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The appropriate language for describing the pure Yang-Mills theories is introduced, . An elementary but
precise presentation of the mathematical tools which are necessary for a geometrical description of gauge
fields is given. After recalling basic notions of diA'erential geometry, it is shown in what sense a gauge
potential is a connection in some fiber bundle, and the corresponding gauge field the associated
curvature. It is also shown how the global aspects of the theory (e.g., boundary conditions) are coded
into the structure of the bundle. Gauge transformations and equations of motion, as well as the self-

duality equations, acquire then a global character, once they are defined in terms of operations in the
bundle space. Finally the orbit space, that is to say, the set of gauge inequivalent potentials, is defined,
and its is shown why there is no continuous gauge fixing in the non-Abelian case.
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The pure Yang-Mills theory defined in the four-di-
mensional Euclidean space has a rich and interesting
structure even at the classical level. The discovery of
regular solutions to the Yang-Mills field equations, which
correspond to absolute minima of the action (Belavin
et al. , 1975},has led to an intensive study ot such a
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classical theory. One hopes that a deep understanding
of the classical theory will be invaluable when one tries
to quantize such a theory.

All the finite action solutions at present known are
characterized by a topological quantity called the in-
stanton number, or Pontryagin index, or second Chem
class. This topological quantity is a manifestation of
nontrivial boundary conditions that one imposes on the
ga~ge potentials through the requirement of the finiteness
of the action. We are therefore led to a global top-
ological problem of considerable complexity.

Now, there exists in mathematics a theory sufficient-
ly general to deal with such a problem. This is the
theory of fiber bundles, which was originally intro-
duced to formulate and solve global topological prob-
lems. The notion of a fiber bundle is very appropriate
also for local problems of differential geometry and
field theory (gauge field theory in particular). So we
are in a happy situation where a preexisting theory in
mathematics could be used as an operational tool in our
study of the topological aspects of a pure Yang-Mills
theory.

In this review, we shall adopt at the very beginning
the framework of fiber-bundle language. As a bonus
we shall get the geometrization of the gauge potential:
the gauge potentials will become the coordinates of a
connection form in a principal fiber bundle. It is clear
from the well-known rule for gauge transformations,

A, (x.) -'A, (x) =g '(x)A, (x)g(x)

+g '(x)s, g(x),
that, due to the inhomogeneous term g ' ~, g, &„ is not
of a tensor type. The above transformation law is char-
acteristic of another geometric type, the connection
type.

The real power of the language, however, is revealed
by the following circumstance: the finiteness of the
action (an integrability requirement and hence an an-
alytic boundary condition) dictates (under reasonable
physical assumptions) the asymptotic behavior of the
Euclidean potentials. This asymptotic behavior in turn
goes into the actual construction of a principal fiber
bundle over some appropriate compactification of the
four-dimensional Euclidean space. In this way the
global boundary conditions are automatically taken into .

account.
The theory of fiber bundles is also indispensable in

the study of the group of all gauge transformations, 8.
In &', 9 can be described in a fairly straightforward
manner. However, when we compactify A, 8 acquires
a nontrivial topology. Consequently, the study of the
orbit space, that is, the space of all gauge inequivalent
potentials, over which we do our functional integrals,
requires great care. Here it seems that the language
of fiber bundles is indispensable.

There exists a clear and short review (Stora, 1977) of
applications of topology and differential geometry to the
study of instantons. For a more extensive review on
the fiber bundle approach to gauge theories, we refer
to Mayer (1977). Some of the early papers in the phys-
ics literature where fiber bundles are used are Kerner
(1968, 1970), Trautmann (1970), Cho (1975), and Ezawa
et al. {1976).

I. MARRYING SPACE-TIME AND ISOSPIN SYMMETRY:
PRINCIPAL FIBER BUNDLE {GEOMETRY WITHOUT
MATTER); ASSOCIATED FIBER BUNDLE (GEOMETRY
WITH MATTER)

A. The Cartesian product of space-time and isospace and
its generalization: The fiber bundle

We consider space-time to be a four-dimensional
Euclidean space &'. We are interested in gauge the-
ories of the Yang-Mills (YM) type defined in R'.

he basic idea of a gauge theory is that an isospin
rotation at any point of space-time, affecting gauge
potentials and fields, leads to a different description
of the same physical reality.

Any such change is represented by a smooth assign-
ment of an element of the gauge group to any point of
space-time, that is, a map: A -G. The graphs, of
these maps live in a space P =R' x G (Fig. 1).

FIG. 1.

Consider now the product space P. The group G has
a natural action on &.

If p c P, p = (x,g), x cR', gc G.
For a c G, we define A, :P-P by A, (P) =Pa = (x,ga).
This action of G on P is free; that is, if there is any

p c G such that R, (p) =p, then a =e (e is the identity
element of G).

This action determines an equivalence relation be-
tween points of I" p -p'~ there exists a c G such that
p' =pa.

We readily see that the equivalence classes can be
labeled by the points of A'. In other words, the quotient
of P by the equivalence relation is just A'.

We note also that the equivalence relation gives rise
to a. canonical projection v:P-R, defined by n(x, g)
=x. That is, two equivalent points, (x,g) and (x,ga),
project to the same point x cA .

w '(x) is called a fiber over x and is isomorphic to
G.

The triplet (P, G, v) is an example of a, trivial prin-
cipal fiber bundle over & with structure group G and
projection m.

The above structure is natural because the fiber
m '(x) reproduces the local gauge freedom at x by
erecting a gauge group at that point. In fact, each fiber
is the same as 0 except that one forgets which element
is the identity (Nelson, 1967). But this is precisely in
accordance with the physical desiderata. To see this,
imagine, at each point in space-time, -a vector space

that is, a representation space for G. Such a vector
space is available in the presence of matter fields. We
can choose a reference frame in V„. Once this choice
is made, there is a one-to-one correspondence between

Rev. Mod. Phys. , Vol. 52, No. 1, January 1980



M. Daniel and C. M. Viallet: Geometrical setting of Yang-Mills gauge theories 177

the set of frames and the group: the group elements
take the original reference frame into any other one.
This is also the situation with the fiber m (x) in a prin-
cipal fiber bundle: once we have chosen a point on the
fiber, we can get any other point on the (same) fiber by
the action of a (unique) group element.

Before we proceed to the definition of a principal fiber
bundle in its full generality, we would like to remark

that a fiber bundle (over B') is a generalization of a
product space which allows for a possible twisting in
the large space and, therefore, gives rise toanontrivial
fusion of space-time with isospace.

In order to see this, we can give the following simple
example (Kirilov, 1976).

Suppose we have two strips of paper, (1) and (2) (see
Fig. 2). We can glue (1) and (2) together in such a way

CI ai Op

(2)
Cp

FIG. 2.

that a, coincides with a„b, with b„c,with c2, and d,
with d, . We then get a cylinder (Fig. 3):

o, a

Ci
FIG. 3. FIG. 5.

J E

dI d2

But we can glue strips (1) and (2) togetherwithatwist,
such that a, will still coincide with a, and b, with b„
but that c, will coincide with d, and d, with c,. We then
get the Mobius strip (Fig. 4):

FIG. 6.

FIG. 4.

Consider now the edges & and &' of Figs. 3 and 4,
respectively. & is made out of Aeo closed curves, al-
though &' is made out of one closed curve.

We can define an action of the group G =(+1,—1)
(group with two elements) on the points of B (respec-
tively, on the points of B') by looking at the original
strips (see Fig. 2).

+1 = identity map,

-1=symmetry with respect to the axis &,
& is the Cartesian product of a closed loopC withe,
&' is not such a Cartesian product.

Nevertheless, if we identify the points of B (respec-
tively, of B') that are related by a group operation, we
get the same closed curve (see Figs. 5 and 6):

We will say that B and &' are bundles with 6 as a
structure group and the' closed curve C as a base space.
& is a trivial bundle; it is a product bundle. &' is not.

We take now the general definition of a principal fiber
bundle directly from Kobayashi and Nomizu, (1963).

Definition: Let P be a manifold and G a Lie group.

A differentiable principal fiber bundle over ~ with
group G consists of a manifold P and an action of 6 on
& satisfying the following conditions:

(\) G acts freely on P on the right: P x G —P is
denoted by (u, a) cP & G ua c P.

(2) M is the quotient space of P by the equivalence
relation induced by G, M = P/G, and the canonical pro-
jection m: I' -M is differentiable.

(3) P is locally trivial, that is, every point x& M
has a neighborhood U such that m '(U) is isomorphic
with U x G in the following sense: there exists a dif-
feomorphism g: ~ '(U) —U && G such that P(u)
=(m(u), p(u)), where p is a mapping of n '(U) into G sat-
isfying p(ua) =p(u) a for all u c m '(U) and a c G.

A principal fiber bundle will be denoted by P(M, G) or
P. Sometimes we will refer to P(M, G) as a G bundle
over M. I' is called the total space or bundle space,~ is the base space, G the structure group, and m the
proj ection.

For each x cM, m '(x) is a closed submanifold of P,
called the. fiber over x. Clearly, if u is a point of
v '(x), then m '(x) is the set of points ua, a c G and is
called the fiber through u. Every fiber is diffeomorphic
to |".
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B. Examples of principal fiber bundles

1. The case discussed at the beginning of this sec-
tion, where the bundle space & is simply the product
space & &&6, is an example of a trivial G bundle over
R . B is also a trivial bundle (see Fig. 5).

2. Consider a circle S' and the group G = (1, -1)=Z,
(i.e. , group with two elements) with the followingaction
on S':+1= identity map, —1= antipodal map. The ac-
tion of G is free. M =S'/G =P' =one-dimensional pro-
jective space (i.e. , space of diameters). w (point of S)
=diameter through that point. We have to check the
local triviality. Given an element in I', that is, a di-
rection in R' through the origin 0, there always exists
an open cone U (in R') containing that direction, and
w

' (U) = U && 1+ 1, —1} (see Fig. t ).

FIG. 9.

Indeed, given a point x on M, there always exists U

such that x c U . Choose a. point u in m '(x) and define

o (x) =u. cp '(u).

This definition makes sense since u p '(u) is inde-
pendent of the choice of the point u in the fiber m '(x).
To see this, we need only use the property of p:

(p (ua)=y (u) a VacG.
Any point in v '(x) can be written v =ua. Then

y '(v) =u p '(u).

Moreover, v{cr (x)) =x.
Note that g„(cr (x)) = (x, e), i.e. , the local cross sec-

tion (T corresponds, under the diffeomorphism
: m '(U„)- U x G, to U„&&(e}.

Hence ~' is the total space of a principal fiber bundle
with group G and base space &'. We shall denote this
bundle by S'(P', Z, ).

Actually, we can identify this circle (together with
the action of Z, ) with&' (with the action defined above),
since they are homotopical/y equivalent.

C. More definitions

't. Cross section of a principal bundle

Definition: A (global) cross section of a principal
bundle is a map v from the base space to the bundle
space P such that v(a(x)) =x for all x cM [a local sec-
tion over U ( M is a map (T: U -I' such that
m(a (x))=x yx cU ]. Example: Fig. 8 shows a section
of B.

2. Transition functions

We assume that M admits a covering as above. Let
(U }nc& be such an open covering of M. We shall use
the preferred set of local sections o (x) =u p„'(u).

Suppose x (=- U fl U8. Then

(z, (x) =o (x)y (u). p, '(u) .

Since the action of G on & is free, and since 0 and

0~ depend only on x, we can define:

t.,(x)=V.(u) V,'(u)-

The maps tt ~: U 0 U~-G are called transition func-
tions.

They verify the so-called co-cycle condition:

(x) =p „(x) g„(x) Vx c U n UB 0 U„.

The transition functions are differentiable.
An example of a transition function for the bundle

S'(P', Z2) is seen in Fig. 10.

FIG. 8.

FIG. 10.

Figure 9 shows an example of a local section for the
bundle S'(P', Z2) over the cone U .

It is noteworthy that the local triviality condition for
a principal fiber bundle [see condition (3) of the def-
inition of the principal fiber bundle] provides us with a
preferred set of local sections.

/
/

r CT&

l2
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3. Principal coordinate bundle

Let P(M, G) be a principal fiber bundle and let fU„j
be a covering of M (as above). Consider the transi-
tion functions P corresponding to the covering (U„j
and constructed from the preferred set of local sec-
tions o . We will say that (M, G, (U ), g ~) constitutes
a principal coordinate bundle in the sense of Steenrod
(1951). We stress that the existence of this coordinate
bundle is part of the definition of the principal fiber
bundle; it is in fact the expression of the local triviality
condition. However, the existence of a group action on
the bundle space I' gives rise to other possible co-
ordinate bundles.

Suppose we construct, using this group action, a dif-
ferent set a' (o. cA) of local cross sections. Of course,
~'(x) =o' (x) g (x), whereg„(x)c G. Indeed, o (x) and
o' (x) have the same projection x, and hence belong to
the same fiber.

From the new local sections we could eonstruet an-
other set of transition functions ~P' . These transition
functions are related to the old ones by

%e will say that the principal coordinate bundles,
(M, G, (U„j, ttI 8) and (M, G, $U },t/i' ), are equivalent
(this is an equivalence relation), Actually, the original
principal fiber bundle is the equivalence class of these
coo rdinate bundles.

It is remarkable that the open covering of the base
space, together with the transition functions, verifying
the co-cycle condition, completely determines the prin-
cipal fiber bundle.

There exists a reconstruction theorem such that any
set of functions ~P (with values in G) defined for a.
covering (U ) of M and satisfying the condition

|tp 8(x) =g „(x) tt„(x) Vxc U A U A U (V~, VP, py)

uniquely determines a principal fiber bundle P(M, G)
whose transition functions relative to the covering gr
are the |l

Example: Wu and Yang in their study of the Dirac
static monopole (Wu and Yang, 1975) have used the
principal coordinate bundle given by (M =R'—(0j, G
= U(1), (U„U2), p„, = e'" ).

U„(respectively, U, ) are the points of R' —/origin)
that are not contained in the half-cone C, (respectively,
C, ) (see Fig. 11).

F IQ. 11.

n is an integer.
The relevant principal bundle in this case is

P(R' $0), U(l)). Its base space is the whole of space
minus the position of the monopole (taken to be the

origin of R'). Its structure group U(1) is the Abelian
group of gauge transformations (phase transformations
of matter fields).

Their terminology of "global gauge" corresponds to
the concept of a principal fiber bundle, In their for-
malism the Dirac quantization condition (namely,
2' =n, where e is the electric charge and g is the mag-
netic charge) results from the requirement of single-
valuedness of the transition function |t„. It is related
to the classification of U(1) bundles over S2, the retract
of R'-(0) (see sec. III).

D. Trivial principal fiber bundle

A principal fiber bundle & is trivia/ if we can con-
struct from it (in the manner described above) a prin-
cipal coordinate bundle such that all transition func-
tions are equal to unity [tt„~(x)=et.

The bundle space & is then diffeomorphie to ~ & G
and admits a global section (Steenrod, 1951). The
trivial bundle is also called the product bundle.

As a consequence, the bundle S'(P", Z, ) is not trivial,
since it admits no continuous global section: to get such
a cross section, we would have to open the cone C (of
angle 8) of Fig. 12 until 8 reached the value 7t.

The section 0 cannot be continuous, since it does not
close when 0 =m.

FIG. 12.

The topology of the bundle spaces we introduce will
turn out to be relevant to the study of the topologically
stable gauge field configurations of the theories under
consideration (see Sec. III). However, the bundle space
is not given a prior'i. %hat is usually provided is space-
time and the gauge symmetry group. These entities
are blended together by certain transit;ion functions.

%e will see how these transition funest. ons are related
to the boundary conditions imposed on the gauge po-
tentials.

This blending leads first to a coordinate principal
bundle and then, in a natural way, to a principal bundle
(via the reconstruction theorem). The topology of the
bundle space will come from the topology of the base
space, the topology of the group, and the transition
functions.

In fact, there is a homotopic classification of allprin-
cipal bundles having a given base space and a given
structure group. It is related both to the possible non-
trivial homotopy of the transition functions and to the
possible obstructions that one meets in trying to extend
a local cross section to a global one.

Now, in order to accomodate matter fields within the
framework of bundle theory, we would need the concept
of fiber bundle associated to a given principal fiber
bundle. Although in this review we intend to study the

Rev. Mod. Phys. , Vol. 52, No. I, January 1980
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pure Yang-Mills theory (with no matter fields), the
notion of an associated fiber bundle turns out to be use-
ful in the study of the group of all gauge transformations
and in the geometrical interpretation of the equation of
motion (Secs. IV and V).

E. Associated fiber bundle

Suppose the group G acts on a space &. This + can
be, for example, a linear representation space for- the
group G like the vector spaces used in the description of
matter fields.

It is possible to use any principal bundle P(M, G) in
order to erect at any point of M a copy of I', but in a
way which preserves the possibly nontrivial topology of
P (or at least pa.rt of it).

This procedure completes the generalization of the
Cartesian product which the principal bundles achieve
for groups. 'The bundle space & will be a generalized

E will be called a fiber bundle associated to P,
arith standard fiber E.

Before giving the definition [again taken from
Kobayashi and Nomizu (1963)]of an associated fiber
bundle, let us give the picture of two different bundles
over a circle, with standard fiber R (the real line).

We ean use the trivial principal bundle & of Fig. 5.
The associated bu'ndle E(B,A) is obtained by gluing a
real line to all pairs of related points of B, as in Fig.
13.

FIG. 13.

If we use the principal fiber bundle B' (see Fig. 6),
-we get the form shown in Fig. 14:

FIG. 14.

C= base space

The bundle E is the Cartesian product A && (closed
curve C). The bundle E' is not such a Cartesian prod-
uct.

The nontriviality of &' shows in the fact that we can-
not choose continuously around C an orientation of the
real line. However, there exist, sections of E' as well
as sections of &.

Definition: Let P(M, G) be a principal fiber bundle
with projection ~:P -M, and, let + be a manifold on
which G acts to the left (we denote by a(, the result of
the action of the group element a on g, g cE.).

Define the action of a c 6 on P &I' by

(t, k) —(Pa, a '5).
his action determines an equivalence relation be-

tween points of P & &.
By definition the fiber bundle associated to P, with

standard fiber E, is the space E(M, G, E, P) =P &&E/G,

equipped with the following differentiable structure:
If we define the projection 7) ~:E -M by

ms (equivalence class of (u, &)) =v(u),

we have for & again a local triviality property:

Vx c M, g open U, c M, x c U„such that w~'(U„) =U„&&E.

The differentiable structure on & is introduced by the
requirement that n~'(U„) is an open submanifold of E.

The projection ~~ is then a differentiable mapping of
E onto M.

A cross section of a bundle E(M, G, &, P) is again a
mapping 0:M-E such that v~c 0. is the identity map of
M.

Figures 13 and 14 show two bundles associated to B
(respectively, to B') with standard fiber R.

A field in the trivial case (Fig. 13) would be a function
from M to &. It is a cross section of &. The generali-
zation to the nontrivial ease is then that a field over ~
is a cross section of some bundle E(M, G, E, P) (rather
than an E-valued function on M).

There will thus exist twisted fields (Avis and Isham,
1978), but we shall not get into the study of those ob-
jects here.

Note, however, that these cross sections are Locally
mappings from M to I'. Globally they are not. The non-
triviality arises from the actual pasting of the copies
of E at each point of M (to erect the bundle space E).

In order to complete the description of the associated
bundles, let us give a technical lemma we will use later
(Secs. IV and V):

I emma: Let P be a principal fiber bundle with base
space M and structure group G, and let & be a manifold
on which G acts. There will be a one-to-one corre-
spondence between cross sections of E(M, G, E, P) and
functions p from P to & which have the property
cp(ua) =a ' ~ y (u) vu cP, ya c G.

Proof: Suppose p is such a function. 'dx cM, we can
choose in P a point u such that w(u) =x. The couple
(u, p(u)) determines a point of E, namely, the class of
points of P &E of the form (ua, a 'cp(u)). Clearly, this
class does not depend on the choice of u in the fiber
m "(x). In other words, we have constructed a section
of E. Conversely, given a section of E, we can de-
termine a mapping p:P-E such that cp(ua) =a 'y(u)
b'acP, pac G.

II. CONNECTION FORIVI: A GEOMETRIZATlON OF
THE GAUGE POTENTIAL

A. Rapid course in differential geometry

1. Vectors

We will assume that the notion of an ~-dimensional
differentiable manifold M is understood. It will be a

Rev. Mod. Phys. , Vol. 62, No. 1, January 1980
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topological space with local coordinates. By the exis-
tence of local coordinates we mean the existence of an
open covering of the space such that each one of its
constituents (coordinate neighborhoods) is homeomorphic
to an open subset of R".

Consider a point p on M, and all smooth curves
through p. To any such curve we can associate the op-
eration of taking directional derivatives at P of any
smooth real va-lued function f on M. This defines the
vector X~ tangent to the curve at P:

X~f is the directional derivative off at P .
The tangent vectors at a given point form an n-di-

mensional real vector space denoted by T~(M).
Let u', . . . , u" be a local coordinate system in aneigh-

borhood U of P. Then &/&u', . . . , &/Bu" form a basis of
T (M).

A vector field X on a smooth manifold M is an assign-
ment of a vector X~ c T~(M) to eachpointp of M. Locally,
that is to say, in a given coordinate neighborhood, X
may be expressed by

X= 8

~uj=l

where f' are functions defined in that neighborhood.
X acts on smooth real-valued functions on M. %e will

denote by X'f the result of this action.
Vector fields form an infinite-dimensional module

over the ring of smooth real-valued functions on M.
Moreover, in addition to the usual operations defined
in a module, another important operation is defined on
this set, the Lie product:

Given any two vector fields X, & on M, we can define
a, new vector field, their Lie "bracket" P', Y] by

Of course, f;, . . . ; is antisymmetric with respect to an
interchange of any two of its indices.

3. d operation

To any differentiable real-valued function f on M, we
can associate its total derivative df, which is a 1 form
defined by df(X) =X 'f, for any vector field X.

An important operation on forms is the exterior dif-
ferentiation. For a beautiful introduction to forms and
the intrinsic geometrical nature. of the exterior dif-
ferentiation we refer to Misner et al. (1973). See also
Flanders (1963).

The operation is expressed by a linear operator d,
called the exterio~ derivative, acting on forms (the o
forms are the functions): (i) It takes ~ forms to (~
+1) forms. (ii) It takes functions into their total de-
rivative. (iii) If o! is an r form, d(o.'~P) =do.~P
+ (—I)"~&*dp. (iv) d(du) =d m=O for all m. The above
properties define completely the d operation in a co-
ordinate independent manner. Locally, if ~ is an x
form,

d(d = du {wdu la ' ' ' +du " .sf'&. . ~, g i
Zo

i & ~ ~ ~ &i1 r

That is, the components of d~ are
y+1

(der), , , =Q (—1)"',f, , ...; ... ,
g=l

4. + operation {duality of forms}

Another important operation can be defined on forms
if M is a Riemannian manifold endowed with a metric:
the operation of taking the adjoint of a form. Letg, j
be the metric on M. We follow de Rham (1960) and de-
fine:

[X, Y] 'f =X' (Y f) —Y (X f).

2. Forms
- n=

gy ~ yg 1/2

&nl' ' '&nn

pl ~ ~ ~ n el ...„,n 1

Consider now the n-dimensional space T~ (M) dual to
T~(M). This is the space of covectors at P.
du', . . . , du" is a basis for T~ (M) dual to 8/~u', . . . , &/
~u

A 1 form on M is an assignment of a covector at
each point p of ~. Locally, a 1 form can be written
as

n

(d=gf& du ~

From T*(M) we can construct the exterior algebra
AT*(M) (which is skew symmetric).

An x form ~ is an assignment of an element of degree
~ in AT~ (M) to each point of M. Locally,

f ~ ~
& du" ~" adu'~t~

il& ~ &i~

'A module is a vector space with more structure. Let ~Qg)
be the set of all differentiable vector fields on M. It is a real
vector space. Moreover, iff is a function and X is a vector
field on M, the fXpX(M) and is defined by (fX)&=f(P)X&.

where the Kronecker symbol 6~.'."..~& (1 ~P ~n) is de-
fined by the following properties:

(i) 6',. '. . .',. is antisymmetric inthe set of indicesi„and1'. ''P
in the set of indices j„.

(ii) For i,«i„j «''' j
1 for i„=j„,

~ ~ ~

0 for i„&j„.

K 1
y

2
y

~ ~ ~

N . . . . gu la ~ ~ ~du&tl fP
il& ~ i.&q&

The form adj oint to & is *n, an (n —x) form, defined
locally by'.

~o. = g (~g) . . . . du 4 +du"~jn-p
jl& ~ ~ ~ &j

with

(g~) gl ' n
jn--p il ~ ~ ~ i~ j 0 ~ ~ j 81 ~ ~ ~

il & ~ ~ ~
P

P 1 n-P

~ ~il iP

The volume element of M is given in local coordinates
by:

d'M =e, . ~ ~, dx I dx s- - -~dx".l 2

Consider now a p form & given locally by
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tp g fgAg g fpAp
~ o ~ Pp 0 (2.3)

We are now in a position to define the in~ex product of
two p forms o.'and P in the case where M is compact.

A direct calculation gives: a'r. ~p = pn *o'.
Define

Lie bra.cketing operation. In other words, if 4 and 7
are two left-invariant vector fields on G, then [X,I'] is
also a. left-invariant vector field on G. As a conse-
quence, given a basis (A„. . . , A„) of 6(G), there exist
structure constants C",.J such that

[A;,A;]=gC;JA~.
4=1

(o', P) =

For the definition of integrals over a manifold, see
Choquet-Bruhat et al. (1977) and references therein.

The product (o.', P) is a scalar product. It verifies

(I) (~, P) = (tl, ~),
(ii) (a, o. ) ~ 0 and (o., n) = 0 ~a = 0,
(iii) (*&,*P) = (o', l3) .

5. Linear differential

Let M and 1&I be two differentiable manifolds (of di-
mensions m and n, respectively), and let Q be a mapping
from M to R. We will define the linear differential Q
of &t& at p (p &=M) as alinear mapping p„: T (M)- T, , (N)
by

(4', X) 'f =X(fo@)

for any vector X c T~(M) and any real-valued function
f onM.

The transPose of Q~ at P is a linear mapping of
T~&~, (t«) into T~ (M), defined as follows: given an r form
~' on%, we define an r form @*&@' on M by

(&f&*&d')(X~, . . . , X„)=u'(&lI X„.. . , Q~Xn)

VX, X, c- T,(M).

@*tv' is sometimes called the pull back of m' by Q.
Note that the pull-back operation has the followingprop-
erties:

&t
+ (&d,~u), ) = &t *(&d,)n&t *(&d,),

d(4*&d) = y*(d~) .

B. Gauge group G and its Lie algebra 6(G)

We will use the above differential-geometric notions
in the case of the gauge group G, which is supposed to
be a. Lie group: G is a finite-dimensional differentiable
manifold and the group operation a.cts differentiably.
We denote by L, the left action by a, that is to say, the
mapping from G to G defined by

1.,(g) =a g.
e is the identity (unit) element of G.

Given any vector A &= T, (G), we can construct a vector
belonging to T, (G) by applying the linear differential
(L,)„on A. When a runs through G, we thus get a vec-
tor field on G. Such a vector field is by construction
left invariant. By definition, the Lie algebra of G, de-
noted by 6(G), is the set of left-invariant vector fields
on G. If G is an n-dimensional group, 6(G) is an n-di-
mensional vector space isomorphic to T, (G) .

It so happens that the Lie algebra is closed under the
I

An important action of G on itself is the adjoint action
(action by inner automorphism). To any group element
a we can associate the adjoint map Int„which is a, map
from G onto itself defined by Int, (g) = aga

Qia, its linear differential Ad„ this map induces an
automorphism of 6(G), i.e., Ad, is an isomorphism of
8(G) onto itself. Moreover, the mapping Ad from G to
Aut 6(G) [the group of automorphisms of 8(G) is a homo-
morphism of groups, and defines the so-called (linear)
adjoint representation of G.

Note that the kernel of this homomorphism is the
center Z of G (Z= {a&= G

~
ab = ba, V b&=- G) ~

A form cu on G is sa,id to be left inva, riant if L,*~=~
for every ac G. The vector space 8*(G)formed by all
left invariant 1 forms on G (the Maurer Cartan -forms)
is the dual space of 8(G). If A &= 8(G) and &d &= 8*(G),
then u(A) is constant on G.

C. Theory of connections on a principal fiber bundle

Let us now return to the principal fiber bundle
P(M, G, 7&) .

To any element Q of the Lie algebra, of G, we will
associate a vector field Z(A) on P, the fundamental
vector field corresponding to A. Z(A) is actually gen-
erated by the action of G on P: if A E6(G), thenexp(tA)
is a one-parameter subgroup of G. This subgroup acts
on P. Through any point uc P, we can draw the curve
u, =A,„,&,„,(u) utilizing the right action of G on the bun-
dle space P. Then for any real-valued function f on P,
we define:

Z(A) „ f=—f(u, )
, &=0

Clearly, Z(A)„ is a, vector tangent to P at u. In fact,
it is tangent to the fiber through u, at u (The fiber. is
considered here as a submanifold of P.)

Call G„ the subspace of T„(P) of vectors tangent to the
fiber through u, at u.

Z is an isomorphism of 8(G)onto G, .
A connection in P is a, choice of a supplementary lin-

ea.r subspace Q„, in T„(P) to G, :

T„(P) = Q, &e G, .

Q„verifying: (i) Q„,= (R )+Q„. (ii) Q„depends differ-
entiably on u.

Q, is called horizontal subspace at u (space of hori
zontal vectors) and has the same dimensions as M.

G„ is called the &jertical subsPace at u (space tangent
to the fiber).

Note that the field (see Chevalley, 1946) of horizontal
subspaces is not, in general, integrable.

Although to choose a, linear subspace Q„at every point
u in P is a. completely natural thing to do [it amounts
to choosing a basis for T„(P)], and a very easy one, the
nonintegrability of the distribution so determined re-
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veals the rich geometric structure of a principal fiber
bundle.

The physical content of this nonintegrability is best
explained in the presence of matter fields and is re-
lated to the holonomy grouP (see below Sec. II.G), which
reflects the nontriviality of the parallel transport along
a closed path (Loos, 1967).

The connection form: The above splitting of the tan-
gent space to P into horizontal and vertical subspaces
can be realized in terms of the connection form. This
is a I ie-algebra-valued 1 form cu such that:

(i) a applied on any fundamental vector field Z(A)
reproduces A, i.e., ~(Z(A))=A.

(ii) (R, ~)(X) = Ad, , m(XI. The horizontal subspace
Q„ is the kernel of w, that is to say, 2C„ is horizontal if
and only if ~(2C„) = 0.

We shall now express ~, the connection form on P, by
a family of local forms, each one being defined in an
open subset of the base-sjace manifald M. We will see
that the local forms verify necessary compatibility re-
lations involving the transition functions defined in
Sec. I, and, conversely, that any set of local forms
obeying these conditions determines a unique connec-
tion form on P.

Let (U }be a covering of M, as in (3) of the definition
of the principal fiber bundle (see Sec. I.A).

We choose in P the preferred set of local sections 0-
and the corresponding transition functions (see Sec. I.C).

For each cv, we define a Lie-algebra-valued 1 form on
U by

Theorem: The local forms co verify the compatibility
condition

F I G. 15.

U

X

Due to the transformation properties of q„(i.e.,
cp (ua) =y (u) a), we have

cp 'd~p (Z) =A= m(Z) .
Then

P(X) = ~(I') + ~(Z) = Cd(A) .

Q and a coincide at every point of cr . In addition, Q
and u have the same transformation properties under
the action of B,. They coincide on m '(U).

By construction, ~ acts on vectors tangent to the
base space in U . If Ve T„(M) and xc U B Ug, then both

and ug act on V. The above formula. relates &u (V)
and cog(V) for any such V. Note that g 'gdg g is a. 1 form
on U I~ Ua and takes values in the space tangent to the
group at e, identified with 8(G).

In v '(U n Ug) we have two descriptions of ~:
(8 =Ad~-~(7t' ((d~))+ p~ dJ,+~

=Ad~-((7T (Q)g))+ pg d~(pg .

Then necessarily

"*(~ )=gA g g(~*(~.))+ &-g(&.'dp pa pg dp'A)V g

in U A Ug (where d denotes the exterior derivative on

M).
Converse theorem (or another reconstruction theorem):

Given a collection of local forms cu (on M) verifying the
above compatibility conditions, there exists a unique
connection form cu on P, giving rise to this family of
local forms on M (i.e., m =a*(u) Va).

Proof: Suppose ~ is given. We can then construct the
local forms u on M. Recalling that we have on each
open m '(U ) a map cp: v '(U ) -G, we may define on
m '(U ) the 1 form

(where d~ denotes the exterior derivative on the bundle
space) .

Suppose now that X is a vector tangent to the bundle
space, at some point u with u= o (n(x)) (i.e., y (u) = e),
as in Fig. 15:

The vector K can be decomposed in a unique way as a
sum X= I"+ Z, where F is tangent at u to the section
o, Z being vertical. We have I'= o~4~(I')) and m~(Z)
=0. Moreover, there exists a unique I ie algebra ele-
ment 4 such that Z coincides with the fundamental vec-
tor field associated to Q at u. Consequently,

w*((ug) = Adg-( (7t+(~„))+y 'gd~q

From the fact that g 8 is invariant by right translation
(g g is a function defined on the base space), we see that
on U nU8

~g = Adg-1 ((d ) + $ gag g .

We have then shown that this compatibility relation is
necessary and sufficient for the existence of a well-de-
fined connection form on P such that ~ = o*„(~) on any
U.

Note that the relation we have obtained between co

and ~z looks very much like the usual gauge transfor-
mation formula but has appeared as a compatibility re-
lation.

However, if u is a connection form on P =A4 & G,
we can construct from a global section 0& of P, the form
on Z'.

CtJ g
= 0'g (CO) .

If we now use a G-valued function g on Fil4 to trans-
form o, into o~ by o, (x) =o, (x) g(x), we can define a new
1 form on Q4

(d2= of (QJ) .
We have
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l3. The geometrical meaning of gauge potentials

Suppose M is a, four-dimensional manifold (A, S,
P', . . . ) with local coordinates x„(p.= 1,2,3,4) in U .

being a 1 form in U, it can be written in terms
of its components (Lie-algebra-valued functions),
A:(x):

Q2~ =+A~(x) dx~ . (2.4)

Suppose now we transform 0 into 0' by the action of
some g:

o'(x) =o (x) g(x) .

Then

We have

&.'=g '&.g+g '8.g.
This exactly reproduces the gauge transformation

formula. for gauge potentials (we have not yet defined
what a. gauge transformation is).

Suppose M=R4 and P=A4&G. The choice of a global
section 0 in P coordinatizes P, and gives a one-to-one
correspondence between the projected for ms A~ dx„
and the connection forms ~: if 0 is given g*cu is well
defined and can be written A~ dx„; if Q~ is given, there
exists a unique connection form co on P such that
A~ dx& ——o*&u (cf. the reconstruction theorem) .

A change of 0. by the action of some. Q-valued func-
tion g on A can be viewed as a change of coordinates
in P, and it induces a transformation of the components
Q~ similar to the usual gauge transformation of poten-
tials.

If we then relate gauge transformation and change of
section in the principal fiber bundle P, the gauge Poten-
tial naturally becomes the component of a geometrical
object of a definite type: a connection form on P (this
word component is abusive, but we will use it).

Moreover, the connection form has a global meaning
and is therefore of great interest uhen topology matters
(a.s it will).

We shall complete the geometrization of the gauge po-
tentials in Sec. III, where we give a definition of gauge
transf o rmations.

E. Covariant derivative in a principal fiber bundle

We shall first introduce the notion of a horizonta& &ift,
or simply lift of vectors tangent to the base space, and
then show that the covariant derivative % is the lift
of the derivative 8 .

Definition: The lift X of a vector field X on M is the
unique horizontal field on P which projects onto X, that
1s:

vg (X„)= X„(„) vu c P .
This definition presupposes, of course, the choice of

w, =Qd, u, +g 'dg on R

This last relation appears as a transformation formula
rather than a, compatibility relation (for a. definition of
gauge transformation, see below Sec. III.B).

a connection (d on P
Let x~ be the local coordinates in a neighborhood U

as in (3) of the definition of a principal fiber bundle,
Sec. I.A. The vector field 8„=8/8x on U has a. lift
8 on n '(U).

Suppose o is a section over U„. Then from Eq. (2.4),
we have

~.(8,) =~(o.,9.) =A..=~(&(A, )),
where Z(A) denotes the fundamental vector field asso-
ciated to A. Hence

m(a ~9 —Z(A ))=0.
Consequently, o „9„—Z(A„) is horizontal and clearly
projects onto 8 by m+, since m+ o Z =0.

Therefore

9„)„=o„8,—Z(A )

with u= o (x).
We can identify 0 ~8 with 8 and the fundamental vec-

tor field Z(A, ) with the Lie algebra. element A and thus
recover the usual covariant derivative, f) = 8 —A, as
follows.

The giving of a local section 0 is equivalent to the
trivialization of P over U . m (U) can be viewed as a.
product U XG. Points on o have coordinates (x,e),
as shown in Fig. 16. 0 reproduces U in the bundle

(xo, e)
g FIG. 16.

Q

g(Ap) "

space. Consequently, we can identify the tangent vec-
tors 8 with 0 ~8 .

To see the action of Z(A„) (which is a, vector on the
bundle) at the point u, = o (xo) = (xo, e), we have to draw
the curve

A@ =g A~g+g 8~g- (2.5)

u, = uo exp(tA„) = (x„e'"&)

in the bundle space and use it to compute a directional
derivative.

Actually, u, lies in the fiber w '(xo). Consider any
function f defined on v (U ). The restriction of this
function to the fiber m (xo) is a, function P' defined on
G, if we use the coordinates. The directional deriva-
tive along u, clearly is the action of the Lie algebra
element A on 5', at e (see the definition of the Lie alge-
bra) .

Thus I)„=8 —A is a shorthand notation for the lift
of 8 at the point o (x). Note that this is section depen-
dent; at some other point o (x) ~ g(x) on the same fiber,
8 can be written &' =8 —A. ', with
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It is true that the commutator of two fundamental vec-
tor fields is a'fundamental vector field and that the
mapping Z respects not only the vector space structure
(linear structure), but also the Lie algebra, structure.
It is not true, however, that the commutator of two
horizontal vector fields (even lifts of vector fields on
the base space) is horizontal. In fact, if X and Y are
commuting vector fields on the base space, then [X,Y]
is vertical.

As an example, [B,B,] is vertical. In order to com-
pute this commutator we can use the local expression

—A. , keeping in mind that A.„varies along the
fiber according to Eq. (2.5). Then

/

[~„,~.]= -(s.A„—s~. + [A„A„]).
The right-hand side is a fundamental vector field on the
bundle space written as a Lie algebra element. The
above derivation uses extensively the interplay between
fundamental vector fields and Lie algebra elements
provided by the isomorphism Z.

In order to clarify this point, let us give a useful
example of the action of 5) . Suppose g is a function
with values in G = SU(N), defined on P, and verifying
g(ua) = a ' g(u) a. Suppose also that G andits Lie alge-
bra are given in a, matrix representation (of the same
dimension):

n„q
~

„=S,g —lim —[e '"~q(u, ) e'"~ —|l (u, )],
1 -tA

m, q~„= s,g+ [A, ,q].
We see that the action of the fundamental vector field
—Z(A„) can be identified with the action +[A, .], where
A. is considered a Lie algebra element.

The actual action of —Z(A„) depends essentially on
the nature of the functions on which it is applied. In
most cases, these functions will have a definite trans-
formation law and will consequently be considered as
sections of some associated bundle, where the action
of S will be the action of a covaxiant derivative in an
associated bundle (see the definition below Sec. II.H).

The Lie algebra, element

&..=s.A„—s„A. + [A„A„]
is the usual gauge field. It appears to be defined on
any coordinate patch U, provided local sections over
the U 's are given. Strictly speaking, P„„carries an
index n and ought to be written I „. Moreover, E
and I8 „are related by:

(2.6)

Note that from Eq. (2.6) we have

(2.7)Q8
——Adq-I Q

Recall that on z '(U ) we have a map p onto G which
coordinatizes every fiber. y takes the constant value
e on the section o (see Sec. I.C). Any point uc v '(U)
verifies

Q(X, Y) = d&u(hX, kY) . (2.8)

Definition: If Q is an r form on a principal fiber bundle
P endowed with a. connection, then DP is the r+ 1 form
on P such that

DP (X„.. . , X„„)= dQ (MC„. . . , bX„„).
D is called the exterior

covari

an differentiation.
We can see from Eq. (2.6) that Q=D&u. It is impor-

tant to note that D~ g 0, although d~ = 0. However, DQ
= 0 [this relation is true for any connection and is called
the Bianchi identity (Kobayashi et al. , 1963)].

u=o (~(u)) y (u) .
We use y to construct Q in v '(U):

Let Q = Ad, -q(7r*Q ) .
Relation (2.7) ensures the absence of discrepancy be-

tween the various possible definitions on any overlap.
More precisely, if 7 and Z are two vectors, tangent to
the bundle in w '(U ~ U~), we have

Ad@ '(w*Q )(Y,Z) =Ad@~'(w*Q, )(Y,&) .

Consequently, 0 is a, well-defined 2 form in the bundle
space.
2. Relations between the curvature form and the
connection form. The exterior covariant differentiation.

The curvature form 0 can also be expressed in terms
of the connection form a (globally) by

Q = d(d + & [M, (d ] .
If X and 1' are vectors tangent to the bundle, then

Q(X, Y) = d(u (X,Y) + ~ [u) (X),cu (Y)],

where the bracket [, ] denotes the Lie bracket in Q(G).
If we decompose X and Y in the above relation into

their horizontal and vertical parts (hX, kY, vX, v Y) and
use the bilinearity of 0, we have

Q(X, Y) = de�(vX, v Y) + —,
'

[&u(vX), ~(v Y)]

+d&u(vX, hY) + d~(hX, v Y) + d~(hX, SY) .
Qn the right-hand side of the above relation, only the
last term survives. Consequently,

F. Curvature form

Con««t~on of the curvature form (Papoy, ]976 end
Chem, 'I 967).

From the gauge fields I" „we can construct a 2 form
on the bundle sPace with values in Q(G), the curvature
form Q.

In fact, we first define a set of Lie-algebra-valued
2 forms Q on the coordinate neighborhoods of the base
space. 0 is defined by

= —E' „dx~ ndx"-

3. Curvature form as a cross section valued form on
space-time

Consider E the bundle associated to P, with standard
fiber Q(G), on which G acts by the adjoint action. Call
I'(E) the set of sections of E. We can associate to any
connection on P a 2 form on I with values in I'(E):

Let X,F be two vector fields on M. The lifts X and
Y are right-invariant vector fields on P. Q(X, Y) is
then a function from P to Q(G) with~the property that

Q(X, Y)
~ „,= Ad, ~ Q(X, Y)

~
„.
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From the lemma of Sec. I, we know that we can asso-
ciate a section 3 of E to such a function.

Then lei us define the 2 form A on M with'values in
r(E) by:

a(X, F) = S.
[Nota bene: strictly speaking, A has values in E, but
when applied to a. vector field it has values in I'(E).]

This link between 0 and R is very simple, since:
locally we can describe 0 by its projection

n =a+A=I, .dx" n, dx'.

On the other hand, ws'(U„) = U„&& Q(G). We could as well
write 2'-i'. locally as I" „d&" ~dx". %'e can extend the +

operation and the inner product to the forms on M with
values in 1 (E).

The components of such forms are Lie-algebra-
valued functions.

Formulas (2.1)—(2.3) are valid without any change.
We use a matrix (adjoint) representation of Q(G).
To define the scalar product of two p forms a and P,

replace f„n n~P by f„tr(an~ P), with the convention that
if cv is an y. form and n' an x' form, then n~' is the
(r + r') form defined by

o'no (Xg y 1 Xy+ y~)

1
, gs(f, n) ~—(X, X, ,) n'(X„, .X, ,),

where the sum runs over a.ll partitions of 1 ~ ~ (r+ r')
into j& ~ ~ ~ j„and k& ~ ~ ~ P „and r(j, k) stands for the sign
of the permutation

The operation "tr" means trace of the matrix.
The product (n, P) = f„tr(an* P) is a scalar product.

This product makes essential use of the Riemannian
structure of M and the inner product on Q(G).

Note that we may extend this scalar product to the
Sobolev completion of the set of C" forms on M by using
a modified integral (Choquet-Bruhat et al. , 1977).

As an example, we will use the form *A and the sca-
lar product

In terms of components, (A,R) = fE' (A, R). is the
action of the gauge field. Note that +R has components

&lgl cf

G. Holonomy group of a connection

A connection in a G bundle P(M, G) can be used to de-
fine the notion of parallel transport.

Suppose (x,) is a curve on M. A lift of this curve in
P is a curve (u, ) in P such that v (u, )= x, and such that
all vectors tangent to (u, ) are horizontal.

Given any curve (x,) on M, and any point uo [with m(uo)
= xo], there exists a, unique lift of (x,) starting from uo.

Let u be a point of P and x=m(u). We can draw all
closed loops on M starting and ending at x. All the'se
curves have a lift starting from u, and ending at some
point uc m '(x). Necessarily, v=ug for some gc G.
The set of these g's clearly forms a subgroup of C.

TI. '(Xo)

This group is called the holonomy group (of the connec-
tion) with reference point u: C (n).

It happens that if C'(u) =G for some point and if M is
connected, then C is independent of u. The connection
is then said to be irxednciwe, and any two points of P
can be joined by a horizontal curve in P.

The Lie algebra of the holonomy group at u is gen-
erated by E„,(u) and all its covariant derivatives
'D, E„,(u), X)~&,E „(u), . . . ~see Loos, 1967).

H. Covariant derivative and exterior covariant
differentiation in an associated bundle

Suppose P is a Q bundle over M endowed with a con-
nection 2nd g is a bundle associated to P, with standard
fiber E. Let I'(c) be the set of sections of c.
1. Covariant derivative g

To ~y section V c I (c) we can associate an 1"(s)-
valued 1 form on M, denoted by V'y, defined as follows:

Let X be a vector field on M. X has a unique lift X
on P. We know (from the lemma of Sec. I.E) that we
can associate an E'-valued function f on P to the section
y [f verifies f(na) = a f(u)]. f'=Xf is also a E-valued
function on P and verifies f'(ua) = a 'f'(u). Again by the
lemma of Sec. I.Ewe can associate to f' a section of r. ,

which we denote Vcp(X).
The mapping X-Vy(X) so defined is linear in X.

Thus we have constructed from the section y a 1 form
Vcp on M, with values in I'(c). Vy(X) is a.iso denoted
by Vx(q). V is called the, cova, riant derivative, and it
associates an I"(s)-valued 1 form on M to any element
of 1 (c).

For example, if s = E (see above), and X=8, then
V =8 + [Q,. ], locally.

2 Exterior covariant differentiation X)

Define X) as follows: I) takes 1"(s)-valued r forms into
I'(s)-valued r+ 1 forms.

X) takes sections y of g into their covariant derivative

If a is an y form,

&o.'(Xq ~ ~ ~ X„,g) =Q(—1) '
Vx o.'(X( . X~ (,X~, (

~ ~ ~ X„,g)

+Q(—1)"'o!([X,,X~],X, X

X;,g Xq „Xq,, X„,,)

where the covariant derivative is defined using the con-
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nection on c and the Riemannian connection on M.
Rema+A, ': We have seen that when M is a compact

manifold equipped with a Riemannian metric, the set of
forms on M with values in I (s) possesses a scalar
product (, ) .

The operator ~ has an adjoint X)* such that, if n is
any r form and P any r+ 1 form,

(»,Pi =(a, & Pi.
If n is an x form, we have

where (e,.) is an orthogonal basis of T(M). Note also
that the Bianchi identity DO=0 reads X)R=O.

III. IMPORTANCE OF BEING GLOBAL

A. Equivalence between gauge potentials and connection
forms

The gauge potential is usually not given as a connec-
tion in a principal fiber bundle but rather as Lie-alge-
bra-valued functions (A„) defined on R . However, it
is always possible to consider A (x) as the "compon-
ents" of a connection form on the trivial principal fiber
bundle P = R4 x g.

We define first ~, =-& dg" as a 1 form on R'.
Define on P the unique connection form ~ such that
&u = a (w). u is a connection form on P but clearly de-
pends on the choice of the section tY. This dependence
is related to the gauge freedom.

cr = constant section = (14,e) FIG. 18.

B. Gauge transformations on R4

The basic notion of gauge transformation is that of a
mapping y: R -G which determines isospin rotations
at every point in space-time. We will use the actual
action of y in P=R4&Q to define the gauge transforma-
tion of co.

1. Coordinate-dependent definition of the gauge
transformation

Suppose we have a global section of P. Call o' the
section of P defined by o'(x) = o(x) r(x). From A~(x)
and o we can construct &u (as above). However, from
the same A, but using 0', we can construct another
connection' form &u', with cr~(u) = a''*(&u') .

Provisory definition: We will say that ~' is the
gauge transformation of co by y ' and denote it by ~

In fact, g (respectively, cr') coordinatizes P (in the
same way a frame would define components for vectors
in three-dimensional space). u' has in the coordinate
system transformed by r (i.e. , a') the same compon-
ents as ~ in the original one (i.e. , o) (in analogy with
rotations when a rotated vector has the components of
the original vector, but in a frame transformed by the
inverse rotation).

Note that the components of ~, with respect to o,
transform according to

A.
' =Ad„~ A +ye y '.

With such a definition, the gauge transformation could
be viewed as a transformation of the section 0 into
another section of P, which induces a transformation of
the connections.

2. The need to mike the definition independent of the
choice of o

The same connection form co has, with respect to a
section Z = g ~ cp, "coordinates" B„:

B„=Ad„(~ A„+y 'B~y .
The form ~u, defined as above, has, with respect to

Z, the coordinates B':
&.'=& „d-i„&.+(q 'rq)s. (q 'rq)

We must therefore associate to a different section Z
(related to a by & = o'y) a different group-valued func-
tion I', with

I (x) = y '(x) ~ r(x) p(x),
in order to induce the same transformation of the con-
nection form. 2

It appears that the gauge transformation can be des-
cribed by a section-dependent group-valued function on

We can now give a glob~i defiriition of the gauge
transf or mation.

Definition: A gauge transformation in P is a. mapping
f: P-P such that (I) Vuc P, Bg(u) &Graf(u) =u g(u)
and (2) g(ua) = a ' g(u) ~ a Vu c P, Vae G. Note that
f(ua) =f(u) a. f is said to be equi variant.

Equivalent definition (Atiyah, Hitchin, and Singer,
1978): A gauge transformation in P is an equivariant
bundle isomorphism which induces the identity on the
base space.

Actually, I'(x) = (P yP) e(Z, o.), where c belongs to the
center of G and verifies c(0.(x), g(x)) &(Z(x), 0(x)) = e lEq
(3.1.)7.
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The action of the gauge transformation on a connec-
tion form is the one induced by the automorphism of P
(pull ba.ck) .

The gauge-valued function y we started with is just
y(x) =g(a'(x)). The equivariance of f is the assumption
that

I'(x) = cp '(x) y(x) y(x)

(see above).
The interest of this global (coordinate-independent)

definition is that it can be used for nontriuial bundles.

C. The finiteness of the action. Topology on the set of
connections

The set of connection forms on P=gi' XQ is Rn

affine (convex) space and is consequently topologically
trivial. Notice that if ~0 and ~, a,re connection forms
on P, then ~, = (1 —t) ~0+ tm, is a connection form on P,
although 8 is not a. vector space.

However, the requirement of the finiteness of the ac-
tion I trF'c ~ leads to a restricted set of connections,
which possesses a nontrivial topology.

We assume that a section cr of P is known, to describe
the connections by using gauge potentials.

Since

F„,= 8 „A,—8 A + [A. , A, ],
the problem is to study the set of A's verifying

tr[8,A„- 8„A, + [A„,A,]]' & ~,

This is clearly a nasty problem, but we can approach
it in the following way.

We shall assume that F „ falls off at infinity in R
(faster than I/~x ~'). There might be F,'s which do not
exhibit such behavior and such that f trF' is finite. Our
assumption means that I' is approximately zero at large
distances.

It happens that we know the solution of the equation (in
A):

F„,=8 A„—8,A + [A. , A, ]

when I' =0. This general solution is A, =g ~ ~, g ', where
g is a mapping R -G (A is a pure gauge). This ought to
to give Rn approximate expression for & at large dis-
tances. We shall then write, at least outside R finite re-
gion:

A. =@8 g +B

where &„ is "smaU" at large distances.
Clearly, we do not have a canonical procedure to split

& into two such parts. The point, however, is that the
term g g gives an accidental cancellation in the ex-
pression of I' „. Thus the decrease properties of I'„„
are directly related to the smallness of B„at infinity.

As an example, consider the one-instanton solution
of the equation of motion (Belavin et a/. , 1975).

x2
~ =x'+a' ~

with

( )
xo+ zx '(7

lxl

[o are the Pauli matrices, G =SU(2)].

with

&„ is singular at x=0.
1 1

and & — when ~x ~—Ixj lxf

If it were not of the form g9, g, the first term would
not give a finite action.

In any case, we will consider g to be defined (and
smooth) outside a finite sphere, that is to say, in a re-
gion of R~ which is topologically like S' &B.

Once g is known, it determines an element of v, (G)
(winding nuinber) in the following way: Suppose we
know g for distances (to the origin) larger than p, . Then
f or any p ~ p, the restriction gp of Q to R sphere of radi-
us p determines a mapping: S' -C. From the continuity
of g, we see that any change in p induces a continuous
deformation of g, . Consequently, the homotopy class of
g, does not depend on p, and can be attributed to g and
hence to A. (We avoid the sphere at infinity and do not
suppose that g, has a limit as p —~.)

In the example given above, g is even independent of
p.

In order to attribute the element of w, (G) so con-
structed to a connection form on P, we have to see what
the effect of a change of section in P is.

Suppose cr' is another section of P, with o'(x) =cr(x).y(x). If A. are the components of cu with respect to
0, then ~ has, with respect to 0', the components

The element of 7t', (G) associated with gy by the above
procedure is the same as the one associated with g,
since y is continuous on R . If G is a compact, simple
Lie group, '7~(G) =Z.

Vfe have then introduced a splitting of the space of
connections on P =A x« into an infinite countable num-
ber of subsets (Belavin et at. , 1975).

D. Finiteness of the action. Compactification of R4

What we have described so far is the asymptotic be-
havior of the Euclidean gauge potentials imposed by the
finiteness of the action under a reasonable (from the
physics point of view) assumption of the behavior of
I'„, at large distances.

In short, this asymptotic behavior singles out a re-
gion V in R defined by ~x

~

) I/s(c is sufficiently small)
and defines a map from V into G.

In what follows we shaD make use of these asymptotic
data in order to const net a possibly nontrivial fiber
bundle.

Since g ' acts naturally on o in &, it induces a change
of the components of (:

A -A. ' ='gBg 1.
has the same limit at infinity in all directions,

namely, A'(x)-0 as ~x ~—
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It is natural to consider A' to be defined on the set

V =g[x[&I/c)u f J,
where ~ is an extra point added to A in such a way that
its open neighborhoods are the regions ~x~) 1/iL. A. ' is
then defined in the neighborhood of ~.

R U ~ with the above topology is a compact space.
If we also demand differentiable structure, this com-

pact space is equivalent to S' (I'uscher and Mack, 1975).
We can construct a principal fiber bundle P = (S', G)

over S using two patches A and V, and g as a transi-
tion function defined on the overlap V„ fl R'=(~x~ & 1/s).
I' is reconstructed from the coordinate bundle
(S', G, LR', V„),g).

Moreover, A andA' a,re the components of a connec-
tion form in P(S», G) corresponding to the natural local
sections (associated with the above covering of S').

To get such a compactification of the base space is
satisfactory, bu& it might contain more than the original
requirement, namely, the finiteness of the action. On
S, due to compactness, the integrability of1trS' is, for
example, a consequence of the continuity of the inte-
grand. However, we shall use locally C" functions on
S'. In particular, C" at the point ~ (ES') is a strong
constraint on the behavior of the functions at large dis-
tances in R'. To see this we can use the stereographic
projection from S' to R» (Jackiw and Rebbi, 1976).

Moreover, the equations of motion (see Sec. IV) are
conformally i.nvariant. The use of 8' provides us with
a space-time manifold where the conformal transforma-
tions act.

Actually, S' justifies the use of bundle theory because
the topology of the set of gauge potentials with finite
action is retained by the classification of the principal
G bundles over S .

It is known (Steenrod, 1951, and Bott and Matheu,
1968) that the set of inequivalent classes of principal
G bundles over S' is in one-to-one correspondence with
ii, (G). It is remarkable that the above construction of
principal coordinate bundles (S, G, $R, V„j,g) provides
representatives for every one of these equivalence
classes (see below Sec. III.F).

E. Gauge transformation on S4

The global definition given in Sec. III.B- can be taken
without any change for the bundle P(S', G): a gauge
transformation is an equiva, riant automorphism f of P,
inducing the identity map on the base space [to such an

f is associated a mapping y:P- G].
Since in general there is no global section of I', a

gauge transformation is described by a pair of section-
dependent group-valued functions.

Suppose (U„Uj is a covering of S, and (o „o,) are
local sections over U, and U, (for example, U, =R',
U, = V„).

A gauge transformation will be described by two
functions y, and y„defined, respectively, on U, and
U2:

y, (x) = y(o, (x)), y.(x) = y(o. (x));
I

o', and o2 are related by a transition function g„on the
overlap U, A U, .

As a consequence of the equivariance of f, y, and y2
are also related on UyA U2..

We shall study the group of gauge transformations in
Sec. IV.

F. S4 vs R4

Note that the gauge transformation f would not change
the coordinate bundle defined by the two local sections
o, and o„since the equivariance of f implies the con-
servation of the transition function:

o, (x)y, (x) =o,(x)y, (x) ~ q„(x)b'x ~ U, g U, .
In a sense, the gauge transformations are transforma-
tions which preserve the coordinate bundles.

Let us return to the case of &=A &&G. Suppose 0 is a
global section of P =A'x G. The one-instanton gauge
potential (see above) provides us with a function g
which is well defined outside the origin. Call V, the
open R» -fO), and Vo the interior of the sphere of radius

We can construct a section o, over Vy with the action
of g on o: o, (x) =o(x)g(x) Vx ~ V, . P can be described
by the coordinate bundle (R', G, LVo, V },g»=g). We
know we can associate a "winding number" to any func-
tion defined on Vo 9 V, (like g»), as above, by con-
sidering the restriction to a sphere of radius p
(0& p& 1). We also know that we get equivalent coordi-
nate bundles by changes of the local sections o (over V,)
and o, (over V,):

o -cr'(x) =o(x)g, (x) exes V, ,

o, -o', (x) =o,(x)g, (x) vx wV, .
The transition functions are then related by

-1 ~401 go 001 gl '

Over V, it is possible to choose g, =g, but this be-
comes impossible when we add an extra point (~) to R',
since g, zeould not be continuous at that point.

Actually, when we replace A' by S', we impose the
condition that g, be smooth- on V = V, U~.

The "winding number" associated with g, is neces-
sarily zero, since any sphere of radius p can be con-
tinuously shrunk to one point in V. Since this number
adds (algebraically) in the product g, ' g„~g„we at-
tribute the same number to go, and to g».

What happens with the compactified version is that
the topology of S' is such that the equivalence between
coordinate bundles preserves as much of the topology
of the bundle as the gauge transformation does.

It is the reason —inside the preexisting theory of
fiber bundles —G bundles over S' retain more topo-
logical information than bundles over A'.

G. Classification of principal bundles

The problem of classifying G bundles over a given
manifold M, that is to say, the description of all non-
equivalent principal bundles having G as a structure
group and M as a base space, involves a delicate inter-
play between the topologies of M and G.

We give here some of the properties and the con-
structions used in the theory of classification. We in-
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troduce the necessary definitions but do not give the
proofs of the theorems, supposing that the notions of
QoynotoPy and exact sequence are known, and that when
homotopy matters, the sets are supposed to be pointed
sets (see (Steenrod, 1951)].

Preliminary definition: Consider first a principal G
bundle $(B, G). For any map f: M-B it is possible to
construct an induced bundle f*(g) over M, by gluing
over any point x eM a copy of the fiber over y= f(x).
The bundle f*($) is also called pull-back of $ byf.

It so happens that the description of all equivalence
classes of G bundles over M can be computed by in-
ducing (as above) all possible principal bundles from
the so-called universal bundle.

Theorem (Milnor construction) (Milnor, 1956a. and
1956b; Husemoller, 1966): For each principal G
bundle over a paracompact space M there exists a uni-
versal bundle EG(BG, G) with the following properties:
(i) For each principal G bundle g over M there exists
a, map f: M-BG such that E and the pull-back f*(EG)
are isomorphic. (ii) If f„f, : M-B G are two maps
such that f,*(EG) and f,*(EG) are isomorphic, then f, and

f, are homotopic.
Thus the classification scheme reduces to the study

of homotopy classes of maps M —BG.
The space BG, which is in general not a manifold,

is called the classifying space of G.
If we denoteby&o(M) the set of equivalence classes

of G bundles over M and by [M, BG] the set of homotopy
classes of maps f: M-BG, we have, due to the above
theorem, a one-to-one correspondence between [M, BG]
and So (M).

1. G bundles over S4 We now specialize M to be S4

The existence of the fibration of EG by G with base
space BG gives rise to the bundle sequence of EG
(Steenrod, 1951; Kobayashi and Nomizu, 1969).

—m»(EG) —r(»(BG) —7)» ~(G) —7(k, (EG) - .

For G a compact, simple, and simply connected Lie
group (e.g. , SU(n), Sp(n), Spin(n)n ~ 7, GF„&„„EE)
s, (G) =7(,(G) =0, and 7(,(G)40. In fact, 7), (G) =Z. Hence,
from the universality of EG, we get the following short
exact sequence:

0- ~,(BG)—s, (G) —0.
The exactness of the sequence implies that s, (G)
= m, (G) = Z. However, r(4(BG) =— [S',BG]. Hence

o(S') =~.(G) =Z.
There exists, therefore, a countable infinity of in-
equivalent G bundles over S~.

The above classification has also a cohomological
description. It is clear from the above analysis that
the homotopy groups of BG beyond the fourth do not
play an important role. The idea then i.s to approxi-
mate BG, a topologically complicated space, by what
is called a Postnikov system (see Avis and Isham,
1978, and references therein). As a result, when G is
a Lie group of the type described above, one could show
that

(Po (S ) = H (S,Z),

where H (S', Z) is the fourth cohomology group of S'
with values in Z.

In conclusion, we see that the classification scheme
is related to the cohomology of the base space, with
values in a group (Z), which depends on the homotopy
properties of the structure group. This ties up with the
remarks we made in Sec. I.D, where we claimed that
the topology of the bundle space comes from the topology
of the base space and the topology of the group.

2. Computation of the class: the Chem-Weil theory of
characteristic classes

We know from de Rham's theorem (de Rahm, 1960)
that real cohomology classes Ii.e., elements in
H*(M, H)] can be represented by closed forms on M.
%ith the help of the connections defined on a given
principal bundle P(M, G) it is possible to construct a,

privileged set of closed forms of even degree on M (us-
ing the Weil homomorphism). Their cohomology classes
do not depend on the choice of the connection on P but
only on P itself. Consequently it is possible to associ-
ate an element of H*(M, R) to a. given bundle P(M, G).

Moreover, these elements of H*(M, H) happen to
verify axioms of definition of the so-called Chem
classes. They belong to H*(M, Z) and classify the
bundles P(M, G) (when G is one of the examples given
above) .
3. Weil Homomorphism (Kobayashi and Nomizu, 1969;
Dupond, 1978)

G is a.ssumed to be a, closed subgroup of Gl (n, C).
Consider a real-valued symmetric multilinear function
8'»(A. „... ,A») such that

&gH G,

II'k(&d. &. ~ . ~, &~, &») =I(»(&„.. . , &k) .
and whose arguments belong to the Lie algebra 8(G).

TV& is said to be adG invariant.
We call I (G) the set of all such functions.

i(G) = Z I"(G)

possesses a natural structure of algebra with the prod-
uct defined by

1
(& + p)( ~f( (z) o(K))

g(ic|(K + 1) fo(K + p))

Suppose we have a connection ~ in P. Since the
curvature form Q takes values in Q(G), it is possible to
define the 2k form Wk(Q) on the bundle space by:

w„(n) (x„.. . ,~„)
1

s&W»(II V4(y) t~a(2))y ' ~
+ ( a(2»-1) t +a(2»))) &j e

where the summation is over all permutations of
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(1, 2, . . . , 2k) and s, denotes the signature of o.
Theorem: l. For any invariant function TV~, the 2k

form W, (Q) on P projects to a unique closed 2k form
W„on M with W, (Q) =v* ~ W„(m is the projection defined
in P).

2. The de Rham cohomology class of the closed form
W& does not depend on the choice of the connection on I'.
Moreover, the map W: I(G)- H~(M, A) is an algebra
homomorphism (Weil homomorphism).

It can be shown that f(G) can be identified with the
algebra of (adG) invariant polynomial functions on

S(G), we can thus introduce a basis of the algebra.
Define the functions fo f„on Q(G) by

m*y~=( . ,„,~5, . . . ; Q~ ~ AQ;„,
czar) k. ~ (3 2)

where the summation is taken over all the ordered
subsetsi, . i~ of k elements of 1 n and allpermuta-
tions (;,'. . . ;'„). Notice that the 2k forms in (3.2) are all
gauge invariant.

It is instructive to look at (3.2) locally. Let U be one
of the open neighborhoods belonging to the covering of
M. On v '(U) we know there is a group-valued function
pv (cf. definition of the principal G bundle):

~*(y.l v)=fa(&I. —~(v))

&
I „-i(v)=&d~ ' 7(*&v.

We see that

K«(G))
The function f„belongs to I"(G). For any k, there exists
a unique closed 2k form A.„on M such that v*y, =f„(Q).

Theorem: The forms y& generate the algebra of char-
acteristic classes of P(M, G). We can express y„by
using a matrix-valued 2 form 0,':

1 ~a an=,
J

trsqv sI"qvE„od x
327'

,
trI' ~ I'd'x.

16m' „
It remains to show that n is the winding number as-

sociated to the connection which enabled us to construct
the bundle over S4. This is done in Belavin et al. (1975)
a,nd Crewther (1978).

emote: It is crucial to note in which sense the use of
S as a space-time allows the retention of the topology
of the space of connections. We have seen that there
exists a splitting of the set of connections on &=A && G
into a countable infinity of subsets (provided &- 0 at
infinity). We see now that all the connections pertaining
to one of these subsets can be transported onto one
G bundle over S . Two connections with different
"winding numbers" are not defined on the same bundle
over S'.

We will see that the use of S' also affects the set of
allowed gauge transformations, which acquires a
topology that the set of gauge transformations on A4

does not have a priori.
Remm"k: We implicitly admitted that a connection on

& =A4&& G giving rise to a sufficiently fast decreasing
gauge field & would give an integer value to the integral
over A:

4 priori the mere convergence of the action a = ftr+2d4x
implies 1. the finiteness of the integral ftr+ &d'x, and
2. InI & a.
But it is still an open problem to clarify what supple-
mentary hypotheses are to be added to the finiteness
of the action to lead to the construction of some bundle
over S' and a fortiori ensure that n is an integer.
Probably a fast decrease of I' at infinity is sufficient,
but we have not proved it.

where

(Qv),' =
2Fq „(T,),' dx" ~ dx'(T, ea(G)) .

Examp/, e M = S'.

y, I v = -(I/2i v)trav,

y, = 0 if G =SU(n),

]
y2= 2 trg + &U

8m

1
2 g Spv(xB pv327r

y„=O gk~ 3.
The bundles P(S', SU(n)) are-characterized by y, con-
sidered as representing an element of H'(M, Z). Due
to its gauge invariance, y, could, in principle, be used
as part of the Lagrangian density- in the YM action.

The bundles P(S', SU(n)) are characterized by the in-
teger n= fy2 dM (= Chem number= instanton number).
n can be expressed as an integral over A4:

IV. GROUP OF GAUGE TRAMSFORMATIONS

A. Group operation on the set g of gauge transformations

We have defined gauge transformations as equivariant
automorphisms of some 6 bundle P, inducing the
identity map on the base space of &. The interesting
geometrical objects defined on & are the connection 1
forms, the components of which are the gauge poten-
tials. It has to be emphasized that the choice of a
definite G bundle (over S~) amounts to choosing a given
Chem class (instanton number). In what follows, P
should read P„(kH Z).

We can define the product of two gauge transforma-
tions as their composition as mappings: P —I'.

This composition gives a gauge transformation, and
the set g of gauge transformations acquires the struc-
ture of a group.

Any gauge transformation f: P- P can be equivalently
described by a mapping y: P- G Irecalling that

f(u) =u ~ y(u) Vu H P
and that y(ua) =a 'y(u)aJ. The group operation in g
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yields a pointwise product for the y's: if f,(u) =u y, (u)
and f, (u) =u ~ y, (u), then f, o f,(u) =u ~ (y, ~ y, )(u).

Finally, the mapping y: P- G itself may be given in
terms of a family of local mappings: y„: U„- G
(from the base space to the structure group) with com-
patibility relati ons

y8(x) =q„s(x)y„(x)q„s(x) ~xH U A Up, .
The latter description is equivalent to the following

one: let us construct the bundle associated to P,
with standard fiber G, G acting on itself by the adjoint
map [a(g) =Int, (g) =aga 'j. We know from the lemma
of Sec. I.C that there is a one-to-one correspondence
between the mappings y: P- G, which describe the
gauge transformations, and the sections of . Con-
sequently, the group g of gauge transformations can
be identified with the set I'(R) of sections of S. In
order to visualize the product operation in I'(di) we
have to use a local trivialization of (8 (related to a.

covering fU„j of the base space) and perform a point-
wise product in G. Note that the absence of discrepancy
between the two possible definitions on any overlap
U~A Uq comes from the property

in&-~(r, r,) =»tt, -)(r,)»Q-~(r. ) .

Note also that, although i.ts fiber is the group G, the
bundle is not a principal fiber bundle: the action of
G on itself is not free. will have global sections.
Moreover, suppose that some point b Hg~'(U„n U8) has
coordinates (x, e) "over U„." Then it necessarily has
coordinates (x, e) "over Uq. " Consequently, the word
unit element has a meaning globally, in the bundle
space. Actually, the same applies to all elements of
the center Z of G: we may speak of sections of with
value z(z & Z). The unit section (constantly equal to the
unit element e) is the unit element of g. The set z of
Z-valued sections is the center of g. We shall denote it
by 5.

B. Lie algebra of 9
Consider the constant unit section s of . Through

any point of passes one fiber. Using the local triv-
iality of over patches U, we may identify this
fiber with the group G. We can draw vectors tangent
to the fiber at any point of s. The group operation and
its linear differential allow us to transport these vec-
tors to any point of and to define vector fields on .
The restriction of such a vector field to a fiber m~'(x)
can be identified with an element A„of Q(G) (xK U„). If
xH U P Us, the same vector field over vz'(x) can be
identified with a different element A~ of the Lie algebra
if we use the trivialization of mz (Us).

We have

A8 =Ad ~ 'A~ .
As a consequence, the vector field we have determined
on can be viewed as a section of the bundle I: as-
sociated to I", with standard fiber Q(G) with the adjoint
action of G on Q(G)(cf. Sec. II.F).

Call I"(E) the set of sections of E. I'(E) is the Lie
algebra of g = I"(t9). I"(E) is an infinite-dimensional
module.

Any section of (8 can be written as exp(v), where

va 1 (E). In order to define the operation of taking the
exponential of a section of E, we again have to use the
local triviality of the associated bundle: locally o
determines mappings: U„-Q(G). We can define map-
pings U —G by using the exp map of G. These map-
pings verify the proper compatibility relations on any
overlap U ~ U8,' thus they define a section s of .
We will say that s = exp(v). If G is connected (this will
be the case), any element of G can be written as the
exponential of some element in Q(G). In this case, any
section s of % can be written as s = exp(v) (v + I'(E).

C. Influence of the topology of space-time on the group
of gauge transformations

Suppose that space-time is S . We have seen that a
gauge transformation is described by two mappings:
y, : U, —G and y, : U, -G (with U, = R', U, = V„; see
above). Clearly, y, determines a gauge transformation
over R', but not all gauge transformations over R can
be obtained in such a zpay: y, verifies the compatibility
relati on

y, (x) =q;,'(x) y, (x) ~ q„(x) Vx~ U, n U, .
The mere continuity of y, at the point ~ is already a

strong restriction on the behavior "at infinity" of Z, .
Suppose, for example, that the bundle P is trivial.

Then p» = e, and if g = y, (~), we have y, (x) -g a.s
~x~ -~. y, is bound to be defined on S'. The topology
of the set of functions from S' to G is much richer than
the topology of the set of functions from A' to G. We
shall investigate more deeply the topology of g when
the base space is S', but the method is usual in bundle
theory and could be applied to other base spaces.
This study is given in Singer (1978), when G = SU(n)
(see later Sec. VI.C).

V. EQUATIONS OF MOTION OF A PURE YANG-MILLS
THEORY

A. Equations of motion and (anti-) self-duality

The classical equations of motion of the gauge fields
(or rather the gauge potentials) are the Euler-Lagrange
equations obtained by minimizing the action
a = ftr+'d'x.

Suppose P is a principal G bundle over S . Once the
choice of P is made, we have restricted ourselves to a
given instanton number.

The action is a functional defined on the set of con-
nections on P.

In Sec. II.F we have constructed a form R(u) on M,
with values in I'(E), and we have seen that a = (R, R):

a = (trRAW)dM .
S4

The solutions of the classical equations of motion are
critical points of the functional a (in the sense of
Morse (Milnor, 1963)).

Note that the search for critical points of a function
usually invites the study of the topology of the space
on which it is defined (Milnor, 1963). However, the
space 6 of connection forms on P is an affine space and
is then contractible and has a trivial topology
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[w, (6) =0 VjE:Ã]. What happens is that the functional
a((u) is gauge invariant.

Suppose u &6 and u' = the gauge transformation of co.
Then

a((v') =a(u)) .
a is thus actually defined on the quotient 6/g.
The quotient 6/g has a nontrivial topology' since g

has a nontrivial homotopy (see Sec. VI).
The equation of motion can be computed locally from

the expression of a = )tr&'„,. These equations are known
to be R"I'&„=0, where X)„ is the covariant derivative
acting on +t1 I,.

It is very easy to confirm that these equations have
a global expression using the form R introduced earlier
and the adjoint &* of the exterior covariant differen-
tiation X):

a+R =0,
or equivalently

u, (~R)= 0.
It so happens that the operation ~ verifies ~'= 1 (as is

easy to check) on S'.
The space A' of 2 forms on S' [with values in I"(E)]

can be decomposed into the sum of two supplementary
linear subspaces (A'=A'„GIAN, the spaces of self-
dual (respectively, antiself-dual) forms. A self-dual
form verifies *p =p (respectively, an antiself-dual
form verifies *p = —p).

We immediately see that, if R is self-dual (respec-
tively, antiself-dual), the Bianchi identity ensures that
the equation of motion is verified. It is still an open
problem to decide whether or not there exist nonself-
dual (respectively, nonantiself-dual) solutions of the
equations of motion {Bourguignon, ef al. , 1979; Da.niel
et al. , 1978; Flume, 1978).

A large literature exists on the geometrical meaning
of the self-duality equations, leading to a complete
study of the set of their solutions, and even to an ex-
plicit construction of these solutions. We will not get
into the study of this widely discussed subject here.
See Atiyah, Hitchin, and Singer (1978), Atiyah and
Ward {1977);Atiyah, Hitchin, Drinfield, and Manin
(1978); Corrigan, Fairlie, Goddard, and Yates (1978),
Corrigan, Fairlie, Templeton and Goddard (1978),
Christ et al. (1978), Bernard et al. (1977), and Madore
et al. (1979).

B. First and second variations of the Yang-Mills action
on the Euclidean sphere

In the previous section we saw that the pure Yang-
Mills action on the Euclidean sphere is a function on the
affine space C. Fixing a point in 8 turns it into an in-
finite-dimensional vector space isomorphic to the space

This has nothing to do with the topology introduced in Sec.
IIIB. In Sec. III we had a splitting of the set of connections on
H=B x G into an infinity of subsets. This splitting led to
different bundles over S . Here we have chosen a bundle over
S4, and the topology appears when we quotient out the redun-
dancy of the description of the fields due to the gauge invari-
ance. We have seen i'n Sec. IV how much 8 matters.

Hence,

+ t2((~q, ~q) + (q, *[*R,qj)j+ 0 (q') .

da(A ')
( R)

Thus, if A corresponds to a stationary point, the first
variation must vanish. Consequently,

(nq, R) = 0 or (q, g)~R) = 0.
The equations of motion now read

where X)* is the adjoint of . It can be shown that, on
S', X)+= —~+*.

The second variation gives

1 d'a(A')

This yields immediately the Hessian of the action as a
quadratic form on the tangent space to the space of
connections at A. Consequently, we have an explicit
expression for the fluctuation operator (which governs
quantum fluctuations around the background field A).

It is of interest to take A to be a k-instanton con-
figuration. More explicitly, A gives rise to self-dual
curvature R*=R, corresponding to instanton number k.
In this case, the fluctuation operator, b,„', (the super-
script 1 indicates that it is acting on 1 forms) reduces
to

where P = —,'(1 —») is the projection operator on the
antiself-dual 2 forms with values in the Lie algebra.

Now, if the variation A'=A +ted is such that R' is a

of smooth 1 (E) valued 1 forms on S~ (see Sec. II.D.3).
Indeed, consider a family, A', of connections on a
straight line through A:

A'=A +tq.
Locally, (A„'&-A &)dx" is a 1 form taking values in

the Lie algebra of the gauge group in the adjoint repre-
sentation, and the above assertion follows.

We shall now use the above family of connections in
order to calculate the first and second variations of the
action.

Clearly, such variations are of great importance in
physics. The first variation leads to the dynamical
equations of motion, whereas the second determines a
fluctuation operator which governs the quantum fluc-
tuations about the background field (i.e., the vector po-
tential a.ssociated with the connection A).

We remark here that it is sufficient for the action to
vary along straight lines, because 6 is an affine space.

Let R' be the curvature corresponding toA'. Then

R' =R +tX)q+ —,'$'[ll, q],
where is the exterior covariant derivative acting on
1 forms taking values inthe Liealgebra(see Sec. II.H. 2).
Consequently (Atiyah and Bott, 1978; Bourguignon et al. ,
1979),

a(A') = a(A) + t(uq, R)
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solution of the equations of motion, then

The solutions of this equation describe the tangent
sPace to the space of selfdual solutions of the Yang-
Mills equations. However, the Yang-Mills action is
gauge invariant. A variation along an orbit (see Sec.
VI) through A will certainly yield a solution which is
gauge related to A. We must eliminate such varia-
tions. This can be done by using the background gauge
(Schwarz, 1977; Daniel and Viallet, 1978). Then the
above equation must be replaced by a pair of equations,
namely,

z„'@=0 and &*g=O

or equivalently by

g=O

where

. Now, X)*X)+&X)* is the covariant Laplacian acting on 1
forms taking values in the Lie algebra, and ** ~ is a
degree zero operator. Hence, 4& isanelliptic operator.
As such it has a finite number of zero modes. For ex-
ample, if G = SU(N), and A is a k instanton, then the null
space of b,~ is (4'-N'+ 1) dimensional.

Note that 4& is one of the Laplacians which can be
constructed from the Atiyah-Hitchin-Singer complex
(Atiyah, Hitchin, and Singer, 1978):

O ~0 ao ~x d& ~2 P

where

do= & acting on I'(E),

related connections (on some G bundle P), rather than
the connections themselves.

If 6 denotes the set of connections on I', these fami-
lies —the orbits under the group g of gauge transforma-
tions —are the elements of the quotient set q = ~g.
There exists a canonical projection P: 8 —q.

A natural problem arising at this point is the problem
of the choice of a representative in e of all orbits. We
will say that we fix the gauge if we choose a unique
representative (which is a connection on P) in any
equivalence class of gauge-ralated connections.

The usual realization of gauge fixing is essentially
local and is performed by imposing a condition on the
components A& (such as B& A& =0 or other conditions. . . ).

Strictly speaking, gauge fixing is the construction of
a mapping p: Q-6 such that Pop = identity map of 6.

This closely resembles constructing a section of the
(infinite-dimensional) principal bundle 6 over g with
group g. Unfortunately, in addition to the mere fact
that we have not yet defined any distance in , we will
have to restrict ourselves to irreducible connections
and to replace g by a restricted group of gauge trans-
formations in order to have a free group action and to
get a nice (infinite-dimensional) principal fiber bundle.

B. A restricted group of gauge transforrnations and a
restricted set of connections

Locally, the gauge transformations act on the com-
ponents A"„by:

&p go.&pgcx +gn ' &pgn ~

We see that if g is a constant Z-valued transforma-
tion, then

AP =Aq (y n) .
d'= X) acting I'(E) valued 1 forms,

Any such gauge transformation leaves all connections
A' = Hiibert space of I'(E) valued antiself-dual 2 forms. unchanged.

Note that A. „'=A& can be written
Let g&, be the metric on S4 obtained from sterographic

coordinates. g&, is, of course, conformally flat, and
is given explicitly by

g~, (x) =Q (x)5„„
with Q(x) =4a't(a'+x')'] ', where a is the radius of the
4 sphere. In this system of local coordinates we obtain,
by making use of the formulas given in Sec. II.H. 2,

(A~)q, = —Q '(6q„~~~ +(QBqQ ')m,

—(QB,Q i)X)~ —QB B~Q

+4j'

For the importance of the operator ~& for the prob-
lem of quantum fluctuations around multi-instanton
configurations we refer to a recent paper of Schwarz
(1979) and references therein.

VI. GAUGE FIXING PROBLEM

A. Notion of gauge fixing

Since all physically relevant quantities are gauge in-
variant, the objects of interest are the families of gauge

Bqg„+ [Aq, g ] = Qqg„= 0,
i.e., Vg=O.

Actually, V'g=O implies that g belongs to the center
of the holonomy group of the connection under consid-
eration. To see this, it suffices to apply locally „
and X)„' and if we antisymmetrize in p and v, we get
P'„„g]=0. Further applications of the covariant de-
rivatives show that g commutes with the whole algebra
of the holonomy group of the connection (I oos, 1967).
In particular, if the connection is irreducible, then g
necessarily belongs to the center of G (G is supposed
to be connected).

As we noted earlier, the Z-valued sections of
are well defined: the set of these sections forms an
Abelian subgroup b of g. We shall denote by 5 the set
of constant Z-valued sections of . A. pyioyi, a Z-
valued section of is not necessarily constant; but in
the case of SU(N), the fact that the center is a dis-
crete (finite) subgroup Z„, together with the mere
continuity of the sections, implies that the center-
valued sections are constant and that 8 = h.

The quotient g = g/B is a well-defined group.
g acts freely on the set e' of irreducible connections
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on &.
Remark: The replacement of g by g was natural

from the very moment we noted that the transformation
formula of the potentials did not determine completely
the global gauge transformations [see Eq. (3.1)].
Nevertheless, we have to point out that the role of the
center is not completely understood, although it might
have fundamental consequences on the interpretation of
gauge theories (Mack, 1978; t'Hooft, 1978). Note
also that if the structure group G is Abelian, the center
of G is G itself, and g is a, trivial group with one ele-
ment.

C. A universal bundle for the group of gauge
transforrnations

The set of (C") connections on P can be equipped with
a distance if we note that, given two connection forms
(d and (d' on I', their difference v =(d' —w is a Lie-alge-
bra-valued form on I' which can be viewed as a 1 form
on M with values in I'(E).

The scalar product (v, v) is well defined and na.turally
gives rise to a distance between &u and u' [d(&u, &u')

=v'(v, v)].
6' inherits the distance defined on 6.
Claim: t

' is a principal fiber bundle over g' = 6'/g
with group g. Moreover, w, (e') =0 b'jH

¹

We will not give any proof of this and refer to Singer
(1978).

Note: It is clear that t."(q', g) is a ~-universal g
bundle.

What is interesting about this result for the gauge
fixing problem is that the existence of a continuous map-
ping q-6 (that is to say, a gauge fixing as we defined
it) would imply the existence of a global section of e',
and, as a corollary, would imply the triviality of the
bundle 6'(g', g). We would consequently have

This last relation is impossible to fulfill because of
the nonvanishing of some of the homotopy groups of g,
as proved in Singer (1978).

Singer introduces the group g„of gauge transforma-
tions that are identity at ~, and the two following bundle
sequences:

0- ~- g- g-0
0- g —g —SU(N) —0.

These two sequences relate the homotopy groups of
g with the ones of g„. The latter are directly related
to the homotopy groups of SU(N). To be more precise,

For N&2, we have

mo(g)= wo(g„)= m4(SU(N))= 0.
The sequence

is exact Therefo.re, m, (g) &0.
For SU(2) we see that m, (g) =m, (g) (j& 1) from the first

sequence.
The sequence

is exact, i.e.,

~,(g) —z- z„-~,(g)

is exact.
Since Zxz», we cannot have m, (g) and w, (g) equal to

zero at the same time. Consequently, m, (g) u 0 or
m, (g) ~0.

The nontriviality of the homotopy of g forbids the
triviality of '- q' and then forbids any continuous gauge
fixing.

This very elegant "no-go theorem" due to I. M. Singer
is an example of the results that bundle theory can
yield: essentially, they are global results (valid about
smooth objects), and typically about homotopy.

The following remarks are now in order: The so-
called Gribov ambiguity (Gribov, 1977) is related to
the topological obstruction that one meets in trying to
prolong a local section in the fibration t '- g' to a
global one. It is clear from Singer's analysis that the
obstruction is due to the nontrivial topology of Q. We
have seen that g has nontrivial homotopy groups. We
would like to stress that this topology of g is due to the
compactification of A' into S'. It has nothing to do saith
the presence of instantons. The nontrivial topology of
g is there even in the zero-instanton sector. This can
be seen directly from the following argument: In the
zero-instanton sector we have a trivial bundle I' =8'
&& G. In this case, g„can be identified with the set of
maps g: (S~, ~)- (G, e). These maps fall into two
classes. Hence g acquires some nontrivial topology.

D. Orbit space q'

In the previous section we have claimed that the set
of irreducible connections is a principal fiber bundle
with group g. The base space of this bundle q' = 6'/g
is the set of gauge inequivalent irreducible connections.

Our interest in p' is not merely academic: the Feyn-
man path integral in gauge theories is essentially an
integral over g. We could, however, consider g' in-
stead of q because 7I' is dense in g (Singer, 1978).

To investigate what sort of space g' is, we can make
use of the bundle sequence of the fibration 6' —p' by
8:

Since w„(g') = 0 for all k, we obtain the following exact
sequence:

0- ~a(n') -~. ,(g) —o.
Hence

~.(n') = ~. .(G)

An immediate consequence is that the set of gauge in-
equivalent irreducible connections (or irreducible orbit
space) is topologically nontrivial.

We know we can give local coordinates to p' by locally
fixing the gauge, that is to say, by giving local sections
of the bundle 8'-7I' (Daniel and Viallet, 1978).

A given orbit may have different coordinates if it
belongs to the intersection of different coordinate
neighborhoods, all of them being gauge related points
in 6'.
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CONCLUDING REMARK

In all we have said, we have been dealing with C
field configurations, that is to say, with a rather re-
stricted set of fields. What justifies the use of smooth
objects is the fact that we are interested in a source-
less classical theory.

In dealing with quantum theory (defining the Feynman
path integral), it will be necessary to enlarge the con-
figuration space. A possible extension is to replace
C" configurations by some Sobolev comple'tion HI, of this
space. The structure of the classical theory survives
this extension (Narashiman and Ramadas, 1979).

Consequently, we hope that the structural results of
the classical theory may give new insights for the
quantum Yang-Mills theory —at least at the semi-
classical approximation. For instance, we may use the
rich topology of the classical theory in order to get an
understanding of a function space measure of the form

a(A) being the Yang-Mills action (see Sec. V.A), and Z
a normalization factor. Now, the interest in d p is that
it can be used to define the statistical mechanics of
the gauge potentials (in Euclidean space). With the sta-
tistical mechanics on the space of connections at hand,
one could use the Osterwalder-Schrader axioms to ob-
tain an appropriate quantum field theory in Minkowski
space.

In any case, bundle theory remains the correct
language to deal with the global (and local) aspects of
classical gauge field theories. The implications for
physics of the results that it already yields still have to
be investigated, but it is by now clear that the geo-
metrization shall invaluably deepen our understanding
of gauge field theories.
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