, represents vibra-
tional and rotational quantum numbers for this state.
Taking the overlap of the asymptotic form of Eq. (31)
with an arbitrary final nuclear-state wave function
Xar(R), we obtain the adiabatic nuclei (AN) approxi-
mate scattering amplitude for a transition a,v,—~ av

zy,uovo(k&’ ké) =< Xav(R)Ifgr,\luo(k&’ k('z; R)lXaovO(R» ’
(32)

where faf§0 is the fixed-nuclei (FN) scattering ampli-
tude corresponding to an electronic transition a,— a.
The primes on k{, and kj denote LAB-frame momenta.
The integration over molecular orientation R is
straightforward and requires that fa,,ao be calculated
only once for a particular value of R, most conven-
iently on the BODY frame. A simple application of the
rotation operator effects the transformation to the
LAB frame. The integration over R requires that

o}f‘;‘,o be computed for several values of R and that a
numerical quadrature be performed.

At low collision energies where ¢,= 7, but {, << 73, the
adiabatic nuclei rotation (ANR) approximation may still
be valid even though vibrational motion must be treat-
ed more accurately. Instead of Eq. (32) we have for
the ANR approximate scattering amplitude, the ex-
pression
fm'},bil;uo(k&, k{)) =(Rav(ﬁ)lf£§.}§10uo(k&w ktlxouo; ﬁ)lRaovo(ﬁ» ]

(33)
where R, is the rotational wave function corresponding
to nuclear state v, and fa”F'h“"Ro”o is the fixed-nuclear
rotation (FNR) scattering amplitude corresponding to
an electronic-vibrational transition o ,~ a,v, where
v, and v are vibrational quantum numbers. The FNR
amplitude in Eq. (33) can be obtained by coordinate
rotation of the BODY~frame amplitude, the latter
obtained by a close-coupling, R-matrix, or equivalent
calculation that takes explicit account of nuclear vi-
bration. In the remainder of this section, we will
describe how the fixed-nuclei scattering amplitude

,,,F,’;"o is obtained. Formal generalization to the FNR
case is direct.

The validity of the adiabatic nuclei approximation is
based on the assumption that the fixed-nuclei approx-
imation is valid even in the asymptotic region » — .
The fixed-nuclei scattering matrices are obtained by
selecting solutions of Eq. (30) that satisfy the asymp-
totic boundary conditions

s(r) +c(r)(k"2Kk?) open channels

) e { } , (34

b exp(~|k|#) closed channels
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where, in terms of the Riccati Bessel and Neumann
functions 7,(z) and #,(2), respectively, we define

(80 ope =71(Ry 7)8pp+ v SiN(Ry 7 = 171/2)8,50 } (35)
[e@))ppr==71(By7)0pye .50 COS(Rp v — LT /2)D e

and
(K250 = k528,10 . (36)

The “standing wave” asymptotic conditions given by
Eqgs. (34) and (35), in terms of the reactance matrix K,
are most convenient for actual computation. Alterna-
tively, “traveling-wave” conditions in terms of the
scattering matrix S may be chosen. The K, S, and T
matrices are related by (Taylor, 1972; Mott and
Massey, 1965)

S=1-T=(1 +iK)(1 —iK)"* (37)

where S is unitary and symmetric and K is real and
symmetric.

The T matrix and corresponding scattering amplitude
are first determined in the BODY frame and then
transformed to the LAB frame by a simple rotation
of coordinates. Finally, the integrations in Eq. (32) are
performed analytically over R and numerically over R.
The details of this development are summarized briefly
below.

Considering the asymptotic form of Eq. (24) along
with the Eqs. (34)—(37), we can derive a relatively
simple form for the BODY-frame (B) scattering ampli-
tude for a transition a,-

& ao(ay ko R) =27(kga) ™2 3 ito™ iy

o™o

(EO) YI m(];a )
'lo"’l"o

XTB(alm,aglgny;S,R), (38)

where %, and ko refer to BODY-frame coordinates and
S is the total spin of the system. (The superscripts B
and L will be used in this section to label BODY~ and
LAB-frame quantities.) A rotation of coordinates B to
L is performed so as to bring %, into coincidence with
the LAB-frame z axis (see Fig. 3). The LAB-frame
scattering amplitude in the fixed-nuclei approximation
is

o N (ka3 R) = (Boko) ™ 37 [m(2L,+1)] %25 0" 1

Im'lo
x TE(alm’, @ l0;S,R)Y;,.(EL), (39)
(ko)
z
}
. R
AN
r
|
|
|
: Y
|
N
é, N

X

FIG. 3. Orientation of the molecule (BODY-frame) in LAB-
frame coordinates.

Rev. Mod. Phys., Vol. 52, No. 1, January 1980

where the LAB-frame 7 matrix in the fixed nuclei
approximation is :

T (alm’, 0,l0;S,R) = 3 Dhm(R)

m, mO
x T8 (alm, aldyny;S,R )D,l,,°00(é )*,

(40)

and where k{, refers to the LAB frame, and the D-
matrix elements are those of Rose (1957), in the
somewhat abbreviated notation

Dhon(R) = Dhip(@g, 6, 0) . (41)

[The appearance of O as the last index of the string
@4l,0 on TT in Eq. (40) is a reminder that in the LAB
frame we have chosen I'éo as the z axis; therefore,

the incident plane wave is expanded simply in terms
of ¥ 4(#').] In Eq. (40), 7% now carries dependence
on the orientation of the internuclear axis R, arising
from the rotation of coordinates BODY to LAB, as well
as on-the internuclear separation R, which is treated
as a parameter throughout the development. The inte-
gration in Eq. (32) may now be carried out to obtain
the adiabatic nuclei (AN) result for the transition
Qv av.

For purposes of illustration, we have chosen to rep-
resent the target diatomic molecule by a Hund’s case
(b) coupling scheme (Herzberg, 1950), where the
nuclear wave function of the target can be written as
a product

Xar(R) = 0% (R)R jmn,R), (42)

of the vibrational wave function ¢f,",,) and the rotational
(“symmetrical top”) functions

N %2 +1 12 n
ijjAa(R):( 4]1112 ) DZnJAD‘(R)*, (43)

where A, is the projection of electronic (target mole-
cule) angular momentum on the internuclear axis for
state a and can assume both positive and negative
values. {We note here that the quantum numbers j, 7z,
are usually reserved for total angular momenta in-
cluding spin. Here we use them to represent rotational
angular momentum (usually labeled by K, M), and
leave the molecular spin free to couple with the spin

of the scattered electrons (cf. Eq. (25)]}.

The adiabatic nuclei (AN) scattering amplitude for
transition a,v,—~ av can now be evaluated by inserting
the nuclear wave functions of Egs. (42) and (43) into
Eq. (32) and carrying out the integrations. The angular
integration involves familiar properties of the D ma-
trices (Rose, 1957). The result is

:J‘{aoyo(k",) = (kokm)-l/z ”Z [11(2l0+ 1)]1/2i10-t+1
om’

x TN (awim’, agrl0;8)Yim (L),  (44)

where the adiabatic nuclei T matrix is defined by
(writing vjm; for v)
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Nawjmlm', apjom; 100;S) =[(27 + D)(2j,+ DI2 Y~ 27+ 1) 3 C(jlJ; mym!)
J

X C(jldyAg Ay,

m,mg,

o = Do+ M) C(Golo T3 m; 0)C(Golod; Aa 720)

X @| T2 (alm, aolomo;s,R)Ivo)é,,,ma_mo,,\a Omosmt.m, » (45)
0

and where T? is the BODY-frame 7' matrix that results
from the fixed nuclei calculation. The integration over
R must be carried out numerically. Two “selection
rules” arise in performing the angular integration over
R leading to Eqs. (44) and (45):

A=m+Ag=mo+hq , » (46)
M=m;+m'=m; . (47)

In Eq. (46), m, and m are, respectively, the projec-
tions of the scattered electron’s initial- and final-state
orbital angular momenta on the BODY axis. Thus Eq.
(46) expresses conservation of the projection of total
orbital angular momentum A on the BODY axis. [In
practice, it is convenient to alter the expansion basis
of Eq. (24) slightly, defining channels with well-defined
values of A at the outset.] In Eq. (47), m’ is the pro-
jection of the scattered electron’s final-state orbital
angular momentum on the LAB z axis, taken here to
be coincident with the incident linear momentum %,

[(25+1)(2],+ )]
2J+1

T*N(@vjl, a@ojole;S,d) =

m,m

J *o

Since the electron’s mltlal-state angular momentum has
zero projection along kg, Eq. (47) expresses conserva-
tion of the projection of total (orbital and rotational)
angular momentum A on a space-fixed z axis in the
LAB frame. Finally, the coupling of the rotational
angular momentum j of the molecule with the orbital
angular momentum L of the scattered electron to form
a total J=j+L is evident in the Clebsch—Gordan coef-
ficients, which vanish unless

ljo"longs]‘o’*lo, (48)
|j=ll<sJd<j+l.

In a single collision event, J is conserved.

The apparent complexity of Eq. (45) arises from the
presence of two unitary transformations of the 7" ma~-
trix. The first is a transformation from the BODY-
frame basis (almRI'él to a coupled angular momentum
representation (az)leM] in the LAB frame, resulting
in the 7 matrix

2. CULT; Aghg, = A +m)C (il Aagm)

X @|T2(alm, aozomo;s,R)Iv,))ama,,,,om%. (49)

The second transformation evident in Eq. (45) is simply
an angular momentum uncoupling to the representation

(avjm,;lm’|, also in the LAB frame. ThlS transforma-

tion results in the 7" matrix

AN(qvjmim!, agojom; 1605 S)
= Z C(jld; mym')C(jolJ; ijO)
7
AN . . . »
X T (avjl,ayv,j olo,S,J)é,,,j,,,,,,',,,jo, (50)

which is the same as Eq. (45).

In the general frame-transformation procedure, to
be discussed in the next section, the BODY -~ LAB
transformation is performed on the scattering wave
function at some well-chosen finite value of electron—
molecule separation, and the calculation is then con-
tinued outward into the asymptotic region. The adia-
batic nuclei approximation is based on the assumption
that this transformation can be delayed until the elec--
tron—molecule interaction has effectively vanished.
The second transformation of the 7' matrix from the
coupled to uncoupled representation is not an approx-
imation; it is the same in an exact analysis.

Equation (44) is still not the final result since it is
defined for a total spin state S, Mg of the electron—
molecule system. The spin uncoupling is straight-
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forward and takes the form

S dvmg.agpoms (6a) = 2 COazS; (Mog)m)C O S5 (Magms)
N

X f &N aons ) s (51)

where the spin label S has been made explicit for this
purpose.

The differential cross section for a transition
a,v,—~ av, averaged over initial and summed over final
degenerate magnetic substates

ij; (Ms)ao’ mso and mj’ (Ms)ocs ms’ iS

(58) oo™ (2 2
A2 ) avi ageis  \ko/ 22, +1)(2S4, +1)

x 2]

mi o Ms) o gms
mi(Mg) gmg

lfavm , O V m (k )lz

(52)

which may be expressed in terms of the corresponding
T matrix elements by making use of Eqs. (44), (45),
and (51). The summations in Eq. (52) permit consider-
able simplification of the final expressions. The inte-
gral cross section for ayw,j,~ a@vj corresponding to
Eq. (52) becomes
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AN ) kg ?
ovieavolo " 2(28, +1)(27,

o =1):L;(zsﬂul)(zcnl)

1!0
x| T*N(@vil, @yv4dely; S, I)|2 (53)

in terms of the T matrix defined in Eq. (49).

Since the rotational energy levels of a molecule are
so closely spaced, it is often impossible to resolve
particular final rotational states in a scattering ex-
periment or unimportant to do so for a particular
application. It is then convenient to define a total
integrated cross section, summed over all final j, viz.,

AN AN ,
Oav.aovoz Z oavj.anvojoy (54)
i

where we have anticipated the result that in the AN

(or ANR) approximation, where the rotational motion
is treated adiabatically, this total cross section is
independent of the initial rotational angular momentum
jo- The summation over j in Eq. (54) can be performed
using Eqgs. (49), (50), and (53) and the orthonormality
condition on the Clebsch—Gordan coefficients. The
summation over J in Eq. (53) can also be performed,
resulting in

-2
N R

A = —
O'av,movo 2(2Sa0+ 1) zs: (ZS +1)
llom0

x|@|TE(alm, aglgngS, R) vy)2, (55)

where m=m,+ Ay — Ao. (Recall that this cross section
also represents a sum over final, and average over
initial spin projections.) Equation (55) can also be de-
rived by proceeding directly from the BODY-frame
scattering amplitude in Eq. (38), shown as an explicit
function of molecular orientation in Eq. (39). The
adiabatic nuclear vibration (ANV) approximation is
made simply by forming the matrix element of the scat-

tering amplitude in Eq. (39) (vlf{;aolvo). However, one

can bypass all the analysis associated with introducing
the rotational states of the molecule. If a differential
cross section is constructed directly from <v|f§%|v0>,
and is then integrated over all moleculay ovientations
R as well as over final scattering momentum direc-
tions %, Eq. (55) results. (Spin is handled as before.)

It may be the case that final vibrational states need
not be resolved. Making use of completeness of the
vibrational wave functions in Eq. (565), we can perform
the v summation, obtaining

AN k2

= ———
o, 2@S. D) ZS: (25 +1)

1lymg

X @ol T8 (alm, aylgmeSR)v,)E, (56)

where m=my,+A, = A, as before, and where now only
an average of the 7 matrix over the initial vibrational
state v, appears. Since the ground vibrational state
wave function is localized about the equlibrium inter-
nuclear separation R,, the approximation is often made
of replacing the averaged 7' matrix by that evaluated at
R =R,. In general, the cross section defined by Eq. (56)
does depend on initial state v,. In contrast, the cross
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section defined by Eq. (54) does not depend on initia
state j,. :
Under conditions where the “collision time” 1. <Tg
but .= 7,, e.g., for energies near vibrational thresh-
olds for states of interest, or in the vicinity of a res-
onance with a lifetime comparable with 7,, the adia-
batic approximation may be valid for rotation but not
for vibration. In such circumstances, all the equa-
tions (45)=(55) remain valid with the replacement

@|TE(@lm, aylymeS, R)|v,) ~ TE(avim, a,vl,my;S) ,
(57)

where the latter is obtained from a vibrational close-
coupling treatment including vibrational as well as
electronic states in the expansion of Eq. (24), or from
some other method that treats molecular vibration
more accurately. The calculations are necessarily
more complicated.

E. General formulation

The adiabatic nuclei approximation discussed in the
last section is based on a fixed-nuclear treatment
throughout (i.e., at all electron—molecule separations)
and must fail under certain circumstances, for ex-
ample, whenever the collision time £, is comparable
to or exceeds the periods of nuclear motion 7, and 7.
Conditions where AN may fail include (i) energies
near threshold, (ii) occurrence of resonances, and
(iii) dominance of strong long-range interactions (as in
scattering from polar molecules) (see Temkin, 1976).

Recently, Nesbet (1979) introduced an “energy-
modified adiabatic (EMA) approximation” which formal-
ly extends the validity of the adiabatic nuclei approxi-
mation to cover all cases by including the nuclear
Hamiltonian as a “parameter” in the adiabatic elec~
tronic wave function. The author shows that approxi-
mate treatments based on this theory do yield the cor-
rect results in both the resonance and impulse limits.

The general formulation of electron—molecule scat-
tering treats the target molecule as a complicated ro-
tating, vibrating structure capable of changes in nuclear
as well as electronic states during the collision. Thus,
one seeks solutions of the full electron-plus-molecule
Schrédinger equation.(9) subject to the asymptotic con-
ditions of Egs. (2)=(4). The explicit inclusion of ro-
tational and vibrational states in a close-coupling ex-
pansion (10) introduces complications into the calcula-
tion. For relatively light molecules like N, and CO,
the density of strongly coupled rotational states is al-
ready so high that solution of even the static-exchange
problem [in which only the ground electronic state is
retained in Eq. (10)] stretches the capability of the
largest present-day computers. The reason for this
strong rotational coupling is simply that the LAB-frame
expansion (10), where the scattered electron is referred
to space-fixed coordinate axes, is inappropriate at
small 7, where the electron is near the nuclei. To see
this, let us consider a molecule like H, or N, and
focus specifically on those terms in Eq. (10) that in-
volve the ground 'Z; electronic state. Such terms in
the expansion may be written (ignoring spin for now)
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7 Uy 1m0 Y 1 )Y g RN (R (T R),  (58)
vimjim'

where the angular coordinates 7’ of the scattered elec-

tron are referred to a space-fixed LAB frame, and
where we have assumed that the rotational states of a
diatomic molecule in a Z electronic state may be
adequately represented by spherical harmonics (rigid-
rotator model). At small values of » (near the nuclei)
the strong attractive interaction tends to strongly couple
the angular momentum L of the scattered electron to
the internuclear axis R (classically, L is caused to
precess around the nuclear axis ﬁ). Thus the projec-
tion L+ R tends to be well defined near the molecule,
and a representation of the scattered electron wave
function in terms of eigenfunctions of LR, viz., ¥;,(#),
where 7 refers to the BODY frame, is more appro-
priate. In the LAB-frame treatment, the expansion (58)
must somehow reflect this physical effect, and it does
s0 by strongly coupling a large number of Im/jm;
channels. Indeed, Mullaney and Truhlar (1978) have
shown that in actual calculations the convergence of a
rotational close-coupling calculation is much improved
by employing an expansion in terms of “rotationally

and orbitally adiabatic” basis functions rather than the
conventional unperturbed functions.

Vibrational coupling can be understood in a very
similar way. When the electron is close to the nuclei,
its motion tends to respond instantaneously to any '
change in internuclear separation R, and therefore may
be properly characterized by a Born—-Oppenheimer
representation in which the radial functions depend
parametrically on R, viz., u(r;R). In Eq. (58), this
kind of physical response to changes in R can be rep-
resented only by coupling of different vibrational
states. It should be emphasized that most of this strong
coupling of vibrational and rotational states in Eq. (58)
which occurs at small # is an artifact of the type of
basis functions chosen to represent the wave function,
and not a true indication of the rotational and vibra-
tional transitions that are likely to occur in a given
collision.

Chang and Fano (1972) have formulated a frame-
transformation (FT) procedure that takes explicit
account of the physical uncoupling of the electron’s
angular momentum L from the nuclear axis as the
electron moves away from the nuclei. Simply stated,
the frame~transformation procedure involves a BODY -
frame expansion of ¥, when the electron is close to -
the molecule and a LAB-frame expansion when it is
far away. The procedure also deals with the vibrational
coupling problem by treating R as a parameter when
the electron is near the nuclei, and introducing station-
ary vibrational states at larger electron—-molecule
separations.

Choi and Poe (1977a,b) have recently reformulated
the BODY-frame treatment in a way that conveniently
describes the “hybrid theory” of Chandra and Temkin
(1976a) to be discussed in Sec. II.C.

1. LAB-frame formulation

In this section, we shall formulate the general LAB-
frame close-coupling treatment with the understanding
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that this formulation, while valid for all », will be
most practical when the electron is sufficiently far
from the nuclei, say 7» = ag, so that its motion is not
completely dominated by the electron—molecule inter-
action potential energy, and the rotational and vibra-
tional portions of the Hamiltonian H are important. (It
should be noted that in general, the optimum trans-
formation radii a; and q, for introducing the rotational
and vibrational contributions to H may be different. We
won’t bother with this distinction in the present dis-
cussion.) ’

In the complete LAB-frame formulation of the elec-
tron-molecule scattering problem, the close-coupling
expansion (10) becomes, by analogy with Eq. (24),

VE(r', 0, m 0y R) =@ D 77Uy (r" &) (#, 0,y 0y R)
»

(59)

where the LAB-frame “channel wave functions” (ex-
pansion basis functions) are

LA,
ép (’V', 0', Ty Gm; R)

(= 20 CULT mm" )Y 1 (PR n, (BVSLR)
m’mj
X Do C(ESaS; my(Ms)aXm (O (T 1y O R) .
ms(MS)m
(60)

In Eq. (60) the rotational and vibrational target wave
functions are those of Eqs. (42) and (43), the angular
coordinates #” of the scattered electron refer to the
LAB frame, and the spin coupling S =5 +8, is carried
out as in the fixed-nuclei treatment of Eq. (24). In
this representation the orbital angular momentum of the
scattered electron L and the rotational angular mo-
mentum of the molecule j are coupled, forming the
total angular momentum

J=j+L, (61)
and the ®7 are eigenfunctions of J2 and J, as well as S?
and S, where z refers to the space-fixed LAB frame.
The channel index is now p =(a,v,j,1;J,S). (Spatial
isotropy guarantees that the radial functions and the
scattering matrices are independent of M, and Mg.)
The radial functions uf (r) satisfy coupled integro-
differential equations identical in form to (26), viz.,

[ 13- D)) 22 3 (V5,00 W)t
P'

(62)

where the &3 now include rotational and vibrational en-
ergies of the target (i.e., the matrix elements Hyg

and Hg,or, both diagonal in this representation). The
direct and exchange matrix elements V,.(») and

Wgye(»), respectively, are defined for the LAB-frame
basis, Eq. (60), in complete analogy to the BODY-frame
treatment leading to Eqs. (28) and (29). Although the
precise forms are different, the overall structure of
these matrix elements is consistent with the observa-
tions made in the last section. The coupled equations
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can be written in matrix form as in Eq. (30), where the
radial solutions are represented by an N XN matrix
u®(r) with elements

[0 ()] = uze(r) (63)
where channels are labeled by p=1,...,N [N =total
number of channels included in the close-coupling ex-
pansion (59)], and the particular linearly independent
solutions are labeled by ¢=1,...,q,,,, where in general
q,.. =2N. If the region over which Egs. (62) are solved
includes the origin » =0, then the boundary conditions
requiring that #5,(0) =0 for all solutions eliminate the
N irregular solutions so that q,,,,=N.

If the LAB-frame treatment is being used only in an
exterior region, say 7= a, then one can still get by with
only N linearly independent solutions provided sufficient
information is available at the FT boundary 7 =az to
enable these solutions to be initialized properly and
integrated into the asymptotic region. One way of in-
corporating this boundary information is via the R
matrix (Wigner and Eisenbud, 1947; Lane and Thomas,
1958). By definition, the elements of the R matrix
relate the functions and their derivatives at the FT
boundary according to

Ay e ()
Upe(ap) = Z Rppe ('—ﬁi—") .
rQ r=ap

For example, in the frame-transformation procedure
the R matrix may be constructed by solving the fixed-
nuclei problem in the interior region » <az, perform-
ing the frame transformation to the representation
(60), and then calculating values for the radial functions
and their first derivatives at the boundary » =ay from
Eq. (64). Alternatively, “eigenvalue methods” have
been developed which lead directly to the R matrix or
its equivalent. We shall discuss some of these in the
next section. It is also possible to propagate the R
matrix directly into the asymptotic region, eliminating
the need to obtain the radial functions themselves
(Light and Walker, 1976).

(64)

2. Frame transformation

Turning now to the frame transformation itself, we
have argued that in the interior region » < a, (see Fig:
4) a BODY-frame representation of the wave function
is more appropriate since a strong electron-~molecule
interaction (rather like a strong axially symmetric

where in all the matrix elements, integration is per-
formed over the nuclear variables R and R as well as

#, T and all spin coordinates. The direct and exchange
matrix elements are given by Egs. (28) and (29) as
before. The rotational and vibrational contributions to
the Hamiltonian possess eigenfunctions and eigen-
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FIG. 4. Partitioning of configuration space for frame trans-
formation.

electric field) is more suitably accounted for in this
reference frame. A rigorous BODY-frame represen-
tation of the total wave function is given by the ex-~
pansion

VI (r, 0, 0mR) =G Y v ul (v, R)OE(P, 0,1, O, R),
t

(65)

where the BODY-frame channel wave'functions are

@?(’?, o’ rm’ Gm, R)

(274112 5
:th(V)( . ) Diya(R)

X D0 C(3SaS; myMy)a)Xm (OWE (£ my Os R,

mg(Mg) o
(66)
where

A=m+A,, (67)

and where the channel index is defined as
t=(a,l,myd,S).

The channel functions ®% are eigenfunctions of J2,
J. and J+R, with respective eigenvalues (in a.u.)
J(J+1), M, and A. The spin coupling has been carried
out as before., We note that the BODY-frame channel
functions &% are not identical to the fixed-nuclei chan-
nel functions ®5Nof Eq. (25) in that the R-dependent
factor [(27 +1)/87]“2D},(R)* is missing from the
latter. In the present section we have not made the
fixed-nuclei approximation. The functions &% of Eq.
(66) form a complete set in the variables R as well
as 7 and r,, so that the expansion (65) is exact. It
differs from the LAB-frame expansion (59) largely
in the choice of coordinates.

Substitution of Eq. (65) into the full Schrédinger equa-
tion yields the BODY-frame coupled radial equations

(68)

I
values given by
(H\(Ioig - Eau‘)¢(oxl) (R) =0,

where in the harmonic approximation the (discrete)
eigenvalues are

(69)

Ea:):wm(v*'%)’ ’1}=0,1,2,... ’
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and
(H(ROT_Emj)ijjAa(ﬁ)zo, (70)

where, in the rigid-rotator approximation the eigen~
values are

VEaj =Baj(j+1): J =O’ 1, 2’ .

where w, and B, are the vibrational and rotational
constants, respectively (in a.u.). In the rigid-rotator
approximation, the rotational wave function of Eq. (70)
is given in Eq. (43). The channel kmetlc energies k%
in Eq. (68) are related by

k2/2+EO(Ry)=F5./2+EY (R,), (71)

where R, is the equilibrium separation for state a.
The matrix elements of 4, and Hpor may be calcu-
lated by transforming to the representation in which
the corresponding matri¢es are diagonal (see Chang
and Fano, 1972). The vibrational terms (¢|H; [t"),
though diagonal in /, m,;, and A, lead to an awkward
continuum of coupled equations that would be very dif-

~ficult to handle. The rotational terms (¢|Hgop [t are
less frightening; however, in general they do involve
coupling in m; and A. All ! coupling is confined to the
direct and exchange matrix elements.

Now, if we agree to work in the BODY-frame rep-
resentation only in the “inner” region near the nuclei,
then the direct and exchange terms in Eq. (68) are
much larger than the rotational and vibrational terms,
and the latter can be neglected. Chang and Fano (1972)
point out that the commutators [Hyq; , Ven] and
[Hyis s Vem), although not strictly zero, nevertheless are
quite small. Ignoring H,, and Hpy; in Eq. (68) re-
duces the coupled equations to those obtained in the
fixed-nuclei approximation, Eqgs. (26) or (30). Thus
the fixed-nuclei radial solutions #{Y(», R) are good
approximations to the electronic parts of the exact
BODY-frame radial solutions u%,(»,R) for » <ap. Thus,
in the sense of the Born—Oppenheimer approximation,
the BODY-frame radial wave functions for » Sap may be
approximated by the product form

R, R)X(R),

where the fixed-nuclei functions u’;f,"(af,R) are analogous
to the adiabatic electronic functions in ordinary bound-
state applications of the Born—Oppenheimer approxima-
tion. However, here, there exist for each channel ¢
many acceptable linearly independent (with respect to
) functions, labeled by ¢. The proper choice for the
corresponding “vibrational” functions x.(R) is some-
what ambiguous. Certainly, if the radial functions
uf¥(r,R) have been determined so as to satisfy the
fixed-nuclei asymptotic boundary conditions given by
Eq. (34) for each R, an appropriate choice would be

X(R) = 0%, (R),

i.e., the unperturbed target-molecule vibrational wave

functions corresponding to particular initial electronic

states a,. With this choice, the adiabatic nuclei ap-

proximation [Eqs. (49)—-(56)] is obtained as a limiting

case, viz., when the frame-transformation radius,

ar in Fig. 4, is taken to « (Henry and Chang, 1972).
The transformation at the FT boundary, »=ag, is

ug(r,R)=u (72)

(73)
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FIG. 5. Partitioning of configuration space in R-matrix
method.

accomplished in two steps. First, the R dependence
of the BODY functions u% (»,R) is “distributed” amongst
the V1brat10nal functions by means of the expansion

ul(v,R) = 2 ub, ("o R), (74)
where
uh, ()= [ RdR 00 W, R) (15)

=(av|uf(r,R)g . ('76)

Thus from Eq. (76) we note that the BODY -frame rep-
resentation of the total wave function in Eq. (65)
becomes

‘IIsBa(r’ Oy Ty Oy R) =@ Z 'V-lu?v.q('r)

tv

x o) (R)®E (P, 0, T py 0,,R),  (T7)

where the subscript ¢ has been appended to denote a

 particular linearly independent solution. To compare

Eq. (77) directly with the LAB-frame representation [Eq.
(59)] we merely write ¢(JZ)<1>: in terms of the LAB-
frame channel functions &7 defined in Eq. (60). The
transformation matrix elements are defined by

¢ (R)2E (P, 0, Ty Oy R) = D A @5 (7,0, T, 0,y R),
i
(78)
where the summation runs only over j, the rotational
quantum number associated with the LAB channels
p=(a,v,j,1;J,S). The inverse transformation in-
volves summation only over m, associated with the
BODY channels ¢ =(a, I, m;J,S). The coefficients in
Eq. (78) may be obtained by projecting onto particular
channel functions (this involves integration over R
and #’). We obtain
; 12

Ap =[§%2%-lr)] CULT; Agm) = (A7), (79)
for the elements of the orthogonal transformation.
[Note that Eq. (79) deceptively seems much simpler
than the Chang and Fano (1972) result given in their
Eq. (A9). The difference is that they construct channel
functions &% and ®* that are eigenfunctions of the
parity operator for the electron—molecule system, thus
taking advantage of this additional symmetry.] Now,
Eq. (77) can be written as
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VoL, 0, Ty Oy R)=C D 7" Up(r)®F (7,0, Ty Oy R),
p

. (80)
where
ul’d(’r) = Z APtufv,a(lr)
=2 Ay f "R2AR 68 (R) U, R), (81)

but by Eq. (59) this must agree with the LAB radial
solutions uf,,(r). Thus we have at the transformation
radius v =ap

u”(ap) =A{av|u®(@r,R))g, (82)

and a similar expression for the first derivative. [In
passing, we note that if the BODY-frame radial func-
tion in Eq. (76) is approximated by Eq. (72) with the
choice of vibrational function (73), and the transforma-
tion is applied in the asymptotic region, i.e., ap— >,
then with a little effort we recover Eq. (32), i.e., the
adiabatic nuclei approximation.] Alternatively, the more
compact R matrix can be employed. In the LAB frame,
the matrix R” is defined [cf. Eq. (64)] by

uf(ap) =R* [Ed;ul’('r)] s

aF

(83)

and in the BODY frame the matrix R®(R), which depends
on the internuclear separation R, is defined by

uB(aF,R)=RB(R)[£uB(r,R)]aF. (84)
Of course, the matrices are defined over different
bases in Egs. (83) and (84). In particular, it is im-
portant to remember that the LAB-frame channel

index p includes the vibrational quantum number v.

Use of Eq. (82) in Egs. (83) and (84) leads to the R-
matrix transformation

RY=A(av|RE[R)|av)A. (85)

The procedure, then, is to develop a number of
linearly independent fixed-nuclei, BODY-frame radial
solutions ufq('r,R) at a sufficient number of inter-
nuclear separations R so that the integrals in Eq. (81)
can be evaluated. At a suitable FT boundary » =ap, the
frame transformation (82) is applied to the functions
and their first derivatives (hence, the R matrix), or
the functions at two adjacent points. The LAB-frame
solutions u{'q('r) are then integrated into the asymptotic
region using Eq. (62). If ar can be chosen sufficiently
large, the exchange terms Wf,o can be set to zero.

In the asymptotic region where all electron—molecule
interactions are negligible, we select LAB-frame
solutions that satisfy boundary conditions identical in
form to Eqs. (34)—-(36) except that the LAB-frame
channels are labeled by p =(a,v,j,1;J,S) and the chan-
nel kinetic energies k3 are related by

e=ki/2+ E,=k3./2+ E,. , (86)
where
Ey,=EY (Ro) + wa +3) +B,j(i+1). (87)
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The LAB-frame K, S, and T matrices are related by
Eq. (37). Thus the 7 matrix is defined with elements

Ty, = T(@0jl, 4 ojole; S, I) . (88)

In Eq. (49) we gave an approximate form (adiabatic
nuclei approximation) for this quantity. In contrast,
the frame-transformation procedure leading up to Eq.
(88) is “exact,” in the sense that in principle it can be
made as accurate as desired. The angular momentum
decoupling transformation is given by Eq. (50). The
scattering amplitude for the transition ap,~ av (i.e.,
aWojgmy,~ avim,) is given by Eq. (44) in terms of the
exact T'-matrix elements. Finally, Egs. (51)-(53) for
the spin-decoupled scattering amplitude, and the dif-
ferential and integral cross sections hold for the exact
T matrix as well, and will not be rewritten.

Weatherford and Henry (1978) discuss the frame-
transformation procedure as applied to electronically
elastic scattering for !Z* target molecules and in the
context of the noniterative static-exchange integral
equation method. They have applied the method to
rotational and vibrational excitation in electron-H,
scattering (Weatherford and Henry, 1979).

The degree of success one expects in applying the
frame-transformation procedure, of course, depends
on the smallness of the neglected terms. In elastic
scattering and rotational excitation of polar molecules
by slow electrons, the optimum choice of transforma-
tion radius ar can be elusive (Chandra, 1977; see Sec.
II.E.l.a). Lan, Dourneuf, and Schneider (1979) suggest
that this special problem with polar-molecule scatter-
ing can be efficiently dealt with by including the di-
agonal contribution of H,,. in the BODY~frame cal-
culation.

F. R-matrix and T-matrix expansion methods

1. R-matrix method

In the previous section, the R matrix was introduced
in Egs. (64) and (83)—(85) as a convenient device for
transferring information about the scattering wave
function across a boundary at » =a from an interior
region of space to an exterior region. In this section,
we will describe alternative methods for calculation
of the R matrix that have features in common with
standard bound-state methods used in molecular
structure calculations (Schneider, 1975a,b and 1977a, b;
Schneider and Hay, 1976; Morrison and Schneider,
1977; Burke, Mackey, and Shimamura, 1977; and
Shimamura, 1977a,b). It is convenient to partition
configuration space into regions as shown in Fig. 5
(Burke et al., 1977). The (A, R) and (j,v) regions
are those described earlier, in connection with the
frame-transformation procedure. In the R-matrix
method, a further partitioning is appropriate into a
“core region,” » < a,, and “potential-field region,”

72 a,. The “core region” is chosen so that all impor-
tant exchange and short-range correlation effects are
contained therein. Thus, the physics of the “core
region” is analogous to that of a bound-state molecular
structure problem.

The R matrix will be calculated in this region by
employing techniques similar to those developed for
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structure calculations. The “potential-field” region,
r>a,, is sufficiently far removed from the nuclei and
the regions qf greatest bound-electron density (for
target states of interest) that the electron—molecule
interaction can be replaced by a local potential energy
term in the Hamiltonian. In particular applications

it may be convenient to set a,=ar, so that the frame
transformation is carried out at the edge of the core
region. It should be emphasized once again that the
proper selection of ar is related to the rotational and
vibrational energy-level separations of the target (see
Sec. IL.E), and in general two different radii ag and

a,, in place of the single ap, might be necessary for the
rotational (A —j) and vibrational (R ~v) segments of
the frame transformations, respectively. .As described
previously, under conditions such that the adiabatic
nuclei approximation is valid for rotation, vibration,
or both, then the relevant FT radii can be taken to be
infinite (i.e., the FT reduces to a constant transforma-
tion at » =«). In contrast, the radius a, of the core
region is determined by the range of exchange inter-
actions and complex short-range correlation effects.

It is largely a “trial and error” determination (see
Chandra, 1977).

The R matrix can be defined for any choice of ref-
erence frame and corresponding set of channel func-
tions. In electron—molecule scattering, the power of
the R-matrix method derives from the fact that a
fixed-nuclei, BODY-frame calculation of the R matrix
is sufficient in the “core region,” » <a,, followed by
relatively straightforward integration of the scattering
equations in the outer regions. Thus in terms of the
fixed-nuclei radial solutions of Eq. (26), we define
the BODY-frame R matrix at » =a, by

W= 3 5 (Gt ), - Zutial],

for each linearly independent solution u5,,q =1,...,N.
The value of b is arbitrary, and is usually chosen to
be zero, as in Egs. (64), (83), and (84). In matrix
form, Eq. (89) becomes

u®(a,) =R? [(C—f;ul*(r)) = aicuﬂ(aa] :

where the second index of the radial solutions matrix
labels a particular linearly independent solution. With
b=0, we see that the R matrix is proportional to the
inverse of a generalized logarithmic derivative matrix.
The calculation of the R matrix is based on the ex-
pansion of the electron—molecule system wave function
T2 in terms of a complete set of “bound-state” wave
functions ¥,, defined for 7 <ay by imposing a particular
type of boundary condition at a finite “core” radius a,
of Fig. 5. The “bound-state” functions can be calculated
by diagonalizing the full fixed-nuclei Hamiltonian & (©
in a basis set in which the basis functions themselves
are constrained so that their logarithmic derivatives
possess particular values at the boundary » =a,. Al-
ternatively, the Bloch operator (Bloch, 1957)

L,= ; Iéf}é(r—ac)[g; - fc](@fl

can be introduced, and the modified Hamiltonian H®

(89)

(90)

(91)
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+L, then diagonalized in terms of an arbitrary basis
set in which no particular constraints are placed on
the basis functions. Since the &% in Eqg. (91) are the
channel functions of Eq. (24), the individual terms in Eq.
(91) correspond to channel projections of the Bloch opera-
tor. Theuse of the Bloch operator L, has the advantages
that: (i) itis much more convenientto employ arbitrary
basis functions; (ii) the resulting ¥, and hence \1/5 donot pos-
sess the annoying discontinuity in their first deriva-
tives at 7 =a,; and (iii) the expression for the R matrix
[see Eq. (99) below] is more rapidly convergent.

Thus, in terms of the Bloch operator L,, the eigen-
value problem becomes (Burke, 1977)

(HO+ Ly - E),=0, 7»=<ap, (92)

where the eigenfunctions are expressed (spin coordi-
nates and parametric dependence on R suppressed) as

V,(r,r,)=r"1@ Z @ L (7, W0 (), r<ap
2]

where the w(j") (r) are arbitrary, fixed, radial functions,
chosen so that the radial expanse of configuration space
out to 7 =a, is spanned by the set of w!?. The a,;, are
determined as the eigenvectors corresponding to eigen~
values E, of the linear variational problem. In actual
applications, additional short-range correlation terms
are usually added to Eq. (93) to provide additional var-
iational flexibility inside the core boundary » =a,
(Burke ef al., 1977; Schneider, 1977a,b). Now, ex-
pressing the scattering wave function in terms of the
functions ¥, as

(93)

V=3 ¥, r<ap, (94)
k

we obtain the relation between the scattering radial
solutions and the radial basis functions

up @)= up ()= a @ ), r <agp. (95)

kR jk

The expression for the R matrix is derived by ex-
pressing the formal solution of

(HO+ Ly = )07 = L, ¥¢ (96)

in terms of the eigenfunctions ¥, (Burke et al., 1977;
Schneider, 1977a) as -

B
‘Ilf =z [S\PkIL?“IJe2]\Pk, Y<ag.

E,—-¢ o7)

k
Then, by projecting out particular channels, one ob-
tains the scattering radial functions

ug (r)=(@; W2y, r<ap,’ (98)

where the integration (summation) includes all spatial
(spin) variables except ». The Dirac delta function
&(r —a,) in L, selects the values of the first deriva-
tives of the scattering radial functions at » =a,. Thus,
at » =a,, Eq. (98) becomes Eq. (89) with the R matrix
elements given by

Rfy = 20 (‘jﬂ:‘i — | (99)

where the ufk(r), according to Eq. (95), are the radial
functions occurring in p-channel projection of the
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eigenfunctions ¥,. It is possible to “correct” Eq. (99)
by a method devised by Buttle (1967). However, pro-
vided enough terms are retained in Eq. (99) the
“Buttle correction” is unnecessary [see Burke ef al.
(1977) and Schneider (1977a)]. Once the matrix R? is
determined, it can be used to generate radial solutions
at the “core” boundary 7 =a, (see Fig. 5), which are
then continued outward by numerically integrating the
“potential-scattering” radial equations. The frame
transformation, if required, can then be performed at
the FT boundary » =ar. Alternatively, the R matrix
can itself be propagated outward to the FT boundary,
transformed to the LABframeby Eq. (88), and then propa-
gated into the asymptotic region (Light and Walker,
1976).

The details of derivations and the description of
numerical techniques are not given here. The original
papers of Wigner (1964a,b), Wigner and Eisenbud
(1947), and the comprehensive review of Lane and
Thomas (1958) lay out the basic theory in the context
of nuclear physics. Burke and Robb (1975), Burke
(1977), and Robb (1977) review the application of R~
matrix theory to a variety of atomic physics problems
(see also Burke 1974). Shimamura (1977a,b) discusses
general questions of implementation and the connections
with related eigenchannel methods introduced into
atomic physics by Fano and Lee (1973) and Lee (1974).
(See also Fano, 1977.) Applications to elastic scat-
tering and rotational excitation in electron-molecule
collisions are described by Schneider (1975a,b) for
H,, Schneider and Hay (1976) for F,, and Morrison and
Schneider (1977) for N,. These applications are re-
viewed by Schneider (1977a), and results will be dis-
cussed in the later sections on particular processes.

A detailed description of an R-matrix approach to the
electron-molecule scattering problem is given by
Burke et al. (1977). )

An extension of the R-matrix method to vibrational
excitation and dissociative attachment is described by
Schneider, Le Dourneuf, and Burke (1979), and a
recent application to vibrational excitation of N, has
been carried out by Schneider, Le Dourneuf, and
Lan (1979).

2. T-matrix expansion method

An alternative new method that does not involve the
explicit partitioning of configuration space into dif-
ferent regions is the T'-matrix expansion technique of
Rescigno, McCurdy, and McKoy (1974a,b). Only a
very brief description will be given here. The results
of calculations using this method will be described in
the relevant sections on applications to specific pro-
cesses. So far, applications have been restricted to
elastic scattering and rotational and vibrational excita-
tion of ground-state molecules via the adiabatic nuclei
approximation. For simplicity, therefore, we shall re-
strict attention here to the fixed-nuclei approximation
for elastic scattering in the BODY frame. Further-
more, we will assume that the electronic state of the
molecule is 'Z. The expression (38) for the BODY-
frame, elastic-scattering amplitude for momentum
k,~ k reduces to
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SRk, ko) =2kt D itoTIYE L RV, (BT (I, Lgmy)
1,15, mg :

(100)

where we suppress the parametric dependence on the
fixed internuclear separation R. From a more formal
point of view, Eq. (100) may be recognized (see Taylor,
1972) as the matrix element between “free-particle”
states (k| and (k,| of the T operator

FB(k, ko) = =21k T|ky , (101)

where the normalization of the plane-wave states is
defined by

(r|k) = (27) 3”2 exp(ik - 1) (102)

In Eq. (100), the plane-wave functions have been ex-
panded in terms of spherical harmonics. The T opera-
tor satisfies the Lippmann-Schwinger equation

T=U+UG,T, (103)

where U =2V, and V is an b“optical potential” defined
in such a way that the electron-molecule Hamiltonian
may be written simply as )

H®=_4V2:V(r,R)

SH+V. (104)

In Eq. (103), G} is the (outgoing-wave) free-particle
Green function defined in terms of H, by

(E-H)Gy=1. (105)

The T-matrix expansion method is based on the so-
lution of an approximate (i.e., truncated) matrix rep-
resentation of Eq. (103). Thus choosing a convenient
finite basis set{cpo}, complete over the region of space
where V is important, the matrix equation correspond-
ing to Eq. (103) can be solved for the “truncated” T
matrix

T!=(1-U'G}) Ut (106)
where the matrix elements of U’, for example, are

Uas =(elU|B)

=2 [ dr 92V (r, R)pu(r) v . (107)

In order to calculate the scattering amplitude of Eq.
(101), one need only transform the matrix elements
according to

kIT! ko) = 3 (klay(alT|B(Blk,) .

«,B

(108)

The trick to all this lies in a careful selection of basis
set{¢o}, and a realistic choice for the “optical poten-
tial” V. A convenient choice for all the basis functions
are the Cartesian Gaussian-type orbitals (GTO) cen-
tered on the nuclei and the center of mass of the mole-
cule. This choice of basis functions permits efficient
calculation of all the integrals.

Applications of the T'-matrixexpansion method in-
clude fixed-nuclei calculations of the total cross sec-
tions (elastic + rotational excitation) for electrons scat-
tered by H, and N,, in the static-exchange approxima-
tion, i.e., with the optical potential V replaced by the
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static-exchange potential (Rescigno, McCurdy, and
McKoy, 1974a,b; Fliflet, Levin, Ma, and McKoy,
1978; and Fliflet and McKoy, 1978,a,b). A recent
application to e—~H, elastic and rotational excitation
(Kaldor and Klonover, 1977; Klonover and Kaldor,
1978, 1979a) in the adiabatic nuclear rotation approx-
imation includes some allowance for correlation effects
(in particular, polarization) by means of a diagram-
matic-perturbation-series correction to the static-
exchange approximation of the optical potential. This
approach has been extended to vibrational excitation
(in the adiabatic nuclear vibration approximation) as
well (Klonover and Kaldor, 1979b,c). Kaldor (1979a)
has suggested that a full vibrational (or rotational)
close-coupling calculation is feasible using the 7T'-
matrix expansion technique.

G. Static-exchange and model-potential approximations

1. STATIC EXCHANGE

In the static-exchange approximation, the theory
takes into account only the static and exchange inter-
actions of the electron with an unperturbed ground
electronic state of the molecule. There is no allow-
ance for polarization or other correlation effects.
Electronic excitation and the (resonant) temporary
electronic excitation of the molecule are not possible.
Most applications have been BODY-frame calculations
in the fixed-nuclei approximation. For simplicity, we
will restrict attention here to that case and the example
of a nonpolar closed-shell 'Z; diatomic molecule. The
general fixed-nuclei close-coupling expansion (22)
reduces, in the static~exchange approximation, to

(T, 0, Ty Oy R) = @F (T, R)X iy () (£, O R,
(109)

where \14;*) designates the unperturbed ground electronic
state of the target. Substitution of ¥, into the fixed-
nuclei Schriddinger equation results in the partial
integro-differential equation (suppressing the param-
eter R)

[—3V2 - 3R2+ Vs(r)]F(r)

=(h - 3%%) Z [fdr’ ¢¢(r')F(r')]<Pa(r)

1
+Z [f dr"Pi(r’)WF(r')] @i(r), (110)
where Vg is.the static potential energy
Vs(r)=fdrml¢5)e)(rm, Om)lzvem(r’ rm)
1 zZ VA4
=2 fd ’ Ar’)| 2 _Za _Z»
Zi: r’[¢i(r)| EETa i
(111)
where the operator % is defined by
ol Za_2Zy f Wb (272 et
b= Vi +Z: ar’| ¢y (") =T
(112)
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and where the summations over 7 in Egs. (110)-(112) in-
clude all occupied spatial orbitals of the ground-state
wave function (here assumed to be of single-configura-
tion form). The subscript m, on F(r) has been dropped
since the same equation holds for both spins. Equa-
tion (110) is simply the (continuum) Hartree—Fock
equation. The exchange terms on the right-hand side
of Eq. (110) may be considered corrections to the

pure static potential. The Pauli exclusion principle,
which states that the total wave function ¥, of Eq. (109)
must be antisymmetric with respect to the interchange
of the coordinates (both spatial and spin) of any two
electrons, has the effect of preventing two electrons

of like spin from being found near one another. Each
bound electron is surrounded by a “Fermi hole” where
the repulsive Coulomb interaction between two elec-
trons of like spin vanishes. Thus, for a closed-shell
target molecule, exchange behaves as an effective
short-range aftractive interaction. Note that with the
single-configuration representation of zpﬁf) in Eq. (109),
the total wave function ¥, is unchanged if a multiple

of any one of the occupied orbitals ¢;(r) is added to the
“continuum orbital” F(r); hence, F(r) may be assumed
orthogonal to all the ¢;(r) with no loss of generality.

In fact, if the overlap terms are dropped from Eq.
(110), the resulting solution F(r) is indeed constrained
to exhibit this orthogonality. Equation (110) is then
written in abbreviated form

(=2V2+Vs(r) = 3R3)F(r)=0, (113)
'where
Va(r)=-Za 2o, 95 _F, (114)
Va Yy .

and where the definition of the Coulomb and exchange
operators J and I’(‘, respectively, is clear from Egs.
(110) and (111).

The numerical solution of Eq. (113) is complicated
by the strong dependence of V¢, on r near the nuclei.

If direct numerical solution of the partial differential
equation is attempted, a tight mesh in 6 as well as »

is required (see, for example, Tully and Berry, 1969).
If a single-center partial-wave expansion of the form of
Eq. (23) is invoked, many terms are often required to
accurately represent the wave function near the nuclei.
For the diatomic case, the use of two-center spheroidal
coordinates can be helpful (Nagahara, 1953; Takayanagi,
1967; Hara, 1969a). However, the resulting equations
are more difficult to solve, and the coupling does not
disappear completely. (For a model calculation com-
paring the two approaches see Darewych, Baille, and
Hara, 1974). We have already discussed the R-matrix
and T-matrix expansion methods as attractive alter-
native techniques to handle these complexities near the
nuclei.

In spite of the concerns just expressed, the single-
center and two-center partial-wave expansions have
been employed in a number of applications, so we will
describe briefly how the general (one-center) develop-
ment of Sec. II.C simplifies for this special level of
approximation. The partial-wave expansion (23) is
(suppressing the parameter R)
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Fp(®) =71 ) ) Y1), (115)
i

where the radial functions satisfy the coupled integro-
differential equations

[dz kz_l(l+1)

d’}’z + 1,2 ]u,m(’}”)=2 Z [Vlm,l'm(7)+Wlm,l'm(7)]
T
Xthpom(7), (116)
where the “direct” matrix elements are
= 20 +1\ 12
_ ’ _ (s) ab T -
VZm,z'm("’) —<lles(r)fl my = ;} 25 (7’)< 201 )
XC(I'Al; m0) C(I'A1; 00),  (117)

where the radial functions v&S)(r) are the coefficients
in a single-center expansion of the static potential
energy )

Vs(r)= Y vi® @)Py(cosb),
A=0
where cos6=%-R.
The “exchange” matrix elements (assuming F is
orthogonal to the ¢;) are defined by

Wim, 1m0 Weronr) == 3 (il [ ') =2 ()

Xty om(#" )Y o (#)Pi (1)), (119)

(118)

where the brackets imply integration over #. The di-
agonality in m results from the axial symmetry of the
(assumed) 2 target-state wave function. The spec-
troscopic notation o, 7, d,... is commonly used for
m=0,1,2,..., respectively. The coupled equations
written in matrix form are identical to Eq. (30), where
the matrix k® is diagonal in this case, and the channel
index becomes p = (I, m). Solution of these coupled
integro-differential equations may be carried out using
a variety of numerical methods. Sinfailam (1970) has
published a computer program, based on the nonitera-
tive procedure of Marriott (1958) and Omidvar (1961)
and discussed by several authors in connection with
electron—atom (or ion) scattering (see Smith, Henry,
and Burke, 1966; Thomas, 1973; and Omidvar, 1974).

If the fixed-nuclei approximation is continued into
the asymptotic region (adiabatic nuclei approximation),
then the boundary conditions are those given in Egs.
(34)—(36) with relations (37) between the K®, S5, and
T® matrices. The equations for the scattering ampli-
tude, and differential and integral cross sections de-
veloped in Secs. II.C~IL.E, apply here, but with the
appropriate simplification a = a, and A°‘o =0. In par-
ticular, the fixed-nuclei elastic differential cross sec-
tion averaged over nuclear orientation is

do 1 C T T 55
o= 3 2 AuLTE(Um, 1ym)T® Tm, T,m) *P (cos ¢')
% Lwo

(120)

where 6’ is the LAB-frame scattering é.ngle, s
=(,m,1,1,7,1,), and the summation includes all al-
lowed values of these indices. The coefficients are
given by
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Aup=(2L+1)[(20+1)(2L,+ 1)@T+ 1)(2L, + 1) 70" TTo
X C(l,T,L; 00)C(ITL; 00)C (2, T L; = m7i)C(ITL; — mim) .

(121)
The integral cross section averaged over nuclear orien-
tation is simply

6:7;—15 ST m, 1ym)l? .

lylg,m

(122)

This cross section can also be expressed in terms of
the eigenphase shifts 7n;,,, defined by the elements of
the diagonalized S matrix

exp(2in) =US®U™!, (123)

where U is the unitary transformation matrix that
accomplishes the diagonalization. Since S is block
diagonal in m, the eigenphase shifts may be charac-
terized as Z, II, A, etc. (Note this is for the special
case of a T target.) By direct substitution of Eq. (123),
with T? =1 -82, into Eq. (122), one obtains
6:%271 Esinz(mm). (124)
i,m
Unlike the integral cross section, the differential cross
section cannot be éxpressed in terms of the 7;,, alone.
The sum of the eigenphase shifts, though not directly
related to a measurable cross section, is often studied
in theoretical applications as one measure of conver-
gence and as an indicator of numerical accuracy. (For
an interesting discussion of the behavior of the eigen-
phase sum near a resonance, see Hazi, 1979a.) In
Egs. (120)—(124) the cross sections are parametric
functions of R, held fixed throughout. In the adiabatic
nuclear vibration approximation, the cross section for
a transition v,~v is determined simply by replacing
the T2 matrices in Egs. (120)-(122) by the matrix
element @ |T?(R)|v,) as described in general in
Sec. II.D.

The LAB-frame formulation of the static-exchange
(SE) approximation follows in similar manner by mak-
ing the simplification o= o, and Ny, = 0 (for the case of
a closed-shell 'Z target state) in Sec. II.LE. The cou-
pled radial equations are those given in Eq. (62), but
with the channel index defined by p =(1,j,v;J), or
p=(j;J) if R is kept fixed. These can be solved for all
7= 0, or the frame transformation procedure can be
used to match BODY solutions and LAB solutions at the
FT boundary. In any case the cross sections are given
by Egs. (52) and (53) with the appropriate simplifica-
tion. The differential cross section for transitions
JosVo—J,v, averaged over initial my and summed over
final m;, is

<§%>, (fg)@f'o*”“ 2

mj,mjo

vaj mj ,vojomjo(k,, ko) 12 s

(125)

which can be expressed in terms of the T matrix, via
a little Racah algebra (Arthurs and Dalgarno, 1960) by

dc) (1) 90 &
~Z =l 5" A,P,(cos ¢’
(dsz N 4k§(2]0+1)§) rPa(cos o),

where the coefficients are

(126)
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A, = Z Z (L) bod 3 JMZ (T (LT o; AT WL, 0 od ok I1)
oy

XTWil, vojolas Jo)* . (127)

The summation in Eq. (127) includes all values of
w =LY, J,). The Z coefficients are expressed in
terms of Clebsch—Gordan and Racah coefficients by

Z(abed; ef ) =(=1)F "% (2a 1+ 1)(2b + 1)(2¢ + 1)(2d + 1) ]2
xC(acf; 00)W(abcd; ef ) . (128)

Chandra (1975a) has pointed out that the computation
of the A, can be simplified by making use of an angular
momentum recoupling method of Fano and Dill (1972).

The integral cross section corresponding to Egs.
(125)—=(127) is simply

m
Cporive = o 9 2T+ DIT@jL, v jole; NI2 .
s BT I 07 DI 4 )

(129)

If the internuclear separation R is frozen throughout
the calculation, then the quantum numbers v, and v do
not appear, and the cross sections depend parametri-
cally on R.

The static-exchange approximation has been applied
to electron—H, scattering by Massey and Ridley (1956),
Wilkins and Taylor (1967), Ardill and Davison (1968),
Tully and Berry (1969), Hara (1969a), Henry and Lane
(1969, 1971), Morrison and Collins (1978), and Collins,
Robb, and Morrison (1979), and via the R-matrix and
T-matrix expansion methods by Schneider (1975a,b),
Rescigno, McCurdy, and McKoy (1975b), and Fliflet
and McKoy (1978a), respectively. Applications to
electron-N, scattering include the calculations of
Buckley and Burke (1977), and via the R-matrix and
T-matrix expansion methods, those of Morrison and
Schneider (1977) and Fliflet, Levin, Ma, and McKoy
(1978). Applications to electron—F, scattering include
the R-matrix calculation of Schneider and Hay (1976)
and a “low-! spoiling” angular-momentum-decoupled
approximation via the 7-matrix expansion method by
Rescigno, Bender, McCurdy, and McKoy (1976). Sim-
ilar angular-momentum-decoupling approximations
have been applied to electron—-H, scattering by Mor-
rison and Lane (1975) and McCurdy, Rescigno, and
McKoy (1976).

2. Model exchange

A number of approximate models have been developed
to simplify the treatment of exchange. What the models
have in common is the removal of nonlocality. The ex-
change operator in Eqs. (116) and (119) is replaced by

a simple “local exchange” potential energy function
th,z'm(‘i’)ut'm("’)gVf;’»(:.z'm("’)ut'm("’)- (130)

This is equivalent to representing the electron—mole-
cule “static-exchange” interaction by an approximate
local potential

VSE (r)zvs(r)+Vex (r) (131)
made up of static and exchange contributions. Recent

applications have focused on either the free-electron-

Rev. Mod. Phys., Vol. 52, No. 1, January 1980

gas (FEG) or the semiclassical (SC) exchange models.
Only these will be outlined here.

a. Free-electron-gas exchange

The free~electron-gas exchange model is based on the
picture of a Fermi gas of noninteracting electrons
(Slater, 1960a,b), where the total wave function, made
up of plane-wave parts, is antisymmetrized in ac-
cordance with the Pauli exclusion principle, and the
exchange energy calculated by summing over all mo-
mentum states up to the Fermi level. [For discussions
of this model applied to electron-molecule scattering,
see Hara (1967), Riley and Truhlar (1975), Baille and
Darewych (1977a), and Morrison and Collins (1978).
The latter authors discuss the connection with the
ordinary Hartree—Fock theory and give a concise deri-
vation of the FEG result.] By allowing the density of
the electron gas, and thereby the Fermi momentum, to

' vary with position r, an exchange potential energy is

obtained of the form
VIS (v) ==(2/mkp(r)F[n(x)], (132)

where the Fermi momentum is related to the charge
density of the unperturbed molecule p(r) by

ke(r)=[37%(r)]", (133)
and where
F[n]=%+ (1;—”z> In i*” (134)
-7
with
n=|K(r)/kp(r)]. (135)

In Eq. (135), Hara (1967) has suggested that the mo-
mentum K(r) of the scattered electron should
be referred to the same energy base as that of
the bound electrons in the gas. Thus the r variation.
of K(r) arises from kg(r) according to

[K()P =k + [kp(r) 2+ 21, (136)

where I is the ionization potential energy of the mole-
cule (in a.u.). ‘

This version of the FEG exchange potential, i.e.,
Eq. (132), depends on the incident electron energy
through Eq. (136). A much simpler exchange potential,
viz., that used in standard X« applications (see, for
example, Dill and Dehmer, 1977), is derived by
averaging the function F[1n(r)] in some manner over
energy, and in the present case, r. One obtains the
simple result

VE(r)==(3/2m) a[37%0(x)]'5,

where for bound-state applications the value a,=1 was
suggested by Slater (1951, 1960b). The value @, =% was
obtained in a somewhat different manner by Gaspar

(137)

. (1954), Kohn and Sham (1965), and Cowan et al. (1966).

(See the review by Lindgren and Rosen, 1974.) In
electron scattering there is no “correct” value for the
parameter o,. The procedure leading to Eq. (132) is
already based on a rather crude approximation to the
exchange interaction, and the averaging that leads to
Eq. (137) is inappropriate for the continuum (Hara,
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1967; and Riley and Truhlar, 1975). In Eq. (137) the
parameter ¢, should properly be considered an “ad-
justable parameter.”

b. Semiclassical exchange

A semiclassical exchange approximation has been
derived by Riley and Truhlar (1975) similar in spirit
to the work of Furness and McCarthy (1973). (See also
Lewis et al., 1974.) By assuming that the exchange
integral in Eq. (110) can be written

J oo 2 P =A@, (138)
where A(r) is local and slowly varying in r, and that the
“local kinetic energy”

HR(@)P=[3F2=Vs(r) = Ve(r)]

is large so that an expansion of A(r) in inverse powers
of [k(r)]* can be truncated at the first term, the authors
obtain

VSS(r)=3r?/2 = Vs(r)] - H{[#*/2 - V()P + 1,
(140)

(139)

where (for closed-shell targets)
BZ=4mp(r).

A high-ehergy exchange (HE) approximation is derived
from Eq. (140) by dividing through by the first term,
expanding the radical and truncating at the first term,
viz.,

(141)

2mp(r)

Vi (r)== gt
) == = v .0

(142)
Riley and Truhlar (1975) also suggest exchange approx-
imations for open shells and inelastic scattering [see
also Riley and Truhlar (1976) and Truhlar and Mul-
laney (1978)] as well as a number of other approxima-
tions linking their exchange treatment with those of
Bonham (1962), Ochkur (1964), Rudge (1965a,b and
1973) and others. The authors give detailed compari-
sons for electron—He and Ar scattering where both the
SC and the FEG potentials give phase shifts accurate

to a few percent over a wide energy range (see related
study by Baille and Darewych, 1977a).

An assessment of the accuracy of the exchange ap-
proximations described here is difficult; it requires
careful comparison between model results and the
results of accurate static-exchange calculations. Ex-
amples of application to electron—molecule scattering
will be given in the applications sections.

3. Polarization

An electron correlation effect found to be particularly
important in low-energy electron scattering is polar-
ization. When an electron (or any charged particle for
for that matter) slowly approaches the target atom or
molecule, the bound electrons are influenced by the
electric field of the external charge, and an adiabatic
redistribution of bound electronic charge density
occurs, resulting in an (induced) dipole moment on the
target molecule. The adiabatic change in energy due
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to the slow approach of the electron exhibits the asymp-
totic form

a(?)

Pyl (143)

Vp(r), 5w =
where the polarizability a(#) depends on the direction
of the external electric field and hence the position
vector of the electron. Equation (143) represents a
dipole approximation and breaks down as the electron
closely approaches the molecule. Moreover, the adia-
batic picture breaks down at high energies and near
the nuclei, where the electron has a large “local kinetic
energy.”

From the point of view of a close-coupling descrip-
tion, e.g., the fixed-nuclei expansion (24) and coupled
equations (26), this polarization effect is manifested in
the virtual excitation of excited electronic states that
are energetically inaccessible at low energies, i.e.,
energies below the first electronic threshold (Castillejo,
Percival, and Seaton, 1960). While it is not possible to
include all these important channels directly, it is pos-
sible to handle them indirectly by including pseudostates
in the close-coupling expansion, specifically
chosen as to allow for polarization. This technique is
commonly employed in electron—atom scattering (see
discussion by Bransden and McDowell, 1977). Corre-
lation effects may be systematically included in the R-
matrix method by using a sufficiently flexible basis set,
although to accomplish this inside the R-matrix bounda~
ry7 =a, couldrequire an uncomfortably large value of a,
(Schneider, 1977b). In the T-matrix expansion method
correlation effects are included by choosing a suitably
modified optical potential which may be corrected by
means of perturbation theory (Kaldor and Klonover,
1977; Klonover and Kaldor, 1978 and 1979a,b, c).

The polarized orbital (PO) method of Temkin (1957)
and Temkin and Lamkin (1961) is particularly appealing
for slow collisions since it involves forming the adia-
batic wave function for the perturbed target system |see
review of Drachman and Temkin (1972) and Duxler
et al. (1971)] by a perturbation or variational approach.
The elastic scattering then is determined with respect
to this perturbed target state. Only a brief description
of this approach will be given here. Consider the fixed-
nuclei Schrddinger equation for the target electronic
state given by Eq. (20), where the target electronic
Hamiltonian is given by Eq. (15). As the starting point
in the PO method, we assume that the ground-state
target molecule is perturbed by an external stationary
electron located at r. We obtain for the perturbed
(“polarized”) target states, the equation (suppressing
R for the moment)

[H +Vonlr,r,) = EP (@) (rm; 1) =0, (144)

where a parametric dependence on r occurs in the
perturbed energy Eg’) and the wave function ng") of the
target. Asymptotically, the perturbed energy exhibits
the expected behavior, and a “polarization potential”
energy can be defined such that

a@)
V)= EP @)= S -V (e), 20— 2

where «(#) is the polarizability of the molecule, E(oe)

(145)
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is the unperturbed ground-state energy, and Vg is the
static potential. In order to partially correct for non-
adiabatic behavior when the electron closely approaches
the nuclei, Temkin (1957) suggested for the electron-
atom problem that the interaction V,,, be set to zero,
via a step function, whenever the scattered electron is
inside the bound electron. This weakens the polariza-
tion potential at small 7, as a rigorous nonadiabatic
correction would be expected to do. If this device is
not employed, then it is important to calculate the cor-
rection energy, given to first order by

AV P (r) = =KW (r; 0 V2[0S (05 1))

where the integration is taken over all target electronic
coordinates r,. The correction AV ", which is added
to Vf)") (r), is positive and falls off as »~® asymptotically
(Dalgarno and Lewis, 1956). Callaway ef al. (1968)
have shownthe correction tobe large in electron-He scat-
tering. There havebeena few applications of the PO meth-
odtoelectron—H, scattering (Hara 1969a,b; Lane and
Henry, 1968; and Henry and Lane, 1969, 1971) where
Temkin’s cutoff procedure is used. However, the first
application of the PO method to electron—molecule scat-
tering was the calculation of the electron-H; differential
cross section by Temkin and Vasavada (1967), followed
by the extended calculations of Temkin, Vasavada,
Chang, and Silver (1969). (See the discussion in
Golden, Lane, Temkin, and Gerjuoy, 1971.) Adiabatic
polarization potentials for N, have been calculated
by Morrison and Hay (1979) and by Eades, Truhlar,
and Dixon (1979); for N, and CO by Truhlar and Van-
Catledge (1978); and for Li, by Dixon, Eades, and
Truhlar (1979).

A polarization model often employed entails the use
of a parametriz ed cutoff polarization potential. One
form frequently used is (in a.u.)

Vop (r) == %@[1— exp (-— f)],

J4

(146)

(147)

where the popular choice # =6 provides a rather steep
cutoff for »<7,. For a linear molecule, the polariz-
ability may be expressed as

a(6)=a,+a,P,(cosb), (148)

where, in terms of the polarizabilities parallel ()
and perpendicular (@, ) to the internuclear axis, the
“spherical” and “nonspherical” polarizabilities are
given by

a,=3(ay+2a,), (149)

and

o, =%(an" a), (150)
in atomic units (a}). The cutoff parameter 7, in Eq.
(147) is usually varied to examine sensitivity, and then
either determined semiempirically (e.g., to “tune” the
position of a resonance) or arbitrarily assigned some
“reasonable” value. It should be noted that, in con-
trast to this model procedure, Temkin’s polarized
orbital method does not involve an adjustable param-
eter. A number of examples of both methods will be
given in the applications sections.
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4. Pseudopotential methods

In the pseudopotential method, one usually replaces
the short-range static, exchange, and correlation ef-
fects by an “effective potential” (often repulsive for
ground-state targets) that includes some contribution
from kinetic as well as potential energy. The pseudo-
wave function that satisfies this “effective” Schr8dinger
equation tends to be small at small », but has the cor- .
rect asymptotic behavior. Following Tully (1969) we
write the fixed-nuclei Schrddinger equation for the
electron-plus-target system as

(T +V - EW =0, (151)

where T and V represent the sum of kinetic-energy
operators, and the full electrostatic potential energy of
the system, respectively. (Note: In the one-electron
approximation, 7 =-3V2, and V represents the one-
electron static-exchange interaction.) Let us assume
that bound-state solutions exist for Eq. (151), described
by eigenfunctions ¥; of the same symmetry as ¥ and
corresponding to eigenenergies E;. According to
Phillips and Kleinman (1959), a pseudowave function

¥ can be defined by

C
=+ BYy, (152)
i1
which satisfies
(T+V +Vg=-EY =0, (153)

where V +V is called the “effective potential,” and the
“pseudopotential” V is defined by
Vel =3 B(E~E;)Y,. (154)
i=1
Tully (1969) suggests that in Eq. (154) the core energies
E; be replaced by A since only approximate ¥; are
normally available. Since the correct ¥ is orthogonal
to the ¥, the B, are just the overlaps (¥, ¥,), and are
completely arbitrary. Usually, the 8; are chosen so
that ¥ is small close to the target. With this choice,
approximations made there in treating correlation and,
perhaps, exchange effects in the solution of Eq. (153)
will not give rise to large errors. Once ¥ is obtained,
then if ¥ is required for all space, it can be determined
by orthogonalizing ¥ to all of the ¥,. Of course, ¥ —¥
as r—©, The assumption in Tully’s generalization of
pseudopotential theory to the multielectron problem is
that bound states of the full Hamiltonian do indeed exist.
If there are no bound states, then other alternatives are
possible including: (1) Egs. (151)—(154) may be applied
in the one-electron approximation, where V becomes
an optical potential, or in the static-exchange approx-
imation, the Hartree—Fock potential; or (2) the ¥; in
the many-electron problem may be chosen as the vari-
ational eigenfunctions that result in an ordinary config-
uration interaction (or other equivalent linear varia-
tional) calculation applied to the electron-plus-target
system. The first alternative is the traditional one-
electron pseudopotential method [see, for example,
Schneider and Berry (1969) and Schneider, Weinberg,
Tully, and Berry (1969)]. The second alternative is
the “generalized pseudopotential method” proposed by
Zarlingo, Ishihara, and Poe (1972) and applied to
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electron-H scattering. These authors suggest that this
method may be particularly effective in applications to
inelastic scattering. ’

Tully’s multielectron extension of the pseudopotential
method is based on the assumption that near the target
atom or molecule the electron’s motion is rather in-
dependent of the type of state it is in. Therefore, the
¥; in Eq. (152) can be expected to account for compli-
cated short-range correlation effects, provided E is
not appreciably larger than |E;| for the higher-energy
states included in Eq. (152). Zarlingo et al. (1972)
adopt the same point of view, but suggest that variation-
al “quasibound-state” approximations to the continuum
also qualify as appropriate choices for ¥;. Moreover,
these authors propose generalization to inelastic
processes and higher energies. These and related
methods still hold promise for electron—molecule
scattering and molecular photodetachment and photo-
ionization processes, but applications are slow in
coming.

Burke and Chandra (1972) have applied a modified
version of one~electron pseudopotential theory to
electron~N, elastic scattering and rotational excita-
tion (Chandra and Burke, 1973). Chandra and TemkKin .
(1976a, b, c) have applied the same technique to vibra~
tional excitation in electron~N, collisions. Briefly,
the idea is to replace the exchange interaction by an
orthogonalization constraint. If we rewrite Eq. (153),
here considered as a one-electron equation for an
electron in the field of a closed-shell target as

(T +V = EYo ==V ¥

== :?: BAIE-.E})P,

== cz)‘f‘l’jy
F]

and treat the A; as Lagrangian multipliers, solutions ¥
may be obtained that are constrained to be orthogonal
to all the ¥; in Eq. (155). If one assumes,. then, that
the exchange interaction V=V ~Vg, where Vg is the
static potential, primarily influences the wave function
by forcing this orthogonality, then a reasonable ap-
proximation would be the replacement of V by Vg in
Eq. (154). The pseudowave function obtained in this way
is then an approximation to ¥. This is the method
suggested by Burke and Chandra (1972). The authors
admit that this is likely to be a crude approximation.
Indeed, Riley and Truhlar (1976), in a model study,
find the method to be inaccurate. It should also be
noted that this procedure is not in the spirit of the
pseudopotential method discussed in the first part of
the section. There the pseudowave function ¥ was not
constrained to be orthogonal to the ¥;; in fact, the
philosophy was to choose the 8; in Egs. (152) and (154)
so that ¥ remains small close to the target. The true
wave function ¥ and the Burke—Chandra wave function
are not particularly small near the target. It is ap-
propriate to consider the Burke—Chandra method an
exchange “model.” It does take into account an impor-
tant feature (orthogonalization) of the exchange orbital
of the same symmetry as the scattering orbital of
interest. Lippmann and Schey (1961) have discussed

(155)
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this approximation in connection with electron—-atom
scattering and have emphasized that the orthogonality
constraint does ensure that the elastic-scattering phase
shifts (eigenphase shifts for the electron—molecule
problem) have the correct low-energy behavior, as
specified by an extension of Levinson’s theorem. Swan
(1955) has shown (for the case of spherical symmetry)
that the phase shifts approach (# +#)7 in the zero-
energy limit, where for a given symmetry »n is the
number of true bound states of the electron-plus-target
system and m is the number of (one-electron) states
from which the scattered electron is excluded by the
Pauli exclusion principle. For a discussion of non-
spherical potentials see Newton (1977) and Osborn and
Bollé (1977).

Recent calculations by Collins, Robb, and Morrison
(1979) and Collins, Robb, and Norcross (1979) indicate
that the best results are obtained when both orthogon-
alization constraints and a local exchange potential are
employed.

H. Weak-scattering approximations
1. Method of distorted waves

The method of distorted waves (DW) is basically a
“weak coupling” approximation. It is useful when real
and “virtual” transitions between different states of the
molecule are improbable. In that case, the coupled
equations (11) arising from the “coupled-states” ex-
pansion (10) can be solved by perturbation methods.
Consider the transition 0—#n. If the coupling is weak,
a reasonable zeroth~order assumption is to ignore all
terms on the right-hand side of Eq. (11) except the
single term »n’=0. Thus the initial-state scattering
function satisfies

{V2 482 = 2V o(r) + Wy (r) |} Fo(r) =0, (156)
where from Eq. (13)
Fy(r),5-explky*r)+ %exp(ikor)foo(kg, ko), (157)

and each of the possible final-state scattering functions
'satisfy inhomogeneous, but uncoupled, equations

{V% +k?x - Z[Vnn(r) + Wnn(r)]} Fn(r)

= 2[Vpo(r) + Wio(r)]Fo(x) (158)
where from Eq. (13)
Fy(r) 5o €00k 7) frollin ko) (159)
The formal solution to Eq. (158) is
Fy(e)=2 [ dr/G, (e, 20V e) + Wigle ) o),
(160)

where G,(r,r’) is the final-state Green function, de-
fined by the equation

{V2 482 = 2[V () + W, (0)]}G,(x, ") =6(r — 27) (161)
and the asymptotic condition
1 .
G,(r, r’),:m;exp(zk,,r)ﬁ,,(k,,,ko; r’) (162)
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where F, is a well-behaved function in r’ (Mott and
Massey, 1965).. The scattering amplitude for the 0—7
transition, therefore [from Eqgs. (159), (160), and (162)],
becomes

oY (k,, ky) =2 f Ar’F (K gy Ko; T/)[V o) + Woo(x /) |Fo(x’).

(163)

The formulation leading to Eq. (163) is based on a
three-dimensional description of the “distorted-wave”
functions Fy(r) and F,(k,, ky; r’). A partial-wave DW
approximation can also be formulated in which weak
coupling of different partial waves as well as molec-
ular states is assumed. This is a much more severe
approximation, and one that is valid in only very special
circumstances (Arthurs and Dalgarno, 1960). An im-
portant application of the partial-wave DW approxima-
tion to rotational excitation in electron—H, scattering
by Ardill and Davison (1968) first demonstrated the
importance of exchange for this process.

A somewhat more sophisticated version of the DW
approximation than that described here has been applied
to electronic excitation of H, by Rescigno, McCurdy,
and McKoy (1975b), and Rescigno, McCurdy, McKoy,
and Bender (1976), and of N, by Fliflet, McKoy, and
Rescigno (1979a) and to dissociation of F, by Fliflet,
McKoy, and Rescigno (1979b). This prescription for
the DW approximation is equivalent to first-order
many-body theory (Csanak, Taylor, and Yaris, 1971;
and Csanak, Taylor, and Tripanthy 1973) and can be
derived from the two-potential formula (Taylor, 1972).
1t is still a weak~-coupling theory, however, and fails
when the coupling is strong.

2. Born approximation

If in addition to the approximation of “weak coupling”
it is reasonable to ignore the “distortion potentials™
Vaol®) + Weo(r) in Eq. (156) and V,,,(r) + W,,(r) in Eq.
(158), the DW approximation reduces to the (first) Born
approximation (Mott and Massey, 1965; Massey, 1969).
The Green function of Eqs. (161) and (162) reduces,
then, to the free-particle form

1 exp(ky|r—r’|)

) =
Gu(r,r')= y _[r_"-T‘_ (164)
+ 5o = - explik,r) exp(—ik, - 17). (165)

47y

Identifying the function &, from Eqs. (162) and (165) and
approximating Fy(r’) by a plane-wave function, we ob-
tain for the scattering amplitude the familiar expres-
sion (ignoring the exchange term)

: 1 .
FEk,, k) =— Zr'f dr’ exp(=iK r")V,,(r’), (166)
where the momentum-transfer vector is defined by
K=k,-k,. (167)

The Born approximation is usually considered to be a
high-energy approximation, valid only when the ener-
gies k2 and %2 in Eqgs. (156) and (158) are much larger
than the potentials, and there have been many applica-
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tions to electronic excitation, dissociation, and ioniza-
tion of molecules by fast electrons (Massey, 1969). Ex-
change effects can be included via the Born—Oppen-
heimer-(BO) approximation, which corresponds to in-
cluding the exchange operator W,,(r’) in Eq. (166), or
the simpler approximations of Ochkur (1964) and Rudge
(1965a,b) [Mott and Massey (1965); see also Rudge
(1973), and Bransden and McDowell (1977)]. The Born
approximation may also be formulated in terms of
partial waves, by simply expanding each of the plane-
wave functions exp(—ik ,- r’) from Eq. (165) and F,(r’)
=exp(ik,*r’) in terms of spherical harmonics. The
Born T-matrix elements for higher-order partial
waves are often accurate even at relatively low ener-
gies since the centrifugal barriers prevent penetra-
tion into the region of configuration space where the
interactions are strong. Use of the Born results for
large values of / is an efficient procedure and one that
is widely used in applications.

a. Rotational excitation

Rotational excitation of molecules near threshold is
dominated by long-range electron—molecule interac-
tions. Massey (1931) argued that for low-energy elec-
tron scattering from a polar molecule the long-range
interaction will dominate so that the electron will be
only weakly perturbed during the collision and, there-
fore, that the Born approximation should be valid in the
threshold region. We will restrict the discussion here
to linear molecules in Z electronic states. Taking the
electron-molecule interaction to be approximated by
the dipole term

d
Vem(r)=— ;—;cos@, (168)
where d is the dipole moment (in a.u.) and 6 is the
angle between r and the internuclear axis R, the dif-
ferential cross section for a rotational transitionj,—~j ,
summed over final »; andaveraged over initial My
is (Crawford, Dalgarno, and Hayes, 1967)

do \?® _(4 2) 4yl (h) -2
(dsz>,o*,“ 34) Bior 1) ) X

where the upper (10wef) factor in curly brackets refers
to the case j,~j,+1 (j,—1), andwhereK is related to
the (LAB-frame) scattering angle 6’ by

KZ2=k%+k3—2k;k cos6’ .

Jo+1

)

(169)

(170)

The selection rule j,—~j,+ 1 applies in this approxima-
tion. The corresponding integral cross section is

8nd? . i ldo+1 k,+k
ts= (i) @or 07 o) [ azia],
Jo °
(171)
and the momentum-transfer cross section is
8nd? . o (Fo+1
s (5 e
Y o . jo
(kl —ko)2 [ kotky ])
x(l T In DersiE 172)
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We note that the differential cross section given by Eq.
(169) is well behaved at all scattering angles and the
integral and momentum-transfer cross sections, given
by Egs. (171) and (172), respectively, are finite at all
energies. However, in the (mathematical) limit where
the moment of inertia of the molecule / approaches in-
finity (fixed nuclear rotation limit), the rotational ener-
gy-level separation vanishes so that 2;~%,. In this lim-
it, the differential cross section of Eq. (169) diverges
in the “forward direction” 6/~ 0, and the integral cross
sectiongivenby Eq. (171) is undefined. These resultsare
not artifacts of the Born approximati on; they occurinthe
exact fixed-nuclei treatment as well (Garrett, 1971c).
The momentum-transfer cross section given by Eq.
(172) remains finite. These observations suggest that
the validity of a fixed-nuclei (in particular, fixed-nu-
clear-rotation) approach to electron scattering from
polar molecules is questionable [see reviews by

Garrett (1972) and Itikawa (1978)]. ,

For the case of electron scattering from nonpolar
molecules, such problems do not occur. Taking the
electron—molecule interaction to be approximated by
the quadrupole term

Von(®) =~ 2L p_(cos6) (173)
em 7.3 2 ’
where @ is the quadrupole moment and 6 is defined as
before, the Born approximation to the integral cross
section for transitions j,—j,+ 2 is (Gerjuoy and
Stein 1955a,b)

871Q% \( k;
oF ;= (_15 )(z)zajop,, (174)
where
5. (Jo+2)(o+1)
ioio*2 T (27, %3) (25, +1) (175)
5. _JoUg=1)
ig>iom2 T (2]0— 1)(2j,+1)

where the selection rules j,—~j,+2 apply. Dalgarno and
Moffett (1963) have extended this treatment to include
the nonspherical polarization interaction. Rahman,
Gianturco, and Lamanna (1978) give results for the
amplitude obtained by applying the Glauber approxima-
tion to the pure quadrupole interaction.

b. . Vibrational excitation

The validity of the Born approximation for low-energy
vibrational excitation is less clear. However, when the
cross section near threshold is dominated by long-range
dipole or quadrupole interactions, such an approach
may be reasonable (see Takayanagi, 1965a,b, 1966, and
1972). The expressions for the differential and integral
cross sections for transitions v, j,~v,j are obtained
by making the replacements

d-@ldR)v,), (176)
and
Q- @IRR)Iv,), )

and
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K~ k2, (178)

in Eqgs. (169)—(175), where the dependence of the dipole
and quadrupole moments on internuclear separation is
explicit in Egs. (176) and (177). Since the vibrational
energy-level separation is so much larger than that for
rotational states, it is a very good approximation to
ignore the j dependence of k2, (corresponding to the
fixed-nuclear-rotation limit /- «), Then, summing

Eq. (169) over final rotational states, we see that cross
sections for transitions v,—~v can be defined by

dos\? 4 2 kv) -
(23)" _=2ielaty)l (32) 2, (179)
0
where K2 =k2 + k2 - 2k, k,cosb’,
ky+k
2 Q v
Ty vy = 3k2'<”'dlvo>| m[lko—kvl]’ (180)

and

(m)B _

olms = lwlato ) (1-

(Sk kn) “[]:ziiilp :
(181)

We note that the differential cross section given by Eq.
(179) does not diverge in the “forward direction” ¢’ —0
since K remains finite, and the integral and momen-
tum-transfer cross sections, given by Eqs. (180) and
(181), respectively, are both well defined.

Il. APPLICATIONS

A. Introduction

The ultimate test ofatheory, of course, is how wellitde-
scribes the physical phenomena. Inprinciple, thisis de-
termined by comparisonwith experimental measurement.
However, measurements always contain some error, and
oftenthe amount of error is not wellknown. So, progress
in understanding requires that theory and ex-
periment proceed hand in hand. Error in theoretical
calculation usually arises from approximations made in
solution of the Schrddinger equation. The approxima-
tions are of two basic types: (1) An approximate Ham-
iltonian is formed by replacing terms in the true Ham-
iltonian by approximate representations, or (2) an
approximate (e.g., variational) solution is sought using
the true Hamiltonian. In most actual applications there
are elements of both. For example, the frame trans-
formation procedure assumes that Hror and Hy;z can be
neglected entirely in the inner region. Then, in the
inner region a (fixed-nuclei) calculation, say of the R
matrix, is carried out using a limited basis set of
some variety. In the exterior region, the transformed
(BODY to LAB) R matrix is then propagated into the
asymptotic region. However, only a finite number of
channels, hence target states, can be considered, so
that some truncation is necessary. The resulting errors
are not always easy to estimate.

In order to help organize the discussion in the follow-
ing sections, it is useful to rather arbitrarily divide
theory into two areas: ab initio calculations and model
studies. There is a good deal of overlap between these
so that the distinctions are not clearly drawn. How-
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ever, most theoretical investigations do possess a
primary focus that will roughly characterize a partic-
ular study. It is important to recognize that the im-
mediate objectives of all studies are not the same. If
one judges a careful ad initio calculation of elastic
electron-N, scattering in the static-exchange approx-
imation by how well the cross section agrees with ex-
periment, the value of the work will be totally missed.
In a true ab initio treatment one attacks the full
Schrddinger equation (containing the true Hamiltonian)
using approximate methods of solution that can be
systematically tested for accuracy and improved to ob-
tain convergence to the exact result. The lack of con-
venient bound principles in the continuum explains to
a considerable extent the difficulty of carrying out
accurate ab initio calculations of electron—molecule
scattering wave functions and observable cross sec-
tions. At the current stage of development of this
field, it is common practice to “loosely” describe
as ab initio any treatment that does not involve ad-
justable parameters, even though it may be based on
the neglect of a portion of the true Hamiltonian, or an
approximate treatment of correlation, e.g., the polar-
ized-orbital method (see Drachman and Temkin, 1972).
In model studies, complicated exchange and corre-
lation effects are sometimes mocked by simpler “ef-
fective interactions,” which usually contain one or more
adjustable parameters. Then, in solving the simpler
(usually one-electron) Schrddinger equation, oneis still
faced with a need to truncate the number of channels
retained. However, the error in truncation of the one-
electron problem can be made as small as desired by
merely raising the level of computing. Some justifica-
tions for a model study (as opposed to ab initio) are:
(1) the system is too complex for an ab initio approach,
and a qualitative description is felt to be useful; (2)
novel “effective interactions” are being developed and
tested on simpler systems for possible application to
more complex problems; (3) one wishes to illustrate
the dominance of a particular feature such as the long-
range dipole interaction in electron—polar-molecule
scattering; (4) a simple model is used to help organize,
and perhaps interpret, experimental data. The respon-
sibility of members of the theoretical community is to
actively participate in this effort to better describe
and understand the phenomena. This requires that
ab initio calculations be performed where they can be
reasonably done, and that the phenomenological model
studies be pursued in other cases.

B. Electron-H, scattering

1. Elastic scattering (H,)

Hydrogen, with only two electrons, is the simplest
neutral molecule, and therefore has received the most
theoretical attention. Because the nuclear charges are
small and the nuclei rather close together (R,~ 0.7 A)
in the ground electronic state, the H, molecule is
“atomlike,” resembling He in terms of the overall
“strength” of the electron interaction.

Early theoretical studies by Fisk (1936) showed
that only qualitatiVe results could be obtained by rep-
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resenting the electron—molecule interaction by a simple
(parametrized) potential energy function. Nagahara
(1953, 1954) formulated the electron—molecule elastic
scattering problem in the fixed-nuclei approximation
and calculated the elastic cross section for H,, using

a realistic static potential energy based on the ground-
state charge density. While the results were encourag-
ing, it appears now that the equations were not solved
accurately. Massey and Ridley (1956) recognized that
exchange effects, known to be important in elastic
electron—helium scattering, should play an important
role in H, as well. They applied the Hulthén and Kohn
variational methods (see Moiseiwitsch, 1966; Mott and
Massey, 1965) in both the static and static-exchange
approximations and showed that the static cross section
is much too large-at low energies. Just as in the case
of electron—helium scattering, the effect of exchange

is to lower the elastic cross section at low energies,
thereby improving the agreement with experiment
(Ramsauer and Kollath, 1930a,b, 1931, and 1932).
Since Massey and Ridley (1956) included only the so
partial wave, their cross section is too small at the
higher energies. . Their results will be discussed later
in relation to other early theoretical studies. In a
model calculation, Carter, March, and Vincent (1958)
also determined that exchange was likely to be impor-
tant in elastic scattering, although their model was not
capable of quantitative accuracy.

a. Static-exchange

In the static-exchange (SE) approximation, the theory
incorporates only static and exchange interactions of
the electron with the molecule in its unperviurbed ground
electronic state 'Z;. There is no allowance for polar-
ization or other correlation effects. Most applications
are based on the fixed-nuclei approximation, with the
internuclear separation R frozen at its equilibrium
value. The elastic cross section calculated in the
BODY frame is usually averaged over molecular orien-
tation. [We have seen in Sec. II.D that under conditions
such that the adiabatic nuclei approximation is valid,
this averaged BODY-frame elastic cross section is
equal to the total (elastic plus rotational excitation)
cross section in the LAB frame.] Generally, elastic
static-exchange cross sections agree only qualitatively
with the measurements or with more sophisticated the-
ory. The agreement with experiment tends to be best
for the differential cross sections at large angles,
where short-range interaction dominates.

In the first effort to numerically solve the continuum
Hartree—Fock (static-exchange) equations (116) for the
electron-H, system, Wilkins and Taylor (1967) did
verify that including exchange had a large effect on the
cross section, However, numerical inaccuracies in
results led to the incorrect conclusion that polariza-
tion effects, which were neglected in their calculation,
were unimportant. -
~ Tully and Berry (1969) solved the two-dimensional
static-exchange Schrédinger equation (110) directly,
i.e., without introducing the usual partial-wave ex-
pansion. The elliptic partial integro-differential equa-
tion was solved\by finite difference methods. The ex-
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change terms were handled iteratively, and various
pseudopotential approximations were tested as starting
points in the iterative scheme. It was concluded that
the simple Slater free-electron-gas exchange potential
given by Eq. (137) was a particularly poor choice. The
unperturbed H, ground state was represented by the
Weinbaum (1933) function. Probable sources of numer-
ical error in this static-exchange calculation are: (1)
use of rather large radial step size A» =0.2g, and angu-
lar step size A6=7/30 in the numerical solution of the
Schrddinger equation; (2) error in the self-consistency
iteration; and (3) the assumption that at » = 10a,, the
individual partial waves so, po, pwm, do, and dw are
fully uncoupled (thus, so-do coupling is ignored there).
The phase shifts and integral (fixed-nuclei) cross sec-
tions were calculated at several energies in the range
0.034 <E <6.667 eV. Differential cross sections are
presented at 2=0.3(1.22 eV), 0.4(2.18 eV), and
0.6(4.90eV), where comparison with early measure-
ments (Ramsauer and Kollath, 1930a,b, 1931, and
1932) showed good agreement at large angles (i.e.,
62£90°). At small angles, the static-exchange cross
section falls significantly below the measurements.
Results will be given later in comparison with other
work. In addition to the historical significance of this
work, Tully and Berry’s results often have been used
as a calibration point for testing new methods. How-
ever, more accurate static-exchange results are now
available [for example, see Collins, Robb, and
Morrison (1979), and the Appendix].

In a recent systematic study of various exchange
models of possible use in more complicated electron-
molecule scattering problems, Morrison and Collins
(1978) compared “exact” static-exchange eigenphase
shifts and total cross sections for electron—H, scat-
tering with the results of several versions of the free-
electron-gas (FEG) exchange model. The “exact”
static-exchange calculations correspond to the con-
verged self-consistent solutions of Eqs. (113) and
(114), or more specifically the coupled integro-differ-
ential Eqs. (116) (see the Appendix). The unperturbed
H, ground state was represented by the Hartree—Fock
wave function of Fraga and Ransil (1961) which gives
an equilibrium separation of 1.402a, and a quadrupole
moment of 0.48ea? [the more accurate value obtained
by Wolniewicz (1966) is 0.484ea3]. The numerical
solution of the integro-differential equations was ac-
complished using the computer code of Sinfailam
(1970) which treats exchange noniteratively (see
Sec. I1.G.1). Only Z (m =0 and ! even) symmetry was
considered and partial waves /=0, 2, and 4 were
retained in Eq. (115). The static potential was ade-
quately represented by terms A=0, 2, and 4 in the
expansion (118) and in the exchange kernel of Eq. (119)
reduced by retaining terms A =0 and 2 in an expansion
of the bound orbital ¢;(r’) in spherical harmonics. A
set of 20 coupled equations was solved and the K matrix
extracted at » =10a,. Elastic (fixed-nuclei) Z, cross
sections are compared in Fig. 6. The model-exchange
calculations include studies of: (1) the Hara (1967)
modification of the FEG local potential “HFEGE” given
by Eqgs. (132)-(136); (2) a different (“asymptotically
adjusted”) version of this potential (Riley and Truhlar,
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FIG. 6. Cross sections for e—H, scattering in the static ap-
proximation S and three model exchange calculations (solid
curves). The open circles are converged exact static-exchange
cross sections. The three FEG exchange potentials were re-
calculated at each scattering energy using I(H) =0.564 a.u., I(A)
=0.0 a.u., and K7)=0.071 a.u. (Reprinted from Morrison and
Collins, 1978.)

1975) with the ionization potential I in Eq. (136) set to
zero so that K(»)~ % as r—~ (“AAFEGE”); and (3) a
semiempirical version where [ is adjusted so that the
cross sections are in agreement with “exact” static-
exchange results (“TFEG”). The conclusion for H,

is that Hara’s potential is too weak and the “asymp-
totically adjusted potential” is too strong. A choice of
I=0.071 a.u. in Eq. (136) gives very good agreement
with the Z, static-exchange results at all energies
considered. However, this may not be true for other
symmetries. Applications to electron-N, and elec-
tron-CO, scattering will be discussed in the ap-
propriate sections.

Baille and Darewych (1977b), in a similar study of
model-exchange approximations in electron-H, scat-
tering, also include the effects of polarization via the
polarization potential of Lane and Henry (1968). In
addition to the FEG potentials they consider the semi-
classical exchange (SCE) approximation of Riley and
Truhlar (1975). They conclude that the SCE model is
superior to the various versions of the FEG model, but
that even this potential fails for energies E <6 eV.
They note an apparent discrepancy between their
“HFEGE” cross sections and those of Morrison and
Collins (1978). However, the differences are quite
consistent with the fact that the latter authors consider
only Z, symmetry and do not include polarization. The
effect of adding in the polarization potential is to de-
crease the low-energy Z, cross sections and increase
the Z, cross sections. The semiempirical adjustment
of Morrison and Collins (1978) could well bring the total
cross section of Baille and Darewych (1977b) into
agreement with the adiabatic—exchange result.

Before describing the early efforts to go beyond the
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static-exchange approximation by including polariza-
tion corrections, it is appropriate here to review
recent applications of new methods of treating the
electron—-molecule scattering problem. The pilot
calculations are always carried out in the static-
exchange approximation, so that comparison can be
made with accurate static-exchange results. In dis-
cussing these recent studies, it is important to keep
in mind that the immediate goal is development of new
methods that eventually will lead to more accurate
or more efficient calculations (or both) of scattering
cross sections for more complicated processes in-
volving more complex molecules.

Schneider (1975a,b) was the first to apply R-matrix
theory (see Sec. II.F) to an electron—-molecule scat-
tering problem. He calculated elastic fixed-nuclei
cross sections for electron~H, scattering in the static-
exchange approximation. The general R-matrix theory
is discussed in Sec. II.F.1. Since Schneider chose to
work in two-center spheroidal coordinates, his equa-
tions are somewhat different from those discussed in
Sec. II.F.1 but the theory is essentially the same
(Schneider, 1974). In these early calculations, the
Hamiltonian was approximated by the one-electron
static-exchange Hamiltonian of Eqs. (113) and (114), and
a Gaussian basis set was used for the diagonalization
of H® + L, and the representation of the amplitudes in
Eq. (99). The evaluation of integrals over the finite
region of space within the R-matrix boundary is the
most time-consuming part of the calculation. This
step was streamlined by introducing an auxiliary basis
set of ordinary Gaussians (ozl that, in principle, span
all of space. The matrix elements <a|V|B), etc., are
then identical to those encountered in an ordinary
molecular structure calculation and are evaluated by
standard optimized techniques. In all, Schneider used
60 ordinary and 60 floating Gaussians in the static-
exchange calculation. He found that the inclusion of p
as well as s orbitals centered on the two nuclei was
necessary in order to accurately describe the d-wave
contributions to Z,; and II, symmetries and the p-wave
contributions to Z, and II, symmetries, especially at

the higher energies of the range studied (0§E§13.6 ev).

The effects of the Buttle correction (see Sec. II.F.1)
were found to be small, but were included except near
a pole of the unperturbed Hamiltonian (chosen as

—%Vﬁ), where they were judged to be inaccurate. In the
outer region, outside the R-matrix boundary, the
phase shifts were obtained by matching the R-matrix

to a set of single-channel solutions numerically
integrated inward from infinity, by means of the
Numerov method. Coupling of partial waves due

to the electron—quadrupole interaction was ignored in
the outer region. Integral elastic cross sections (in
the static-exchange approximation) were given for
energies in the range 0 s E<13.6 eV. Differential cross
sections were calculated for £=0.2(0.54 eV), 0.3(1.22
eV), 0.5(3.4 eV), 0.6(4.9 eV), and 0.7(6.66 eV). Proba-
ble sources of error are: (1) incompleteness of the
basis set within the R-matrix boundary; (2) numerical
error in the transformation of basis set: (3) neglect

of partial-wave coupling in the outer region; and (4)
errors in treating the coordinate transformation from
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spheroidal to spherical at the boundary. A detailed
comparison of phase shifts with Tully and Berry (1969)
indicates differences in 14 ranging from 0.003 rad,

at £=0.05, to 0.056 rad at £=0.6, Schneider’s phase
shifts being smaller at each energy. Differences in 7y,
range from 0.001 rad at 2=0.2 to 0.024 at 2=0.6,
Schneider’s phase shifts being larger at each energy.
(See the Appendix.) A comparison of integral (fixed
nuclei) elastic cross sections is given in Fig. 7. Also
shown there are static-exchange results of Hara (1969a),
to be discussed, and the measurements of Linder and
Schmidt (1971a). The small differences in calculated
low-energy phase shifts show up as rather large dif-
ferences in cross sections. The figure also reminds
us that the static-exchange approximation is not even a
qualitatively correct physical description of the scat-
tering at low energies. Differential cross sections are
compared in Fig. 8 for 2=0.5(3.4 eV) with the mea-
surements of Linder and Schmidt (1971a). Theoretical
static-exchange results of Rescigno, McCurdy, and
McKoy (1975a), to be discussed, are also given. The
results of Tully and Berry (1969) lie below those of
Schneider (1975) as expected from Fig. 7 (see the
Appendix). The comparison with experiment shows
clearly that while the static-exchange interaction tends
to dominate large-angle scattering, it is not sufficient
at small angles. Here polarization effects play an
important role.

Rescigno, McCurdy, and McKoy (1975a) applied their
T-matrix expansion method (Rescigno, McCurdy, and
McKoy, 1974a,b) to a fixed-nuclei calculation of elastic
electron~H, scattering in the static-exchange approxi-
mation. The purpose of this study was to demonstrate
the usefulness of this new method by making compari-
sons with other static-exchange calculations. The
theory has been discussed in Sec. II.F.2. The essential
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FIG. 7. Cross sections for ¢e—H, scattering in the static-ex-
change approximation: (a) Schneider (1975b); (b) Tully and
Berry (1969); (c) Hara (1969a); and (d) experimental; Linder
and Schmidt (1971a). (Reprinted from Schneider, 1975b.)



58 N. F. Lane: The theory of electron-molecule collisions

7 T T T
. k=05
v q =——— Schneider
\| b — — -~ Rescigno et al.
Sl '\ ¢ — == Tully and Berry 7

\ d —=-== Linder and Schmidf,

2

Differential Cross Section (a, /radian)

1
(o} 45 90 135 180
Angle (deg)

FIG. 8. Differential cross sections for e—~H, scattering in the
static-exchange approximation: (a) Schneider (1975b); (b) Res-
cigno et al. (1975a); (c) Tully and Berry (1969); and (d) experi-
mental; Linder and Schmidt (1971a). (Reprinted from Schneid-
er, 1975b.)

ingredients in the calculation are the choice of optical
potential in Eq. (103) and the basis set to be used in
forming the “truncated” T matrix of Eq. (106). In this
study V. was approximated by the Hartree—Fock (static-
exchange) potential V,, defined in Eq. (114). The H,
ground state was represented by the Hartree—Fock
wave function. The basis set chosen for the continuum
orbital consists of 22 Cartesian Gaussian functions of
the form

Golr =A)=x"y™(z =AY exp{—a[x%+y*+ (z —=AP]},
(182)

centered on the two nuclei and properly symmetrized.
In the present application only s-type Gaussians
(I=m=n=0) were used. The nonlinear parameters a
were chosen by combining Huzinaga’s results for a 10-
Gaussian representation of the 1s hydrogen atom
(Huzinaga, 1965) with more diffuse functions with «
chosen in a geometric series of ratio 1.6 (Schneider,
1974). If the T operator from Eq. (103) is substituted
into the expression (101) for f?(k, k,), the leading term
in U is just the first Born approximation. The authors
found that this term should be included exactly (i.e.,
not truncated by representation in the finite basis set),
by simply replacing 7' in Eq. (101) by

T=U+T =-Ut, (183)

Calculations of T ~U* were carried out for Z, and Z,
symmetries; all other symmetries were included in the
first Born approximation by means of Eq. (183). Elastic
(fixed-nuclei) differential cross sections, averaged over
nuclear orientation, were calculated at energies
k=0.3(1.22 eV), 0.4(2.18 eV), 0.5(3.4 eV), 0.6(4.9 eV),
and 0.7(6.66 eV), and compared with other theoretical
static-exchange calculations of Tully and Berry (1969)
and Hara (1969a). The agreement with the static-
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exchange results of Schneider is very good, as illus-
trated by the differential cross section at £=0.5(3.4 eV)
in Fig. 8. Probable sources of error in this calculation
are: (1) incompleteness in the basis set, and (2) neglect
of partial-wave coupling in the asymptotic region. [See
also Levin, Rescigno, and McKoy (1977) and Fliflet

and McKoy (1978a,b).] (See the Appendix.)

Morrison and Lane (1975) proposed a “pseudobound-
state” method based on the assumption that an ordinary
(bound-state) variational approximation to the wave
function of the H, system will resemble the true scat-
tering wave function near the molecule (see, for ex-
ample, Hazi and Fels, 1971). The variational wave
function can then be joined onto a continuum function
just outside the region where exchange and other short-
range effects are important. (See related discussion
of pseudopotential methods in Sec. I1.G.4.) Only Z,
symmetry is considered in this study. An N-config-
uration, three-electron variational function ¥, is con-
structed as a linear combination of functions
$;(r,, r,, r;), where the &; are symmetrized Slater de-
terminants of the form Ils"ﬁ’@?l, etc., and where the
1s°, 1s® orbitals are obtained from a single~configura-
tion calculation of the ground-state energy of H, (and
held frozen) and the ®{ are Slater-type orbitals (STO),
characterized by a nonlinear parameter o; and power
of »,n;. A convenient choice of STO is obtained by
holding ¢; fixed and including powers of » up to N. The
Hamiltonian matrix is diagonalized and an approximate
“continuum orbital” projected out (Z, symmetry) of a
low-energy eigenfunction

QD(I‘) :<¢'(oe) (ru I‘Z)I\I/,,(I‘l, r,, 1‘3»

=3 ruUSR) Y3 .

I even

(184)

If ¢(r) is orthogonalized to the core orbital 1s%(r)

+ 1sb(r), a node occurs at » = 2a,. The so phase shift

is then calculated by using the so orbital of Eq. (184) at
some two adjacent points near ¥ =7, to start an outward
integration (Numerov) of the static radial equation into
the asymptotic region. Calculations were also per-
formed using the static and polarization (Lane and
Henry, 1968) potentials in the outer region. The
logarithmic derivative of the variation orbital was
taken to be independent of the scattering energy.

-Phase shifts were then calculated for a range of en-

ergies 0.05< E<10.0 eV for various choices of basis
set (i.e., number of basis functions N), nonlinear
parameters «, and starting radius (i.e., R-matrix
boundary). The results for all energies were found

to be insensitive to different choices of « and 7, (in

the range 1.5-2.54q,), and were well converged for

a choice of 14 basis functions (N =14). The static-
exchange phase shifts calculated in this way are in good
agreement with Tully and Berry (1969) and excellent
agreement (i.e., phase shift differences <0.005) with
Henry and Lane (1969) and Schneider (1975b) for en-
ergies up to 1.0 eV. Above 1.0 eV the static-exchange
phase shifts deteriorate, probably due to the assump-
tion that the short-range variational orbital is inde-
pendent of energy. When polarization is included in the
outer region the resulting so phase shifts and partial
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cross sections are in excellent agreement with the ap-
proximate adiabatic-exchange results of Henry and
Lane (1969). The major drawbacks in the present
method are: (1) limitation to cases where the asymp-
totic partial-wave coupling is weak, i.e., “low-I spoil-
ing”; (2) linear dependence problems in the STO basis
set; (3) restriction to low energies; and (4) generaliza-
tion of the method not straightforward.

Winter and Lane (1975) applied the Fredholm method
to elastic (fixed-nuclei) electron-H, scattering in the
static-exchange approximation using the same type of
basis set as Morrison and Lane (1975), and based on
the L? procedures developed by Murtaugh and Rein-
hardt (1972, 1973) for electron—atom scattering. As-
suming that the partial waves are asymptotically de-
coupled (i.e., low-I spoiling), the phase shift, modm,
can be expressed in terms of the Fredholm determinant
by [see, for example, Bransden (1970), or Gottfried
(1966)]

6,(E) =-limarg[D,(E +i¢g)], (185)
£->0

where at a complex energy z above the positive real
axis, D is expressible approximately as (see, also
Reinhardt, Oxtoby, and Rescigno, 1972)

oo T3]

k=1

(186)

The E, and Ej are, respectively, the eigenvalues of the
full (electronic) Hamiltonian and that of the initial non-
interacting system, where in both cases a discrete rep-
resentation in terms of K L® basis functions is assumed.
(In the molecular case, the E, E, ,D(z), and phase shift
5, depend on m as well as [.) Analytic continuation is
then employed from a point near the real axis to the
real axis (Reinhardt, Oxtoby, and Rescigno, 1972).
The so phase shifts were found to be in good agreement
with the results of Tully and Berry (1969) and in excel-
lent agreement with the static-exchange results of
Henry and Lane (1969). The major drawbacks in the
method are similar to those found in all “low-! spoil-
ing” procedures, viz., errors in neglecting asymptotic
partial-wave coupling and difficulty in generalization,

In this particular application, the analytic continuation
procedure was found to be somewhat awkward and
tedious.

McCurdy, Rescigno, and McKoy (1976) independently
developed a “low-I spoiling” method very similar to the
pseudobound-state method of Morrison and Lane (1975)
and applied it to H,, N,, and F, (Rescigno, Bender,
McCurdy, and McKoy, 1976). In their application to
(fixed-nuclei) elastic electron—H, scattering, the
Hartree—Fock Hamiltonian, Eqs. (113) and (114), for
the H, system is first diagonalized in a discrete basis
set [22 s-type Gaussians on each H (Rescigno, McCurdy,
and McKoy, 1975a)]. The approximate continuum
orbital is then projected out of a positive-energy eigen-
function ¥y (r) by forming

ulm(r) = <Ylml‘1"

The phase shifts n,, are then obtained by matching
u;, and its first derivative at some large value of » to
the single~channel version of the asymptotic form given

(187)

HF> ‘
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in Egs. (34)-(36), where tann;,,=K;,,. The so and po
phase shifts calculated for energies in the range
0sSE<13.6 eV were found to be in apparent good agree-
ment with Schneider (1975b), although only graphical
comparisons are given. The sources of error in this
method include those described for Morrison and Lane
(1975). In addition, long-range interactions are
neglected in the present method. However, the use of
Gaussian basis functions (rather than STO) seems to
significantly reduce the linear-dependence problem.

b. Static-exchange polarization

The adiabatic-exchange (AE) approximation was
given a specific meaning by Temkin (1957). (See also
Drachman and Temkin, 1972,) However, we will
sometimes use the term to refer to calculations where
some reasonable account of both exchange and polariza-
tion has been taken. As described in Sec. II.G.3, the
term “polarization” describes a long-range correlation
effect which arises from the adiabatic response of the
target electrons to the presence of the scattered elec-
tron. Generally, the adiabatic-exchange approximation
results in marked improvement over the static-exchange
model. The calculated elastic differential cross section
is much improved in the forward direction (small-angle
scattering) and the integral cross section usually exhib-
its the correct energy dependence, and is often quan-
titatively accurate as well. :

Hara (1969a) calculated (fixed-nuclei) elastic cross
sections for electron—H, scattering in the static, static-
exchange, and adiabatic-exchange approximation.
These results were then used with the adiabatic nuclear
rotation approximation to calculate rotational excita-
tion cross sections (Hara, 1969b). Hara’s approach is
to solve numerically the static-exchange equations (110)
(with and without the polarization potential added to V),
in two-center spheroidal coordinates. The exchange
terms are handled in an iterative fashion starting with
the static case. The ground-state 'Z; target molecular
wave function is represented by a single Slater deter-
minant constructed from a five-term SCF (self-con-
sistent field) molecular orbital of Kolos and Roothaan
(1960). The polarization potential used is that of Hara
(1969c¢) based on a variational-perturbation approxima-
tion to the adiabatic polarization energy of Eqs. (144)
and (145), evaluated in two-center spheroidal coordin-
ates. A standard linear variational approach is used,
where the perturbed-target wave function is expanded
in a set of two-center two-electron basis functions of
the form used by James and Coolidge (1933) in their
16-term representation of the ground state of H,. The
coefficients in this expansion depend parametrically
on r, the position of the perturbing electron. The
secular equation is then expanded in orders of the
electron~molecule interaction V,,, and only first-
and second-order terms are retained. The first-
order energy is the static potential V, and the
second-order term is the polarization pdtential Vf,”) of
Eq. (145). Hara retains only the dipole contribution
to V{#, but that should be the dominant contribution
at least for large . The short-range step-function
cutoff procedure of Temkin (1957) is employed as a
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partial nonadiabatic correction. However, this .does
not introduce an adjustable parameter into the cal-
culations. The polarizabilities obtained in this calcula-
tion are a,=4.52a) and o, =0.33a} (i.e., a,=4.851a]
and o, =4.35943), so that an overall scaling of VE)P) is
required to ensure the correct asymptotic form [cor-
responding to a,=5.504a3 and o, =1.3843 (Kolos and
Wolniewicz, 1967)]. The need for scaling, of course,
gives rise to uncertainty in the accuracy of the polar-
ization potential. The resulting V{? is similar to that
of Lane and Henry (1968), but somewhat weaker. Hara
has calculated integral elastic and momentum-transfer
cross sections at a number of energies in the range
(0sE <28 eV) and differential elastic cross sections at
2.49, 4.44, 6.996, and 9.99 eV. His results for the
integral (fixed-nuclei) elastic cross section are given
in Fig. 9 for both the static-~exchange (“Hara, No
Polarization”) and approximate adiabatic-exchange
(“Hara, Including Polarization™”) calculations. Also
shown in this figure are the static-exchange results

of Massey and Ridley (1956), Wilkins and Taylor (1967),
Tully and Berry (1969), and the static-exchange and
adiabatic-exchange results of Henry and Lane (1969),
to be discussed. Comparison with the measurements
(Ramsauer and Kollath 1930a,b, 1931, 1932; and
Golden, Bandel, and Salerno, 1966) shows the impor-
tance of including polarization in the integral cross
section, at least for énergies below 10 eV. Not

shown in the figure are the experimental elastic cross
sections of Linder and Schmidt (1971a) and Srivastava
et al. (1975). All of the experimental cross sections
appear to be consistent with the exception of those of
Srivastava ef al. (1975), which are significantly smaller
below 6 eV. The importance of polarization at small
angles is apparent in Fig. 10, where the theoretical
adiabatic-exchange (Hara, 1969a; Henry and Lane,
1969) differential elastic cross sections are compared

with the measurements of Linder and Schmidt (1971a)
and Trajmar et al. (1970a,b); all curves are normal-
ized at 90°. The effect of the long-range attractive po-
larization interaction is to increase the small-angle
cross sections, bringing them into better agreement
with experiment. (Compare the static-exchange results
of Fig. 8.) It should be noted in connection with Fig.

10 that Hara’s cross sections are really total (elastic
plus rotational excitation) since they were obtained in a
fixed-nuclei calculation and averaged over nuclear
orientation.

The greatest source of error in Hara’s calculation
is probably his treatment of polarization. The accuracy
of the calculated cross sections is as good as one is likely
to obtain without considerable improvement in the
treatment of electron correlation effects.

Henry and Lane (1969) calculated elastic and rotat-
ional-excitation cross sections for electron—H, scatter-
ing in the static, static-exchange, and adiabatic-ex-
change (including polarization) approximations. The
internuclear separation was fixed at R =1.4a,. The LAB-
frame equivalent of the coupled equations (116)—(119)
were solved numerically. Equations (62) simplify for
the case of a single ‘2, electronic state and fixed inter-
nuclear separation, so that the channels are defined by
p=(jl;J). In the exchange matrix elements, ortho-
gonality of the “continuum orbital” to the target orbital
was assumed, as in Eq. (119). The static potential Vg
was taken to be that calculated by Lane and Geltman
(1967) using the ground-state function of Wang (1928).
The static potential was corrected at large distances
by smoothly joining the v(;) term in the expansion (118)
to the asymptotic form — @/7*, where @ was chosen to
be 0.49.ea? (Kolos and Wolniewicz, 1967). The exchange
terms were calculated using the single-center H, wave
function of Huzinaga (1957). The coupled equations
were solved using outward and inward integration by
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FIG. 10. Differential cross sections for elastic e—H, scatter-
ing. Comparison of theory including polarization with experi-
ment. Theory: (solid curve) Henry and Lane (1969), (dashed
curve) Hara (1969a). Experiment: (open circles) Linder and
Schmidt (1971a), (X) Trajmar et al. (1970a,b). (Reprinted from
Linder and Schmidt, 1971a.)

Numerov’s method and the asymptotic expansion method
of Burke and Schey (1962). Exchange was treated using
the noniterative method of Marriot (1958) and Omidvar
(1961, 1974). [See Smith, Henry, and Burke (1966) for
a general discussion of these methods.| Closed as well
as open rotational channels were included. The po-
larization potential used was that calculated by Lane
and Henry (1968), who employed a linear variational
treatment in which the lowest energy of the system

(e +H,) was minimized with respect to the parameters
Cqp in a trial function of the form

w‘é” (r,, ry;r) ?‘P(:)(rlz r;) Z; Cq, B(x1+xz)a(zl+zz)6; (188)
a,

where the unperturbed H, wave function q)(oe) was ap-
proximated by the one-center function of Joy and Parr
(1958). The Temkin (1957) step-function cutoff pro-
cedure was employed as a rough nonadiabatic correc-
tion. The numerically determined V(c") (r) was expanded
as

V® (r)=0® (r) + v2(0r)P,(cosb) , (189)

and v‘.f) and v(z") were fit to convenient analytic functions,
and scaled so that the »~* asymptotic form was consis-
tent with the polarizabilities a,=5.50a3 and a,=1.3843
(Kolos and Wolniewicz, 1967). This scaling gives rise
to considerable uncertainty in the accuracy of the po-
larization potential. Elastic (LAB-frame elastic) and
rotational-excitation, integral cross sections were cal-
culated for a number of energies in the range 0 <E
<13.6 eV. Differential elastic cross sections are
shown in Fig. 10 for energies 1.0, 2.45, and 4.42 eV.
Total (elastic j=0- 0 plus j=0-2, 4, etc., rotational-
excitation) integral cross sections are shown in Fig. 9.
The greatest source of error in these calculations is
the treatment of polarization. It is encouraging that the
cross sections calculated by Hara (1969a, b) are similar
to those of Henry and Lane (1969), a fact that reflects
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that the polarization potentials are not in serious dis-
agreement. Nevertheless, the approximate manner in
which polarization is treated in both these studies is an
obvious source of error, particularly at the higher en-
ergies.

Truhlar and Brandt (1976) have focused on the role
of exchange and polarization in elastic scattering and
rotational excitation at somewhat higher energies. They
have performed a two-state (j=1,3) LAB-frame ro-
tational close-coupling calculation including exchange
via the local semiclassical (SC) approximation of Riley
and Truhlar (1975) and polarization by constructing a
polarization potential similar to that of Lane and Henry
(1968), but modified so as to vanish at the nuclei. In
Fig. 11 total (elastic plus rotational-excitation) dif-
ferential cross sections are compared with the mea-
surements of Srivastava et al. (1975) at 40 eV. The
‘“semiclassical” static exchange (“SE”) cross section
falls below experiment at small angles, as might be
expected. Including pdlarization (curve “4” with ex-

' change and curve “3x E” without exchange) raises the

small-angle cross section, but does not alter the large-
angle scattering appreciably. The major uncertainties
in this calculation are: (1) the semiclassical exchange
model; (2) the approximate polarization potential; and
(3) the question of numerical convergence of the close-
coupling expansion, truncated at the two-state level.
Considering all of these factors, the agreement with
experiment is remarkably good. Truhlar, Dixon, and
Eades (1979) have recently reinvestigated the question
of how the adiabatic polarization potential should be
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calculated and give new results for the electron-H,
interaction.

At somewhat higher energies, Bhattacharyya,
Goswami, and Ghosh (1978), obtain qualitative agree-
ment with measured differential cross sections by ap-
plying the adiabatic nuclear rotation approximation,
using the eikonal theory based on model static-exchange-
polarization interactions (see Bhattacharyya and Ghosh,
1975, 1976).

Schneider (1977a, b) has extended his R-matrix study
(Schneider, 1975a, b) to include polarization by incor-
porating in the basis set pseudo-orbitals obtained by
carrying out a configuration-interaction variational cal-
culation for the H, molecule in the field of a distant
charge. The polarizabilities obtained in this way are
@ =6.3860a3 and o, =4.5460a2, in very good agreement
with the respective values 6.3805 and 4.5777a3 of Kolos
and Wolniewicz (1967). The R-matrix calculations,
with the expanded (“polarized”) basis, are then per-
formed essentially as before to obtain the cross sec-
tions. Integral (fixed-nuclei) cross sections are com-
pared in Fig. 12 with other theoretical work of Kaldor
and Klonover (1977) and Klonover and Kaldor (1978)
and the experimental elastic cross sections of Linder
and Schmidt (1971a). The agreement with the mea-
surements is good. It should be noted that Schneider’s
cross sections include rotational excitation implicitly
(since the fixed-nuclei elastic cross sections are aver-
aged over nuclear orientation) and may exceed the pure
elastic cross section by as much as 1xX 107! cm? at 2
eV. Nevertheless, there still appears to be a sub-
stantial discrepancy at the lowest energies compared.

Kaldor and Klonover (1977) and Klonover and Kaldor
(1978) have applied the T -matrix expansion method of
Rescigno, McCurdy, and McKoy (1974a,b), including
polarization effects, to a (fixed-nuclei) calculation of
elastic and (adiabatic nuclei) rotational-excitation cross
sections for electron-H, scattering. The basic equation
is Eq. (101), where a “truncated” approximation to the
T matrix is obtained by solving Eq. (106). The optical
potential was approximated by

V=V +V(()ZIZ ’ (190)
where V,, is the static-exchange potential (operator) of
Eq. (114) and v‘:,} is the second-order approximation to
the perturbation series represented by all linked,
proper diagrams (see, for example, Csanak, Taylor,
and Yaris, 1971). This approximation is expected to
incorporate the most important polarization effects in a
systematic and rigorous manner. Elastic (fixed-nuclei)
cross sections were calculated both in the static-ex-
change approximation and with polarization included via
the optical potential. The calculated elastic cross sec-
tions (adiabatic nuclear rotation) are compared in Fig.
12 with the R-matrix results of Schneider (1977a, b),
also including polarization, and the experimental elas-
tic cross sections of Linder and Schmidt (1971a). The
agreement with Schneider (1977a,b) and with experi-
ment is good over most of the energy range. At the
lower end, say 1<E<3 eV, the theoretical cross sec-
tions lie below experiment. The fact that the energy
dependence of the theoretical cross section is not very
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FIG. 12. Integral cross sections for e~H, scattering. Theory:
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ization; Klonover and Kaldor (1978); (open triangles) exchange
polarization, Schneider (1977a,b). Experiment: (X) Linder and
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smooth suggests a source of numerical error that varies
with energy.

2. Rotational excitation (H,)

Rotational excitation in electron—molecule scattering
occurs as the result of a torque acting on the molecule
which arises from the field of the scattered electron.
[See early reviews by Craggs and Massey (1956),
Takayanagi (1967, 1973, and 1975a,b), Phelps (1968),
Takayanagi and Itikawa (1970b), and Golden et al.
(1971).] Since the anisotropic electron—molecule in-
teraction is long range (varying asymptotically as »~2
for polars, 7~ for molecules with quadrupole mo-
ments) the influence can be felt when the electron is
still rather far from the molecule. Massey (1931)
argued that for polar molecules the major contribution
to the rotational-excitation cross section should arise
from such large electron—molecule separations that the
initial electronic wave function of the incident electrons
would be only weakly perturbed, and the first Born
approximation applied only to the long-range static
interaction should be valid. The dominant transition
would be j—j+ 1. Gerjuoy and Stein (1955a, b) extended
this argument to nonpolar molecules where the quad-
rupole interaction determines the cross section, and
the dominant transition is j—j+ 2. Dalgarno and Henry
(1965) showed that a distorted-wave treatment including
static short-range, as well as the long-range quad-
rupole, interactions agrees with the Born result.
[Chang (1970, 1974a,b) has made a critical study of the
Born-quadrupole approximation near threshold and
suggested rotational-excitation measurements as a
method of accurately determining quadrupole moments
for nonpolar molecules.]

The importance of polarization, especially the aniso-
tropic contribution, to rotational excitation of nonpolar
molecules was stressed by Dalgarno and Moffett (1963),
who extended the first Born approximation to include
this effect. They argued that thelong-range »~* po-
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larization potential of Eq. (143) is still sufficiently weak
so that the scattered electron will be perturbed only
slightly. Indeed, the influence of the o, term in Eqs.
(143) and (148) gives rise to a much steeper rise in the
cross section above threshold, in better agreement
with the available measurements [Engelhardt and
Phelps (1963); see Phelps (1968)]. Sampson and Mjols-
ness (1965) and Geltman and Takayanagi (1966) per-
formed distorted-wave calculations using a variety of
semiempirical model interaction potentials including
the long-range quadrupole and polarization effects.
They concluded that the cross sections would continue
to increase above threshold, perhaps peaking some-
where between 1 and 10 eV; the short-range static
interactions play an important role at these energies.
However, near threshold (say within 0.1 eV or so) the
quadrupole and polarization contributions were still
dominant, and the Born results appeared to be good.
Both the Born and distorted-wave approximations are
based on the “weak-coupling” assumption (i.e., first-
order perturbation treatment of the parts of the elec-
tron—-molecule interaction that directly couple different
rotational states). If the coupling is sufficiently strong,
“feedback” (or “backcoupling”) can influence both the
elastic and rotational-excitation cross sections. More-
over, j—j+4 cross sections can be enhanced, for ex-
ample, by a step process j— (j+2)—j+4, occurring in
a single collision.

Lane and Geltman (1967, 1969) examined the “weak-
coupling” assumption in electron-H, scattering by per-
forming a LAB-frame rotational close-coupling calcu-
lation including long-range quadrupole and polarization
interactions and short-range static- and model-ex-
‘change interactions. The adjustable parameters in the
model potentials were determined semiempirically by
fitting the experimental total cross section data of
Golden, Bandel, and Salerno (1966). Rotational-exci-
tation cross sections were then obtained for: j=0
~2,4;j=1-~+3,5;j=2-~4;j=3~5; and the inverse pro-
cesses, over an energy range of threshold to 13.6 eV.
The conclusions reached in this work (some of which
represent confirmation of the insights of previous
workers) include: (1) rotational coupling and coupling
of different partial waves is weak for H, because of the
small nuclear charge and near-spherical electronic
charge distribution of the ground-state molecule; (2)
the Aj =+ 2 cross sections exceed those for Aj=+4 by
about 10% for the same reasons; (3) the Aj=x 2 cross
section is dominated by electron partial waves d— s at
threshold, and p —p above threshold [see Chang (1970)
for further discussion of this point]; (4) short-range
interactions strongly influence |Aj| >2 cross sections
at all energies, and Aj=+ 2 cross sections for energies
above about 0.1 eV; (5) the rotational-excitation cross
section summed over all final states 2J;.0(j—~j') is in-
dependent of initial state j [as expected according to
the adiabatic approximation (Oksyuk, 1966)]; and (6)
the differential rotational-excitation cross section for
Aj=% 2 transitions is much more isotropic than the
corresponding elastic (or total) cross section except
at the lower energies. Cross sections for j=0— 2 and
j=1-3 transitions are included in Figs. 13 and 14, re-
spectively, along with the experimental measurements
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FIG. 13. Rotational-excitation cross sections for j=0—2
transition in e—H, scattering. Theory: (HL) Henry and Lane
(1969), (H) Hara (1969b), (LG) and Lane and Geltman (1967),
(DM) Dalgarno and Moffett (1963), (GS) Gerjuoy and Stein
(1955a, b). Experiment: Crompton et al. (1969). (Reprinted
from Takayanagi and Itikawa, 1970b.)

of Crompton, Gibson, and Mclntosh (1969) and Linder
and Schmidt (1971a) and other theoretical results to be
discussed. [Recently, Varracchio (1979) has used the
same model electron—~H, interaction potential in an
interesting illustration of the field-theoretic “effective
potential” formulation, obtaining reasonably good
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FIG. 14. Rotational-excitation cross sections for j=1-—3 tran-
sition in e—H; scattering. Theory: (solid curve) Henry and
Lane (1969), (dashed curve) Hara (1969b), (dot-dashed curve)
Lane and Geltman (1967). Experiment: (open circles) Linder
and Schmidt (1971a), (inset, dashed curve) transformed data
from j=0—2 measurements of Crompton et al. (1969). (Re-
printed from Linder and Schmidt, 1971a.)



64 N. F. Lane: The theory of electron-molecule collisions

agreement with Lane and Geltman (1967). See also
Csanak, Taylor, and Varracchio (1974) and Varracchio
(1977).] :

Abram and Herzenberg (1969), Chang and Temkin
(1969, 1970), and Hara (1969b) pointed out that the adia-
batic nuclear rotation (ANR) approximation (see Sec.
11.D) should be good except very near threshold. But
near threshold the Born approximation is valid. The
quantitative reliability of this approximation was
studied by Chang and Temkin (1969), who showed that
the predicted proportionality (for j'=j+ 2) to a single
Clebsch—-Gordan coefficient

Oj_,,jIOC[C(]'Zj,, 00)12 ’

was well satisfied by the close-coupling cross sections
of Lane and Geltman (1967) over a wide range of ener-
gies including higher energies (E = 0.5 eV) where the
Born (quadrupole) approximation, which also satisfies
this proportionality, clearly fails. (This, of course,
does not imply that the cross sections of Lane and
Geltman are “physically correct.” It does argue that
they are “numerically accurate,” for the particular
model chosen, and more importantly, that the adiabatic
nuclear rotation approximationisvalidhere.) As aninde-
pendent check, Chang and Temkin (1969, 1970) infer values
for the fixed-nuclei phase shifts, actually the difference
AN=1,5-17,,, from the measured integral j=0-~ 2 cross
sections of Crompton, Gibson, and MclIntosh (1969).
Using these semiempirical phase differences in the ANR
expression for the differential j=0— 2 cross sections,
the latter were found to compare well with the measure-
ments of Ehrhardt and Linder (1968). This result was
also found to agree very closely with the adiabatic ex-
change calculation of Hara (1969a) (see Golden et al.,
1971). The validity of the ANR approximation in elec~
tron—-molecule scattering was well established by this
important work.

The importance of exchange in electron~H, scattering
was first examined by Ardill and Davison (1968) in a
distorted-wave calculation including only static and ex-
change interactions. They found that at E=0.5 eV, in-
cluding exchange results in a ~70% increase in the
rotational-excitation cross section. Since polarization
was not included their cross sections were not in good
agreement with experiment.

Hara (1969a, b) and Henry and Lane (1969) calculated
elastic and rotational-excitation cross sections for
electron-H, scattering, including the effects of both
exchange and polarization [see also Henry and Lane
(1971) and Chang and Wong (1977) for D,, and Hara
(1971) and Takayanagi (1971) for HD targets]. These
calculations were briefly described in Sec. III.B.1.b.
Both theories agree on the j=0—~2 and j=1- 3 cross
sections at low energies (E =2 eV) and theory and ex-
periment are in good agreement over this same range,
as illustrated in Figs. 13 and 14. In Fig. 14 it is ap-
parent that above 2 eV, the two theoretical cross sec-
tions begin to diverge, the results of Hara remaining
in better agreement with experiment. At this point it
is not possible to choose one calculation over the other.
The major uncertainty in both is the treatment of po-
larization, which is not really correct in either cal-
culation. Pande and Singh (1977), using a static-plus-

(191)
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polarization model potential in a LAB-frame rotational
close-coupling calculation, obtain reasonable agree-
ment with the j=0- 2 results of Hara (1969a, b) and
Henry and Lane (1969), except, curiously, near thres-
hold. It is likely that the model polarization potential
employed in this study mocks the missing exchange
effects.

The recent application of the T -matrix-expansion
method to electron—H, scattering by Kaldor and Klon-
over (1977) and Klonover and Kaldor (1978) (described
in Sec. III.B.1.b) represents an attempt to include po-
larization effects in a systematic way. Applying the
adiabatic nuclear rotation (ANR) approximation, as de-
scribed in Sec. II.D, these authors calculated j=1-3
cross sections for energies E < 10 eV. Their results
for the integral j=1- 3 cross section calculated in the
static-exchange and adiabatic-exchange (second-order
polarization) approximations are compared in Fig. 15
with the measurements of Linder and Schmidt (1971a).
The agreement with experiment is particularly good
above 4 eV. At lower energies the theoretical cross
section drops off rather sharply. The authors suggest
that higher-order terms in the perturbation expansion
may be required. However, the static-exchange cross
section also shows this sharp drop at low energies
suggesting that the source of this feature may actually
be in that part of the calculation, perhaps reflecting in-
completeness in the basis (Kaldor 1979b). More re-
cently, Klonover and Kaldor (1979a) have shown that
the ANR elastic and rotational-excitation cross
sections increase sharply with internuclear separation
R. Averaging the calculated scattering amplitude over
the ground vibrational state distribution in R (in the
sense of the adiabatic nuclear vibration approximation)
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FIG. 15. Rotational-excitation cross sections for j=1—3 tran-
sition in e—H, scattering. Theory: (solid curve) exchange po-
larization; (dashed curve) static exchange, Kaldor and Klon-
over (1977)~, Klonover and Kaldor (1978). Experiment: (X)
Linder and Schmidt (1971a). (Reprinted from Klonover and
Kaldor, 1978.)
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they obtain improved agreement with the measurements
of Linder and Schmidt (1971a) for the elastic and j=1

— 3 rotational-excitation integral and differential cross
sections at all energies.

At higher energies the agreement of theory with ex-
periment is still only qualitative. The model two-ro-
tational-state close-coupling studies of Truhlar and
Brandt (1976) at 10 and 40 eV (see brief discussion in
Sec. III.B.1.b) show that qualitative agreement of the
differential cross sections may be obtained using the
semiclassical exchange model of Riley and Truhlar
(1975) and a variety of model polarization potentials.
Similar results, at somewhat higher energies, were
obtained by Bhattacharyya, Goswami, and Ghosh
(1978) in their application of the adiabatic nuclear
rotation approximation using eikonal theory (see
Bhattacharyya and Ghosh, 1975, 1976).

At very low energies (i.e., E=0.1 eV), the density
dependence of carefully measured drift velocities of
electrons in dense H, and D, was interpreted to imply
the existence of “rotational resonances” (Frommhold,
1968; Kouri, 1968a,b; Sams, Frommhold, and Kouri,
1972). The “rotational resonance” complex would cor-
respond to an electron temporarily attached to a ro-
tating H, (D,) molecule. However, the calculations of
Henry and Lane (1969) strongly implied that such re-
sonances could not exist in a single electron—-H, en-
counter. Crompton and Robertson (1971) and Bartels
(1972) in separate and quite different experiments con-
firmed that there is definitely some mechanism present
at high densities that acts like electron trapping.
Garrett (1977) has suggested that the trapping may be a
collective effect involving many H, (D,) molecules, and
using a reasonable model for the interaction, he is
able to show that temporary binding can indeed occur.
Garrett concludes that a more rigorous treatment will
be required in order to settle the question.

3. Vibrational excitation (H,)

Vibrational excitation in electron—molecule scattering,
classically speaking, occurs as a result of the force
exerted on the nucleus due to the field of the scattered
electron. Unlike rotational excitation, it is the com-
ponent along the internuclear axis, rather than that
pérpendicular to it, that is most important to this pro-
cess. Because of the unfavorable electron-to-nuclei
mass ratio, an efficient transfer of energy (hence,
large vibrational-excitation cross section) requires a
long interaction time. This may result from a strong
long-range interaction that depends sensitively on the
internuclear separation, or a temporary attachment
(resonance) of the electron for a time comparable to,
or exceeding the vibrational period. In H,, the long-
range interactions are not strong, and low-energy
(E < 10 eV) long-lived resonances do not occur. (There
are, of course, series of sharp Feshbach resonances
starting at about 11 eV.) Therefore the low-energy
vibrational-excitation cross sections in electron-H,
collisions tend to be smoothly varying in energy and not
particularly large (i.e., = 107*¢ cm?).

Early theoretical studies of vibrational excitation of
molecules by electron impact [Morse (1929, 1953);
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Massey (1935); Wu (1947); Carson (1954); reviewed by
Craggs and Massey (1956) and Massey (1969)] were
based on the weak-coupling Born and distorted-wave
approximations. In most of these calculations, only
short-range electron—molecule interactions were con-
sidered [Wu (1947) considered a dipole interaction], and
the resulting cross sections were found to be much too
small to be consistent with early experimental measure-
ments such as those of Ramien (1931). The swarm
measurements of Frost and Phelps (1962) and Engle-
hardt and Phelps (1963) and the electron-beam studies
of Schulz (1964) made it clear that there was something
missing in the early calculations. Schulz (1964) sug-
gested that vibrational excitation in H, might proceed
via temporary formation of a resonant H; complex in
much the same way as in N, (Schulz, 1962) and CO
where resonances were clearly observed at energies
~2.3 eV and 1.7 eV, respectively. Chen and Magee
(1962) had proposed a mechanism for vibrational ex-
citation in electron~H, collisions which involved the
explicit intermediate compound 22 H; state. They

_used the real 2% ¥ potential curve calculated by Dalgarno
and McDowell (1956) to represent the nuclear potential

energy for the compound state, and predicted vibra-
tional-excitation cross sections 107! cm? in the range

' 6-8 eV (see Chen, 1969).

Bardsley, Herzenberg, and Mandl (1966a, b) applied
the previously developed method of Herzenberg and
Mandl (1962) to the “resonant scattering” of electrons
by H,. Their general approach was to calculate a re-
sonant H; state with complex potential energy W(R)
=V(R) - 3iI'(R) by expanding the wave function in Kapur—
Peierls states. Thus, explicit account was taken of the
outgoing-wave boundary condition, unlike the standard
Rayleigh~Ritz variational calculations of H; states
which suffered from instability problems as explained
by Davidson (1962) and further confirmed by Taylor and
Harris (1963a, b, ¢c). It was assumed that the relevant
2z ¢ resonant state at low energies arose simply from a
p-wave electron temporarily trapped inside the [=1
centrifugal “barrier.” The authors found that for inter-
nuclear separations R = 3a, a bound H; state exists and
T'(R)=0. For R = 3a, the H; state was found to be un-
~stable with respect to autodetachment resulting in H,
+e. The nuclear motion in this complex potential was
then determined by solving the appropriate (modified)
nuclear Schrédinger equation. Then, taking advantage
of the small electron to nuclear mass ratio, the adia-
batic (Born—Oppenheimer) approximation was employed
and the “resonant” vibrational-excitation cross section
calculated by a simple quadrature in R. The cross sec-
tions were also averaged over all orientations of the
internuclear axis (adiabatic nuclear rotation approxi-
mation). The v=0-1 and 0— 2 cross sections obtained
in this way were found to be in qualitative agreement
with the experimental data available at the time (Engle-
hardt and Phelps, 1963; Schulz, 1964). Qualitative
agreement was considered satisfactory considering the
approximations made in the calculations and the uncer-
tainties in the measurements. It seemed to suggest that
vibrational excitation of H, proceeds via a broad %2, H;
resonance state, although the lifetime 7(R,)=7%/T(R,)
evaluated at the ground-state equilibrium separation of
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R,=1.4a, is about 107 sec. This is comparable to a
nonresonant collision time and shorter than a vibra-
tional period. Subsequent development of the “stabili-
zation method” (Taylor and Williams, 1965; Taylor,
Nazaroff, and Golebiewski, 1966; Taylor, 1967; and
Eliezer, Taylor, and Williams, 1967) has led to im~
proved calculations of the real part of the H; potential
energy curve. However, the essence of the resonant-
scattering picture given by Bardsley, Herzenberg, and
Mandl (1966a, b) for low-energy electron-H, collisions
remains valid.

Takayanagi (1965a, b) argued that one ought to be able
to understand vibrational excitation in H, without re-
lying on a purely resonant-scattering picture. If in-
deed the enhancement in the cross section arises from
temporary, albeit very brief, trapping of a p-wave
electron, then a simple distorted-wave calculation based
on a physically reasonable electron—H, interaction po-
tential should exhibit the effect. Takayanagi chose
rather simple forms for the electron—-molecule inter-
action, just to see what order of magnitude could be
obtained. First, he showed that a Born—-quadrupole
calculation gives extremely small vibrational-rotational
excitation cross sections—below 107'° ¢cm? in all cases.
In addition, he demonstrated that allowing for the R
dependence of the anisotropic polarizability a,(R) re-
sults in an increase of the cross sections by less than a
factor of 4. Next, allowance was made for the R de-
pendence in the isotropic (average) polarizability a,(R)
by appropriately modifying the Born formulae. With
this change, the v=0- 1 cross section jumped to values
in the range 3xX 107* cm? to 3x 107 cm?, depending on
how the long-range polarization potential was cut off
[see corrections to the Born results (Takayanagi,
1965b)]. Finally, distorted-wave calculations were
carried out using the semiempirical distortion poten-
tial of Takayanagi and Geltman (1964, 1965). The shape
of the v=0—~ 1 cross section was different, exhibiting
a somewhat sharper peak shifted to higher energies;
however, the magnitude was about the same. Thus,
Takayanagi (1965a,b) concluded that the long-range
polarization interaction can be important to vibrational
excitation and should be included in any realistic treat-
ment of the problem.

Almost simultaneously, Breig and Lin (1965) carried
out a similar study in which they applied the Born ap-
proximation to a number of model electron—molecule
interactions for H,, N,, and CO. Raman data were used
to estimate the important matrix elements, the quad-
rupole matrix element being chosen in the same way
as Takayanagi (1965a). For reasonable choices of
short-range cutoff functions, v=0- 1 cross sections
in the range 1 to 6x 1077 cm?® were obtained, in essen-
tial agreement with the measurements. The authors
concluded that the polarization interaction was impor-
tant to vibrational excitation.

Motivated by the impressive measurements of simul-
taneous rotational and vibrational excitation of H, by
Ehrhardt and Linder (1968), Abram and Hérzenberg
(1969) applied the adiabatic nuclear rotation (ANR) ap-
proximation (or impulse approximation, as they de-
scribe it) to the problem. They assumed that the
2T+ H; resonance state was entirely responsible for the
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transitions and, noting that the estimated lifetime of
this resonance was much less than a rotational period,
assumed that the adiabatic approximation applied to
rotational motion was valid. Moreover, they argued
that because of the Z, symmetry of the resonance state,
the angular dependence of the intermediate wave func-
tion would be given by cos(k,* R), and that of the final
state (continuum) wave function would be given by
cos(k+R), where k, and k are, respectively, the initial
and final electron momentum. The authors showed
that the scattering amplitude corresponding to kg, v,
-k, v with a fixed orientation of the internuclear axis
R could be written

SRy, vo— Kk, v; R) = cos(ky* R)cos (k= R)f(kg, vo— , v),
(192)

where the last factor is an I?—independent resonant
amplitude for v,— v transitions; it is independent of the
scattering angle 6’ =cos~*(k* k,) as well. The authors
did not attempt to calculate this factor, but concen-
trated on the angular dependence of various rotational-
vibrational cross sections obtained by using Eq. (192)
in the formula (see Sec. II.D)

e, ¢,)vfm1'xvojomlo = fdéijj (6, ¢R)*f(k0’ Uo— Kk, U;é)

XYJ'Oij (GR’ ¢R) . (193)
Since the experiments did not isolate m; —m; transi-
tions, comparisons were made of the cross sections
averaged over m;, and summed over m;. The theoreti-
cal results were in essential agreement with the fol-
lowing observations of Ehrhardt and Linder (1968):
(i) the pure vibrational-excitation cross sections show
pronounced p-wave character; (ii) the cross sections
forv=0-landj,—~j,+2, forj,=1, 2, and 3, are observed
to be relatively independent of angle; and (iii) the cross
section for v=0—~1 and j =1~ 3 is about half that for
v=0-~1and j=3- 5. They also agree that the “total”
cross section for all transitions v=0~ 1 and j,—~j, for
all possible j is proportional to 1+ 2cos?’ (O’Malley
and Taylor, 1968; Bardsley and Read, 1968). [See
comments of Chang (1974c) and Takayanagi (1975a, b).]
A comprehensive study of weak-scattering methods
based on a variety of approximate electron—molecule
interactions, and applied to elastic scattering and vi-
brational excitation, was begun by Truhlar and Rice
(1970), to be referred to in this section as Paper I. A
coordinated experimental~theoretical investigation of
electron-molecule scattering was carried out over a
period of several years and results were reported in
a series of papers (Trajmar, Truhlar, and Rice,
1970a, Paper II; Trajmar, Truhlar, Rice, and Kup-
perman, 1970b, Paper III; Truhlar, Trajmar, and
Williams, 1972, Paper IV; Truhlar, 1972, Paper V;
Truhlar, Williams, and Trajmar, 1972, Paper VI;
Chutjian, Truhlar, Williams, and Trajmar, 1972,
Paper VII; and Truhlar, 1973, Paper VII). In this ser-
ies, Papers I-III and VIII deal with electron—H, scat-
tering. Much of this work was carried out at higher
energies than we are primarily concerned with in this
review. The principal conclusions may be summarized
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very briefly: (1) the long-range quadrupole and polari-
zation interactions are very important for integral v
=0- 1 cross sections; polarization completely domi-
nates the small-angle (6 = 60°) scattering. The smaller
v=0~ 2,3 cross sections are much more sensitive to
short-range interactions [see related comments by
Ritchie (1972) and Truhlar (1973)]; (2) the studies of
exchange effects via the simple polarized—Born-Ochkur—
Rudge approximation (Ochkur, 1964; Rudge 1965a, b;
Morrison and Rudge, 1967) indicate that this type of
approximation is poor for vibrational excitation of H,
at energies as high as 60 eV. The nature of the agree-
ment at 10 eV is illustrated in Fig. 16.

The first close-coupling calculation of vibrational
excitation was carried out by Henry (1970) for elec-
tron-H, scattering. The laboratory-frame theory of
Sec. II.E.1 was used, and the procedure was similar to
that employed in the rotational-excitation studies of
Henry and Lane (1969). The short-range static inter-
action potential was constructed using the simple H,
charge distribution of Wang (1928). The long-range
contributions including both the quadrupole and polari-
zation interactions were identical to those of Henry and
Lane (1969). However, the quadrupole moment Q(R)
and polarizabilities a,(R) and a,(R) were allowed to
vary with internuclear separation R. The exchange
terms were included in precisely the same manner as
Henry and Lane (1969). There was no allowance for
variation of the exchange kernel with internuclear sepa-
ration. Vibrational matrix elements of the electron-H,
interaction potential were evaluated by numerical quad-
rature using accurate vibrational wave functions based
on the ground-state nuclear potential energy of Kolos
and Wolniewicz (1967). Comparison of the most im-
portant matrix elements with those of Truhlar and Rice
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FIG. 16. Differential cross sections for v =0—1 vibrational
transition in e—H, scattering at 10 eV. Theory: (solid curve)
Born polarization; (dashed curve) Born—Ochkur—Rudge polar-
ization; (dot-dashed curve) pure p-wave resonance form, Tra-
jmar et al. (1970b). Experiment, (open circles) Ehrhardt et
al. (1968); (crosses) Trajmar et al. (1970b). (Reprinted from
Trajmar et al., 1970b.)
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(1970) shows essential agreement. The coupled radial
equations, including exchange, were solved in precisely
the same way as in the rotational-excitation studies of
Henry and Lane (1969), described in Sec. III.B.2. The
close-coupling expansion was truncated to include only
the ground 'Z, electronic state, and at most vibrational
states v =0, 1, and 2 and rotational states j=1 and 3
(ortho-H,). In order to illustrate the sensitivities of the
cross sections to various features of the interaction,
Henry (1970) carried out a number of studies, leaving
out one or another characteristic feature. He concludes
that short-range coupling alone (i.e., ignoring all coupl-
ing matrix elements involving the quadrupole and po-
larization terms) accounts for less than one-half of the
integral v =0- 1(Aj =0) cross section for all energies
studied (E = 10 eV). The importance of rotational
coupling was examined by studying the effect of dropping
the j=3 channels from the calculation. This caused a
reduction in the integral v=0- 1(Aj =0) cross section

of about ~40% for E =<4 eV. The large effect is pre-
sumably due to important p-wave coupling via theaniso-
tropic part of the electron—molecule interaction poten-
tial. (In a LAB-frame treatment, the coupling of partial
waves is tied to the coupling of rotational states. In
this example, when the j=3 state is removed, the p-
wave coupling disappears as well.) The effect of ne-
glecting the v =2 vibrational state in the calculation of
the v=0~-~1cross section was found to be much less
serious. These sensitivity studies, and others carried
out previously (Henry and Lane, 1969) suggest that the
retention of only the j=1, 3 rotational states should not
result in serious error. However, the convergence in
vibrational states may be slow, and the neglect of
higher vibrational states could be a source of signifi-
cant error (Henry and Chang, 1972). Probably the most
serious source of error is the “scaled” polarization
potential. Henry and Lane (1969) speculated that the
polarization potential of Lane and Henry (1968), ob-
tained only at R,=1.4a,, might be too strong. If this is
the case, then the overall scaling of the potential ac-
cording to the variation of the polarizabilities ay(R)

and a,(R) with R would likely result in too strong a vi-
brational coupling, causing the vibrational excitation
cross sections to be too large. Indeed, the calculated
integral cross sections for v=0- 1(Aj=0), v=0

-~ 2(Aj=0), and v=0- 1(j =0~ 3) transitions were found
to exceed the observed cross sections by as much as a
factor of 2 in some cases.

Henry and Chang (1972), using the frame-transforma-
tion approach of Chang and Fano (1972), carried out an
adiabatic nuclei calculation of cross sections for vi-
brational and rotational-vibrational excitation in elec-
tron—H, scattering. In this calculation the adiabatic
approximation was applied to both rotational and vi-
brational motion of the molecule. The electron—mole-
cule interaction potential, including the static and po-
larization contributions, was approximated by precisely
the same form as that used by Henry (1970) with one
exception. In the present work, the long-range terms
in the single-center expansion were cut off sharply for
all » < 7,(R), where the cutoff radius 7,(R), in general
a function of internuclear separation R, was chosen so
that
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re(R)
[ a9 s B2, (194)
()
where zp‘{j) is the ground-state electronic wave function,
the integral runs over all values of electronic coordi-~
nates'r, and r,, and where x is a parameter usually
taken to be 0.25. This cutoff procedure was an attempt
to correct the adiabatic polarization potential of Lane
and Henry (1968), which was evaluated only at R=R,
= 1.4a,. The long-range tail of this potential could be
corrected by simply using the R-dependent polarizabili~
ties ao(R) and a,(R) to appropriately scale the func-
tions v} and vf; however, the cutoff inherent in the
Lane and Henry (1968) interaction should vary somehow
with internuclear separation R. The procedure used by
Henry and Chang (1972) is reasonable, but unfortunately
admits a new parameter x. The exchange terms were
handled in the same manner as Henry (1970) and Henry
and Lane (1969) and were taken to be independent of R.
The scattering equations were solved in the BODY
frame for several appropriate values of . The op-
erator Hyorof Eq. (68) was ignored so that there was
no coupling between different m,, and Z, ,,Il, ,, etc.,
scattering states could be treated separately. In ad-
dition, the approximation was made of ignoring coupling
between different ! so that single-channel radial equa-
tions could be solved for the s ,p,,p ., etc., phase shifts
independently. [This is a fairly good approximation for
a small molecule like H, at low energies since the chan-
nels p, and s, do not couple (they are of # and g parity,
respectively) and dg, f,, etc., radial functions do not
penetrate the respective centrifugal barriers very much
at low energies. In heavier molecules, e.g., N,, CO,
CO,, 1> 2 partial waves are quite important near the nu-
clei where they are “generated” from incoming s and p
waves due to the strong attractive electron~nuclear
interaction (this is true even in the zero-energy limit).]
The frame transformation was carried out at v = 5qa,
and the LAB-frame K and T matrices immediately de~
termined, with no further integration in the outer re-
gion. The authors argued that substantially all the im-
portant (i.e., R-dependent) phase had accumulated by
¥ = 5a, so that further integration in the BODY frame
would have little effect. The choice not to continue in-
tegration in the LAB frame, after the frame trans-
formation, followed from the expectation that the vi-
brational-coupling matrix elements would be small
for » >7,. Essentially, the justification was the as-
sumed validity of the adiabatic approximation applied
to nuclear vibration. The Sg, Py, and p, phase shifts
resulting from this BODY-frame calculation, and de-
termined at » = 5a,, all depend on R, as illustrated in
Fig. 17. However, the p, phase shift exhibits the
strongest variation with R in the important region
1.0a,= R = 2.0a,. While the p, phase shift does not pass
through /2 for R in this region, as it would if a long-
lived compound state were formed, there is no am-
biguity in attributing this rapid rise in the p,; phase
shift to a short-lived compound state, i.e., a “broad”
resonance feature, as did Bardsley, Herzenberg, and
Mandl (1966a,b). In order to better interpret the results
obtained by Henry (1970), Henry and Chang (1972)
calculated the v =0—~ 1 cross section with exactly the
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FIG. 17. Electron—H, scattering phase shifts for ss, py, and
pr partial waves; and product of v =0 and v =1 vibrational wave
functions as a function of internuclear separation s=R. (Re-
printed from Henry and Chang, 1972.)

same interaction as Henry (1970), i.e., with x=0, or
7,(R)=0, in Eq.(194). In Fig. 18 thepurev=0- 1 vibra-
tional-excitation cross sections of Henry (1970), curve
B, and Henry and Chang (1972), curve A, are compared
with the experimental results of Linder (1969) and
Linder and Schmidt (1971a). The authors attributed the
large bump in the cross section determined by Henry
(1970) to improper truncation of the close-coupling
expansion in vibrational states, implying that had more
states been retained the consequent redistribution of
flux, for example via virtual mechanisms like v=0~1
-~ 2, would have resulted in a smaller v =0-1cross sec-
tion, more like that of Henry and Chang (1972). Henry
(1970) did carry out a few checks of this kind though not
with the full interaction nor with a sufficiently large
number of channels to be conclusive. Another possible
explanation is that the choice of 7 = 5q¢, as a transforma-
tion and K matrix (i.e., phase shift) matching radius
underestimates the p, phase shifts and their R variation,
so that the Henry and Chang (1972) cross section should
be larger. The p, scattering tends to depend more on
long-range interactions than does s;, and the R-depen-
dent ao(R) and a,(R) may still be effective beyond 5a,.
This question could be resolved with a slightly more
refined calculation. The authors also concluded that the
7, cutoff was necessary, and they felt that x =0.25 was

a reasonable choice. Their integralv =0- 1cross section
is shown in Fig. 19 along with the experimental results:



N. F. Lane: The theory of electron-molecule collisions 69

0.6

05 -

0.3

0~1) (10"%cm?)
o
H
I

0.2

o (v

FIG. 18. Cross sections for
v =0—1 vibrational excitation
in e—H, scattering. Theory:
(curve A) adiabatic nuclear
vibration, Henry and Chang
(1972); (curve B) vibrational
close coupling, Henry (1970).
Experiment: (open circles),
Linder (1969); (open boxes)
Linder and Schmidt (1971a).
(Reprinted from Henry and
Chang, 1972.)
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Linder and Schmidt (1971a); Ehrhardt, Langhans,
Linder, and Taylor (1968); Trajmar et al. (1970a,b);
Schulz (1964); Englehardt and Phelps (1963); Crompton
et al. (1970); and Burrow and Schulz (1969). Agree-
ment with most of the data is satisfactory. (The authors
caution that their procedure is not appropriate near
threshold.) In Fig. 20 the calculated (x =0.25) and ob-
served v=0-~1(Aj=0) and v=0~1(j=1-3) cross sec-
tions are compared; the measurements are those of
Linder and Schmidt (1971a). Again, the agreement is
good. The corresponding differential cross sections
are illustrated in Fig. 21, where the notation is the
same as in Fig. 20. The calculated ratio of cross sec-
tions v=0-1(Aj=0) tov=0-~1(j =1~ 3) also was found
to be in excellent agreement with the observed ratio
(Ehrhardt and Linder, 1968; and Linder and Schmidt,
1971a). (See clarifying comments regarding this ratio
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FIG. 19. Cross sections for v =0 —1 vibrational excitation in
e—H, scattering. Theory: (solid curve) adiabatic nuclear vi-
bration with parameter x =0.25 in Eq. (194). Experiment (C)
Linder and Schmidt (1971a); (O) Ehrhardt ef al. (1968); (V)
Trajmar et al. (1970b); (A) Schulz (1964); (C) Englehardt and
Phelps (1963); (dashed line) Crompton et al. (1970); (dotted
line) Burrow and Schulz (1969). (Reprinted from Henry and
Chang, 1972.)
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given by Chang, 1974c.) Henry and Chang (1972), in
concluding remarks, are careful t¢ point out that their
approximation of neglecting all contributions to the
scattering for » = ba, will certainly fail at low ener-
gies, and that of ignoring partial waves with [ = 2 will
fail at higher energies, say E = 10 eV. Finally, the
authors caution that the fixed-nuclei approximation will
fail for applications where long-lived compound states
are involved.

Faisal and Temkin (1972) also applied the adiabatic
approximation to vibrational excitation in electron-H,
scattering. They did not actually solve the scattering
equations, but rather “pieced together” R-dependent
phase shifts using the results of other calculations.
Working in the fixed-nuclei approximation they assumed
linear variation of the BODY-frame phase shifts with
respect to R, i.e.,

Nym(R) 2N (Re) +11m(R) R —R,), (195)
where the derivative was estimated by the simple ex-
pression :

, o [ Mim(Re) = 1:,,(0) 1 IL,m#1,0
mm(Re):[_.__' ). —___]x{ o Lo

- . ol (196)
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FIG. 20. Cross sections for v =0—1 (Aj=0) vibrational exci-
tation and v =0 —~1 (j=1—3) rotational—-vibrational excitation in
e—H, scattering. Theory: (solid curves) adiabatic nuclear
vibration with parameter x =0.25 in Eq. (194), Henry and Chang
(1972). Experiment: (open circles and squares), Linder and
Schmidt (1971a). (Curve A and open circles) v =0—1, Aj=0;
(curves B and open squares) v =0—~1,7=1—3. (Reprinted from
Henry and Chang, 1972.) '
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FIG. 21. Differential v =0—1 (Aj=0) vibrational andv =0—1
(j=1—3) rotational-vibrational cross sections in e—H, scatter-
ing at 1.5 and 4.5 eV. (Curves A and B and O and U as in Fig.
20.) (Reprinted from Henry and Chang, 1972.)
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where 7,,,(R,) was taken from the calculations of Tully
and Berry (1969), with Born-approximation corrections
added to I >0 phase shifts to account for polarization ef-
fects. The R =0 phase shift 1,,,(0) was identified with
the electron—helium phase shifts, including exchange
and polarization, of Duxler, Poe, and LaBahn (1971).
The factor g(E) is an energy-dependent parameter
which was adjusted to fit the measured total v=0
- 1(Aj=0) cross section. Note that g(E) does not de-
pend on R, and therefore is simply an energy-dependent
scaling factor. It does not affect the angular depen-
dence of the differential cross sections, but simply
scales the overall magnitude, at a given energy, by a
constant factor. By fitting to the total v=0~ 1 (all Aj),
taken as the sum of the observed cross sections for
v=0-~1(Aj=0) and v =0— 1(j = 1~ 3) cross sections the
factor g(E) was assigned the values ranging from 3.7 to
1.2 for energies in the range 1.224-8.704 eV. The
semiempirical, integral, and differential cross sections
for transitions v=0-1(Aj=0) and v=0-~1(j=1-+3)
were found to be in very good agreement with the mea-
surements and the results of Henry and Chang (1972)
shown in Figs. 19-21, providing evidence for the va-
lidity of the adiabatic approximation applied to vibra-
tional excitation.

Chang, Poe, and Ray (1973) applied the Glauber ap-
proximation to v=0- 1 excitation in H,. In this work
a model electron—-H, potential is constructed consisting
of a (cutoff) long-range R-dependent polarization po-
tential and a short-range superposition of screened H
atom potentials (Wang, 1928) separated by variable
distance R. The vibrational wave functions are ap-
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FIG. 22. Differential cross sections for v =0 —1 (Aj=0) vibra~
tional excitation in e—H, scattering at 20, 45, 60, and 81.6 eV.
Theory: (solid curves) Glauber approximation, Chang et al.
(1973). Experiment: (®,0,0,+) as given in Trajmar et al.
(1970b). (Reprinted from Chang et al., 1973.)

proximated by Morse functions. Within the framework
of Glauber theory (Glauber, 1959; Franco and Glauber,
1966) calculation of the differential vibrational exci-
tation cross sections is straightforward. The calcu-
lated v =0 - 1 differential cross sections at several
energies are compared in Fig. 22 with the observations .
of Trajmar et al. (1970a,b). The agreement is sur-
prisingly good not only at small angles where the long-
range polarization interaction dominates the scattering
but also at intermediate and large angles where one
would expect exchange and other molecular effects to

" be important. The authors do show that the “double

scattering” correction is small at 81.6 eV. They re-
mark that this correction is likely to be more impor-
tant for v=0-~ 2,3, etc., transitions and at low ener-
gies for all transitions.

Wong and Schulz (1974), in a measurement of differ-
ential cross sections for rotational, vibrational, and
rotational—vibrational excitation in electron-H, scat-
tering, observed that the ratio of the v=0-v'(Aj=0)
tov=0-2'(j=1-3) cross sections decreases as v’
increases, i.e., in going from v=0—-1t0 0~ 2 and 0+ 3
transitions. The effect has not been predicted by ear-
lier theoretical studies. Temkin and Sullivan (1974)
and Chang (1974c) stress different mechanisms as an
explanation of this behavior. Temkin and Sullivan
(1974) pointed out that the vibrational wave functions
used in the adiabatic nuclei approximation (Faisal and
Temkin 1972) should depend on the rotational quantum
number because of the centrifugal “effective” barrier
tending to push the vibrational wave function outward
for increasing j. This mechanism as well as partial-
wave interference was felt to be important. The authors
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numerically determined the j-dependent vibrational
wave functions and energies, obtaining good agreement
with the accurate results of Kolos and Wolniewicz
(1965), and then repeated the adiabatic nuclei calcula-
tions in the manner of Faisal and Temkin (1972). By
choosing a somewhat different value of the scaling pa-
rameter g(E) in Eq. (196), viz., 2.0 instead of 2.4 for
E=4.9 eV, they obtained an appreciable dependence of
the ratio of v=0-v'(Aj=0) tov=0-~v'(j=1~3) cross
sections on the final vibrational quantum number v’.
The angular dependence of the ratios was found to be in
good agreement with the observations for v' =1, 2, and
3. The effect of incorporating j-dependent vibrational
functions is to raise the v =0- 1 ratio considerably and
lower the v =0— 2 ratio slightly, while leaving the v
=0- 3 ratio essentially unchanged. The angular de-
pendence of the v=0-~ 3 ratio is, in fact, reproduced
quite well by the 22, resonance theory of Abram and
Herzenberg (1969).

Chang (1974c) took the alternative point of view that
the important effect was simply interference of the p,
with other partial waves and, therefore, that the theory
of Henry and Chang (1972) was sufficient to describe
the phenomenon. Using their R-dependent phase shifts
7,.(R) at 4.5 eV, he evaluated the appropriate S-
matrix elements from the expression

ST [ WD) expl2in, @ RRR  (197)
o
by expanding the exponential in Hermite polynomials,
with coefficients which involved the derivatives of
7. (R) evaluated at R, = 1.4a,, and by approximating the
vibrational wave functions by harmonic oscillator func-
tions. The calculated ratios of v =0-v/(Aj=0) to v
=0-v'(j=1-~ 3) cross sections were found to be in fair
agreement with the observations for v’ =1 and 3, but
rather poor agreement was obtained for v'=2. Chang
(1974c) shows in general that the ratio of v=0- v’
+1(j=1-3) tov=0-~2v'(j=1- 3) cross sections is ap-
proximately equal to 0.1, independent of the value of
v’; this result is in agreement with the observations of
Wong and Schulz (1974). The author disagrees with
Temkin and Sullivan (1974) and argues that centrifugal
distortion of the vibrational wave function is important;
however, he did not test this assertion by comparative
calculations. It is probable that neither of the models
is sufficiently accurate to decide the question.

Chang and Wong (1977) report experimental mea-
surements and theoretical interpretation of the isotope
effect in rotational, vibrational, and rotational-vibra-
tional excitation as evidenced in the ratios of the re-
spective D, to H, cross sections. Usingarguments based
on frame-transformation theory, the authors interpret
the observations in terms of the dependence of the
various cross sections on nuclear (reduced) mass and
on nuclear statistics. Predictions are made for HD,
HT, DT, and T, targets. : .

Klonover and Kaldor (1979b) have applied their
ab initio method of including both exchange and polariza-
tion effects (Kaldor and Klonover, 1977; Klonover and
Kaldor, 1978) to vibrational excitation of H,. (See de-
scription in Sec. III.B.2). This is the first true ab initio
calculation of vibrational excitation in molecules. The
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procedure is based on the T -matrix-expansion method
(Rescigno, McCurdy, and McKoy, 1974a, b; 1975a) in
which correlation effects are included systematically
via a diagrammatic perturbation series. The procedure
is similar to that of Klonover and Kaldor (1978), where
here the adiabatic approximation is applied to the vi-
brational as well as rotational degrees of freedom of
the molecule (adiabatic nuclei approximation). Itis
important to note that there are noadjustable parameters
in this approach. Nonadiabatic corrections to the po-
larization interaction are automatically included. On
the other hand, a great deal of intuition and good judg-
ment based on experience goes into selection of an
adequate basis set for the discretization of the scatter-
ing problem (see Sec. II.F.2). The calculated integral
cross sections for v=0—~ 1(Aj=0) and v=0~ 1(j=1-3)
transitions are compared in Figs. 23 and 24, respec-
tively, with the measurements of Linder and Schmidt
(1971a). The agreement is very encouraging, es-
pecially considering that no semiempirical adjustment
has been made. The somewhat irregular energy varia-
tion evident in the elastic and rotational-excitation
cross sections (Kaldor and Klonover, 1977; Kaldor and
Klonover, 1978; see Sec. III.B) is not present here.
Differential cross sections have been calculated for the
same transitions. The agreement with experiment (Lin-
der and Schmidt, 1971a) is also good except at small
angles (6 = 50°) where the theoretical cross sections lie
below experiment, as shown in Fig. 25. This difference
is consistent with the integral cross section in Fig. 23.
Recent extensions of these calculations (Klonover and
Kaldor, 1979c) obtain somewhat improved v=0- 1(Aj =0
and j= 1- 3) results and differential cross sections for
v=0~1,2,3(Aj=0 and j= 1— 3) transitions ingoodagree-

0.3 1 T I ! I

x vV =0~I|
A) =0

INTEGRAL CROSS SECTION (107¢“m¥)

oLd 1 1 I L

(o] 2 4 6 8 to
ELECTRON ENERGY (eV)

FIG. 23. Cross sections for v =0—1(Aj=0) vibrational excita-
tion in e—H, scattering. Theory: (solid curve) exchange polar-
ization, (dashed curve) static exchange, adiabatic nuclear vi-
bration, Klonover and Kaldor (1979). Experiment: (X) Linder
and Schmidt (1971a). (Reprinted from Klonover and Kaldor,
1979.)
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FIG. 24. Cross sections for v =0—1 (j =1 —3) rotational—vi-
brational excitation in e—H, scattering (curves and X as in Fig.
23). (Reprinted from Klonover and Kaldor, 1979.)

ment with the measurements of Wong and Schulz (1974).

Kaldor (1979a) has recently shown that the 7 -matrix-
expansion method may also be used to carry out a full
vibrational close-coupling calculation. However, the
adiabatic nuclei approximation still leads to considerable
simplification.

C. ELECTRON-N, SCATTERING
1. Elastic scattering (N,)

The nitrogen molecule with its 14 electrons contrasts
with H, as a scattering target. Because of the ap-
preciable nuclear charge, the molecule is not very
“atomlike.” The static electron—molecule interaction
potential energy is strong and highly asymmetric. The
observed fotal cross section illustrated in Fig. 26
[Briiche (1927); Golden (1966); see also Mathur and
Hasted (1977), and Potter, Steph, Dwivedi, and Golden
(1977)] is characterized by a large shape resonance,

. F. Lane: The theory of electron-molecule collisions

centered at about 2 eV and carrying a fine structure.
[Also shown in the figure is the early theoretical cross
section obtained by Fisk (1936) using a simple semi-
empirical model.] At low energies, well below the
resonance, the cross section falls to a value not much
different from that of H,. The structure superimposed
on the broad resonance is known to result from transi-
ent vibrational states associated with the N; negative
complex [see reviews by Bardsley and Mandl (1968),
Chen (1969), Golden (1978), and Schulz (1973, 1976),
and discussion in Massey (1969)]. Since the lifetime of
the N; complex is comparable to a vibrational period,
the picture of a vibrating N; molecule is not approp-
riate. The intuitive “boomerang” model of Herzenberg

- (1968) and Birtwistle and Herzenberg (1971) was in-

vented to describe this intermediate case. The adia-
batic approximation to vibrational excitation clearly
breaks down for energies in the vicinity of this re-
sonance structure (the adiabatic nuclear rotation ap-
proximation is still valid). The fixed-nuclei calculations
described in this section are of course not expected to
reproduce the structure. The structure results from
subtle vibrational effects that mustbe explicitly included
in the theory (Birtwistle and Herzenberg, 1971;
Chandra and Temkin, 1976a,b, c).

a. Static exchange

The first theoretical treatment of electron-N, scat-
tering that included a proper approach to exchange was
that of Burke and Sinfailam (1970). They adopted the
fixed-nuclei static-exchange approximation (see Sec.
I1.G) in which the N, molecule is assumed to remain in
its unperturbed 'Z; ground state (single configuration
description: 10220230210220217%). A single-center
partial-wave expansion [Eq. (115)] was used, leading to
the coupled integro-differential equation (116). The
ground-state LCAO-MO-SCF orbitals of Nesbet (1964)
were used in both the static potential energy, Eq. (117),
including terms A < 4, and the exchange term, Eq. (119).

FIG. 25. Differential cross
sections for v =0—1 (45 =0)

OIFFERENTIAL CROSS SECTION (10722 m%sr)

~=- |

vibrational excitation in e—H,
scattering (curves and X as in
Fig. 23). (Reprinted from
Klonover and Kaldor, 1979.)
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FIG. 26. Total cross sections for e—N, scattering. Experi-
ment: (solid curve) Golden (1966); (dashed curve) Briiche
(1927). Early theoretical model (chain curve) Fisk (1936).
(Reprinted from Golden et al., 1971.) )

The procedure of Faisal (1970) as coded by Faisal

and Temkin (1972) was used for the former. The
coupled equations (116) were solved by the noniterative
technique [Marriott (1958), Omidvar (1961, 1974); see
Smith ef al. (1966)]. A series of convergence studies
performed for each “symmetry” (i.e., value of m:), in
which different numbers of partial waves were retained
in Egs. (115) and (116), strongly indicated that con-
vergence in ! was slow. Even though values of [ <8
were included for some of the symmetries, the “eigen-
phase sums” [see Eq. (123) and related discussion] and
the elastic cross sections were clearly not converged.
These high-/ partial waves do not contribute directly
to the T matrix; the corresponding radial functions
u;,,(r) are vanishingly small in the asymptotic region
due to the large centrifugal barriers that are present.
However, near the nuclei, the strong nonspherical in-
teraction mixes (“couples”) a large number of high-I
partial waves. At larger 7, only the low-l partial waves
can penetrate the corresponding centrifugal barriers
and, in so doing, survive in the asymptotic region.
However, these important low-/ partial waves are
strongly influenced by the mixing that has occurred
near the nuclei, and that influence is reflected in their
asymptotic form and, thus, in the T matrix. (See dis-
cussion of Fano, 1970b.) Because the region near the
nuclei is so important, early truncation of the static
potential energy V (r), [Eq. (118)], can also give rise
to large errors in the calculation. Although the static
and static-exchange calculations of Burke and Sinfailam
(1970) were not fully converged with respect to the ex-
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pansion of V (r) and the partial-wave expansion (115),

a number of important features were evident: (1) the
effect of including exchange is to increase the eigen-
phase sums, removing a false Z, m =0, even !> 0)
resonance present in the static calculation and intro-
ducing all, m =+ 1, even l = 2) resonance in qualitative
agreement with experiment; (2) in the low-energy limit,
the contributions of various symmetries are dominated
by the lowest-order partial wave present, i.e., Z,(m =0),
by s waves, Z,0m =0) by p waves, ll,(m =+ 1) by d
waves, II,(m =+ 1) by p waves, etc.; and (3) exchange

is less important for higher-order partial waves, hence
for symmetries corresponding to large m; however,
even the A,(m =+ 2, even = 2) and A,(m == 2, odd [ = 3)
eigenphase-shift sums showed substantial increases when
exchange was included.

Burke and Chandra (1972) pursued the question of con-
vergence in the single-center-expansion approach.
However, in order to include significantly more partial
waves, it was necessary to adopt an approximate “modi-
fied pseudopotential” (MPS) approach to treating ex-
change. (See Sec. II.G.4 for discussion of this method.)
The procedure is to replace the exchange terms in Eq.
(116) by inhomogeneous terms of the form

oce

Z Aj(pj(r)’

where the ¢; are occupied molecular orbitals (Nesbet,
1964) and the A; are Lagrange multipliers, chosen self-
consistently so that the scattering orbital, Eq. (115),
for each symmetry (i.e., OgsOys Mgy Mys « » .) is orthogonal
to every occupied orbital of the same symmetry. The
authors argue that this orthogonality constraint is the
most important effect of exchange for a closed-shell
target molecule. An obvious limitation of the MPS
method is its failure to include any contribution of ex-
change for symmetries that are not found among the
occupied orbitals, e.g., m,. A rough check of the MPS
method was made by comparing MPS results, obtained
with the same truncation of static-potential-energy and
partial-wave expansions as Burke and Sinfailam (1970)
with the. static-exchange results of the latter. The
eigenphase sums were found to be similar, and based
on this agreement a systematic study of convergence
was carried out. In the static approximation, con-
vergence both in A and [ was found to be slow. For Z,,
it was felt necessary to retain all terms A < 12 in

V¢(r) and [ < 12 in the partial-wave expansion. With
the orthogonalization constraint imposed (i.e., the MPS
approximation to static exchange) convergence was
faster in both A and /, and only / < 10 were retained.
Their experience with the Z, and I, symmetries was
similar. No exchange contribution was included for

Il, symmetry, since there are no occupied 7, orbitals
in the ground state of N,. Convergence was therefore
very slow for this symmetry. These calculations con-
firmed the features noted by Burke and Sinfailam
(1970), viz., the disappearance of a false Z, resonance
(in the static calculation) and the overall increase of all
eigenphase sums when exchange is included. Burke
and Chandra (1972) also calculated model-polarization
cross sections, which will be discussed in the next sec-
tion.

(198)
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Crees and Moores (1975, 1977) emphasized that the
slow convergence could be reduced by simply solving the
scattering equations in the two-center prolate spheroi-
dal coordinates (Nagahara, 1953; Hara, 1969a). In this
study, exchange was nof included. The static inter-
action potential energy was calculated using the same
N, ground-state wave function as Burke and Chandra
(1972), but expanded in Legendre polynomials of argu-
ment 7= (r, ~7,)/R rather than cosf. The coupled
ordinary differential equations [i.e., the counterparts
of Eq. (116) in variable {= (v, +7,)/R, but somewhat
different in form| were solved by the linear-algebraic
method of Seaton (1974). The eigenphase sums for 22,
and %1, symmetries resulting from this calculation are
not in good agreement with the “converged”’ one-center
static calculations of Burke and Chandra (1972).

Morrison and Collins (1977) in an attempt to resolve
this discrepancy, carried out carefully controlled con-
vergence studies of the single-center expansion meth-

.od [i.e., the approach of Burke and Chandra (1972)] ap-
plied to electron—N, scattering in the static approxima-
tion. They used ground-state N, wave functions (Cade,
Sales, and Wahl 1966) of similar quality to the previous
studies:. The coupled equations (116) were solved with
the exchange terms omitted, using the integral equa-
tions method [Sams and Kouri (1969a,b), including the
stabilization features of White and Hayes 1972]. Using
the same truncation as Burke and Chandra (1972), i.e.,
A <14 and ! < 12, the authors obtained eigenphase sums
in essential agreement with those of Burke and Chandra
(1972). Extending the calculation to include more terms
in the expansion of V (r) in Eq. (118) (x < 14 for the
electron-electron repulsion terms and A < 28 for the
electron—nuclear attraction terms), the authors con-
clude that their own cross sections are converged to

1% and that the calculations of Crees and Moores (1975)
are in error. [This was independently suggested by
Buckley and Burke (1977) and has been confirmed by
Crees and Moores (1977), who give corrected results
in better agreement with other authors.]

Buckley and Burke (1977) extended the earlier fixed-
nuclei (R =R,=2.068q,) static-exchange calculations of
Burke and Sinfailam (1970) to include additional terms
in the expansions of the static and exchange interactions
and higher-order partial waves as needed for conver-
gence. (Polarization effects were also included via a
model potential; these will be discussed in the next
section.) The static and exchange terms were evaluated
using the LCAO-MO-SCF N,ground-state wave func-
tion of Nesbet (1964) as described by Burke and Sin-
failam (1970). It was concluded by the authors, but not
shown, that convergence of the static-exchange cross
section was satisfactory with A < 14 in the expansion
of V4(r) of Eq. (118 and ! < 13 in the partial-wave ex-
pansion (115). Convergence was found to be better for
the larger values of m. Partial cross sections were
calculated for symmetries Z,, Z,, II,, I1,, A,, and A,.
Channels corresponding to larger values of m were
found to be unimportant for energies considered (E
<13.6 eV). Eigenphase sums for Z,(m =0, even 2> 0)
channels are illustrated (modr) in Fig. 27 for the static,
static-exchange, and static-exchange-polarization (to
be discussed) approximations. The effect of exchange
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FIG. 27. Scattering Z, eigenphase-shift sums for e—N, scat-
tering (curve A) static, (curve B) static exchange, (curve C)
static-exchange polarization. (Reprinted from Buckley and
Burke, 1977.)

is to remove the strong energy dependence of the eigen-
phase sum (dominated by the s; wave at low energies)
and, though not apparent in the figure, constrain the
eigenphase sum to approach 37 in the 2— 0 limit, since
there are three o, occupied orbitals in N, (Swan, 1955).
The I, comparison is given in Fig. 28. In this case the
effect of exchange is to “pull” the I, resonance to a
lower energy (=4 eV) and to reduce the width. [The ob-
served resonance, averaged over fine structure, is lo-
cated at about 2.4 eV; Golden (1966).] Polarization ef-
fects were then included via a semiempirical model
potential. These calculations will be discussed in the
next section.

Morrison and Schneider (1977) applied R-matrix
theory as formulated for electron-molecule scattering
by Schneider (1974, 1975a, b, 1977a, b; see Sec. II.F.1)
to the fixed-nuclei static-exchange treatment of elec-
tron—-N, scattering. Particular emphasis was placed on
choosing the basis set so as to: (1) accurately repre-
sent (near Hartree—Fock) the unperturbed N, ground-

o, T T

W

0] 0.2 0.4 0.6 0.8 1.0
’ E (Ryd)
FIG. 28. Scattering I, eigenphase shift sums for e—N, scat-
tering (curves A, B, C) as in Fig. 27 and (dashed curve) static-
field calculations of Crees and Moores (1975). (Reprinted from
Buckley and Burke, 1977.)
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state wave function; (2) span configuration space within
the R-matrix boundary [in spheroidal coordinates £
=y +7y)/R="a, i.e., »=10a,]; and (3) avoid linear
dependence problems. A detailed description of the
basis sets chosen is given by the authors and will not
be repeated here. Outside the R-matrix boundary,
coupling between different partial waves is ignored, and
single-channel radial equations are solved with the
electron—molecule interaction approximated by the
diagonal terms of the electron—quadrupole interaction.
Eigenphase sums and integral total (BODY-frame elas-
tic) cross sections are given for several choices of
basis sets. The eigenphase sums are in fair agreement
(i.e., ~10%) with the “low-I-spoiling” results of
McCurdy, Rescigno, and McKoy (1976). The agree-
ment with Buckley and Burke (1977) is at least qualita-
tive; however, there are significant differences. For
example, Buckley and Burke (1977) find the II, reso-
nance at E,=4.5 eV in their static-exchange calcula-
tion, whereas Morrison and Schneider (1977) locate

the resonance at E,=5.4 eV.

Fliflet, Levin, Ma, and McKoy (1978) have applied
the T-matrix expansion method of Rescigno ef al.
(1974a, b, 1975a; see Sec. II.F.2) to a fixed-nuclei
static-exchange treatment of electron—N, scattering.
The procedure is similar to that for electron-H, scat-
tering, as described in Sec. III.B.1. As in the R-ma-
trix method, the critical step in the calculation is the
choice of basis set. This is where the uncertainty
creeps into both methods. A discussion of the choice
of basis set is given by the authors. Integral elastic
cross sections are included in Fig. 29. Significant im-
provement in the static-exchange results may require
a variational correction for first-order errors due to
truncation of the static-exchange potential and such
corrections are expected to be time consuming and ex-
pensive (Fliflet and McKoy, 1978a). As in the R~
matrix calculation of Morrison and Schneider (1977)
disagreement with experiment is due primarily to the
neglect of polarization.

Morrison and Collins (1978) included elastic electron—
N, scattering in their study of free-electron-gas model-
exchange potentials. The FEG models are discussed in
Sec. II.G.2 and the procedures used in this study have
been described in connection with elastic electron-H,
scattering in Sec. III.B.1. The ground-state N, mole-
cule was represented by the analytic near-Hartree-Fock
SCF function of Cade, Sales, and Wahl (1966) at R=R,
=2.068a,. [The authors estimate that the effect of
choosing a different ground-state wave function (see,
e.g., Nesbet, 1964), would be at most 15% in the elas-
tic cross sections.] In the model-exchange potential
given by Eq. (132), 27=1.146 Ry was used for the Hara
version (HFEG) and /=0 for the so-called “asymp-
totically adjusted” version (AAFEG). Based on the \
earlier convergence study of Morrison and Collins
(1977), it was felt necessary to include: (1) all terms
A < 14 (electron-electron repulsion) and A < 28 (elec-
tron—nuclear attraction) in the expansion of the static
potential, Eq. (118); (2) all terms A s 14 in the model-
exchange potentials; and (3) I <26(Z,,1I1,) and I < 25(Z,,
II,) in the partial-wave expansion (115). In practice, it
was possible to truncate the partial-wave expansion to
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FIG. 29. Total cross sections for e—N, scattering. Theory:
(solid curve and X, +) T-matrix static exchange, Fliflet et al.
(1978); (dashed curve) unconverged static exchange, Burke and
Sinfailam (1970). Experiment: (open circles) Golden (1966);
observed vibrational structure not shown here. (Reprinted
from Fliflet et al., 1978.)

1 <8 beyond 7 = 3a,. The coupled radial equations (116)
were solved in the same manner as Morrison, Lane,
and Collins (1977). In Fig. 30, calculated elastic cross
sections are compared for the HFEG and AAFEG
model-exchange potentials. The AAFEG results are
inconsistent with all other static-exchange results;

this model exchange is apparently much too strong. The
HFEG results are surprisingly consistent with other
static-exchange results. For example, the position of
the II, resonance is very close to that obtained by
Morrison and Schneider (1977) in their static-exchange
R-matrix calculation, which bears no relation to the
present calculation in any detail. In a similar study of
these model-exchange potentials on electron-H, scat-
tering (see Sec. III.B.1) the authors also found that
AAFEG was much too strong, but HFEG was much too
weak so that an adjustment of 7 was required to bring
the cross sections into agreement with static-exchange
results. It may be the case that the FEG models are
simply too crude and that the ‘“necessary” adjustment
varies with the molecule under study. Optimistically,
one would hope to see a trend, by studying a number of
different systems, that could be understood on physical
grounds, and used to construct more realistic exchange
models for more complex systems. [See also a recent
study by Rumble and Truhlar (1979) of electron—N,
elastic scattering at 13.6 eV using various approxima-
tions to the static and exchange potentials with some
allowance for polarization.]
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FIG. 30. Theoretical partial cross sections for e—N, scatter-
ing in the static-exchange approximation. Two approximate
exchange potentials, (H) HFEG and (A) AAFEG, are compared
for symmetries (a) Z,, Il,, and (b) Z,, 1. (Reprinted from
Morrison and Collins, 1978.)

b. Static-exchange polarization

Burke and Chandra (1972) included polarization in
their “modified pseudopotential” (MPS) fixed-nuclei
calculation of eléctron—N2 scattering by means of a
model polarization potential of the form of Eq. (147)
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with a,=12.0ad, o,=4.2a3, and the cutoff radius 7, de-
termined by “tuning” the position of the Il resonance

to E,~2.4 eV. The choice »,=1.592a, placed the re-
sonance at 2.394 eV. Including polarization in this
manner had no apparent effect on convergence criteria;
the expansion of V (r) was represented by terms A

<14 in Eq. (118) and the partial-wave expansion in-
cluded terms [ < 10(Z,), 12(l,), and 13(Z,,I1,). Itis
important to realize that the MPS method provides no
exchange contribution for I, symmetry, since the
ground state of N, has no 7, occupied orbitals (see Secs.
I1.G.4 and III.C.1.a). Therefore, inselecting the polari-
zation cutoff radius », by “tuning” the I, resonance, one
is forcing the model polarization potential to represent
exchange effects as well, at least for Il, symmetry.
Then, in the other symmetries Z,, 2,, and II, where
the MPS method does account for exchange effects via
the orthogonalization constraint, some artificial con-
tribution of exchange will unavoidably be included in the
model polarization potential. The net results of all this
is likely to be a polarization potential that is somewhat
too strong. The eigenphase sums are illustrated in
Fig. 31 for the most important symmetries. In Fig. 32
the integral elastic cross section is compared with
those of other theoretical studies of Buckley and Burke
(1977) and Morrison and Collins (1978), and the mea-
surements of Golden (1966). Differential cross sections
are compared in Figs. 33(a), 33(b), and 34. The ex-
tent of agreement between different theoretical calcu-
lations will be discussed below.

Buckley and Burke (1977) have included polarization
in their fixed-nuclei static-exchange calculation of
electron—N, scattering in precisely the same manner
as did Burke and Chandra (1972). However, since ex-
change is properly treated by solving the coupled radial
integro-differential equations (116) there is no longer
the ambiguity in interpreting the role of the model po-
larization potential. The cutoff radius 7, in Eq. (147)
was again chosen by “tuning” the position of the Il, re-
sonance. The value 7,=2.308a, places the resonance
of E,=2.39 eV. Eigenphase sums are included in Figs.

30
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FIG. 31. Scattering eigenphase-shift sums for important sym-
metries in e—N, scattering. Static-exchange-polarization cal~
culations of Burke and Chandra (1972). .(Reprinted from Burke
and Chandra, 1972.)
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27 and 28. The integral elastic cross sections are
shown in Figs. 32. Differential cross sections are il-
lustrated in Fig. 33(a) in comparison with relative
measurements of Ehrhardt and Willmann (1967). The
results of Burke and Chandra (1972) are given in Fig.
33(b) for comparison. The authors examined the II,
resonance in detail, fitting the II, eigenphase sum to
the Breit—Wigner expression

-, (/2)r
zl:"ltm= zl:n(l% +tan ‘1 (kf/—)/?;_\ B

where I' and %2 are the width and position (in Ry) of a
resonance characterized by a partial wave I, m, and '
the 77(,0,2, are the corresponding “background phase shifts.”
In this way the II, width was calculated to be I'=0.64
+0.02 eV. The values obtained by other workers are:
0.8+ 0.3 eV (Krauss and Mies, 1970); 0.57+0.02 eV
(Birtwistle and Herzenberg, 1971); and 0.40 (Burke

and Chandra, 1972). [The authors note that Krauss

and Mies (1970) calculated the width at R =2.0a,, rather
than the value 2.068a, used by the others.] Examination
of the individual eigenphase shifts (or T -matrix ele-
ments) confirmed that the II, resonance was primarily
d wave in character (i.e., asymptotic) in agreement
with Burke and Chandra (1972), and as predicted by

(199)
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Bardsley, Mandl, and Wood (1967) and Krauss and
Mies (1970).

Morrison and Collins (1978) also included polariza-
tion effects in their model free-electron-gas exchange
study of electron-H, and —N, scattering. (See previous
section and Sec. II.G.) They used the same model po-
larization potential, Eq. (147), with a,=11.89a3 and
a,=4.1943 as Burke and Chandra (1972) and Buckley
and Burke (1977), determining the cutoff radius 7, by
“tuning” the position of the Il, resonance to agree with
experiment. The two exchange models HFEG and
AATFEG (see previous section) were studied separately.
“Tuning” the resonance to E, =2.39 eV resulted in val-
ues 7,=2.341a, (HFEG) and 7,=0.753a, (AAFEG).
Again, the conclusion was reached that the AAFEG
model potential is much too strong, apparently binding
the 1m, orbital that should give the resonance. The
HFEG model, including polarization, appears to pro-
vide a reasonable local representation of the electron—
N, interaction. The HFEG polarization cutoff radius
7,=2.341a, is very close to the value 2.308qa, obtained
by Buckley and Burke (1977), lending further support
to the usefulness of this model. [In an application of '
the HFEG model to electron—CO, scattering, Morrison
et al. (1976, 1977) arrive at a similar conclusion.]
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FIG. 33. Differential cross sections for e—N; scattering (a)
static-exchange polarization, Buckley and Burke (1977); (inset)
measurements of Ehrhardt and Willmann (1967); (b) static-ex-
change polarization, Burke and Chandra (1972), (A) 2.0 eV, (B)
2.4 eV, (C) 3.0 eV, and (D) 5.0 eV. (Reprinted from Buckley
and Burke, 1977; and Burke and Chandra, 1972.)

Nevertheless, it should be stressed that exchange is
intrinsically a nonlocal effect and a truly accurate
representation by any local model is not expected. The
authors estimate the width of the calculated Il re-
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FIG. 34. Differential cross sections for e~N, scattering. Sta-
tic-exchange polarization including symmetries Z, ,, I, , and
A; y- (Reprinted from Morrison and Collins, 1978.)

sonance to be I'=x0.48 eV. The integral elastic and
momentum-transfer cross sections are given, re-
spectively, in Figs. 32 and 35. Differential cross sec-
tions (“SEP”) at several energies are shown in Fig.

34. In Fig. 36, the calculated differential cross section
(“SEP”) at 7.0 eV is illustrated for two cases, one in
which only £ andIl (g and «) contributions are included,
and a second, in which the A, and A, contributions are

100 —
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ool - ol |

ENERGY (RYDBERGS)
FIG. 35. Momentum-~transfer cross section for e—N; scatter-
ing. Theory: (dashed curve SE) static exchange, (solid curve
SEP), static-exchange polarization, Morrison and Collins
(1978). Experiment: (dashed curve EXP) Englehardt and
Phelps (1963). (Reprinted from Morrison and Collins, 1978.)
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FIG. 36. Differential cross sections for ¢—~N, scattering at 7.0
eV. Theory: static-exchange polarization, [solid curve SEP
(Z,11,4)] including symmetries Z; 4, I 4, A, u; [dashed curve
SEP (Z,11)] including symmetries Z, , and Il ,. Experiment:
(dashed curve EXP) absolute measurements of Srivastava et al.
(1976). (Reprinted from Morrison and Collins, 1978.)

added; the latter are small contributors to the integral
cross section, but clearly influence the angular dis-
tribution. The absolute measurements of Srivastava
et al. (1976) are included for comparison. The authors
note similar agreement for energies 5.0 and 10.0 eV.
Chandra and Temkin (1976a, b, c) were among the first
to include vibrational states explicitly in a close-coupl-
ing e~N, calculation. Recognizing that the Il, resonance
invalidated the adiabatic approximation for nuclear vi-
bration, they proposed a so-called “hybrid theory” (see
also Choi and Poe, 1977a,b) in which a vibrational
close-coupling approach is used for the Il, channels,
and an ordinary adiabatic nuclear vibration calculation
is performed for the other (nonresonant) symmetries.
(The adiabatic nuclear rotation approximation was used
throughout.) The fixed-nuclei calculations were very
similar to the modified pseudopotential calculations of
Burke and Chandra (1972), discussed earlier in this
section. Target N, wave functions of Nesbet (1964)
were used to calculate the static potential V(r) and to
impose the orthogonality constraints (see Sec. II.G.4)
at several internuclear separations R. The model po-
larization potential, Eq. (147), was chosen in the same
manner as by Burke and Chandra (1972), and all depen-
dence on R was ascribed to variation in ay(R) and a,(R),
estimated by means of a simple semiempirical model.
(We note as a reminder that the MPS method fails to
include any exchange in the resonant Il;, symmetry.)
By performing calculations at several values or R, the
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FIG. 37. Width I'(R) and position E™(R) of Il, resonance in
e—N, scattering as functions of R. (Solid curves) Chandra and
Temkin (1976a); (dashed curve) Birtwistle and Herzenberg
(1971); (X) Krauss and Mies (1970). The lowest curve is the
ground-state potential energy curve of Ny with equilibrium sep-
aration Ry, and vibrational spacing AE,(N,). (Reprinted from
Chandra and Temkin, 1976a.)

variation in the position E~(R) and width I'(R) of the re-
sonance is obtained. These quantities are compared in
Fig. 37 with other theoretical results. [For comparison,
recall that other theoretical values reported for 1'(R)

at the equilibrium separation 2.068a, are: Burke and
Chandra (1972), I =2 0.40 eV; Buckley and Burke (1977),
I'=0.64+0.02 eV; and Morrison and Collins (1978),
I'=0.48 eV.] In Fig. 37, the vibrational spacing
AE,(N,) is also indicated, showing that for R R,
=2.068a,, the lifetime of the N; complex is comparable
with the vibrational period, and the adiabatic nuclear
vibration approximation fails. It should be emphasized
that the Born—-Oppenheimer approximation is still valid,
i.e., the electrons still respond ‘“adiabatically” to
changes in the internuclear separation. However, the
impulse picture no longer applies, in that the vibra-
tional wave function of Eq. (18) is not the unperturbed
initial-state vibrational wave function of the N, mole-
cule. The nuclei respond to the potential of a transient
N; ion, and the form of the vibrational wave function is
strongly influenced by the variation of the N; lifetime
[1/T(R)] with internuclear separation (see Bardsley and
Mandl, 1968; Birtwistle and Herzenberg, 1971; Schulz,
1973, 1976; and Temkin, 1976). Chandra and Temkin
(1976a) approach this problem by employing a vibra-
tional close-coupling procedure in which the vibrational
response to the transient N; complex is represented by
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“virtual” transitions among different unperturbed vi-
brational states of the N, system. In the vibrational
close-coupling calculation of the I, channels, only
channels corresponding to ! <6 were retained, so that
the final cross sections were not converged in partial
waves. (The polarization potential was adjusted so that
even for the nonconverged calculation, the position of
the I, resonance was “tuned” to 2.4 eV. Values of
7,=1.496a, and 1.554a, accomplished this for the trun-
cations I <4 and l < 6, respectively.) By limiting the
number of partial waves, it was then possible to study
the convergence in vibrational states more thoroughly.
This study for elastic (v =0 0) scattering is illustrated
in Fig. 38 where calculated integral cross sections are
compared for different truncations of the expansion in
vibrational states v=0,1,...,N,, for N, up to 10, and
the two different truncations in partial waves. The de-
velopment of structure in the resonance as more vibra-
tional “flexibility” is allowed is beautifully illustrated
in this study. The calculated integral elastic cross sec-
tions, including all symmetries, are compared with the
measurements of Potter, Steph, Dwivedi, and Golden
(1977) in Fig. 39. The agreement is only qualitative,

in that the positions and magnitudes of the peaks and
valleys do not agree, and the theoretical cross section
lies above that observed by about 15%—-20%. [The ap-
parent structure in the experimental cross section be-
low =21.75 eV is an artifact of the measurement and not
a genuine feature of the cross section (Potter ef al.,
1977).] Differential elastic cross sections at several
angles are compared in Fig. 40 with the relative mea-
surements of Ehrhardt and Willmann (1967). Again,
there is qualitative agreement only. (The comparisons
are similar for vibrational excitation to be discussed
in Sec. III.C.3.) The principal sources of error in the
calculation are: (1) use of model-exchange and model
polarization potentials; (2) truncation of the partial-
wave expansion before convergence is obtained; and

(3) truncation of the expansion in vibrational states.
The latter does not seem to be the major problem, as
can be seen in Fig. 38, where the convergence in N
appears to be very good. However, there are substan-
tial qualitative changes evident in going from /<4 to

1 < 6; this suggests that the details would be very dif-
ferent in a fully converged (in partial waves) calcula-
tion. The comparison of position E~(R) with width

I'(R) of the resonance with the semiempirical curves

of Birtwistle and Herzenberg (1971) in Fig. 37 strongly
suggests that the detailed structure of the calculated
cross sections will not be in agreement with the mea-
surements. The width I'(R) is likely to be sensitive both
to the model potentials chosen and to the truncation of
the partial-wave expansion. Below the resonance, the
calculated differential cross sections are similar to
those of Burke and Chandra (1972) illustrated in Fig.
33(b) and in good agreement with the relative mea-
surements of Ehrhardt and Willmann (1967). The cal-
culated differential elastic cross sections at 5.0 and
10.0 eV (Chandra and Temkin, 1976b) are compared

in Fig. 41 with the calculations of Truhlar et al. (1976),
to be discussed in Sec. III.C.3, and the absolute mea-
surements of Srivistava et al. (1976). The shape of the
angular distribution is in good agreement with the mea-

Rev. Mod. Phys., Vol. 562, No. 1, January 1980

surements of both energies, and the magnitude agrees
well at 10.0 eV. At 5.0 eV, the calculated cross sec-
tion lies above the experimental curve by an amount
that is consistent with the high-energy trend evident in
Fig. 39. Chandra and Temkin also calculated rota-
tional- and vibrational-excitation cross sections, which
will be discussed in the next two sections.

In a very recent application of R-matrix theory, ex-
tended to include vibrational excitation, Schneider,

Le Dourneuf, and Lan (1979) report good agreement
with experiment for the shapes of the resonance peaks
in the elastic and vibrational-excitation cross sections.
These calculations allow for exchange and polarization
effects in a nonempirical manner.

Dill and Dehmer (1977) have applied the “multiple-
scattering method” (MSM) to the calculation of integral
elastic cross sections for electron—N, scattering at
energies 0<E<1 keV. Siegel, Dill, and Dehmer (1978)
have reported the corresponding elastic differential
cross sections at lower energies 0< E<30 eV. The
MSM is particularly useful in treating complicated
molecules, surfaces, or solids where there are many
scattering centers. The authors chose N, as a test case
since this molecule has received so much theoretical
attention. The method is straightforward. [See, for
example, Dill and Dehmer (1974), Siegel and Dill
(1976), and the review of Johnson (1973).] In the fixed-
nuclei approximation, the electron—molecule inter-
action (see Fig. 42) is approximated by a.local “muffin-
tin” potential that consists of: finite-range spherically
symmetric potentials centered on each nuclei (Regions
I, and I,), a constant potential in the intermediate Reg-
ion II, and an outer Region III where long-range inter-
actions (e.g., polarization) can be included. The one-
electron Schrodinger equation is solved, with approp-
riate boundary conditions imposed at the nuclei and in
the asymptotic region. Since the potential energy is
constant in Region II, the wave function (partial=wave
expansion) is that of a free particle. The only complica-
tion is the proper boundary matching at the Region I/
Region II interface, and that is an algebraic problem.
The potential in Region III is spherically symmetric
and further integration of the wave function in that
region is not difficult.

In the present application to N,, the authors chose
Hartree—Slater atomic potentials (see, for example,
Herman and Skillman, 1963) with a large-» cutoff to
ensure proper asymptotic behavior (Latter, 1955).

The most satisfactory choice of potential was obtained
by modifying that used in earlier photoionization calcu-
lations of N, by adding an extra electronic charge
evenly distributed over both nuclei. Thus a “configura-
tion” 1s22s22p3-® was assigned to each atom (i.e.,
Regions I, and I,). Exchange was approximated by the
Slater (“Xo”) form given in Eq. (137). Two model po-
tentials “A” and “B” were studied. Potential “A” is
the most attractive, with o =1 in the Slater exchange
potential, V,; =-1.8 Ry in Region II, and a polarization
potential —12 »~* Ry applied in the outer region

(r >2.109a,). This choice of potential reproduces the
Il resonance at E, = 2.4 eV and the qualitative shape of
the integral elastic cross section, as shown in Fig. 43.
[The experimental data points correspond to the abso-
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FIG. 38. Calculated Il; contribution to e—~N, vibrationally elas-
tic (w =0—0) cross section in hybrid theory. Comparison of
two- and three-partial-wave calculations for increasing num-
ber of vibrational states retained in the close-coupling expan-
sion (N max=1 up to 10 shown in upper right hand curves for
each curve). (Reprinted from Chandra and Temkin, 1976a.)
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lute measurements of Golden (1966), Bromberg (1970),
DuBois and Rudd (1976), and the normalized measure-
ments of Srivastava ef al. (1976) and Hermann, Jost,
and Kessler (1976).] The structure in the calculated
cross section on either side of 1 Ry is due to broad

A, and £, resonances. Potential “B” is weaker, cor-
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tering angles. Theory: hybrid theory of Chandra and Temkin
(1976a), Experiment: (inset) Ehrhardt and Willmann (1967).
(Reprinted from Chandra and Temkin, 1976a.)
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responding to « =% in the Slater exchange potential,
V;=-=0.9 Ry, and no polarization in Region III. The
elastic cross sections resulting from this choice of
potential are in better agreement with the high-energy
cross section, as seen in Fig. 43, but produce the I,
resonance at E,~ 0.5 Ry. The authors argue on physical
grounds that this is reasonable since both polarization
and exchange effects are energy dependent and tend to
be reduced at high energies. The failure of the poten-
tial “A” model to reproduce the low-energy integral
elastic cross section (below the resonance) was traced
to the Zg-symmetry channels. In an extension of these
calculations to a study of the elastic differential cross
sections, Siegel et al. (1978) have shown that this

 failure of the model at low energies is reflected in the

large-scale scattering. Otherwise, the shapes of the
angular distributions are surprisingly good over the
energy range 0= E = 30 eV, as illustrated in Fig. 44.
[The other results given for comparison in Fig. 44 are:
theory: Chandra and Temkin (1976a, b), Buckley and
Burke (1977), Davenport et al. (1978), Truhlar ef al.
(1976), and Brandt ef al. (1976); experiment: Ehrhardt
and Willmann (1967), Shyn et al. (1972), Srivastava

et al. (1976), and Finn and Doering (1975).]

The multiple-scattering method clearly has promise
for complex systems, where even the qualitative fea-
tures of the electron scattering are unknown. Dill and
Dehmer (1977) suggest improvements in the model
[e.g., the use of an energy-dependent exchange poten-
tial, allowing overlap of the atomic spheres (Regions
1, and I,), etc.]- that may lead to a more predictive
theory for large systems. The important advantage the
MSM has over other model approaches (e.g., Sawada,
Ganas, and Green, 1974) is the degree to which the
strong anisotropic interaction near the nuclei is in-
cluded in the former. The accurate characterization of
features such as the Il resonance in N, requires that
the region near the nuclei be treated in a realistic
manner. '

A somewhat different ‘“multiple-scattering” approach
to electron—moleculie scattering has been applied to
vibrational —rotational excitation in electron collisions
with H,, Li,, Na,, and K, by Drukarev and Yurova
(1977). In these calculations, the electron—molecule
interaction is represented by “zero-range potentials”
of the two atomic scattering centers; this leads to con-
siderable simplification in handling the multiple scat-
tering (Demkov and Rudakov, 1970; Subramanian, 1968).
All long-range interactions are ignored: In the case of
electron—H, scattering the calculated cross section
ratios of v=0—~1(A;=0) tov=0—~1(j=1-3), at 2.5 and
3.0 eV, were found to agree well with the measurements
of Linder and Schmidt (1971a) for angles 50°= 6 = 120°.
At smaller angles, the calculated ratios are similar to
the theoretical results of Abram and Herzenberg (1969),
but lie well below experiment, probably due to the ne-
glect of polarization effects in both theories. The ab-
solute v=0- 1(aj =0) calculated cross section differs
significantly in shape (energy dependence) from that
measured by Linder and Schmidt (1971a) and is larger
by roughly a factor of 2. This simple approach should
prove to be particularly useful in qualitative studies of
very complex polyatomic molecules or clusters and
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under conditions where long-range interactions are less 2. Rotational excitation (N, and O,)

important, i.e., high energies and large scattering ang-

les. [See the somewhat related treatments of Huang Near the threshold for a particular j-j’ transition,
and Chan (1977) and Choi, Poe, Sun, and Shan (1979).] the rotational-excitation cross section is dominated by
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1955a,b; see Sec. II.H.2). However, there is no theo-
retical guideline that establishes how far above thres-
hold this approach is useful. Dalgarno and Moffett
(1963) have shown that because the quadrupole moment
of N, is negative, the quadrupole and polarization (non-
spherical a,) contributions to the first Born approxi-
mation partially cancel, leading to a decrease in the
j—j' cross section at higher energies. (This is in
contrast with e—H, collisions where @ >0 so that the
cross section increases monotonically.) Thus is il-
lustrated for j=0- 2 in Fig. 45(a). Sampson and
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FIG. 43. Total cross sections for e—N, scattering. Theory:
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periment: (O) Golden (1966); (X) Bromberg (1970); (C) DuBois
and Rudd (1976); (A) Srivastava et al. (1976); (+) Hermann et

. al. (1976). (Reprinted from Dill and Dehmer, 1977.)

Mjolsness (1965), Takayanagi and Geltman (1965), and
Geltman and Takayanagi (1966) studied the effects of
including a certain amount of “distortion” in the wave
function of the scattered electron. The relatively weak
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FIG. 44. Differential cross sections for e—N, scattering. Theory: (solid curve) Siegel et al. (1978); (other dashed, chain, etec.,
curves), Chandra and Temkin (1976a,b), Buckley and Burke (1977), Davenport et al. (1978), Trublar et al. (1976), Brandt et al.
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Doering (1975). (Note: the figure is intended only to show overall qualitative agreement of most theories and experiment mea-
surements.) (Reprinted from Siegel et al., 1978.)
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model potential chosen by Sampson and Mjolsness
(1965) in their distorted-wave calculation resulted in a
cross section very similar to the Born result for

= ~1.10ea? [see Eqs. (174) and (175)] and in good agree-
ment with the swarm measurements of Englehardt,
Phelps, and Risk (1964). Geltman and Takayanagi
(1966) constructed a distortion potential based on an ap-
proximation to the full static potential with polariza-
tion. This strong attractive potential results in much
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greater cancellation at low energies and a steep in-
crease of the cross section at higher energies [see Fig.
45(b)], where the distorted-wave approximation rapidly
breaks down due to strong coupling effects and the con-
sequent violation of unitarity (i.e., flux conservation).
When only long-range (quadrupole and polarization) in-
teractions are included the scatteringis weaker, and the
validity of the distorted-wave method is less in question
[Fig. 45(a)]. However, the short-range interactions are
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undoubtedly important at the higher energies. In the
case of O,, the distorted-wave results of Sampson and
Mjolsness (1966), who include only long-range inter-
actions, are in marked contrast to the results of Gelt-
man and Takayanagi (1966) illustrated in Fig. 45(b).

At higher energies, the rotational excitation of N, is ex-
pected to be completely dominated by the II, resonance
near 2 eV [Chen(1969); also see Schulz (1973)]. How-
ever, at present there are still no reliable theoretical
estimates of the rotational excitation cross sections for
N, below the resonance, or for O, at any energy.

The early (nonconverged) fixed-nuclei close-coupling
calculations of Burke and Sinfailam (1970) (see Sec.
III.C.1) established several important points: (1) ex-
change is important to rotational excitation as well as
elastic scattering in N,; (2) theIi, resonance domi-
nates the rotational excitation cross sectionfor E= E, ; and
(3) cross sections forj—j’ = 4areappreciable near the
resonances, but very small at other energies. Because
of the lack of convergence in the expansion of V (r) and
in the partial-wave expansion as well as the neglect of
polarization, the calculated cross sections are not
quantitatively accurate.

Chandra and Burke (1973) and Chandra (1975a) ap-
plied the adiabatic nuclear rotation approximation to

rotational excitation using the electron—N, T -matrix
elements of Burke and Chandra (1972). In Fig. 46(a, b)
rotational-excitation cross sections for transitions j
=0-2,4 and j=1-+ 3,5 are compared with the respec-
tive j=0—-0 and j=1-1 elastic cross sections. The
most notable feature is the fact that the cross sections
for j=0—~ 4 and j=1- 5 exceed those for j=0-2 and
j=1-~3, respectively, for energies near the resonance
peak. Similar results have been obtained by Buckley
and Burke (1977) in their static-exchange-polarization
study of electron-N, scattering. This is explained by
the d-wave character of the resonance. A d(l=2) wave
can directly couple rotational state j=0 to both j=2

and j=4. The latter is favored by its statistical weight,
and the cross section is correspondingly larger. [In
contrast, electron-H, scattering exhibits only a very
weak p-wave resonance, and d-wave scattering at ener-
gies ES 10 eV is very weak. A p(l=1) wave directly
couples j=0 to j=2, but nottoj=4. Thus, in e-H,
scattering, a j=0- 4 transition requires a second-
order coupling mechanism, and that is very weak.] The
fixed-nuclei calculations on which these calculations
were based were discussed in the previous section.
Since the internuclear separation was held fixed at the
equilibrium value in each case, the calculated rota-
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al-excitation cross sections
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tional-excitation cross sections do not show fine struc-
ture on the resonance peak.

Chandra and Temkin (1976a, b) in their so-called
“hybrid theory,” allow for real and “virtual” vibrational
excitation during the collision. Rotational-excitation
cross sections, based on these calculations, were cal-
culated by Chandra and Temkin (1976c) in the adiabatic
nuclear rotation approximation. Cross sections for
j=0-0,2,4and j=1-~1,3,5 are compared in Figs.
47(a) and 47(b), respectively, with the resonance-scat-
tering model of Chen (1966a,b). At present there are
no direct measurements of rotational excitation in N,
at these energies. [Buckley (1977) suggests that the
resonance envelope should be detectable with an energy
resolution AE = 10 meV.] The structure is expected to
be present in rotational-excitation cross sections.
However, the precise positions and magnitudes of the
maxima and minima most likely will not agree with the
calculations, for reasons discussed in the previous
section.

3. Vibrational excitation (N,)

The large hump in the total electron—N, cross section
(see Fig. 26) was shown by Haas (1957) to be present
in inelastic scattering as well. He suggested that a
temporary N; complex might somehow be involved.
Schulz (1959), using a trapped-electron method, demon-
strated that the cross section for vibrational excitation
had a large peak at 2.3 eV. Schulz consideredtemporary
formation of N; to be the mechanism. Schulz (1962,
1964) went on to show the presence of a rich structure
within the broad resonance profile; the presence of this
structure was verified in elastic and inelastic scatter-
ing by several groups (Heideman, Kuyatt, and Chamber-
lain, 1966a,b; Schulz and Koons, 1966; Andrick and
Ehrhardt, 1966; Boness and Hasted, 1966; Golden,
1966; Ehrhardt and Willmann, 1967; and Ehrhardt,
Langhans, Linder, and Taylor, 1968).

Herzenberg and Mandl (1962) ascribed the observed
resonance structure to the temporary excitation of dif-
ferent vibrational states of the N; complex. Applying
their modified version of the Kapur—Peierls resonant
scattering theory they were able to choose the pa-
rameters E~(R,), I'(R,), and v(R,), where v(R,) is the
slope of the N (real) potential energy curve E~(R) at
R =R, so as to reproduce the qualitative features of
the observations.

Chen (1964a, b, ¢) concluded that polarization, and
other correlation effects neglected in the work of
Herzenberg and Mandl (1962), could be important. Us-
ing the Feshbach projection-operator formalism, and
assuming a single N, electronic state was invol ved,
he was able to parametrize his formal expressions for
the vibrational-excitation cross sections so as to ob-
tain fairly good agreement with the measurements. The
improved agreement was primarily due to Chen’s al-
lowing the real part of the N, potential energy curve to
be different from that of N,. He argued that the polari-
zation interaction should depend on R and, consequently,
that the N, potential curve should differ in shape, and,
therefore, in vibrational level spacing and equilibrium
separation. Chen originally suggested that the N; com-
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plex was a core-excited compound state, i.e., an elec-
tron temporarily bound to an excited configuration of
N,. Further analysis indicated that a better description
of the state was that of an electron temporarily bound
to a polarized ground state of N,. The pictureofad-
wave electron trapped within the centrifugal barrier is
qualitatively correct, but it is important to realize that
the ground state N, is rather strongly perturbed (i.e.,
polarized) by the extra electron. Chen also showed that
structure should appear in the elastic cross section and
in the rotational-excitation cross section. Schulz (1964)
observed the former,

The early theoretical studies of resonant vibrational
excitation in N, were semiempirical and qualitatively
successful. They were not successful in reproducing
more subtle features of the observed cross sections:
(1) the fact that the peaks in the v =0~ v’ vibrational-
excitation cross sections appear at slightly different
energies, and with slightly different spacings, for dif-
ferent final vibrational states, and (2) that the peaks
tend to shift toward higher energy and to spread farther
apart as v’ is increased. Herzenberg (1968) proposed
an intuitive physical model to explain this phenomenon.

" The essential point made is that the lifetime of the

electronic compound N, state is too short to permit a
large number of nuclear vibrations of the N; to occur
before the electron is ejected via “autodetachment.”
Thus, a description based on well-defined vibrational
states of the N; complex is inappropriate. In the
“boomerang model” Herzenberg suggests that an out-
going nuclear wave (in R and t), generated from the
initial electron—N, encounter and N, formation at R,
~1.09 ;\, propagates outward (toward larger R) and is
reflected at the outer turning point of the N; curve,
as illustrated in Fig. 48 (Birtwistle and Herzenberg,
1971). The interference of outgoing and reflected
waves results in a standing wave whose nodes tend to
be shifted to the right for higher energies. Because
the autodetachment width is so large near the left-hand
turning point of the N, curve, multiple reflections are
removed. The oscillations of the cross section with
respect to energy, in Herzenberg’s formalism, occur
in the expression

o 2
jo Ry ®)]*E, R, )dR| |

o
Oyro

(200)

where £ (R,c) is simply the nuclear wave function for
the N; system and y{¥ (R) is the final N, vibrational
wave function. These oscillations arise from the oscil-
latory R dependence of the N, and N; nuclear functions.
Since the R dependence of £,(R,£) changes with energy,
then so does the oscillatory behavior of o,:,. The
authors point out that electron—-N, scattering in the 2
eV region is really an intermediate physical case be-
tween the so-called “compound molecule limit” (small
T') and the “impulse limit” (large I') discussed by
Herzenberg and Mandl (1962). [See reviews by Bardsley
and Mandl (1968) and Schulz (1973,1976).| If the width
were much smaller, multiple reflections would be im-
portant and cancellations would force go(R,S) to vanish
except for special energies where phase matching oc-
curs, viz., the vibrational energies of the Ny complex.
In this case the resonance peaks would occur at the
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same energies for all final states »’, and with the same
spacings (e.g., e—0,; see Linder and Schmidt, 1971b;
Schulz, 1973; Koike, 1975). On the other hand, if the
width were much larger, then the outgoing (in R and ¢)
nuclear wave would decay before reflection at the
outer turning point of the N; curve could occur, and
consequently no structure would result (e.g., e-H,).
Insight into the structure of the N, compound state

" was provided by Gilmore (1965), who proposed that
based on molecular orbital theory the most likely as-
signment would be II,, arising from the configuration

KK (0,25 (0,25 V(0,20 (1,20 (1,2p) .

He deduced an N potential curve which resembled the
semiempirical curve (see Chen, 1969) quite closely.
The elastic angular distributions measured by Andrick
and Ehrhardt (1966) were at least consistent with the I,
assignment, but a large component of nonresonant scat-
tering made a unique determination impossible. The
differential vibrational-excitation cross sections mea-
sured by Ehrhardt and Willmann (1967) did, however,
show distinctive maxima near 6=90°, providing more
evidence for d-wave scattering and the II, characteriza-
tion of the N, state. Bardsley and Read (1968) and
O’Malley and Taylor (1968) subsequently predicted the

angular dependence
6(6)c1~3cos?6 + Lcos? (201)

for a scattering process dominated by a single d-wave
I, compound state (see also Chang 1977a,b; Read
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FIG. 48. The “boomerang”
model of time evolution of
the nuclear wave function
in the transient Nj ion.
(Reprinted from Birtwistle
and Herzenberg, 1971.)

Final N, state

Initial N2 state

1968a,b, 1972); the expression agrees well with the
observed vibrational-excitation angular distributions
for v=0—1, 3, and 5 transitions over the energy range
1.9-3.1 eV. An ab initio calculation of the N, elec-
tronic wave function and potential curve by Krauss and
Mies (1970) was in essential agreement with the Gil-
more (1965) assignment, but highlighted the importance
of perturbations of the N, orbitals by the extra elec-
tron, an effect previously emphasized by Chen (1966
a,b). We will return to their results shortly.

Birtwistle and Herzenberg (1971) carried out a sys-
tematic semiempirical study of vibrational excitation
in electron—-N, scattering, using the phenomenological
“boomerang” model of Herzenberg (1968). They gave
careful attention to a precise determination of the R
dependence of both the real part of the N, potential
curve and the autodetachment width., They represented
the N, potential curve by a Morse potential and the
width by an expression due to Blatt and Weisskopf
(1952, p. 390) which attributes most of the R dependence
to an [ =2 “electron-penetration factor.” A best fit,
in the least-squares sense, to the data of Ehrhardt and
Willmann (1967) for the v=0-~1, 3, 5, and 7 cross sec-
tions at 15 energies is shown in Fig. 49 along with the
experimental cross sections (arbitrary units). The N;
potential curve and width, determined in this manner,
is shown in Fig. 37. Wong and Dubé (1978) also show
that the “boomerang” model provides an adequate quali-
tative description of pure rotational and rotational-vi-
brational excitation in the 1-4 eV resonance region.
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FIG. 49. Vibrational-excita-
tion cross sections (relative)
for 0 —v transition in e—N,

scattering. Theory: (dashed
curve) “boomerang” model.
Experiment: (solid curve)
Ehrhardt and Willmann (1967).

(Reprinted from Birtwistle
and Herzenberg, 1971.)
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Chandra and Temkin (1976a) applied their “hybrid
theory” to vibrational excitation and vibration—-rotation
excitation (Chandra and Temkin, 1976b,c). The “hybrid
theory,” as discussed in Sec. III.C.1, takes account of
vibrational relaxation during the lifetime of the re-
sonance by employing a vibrational close-coupling cal-
culation for the I, symmetry (also see Choi and Poe,
1977a,b). The other symmetries are handled by the
adiabatic nuclear vibration approximation. In Fig. 50,
their calculated results for the v=0—1,2, 3,4 differen-
tial cross sections at §="72° are compared with the
measurements of Schulz (1964). The agreement is
qualitative. The principal sources of error in the cal-
culations are probably the lack of convergence in partial
waves and the approximate treatment of exchange and
polarization, as discussed in Sec, III.C.1. Differential
v=0—1 cross sections at 5.0 and 10.0 eV are compared
in Figs. 51a,b, with the measurements of Srivastava
et al. (1976) and the (nonconverged) close-coupling cal-
culations of Truhlar ef al. (1976), to be discussed. The
effect of neglecting nonresonant contributions to the
cross sectionisshown to be small, but significant.
The calculated simultaneous vibration—rotation integral
cross sections of Chandra and Temkin (1976c) for the
transitions (v,3)=(0,0)—~(1,0), (1,2), and (1,4) are
compared in Fig. 52 with the results of Chen (1966a,b),
who used a semiempirical resonance model to describe
the process. The dominance of the j =0—4 transition
over that for j=0—2 is apparent in the pure rotational-
excitation (vibrationally elastic) cross sections as well,
As noted earlier (Sec. III.C.1) this is a direct conse-
quence of the d-wave character of the II, resonance.

In a very recent application of R-matrix theory, ex-
tended to include vibrational excitation, Schneider,

Le Dourneuf, and Lan (1979) report good agreement
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30 4.0

with the measured elastic and vibrational-excitation
electron—N, cross sections (all Aj) of Ehrhardt and
Willmann (1967), Wong (unpublished), and Rohr (1977d)
in the resonance region. These calculations allow for
exchange and polarization effects in a nonempirical
manner,

The vibrational-excitation cross sections fall off
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FIG. 50. Differential vibrational-excitation cross sections for
0—v’ transitions in e—N, scattering at 6 =72°. Theory: (solid
curve) “hybrid theory” Experiment: (inset) Schulz (1964), re-
normalized. (Reprinted from Chandra and Temkin, 1976a.)
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cluding only resonant Il, symmetry, (dashed) Truhlar et al.
(1976). Experiment: (+) Truhlar et al. (1976). (Reprinted
from Chandra and Temkin, 1976b.)

rapidly both above and below the resonance region.
This is particularly striking below the resonance in the
swarm measurements of Englehardt, Phelps, and Risk
(1964), as shown in Fig. 53. The measured v=0-—1

Rev. Mod. Phys., Vol. 52, No. 1, January 1980

cross section is small near threshold, rising rather
abruptly just above 1.0 eV. The beam data of Schulz
(1964) and the theoretical results of Breig and Lin
(1965) and Chen (1964a,b, ¢, 1966a,b) are also given
for comparison. The discrepancy between the beam and
swarm data is still not understood (Schulz, 1976;
Phelps, 1968). The calculation of Breig and Lin (1965)
is based on the Born approximation, including only the
long-range interaction. (In the figure the two dashed
lines are limiting cases.) These authors did not, of
course, expect to reproduce the resonance. Their
cross sections are too large just above threshold,
probably indicating too small a cutoff radius for the
long-range model interaction they chose. Chen’s cross
section was obtained by fitting a “Breit—Wigner” form
to the experimental cross section at higher energies.
The low-energy “tail” of this fit turns out to be in ex-
cellent agreement with the swarm measurements,
Chandra and Temkin do not quote vibrational-excitation
cross sections at these energies.

4. Scattering above the 2.3 eV resonance

Well above the II, resonance region (i.e., E=z 20 eV)
Truhlar, Trajmar, and Williams (1972) and Truhlar
(1972) report experimental and theoretical (polarized
Born approximation) studies of elastic scattering and
»=0-1 vibrational-excitationin electron-N, scattering.
Several model interaction potentials were examined,
The calculated elastic-differential cross sections were
found to be in qualitative agreement with experiment at
20, 30, and 83 eV for scattering angles 6= 60° to 75°
for all of the model potentials studied, but tended to be
too large at large angles. (The calculated v=0—1
vibrational-excitation differential cross sections were
found to agree with the measurements only at rather
small angles where the long-range interactions are ex-
pected to dominate.) The authors were led to agree
with Pavolvic, Boness, Herzenberg, and Schulz (1972),
that the 20 eV vibrational-excitation cross section is
also strongly influenced by resonance scattering.

Truhlar, Brandt, Chutjian, Srivastava and Trajmar
(1976) report both the crossed-beam measurements of
differential v =0—1 vibrational-excitation cross sections
at 5 and 10 eV and model close-coupling calculation of
rotational-vibrational excitation cross sections at these
energies. Finally Truhlar, Brandt, Srivastava,
Trajmar, and Chutjian (1977) report similar studies at
energies in the range 30-75 eV. The model electron—N,
interaction potential used in the theoretical studies in-
cludes a static potential, calculated at a large number
of internuclear separations by the semiempirical INDO/
1s approximation (Truhlar, Van-Catledge, and Dunning,
1972), and a polarization potential of the form given in
Eq. (147) where the cutoff radius 7,=1.592 a, (Burke
and Chandra, 1972) was adopted. Exchange effects were
entirely ignored in these calculations. The values of
a,(R,) and [day(R)/dR |r, were estimated (Trublar,

1973; Breig and Lin, 1965) based on experimental mea-
surements. The values of o,(R,) and [da,(R)/dR]g,
while more difficult to determine, were roughly esti-
mated from experimental and theoretical considerations.
The INDO/1s approximation to the static potential was
found to be in reasonable agreement with accurate
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ab initio results at small » but had to be corrected at
large v where it predicted much too large a quadrupole
moment. The static potential was fi¢ to a single-center
expansion, truncated to A, =16. The close-coupling
calculation was carried out in the LAB frame, coupled-

angular-momentum framework, discussed in Sec. IL.E.1.

The close-coupling expansion was truncated in terms
of both vibrational and rotational states. For values of
total angular momentum J <J, (J, ranged from 8 to 11
for energies of 30 and 75 eV, respectively) which con-
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FIG. 53. Cross section for v =0—1 vibrational-excitation in
e—N, scattering near threshold. Theory: (chain curve) reso-
nance model of Chen (19662a); (dashed curves) Born approxima-
tion based on different model interactions, Breig and Lin
(1965). Experiment: (solid curve) Englehardt, et al. (1964);
(solid curve and points) Schulz (1964). (Reprinted from Phelps,
1968.)
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tributed most to the v=0—~1 cross section, the four
states (v,7)=(0,0), (0,2), (1,0), (1,2) were retained. For
larger values J, +1 s J < 20, still important to j=0
—~2(v=0-0) rotational-excitation cross sections, only
the two states (v, 7)=(0,0), (0, 2) were retained, and for
the remaining values 20 <J <J, (J, ranged from 67 to
105 for energies of 30 and 75 eV, respectively) only the
single state (v,j)=(0,0) was retained. In all cases,

all values of [/ consistent with j,.x =2 and J were in-
cluded. The coupled radial equations were solved using
the Numerov method (Hartree, 1957; Hamming, 1962;
Blatt, 1967; Sloan, 1968; Lane and Geltman, 1967;

and Allison, 1970) with periodic reorthogonalization
(Riley and Kuppermann, 1968) applied at small values
of 7 to preserve linear independence of the solutions.
Differential cross sections were calculated for pure
elastic (v=0-~0,j=0-0) scattering and pure rotational
excitation (v=0—0,j=0-2), at the energies 30, 35,

45, 50, and 75 eV. Pure elastic and pure rotational-
excitation integral and momentum-transfer cross sec-
tions were also determined at the same energies. In
Fig. 54(a) the calculated v =00 “vibrationally elastic”
(includes j=0-0 and 0~ 2 contributions) differential
cross sections at 50 eV are compared with the ex-
perimental results of: Srivastava, Chutjian, and
Trajmar (1976); DuBois and Rudd (1976) (corrected
results); and Kambara and Kuchitsu (1972), the latter
normalized at 30° to Srivastava et al. (1976). Com-
parisons given at 30 and 75 eV are similar. The agree-
ment at small angles (6= 30° to 45° is good, suggesting
that the long-range interactions are adequately repre-
sented in the model. The failure of the model at larger
angles is probably due to inadequate treatment of the
short-range interactions (recall that exchange was en-
tirely neglected) and the fact that so few rotational
states were retained in the close-coupling expansion,
The calculated integral and momentum-transfer elastic
cross sections were found to be of the right order of
magnitude as the measured values (Srivastava et al.,
1976). However, the integral cross sections exceed
experiment by about 20%-30% over the range 30 to 75
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eV and the momentum-transfer cross sections areabout
10% larger at 30 eV, and 30% smaller at 75 eV, than
the experimental values.

The importance of proper convergence of the close-
coupling expansion is apparent in the recent calcula-
tions of elastic e~N, scattering cross sections at 30-50
eV by Onda and Truhlar (1978). In this calculation, the
electron—N, interaction was represented by the sum of
static (S), exchange (E), and polarization (P) contribu-
tions (see Sec. II.G). The static potential is calculated
from the N, molecular charge density approximated by
the INDOXI (1s) method (Truhlar, 1977; Truhlar,
Van-Catledge, and Dunning, 1972; and Truhlar and
Van-Catledge, 1973,1976) and is properly corrected in
the asymptotic region. Exchange is included via the
semiclassical exchange approximation (see Sec.II.G.2.b)
and polarization is modeled by the semiempirical cut-
off form, Eq. (147), with the cutoff radius »,=2.308¢,
chosen to agree with Buckley and Burke (1977). In the
rotational close-coupling expansion, as many as 10
states were considered and a sufficient number of
terms A< A, were included in the expansions of the
SEP e-N, potentials, at least for the size of rotational-
state basis chosen. In Fig. 54(b) elastic (v =0-0) cross
sections calculated in both the static-exchange and
static-exchange-polarization approximations are com-
pared with various experimental measurements. Of
course, when polarization is neglected (SE), the small-
angle scattering is underestimated. At larger angles
there is little difference. The peculiar shape of the
unconverged differential cross sections of Brandt ef al.
(1976) in Fig. 54(a) is most likely a numerical artifact
of the lack of convergence of the expansions of the wave
function and potential energy. Onda and Truhlar (1979a)
have extended this numerical study to examine the
sensitivity of the calculated e—N, cross sections at 30
eV to different choices of static, exchange, and po-
larization potentials.

The v =0—1 vibrational-excitation cross sections,
calculated using essentially the same model and pro-
cedure as Brandt ef al. (1976), are reported along with
the crossed-beam measurements at energies in the
range 30-175 eV by Truhlar ef al. (1976). The calcu-
lated differential ¥ =0—~1 cross sections exceed the ob-
served values by as much as an order of magnitude at
6= 20° and by a factor of 2 or so at somewhat larger
angles 6~60°. The integral cross sections are about
twice the measured values. Although there are some
areas of disagreement between different measure-
ments, nevertheless it appears that the theoretical
model is inadequate to describe vibrational excitation.
Again, the problem is likely to be inaccurate treatment
of the short-range interaction, especially the manner
in which the polarization potential is cut off, and re-
tention of too few rotational states in the close-coupling
expansion. The latter is probably more serious. It
has been suggested (Pavlovit ef al., 1972) that N,-
shape resonances are important at these energies, and
the experimental integral v =0—1 cross sections do
fall sharply in going from 30 to 35 eV,

Truhlar, Brandt, Chutjian, Srivastava, and Trajmar
(1976) also report theoretical rotation—vibration exci-
tation cross sections and crossed-beam measurements
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of v =0—1 vibrational excitation cross sections for
electron—N, scattering at 5 and 10 eV. The theoretical
model is the same as that described above. The cal-
culated total integral and momentum transfer cross
sections (dominated by elastic scattering and rotational
excitation) at 5.0 eV exceed the measured values
(Golden, 1966; Srivastava ef al., 1976; and Englehardt,
Phelps, and Risk, 1964) by about a factor of 2, ap-
parently due to an exceptionally large j=0—~2(v=0—0)
rotational-excitation cross section. This j=0-2
(v=0-0) theoretical cross section is slightly larger
than the j =0~ 0(v =0—0) elastic cross section and ex-
ceeds the theoretical results of Burke and Chandra
(1972) and Chandra and Temkin (1976a) by about a fac-
tor of 4. The authors suggest the likely explanation
that the lack of convergence in rotational states (only
j=0 and 2 were included) is responsible, and that the
large j=0—2 cross section is spurious. At 10 eV, the
calculated total integral cross sections are in better
agreement with Burke and Chandra (1972) and Chandra
and Temkin (1976a), and the integral vibrationally elas-
tic cross section is in excellent agreement with the ex-
perimental results of Srivastava et al. (1976). The mo-
mentum transfer cross sections lie about 25%—-30% above
the theoretical results of Burke and Chandra (1972) and
Chandra and Temkin (1976a) and the measurements of
Englehardt ef al. (1964) and Srivastava ef ql. (1976).
The calculated v=0-1(all Aj) vibrational-excitation
cross sections (differential, integral, and momentum
transfer) were also compared with the theoretical re-
sults of Chandra and Temkin (1976a) and the experi-
mental measurements of the present authors (Truhlar
et al., 1976). At 5 eV, the calculated integral and
momentum-transfer cross sections 0.195 and 0.19042,
respectively, are about 30% larger than the results of
Chandra and Temkin (1976a) and lie within the range of
experimental uncertainty (mainly due to 0° and 180°
extrapolation) of the measurements. At 10 eV, the
calculated integral and momentum transfer v =0

-~ 1(aj =0) cross sections, 0.092 and 0.091a2, respec-
tively, exceed those of Chandra and Temkin (1976a) by
about a factor of 4.6 and are about a factor of 2.5 larger
than their measured values. The comparison of theo-~
retical vibrational-excitation cross sections with the
results of Chandra and Temkin (1976a) is complicated
by several factors. Apparently, Chandra and Temkin
(1976a) included only the II, partial waves in their
original calculation of vibrational-excitation cross sec-
tions [see discussion by Truhlar et al. (1976) and their
Footnote 9]. While this is indeed the dominant sym-
metry near the resonances, i.e., 25E=3 eV, the T,
2, andII, symmetries may take substantial (even
dominant) contributions at energies 25 eV.

Chandra and Temkin (1976b) have reported differen-
tial elastic and vibrational-excitation cross sections at
5.0 and 10.0 eV, including both resonant and nonreson-
ant contributions. The differential v =0~1 cross sec-
tions at 5.0 and 10.0 eV are compared in Fig. 51(a),

51 (b) with the theoretical results of Truhlar et al.
(1976) and the measurements of Srivastava et al. (1976).
While both theoretical cross sections are similar at
intermediate angles, that of Chandra and Temkin (1976b)
is larger at large and small angles, and in the latter
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case is in better agreement with the measurements.

At 10 eV, neither theory agrees very well with experi-
ment; however, the results of Chandra and Temkin
(1976b) are clearly superior here. An important un-
certainty in the reliability of the theoretical results of
Truhlar et al. (1976), as described previously, arises
from the rather severe truncation of the close-coupling
expansion to j< 2. The extent of the error introduced
in this way is not known. At the same time, it must be
noted that the calculations of Chandra and Temkin
(1976b) also were not converged in the number of partial
waves (1) included. One further point raised by Truhlar
et al. (1976) is in regard to the accuracy of the vibra-
tional matrix elements themselves. Convincing com-
parisons of theoretical and experimental vibrational-
excitation cross sections must await theoretical results
that are converged in the number of vibrational and
rotational states and that take proper account of both
exchange and polarization.

Choi, Poe, Sun, and Shan (1979) show that at fairly
high energies Ez 50 eV, a reasonably good description
of the differential cross section for elastic scattering
and vibrational excitation may be obtained from a sim-
ple “two-potential” approach in which the scattering
from two screened-Coulomb “atoms” and a long-range
potential are added incoherenily. The authors argue
that totally neglecting the interference effects is su-
perior to including them incorrectly due to inadequacies
in approximate interaction potentials, convergence of
coupled-states expansions, etc. [See related application
of Huang and Chan (1977) to e-H, scattering.]

D. Electron-CO, scattering

Carbon dioxide is a closed-shell triatomic molecule
and is linear in its ground 'Z; state. Electron-CO,
scattering is characterized by an unusually large mo-
mentum-transfer cross section at low energies and a
broad “shape resonance” around 4.0 eV. The momen-
tum-transfer cross section measuredby Lowke, Phelps,
and Irwin (1973) is compared in Fig. 55 with theoretical
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FIG. 55. Momentum-transfer cross sections for e—CO, scat-
tering. Theory: (dashed curve) SEP model with HFEG ex-
change, Morrison et al. (1977). Experiment: (solid curve)
Lowke et al. (1973). (Reprinted from Morrison et al., 1977.)
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results of Morrison, Lane and Collins (1977), to be dis-
cussed. Singh (1970) has estimated a scattering length
of —7.2a, based on an “effective-range” analysis of the
early momentum-transfer measurements of Hake and
Phelps (1967). Tice and Kivelson (1967) reported that
the electron—-CQ, collision frequency at E= 0,025 eV,

as determined from cyclotron-resonance linewidths,
was much larger than that of other nonpolar molecules
(e.g., N,,0,,CH,, C,F,) and that it even exceeded the
collision frequency for a number of “weakly” polar
molecules (e.g., CO, N,0). These authors suggested
that the “transient dipole moment” associated with the
“zero-point” bending of the molecule might be re-
sponsible for the unusually large low-energy cross sec-
tion,

1. Elastic scattering and rotational excitation {(CO,)

Morrison, Lane, and Collins (1977) took the point of
view that the large low-energy electron-CQO, scattering
momentum-transfer cross section could be explained
without invoking nuclear motion. They performed a
fixed-nuclei elastic-scattering (BODY-frame) calcula-
tion in which exchange and polarization effects were
represented by the Hara (1967) free-electron-gas ex-
change potential of Eq. (132), with 7=1,0135 Ry (Frank-
lin, 1969) and the parametrized polarization potential
of Eq. (147), with a,=17.90a} and a, =9.19a} Hirsch-
felder, Curtiss, and Bird, 1954). The cutoff parameter
7, in (147) was determined semiempirically by “tuning”
the II, resonance to 3.8 eV (see Schulz, 1976) in the
manner of Burke and Chandra (1972) in their study of
electron—N, scattering. The value 7,=2.59q, was ob-
tained in this way. The coupled radial equations (116),
with the exchange terms of Eq. (119) replaced by the
local-exchange approximation of Eqs. (130) and (132),
were solved numerically using the integral equations
method (Sams and Kouri, 1969a,b; White and Hayes,
1972), The static potential given by Eq. (118) and
HFEG potential given by Eq. (132) were both expanded
in single-center expansions, using the near-Hartree-—
Fock SCF/MO ground-state CO, charge densities of
McLean and Yoshimine (1967,1968) (see also Yoshimine
and McLean, 1967). Because of the strong anisotropy
in the electron—-CO, static potential energy, largely due
to the presence of two oxygen nuclei each at a distance
Ry =2.1944a, from the center of mass (carbon atom),
it was necessary to include a large number of terms
A< A, in these expansions, viz., Amax =28 for the ex-
change potential and the electron—electron (repulsive)
part of Vs(r), and Amx =78 for the electron—nuclear
(attractive) contribution to Vs(r). Convergence in the
partial-wave expansion (115) was also found to be slow.
In the region near the nuclei, 7 <4.0q,, itwasnecessary
to include 32 channels for Z,, 15 for Z,and I1,, 23 for
IT, near the resonance, and 15 for il , far from the re-
sonance in order to converge the cross sections to 1%.
[We recall that the partial waves associated with each
of these symmetries correspond to {=0,2,...(Z,);
1=1,3,...(2); 1=2,4,... ;) and (=1,3,... (), etc.]
At greater distances, 7 > 4.0a,, the centrifugal bar-
riers associated with the large-1 partial waves suppress
the corresponding radial functions, and the expansion
(115) may be truncated further; the authors retained
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five partial waves for all symmetries except II,, and
eight for the latter. In Fig. 56, calculated total (BODY-

-frame elastic) cross sections are compared in the

static (S), static-exchange (SE), and static-exchange-
polarization (SEP) approximations; the experimental
data are those of Ramsauer and Kollath (1927), Kollath
(1932), and Briiche (1927) [see also Brode (1933); re-
cent measurements of Shyn, Sharp, and Carignan
(1978); and Szmytkowski and Zubek (1978)|. The cal-
culated resonance, which occurs in I, symmetry, is
narrower than observed. The II, characterization of
the resonances is in agreement with the assignment by
Claydon, Segal, and Taylor (1970). However, the fine
structure experimentally observed in elastic and vi-
brational-excitation cross sections is not present
(Boness and Hasted, 1966; Andrick, Danner, and Ehr-
hardt, 1969; Danner, 1970; Burrow and Sanche, 1972;
Sanche and Schulz, 1973; Cadez, Tronc, and Hall,
1974; Boness and Schulz, 1968, 1974; éadei, Gresteau,
Tronc, and Hall, 1977; see review of Schulz, 1976).
The differential excitation function observed by CadeZ
et al. (1977) at 20° is shown in Fig. 57 for elastic scat-
tering and vibrational excitation (0,0, 0)~ (v, v,, v,),
where the quantum numbess v,, v,, and v, refer to
quanta of symmetric stretch, bending, and asymmetric
stretch vibrations, respectively. [The data of Boness
and Schulz (1974) are similar.] Boness and Schulz
(1974) and Cadez et al. (1974) proposed that the struc-
ture arises from the “boomerang effect” (Herzenberg,
1968) and is therefore analogous tothe shape resonances
in electron—N, and -CO scattering discussed in Secs.
III.C and III.E, respectively. Since the internuclear
separation is held fixed in the calculation of Morrison,
Lane, and Collins (1977), an accurate description of
the resonance region is not expected. The “tuning” of
the I1, resonance to 3.8 eV, which determines the po-
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FIG. 56. Total cross sections for e—CO, scattering. Theory:
(solid curve SEP) static-exchange polarization; (dashed curve
SE) static exchange; (dashed curve S) static, Morrison et al.
(1977). Experiment: (X) Ramsauer and Kollath (1927), Kollath
(1932); (A) Briiche (1927); Brode (1933). (Reprinted from Mor-
rison et al., 1977.)
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FIG. 57. Differential excitation functions at 20° for symme-
tric-stretch transition (0,0,0) —~(@’, 0, 0) in e—CO, scattering.
(Reprinted from Cadez et al., 1977.)

larization cutoff, is the only semiempirical adjustment
made in the calculation. The large low-energy elastic
and momentum-transfer cross section is a result of
strong “enhancement” of the X, partial cross section as
illustratedin Fig. 58. Since the X, wave function [i.e.,
Eq. (115) with m =0 and even ] is dominated asymp-
totically by the s-wave component, it is tempting to as-
sociate this “enhancement” with the existence of a
“virtual state” associated with the electron—-CO, model
potential (see Taylor, 1972). The possibility of a low-
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FIG. 58. Theoretical partial cross sections for e—CO, scat-
tering. SEP model including HFEG exchange. (Reprinted from
Morrison et al., 1977.)
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lying X, resonance cannot be ruled out completely al-
though it is not indicated in the CO; study of Claydon,
Segal, and Taylor (1970). In any case, this strong scat-
tering of low-energy Z, partial waves may give rise to
a near-threshold enhancement of vibrational-excitation
cross sections, especially for symmetric-stretch
transitions where the Z, partial waves dominate both
the initial- and final-state scattering wave function.
There is experimental evidence for such behavior in
recent beam (Wong, 1978) measurements.

Morrison and Lane (1977) calculated rotational-exci-
tation cross sections for electron-CO, scattering by
applying the adiabatic nuclear rotation approximation
(see sec. I1.D), using the calculated T-matrix elements
(SEP) of Morrison, Lane, and Collins (1977). The cal-
culated j =0~ 0 elastic, j=0—2,4 rotational-excitation,
and total cross sections are shown in Fig. 59. The re-
sonance dominates all cross sections for energies near
the (“tuned”) position of 3.8 eV. The j=0—2 cross sec-
tion is also large at lower energies where it is strongly
influenced by the large negative quadrupole moment of
CO,. [The value g =- 3.8598ea2 used in the calculation
is comparable with the theoretical value —3.9086ea?
of Vucelié ef al. (1973), and the experimental value
—3.2014ed? of Buckingham (1959).] It is interesting to
compare the qualitative features of the j=0—~ 2 cross
section for H,, N,, and CO,, as illustrated in Fig. 60
(we should keep in mind the missing fine structure that
should appear on the N, and CO, resonances). The j
=0—4 cross section is large near the resonance, but
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FIG. 59. Theoretical rotational-excitation cross sections for
transitions j=0—;’ in e—CO, scattering: (solid curves) rota-
tional excitation and elastic; (dashed curve) total rotational
excitation plus elastic. (Reprinted from Morrison and Lane,
1977.)
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FIG. 60. Comparison of theoretical rotational-excitation cross
sections for j=0—2 transitions in e—H,, N,, and CO, scatter-
ing: (curves e—CO, SEP) Morrison and Lane (1977); (curve
e—N, SEP) Morrison and Collins (1978); (curve e—H,) Henry
and Lane (1969); (closed circles) Hara (1969b). (Reprinted
from Morrison and Lane, 1978.)

unlike the analogous case of electron—N, scattering,
does not exceed the j=0—~2 cross section. The II,
partial-wave function [i.e., Eq. (115) with m =+1 and
odd 1] is dominated asymptotically by p waves, which
provide direct coupling for the j =02 transition but
not for j=0—4. In contrast, in electron-N, scattering
the Il, resonance is asymptotically of “d-wave charac-
ter.” (See Sec. III.C.2) Finally, in Fig. 59, the j=0-—~0
elastic cross section dominates the total for energies
much below 1 eV. It then falls off very rapidly with
energy and exhibits a “Ramsauer-like” minimum be-
tween 2.0 and 3.0 eV.

The calculations of Morrison, Lane, and Collins
(1977) and Morrison and Lane (1977) are subject to the
same criticism as the theoretical electron—N, studies
described in Sec. III.C. The use of local model poten-
tials for both exchange and polarization introduces un-
certainty into the calculations. It is somewhat encour-
aging that Morrison and Collins (1978) found the HFEG
exchange potential to be a good approximation in the
case of electron—N, scattering. The qualitative features
of the calculated elastic and rotational-excitation cross
sections are probably correct, but the precise quanti-
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tative agreement of the calculated total and momentum-
transfer cross sections with experiment (see Figs. 55
and 56) may be somewhat fortuitous.

Recently Onda and Truhlar (1979b) have reported
LAB-frame close-coupling calculations of elastic scat-
tering and rotational excitation in electron—-CO, scatter-
ing. They also employ approximate exchange and po-
larization interactions.

2. Vibrational excitation (CO,)

The vibrational states of CO, are defined by quantiza-
tion of three normal modes. The corresponding set of
quantum numbers v,, v,, and v, describe quanta of
symmetric stretch, bending, and asymmetric stretch,
respectively, Of the three, only transitions Av, in-
volving changes in the symmetric-stretch vibration are
optically (dipole) forbidden. At low energies (i.e., be-
low the 3.8 eV shape resonance) there has been very
little theoretical attention given to vibrational excitation
(itikawa, 1971c). Experimental cross sections ex-
tracted from the swarm measurements of Bulos and
Phelps (1976) for the bending excitation 000~ 010 and
the asymmetric-stretch excitation 000~ 001, and their
rough estimate for the symmetric-stretch excitation
in 000 — 100, are illustrated in Fig., 61, Also shown
for comparison in Fig. 61 are Born(dipole)-approxima-
tion results for 000— 010 and 000~ 001 transitions cal-
culated from Eq. (180) by using dipole matrix elements
obtained from the optical transition probabilities given
by Penner and Olfe (1968)., There is qualitative agree-
ment between Born (dipole) theory and the swarm mea-
surements; however, the shapes of the cross sections
near threshold differ significantly. The resonance
around 4 eV, of course, does not appear in the Born
cross sections. The symmetric-stretch 000~ 100
cross section shown in Fig. 61 was inferred from the
measurements of Stamatovic and Schulz (1973) near
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FIG. 61. Cross sections for vibrational excitation of the lowest
symmetric-stretch (100), bending (010) and asymmetric- -
stretch (001) modes in e—CO, scattering. Theory: (dashed
curves 010 and 001) Born approximation. Experiment: (solid
curves 010 and 001) swarm measurements of Bulos and Phelps
(1976); (chain curve 100) estimated. (Reprinted from Bulos
and Phelps, 1976.)
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threshold and Andrick, Danner, and Ehrhardt (1969)
at E=~1 eV, It exhibits a particularly steep energy
dependence above threshold that could be related, via
a “final-state” effect, to the large “enhancement™ of
the elastic~scattering cross section at low energies
(Morrison, Lane, and Collins, 1977; and discussion
in Sec. IIL.E.1). However, the true shape of this curve
is by no means experimentally determined at the pres-
ent time and further measurements are called for.
Morrison and Lane (1978) have applied the adiabatic-
nuclear-vibration approximation to symmetric-stretch
excitation 000~ 100 in e—~CO, collisions near thres-
hold. The calculations of the fixed-nuclei 7 matrix
for a range of R, separations were of the same type
as Morrison, Lane, and Collins (1977). A very strong
resonance is present in the calculated cross section
just above threshold. The precise shape of the re-
sonance is not predicted by the theory because of the
failure of the adiabatic approximation very near thres-
hold. However, the presence of the resonance is es-
tablished. It is likely that the responsible mechanism
is strong “final-state” scattering, perhaps related to
the existence of a virtual state in the e-CO, interaction.
At higher energies E=4.0 eV, the symmetric-stretch
and bending mode cross sections for transitions 000
=100 and 000~ 010, respectively, are dominated by a
broad shape resonance that peaks at about E,=~3.8 eV.
The optically active asymmetric-stretch transition
000— 001 is observed to be nonresonant and is felt to
be dominated by dipole coupling (Andrick, Danner, and
Ehrhardt, 1969) as evidenced by strong forward scat-
tering in the angular distribution. The resonance ex-
hibits structure, as illustrated in Fig. 57, for the 000
= v,00 transitions. The positions of the peaks vary
with transition (i.e., with final vibration quantum num-
bers) just as in the case of the 2.3 eV resonance in
electron—-N, scattering. Thus, the lifetime of the elec-
tron-CO, resonance, for nuclear geometries near

equilibrium, is comparable with the vibrational periods,
so that the positions of the peaks and valleys in the
structure depend sensitively on the R dependence of the
lifetime of the CO; complex (Schulz, 1976). CadeZ,
Tronc, and Hall (1974) and Boness and Schulz (1974)
proposed that the “boomerang effect” (Herzenberg,
1968), occurring in the symmetric-stretch mode, is
responsible for the observed structure. In Fig. 62 the
observed cross sections for transitions 000~ v,00,

v, =1,3,5, and 7 (CadeZ, Gresteau, Tronc, and Hall,
1977) are compared with the results of the semiempiri-
cal “boomerang model” (Herzenberg, 1968; Birt-
wistle and Herzenberg, 1971) normalized by éadei,
Gresteau, Tronc, and Hall (1977) to their own data.
The CO, potential curve V™ and width I' determined

in this way are compared with Fig. 63 with the results
of other authors (Claydon, Segal, and Taylor, 1970;
Krauss and Neumann, 1972; Pacansky, Wahlgren, and
Bagus, 1975; also Bardsley, 1969). (The symmetric-
stretch coordinate S, in Fig. 63 is defined by S,

=(AR, +AR,)/¥2.) A similar “boomerang model” cal-
culation was performed by Szmytkowski and Zubek
(1977) using the measurements of Boness and Schulz
(1974) and CadeZ, Tronc, and Hall (1974); their agree-
ment is qualitatively similar to that of CadeZ, Gresteau,
Tronc, and Hall (1977) shown in Fig. 62 (see also
Szmytkowski, Zubek, and Drewko, 1978). Domcke and
Cederbaum (1977a,b) have also analyzed the CO; re-
sonance in the 4 eV region by applying a method based
on a model Hamiltonian including explicit “bound-con-
tinuum” and electronic vibrational coupling via a many-
body formulation. By treating the “bound-continuum”
coupling as a perturbation and summing the S-matrix
diagrams to infinite order, they obtain a simple ex-
pression for the differential cross section that requires
only the specification of various resonance and coupling
parameters which can be determined semiempirically.
Their approach also accounts for all of the characteris-

FIG. 62. Differential cross
sections at 20° for vibrational
excitation of symmetric-
stretch transition (000 —v’00)
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FIG. 63. Potential energy curves for the ground state of CO,
(V,) and the II,, resonance state of CO, (V™) for linear geometry.
Sy is proportional to the (symmetric) C—O separation. The
curve V"~ and the width T" are determined (semiempirically) by
the “boomerang” model (as illustrated in Fig. 62). Theoretical
results include: (chain curve) Claydon et al. (1970); (dashed
curve) Pacansky et al. (1975); (circles) Krauss and Neumann
(1972), upper and lower calculated at 180° and 170° bond angles,
respectively. (Reprinted from Cadez et al., 1977.)

tic features of the resonant fine structure. Although
consistent with the “boomerang model,” the Domcke—
Cederbaum approach is a convenient methodology for
generalization and systematic improvement of the cal-
culations.

E. Polar molecules

There has been a recent surge of activity in the theory
of electron scattering by polar molecules. In part, this
renewed interest has been stimulated by possible ap-
plication to magnetohydrodynamic (MHD) power genera-
tion, where the electrical conductivity of the plasma
is limited largely by momentum-transfer collisions of
the electrons with polar molecules such as KOH, SO,,
and H,0. Moreover, the first electron-beam mea-
surements, made on CsF (Slater, Fickes, and Stern,
1972), and subsequent studies of CsF (Slater, Fickes,
Becker, and Stern, 1974a), CsCl (Becker, Fickes,
Slater, and Stern, 1974) and KI (Slater, Fickes, Becker,
and Stern, 1974b) suggested that for strongly polar
molecules the Born approximation greatly overesti-
mates the differential scattering cross section (except
at very small angles) and therefore the momentum-
transfer cross section as well. Alternative theoretical
approaches were clearly called for, and in response,

a number of theoretical studies were carried out,
ranging from sophisticated quantum-mechanical model
calculations [for example, Itikawa (1978a), Collins and
Norcross (1977,1978) and references therein| to semi-
classical treatments (Miller and Smith, 1978; Mukher-
jee and Smith, 1978; and Hickman and Smith, 1978).

In the vibrational excitation of polar molecules by
electron impact, unexpected “threshold resonances”
have been observed in recent high-resolution electron-
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beam experiments. A single narrow resonance has
been observed just above each vibrational-excitation
threshold in HF, HC1, HBr, and H,O (Rohr and Linder,
1975,1976; Seng and Linder, 1976; Rohr, 1977a,c,
1978; and Linder, 1977) and in the nonpolar case SF,
(Rohr 1977b, 1979). The “threshold resonances” have
been ascribed to strong final-state scattering, perhaps
related to the existence of a “virtual state” in the elec-
tron—-molecule system (Dubé and Herzenberg, 1977;
Gianturco and Rahman, 1977a,b; and Taylor, Gold-
stein, and Segal, 1977). The precise nature of this
resonance phenomenon still is not firmly established.

The-early work on elastic and rotational-excitation
electron-polar-molecule scattering has been sum-
marized by Garrett (1972). A recent review by Itikawa
(1978a) also emphasizes elastic scattering and ro-
tational excitation at low energies (E= 10 eV), and
provides an important update of the state of the theory.
(See also Takayanagi, 1975a,b.)

1. Elastic scattering and rotational excitation

a. The dipole interaction and “critical binding’’

Massey (1931) was the first to point out that because
of the long-range nature of the electron~dipole inter-
action, the rotational-excitation and deexcitation cross
sections for Aj=+1 transitions in polar molecules are
likely to be much larger than the elastic cross sections.
He also showed that the Born approximation gives the
correct Aj=+1 cross section so long as the dipole mo-
ment is not too large.

Based partly on these findings, Altshuler (1957)
argued that rotational excitation may be a large com-
ponent in the momentum-transfer cross section so that
the Born approximation could also be applied here.
Using the adiabatic nuclear rotation approximation (see
Sec. II.D)todescribe rotational transitions and the Born
approximation applied to the point-dipole interaction,
Altshuler (1957) computed the momentum-transfer
cross section for a range of dipole moments and ener-
gies (see also Maru and Desai, 1975). He obtained en-
couraging agreement with early measurements. How-
ever, subsequent experimental measurements began
to uncover discrepancies, for example, in H,0, D,O,
and H,S, where measured momentum-transfer cross
sections were found to be larger by a factor of 2 than
the values predicted by Altshuler’s theory (Hurst,
Stockdale, and O’Kelley, 1963). This led Hurst et al.
(1963) to speculate that in electron—polar-molecule
scattering the electron might be temporarily captured
by “virtually exciting” a rotational state, thus forming
a “rotational resonance” complex that would subse-
quently decay with a characteristic lifetime. Turner
(1966), using a “capture” theory of Bloch and Bradbury
(1935), and keeping only the point-dipole electron—
molecule interaction, showed that the rotational-re-
sonance concept was viable (see also Garrett, 1975).
Turner and Fox (1966), in their variational treatment of
the minimum dipole moment, d,, required tobind anelec-
tron to a finite dipole, concluded that the H,0 and D,O
data could be understood in terms of a rotational re-
sonance, but that the H,S dipole moment is simply too
small to allow temporary binding [see Turner (1977)
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for an interesting history of the subject of “critical
dipole moment”]. Since these early studies treated the
conditions for binding in the framework of the fixed
dipole, the results and interpretations are somewhat
ambiguous (see also Shimizu, 1963; Mittleman and
Von Holdt, 1965; Mittleman and Myerscough, 1966;
Brown and Roberts, 1967; Crawford, 1967; Crawford
and Dalgarno, 1967; Coulson and Walmsey, 1967; Fox,
1968; Levy-Leblond, 1967; and Levy-Leblond and
Provost, 1967). Garrett (1971a,b,c,1972,1975) has
shown that the critical dipole moment for binding of an
electron to a rotating polar molecule is in general
larger than d, and depends on the charge separation of
the finite dipole (or in general on short-range forces)
and on the total angular' momentum J (electron plus
molecule) of the system (Itikawa, 1977). Garrett shows
that the fixed finite-dipole results are obtained in the
limit I~  where I is the moment of inertia of the
molecule (also see Bottcher, 1971), andthatthe integral
cross section diverges in this limit for any choice of
the short-range interaction (Garrett, 1971c).
Takayanagi (1966) derived expressions for the rota-
tional and vibrational excitation cross sections in the
Born-dipole approximation and discussed validity con-
ditions. It is not possible to establish firm criteria
since short-range interactions can change the picture
considerably, and in the case of a shape resonance can
dominate the cross section over a wide range of ener-
gies (Schulz, 1973,1976). A few general observations
put forth by Takayanagi (1966) are as follows: (i) the
weak coupling (i.e., first-order perturbation) approxi-
mation is likely to fail for dipole moments d such that
d = 1(ea,); (ii) distortion of the p-wave scattering orbi-
tal due to the polarization is likely to be important, say
for E=1 eV, for (average) polarizabilities 0, 20 a;
(iii) once the polarization interaction becomes impor-
tant, the electron will be “pulled” in, and the compli-
cated short-range interactions will start to play a role;
and (iv) in molecules with small (equilibrium) dipole
moments, e.g., CO [d =0.044ea,; Burrus (1958)] the
quadrupole and anisotropic polarizationinteraction may
dominate the coupling with the result that Aj=+2 t ansi-
tions may be favored over those with Aj=+1, Takaya-
nagi (1966) emphasizes that even when a few partial-
wave contributions to the cross section are determined
poorly by the Born-dipole approximation (e.g., due to
a, being large) the total rotational-excitation cross
section may still be good, simply because a large num-
ber of partial waves contribute. Recently, Clark (1977)
has discussed the limitations of the Born approximation
and its use in connection with frame-transformation
theory (Chang and Fano, 1972; see Sec. IL.E).
Crawford, Dalgarno, and Hays (1967) reexamined the
experimental swarm data of Christophorou, Hurst, and
Hadjiantoniou (1966) and made a convincing case that the
Born fixed-dipole approximation to 6™, originally
given by Altshuler (1957), is superior to the exact
(fixed-dipole) result (Mittleman and von Holdt, 1965)
for all values of d. Recall that for small values d
<< 0.5ea, the exact (fixed-dipole) and Born (fixed-
dipole) cross sections are the same, but for d>0.5¢a,
the exact (fixed-dipole) cross section becomes much
larger than Born, and at d =d =~ 0.64eq, the exact (fixed-
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dipole) o™ becomes infinite. This nonphysical diver-
gence arises from the collapse of an infinite number of
bound states “down the » 2 well,” a reflection of the
degeneracy of rotational energy .levels in the I—«

limit. (See discussion of Mittleman, Peacher, and
Rozsnyai, 1968.) Crawford, Dalgarno, and Hayes (1967)
argue that the Born fixed-dipole approximation is su-
perior because it does not possess this mathematical
anomaly. They do point out that the approximation will
fail for sufficiently large values of d, since it is a
weak-coupling (i.e., first-order perturbation) method.
These authors conclude that aside from narrow ro-
tational resonances which may occur in some cases
[see Garrett (1975), and Fabrikant (1978)], discrepan-
cies between the Born fixed-dipole approximation and
experiment should be mainly due to the neglect of other
interaction terms. They do not support the speculation
(Levy-Leblond, 1967; Takayanagi and Itikawa, 1968)
that a physical critical value of the dipole moment d.
exists such that momentum-transfer cross sections for
molecules with d =d , are very different from those with
values of d slightly less or slightly greater thand,

(see Garrett, 1972). Dalgarno, Caawford, and Allison
(1968) examined this question of the existence of a
“critical dipole moment” for electron scattering from a
polar molecule by carrying out a model close-coupling
calculation. The molecule was represented by a rigid
rotator with rotational constant B=2.4X107* eV, and the
e—molecule interaction was modeled by a dipole term
cut off at small . The partial cross sections ¢,(0~j’)
for j'=0, 1, 2, and 3 were evaluated for total angular
momentum J =0, 1, and 2 and incident energy E =0.05
eV. None of these cross sections exhibited any unusual
behavior as the dipole moment was varied from 1.60
X10718 to 1,65x1071® esu em. Thus, it was demonstrated
that the value d,=1.625%10"18 esu cm (0.64ea,) that
corresponds todivergence ofo'™ for the fixed point dipole
is of no special significance for the rotating dipole. Closed
channels were notincludedinthis calculation soit was not
possible to search for rotational resonances that may have
been present for this model system. Crawford (1968),
using a similar model-interaction close-coupling pro-
cedure, calculated momentum-transfer cross sections
for electron—H,O scattering and obtained apparent im-
provement over the Born results. Itikawa (1971a,b,
1972), in similar Born-approximation studies of elec-
tron scattering by H,0, NH,, and H,CO, emphasized
that polarization effects can be important to the integral
rotational-excitation cross sections, at least for transi-
tions that are not dipole coupled.

Itikawa and Takayanagi (1969a) carried out a model
close-coupling study of elastic and rotational-excitation
cross sections for electron scattering from HCI1 and
CN, the latter being of astrophysical interest. They
employed the coupled-angular-momentum representa-
tion. Only the rotational states j=0, 1, and 2 were
included in the close-coupling calculation, and closed
channels were apparently ignored. Born-approximatibn
results were also calculated for .comparison. The elec-
tron—-molecule interaction was approximated by a model
potential energy function expressed as a truncated ser-
ies in Legendre polynomials in the form of Eq. (118),
but keeping only the A=0 and 1 terms. The coefficient
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functions were approximated by employing a model of
overlapping atomic charge distributions with allowance
for the long-range dipole and polarization interactions.
While the model interaction was not expected to yield
accurate cross sections, some conclusions were pos-
sible: (1) the Born approximation works well for Aj
=+1 transitions because of the importance of large -/
contributions, and (2) the calculated cross sections for
Aj =0,+2 are much more sensitive to short-range in-
teractions, while those for Aj =+1 are dominated by
the dipole term. The authors, working in the coupled-
angular-momentum representation, noted that the Born
results were accurate for partial cross sections cor-
responding to large total angular momentum J (more
precisely large |J —j| for the rotational states of in-
terest) so that the close-coupling calculations need be
performed only for a few values of J.

Itikawa (1969) calculated differential j=0—= 1 and j
=0—0 cross sections for CN and HCI using the results
of the close-coupling calculations of Itikawa and
Takayanagi (1969a). He found that: (i) the j=0—1 scat-
tering is strongly peaked in the forward direction due
to the long-range 7 ~2 dipole interaction; (ii) the Born
approximation agrees well for j=0—~ 1 with the CC re-
sults in the forward direction; (iii) many partial-wave
contributions (i.e., many total angular momenta J) are
necessary to describe the j=0—1 forward scattering
accurately; and (iv) the unitarized Born approximation
(usually labeled BII) can be used for “large-J” con-
tributions to o(0—~ 0) and the corresponding differential
cross section, Extending these model calculations to
a number of dipole moments on either side of the
“critical” value, Itikawa (1969) noted that for an energy
E =0.03 eV, the elastic contribution to the momentum-
transfer cross section ¢, exhibited an enhancement
causing a peak in 0, (as a function of 4) at about d
=1.1ea,, similar to that seen by Itikawa and Takayanagi
(1969a) inthe total integral cross section. This seemed
to provide support for an observable effect of the
“critical dipole moment.”

However, Garrett (1972) showed that if one considers
reasonable models for the short-range and polarization
interactions, the “hump” in ¢ versus d moves around
depending on the details in the interaction. Moreover,
the “hump” is sensitive to energy and the rotational
state of the target molecule. [The latter observation
contradicted the earlier assertion of Bottcher (1970),
that “critical binding” is unaffected by molecular ro-
tation.] Thus, ingoing from one molecule to another,
the effect would be expected to wash out and no piysical
“critical” dipole moment would seem to exist. There
is, however, some tendency for the measured o™ to
exceed Born for small d and fall below Born for large
d (Garrett, 1972), The latter is clearly due to unitarity
violations in the Born approximation when the coupling
is strong. For small values of d, ¢, is no longer
dominated by rotational excitation and the dipole inter-
action, elastic scattering becomes important, and
short-range interactions such as exchange play an im-
portant role (Takayanagi, 1975a,b).

Itikawa and Ashihara (1971) examined the effects of
electron exchange on elastic and rotational-excitation
e-HCl scattering by carrying out a model close-coupl-
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ing calculation similar to that of Itikawa and Takayanagi
(19692a) but with the exchange terms of Eqs. (116) and
(119) included, but approximated by employing a very
simple molecular wave function. They found that ex-
change effects were important for s and p partial waves,
for integral Aj=0 (elastic) cross sections, and for the
j=0—1 differential cross sections at large scattering
angles, i.e., 6=60°, The integral j=0-1 cross sec-
tion was found to be completely insensitive to exchange.

Crawford and Dalgarno (1971), in a model close-
coupling treatment of electron-CO scattering, showed
that because CO has such a small dipole moment
(@°°=0.044ea,=0.112X10"® esu cm), many aspects of
the scattering are similar to the isoelectronic mole-
cule N,, in essential agreement with previous sugges-
tions (Hake and Phelps, 1967). A model electron—-CO
interaction potential, including the long-range dipole
and polarization interactions and an isotropic short-
range contribution, was chosen by forcing agreement
of the momentum-transfer cross section o, at a single
energy E =0.03 eV with the measured value of Hake and °
Phelps (1967). The calculated o,, were then found to
reproduce the energy dependence of the measurements
over the range 0.005= E=<0.10 eV. Calculated j=0—1
differential cross sections were peaked in the forward
direction as expected. However, the differential j =0
— 2 cross sections were found to be dominated by the
electron—quadrupole interaction and were nearly iso-
tropic at low energies, as occurs in electron—-N, scat-
tering. The integral j=0- 0 (elastic) cross section was
found to be rather insensitive to the presence of the
dipole interaction, Ray and Barua (1974), applying the
Born approximation to electron—-CO and —NO scatter-
ing, showed that anisotropic short-range interactions
make small, but nonnegligible, contributions to the
rotational excitation cross sections for energies E
=0.1 eV. (See also Maru and Desai, 1975,1976.)

The first attempt to include the full (anisotropic)
static-exchange-polarization interaction in a multi-
channel calculation of elastic and rotational-excitation
cross sections for electron scattering by a polar mole-
cule is the application to CO by Chandra (1975b). Pre-
vious close-coupling calculations (e.g., Crawford and
Dalgarno, 1971) were based on model interaction po-
tentials that were correct asymptotically, but unrea-
listic near the molecule. Thus, one would not expect
the model to reproduce the shape resonance in CO at
E=2 eV, since the position and width of such a re-
sonance is sensitive to short-range interaction, as we
have seen in the discussion of electron—N, scattering
(see Sec. II.C). In his fixed-nuclei calculation (with
R =2.132q,), Chandra (1975b) employed the “modified
pseudopotential method” of Burke and Chandra (1972)
in which exchange is approximated by explicitly forcing
orthogonality of the scattering orbital to each occupied
ground-state orbital of the same symmetry (see Secs.
I1I1.G.4 and I11.C.1). The ground-state single-configura-
tion representation of CO is (1022023024021 1), Po-
larization was treated semiempirically by “tuning”
the ZI resonance to E =1.75 eV, thereby fixing the po-
larization cutoff radius in Eq. (147) at »,=1.605q¢,. The
polarizabilities of CO were chosen as o,=13.3a} and
a, =2.4a3 (Takayanagi and Itikawa, 1970b). The coef-
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ficients in the single-center expansion of the static po-
tential given in Eq. (118) were calculated using the ap-
proach of Faisal (1970) and Faisal and Tench (1971),
but correcting an error in their formulas and computer
code. [The error occurred only for heteronuclear mole-
cules. Unfortunately, the earlier application to elec-
tron-CO scattering by Burke, Chandra, and Gianturco
(1972) was invalidated by this error in the static po-.
tential given by Gianturco and Tait (1972).] Terms up
to A =24 were retained in Eq. (118) and 15 partial
waves were included in the expansion (115) for sym-
metries Z, Il, and A. The momentum-transfer cross
section was calculated for energies 0.1 <E<10.0 eV.
Although the integral cross section diverges for a polar
molecule in the fixed-nuclei approximation, the mo-
-mentum-transfer cross section is finite. Agreement
with the experimental momentum-transfer cross sec-
tion of Hake and Phelps (1967) is fair, the calculated
cross sections lying above the measured values by
20%-40%.

Chandra (1977) extended his earlier study of elec-
tron—-CO scattering to take proper account of molecular
rotation by incorporating a frame transformation ap-
plied to the R matrix at a suitable boundary (Chang and
Fano, 1972). A description of the general procedure
was given by Chandra and Gianturco (1974); however,
the calculations given there were contaminated by the
error in the static potential described above. Referring
to Fig. 4 and the discussion in Sec. II.E.2, the inner
region 7 < a is treated by applying the “modified
pseudopotential method,” with a semiempirical polariza-
tion potential essentially as described by Chandra
(1975b), in the fixed-nuclei approximation. The radial
coupled equations are solved in the BODY frame and
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the R matrix constructed at » =a, from the radial func-
tions and their first derivatives, according to Eq. (84).
The frame transformation (85) for fixed internuclear
separation is then performed and the LAB-frame radial
functions are integrated into the asymptotic region.
Exchange is ignored in the outer region »>a,, and the
static and polarization potentials are replaced by their
asymptotic forms, scaled so as to be consistent with a
dipole moment d =0.044eq,. The transformation radius
ap =11.774a, was chosen by examining the sensitivity

of the calculated cross sections to a, and selecting a
value in the “stabilized” region, roughly 10a,= ap

= 15a,, where the cross sections are least sensitive

to the choice of ¢r. Chandra reports elastic, rota-
tional-excitation, and momentum-transfer cross sec-
tions for energies E <10 eV, His calculated momen-
tum-transfer cross sections for electron—-CO scattering
are compared in Fig. 64 with the experimental result
of Hake and Phelps (1967) and the model calculations of
Crawford and Dalgarno (1971). The agreement with
experiment is similar to that obtained for electron-N,
scattering (Burke and Chandra, 1972). We would ex-
pect the resonance to be broadened and reduced in
magnitude by vibrational effects not included in this
calculation. At lower energies E =1 eV, the calculated
cross section appears to be too large, probably re-
flecting the inadequacy of the approximate treatment

of exchange and polarization.

Levin, Fliflet, and McKoy (1979) have applied the
“T-matrix Expansion” method (see Sec. II.F.2) to
electron—-CO scattering in the static-exchange approxi-
mation. The procedure and results parallel the earlier
electron—-N, study of Fliflet, Levin, Ma, and McKoy
(1978). .
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fer cross sections for
e—CO scattering. Theory:
(curve B) rotational close
coupling with the Crawford—
Dalgarno model potential;
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tential method by frame-
transformation theory for
two choices of the long- -
range dipole interaction.
Experiment: (curve A)
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(curve A’) extrapolated
from A. (Reprinted from
Chandra, 1977.)
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b. Strongly polar molecules

The electron beam measurements of Slater, Fickes,
and Stern (1972); Slater, Fickes, Becker, and Stern
(1974a,b); Becker, Fickes, Slater, and Stern (1974);
and Stern and Becker (1975) generated a significant
amount of interest and activity in the theory of electron
scattering from molecules having large dipole mo-
ments (d = 1.5ea,). This work is described in some
detail by Itikawa (1978a) and Collins and Norcross
(1978). Only a very brief discussion will be given here.
Several important fundamental questions have been
raised and partially resolved by these efforts.

Rudge (1974), using a simple model “hard sphere
plus dipole” interaction potential and a weak scattering
approximation, calculated differential rotational-exci-
tation cross sections for electron scattering from
CsF(d =83.10eq,), CsCl(d =4.15eq,), and KI(d =4.25eq,) at
energies 0.5 < £<10.0 eV. The calculated cross sec-
tions are roughly an order of magnitude smaller than
Born results, in qualitative agreement with the mea-
surements; they exhibit oscillatory dependence on the
scattering angle.

Allison (1975) in an ambitious model rotational-close-
coupling calculation of electron—-CsF scattering, adopted
a “cutoff dipole” form for the interaction potential. The
LAB-frame coupled equations (Arthurs and Dalgarno,
1960) were solved numerically, and differential j =41
— 42 rotational-excitation cross sections were calcu-
lated at energies E=1.0 and 2.0 eV. The calculated
cross sections are well below the Born results and
show some structure above a scattering angle of
6=60°. The calculated momentum-transfer cross sec-
tion was found to be about one-third of the Born value.

Takayanagi (1974) and Ashihara, Shimamura, and
Takayanagi (1975) pointed out that the Glauber approxi-
mation (Glauber, 1959) should offer improvement over
the Born approximation since it does take some account
of higher-order corrections. Moreover, the dipole in-
teraction is favorable in that the major contributions to
the cross sections come from distant encounters. In-
deed, in the point-dipole approximation, the calculated
differential cross sections for j=0-~j'(j’ < 3) in elec-
tron-CsCl scattering were found to be an order of
magnitude smaller than the Born results. Structure
was observed in the differential j =0—~1 rotational-
excitation cross section. The calculated momentum-
transfer cross section o,, was found to be about an order
of magnitude smaller than the Born result for £ <5 eV
and to vary as 1/E (true of the Born approximation as
well) in qualitative agreement with the beam measure-
ments. Detailed results and discussion of these calcu-
lations are given by Ashihara, Shimamura, and
Takayanagi (1975). Calculated integral total and mo-
mentum-transfer cross sections for electron—-CsCl
scattering are compared with the measurements
(Becker et al., 1974) in Figs. 65(a) and 65(b). The
authors emphasize that the validity of the Glauber ap-

proximation applied at such low energies is still ques-
tionable, in that it incorporates both the adiabatic nu-
clear rotation approximation (see Sec. II.D) and the use
of the Glauber amplitude as an approximation to the
R-dependent elastic scattering amplitude. The latter is
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FIG. 65. Cross sections for e—CsCl scattering (a) total cross
section (b) momentum-transfer cross section. Theory: (solid
curves) Glauber approximation; (dashed curves) first Born ap-
proximation. Experiment: (closed circles) Becker ef al.
(1974). (Reprinted from Ashihara et al., 1975.)

usually considered to be a reasonable high-energy ap-
proximation.

Onda (1976), still working within the framework of
the adiabatic nuclear rotation approximation, showed
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that the Glauber amplitude works surprisingly well, at
least for the differential cross sections at scattering
angles 6=50°, A model ‘“hard sphere plus dipole” po-
tential was assumed for this study.

Itikawa (1976), in an effort to test further the ac-
curacy of the Glauber and adiabatic nuclear rotation
approximations, performed rotational-close-coupling
calculations of j=0—j’ cross sections for electron—-CsF
scattering at energies E <5 eV. The approach is very
close to that of Itikawa and Takayanagi (1969a) and
Itikawa (1969). The electron—CsF interaction was
represented by cutoff dipole and quadrupole potentials
[with d =3.1eq, and ¢ =— 13.4ea? (Stogryn and Stogryn,
1966)]. Generally, the Glauber and adiabatic nuclear
rotation differential cross sections were found to agree
well with the close-coupling results for angles < 60°.
At larger angles, the cross sections tend to be sensi-
tive to the short-range interaction which was different
in each of the three studies. Only qualitative agree-
ment was found between the calculated differential and
integral cross sections and the measurements (Slater
et al., 1974a; and Stern and Becker, 1975).

Itikawa (1977) extended this model close-coupling
study to a range of dipole moments d = 4.0eq, in order
to illustrate the variation of the integral elastic, ro-
tational-excitation, and momentum-transfer cross sec-
tions with respect to d at energies £ =0.03 and 1.0 eV.
The most notable features of this study, also observed
in the earlier work of Garrett (1972), are the strong
saturation of the momentum-transfer cross sections
for d= lea,, followed by an oscillation with respect to
increasing d [see also Itikawa and Takayanagi (1969a)
and Itikawa (1969)]. The detailed behavior is expected
to be sensitive to short-range interactions, and there-
fore will not be accurately represented in such a model.

Gianturco and Rahman (1977b) have examined the
possible occurrence of Wigner cusps in the electron-HF
elastic and rotational-excitation cross sections at ro-
tational thresholds. Ignoring exchange effects, the
authors solved the LAB-frame coupled equations in-
cluding some closed as well as open rotational channels.
The expected cusps appeared at the opening of each new
rotational channel.

Dickinson and Richards (1975) and Dickinson (1977)
have constructed a particularly simple model to de-
scribe electron scattering from polar molecules.,
Recognizing the dominance of long-range scattering,
they apply time-dependent perturbation theory to the
scattering at large impact parameters [see Seaton
(1962), and Seraph (1964)] and impose constraints on
the small-impact parameter scattering to preserve
unitarity. Combining the Born approximation with
time-dependent perturbation theory, and using a hard-
sphere short-range interaction toapproximate the large-
angle (small-impact) scattering, Dickinson (1977) cal-
culates total integral cross sections for electron-CsF
in excellent agreement with model close-coupling cal-
culations. For electron—KI scattering, the calculated
momentum-transfer cross section is qualitatively simi-
lar to that observed by Rudge, Trajmar, and Williams
(1978).

A general semiclassical perturbation theory (SPS),
applicable to a broad class of collision problems, is
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described by Miller and Smith (1978). Mukherjee and
Smith (1978) describe in detail the application of this
method to elastic scattering and rotational excitation in
collisions of electrons with polar molecules. ' It is
argued that the important assumptions of the theory,
viz., the validity of first-order perturbation theory and
a semiclassical approximation to the S matrix, are
justified by the long-range nature of the dipole inter-
action and the large rotational quantum numbers that
are usually important. The calculated (SPS) Aj=+1
rotational-excitation and total integral cross sections
are smaller than the Born results for molecules such
as CsF and KI, where the Born approximation fails

due to violation of unitarity. For small dipole mo-
ments, the SPS theory appropriately reduces to the
Born approximation. Hickman and Smith (1978) extend
the SPS theory to calculation of the momentum-transfer
cross section, Since the momentum-transfer cross
section emphasizes large-angle scattering, the validity
of the basic assumptions of SPS theory is less clear.
Nevertheless, the SPS cross sections do appear to be
superior to the Born results for strongly polar mole-
cules.

Rudge (1978b, c) has extended his earlier model cal-
culations (Rudge, 1974) by incorporating a close-
coupling solution of the coupled equations. The model
electron—molecule interaction potential consists of a
spherical repulsive core (“hard sphere”) potential
joined to a dipole potential at the hard-sphere radius
v,=0.43d (where d =dipole moment), which was found
to yield the observed electron affinity for LiF (Rudge,
1978a). Rudge finds that the calculated momentum-
transfer cross sections for a range of dipole moments
2.02d=45¢a, and energies 0.5 < E < 8.0 eV vary be-
tween 45% and 20% of the Born-point-dipole results,
the difference being greatest for large d and high en-
ergy. However, in comparing his results with other
theoretical studies, Rudge concludes that a wide dis-
crepancy exists between different theories and between
experiment and theory.

The first effort to realistically account for short-
range interactions and their importance in the deter-
mination of the momentum-transfer cross section was
the theoretical study of electron-LiF scattering by
Collins and Norcross (1977). An ambitious extension
of this study to CsF, KI, LiF, NaF, and NaCl was also
made by Collins and Norcross (1978). The electron-
molecule interaction is represented by a “local-ex-
change” approximation (Hara, 1967; see Sec. I1.G.2) to
the full static-exchange interaction. (In the case of
LiF, calculations were also performed using a model
polarization potential.) The strong electron—nuclei
attractive interactions, screened by the bound elec-
trons, are therefore included along with the strong long-
range dipole interaction that dominates at large elec-
tron—-molecule separations. Several model interaction
potentials used by other investigators also were studied
for comparison. As an alternative to the frame trans-
formation, the authors note that the rotational-impulse
approximation is valid for “low-1" partial waves (hence,
small total angular momentum J), in which case the
ordinary fixed-nuclei, BODY-frame calculation is ap-
propriate, even for strongly polar targets. [The authors
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refer to the adiabatic nuclear rotation approximation
as the “adiabatic rotating molecule” (ARM) approxi-
mation.] For the “larger-{” partial waves, full LAB-
frame (rotating-nuclei) close-coupling caclulations are
performed. Since the radial functions corresponding to
large ! do not “penetrate” the short-range region, only
the long-range interaction need be included in the LAB-
frame calculation. For sufficiently large /, the partial-
wave Born approximation is valid, and this combined
with the full Born cross section [cf. Eqs. (169) and
(172)] permits summation over I—~ = (see Crawford and
Dalgarno, 1971), This approach was tested for the
static approximation to electron—LiF scattering by
performing fully converged calculations in the LAB
frame for all partial waves. The coupled radial equa-
tions in both the BODY- and LAB-frame treatments
were solved using the Green function approach (Sams
and Kouri, 1969a,b) with stabilization (White and Hayes,
1972). A thorough discussion of the numerical pro-
cedure, convergence studies, and error limits is given
by the authors. In most cases, it was necessary in the
close-coupling calculations to consider partial waves
1<26 and m, <2, Detailed comparisons are made of
partial, differential, integral, and momentum-transfer
cross sections for elastic scattering and rotational ex-

D(a.u.)

1.0 2.0 3.0

140 | 4.0
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citation with the results of other theoretical studies and
existing experimental measurements. A number of
general conclusions appear to be well established for
electron scattering from strongly polar molecules: (1)
The adiabatic nuclear rotation approximation, applied
as described by the authors, is valid, and the various
cross sections summed over final rotational state are
essentially independent to the initial value of j. (2)
The total integral cross section is determined almost
entirely by small-angle scattering, and hence by the
dipole interaction. (3) The Born approximation to the
differential cross section is valid for scattering angles
6<15°. (4) The large-angle differential cross section
and the momentum-transfer cross section are very
model dependent, sensitive to short-range interactions
including exchange, and poorly determined by the Born
and distorted-wave approximations. (5) The classical
approximation of Hickman and Smith (1978) and the
semiclassical approximation of Dickinson (1977) ap-
pear to bracket the momentum-transfer cross section,
above and below, respectively (see Fig. 66). (6) The
unitarized Born II and Born III approximations to the
momentum-transfer cross section also appear to pro-
vide simple lower and upper limits, respectively (see
Fig. 66). Certain of these conclusions, in particular
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FIG. 66. Momentum-transfer
cross sections at thermal en-
ergy as a function of dipole
moment. Theory: (curves BI,
II, III) Born and two versions
of the unitarized Born approx-
imation; (curve CPT) class-

~N o ical theory, Dickinson (1977);
400 © (SPT) semiclassical theory,
! Hickman and Smith (1978);
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~ and KI) theoretical analysis of
= Collins and Norcross. Exper-
300 ° iment: (A) Christophorou
wi et al. (1967), Christophorou

and Christodoulides (1969);
(O) reanalysis of swarm data
of Christophorou and Pittman
(1970) by Fabrikant (1977).
(Reprinted from Collins and
Norcross, 1978.)
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(2) and (3), were arrived at earlier by a number of in-
vestigators; they are included in the present discussion
for completeness. One striking feature of the electron-
LiF scattering cross sections is the occurrence of a
shape resonance at E=2 eV in both Z and Il symme-
tries. The resonance was not found in the static ap-
proximation, where exchange is ignored completely,

or with any of the dipole cutoff model potentials studied.
In Fig. 67, the product Eo, is illustrated for various
theoretical approximations. The Glauber (Shimamura
1977¢) and semiclassical-perturbation (Hickman and
Smith 1978) cross sections are considered to be too
small due to the neglect of short-range interactions and
the consequent underestimate of large-angle scatter-
ing. Collins and Norcross (1978) find similar re-
sonances in NaF and NaCl, but not LiCl. Stabilization
LiF ~ structure calculations of Jordan and Luken (1976)
and Stevens (1977) suggest that the resonances in elec-
tron—-LiF scattering are real. However, a recent study
of electron—-LiH and —LiF scattering by Collins, Robb,
and Norcross (1979) casts serious doubt on the exis-
tence of these resonances. In this study both exact
static-exchange (ESE) and approximate “orthogonalized
static model exchange” (OSME) calculations were car-
ried out and compared with one another and with other
approximations. In the OSME approach, the “local-ex-
change” [the version of Hara (1967)] was employed;
however, in addition, the continuum radial function
was constrained to be orthogonal to the occupied core
orbitals. The effect of this orthogonalization constraint
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was to remove the resonances in both the Z and I1
symmetries for electron—LiF scattering., Moreover,
the OSME and the exact static-exchange calculations
are in good agreement for both LiH and LiF. The other
conclusions in the paper of Collins and Norcross (1977)
remain unaffected by the results of the more recent
study.

The calculated differential total (elastic plus rota-
tional-excitation) cross sections at E =5.44 eV are com-
pared in Fig. 68 with the relative experimental cross
section of Vuskovié, Srivastava, and Trajmar (1978)
and with the results of the “dipole cutoff” model (DCO)
and the Born approximation (BI); the experimental data
are normalized to the static-exchange (SE) curve at
6=40°, Somewhat better agreement is obtained at
E =20 eV (not shown). The classical (Mukherjee and
Smith, 1978) and Glauber (Shimamura, 1977c) differen-
tial cross sections (not shown) appear to be good for
6= 45°, :

Collins and Norcross (1978) performed several model
close-coupling calculations of differential electron—KI
scattering cross sections, comparing Born I and Born
II with the results of different “dipole cutoff” poten-
tials. They conclude that the experimental relative
cross sections of Rudge, Trajmar, and Williams (1976),
previously normalized to the distorted-wave calculation
at 6=15°, should be renormalized downward. They
argue that the good agreement with the Born I approxi-
mation implied by the original normalization is un-
realistic, based on their other comparisons. In Fig. 69,
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FIG. 68. Differential cross sections at 5.44 eV for e—LiF scat-
tering. Theory: (curve BI) first Born approximation, (curves
SE, SEP) static exchange and static~exchange polarization, re-
spectively (curve DCO) dipole cutoff model potential, Collins
and Norcross (1978). Experiments: Vuskovié et al. (1979) nor-
malized to SEP theory at 40°, (Reprinted from Collins and
Norcross, 1978.)

both normalizations are shown along with the various
theoretical curves. The model “dipole cutoff” studies
included in this work and the later applications to elec-
tron-KOH and —-CsOH scattering by Collins, Norcross,
and Schmid (1979) provide examples of the applicability
of Fabrikant’s extension of effective-range theory to
electron—-polar-molecule scattering (Fabrikant, 1976,
1977). In this theory, the low-energy momentum-trans-
fer cross section may be expressed simply as

Om =Tk a +Bsin(y +u Ink?)],

where o, B, and u are constants depending only on the
dipole moment d, and where ¥ depends on d and short-
range interactions. Thus, the product Eo¢, exhibits
sinusoidal oscillation with respect to InE (recall
E =k Ry). Fabrikant’s simple result is particularly
useful since only the piase of the oscillation, not its
amplitude, is sensitive to short-range interactions.
When the target is a positive molecular ion, e.g.,
CH*, the Coulomb field dominates the scattering. How-
ever, the dipole interaction still provides the long-
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FIG. 69. Differential cross section at 6.74 eV for ¢—KI scat-
tering. Theory: (curves BI, II) Born and unitarized Born ap-
proximation; (curve DW) distorted waves, Rudge et al. (1976);
(curves DCO) various dipole cutoff model potentials, Collins
and Norcross (1978). Experiment: (closed circles) original
normalization, Rudge et al. (1976); (open circles) renormal-
ized by Collins and Norcross (1978). (Reprinted from Collins
and Norcross, 1978.)

range anisotropic term and can provide strong rota-
tional coupling. Cross sections for rotational excitation
of CH* have been calculated by Chu and Dalgarno (1974)
using the Coulomb-Born approximation and by Mathur
(1978) using the Glauber approximation. The Coulomb-
Born results, which are expected to be the more re-
liable of the two near threshold, predict a finite cross
section at threshold. The results of the two calculations
agree at higher energies. Chu (1975) discusses the
general case of electron scattering from a symmetric-
top molecular ion in the Coulomb Born approximation,
and gives results for H,0".

2. Vibrational excitation

In vibrational excitation, the existence of a finite
dipole moment is less important in determining the
cross sections than in elastic scattering and rotational
excitation, although the dipole interaction may still be
dominant at threshold for some molecules. Classically,
large vibrational-excitation cross sections result from
strong forces exerted on the nuclei by the scattered
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electron. Generally, short-range interactions are ex-
pected to be important even for polar molecules. As
in the case of nonpolar molecules, the vibrational-
excitation cross sections are strongly enhanced by re-
sonant scattering.

a. CO, N,0, H,0, NO

The mechanism for vibrational excitation of CO is at
least qualitatively understood (Schulz 1973,1976). Being
isoelectronic with N,, CO might be expected to scatter
electrons in a similar manner. Indeed, a shape re-
sonance, shown to be of Il character, has long been a
familiar feature of the total cross section (see Massey,
1969), and the momentum-transfer cross section Hake
and Phelps, 1967; Land, 1978). A hint of structure,
presumably related to temporary formation of vibra-
tional states of CO™, is evident in the elastic cross
section (Ehrhardt, Langhans, Linder, and Taylor,
1968). Finally, well-defined structure appears in the
v =02’ vibrational-excitation cross sections (Schulz,
1964; Ehrhardt ef al., 1968; and Boness and Schulz,
1973) very similar to that observed in electron—N,
scattering, but somewhat broader in comparison.
Boness and Schulz (1973) have shown, using a simple
barrier penetration analysis, that the relative magni-
tudes of v =07’ cross sections, for v’ =3,4,5, etc.,
can be simply related to (centrifugal) barrier pene-
tration probabilities for the dominant partial waves.
The II, compound state in N, is associated with an in-
cident and outgoing d wave, while the II compound
state in CO has some p-wave contribution as well (see
discussion of Chang, 1977a,b). The more efficient
penetration of the p relative to the d waves can account
for the resonances in CO being broader than those in
N,. Zubek and Szmytkowski (1977) have applied the
“boomerang model” (Birtwistle and Herzenberg, 1971)
and obtained very good (semiempirical) agreement
with the observed structure (Ehrhardt, Langhans,
Linder, and Taylor, 1968). The v=0-1 cross section
in the region between threshold (£ = 0.26 eV) and the
onset of the resonance (£ = 0.9 eV) is quite small and
appears to be determined by nonresonant scattering.
Figure 70 (Schulz, 1976) shows a comparison of the
v=0—1 cross section measured by the swarm (Hake
and Phelps, 1967) and beam (Ehrhardt ef al., 1968)
methods and that calculated by Born and close-coupling
methods using simple model electron—-CO interaction
potentials (Itikawa and Takayanagi, 1969b,c). The dis-
crepancy between the beam and swarm results in not
understood (Schulz, 1976). The “best” agreement with
the swarm data is actually obtained by using the Born-
dipole approximation (Takayanagi, 1966, 1967) with the
vibrational matrix element of d(R) extracted from the
infrared intensity data (Phelps, 1968; Penner and Olfe,
1968). Itikawa and Takayanagi (1969b,c), carried out
Born and limited close-coupling calculations of ro-
tational-vibrational excitation (v=0,j=0-2'=1,j =0,1)
cross sections using a model interaction potential which
included a short-range static contribution (taken to be
independent of R), and dipole and polarization terms,
both cut off in the manner of Eq. (147). Assuming a
“reasonable” value for the cutoff radius »,=1.5a, and
vibrational matrix elements, cross sections were cal-
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FIG. 70. Cross sections for » =0 —1 vibrational excitation in
e—CO collisions near threshold. Theory: (dashed curves)
close coupling and Born, Itikawa and Takayanagi (1969b). Ex-
periment: (solid curve, beam experiment), Ehrhardt et al.
(1968); (solid curves, swarm experiment), Hake and Phelps
(1967). (Reprinted from Schulz, 1976.)

culated for v=0—~1(j=0—~ 0 and 0—1) transitions. In
the close-coupling calculation truncation was rather
severe, with only the states v=0,1 and j=0,1 being
retained. The theoretical cross sections given in Fig.
70 correspond to the full electron—CO model interaction
as described. In Fig. 71, theoretical Born and close-
coupling cross sections for v=0~1(j7=0—0 and 0~ 1)
are compared for various choices of interaction and for
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FIG. 71. Theoretical cross sections for v =0 —1 vibrational
excitation in e—CO scattering in the Born and close-coupling
approximations. (Reprinted from Itikawa and Takayanagi,
1969b.) N
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a polarization cutoff radius of ».=1.54,. The conclus-
ions are that the dipole and polarization interactions
are of comparable importance, and that when both are
included, the Born approximation fails. A quantitative
comparison of these results with experiment suggests
something is still missing in the theory. Itikawa (1970),
using the T-matrix elements from this study, calcu-
lated differential rotational-vibrational-excitation cross
sections. Generally, he found the Born and close-
coupling results were in agreement at small angles,
where the dipole interaction was most important, but
were quite different at angles 6260°. Again, compari-
son with relative v =0~ 1 differential cross-section
measurements (Ehrhardt et al., 1968) at 0.74 eV sug-
gested that the Born-dipole approximation was best. If
indeed this turns out to be the case, a somewhat more
elaborate calculation, close-coupling or otherwise,
should exhibit the effective “cancellation” of other in-
teractions.

Above the 1-T eV resonance region, other resonances
are observed (Schulz, 1973,1976), some of which are
very narrow and presumably of the Feshbach (or core-
excited)'type. Even in the ionization continuum, e.g.,
at 20 eV, there is evidence for resonant elastic scat-
tering (Truhlar, Williams, and Trajmar, 1972) and
vibrational excitation (Chutjian, Truhlar, Williams,
and Trajmar, 1972). Theoretical polarized-Born cal-
‘culations of the elastic differential cross sections in the
energy range of 6-8 eV were found to be in fairly good
agreement with the relative measurements (Truhlar,
Williams, and Trajmar, 1972) at angles 6= 60° for
several choices of model interaction potential. Similar
model-interaction studies of v =0—~1 vibrational exci-
tation were less successful because of the strong re-
sonance contribution around 20 eV (Chutjian ef al.,
1972).

Broad shape resonances are observed in electron—
N,O scattering at E=~ 2,3 eV and H,0 at E=~ T eV, both
in the elastic and vibrational-excitation cross sections
(Schulz, 1976). Dubé and Herzenberg (1975) have ap-
plied the impulse approximation (here equivalent to the
“adiabatic nuclear vibration” approximation) to vibra-
tional excitation in N,O near the 2.3 eV resonance. By
fitting a few low-lying transitions, they obtain good
agreement with the measured relative cross sections
for higher members of the series “(Azria, Wong, and
Schulz, 1975). This short-lived resonance is estimated
to have a width of approximately 0.7 eV.

In H,O, Itikawa (1974b) has examined nonresonant
contributions to the vibrational-excitation cross sec-
tions by performing Born-approximation calculations
in which the electron—H,O interaction was modeled by
a sum of (long-range) dipole, quadrupole, and polariza-
tion potentials (also see Itikawa, 1974a). The calcu-
lated cross sections do not exhibit the sharp reson-
ances observed just above threshold (to be discussed
in the next section). This is certainly not surprising
since these resonances are most likely tied to “final-
‘state effects,” totally neglected in the Born approxima-
tion. Short-range interactions are likely to be impor-
tant from threshold to higher energies.

In the case of NO, there have been no theoretical cal-
culations of vibrational-excitation cross sections to
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date. However, much has been learned from experi-
mental investigations (Schulz, 1973,1976). Narrow
shape resonances dominate the vibrational-excitation
cross sections from threshold up. As in the case of
electron-0, scattering, the lifetimes of the resonant
NO~ states exceed the vibrational periods so that rather
well-defined vibrational states of NO~ exist and may be
closely correlated with the positions of the resonant
peaks. The electronic resonant “state” (Born—-Oppen-
heimer) is characterized as 32 -, and a semiempirical
potential curve has been obtained by Spence and Schulz
(1971). Only the v =0 vibrational state of NO~ is stable,
with an electron affinity of 24(+10, -5) meV (Siegel,
Celotta, Hall, Levine, and Bennett, 1972). The vibra-
tional energy level spacing for the bound and resonant
vibrational states is about 165 meV. Experimental evi-
dence also has been found for resonance scattering via
the higher-lying 'A and '=* states of NO~ (Burrow, 1974).
Tronc, Huetz, Landau, Pichon, and Reinhardt (1975)
have concluded on the basis of their observed differen-
tial vibrational-excitation cross sections that the 3z -
and 'A are long-lived states while the higher 1=+ state
is an intermediate case, i.e., more like the N, and CO
“boomerang” resonances (Schulz, 1973,1976). The ob-
served branching ratios are consistent with a lower
barrier height than that found in O;. This is consistent
with a strong mixing of p and d waves (Bardsley and
Read, 1968). As in the case of O,, very little is known
about nonresonant contributions to the electron scatter-
ing cross sections.

b. Threshold resonances in the hydrides

Rohr and Linder (1975) in carrying out a high-resolu-
tion crossed-beam measurement of vibrational excita-
tion in electron scattering from HCI discovered a re-
markable feature that had not been predicted (see review
by Linder, 1977). The v=0—1 cross section was found
to exhibit a large, narrow resonance peak just above
threshold and a very broad resonance at higher ener-
gies. The angular distribution near threshold was found
to be isotropic, suggesting that asymptotically the scat-
tering wave function was dominated by the s-wave con-
tribution (see Chang, 1977c). Similar resonances were
found in the cross sections for the higher transitions
v=0—2,3, etc., as well as in other polar molecules:
HF (Rohr and Linder, 1976); H,O (Seng and Linder,
1976; Rohr 1977c); HBr (Rohr 1977a, 1978); and even
a nonpolar molecule SF; (Rohr 1977b,1979). The
v=0-1 differential cross sections at 120° for HF,

HC1, and HBr are illustrated in Fig. 72 (Rohr, 1978).

Efforts to provide a theoretical explanation of the
striking threshold resonances have met with some suc-
cess. Gianturco and Rahman (1977a) have shown
formally that such a resonance could be accounted for
strictly in terms of a “final-state interaction” domi-
nated by the long-range dipole potential energy. The
authors conclude that sharp resonances should be
present for HC1 and HF, but not HI; they predicted only
a broad feature for HBr.

Dubé and Herzenberg (1977) invoked the concept of a
“virtual state” (Taylor, 1972) to explain the existence
of the threshold resonances, and performed a model

' scattering calculation obtaining quite good qualitative



110 N. F. Lane: The theory of electron-molecule collisions

x107'¢
06
(A
b ; v
o2t V{fz o x4 HF

05t

Differential cross section {cm? sr-')

0 05 10 15 20 25 30 35
Collision energy {eV

FIG. 72. Experimental differential cross sections at 120° for

v =0—1 vibrational excitation in e—~HF, ¢—~HCl, and e—~HBr

scattering. (Reprinted from Rohr, 1978.)

agreement for the case of HCI studied. The electron—
HCI interaction was represented by the dipole potential
for » 2 7,. The inner region » <7, was represented by
means of a logarithmic derivative f(R) at the boundary
7 =7, A range of parameters in f(R), where R is the
internuclear separation, was obtained by considering
alternative physically reasonable charge distributions
near the nuclei. Calculated cross sections for v=0-~1
and v =0— 2 transitions are compared with experiment
(Rohr and Linder 1975) in Fig. 73. It is not really clear
how much the dipole interaction influences the calcu-
lated cross sections since the existence of a “virtual
state” is already implied by the value chosen for the
logarithmic derivative f(R) at 7 = 2a,. Nevertheless,
the agreement is quite good. The calculated v=0-~1
cross section also reveals a sharp cusp at the v=0—~2
threshold. (The experimentally observed cusp is more
striking in HF than in HCl. See Fig. 73.)

Taylor, Goldstein, and Segal (1977) applied the
stabilization method (Taylor, 1970; Hazi and Taylor,
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1970) to find potential energy curves of HC1™ resonance
states. The authors are successful in correlating the
qualitative shapes and positions of the theoretical HC1~
curves with a variety of experimental observations, in-
cluding: dissociative attachment (Azria, Roussier,
Paineau, and Tronc, 1974; Ziesel, Nenner, and Schulz,
1975; and Abouaf and Tiellet-Billy, 1977), associative
detachment (Howard, Fehsenfeld, and McFarland, 1974),
elastic scattering (Burrow 1974), and vibrational exci-
tation (Rohr and Linder, 1976; Ziesel ef al., 1975). In
regard to the vibrational-excitation threshold resonances,
questions still remain regarding the true nature of these
features, and to what extent the phenomenon is tied to
particular classes of molecular targets. It is not clear
that a stabilization calculation (Taylor et al., 1977) can
be expected to describe a “virtual state,” if indeed that
is responsible for the effects. [See Nesbet (1977), re-
garding this point.]

F. Electronic excitation

This review does not include electronic excitation.
However, a brief mention of recent advances is ap-
propriate. Early work is described by Massey (1969)
and consists mainly of Born approximation cal-
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culations for H, and other simple molecules. Recent
advances in describing e~H, electronic excitation have
been along two lines: close coupling (CC) calculations
using traditional methods (Chung and Lin, 1978), and
calculations based on a version of the method of dis-
torted waves (DW) using modern LZ-basis techniques
(Rescigno, McCurdy, and McKoy, 1975b; Rescigno,
McCurdy, McKoy, and Bender, 1976; Fliflet and
McKoy, 1979). Both approaches are, in principle, su-
perior to the Born—Ochkur—Rudge theory (Cartwright
and Kuppermann, 1967; Chung, Lin, and Lee, 1975;
Chung and Lin, 1972,1974). However, there are cases
of significant disagreement between the CC and DW re-
sults and the issue is not yet resolved.

Progress in the theoretical understanding and de-
scription of electronic excitation of N, and more com-
plex molecules by electron impact is far less satisfy-
ing. The theoretical and experimental situation for N,
is nicely described in three comprehensive papers by
Cartwright, Chutjian, Trajmar, and Williams (1977a, b)
and Chutjian, Cartwright, and Trajmar (1977). Born
and Born-Ochkur—-Rudge theories provide only qualita-
tive descriptions except at high energies. The method
of distorted waves, using L2-basis techniques, has
recently been applied to excitation of the B *Il,, C°l,,
and E %Z; states of N, by low-energy electron impact
(Fliflet, McKoy, and Rescigno, 1979a) and to dissocia-
tion of F, (Fliflet, McKoy, and Rescigno, 1979D).

An interesting recent application of the semiclassical
impact-parameter theory of electron scattering (Seaton,
1962; Stauffer and McDowell, 1966; and Hazi, 1979)
to deexcitation of KrF and XeF excimers by Hazi,
Rescigno, and Orel (1979) suggests that this simple
method may have promise in dealing with spin-allowed
electronic transitions in complex molecules, especially
where highly excited states are involved.

IV. CONCLUDING REMARKS

In this review an attempt has been made to describe
recent progress both in the application of traditional
methods and in the development of new approaches to
the electron—molecule collision problem. We have
focused on low-energy elastic scattering and rotational
and vibrational excitation since most of the recent
theoretical progress in the field has been restricted to
these processes. The molecule is a complex target,
and an adequate theoretical description of electronic
excitation will remain a challenging problem for some
time. As in the atomic case, one expects a steady de-
velopment of the art of applying variational theory to
the electron—molecule continuum, perhaps with the use
of pseudostates. However, unlike the atomic problem,
here one must properly deal with the nuclear degrees
of freedom.

The multicenter nature of the electron—molecule in-
teraction introduces a degree of complexity not present
in the atomic problem. Single-center (partial-wave)
expansions of the scattering wave functions are slowly
convergent so that large cumbersome multichannel
scattering problems result even for the simple example
of elastic scattering from a small molecule (fixed-
nuclei) like N, or CO. In the strongly polar molecules
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one has in addition to this difficulty the strong coupling
of partial waves due to the dipole interaction which
persists out to very large electron—molecule separa-
tions. Much progress has been made in the use of so-
called “L? integrable bases,” thus taking advantage
of the well developed technology of complex molecular
structure calculations. In the applications to electron—
molecule-scattering, large basis sets of these functions
are required to represent the continuum wave function
either inside a box (R-matrix method) or in all space
(T -matrix expansion method). While these approaches
have some very real potential advantages over more
conventional (coupled-channel, etc.) methods, their
implementation is nevertheless quite complicated. So
far, no straightforward inexpensive procedure has been
developed to handle such problems. There is still a
clear need for workers in the field to push forward with
complementary methods making sure that a significant
overlap is maintained in the choice of systems and
processes so that the relative advantages of the methods
can be determined. At this stage in the development of
the theory, a certain amount of duplication is neces-
sary. The time is right for precise calculations of
elastic scattering and rotational and vibrational and
electronic excitation cross sections for simple mole-
cules at low energies. Toward the other end of the
scale, the continued development and application of
more flexible but less precise approximate methods
(e.g., multiple scattering theory) to complex molecules
will continue to produce interesting results. Calculations
of this type are particularly useful in providing the
guidance often required for the proper interpretation of
experimental data.
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APPENDIX: ACCURATE STATIC-EXCHANGE
CALCULATIONS FOR ELECTRON-H, SCATTERING

In developing new methods or updating traditional
methods of treating electron—molecule scattering it is
important to have available accurate numerical results
for purposes of testing and calibration. Recently
Collins, Robb, and Morrison (1979) have performed a
set of accurate static-exchange calculations for e-H,
scattering in the fixed-nuclei approximation (BODY-
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TABLE 1. Static-exchange eigenphase sums (in radians) and cross sections (in a(z,, in parentheses)
for e—H, collisions. Results are converged to better than 1%; the values of the convergence pa-
rameters which ensure this criteron are shown for each symmetry.

k*(Ry) 2z, 25, 1, 1, N,

0.01 2.9303(56.468)  0.0134 (0.2073)  0.0012(0.0048) —0.0025(0.0316)  —0.0020(0.0116)
0.04 2.7246(53.034)  0.0493 (0.6763)  0.0038(0.0060) 0.0045(0.0095)  —0.0034(0.0131)
0.09 2.5267(47.896)  0.1233 (1.9397)  0.0070(0.0070) 0.0262(0.1396)  —0.0043(0.0122)
0.16 2.3399(41.823)  0.2459 (4.3867)  0.0110(0.0097) 0.0642(0.5360)  —0.0044(0.0094)
0.25 2.1679(35.483)  0.4084 (7.5826)  0.0169(0.0155) 0.1155(1.1592)  —0.0031(0.0058)
0.36 2.0114(29.467)  0.5797(10.096) 0.0252(0.0263) 0.1729(1.8432) 0.0001(0.0025)
0.49 1.8729(24.053)  0.7269(10.951) 0.0363(0.0436) 0.2289(2.3701) 0.0054(0.0012)
0.64 1.7509(19.427)  0.8361(10.453) 0.0501(0.0677) 0.2779(2.6449) 0.0128(0.0029)
1.00 1.5509(12.481)  0.9591 (8.092) 0.0840(0.1306) 0.3481(2.5535) 0.0324(0.0155)
Imax 10 11 12 11 12

Amax 20 22 24 22 24

Uinax 2 3 4 3 4

ny 2 2 2 2 2

frame) with just this purpose in mind. These authors
solved the integral-equation counterparts of the BODY-
frame coupled radial equations (116) treating the ex-
change term iteratively, in a manner similar to the
earlier approach of Tully and Berry (1969). The 2/
ground state of H, was represented by the near-Hartree—
Fock wave function of Fraga and Ransil (1961) at the
equilibrium separation R =1.402a,. The total energy
corresponding to this wave function is —1.1335 hartree
and the permanent quadrupole moment is ¢=0.480ea2.
In all cases, the integration mesh and the number of
terms A <A, and /<[, retained in the expansions of
the wave function and potentials, respectively, were
chosen so as to ensure an accuracy of 1% in the eigen-
phase sums. The K matrix was determined at 50a,.

In Table I, the eigenphase sums are given for sym-
metries 2Z,, 2Z,, Al,, %1,, and %A, at nine energies

TABLE II. Comparison of the dominant eigenphase shifts (in
radians) of each symmetry for e—H, scattering from the itera-
tive static-exchange calculations (CRM) with those obtained in
other studies. Note that 1.0(—2)=1.0%x1072,

%*(Ry) o po do p dr
0.01 CRM 2.928 1.28(~2) 2.3 (=3) =3.42(—=3) 1.37(-3)
FM 29 2,929 9.0 (—4)
sb 2,931 4.3 (-3)
TBC 2.939
0.36 CRM 1.978 0.567 2.71(=2)  0.163 0.019
FM 1.979 0.532 2.66(—2)  0.161 0.019
s 1.949 0.561 1.83(—2)  0.163 0.018
TB 2.006 0.537 2.0 (—2) 0.162 0.014
1.00 CRM  1.447 0.931 9.10(—2)  0.324 0.072
FM 1.45 9.10(—2)
S 1.418 0.927 7.29(=2)  0.306 0.062
TB

2 Fliflet and McKoy (1978a).

b Schneider (1975b).

¢ Tully and Berry (1969).

d The so and do eigenphases are the corrected values of
Fliflet and McKoy (1978a).
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between 0.01 and 1.00 Ry. The values of relevant con-
vergence parameters are also given for reference,
where [, .. and [, are the maximum order partial
waves retained in the expansions of the scattering func-
tion outside and inside the exchange kernel, respec-
tively, A,.x is the maximum order term retained in the
expansion of the static potential, and »{* is the number
of terms retained in the expansion of the bound mole-

TABLE III. Static-exchange eigenphase shifts (in radians) for
selected energies. (Note: in forming the eigenphase sums for
3, symmetry, 7 should be added.)

(Ry) s, 2z, I, n, 2N,

0.01 —0.21359 0.01283  0.00137 —0.00342 —0.00214
0.00234  0.00065 —0.00017  0.00095  0.00018
—0.00005 —0.00004 0.00002 —0.000 01
0.000 05

0.04 —0.42337 0.04635 0.00295 0.00371 —0.0045
0.00497  0.00228 —0.00023 —0.00049  0.000 95
0.00115 0.00070 0.00088  0.00102 —0.00021
—0.00017 —0.00017 0.00023  0.00027  0.00029
0.00036  0.00012  0.00001 —0.00006  0.000 02
0.00002

0.16 —0.81778 0.23853 0.00748 0.05831 —0.00748
0.01209 0.00473 0.00208 0.00368 0.00185
0.00253  0.00160 —0.00013  0.00139 —0.00018
—0.00003 —0.00007  0.00096 —0.00010  0.00087
0.00108  0.00077  0.00050 0.00069  0.00044
0.00045  0.00029 0.00014  0.00024  0.00008

0.36 —1.16394 0.56776 0.01902 0.16307 —0.00505
0.02712  0.00773  0.00349  0.00612  0.00291
0.00403  0.00247 —0.00003 0.00218 —0.00011
0.00168 0.00004 0.00154 0.00000 0.00136
0.00011  0.00120 0.00083 0.00110  0.00073
0.00077  0.00054 0.00034  0.00047  0.00025

1.00  1.44726  0.93097 0.07171  0.32390  0.024 32
0.09146  0.02024  0.00712  0.01695  0.004 50
0.00753  0.00456  0.00282  0.00417 —0.00010
0.00295  0.00022  0.00011  0.00017  0.00213
0.00033  0.00212  0.00150 0.00199 0.00116
0.00139  0.00103  0.00070 0.00095  0.00043
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cular target orbital. In Table II, the dominant eigen-
phase shifts (CRM) are compared with those of other
calculations. Finally, individual static-exchange eigen-
phase shifts are given in Table III at selected energies.
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