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The present status of quantum chromodynamics formalism for inclusive deep-inelastic scattering is
reviewed. Leading-order and higher-order asymptotic freedom corrections are discussed in detail. Both
the formal language of operator product expansion and renormalization group and the intuitive parton
model picture. are used. Systematic comparison of asymptotic freedom predictions with deep-inelastic data
is presented. Extensions of asymptotic freedom ideas to other processes such as massive p-pair
production, semi-inclusive deep-inelastic scattering, e e annihilation, and photon —photon scattering are
briefly discussed. The importance of higher-order corrections is emphasized.
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I. INTRODUCTION

A. Preliminary remarks

Quantum chromodynamics (QCD) is the most promis-
ing candidate for a theory of strong interactions. It has
the property of asymptotic freedom which seems to be
consistent with the de ep- inelastic data, and it provides
a possibility of confining quarks and gluons. The quark
and gluon confinement in QCD has not yet been proven.
On the other hand, the theoretical structure of asymp-
totic freedom in deep-inelastic scattering, in the lead-
ing order and in the next to the leading order in the ef-
fective strong interaction quark —gluon coupling con-
stant, seems to be wel. t. understood by now. Also a
great effort has been made in comparing asymptotic
freedom predictions with the experimental data. We
think it is an appropriate time to review the present
situation.

The progress in understanding the structure of asymp-

totic freedom in deep-inelastic scattering proceeded in
several steps during the last six years. Just after the
discovery of asymptotic freedom (Gross and Wilczek,
1973a, b; Politzer, 1973),' all calculations relevant for
the leading behavior of the moments of the deep-inelas-
tic structure function were performed (Georgi and

Politzer, 1974; Gross and Wilczek, 1974; Bailin, Love,
and Nanopoulos, 1974). Three years later these re-
sults were put in a. form useful for phenomenological
applications (de Rujula, Georgi, and Politzer, 1974;
Altarelli, Parisi, and Petronzio, 1976; Gluck and Reya,
1977a, b; Buras, 1977; Buras and Gaemers, 1978;
Hinchliffe and Llewellyn-Smith, 1977a; Altarelli and

Parisi, 1977; Tung, 1975, 1978; Fox, 1977).2 Until

recently almost all asymptotic freedom phenomenology
has been based on the leading-order formulas. During
the last two years, the structure of the higher-order
asymptotic freedom corrections to deep-inelastic scat-
tering has been finally understood and completed (Zee,
Wilezek, and Treiman, 1974; Caswell, 1974; Jones,
1974; Floratos, Ross, and Sachrajda, 19'77, 1979;
Bardeen, Buras, Duke, and Muta, 1978; Altarelli,
Ellis, and Martinelli, 1978) and some phenomenologi-
cal applications of these higher-order results ha.ve
been made.

Parallel to the development in deep-inelastic scatter-
ing there has been a lot of progress in the extension of
asymptotic freedom ideas to other than deep-inelastic
processes and it is appropriate to present in this re-
view some of the results of these studies.

B. Outline
The main purpose of this review is to present

(i) the leading order of asymptotic freedom and its
phenomenological implications together with compari-
son with deep-inelastic data,

(ii) the structure of higher-order asymptotic freedom
corrections and their effeet on leading- order results.

We shall also briefly discuss

(iii) leading-order and higher-order asymptotic free-
dom corrections to other than deep-inelastic processes.

This review is organized in a rather unconventional
way, which we shall try to justify below. Section II will
be what one could call a handbook of parton model and
asymptotic freedom formulas relevant for deep-inelas-
tic scattering. We begin thiS section by recalling basic
ideas behind the simple parton model with Bjorken
sealing and we quote some of its well-known formulas
which will be useful in the subsequent sections. We
then present systematically all asymptotic freedom ex-
pressions (leading and net-to-the-leading order) nec-
essary for the study of the scaling violations in deep-
inelastic scattering. This section ends with a general
structure of present day asymptotic freedom phenome-
nology in the form of a procedure. This will, it is
hoped, enable anybody to make her (his) own QCD fit to
deep-inelastic data. One might think that it is a bad
idea to begin a review with a vast array of formulas.

The fact that QCD is asymptotically free was first presented
(but not published) by 't Hooft at the 1972 Marseille Conference
on Yang —Mills Fields.

See also Novikov et al. (1977).
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In the standard reviews, one usually relegates them to
an appendix or to the last section of the text. I think,
however, that such an exposition of the formulas and of
the general structure of asymptotic freedom at the be-
ginning mill- give the reader a good feel for the whole
subject and will enable her (him) to begin her (his) own
research in this field without reading too much.

The derivations, discussions, explanations, and in-
tuitive interpretations of the formulas of Sec. II are
contained in the main part of the review, namely, in
Secs. III to VIII. Section III deals with QCD as the field
theory of colored quarks and gluons. The basic tools
necessary to study QCD implications for deep-inelastic
scattering are systematically presented here. After
recalling the Feynman rules for QCD, we discuss
briefly the concepts of regularization and renormal-
ization. In particular we illustrate with examples di-
mensional regularization ('t Hooft and Veltman, 1972)
and the minimal subtraction scheme ('t Hooft, 1973).
Subsequently we discuss renormalization group equa-
tions in general. Next we present the operator product
expansion and its relation to the moments of deep-inelas-
tic structure functions. Finally we derive renormal-
ization group equations for the Wilson coefficient func-
tions and show with examples how to calculate anoma-
lous dimensions. This section may be omitted by ex-
perts and pedestrian readers, without loss of con-
tinuity.

In Sec. IV we present the formal approach to deep-
inelastic scattering based on the operator product ex-
pansion and renormalization group. We deal here
explicitly with the mixing of gluon and singlet fermion
operators. The main result of this section is an ex-
pression for the moments of an arbitrary structure
function in terms of the Wilson coefficient functions
with an explicit Q' dependence calculated in the leading
order.

In Sec. V we turn to a more intuitive approach to as-
ymptotic freedom which, on the one hand, is a simple
extension of parton model ideas and, on the other hand,
is equivalent to the formal approach developed in Sec.
IV. The main results of this section are the equations
for the Q' dependence of effective parton distributions.
We discuss various properties of these equations and
give their approximate analytic solutions.

In Sec. VI we list various implications of asymptotic
freedom for deep- inelastic processes. Subsequently,
we confront these predictions with the recent high-
energy ep, p, p, vN, and vN data.

In Sec. VII we discuss asymptotic freedom beyond Oze

leading oxdex. This section is rather formal. We dis-
cuss first the nonsinglet case because it is simpler than
the singlet one. The renormalization dependence and
independence of various quantities is dealt with in some
detail. A discussion of the meaning of the parameter A,
the sole scale parameter of the theory (except for
masses), is also given. Corrections to various parton
model sum rules and relations are presented. After a
phenomenological application of nonsinglet formulas we
turn in Sec. VIII to the singlet case which we present in
detail. We discuss some phenomenological implications
of the singlet formulae for deep-inelastic data. We also
present parton model formulas for these higher-order

corrections. We end Sec. VIII by discussing longitudi-
nal structure functions.

In Sec. IX we discuss briefly the extension of asymp-
totic freedom ideas to other processes such as massive
p, -pair production, semi-inclusive deep-inelastic scat-
tering, e'e annihilation, and photon —photon scattering.

Finally in Sec. X we make a few concluding remarks.
The paper ends with two appendixes, where the basic
formulas of the dimensional regularization and the re-
lations between parton distributions and the matrix ele-
ments of local operators are given.

In the last six years there have been many very good
reviews on asymptotic freedom (e.g. , Politzer, 1974;
Gross, 1976; Ellis, 1976; Gaillard, 1977; Altarelli,
1978a; Nachtmann, 1977; Llewellyn-Smith, 1978a;
Ross, (1979).' The new topic discussed here, which
has not been presented in the reviews above (except for
some discussion in the review by Ross), are the higher-
order corrections {Secs. VII, VIII). We have also at-
tempted to present the whole material- in a form easy
for phenomenological applications. While completing
this reviem we received a very nice review article by
Peterman (1979) who also discusses, among other
topics, higher-order asymptotic freedom corrections
in some detail. Although unavoidably there is some
overlap between Peterman's and this review, the struc-
ture and presentation of the reviews is quite different.

= e ~„t v W~(v, Q')/2x] + d, [v W, (v, Q')/2x]

—is„„,(p q, /v)vW, (v, Q'), (2.1)

Lepton

vector
boson

anything
P

hadron
FIG. 1. Deep- inelastic lepton —hadron scattering.

See also Zaharov (1976), Novikov etaE. (1978), and Field (1979).
In this review we restrict our discussions to spin-averaged

processes. Asymptotic freedom effects in deep-inelastic scat-
tering on polarized targets have been discussed by Ahmed and
Boss (1975b, 1976), Altarelli and Parisi (1977}, and Kodaira
et al. (1979a,b). In particular Kodaira et aE. calculate higher-
order @CD effects. See also Gupta, Paranjape and Mani (1979)
and Kodaira (1979).

I I. PARTON MODE L AND ASYMPTOTIC FREEDOIVl
FORMULAS

A. PreIiminaries

Deep-inelastic structure functions
It is well recognized by now that deep-inelastic pro-

cesses, as depicted in Fig. 1, are excellent means to
study the inner structure of hadrons. The basic quan-
tities used to discuss these processes are the structure
functions W„R'„and8"~, which for spin-averaged
processes' are defined by the following equation

Rev. Mod. Phys. , Vol. 52, No. t, January 1980



202 A. J. Buras: Asymptotic treedom in deep inelastic processes

where J~ stands either for the electromagnetic current
(ep, pp scattering) or a weak current (v, v scattering).
For electromagnetic processes W, = 0. The tensors
g,„andd„aredefined as follows:

Wsz

e"= g'. —(q.q. /q'),

d„=-(p,p„/v') q'+ (p, q„+p„q,)/v —g,.~

(2.2)

(2 3)

&/////, P„(, = '~~g~~"l//////R

P

Kinematical variables are defined in Fig. 1. For the
purpose of subsequent sections, we prefer to deal with
the longitudinal structure function vW~ rather than with

v WI and 8 y are re lated to each other as fol 1ows:

FIG. 2. Deep-inelastic scattering in the parton model. {a)
vector boson —parton scattering, {b) corresponding virtual
Compton amplitude. The indices p and v are the current in-
dices as in Eq. (2.1).

vW = vW —2xW, . (2.4)

measure the probability for finding a parton of type i in
a proton with the momentum fraction x. Then, for in-
stance,

E;~(x)=Q e',. x [q,. (x) + q,.(x)], (2.8)

where p,. stands for the charge of the ith parton.
- Similarly all deep-inelastic structure functions and
various relevant cross sections can be expressed in
terms of parton distributions weighted by the appro-
priate electromagnetic or weak" charges. In the fol-
lowing we shall recall the rules for construction of
these parton model formulas and subsequently list the
most important expressions.

2. Bjorken scaling and its intuitive interpretation

As we indicated in Eq. (2.1), the structure functions
depend generally on both v and Q'. However, if v and
Q' are sufficiently large so that all mass scales can be
neglected, the dimensionless structure functions v W„
vW„W„andvW will depend only on

B. 8asic formulas of the parton model
x = (Q'/2v), 't. Parton distributions2.5

The dependence of the structure functions on the vari-
ables v and Q' is dictated by theiunderlying theory of
strong interactions. The main object of this review is
to study W~, W„and W, in the framework of asymp-
totically free gauge theories (Politzer, 1973, 1974;
Gross and Wilczek, 1973a,, b).' First, however, let us
recall how the structure functions in question behave in
a simple parton model.

i.e. , we shall have Bjorken scaling (Bjorken, 1969)

2, 3, L 2, 3, L(x)

W~ —5','(x) .
(2.6)

(2.7)

In a four-quark model (u, d, s, c) (Glashow, Iliopoulos,
and Maiani, 1970) we decompose the proton into valence
part

Here j stands for a process considered j= v.V, vN, gp,
p, p, etc. The simple parton model was introduced by
Feynman (1969) as an intuitive picture of Bjorken scal-
ing wherein (i) target mass effects, (ii) quark mass ef-
fects, (iii) interactions between quarks (partons), (iv)
(p', ) of partons and other possible scales are neglected
This beautiful model is so well known to experimental-
ists and theorists that there is no need to describe it
here in detail. A few comments and a collection of the
most important parton model formulas are, however,
necessary.

In the parton model one imagines that a photon, 8'
boson, or Z scatters off a free, pointlike constituent
parton (q,. ) as shown in Fig. 2(a). The corresponding
virtual Compton a.mplitude is presented in Fig. 2(b).
In this picture, x is the fraction of the proton momen-
tum carried by the parton q, On a more quantitative
level (Bjorken and Paschos, 1969, 1970; Kuti and
Weisskopf, 1971; Feynman, 1972) one introduces parton
distributions (quark, antiquark) q, (x) and q;(x) which

V(x) = u„(x)+ d„(x),
the noncharmed sea

S(x) —= u, (x) + d, (x) + u(x) + d(x) + s(x) + s(x),
the charmed sea

(2.9)

(2.10)

C(x) = c(x)+ c(x), (2.11)

and we introduce a gluon distribution G(x). The u(x)
and d(x) distributions are then given as follows:

u(x) = u„(x)+u, (x), (2.12)

d(x) = d„(x)+ d, (x) . (2.13)

q(x) =Q q, (x), (2.14)

In what follows it will be convenient to denote gener-
ally any quark and antiquark distribution corresponding
to the tth flavor, by q,.(x) and q,. (x), respectively, and
introduce the following combinations:

5Early discussions of QCD prior to the discovery of asymp-
totic freedom can be found in particular in the papers by Nam-
bu (1966), Fritzsch and Gell-Mann (1971), Bardeen, Fritzsch,
and Gell-Mann (1972), Fritzsch and Gell-Mann (1972),
Fritzsch, Gell-Mann, and Leutwyler (1973), and steinberg
(1973a,b) .

q(x) =Q q,.(x),

Z(x) = q(x)+ q(x) = V(x)+ S(x)+ C(x),

&,.„(x)= q,. (x) —q, (x),

(2.15)

(2.16)

(2.17)

Rev. Mod. Phys. , Vo(. 52, No. 1, January 1980
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i, ,(x) = q, (x) —q, (x) . (2.18)
2xg. x or g. x

dxdg
q

dxdP
(2.25)

Notice that

(2.19)V(x) = q(x) —q(x) .
The distributions &, ,(x), Z;„(x),and V(x) are non-
singlets under flavor symmetry SU(4), whereas Z(x)
and G(x) are singlets. The distinction between non-
singlet and singlet distributions will be very important
when we come to discuss asymptotic freedom effects.

(2.21)

where N denotes an isoscalar target and the nonsinglet
distributions b;~(x) and b;"(x) are given as follows:

n'"(x) = [c(x) —s(x) ] + [c(x) —s( x)],
&"(x) = &'"(x) + [u(x) —d(x)]+ [u(x) —d(x)] .

(2.22)

(2.23)

2. E lectromagnetic structure functions

Taking the standard charge assignment (u, d, s, c)
= (—'„——', , ——'„—', ) into account one obtains

F;&(x)=,', x Z(x)+ —,'x~"(x) (2.20)

(
0 ~

cc 1 for vq-, vq.
dxd$) .

(1 —y)' for vq, , vq,

5', + 5',(I —y)' for vq, (—', ), vq, (- ',)—
(2.26a)

(
do "c n', I —y '+5', for vq,. -', , vq, ——',

6,'+ 6,'(I —y)' for vq, (-&), vq, (&)

&,'(I —y)'+ &,
' for vq, (- s), vq,.(-,')

CC and NC stand for the charged current and neutral
current processes, respectively. The number in the
parenthesis denotes the charge of the quark or anti-
quark. The couplings" 5,. have the following depen-
dence on the Weinberg angle 0~:

~l 2 3 sin

Q2 ——2+ 3 Sln Og

where (dv/dxdy), is the elementary cross section for
scattering of W* or Z off a quark or antiquark.

If quarks are spin-2 particles as one usually assumes
then in the Weinberg-Salam model the explicit formulas
for the elementary cross sections are given (in units of
O'ME/m) a.s follows:

3. v and v cross sections
Q~ —3 sin ~gr ~ (2.27)

In order to write similar expressions for the v, v

processes one needs a model for weak interactions.
All the formulas below are for the Weinberg-Salam-
GIM model (Weinberg, 1967; Salam, 1968; Glashow,
Iliopoulos, and Maiani, 1970) in which the quarks are
grouped in left-handed doublets and right-handed
singlets

Using Eqs. (2.25)—(2.27) one can construct dv/dxdy for
any process of interest. We quote the formulas for
isgscalaz targets. In order to simplify discussion, we
neglect threshold effects due to charm production. We
shall include these effects later. We then have for
charged current processes

c
QR~ dR~ CR, SR ~ (2.24) ( = (G'ME„/7r)x [[q(x) + s(x) —c(x)]dxdg cc

, dec L sec L

Here de = dcos~c+ ssin6'c and se ——scos~c —dsin6c,
with &c being the Cabibbo angle. Generalizations of the
formulas below to more flavors of quarks are straight-
forward.

We quote first formulas for the differential cross
sections dv/dxdy on isoscalar targets. Here y= v/Z.
In the parton model the cross section da'/dxdy is
written as follows:

+ (1 —y)' [q(x) + c(x) —s(x)] )
(2.28)

V

= (G'MZ „/~)xJt [q(x) +-s(x) —c(x)]d xdX cc
+ (1 —y)' [q(x) + c(x) —s(x)] j.

(2.29)
For neutral current processes we obtain

V

= (G MF/vr)x[ V(x) [6,+ 6 + (6 + 6 )(1 —y) ]+ [u(x)+ d(x)] [6,+ 6 + 6 + 6 ] [1+ (1 —y)2]dXdg Nc

+ [s(x) + s(x) ] [6', + 5,'] [1+(1 —y']+ [c(x)+ c(x) ] [6', + 6',] [1+(1 —y)'] j (2.30)

dKdg NC dXdp (2.31)
(

do' = (G9m/&)x [Z(x) [1+(1 —y)']dxdy cc

+ &' (x) [- 1+ (1 —y)'])
Simple expressions can be obtained for the sums and

the differences of the cross sections above. We have,
for instance,

(2.32)

Rev. Mod. Phys. , Vol. 52, No. '1, January 1980
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= (G'mE/~)x V(x) [1—(1 —y)'],dxd cc
where b'"(x) is given by Eq. (2.22).

4. v and v structure functions

Llewellyn-Smith, 1969)
(2.33)

dx fr",'+ F ]=+6,

(iii) Bjorken sum rule (Bjorken, 1967)

(2.41)

The v and t structure functions E;"(x), &" '(x), and

E; '(x) are related to the cross sections dg/dxdy as
foil ows:

(-"„)

= (G'IifZ/~) ((I y)~; (x)
d xdy

+ xy'F ", '(x) ~ (1 —y/2)xy1 ",'{x)).
(2.34)

Comparing (2.28)-(2.31) with (2..34) we obtain

(2.42)

and
(iv) Callan-Gross relation (Callan and Gross, 1969)

I" =2x&, (2.43)

or consequently I'~.= 0.
We should also remark that the parton model has been

extended to other than deep-inelastic processes. Fa-
mous examples are

and

2xs ",'(x) = F",'(x) = xr(x)

xF',"(x)=x V(x)ex~'"(x)

(2.35)

(2.36)

—z+ anything

—hadrons

pp - ij, 'p, + anything (2.44)

xZ", '(x) = x V(x) [6', + 6,'—6,'- 6,'] (2.38)

for neutral cmxents.
Notice that I (x) for both neutral current and

char ged cur rent processes be haves as a nons inglet
whereas I for charged current processes behaves
as a pure singlet. I", "for neutral current processes
contains, similarly to electromagnetic structure func-
tions [Eqs. (2.20) and (2.21)], both singlet and non-
singlet contr ibutions.

5. Basic properties of the simple parton model

There are many consequences of parton model ideas
which have been exterisively discussed in the literature
(e.g. , Feynman, 1972; Llewellyn-Smith, 1972; Lands-
hoff and Polkinghorne, 1972; Close, 1979). We mention
only a few of them. First there is Bjorken scaling' in
x for the structure functions and in x and y for the
do/dxdy cross sections. This means, for instance,
that (y) and cr-„/o, are energy independent and the mo-
ments of the structure functions

dx x"-'Z, (x) =-M, {n)l A=2~ 3)

j=l 2 3-L
(2.-39)

are Q' independent.
Furthermore there exist certain sum rules and rela-

tions between structure functions which deserve atten-
tion. These are in particular:

(i) Adler sum rule (Adler, 1966)

(2.40)

(ii) Gross-Llewellyn-Smith sum rule (Gross and

6We neglect mass effects for the moment.

for clvaxged cur'vents, and

2xF", '(x)= I'"''(x)= xZ(x) [6,+ 6'+ 5, + 6']

+x~'"(x)[5', +6', —5,'—6,'] (2.37)

and large p, processes.
The building blocks of all parton model formulas for

processes listed under (2.44) are again quark distribu-
tions (and fragmentation functions) which also enter the
deep-inelastic formulas. Consequently in the parton
model there exist many relations between various dif-
ferent processes. This fact as well as the simplicity
and intuitive picture behind the parton model already
attracted many physicists ten years ago. In spite of the
successes of the parton model in the past, this model
now seems to be too simple to explain the data. In fact,
although Bjorken scaling is well satisfied for 0.15- x- 0.25 over the relevant (deep-inelastic) Q' range ex-
plored by present experiments (2 ~ Q' ~ 100 GeV'), for
x & 0.15 and x) 0.25 definite Q' dependence is seen in
the data for ep and p, p scattering. Similar scaling vio-
lations have been observed in high-energy v, P pro-
cesses. In addition, the ratio A=cr~/or as mea. sured
in ep scattering is definitely different from zero, con-
trary to Eq. (2.43). All these facts indicate that we
have to go beyond the simple parton model if we want to
understand the data.

6. Beyond the simple parton model

Even before the discovery of scaling violations in
deep-inelastic scattering theorists found a beautiful in-
teracting (gauge-) field theory-quantum chromodynam-
ics, with its property of asymptotic freedom and cal-
culable pattern of scaling violations. As we shall see in
the course of this review, this theory has not only much
better theoretical background than the simple parton
model but also fits the existing data better. In addition
in spite of a very heavy mathematical machinery the
predictions of the theory in question have a very simple
intuitive interpretation similar to the simple parton
model but much richer.

It is perhaps useful to get a general overview and list
how the simple parton model properties are modified in
asymptotically free gauge theories (ASF).

First we write symbolically the ASF predictions for
the moments of the structure functions as follows:
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dxx' 'F[x, Q')=A [lxQ'] )+ " + ' ') (2 45)
0 lnQ'

they are given as follows:

P, =11—2f (2.49a)
d„,and f„arenumbers to be discussed in the

subsequent sections. Then in the leading order [first
term on the rhs (right-hand side) of Eq. (2.45)], all
parton model formulas of this section remain unchanged
except that now the parton distributions depend on both
x and Q'. In particula. r, all sum rules [e.g. , (2.40)-
(2.43)] are satisfied. The Q' dependence of parton dis-
tributions is calculable.

During the past year it became clear that parton
model relations between various processes (deep-in-
elastic scattering, Drell- Yan process, ete. ) also re-
main unchanged in the leading order.

On the oth.er hand, if next-to-the-leading terms are
taken into account [e.g. , the second term in Eq. (2.45)],
sum rules [e.g. , (2.41)—(2.43)] are violated. One also
expects, beyond the leading order, corrections to the
parton model relations connecting various processes.

Leading order

In the leading order of asymptotic freedom all parton
model formulas of Sec. II.B remain unchanged, except
that now parton distributions depend on Q'. In quantum
chr omodynamic s the Q' dependence of par ton distr ibu-
tions is given by certain equations, which we present
now.

a. Effecti ve coupling constant

Contrary to the simple parton model, which corre-
sponds to a free field theory, QCD is an interacting
field theory. The interactions between quarks and
gluons can be described by the effective coupling con-
stant g'(Q'), which satisfies the following equation:

gP( g );——g (t = 0) =g, (2.46)

C. Basic formulas of asymptotic freedom

In this section we shall collect all asymptotic freedom
formulas relevant for phenomenological study of deep-
inelastic scattering. The derivations, discussions, and
intuitive interpretations of the formulas below, can be
found in Secs. III-VIII.

P, =102 —(38/3) f . (2.49b)

Here f is the number of flavors.
Keeping only the first term on the rhs of Eq. (2.48)

and inserting P(g) into Eqs. (2.46) one obtains the
leading-order formula for g '(Q'):

P o»(Q'/J'i) (2.

The scale parameter A is related to p, and g as follows:

A'=p, 'exp [- (167['/P, g')] . (2.51)

b. Intui ti ve approach

In the intuitive approach to asymptotic freedom (Kogut
and Susskind, 1974)' to be discussed in detail in Sec. V
one imagines that by increasing Q' of the photon or W
boson or equivalently by probing the inner structure of
the hadron at smaller distances one can resolve the
quark into a quark and a gluon, the gluon into a quark-
antiquark pair, arid the gluon into two gluons. These
three basic processes are shown in Fig. 3. It follows
immediately from this picture that the parton distribu-
tions depend on Q'. On a. more quantitative level
(Parisi, 1976; Altarelli and Parisi, 1977; Dokshitser,
Dyakonov, and Troyan, 1978a) one introduces "splitting"
functions P, ,(z) which are the measure of the variation
(with Q2) of the probability of finding a parton j inside
the parton j with the fraction of the parent momentum
z=x, /x, Then the equations which determine the Q'
dependence of the parton distributions are given as
follows:

d&;,(x, f) n(Q') '
dy x

d Z(x, t) o(Q2) '
dy

df 27T

(2.52)

A is a free parameter which is to be found by comparing
QCD predictions with experimental data, . It follows
from Eq. (2.50) that the effective coupling constant de-
creases with increasing Q' and vanishes for Q'= ~.
This is what we mean by asymptotic freedom.

where

Q2
g= ln —,, (2.47)

x Z(y, t)E',.(—)+ 2jG(y, (}J'.,-. (—)
(2.53)

P(g)= P, .—P, -, .+'
16m

(2.48)

The pa, rameters Po and P, have been calculated by
Politzer (1973), Gross and Wilczek (1973a), Caswell
(1974), and Jones (1974). In QCD [SU(3) gauge theory]

and g is the renormalized coupling constant. Further-
more P(g) is a renormalization group function and p.

2

is the subtraction scale at which the theory is renor-
malized. The presence of this scale is at the origin of
scaling violations. The notion of P(g) and p,

2 will be
given in Sec. III. Here it suffices to say that P(g) can
be calculated in perturbation theory. We have

{a)
~gNeaeea

.~aSI~/&++

{c)
FIG. 3. Basic processes in the intuitive approach.

This intuitive approach applies to all renormalizable field
theories (Polyakov, 1971; Kogut and Susskind, 1974).
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4 1+x 3P (z) =—— -+—5(1 —z)
3 (1 —z), 2

P,(z) = —,
' [z'+ (1 —z)'],
4 1+(1—z)"
3 z

(2.56)

(2.57)

(2.58)

P„(z)=6 + + z(1 —z)+ ———6(I - z)
z (1 —z) ll f

1 —z, z 12 18

(2.59)

The distribution (1 —z), is defined by the following
equation:

'd, f(z) 'd, f(z)-f(1)
(1 —z), , (1 —z)

(2.60)

where f(z) is any function regular at the end points.
For z & 1, (1 —z),= 1 —z. The properties of the splitting
functions P, , (z) and the solutions of Eqs. (2.52)-(2.54)
are discussed in Sec. V.

Finally me mant to comment on how the integrodiffer-
ential equations above can be used in the phenomenolog-
ical applications. One assumes or takes from the data
the distributions &,,(x, Qo)1, Z(x, Q', ), and G(x, Q,') at a
certain value of Q'= Q', . These distributions serve as
the boundary conditions for Eqs. (2.52)—(2.54) which
can be solved numerically. For practical purposes,
before writing a computer program it is useful to get
rid of terms (1 —z),' by employing the following formu-
la:

dz z = II(x) ln(1 —x)H{x/z)
(1 —z),

do(x, t) o(Q') 'dy

I

X g( y, t)Pc — + G( y, t)P,,„—
(2.54)

where Z, A,. „and t have been defined in Eqs. (2.16),
(2.17), and (2.47), respectively. Furthermore

-(@.) g '(Q')
(2.

4m

and Z, ,(x, t) defined in Eq. (2.18) satisfies Eq. (2.52).
The functions P, ,(z) are explicitly given in QCD

(Altarelli and Parisi, 1977; Dokhsitser, Dyakonov,
and Troyan, 1978a). They are

where the sum runs over spin-yz, twist-2 operators'
such as the fermion nonsinglet operator 0"~ " ~ and
the singlet fermion and gluon operators O~&" ~~ and
0~&"' ~, respectively. Explicit expressions for these
operators are given in Sec. III. C„'(z')are the Wilson
coefficient functions. We next define the reduced ma-
trix elements, A„', of the operators in question as fol-
lows:

{plO ' "~p&=A„*p„p.. (2.63)

Then we can write (Christ, Hasslacher, and Mueller,
1972)

(2.65)

Here yNz(g) is the anomalous dimension of the spin-n
nonsinglet operator and P(g) has been defined in Eq.
(2.46). The renormalization group equations are dis-
cussed in Secs. III and IV. Here it suffices to give the
solution of Eq. (2.65) which is

dxx" 'F',(x, Q') =+A„'(lr,')C,' „(Q'/p.', g'), (2.64)
0 2

where E„(x,Q') is an arbitrary deep-inelastic structure
function (k= 1, 2, 3, L) arid C,' „(Q'/p.', g') are Fourier
transforms of the coefficient functions in Eq. (2.62).
Notice that in writing (2.64) we have been more explicit
than in Eq. (2.62), indicating that the coefficient func-
tions depend on the structure functions involved, and
that the coefficient functions can be calculated in per-
turbation theory in g. We have also indicated that the
reduced matrix elements A„'depend on p, '.

As discussed in Sec. III, there is a set of nonsinglet
operators corresponding to various X" in Eq. (3.55).
Since these operators neither mix under renormaliza-
tion with each other nor with the singlet operators, the
Q' dependence of their coefficient functions is in com-
mon. Therefore in this review any linear combination
of nonsinglet operators will be denoted for simplicity by
a common symbol 0 &'""& and the corresponding re-

gS
duced matrix elements and coefficient functions by
A„z(p.') and C„"~„(Q'/p.', g '), respectively It sh. ould,
hozoevex, be kept in mind that A„"z(p,') depend gene&ally
on the process and the structure function considered
This dependence is discussed in Appendix B.

The Q' dependence of the Wilson coefficient functions
is governed by certain equations called renormalization
group equations which for the coefficient functions of
nonsinglet operators take the following simple form:

where II(x) is any function regular at the end points. C„"'„—,,
' =C"(1 ')

Z(l 2)

J(z)J(0)=g C„'(z')z '''z„o,"r"' (2.62)

c. Formal approach

In the formal approach to asymptotic freedom (Gross
and Wilczek, 1974; Georgi and Politzer, 1974) to be
discussed in detail in Sec. IV one uses the operator
product expansion (Wilson, 1969) for the product of
currents which enter Eq. (2.1). We write symbolically

The 1 on the rhs of Eq. (2.66) means simply Q' = g'.
CNS(1, g 2) and y Nz(g) can be calculated in perturbation

theory. Up to and including next-to-leading order cor-
rections we have

Twist=dimension —spin. Here we neglect contributions of
higher-twist operators whose coefficient functions are sup-
pressed relative to the twist-2 operators by powers. of Q .
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CNS (1 g2)
e", 1+,B„"'„k=1,2, 3

2

16~' '"
(2.67)

For singlet structure functions the situation is more
complicated because, as discussed in Sec. III, the op-
erators 0"„and0~ mix under renormalization. The Q'
dependence of the corresponding Wilson coefficient
functions C„„andC~

„

is governed by two coupled re-
normalization group equations

2 4
n ( $ (0), n R + (1),n gy NS(gj —y NS 16 2 + y NS (16 2)2 ) (2.68)

8 8-,. Q'
g —+ g(g) —c' „—,, g')

ap, ag

where B~ „,y(„~", and y'„'~" are known numbers to be
specified below. g~» are constants which depend on
weak and electromagnetic charges. Specific examples

' of 5~» are given in Appendix B. Perturbative expansion
for P(g) is given in Eq. (2.48).

In the leading order one keeps only the first terms on
the rhs of Eqs. (2.48), (2.67), and (2.68). Then using '

(2.64), (2.66), and (2.50) one obtains a general expres-
sion for the Q2 evolution of the moments of any non-
singlet structure function

J1

dX X n-2F NS(X Q2)
0

2=Qy)', )g,
.c,' „—,, g*)),)=g, G. (2.72)

Here y,",.(g') are the elements of the anomalous dimen-
sion matrix. They have the following perturbative ex-
pansion:

2
yn (g2) y(O), n g yy(1) n g

ji ji 16 2 ji (16 2)2 (2.73)

We shall discuss the solution of Eq. (2.72) in Sec. IV.
Here it is sufficient to give the generalization of Eqs.
(2.69a, b) to any singlet structure function E„'(x,Q'). In
the leading order we have

where

2
52 ANS(Q. )Ns n 0 In(Q/2A2)

0 k=I
(2.69a)

ln(Q'/A') ' "-
+ 5"A„(Q'o)

( /A )
~= 1,

, (O), n

dn I Ns
NS 2P

(2.70) (2.74a)

and we have put p. '= Qo. The parameters y'Nos" have
been calculated by Georgi and Politzer (1974) and Gross
and Wilczek (1974) and are given as follows:

yNs 3 ( +1) (2.71)

BFor k =1 and 3 the power n —2 on the 1hs of Eq. '(2.69)
shouM be replaced by n —1. Dependent on the structure func-
tion and process considered, Eq. (2.69a) and the following
equations in this section apply either for even or odd values of

The situation is summarized in Eq. {2.124) and explained in
Sec. VII.E.3. In order to obtain predictions for all moments of
n (odd and even} analytic continuation in n has to be made.
This is trivial in the leading order but nontrivial in the next-
to-leading order (see Footnote 33).

The arbitrariness of Qo in Eq. (2g69a) is, however, re-
stricted to sufficiently large values of Qo for which perturba-
tive calculations can. be trusted.

Except for the value of A, the only unknown parame-
ters in Eq. (2.69a) are the A„"(Q',). They can be deter-
mined from experiment by measuring E"„(x,Qo) at an
arbitrary value of Q'=Qo. 'o Since the value of Qo in Eq.
(2.69a) is arbitrary, as required by the renormalization
group equations, it is often convenient to get rid of Q,
by writing Eq. (2.69a) as follows:

f1

dxx" 2F" (x, Q') =5~ ANs[ln(Q'/A')] g», 0= 1, 2, 3.
0

'(2.69b)

Bere ANs are (independent of Qo) constants which are
related to A.„"s(Qo)by Eq. (4.19).

522 [0+ (g2/16p2)Bn „]k= 1, 2

5~[0+ (g'/16ji')B „]t2=L
(2.76)

Here only the leading and the next-to-leading order
terms have been shown. Furthermore A'„(Qo2) are un-
known constants which must be taken from experiment
at one value of Q'=Qo. They are certain combinations
[see Eqs. (5.29) and (5.30)] of the reduced matrix ele-
ments AO(Qo2) and AG(Qo).

Finally the powers d", are given by

d",= X",/2)6o, (2.77)

where X", are the eigenvalues of the one-loop anomal. ous
dimension matrix:

yn gg GG gg t G gG Gg
yO, n+ yO, n + [(yO, n yO, n)2 ~ 4yo, nyO, n ]1/2

2
(2.78)

The leading-order formula (2.74a) is obtained by keep-
ing only the first terms on the rhs of Eqs. (2.48),
(2.73), (2.75), and (2.76). The parameters yO;." have
been calculated by Georgi and Politzer (1974) and Gross
and Wilczek (1974) and are given as follows:

where 5~~are constants which depend on weak and elec-
tromagnetic charges. Specific examples of g~ are given
in Appendix B. 5n2 enter the definitions of C~~ „(1,g') and
of C„„(1,g'), the coefficient functions of the operators
0"„and OG at Q'= p, 2, as follows:

(1
—

)
5 [1+(g / )B ] "=1

(2 75)
52~[0+ (g'/16'')B~O „]k=L
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O, . O, . &+ 4
3 n(n+ 1 j

(n'+ n+ 2)
n(n+ l)(n+ 2)

n

2=2 2-
(2.79a)

1

& Z(q')&„-=d xx"-'Z(x, q'),

&G(Q')&„-=d x x " 'G(x, Q')
0

(2.81)

(2.82)

16 (n'+ n+ 2)y«3
1 4 4 ~l 4
3 n(n —1) (n + l)(n + 2) , , j

(2.79c)

(2.79d)

d. Marr/ age of the/bantu/gati ve and the forma/ approach

Let us denote the moments of the parton distributions
Z(x, Q'), &,„(x,Q'), and G(x, Q') by

& &,,(Q')&„=- dxx"-'~„(x,q'),
0

It should be remarked that the nondiagonal elements of
the anomalous dimension matrix, y~~" and yG~", depend
on the normalization of quark and gluon operators, and
only the product &~„"go~ is 3, physical quantity In
particular the nondiagonal elements in the papers by
Georgi and Politzer (1974) and by Gross and Wilczek
(1974) differ from each other but the product y~sP y~d~ is
the sa.me. Equations (2.79b, c) are from Gross and
Wilczek.

In analogy with Eq. (2.69b) we can write Eq. (2.74a)
as follows:

1 2 -d", 2 -d~
dx x" 'I" n(x, Q')= 5nA„' ln —, 5n~A„ ln —,

0

(2.74b)

where A„'are (independent of Q', ) constants which are
related to A„'(Q',) by Eq. (4.43).

This compl. etes the presentation of the formal ap-
proach in the leading order of asymptotic freedom. The
main formulas are the Eqs. (2.69) and (2.74). They de-
scribe the Q' evolution of the nonsinglet and singlet
structure functions in terms of three sets of unknown
numbers A„"(Qs), A„'(Qo) (or ANs, A„')and the scale pa, —

rameter A. These unknown numbers and A are to be
taken from the data.

and introduce the variable

ln(q'/A')
I (Q.'/&') ' (2.83)

It can be shown (see Sec. V for details) by using parton
model formulas on the lhs (left-hand side) of Eqs.
(2.69a) and (2.74a) that the formal Eqs. (2.69a) and
(2.74a) are equivalent to the following equations for the
Q' evolution of the moments of the parton distributions
(Altarelli, Parisi, and Petronzio, 1976; Gluck and
Beya, 1977a,b; Buras, 1977; Hinchliffe and Llewellyn-
Smith, 1977a; and Novikov et al. , 1977)

& a, ,(q')&„=«, ,(Q', )&„exp[—d"„.s], (2.84)

(Z(Q ))„=L(I—u„)&Z(Qo)&,—u, &G(Qo)&, j exp[- d ~ s]

+ Lo „&Z(Q', )&„+o„&G(Q')&.j exp [—d" s],
(2.85)

(G(Q')&„=[~„&G(Q;)&„—s„&Z(Q;)&„jexp [ d", s]

+ f(I —n )&G(Q', )&„+s & Z(Q', )&„jexp [- d" s],
(2.86)

+O, n pn

n yn yn

O, n O, nc=~~
n (~n ~n) I n ~n ~n

(2.87)

and d"„,X"„andd» are given by Eqs. (2.77), (2.78),
and (2.70), respectively. The numerical values of d"„
d», &„,m„, and ~„canbe found in Tables I and II.
Equations (2.84)—(2.86) are very simple to use. Once
the quark and gluon distributions are fixed at Q'= Q',

and (Z(Q', )&„,(G(Q,')&„,and &&,,(Q20)&„are calculated ac-
cording to (2.80)-(2.82), the rhs of Eqs. (2.84)-(2.86)
are known for Q' ego in terms of the single parameter
A. This parameter can be found by fitting the lhs of the
equations in question to the data (see, however, the dis-
cussion in Sec. VII). We shall demonstrate in Sec. V
that Eqs. (2.84)-(2.86) are equivalent to the integrodif-
ferential Eqs, (2.52)—(2.54).

This completes the presentation of the asymptotic
freedom formulas in the leading order.

TABI.E j:. Numerical values of the parameters diaz, d"„B2„,B2„,and B '" for f=3 and f=4.
The table is from Bardeen and Buras (1979b).

RNS

2

6
8

10

0.395
0.775
1.000
1.162
1.289

0.427
0.837
1.080
1.255
1.392

0.000
0.760
0.996
1.160
1.287

0.000
0.817
1.074
1.252
1.390

0.617
1.638
2.203
2.587
2.882

0.747
1.852
2.460
2.875
3.192

1.951
7.956

13.19
17.64
21.50

2.098
8.117

13.34
17.78
21-.63

-4.344
9.078

12.81
17.53
21.44

-8.117
0.811

12.99
17.65
21.57

3.726
17.07
30.43
41.72
51.41

4.799
18.17
31.63
43.01
52.78

-0.271
6.756

12.36
17.01
20.99

-0.124
6.917

12.52
17.15
21.12
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TABLE II. Numerical values of the parameters which enter
the formulas for the Q2 evolution of parton distributions [Eqs.
(2.85), (2.86), (2.137)—(2.144) for f= 4 and MS scheme].

10

and

NS 2 k ANS 1 + +k.n(Q )
k (+& Q ) 5NS n p I (Q2/A2)

x [In(Q2/A2)] "Ns g = 1,2 3, (2.90b)

Zll

0.429

0.429

0.571

2.35

0.980

0.170

0.113

-2.14

0.996

0.091

0.048

-3.02

0.998

0.061

0.029

—3.42

0.999

0.045

0.020

-3.62
&",'„(Q')= &",'. —(P,/tl, )d" »»(Q'/A'),

where

(2.91)

where A„a,re (independent of Q,') constants which are
related to ANS(Q2o) by Eq. (7.22). Furthermore

Zll

ZNS

0.00

1.65

1.95

2.05

2.17

2.16

2.27

2.25

2.35

2.33
(I), n (0},n

+0 2 +0
(2.92)

0.00

5.90

0.00

-4.42

2.79

6.87

-0.056

-343.0

7.49

0.221

—0.033

-49.9

11.4
0.070

-0.020

-39.9

14.7
0.034

-0.013

-37.0

The parameters B„„andyNs
" have been defined in Eqs.

(2.67) and (2.68), respectively, and d"„sis given by Eq.
(2.70). For the longitudinal structure function we have

) ~~
n 0 N S

1

dxx" 'I" '(x Q') =A"'(Q')5
0

2. Higher-order corrections

In the literature most of the discussions of higher-
order asymptotic freedom corrections have been done
in the formal approach of Sec. II.C.1.c. We shall begin
with this approach. Higher-order asymptotic freedom
formulas, expressed in terms of parton distributions,
will be given at the end of this section.

a. Effective coup/lIng constant

The solution of Eq. (2.46) with P(g) given by Eq. (2.48)
can be expanded in inverse powers of ln(Q'/A') with the
result

g'(Q') 1 P, ln ln(Q'/A') 1
(6tr (), )n(Q'/A*) ))' )n*(Q'/1(') 1n'(Q'/1( ))

(2.88)

Here and following (Buras, Floratos, Ross, and Sach-
rajda, 1977)"A has been chosen so that there are no
further terms of order 1/(ln'Q'/A'). A little algebra
shows that p, ', A', and g' are related to each other by

16)T' J3A'= p,
2 exp —,——'21n(pog2). &og' &o

(2.89)

Equations (2.88) and (2.89) are generalizations of Eqs.
(2.50) and (2.51), respectively. In what follows we want
to present the corresponding generalizations of Eqs.
(2.69) and (2.74). The derivation of the formulas below
is presented in great detail in Secs. VII and VIII.

BNs ln(Q2/A2) -d n

)6, ln(Q'/A') ln(Q,'/A')

(2.93)
where BN~s„is defined in Eq. (2.67). Because the longi-
tudinal structure function vanishes in the leading order
it follows that in the order considered ANS(Q2o) is the
same as in Eq. (2.69a). Furthermore in obtaining
(2.93) the leading-order formula for g'(Q'), (2.50),
should be used. It turns out that g'„'s=5» and therefore
Eq. (2.93) can be written as follows (Zee, Wilczek, and
Treiman, 1974):

r
1 NS 1

0

(2.94)

(2.95)BNs 16I I/(&+ 1)]

By && B2 & l and B, „have been cal cul ated by Barde en,
Buras, Duke, and Muta (1978) and recalculated by
Floratos, Ross, and Sachrajda. (1979).""They are
given as follows:

where LO" indicates that the moments of I'
2 (x, Q') are

given by the leading-order expression (2.69).
Finally we give formulas for B"„„andnumerical re-

sults for y(Ns'". The parameters B~ „have been calcu-
lated by Zee, Wilczek, and Treiman (1974) and are
given as follows:

b. Nonsinglet structure functions

For nonsinglet structure functions which do not vanish
in the leading order, namely I ", s, I,", and I,", the
generalizations of Eqs. (2.69a.) and (1.69b) are given as
fol1.ows:

+ —+ + —,—9 + —yo„,"(In47) —y )
3 4 2 1
n n+1) n'

BNs BNs BNs
l, n 2, n I, n

(2.96)

(2.97)

MNS 2 5k ANS 2 I + k. n(Q ) k n(Qo)
( ) Q ) NS n (Qo)

p l (Q2/A2) p ln(Q2/A2)

ln(Q'/A') "Ns

&»(Q2o/A2)
(2.90a)

Numerical values of higher-order corrections to S'2~ con-
sidered in this paper are wrong and should be ignored.

The results of these two papers have been recently con-
firmed by Altarelli, Ellis, and Martinelli (1979a) and Harada,
Kaneko, and Sakai (1979).

3These ealeulations have been done in the minimal subtrac-
tion scheme of 't Hooft (1973) and are the only existing calcu-
lations which can be combined with the two-loop anomalous di-
mensions calculated by Floratos, Boss, and Sachrajda (1977,
1979). See discussions below.

Rev. Mod. Phys. , Vol. 52, No. 1, January 1980



2't 0 A. J. Buras: Asymptotic freedom in deep inelastic processes

/

TAp, LE Dl. Coefficients of g /(16 7t- ) in the anomalous dimensions yNs'", y&&
'", y&&'", y&&'", and

yGz'" as given in 't Hooft's scheme for f= 3 and f= 4. This table has been calculated on the basis of
the results of Floratos, Boss, and Sachrajda {1977, 1979).

, (i, ), n
)'NS

„,($), n ,(1),n
)'G g

(1),n
&CG''

2 77.70
4 133.25
6 164.26
8 186.68

10 204.5
12 219.3
14 232.1
16 243.3
18 253.3
20 262.3

71~37
120.14
147.00
166.39
181.78
194.63
205.7
215.4
224.1
231.9

65.84
132.6
164.1
186.6
204.4
219.3
232 1
243.3
253.3
262.3

55.56
119.28
146.82
166.34
181.74
194.58
205.7
215.4
224.1
231.9

-45.25
7.75

16.56
19.47
20.44
20.63
20.46
20.11
19.68
19.22

-60.34
10.34
22.08
25.96
27.25
27.51
27.29
26.82
26.25
25.63

-65,84
-28.64
-18.46
-13.94
-11.40
-9.78
-8.65
-7.81
—7.16
-6.64

—55.56
-27.40
-18.28
-14.08
—11.67
-10.11
—9.00
-8.17
—7.52
-7.00

45.25
178.9
242.9
287.6
323.1
353.1
379.0
402.1
422.8
441.6

60.34
151.61
201.94
238.16
267.48
292.44
314.2
333.7
351.2
367.3

and

~NS ~NS
3, n 2, n 3 +(++ 1) (2.98)

1978)"

I~rP+ P vPq 6 1
12

(33 2 ) In(Q2/A~)
(2.99)

The constant y~ is the Euler-Masheroni constant y~
=0.5772. . . . We shall comment on the terms (ln4z
—y~) in Sec. II.C.2.e.

The two-loop anomalous dimensions y'N's'" have been
calculated by Floratos, Ross, and Sachrajda (1977).
We give only their numerical values in Table III since
the corresponding analytic expressions in the original
paper are rather complicated. Relatively simple ana-
lytic expressions for y'„'s"can be found in the paper by
Gonzalez-Arroyo, Lopez, and Yndurain (1979b).

c. Corrections to parton model sum rules

It follows from Eqs. (2.95) to (2.98) that the sum rules
(2.41) to (2.43) are no longer satisfied. The Adler sum
rule (2.40), which expresses charge conservation, is,
however, still respected. We have (Bardeen, Buras,
Duke, and Muta, 1978; Altarelli, Ellis, and Martinelli,

f dx &" —+" 8
(» —2f) I (Q'/A') (2.1oo)

The violation of Callan —Gross relation (2.43) is ex-
pressed by Eq. (2.94).

d. Singlet structure functions

The expressions for the moments of the singlet struc-
ture functions with higher-order corrections included
were first found by Floratos, Boss, and Sachrajda
(1979). Here we present the equivalent but simpler ex-
pressions of Ba.rdeen and Buras (1979b).

For the singlet structure functions which do not vanish
in the leading order, namely I'; and I'

„

the generaliza-
tions of Eqs. (2.74a) and (2.74b) are as follows":

and

R„"„(Q') R' „(Q,') . . . 'ln(Q'/A')
P ln(Q'/A') P ln(Q'/A') ' ' ' " ln(Q'/A')

R;,„(Q') R;,„(Q'.), , „
I (Q'/A')~ -" -"

n Qo)
p ln(Q2/A2) p I (Qa/A2) +f .(Q ~ Qo) g I -(Q2/A2)

/=1, 2 (2.101a)

P R' Q' RM„'(n,Q ) = 5&4„' 1+ '," z, 2 [ln(Q /A )] ~++ 5~A„1+ '" 2, 2 [ln(Q /A )] ~- k= 1,2, (2.101b)

where

In( Q2/A2 )fTk(Q P Qo)
p In(Q2/A2) In(Q2/A2)

1
P ln(Q', /A') ' (2.102)

(1),n
y+y

n 2I3 + pn yn&
(2.103)

with y",,'" given by Eqs. (2.110) and (2.111). Further-

more
R„'„(Q')= R„'„—(P,/Po)d", ln ln(Q'/A')

»d &„'(Qo)and &„'are constants to be determined from

(2.104)

The first calculations of @CD corrections to the sum rules
{2.41) and (2.43) have been done by Calvo {1977). There are,
however, discrepancies between his results and results pre-
sented here.

As discussed in Sec. VII.E the structure function I"3 does
not depend on gluon contributions and Eq. (2.90) is therefore
the full result.

As discussed in Sec. &Qg care must be taken when continu-
ing Eq. (2.101b) to noninteger values of n.
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experiment.
The parameters Rk „aregiven as follows:

(2.110)

(1),n ~ngy ~ y R

2P 2P20 0

~(&) ~ &
+

2P +X"—A,",
(2.105) (2.111)

y(l), N l)nP y(1), n

)), n k, n 2P 2P2 2P ~ 1I ytl (2.106) (2.112)

where

(yn 0, n'(l
yg Q I BQ

k, n k, n „,0, n k, n
I'

l(l G

)f7 O, n'1
B+ B)) ~ ( + yt)g BG

k, n k, n „,O, n k, n
IQQ

0= 1, 2

(2.107)

(2.108)

~~n ~n& yOn 1 + (2.109)

B~ „andB~~„aredefined in Eqs. (2.75) and (2.76), re-
spectively. Furthermor e

where

+n yO, n y(1), n ~ (~n yo, n) y(1), n
gG

~n yO, ny(1), n+ (~n yO, n)y(1), n
2 1() C C'Q GC

y((t c yI)4 (ygI) ~+) yI) c

y;',"-y",,' "+(y;;"—x",) y',",",

(2.113)

(2.114)

(2.115)

(2.116)

and y',.", " are defined in Eq. (2.73). Finally d,"are
given by Eq. (2.77). For the longitudinal structure
function we have

f lu(Q'/A') -, 2 ~ B1„ ln(Q /A )
" P ln(Q'/A') ln(Q'/A') " ' ' P ln(Q'/A') ln(Q'/A') (2.117)

B,' „=8y/(~+ 1)(~+2), (2.119)

where f is the number of flavors. The parameters
B, „andB, „have been calculated by Bardeen, Bura.s,
Duke, and Muta (1978) and Floratos, Ross, and Sach-
rajda (1979)."" They are given as follows:,

4 4 1 yP+)1+2 ~1
n+ 1 ~+ 2 n' ~(~+ 1)(n+ 2)

+ —,
'

yo, ,"(ln4~ y ), (2.120)

(2.121)

Finally the elements of the two-loop anomalous dimen-
sion matrix y',.",. " have been calculated by Floratos,
Hoss, and Sachrajda (1979) and are collected in Table
III.

This completes the presentation of the formal ex-
pressions needed for phenomenological study of higher-
ord er cor r ections. Parton model fo rmulas for higher-
order corrections are discussed in Sec. EI.F.

e. Miscellaneous remarks

We want to make a few explanatory remarks about the
formulas above. Derivations and detailed discussions

where A'„(@20)are the same constants which enter Eq.
(2.74) and B~ „aregiven by formulas (2.107) and (2.108)
with k=1 .

Now we give the formulas for Bk~ „andBk „and nu-
merical results for the two-loop anomalous dimensions
y~~'", y'„'G", y~"„,and y~G. We have (Bardeen, Buras,
Duke, and Muta, 1978)

(2.118)

where B~N „aregiven by Eqs. (2.98)—(2.100). Next
(Walsh and Zerwa, s, 1973; Kingsley, 1973; Hinchliffe
and Llewellyn-Smith, 1977a)

are included in Secs. VII a.nd VIII.
As pointed out by Floratos, Ross, and Sachrajda

(1977), the parameters B', „"and the two-loop anoma-
lous dimensions yN~

" and y',.',""are renormalization
prescription dependent and generally gauge dependent.
In other words they depend on how one renormalizes
the divergent amplitudes used to calculate these quan-
tities. Any physical quantity cannot, of course, depend
on the renormalization scheme, and the renormalization
prescription dependences of Bk „and of two-loop anoma-
lous dimensions cancel in the expressions for physical
quantities, i.e. , in formulas (2.92}, (2.105), and
(2.106)." However, in order for the cancellation to
occur, B„'„,y"s'", and y',.", " have to be calculated in
the same scheme. All the expressions for B'„„andthe
two-loop anomalous dimensions listed above correspond
to 't Hooft's minimal subtraction scheme ('t Hooft,
1973). A nice property of this scheme is that B» „,
y„"~", and y',.',.'" calculated in this scheme are gauge in-
dependent (Caswell and Wilczek, 1974). Calculations
of B„'

„

in other schemes ha.ve been made by Kingsley
(1973), Calvo (1977), De Rujula, Georgi, and Politzer
(1977a), Altarelli, Ellis, and Martinelli (1978), and
Kubar-Andre and Paige (1979)."

The terms which involve (ln47( —y~) can be absorbed
by redefining the scale parameter A (Bardeen, Buras,
Duke, and Muta, 1978}. Generally this can be done

~~Except for k=L. Also corrections to various sum rules
are, in this order in g, automatically renormalization pre-
scription independent. '

This cancellation of renormalization prescription depen-
dence is a particular example of a general theoreIn of Stuec-
kelberg and Peterman (1953).

~~The results of these calculations should not be combined
with the results for yNS'" and y;&

'" of Floratos, Ross, and
Sachrajda (1977, 1979).
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with any term in R~ „proportional to y~'&" in the case of
nonsinglet structure functions and with any term pro-
portional to X", in the case of singlet structure functions.
This freedom of defining A is related to the freedom of
defining the effective coupling constant when solving the
renormalization group equations. Therefore a numeri-
cal value of A extracted from experiment on the basis
of higher-order formulas only has a meaning if the de-
finition of the effective coupling constant is given at the
same time. The same comment applies to numerical
values of parameters R„'„.' We shall give specific ex-
amples in Sec. VII.

D. IVlass corrections

So far in this review we have discussed only the scal-
ing violations due to QCD effects. Certainly at low val-
ues of Q' 0(f-ew GeV2) target mass, heavy quark mass
effects, and higher twist corrections will not be negli-
gible. Here we shall indicate how the formulas pre-
sented above are modified in the presence of masses.
We shall comment on higher-twist contributions later
on.

In the last two years there has been a. lot of progress
in the understanding of mass corrections in the frame-
work of QCD but we think the question is not completely
solved. Neglecting for a moment the warnings which
will be made subsequently, the modifications due to
mass effects in the formulas above are as follows. We
shall discuss here only target mass corrections and
mass corrections in the case of heavy quark production
off light quarks in v and v scattering. More general
cases are discussed by Georgi and Politzer (1976) and
Barbieri, Ellis, Ga.illard, and Ross (1976a, b).

't. Target mass corrections

In Sec. II.C we have seen that asymptotic freedom
predictions are particularly simple when given for the
moments (Cornwall and Norton, 1968)

M(n, Q') = dxx" 'F(x, Q'), (2.122)

since to each given moment (n —2) and for large values
of Q' only a small number of operators of a given spin-
n (so-called twist-2 operators) contribute.

For lower values of Q' the mass effects are non-neg-
ligible and this is no longer true. In fact there are in-
finitely many operators of leading twist and different
spin which contribute to the ~th moment in the presence
of masses. It has been demonstrated by Nachtmann
(1973), however, that one can redefine the moments
(2.122) in such a way that to the (n —2) moment only op-
erators of spin-n will contribute as in the massless
case.

The Nachtmann moments take the following form:
n+1

M;(n, Q') = dx ~ K;(n, x, Q')F, (x, Q'),
0

(2.123)

(2.124)

n odd.

Furthermore

where k= 2 for i = 3 and 0= 3 for j= 2. yg is even for
electromagnetic structure functions. For v, v structure
functions we have

n'+ 2n+ 3+ 3(n+ 1)(1+4 m'x'/Q')' '+ n(n+ 2)(4nl'x2/Q')
K,(n, x, Q')=-

(n+ 2)(n+ 3)
(2.125)

1+ (n+ 1)(1+4 m'x'/Q')'"
K3(n& x& Q ) —

( 2)
(2.126)

Here

2x
[I + (1 / 4 n22x2/Q2)&/2 ]

'

and n3 is the mass of the ta.rget. For nz'/Q'-0 Eq.
(2.123) reduces to (2.122). In Eq. (2.124), E,(x, Q') are
the experimentally measured structure functions and for
M, (n, Q') we can take the asymptotic freedom predic-
tions as calculated for the massless case. In other
words the functions K,.(n, x, Q') are supposed to take
care of target mass effects present in the data so that
in evaluating the lhs of Eq. (2.123) by means of the

vW, (x, Q') =- r(x, Q'),
then with target mass corrections included

(2.128)

formulas of Sec. II.C we do not need to think about tar-
get mass effects at all. For the derivation of the for-
mulas (2.123)-(2.127) we refer the interested reader to
the papers by Nachtmann (1973, 1974) and Wandzura
(1977). Simila. r formulas have also been discussed by
Baluni and Eichten (1976a, b).

One can also apply target mass effects directly to the
structure functions as has been done by Georgi and
Politzer (1976), De Rujula, Georgi, and Politzer
(1977a, b), and by Barbieri, Ellis, Gaillard, and Ross
(1976a,b). If in the massless case

'd, ~(&', Q')
2( PQ ) (1 +4 2/Q2)3/2 2 (57Q ) Q2 (1 ~4 2 2/Q2)2 4 t2

~4 x4 1 1 p((ll Q2)
Q4 (1 + 4 2 2/Q2)5/2 4 $ II 2 (2.129)

The numerical values for higher-order parameters in Tables I and II correspond to the so-called MS scheme for the effective
coupling constant (see Sec. VII). In this scheme the terms (ln 47r —yz) in Eqs. (2.96) and (2.120) are dropped.
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Similar expressions exist for W, (x, Q') and vW, (x, Q')
which can be found in the original papers.

The mass effects introduced through Eq. (2.129) are
supposed to be equivalent to thos e r epr esented by the
expressions (2.123). This is only true formally (Buras
and Duke, 1978; Bitar, Johnson, and Tung, 1979). In
practical applications in which one has to take into ac-
count that for finite Q $ & 1, formulas (2.129) and
(2.123) lead to different results. In particular, Nacht-
mann moments lead to the decrease of the parameter A

relative to the massless case (Bossetti et al. , 1978)
whereas the expressions like (2.129) lead to its in-
crease (Buras, Floratos, Sachrajda, and Ross, 1977;
Fox, 1977). Critical discussions of the two approaches
above can be found in the papers by Barbieri, Ellis,
Gaillard, and Ross (1976a,b), Ellis, Petronzio, and
Parisi (1976), Gross, Treiman, and Wilczek (1976),
and Bitar, Johnson, and Tung (1979). It follows from
these discussions that one has to be very careful in
using equations like (2 129) for (-0 or $

—1 [for earlier
discussions on related points see Broadhurst (1975),
Schnitzer (1971), and Da.sh (1972)]. Bita,r, Johnson,
and Tung (1979) and Johnson and Tung (1979) have sug-
gested how the problems of the formulas above for g —1
can be overcome. It is, however, not clear whether
the problems above can be solved in perturbation theory
in a unique way.

xq~(x, Q')- (qi, (g, Q'),
where

g = (Q'+ m~)/2v = x+ m~/2m&y

(2.130)

(2.131)

and ypz is the proton mass. In addition the correspond-
ing y distribution is modified according to the following
rule:

The kinematical bounds are

x ~ 1 —m, /2mEy ~ 1 —m, /2m',
y ~ m~/2mZ(1 —x) ~ mf'/2m&,

(2.133)

(2.134)

from which it follows that the effect of a new quark is
seen first at high y and small x values. In addition
since (& x and q~((, Q') is a decreasing function of g the
heavy quark contribution is suppressed at all values of
x relative to the contribution of the light-to-light quark
transition. Furthermore the y distributions are dis-
torted relative to the massless case. In summary, the

2. Heavy quark mass corrections

If a heavy quark with mass ~f is produced off a light
quark in v or v scattering the standard parton model
formulas are modified. The modifications in question
have been formulated and calculated by Georgi and
Politzer (1976) and subsequently rederived in various
ways by Barbieri et al. (1976a,b). They have also been
discussed in detail by Barnett (1976) and by Kaplan and
Martin (1976). The procedure is as follows. For a
light to heavy quark transition one replaces the light
quark distribution as follows:

full power of the new contributions due to heavy quark
production is expected to be seen only at energies well
above the threshold. For, a detailed description of these
effects we refer the reader to papers by Barnett (1976),
Kaplan and Martin (1976), and Albright and Shrock
(1977).'"

We have dealt here only with mass effects due to light
quark to heavy quark transitions. The treatment of
light or heavy quark production off heavy quarks is
more complicated and can be found in the papers by
Georgi and Politzer (1976) and Barbieri, Ellis, Gail-
lard, and Ross (1976a,b).

E. Structure of common asymptotic freedom
phenomenology

In order to help the reader to use the formulas of this
' section in phenomenological applications we present
here the structure of common asymptotic freedom phe-
nomenology in the form of a recipe. This procedure
should be regarded only as a f irst try in testing the
theory. More fancy ways of confronting asymptotic
freedom predictions with the data are discussed in
Secs. VI, VII, and VIII.

1. Leading order

In the leading order of asymptotic freedom all parton
model sum rules and relations are satisfied. Therefore
all known parton model formulas (see Sec, II.B) for
deep-inela, stic processes are still valid except that now
the parton distributions depend on Q'.

An idealized version of a procedure for testing asymp-
totic freedom predictions would be then as follows:

Step 2. Write parton model formulas for all experi-
mentally measured deep-inelastic processes as ep, p. p,
vN, vN and in particular consider the quantities (x), (y),
vW„vW,, do/dxdy, and also the moments of structure
functions.

Stej 2. Collect all existing deep-inela. stic data.
Step 3. Choose a value of Q'= Q', for which perturba. —

tion theory makes sense (say Q', =2 GeV', preferably
higher) and for which the data, are good enough so that
all quark distributions can be found at this value of Q'
for as broad a range in x as possible.

Step 4. Find q,. (x, Qo).
Step 5. Choose a, gluon distribution G(x, Qo). The

shape of the gluon distribution [e.g. , the power of
(1 —x)] is not specified directly by the data. . However,
the second moment z= 2 is fixed by energy-momentum
conservation once the quark distributions are known.

SteP 6. Choose A. A good starting point is A=0.5
GeV.

Step 7. (i) In the moment version (a) calculate
(&;,(Q', )).„,(Z(Q', ))„,(G(Q', ))„;(b) calculate (&,,(Q'))„and
(Z(Q'))„using Eqs. (2.84)-(2.85); (c) calculate the mo-
ments of structure functions using formulas of Sec.
II.B; (d) try to include target mass corrections using

2~For further discussions of mass effects and heavy quark
contributions to deep-inelastic scatter'ing we refer the reader
to the papers by Mitten (1976) and Close, Scott, and Sivers
(1976).
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Nachtmann moments, keeping in mind warnings of Sec.
II.D.

(ii) In the local version (a) calculate &;„(x,Q', ),
Z(x, Q', ), and G(x, Q', ) and use them as boundary condi-
tions to the integrodifferential Eqs. (2.52)-(2.54); (b)
solve these equations either numerically or by means
of approximate methods discussed in Sec. V; (c) insert
the results for &,, (x, Q'), Z(x, Q') in the standard parton
model formulas (Sec. II.B) and calculate various cross
sections and structure functions.

SteP 8. Compare the results of Step 7 with the data.
If the agreement is bad, change a few FORTRANcards in
Steps 5 and 6 and possible in Step 4.

SteP 9. Check whether fits with various values of Qo
give results compatible with each other. This last step
ean be omitted if the formal Eqs. (2.69b) and (2.74b)
are used.

A few comments are necessary. In calculating the
v, v total cross sections or x and y distributions as
functions of energy, one has to integrate over Q' es-
sentially in the range from 0 to 2 MF. . Since the effec-
tive coupling constant g'(Q') is large for Q'(1 —2 GeV'
and consequently perturbative methods are inapplicable,
one has to make assumptions about the Q' dependence
of the quark distributions for the low values of Q'.
Presumably the best method is to use the data itself
in this Q' range (Fox, 1978a,). Another way to circum-
vent this problem is to make cuts in Q' in the data and
consequently calculate the experimental as well as the-
oretical cross sections without including the low range
of Q' where perturbation theory does not make sense
(Buras, 1977).

2. Higher orders

The phenomenology of higher-order asymptotic free-
dom corrections has only reached an early stage of its
development, and, consequently, we make only a few
comments here.

One can either directly compare formulas (2.90a., b)
and (2.101a,b) with the data or devise methods by

F. Parton mode( formulas for higher-order corrections

%e first recall that in the leading order of asymptotic
freedom the formulas for the Q' development of deep-
inelastic structure functions can be found by means of
two simple rules.

Qule 2. Write a given structure function or its mo-
ments in terms of parton distributions using the stan-
dard parton model formulas of Sec. II.B, e.g. ,

or

F;&(x, Q') =,', xZ(x, Q') + —,
' x~"(x,Q') (2.135a)

(2.135b)~"(n Q') = -'&&(Q')& + -'&&(Q')&"

Rule 2. Find the Q' evolution of the parton distribu-
tions or their moments by using Eqs. (2.52)-(2.54) or
Eqs. (2.84)- (2.86), respectively.

Here we want to present a generalization of these two
rules which includes next-to-leading order corrections.

As we shall discuss in more detail in Sec. VIII, there
is no unique way to define parton distributions beyond
the leading order of asymptotic freedom, and various
definitions are possible. Here we shall present one
(Baulieu and Kounna, s, 1978; Kodaira and Uematsu,
1978) which is particularly useful in connection with
so-called perturbative QCD (Politzer, 1977a) on which
we shall comment in Sec. IX.

I et us illustrate the new Rules 1' and 2' by consider-
ing the moments M;~(n, Q') of Eq. (2.135b).

Rule 2'

means of which the effects of higher-order corrections
on the leading-order predictions are most clearly seen.
A typical example of such a method is the A„scheme
proposed by Bace (1978) and developed by Bardeen et al.
(1978). We shall discuss this scheme and its various
versions in Sec. VII and turn now to a parton model
formulation of asymptotic freedom beyond the leading
order.

2 2 2 2

M"(~ Q')= —&~(Q')& 1+ —Il' + Il' &G(Q')& +- &~(Q')&" 1+2 n jop2 2 n $6/2 2 n n 6 y622n (2.136)

where Il, „,B2~ „,and II, „areobtained from Eqs. (2.96), (2.118), and (2.120), respectively, by removing there
terms (In4m —yz) (see Sec. VII). The factors which multiply various parton distributions are simply the Wilson co-
efficient functions C~~ „(1,g'), C2a„(l,g'), and C,"~„(l,g'). For any other structure function, one just replaces the
index 2" by k and changes charge factors and nonsinglet quark distributions in accordance with the rules of the
standard parton model. For E'„Z&( Q) „&and&G(Q')&„areabsent. The contributions of the two-loop P function and
the two-loop anomalous dimension matrix are contained in the definition of the parton distributions.

We have found explicit expressions for the Q evolution of the parton distributions in Eq. (2.136) which read as
follows:

Rule 2'
—2 @2 d NS

&&;,(Q')&„=«;,(Q;)&„—.Q.
H" (O' Q'o) (2.137)

I
—2 Qa 2 2 dn

&~(Q')&„=[(1 —~„)&~(Q'.)&. — .&G(Q'.))„]=. . If ",,(O', Q'. ) + [~„&~(Q.')&„+~„(G(Q.')&„]—.Q, ff ".(O', Q'. ) (2.138)

g n —2 2

)gent

&G(Q')&„=[ „&G(Q'.)&„-s.&~(Q.')&„]=.. . If"..(O', Q'. )+ [(1 — „)&G(Q'.)&.+ s.&~(Q'.)&.] ~, Q; If".(O', Q'.),

(2.139)
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where o.'„,5„,and s„aregiven in Eq. (2.87), and d"„s
and d", have been defined in Eqs. (2.70) and (2.77), re-
spectively. Notice similarities with the leading-order
expressions (2.84)-(2.86). The factors H", wh. ich in-
clude higher-order corrections are given as follows:

~ NS(Q2 Q2) ] + 4 (Q ) g (Qo)I Zn
n & 0 16m' NS

Lg'(Q') —g '(Q'. )]
167t'

~ g'(Q'. ) g'(Q')'" " g'(Q') ~,
16m' g'(Q') 16m'

where

(2.140)

i=/, G,

(2.141)

~(l), n
i

2PO+ X", —X"„

+(1),n +0 n yn
44

+(&), n yn p
2P 2P2

(1),n (0), f7

Zn ~NS ~NS
Ns 2p 2p2 b'1 ~

(2.143)

(2.144)

Finally y", ,'" are defined in Eqs. (2.109)-(2.112) and the

Q' evolution of g'(Q') which enters Eqs. (2.137)-(2.139)
is given in Eq. (2.88). On the other hand, in the order
considered, the leading-order formula (2.50) for g'(Q')
should be used in Eqs. (2.136), (2.140), and (2.141).
The derivation and properties of Eqs. (2.138)-(2.139)
are discussed in Sec. VIII. The numerical values of
the parameters which enter Eqs. (2.13V)-(2.144) can be
found in Table II.

We would like to remark that the parton distributions
as given in Eqs. (2.136)-(2.139) are renormalization-
prescription dependent, i.e., they depend on how vari-
ous operators in the Wilson operator product expansion
are renormalized. This renormalization prescription
dependence is canceled, however, by that of the B"s
which enter Eq. (2.136). Since one can define parton
distributions in many ways anyhow, we think that one
should not worry about this renormalization prescrip-
tion dependence of parton distributions discussed here.
For different definitions of parton distributions we refer
the reader to the papers by Altarelli, Ellis, and Mar-
tinelli (1978) and Floratos, Ross, and Sachrajda (1979).
In particular Floratos et al. present explicit expres-
sions for the Q' evolution of their parton distributions.

G. Longitudinal structure functions

Finally we quote the formula for the longitudinal
structure function which we shall derive in Sec. VIII.
We have

'd ' 16
(2.145)

where E,( y, Q') and G( y, Q') are the full structure func-
tions F, (singlet+ nonsinglet) and the gluon distribution,
respectively. The leading-order formulas for the Q'
evolution of F,( y, Q') and G(y, Q') should be used in Eq.
(2.144). For f=4, 5'b~' —5/18 for ep scattering and 5'b"

=1 for p and v scattering. The generalizations to an
arbitrary number of flavors are straightforward.

I

lectures (Zimmerman, 1971; Abers and Lee', 1973;
Politzer, 3974; Coleman, 197j; Gross and Wilczek,
1973b, 1974; Abarbanel, 1974; Gross, 1976; Crewther,
1976; Ellis, 1976; Lautrup, &976; Taylor, 1976;
Marciano and Pagels, 1978) where the material of this
section is presented in great depth. This section may
be omitted by the experts, without loss of continuity.

III. QUANTUM CHROIVlODYNAMICS AND TOOLS TO
STUDY IT

In this section we shall collect certain information
about quantum chromodynamics (QCD). We shall also
present the tools necessary to extract QCD predictions
for deep-inelastic scattering. We shall discuss regu-
larization, renormalization, operator product expan-
sion, and renormalization group equations. Our dis-
cussion is mainly devoted to those readers who would
like to gain enough information about these topics to be
able to calculate such quantities as the P function, the
anomalous dimensions of quark and gtuon fields, and the
anomalous dimensions of various operators rel. evant to
the discussion of scaling violations. Therefore in our
presentation we shall try only to give the reader a feel-
ing for what is going on —very often by showing exam-
ples. We refer the interested reader to the textbooks
(Bogolubov and Shirkov, 1959; Bjorken and Drell, 1965;
De Rafael, 197V) and to various papers, reviews, and

A. Lagrangian and Feynman rules

Z= aG'„,G'„,+-iP (y"u" 8+im6 8)&8, (3.1)

where a = 1, . . . 8, o. , P ='1, 2, 3 and the summation over
repeated indices and over flavors is understood. Fur-
thermore

Ga S Ga S Ga +gfabcGbGc
pv p v v p p

is the field strength and

us = & me~ p
—&S~na p

(3.2)

(3.3)

is the covariant derivative. g and G& are fermion and
gluon fields, respectively. Finally g is the strong in-
teraction coupling constant. The matrices A.

' obey the
commutation relations

Quantum chromodynamics is an SU{3),color gauge
theory which describes the interactions between quarks
and gluons. Quarks are arranged in color triplets and
come in f flavors. The QCD Lagrangian is given by
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216 A. J. Buras: Asymptotic freedom in deep inelastic processes

(3.4) C, (A) = ~~, C(G) = 3, and T(R) = ,'f.— (3.6)

6,,C, (Z) =~;,X,', ,

(G) f acdf bed

6, T(R) = fA.,' A, ;. (3.5)

For an SU(3) gauge theory with f flavors, as discussed
here,

Fermi on

Propagator
I

P -m+i.

Gluon a — = b
~~~eserrreeees

Propagator p. p p +le- p +le

with f"' being the structure constants of SU(3),. It
should be remarked that in order to specify the theory
completely one must add a gauge fixing term to g,
which for commonly used gauges (covariant gauges)
has the form —TrI(8 "G„)']/o., where n is a gauge pa-
rameter. In these gauges one must add Fadeev —Popov
ghost interactions to the Lagrangian. In the axial gauge
(G; =0) there are no ghosts but the calculations of
Feynman diagrams are generally more complicated
than in covariant gauges. From (3.1), by means of

standard techniques, (e.g. , 't Hooft and Veltman, 1973;
Gross and Wilczek, 1973b) one can derive Feynman
rules which are shown in Fig. 4.

The new features relative to quantum electrodynamics
(QED) are (i) SU(3) group factors, (ii) existence of the
triple and quartic gluon couplings, and (iii) existence of
fictitious ghost couplings. Otherwise the calculations of
QCD Feynman diagrams are very similar to the corre-
sponding QED calculations. The relevant group factors
are defined as follows:

To make the phenomenological applications easier, in
all expressions presented in this review, the val.ues of
the group theory factors as given by Eq. (3.6) have been
explicitly used.

B. Renormalization and renormalization group equations

As in QED many calculations of QCD Feynman dia-
grams with one or more loops lead to divergent results,
and renormalizations of various quantities which enter
the calculations (vertices, propagators) are necessary
in order to obtain finite physical answers. There exists
a whole machinery for extracting finite physical
answers from perturbation theory, called the renor-
malization program. It consists of two steps: (i) regu-
larization and (ii) renormalization.

't. 0 imensiona I regular ization

The first step in any renormalization program is to
identify the singularities of a given Feynman diagram
and extract them in such a way that renormalization
can be easily performed. One can achieve this is many
ways, but a particularly elegant and simple method is
the dimensional regul. arization procedure of 't Hooft
and Veltman (1972)" in which Feynman diagrams are
evaluated in D =4 —& dimensions and singularities are
extracted as poles: I/s, I/s', etc.

Let us illustrate this method with a simple exampl. e.
Consider the one-loop diagram of Fig. 5(a). It repre-
sents the virtual gluon correction to the quark propa-
gator. Here we treat gluons and quarks as massless
particles, and, in order to avoid mass singularities,
we take external quark momentum slightly off-shell
(P' &0). Using the Feynman rules of Fig. 4, we first
obtain (in the Feynman gauge)

Ghost
Propagator

a b i Bab

p +i62

d k y„ky,
(2~)' k'(k —p)'

d k k
(2.). k (k-P)

(3.7)

(3.8)

Fermion
Vertex

Triple
Vertex

p. I.a
$l k

vb crc
p. a pd

Ig 'fI Xgp

g abc .gp.v'~" q~o. +gvg ~q

+ g~~(r-k)„

where we have used formula (A18) to reduce the Dirac
algebra in D dimensions and we have put all. group and i
factors in one symbol &. Conventionally we have de-
noted the whole result by P' (P). Next using the Feyn-
man parametrization (A13) for the denominators and in-
tegrating over k by means of the formula (A1), we ob-
tain

(3.9)

Quartic
Vertex

~ p»

,fabe fcde ~ gp. crgvp gppgva. &

+ face fbde&gpvg~p- gI pg v~~

Ghost
Vertex

p. a

),"- k

+r

c

fade fcbe ~gjtc. cr gvp gpvgcrp~.

g fatcr

FIG. 4. Feynman rules for quantum chromodynamics.

where

P

g' I (s/2)
(P ) f+

(4+)D/ ( p2) / (s 2)+

(3.10)
\

and. I'(c/2) and B(2 —&/2, 1 —&/2) are Euler-gamma and

For a review see Leibrandt (1974) and references therein.
Basic formulas of dimensional regularization are collected in
Appendix A. Useful calculations can be found in the paper by
Mare iano g.975).
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Euler-beta functions, respectively. The singularity has
been nicely isolated in the gamma function I"(c/2). It is
instructive to expand Eq. (3.10) around the singular
point @=0. Before doing this let us recall that in D4
dimensions, g is not dimensionless although it is di-
mensionless in four dimensions. It i.s convenient to
work with a dimensionless coupling in D dimensions,
and so we make in (3.10) the replacement

(3.11)

where p, is an arbitrary parameter with the dimensions
of mass and g' on the rhs. of Eq. (3.11) is dimension-
less. Now expanding Eq. (3.10) around &=0 by utilizing
formula (A11), we obtain after neglecting terms O(c)

the renormalized quantities. In practical applications
it is often more convenient to deal. exclusively with re-
normalized parameters and proceed as follows:

(b) The calculation of a Feynman diagram is per-
formed in terms of the renormalized parameters
(e.g. , g), as in the example of Sec. III.B.1, and the re-
sulting divergent expression is rendered finite by sub-
tracting the singularities in one way or another (see
below). Once the subtraction scheme has been speci-
fied, the renormalization constants Z~, Z&, Z& can be
found.

Let us illustrate the idea of a subtraction scheme by
renormalizing the expression (3.12).

(2) 2 . g 2 —p(P )= ir-, ——in ~ +1+ln4n—y'~36n' & P'

(3.12)

3. Two subtraction schemes

a. Subtraction at p&= -p2

where y~ is the Euler-Mascheroni constant which we
already encountered in Sec. II. We have thus extracted
the singul. arity as a 1/e pole and have obtained a well-
defined finite part.

2. R enorma I ization

In order to illustrate the general idea of renormaliza-
tion, consider the QCD Lagrangian (3.1) continued to
D =4 —c dimensions. For simplicity we put fermion
masses to zero (m„=0)and we work with the dimen-
sionless coupling constant g by making the replacement
(3.11) in (3.1). We denote the resulting Lagrangian by

S '(p) = P'+ p g "(p'), (3.18)

with Q ' (P') given by Eq. (3.12). We can require that
the renormalized inverse fermion propagator

Sz (p) -p+p Q(~)(p /u ), (3.19)

In this subtraction scheme the renormalized vertices
and propagators are found by specifying their values at
particular values in momentum space. Let us consider
the fol1.owing example.

The unrenormalized inverse fermion propagator
S '(P) resulting from Figs. 5(a) and 5(b) is

&c(Gp& gnarl (3.13)
at p' = -p, ' satisfies

Using this Lagrangian we shall encounter singularities
in the Feynman diagrams which will appear as poles in
c. A specific example has been shown above. To re-
move these divergences we add to g, counter terms.
We can write the resulting, renormalized, Lagrangian2„in terms of the bare fields (G'„)0,Q'„, and the bare
coupling go as follows:

&s= &c(Gp~ 4u~ g P) +&'(&) coun~sr =&pl(Gp) ~ 4n~R'nl
terms

(3.14)

The bare and renorma1. ized quantities are related to
each other by the following equations:

(G~)o Zi~2Ga

y0 Zl/2y

go = p. gZg,C/2

(3.15)

(3.16)

(3.17)

(a) The calculation of a Feynman diagram is per-
formed in terms of the bare parameters (e.g. , g,) and
the resulting divergent expression is rendered finite by
rewriting it in terms of the renormalized parameters
by utilizing relations (3..15)—(3.17). One can imagine
that all singularities have been absorbed by introducing

where Z~, Z&, and Z~ are renormalization constants,
which diverge for c-0. Z(-. , Z&, and Z~ are known
once the counter terms are specified. Before going in-
to detail let us get a feeling for the renormalization
procedure. One can l.ook upon it in two obviously equi-
valent ways.

(3.21)

Using (3.12) we obtain

(3.22)

Next writing

Ss'(p) = Z~S '(p)

we obtain from (3.18), (3.19), (3.12), and (3.22)

(3.23)

Z
&

——1 + ir (g '/16m') [2/e —in(p. '/P ') + 1 + 1n4m —ys ] .

(3.24)

b. 't Hooft's m/animal subtract! on scheme

The method presented above is not the only way to
render S '(P) finite. By putting condition (3.20) we

(b)
FIG. 5. g and g order contributions to quark self-energy.

(3.20)

where p, is an arbitrary momentum. This is achieved if
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A. J. auras: Asymptotic freedom in deep inelastic processes

have subtracted fr'om g 'j (P') not only the singularity
I/s but also the finite terms . The subtraction pro-
cedure in which one subtracts only the singularity I/c
is called the minimal subtraction scheme (MS) and has
been proposed by 't Hooft {1973). Applying this proce-
dure to Eq. (3.12) we obtain

and

ln, —1 —ln4m+y~&» P . g -P
(&) p Ms 1677

&gl Ms = I+f~(g'/16m')(2/s) .

(3.25)

(3.26)

Notice that the expression for the renormalization con-
stant && is very simple in 't Hooft's scheme. General. —

ly in the scheme in question any renormalization con-
stant is just a series of powers of 1/c which greatly
facilitates the calculations of various renormalization
group parameters; in particular the calculation of two-
loop anomalous dimensions (for a discussion see Sec. 3
of Ross, 1979). Notice that Qz is different in the two
renormalization schemes considered. This does not
bother us, however, because Qs is not a physical
quantity. Ps is, in fact, generally only one element
of a physical expression. There are other elements in
a given physical expression which also depend on re-
normalization procedure. If all these elements are put

. together, their renormalization prescription depen-
dences cancel. each other as required for a physical
quantity (Stuekelberg and Peterman, 1953). Specific
examples of such situations, relevant for deep-inelas-
tic scattering, will be discussed in Sec. VII.

Our discussion of 't Hooft's minimal subtraction
scheme was very superficial. Full exposition of this
elegant subtraction procedure can be found in the pa-
pers by 't Hooft (1973), Collins and Macfarlane (1974),
and Gross {1976). In particular, Collins and Macfar-
lane discuss a whole class of subtraction schemes which
differ from the one presented here by a different con-
tinuation of the renormalized coupling constant to D di-
mensions. In general, instead of (3.11) one can have

trary. Certainly the final result of a renormalization
procedure cannot depend on the value of p. and any
change in p. can be compensated by the change in g and
the scales of the fields. This is most elegantly ex-
pressed by renormalization group equations (Stueckel-
berg and Peterman, 1953; Gell-Mann and Low, 1954;
Bogolubov and Shirkov, 1959; Callan, 1970, 1972;
Symanzik, 1970; Wilson, 1969), which we shall discuss
now very briefly.

It is convenient to work with the amputated, renor-
malized, one-particle irreducible, proper vertex func-
tj.ons I's & "cj(p~,g, c) which are (suppressing argu-
ments) defined as follows:

{Ng,Ng)
R

R Np Ng'' 1' g(2, 0)
'' ''g(0, 2)R'

The renormalized Green functions C& &'"" are given by

G~"~' "=(oIT(4~".4,G.. -GNcl»,

(3.28)

(3.29)

and N& and N& stand for the number of external fermion
legs and gluon legs, respectivel. y. In this notation

j. —p(2/0)
R B (3.30)

lim I'„&"(P, , g, c, p. ) = I'~ & "c (P, , g, p, ), (3.32)

exists.
Since I'U &' ~ does not depend on p. , i.e. ,

Similar expressions exist for the unrenormalized pro-
per vertex functions I'c"&'"-' (P&, go, r) with all renor-
mal. ized parameters and fields replaced by the corre-
sponding bare quantities. Because of (3.15) and (3.16)
the proper vertex functions T'U"&'"~ and I &

&' ~ are re-
lated to each other by

+cia Ncj(p g c p) gNg/ 2' /c2p&(Ng vcj(p g c)

(3.31)

and the limit

g'-g''j 'f (&,g'), (3.27a) + (Ng, x~) (3.33)

where f(c,g') is any function of c which has the proper-
ty f(0,g ) = l. Each different continuation wili lead to
different finite parts in Eq. (3.25). As we shall see in
Sec. VII this type of ambiguity in the finite parts can be
absorbed in the definition of the effective coupl. ing con-
stant. In particular the MS scheme of Sec. VII in which
the terms involving (1n4m —ys) are not present in Eqs.
(2.96) and (2.120) corresponds to

f (c,g') = 1 —s/2 (ln4m —y~) . (3.27b)

4. R enormal ization group equations

So far we have shown how to regularize the renor-
malize Feynman amplitudes. In the process we have
introduced an arbitrary normalization scale p, . In the
P' = p.

' subtraction scheme Ij.
' stands for the spacel. ike

momentum where we specify the values of particular
Green's functions. In the 't Hooft's scheme the p. =P in
the renormal. ized expression appeared through the con-
tinuation of the renormalized coupling constant to D =4
—c dimensions. In both schemes the value of p. is arbi-

we obtain from (3.33) and (3.31) the following renor-
m aliz ation g roup equations

+P(g) s
—~~y~(g ) —~cyc(g) I'~''" =o

(3.34)

where

and

1
yy(g) =

Bp,

1 a
yc(g) =2 j,8 fj,

(3:35)

(3.36)

()(g) = j,„. (3.37)

The renormaiization group functions y&(g) ~ yc(g)~
p(g) depend only on g. y&(g) and yc(g) are called
anomalous dimensions of the fermion field and gluon
field, respectively. P (g) is the well-known function
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which governs the Q' evolution of the effective coupling
constant, as we shall discuss in more detail below. It
should be remarked that p(g), Y&(g), and ya(g) depend
only on the given theory and not on the particular
Green's function considered.

We would like to remark that generally the renormal-
ization group equations (3.34) also involve the deriva-
tives with respect to the masses and the gauge parame-
ter &. In order to simplify the presentation we neglect
these derivatives here. For a careful discussion of the
renormalization of the gauge parameter we refer the
reader to Sec. 5.4 of the review by Gross (1976).

Equation (3.34) when combined with the standard di-
mensional analysis can be used to relate the vertex
functions evaluated at momenta P; to the same vertex
functions evaluated at rescaled momenta e'P&. In appli-
cations to deep-inelastic scattering i = lnQ'/li'. One ob-
tains [see, e.g. , Gross (1976)]
F(N(, Nc}(etP g) F(N g, Ng}[P g(i)]

tliY g (g ) GYG(g )
P(g )

suit (3.40).
Similarly one can calculate the anomalous dimension

of the gluon field, Yc(g), by considering the diagrams
of Fig. 6, with the result (Politzer, 1974; Gross and
Wilczek, 1973)

g 13 A 2 I ~ g
Yc(g) =

16 2 6 2 3f =Yc 16 (3.43)

(3.44a)

3 8 2

P(g) =-16,, u s„f' —„.+ Y~+Y{2,1) ~ 2 0 + 0

where f "(p'/p') and f ("'}(P'/(j,') are defined as fol-
lows:

(3.44b)

where a is the gauge parameter.
In order to evaluate P(g) to order g' one considers

either the diagrams of Fig. 7(a) or the diagrams of Fig.
7(b). If the resulting renormalized vertex functions are
I"&" and I"&' ', respectively, then the equations for
P(g) which follow from renormalization group Eq. (3.34)
are

(3.38)
where g(t) is an effective coupling constant which satis-
fies the following equ ation and

F(0.3} g + (g3/16}(2)f (0,3}(P2/li2) (3.4 5 a)

dg
« =g4(g); gP=o) =g (3.39)

and D is the physical dimension of 1"&.
We observe that once Y&(g), Yc(g), and p(g) are

known, and r& &'"~ is calculated at momenta corre-
sponding to a single value of f, say t = 0, then Eq. (3.38)
gives us I'&"&' ~ at any rescaled momenta e'P& wi.th t0.
We shall see that equations like (3.38) will be at the
basis of discussions of scaling violations as predicted
in QCD.

5. Calculations of renormalization group functions

We can obtain Y&(g) in g' order by inserting Z& of
Eq. (3.26) into (3.35) with the result (r =iC, (A) = i4/3)

2 2

lnZ =3 16
'=

16 '' (3.40)

which corresponds to the Feynman gauge (n =1). In an '

arbitrary covariant gauge n the result of Eq. (3.40) is
to be multiplied by a. Alternatively we can calculate
y&(g) by using renormalization group Eq. (3.34). We
insert S„'—= I'~2'0 as given by Eqs. (3.19) and (3.25) into
renormalization group equations and compare the
powers of g'. Since the g' expansion of P(g) begins
with g', P(g) can be dropped on the rhs of Eq. (3;34) if
we are interested in Y(g) in order g'. Therefore we
obtain first

1 z"" ——g+ (g '/16m')fz" (P'/'l}, ') .
Evaluating f~" and fz" (Politzer, 1973; Gross and
Wilczek, 1973) and using (3.40) and (3.43) one obtains
from both (3.44a) and (3.44b)

(3.4 5b)

p(g) = —(30(g'/16}('),

where

(30=11—~ f . (3.4 7)

~oooooooo~ r ooo gal%'NA

The fact that the coefficient of g' is negative (for f ~ 16)
has a very important consequence —asymptotic fYee-
dom. Inserting (3.46) into (3.39) and choosing f = lnQ'/p'
as an example, we obtain

g'(Q') g'( ')/I«'
I + [g'(u')/167(']P. »(Q'/)} ') (3, »(Q'/&') '

(3. 48)

where we have introduced the parameter A which is re-
lated to p.

' and g'(p. ') =g' by Eq. (2.51). For Q'- ~
this coupling constant which measures the effective in-
teraction between quarks and gluons at mom entum scal. e
Q decreases to zero. This is what we mean by asymp-

8
( )—2'Y

(( (g)Bp.

and consequently (in g' order)

~(2) P
g(Y)=g2P

&
Z&z}

(3.41)

(3.42)
%ooooooo

which by Eq. (3.22) or (3.25) leads to the previous re FIG. 6. Lowest-order corrections to gluon self-energy.
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in the study of deep-inelastic scattering, we have to
discuss operator product expansion.

C. Operator product expansion

The basic object in any discussion of deep-inelastic
scattering is the spin averaged amplitude T» for the
forward scattering of a current J„offa hadronic state
IP). Here Z„stands either for the electromagnetic cur-
rent (ep, imp scattering) or a weak current (v, v scatter-
ing). We first introduce the operator

(3.49)

which is related to T„,by

Tp, p(Q & v) = (p ITpv IP)spinav raOge 'd (3.50)

Next the amplitude T„,(Q', v) can be decomposed into
invariant amplitudes as follows:

T»(Q', v) = e„„TL(Q', v) +d„,T, (Q', v)

—is„,Ei(p„qq/v)T, (Q', v), (3.51)

FIG. 7. Lowest-order corrections to (a) triple gluon vertex
and (b) fe rmion —gluon ve rtex.

totic freedom. As we shall see in subsequent sections
the smallness of g'(Q') for sufficiently large Q' will al-
l. ow us to calculate many quantities in perturbation the-
ory in g'(Q'). This spectacul. ar property is a special
property of non-Abelian gauge theories. "

So far we have discussed renormalization, renormal-
ization group equations, and asymptotic freedom in
general. Before showing how these ideas can be used

with v=Pq and Q'= —q'. The tensors e„„andd&„arede-
fined in Eqs. (2.2) and (2.3).

Following Wilson (1969) we can expand the product of
currents, which enters Eq. (3.49), as a sum of pro-
ducts of local operators 0,"-&" "~ of definite spin n times
certain coefficient functions C„'. The index i stands for
the type of operator and will be specified below. In
what follows we shall only consider so-called twist
(twist—= dimension-spin) two operators which give the
dominant contributions to the moments of the structure
functions in the Bjorken limit. The higher-twist opera-
tors are suppressed relative to twist-two operators by
powers in Q'. At not too large values of Q' they are ex-
pected (De Rujula, Georgi, and Politzer, 1977a, b;
Gottlieb, 1978) to be of some importance only for x
close to 1.

The operator product expansion for T„,is as follows:

2
(&i i, &~u,& &i i,&~&i, &i &v, &.i, +&i.&i/ i,)C2. ~»&

El, k

&I &v ' " ., ~ "..+ Cj1p 2 ~p ~p CL n
v
2 )P~j1IJAHA(xp ~8~j1 C3, n 2 &8 ~p ~I1 ~2

q ~ Q
(3.52)

Writing next
""IP) =A.'(u )P„-.P„—traces,

and combining Eqs. (3.50) —(3.53) we obtain

(3.53)

2 Q2

2 1

—iE~,„s"
C3 „—,, g' A„'(v.') (3.54)

v ' jJ.

3Prior to the discovery of asymptotic freedom it has been
argued that approximate Bjorken scaling requires an asymp-
totically free theory (Callan and Gross, 1973) and it has been
shown that only non-Abelian gauge theories can be asymptoti-
cally free (Coleman and Gross, 1973). One exception to this is
a A$ theory with X& 0 (Symanzik, 1973), but this theory is re-
jected on the ground that its spectrum is unbounded from be-
low.

where x is the Bjorken variable (Q'/2v). In writing
(3.54) we have dropped the trace terms of Eq. (3.53).
This is justified if target mass corrections (see Sec.
II.D) can be neglected. The arguments of the coefficient
functions indicate that they will be calculated in per-
turbation theory in g'. The sum on the rhs of Eq. (3.54)
runs over spin-n, twist-2 operators such as

0" '""+=S'(P„A'„iiy"I)" ~ . '@ ~ g8 —traces),

0"~" "~ = S(q„y"'I)"2 ~ ~ ~ n'~ g„-traces),

(3.55)

(3.56)

0""'"~=&(G '"X)"' ~ ~ ~ 50"~-~G "~' —traces)Q (3.57)

where S denotes symmetrization over all Lorentz in-
dices. Since we shall deal only with foward spin-aver-
aged matrix elements we do not consider operators with
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negative parity. O~js"'"" are the fermion nonsinglet
(under physical symmetries) operators, whereas
O~&~"'"& and O~'""" are singlet fermion and gluon oper-
tors, respectively. The index x distinguishes between
various nonsinglet operators. Since the Q' dependence
of the Wilson coefficient functions, corresponding to
various nonsinglet operators, is common, we shall in
the following drop the index z.

Using dispersion relations between deep-inelastic
structure functions of Eq. (2.1) and the invariant am-
plitudes of Eq. (3.51), and taking into account (3.54),
one can express the moments of the structure functions
in terms of the Wilson coefficient functions and the
hadronic matrix elements of various local operators.
One obtains (Christ, Hasslacher, and Mueller, 1972)

f1 2

d «'«k («, Q') =g'A„'(k')C' „—,, g') k = 2, k
0

& Ns
I
~~ INs ) = p c„"'o"„,

„„

n

wher e

(Ns
I o;, I

Ns ) =- o;,„,.

(3.61)

(3.62)

In order to derive renormalization group equations for
C„,we have to find first renormalization group equa-
tions for (NSI JJ

I
Ns) and ONs „s.

For (Nsl JJ I NS) we have similar to Eq. (3.34)

(3.63)+ p(g) —2y, (g) (Nslvzlws)=0,
Bp, Bg

4

where y~(g) is the anomalous dimension of the quark
field [see Eq. (3.40)]. Due to current conservation,
the anomalous dimension of the current J is zero.

Next we define the wave-function renormalization Z»
of the operator 0» by

(3.58) ONs
ONS gn

NS
(3.64)

1 2

dxx I'3 x, — A p C3„—2, g
0

Notice that by taking moments the operator product ex-
pansion has been projected on a given spin; the (n —2)
moment of the structure function depends only on oper-
ators of spin n. Since there are at most three types of
leading operators of a given spin [Eqs. (3.55)-(3.57)]
the theoretical analysis of QCD predictions for deep-
inelastic scattering is most conveniently done in terms
of the moments of various structure functions rather
than in terms of structure furictions themselves.

A few final remarks about operator product expansion
(OPE) are necessary. The matrix elements A„'depend
on the target

I P), and are uncalculable in perturbation
theory if the target is a composite object as for in-
stance the proton. The coefficient functions on the
other hand do not depend on the target since they are
determined by the expansion (3.52). They can be cal-
culated in perturbation theory. In fact what OPE does
for us is to separate perturbatively calculable pieces
(coefficient functions) in the expression for the mo-
ments of structure functions from nonperturbative
pieces —matrix elements of local operators. A brief
discussion on this factorization in the framework of the
perturbative QCD can be found in Sec. IX.

We shall now show that the Q' dependence of the coef-
ficient function is governed by the renormalization
group equations similar to Eq. (3.34).

D. Renormelization group equations for Wilson
coefficient functions

We begin the discussion with the coefficient functions
of the nonsinglet operators of Eq. (3.55). Suppressing
for simplicity all the arguments, we write the non-
singlet part of the operator product expansion of two
currents symbolically a.s follows:

where 0„'s"is the bare operator.
For the matrix element ONs» we therefore have

~NS, NS —~n ~NS, NS ~

NS
(3.65)

with Z, defined by Eq. (3.16).
Repeating the steps which led us from Eq. (3.31) to

Eq. (3.34) we obta, in

where

a a+ p(g) + &Ns(g) —2y)k(g) ONs, Ns= 0
«

BjL Bg
(3.66)

B
&Ns(g) = 9 lnZNs (3.67)

Q2
+ k()«) «"„.)««) C„"'—,—, k—') =O. (3.68)

Notice that we have now written explicitly the argu-
ments of the coeff icient functions.

The case of singlet operators 0~ and O~ is more
complicated because these operators mix under re-
normalization and Eq. (3.64) is replaced by

On g(Zn ~) Oa, n g I q G
b

(3.69)

Here (Z" ) is a 2X2 ma. trix. Consequently, Eq. (3.65)
is generalized to

O.",=g Z, (Z" )„O,'", a, b, c =g, G,
b

where

(3.70)

is the anomalous dimension of the operator 0». Next
combining Eqs. (3.61), (3.63), and (3.66) and taking into
account that the tensor structure in the expansion (3.60)
is different for different n [see Eq. (3.52)], we finally
obtain for each n

~~INs=g c„"'o"„,. (3.60)
o.",-=&clo."lc& (3.71)

Sandwiching Eq. (3.60) between nonsinglet (quark)
states we obtain

and &, stands either for Z~ or Z~, which are defined in
Eqs. (3.16) and (3.17), respectively. Therefore we
have
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where y,"b are the elements of the 2x2 anomalous di-
mension matrix and are defined by

y"b = p, lnZ (3.73)

Equations (3.61) and (3.63) are generalized to the
singlet case as follows:

and

(c~ZV )c)=g C'O"
n, b

(3.74)

+ P(g) ——2 y",(g) Q C„'0",,= 0 .a 8

Bg
(3.75)

Therefore combining Eqs. (3.72) and (3.75) we finally
obtain

3 Q2
+&(z) &: —., w' =E~l.&! . , z'). (3.&6)

Equations (3.66) and (3.75) are the basic results of
this section. We shall discuss the solutions of these
equations in Secs. IV, VII, and VII, and now we turn
to the calculation of the anomalous dimensions y» and

n
~ab

It follows from (3.81) and (3.82) that in order to find
yN~" and y,'„",we have to calculate the matrix elements
of local operators sandwiched between quark and gluon
states and pick out the coefficients of ln( —p'). For
diagonal elements y~~", y„'s", and y„;~we have to add, in
addition, twice the anomalous dimensions of the quark
and gluon fields which we have already calculated ear-
lier.

The diagrams which enter the calculation of y~~" or
y„~are shown in Fig. 8. The diagrams which enter
the calculation of the whole anomalous dimension ma-
trix in order g' are shown in Fig. 10. The virtual
gluon corrections on the external lines need not be cal-
culated if 2@~ or 2y„.is added explicitly as in Eqs.
(3.81) and (3.82). On the other hand, if these diagrams
are included in the calculations, the anomalous dimen-
sions ya~ and go~ should be dropped in Eqs. (3.81) and
(3.82).

In order to evaluate the diagrams of Figs. 8 and 10
we have to extend the list of Feynman rules of Fig. 4

by the rules for the vertices "x"which represent oper-
ator insertions into a two-point function. Simple rules
for the vertices in question have been found by (Gross
and Wilczek, 1974) and are shown in Fig. 9. The b,
appearing there is an arbitrary four vector with the
property

Q2 0 (3.83)

2 n 2

16p2 2 p
2 (3.77)

n

16m' 2 p,
' (3.78)

where x» and x,", are calculable numbers and p' is the
spacelike momentum of the quark or gluon states
(NS, c) between which the operators are sandwiched.

Furthermore, the perturbative expa. nsions of y"„~(g)
and y.",(g) a.re

E. Calculations of anomalous dimensions of local
operators

We first write the perturbative expansions of the ma-
trix elements ONs, Ns and 0"„„droppingp' independent
terms, as follows:

k I gPPP ( )(2~) (k')'(k —p)'

d k
(k')'(k- p)' ""' (3.84)

where we have used formula (A.20) to reduce the Dirac

The derivation of these rules can be found in the appen-
dix of the paper by Gross and Wilczek. Additional
rules necessary for the calculation of the anomalous
dimensions in order g can be found in the paper by'

Floratos, Ross, and Sachrajda (1979). Here we shall
only indicate how to reproduce formula. (2.79a) for yo~~".

We begin with the diagram of Fig. 8(b). We work in
the Feynman gauge" and obtain first

2

(g) —w„,16,+ o(g ) (3.79)

2

r.",(g) = ~:;"16,+ o(g') . (3.80) (c)

Inserting Eqs. (3.77) through (3.80) into Eqs. (3.66) and
(3.72) and choosing 4 different combinations of a and
c in Eq. (3.72), we obtain the following relations be-
tween the coefficients of ln( —p'/p. ') in Eqs. (3.77) and
(3.78) and the anomalous dimensions of the operators

I/2

~NS + NS
O, n n 0 (3.81)

(3.82)

(e)
FIG. 8. Diagrams entering the calculation of p&&n or ygs.

Here y, stands for either y~ or y~ which are defined in
Eqs. (3.40) and (3.43), respectively.

Anomalous dimensions of local operators considered in this
review are gauge independent in order g .
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Pr (b, ~ k)

-k„b~(6~k)

FIG. 9. Feynman rules for
the operator insertions.

A-2 j 0-2- j
= gX b, Ptg(b P } (b Pa}a

p, ,a , Pps P Pseo

algebra in D dimensions and we have put all group and
j factors in one symbol h, . Now a.s the reader may con-
vince herself (himself), if we are interested only in the
coefficients of lnp', we can put c = 0 at all places where
this substitution does not lead to a singularity. From
this it follows (see below) that, equivalently, anomalous
dimensions can be found by calculating the coefficients
of the divergerit parts I/s. On the other hand, if we a.re
interested in the calculations of the so-called constant
pieces [e.g. , 1+ ln4w —zz in Eq. (3.12)] we have to keep
all. & factors different from zero until the calculation is
finished. In particular the 1" in Eq. (3.12) comes
from the product of s in (Eq. 3.8) and the divergence
I/s in I'(s/2).

Using the formulas of Appendix A, Eqs. (3.11), (3.83),
and h. = -iC, (R), with C,(R) given by (3.6), we obtain

I„=, ' ——ln —,4((bp)" '+ const. (3.85)
g' 2C,(R) 2 —p'

16m' n(n+ 1) ic p,
'

The factor (&p)" ' in Eq. (3.85) arises in the following
way. After using the Feynman parametrization of Eq.
(A.13) one makes a change from k to k:

k= k —p(1 —x},
where x is the Feynman parameter. Therefore one ob-
tains

(~u)" '= (1 —x)" '(~p)" '+ (n- 1)(1—x)"- (~p)" '~5+ ~ ~ ~ .
(3.86)

The terms which involve more than one factor &Q can
be dropped in Eq. (3.86) because they lead after k inte-
gration to 4', which is zero. An additional factor &p
in the second term in Eq. (3.86) is obtained after k in-
tegration, when Eq. (3.86} is inserted into (3.84).

Adding zeroes order contribution ([I]g(&p)" 'j to I~,
and comparing the result with Eq. (3.78) and taking into
account (3.81), we obtain the following contribution of
diagram 8(b) to y~«"..

4C,(R)/~(~+-I.) . (3.87)

Notice that result (3.87) could also be read off the co-
efficient of I/s. This is particularly useful in the cal-
culation of two-loop anomalous dimensions as dis-
cussed in detail by Floratos et al. (1977, 1979).

The diagrams 8(a) and 8(c) give the following contri-
bution to y'„":

I

8C~(R) Q —. ,
J=2 2

(3.88)

and when the result for 2y'„=2C,(R) is added to Eqs.
(3.87) and (3.88), we obtain

yo, ;"= 2C,(R) 1 — -+ 4 g-
n n+1 (3.89)

which by Eq. (3.6) for C,(R) agrees with (2.79a). The
calculation of the remaining elements of the anomalous
dimension matrix proceeds in a similar way.

IV. 0 DEPENDENCE OF THE MOMENTS OF
STRUCTURE FUNCTIONS IN ASYMPTOTICALLY
FREE GAUGE THEORIES

A. Preliminaries

In this section we shall find the Q' dependence of deep-
inelastic structure functions as predicted by asymptotic
freedom in the leading order. The basic formulas of
this section [(4.17), (4.18), (4.41)] express the moments
of structure functions in terms of unknown (Q2 indepen-
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l 2

dxx" 'I'I x, Q' = A„' p,
' C~ „—2, g'

0 't

(4.1)

dent) matrix elements of certain operators times their
coefficient functions with explicit Q' dependence. In the
next section we shall cast formulas t(4.17), (4.18),
(4.41)t into the standard parton model expressions with
Q2 dependent quark distributions. The reason for a
caref ul discussion of structure functions in terms of
Wilson coefficient functions first rather than immedi-
ately in terms of parton distributions is that beyond the
leading order the def inition of parton distributions is
not unambiguous and the language developed in this sec-
tion is more appropriate. This section is slightly for-
mal but we invite the reader to go through it carefully
since the techniques presented here will be at the basis
of Secs. VII and VIII.

As we saw in Sec. III, the basic tools necessary to
study @CD implications for deep-inelastic scattering
are the Wilson operator product expansion and the re-
normalization group equations. The operator product
expansion allowed us to systematically identify the
dominant contributions to the moments of the structure
functions at large Q' and to express them in terms of a
sum of products of (perturbatively) calculable coefficient
functions and (by present methods) uncalculable matrix
elements of certain operators between hadronic states.
The Q' dependence of the coefficient functions could
then be found by means of renormalization group equa-
tions. Explicitly we have

(4.6)

t dxx" 'X ;(x, ()')=A'„'(X')C',„,, d')
0

2.
+ A„'(X')C,„—,, d') /=2, 1 .

(4.7)

B. Nonsinglet structure functions

The Q' dependence of C~'„(Q'/l(, ', g') is governed by the
following renormalization group equations:

8+p(g) —yNs(g) C„"„—,, g' = 0, (4.8)

where yN~(g) is the anomalous dimension of the nonsin-
glet operator ON~ and P(g) is the renormalization group
function which governs the Q' dependence of the effec-
tive coupling constant

——g P(g); g(t= o) =g. (4.9)

Sec. II.B. The moments of the functions I'k and E'k
are given as follows:

f dxx" 'F" (x, ()')=A„("u)'C "„,, X') ):=I,&,
0

(4.5)

l 2

dxx +2 Xq = + P, C2 —2qg
0

J dxx" 'X,(x, ()')=—A„"(X')C,"„,d''),
0

(4.2)

(4.3)

Here t = InQ'/p, ' and g is the renormalized strong inter-
action coupling constant.

The solution of Eq. (4.8) is given as follows:
g(Q ) yn

2

g2 —C"~ (1 g2) exp dg' » &
~2 & k, lT

—,(~~, P(g ')

&,(~, Q') = +,"'(~,Q') + &;(x, Q')

Particular examples of such decomposition in the
framework of the simple parton model are given in

(4.4)

where the sum runs over spin-~, twist-2 operators
such as the fermion nonsinglet operator 0» and the
singlet fermion and gluon operators 0"„,and 0"„., re-
spectively. The A„'(l(.'), which are independent of Q',
are the reduced hadronic matrix elements of the oper-
ators in question. They are defined in Eq. (2.63). We
have shown explicitly that A„'(i(,') depend on p, ', the sub-
traction point (see discussion in Sec. III). Notice that
to the moments of I", only one type of operators con-
tributes. This is explained in Sec. VII.E.

We would like to recall that in our notation ONS stands
for any linear combination of nonsinglet operators
which differ from each other by A.

' in Eq. (3.55).
Therefore as emphasized after Eq. (2.64) d'I„""(p,') de
pend generally on the process and the structure function
considered. This dependence is discussed in Appendix
B.

We shall now find the explicit Q' dependence of the co-
efficient functions C~ „(Q'/p.', g') as given in the leading
order of asymptotic freedom. To this end it is con-
venient to decompose any structure function into a sum
of singlet and nonsinglet contributions as follows:

(4.10)

To proceed further one has to calculate C„"„(1,g'),
y"„s(g), and P(g) in perturbation theory. In the leading
order it is enough to calculate one-loop contributions to
y»(g) and p (g) using the methods of Sec. II, and take
the zero-loop (parton model) values for C„"~(Ig').
Thus in the leading order we have

yNs(g) = yNs'"(g'/16~'),

p(g) = —P,(g'/167('),

(4.11)

(4.12)

g(k}

f 72

k=X
(4.13)

g2(Q2) ) d NS

CNS @ 2 ~NS —2r 2X k r
k, n

0 0=1
(4.14)

where

where |}„sare constants which depend on weak and elec-
tromagnetic charges (see Appendix B), and pc and y(Ncs)

"
are given in Eqs. (2.49) and (2.71), respectively. In-
serting Eqs. (4.11) to (4.13) into (4.10) and performing
the integral we obtain
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d Ns= yNs "/2P. .
Now from Eqs. (4.9) and (4.12) we have

g '(Q') = 16N'/P, ln(Q'/A'),

(4.1 5)

(4.16)

where the scale parameter A is related to p. and g'(p, ')
=g' by Eq. (2.51). Combining Eqs. (4.5), (4.6), (4.14),
and (4.16) we finally obtain

ln(Q /A ) "Ns

0

(4.17a)

where y", ,(g) are the elements of the anomalous dimen-
sion matrix and P(g) is the same function as in Eq.
(4.12). These equations are more complicated than
Eq. (4.8) due to the mixing between singlet operators
as we discussed in Sec. III. In other words, under re-
normalization O~ transforms into a linear combination
of O~ and O~ and the same happens with O~. This mix-
ing has a very intuitive interpretation which we shall
present in Sec. V.

In what follows it will be convenient to work with ma-
trix notation and introduce the column vector

d x x" 'I', (x, Q') = 5g,'A„"'(Q',)
In(Q'/A')~ 'Ns

0 ln Q' A'

(4.18a)

Q' . c,', .(Q'/q', g ')

C2 „(Q'/P.', g )

and the matrix"

(4.21)

and EN~'=0. In order to unify notation we have put p,
'

=Q', in Eqs. (4.17a.) and (4.18a.).
Equations (4.17a) and (4.18a.) can be used directly in

phenomenological applications. 0'„~s' can be taken from
Appendix B and A„"(Q2s) ca,n be found from the data by
measuring the moments of structure functions at Q'
=Qs. Once A„(Qs)a.re known, Eqs. (4.17a) and (4.18a)
give the moments of the structure functions at any (suf-
ficiently large) value of Q' in terms of one free pa-
rameter A.

The value of Qs in Eqs. (4.17a) and (4.18a) is arbi-
trary as required by the renormalization group and the
predictions for the moments in question should be inde-
pendent of it. However, by picking out one particular
value of Qs in order to determine A„"(Qs) one gives this
value specific significance. For consistency one should
find A„"(Qs) from the data by choosing various values of
Q,
' and check whether expressions (4.17a) and (4.18a)

with various values of Q', give results compatible with
each other. In order to simplify this procedure and at
the saMe time to impose the independence of the phe-
nomenological fit of Qo, it is convenient to get rid of
Q', by writing Eqs. (4.17a) and (4.18a) as follows:

dxx"-2~NS(x Q')= 5 "A"' ln —, (4.17b)
0

nf l ys3(g) yo3(g)

y", o(g) yoo(g)
(4.22)

Then the solution of Eq. (4.20) can be written as fol-
lows:

C, „—,, g' = T, exp dg', C„„(l,g').Q', ', y"(g')

y"(g) = y "'"(g'/16~'),

g(2)
C, „(1,g')=

0

(4.25)

(4.26)

(4.28)

The T ordering is necessary since [y(g, ), y(g2)] 4 0 and is
def ined as follows:

, y"(g') ', y"(g')
P(g') —, P(g')'

d
„y(g') y(g")+

P(g') P(g")

(4.24)

To proceed further one has to calculate C, „(1,g') and
y"(g) in perturbation theory. In the leading order it is
enough to calculate one-loop contributions to y"(g) and
take zero-loop (parton model) values for C„„(1,g').
Explicitly

dx x n-l+Ns(x Q2) 5(3) ANs
0

(4.18b)
(4.27)

Here A„" are.constants (independent of Qs) and are re-
lated to ANS(QQ by the following equation:

2 SB
ANs(Q2) ANs I 0 (4.19)

Numerical values for d"„~can be found in Table I.

C. Singlet structure functions

The Q' dependence of C„"„(Q2/p, 2, g2) and C2o „(Q2/p,2, g2)
is governed by the following two coupled renormaliza-
tion group equations

(4.28)U-1 O, n U
0 +

i

where V, are the eigenvalues of j' " and are given in Eq.
(2.78). It should be remarked that the matrix U is not

Notice that C2 „(1,g') vanishes to this order. This does
not mean, however, that C2o„(Q2/p.2, g') is zero for Q'
3t:p2, as one ca'n check by inserting (4.26) into Eq.
(4.2S).

In what follows it will be useful to choose the basis in
which y' '" is diagonal. We introduce the matrix U
which diagonalizes y'o' " by

i, j=g, G, (4.20) 2 Notice that we work with a transposed matrix.
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defined uniquely by Eq. (4.28).
which is related to Uby

U=U

In fact any matrix U'

(4.29)
0 b

where a and Q are arbitrary real, finite numbers, sat-
isfies Eq. (4.28). Of course the final expression for
the moments of the singlet structure functions does not
depend on which a and 5 we take. Here we choose

O' T exp
1

1 n(Q~/A~)

ln()(). '/A')

ln(Q'/A')
1n(p '/A')

where

'
d

'"'g'
Udg

p( p)
U

(4.39)

„,(0), n yn ~ (0), n ~n

(0), n
YgG

and consequently

1
(yn yn) t (4.30) d", =X",/2P, . (4.40)

Combining Eqs. (4.34) and (4.37)—(4.39) we finally ob-
tain the generalization of Eq. (4.17a),

(0), n
U-1 ~( G

'yfE y (0), n

(0), n
~~(0), n pn ~ 1]) G

+—

(4.31)
ln(Q'/A')" ' "-

dxx" 'I";(x, Q') = 5(2)A„(Q',) —(,/, )

The elements Z(0,'" have been calculated by Georgi and
Politzer (1974) and Gross and Wilczek (1974) and are
given in Eq. (2.79).

Notice next that if we introduce a row vector

ln(Q'/A')
n(QO) ln(Q2/A )

and 8'~ = 0. Here we have put p.
' = Qo and defined

A„'(Q'.) = +A'(Q.') .

(4.41a)

(4.42)
(4.32)

=A„(U')UU 'C, „(—,, g') (4.33)

=&.(U')U;, .(„., ~')
2

+~.(„)U;.—'„,), (4.34)

A„(p,') = [A (~p, '), A (~p. ')],
we can rewrite Eq. (4.7) as follows":

1 2

6XX +~ Xq =An ]tj C2 n 2qg
0

d x x " '9';(x, Q') = 5(~ 'A„[ln(Q'/A')] '-

+ 5(2)A+ [ln(Q2/A2)]-& + (4.41b)

Equation (4.18a) applies for I",.
Equations (4.41) and (4.42) with A'(Q', ) given by (4.35)

are very useful in relating the formal approach devel-
oped here to the intuitive approach of Sec. V. How-
ever, when the formal approach is used without any
ref er e nce to the parton dig tributi ons, it is convenient
to repeat the steps which led us in the nonsinglet case
from Eq. (4.17a) to Eq. (4.17b) and write

where

[A.(u'), A„"(u')]= A.(V ') U (4.35)
(4 43)

where the constants (independent of Qo) A.„'a.re related
to A„'(Q~) as follows:

A„'(Q',)= A„'[ln(Q'JA')] '+ .

C, „(Q'/p.', g') -, Q'

C; „(Q'/p,', g')
(4.36)

C, „(1,g') (2)

C; „(1,g')
We next write

(4.37)

Using Eq. (4.36) for Q'= p,
' and taking into account

Eqs. (4.26) and (4.31) we obtain (leading order)

d", & d" + 1, 4 & g & 14 (4.44)

Numerical values for d", can be found in Table I.
Equation (4.41b) can be used directly in phenomeno-

logical applications. 5~ ' can be taken from Appendix B.
Then Eq. (4.41b) describes the Q' evolution of the mo-
ments of I', in terms of two sets of unknown numbers
A„'and the scale parameter A. A„'and A are to be found
by comparing Eq. (4.41b) with the data, .

As can be seen in Table I

"n
U 'C„„—,, g' = U ' T exp dg' —, d", ~ d" + 2, yz~ 14.

In addition

(4.45)

x UU ' C, „(1,g') . (4.38)

The T ordering is irrelevant to the order considered
and we first obtain, using (4.11), (4.12), (4.16), and
(4.28)

Since E'I vanishes in the leading order we discuss here only
E'2, i.e., k =2. ~L is discussed in Secs. VII and VIII.

dms, (4.46)

Therefore for n~ 4 and for sufficiently large Q' the
second term in Eq. (4.41) can be dropped and conse-
quently the Q2 dependence of the singlet structure func-
tion is essentially the same as that of the nonsinglet
structure functions. This could be spoiled by large
values of A„'but experimentally this is not the case. In
formal terms Eq. (4.46) expresses the fact that the
mixing of gluon and fermion operators of high spin-n is
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A. J. Buras: Asymptotic freedom in deep inelastic processes 227

very weak. We also observe that because of the in-
equality (4.44) the g' corrections to the — term in Eq.
(4.41) are for n) 4 as important as the leading-order
contribution to the +" term. We shall later discuss it
in more detail.

V. Q2 DEPENDENCE OF PARTON DISTRIBUTIONS IN
THE LEADING ORDER

The discussion of the Q' dependence of the structure
functions as presented in Sec. IV was rather formal and
it is useful to develop a more intuitive picture. In fact,
this can be done at least in the leading order. The re-
sult is simple and was already announced in Sec. II: all
well-known parton model expressions remain unchanged
except that now parton distributions depend on Q2. Thus
if we only find the Q' dependence of parton distributions
predicted by asymptotic freedom, we can study QCD ef-
fects in deep-inelastic scattering by means of the stan-
dard parton model formulas. The aim of this section is
to present equations which determine the Q2 dependence
of parton distributions, solve them, and show that they
are equivalent to the formalism developed in Sec. IV.

A. Intuitive picture and integrodifferential equations

%'e begin with the intuitive picture of Kogut and Suss-
kind (1974). Imagine the photon, Z' boson, or a W boson
to be a microscope by means of whichwe probe the inner
structure of the proton or generally of a hadron. In-
creasing Q while holding x fixed is equivalent to in-
creasing the power of the microscope or looking at
shorter and shorter distances. By scanning the proton
at fixed Q2 and 0~ x ~1, we obtain the picture of the
proton at this particular value of Q'. According to the
simple parton model of Sec. II.B, the picture of thepro-
ton does not depend on how strong a microscope we use.
The pictures at different values of Q2 are the same.
This is not the case in QCD. By increasing thepower of
our microscope from Q2 to Q', &Q,', we can resolve a,

quark with momentum fraction x into a quark with x' &x
and a gluon with x" -—x-x' as illustrated in Fig. 3(a).
Similarly a gluon with momentum fraction x can be re-
solved into a quark-antiquark pair as illustrated in Fig.
3(b). There exists also the process of Fig. 3(c) which
can be interpreted as resolving a gluon into a gluon
pair. Since a gluon couples neither to y nor to Z' or
8", this does not happen directly. However, the exis-
tence of this process affects the probability of finding a
quark in a gluon since a gluon can either fragment into
a quark-antiquark pair or into a pair of gluons and the
sum of these two probabilities (plus the probability that
the gluon does not fragment at all) is just unity. In
summary the picture of the proton or, equivalently, par-
ton distributions, depends on Q~.

The Q' dependence is different for different parton
distributions. Intuitively, we see that valence quarks
can effectively emit only gluons. They cannot be pro-
duced effectively in the Fig. 3(b) process because this
would lead to baryon number nonconservation. As a re-
sult, valence quarks lose their momentum in favor of
gluons and consequently [through the process of Fig.
3(b)] in favor of the sea. In the simple language de-
veloped above, by increasing Q' we cannot find avalence

quark in a gluon or in a sea quark but only in a valence
quark itself. Of course this picture is oversimplified
since it assumes one can make a clear distinction be-
tween valence and sea quarks as in Eqs. (2.12) and
(2.13).

The behavior of the sea distribution with increasing
Q' is different. Here both processes [Figs. 3(a) and
3(b)] can contribute. On one hand, gluon bremsstrah-
lung leads to a shift of the sea distribution to smaller
values of x. On the other hand the process of Fig. 3(b)
increases the amount of sea at all (mostly at small) val-
ues of x. As we shall see below, because of the coexis-
tence of the two processes instead of just one as in the
case of valence quarks, the asymptotic freedom equa-
tions for the Q2 evolution of the sea distribution are
more complicated than for the valence quark distribu-
tion. For the same reason also, equations for the Q'
development of the gluon distribution are rather compli-
cated. In the formal language of the previous section
the complex Q' dependence of the gluon and sea distri-
butions is due to the mixing between gluon and singlet
fermion operators. On the other hand, the simple be-
havior of the valence quark distributions is due to the
fact that the corresponding nonsinglet operators do not
mix under renormalization with the singlet operators.

It is obvious from the picture developed above that the
Q' dependence of the parton distributions will be deter-
mined by the variation (with Q') of the probability of
finding a parton i inside the parent parton j with the
fraction of the parent momentum, z =x,./x&.

Adopting the notation of Altarelli and Parisi (1977) we
write the variation of the probability in question as

[n, (Q')/2~ P,,(~), (5.1)

where n, (Q') =g '(Q')/4m and i,j stand for q and G. Then
the equations which determine the Q' dependence of the
parton distributions are given as follows:

d V(x, t) n(Q') ' ay, x
(5.2)

dq;(x, t) o.'(Q')
dt 27T

—q,. y, tP —+G y, tP~—

(5.3)

Z(x, t) =-g[q,.(x, t)+q, (x, t)], .
i

where the sum is over all flavors. The equation for q,.
(x, t) is obtained from (5.2) by replacing q,.(x, t) by q,.
(x, t). From Eq. (5.3) it is a trivial matter to obtain
Eqs. (2.52) and (2.53) of Sec. II.

Equations (5.2)-(5.4) have been obtained in QCD by
Altarelli and Parisi (1977) and Dokshitser, Dyakonov,
and Troyan (1978). Similar equations in the context of

(5.4)

Here t =In(Q2/p2), V(x, t) is the valence quark distribu-
tion and
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P„()=-;V„(), (5.5)

P„()=V„(),
P„()=-; V.,( ),
P..( ) =3V..(.).

(5.6)

(5.7)

(5.8)

The functions P,, (z) and V, , (z) satisfy certain relations
and sum rules which we shall list now:

{i) Charge conservation:

dz P„(z)= 0.
0

(ii) Total momentum conservation:

(5.9)

other theories have been discussed previously by Gribov
and Lipatov (1972) and Kogut and Susskind (1974). The
structure of Eqs. (5.2)-(5.4) is easy to understand in
terms of the intuitive picture discussed above. The
quark distribution at the value x is determined by the
quark (gluon) distribution in the range x ~

y ~ 1 and the
probability for the q(y)[G(y)]- q(x) transition which is
given by P„(x/y)[P,~(x/y)]. Similar comments apply to
Eq. (5.4).

Notice that the functions P„,P,~, and P~, do not de-
pend on flavor. Strictly speaking this is only true for
massless quarks.

The "sp) itting" functions P, , (z) can be calculated in
QCD by considering the vertices of Fig. 3. We refer the
reader to the paper by Altarelli and Parisi (1977) for
details. The result of this calculation is summarized in
Eqs. (2.56)—(2.59) of Sec. II.

Here we shall only discuss certain properties of
P, ,(z). To this end it is useful, following Dokshitser,
Dyakonov, and Troyan (1978), to factor out group
theory factors from P, , (z) and introduce the functions
V,, (z) as follows:

ity of total probabilities for finding quark and gluon in a
quark, and quark and gluon in a gluon. It is possible,
however, that the relation (5.13) is just accidental.

The important consequence of relations (5.9)-(5.13) is
that it is enough to know one function P,,(z) in order to
determine the remaining three splitting functions. As
we shall see below this implies that in order to find the
whole one-loop anomalous dimension matrix as given by
Eq. (2.79) it is enough to calculate only one of its ele-
ments f This does not turn out to be true for the two-
loop anomalous dimension matrix (see Sec. VIII).

a, (x) = —a, (y)a, —dy x
~X

where H,.(x) are some functions, then

n n n

where

(5.i4)

(5.15)

M„'= dxxn ~H. x j= 1,2, 3.
0

(5.16)

We next notice (Altarelli and Parisi, 1977) the rela-
tions between the moments of the splitting functions
P,, (z) and the elements of the anomalous dimension
matrix y'"[Eq (2 79)]

1 yO, n

dz zn 1P ( )aa (5.17)

B. Asymptotic freedom equations for the moments of
parton distributions

Here we shall show that the integrodifferential equa-
tions (2.52)-(2.54) are equivalent to the equationsfor the
moments of parton distributions as given by Eqs. (2.84)-
(2.86).

We first quote the well-known convolution theorem for
Mellin transforms which says that if

dye P +P~, -—0,
0

f
1
dz z[2P'„(z)+P„(z)]= O. (5.io)

yo, n

dz z" 'P,c(z) =—
0

t y 0&n

dz z"-9 (z) = — «
Gq

(5.18)

(5.19)

(iii) Momentum conservation at the vertices of Fig. 3:

V„() = V..(1-.),
V,.( )=V..(1-.),

t l yO~n

J
dz z" 'P, ~ ()=z- ~~'

0
(5.2o)

Vga(z) = Vas(1-z) . (5.11)

V,.( )=z V.,(1/z).

(v) Quark gluo-n symmetry:

V,.( )+V..(.)= V,.( )+ V..( ).

(5.12)

(5.i3)

The relations above are obvious. There exist in addi-
tion two other relations (Dokshitser, 1977), which are
very interesting although not completely clear:

(iv) The crossing relation:

Conventionally we have kept different notations for the
indices of P,, functions and the indices of the elements
of the anomalous dimension matrix. P in the formal ap-
proach stands for q in the intuitive approach. t" is the
same in both approaches. The one-to-one correspon-
dence between diagrams needed for the calculation of
y " and the vertices needed for a similar calculation of
the P,.&

functions is illustrated in Fig. 10.
Finally recall that in the one-loop approximation to

the )3 function

The crossing relation (5.12) leads to the well-known re-
lation between the deep-inelastic and e'e structure func-
tions (Drell, Levy, and Yan, 1969; Gribov and Lipatov,
1972; Lipatov, 1975; Bukhvostov, Lipatov, and Popov,
1975). Equation (5.13) could be interpreted as the equal-

we can write

2'lT d )3 0

n(Q') dt 2 ds

(5.2i)

(5.22}
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Formol ZZ//Z l tltui tive and consequently

A"'(Qg = &~(q'.)&„. (5.26)

b)

o,n

o,n

G

n) P (Z)

b} P (Z)

Therefore Eq. (5.25) is clearly identical to Eq. (2.84).
Thus the matrix elements of local operators normal-
ized at p. '—= Qo are interpreted as the moments of quark
distributions at Q'=Q', . The relation (5.26) between
moments of quark distributions and the matrix elements
of local operators has been anticipated a long time ago
in the context of the parton model and light cone alge-
br a (Jaffe, 1972).

The case of singlet structure functions is slightly
more complicated Writing

c} P, fl
XG

c) P {Z}

ys( q2) 5(2 Z( q2)

and inserting it into Eq. (4.41a) we obtain first
1

&Z(q')& -=dxx" 'Z(x Q')
Q

(5.27)

. AYXZ ln(Q'/A') I
-'"- ln(Q'/A') "+

n(qo In(Q2$A2) n (Qo) In(Q2/A&)

(5.28)
O, A

GG
d} P (Z) where by Eqs. (4.30), (4.35), and (4.42)

A (q') =A„'(Q2)n„+A„(q')6
„

(5.29)
Z

(-Z

FIG. 10. Formal approach versus intuitive approach.

ln(q2/A2)'
In(Q2QA2) l

' (5.23)

with Q20 being some reference value of Q'.
Applying the convolution theorem to Eqs. (2.52)-(2.54)

and using Eqs. (5.17)—(5.20) and (5.22) we obtain differ-
ential equations for the moments of parton distributions
which can be trivially integrated to give the promised
Eqs. (2.84)-(2.86).

C. Equivalence of the intuitive and the formal approach

In Sec. V.B we have demonstrated how the moment
Eqs. (2.84)-(2.86) can be obtained from the integro-
differential Eqs. (2.52)-(2.54). Here we shall show
that Eqs. (2.84)-(2.86) can also be derived from the
formal approach of Sec. IV.

As we have discussed in Sec. II.B, any parton model
formula for an arbitrary structure function can be
written as a sum of singlet [Z(x)] and nonsinglet [&(x)]
combinations of quark distributions weighted by the
appropriate weak and electromagnetic charges. The
latter are represented-in the formal approach by the
constants &~

' and &„'8'. Therefore writing generally

~Ns( q2) 5 (2 &x~ ( q2) (5.24)

and inserting it into Eq. (4.17a), we obtain

1 ln ' A' ~Ns
&~(q')&„=- d " '~(, Q') =A„"'(Q'.),

0
(5.25)

A„'(Q'.) = &Z(q'.)&„.
Therefore if we take

(5.31)

A„'(Q'.) = «(Q'.)&„, (5.32)

the formal Eq. (5.28) is identical to the moment Eq.
(2.85).

As pointed out by Floratos, Ross, and Sachrajda
(1979), Eq. (2.86) for the moments &G(Q2)&„canbe di-
rectly obtained from Eq. (2.85). To this end we find
&G(QQ&„from Eq. (2.85) and make the relabeling, Qo—Q', with the result

&Z (Q')&„((1-o.„)exp[d", s] + n„exp[d"s]j—&Z (Q',)&„
K„fexp[d".s]- exp[d" s) )

(5.33)

Using next Eq. (2.85) on the rhs of Eq. (5.33), we are
led to Eq. (2.86).

D. Properties of parton distributions

The Q2 dependence of parton distributions, as pre-
dicted by asymptotic freedom, can be obtained by in-
tegrating Eqs. (2.52)-(2.54) or equivalently (5.2)-(5.3).
Before doing this we shall first list basic properties of
the Q~ evolution of parton distributions. These proper-
ties can be obtained most directly from the moment
Eqs. (2.84)-(2.86).

a. The momentum fraction carried by valence quarhs,
&V&z, and (x&„ofthe valence quarh distribution decrease
arith increasing Q . This is consistent with the intuitive
picture developed in Sec. V.A. Explicitly from Eqs.

and

A+(q', ) =A~(Q')(1- n„)—A (Q',)n„. (5.30)

The parameters o.„and o.'„aredefined in Eq. (2.87). It
follows from Eqs. (5.28) to (5.30) that
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(2.49a), (2.84), and (2.79a) we have

(V(Q')&, = &V(Q', )&,exp( —[64/3(33- 2f]sI

and

(5.34)

(x(Q')& = &x(QJ&exp( —[12/(33- 2f)]sj,
where s is given by Eq. (5.23) and (x(Q')& is defined as
follows:

(5.35)

«(Q')&.'"'"=
«(Q )

&'. (5.3 6)

Notice that the rate of decrease of (V(Q')&, and of (x&„
in.creases with the number of flavors, which is not dif-
ficult to understand in the intuitive picture of Sec. V.A.

b. The momentum fraction carried by gluons, (G&~

and sea, (S)z, increases zuith increasing Q . Since en-
ergy-momentum is conserved the momentum lost by
valence quarks must be carried by gluons and sea
quarks. In the Altarelli-Parisi Eqs. (5.2)-(5.3) ener-
gy-momentum conservation is ensured by the sum
rules (5.10), which by Eqs. (5.17)—(5.20) are equivalent
to

yo, (2) + yo, (2) 0

yO, (2) + yO, (2) 0GG SG

and consequently we have by Eq. (2.78)

g(2) p

(5.37)

(5.38)

(5.39)

In more formal terms this just expresses the fact that
the anomalous dimension of the energy-momentum
tensor is zero. In Eqs. (5.37)-(5.39) "(2)"stands for
n=2.

From Eqs. (2.87) and (2.79) we have for f flavors

arid

n = n =3f/(16+3-f)

~, = 1— , o= 16/(16 3f+)

(5.40)

(5.41)

and using (2.85) and (2.86), we verify momentum con-
ser vation

(~(Q')&.+ &G(Q')&, = &~(QQ&, + &G(Q', )&, . (5.42)

Normalizing the total momentum of the hadron to 1 we
obtain the following asymptotic predictions

(5.43)

(5.44)

&~(Q')&... = 3f/(16. 3f),
(G(Q')&, o. — 16/(16+3f)

Because (V(~)& =0 we also have &Z(~)&, =&8(~)&,. For
instance, for f=4, asymptotically 43% of the proton
(or other target) momentum will be carried by the sea
and the remaining 57%%uo by gluons. For f= 6, asymptot-
ically 47/o of momentum is carried by gluons and the
remaining 53/o by the sea. Notice that the asymptotic
fraction of momentum carried by quarks increases
with the number of flavors. Similarly the asymptotic
fraction of momentum carried by gluons increases
with the number of colors since for a gauge group
SU(K) the 16 in Eqs. (5.40) and (5.41) is replaced by
2(N'-1). It should be remarked that these asymptotic
predictions do not depend on the target. On the other
hand, at moderate values of Q' the momentum decom-
position in the proton is, for instance, different from

that in the pion. For a recent discussion of these ques-
tions we refer the reader to the paper by Brodsky and
Gunion (1979).

At low values of Q2, roughly 45/o of proton momen-
tum is carried by gluons, 7% by the sea, and the re-
maining 48% by valence quarks. We expect therefore,
on the basis of predictions (5.43) and (5.44), a rapid
increase with Q2 of the amount of the sea, and a very
slow (fast) increase (decrease) of the momentum car-
ried by gluons (valence quarks). Thus, effectively,
valence quarks lose their nzornenturn almost entirely in
favor of the sea. This is confirmed by explicit calcula-
tions.

c. The average values of x, &x&, of the sea and gluon
distributions decrease neith increasing Q . Although the
momentum carried by the sea and gluons increases,
their (x& values decrease as one can verify by means of
Eqs. (2.84)—(2.86). This is obvious if we recall the
intuitive picture at the beginning of this section or no-
tice (Nachtmann, 1973) that d"„asgiven in Table I, in-
crease monotonically with n and are positive for n &2.
Similar comments apply to higher moments of (x&.
Consequently we expect a decrease (as in the case of
valence quarks) of the sea and gluon distributions at
large values of x and increase (due to property b) of the
distributions in question at small x values. This be-
havior has profound consequences for the Q' develop-
ment of the deep-inelastic structure functions. ,

d. The flavor symmetry breahing in the sea decreas-
es saith increasing Q~. Equation (2.84) implies that

(c (Q') &„—( d (Q') &„=[(c(Qo) &„—(d (Qo) &„]exp[-d"„,s],
(5.45)

and similarly for any pair of different quark distribu-
tions. Thus asymptotically all different quark distri-
butions will be equal. Strictly speaking, Eq. (5.45) is
only approximate because it does not take care of
thresholds effects. Consequently, for the values of Q'
not much bigger than the (mass)' of the relevant heavy
quark, Eq. (5.45) overestimates the rate of approach to
the flavor symmetry limit.

e. Generation of heavy quarhs in the sea. It follows
from Eq. (5.45) that if we set the charm contribution
equal to zero at some value of Q' = Qo, then for Q'& Q',
the distribution in question will be different from zero.
This is due to the qq creation of Fig. 3(b). Of course,
due to neglect of mass effects, Eq. (5.45) overestimates
the rate of generation of heavy quarks in the sea.
f. The Q evolution of the sea distribution depends on

the shape of the gluon distribution. Since the sea is
produced in the process of Fig. 3(b), its Q' evolution
depends on the shape of the gluon distribution. From
the intuitive picture developed at the beginning of this
section, it is clear that the steeper the gluon distribu-
tion, the stronger the increase of the sea at small val-
ues of x. Similarly a broad gluon distribution would
lead to a non-negligible generation of sea quarks at in-
termediate values of x, say x=0.3. Since the shape of
the gluon distribution is rather poorly determined ex-
perimentally, in practical applications the parameters
of the gluon distribution are very often kept free and
are varied to get the best fit to the data. Of course,
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this freedom is limited to one value of Q'= Q', and to the
moments n& 2, since the momentum carried by gluons
is known due to momentum conservation (Eq. 5.42)
once the momentum carried by quarks is determined.

This completes the listing of the main properties of
the Q' evolution of parton distributions as predicted by
asymptotic freedom. We shall see below that the know-
ledge of these properties greatly simplifies the discus-
sion of QCD effects in deep-inelastic scattering.

So far our discussion was rather qualitative. (:hoos-
ing certain quark and gluon distributions at Q =Q2O we
can either integrate numerically Eqs. (2.52)-(2.54) or
invert numerically moment Eqs. (2.84)-(2.86) to find
the distributions in question for Q'4 Q', . The result of
such a calculation is presented in Fig. 11. All the
properties discussed above are clearly seen.

E. Approximate solutions of asymptotic freedom
equations

For practical applications it is often convenient to
have analytic expressions for Q' dependent parton dis-
tributions which to a good accuracy represent the nu-
merical solutions of Eqs. (2.52)-(2.54) or Eqs. (2.84)-
(2.86). We shall here present the method for obtaining
such analytic expressions proposed by Buras (1977) and
Buras and Gaemers (1978). We shall also refer to
other methods which can be found in the literature.

Let us parametrize the solutions to Eqs. (2.52)-(2.54)
or Eqs. (2.84) —(2.86) by analytic expressions as follows:

Here s is given by Eq. (5.23) and B[q,(s), 1+@2(s)] is
Euler's beta function. Its appearance is necessary if
we want to satisfy the known sum rule

dx V(x, Q2) = 3 . (5.49)

q,.(s) = g,. (0) + q',. s z = 1, 2, (5.50)

and determining the constant slopes g',. by fitting the
moments of the analytic expression (5.46) to the asymp-
totic freedom prediction for (V(Q'))„which we have
just obtained. One obtains for instance (for four fla-
vors, f= 4)

q, (s) = 0.70- 0.176s,

q2(s) = 2.60+ 0.8s, (5.51)

Notice that the parametrizations in Eqs. (5.46)-(5.48)
are simple generalizations of the standard parametri-
zations used in the simple parton model (e.g. , Field
and Feynman, 1977; Barger and Phillips, 1974). The
functions q,.(s) and A,. (s) can be found as follows. At
some Q'= Q20, or, equivalently, s =0, p,.(0), and A,.(0)
are taken from the data. This allows us to calculate
the moments (V(QQ)„, (Z(Q',))„,and (G(QQ)„, and conse-
quently by Eqs. (2.84)-(2.86) we obtain (V(Q2))„,(Z(Q2))„,
and (G(Q2))„for any (not too small) value of Q' for which
the equations in question apply. The functions q, (s) and

q, (s) which describe the evolution of V(x, Q') are then
found by assuming

«(x Q') = x"~"'(1-x)"2"'3
&[q, (s), 1+q, (s)]

for valence quark distribution,

xS(x Q') =A, (s)(l-x)"~"',
for any sea distribution, and

xG(x, Q') =A, (s)(l-x)"~"',
for the gluon distribution.

(5.46)

(5.47)

(5.48)

where the input values 0.7 and 2.6 correspond to Q2

=1.8 GeV' and have been chosen on the basis of SI.AC
data (Riordan et al. , 1975; Bodek et al. , 1979). The
formula (5.46) with q,.(Q') given by (5.51) is a. good
representation of the asymptotic freedom Eq. (2.84)
for 0.02» x- 0.8 and 0» s» 1.6. This range of s is
larger than that explored by present experiments and
experiments to be performed in the near future.

Similar analytic expressions can be found for d„
(x, Q') and u„(x,Q') separately. One obtains, for in-
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FIG. 13.. S'~ as a function
of x for (a) @2=1.8 GeV and
(b) @2=22.5 GeV~ together
with contributions from u„,
d„,noneharmed sea, and
charmed sea (Buras and
Gaemers, 1978).
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stance,

1
xd (x Q ) &[ (

—
) 1 (

—
)~

x (1 x)

where (for f=4)

q, (s) = 0.85—0.24s,

q4(s) = 3.35+ 0.816s .

(5.52)

(5.53)

tions for nonsinglet structure functions by means of
Mellin transform techniques is due to Parisi (1973),
Gross (1974), and DeRujula et al. (1974). First nu-
merical integration of integrodifferential Eqs. (2.52)-
(2.54) has been done by Cabibbo and Petronzio (1978).
For recent refinements in the use of Eqs. (2.52)-(2.54)
see the papers by Baulieu and Kounnas (1979), and
Gonzalez-Arroyo, Lopez and Yndurain (1979a,b, c).

The input values 0.85 and 3.35 again correspond to
@20= 1.8 GeV2 and have been chosen on the basis of
SIAC data. As we shall see in Sec. VI, parametriza-
tions (5.46) and (5.53) fit well the data. Needless to say
the method just outlined can be easily generalized, if
required by the data at Q2„ to any linear combination
such a,s Z, ,A,.x"~(l —x)"~'.

The method just discussed is less powerful in repro-
ducing the Q' dependence of the sea and gluon distribu-
tions. This is due to the fact that the corresponding
asymptotic freedom equations [(2.85) and (2.86)] are
very complicated. However, for a limited range of
x, 0.02-x- 0.3 and 0- s ~ 1.6, it is enough to use the
moments n = 2 and n = 3 of Eqs. (2.85) and (2.86) in order
to find xS(x, Q') and xG(x, Q'). For instance

A. (I)
= (&(Q')).(

—1),
S

q, (s) = 1/&x&, —2,
where

(5.54)

(5.55)

(5.56)

and &S(Q')&2 and &S(Q')&, are given by Eqs. (2.85). A
similar formula exists for gluon distribution which,
however, turns out to be only a fair representation of
asymptotic freedom due to a very rapid increase with
Q2 of the gluon distribution at very small values of x,
as predicted by Eq (2.86).. This rapid increase cannot
be reproduced well by a simple formula like (5.48).
Fortunately in the leading order for deep-inelastic
processes one has to deal only with valence quark dis-
tributions and sea distributions. In addition, for x & 0.3
where the formula (5.47) is not applicable, the sea dis-
tribution is very small, and all deep-inelastic formulas
are governed for this range of x by the valence quark
distribution. Therefore the method just outlined is
useful for deep-inelastic phenomenology. For further
details we refer the reader to Buras arid Gaemers
(1978).

For applications to other than deep-inelastic proces-
es, as for in. stance the Drell-Yan process, one needs
asymptotic freedom expressions for the sea distribu-
tions which are valid for x&0.3. Such expressions turn
out to be very complicated. They can be found in pa-
pers by Owens and Reya (1978), and Kato, Shimizu and
Yamamoto (1979).

There exist in-the literature other methods for ob-
taining analytic expressions for the Q'-dependent par-
ton distributions (Gliick and Reya, 1977b; Parisi and
Sourlas, 1979; De Grand, 1979), which the interested
reader may consult. Simple numerical inversion
methods can be found in the papers by Fox (1977),
Yndurain (1978), Martin (1979), Furmanski and Pokor-
ski, (1979b). The first inversion of the moment equa-

VI. SHORT REVIEVV OF ASYMPTOTIC FREEDOM
PHENOMENOLOGY

Using the procedure of Sec. II.E modified appropriate-
ly by the mass corrections of Sec. EI.D it is a straight-
forward matter to obtain asymptotic freedom predic-
tions for various quantities of interest and to confront
them with the experimental data.

There have been many phenomenological papers in
the recent past, and it is not a purpose of this section
either to review them in detail or to present the best
comparison of asymptotic freedom with the data. In-
stead we shall try to present the pattern of scaling vi-
olations and its size as predicted by QCD and as seen
in the data. We shall do this quite systematically. For
each quantity we shall first give qualitative predictions
based on the properties of parton distributions which
we have listed in Sec'. V.D. We shall then give quanti-
tative estimates based on the procedure of Sec. II.E,
and we shall subsequently confront them with the exist-
ing data. In all cases we shall refer to various papers
where details on the experimental data and their de-
tailed comparison with asymptotic freedom predictions
can be found. The analysis of this section is based on
leaChng -ozdez predictions only. '

A. Electroproduction and muon scattering

't. Structure functions

According to asymptotic freedom, with increasing
Q' one expects a decrease of the structure functions at
large values of x and an increase at small values of x.
The increase at small x values is due to the sea com-
ponent, whereas the decrease at large values of x is
caused mainly by the decrease of the valence compo-
nent. This qualitative behavior is certainly consistent
with the eP, pp, ed, and p. Fe data (Watanabe et al. ,
1975; Riordan et al. , 1975; Taylor, 1975; Atwood et al. ,
1976; Anderson et al. , 1977; Gordon et al. , 1979;
Bodek et al. , 1979). These data show a definite de-
crease of the structure function E2(x, Q2) for x& 0.25
and a Q'-independent behavior for 0.15&x&0.25. For
x& 0.15 the data for eP and ed sca.ttering are poor and
nothing definite can be said. The scaling violations in
question increase with increasing x. in accordance with
the increase of the anom alous dim ensions with incr eas-
ing n. Asymptotic freedom fits, with or without mass
effects, give good agreement with the data above. The
parameter A is found to be in the range 0.3&&& 0.5

Phenomenological studies of scaling violations without ref-
erence to asymptotic freedom can be found in the papers by
Karliner and Sullivan (1978), Perkins, Schreiner, and Scott
(1977) and Kirk (1978).
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FIG. 12. The Q behavior of
5'2~ for various values of x,
compared with the SLAC
data of Biordan et al. (1975).
The solid line corresponds
to parametrizations of Eq s.
(5.46), (5.51), (5.52), and
(5.53). The sea contribution
is negligible at these values
of x.

GeV. The details of such asymptotic freedom fits can
be found in the papers by Parisi and Petronzio (1976),
DeRujula, Georgi, and Politzer (1977a), Gliick and
Reya (1977a), Buras and Gaemers (1978), Fox (1977),
Tung (1978), Kogut and Shigimitsu (1977a), and Johnson
and Tung (1977a,b). We show a typical asymptotic
freedom fit in Fig. 12. The best data for structure
functions at small values of x come from pp scattering
(Anderson et al. , 1977; Gordan et al. , 1979).2' For x
&0.15, and especially for +&0.10, a definite increase
with Q' of F~2~ is observed. As shown in Fig. 13, the
agreement of asymptotic fr eedom with the data is again

good with a value of A consistent with that obtained from
eP and ed scattering. We should like to remark that the
increase at small values of x is expected to be caused
by the increase of both the noncharmed sea as well as
of the charmed sea component of the proton.

The data above extend over the range of Q' up to 60
GeV with the majority of experimental points below
Q'= 30 GeV2. Recently results from a p, Fe experiment
have been reported for Q' up to 150 GeV (Ball et al. ,
1979). The scaling violations observed in this experi-
ment agree well with asymptotic freedom predictions
for @2&20 GeV2 but disagree with it for larger values of
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FIG. 13. Comparison of
asymptotic freedom predic-
tions with the pp data of
Gordon et al. (1979) (open
c ircles) . For comparison
the ep data of Hiordan et al.
(1975) (triangles) are also
shown. The curves corre-
spond to the parametriza-
tions of Figs. 12 and 15
with &=0.4 GeV.

28For an excellent review of the deep-inelastic muon data we refer the reader to the paper by Francis and Kirk (1979).
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Q'. In fa.ct a decrease of the structure functions for
0.15&x& 0.25 and for Q2&20 GeV' is followed by an in-
crease for Q'&20 GeV'. Whether these data cause a
problem for QCD remains to be seen. The effect is
much too strong to be explained by new flavor produc-
tion with the conventional charge assignment. It is of
great interest to see whether the new p, experiments at
CERN and at Fermilab will confirm the finding of Ball
et al.

2. Moment a na lysis

Anderson, Matis, and Myrianthopoulos (1978) have
made a comparison of the asymptotic freedom predic-
tions for the moments of E,(x, Q') with the experimen-
tally extracted Nachtmann moments as defined by Eq.
(2.124). Their analysis includes ep, ed, and pp data.
The agreement of QCD with the data. is impressive as
can be seen in Fig. 14. The preferred value of the pa-
rameter A turns out to be 0.66+0.08 GeV, a slightly
higher value than that obtained from the direct analysis
of the structure functions.

B. v and v deep-inelastic scattering (charged currents)

Asymptotic freedom predictions for p and P deep-in-
elastic scattering can be obtained by means of the par-
ton model formulas of Sec. II and the Q' dependent par-
ton distributions of Sec. V.

l. Total cross sections

In the simple parton model the total cross sections
v /E, and a"/E are independent of energy except for

possible threshold effects due to heavy quark produc-
tion. In addition v"/v" = 1/3 in the absence of sea
qua. rks and v"/v" = 0.40 if the sea carries 5/0 —10% of the
momentum of the nucleon as observed at Gargamelle
(E= 5 GeV)(Eichten et al. , 1973; Deden et al. , 1975).
In the presence of asymptotic freedom effects 0„,0.„-
and also v'/v' depend on energy. This energy depen-
dence arises as follows. With increasing energy, a
larger range of Q is explored and, consequently, the
valence and sea contributions to any of the cross sec-
tions are effectively decreased and increased, respec-
tively. The sea contribution to v and v cross sections
is roughly the same except for the difference in charm
production. Qn the other hand, the valence quark con-
tribution is roughly 3 times larger in the v cross sec-
tion. Consequently in the range of energies explored
by present experiments, the energy dependence of o„
is expected to be governed by the decrease of the va-
lence quark distribution, i.e. , v„/E is expected to fall
(Hinchliffe and Llewellyn-Smith, 1977b) with increas-
ing energy. For v scattering the decrease of the va-
lence quark contribution is roughly compensated by the
increase of the sea. Thus o„-/E is expected to be rough-
ly constant at moderate energies. At higher energies,
where charm production is at full strength, v-„/E is ex-
pected to rise slowly. Asymptotically it should ap-
proach v, /E. In summary, in the range of energies ex-
plored by present experiments, one expects a decrease
of v„/E and a constant behavior followed by an increase
for v„-/E. Consequently the ratio v„-/v„is expected to
increase. These expectations (Altarelli, Petronzio,
and Parisi, 1976; Barnett, Georgi, and Politzer, 1976;
Buras, 1977; Gluck and Beya, 1977a; Barnett and Mar-
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tin, 1977; Hinchliffe and Llewellyn-Smith, 1977b;
Buras and Gaemers, 1978; Barger and Phillips, 1978;
Fox, 1978; Avilez et al. , 1977; Graham et al. , 1977;
Roy et af. , 1977) are confirmed by the recent high-en-
ergy experiments BEBC (Bosseti et a/. , 1977), CALT
(Barish et al. , 1977b, 1978), Serpukhov (Asratyan,
1978), and CDHS (de Groot et af. , 1979a) when com-
bined with low-energy data as is shown in Figs. 15 and
16. We should like to remark, however, that above
E = 40 GeV the changes in the cross sections are very
weak both in the theory and experiment, and to a good
approximation the total cross sections in the range
40&E&200 GeV can be represented by a simple parton
model formula with Q2-independent quark distributions,
with the amount of the sea (valence) larger (smaller)
than that observed at Gargamelle.

The very slow change of the total cross sections with
energy is easily understood. Integrating over x
amounts to summing up the parts of the structure func-
tions which increase and decrease with Q2 and which
partly compensate each other, leading to a small effect.
The same phenomenon happens in the case of (y) on
which we now comment briefly.

2. &Y&

In the simple parton model for the strong interactions
and for the structure of weak interactions given by the
Weinberg-Salam model the distributions 1/E do„/dy'and
1/Edcr „/dy-are, in the absence of the sea quarks in the
nucleon, flat and -(1-y)', respectively. Consequently
(y)„=0.5 and (y)-„=0.25. If the sea. carries 5/o-10'
momentum of the nucleon as observed at Gargamelle
the distributions 1/Edc', /dy and 1/Edo„/dy -have addi-
tional small (1-y)' and small flat components respec-
tively which lead to (y), =0.48 and (y),-=0.3. If strong
interactions as described by QCD are switched on, the
sea component increases and the valence component
decreases with energy. Consequently (y), and (y)-, are
expected to decrease and increase with energy, re-
spectively. These expectations are confirmed by the
recent high-energy experiments, CITFR (Barish et al. ,
1977a, 1978) and CDHS (De Groot, 1979a) as shown in
Fig. 17. The rate of change is, as in the case of total
cross sections, very slow. In particular the CDHS
group hardly sees any dependence. At E= 200 GeV,
(y)„=0.46, and (y)„-= 0.34. Asymptotically we expect
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FIG. 15. The absolute cross
sections 0 "/E and 0.",/E as
functions of energy, com-
pared with the high-energy
data. The calculated curves
are for the free parton mod-
el (FPM) and the leading or-
der of asymptotic freedom
(ASF). The parametrizations
of the valence quarks are as
in F-ig. 12. The input para-
metrizations for the remain-
ing distributions are:
xS(x, q', ) = 0.99(1—x)',
xC(x, q', )=0, and xa(x, q20)

=2.41(1-x) at q, =1.8 GeV'.
The increase of the cross
sections in the parton model
is due to charm production.
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tions of Fig. 15.
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(y)„=(y)„-=0.44. Therefore if nothing but asvmptotic
freedom effects are present at higher energies one
should observe a. detectable increase of (y)„-,but al-
most constant (y), . These slow changes with energy
of (y)„-and (y)„aswell as of 1/Zd(z„/dy and 1/Zdv„/
dy, predicted by asymptotic freedom are very fortu-
nate because they will not mask the changes iny dis-
tributions due to 8' boson propagator. The latter effect
(for m~= 80 GeV) is much stronger in the range 500

&E&104 GeV than asymptotic freedom effects. We re-
fer the interested reader to a paper by Halprin (1979) '
where a detailed study of the TV boson propagator ef-
fects in y distributions can be found.

3. &x&, &xy&, &x"&

More useful quantities to tes't asymptotic freedom
ideas than those discussed in 8.1 and B.2 are the aver-
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FIG. 17. (y)~ and (y)p as
functions of energy. The
curves correspond to asymp-
totic freedom parametriza-
tions used in Fig. 15.
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I
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2~For recent calculations of asymptotic freedom and W boson propagator effects at very high energies {j-—100 TeV) see the papers
by Halprin and Oakes {1979)and Oakes and Tung {1979).
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ages (x) and (xy), or, more generally, the moments

1 „40'
&x")= — dx x"—,0' (6 1)

1 4cT
&x y"&=— dxdyx y"

0 QxcEy
(6.2)

On the basis of the properties of the Q' dependence of
parton distributions listed in Sec. V.D and the formulas
of Sec. II.B, both (x") and (x y") should decrease with
increasing energy. As an example we show in Fig. 18
the data for &Q~/E)=2M(xy) which exhibit the expected
energy dependence. The solid curve in the figure cor-
responds to a typical asymptotic freedom fit with A
=0.5 GeV. The data are from GGM (Eichten et al. ,
1973), BEBC (Bosetti et a/. , 1977), FNAL (Berge et
a/. , 1976), SKAT (Baranov et al. , 1978), CDHS (De
Groot et a/. , 1979a), and IHEP —ITEP (Asratyan et al. ,
1978).

4. Jdx F,{x,E) an-d jdxx4F, (x, E„)

0v+0vF, (x, E)dx=
p

(6.3)

If asymptotic freedom or any renormalizable field
theory ideas are correct, then the structure functions
I",. do not depend directly on the incoming energy E but
on Q'. This is obvious if we recall the intuitive picture
of Sec. V.A. Therefore it is not very convenient to test
asymptotic freedom ideas by measuring the integrals
fdxF, (x, E). Experimentally they are extracted by us-
ing simple parton model formulas and assuming factor-
ization in x and y. This last assumption is not true in
@CD. The only way to compare the integrals of the
structure functions in question as presented, for in-
stance, in the papers by Bosetti et al. (1977) and Barish
et al. (1978) is to relate them to the total cross sections
0„and 0„-and calculate the latter using asymptotic free-
dom formulas as discussed previously. Such an exer-
cise is performed in Fig. 19 where we have used the
relations

J
1

xF,(x, E)dx =
0

(6.4)

The integral in Eq. (6.3) measures essentially the
fraction of the proton momentum carried by quarks and
antiquarks. This fraction decreases very slowly since
some of the momentum is effectively transferred to
gluons. The decrease of the integral in Eq. (6.4) is
mainly due to the decrease of the valence component of
the nucleon. Asymptotically the integral of F, is ex-
pected to be zero.

More sensitive tests of asymptotic freedom can be
made by measuring the moments

,
dxx"F,.(,E„), (6.5)

where E„is the hadronic energy which is related to Q'
by

Q~ = 2xv =2xM(E„—M) = 2xME„. (6.6)

~l
x„,= ~ xF, (x, E„)dx/ ~ F,(x, E„)dx

4 p &, o
(6.7)

In order to calculate the E„dependence of the moments
in Eq. (6.5) in the framework of asymptotic freedom
one computes first F,.(x, E„)from F, (x, Q2) by. using Eq.
(6.6). Subsequently the moments of Eq. (6.5) are calcu-
lated by a straightforward integration. It should be
kept in mind, however, that for finite fixed energy E„
the lower limit of integration corresponds to Q'=0, for
which perturbative calculations do not make sense. If
we take Q',.„=2 GeV' to be the minimal value of Q' for
which perturbativ'e calculations are reliable, then for
E„=5, 20, and 200 GeV the corresponding minimal vaj. -
ues of x are 0.10, 0.025, and 0.0025. Therefore only
for E„&20GeV can we reliably estimate the n = 0 mo-
ment of Eq. (6.5) in perturbation theory. The situation
is better for n& 0 because these moments receive only
a very small contribution from very small x regions.
In Fig. 20, which we took from the paper by de Groot
et al. (1979a), we show the average values
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FIG. 18. (Q /E) as func-
tions of energy. The curves
correspond to asymptotic
freedom parametrizations
used in Fig. 15. The coQec-
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XQ
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as functions of E„.The solid curve is the asymptotic
freedom prediction with A = 0.47 GeV.

FIG. 19. Integrals oE'2(x)dx and dx xI" &(x) as functions of
. 0

energy. The curves have been obtained on the basis of. Eqs.
(6.3) and (6.4) with the values of 0~ and 0." as in Fig, 15.

E2~, i.e., they should increase at small values of x and
decrease at large values of x. On the other hand, the
Q' dependence of F, should be similar to that of the
valence quark distribution. These expectations are
confirmed by the recent high-energy data obtained at
CERN (Bosseti et a/. , 1978; de Groot et a/. , 1979a,b).
As an example we show in Fig. 21 the Q' dependence of
I"

2 as measured by de Groot et al. The solid lines cor-
respond to an asymptotic freedom fit with A = 0.47 GeV.

5. x distributions

From the properties of parton distributions as dis-
cussed in Sec. V.D and the formulas of Sec. II.B, it
immediately follows that the distribution (1/E)(l/o)da'/
dh in both p and p processes should increase and de-
crease with energy at small and large x values, re-
spectively. These trends are in agreement with the
exi sting high- ener gy data. We ref er the i nte res ted
reader to the paper by Fox (1978) where a detailed
comparison of asymptotic freedom predictions with the
experimentally measured x distributions has been
made. Also very recent data, for x distributions (Ben-
venuti et a/. , 1979) exhibit the expected pattern of
scaling violations. The x distributions deserve, cer-
tainly, further experimental studies since among the
quantities which directly depend on energy and not on
Q' the quantities in question are expected to show the
lar gest asymptotic fr eedom effects.

6. v a nd v structure functions

So far we have discussed only the energy dependence
of various quantities which can be measured in v and v
induced processes. We concluded that, except for the
x distributions and the moments (6.5), the measure-
ments of the energy dependence are not very sensitive
tests of asymptotic freedom ideas. Certainly the best
way to compare the theory with the data is to consider
the structure functions as functions of Q~. The Q' de-
pendence of I",'" is expected to be similar to that of

7. Moment analyses of BEBC and CDHS

M (Q2)=M (Q2)P 0 ln(Q 2/A2)

Consequently it follows that

jnM„(Q~)= lnM„(QO)— ~ ln
yg" ln(Q /A')

(6.9)

(6.1O)

Therefore, if we plot lnM„(Q') for a given n=n,
vs lnM„,(Q~) with n24 n„we should obtain a straight
line with a slope given by the ratio

One of the predictions of QCD is the n dependence for
the anomalous dimensions of various operators. This
n dependence can be tested indirectly by comparing the
scaling violations, as predicted by the theory, with the
experimental data. Such a test is not ideal because one
has to make assumptions about the structure functions
or parton distributions (in particular about the gluon
distribution) at some value of Q2=Q2 and for the whole
range of x. Also there is one free parameter, &. It
would be useful to have a direct way of experimentally
"measuring" the n dependence of the anomalous di-
mensions in experiment. This is, in fact, possible for
the nonsinglet anomalous dimensions, as has been sug-
gested and measured by the BEBC group (Bosseti et a/. ,
1978). Recently a similar analysis has also been car-
ried out by the CDHS group (de Groot et a/. , 1979c).
Consider the moments of the structure function E3
which in QCD are given as follows:
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(6.11)

Notice that this ratio is independent of the gauge group
as well as the number of flavors. It is also independent
of A. It should be remarked that formula. (6.11) ex-
presses the vector character of the gluons and is true
in any theory in which strong interactions are mediated
by vector particles. In the case of theories with scalar
gluons the sums in Eq. (6.11) should=be dropped (Christ,
Hasslacher, and Mueller, 1972). The combined data
from Gargamelle and BEBC (Bosetti et al. , 1978) and
the CDHS data (de Groot et al. , 1979c) exhibit straight
lines for the plots in question as can be seen in Fig. 22.
The extracted slopes are compared with the predictions
of vector and scalar theories in Fig. 23. The following
observations can be made on the basis of these re-
sults:

(i) Gargamelle —BEBC results agree very well with
the formula (6.11) and disagree with the predictions of
the scalar theory (Ellis, 1978).

(ii) The ratios of the ordinary moments (Cornwall
and Norton, 1969) extracted by the CDHS group favor
the vector theory whereas the ratios for the Nachtmann
moments lie almost exactly between predictions of
vector and scalar gluon theories.

(iii) The predictions of the scalar theory are syste-
matically below all the data considered. "
We may therefore conclude that the results above give
some support to the belief that the mediators of strong
interactions are spin-1 particles. Recently Abbott and
Barnett (1979)"reanalyzed the data of BEBC and

.005—
I I I 1 I I 1

COHS
4 BFBc

O. Ol .—

O.OI—

CDHS and investigated how the plots in Figs. 22 and 23
depend on the cuts in Q' and how they could be affected
by higher -twist contributions. Their analysis weakened
somewhat the conclusion made above. We refer the
reader to this interesting paper for details.

It should be remarked that although the plots of Figs.
22 and 23 may help to distinguish between vector and
scalar theories, only ratios of anomalous dimensions
are measured" in this way. By taking ratios, some
of the predictions of the theory, namely the size of the
anomalous dimensions, are lost. Furthermore, the
anomalous dimensions of nonsinglet operators which
we discussed here represent only a part of the theory
in which singlet operators are also present. Therefore
to test the theory more critically and in particular to

Et should be emphasized that the predictions of scalar the-
ories as presented here are based on an unproven assumption
that perturbative calculations are reliable for these theories.
See discussion in Sec. VE.C.

~See also Abbott (1979).

I I I I I I I I

0.05 QI
Moments

0.5

FIG. 22. Log M& vs log M& plots as obtained by CDHS and
BEBC/GGM. The figure is from de Groot et al. (j.979a).
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FIG. 23. The measured
slopes as defined by the
plots of Fig. 22. The
s traigh t hor izontal lines are
the predictions of vector
gluon and scalar gluon the-
ories .

distinguish it from other vector theories, it is neces-
sary to study the full Q2 evolution of structure functions
with both singlet and nonsinglet contributions taken into
account, as we did in the previous subsections. Dis-
cussion of the predictions of other field theories will be
presented below.

Finally we would like to comment on a paper by
Harari (1979) who derived "bounds" on the slopes in
Fig. 23, assuming that xF,(x, Q') behaves as

x~1(& )(1 x) 2(Q )" '"'Q )='B[ (Q'), 1+..(Q')] ' (6.12)

where a~(Q2) and a,(Q') are slowly varying functions of
Q', decreasing and increasing, respectively. B[a,(Q'), 1
+ a,(Q')] is the Euler's beta function needed to ensure
the Gross —Llewellyn-Smith relation. 'The bounds ob-
tained in this way are rather stringent, and the results
of the CDHS group ahd the HEBE collaboration cover
the entire range allowed by these bounds. Therefore
HBrari concluded that the data in question cannot be
considered as evidence for the validity of QCD. It
should, however, be remembered that the form (6.12)
is exactly the form of Eq. (5.46) which turned out to be
a good representation of QCD. Furthermore, the as-
sumption that the functional form of xE,(x, Q') will not
be changed with Q' is a strong assumption which is ap-
proximately satisfied by QCD, but will in general not be
true i.n an arbitrary theory. In fact it is not difficult to
violate Harari's bounds by choosing arbitrarily the n
dependence of the anomalous dimensions yes" in Eqs.
(6.9)—(6.11). Next, inverting E(I. (6.9), one finds that
the functional form assumed at one value of Q' cannot
in general be retained with varying Q'. For instance,
scalar gluon theories violate Harari's bounds. There-
fore, although Harari's analysis is interesting in itself,
we do not agree with Harari's conclusion and think that
the BEBC and CDHS data do give support to QCD. We
do agree with him, however, as we stated above, that a
better test of the theory can be made by studying the
full Q' evolution of the structure functions or their mo-
ments.

8. Comments on neutral current processes

In QCD, sealing violations are also expected in the
neutral current processes (Barnett and Martin, 1977;
Buras and Gaemers, 1977; Barger and Phillips, 1978;
Hinchliffe and Llewellyn-Smith, 1977c). In particular,
the well-known plot R„vsR„-is expected to change with
energy. 'The present data on neutral currents are,
however, not precise enough to make any QCD analysis
meaningful.

C. Comments on fixed point theories

Until now our discussion of scaling violations concen-
trated on asymptotically free gauge theories. Here we
shall comment on theories in which the effective coup-
ling constant approaches for Q'- ~ a constant value
g*4 0 [so-called fixed point at which P(g*)= 0]. If g*
is small then we may hope to calculate predictions of
these theories in perturbation theory in g*. It should
be emphasized however that the structure of fixed point
theories is not well known. In particular, we do not
know whether a fixed point with a small value of g*
exists. Therefore if we assume g* to be small, use
perturbation theory and show that the result disagrees
with the data, we still cannot claim that we have ruled
out the theory in question. It could, for instance,
happen that g~ was large in fact and the true prediction
of the theory obtained by nonperturbative methods was
consistent with the data.

Nevertheless it is interesting to see what happens if
perturbation theory is used. Since the ratios of anom-
alous dimensions in scalar gluon theories (obtained in
perturbation theory) are systematically below BEBC
and CDHS d,ata, we shall discuss here only Abelian
vector theories. These theories have been studied ex-
tensively by Giuck and Reya (1976,1977a, 1979) and we
shall only recall the most important points of their
analysis.

For the moments of nonsinglet structure functions we
have
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1/2 1nQ2
M" (n, Q')=M" (n, g*)exp (- d&y"

)1/21nQ I)

MNS (~ Q 2) [Q 2/Q 2]- y+P/ 2 (6.13)

where y„-8"is determined by its fixed point value

jm2

The n dependence of y*„~is exactly the same as in
QCD. The Q' dependence in Eq. (6.13) is different but
as noticed first by Tung (1975) and I.iewellyn-Smith
(1975), if g* is properly chosen, Eq. (6.13) can mimic
the corresponding QCD prediction in the range of Q'
available in present experiments. In particular Reya
(1979) and Abbott and Barnett (1979) find that Abelian
vector theories agree well with CDHS and HEBE data
for the moments of 5', if g*'/167)2= 0.04. Therefore if
g* is small and the leading-order formulas (6.13) and
(6.14) are used, the fixed point vector gluon theories
cannot be at present distinguished from QCD on the
basis of scaling violations observed in nonsinglet
structure functions. It has been pointed out however by
Gluck and Reya that such a distinction can be made on
the basis of the singlet structure functions. They pro-
pose to look at the second moment of E2~(x, Q'), which
in the parton language measures the fraction of the pro-
ton momentum carried by the quarks. In experiment
the moment in question is roughly equal to 0.5 at low
values of Q' and decreases very slowly with increasing
Q'. It turns out that only QCD and so-called "fixed
point QCD" (FP-QCD, QCD with the vanishing triple
gluon vertex) agree with this behavior. All other theo-
ries considered by Gluck and Reya predict an increase
of the second moment with Q' [as pointed out by Abbott
and Barnett (1979), higher-twist effects could invalidate
these results].

Gluck and Reya. (1979) also investigated the full x and
Q' dependence of E",~(x, Q') and concluded that further
discrimination between QCD and the FP-QCD cannot be
made on the basis of the present data on scaling viola-
tions.

Once again we would like to emphasize that when
judging these results one should keep in mind that the
predictions of fixed point theories as discussed here
cannot be treated on the same footing as the QCD pre-
dictions. The reason is that whereas we can believe in
the results of perturbative calculations in QCD, there
is no reason that such calculations are justified for
fixed point theories.

D. Critical summary

As we have seen in this section, asymptotic freedom
(leading-order) predictions agree well with the scaling
violations observed in ep, ed, pp, vN, and vN deep-in-
elastic scattering. We should, however, be very care-
ful in judging these results. The reasons are as fol-
lows:

(a) The mass corrections, which enter any asympto-
tic freedom analysis, are, on the one hand, non-negli-
gible at low values of Q' and, on the other hand, as
discussed in Sec. II, not completely understood. Pre-
sumably the problem of target mass corrections cannot

be completely solved within perturbation theory. The
effects of heavy quarks can, however, be discussed in
the framework of perturbation theory except for the
region close to various thresholds, where nonpertur-
bative effects are probably important. Since the ulti-
mate QCD predictions depend on the treatment of mass
and threshold effects, further study of the effects in
question is very desirable. One way to circumvent
partially the problem of mass correction is to make
QCD comparison with the data for (4x'm'/Q')« I,
where at least target mass effects are expected to be
small.

(b) The effects of higher-twist operators, which we
have not included in our analysis, may turn out to be of
some importance at low values of Q'= 0(5 GeV') (for a
recent analysis see Abbott and Barnett, 1979).

(c) There is the question whether the use of leading-
order predictions at low values of Q' is justified in
view of the existence of calculable higher-order cor-
rections. We shall try to answer this question in the
next two sections.

A
„

ln(Q'/0. 49),
then (in units of GeV)

A —0.7 .

(7.2)

Now let us introduce next-to-leading order corrections
to the leading-order formula (7.1) and write it as

VII. HIGHE R-ORDER ASYMPTOTIC F REEDOM
COR RECTIONS TO DEEP-INELASTIC SCATTER ING
(NONSINGLET CASE)

A. Preliminaries

In the last three sections we have discussed leading-
order predictions of asymptotic freedom for deep-in-
elastic processes. We have seen that these predictions
are in good agreement with all experimental data with
the value of the scale parameter A in the range from
0.3 to 0.7 GeV. However, at Q'= few GeV' the leading
asymptotic behavior cannot be the whole story and it is
of interest and of importance to ask whether higher-or-
der corrections in the effective coupling constant
g~(Q') modify these results. In this and the next section
~e shall discuss these corrections in great detail. We
shall see that these corrections are different for differ-
ent structure functions and consequently various parton
model relations and current algebra sum rules, which.
were true in the leading order, are no longer satisfied.
The experimental verification of the violations of these
sum rules is very important although a difficult task.

There is still another reason why higher-order calcu-
lations are important. This is the fact that without them
the value of A carmot be extracted from experiment in a
theoretically meaningful way (Bace, 1978). To see this
consider the moments of a nonsinglet structure function
as given by the leading-order expression and, to sim-
plify the argument, , take the appropriate roots

M„(Q')—= [M„(Q')]' O' 'N& =A„ln(Q'/A'„o) . (7.1)

where A„areQ'-independent numbers. If the experi-
mentally measured moments are

Rev. tVlod. Phys. , Vot. 52, No. 1, January 1980



A. J. Buras: Asymptotic freedom in deep inelastic processes

M„(Q')=A„ln(Q'/A') +R„.
If R„=M„,where & is an n independent number, then
we can rewrite (7.3} as

(7.3)

M„(Q')=A„ln(Q'/A"), (7.4)

At2 A2 (7.5)

Now we have various options. We can work with Eq.
(7.4) and say that we have absorbed all higher-order
corrections by redefining the parameter A. In that case
A' =A~o. We can also work with expression (7.3) but in
this case

A' = e'A' (7.6)

B. Nlilson coefficient functions of nonsinglet operators to
order g 2

We begin the discussion of higher-order corrections
with the nonsinglet structure functions (e.g. , E2nq —E;",
E;~—E;~, E'» etc.), which we generally denote by
E'"S(x, Q'). In quantum chromodynamics the moments
of E'~Ns(x, Q') are given as follows:

In practice R„is not proportional to A„but one can al-
ways redefine A (Bardeen, Buras, Duke, and Muta,
1978) by using the equality

A„ln(Q'/A2)+R„=A„ln(Q'/A")+ [R„—6A„). (7.7)

The freedom in defining A, as discussed here, is re-
lated to the freedom which we have in defining the ef-
fective coupling constant g (Q') when solving renormali-
zation group equations. (For more details, see Sec.
VII F.) All these examples show clearly that one cannot
discuss numerical values of A in a theoretically mean-
ingful way without calculating higher-order corrections
and without specifying the definition of the effective
coupling constant.

Once a definition of g~(Q2) is made and is used in cal-
culations of higher-order corrections in various pro-
cesses it is possible to make a meaningful. comparison
of higher-order corrections to various processes. We
shall see that these corrections are generally different
for different processes. This teaches us that it is in
principle unjustified to use the same value of A in. the
leading-order expressions for different processes. Qn
the other hand, once higher-order corrections are in-
cluded in the analysis and g~(Q2) is properly defined in a
universal way, it is justified to use the same value of
A in different processes. We shall discuss all these
questions in greater detail and with specific examples,
but first we have to calculate the higher-order correc-
tions. As we shall see there are many subtle points re-
lated to higher-order calculations which one does not
encounter in the leading order. These are, for instance,
various gauge dependences and renormalization pre-
scription dependences of separate elements of the high-
er-order formulas. We shall deal with all these ques-
tions in detail.

0-
=rp(a) ' a(t =o) =g .

dt (7.11)

Here t = lnQ'/ p2 and g is the renormalized strong inter-
action coupling constant. In order to find explicit ex-
pressions for the leading and next-to-the-leading con-
tributions to C "s„(Q'/p.', g') we expand y»(), ), P(g), and
C "s„(l,g') in powers of g:

2
n g

—) (0), n 8 + (].),g g
~NS + NS ] 6+2 NS (7.12)

3 —5

P"'= '16"-'(16.)
-" (7.13)

and (through order g~)

"„,I +( /
gNS (y

[0+ ( /16m )BNS ] k =I
Here 6» are constants which depend on weak and elec-
tromagnetic charges.

Inserting Eqs. (7.12)-(7.14) into Eq. (7.10), expanding
in g (Q') and inserting the result into Eqs. (V.8) and (7.9),
we obtain after putting p2=Q',

n

MNS(~ Q2) —6A gNS(Q2) 1 +[A (Q k (Q0 ] ~NS g (Q
2 & N n 0 16T(2 2yn 2(Q2)

0=2, 3

where
o, n

dn ~NR
Ns 2P0

~NS BNS +y(1)«n/2P (y( )\ 0/ nP22)P

(7.15)

(V.16)

(7.17)

and g (Q') is to be calculated by means of Eq. (7.11)
with the P function given by Eq. (V.13). For the longi-
tudinal structure function we obtain

B,"',„1(Q'/A') -'
I ( & Q Ns n (Q0

p ]n(Q2/A2) 1 (Q2/A2)

M," («, q)= d«« —n(«q, ) ~=-(„;)c;„„,)
(7.9)

Here C~Ns„(Q'/p. ', p') are the Wilson coefficient functions
of the nonsinglet operators and ANs(p. ') are the corre-
sponding reduced hadronic matrix elements. The A„"'s
are unca. lculable by present methods and, as discussed
in the previous sections, must be taken from experi-
ment. The coefficient functions Cps„(Q'/p, ', g') are, on
the other hand, calculable in perturbation theory. They
satisfy the renormalization group equations (4.8) which
have the following solut. ion:

g(Q ) n t)
2

CNs +2 —CNs (1 ~2) exp d+) ywca(g
) «n +2) y«n p(g')g(p, )

(V.10)
where yNs(g) is the anomalous dimension of the nonsing-
let operator 0"„sand g (Q') is the effective coupling
constant. g~(Q') satisfies the equation

(7.18a)

Because the longitudinal structure function vanishes in
the leading order it is sufficient to use here the leadingk=4, 2 (7.8)

I,"'(«, q') = d««" *t,"'(«, q*) (u )«( =),c")'''
0
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order formula. for g (Q'), i.e. , Eq. (2.50).
In the phenomenological applications it is often con-

venient to insert into Eq. (7.15) the explicit expression
for g~(Q'), which is given as follows:

g (Q') 1 P, ln ln(Q'/A') 1
16m' p0 ln(Q'/A') p0- In'(Q'/A') ln'(Q / A')

(7.19)

Here A has been arbitrarily chose@. so that there are no
further terms of order 1/(In2Q2/A2). Clearly this choice
of A is not unique and one could use other definitions for
A which lead to additional terms of order I/(In2Q2/A')
in Eq. (7.19). In this review, however, we shall only
use i;he functional form of g {Q') as given in Eq. (7.19).
A, p.2, and g(p. ') are related to each other by Eq. (2.89).

Inserting (7.19) into (7.15) we obtain the following gen-
eralization of the leading-order formulas (4.17a) and
(4.18a):

MNS & 2 6k NS 2 1 + +k, n(Q ) Rk, n(Q0)
k Ns n ( 0

P In(Q2/P2) P I (Q2/P2)

In(Q2/A2) I
dNs

in (Q', /A')

k = 2, 3 (7.20a)

where

(7.21)

with &kNs„given by Eq. (7.17).
The value of Q0 in Eq. (7.20a) is arbitrary as required

by the renormalization group equations and the predic-
tions for MkNs(rg, Q') are independent of it. Therefore it
is convenient to get rid of Q', by writing Eq. (7.20a) as
fol.lows:

~NS Q2)
MNs(N Q2) —6k+Ns I y k n [In(Q2/+2)]-dNs

k N P In(Q/g)
@=2,3. (7.20b)

Here ANs are constants (independent of Q0), which are
related to A„Ns(Q02) by the following equation:

~NS Q2)g Ns(Q )
—g Ns I + k. n 0 [ln(Q2/A2)] dNs (7.22)n 0 n

p In(Q2/+2) 0

Notice that Eqs. (7.20b) and (7.22) are straightforward
generalizations of the leading-order formulas (4.17b),
(4.18b), and (4.19).

Similarly we can write (7.18a) as

Il NS
2 2 - n

MNS( Q2) —$I/NS L n [I (Q2//2)]-dNS (7 18b)
0

where ANs is defined by Eq. (4.19).
It shoudl be remarked that theoretically A„"=A„".

This is because for sufficiently large values of Q', for
which higher-order corrections are small, Eq. (7.20b)
and the corresponding leading-order formulas (4.17b)
and (4.18b) should coincide. In phenomenological appli-
cations, however, A„" and A„",being uncalculable in
perturbation theory, are regarded as free parameters
and are found by fitting the formulae in question with
the data. . Since formulas (7.20b), (4.17b), and (4.18b)
have different structures, fits to the same data will
lead to different numerical values for A„" and A" .

Therefore we use different notation for A„" and A„"s.
We see that, in order to find the next, -to-the-leading

order corrections, one has to calculate two-loop con-
tributions to yNs(g) and p(g) and one-loop corrections
to C "s„(l,g ). The two-loop contribution to the P function,
i.e., parameter P„hasbeen calculated by Caswell
(1974) and Jones (1974) and is given for an SU(3), gauge
theory with f flavors by

P, = 102 —(38/3)f . (7.23)

C- Procedure for the calculation of Bk

We first notice that in order to find B"„~„asdefined in
Eq. (7.14), it is sufficient to calculate CNs„(Q2/p2, g2) in
perturbation theory to order g2 and put Q'= p, 2. This is
obvious from Eqs. (7.10) and (7.11). In order to calcu-
late CkNs„(Q2/p2, g2) in perturbation theory we proceed

It should be. remarked that p, as well as y'„'~" and p, a.re
renormalization prescription- and gauge- independent.

The parameters BNs„ for electromagnetic processes
and v scattering have been calculated by Calvo (1977),
and for electromagnetic processes by de Rujula,
Georgi, and Politzer (1977a). The results obtained in
these two papers disagree with each other. The reason
for the disagreement between these two calculations is
that they have been performed in two different renor-
malization schemes. Calvo has used renormalization
on the mass shell, whereas de Rujula, Georgi, and
Politzer made subtractions at p2= —p,

' (see Sec. III). In
fact, as has been pointed out by Floratos, Ross, and
Sachrajda (1977), the parameters B"s„arerenormaliza-
tion prescription dependent. Of course the moments of
the structure functions cannot depend on the renormall-
zation schemes used, and it can be shown {see Sec.
&IID) that the renormalization prescription dependence
of the parameters B„"

„

is canceled by that of the two-
loop parameters z'„"s'". In other words the quantity

(7.24)

which enters the formula (7.17) is renormalization pre-
scription indeperident. This means that the calculations
of higher-order corrections can be performed in any
renormalization scheme but care must be taken that both
quantities are calculated in the same scheme. This im-
plies that without doing explicit calculations one cannot,
a priori neglect any of the two quantities B,"„and
y'Ns'"/2p0 in any higher-order formulas. The reason is
that in some schemes the two-loop contributions are
dominant in the sum (7.24), whereas in other schemes
B„"~ are most important.

The full calculation of the sum of Eq. (7.24) has been
performed in the literature only in the 't Hooft's mini-
mal subtraction scheme. The parameters B„"„have
been calculated by Bardeen, Buras, Duke, and Muta
(1978) and recalculated by Floratos, Ross, and
Sachrajda, (1979). The latter authors have also calcu-
lated the two-loop anomalous dimensions y'„"~'"

(Floratos, Ross, and Sachrajda, 1977).
We shall now outline the procedure for the calculation

of the parameters B"„andsubsequently prove the re-
normalization prescription independence of the sum in
Eq. (7.24).

Rev. IVlod. Phys. , Vol. 52, No. 1, January t980



A. J. Buras: Asymptotic freedom in deep inelastic processes

as follows. We write first the lhs of Eq. (3.54) as

T..(Q', v) =g .[e—..T, .(Q'/p', g') d..T. .(Q'/p', g')

—iS„S(Pqf)/'V)T, „(Q'/P',g') j, (7.25)

where p' is the target momentum squared and we have
indicated on the rhs of Eq. (7.25) that T~ „,T, „,and

T3 „willbe calculated in perturbation theory. The ten-
sors (.„,and d „aredefined in Eqs. (2.2) and (2.3), re-
spectively. Restricting the discussion to the nonsinglet
contributions, we obtain by comparing (3.54) and (7.25)
the following relation for each n separately

TNS g2 —CNS + ANS

T„"s„(Q'/p',g') = h, + (g'/167(') [—,—'yqNs" In(QS/ —p') + T~)„'Ns],

(7.27)

CNs (q2/+2 g2) —I d (@2/16&2)[ ty0, In(q2/)12) +flNs ]

(7.28)

ANs(p2/p2 g2) —1 + (g/16 2) [tyorn In( p2/p2) +A(2&rNs]

(7.29)
where

1 4=2, 3

0 (7.30)

and the coefficients of the logarithms are fixed by the
renormalization group equations which Ck" „andA„N
have to satisfy (see Sec. III). In order to simplify the
notation we have dropped the overall factors &kNs.

Inserting Eqs. (7.27)-(7.29) into (7.26) and comparing
the coefficients of g' we obtain

T(2)2Ns A(2) 2Ns y 2n
BNS—

k n T(2)2NS p II bn

We shall comment on the detail, s of the calculation of
T"„'„'",A„'",and B"

n in Sec. VII E; we turn now to a.
discussion of the renormalization prescription depen-
dence of B~s„and of its cancellation by the renormal. i-
zation scheme dependence of the two-loop anoma, ious
dimensions y'Ns'".

(7.31)

(7.26)

We observe that in order to find C„"s((I)'/p.', g') we gen-
erally ha.ve to calculate both T"„andAN . We ha.ve
mentioned before that the matrix elements of local op-
erators between hadronic states are incalculable in
perturbation theory. Fortunately, the coefficient func-
tions of operators do not depend on the states between
which the operators are sandwiched, and therefore in
the problem under investigation we can choose any
state for which perturbative calculations can be per-
formed. Consequently, in Eq. (7.26) T,"S„areto be found
from the virtual Compton scattering off quarks and

stands for the matrix element of the spin n nonsing-
let operator between quark states. In order to avoid
mass singularities in what follows, we shall keep the
externa, l quarks at spacelike momenta p' &0.

Next we expand the elements of Eq. (7.26) in a per-
turbation series as follows:

A'„"(p'/p2, g2) =A'„[1+(g2/167)2)( 2'y'N's" ln( —p'/ p.') + & „)].
(7.33)

Here A'„are the zero-loop matrix elements which are
obviously the same in both schemes. In scheme a, at
p' = —p.

' the renormalized matrix element A'„~is equal
to the zero-loop matrix element. This is a very com-
mon renormalization scheme. In scheme b we have

A'„"(—1,g') =A'„[1+(g /16&f')2 „],
where y„arenonzero numbers specific to a given re-
normalization scheme. In particular, 't Hooft's mini-
mal subtraction scheme ('t Hooft, 1973) falls into the
class of b schemes.

Since T„'„areindependent of renormalization scheme
(the virtual Compton amplitude is finite and no renor-
malization is required) we have from Eqs. (7.31)—(V.33)

B((2)
k n B(b) y II )n

Thus, B, „andB, „arerenormalization prescription
dependent, whereas B~

„

is independent of renormaliza-
tion scheme.

Recall next that.

(7.34)

(7.35)

(7.36)

where Ou'" is the bare operator. From (7.32) and (7.33)
we have therefore the following relation between the re-
normalization constants T, and Zb:

Z, = (1+ (g'/16&)2)2"„)Zb. (V.3V)

Since the anomalous dimension of the operator On is
defined by

lo Z.9 i=a b 7.38yi ~ g i ISare quantities fixed8 JL(,
( )

we obtain from (7.37), (7.38) and the definition of the P
function, e.g. , Eq. (3.37), the following relation between

and pb'.

yb
= y", + 22 „p()[g /(1 6&f ) ]

or equivalently

+(1.), n (j.),n+ 2& pb g n 0 '

Equations (7.35) and (7.40) taken together lead to

~(e) + y(1)rn/2p —fj(b& + y(1), n/2pkbn a 0 kbn b Q

(7.39)

(7.40)

(7.41)

i.e., the combination (7.24) is independent of the renor-
malization scheme. "

3 Generalization of this proof to all orders in g (Q ) has been
discussed by Moshe (1978) and Schellekens (1979). For a very
nice discussion of this topic see Peterman {1979).

l3. Renormalization prescription independence of
higher-order corrections

Here we follow the proof of Floratos, Ross, I.nd
Sachrajda (1977).

Consider two renormalization schemes a and b in
which the matrix elements of the operator 0» calculated
to order g' are normalized differently as follows (we
drop the index NS):

A„'~(p'/ p.', g') =A „[1+(g'/16&f') —,'y'„'s"ln( —p'/ p2] (7.32)
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Just before Eq. (7.35) we stated that T~»'„are indepen-
dent of the renormalization scheme. Qn the other hand
it is obvious that T~'„depend on the assumptions about
the "quark target" used to extract the coefficient func-
tion. In the discussion above we concentrated on a
class of calculations in which the "quark target" is
massless with spacelike momentum p'&0. Qne could
equally well consider massive quarks with p'=0. In
that case T"'„would be different from the case con-
sidered here. Also A„"'in a given renormalization
scheme depends on the target (the state between which0„is sandwiched). The dependences of T~~'„and A~' on
the "quark target" cancel, however, in the caI.culation
of B,„,as should be the case. We shall illustrate this
with an example in Sec. VIII. It is important to keep in
mind the points discussed in this section when compar-
ing various calculations in the literature.

(b)
FIG. 25. Examples of g order contributions to quark self-en-
ergy.

tion. " The analytic expressions for y„"'*"as given in
the original paper is very complicated. A simpler
formula for y„"s'"can be found in the paper by Gonzal-
ez-Arroyo ef al. (1979b). The numerical values for
y„"' are given in Table III. We would like to remark
that y „"8'"in the minimal subtraction scheme are gauge
independent (Caswell and Wilczek, 1974).

2. 8»Ns in 't Hooft's scheme (electromagnetic currents)

E. Resolts for y'" " and BN
NS k, n

As we have stressed several times, one has to make
sure that yN~'" and B» s„a,re calculated in the same re-
normalization scheme in order that a physical answer
for the moments of structure functions is obtained. The
calculation of the two-loop anomalous dimensions y„"s'"
is much more involved than that of &~ „and therefore it
is useful to choose a renormalization scheme in which
the calculation of yws'" is simplest. The minimal sub-
traction scheme of 't Hooft, which we have discussed in
Sec. III, turns out to be a convenient scheme for this
pu rpo se.

The first calculation of B~
„

in the minimal subtrac-
tion scheme has been done by Bardeen, Buras, Duke,
and Muta (1978). Contrary to the calculation of the two-
loop anomalous dimensions, the calculation of B~

„

in
the scheme in question is generally more complicated
than in other schemes. The reason is that in 't Hooft's
scheme the g' corrections to the matrix elements of
local operators A„' '" are nonzero and must be explic-
itly calculated in addition to the g' corrections to the
virtual Compton amplitude.

The calculation of the virtual Compton amplitude for
scattering off quarks ing' order involves the diagrams
of Fig. 26. The diagrams contributing in g order to
the matrix elements of nonsinglet operator between

't. Two-loop anomalous dimensions pNs
"

It has been shown by Floratos, Ross, and Sachrajda
(1977) that in 't Hooft's renormalization scheme the
two-loop anomalous dimensions can be simply obtained
from the coefficient of the 1/c pole in the quark matrix
element of the nonsinglet operator calculated to order
g, plus twice the two-loop anomalous dimensions of
the quark field. The latter anomalous dimension is also
obtained in 't Hooft's scheme by calculating to order g~
the coefficient of 1/c pole in the quark self-energy.
Typical diagrams for these two calculations are shown
in Figs. 24 and 25. In the whole there are about 30 two-
loop diagrams which one has to calculate in order to
obtain y „"s'" . All these diagrams have been calculated
in the paper by Floratos, Ross, and Sachrajda where
the interest:ed reader can find the details of the calcula-

(c)

y g 4 gs 54480tsk

(d)

It2

(e)
FIG. 26. Diagrams entering the calculation of T~ „'N of Eq.
(7.31).

FIG. 24. Examples of diagrams which enter the calculation of
~(i), n

NS

It turns out that &Ns~'" ——y„+(—I)"4 where + and P may be
analytically continued in n. Because of the factor (—1)" the
even and odd values of yNS'" (see Footnote 9) must be (in the
process of inversion) analytically continued to y~m+ P and +
—y~, respectively. The fact that y„&0 can be related to flavor
symmetry breaking in antiquark distributions (Boss and Sach-
rajda, 1979).
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quark states are shown in Fig. 8.' Explicit expres-
sions for T~"„'"and &„"'"can be found in the original
paper. Here we only remark that although T„"„'and
A„"'N are separately gnuge dependent, the resulting
expression for &,

„

is gauge i~dependent as -expected in
the minimal subtraction scheme. We have

4 " 1 " 1a", '„=—3g —. -4g —.,
j=l ~ j=l ~

I '
1. 3+4+- g-. +-+lS j lg 'fl

2 ~ ].
1) Z —. ~, even

4 2
+ p

—9 + ppN's" (ln47T —p~) '

(~+ lj n'

(7.42)

(7.43)B~~s„=—[1/(n+1)], n even.

The last result for &~ „,which is renormalization pre-
scription independent, has been previously obtained by
other authors (Zee, Wilczek, and Treiman, 1974;
Kingsley, 1973; Walsh and Zerwas, 1973). Recently
the calculation of B2

„

in the minimal subtraction
scheme has been repeated by Floratos, Boss, and
Sachrajda (1979), who have reproduced the results of
Eq. (7.42).

For the calculations of &"2
„

in renormalization
schemes different from that considered here we refer
the reader to the papers by Calvo (1977); De Rujula,
Georgi, and Politzer (1977a); Altarelli, Ellis, and
Martinelli (19V8); Kubar-Andre and Paige (1979); and
Abad and Humpert (1978).

3. 8Ns in 't Hooft's scheme (weak currents)

In the evaluation of g' corrections to v and v deep-in-
elastic scattering it is convenient to consider certain
combinat;ions of v, v structure functions which have
simple properties under crossing. These are

y vp y" vp
2 2 (7.44)

~vp +y"vp
2

y vp ~vp
3 3

(7.45)

(7.46)

+vp+ j vp
3 3 ~ (7.47)

The remaining structure functions for scattering off
neutron or nuclear targets can be directly obtained
from (7.44) —(7.47) using charge symmetry. For in-
stance,

~vp ~vp ~vn y vp y'vp y'vn
2 2 2 2 2 2 (7.48)

In order to calculate g' corrections to E„oneconsid-
ers again the diagrams of Figs. 8 and 26, except that
now the diagrams with both vector currents replaced by
axial —vector currents also contribute. The combina-
tions (7.44) and (7.45) correspond to subtracting and
adding crossed diagrams of Fig. 26, respectively.

The structure function &3 corresponds to the vector—

3 We recall that we have calculated the diagrams of Fig. 8 in
Sec. III in order to find pNs, the coefficient of ln(—p /p ) in Kq.
{7.29). This time we are interested in the constant pieces

A (2)~ NS
n

axial —vector interference and therefore the diagrams
contributing to it are obtained from Fig. 26 by replac-
ing one of the vector currents by an axial vector cur-
rent. Again the calculation of the g' corrections to the
combinations (V.46) and (7.4V) corresponds to subtract-
ing and adding crossed diagrams respectively.

By inspecting the diagrams directly or by considering
the decomposition (3.51) and taking into account known
properties of various structure functions under the
transformations Ij, —v, x —x one can easily find wheth-
er even or odd spin operators contribute to each of the
combinations (7.44 —7.47). It turns out (Bailin, Love,
and Nanopoulos, 1974; Politzer, 1974) that to E2 ' and
+3 only odd spin and to +;+' and &; ' only even spin
ope r'ators contribute.

Finally we have to determine which combinations are
independent of gluon operators and therefore satisfy
simple renormalization group equations as given in Eq.
(4.8). The combinations (7.44) and (7.46) transform ob-
viously as nonsinglets under flavor symmetry and
therefore satisfy equations like (4.8). F'",~+E,"~ is a
singlet combination as discussed in Sec.II. Therefore-
because of mixing between gluon and fermion singlet
operators this combination will satisfy more complicat-
ed renormalization group equations, which we shall dis-
cuss in Sec.VIII. On the other hand, &;"still satisfies
Eq. (4.8) in spite of having contributions from singlet
fermion operators. This is because the gluon operators
of odd spin transform differently under charge conjuga-
tion than the corresponding singlet fermion operators
and therefore there is no mixing.

In the minimal subtraction scheme the results for the
parameters &~ „relevant for v, v scattering are as fol-
lows (Bardeen, Buras, Duke, and Muta, 1978):

Ns 4 4&+2
3 yg(~ y ])

'pl odd
~ even'

(7.50)

(7.51)

where B,"„and&z „aregiven by (7.42) and (7.43), re-
spectively. Result (7.50) has been previously obtained
by Zee, Wilczek, and Trieman (1974). For the cal-
culation of B2 „"and B3"„in different renormalization
schemes from those considered here we refer the read-
er to the papers by Calvo (1977), and Altarelli, Ellis,
and Martinelli (1978).

4. Corrections to sum rules and parton model relations

It is well known that in the leading order of asymptot-
ic freedom parton model relations and sum rules are
satisfied. The g' corrections discussed in this section
can generally introduce violations of the sum rules and
relations in question. Notice in particular that the g'
corrections to the Q2 dependence of S', (x, Q') differ from
the corresponding corrections for &,(x, Q').

Evaluating formulas (7.49)—(7.51) for n = 1 and recall-
ing that y» ——0 for n = 1 due to current conservation one
obtains corrections to the Gross —I lewellyn-Smith sum
rule (Gross and Llewellyn-Smith, 1969) and the Bjorken
sum rule (Bjorken, 1967) as shown in Eqs. (2.99) and
(2.100), respectively. In Fig. 27 we have plotted pre-
dictions of Eqs. (2.99) and (2.100) versus Q'/A'. We ob-
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FIG. 27. Order g devia-
tions from the Gross —Lle-
wellyn-Smith and Bjorken
sum rules. The dashed
lines (---) are parton model
pred i ctions. The solid (
lines follow from Eqs. (2.99)
and (2.100). The figure is
from Bardeen et al. (1978).
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serve that the deviations from the two sum rules in
question are predicted to be non-negligible and accurate
measurements should detect them.

We defer the discussion of QCD corrections to the
Callan —Gross relation (Eq. 2.43) to Sec. VIII.

-dNS
M„"(n, Q') = 5NS+n 1+

p 1 ( Q2 /+)2) +kn(q ,) ln ~z2
0 I

(v. 55)
where

fthm

Ns (Q2) ~ Ns (q2) + ~o, nink (v. 55)

F. Phenomenology of the order g 2 corrections (nonsinglet
case)

In this section we shall compare the formula

A=yJI', (v.54)

where w is a constant, and-dropping terms of order
g (Q ) generated by this rescaling, one obtains

MNs(& q2) 5k ~Ns 1 + k. n In(Q2/+2)
- Ns

NS n p 1 (q2/g2)

(v. 52)

with. experiment (Bardeen, Buras, Duke, and Muta,
1S78). The only free parameters in Eq. (7.52) are the
constants &„"and the scale parameter &. These pa-
rameters are to be found by fitting the formula (7.52) to
the data for as la.rge a range of Q' as possible.

As we have discussed in Sec. VII.A, there is freedom
in defining the effective coupling constant and, corre-
spondingly, the parameter &. The A which enters Eq.
(7.52) corresponds to Ak „given by Eq. (V. 1V) with BNks„

calculated in 't Hooft's minimal scheme and to the fol-
lowing form of g'(Q'):

g'(Q') 1 ~p ln ln(Q2/&2) 1
15~2 P In(Q2/g2) P3 In2(Q2/~2) In3(Q2/~2)

(v.53)

Clearly this definition of & is not unique, and we shall
now discuss other possible definitions.

The effect of the redefinition of A is equivalent
through order g2(Q2) to the shift of RkNs„(Q2) by a constant
amount proportional to the one.-loop anomalous dimen-
sion p'Ns". In fact rescaling A in Eq. (7.52) to &' by

The &' thus corresponds to the g' corrections given by
Eq. (7.56) and g'(Q') having the form of Eq. (7.53) with
& replaced by &'.

It should be remarked that Eqs. (7.52) and (7.55) are
equivalent representations of next-to-the-leading order
corrections. On the other hand they correspond to dif-
ferent estimates of the higher-order terms O[g4(Q')]
not included in the analysis. This is obvious, since in
going from Eq. (7.52) to (7.55) we drop terms of
O[g~(q')]. It should be remarked that since the n depen-
dences in Eqs. (7.52) and (7.55) are different from each
other so will be the free parameters A.„"and & extract-
ed in both cases. However, if the estimates of terms of
O(g ) by Eqs. (7.52) and (7.55) are not very different
from each other, the equations in question should give
equally good fits to experimental data. To illustrate
this we have compared two different schemes for ~& with
data of BEBC for the moments of F3 (Bardeen et al. ,
1SVB).

The first scheme we call the minimal subtraction
scheme, and we denote the corresponding value of & by
A«. This scheme is defined by Eq. (7.52) with A re-
placed by AMs. The second scheme is defined by
choosing in Eq. (7.54)

~ = exp[ ——,'(In4Ir —y s)] . (v. 5v)

We shall denote the corresponding & by &M . Effectively
[see (7.55)] the MS scheme is represented as the MS
scheme by Eq. (7.52), but with A replaced by &&Ms and
&kNs„(q') replaced by 8~k „(Q'),which is given as follows:

ft„",'„(Q')=~,";„(q')——.'r„'."(In4. —r, ) . (v.58)

Recalling Eqs. (7.17) and (7.42) we observe that the MS
scheme does not involve the terms (In4II —ys). The
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O. I

E
E

FIG. 28. Nachtmann mo-
ments of xF3(x, Q ) vs Q .
The data are from Bossetti
et al. (1978). The solid
lines represent the MS and
MS schemes.

O.OI—
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comparison of these two schemes for & with the BEBC
data leads to the following values for AMS and &~:

=0.40 GeV,

A~ =0.52 GeV. (7.59)

A =. 0.73 GeV. (7.61)

follows very closely the solid line of Fig. 28. We shall
discuss below more sensitive ways of comparing high-
er- order predictions with the leading-o rder results.

We recall that in fitting the data both &'s and &„'s
have been treated Bs free parameters. Therefore the
fitted values of the uncalculable matrix elements &„'s
are different for different schemes. The similarity of
the I 0, MS, and MS fits simply indicates that it is
possible for the &„'sand & in each case to conspire to
mask the combined n and Q' dependence of the order g'
corrections. Of course the similarity of the fits of
higher-order corrections (MS and MS schemes) and of
leading-order predictions is, strictly speaking, only
true over some not too large range in Q', as is the case
for the presently available data.

It is instructive to calculate the term

In obtaining these values, Nachtmann moments of Eq.
(2.123) have been used. The fits to the data are indis-
tinguishable from each other and are represented in
Fig. 28 by a single curve. The leading-order prediction
(not shown in the figure)

M", '(n, Q') ~,o = ~N','&„"'f»(Q'I&', c)1 '"',
with

1974; Gross, Wilczek, and Treiman, 1976) that, for
large values of n and for not too large values of Q',
higher-order corrections are large and perturbative
calculations cannot be trusted. This behavior is mainly
due to the constants B„"„which for k tl grow like (inn)2.
We observe also that the terms (7.62) are much smaller
in the MS scheme as compared to the MS scheme. The
MOM scheme of Table IV is discussed in Sec.VII.H.

As we already discussed above some part of the ef-
fects due to higher-order corrections in the second
term in Eq. (7.52) can be absorbed over a not too large
range of Q' in the (incalculable by present methods)
hadronic matrix elements of local operators. 'This
makes the phenomenological study of higher-order cor-
rections in deep-inelastic processes complicated. We
shall see in Sec.IX that the situation is much better in
photon —photon. scattering where the leading- order ex-
pression and the next-to-the- leading order predictions

Scheme
Q [GeV2[

10 50 200

MS
MOM
MS

MS
MOM
MS

0.97
0.68
1.20

1.10
0.63
1.53

0.96
0.73
1.15

1.05
0.65
1.42

0.95
0.80
1.09

0.99
0.71
1.26

0.95
0.83
1.07

0.97
0.75
1.20

TAB&K pf . T e values of he quant~ y 1 + [B2 „(Q)/p 0 ln(Q /& )]
as a function of'n and Q in various schemes: MS (&=0.5 GeV),
MOM (AMoM= 0.85 GeV), and MS (A= 0.4 GeV).

f1NS (Q2)

poln(Q /A )

(7.62) MS
MOM
MS

1.24
0.69
1.79

1.15
0.68
1.62

1.05
0.71
1.40

1.01
0.74
1.30

in Eq. (7.52), which is equal to unity in the leading or-
der. The numerical values for the quantity (7.62) are
given for the MS and MS schemes in Table IV. We ob-
serve in accordance with earlier expectations (Gross,

MS
MOM
MS

1.37
0.79
2.00

1.25
0.74
1.79

1.11
0.73
1.52

1.06
0.75
1.39
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are free of the incalculable matrix elements of local
operators.

The values of A as given in Eqs. (7.59) and (7.61) have
been obtained for f=4 and without taking quark mass ef-
fects into account. At low values of Q' (few GeV'), the
massless approximation is probably justified for the
light quarks, but not justified for the charm quark con-
tributions. The effect of heavy quark masses {in the P
function) for the extraction of the value of A in the anal-
ysis with higher-order corrections included has been
recently studied by Abbott and Barnett (1979), who find
the values of A, which are smaller by roughly 20P/0 than
those in Eqs. (7.59) and (7.61). We think that heavy
quark mass effects deserve further study.

G. A„schemes

As we discussed at the beginning of this section, if the
coefficient of I/[Poln(q'/A')) in Eq. (7.52) were indepen-
dent of Q' and had exactly the same n dependence as
y„'s", then all g' corrections could be absorbed in the pa-
rameter &, and the higher-order formula would look
like the leading-order expression. Conversely, we
couM say that the leading-order formula assumes that
the next-to-leading order corrections have the same n

dependence as the y'N's". Therefore it is of interest to
see whether the next-to-leading order corrections,
which we have calculated in this section, exhibit a non-
trivial n dependence different from y Ns". To this end it
is useful to cast Eq. (7.52) into a different form (Bace,
1978; Bardeen et a/. , 1978). One can, for instance
(Bardeen et af. , 1978), perform the integral in Eq.
(7.10) exactly using z"„~and I3(g) of Eqs. (7.12) and
(7.13), respectively, and define an n-dependent A„as
follows

(k) =Aexp[~ Ns /+0, n]
kgn

his leads to
I

k ~ & ~ j Ns n p2yn(Q2/A(k)2)

(7.63)

7 &~& n/283-dnNS

3 The parameters B~@„correspond to the MS scheme of Eq.
(7.58) and are obtained from Eq. (7,42) by dropping there
(1n 4' —pz) terms. Notice that the n dependence of &+t3 is in-
dependent of the definition of g (Q ).

&%sx
16~' (v.64)

where g„satisfies the following equation:

~7.65~

It turns out that the factor involving y „"~'"in Eq. (7.64)
is always very near unity in the region of interest,
hence Eq. (7.64) has essentially the same form as the
leading order Eq. (7.60). Therefore the difference be-
tween the leading-order and the higher-order correc-
tions, so far as the ~ dependence is concerned, resides
almost entirely in the scale &„'"'. Notice that if B"

„

were proportional to y Ns", &„'~'would be independent of
n. There is one weak point in the &„scheme discussed
above. Although Mk" ~(n, Q') is renormalization-pre-
scription independent, A„asdefined in Eq. (7.63) de-

R Ns (Q2)
A (k) (Q2) Ae~ k B.

yNs
(v. 6v)

Now the difference between the leading-order and high-
er-order corrections resides totally in A Ix&'(Q'). Next
using Eqs. (7.17) and (7.21) we can write

A "'(q') =AZ (q' A) (v.68)

where

Q2 -k / 2k (~) ~ k

Z„(q',A) = ln =, exp P BNS l

exp p, n
p „~yNS

(7.69)

Notice that the first factor on the rhs of Eq. (7.69) rep-
resents the Q' evolution of A„'k'(Q'). The second factor,

Similar conclusions have been reached by Anderson et al.
{1979).

pends on the renormalization scheme through &„"„.
Similarly, the third factor in Eq. (7.64) depends on the
renormalization scheme through y'„'s*". Fortunately, in
't Hooft's scheme the &~ „give the dominant contribu-
tion to the higher-order corrections and the third factor
in Eq. (7.64) is close to unity. Therefore, in the 't
Hooft's scheme discussed here, the ~&„'"as defined in
Eq. (7.63) is a. useful quantity for testing the n depen-
dence of the higher-order corrections. It should be kept
in mind, however, that one can find renormalization
schemes in which the main ~ dependence of higher-or-
der corrections resides in y Ns'"; in this case &„'' of
Eq. (7.63) would be useless for testing the higher-order
corrections.

In order to compare the ~ dependence of ~~„' ' with the
data, , one fits Mk~(n, Q') as given by Eq. (7.64) to the
data for each n separately and extracts in this way the
experimental values for A„. It turns out (Bardeen et al. ,
1978) that for n &5 the n dependence predicted by for-
mula (7.63) is in fair agreement with the BEBC data for
E, (Bosetti et al. , 1978). For. higher values of n the
BEBC data do not agree with Eq. (7.63). Recently the
analysis in question has been repeated by (Duke and
Roberts, 1979a) who also took into account the CDHS
data for E3 (de Groot et a/. , 1979a) and Fermilab (Gor-
don et al. , 1978) and Si AC data for Ek2 ". A similar
analysis has been carried out in a slightly different way
by Anderson et al. (1979). It follows from the analysis
of Duke and Roberts (see Fig. 29)" that there is re-
markable agreement of formula (7.63) with the data for
I'~2 " and agreement for low n with the CDHS data for &,.
We may conclude that there a~e indications in the data
for the n depehdence of A„aspredicted by QCD.

A comparison of the higher-order prediction (7.52)
and the leading-order prediction (7.60) can be done in a.

simpler way than discussed above, at the price of in-
troducing a weak Q' dependence into A„. The method
discussed below is very similar to that proposed by
Bace {1978).

Equation (7.52) can be written as follows:
n

(v.66)
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FIG. 29. Experimental &„values obtained by Duke and Hoberts
(1979a) using the data of BEBC {open box), CDHS {open dia-
mond), and the entire SLAG data. The solid curve corresponds
to A„.Strictly speaking the data for F3 should be compared
with A„(seeEq. 7.63). For a discussion see Para and
Sachrajda {1979).

on the other hand, introduces additional n dependence as
compared with the A„'"'scheme of Eq. (7.63). Since this
additional n dependence (a 15%%uo decrease from n = 2 to 10)
is very weak, the n dependence of &„"'(Q')is essentially
the same as that of ~&„"',which changes roughly by a
factor 2 over the range from n =2 to 10. The Q' depen-
dence of the first factor in Eq. (7.69) is such that for f
=4 and A =0.3 and & =0.5, at Q'=100 GeV', Z„(Q',&) is
suppressed by the factors 1.23 and 1.29, respectively.

In summary, the A&"&(Q') scheme as defined by Eq.
(7.66) is (except for the overall factor) quite similar to
the A„'"'scheme of Eq. (7.64), but very a.ccurate experi-
ments should detect the Q' dependence as predicted by
Eq. (7.69). In Fig. 30 we have shown A„"'(Q')for A =0.5
and f=4 as functions of n and Q'. For comparison we
plot the last factor in Eq. (7.70) which represents the
A„'»' scheme. It should be remarked that A„'"'(Q') in Eq.
(7.67) is renormalization-prescription independent.

Finally we would like to remark that Anderson et aE.
(1979) have extracted &„"'using the formula (7.66) and
neglecting the Q' dependence of A„"'(Q'). Their results
agree very well with Eq. (7.63). In order to test the Q'
dependence of &„"'(Q')as given by (7.67) one should re-
peat Anderson's analysis in various ranges of Q', e.g. ,
2-5, 5-10, 10-30 GeV', etc. The prediction of the the-
ory is that for a fixed n value a slow decrease of &„")
with increasing Q2 should be observed. The present
data are, however, not accurate enough to detect this

FIG. 30, The effective & & {Q ) { ) as defined by Eqs. (7.68)
and (7.69) as functions of n for various values of Q and ~~=0.5
GeV. For comparison the & ft as defined by Eq. {7.63} is
plotted as functions of n for &=0.35 GeV.

Q' dependence. Notice that the Q' dependence in ques-
tion is entirely due to the two-loop contributions to the
i3 function.

H. Other definitions of g 2(02)

In the previous subsections we have discussed the MS
and MS schemes for the effective coupling constant.
The corresponding parameters &, '„and A,"'„arerelated
to each other by Eq. (7.58) and the numerical values of
the quantities of Eq. (7.62) for these two schemes are
collected in Table IV. We observe that in the expan-
sion in the inverse powers of logarithms the next-to-
(he-leading order corrections to M," (n, Q') are smaller
in the MS scheme than in the MS scheme. Generally
one can introduce other definitions of g2(Q') for which
the parameters A ar'e related to the corresponding pa-
rameters of the MS and MS scheme as follows:

~Ns I ~Ns yo, ngkn 2 NS

=ft„"'„——,
' y'„s"(a —1.95) . (7.70)

Here a is a constant, which distinguishes between vari-
ous schemes and 1.95 =ln4m —y~. In particular Barbieri
et al. (1979) and Celemaster and Gonsalves (1979) have
discussed g'(Q') as defined by momentum space sub-.

traction. The g~(Q') so defined is gauge dependent but
the gauge dependence is very weak. Celemaster and
Gonsavles have used the Landau gauge for which a =3.5.
The case discussed by Barbieri et al. corresponds to a
=3.6. We observe that in both eases the parameters A

are smaller than in the MS and MS schemes. One could
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conclude from this that the next-to-the-leading order
corrections in the schemes based on momentum sub-
traction are smaller than in the MS and MS schemes.
However, in order to be able to draw any conclusion one
has to determine first from experiment the values of &
for momentum subtraction schemes. We have per-
formed the following exercise. We took & =0.50 GeV
extracted from the BEBC data and & = 0.30 Ge V a value
more relevant for the CDHS data and calculated the mo-
ments M", (n, Q') in the MS scheme for these two cases.
Next we found the values of &MoM (momentum subtrac-
tion) by fitting the moments M,"~(n, Q') calculated in the
momentum subtraction scheme with a =3.5 to the mo-
ments M, ~(n, Q') calculated in the MS scheme. For &
=0.50 and 0.30 GeV the corresponding values of ~&MOM

turn out to be &MoM ——0.85 GeV and &«M-—0.55 GeV. The
effective coupling constants in the three schemes con-
sidered for &=0.40 GeV, ~&=0.50 GeV, and &MoM

——0.85
GeV are plotted in Fig. 31. We observe the following
inequalities, g'(Q')

~MoM
&g'(Q')

~ ~ &g'(Q') ~», which
correspond to R2S &R,"„&R2„~„.Furthermore we ob-
serve that in all cases considered the effective coupling
constant is smaller than that given by the leading order
expression. The numerical values of the quantities of
Eq. (7.62) for the three schemes are shown in Table IV.
We conclude that in the expansion in the inverse powers of
logarithms the next-to-the-leading order corrections to
M,"~(n, Q') calculated in the momentum subtraction
scheme with a=3.5 are larger than those in the MS
scheme but smaller than in the MS scheme.

In spite of this analysis we cannot say which of the
schemes considered leads to the best convergence of the
perturbative series. In order to be able to answer this

question one would have to calculate higher orders in
g'(Q ) not included in the analysis. Needless to say the
n dependence of A„(Q')or &„discussed in the previous
subsection is independent of the definition of g'(Q').

VI II. HIGHER-ORDER ASYMPTOTIC FREEDOM
COB R ECTIGNS TO DEEP-INELASTIC SCATTE R ING
(SINGLET'CASE)

A. Preliminaries

In the last section we have discussed next-to-leading
asympototic freedom corrections to the moments of the
nonsinglet contributions to the deep-inelastic structure
functions. In this section we shall extend the analysis
to the singlet contributions. Such an analysis requires
the calculation of the two-loop anomalous dimension
matrix and of the one-loop corrections to the fermion
singlet and gluon Wilson coefficient functions. As in
the nonsinglet case, one has to take care that all these
quantities are calculated in the same renormalization
scheme. In the minimal subtraction scheme one-loop
corrections to the fermion singlet and gluon Wilson co-
efficient functions have been calculated by Bardeen,
Buras, Duke, and Muta (1978) and by Floratos, Ross,
and Sachrajda (1979). The latter authors have also
computed the two-loop anomalous dimension matrix.
The study of the next-to-the-leading corrections in the
singlet sector is complicated by the mixing of gluon and
fermion singlet operators. The problem of mixing for
the next-to-the-leading order corrections was first
solved by Floratos, Ross, and Sachrajda (1979). Here
we shall present the equivalent, but slightly simpler,
approach of Ba.rdeen and Buras (1979b)." Most of our

06—

0.5—

0.4—

0.5—

0.2—

om =O85)
FIG. 31. The effective cou-
pling constants n(Q ) as
extracted from the BEBC
data for the leading order
(L.O.), MS scheme, MS
scheme, and momentum
subtraction scheme MOM.
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3~The material of Secs. VIII.B and VIII.D has been drawn from collaboration with W. A. Bardeen.
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discussion will be rather formal and only at the end of
this section shall we present a parton model formula-
tion of asympototic freedom beyond the leading order.

s,v(g) +——,v(g) = + v(g)-
g P. ' P(g) Pg

Writing next

(8.9)

B. Moments of the singlet structure functions V(g) = 1 + (g'/16@2) V, , (8.10)

We sha. ll now derive Eqs. (2.101)—(2.117) of Sec. II.
We begin with I'2(x, Q'). In the forma. l approach of
Sec. IV the moments of the singlet part of I 2 are given
as follows:

1 Q2
M (x ()')—:. dxx" F'(x, Q') )(»(x')(: —X')

2

»4 (»»')('. ..—g') (8.1)

(Q2/ 2 g2) — 2»»»(Q

C.;„(Q'/V',g').
The 2 && 2 anoma. ious dimension matrix y"(g) is shown
explicitly in Eq. (4.22). It has the following perturba. —

tive expansion

(8.3)

2 4

n(g) —~0»» g ~ (1) lI + ~ ~
'

~

16)T2 (1622)' (8.4)

We shall now express the T ordered exponential in Eq.
(8.2) in terms of the coefficients in the expansions
(7.13) and (8.4). Denote first

n

W(g, g) =T exp dg' ~ (g ),
2(Q ) ~(g)

and write it as

(8.5)

where V(g) is a 2 && 2 matrix which we shall now find.
To simplify the notation we shall drop the index n in
Eqs. (8.7)-(8.11).

Differentiating both sides of Eqs. (8.5) and (8.6) with
respect to g we obtain, respectively,

P AP

W(g, g) = V(g) exp —ln — V '(g)
P(g) (8.7)

P Ap AO

&2@'(g, g) = S V(g) —V(g) ——exp ~ lng V-'(g) .
Ppg P g

(8.8)
Equating the rhs of these two equations we obtain after
some manipulations the following differential equation
for V(g):

with all symbols defined in Sec. Pf.A.
The Q' dependence of the coefficient functions

C, „(Q'/p,', g ) and C, „(Q'/)U,', g ) is governed by the
renormalization group Eq. (4.20) which has the follow-
ing solution:

Q' , 2 »'Y (g )
C, „—,, g' = T, exp dg' (,)

C...(l,g'),
Z(Q 2

(8.2)

with g(p. ') =g. As in Sec. IV.C we have introduced here
the column vector

where & is a unit matrix, we obtain the following alge«»
braic equation for V2:

(«Ap

22
p

A(] ) Ap

2 p p2 (8.11)

In order to solve Eq. (8.11) it is useful to choose the
basis in which y" n is diagonal. As in Sec. IV.C we in-
troduce the matrix U which diagonalizes y" n by

)yn 0&,
U-1AO, n U—.0 (8.12)

Explicit expression for a U matrix which does this job
is given in Eq. (4.30).

In the basis in which y' " is diagonal, the matrice-s
y"' " and V2 are given as follows:

(l)~ n
U-1 (1),n U— „,(1),n

(8.13)

1U U 2
2

U2

U '
2

U 2'
(8.14)

Diagonalizing Eq. (8.11) and using Eqs. (8.12)-(8.14) we
obtain

(1)» nU««y« IK

2PO 2/2
(1),n

gnat

y+
2p, 2g2, '

(1),n

U + — y +

28 +A."—A.
" '

(8.1 5)

(8.16)

(8.17)

(1),n
U+ y +«

2 2p + yn yn (8.18)

Expllclt expressions for y„'
~ y '

) y '
q

and
.y,"'"are given in Eqs. (2.109) to (2.112). As discussed
in Sec. QT. C the U matrix which diagonalizes yo " is not
uniquely defined by Eq. (8.12), and any other matrix
related to U by Eq. (4.29) will also satisfy Eq. (8.12). It
follows from this that only the diagonal elements y"'",
y',"",and the product y,"'2".y",'n are independent of
our choice of U. Equations (2.109)-(2.112) correspond
to U given by Eq. (4.30).

To proceed further we introduce a column vector

(Q'/~' g') . (8.»)
C;, „(Q'/)u', g')

The components C'~+ „(Q2/p.2, g ) are ea.sily obtained by
first writing

U 'C...(Q'/&.', g') = U 'Iv(g, g) UU 'C...(1, g '),
(8.20)

and then using Eqs. (8.6) and (8.12)—(8.14). The result
lS
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f

C „(Q/P, g ) [1+( 2/I 6&2)U-) fr U]'

C' (Q'/I ', a') C;,.(Q'/) ', g')

(8.21)

i(I;(n, Q') =5,(2)A „1+I~-...(Q')

)3, ln Q' A'

5(2)A + I 2, n(Q )
( n

P ln Q2/A

Q2q gn

ln-A2„
Q2 d+ln-A2 (8.33)

~vhere C; „(Q'/p.', g') are given hs follows:

(1
—

2) g (Q) ~-, g
2~K? 9 ] 6~2 g2

(8.22)

where

A,' „(Q')=R,' „—(A.", (3,/2)32O) ln In(Q'/A')

and the constants A,' „aregiven as follows:

y(l ) ~ n
gnat y(1 )tn

@T. + +7 T. 1 ++
2 17 2 P 2P 2/2 2g + /f7 /f7

A'„are constants which are related toA'„(p.') by

(8.34)

(8.35)

—2, 2& d+

2 2
—C; „(1,g')(), ) V; (8.23)

Here C; „(1,g') are obtained by putting Q' = p,
' in Eq.

(8.19). Furthermore

d," =X,"/2P, . (8.24)

We next expand C", „(1,g') and C2e „(1,g') in a power
series in g' as follows:

C ' (1 g ') = 5"'[I + ( g '
/I 6('() B' ] (8.25)

CG (I g 2) —6(2)( g 2/16~2)~ G (8.26)

where 6&2) depend on weak and electromagnetic charges.
Defining also the perturbative expansion for C; „(1,g ')
by

C' (1 g ') =C „[1+g'/I 6')T)H2 „],
we obtain from Eqs. (8.19), (8.25), (8.26), and (4.31)

(8.27)

C-, o C+ o g(2)2n . 2n (8.28)

and the formulas (2.107) and (2.108) for J32 „.Equation
(8.27) is the generalization of the leading-order expres-
sion (4.37). With all the formulas above at hand, we
could now perform matrix multiplication in Eq. (8.21),
and we would reproduce the Eq. (2.13) in the paper by
Floratos, Ross, and Sachrajda (1979). In order to ob-
tain slightly simpler equations we proceed in a differ-
ent way.

We first write Eq. (8.1) a.s

. i(d;(n, Q') =A. () ')C...(Q'/i ', ~'),
where A„(p,') is a two-component row vector given by

(8.29)

A.() ') =[A'„()'), A„'(V.')].
Defining next

(8.30)

iaaf'(n Q') =A (p. ')C, (Q'/)). ' g') +A„'()j')C;„(Q'/)).', g'),
(8.32)

/

with C; „(Q'/)),', g') given by Eqs. (8.22) and (8.23).
Next using Eq. (7.19) for g'(Q'), we obtain the final

expression for the moments of E,(x, Q')

[A ())'), A'() ')] =A„(u')U[1+(g'/I«')U '&,U], (8.31)

we obtain

A'„=~A'(p. ')[g (p')] '+. (8.36)

&' are independent of )).'. Equation (8.33) is the gener-
alization of the leading order formula (4.4lb). It should
be remarked that A'„and R2' „areindependent of the
choice of the matrix U.

The matrix U of Eq. (4.30) differs from that used in
the paper of Floratos, Ross, and Sachrajda (1979).
However, as the interested reader may ascertain,
y"'", y.",'", and y".'"y'."*"are the same as in the paper in
question.

Let us briefly discuss Eq. (8.33). It is probably the
simplest possible representation of the next, -to-leading
order corrections for the singlet structure functions.
We would like to emphasize two important features of
Eq. (8.33):

(i) no reference is made to a special value of Q' =Qo,
and (ii) no reference is made to the parton distributions.
The property (i) has already been discussed in Sec. IV
in connection with the leading-order expressions. It is
required by renormalization group equations and incor-
porating it in M;(n, Q ) simplifies phenomenological ap-
plications. In particular the Step 9 of the procedure of
Sec. II can be omitted if Eq. (8.33) is used.

Concerning (ii) we would like to recall that the parton
distributions cannot be uniquely defined beyond the
leading order of asymptotic freedom (see Sec.VIII.E for
details). Many definitions are possible, which differ
from each other by next- to-leading order corrections.
Therefore the study of higher-order effects on the Q'
evolution of quark and gluon distributions does not make
much sense because the result of such a study is not a
prediction of the theory but depends sensitively on one' s
definition of parton distributions. Furthermore equations
for the Q' evolution of parton distributions are much
more complicated than Eq. (8.33). Therefore we think
that the simplest and most straightforward tests of
higher-order corrections can be performed directly by
means of Eq. (8.33) and (7.20b) without any reference
to parton distributions. Still, with a given definition of
parton distributions, the parton language may be useful
in comparing asymptotic freedom predictions in various
processes such as deep-inelastic scattering, the Drell-
Yan process, etc. Therefore at the end of this section
we shall discuss a parton model formulation of higher-
order corrections.

After having discussed some attractive features of
Eq. (8.33) we should mention a possible limitation in the
use of it. We observe that the last term in the expres-
sion for II,

„

in Eq. (8.35) is singular when d", =d"+l.
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While this singularity does not appear for physical val-
ues of ~ and f, it can lead to anomalously large higher-
order corrections to the "-"contributions and an ap-
parent bi"eakdown of perturbation theory.

The singularity in R,
„

is, of course, spurious and
must be canceled by other terms in Eq. (8.33). At this
stage it. should be recalled that. A'„are rather compl. i-
cated functions [see Eqs. (8.31) and (8.36)I of the ma. —

trix elements of singlet fermion and gluon operators
and of various renormalization group parameters which
we lumped together in order to obtain a simple expres-
sion and get rid of p. '=go dependence. In doing this we
have generated singularities in R, „andA„for noninte-
ger f and n which cancel each other in the full expres-
sion. In fact, on the basis of Eqs. (8.31) and (8.36),
A„'can be written as follows:

(8.37)
where A„(Q,) is nonsingular and the singularity is in
R„',which is given as follows:

(j.), n

n 2p + ~n yn (8.38)

Q', is an arbitrary scale. I'nserting Eq. (8.37) into (8.33)
we convince ourselves that the singularity in R„is in-
deed canceled by that in R„'.

From a detailed numerical study of the singularities
in R, „(Bardeen and Buras, 1979b) it follows that only
in the case of n =2 and then only for f=5 and 6 is the
separation of the singular part as shown in Eq. (8.37)
necessary. " For all other physical values of n and f,
the existence of a nearby singularity does not disturb
the validity of the perturbative nature of the corrections
and Eq. (8.33) can be safely used.

For completeness, however, we would like to mention
that one can derive an equation for M;(n, Q') which, al-
though it is slightly more complicated than Eq. (8.33)
and involves explicitly Q'„can be easily continued to
noninteger values of f and n. This is the Eq. (2.10la),
which can be easily. derived by performing matrix mul-
tiplication in Eq. (8.21), instead of absorbing the first
factor on the r.h.s. of Eq. (8.21) into matrix elements of
local operators as was done in the present derivation.

So far we have discussed only E;(x, Q'). The formula.
for the singlet part of the longitudinal structure function
can be derived in a simil. ar way by replacing the Eqs.
(8.25) and (8.26) by

where A'„are given by Eq. (4.43) and B' „areobtained
from formulas (2.107) and (2.108) for & =L. I ongitudin-
al structure function is discussed in more detail in Sec.
VIII. F.

'This completes the derivation of the basic asymptotic
freedom formulas for the moments of singlet structure
functions with next-to-leading-order corrections taken
into account. We shall now discuss the calculations of
various parameters which enter the formulas (8.33) and
(8.41).

C. Results for y "'",8k~ and 8
As in the case of nonsinglet contributions, one has to

make sure that j"'", B~ „andB„„arecalculated in the
same renormalization scheme. Below we give results
of calculations of these quantities in the minimal sub-
traction scheme. A nice feature of this scheme is that
y„,B~& „,and B„„in this scheme are gauge independent.

1. Two-loop anomalous dimension matrix

The two-loop anomalous dimension matrix, y"'", has
been calculated by Floratos, Boss, and Sachrajda (1979).
One has to calculate quark and gluon mat, rix elements of
the fermion singlet and gluon operators to order g' and
the anomalous dimensions of the gluon and fermion field
to the same order. The details of this calculation are
given in the original paper. Typical diagrams are
shown in Figs. 32 and 33. In the whole there are about
100 two-loop diagrams which one has to calculate in
order to obtain y"'". The analytic expressions for the
elements of j"'"are very long and the authors quote
the numerical values of the coefficients of various group
theoretical factors. On the basis of this information we
have calculated the elements of j'"'"which are collected
in Table III. We only make a few remarks related to
Table III.

(a) The nondiagonal elements y~'~" and y"'~'" differ by
sign from those of Floratos et al. as we use the same
normalizations of operators as Gross and Wilczek (1974).
Notice that, consistent with these normalizations, the

(c)

C~~ „(1,g~) = 6~~(~/16m')BG~ „.
The result, is

(8.39)

(8.40)

+ 2$
+A 6~ '" in-n g P I (q2/A2) A2 9 (8.41)

(e) (g)

For n =2, 4, 6, 8, and 10 the position of the singularity is
atf =5.583, 3.788, 1.627, 0.142, and —0.988, respectively.
The corresponding residue in R2

„

is equal to —15.43, 1.36,
0.2, 0.007, and —0.02.

FIG. 32. Examples of the diagrams which enter the calculation
of the two-loop anomalous dimension matrix y& & "(a,b),
~(1),n(~ g) ~(t), n(e f) and ~(i), fl(g g)
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(a) {b)

nondiagonal one-loop elements y«" and y'" as given in
Eq. (2.79) also differ by a minus sign from those of
Flora. tos et al.

(b) For n =2 we have the following relations:

FIG. 33. Examples of the diagrams which enter the calcula-
tion of the anomalous dimension of the gluon field in order g4.

T~ „(q'/p,', g') = tE„+(g'/16m') [- py~~" ln(q'/ —p') + T, ,
'„' ]

(8.48)

Tc (q2/ ~2 2) ( 2/'16 2) [
0 ln(q2/ p2) + 7 ),c]

(8.49)

C'„.(q, '/p', g') =h, + (g', /16 ')[- 'y'„-'"»(q'/p')+B'„,.]
(8.50)

Cc „(q/t), ,g ) = (g /16m )[- —'y '"In(q'/p. )+Bc„]
. (8.51)

Q. ) + (x)
yA yG4

(I.) (X)
yGG ySG. (8.42)

g&, (p'/ p,',g') = 6,, + (g'/167)') [-,'y', ,'. " ln( —P'/ p, ') +2„,". ],
(8.52)

This is the generalization of Eqs. (5.38) and (5.39) and
corresponds to the vanishing of the anomalous dimen-
sion of the energy momentum tensor.

(c) y(~~'", contrary to the one-loop case, differs for
low values of n from y'„"~'"due to the appearance of var-
ious diagrams which contribute to y~'~ but do not contri-
bute to y"„s. An exampl. e of such a diagram is presented

, in Fig. 32b. For n 4 however. yN&' y&&'

2. 8" and 8 in 't Hooft's scheme
k. n k, n

In order to calculate B~~ „andBG „asdefined by Eqs.
(8.25), (8.26), (8.39), and (8.40), consider the two for-
wa, rd brompton amplitudes

wbere t,j = (t), G. Here

1 .q=1, 2
hk— (8.53)

T'~ —A '~ P =1 2k, n nQ

k, n T(2),gI pn

(8.54)

and the coefficients of the logarithms are fixed by the
renormalization group equations which the quantities
appearing on the lhs of Eqs. (8.48) —(8.52) have to
satisfy. In order to simplify notation we have dropped
the overall factors 5~k.

Inserting Eqs. (8.48)-(8.52) into (8.45) and (8.46) and

comparing the coefficients of g' we obtain

Z'. ,(q', v) =t
~

d'ze "(q;p ~T[Z. (e)Z.(0)]
~
y;p) (8.43)

T(2),G
L, gn

T(2),G —A(2)'~ 4 = 1 2k~n nG

k~&
BG 4=1 (8.55)

r ())* v)=' fa .e (; G~ ')(z.T-(.)~„())~oc; ), ()8)44

where ((t;p I and (G;p l stand for fermion singlet and

gluon states, respectively. As in the calculation of
B„"„wechoose these states to be massless with space-
like momenta p' &0.

The Compton amplitudes above have. a Lorentz de-
composition as in Eq. (7.25), and employingthe operator
product expansion we obtain the foHowing generaliza-
tions of Eq. (7.26) for each n separately:

T'„,.(q'/t ',g') = C'„,.(q'/~', g')~.„(p'/~',g')

Cc (q /)(( g )Ac (P /p g') 0 =I 2 I.
(8.45)

T'„,„(q'/j',g') = C'„,.(q'/I ', g')&.', (j '/u', g')

+ C„'„(q'/(((',g')X.', (p'/q', g') I = 1. , 2, I. .
(8.46)

The matrix elements A„',(p'/p. ', g') are defi@ed as fol-
lows:

Q; j ~O~) ""~~p;j) =Q'„,(p'/iL', ~')p ~ p, +trace terms.

(8.47)

We next expand the elements of Eqs. (8.45) and (8.46)
in a perturbation series as follows:

Since to the order considered 7~k~ and A~~ are equal to
the corresponding quantities for nonsinglet operators,
Eq. (8.54) is equivalent to (7.31), and we obtain

B~ =B"' &=1 2 I. .k~& k~& (8,56)

3~Notice that the diagrams of Fig. 10(b) enter also the calcu-
lation of p&G, in which case one is interested only in the coef-
ficient of ln(—p'/p, ') [see Eq, (8.52)]. This time we are inter-
ested in the constant pieces A„'&~.

On the other hand, Eq. (8.55) tells us that in order to
calculate BG „wehave to find the forward brompton am-
plitude for a photon scattering off a gluon and subtract
from it the matrix element of the fermion singlet oper-
ator between gluon states. In the case of the longitudinal
structure function, B~~ „,only the forward Compton am-
plitude has to be calculated. The diagrams which one
has to calculate in order to extract B~~ „areshown in
Figs. 34 and 10b." %e only quote the fin'al results and
refer the interested reader to the original. papers by
Bardeen et al. (1978) and Floratos et at. (1979) for de-
tails. The results for BG „are

B~i „=8f/(n + 1)(~+ 2), (8.57)

4 4 1 n'+n+2 ~1
n+ 1 n+ 2 n n(n+ 1)(n+ 2) ~j

+ —,'yoc" (In47( —y ) . (8.58)
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FIG. 34. Diagrams entering
the ca1culation of T z,„' of
Eq. (8.55~.

Notice the appearance of the terms (In47T —y ) which,
as we shall show below, can be absorbed in the redefin-
ition of the scale parameter A. B~~ „,which is renor-
malization prescription independent, has been previ-
ously calculated by other authors (Kingsley, 1973;
Walsh and Zerwas, 1973; Hinchliffe and Llewellyn-
Smith, 1977a). For the calculations of B,

„

in different
renormalization schemes from that. considered here we
refer the reader to the papers by Kingsley (1973),
Witten (1976), Calvo (1976), Llewellyn-Smith and
Hinchliffe (1977a), Altarelli, Ellis, and Martinelli
(1978), Kubar-Andre and Paige (1979), Hill and Ross
(1979), Sheiman (1979), and Abad and Humpert (1978).

3. Comparison of various calculations

In Sec. VII.D we stated that

(i) T",'„',as defined by Eqs. (7.27), (8.48), and (8.49),
are indePe~dent of the renormalization scheme but are
dependent on the assumptions about the "quark target"
or "gluon target" used to extract the coefficient func-
tions;

(ii) B', „,as defined by Eqs. (7.28), (8.50). and (8.51),
are AzdePeedeyzt of the target but are dependent on the
renormalization scheme;

(iii) A '„',.", as defined in Eqs. (7.29) and (8.52), are
dependent on both target and renormalization scheme.

Keeping these properties in mind it is not very diffi-
cult to compare various calculations existing in the
literature performed in different renormalization
schemes and corresponding to various different targets.
We shall illustrate this by an example (Bardeen et al. ,
1978).

In the papers by EQngsley (1973), Witten (1976),
Hinchliffe and Llewellyn-Smith (1977a), Kubar-Andre
and Paige (1979), and Hill and Ross (1979) the parame-
ters T',2'„'~ have been calculated by considering massive
quarks in the fermion loop of Fig. 15 and by putting p'
=0 for the external gluons. Qn the other hand, in the
papers by Bardeen et al. , (1978), Altarelb et al. ,
(1978), and Floratos et al. (1979), TP'„'~ have been cal-

T, „„g=, ——y~~" ln, —1—

4 4 1+ +-
@+1 ++2 n

(8.61)

or, equivalently, (in the notation of the papers which
use p'=0 and m' w0)

~2 21—
rg(x, q') =,2' (1 —2++2&') ln

(8.62)—1+8&(1-x) .
This result agress with that of Witten (1976) (if one cor-
rects his expression by a factor 4), Kingsley (1973),
Kubar-Andre and Paige (1978), I%ill and Ross (1978),
and Llewellyn-Smith and Hinchliffe (1977a) (if we re-
place 6 by 8 in the last term of their expression). A
similar exercise can be performed for T2~ „(Q'/p',g')
(Muta, 1979).

4. Discussion of the In 4z —yE terms

The quantities B2~ „andB2~ „have terms which include
the fa.ctors (In4m —y ). It should be possible to absorb

culated by considering massless quarks and putting p'
&0 for the external gluons. The resulting T',"„' are
different in the two cases. To check the compatibility
of these two calculations we proceed as follows.

We calculate A~~ in the minimal subtraction scheme
with p =0 and rv. @0, where m is the quark massy wl
the result (we drop the terms which vanish as m -0)

2'„G( p'/'m', g ') = ( ~'/.16m') I——,'y'„~"[In(4v p. '/rn') —y~]j .

(8.59)

On the other hand we have in the same renormalization
scheme (for any target)

L~ „(Q'/p,', g') = (g'/16vr')[ —,'y', ~" I—ng'/p. '+El~ „],
(8.60)

where B2G
„

is given by Eq. (8.58). Inserting (8.59) and
(8.60) into (8.46) and replacing there p' by —m' we ob-
tain
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these terms by redefining the parameter A as in Eqs.
(7.54) and (7.57). To check this we insert Eqs. (8.56)
and (8.58) into (2.107) and (2.1.08) and find

B+„=B+„+~X,"(ln4z —yz), (8.63)

where B'„arefree of terms involving (In4z —yz). Insert-
ing formula (8.63) into (8.34) and (8.35) and subsequent-
ly into (8.33), we convince ourselves that, in fact, the
(In4z —yz) terms can be absorbed by redefining the pa-
rameter A as in Eqs. (7.54) and (7.57).

Absorbing the (In4z —yz) terms into the parameter A

corresponds to the MS scheme of Sec. VII.F. For this
scheme in analogy with Eq. (7.58) the functions R', „(Q')
in Eq. (8.33) are replaced by R, „(Q')which are given as
follows:

=R"z and d"=d„"z,which results from the small mixing
between quark and gluon operators for large n and the
identification of the "—"operator with the singlet quark
operator. In addition in the framework of the parton
model one expects A„to be much larger than +'„,which
is confirmed by the data. " Thus one expects that for
+&4 the singlet structure function will behave essential-
ly the same as the nonsinglet structure function for
typical hadronic targets.

In terms of the effective coupling constant

g (Q') 4z p, ln ln(Q'/A')
4z P»( Q' /A') i3' »'(Q'/A')0 0 (8.66)

the formulas (7.20b) and (8.33) can be written as fol-
lows:

R, „(Q')= R2 „(Q')—2 X,"(1n4z —yz) . (8.64)

D. Numerical estimates

Equivalently R,",„(Q')is obtained from R; „(q')by re
p»cing in (8.35) B; „byB; „ofEq. (8.63). Similarly
the Q' independent part of R; „(Q')is denoted by R+.

Ns(n q2) 5(2g+Ns[~(Q2) ]&NBINs [~(q 2)]

Ms(n q, ) 6(.&X„-[o.(q')]'"-I; „[~(q')]
+ 6'"&'[o'(Q')] 'I' [o'(Q')]

where

(8.67)

(8.68)

The numerical values of the parameters A', „andd,"
are given in Table I. First we notice that for sufficient-
ly large values of Q' and for n ~ 4 the next-to-the-lead-
ing order corrections to the "—"operator are at least
as important as the leading contributions to the "+"op-
erator. This is due to the fact that

d"&d"+ 1 for yg~ 4. (8.65)

Therefore for n~ 4 the next-to-the-leading order cor-
rections to X should be treated on the same footing as
the leading-order contributions to the X' operator.
Furthermore for n& 8 the former contributions dominate
over the latter ones. Similarly the next-to-the-leading
order corrections to the "+"operator are for n&4 and
large Q' only as important as 1/ln'(Q'/A') corrections
to the "-"operator. We further notice that for n&4B,

(8.69)Ij „(o.') = 1+ (n/4n)R, '
„

i'= NS, +,
The quantities I,' „(o.) are plotted in Fig. 35 as functions
of &. The figure is presented mainly for illustration
since the actual size of I, „(o.') depends on the definition
of A or, equivalently, of o.(Q'). The curves in the fig-
ure correspond to the MS scheme for which 0.2& n(Q')
& 0.5 for 2&Q'& 100 GeV' (see Sec. VII).

We note the difference between'~' corrections to "NS"
and "—"components for low values of n which is due to
mixing between quark and gluon operators. Further-
more the g' corrections to the "+"contribution are
generally larger than to the "—"and NS contributions.
This, however, does not spoil the perturbative expan-
sion for the fu11. singlet structure function due to the
smallness of A.„+for large n and due to the large values
of d", as discussed above.

I
9--
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l.o

0.9—

0.8—

0.7—

~ I.7--
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I.6--

2 6--

/
/

/ 2.2
/
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FIG. 35. Size of the explicit
second-orde r correc tions
I2,„(n)in the MS scheme for
f'- 4

0.6—

I .0-

O. l 0.2 0.5 0.4 0.5
I I I I I

O. l 0.2 0.5 0,4 0.5
I I . I 1 I

O. l 0.2 0.5 0.4 0.5

See Appendix B.
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E. Parton model and higher-order corrections

So far our discussion of higher-order corrections
was very formal. Although the most straightforward
tests of higher-order corrections can be presumably
done by using Eqs. (8.33) and (7;20b), it is sometimes
useful to express these equations in terms of parton
distributions, As we already remarked before, this
cannot be done in a unique way (Kodaira, and Uematsu,
1978; Altarelli, Ellis and Martinelli, 1978), and the
functional form of the resulting "higher-order parton
model formulas" depends on the definition of the parton
distributions.

In order to illustrate this point, consider the moments
of a nonsinglet structure function which, in the leading
order, is expressed through the moments of a nonsing-
let quark distribution 6(x,Q') a.s follows:

In(Q'/'A')1 "Ns
(t& (Q')& „=& &(Q'.)&„1„(Q2/A2) (8.71)

(a) M", '(n, Q') = 5&,')(&(Q')&„&'& (8.73a)

where (a(Q', )&„=-A"„'(Q',).
If next-to-leading order corrections are taken into

account we have first

MNs(n Q2) 5&)&)+Ns(Q2) I+ ~& (Q )-& (Qo)~'
ms ~ 0 16m2

~"3 "P, r'(Q') ~.. ;r'(Q')' ""
2P 2P2 16&2 &), )) —

2(Q 2)

(8.72)

Next Eq. (8.72) can be expressed in terms of parton
distributions and this ean be done in many ways. Here
we shall discuss only two examples:

(8.70)

with 5&„"s& being a, charge factor; e.g. , 5&„s&= 1/6 for E'2&'.

The Q' evolution of (di, (Q')& is given by

(b) M"'(n Q') = 6'" (~(Q')&" (I+ I:Z'(Q')»«')~"' )
=-&~(Q')&„&"'~",,'. (I,r'), (8.74)

where (A(Q')&&'& is just defined by Eqs. (8.72) and (8.73a)
and (b, (Q')&&„'&in the order considered reads as follows:

n

(~(Q2)&&b& (~(Q 2) &&&)&1
(Z'(Q')-Z'(Qo)] r Ns NS

16vr' u'(Qg (8.75)

M"'(n Q') =&&(Q')& o"'(Q')
and using the convolution theorem of Eqs. (5.14)—(5.16)
we obtain

(8.76)

In the first example the structure function is totally ex-
pressed in terms of a quark distribution which has the
Q' dependence different from that given by the leading-

. order formula (8.71). It should be remarked, however,
that the inclusion of a/l higher-order corrections in the
definition of parton distributions can only be done for
one structure function, e.g. , E', as in Eq. (8.73a). The
reason is that the parameters B~ „depend on the struc-
ture function considered, and if the parton distribution
is defined by using E„the' formulas for the remaining
structure functions (E„E,) will involve explicit higher-
order corrections in addition to the parton distributions
in question.

In the second example the term which depends on the
structure function has been factored out. Writing Eq.
(8.74) as

I

picture is at the basis of the perturbative QCD to be
discussed briefly in Sec. IX. It should be remarked,
however, that the parton distributions and the elemen-
tary parton cross sections defined in this way are sep-
arately renormalization-prescription dependent and
generally gauge dependent. These renormalization
prescription and gauge dependences cancel in the final
expression if the same gauge and renormalization
scheme are used in the calculations of 6&'&(x,Q') and
o(x, Q ). Since one can define parton distributions in
many ways anyhow, one should not worry about this
renormalization prescription dependence of parton dis-
tributions discussed here. The only important thing is
to defi&ie the Parton distributions consistently in the
same renormalization scheme for all structure func-
tions and al/ processes.

Equations (8.73a) and (8.74) can be generalized to the
singlet structure functions. In the case of definition (a)
one has (Altarelli, Ellis, and Martinelli, 1978; Flora-
tos, Hoss, and Sachrajda. , 1979)

(8.77) M'(, Q') = «'&&~(Q')&&" (8.73b)

The factor cr"„(x,Q') can be interpreted as an elemen-
tary cross section for scattering of a current off a
quark with an effective Q' dependent distribution
b&~&(y, Q'). This interpretation can be extended to
other processes such as Drell-Yan, large p~ processes,
etc. , with- 0 different for different processes. There-
fore in this formula. tion all measurable cross sections
are expressed as a convolution of univexsa/ quark dis-
tributions and process dependent (also structure--func-
tion-dependent) elementary parton cross sections. This

where (Z(Q')&&'& has rather complicated dependence on
Q'. Explicit expressions for (Z(Q')&&'& can be found in
Floratos et al. (1979). Notice that in this example all
higher-order corrections (including those from gluon
distribution) have been absorbed in the definition of the
singlet quark distribution.

Here we shall discuss in detail only the singlet analog
of Eq. (8.74) (Baulieu and Kounnas, 1978; Kodaira and
Uematsu, &978; Ellis, Georgi, Machacek, Politzer,
and Ross, 1979). For the discussion of the distribu-
tions of Eq. (8.73b) we refer the reader to the papers by
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Altarelli, Ellis, and Martinelli (1978) and Floratos,
Ross, and Sachrajda. (1979). Equation (8.75) is just the
nonsinglet formula. (2.137). In order to derive Eqs.
(2.138) and (2.139) we proceed as follows:

Using Eqs. (8.29) and (8.2) we first obtain

M;(n, Q') = A„(p')C,„(Q'/)).',g'),
=A„(V')W(g, g)C„„(1,g') (8.78)

with A„(I).') and W(g, g) defined by Eqs. (8.30) and (8.5),
respectively. Next in analogy with Eq. (8.74) the mo-
ments (Z(Q')&„and (G(Q')&„are defined as follows (we
drop the index b in what follows):

[&~(q')&„,&G(q')&„]=-A.(I")W(g, g) (8.79)

[&~(q')&„,(G(q')&„]= [C(q.')&., «(q', )&„]
x UU 'W(g, g)UU '

and use

'g (Q') '-

0
2( 2)

g'(Q'. ),

(8.82)

where the matrix U 'V, U is given by Eqs. (8.14)—(8.18).
Inserting (8.82) into (8.81) and using Fqs. (4.30) and
(4.31) for U and U ', we are led to the formulas (2.138)
and (2.139) which describe the Q' evolution of (Z(Q')&„
and (G(q'&„. Numerical values of the parameters which
enter these formulas are collected for the MS scheme
of Sec. VII in Table II. In addition, g /16m' —0.03 for
Q'-5 GeV' and therefore the next-to-leading order cor-
rections in Eqs. (2.138) and (2.139) are relatively small.
Consequently the Q' evolution of the parton distributions
defined by Eq. (8.79), with g~ corrections calculated in
the MS scheme, should not be very different from the
Q' dependence predicted by the leading-order expres-
sion of Sec. V. It would be interesting in the future to
invert Eqs. (2.138) and (2.139) to obta. in G(x, Q') and
Z(x, Q'). The large value of the parameter Ko, for n =4
and f=4 is related to the previously discussed singulari-
ty at d,"=d"+1 which appears for f=3.8. The singularity
in K~, is, however, canceled by the factor multiplying
Ko, in Eq. (2.141), and the resulting correction is small.
We would like also to remark that due to properties
(5.38), (5.39), and (8.42), Eqs. (2.138) and (2.139) satis-
fy energy momentum conservation.

Although the Q' dependence of the quark and gluon
distributions defined in the MS scheme does not differ

and consequently using Eq. (8.3) for Q' = p.
' we obtain

M;(, Q') =(~(q')&.G.",.(I,g )+«(Q')& G' (I,g ).
(8.80)

Notice that since W(g, g) =1 for Q'= )),', the parton dis-
tributions defined by (8.79) are just the matrix elements
of various local operators renormalized at p,

' =Q'. It
is now a simple matter to obtain Eqs. (2.138) and (2.139).
In order to use some of the results of Sec. VIII.H we
write (putting p' =Q', ) Eq. (8.79) as follows:

F. More about the Callan-Gross relation

In this section we shall express the longitudinal struc-
ture function F~(x, Q') in terms of quark and gluon dis-
tributions. Combining Eqs. (7.18a) and (8.41) and utiliz-
ing Eq. (4.43), we first obtain the following expression
for the moments of E~(x, Q'):

M, (n, q') =MN'(n, q') +)1f;(n, q')

BN~„SI (nQ' /'A)~ "Ns
NS n (QO

p In(Q2/A2) ln(q2/A2)

z) BI,. In(Q'/A')'
)3, ln(q'/A') ln(q'. /A')

BI, , n ln(Q'/A') +

'
)3, ln(Q'/A') ln(Q', /A')

where

(8.84)

(8.85)

and B~ „andBo „aregiven by Eqs. (2.98) and (2.120),
re spe ct ively.

Inserting Eq. (8.85) into (8.84) and using Eqs. (5.29)—
(5.32) we obtain

(8.86)

where the Q' dependence of M, (n, Q') and of (G(Q'))„is
given in the order considered by the leading order fox-
rnulas of Secs. IV and V. As the reader may convince

While completing this review we received a paper by An-
derson et al. (1979) where a comparison of higher-order cor-
rections with the measured moments of E'2& and ~2 has been
made. The agreement with the data is good with the value of
AMS

——0.459 + 0.111. This is consistent with the value obtained
from the analysis of nonsinglet structure functions fEq. (7.59)).

very much from the leading-order predictions, the in-
put distributions for quark and gluon distributions which
have to be taken from the data will differ considerably
at low Q' and large x from those used in the leading-
order phenomenology. The reason is that the parame-
ters BNs„and E2~ „arelarge for large values of n.

Finally, a.s in the case of the nonsinglet structure
functions, we can invert Eq. (8.80) to obtain

1

(~'.Q ),= 'I &1'[C(~)3Q'),&O' Q'~+4( ")7 Q.'e(~ Q')]

(8.83)

where cr2~(x/y, Q') is, except for the charge factor, equal
to a,"N(x/y, Q'), and v2o(x/y, Q') can be interpreted as an
elementary cross section for scattering of a current
(y, W, Z) off a gluon with an effective Q'-dependent dis-
tribution G (y, Q').

So far nobody has done a detailed comparison of the
higher- order corrections to the singlet structure func-
tions with the experimental data, but such a comparison
will be available in the near future (Field and Ross,
1979; Duke and Roberts, 1979b)." See note added in
proof. Some applications of these definitions of the par-
tondistributions [Eqs. (8.73a, b), (8.74), and (8.80)] in
semi-inclusive processes are discussed by Altarelli et al.
(1979b) and Buras (1979).
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260 A. J. Buras: Asymptotic freedom in deep inelastic processes

himself Eq. (8.86) can also be derived from Eqs. (8.77)
and (8.83) by replacing there the indices h or 2 by the
index L.

Finally using the convolution theorem of Eqs. (5.14)—
(5.16) and the explicit expressions for B~~ „andA'G „,as
given in Eqs. (V.43), (8.56), and (8.57), we obtain

lg X
g( 0 Q )

P I (q2/A2) 2

x I,(y—, Q')+ 6„"'8f1 ——yG (y, Q')
I

(8.87)

In the case of four flavors, 5~2'= 5/18 for o.p scattering
and 6"„'=1for v, v scattering. Equation (8.87) with 5'„"
= 5/18 agrees with Eq. (127) of Altarelli (1978), and
for 52~'= 1 with Eq. (24) of Kodaira and Uematsu (1978)
if we take into account that the definition of I ~(x, Q ) in
the latter paper differs from our definition by a factor
X ~

It should be emphasized that the parameter A which
enters Eq. (8.8V) need not be the same as that obtained
from the phenomenological appl. ications of the leading-
order or next-to-leading order expressions for the Q'
evolution of the structure functions E„&„andE, which
do not vanish in the leading order. In fact the value of
A in Eq. (8.87) cannot be meaningfully determined from
experiment unless 1/(In2@2/A2) corrections to E~ are
computed. Therefore in comparing (8.87) with experi-
ment we are free to choose A to be different from that
extracted from phenomenological applications of asymp-
totic freedom equations for other structure functions.
We do not think this point was realized previously in the
literature.

Experimentally the formula (8.87) is consistent with
the eP data (Riordan et al. , 1975) for ~ & 0.4 (Hinchliffe
and Llewellyn-Sm1th, 1977a) but disagrees w1tll tllese
data for large x (De Rujula. et at. , 1977a). The predic-
tions of the theory for large x lie systematically below
the data. This is also confirmed by recent analyses
(Bodek et al. , 1979 and Mestayer, 1978). The disagree-
ment between theoretical predictions and the data for
j'~ might not be a problem for QCD, however, and could
be due to our neglect of higher-twist operators, "non-
perturbative effects, etc. , which a,re present in QCD but
are difficult to calculate. In particular it has been sug-
gested by Schmidt and Bla.nkenbecler (1977) that the
diquark systems in the proton could be responsible for
the observed large values of E~ at large x. Recent phe-
nomenological applications of this idea can be found in
the paper by Abbott, Berger, Blankenbecler, and Kane
(1979). Certainly the longitudinal structure functions
deserve further study.

IX. ASYMPTOTIC FREEDOIVl BEYOND
DEEP-INELASTIC SCATTERING

2

A. Preliminaries

So far our discussion of asymptotic freedom effects
concentrated on deep-inelastic scattering. In the past

4~See Nanopoulos and Boss (1975). For a recent analysis see
Abbott, Atwood, and Barnett (1979).

year there has been a l.ot of progress in understanding
the structure of asymptotic freedom in other than deep-
inelastic processes. For completeness we shall brief-
ly review here some of the results of these studies.
We shall only discuss basic ideas and present results
of various calculations without confronting them with
the data.

Historically, the study of asymptotic freedom in the
inclusive deep-inelastic scattering began in the frame-
work of the formal approach of Sec. IV and only in the
last two years have calculations been made in the in-
tuitive approach of Sec. V and, in particular, in the
framework of so-called perturbative QCD, which we
have not discussed so far. In the case of semi-inclus-
ive processes, as for instance massive j(j.-pair produc-
tion, or processes in which hadron momenta are mea-
sured in the final state, progress proceeded in the re-
verse order. Most of the calculations were first done
in the framework of perturbative QCD and only recently
have studies been. made to develop a technique similar
to the powerful methods of operator product- expansion
and renormalization group equations.

As we discussed in detail in this review, the operator
product expansion (OPE) allows us to identify system-
atically the dominant contributions to the moments of
the structure functions at large Q2 and to express them
in terms of a sum of products of (perturbatively) calcu-
lable coefficient functions and (by present methods) in-
calculable matrix elements of certain operators taken
between hadronie states. The Q' dependence of the co-
efficient. functions can then be found by means of re-
normalization group equations. In other words the QPE
assures the factorization of nonperturbative pieces
(matrix elements of local operators) fromperturbatively
calculable pieces (coefficient functions). We would like
to stress that this factorization is true to all orders in
the renormal. ized coupling constant g' and in al.l logar-
ithms of Q' (leading, next-to-the-leading, etc.). Such
a proof has been missing for semi-inclusive processes
and the strategy (Politzer, 1977a, b; Sachrajda, 1978a,
b) has been to calculate these processes in perturba. —

tion theory in g' and to show that the nonperturbative
pieces (mass singularities) can be factored out and ab-
sorbed in the (by present methods) uncalculable wave
functions of the incoming and the outgoing hadrons.
There have been very many papers on this subject, and
it is impossible to quote all of them here. An incom-
plete list of theoretical papers involved with the question
of factorization includes the works by Politzer (1977a,
b), Sachrajda. (1978a, b), Dokshitser, Dyakonov, and
Troyan (1978), Llewellyn-Smith (1978b), Mueller
(1974, 1978), Libby and Sterman (1978), Kazama and
Yao (1978, 1979), Amati, Petronzio, and Veneziano
(1978a, b), Ellis, Georgi, Machacek, Politzer, and
Ross (1978a., 1979), Gupta and Mueller (1979),
Kripfganz (1979), and Frazer and Gunion (1979a, b).
References to phenomenological studies of semi-in-
clusive processes ean be found, for instance, in the
reviews by Field (1979), Hwa (1978), Berger (1979),
and Halzen (1979).

In the theoretical papers above one can find demon-
strations of all order proofs of factorization (Ellis et
al. , 1978a, 1979; Amati et al. , 1978a, b; Libby and
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'Sterman, 1978; Mueller, : 1978) and a. formulation of the
whole study of semi-inclusive processes similar to the
formal approach of Sec. IV (Gupta and Mueller, 1979).

Before we proceed with our review let us illustrate
the idea of factorization in the framework of perturba-
tive QCD with the example of deep-inelastic scattering
(Politzer, 1977a).

B. Factorization and perturbative QCD

We consider the diagrams of Fig. 36 contributing to
the photon-quark scattering to order g', ' and as in the
calculations of Sec. VII we take the incoming (massless)
quarks slightly off-shell (p' &0). The result is most
simply expressed in terms of moments in x (Bjorken
variable), and we obtain

M„=A'„fl+ (g '/16~') [——,'y'„'"In(Q'/-P') +~„]], (9.1)

where A„stands for the empty ("bare") blob in Fig. 36
and, as in Eq. (7.27), y„=T, '„'"s.

The result (9.1) is not very useful for various reasons:
(i) It is singular for P'-0.
(ii) The constants x„depend on our assumptions about

the target, i.e., the incoming quark. We could, for
instance, perform the calculation with p =0 but keep
the quark mass m g0. In that case we would obtain

M„=A„(l+ (g'/16m') [—pyN's" In(Q'/m') + x ]]; (9.2)

%40000544

(b)

M „=A „(p. ') [1 —(g'/16'') (y'„g/2) In(Q'/ p, ')], (9.4)

where p. is an arbitrary scale which we introduced to
protect the Q'-dependent factor from the singularity at
p2 0

In the pa.rton language we can interpret A„(p,') as the
moments of a parton distribution at Q'= p.'. In the for-
mal language this is just the matrix element of Eq.
(7.29). The second factor on the rhs of Eq. (9.4) de-
scribes how the moments M„behave for Q' c p, '. Notice
that this factor is free of any singularity for P'-0. In
formal terms it is just the coefficient function calcu-
lated to first order in g' (keeping only the leading loga-
rithm). This factorization of singular (nonperturbative)
terms from well-behaved terms can be proven to all
orders in perturbation theory in g' (see references
above). When all orders in g' are summed and in each
order only leading logarithms are kept, then the lead-
ing-order corrections of asymptotic freedom discussed
in the previous sections are obtained. Summing next-
to-leading logarithms to all orders in g2, one obtains
the next-to-leading order corrections of asymptotic
freedom of Secs. VII and VIII, and so on.

where x„cx„.In general r„or~„arealso gauge depen-
dent. This is exactly the same problem which we dis-
cussed in Sec. VIII, but we mention it here again be-
cause it also enters the calculations of Drell- Yan and
other semi-inclusive processes as we shall see below.
Qf course we know already how this problem is solved
(see Sec. VIII), and we shall leave it for a moment.

The problem (i) is solved by first rewriting Eq. (9.1)
as follows (we drop constant terms):

~2 O, g ~2 2 O~n 2

M =A 1+ " ln, 1—,"" ln —» (9.&)167t' 2 p,
' 16m' 2

and then absorbing the p' dependent singular factor into
A'„. We obtain therefore

(c}

C. Lessons from deep-inelastic scattering

In our presentation of asymptotic freedom effects in
processes other than deep-inelastic scattering we shall
discuss both the leading and next-to-leading order. cor-
rections, and it is useful to summarize the lessons
which we gained from the study of deep-inelastic scat-
tering. They are as follows:

(e) (f)
FIG. 36. Diagrams contributing to photon ~)-quark (:)
scattering to order g2. The empty ("bare" ) blob stands for the
"bare" (Q -independent) quark distribution in the proton. (HfNAQ')

denotes gluon.

43Strictly speaking the diagrams of Fig. 36 represent the con-
tribution of the photon —quark scattering to the photon —proton
cross section. In order to calculate the full photon —proton
cross section, the contribution of the photon gluon scattering
has also to be considered (see Sec. VIII).

(a) In the leading order there is no reason that the
numerical values of the scale parameter A should be
the same for different processes.

(b) If next-to-leading order effects are taken into ac-
count and the effective coupling constant defined univer-
sally for various processes, then it is justified to use
the same value of A in different processes (here we
tacitly assume that still higher-order corrections
O[g (Q')] are small).

(c) The definition of parton distributions is not unam-
biguous beyond the leading order. Therefore in com-
paring the parton distributions extracted from various
processes one has to make sure that the definition of
parton distributions is common to all processes.

(d) One has to make sure that all renormalization
prescription-dependent parts of a physical expression
are calculated in the same scheme, so that at the end a
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renormalization prescription-independent answer is ob-
tained.

(e) One has to check that. the final answer for the co-
efficient functions does not depend on the (in principle
arbitrary) assumptions about the gluon and quark target
used in perturbative calculations to extract the coeffi-
cient functions.

o. (8 e —hadrons)

We shall keep these lessons in mind while discussing
various processes. We begin our presentation with
e'e annihilation.

D. e+e ~ hadrons

o(e'e -hadrons)
~(~'e —u'u )

(9.5)

In the simple parton model and in QCD one obtains for
Q2 =E2 00c.m.

This process has already been studied in the frame-
work of asymptotically free gauge theories a long time
ago (Appelquist and Georgi, 1973; Zee, 1973). There-
fore we only quote t,he result and discuss it briefly.

Consider the ratio

= 0.5 Gev

I

6 7
vP (Gev)

I

10

I IG. 37. The ratio B as given by Eq. (9.9) as a function of
WQ2 for two values of &. The heavy lepton contribution g R=1)
ha, s been added. The parton model prediction is A = 4.3.

fl„=3+e', ,

1 6v' ' (16v')' '

The coefficient b, has been calculated by Jost and
Luttinger (1950), Appelquist and Georgi (1973), and
Zee (1973) and is given as follows:

(9 7)

where 3 is the number of colors, e,. are the charges of
the quarks, and the sum runs over the flavors. The
fact that A. approaches a. constant value is a consequence
of the lack of renormalization of the conserved electro-
magnetic current. For finite values of Q' there are
calculable asymptotic freedom corrections to Eq. (9.6),
and the formula for R reads as follows:

ing-order analysis of deep-inelastic scattering. A
meaningful comparison of QCD effects in e e annihila. —

tion with those expected in deep-inelastic scattering
can therefore only be made once the g' corrections are
taken into account as in Eq (9.7).. Using Eq. (2.88) for
g~(Q2) calculated to two loops, we obtain from (9.7)

P„ln ln(Q'/A')
P lnQ'/A' ' P' ln'(Q'/A')

b2
P'I '( '/A') (9.10)

Qf course the exact value for b2 in the expansion in Eq.
(9.10) depends on the definition of g (Q') or, equivalent-
ly, on the definition of A. Hescaling A to A' with

5, =4. (9.8) A= vA', (9.11)

Neglecting for the moment P'(Q') corrections and using
the leading-order expression for ~'(Q2) (Eq. 2.50) one
obtains

changes the last term in Eq. (9.10) to

b2+ pob, inc
p2 In2(Q2/Ai2) & (9.12)

Po ln(Q /A )
(9.9)

b, is positive and, therefore, R„will be approached
from above. In Fig. 37 R is plotted as a function of
vQ for f=4 and two values of A. The contribution of
the heavy lepton (~ = 1) has been added there. The ex-
perimental values of R range at vQ. = 5 GeV from 4.5 to
5.0 (see review by Feldman, 1979). The curves in Fig.
37 are shown only to illustrate the size of the second
term in Eq. (9.S). A careful comparison of Eq. (9.9)
with the data involves smearing over the resonances
and inclusion of threshold effects. We refer the inter-
ested reader to the papers by Poggio, Quinn, and Wein-
berg (1976), Moorhouse, Pennington, and Ross (1977),
Barbieri and Gatto (1977), and Shankar (1977) for de-
tails. Recalling lesson (a) there is no reason why the
value for A extracted from the data on the basis of Eq.
(9.9) should be the same as that obtained from the lead-

with A replaced by A' in the first two terms. The cal-
culation of b, has been recently done by Dine and Sapir-
stein (1979), and Chetyrkin, Kataev and Trachov (197S)
with the result 6, = 89.3, 24.3, and —27.2 for MS, MS,
and MOM schemes, respectively. Since g 2/16n' is 0
(0.03) for Q'=30 GeV' we observe thatg ' corrections to
Q are relatively smal. l. These results are being now
checked by Ross, Terrano and Wolfram (1979) and
Celemaster and Gonsalves (1979).

E. PhGtGA-PhOtOA CGllISIOAS

It is well known that photon. -photon inelastic collisions
in e e storage rings become an increasingly important
soUrce of hadrons as the center-of-mass energy is
raised (Brodsky, Kinoshita, and Terazawa, 1971;
Terazawa, 1S73; Budnev et al. , 1975). Whereas the
e'e annihilation cross section decreases quadratically
with energy, the cross section for e'e -e e +hadrons
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increases logarithmically with energy. The dominant
contribution to the latter cross section arises from the
annihilation of two nearly on-shell photons emitted at
small angles to the beam. Here we shall study the case
in which one of the virtual photons is very far off shell
(large Q') and the other one is close to the mass shell
(small P') as shown in Fig. 38.

The subprocess

p+ p ~ hadrons
q (9.13)

can be viewed as deep-inelastic scattering on a photon
target. The corresponding virtual brompton amplitude
is shown in Fig. 38(b), and as in the standard deep-in-
elastic scattering one can introduce structure functions
as E,", this time photon structure functions. In the early
days process (9.13) was studied in the framework of the
vector dominance model (VDM) and predictions similar

I

to that for standard deep-inelastic scattering have been
obtained, i.e., Bjorken scaling in the simple parton
model and logarithmic scaling violations in the frame-
work of asymptotically free gauge theories (Ahmed and
Ross, 1975a). It turns out, however, that in addition to
the VDM contributions there are contributions to pho-
ton-photon scattering in which the photon behaves as a
pointlike particle (Walsh and Zerwas, 1973; Kingsley,
1973). In the parton model these contributions are
represented by the box diagram of Fig. 38(c). The box
diagram contribution cannot only be exactly calculated,
but a.t large values of Q' increases as lnQ' and domin-
ates over the (incalculable in perturbation theory) vec-
tor dominance terms. The latter are suppressed by
powers of in@' as in the standard deep-inelastic scat-
tering. Neglecting VDM contributions, the parton model
result for the photon structure function E;(x,Q') for

large Q' has the form

E;(x,Q')
~

= n'p(x) lnQ', (9.14)

where n is the electromagnetic coupling constant and
p(x) is given as follows:

p(x) = 85gP„(x). (9.15)

Here P,~( x) is the familiar splitting function of Eq.
(2.57) which expresses the probability of finding a quark
in a gluon (now photon). Furthermore

5, = 3+8'„. (9.16)
i

where the sum runs over the flavors and e,. are the
quark charges. "3" stands for the number of colors.

It has been pointed out by Witten (1977) that there are
asymptotic freedom corrections to the parton model re-
sult of Eqs. (9.14) and (9.15). Witten calculated these
corrections in the leading order of asymptotic freedom
and his calculation has recently been extended to the
next-to-leading order (Bardeen and Buras, 1979a). All
these corrections are independent of the unknown matrix
elements of local operators in constrast to the case of
standard deep-inelasti'c scattering, and can be exactly
calculated. Moreover, at sufficiently large values of
Q' these exactly calculable terms are more imp'ortant
than the VDM contributions. Therefore the process un-
der consideration is, from a theoretical point of view,
an excellent place to study properties of higher-order
corrections. The two calculations above have been
done using operator product expansion and renormali-
zation group methods. smitten's result has been rede-
rived last year by Llewellyn-Smith (1978c) and recently
by Frazer and Gunion (1979b) in the framework of per-
turbative QCD. Furthermore, the process in question
has been studied in the intuitive approach of Sec. V
(De Witt, Jones, Sullivan, Willen, and Wyld, 1979;
Brodsky, De Grand, Gunion, and Weis, 1978, 1979).~'

In what follows we shall present in more detail the for-
mal approach to photon-photon scattering.

The formal approach to photon-photon scattering has
been first discussed by Witten (1977). The moments of
the photon structure function 8',"(x,Q') are given as fol-
lows

(a)

{j///////i3

(c)
FIG. 38. The process e+e hadron+ e'e: (a) The dominant
two-photon contribution, (b) vector dominance contribution to
the photon —photon scattering, (c) Contributions to photon —pho-
ton scattering in which the photon behaves like a pointlike par-
ticle (parton model diagram).

f
1

dxx" 'F,'(x, Q') =PC,' „(Q'/p,',g', n)(y iO,". iy),
0 i

(9.17)

where o. =e'/4m is the electromagnetic couplingconstant.
The sum on the rhs of Eq. (9.16) runs over spin-n,
twist-2 oper'ators such as the fermion nonsinglet oper-
ator 0», singlet fermion and gluon operators, O~ and
O~, and the photon operator 0,. The latter operator,
which is not present in the analysis of the deep-inelastic
scattering off hadronic targets, is the analog of the glu-
on operator O~ with the non-Abelian field strength ten-
sor G ~ replaced by the electromagnetic tensor E ~
[see Eq. (3.57)]. As noted by Witten, 0, must be in-
cluded in the analysis of photon-photon scattering. The

See also Koller, Walsh, and Zerwas (1978) and Kajantie
(1979). Gunion and Jones (1979) have discussed the parameter

. c7„in the intuitive approach.
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reason is that, although the Wilson coefficients C'„are
O(n), the matrix elements (y ~O", y) are O(l). There-
fore the photon contribution in Eq. (9.17) is of the same
order in cv as the contributions of quark and gluon oper-
ators. The latter have Wilson coefficients O(l) but ma. -
trix elements in photon states O(n). We want to evalu-
ate Eq. (9.17) to lowest order in n but to all order in g.
In lowest order in ~

(o)

C,' „(Q'/p.',g', n) =C,' „(Q'/p.', ') i = p, G, NS (9.18)

&~ ~O,
~
y) = 1 .

C&' „(Q'/p.', g', n) satisfy the following renormalization
group equations:

(9.19)

where the functions on the rhs of Eq. (9.18) are the
familiar Wilson coefficients which we discussed in Secs.
II-VIII. (Recall that the coefficient functions do not de-
pend on the target. ) Therefore the first three terms in-
volving hadronic operators will be suppressed by pow-
ers of logarithms except for n = 2, due to the vanishing
of the anomalous dimension of the hadronic energy mo-
mentum tensor. Moreover, the matrix elements of
hadronic operators in photon states cannot be calculated
in perturbation theory. In the language used above the
three terms in Eq. (9.17) involving hadronic operators
belong to vector dominance contributions. We are, in
fact, mainly interested in the coefficient function of the
photon operator, whose matrix element between photon
states is known,

(c)
I IG. 39. Typical diagrams contributing to the mixing between
hadronic operators and the photon operator (a} K&'", P}K& ~'",

(c) ~(&)~n

C; „(Q'/p, ', g', n) depends on the matrix yH(g') and the
coefficients CG„(l,g ), CN~„(l,g~), and C~ (i,g), jn
addition to the mixing anomalous dimensions K,". and the
coefficient function C; „(l,g', n). The resulting expres-
sion for the moments of F,"(x,Q') is as follows:

f1 2 2

dxx" 'I ;(x, Q') =n' a„l'n+,+a„lnln=,+b„
0

P, +P g —C2 „—»g, + = y, C2 „—»g
1

q2 A2 (9.25)

i =$,NS, G, y, (9.20)

Q2 )
Yg(g

K„(g',n) 0
(9.21)

Here y„"(g')is the standard hadronic anomalous dimen-
sion matrix of Eq. (4.22) extended by one column and
one row to include the anomalous dimension of the non-
singlet operator. K„(g',n) is a three-component vector

K„(g',n) = PC,"(g', n), fC", (g', n), fC"„(g',n)], (9.22)

which represents the mixing between the photon oper-
ator and the remaining three operators. The compo-
nents K". can be calculated in perturbation theory and
have the following expansion:

2 2 2

1
(9.23)

2 ~y), f7
Q(g 0 & (I8+)2 g (9.24)

Examples of diagrams necessary for the calculation of
the coefficients K',. '", K',"'" and KG '" are shown in Fig.
39.

Because of the mixing between the photon operators
and hadronic operators the coefficient function

where y, , are the elements of the 4 x 4 anomalous di-
mension matrix, which has in lowest order in n the follow-
ing structure:

where the terms O[l/(In@'/Z')] include the VDM contri-
butions.

The constants a„have been calculated by Witten,
(1977) and the parameters a„and b„byBardeen and
Buras (1979a). The a„depend on one-loop anomalous
dimensions and one-loop P functions while the a„de-
pend, in addition, on the two-loop contributions to the
P functions. Finally, the b„depend on the two-loop
anomalous dimensions and the one-loop contributions to
the Wilson coefficient functions, in addition to the re-
normalization group parameters on which a„and a„de-
pend. Analytic expressions for a„,a„,and b„and their
detailed derivations can be found in the original papers.
The numerical values for these parameters are collec-
ted in Table V. The numerical values of b„depend on
the definitions of the scale parameter A. The b„in
Table V are for the MS of Sec. VII. Notice that we do
not give the values of b„which involves the perturba-
tively uncalculable photon matrix element of the had-
ronic energy momentum tensor.

Remembering lesson (b) of Sec. IX.C we take for iS
the value of 0.5 GeV which we have extracted from
deep-inelastic scattering in Sec. VII using the same
definition for A. Equation (9.2~) is plotted in Fig. 40
for various values of yg on Q . In Fig. 40 I,.Q. stands
for the first term in Eq. (9.26) and PM stands for the
parton model result of Eq. (9.15). We conclude that
asymptotic freedom effects suppress the photon-struc-
ture function at large values of n or equivalently large
& and that this suppression is enhanced by higher-or-
der corrections as compared to the leading-order re-
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TABLE V. Numerical values of the parameters a„,a„,and b„which enter Eq. (9.25) for f=3 and 4.
p„arethe moments of the P(x) which enter Eg. (9.14). The table is from Bardeen and Buras (1979a).

2
4
6
8

10
12
14
16
18
20

0.660
0.276
0.175
0.127
0.0989
0.0806
0.0678
0.0584
0.0511
0.0453

1.245
0.504
0.317
0.230
0.179
0.146
0.122
0.105
0.0919
0.0815

0.353
0.218
0.138
0.100
0.0781
0.0637
0.0536
0.0461
0.0404
0.0358

0.529
0.373
0.235
0.170
0.132
0.108
0.0904
0.0777
0.0680
0.0603

—0.604
—0.418
-0.327
—0.269
-0.228
-0.198
-0.175
-0.157
-0.142

—1.028
—0.716
-0.561
-0.463
—0.394
-0.343
-0.303
-0.271
—0.245

0.889
0.489
0.349
0.274
0.226
0.193
0.168
0.149
0.134
0.122

1.679
0.924
0.660
0.518
0.427
0.364
0.318
0.282
0.253
0.230

suit. A similar result for the higher-order corrections
to the moments of F,"(x,Q') is obtained if g (Q') is de-
fined by momentum subtraction. In that case the pa-
rameters b„are replaced (Celemaster and Gonsalves,
1979) by

b„M= b„+a„I1.54] (9.26)

l I l

0.9—

0.8—

0.7—

b)
4 f1 avours
A=O.56eV

d)

e)

LO

HO (Q = 3GeV )

HO (Q =5GeV )

HO (Q =2068V )

0.6—

0.5
5%4

0.4—

and A =0.5 GeV by AMQM 0.85 GeV as extracted in this
scheme from deep-inelastic scattering (see Sec. VII.H).
More elaborate comparison of higher-order corrections
with the leading-order result and the higher-order cor-
rections in deep-inelastic scattering can be found in the
paper by Bardeen and Buras (1979a).

F. Semi-inclusive processes in QCI3
'l . Prel imina ries

We shall now turn to the presentation of the basic
structure of QCD formulas for semi-inclusive processes.
To this end it will be useful to introduce certain nota-
tion which we shall illustrate with the familiar deep-in-
elastic scattering. Consider a, photon of momentum q
which scatters off a parton of momentum p. If P is the
momentum of the hadron to which the parton in question
belongs then we can introduce the following variables

x = Q'/2Pq,

x = q'/'2pq,

(9.27)

(9.28)

and (, the fraction of, the hadron momentum ca.rried by
the struck pa.rton.

The deep-inelastic photon-hadron cross section can
then be written in QCD as follows":

For recent reviews of the photon-photon physics in
connection with QCD ideas we refer the interested read-
er to the papers by Llewellyn-Smith (1978c), Brodsky
et al. (1978), Brodsky (1978), Kajantie (1979), Koller,
Walsh, and Zerwas (1979), and Hill and Ross (1979).
In particular Hill and Ross discuss heavy quark mass

, effects in photon-photon scattering which turn out to be
important.

0.3— (9.29)

O. l—

I

6 IO

j

. I2

Here a' is the photon-parton cross section and f~ is
the distribution of partons of type j in the hadron. The
sum runs over all types of partons, i.e., quarks and
gluons. Equation (9.29) just represents Eqs. (8.77) and
(8.83). Equation (9.29) is illustrated in Fig. 41.

In the leading order of asymptotic freedom

FIG. 40. MoInents of the photon structure function in units of
n as predicted by the parton model (a), asymptotic freedom
in the leading order (b), and asymptotic freedom with higher-
order corrections (c, d, e). For comparison the same value of
& for all cases has been chosen.

See, for instance, Ellis, Georgi, Machacek, Politzer, and
Boss (1979) except that we denote differential cross sections
as da/dx by 0.(x), do/(dxdz) by 0(x,z), etc. For simplicity,
and following these authors, we consider only the cross sec-
tions which are projected out by contracting the indices of the
virtual photon with the tensor —g».
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H

FIG. 42, Illustration of the rhs of Eq. (9.36). The sum runs
over quarts and gluons.

FIG. 41. Illustration of the rhs of Eq. (9.29). The sum runs
over quarks and gluons.

z = 2pq/q'. (9.35)

~', 5(1 —x) j =a, e
aj'(x, q') =

j=G (9.30)

(f,"((,Q') -=5~, ((,Q') «(v, (&, Q'),

with Q' dependence given by Eqs. (2.52)—(2.54). Insert-
ing Eqs. (9.30) and (9.31) into (9.29) we obtain the stan-
dard result

(9.31)

2. F ragmentat ion functio ns

In addition to quark distributions, extensively dis-
cussed in previous. sections, important quantities in the
study of semi-inclusive processes are the fragmenta-
tion functions (Feynman, 1972; Field and Feynman,
1977) which describe how a parton decays into a final
hadron. The best process (at least from a. theoretical
point of view) to study these functions is the semi-in-
clusive e e annihilation in which a single hadron is de-
tected in the final state:

o „(x,Q') = pe', . [xq.(x, Q') +xq. (x, Q')], (9.32)

which is also true in the simple parton model if Q' de
pendence is neglected. If next-to-the-leading order cor-
rections are taken into account the following things
happen:

(i) there are g (Q') corrections to the photon —quark
cross sections of Eq. (9.30);

(ii) the Q dependence of quark distributions is modi-
fied [see Eqs. (2.137)-(2.139)];

(iii) the photon —gluon cross section, which is of order
g~(Q'), also enters the final formula for a„(x,Q'). As
discussed extensively in Sec. VIII the points (i)—(iii) are
related to each other. For instance the explicit g (Q')
corrections to various parton cross sections depend on
the definition of parton distributions beyond the leading
order.

In what follows we shall briefly discuss QCD formulas
for semi-inclusive processes, which will turn out to
have a structure similar to that of Eq. (9.29).

One also introduces j, which this time mea. sures the
fraction of the parton momentum carried by the hadron
in the final state.

The cross section for process (9.33) can be written
in QCD (in units of 3 [4~o.'z/3Q']), a,s follows (Georgi
and Politzer, 1978b):

x [(D"((, Q )]

(9.36)

Here 0~ is the cross section for the production of the
parton j and D,".((,Q') is the fragmentation function which
measures the probability for a parton j to decay into a
hadron h carrying the fraction $ of the parton momen-
tum. Let us recall that in the simple parton model (PM)

e2 5(1 —z)
0'2

O
(9.37)

and the fragmentation functions do not depend on Q'.
Consequently one obtains

P

n.„(z)p„=pe,'. zD" (z)+zD", (z)
j

(9.38)

In QCD the fragmentation functions acquire a Q' depen-
dence which has been studied by various authors
(Georgi and Politzer, 1978b; Sachralda, 1978b; Dok-
shitser, Dyakanov and Troyan, 1978; Qwens, 1978;
Uematsu, 1978; Meuller, 1978; Ellis et af. , 1978)."
%e quote only the results of these studies and refer the
reader to the papers above for details. In the leading
order of asymptotic freedom, or equivalently by sum-
ming the leading logarithms to all orders in g', ' for-
mula. (9.38) is unchanged except that the fragmentation
functions depend on Q'. The following integrodifferential
equations analogous to Eqs. (2.52)-(2.54) determine the
Q' evolution of the fragmentation functions

e'e -h(E')+ a.nything . (9.33)

This process is shown in Fig. 42.
The relevant variables are, in analogy with Eqs.

(9.27) and (9.28),

z = 2Pq/Q' (9.34)

Previous studies of the fragmentation functions in the con-
text of @CD can be found in Callan and Goldberger (1975) and
Mueller (1974). Semi-inclusive deep-inelastic scattering has
been discussed previously by many authors, in particular by
Georgi and Politzer (1978a) and by Mendez (1978).

~Some of the order g corrections to e+e —h(P)+anything
are shorvn in Fig. 44.

Rev. Mod. Phys. , Vol. 52, No. 1, January 1980



A. J. auras: Asymptotic freedom in deep inelastic processes

dDg;,
)

n(Q ) dy „()
z (9.39a), y

~" ~' -y
(t, t) = f —D" ( It) P(:) . 2fD" (I, t)P, —

(9.39b)

O, n

'rl y?7 y ll 7l

~n
ll 2f yll yll '

2f

(9.43)

(9.44)

"'(. t)=
D' f' '(D;—(, , t)P.,(').D.-(, , t)P..('), --

(9.39c)

where t = lnQ'/ t(.'. Here

D"„,(z, t) .=D," (z, t) —D," (z, t),
is a nonsinglet fragmentation function and

(9.40)

I
(D,"(Q'))„-=dzz"-'D", (z, Q') .

0
(9.42)

The moment equations for the fragmentation functions
are obtained from Eqs. (2.64)-(2.86) by making there
the following replacements:

D~c(z, t) =Q[D" (z, t) +D,"(z,t)], (9.41)
i

is the singlet fragmentation function. Furthermore,
D~ measures the probability for a gluon to decay into a
hadron h carrying a fraction z of gluon momentum.
The functions P, , are exactly the "splitting functions"
of Eqs. (2.56)-(2.59). Notice however that Po, and P', o
have been interchanged relative to Eqs. (2.53) and(2. 54).
The structure of Eqs. (9.39) can be ea.sily understood
(see Fig. 43). The process of obtaining hadrons from a
given quark can proceed in three ways. The quark can
fragment directly into hadrons or fragment into them
after emission of a gluon. These two processes corre-
spond to the first term in Eq. (9.39b). The second term
in Eq. (9.39b) corresponds to the situation in which the
quark emits a gluon, which subsequently fragments into
hadrons. Similarly one can interpret Eq. (9.39c).

From Eqs. (9.39) it is a simple matter to derive the
equations for the moments of the fragmentation func-
tions, which are defined analogously to the moments of
quark distributions, e.g. ,

cv„remains unchanged and the anomalous dimension ma-
trix is, as before, given by Eq. (2.79). One can check
that due to the properties (5.10) of the splitting functions
the momentum sum rule

(9.45)

and an analogous sum rule for the gluon fragmentation
function are satisfied.

In order to solve Eqs. (9.39) the values of the frag-
mentation functions at some value of Q' =Q,' are needed.
As in the case of quark distributions, they have to be
taken from the data. Once they are given one can find
fragmentation functions at other values of Q' by solving
(9.39) numerically. Such an exercise can be found in
the paper by Field (1979). The pattern of scaling viola-
tions in fragmentation functions is predicted to be very
similar to that found in quark distributions in spite of
the interchange of the "nondiagonal" splitting functions
P,o, Po, or equivalently y„'o and Po"„. This is not sur-
prising since for n &2 mixing between quark and gluons
is very weak and the interchange of the functions in
question irrelevant. It should be of course kept in mind
that, although the patterns of scaling violations in frag-
mentation functions and parton distributions are very
similar, the boundary conditions to Eqs. (2.53)-(2.54)
and (9.39) as determined from the data are different and
so are the functional forms of the Q' dependent parton
distributions and fragmentation functions. Before pre-
senting the structure of next-to-leading order QCD cor-
rections to process (9.33) let us briefly discuss the
question of factorization of mass singularities.

Consider the diagrams of Fig. 44 which contribute in
order g' to the cross section o„(z,Q')." As in the ex-
ample of Sec. IX.B, the quarks are assumed to be
massless and slightly off-shell. For the moments of
o„(z,Q') defined by

1

(T"„(Q')= dzz" 'o„(z,Q'),
0

we obtain

(9.46)

o'"„(Q')= V'„(I+ (g'/16)T') [——,'y'„'z"ln(Q'/ —P') +u„j$(9.47)

4 OOOO@

G
&~Are~gg eI

G G

where Vo stands for the empty ("bare") blob in Fig. 44,
yN'~" is the standard nonsinglet anomalous dimension,
and u„are constant numbers analogous to the y„'sof
Eq. (9.1). As in Eq. (9.1) also here there is a. mass
singularity for p'-0 and ~„depends on the. assumption
about the quarks. For m g0 and p'=0 a different. u„
would be obtained. Equation (9.47) can be rewritten as
follows

(c)
FIG. 43. Basic processes responsible for the Q2 evolution of
the fragmentation functions.

48In this example we do not discuss the g2 corrections which
arise from gluon production and its subsequent decay into
hadrons.
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268 A. J. Buras: Asymptotic freedom in deep inelastic processes

(c)

of the two-loop anomalous dimensions of the cutvertices
when the full Q evolution of the fragmentation function
to all orders in g' and in the first two orders in ~ is
calculated. We observe, therefore, that the study of
the next-to-leading order corrections to the Q' evolu-
tion of the fragmentation functions proceeds in an ana-
logous may to that for quark distributions. The struc-
ture of the formal and intuitive formulas (beyond the
leading-order approximation) for the process (9.33) is
very similar to that presented in the previous sections
for deep-inelastic scattering. Questions of definitions
of fragmentation functions, of the definition of g (Q'),
and of the cancellation of renormalization-prescription
dependences also arise here. Consequently also the
comments (i)—(iii) made after Eq. (9.32) also apply to
o„(z,Q') as given in Eq. (9.36).

Equation (9.50) can be rewritten as follows:

o„"=(D(Q'))I1+ (g /16w')u„'],
where

(9.51)

FIG. 44. Diagrams contributing to quark (: ) production in
8+8 —h+ anything to order g2. The empty ("bare" ) blob stands
for the '%are" Q independent quark fragmentation functions.
(~l0denotes gluons.

are the moments of the fragmentation functions and

[I + (g '/16m')u„' "]:—o", (9.53)

&D(0')).-=V.(u') [I —(I'/16~')(~'."/2)»(Q'/I ')],
(9.52)

2 ] 2

(9.48)

where p,
' is a scale and

u"'+u~'=un +un un ~

Combining the first two factors on the rhs of Eq.
(9.48) we obtain

(9.49)

(9.50)

In the parton language we can interpret V„(p,') as the
moments of the fragmentation function at Q'= p.'. In the
formal language of Mueller (1978), V„(lj,') is an analog
of the matrix element of the local operator and is called
the timeline cut vertex. In the same language the ma-
trix elements of local operators are called spacelik(
cut vertices. The second factor on the rhs of Eq.
(9.50), which is free of any singularity a.s p'-0, is the
analog of the coefficient function. This time a coeffici-
ent function of the timelike cut vertex in an expansion
similar to the operator product expansion.

- This factorization of singular (nonperturbative) terms
from well-behaved terms which can be calculated in
perturbation theory can be proved to all orders in g'
and in all logarithms (Ellis et al. , 1978, 1979; Amati
et al. , 1978a, b; Mueller, 1978).

Notice that through Eq. (9.49) u~'. depends on u'„"or
equivalently on the normalization of the cut vertex at
p = p, . Different renormalization schemes will there-
fore lead to different values of u„.As in the case of
deep-inelastic scattering, also here this renormaliza-
tion prescription dependence mill be canceled by that,

are the moments of the cross section for quark produc-
tion calculated to order g . When all orders in g and
the two first orders in g~(Q') are taken into account,
(D(Q'))„acquires the full Q' dependence with two-loop
anomalous dimensions of the cut vertices and the two-
loop P function included. Furthermore, in Eq. (9.53)
g' is replaced by g (Q'). We recall, once more that, al-
though (Y~ is unambiguous, the separation of 0„"into the
fragmentation function and the cross section for parton
production is arbitrary beyond the leading order.

The full study of g'(Q') corrections to the process
p'e -h. + anything has not yet been discussed in the liter-
ature. In particular, it is not known whether the two-
loop anomalous dimensions for timelike cut vertices
are the same as those for spacelike cut vertices, which
are given in Table III.

3. l3rell- Yan and semi-inclusive deep-inelastic scattering

In the simple parton model, parton distributions and
parton fragmentation functions are the building blocks
of any expression for inclusive and semi-inclusive pro-
cesses. These building blocks do not depend on the pro-
cess, although in different processes they enter in dif-
ferent well-defined mays. Thus if we can extract all
parton distributions from deep-inelastic processes and
fragmentation functions from e e annihilation, then the
cross sections for other processes such as the Drell-
Yan process (Drell and Yan, 1971), semi-inclusive
deep-inelastic scattering, etc. , can be predicted.

We have seen that, in QCD, parton distributions and
fr agmentation function s acquire a Q' dependence, and
it is of interest to ask whether the QCD predictions for
semi-inclusive processes amount to using these Q2-
dependent functions in the parton model formulas for
the processes in question. This has been studied by
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many authors during the last year, in particular by
Politzer (1977a), Sachrajda, (1978a., b), Dokshitser,
Dyakanov, and Troyan (1978), Llewllyn-Smith (1978b),
Amati et al. (1978a, b), Ellis, Georgi, Machacek,
Politzer, and Ross (1978, 1979), Gupta and Mueller
(1979), and Buras (1979). In what follows we shall pre-
sent the formulas for the two processes

eH —e + h+ anything, (9.54)

H,H2- p. 'p, +anything, (9.55)

in the leading order and next-to-leading order of asymp-
totic freedom. Subsequently, we shall briefly discuss
the basic features of these formulas which are charac-
teristic for all QCD expressions for semi-inclusive

d „(x,z, )d') =g fddddd(d(, ll(x —d(, ) d(z —d(, ) .
jek

&"(x & Q')[h, f,"(t„Q')][(2D„"(&2Q')]

=~f",;'f",;-'. (-;, —;, ')
[(if,"(k„Q')][4Dk($2, Q') ],

for process (9.54) and

(9.56)

(9.57)

with

cross sections.
The cross sections for the processes (9.54) and (9.55)

are given in QCD as follows:

a„„(x,, x„x„,Q') =g dx, dx, dg, dg, 6(x, —x, g, )6(x, —x,$,)
j 2A'

a,'"(x„x„x...Q')[(,f,"'((„Q')][(,f."'((„Q')]

=P f "" f"', " ", .' ,—;', —, 2,')[(,r," ( „2')][(.r: ((., ))')]
j k x& ). x2 2 ]. 2 ). 2

(9.58)

for process (9.55). In Eq. (9.57) a(s is the electromag-
netic coupling constant. The processes are shown
schematically in Figs. 45 and 46. Variables x, , x, , g,. in
Eqs. (9.57) and (9.58) are obvious generalizations of the
variables of Eqs. (9.27) and (9.28). The new variable
x» is given as follows

2(P, .V)(P. .V)
12 Q2(P P )

and x„i.s obtained from x» by replacing I',. by p, Fur-
thermore v= Q'/'s, where s = (P, + P,)'.

In Eq. (9.56) o'~k sta, nds for the photon —parton j cross-
section with the parton k in the final state. The parton
j belongs to the incoming hadron H and its distribution
is given by $,f js($„Q')with (, being the momentum
fraction of H carried by parton j. The parton k, on the
other hand, fragments into the hadron h, and this pro-
cess is described by the fragmentation. function
$2Dk($„Q'). The sums in Eq. (9.56) run over all types
of partons i.e. , quarks and gluon. s. Similar comments
apply to Eq. (9.58) with ad~ being the cross section for
parton. j-parton k scattering or annihilation. with a p. p,

pair in. the final state.
Formulas (9.56) and (9.58) are obtained by summing

various QCD diagrams to all orders in g'. Keeping
leading logarithms in each order corresponds to the
leading order in P(Q'). Summing next-to-leading loga.-
rithms corresponds to next-to-leading order in g (Q')
and so on. As in deep-inelastic scattering and semi-
inclusive e e annihilation, one encounters mass singu-
larities which must be factored out and absorbed in the
incalculable (in perturbation theory) wave functions of
the incoming and outgoing hadrons: parton distributions
and fragmentation functions, or in more formal language
spacelike and timelike cut'vertices. The structure of
mass singularities (anomalous dimensions) turns out to
be the same for incoming hadrons as in deep-inelastic
scattering and for outgoing hadrons as in e e annihila-
tion. Therefore the parton distributions and parton
fragmentation functions can be defined universally inde-
pendent of the process considered. We write "can" be-
cause, due to ambiguities in the definition of parton
distributions and parton fragmentation functions beyond
the leading order of asymptotic freedom, one could in
principle define parton distributions in a different way
for different processes. This of course would not be a
very useful thing to do.

Let us discuss Eqs. (9.56) and (9.58) in slightly more
detail. In the leading order of asymptotic freedom

p)
////// ///

H)

jk
P)

H

FIG. 45. Illustration of the rhs of Eq. (9.56). The sUms run
over quarks and gluons.

pp
P

-- —.
~k

Hp

FIG. 46. Illustration of the rhs of Eq. (9.57). - The sums run
over quarks and gluons.
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oj'(x, z, Q') = 6, ,e',. 6(1 —z) 6(1 —x) (9.59)

1—e,. &(I —x, ) &(I —x, ) &(I/x„—x, —x, +x,x, )

v~(x„x„x„,Q )

0 otherwise

(9.60)

where 1/3 is the color factor. Therefore, inserting
Eqs. (9.59) and (9.60) into Eqs. (9.56) and (9.58), we ob-
tain

(9.61)

x ix y'-". (x Q')]0 {1—
1 2

(9.62)

where j runs over all flavors, j denotes antiquarks,
and f"(x, Q. ')[f"(x, Q')] are -j, ust the quark (antiquark) dis-
tributions of Sec. V. f8{x,Q') and D".(z, Q') satisfy Eqs.
(2.53), (2.54), and (9.39), respectively. There is no ex-
plicit gluon contribution to the cross sections (T~„ando„ to this order in g~(Q'). Gluons, however, contri-

2
bute indirectly in this order through the scaling viola-
tions in the quark distributions and quark fragmenta. —

tion functions. The formulas (9.61) and (9.62) are, ex-
cept, for the Q2 dependence, exactly the same as in the
simple parton model. Notice in particular the factori-
zation between the g and z dependence for o„„andbe-
tween the x, and x, dependence for o~ z (except for the

Hj H2

6 function).
If next- to- le ading order corrections are taken into

account the Q' dependence of parton distributions and
parton fragmentation is modified, and there are g~(Q')

,corrections to the parton cross sections of Eqs. (9.59)
and (9.60). In addition there are explicit contributions
involving gluons. For instance, there is an explicit
contribution of quark-gluon scattering to the jLj.-pair
production and an explicit appearance of the gluon frag-
mentation function in the semi-inclusive deep-inelastic
cross sections. Furthermore the factorization property
shown in Eqs. (9.61) and (9.62) is broken through the

g (Q') corrections to the parton cross sections.
For explicit calculations of next-to-leading order cor-

rections to p,-pair production, we refer the reader to
the interesting papers by Altarelli, Ellis, and Martin-
elli (1978, 1979a), Kubar-Andre and Paige (1979), Har-
ada, Kaneko, and Sakai (1979), Contogouris and Kripf-
ganz (1979b), and Abad and Humpert (1979). As dis-
cussed in particular by Altarelli et al. (1979a) and
Kubar-Andre and Paige (1979) the g {Q') corrections
to the qq annihilation are very large. Unfortunately the
authors of these two papers used in their calculations
the leading-order predictions for the Q evolution of
the quark distributions whereas, consistently to this
order, one should include the next-to-leading order
corrections to the quark distributions in addition to the
g (Q') corrections to the parton cross sections. If the

parton distributions are defined as in Eq. (2.136) the
next-to-leading order corrections to their Q' evolution
are small. However, the definitions of quark distribu-
tions (beyond the leading order) in the two papers above
differ from ours and it would be interesting to check
how the author's conclusions about the size of the g (Q')
corrections are changed when the Q' dependence of
parton distributions is properly taken into account.

In summary, since the g~(Q') corrections to the ele-
mentary parton cross sections depend on the definition
of parton distribution (or fragmentation functions) be-
yond the leading-order approximation, both g (Q') cor-
rections to the parton cross sections and to the parton
distributions (fragmentation functions) must be consis-
tently included in a phenomenological analysis. Qnly
then can a physical answer independent of a particular
definition of parton distributions (fragmentation func-
tions) be obtained.

The explicit calculations of g (Q') corrections to
semi-inclusive deep-inelastic scattering have been done
by Sakai (1979), Altarelli et al. (1979b), and Baier and
Fey (1979), who find breakdown of factorization between
z and x at the 10% to 20% level for intermediate z and
~ values and larger breakdown of factorization for high-
er z and x values. The comparisons of these predictions
with the data are now in progress. Altarelli et al.
(1979b) have also calculated g~(Q') corrections to e'e
-h, +fz2+anything, which turn out to be large only at the
kinematical boundaries. Furthermore the qq contribu-
tion [order g'(Q')] to massive p, -pair production has
been calculated by Contogouris and Kripfganz (1979a)
and Schellekens and Van Neerven (1979). This contri-
bution turns out to be small in the presently accessible
kinematic range of 7

G. IVliscellaneous remarks

'Lhere are quite a few applications of perturbative
QCD which we have not discussed in this review. These
include jets, large p, processes, p, distributions in
massive p.-pair production, etc. These topics have
been nicely discussed for instance in the papers by
Ellis, Gaillard, and Ross (1976), Sterman and Weinberg
(1977), Farhi (1977), Georgi and Machacek (1977),
Cutler and Sivers (1977), Cambridge, Kripfganz, and
Ranft (1977), Floratos (1978), Furmanski (1978, 1979),
Ellis (1978b), Brodsky (1978), Field (1978, 1979),
I lewellyn-Smith (1978b), Sachrajda (1978c), Dokshitser,
Dyakonov, and Troyan (1978a), Berger (1979), Hwa
(1978), Halzen (1979), Veneziano (1979), Politzer (1979),
Brown (1979), De Rujula, Ellis, Floratos, and Gaillard
(1978), Einhorn and Weeks (1978), Fox and Wolfram
(1979), Koller and Walsh {1978), Shizuya and Tye (1979),
Fritzsch and Streng (1978), Altarelli (1978b), Furman-
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ski and Pokorski (1979a), Konishi, Ukawa, and Venezi-
ano (1978), Contogouris, Gaskell, and Papadopoulos
(1978), Basham, Brown, Ellis, and Love (1978, 1979),
and De Grand, Ng, and Tye (1977), where the interested
reader may find further references.

'The study of nonperturbative effects in the inclusive
and semi-inclusive processes can be found in the papers
by Andrei and Gross (1978), Appelquist and Shankar
(1978), Baulieu et al. (1978), Ellis, Gaillard, and
Zakrzewski (1979), Carlitz and Lee (1978), and Shif-
man, Vainshtein, and Zaharov (1979).

X. SUMMARY

In this review we have presented in detail asymptotic
freedom predictions for inclusive deep-inelastic scat-
tering. We have also briefly discussed the structure of
QCD formulas for other inclusive and semi-inclusive
processes such as massive p.-pair production, semi-
inclusive deep-inelastic scattering, e e annihilation,
and yy scattering. We have presented confrontations of
asymptotic freedom predictions with the deep-inelastic
data. , and we may conclude that asymptotic freedom sur-
vives these confrontations very well, with the possible
exception of the longitudinal structure function where
the situation is still unclear. The disagreement between
theoretical predictions and the data. for I ~ might not be
a problem for QCD, however, and could be due to our
neglect of higher-twist operators, nonperturbative ef-
fects, etc. , which are present in QCD but are difficult
to calculate.

We have devoted a considerable part of this review to
a discussion of higher-order corrections, the study of
which began only two years ago. We have seen that the
structure of QCD formulas with higher-order correc-
tions taken into account is fairly complicated and in-
volves many features not encountered in the leading or-
der. These new features include:

(i) Gauge and renormalization-prescription depen-
dences of separate elements of the physical expressions.

(ii) Well-defined dependence of the functional form of
the explicit higher-order corrections on the definition of
g~(Q') or, equivalently, on A.

(iii) Freedom in the definition of parton. distributions
and parton fragmentation functions beyond the leading-
order approximation.

These features have to be kept in mind when carrying
out calculations to make sure that various parts of the
higher-order calculations are compatible with each
other. Only then can a physical result be obtained which
is independent of gauge, renormalization scheme, par-
ticular definition of g (Q'), and particular definition of
the parton distributions.

Although the structure of higher-order corrections to
the Q2 dependence of parton distributions and fragmen-
tation functions is fairly complicated, the formulas for
inclusive and semi-inclusive processes expressed in
terms of these effective Q'-dependent functions are
simple and have intuitive interpretations similar to that
of the standard parton model. .

We have seen that the higher-order corrections are
quite large and, moreover, that there are some indica-
tions for their presence in the deep-inelastic scattering

data. This is most clearly seen in the z dependence of
the parameter A extracted from the data on the basis of
the leading-order formulas. This n dependence agrees
well with that obtained from higher-order calculations.

We think it is important to calculate higher-order
QCD corrections for other than deep-inelastic process-
es. This has been already done for massive p.-pair
production, photon-photon scattering, and e e annihila-
tion. In the near future results for the higher-order
corrections to fragmentation functions and large p, pro-
cesses should be available. At this point we would like
to re-emphasize that without the higher-order calcula-
tions, a meaningful, detailed comparison of QCD effects
in various processes cannot be made. This again shows
the importance of the calculations in question.

Besides higher-order corrections there are other ef-
fects which deseirve further study. These are target
mass effects, heavy quark mass effects, higher twist
operator effects and nonperturbative effects.

In spite of the fact that there is still much to be done,
both theoretically and phenomenologically, we believe
that a lot of progress has been made in the past few
years in the calculations of QCD predictions and in their
confrontation with newer and more statistically signifi-
cant data.

Note added in Proof: Here we would like to list a, few
papers which appeared after the completion of our re-
view. Various phenomenological aspects of higher or-
der corrections have been discussed in the papers by
Para and Sachrajda (1979), Pennington and Ross (1979)
and Moshe (1979). The effect of higher order correc-
tions on the x and Q' dependence of structure functions
has been studied by Duke and Roberts (1979b), Gonza-
lez —Arroyo, Lopez and Yndurain (1979b, c) and Bialas
and Buras (1979). Haruyama and Kanazawa (1979) have
done an analysis of higher order effects in the moments
of deep-inelastic structure functions. References to
recent papers related to Sec. IX of this review can be
found in the paper by Ellis (1979).
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APPEN!3IX A: BASIC FGRIVIULAS QF THE
DIMENSIONAL REGULAR IZATIGN

1. 0-dimensional integrals

dDk

(2~)~ (u' —M'+ fc)"

. (-1)~ I (N D/2-) 1
(4v)'~ ' r (N) (M' —i.&)

J dD~

(2~)D (f'-M'+fE)

4. l3irac algebra in 0 dimensions

b"»')=2m. .i,
y"y~ = D1,
Tr(y~y") = 4g

y "P'y" = (2 —D)P,

y'P P,y'= 4P P. + (D —4)P' P'. ,

y'P' AP', y' = -~P'pg, —(D —4)P',AP'. .

(A14)

(A1 5)

(A16)

(A17)

(A18)

(A 19)

(A20)

i (—l)~ ' r'(N —1 —D/2) D
2 (4~)~~ ' r (N) (M' —f c)" 'D~-' '

d k kfk„
(2~)~ (u' —M'+fr)"

f (-1) -'r(N —1 D/2)—
2 (4~)~' ' I"(N) (M2 )

N-1 D/ 2 l- (A3)

dk, 1 . dk
(2 )~k„k,f(k') =—g „(2)Dk'f(k'), (A4)

where f(k') is a function of k' and M' is a parameter.
Integrals with odd number of 0's in the numerator are
zero.

1

dxx" 'X"'(x),
0

(Bl)

APPENI3IX 8: PARTON I3ISTR IBUTIQNS ANI3
MATRIX ELEMENTS GF LOCAL OPERATORS.
CHARGE FACTORS

In the course of our review we have denoted the ma-
trix elements of any nonsinglet operator by ANs ANs

depends in fact on the process and the structure func-
tion considered. This dependence can be read from the
parton model formulas of Sec. II. We give now a few
examples. If A. ~(x) is defined by

I

2. Expansions of Euler-gamma and Euler-beta functions
a"(x) for +OP

r (N —E/2) = r (N)(1 —c/2q(N))+ O(s'),
wher e

g(N) =S„,—y~

N

SN

Here & = 4 —D and y~ = 0.5772... Since

I (X) = I (I+~)//l

(A5)

(A6)

(A7)

(AB)

(B2)

for Q'~ E'

~~~(x) for F "Z", "~„,
gNS( )—

V(x) ~ ~ (x) for Z,""
~ „

V(x) for 8'","
~ „c

where s'"(x) and a"(x) are defined in Eqs. (2.22) and
(2.23), respectively.

Next we give examples of the charge factors 5',."which
appeared in our formulas. For the ~onsinglet charge
factors, 6'„'~we have

r(x, )r (x, )
I'(A, +A, )

'

6(y)
Ns

I5 +1

1 for I '"
~ cc

5,'62 54 for I' 2'
(B3)

we have for instance

I'(c/2) =2/s —y +O(s), (A10) For the singlet charge factors, 5~"', we have:

B(N —s/2, 1 —s/2) =—1+ sS~. —S», i + O(s')
2 (A11)

5
18 for Z~ Z"

2 P 2

for X," '~„. (B4)

a(N- s/2, 2 —e/2)

c c
=N(N 1) '-2'= -2'"-. "'' (A12)

3. Feynman parametrization

1(~+P) 'd x. '(I-x)~-'
a r ' r (~)r(p), [ax+b(1 -x)]"' '

Generalization of (A13) to more factors can be found in
't Hooft and Veltman (1972).

~5', + 6,'+ 6,'+ 5', Io

The parameters 6,. are given in Eq. (2.27). The formu-
las above are for the case of four flavors but it is a
simple matter to generalize them to any number of
flavor s.

The relations between A'„(Q',) and parton distributions
are given in Eqs. (5.29) and (5.30). Combining these
equations with Table II and the expectation A„"(g',)
&AG(go) for n ~ 4 we observe that A„(Q',)»A„'(Qo) for n) 4
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