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%'e review the theory of the electromagnetic interactions between rapidly moving charged particles and
the matter through which they pass. The emphasis will be on very massive electric ( —100(Z&100) and
magnetic {Q~ = 137e and 137e/2) particles moving with relativistic velocities (P&0.2, y& 100).
Consideration will be given to both the stopping power of the projectile and to the response of the
absorbing medium to the excitation caused by the projectile.
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Various aspects of the penetration of charged par-
ticles in matter have occupied the thoughts of some of
the finest physicists of this century (Thomson, 1903;
Rutherford, 1911; Bohr, 1913, 1915, 1948a; Bethe,
1930, 1932; Mott, 1931; Bloch, 1933a, 1933b; Fermi,
1940; and Landau, 1944). The theoretical and experi-
mental investigations of this problem have, in fact,
played a very important role in the development of
modern physics. The distinction between large- and
small-angle Coulomb scattering led to the discovery
of the nuclear atom. The manner in which o.'and P rays
were influenced by the matter through which they were
allowed to pass enabled their identification as stripped
helium. nuclei and energetic electrons, respectively,
and provided important information on nuclear trans-
mutations. Particle track detectors (cloud chambers,
bubble chambers, nuclear emulsions, etc. ) have been
directly responsible for the discovery of most of the
known elementary particles, and charged-particle de-
tectors in general have been at least indirectly re-
sponsible for all of the experimental results in high-,
medium-, and low-energy physics. Research in astro-
physics, nuclear physics, atomic physics, molecular
physics, biophysics, and many other fields relies on
experimental techniques utilizing high-energy radiation
and theoretical knowledge regarding the subsequent in-
teraction between the radiation and matter. Many re-
view articles have been written on the subject of
charged-particle penetration in matter. Among these
are those by Bethe (1933), Livingston and Bethe (1937),
Bohr (1948a), Bethe and Ashkin (1953), Allison and
Warshaw (1953), Uehling (1954), Pano (1963), North-
cliffe (1963), Bichsel (1968), and Bichsel (1972). Many
textbooks and monographs contain discussions of the
stopping power and range of charged particles. Those
by Rossi (1952), Landau and Lifshitz (1960), and
Jackson (1975) are particularly recommended for an
introduction to the subject.

Being based on either semiclassical physics or a
first-order quantum-mechanical perturbation approach,
most of the above works yield a result for the stopping
power of a projectile' which is proportional to the
square of the projectile charge and to a function of the

In this review stopping power will be defined to be the energy
Loss of the projectile per unit distance traveled by the projec-
tile due exclusively to electronic excitation and ionization.

Reviews of Modern Physics, Vol. 52, No. 1, January 1980 Copyright 1980 American Physical Society 121



Steven P. Ahlen: Energy loss of relativistic heavily ionizing particles

projectile velocity. In this review we will be con-
cerned primarily with the limitations of these results.
Corrections to the stopping-power formula due to high-
er-order terms will be enumerated and evaluated. These
corrections are mos t impo rtant at ve ry low energies,
at very high energies, and for very large charges. Se-
vere complications are encountered in the low-energy
regime so we will devote most of our attention to heav-
ily ionizing particles moving at large velocities. These
particles will include familiar species, suchas stripped
heavy nuclei, and hypothetical particles, such as heavy
antinuclei and magnetic monopoles.

In addition to being intrinsically interesting with re-
gard to atomic, molecular, and solid-state physics,
this problem is quite important due to its intimate con-
nection with a variety of research and development
programs in quite diverse fields. The development and
application of high-energy heavy-ion accelerators' (see
White et al. , 1971; Grunder et al. , 1971; and Grunder
and Selph, 1977) is enhanced by a good understanding
of how these fast heavy ions interact with the matter
through which they pass. 'The correct interpretation
of the ultraheavy cosmic-ray data. (Israel et al. , 1975;
Fowler et al. , 1977; Shirk and Price, 1978), which is
quite important in order to understand various high-
energy astrophysical phenomena, depends on accurate
knowledge of both the manner in which very heavy nu-
clei slow in matter and the manner in which particle
detectors respond to these nuclei. One of the most ef-
fective means of treating cancer is to apply high-en-
ergy radiation to the tumor. For a'very readable re-
view of this technique, see Bleehen (1972). Practical
considerations have thus far limited the radiation
sources so utilized to sources of x rays and y rays.
Fowler (1965) has emphasized the advantages of cha. rged-
particle beams over electromagnetic radiation for can-
cer therapy. In addition to having a more favorable
dose distribution for selective cell destruction, charged
particles have more favorable RBE (relative biological
effectiveness) and GER (oxygen enhancement ratio)
characteristics than their electromagnetic counter-
parts. Tobias and Todd (1966) have advocated the use
of fast heavy ions for cancer therapy. Experimental
results along this line can be found in Todd et al. (1971)
and Tobias et af. (1971). It is clearly desirable to
achieve as good an understanding as possible of the in-
teractions of fast heavy ions with matter in order to
optimize these techniques. Another very exciting pro-
gram which requires an understanding of heavy-ion
interactions with matter is that of heavy-ion fusion
(Bangerter et al. , 1976). The use of intense, energetic,
heavy-ion beams to ignite deuterium pellets has at-

Exceptions to this are found in some of the work by Bohr
(1913,1915) and Bloch (1933a) where an extra charge depen-
dence is introduced in the connection of the close- and dis-
tant-collision results.

At the present time there is one such accelerator in the
world. The Bevalac at the Lawrence Berkeley Laboratory
is capable of accelerating ions up to ~ Fe to approximately 2
GeV/amu. In the early 1970s the Princeton Particle Accele-
rator achieved the capability of accelerating N to a total en-
ergy of 7.4 GeV before being forced to shut down due to lack
of funding.

tracted a. great. deal of attention in recent years (PT,
1978). There are still unresolved problems involving
the interactions of these heavy-ion beams with the pel-
lets. Some of the theory summarized here should be
useful in addressing these problems. Finally, we
should mention that successful searches for exotic,
heavily ionizing particles' depend on a thorough knowl-
edge of detector response and energy-loss rates of the
exotic particles. Price et nl. (1978) summarize the
status of the peculiar cosmic-ray event which has var-
iously been interpreted as being a magnetic monopole
(Price ef al. , 1975) and a heavy antinucleus (Hagstrom,
1977). They point out the difficulties involved with the
experiment and essentially conclude that the event was
unlike anything yet observed, although they do not know
what caused it. The early excitement caused by this
event can be attributed to a lack of sufficient knowledge
of the behavior of the nuclear track detectors employed
in the experiment. ' It will be impossible for us to
delve too deeply into any of these particular problems
involving heavily ionizing particles. However, we hope
to present a sufficiently clear and concise summary of
the state of our understanding of the electromagnetic
interactions of these particles with matter so that the
above-mentioned problems can be easily attacked.

II. SCOPE

We will be solely concerned with the electromagnetic
interactions of. very massive, heavily ionizing particles
with matter. For these particles, multiple Coulomb
scattering is quite small and it is a very good approxi-
mation to assume that the particles travel in straight
trajectories. Large-angle Coulombic nuclear scat-
tering is a rare occurrence and itwill notbe considered.
The subject of multiple scattering is reviewed in detail
by Scott (1963). We will also neglect the effects of in-
elastic nuclear collisions. Again, these occur rela-
tively rarely and are only a serious consideration in
the context of the range of high-energy particles for
which the probability of at least one inelastic collision
in the total path length can approach unity.

With regard to the range of velocities to be consid-
ered, we will limit ourselves from below by the veloc-
ity at which shell corrections become important for
singly cha. rged particles (P-0.2 depending on the atom-
ic weight of the absorber) and from above by y —100,
at which point radiative corrections and spin effects,
among other things (to be discussed in detail at a later
point), start becoming significant.

By successful we .mean an experiment which yields either
negative or positive results at a highly significant level.

It was not realized that it was necessary to separately cali-
brate different batches of the same type of plastic, namely,
Lexan polycarbonate; within this single category are several
types of plastic with different kinds of additives used to en-
hance commercially valuable properties, such as clarity,
resistance to ultraviolet radiation damage, etc. In addition,
it was not known very accurately how this particle detector
would respond to a magnetic monopole. In fact, the answer
to this question is still not known. Similarly, the lack of an
accurate predictive track model for nuclear emulsions hin-
dered interpretation of data from these detectors.
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The conclusions reached in this review can be mean-
ingful only if the words negligible, insignificant, etc. ,
are complemented by firm numerical estimates of the
error incurred by the exclusion of the effects so quali-
fied. We will, therefore, endeavor to make such esti-
mates whenever the need should arise. The importance
of the effects mentioned in the above paragraphs of this
section will be so quantified in subsequent sections.

In Sec. III, we will present key results from the first-
order treatment of energy loss. These will include a
discussion of shell corrections, the density effect, en-
ergy loss and range straggling, and the mean ioniza-
tion potential. In Sec. IV we will systematically con-
sider the various approximations involved with the re-
sults of Sec. III and we will present algorithms for cor-
recting for these approximations should they fail. We
will consider the energy loss of magnetic monopoles
in Sec. V. General characteristics of energy deposition
in matter will be described in Sec. VI. In this section
we will briefly discuss the response of various particle
detectors to heavily ionizing charged particles. The
notation to be employed in this work is given in the
Glossary.

III. STOPPING POWER OF ELECTRICALLY
CHARGED PARTlCLES IN THE FIRST BORN
APP ROX I MAT ION

In this section we will summarize the status of
stopping-power theory from the point of view of semi-
classical physics or a first-order quantum-mechanical
perturbation treatment. In doing so we will draw
heavily from the work of Fano (1963), Bichsel (1972),
and Jackson (1975).

A. Statement of the problem and the nature of the
interaction between particle and medium

A particle of mass I, and electric charge &, e pen-
etrates a material composed of atoms of atomic num-
ber Z2 and atomic mass M2 (M2=A2 amu). ' The pro-
jectile interacts with the medium via the electromag-
netic force with the electrons and protons and via the
strong nuclear force with the nuclei of the absorber.
For the moment we will completely disregard the nu-
clear force due to the vanishingly small ratio of the
nuclear to atomic cross sections (-10 "). The pro-
jectile slows down by losing energy to the atoms of the
absorbing medium. The collisions responsible for this
energy transfer may be elastic (i.e. , the atom is dis-
placed but its internal state remains unchanged) or in-
elastic (t'he atom is both displaced and internally exci-
ted). In his classic paper on the theory of the passage
of fast charged particles through matter, Bethe (1930)
showed that for inelastic collisions the ratio of the atom-
ic excitation energy to that due to atomic displacement
is larger than M, /m, where m is the mass of the elec-
tron. It can also be shown, by using an expression for

6By mass and charge, whether it be electric or magnetic,
we will mean those quantities which are observed, or renor-
rnalized. It may seem unnecessary to explicitly state this but
it is advantageous to keep it in mind, particularly when we
consider the radiative corrections.

the elastic cross section obtained by Bethe (1930), that
the ratio of energy lost in elastic collisions to that lost
in inelastic collisions is of the order mZ, /M, (or
smaller than this if realistic multielectron wave func-
tions are employed). Hence less than 0.1% of the pro-
jectile energy goes into atomic displacement. In cal-
culating the stopping power we merely need to sum over
the various atomic excitation energies weighted by the
cross section for excitation (by excitation, we mean to
include ionization processes). Bethe (1930) showed that
this cross section is independent of the mass of the
atom provided I,» m. Consequently, negligible error
is incurred in the calculation of stopping power by
assuming the target atom to be infinitely heavy. '

The problem is then successfully reduced to one in-
volving the interaction between the proj'ectile and atom-
ic electrons bound to infinitely heavy nuclei. As we have
seen, the interaction between the projectile and the tar-
get nucleus results in negligible energy loss. Large-
angle Coulomb scattering off the nucleus is a rare but
possible occurrence. In this sense it is in the same
category as inelastic nuclear collisions. As such it
will be considered in more detail in a later section. We
will also consider at a later point the small-angle
multiple Coulomb scattering off nuclei and electrons
experienced by a projectile in passing through matter.
For the heavy particles considered in this review, this
scattering is quite small and results in very small cor-
rections (&1%) which need to be applied to energy-Loss
and range calculations. For the duration of this sec-
tion, we will assume that the incident-particle tra-
jectory is very closely approximated by a straightline.

In Secs. III.B-III.D we will briefly review the cal-
culations of stopping power as performed by Bohr
(1913), Bethe (1930), and Bloch (1933a). In addition to
adding a sense of completeness to this review, it is
important to consider this earlier work so that we can
isolate various features of these different treatments
which are relevant to very recent experimental and the-
oretical work on stopping power.

B. Bohr solution

Bohr (1913,1915) realized that binding effects are
crucial for a proper treatment of energy loss. Earlier
workers (Thomson, 1912 and Darwin, 1912) had treated
the problem as one involving collisions with free elec-
trons for which a maximum impact parameter was im-
posed in order to prevent the result from diverging.
This divergence is due to the fact that the integrated
Rutherford cross section is infinite. The limiting im-
pact parameters chosen by the early workers were ad
hoc in nature. Darwin (1912) assumed that the maxi-
mum impact parameter should correspond to the atom-
ic radius, outside of which the force on a passing
charged particle is zero and Thomson (1912) suggested

The fractional error in stopping power due to this approxi-
mation is —(m/M)/ln(2mv /I), where M =M~&2/(M~+ M2). This
is always much less than 0.1% as long as v &v0, the charac-
teristic atomic velocity. This proviso also applies to the
above discussion regarding elastic and inelastic collisions.
If v &vo, ionization becomes inefficient and elastic collisions
dominate the energy loss process.
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that the limiting impact paramete r should co r respond
to the mean interelectronic spacing. Bohr (1913)pointed
out the flaws with these selections and proposed that the
effective maximum impact parameter should be that
distance b for which the collision time -b/v is com-
parable to the atomic orbital time = I/v. Bohr justified
this proposition with a rigorous calculation which was
based on the following assumption.

There exists an intermediate impact parameter b,
(impact parameters being defined to be the distance of
closest approach to the assumed infinitely massive
nucleus) for which collisions with b& b, can be treated
as electromagnetic excitations of charged ha. rmonic
oscillators in a spatially uniform electric field due to
the passing particle and for which collisions with b & b,
can be treated as free-electron scattering by the pro-
jectile in the center of momentum frame.

The justification of the assumption of an infinitely
massive nucleus was provided by Darwin (1912). Need-
less to say, it was implicitly assumed that collisions
could be legitimately characterized by impact param-
eters since the advent of wave mechanics was still ten
years in the future. With the assumption that M, » m
and expressed in the notation of this review, Bohr ob-
tained the following results:

P'(,' [I~;((,) —A;((,)g; (3.4)

S = dE—/dx, N is the number of electrons per unit vol-
ume, and (, = ((b, ). Similarly, the close-collision en-
ergy loss is found by integrating Eq. (3.3) from b =0 to
b =-b, :

2vNZ,'8" [ mv y )t'
&bj. ~~2 Z e2ln 1+ (3.5)

4gNZ e

x ln, —ln 1 — ' — +A
1.123mv', P'

i Z, I
e2cu 2

(3.6)

{3.1)
where

Equation (3.4) diverges as b, -0 and Eq. (3.5) diverges
as b, —™,indicating the failure of the respective ap-
proximations in these limits. By choosing b, «yv/cu
(which corresponds to the adiabatically limited impact
parameter beyond which energy transfer is inefficient;
this is due to the exponential decay of the Bessel func-
tions for large arguments) and b, » lZ, le'/mv'y (which
may be thought of as the "size" of the scattering cen-
ter) one obtains the total energy loss, by adding Eq.
(3.4) and Eq. (3.5):

where ( = (cub)/(yv), cu is the circular frequency of the
oscillator, and K, (g) and K, (() are modified Bessel
functions of order 0 and 1, respectively (see Abramowitz
and Stegun, 1970). &E(b) is the energy lost to oneelec-
tron, initially at rest at the nucleus. Equation (3.1) is
obtained with the assumption that only the electric
force acts on the electron and that the electron sees a
spatially uniform field. This latter assumption is often
referred to as the impulse approximation. Various
integral representations of the Bessel functions esta-
blish the link between Eq. (3.1) and the electric force
on the electron:

oo etQX

2aM~(a) =
2)3g 2 dx,(1+X2 '~2

1 Z,e' ', , 2(0.577+in —,'(„)'
+4 ~12 i%v pb~ y

—2P'(0.077+ ln —,
'

g, ) . (3.7)

'The small-argument limits for the Bessel functions
have been used. For hm =100 eV, P =0.5, b,d=—yv/u =11
A~ »d &. -=IZED le'/mv'y =9 7 F Ized I

where 1 F =10 "
cm. If b, =10 ' cm and lZ,

l

=10 then the remainder
term, B„ is of the order of -7& 10 '. 'The other terms
in the large square brackets add up to give a number of
the order of 10 which means that A, provides a correc-
tion of —0.01%. This gives an indication of the insensi-
tivity of the classical stopping-power formula to the
choice of b, .

getQx
2iaK, (a) =

) (,),,)—,-dx,

e ll GX

2', (a) =
J (,),/, dx. (3.2c)

A derivation of Eq. (3.1) can be found in Jackson (1975).
For b &b„Bohr assumed that the electrons could be

treated as if they we re free, with the result
2Z2 4

mv' b'+ (Z,e'/mv'y)' ' (3.3)

Equation (3.3) is valid classically for arbitrary impact
parameters for p«1 and is valid for p —1 for those
values of b for which the c.m. (which denotes the center-
of-momentum frame for the electron-nucleus system)
scattering angle is small. In any case, this expression
reduces to the correct one for b =0 a,s long as ~y«M, .

The energy lost in collisions with b & b, is found by
integrating Eq. (3.1) from b =b, to b =~ (Jackson, 1975):

C. Bethe, Pano solution

Several attempts were made to incorporate quantum
effects into the energy-loss problem in the 1S20s.
Henderson (1922) applied the concept of discrete en-
ergy levels to the problem by limiting the possible en-
ergy transfer to an atom from below by the ionization
potential. In this manner he obtained an expression
for the stopping power which is roughly one-half of the
correct one (Henderson essentially ignored the distant-
collision contribution to the energy loss which accounts
for the other one-half). The original classical result of
Bohr was recreated in a quantum- mechanical treatment
by Gaunt (1927), who treated the perturbation of an atom
by the passage of a heavy charged particle moving with
constant velocity. Bethe (1930) solved the problem
quantum mechanically in the fi~st Born approximation
whereby the entire system [(charged particle)+atomj
is considered within the framework of quantum theory.
His result differed from that of Bohr (1913) and Gaunt
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(1927) and he attributed the deviation between his and
Gaunt's results as being due to the failure of Gaunt to
take the recoil of the heavy particle into account. How-
ever, it was shown by Mott (1931) that it is completely
legitimate to do as Gaunt did, provided the electron
mass is much less than that of the incident particle.
Mott pointed out that Gaunt had made an error in one
of his approximations which led to the erroneous re-
sult. The extension of the Bethe formula to relativistic
velocities for the incident particle was accomplished by
Bethe (1932) and Mgller (1932).

In this subsection we will outline the Bethe-Born
technique as reviewed by Fano (1963). Fano's article
is highly recommended as a lucid summary of the pen-
etration of protons and mesons in matter.

The significant difference between Bethe's approach
and that of Bohr is the use by Bethe of momentum
transfer rather than impact parameter to characterize
collisions. The principles of wave mechanics prohibit
the formation of an infinitely localized wave packet for
a particle with well-defined momentum. For very close
collisions the classical treatment, which presupposes
the ability to use such wave packets, must break down.
Hence there exists a class of collisions for which a
classical calculation is illegitimate. Bethe (1930) at-
tacked the problem with the lowest-order fully quan-
tum-mechanical approximation developed by Born
(1926), subsequently referred to as the Born approxi-
mation. This is essentially equivalent to Fermi's
"golden rule" [see Merzbacher (1970) or any textbook
on quantum mechanics] whereby the transition rate per
unit time from state ~s) to state Ik) under the action of
a perturbation V, is

+ pen, A(r,.), (3.11)

where B and r,. are the coordinates of the projectile and
the jth atomic electron, respectively, and a and &,. are
the. corresponding Dirac velocity operators. Since the
Dirac formalism is utilized for the interaction, the
spin and magnetic moment of the electrons are properly
treated. By imposing the small-scattering-angle ap-
proximation Fano (1963) shows that the above consi-
derations lead to the conclusion that the cross section
for excitation to the atomic state ~n) is, to lowest order
in Z,

2vZ,'e'
I E„(q) I

'
m~' ' q'(1+q/2 m)e'

is most conveniently expressed in the Coulomb gauge
in which the interactions among a system of charged
particles are given by the instantaneous Coulomb in-
teractions plus the interactions of the particle currents
with the transverse vector potential which describes
the free photon field (see Sakurai, 1967). Byquantizing
the transverse vector potential one achieves a fully
relativistic, quantum-mechanical formalism. Sakurai
(1967) gives the quantized vector potential:

lj2 X/2
A(x) = — Qe (~„s e'" *+a'„P e '" "),

ku

(3.10)
where a„„(a~ ) is the annihilation (creation) operator
for a photon with momentum AR and linear polarization

(k j =0 since V A=0 in the Coulomb gauge). The
perturbation is

Z2

V, = —Q — ' —Z,eo!.A(R)
I B—r,. I

~ (k I V, I m)(m I V, I s)
m S

(3.8)
Ip, G„(q)I'

[Q (1+q/2m c*)—R'„/2m c*.])
&, and E are the unperturbed energy eigenvalues for
states ~s) and ~m), respectively, and p&(&, ) is the en-
ergy density of final states evaluated at the initial en-
ergy. If E„"E„dP/dt =0 which must be regarded as
an auxiliary condition to Eq. (3.8). It is important to
realize that the matrix elements in Eq. (3.8) do not
assure energy conservation.

In accord with the discussion of Sec. III.A the target
atom is assumed to be infinitely'massive. If p (p')
denotes the initial (final) momentum of the projectile
and if

~
0) (~n)) denotes the initial (final) atomic states,

~
k) and

~
s) are given by

~k) = V '/'exp(ip' R/5) ~n), (3.9a)

~
s) = V ' ' exp (ip R/h)

~
0) . (3.9b)

V is the volume of a large box in which the system is
placed and B is the position vector of the projectile.
Note that we are neglecting internal degrees of freedom
of the projectile (such as spin) in describing its quan-
tum state. This is permissible due to the assumedlarge
projectile mass. The perturbation V, is taken to be the
interaction between the incident particle and the atomic
electrons. The particle-nucleus interaction does not
lead to atomic excitation and hence is neglected. V,

1+ 2 d (3.12)

E (q ) = Z ~ /2 g (n
~

e '+ ~&'/"
~
0), (3.13a)

G„(q) =Z, ' 'g(n
~
a,.e"" "~0),

j
and p, =p —(p' q)q/p'. The stopping power is given by

(3.13b)

S N, p fE o„, d„
n

(3.14)

where X, is the number of atoms per unit volume. ' It
has been assumed here and above that the ground-state
energy Eo is zero. In order to evaluate Eq. (3.14)
Fano (1963) considers three regions for q.

By atom we mean the smallest aggregate of matter which
can be treated as an independent unit.

where q = p —p',

q(1 ~q/ 2m)e=q'/2m

(q is the energy transferred to an unbound electron for
momentum transfer q), and
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~z) I (3.16)

where I is the logarithmic mean excitation potential per
electron and is given by

lnI =Q f„lnE„, (3.16)

where

(i) For very small Q it is assumed that q r,./5«1
so that Eqs. (3.13a) and (3.13b) reduce to dipole matrix
elements. This is assumed valid for Q &Q, .

(ii) For Q, &Q &Q, only the first term inEq. (3.12) is
assumed to contribute. This is the so-called longi-
tudinal term which arises from the instantaneous Cou-
lomb interaction (the other term is called the transverse
term; it arises from the coupling to the photon field).
Q, is assumed to be much less than mc'.

(iii) For Q &Q, it is assumed that the electrons can
be considered to be free.

By imposing the above approximations Fano (1963)
obtains the relativistic Bethe formula

impact parameter b„just as Bohr had done, inside of
which the electrons could be treated as if they were
free. However, unlike Bethe, Bloch did not assume
that it was valid to consider the electrons to be rep-
resentable by plane waves in the center-of-momentum
frame. The confinement of the electrons to the interior
of the cylinder of radius b, introduces transverse mo-
mentum components which interfere with one another
under the influence of the scattering potential. This
interference leads to a scattering cross section which
can be quite different from the quantum-mechanical
Coulomb cross section for plane-wave scattering. Of
course, for a very weak scattering center the confine-
ment size b, should be large enough to permit the use of
plane-wave quantum-mechanical results, in which limit
the Bethe formula should obtain. At the other extreme
the effective size of the scattering center should be
large enough to permit the construction of wave packets
which scatter as classical objects, in which case the
Bohr formula should result. This in fact is the result
that Bloch obtained. In the nonrelativistic limit the
Bloch formula is

4mÃZ ~e 2m v
(

is the dipole oscillator strength for the ~zth energy level
(a sum over degenerate states is implied). The Thomas-
Reiche-Kuhn sum rule gives the result that Kf„=l.

D. Bloch solution

The difference between Eqs. (3.6) and (3.15)'prompted
Bloch (1933a) to investigate the manner in which the
classical and quantum-mechanical formulas comple-
mented one another. He began by showing that Bohr's
distant-collisiori energy-loss formula was completely
valid quantum mechanically for a bound system provided
that &E(b) was interpreted as a mean energy loss,
summed over all possible atomic transitions. Bloch
needed to impose the dipole approximation (i.e. , b» xo,
where r, is a typical "radius" of the atom) to show this
and in this approximation he noted that the higher-order
corrections to the energy loss at impact parameter b

vanished for odd powers of Z, and that the &, term was
a factor (Z,e'r, )'/(bhv)' smaller than the Z,' term This.
corresponds to a fractional correction of order

(vo is a typical a.tomic electron velocity) for energy loss
in collisions with impact parameter greater than b, .

Bloch then proceeded to analyze the close collisions
quantum mechanically. He considered an intermediate

Equation (3.6) will be referred to as the Bohr formula even
though this relativistic expression did not appear in Bohr's
early publications. It has been noted that QE(b) as used for
close collisions is strictly valid for small c.m. angles and it
reduces to the proper limit for large c.m. angles. The cor-
rect classical relativistic expression is quite complicated and
is undoubtedly invalid in any case since quantum-mechanical
effects are important for these close collisions. However, Eq.
(3.6) will serve as a standard classical expression for com-
parison with other results.

—Beg(1+i '
) (3.17)

where P(z) is the logarithmic derivative of 1 (z), the
gamma function. " In the limit of weak scattering,
IZ, o./p«1 and the nonrelativistic Bethe formula
results. For

I
Z,

I
o.'/p» 1,

Re&(1+iZio.'/»-»(IZ.
I
o'/p)

and P(1) =ln(1. 123/2), and the nonrelativistic Bohr
formula results. Bloch's relativistic formula,

4mÃZ~e 2m') 1
( 2) P

me' I 2 2

+ ii(1) —Rea(i+ (3.18)

${z) is commonly referred to as the digamma function. See
Abramowitz and Stegun (1970) for a discussion of its proper-
ties.

does not reduce to the Bethe formula as Z, o.'/P- 0. This
is due to the fact that Bloch used an incorrect close-
collision cross section for the scattering of free, in-
finitely broad electron wave packets by the projectile.
It does not necessarily imply that the nonrelativistic
correction term,

y(1) —Rey(1+i Z, n/P),

is incorrect in the relativistic limit. There is, . however,
some question as to the validity of this correction for
relativistic velocities. One might expect to shed some
light on this by considering the re1.event parameter,
Z, n/p, which determines the magnitude of the correc-
tion. Z, o./P can be thought of as the ratio of the classi-
cal size of the scattering center, Z,e'/(m@2), to the
de Broglie wavelength of the scattered electron in
the c.m. frame. Each of these quantities would be re-
duced by a factor of order y in a relativistic situation
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which would leave the ratio unchanged. Hence one would
expect the size of the correction to approach a constant
value as P - 1. By accurately measuring the range of
600-MeV/amu "Fe nuclei, Tarle and Solarz (1978) have
found that the results are slightly less than two standard
deviations away from being consistent with the Bloch
corrections, when other effects are taken into account.
They find that the magnitude of the observed Bloch
correction is less than that given by the nonrelativistic
term. On the other hand, Andersen et al. (1977) find
that the observed Bloch correction is about one standard
deviation larger than the calculated value. The former
measurement was made at P =0.8 and the latter at 0.08.
Thus it seems that further theoretical and experimental
work is required to clarify the role of the Bloch cor-
rection.

E. Summary of the Bohr-Bethe-Bloch results

In this subsection we will summarize the assumptions
and approximations utilized by the various authors in
the derivation of the above formulas and we will illus-
trate the effect of some of these assumptions by com-
paring the different results. Although it is difficult to
pin down precisely the assumptions made by the various
authors, particularly when one assumption may involve
several effects, the following list emphasizes the most
crucial points:

(i) The projectile velocity is much smaller than that
of light in vacuum (Bohr, Bloch)."

(ii) The projectile velocity is much larger than char-
acteristic orbital electron velocities (Bohr, Bethe, Bloch).

(iii) The absorber is a dilute, cold gas (Bohr, Bethe,
Bloch).

(iv) M~ » my (Bohr, Bethe, Bloch).
(v) Internal structure of the projectile is neglected

(Bohr, Bethe, Bloch).
(vi) Projectile bremsstrahlung is neglected (Bohr,

Bethe, Bloch).
(vii) Radiative corrections are neglected (Bohr, Bethe,

Bloch).
(viii) Close collisions are considered to be inter-

actions of the projectile with free electrons (Bohr,
Bethe, Bloch).

(ix) The close collisions take place between the pro-
jectile and electrons which follow classically well-
defined trajectories (Bohr).

(x) The close collisions take place between a very
heavy projectile and electrons which are characterized
by plane-wave initial states in the c.m. frame of ref-
erence (Bethe)."

(xi) Distant collisions are treated as first-order
dipole excitations (Bethe, Bloch).

(xii) Distant collisions are treated as classical en-
ergy transfer to a charged harmonic oscillator in the
impulse approximation (Bohr).

(xiii) The validity of the first Born approximation is

assumed (Bethe).
(xiv) The projectile charge state is constant (Bohr,

Bethe, Bloch).
(xv) The spin of the electron is neglected in all types

of collisions (Bohr, Bloch).
There is considerable overlap and interplay among

the assumptions listed above. For example, it was
shown by Bloch (1933a) that in the dipole approximation,
there are no corrections to the stopping power which
contain odd powers of Z ~. However, Hill and Merz-
bacher (1974) showed that for a harmonic-oscillator
model of the atom, there is a Z~ correction term which
arises from the quadrupole term which is considered
as a perturbation. Bloch's conclusion was not incorrect
but it did place more emphasis on the validity of the
dipole approximation than was deserved. The lesson
to be learned from this example is that one must be
quite careful in correcting lowest-order approximate
results. All assumptions must be isolated and ac-
counted for with equal weight. If this is done improperly
the corrected version could be in greater error than the
lowest-order approximation. The stopping-power prob-
lem is particularly susceptible to this effect. One has
distant and close collisions (as well as means of con-
necting the two) and one has large and small projectile
velocity and charge. Many approximations are involved,
some of which start breaking down at the same point.
This hinders experimental clarification and one must
rely to a considerable extent on very careful analysis
of data.

Assumption (i) poses no particular difficulties since
the Bethe theory is generally chosen as that which is
most readily amenable to correction for failure of the
above assumptions. Assumption (ii) can be corrected
for in the case of singly charged particles with the use
of the semiempirical shell corrections described in
Sec. III.F. Failure of assumption (iii) istakeninto ac-
count by channeling theory and the density-effect cor-
rections described in Sec. III.G; Although the density-
effect corrections are effectively performed to lowest
order, one would not expec t higher-order terms to
significantly affect the results. Assumptions (iv)-(vii)
rely on the projectile moving with nonultrarelativistic
velocities. These will be discussed in some detail in
Sec. IV.A. Assumptions (viii)-(xii) involve the cou-
pling of, the close to the distant. collisions. These will
be discussed in Sec. IV.C following the treatment in
Sec. IV.B of higher-order Born terms [assumption
(xiii)]. Electron-capture and -loss processes [assump-
tion (xiv)] will be discussed in Sec. IV.D. Assumption
(xv) is essentially a consequence of assumption (i).
Furthermore, neglect of the electron spin affects only
the close collisions as evidenced by agreement of
Bloch s relativistic distant-collision stopping-power
result with that of Bethe.

Aside from details associated with physical processes
of only secondary importance, the most crucial as-
sumptions are those involving the validity of the Born

Bohr and Bloch present some results which are relativisti-
cally valid; however, they do not obtain self-consistent ex-
pressions for the stopping power of a relativistic projectile.

This assumption is contained in assumption (xiii); we have
explicitly stated it here to emphasize that this assumption was
not required by Bloch.

This is also seen to be the case if one examines the first
Born-Mott cross section; the p w/~ term in Eq. (3.46) is a
consequence of the electron spin, and this is quite negligible
for distant collision values of zg which are of the order 100 eV.
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result is identical to that of Bohr even up to relativistic
corrections, we see that any differences between the
three theories must involve the close and/or immediate
collisions.

This contention is supported by the simple plausibility
arguments given by several authors [Hossi (1952) and
Jackson (1975)] for construction of the Bethe formula
from semiclassical considerations. The usual trick is
to proceed as Bohr did for b &b&. For b &b„one rec-
ognizes, that the exac t result of Bohr can be obtained by
setting b~ ——Zqe /mv r and using only the "distant-col-
lision" energy loss. Physically, this amounts to cutting
off the impact parameter at the value for which the
kinematically limited energy transfer obtains with a
simplified 1/b2 function for energy transfer. However,
as the argument goes, if the de Broglie wavelength of
the electron in the c. m. frame exceeds Zqe /mv2y, it
must be used in place of the classical minimum impact
parameter because smearing of the wave packet of the
electron eliminates energy transfer for the close col-
lisions. Hence, if Z&o.'/P & 1, the quantum-mechanical
value of bq leads to Bethe's formula, and if Z, o/P & I,
Bohr's result is obtained. These conditions are pre-
cisely the same as those given by the criteria for the
validity of the first Born approximation and the classi-
cal approximation, respectively. One, must be careful
not to attribute too much significance to the above
argument. It is in fact little more than dimensional
analysis where characteristic classical and quantum-
mechanical distances are inserted into ln(b, d/b«„),
where b,d is the adiabatically limited impact parameter
(see Lindhard, 1976). One should realize that there is
actually no division of validity between the close and
intermediate collisions as might be guessed from the
simple plausibility argument. In fact, the derivation
of the criterion for Born (classical) validity is indepen-
dent of impact parameter and applies equally to inter-
mediate and close collisions.

It is important to appreciate the importance of binding
in assessing the validity of the different formulas. Mott
and Massey (1965), following Williams (1945), discuss
the connection between the Bohr and Bethe theories by
assuming free-electron scattering. In terms of the
scattering angle of an incident electron, they find that the
stopping power is proportional to In(& /8 „), with
8,„-I and &,„=5/mvb~ for o.'/P «1, and &,„=e /
mv b~ for &/P» 1. It seems then that the distinction
between classical and quantum- mechanical stopping
power lies in the, distant collisions, which correspond
to small scattering angles. The apparent paradox is
resolved when one realizes that &,„=0. This is so
since energy transfer is possible without scattering by
means of having the atomic nucleus absorb any trans-
verse momentum which is necessary. Thus a more
careful analysis is actually required. The success of
the above approach in obtaining the correct answers is
again due to the usefulness of dimensional analyses.

It is amusing to consider yet one more way of ob-
taining the Bethe formula for stopping power. As will
be described in more detail in Sec. III.G. Landau and
Lifshitz (1960) calculate the distant-collision energy
loss by a semiclassical method wherein the wave vec-
tor k of the Fourier transforms of the classical fields
is interpreted as the wave vector of an exchanged

I = In(2mv /I) —ln(1 —P ) —P —C/Z2. (3. 21)

C/Z2 is referred to as the shell correction term.
Bichsel (1972) indicates how the theoretical work of
Walske (1952, 1956) and Bonderup (1967) are incor-
porated with experimental work in order to obtain a
semiempirical expression for C/Z2 which is valid for
Z& ——1. The fitting procedure described by Bichsel
yields experimental values for I in addition to the shell
corrections. Since higher-order Born terms are prob-
ably included in C/Z2, Bichsel cautions the reader that
the shell corrections are only valid for particles with
Z&

——1. Figure 2(a) is a reproduction of the results ob-
tained by Bichsel (1972) for C/Z2. In Fig. 2(b) we
reproduce the figure given by Fano (1963) for the shell

photon. By adding this to the close-collision energy
loss obtained with the use of the classical Rutherford
cross section in terms of momentum transfer one may
obtain the exact Bethe formula in the nonrelativistic
limit. Thus the only quantum mechanics required has
been the interpretation of small-momentum- transfer
processes in electromagnetic interactions as being
mediated by discrete, exchanged quanta. It is interesting
to speculate on the course of events had someone taken
what was known in 1910 and added the notion of virtual
photons to correctly derive the Bethe formula 20 years
ahead of time. For very large values of Z&, this treat-
ment would break down due to the need to include multi-
photon exchange processes, in which case the impact-
parameter approach of Bohr would be valid. Lest one
become too enamored with the semiclassical physics
embodied in the Landau approach, we should point out
that it may merely be fortuitous that the correct an-
swers are obtained due to the equality of the classical
and quantum-mechanical Coulomb scattering cross sec-
tion. Indeed, it is clearly untenable to adopt the posi-
tion that electrons follow mell-defined trajectories and
that it is merely in a statistical observational sense
that the uncertainty principle applies. Otherwise, the
Bohr formula. would be correct, which it is known not
to be for Z, n/P & 1.

F. Low velocities: Shell corrections from the Bethe
theory

In the remainder of this section we will concentrate
our attention on the first-order quantum-mechanical
treatment of Bethe. Most of the experimental and the-
oretical work on stopping power has been confined to
a regime where this theory is most appropriate. In
Sec. IV we will indicate how this theory must be modi-
fied in order to remain applicable in other regimes.

It was remarked in Sec. III.E that I- becomes negative
at very low velocities. As Fano (1963) emphasizes,
the validity of the Bethe formula relies-on the assump-
tion that the speed of the incident particle is much
greater than that of the electrons bound to the absorbing
medium. Only in this case can one cleanly separate
low- momentum- transfer collisions from intermediate-
momentum-transfer collisions and in such a way apply
the generalized sum rule first derived by Bethe (1930).
In principle one can correctly calculate the stopping
power within the framework of the first Born approxi-
mation without recourse to the generalized sum rule.
The formal expression for this is given by
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FIG. 2. (a) Shell corrections for protons as given by Bichsel (1972). 2(b) Shell corrections for protons as given by Fano (1963).
2(c) Theoretical and experimental shell corrections for aluminum for Andersen et al. (1977). (CIZ&)th is calculated by Bonderup
(1967); (CIZ2) is the semiempirical proton shell correction such as that given by Fano (1963) and Bichsel (1972) which includes
higher-order Born terms; C/Zq is the pure shell correction (which is only a function of velocity and not of Z~) as obtained by sub-
tracting the Bloch and Lindhard corrections. 2(d) Theoretical and experimental shell corrections for copper from Andersen et al.
(1977). 2(e} Theoretical and experimental shell corrections for silver from Andersen et al. (1977). 2(f) Theoretical and experi-
mental shell corrections for gold from Andersen et al. (1977).

corrections which were obtained by techniques similar
to those employed by Bichsel (1972). In each of these
figures the shell corrections are plotted as a, function of
proton kinetic energy. To apply them to other singly
charged particles it is necessary to use that proton en-
ergy which corresponds to the same velocity of the other
particle type under consideration.

A comparison of Figs. 2(a), 2(b) reveals significant
differences between the results of Fano and Bichsel.
For example, at a proton energy of 8 MeV in lead, the
Fano shell correction is 0. 30 and the Bichsel shell
correction is 0. 25. The difference between these two
c'orrections amounts to a difference in stopping power
of about 2~/0. Sinep this is roughly the magnitude of the
error of stopping power measurements at these en-
ergies, such differences should be regarded as being
a measure of the uncertainty of these semiempirical
estimates of the size of the shell corrections.

For the purpose of this review, the shell corrections
are intended to serve as a cushionto soften the transi-

tion into the complex low-velocity region. For this
reason we anticipate some of the discussion to appear
in Sec. IV regarding the extraction of the - true shell
corrections, apart from higher-order Born terms.
Andersen et al. (1977) have empirically determined
the Z', and Z~ corrections to the stopping power. They
have used these measured corrections to separate the
shell corrections from the higher-order Born terms.
In Figs. 2(c)-2(f) these corrections C/Z2, are compared
with those which include higher-order corrections
(C/Z, )'and those calculated by Bonderup (1967) (C/Z, ),„.
Good agreement is obtained between C/Z2 and (C/Z2), „.
Note that C/Z2 becomes quite close to (C/Z2)' at large
velocities (the difference amounts to less than 10/o in
stopping power above 5 MeV/amu). This is due to the
small higher-order corrections to proton stopping power
at these velocities. Hence, if one adopts the reasonable
point of view that the shell corrections can be looked
upon as a purely velocity-dependent contribution which
corrects for the failure of the generalized sum rule,
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then one is in error by less than 1/o in stopping power
if he uses the Fano or Bichsel shell corrections above
10 MeV/amu for any charge.

q, = (Z, Z, /&, )' '(,/d)' '/1670P ' ', (3.23)

where a~ is the Bohr radius. If we assume Z, /A~ ——0. 5,
then p, —1' for Z&

——79 (gold) at p=0. 1. This is clearly
a manageable alignment angle (i. e. , one must be aware
of the alignment conditions so that channeling can either
be avoided or achieved, depending on the experimental
goals). At higher velocities it becomes much more
difficult to meet the channeling criterion. For this
reason and due to the absence of sufficiently thick crys-
tals to match the penetration depth of high-energy par-
ticles we will subsequently assume that solid absorbers
are amorphous. 5 For a more complete treatment of
charged-particle penetration in crystals, including a
discussion of channeled-particle stopping power and
how this differs from that in amorphous absorbers, the

The gas under consideration has been cold, in the sense
that atoms are assumed to be in their ground state.

5This assumption is often made incorrectly for low-energy
stopping-power measurements. This accounts, at least in
part, for the large spread (much more than 1%) of these mea-
surements performed-by different groups at energies less than
1 MeV/amu (Ziegler, 1978).

G. Condensed-matter effects

1. Channeling

In all of the preceding discussion it has been tacitly
assumed that the medium through which the charged
particle passed was a very dilute gas. Only for such a
situation is it legitimate to incoherently add the energy
lost to individual atoms to obtain the total stopping pow-
er. 4 In condensed media one encounters several prob-
lems not present for gaseous absorbers. If, for ex-
ample, the solid possesses symmetry with respect to
spatial displacement (i. e. , it is a crystal) one would
not expect a priori that its stopping power relative to
an impinging beam of charged particles would be in-
dependent of the crystal orientation. One might ex-
pect that any such orientation dependence would be neg-
ligible for absorbers of finite thickness and for beams
with nonzero divergence. However, as was first pre-
dicted by Stark and Wendt (1912) and was first observed
by Piercy et al. (1963) and Lutz and Sizmann (1963),
charged particles wh-ich enter a crystal lattice at small
angles relative to the crystal rows or planes undergo
a set of correlated small-angle scattering events which
tend to force them to move down crystal "channels. "
Lindhard (1964) derived the following expression for
the critical angle between the incident-particle tra-
jectory and the crystal axis for channeling:

p, =C(2Z&Z2e /Ed)'~ (3. 22)

where C is a number between 1.5 and 2, and d is the
interatomic spacing along the direction of the channel.
As it stands, Eq. (3. 22) is applicable for nonrelativistic
velocities. It, is easily modified to be generally appli-
cable by replacing F. with 2 pv (p is the momentum of the
projectile; see Esbensen et al. , 1977). If P& P, the
penetration into the crystal is essentially the same as
for a random medium. If we take C = 1.75, then

reader is referred to the review articles by Datz et al.
(1967) and by Gemmell (1974). A discussion of rela, —

tivistic channeling of positive and negative pions, kaons,
and protons is to be found in Esbensen et al. (1978).

2. Density effect

The neglect of the channeling effect is implicit in the
Bohr formulation by the prescription

S ==N
~

n I (b)2wb db (3. 24)

and in th = Bethe for mulatio ~ by

S=N+f, R„dv„
n

(3. 14)

g,d = 20Py A for Au = 100 eV . (3. aS)

For typical gases at energies less than those at ex-
treme relativistic velocities, it is seen that at any given
time the projectile is interacting with no more 'than one
gas molecule. The incoherent sums given by Eqs.
(3. 24) and Eq. (3. 14) are thus valid for gases except
at extreme relativistic velocities. For solids, the den-
sity is increased relative to gases by about a factor of
1000 so that the interatomic spacing is reduced by a
factor of order 10. In this case it is no longer true
that the projectile interacts only withone atom at atime.
Nor is it legitimate to think of the atoms as independent
of each other. A correct theory would be based on Eq.
(3. 14) where the "atoms" would be considered to be
aggregates of matter which were essentially complete
in themselves, i. e. , they would not interact strongly
with the remainder of the absorbing medium. If this is
done properly the dielectric screening of the macro-
scopic electric field, i. e. , the longitudinal interaction,
is automatically accounted for. Dielectric screening
is, after all, nothing more than the effect of electrons

The concept of an adiabatically limited impact parameter
is equally valid in a quantum-mechanical treatment as in
Bohr's classical treatment. This is because Eq. (3.1) is
identical to that obtained in a quantum-mechanical calculation
via time-dependent perturbation theory, with the understand-
ing that a sum over the excitation energies 5w of the atom
must be made, weighted by the oscillator strengths of the
transitions. In a more general sense the limiting impact
parameter is a consequence of the adiabatic theorem, dis-
cussed in most quantum-mechanics textbooks, which requires
that a system disturbed more slowly than its relaxation time
revert to its initial state after the perturbation returns to
zero.

In each case, a thin slab of absorber of thickness dx
is assumed to contain atoms distributed randomly across
the slab. Another implicit assumption reflected by
Eqs. (3.14) and (3.24) is that the total energy lost is
that given by an incoherent sum of energy lost to indi-
vidual atoms (or molecules). If the absorber is a gas,
the intermolecular separation is equal to 33 A at STP
(standard temperature and pressure: T =273 'K and

P =1 atm). For 8~=100 eV the adiabatically limited
impact parameter is equal to'
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4m&Z,'e' ypcq, p' p'
~&0

pygmy Q 2 2w y
ln ' ——+-

P
(3.26)

interacting with each other in response to the electric
field of the projectile. Another modification which is
required in order to extend the Bethe theory of energy
loss to condensed media involves the use of the quan-
tized vector potential [Eq. (3. 10)] to describe the trans-
verse interaction. Neamtan (1953) has pointed out that
the strength of the interaction between the electrons of
a medium and the photon field is characterized by the
index of refraction n=[a(co)] ~2. If n is significantly
different from unity it is no longer legitimate to think
in terms of free photons propagating with the speed of
light through the medium. Alternatively one must con-
sider the propagation of combined electronic-electro-
magnetic excitations with the group velocity c/n through
the medium. It is thus inappropria. te to use Eq. (3. 10)
as a basis for the description of the transverse inter-
action.

Fano (1956a., 1956b, 1963) has discussed how the quan-
tum- mechanical theory of Bethe is to be modified to
take into consideration the "density effect" discussed
in the preceding paragraph. It is to be emphasized that
Fano's theory treated the entire problem within the
framework of quantum mechanics, without recourse
to classical macroscopic electrodynamics, as was the
the case with early treatments of the density effect
by Swann (1938) and Fermi (1940). Crispin and Fowler
(1970) have reviewed the theoretical and experimental
aspects of the density effect in the ionization energy
loss of fast charged particles in matter. They indicate
the degree of equivalence between the quantum-mechan-
ical and classical techniques and conclude that, al-
though the quantum-mechanical approach is in principal
capable of giving higher-order corrections, the clas-
sical approach of Fermi (1940) as modified and refined
by Sternheimer (1952, 1956, 1961), should be used as
a "theo re tie al yards tick for comparison with expe ri-
ment. " The quantum-mechanical approach will become
more desirable as more detailed information on photo-
ionization cross sections and form factors, which serve
as input to the theory, become available. For these
reasons we will henceforth consider the density effect
from the classical macroscopic point of view. This
should be satisfactory, at least in the regime of en-
ergies where consideration of the density effect can be
thought of as giving rise to a correction to the stopping
power, rather than being the dominant effect.

A very fine presentation of the classical density ef-
fect can be found in Landau and Lifshitz (1960). Their
approach can be more properly called semiclassical in
that distant collisions are considered from the point of
view of classical macroscopic electrodynamics but are
characterized by momentum transfer rather than impact
parameter, as was done by Fermi and Sternheimer.
This characterization is made possible by interpretation
of the vector k which appears in the Fourier trans-
forms of the classical fields as the wave vector of an
exchanged photon. Landau and Lifshitz calculate the
work done on the particle by the electric field produced
by this particle. This is the energy lost by the particle
in distant collisions. Their result can be summarized
by the expression

where kq, is the maximum momentum transfer for which
the above treatment is valid and p= &a(0)/i, where (u(q)is
is defined by

(u'(q)[s(cu (q)) —1/P'] = c'q', (3.27)

where c(~) is the complex dielectric constant of the
medium. The quantity & plays the role of the mean
excitation frequency and is defined by

InQ= 2 aim — ln(w +p ) ~ des. (3.28)
7r(d p 0 s co

In those cases for which there are two roots to Eq.
(3.27) with q =0, that value of ~(0) with the largest
imagine. ry part is to be used in the definition p = co(0)/i
Hence, if P'&1/s, [where c, =s(0)], p=0 and if P'&1/
c„p is defined by P's(ip) =1. For conductors s, =~ so
that the latter value of p should always be used.

The close-collision energy loss is just that from the
Bethe theory (Fano, 1963):

4 RZ
n (3.29)

By adding Eq. (3.26) to Eq. (3.29) one obtains the total
energy loss

(3.30)

where the mean ionization potential I and the density-
effect correction 5 are given by

and

2 t" 1
lnI = 2, co Im — « loco den

Yt'(d
p C l.) (3.31)

(d Im — ln I+, d~

--p'(1-P') .
2

(3.32)

~2 1/2
lnI =+f„ln R&u„1+

n n

(3.33)

(3.34)

Note that Eq. (3.33) does not agree with that from the
Bethe theory [Eq. (3.16)], except in the limit co~-0 as
one would have for a gas. 'There is a low-velocity den-
sity effect, which is caused by the dielectric screening

~~Sternheimer and Peierls (1971) show that the distinction
between conductors and nonconductors is of no practical con-
cern. Low-velocity determinations of I are assumed to con-
tain the slowly varying low-velocity density-effect correction
for conductors.

For the case of a nonconducting absorbing medium,
z, is finite and there is a sharp dividing velocity below
which there is no density effect. correction, namely,
P, =I/Ws, . I is then just the experimentally measured
mean ionization potential, if the measurements are done
at velocities below P, ." Sternheimer (1952, 1956) has
expressed I and 6 in terms of the oscillator strengths
and energy levels of isolated atoms:
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of the longitudinal interaction, which reduces the stopping
power by a small but finite amount.

By expressing p in terms of atomic properties,
namely

14—

12—

IO—

(3.35)

Sternheimer (1952, 1956, 1966, 1967) has calculated 6

for a number of substances by incorporating optical
measurements of f„, ~„, and experimental determina-
tions of I in a semiempirical fit. Sternheimer (1952,
1956) used values of I which differ from the presently
accepted values (which will be discussed in Sec. III.H).
For this reason, and in order to extend the calculation
of the density effect to substances not previously con-
sidered, Sternheimer and Peierls (1971) obtained a
general expression for the density effect based on up-
dated information regarding f„, cu„, and I. The func-
tional form for ~ originally proposed by Sternheimer
(1952) is still used and is given by

0
I 2

16
I I I I I I I I I

12—

10—

5 10 20 50 100 200 500 1000 5000
p v

ff
0, X&XO

6 =
& 4.606 X+ C + a(X, —X), X', &X &X,

4.606X+C, X, &X,

(3.36a)

(3.36b)

(3.36c)

0 I

2 5 10 20 50 100 200 500 1000 5000 '

px

FIG. 3. (a) Density-effect corrections for various solids ob-
tained with parameters of Table I. 3(b) Density-effect correc-
tions for various gases.

where

X =log„(Py) . (3.37)
The values for C, &, ~„~„and m to be used are given
in Table I. The maximum error in stopping power is
claimed to be +2% by Sternheimer and Peierls (1971)
while the average error is less than + 1% in stopping
power. In Figs. 3(a) and 3(b) we plot 6 as a function of
Iog, o(P&) for various solids, liquids, and gases, as ob-
tained with the parameters from Table I. Table II con-

C =-2 ln(I/S~~) -1
m=
a =-(C+4.606~0)/(~i-Xo)-

Solids and liquids

I
I& 100 eV
I& 100 eV
I—100 eV
I—100 eV

I cl
C &3.681
C «3.681
C &5.215
C ~5.215

Xo
0.2
o.326 fc f

—1.o
0.2
o.326 fc f

—1.5

Xg
2.0
2.0
3.0
3.0

Gases at STP (T = 0 C and P = 1 atm)

TABLE I. Parameters to be used in the general expression for
the density-effect correction (Sternheimer and Peierls, 1971).

tains a list of plasma energies for several kinds of sub-
stances which were used in computing values for Fig.
3. The values for I which were used in these compu-
tations were those given by Barkas and Berger (1967).
A more complete discussion of these selections follows
in Sec. III.H.

H. Mean ionization potential /

The central parameter to stopping-power theory in
the first Born approximation is I, the mean ionization
potential. Neglect of the density effect leads to a defi-
nition of I which depends only on atomic (or molecular)
properties as indicated by Eq. (3.16). We have seen
that inclusion of the density effect in stopping-power
theory yields an expression for I which depends on the
physical state of the absorbing medium [Eq. (3.33)].
Since measurements of I are for the most part done with
solid absorbers, comparison with theoretical values
tends to be clouded by this physical state or atomic
aggregation effect. We will delay this comparison until
we first separately discuss the experimental and the-
oretical determinations of I.

10.0
10.5
11.0
11.5
12.25 ~

fc
fc

C
C

& 11.0
& 11.5
& 12.25
& 13.804
—13.804

I cl
fcf &Io.o
fcf &xo.5

1.6
1.7
1.8
1.9
2.0
2.0
o.326 f c f

—2.s

Xg
0

4.0

p
4. p
5.0
5.0

1. Experimental determinations of /

There ape several ways in which I can be determined
experimentally.

(a) One can directly measure the energy lost in thin
absorbers by measuring initial and final energies with
some configuration of electromagnetic fields. One then
requires that:

Gases at density equal to p&&(density at STP) 4nÃZ~2e 2mc P y ~ C (3.36)
Xp(g) =Xp-2 loggp(g); a(g) =a

X g(g) =X) —
2 loggp(g); C(q) = C+2.303 log)p(g) Since & is related to the measured value of && in a

manner which depends on the thickness of the absorber
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TABLE II. Density and plasma energy for various substances.

Subs tance Chemical formula p (g/cm') Ace~ (eV)

Beryllium
Polyethylene
Lucite, Perspex, Plexiglas

(polyme thyl methacrylate)
Lexan, Makrofol (polycarbonate

of bisphenol A)
Poly vinylto luene
Anthracene
%ater
Aluminum
Silicon
Copper
Germanium
Nuclear emulsion
(C5)

Silver
Sodium iodide
Cesium iodide
Gold
Lead
Hydrogen gas (STP)
Nitrogen gas (STP)
Oxygen gas (STP)
Air (STP)
Helium gas (STP)
Neon gas (STP)
Argon gas (STP)
Krypton gas (STP)
Xenon gas (STP)

Be
(CH, )„

( C5H80p) „

(C~cHi4O3).

C (4H)()
H20
Al
Si
Cu
Ge

0 ~ 128Ag+ 0.128Br +

0.001I + 0.406H + 0.176C
+0.040N + 0.1190 + 0.002S

Ag
NaI
CsI
Au
Pb
Hp

Np

02
0.78N2 + 0.2102 + 0.01Ar

He
Ne
Ar
Kr
Xe

1.848 (20 C)
0,93 + 0.01
1.19 + 0.01

1.204

1.032
1.25
1.000 (4.C)
2.699 (20 C)

(25.C)
8.96 (20 C)
5.323 (25 C)
3.8 + 0.2

10.50 (20 'C)
3.67
4.51

19.32 (20 'C)
11.35 (20 C)
8.96 x10 5

1.246 x10
1.422 x10
129 x10 3

1 779x10
8 97 x10
1.774 x10
3 725 xlO
5 837 x10

26.10
21.01
23.10

22. 92

21.56
23.40
21.46
32.86
31.05
58.27
44.14
37.87

61.63
36.07
39.46
80.25
61.13
0.272
0.719
0.768
0.731
0.272
0.608
0.815
1.153
1.412

and on the velocity and charge of the projectile" one
can measure the quantity ln I+C/Z„pr ovi dedlog»(8&)
&X, so that 6 =0. This velocity is at least that of an
820-MeV proton for all solids and gases (see Table II).
All of the key experiments related to the determination
of l utilized particles with energies less than that at
which the density effect "turns on. '"'

(b). One measures energy lost by calorimetric tech-
niques (Andersen et a/. , 1966). Subsequent analysis
proceeds as in (a) above.

(c). One measures relative stopping powers by de-
termining the amount of matter which causes the same
amount of slowing as in a reference absorber.

(d). One measures ranges at different energies. I is
found from the shape of the range-energy curve or from
direct integration of the stopping-power formula.
Becommended values of I which are based on experi-
ments such as those above and in Table III can be found
in NCHP (1961), Fano (1968), Bichsel (1968), Turner
et al. (1970), Bichsel (1972), and Andersen and

AE=S&x only in the limit of very thin absorbers and for
values of Z~, p~, and Qx such that the energy-loss distribution
is symmetric. If this is not the case one must be careful
about the experimental and theoretical modes of the distribu-
tion which are being compared (see Ahlen, 1977).

SSee, for example, Table III, which is a reproduction of
that appearing in Dalton and Turner (1968), and is the set of
experiments analyzed by these authors in order to obtain
values of I.

Ziegler (1977). These values are given in Table IV.
Several comments regarding these values are in order.
The remarkable agreement of the various sources on
the value of I for aluminum (the average of the six val-
ues from Table 1V is 164+ 1 eV) was achieved by ne-
glecting the early result of 150 eV obtained by Mather
and Segre (1951) on the basis of range measurements of
340-MeV protons. The discrepancy between this mea-
surement and those obtained at low energies was at-
tributed by Barkas and von Friesen (1961)to an improper
deconvolution of the Bragg ionization curve obtained by
Mather and Segre (1951). This explanation was con-
vincingly verified by Zrelov et al. (1974) who went to
great pains to include every correction in the decon-
volution of their Bragg curve (in most respects this
experiment, which utilized 660-MeV protons, was quite
similar to that performed by Mather and Segre). In
so doing they obtained a value of I for copper of 320
+4 eV which agrees very well with the average value
of 317+2 eV from Table IV. Hence the evidence is
quite strong for the conclusion that I is independent of
energy, as it must be from the Bethe theory.

It is important to note that the experimental values
for I should be independent of whether or not higher-
order corrections are included in the stopping-power
formula. This is so because all velocity dependence
(and hence dependence on higher-order Born correc-
tions) is included in the shell corrections. Of course,
proper evaluation of the shell corrections requires
some knowledge of higher-order corrections. This
will be discussed in more detail in Sec. IV.
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TABLE III. Key experiments for determination of I from Dalton and Turner (1968).

Reference Type of experiment

Energy (Me V)

p = proton
d = deuteron Mater ials studied

Bakker and Segre (1951)

Sachs and Richardson (1951,
1953)

Thompson (1952)

Brolley and Ribe (1955)
Brolley and Ribe (1955)

Bichsel, Mozley, and
Aron (1957)

Burkig and MacKenzie (1957)

Zrelov and Stoletov (1959)
Zrelov and Stoletov (1959)

Nielsen (1961)
Barkas and von Friesen (1961)
Nakano, MacKenzie, and

Bichsel (1963)
Andersen et al. (1966)
Andersen et al . (1967)

Stopping power relative
to aluminum

Absolute stopping power

Relative stopping power

Absolute stopping power
Stopping power relative
to air

Range measurement

Stopping power relative
to aluminum

Range measurement
Stopping power relative

to copper
Absolute stopping power
Range measurement
Stopping power relative

to aluminum
Absolute stopping power
Absolute stopping power

18 p

270 p

4.43 p
8.86 d

19.8 p

658 p
635 p

1- 5p, d
752.2 p
28.7 p

5-12 p, d
5—12 p, d

CH2, Li, Be, C, Al, Fe, Cu, Ag, Sn, W, Pb, U

Al, Ni, Cu, Rh, Ag, Cd, Sn, Ta, Au

Liquid H, N, O; solid C; H, C, N, O, and
Cl in condensed compounds

H, He, C, N, air, 0, Ne, Ar, Kr, Xe (gases)
H, He, C, N, air, 0, Ne, Ar, Kr, Xe (gases)

Be, Al, Cu, Ag, Au

Be, Al, Ca, Ti, V, Fe, Ni, Cu, Zn, Nb,
Mo, Rh, Pd, Ag, Cd, In, Sn, Ta;W, Ir,
Pt, Au, Pb, Th

Cu
CH2, Be, C, Fe, Cd, W

Be, Al, Ni, Cu, Ag, Au

Al, Cu, Pb, U, emulsion
Be, Al, Ti, V, Co, Ni, Cu, Ag, Ta,
W, Ir, Au

Al
Cu, Be, Ag, Pt, Au

2. Theoretical determinations of I

Bethe (1930) was able to calculate a value of I for
atomic hydrogen with the use of the exact hydrogenic
wave functions. Of course his results only applied
to a gas of atomic hydrogen, a situation not encountered
in the laboratory. In any case Bethe obtained that I„
=15.0 eV. Bethe (1930) attempted to extend his cal-
culations to heavier atoms through the use of hydrogen-
like wave functions but met with little success. He
overestimated the stopping power in gold by about 100"/o.
Bloch (1933b) used the Thomas-Fermi model for atoms
to show that I should be proportional to Z2. This is in
fact a good approximation for Z2 &20 which corresponds
to the domain of applicability of the Thomas-Fermi
model. Ball et al. (1973) have obtained Bloch's pro-
portionality constant and have found that I/Z2 ——4. 95
eV in the Thomas-Fermi model. This is too small by
about a factor of 2 to account for the data in Table IV
and hence rigorous application of the Thomas-Fermi
model cannot be accepted as corresponding to reality. 2

Dehmer et af. (1975) summarize the status of cal-
culations ' of various moments of dipole oscillator-
strength distributions for isolated atoms with 2~ Z2
«18. Included in these calculations are those for I.
Generally speaking, one can divide these calculations
into rigorous ones utilizing realistic atomic wave func-
tions and based on Eq. (3. 16) and into those based on

Bloch's (1933b) contribution to the theory of the mean ioni-
zation potential is often acknowledged by pairing him with
Bethe in reference to Eq. (3.38). In view of Bloch's (1933a)
correction to Bethe's formula [Eq. (3.17)] this reference can
be misleading. Hence we will not use the expression "Bethe-
Bloch formula" in this review.

See Dehmer et gl. (1975) for references.

the local plasma model of Lindhard and Scharff (1953)
as performed by Chu and Powers (1972).

In Fig. 4 we plot a variation of Fig. 9 from Dehmer
et al. (1975). We show the results of the local-plasma-
approximation calculations of Chu and Powers (1972) as
open circles. The results of the accurate calculations
performed by Dehmer et al. are displayed as solid
circles and the mean value of all the accurate calcu-
lations summarized by Dehmer et al. are displayed as
dots with error bars representing a standard deviation
for the mean value, Experimental datahave beenplotted
as solid squares. These have been obtained by aver-
aging the values of Table IV as follows: (i) For solids
and liquids we average the tabulated values with equal
weight to obtain I(Li) =40. 0 eV, I(Be) =63.9 eV, I(C)
=79. 0 eV, I(N) =85. 1 eV, I(O) =98.3 eV, I(A1) =164
eV, I(Si) =169.3 eV, I(Cl) =173 eV; (ii) for rare gases
we average the tabulated values with equal weight to
obtain I(He) =42. 3 eV, I(Ne) =133.3 eV, I(Ar) = 188 eV.
In all cases the error of the mean is smaller than the
solid square.

It can be seen from Fig. 4 that the shapes of the re-
sults of the two types of calculations as a function of
Z& are quite similar but are offset by a nearly constant
amount. Inokuti (1978) suggests that this difference
may involve the parameter z introduced by Lindhard
and Scharff (1953) to relate the excitation energy to the
local plasma energy via E =you&~(r) u~(r) is .not the
same as the bulk plasma frequency we have been using;
it is the local plasma frequency of the atom. Intuitive
arguments advanced by Lindhard and Scharff suggest
that y=v2. However, other choices cannot be ruled
out.

The general shape of I/Z2 can be seen to be roughly
constant, in qualitative agreement with the Bloch
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TABLE IV. Values of mean ionization potential from various sources. Values are expressed in eV.

Z2 Mater ial
NCHP
(1961)

Fano
(1963)

Bichsel
(1968)

Turner et al .
(1970)

Bichsel
(1972)

Andersen and
Z iegler
(1977)

1
1
1

3

5
6
6
6
6
7
7
7
7
7
8
8
8
8
8
9

10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
'38
39
40
41
42

45
46
47
48
48
49

H& (gas)
H (liquid)
H (saturated compounds)
H (unsaturated compounds)
He (gas)
Li (solid)
Be (solid)
B (solid)
C (graphite)
C (saturated compounds)
C (unsaturated compounds)
C (highly chlorinated}
N2 (gas)
N (liquid)
N (amines, nitrates)
N (ring)
N (unspecif ied)
0, (gas)
0 (liquid)
0 (-0-)
0 (0=)
0 (unspecified)
F (unspecified)
Ne (gas)
Na (unspecified)
Mg (unspecified)
Al (solid)
Si (solid)
P (unspecified)
S (solid)
Cl (liquid)
Cl (unspecif ied)
Ar (gas)
K (unspecified)
Ca (solid)
Sc (solid)
Ti (solid)
V (solid)
Cr (solid)
Mn (solid)
Fe (solid)
Co (solid)
Ni (solid)
Cu (solid)
Zn (solid)
Ga (unspecified)
Ge (solid)
As (unspecified)
Se (solid)
Br (unspecified)
Kr (gas)
Hb (unspecified)
Sr (unspecified)
Y (unspecified)
Zr (solid)
Nb (solid)
Mo (solid)
Tc (unspecified)
Hu (unspecified)
Bh (solid)
Pd (solid)
Ag (solid)
Cd (solid)
Cd (unspecified)
In (sol id)

20.7
17.6
14.8

78.4
77.3
75.1
64.8

85.1
99,5
76 ~ 8

98.3
98.5
88.9

170

~ ~ ~

462

18.3 + 2.6

15 — 18
15 — 18
42 + 3
40, 38

81
77 — 80
77 — 80

79 —102
79 —102

91 —101
91 —101

190

273

315

360

18

~ ~ ~

164

184

312
322

350

475

18.2

44.3

61.7

81.2

101

132

189

187

224
250

277
290
312
316
319

407
422

4.40
456
466
462

19.2

41.3

I

~ ~ ~

129

182

191
214
230
238
260
275
282
303
306
319
328

358

~ ~ ~

18.8

41.7
47.6
62.7

77.3

~ 0 0

86.7

97.7

120
139
148
156
162
165
172
180

185
194
193
196
218
230
239
259
270
280
296
310
322
320
324
330
338
340
349
358
358
363
370
378
390
406
410
423
443
458
466

471
480
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TABLE IV. (Continued)

Material
NCRP
(1961)

Fano
(1963)

Bichsel
(1968)

Turner et al.
(1970)

Bichsel
(1972)

Andersen and
2 iegler
(1977)

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
77
78
79
80
81
82
83
84
85
86
87
88
89
90
90
91
92

Sn (solid)
Sb (solid)
Te (unspecified)
I (unspecified)
Xe (gas)
Cs (unspecified)
Ba (unspecified)
La (unspecified)
Ce (solid)
Pr {unspecified)
Nd (unspecified)
Pm (unspecified)
Sm (unspecified)
Eu (unspecified)
Gd (solid)
Tb {unspecified}
Dy (unspecified)
Ho (unspecified)
Er (solid)
Tm (unspecified)
Yb (solid)
Lu (unspecified)
Hf (unspecified)
Ta (solid)

(solid)
Re (unspecified)
Os (unspecified)
Ir (solid)
Ir (unspecified)
Pt (solid)
Au (solid)
Hg (unspecified)
Tl (unspecified)
Pb (solid)
Bi (solid)
Po (unspecified)
At (unspecified)
Rn (unspecified)
Fr (unspecified)
Ra (unspecified)
Ac (unspecified)
Th (solid)
Th (unspecified)
Pa (unspecified)
U (solid}
Air (gas)
Emuls ion (solid)
Methane (gas)

750

812

945
85

761

788

872
85

323
45

500

730
740

780
790

820

~ ~ ~

900

486

480

692
704

711
760

856

500

707

730

780

487
494
495
498
497
490
483
480
493
507
521
537
548
562
564
585
600
623
640
652
662
672
682
684
693
698
707

735
759
755
756
748
759
765
775
785
793
796
799
808

825

847

26
p

22—

) 18

DU I4

IO

0 ~
yk p" o

~-. Oi

I I I I I

0

Q
~4 ~

I I I I I I I

AVG. ACCURATE CALCULATIONS
(TO RIGHT OF ACTUAL Z2I
ACCURATE CALCULATIONS
OF OEHMER ET AL. (19161
LOCAL PLASMA MODEL OF
CHU AND POWERS (1972}
EXPERIMENTS

o +
fo~oooo

~ ~ ~ ~ ~

Thomas- Fermi model

I I I I I I I I I I I I I I I I

0 2 4 6 8 IO I2 I4 I6 IB

Z2

FIG. 4. Comparison of theoretical and experimental values for
the mean ionization potential. See text for a discussion.

(1933b) theory, modulated by a periodic dependence
on Z2 which is correlated with atomic shell structure.
Increased binding for closed-shell atoms seems to
cause an enhanced value for I/Z2. There is rather
remarkable agreement between those values for I/Z2
obtained from accurate calculations and from experi-
ments for those cases for which such a comparison is
justified, namely, for the rare gases. This obser-
vation strengthens the conclusion that the differences
between measured values of I for solids and the cal-
culated values for the corresponding atoms represent
a real effect, which will now be discussed in the con-
text of the Bragg rule and the low-velocity density effect.
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N lnI =Nq lnI&+N2 lnI&+ (3. 39)

where N; is the number density of electrons associated
with element i, and I, is the atomic mean ionization
potential per electron for that element. The impli-
cation of Eq. (3.39) is that the stopping power in a com-
pound is the sum of the stopping power s of the individual
elements.

It is not obvious that Bragg's rule should work at all.
When several atoms combine to form a molecule, the
energy levels of the valence electrons can change con-
siderably. As an example recall that Bethe calculated
that I(H) =15.0 eV. 22 Platzman (1952) has calculated
I for molecular hydrogen and has obtained I(H2) =19
eV. 23 This result, which is corroborated by experi-
mental measurements of H2 gas Iaveraging these values
from Table IV yields I(H2) =18.5 eV], is not surprising
in view of the fact that the bond dissociation energy for
the hydrogen molecule is 4. 52 eV (Weast, 1968). The
effect is not so easily seen by comparing I(N2) and
I(02) with the corresponding theoretical values I(N) and
I(O) from Fig. 4. The experimental values plotted there
are for liquid nitrogen and oxygen. I(02) =99.6 eV from
the averaged value for oxygen gas from Table IV. The
value I(N2) =87 eV seems to be inconsistent with the
fairly well-estavlished value of I(air) =85 eV. By
accepting this latter value we obtain I(N2) =80 eV.
Dehmer et al. (1975) refer to experimental works which
give I(02) =101 and 93 eV and I(N~) =90 and 78 eV. The
smaller values are from work by Hanke and Bichsel
(1975) on N2 and 02. Dehmer et af. (1975) obtain the
theoretical values I(N) = 77 eV and I(O) = 82 eV for atom-
ic nitrogen and. oxygen, respectively. Other theoretical
treatments quoted in this reference yield I(N) =77 and
82 eV and I(O) =99 eV. Treating these measurements
and calculations with equal weight we obtain I(N2) = 83
+ 4 eV, I(02) = 98 + 3 eV and I(N) = 79 a 2 eV, I(O) = 91
+ 9 eV. Although it is tempting to ascribe these values
to binding effects, the measurements and calculations
are not accurate enough to convincingly demonstrate
this. Indeed, the molecular dissociation energies for
N2 (9. 84 eV) and 02 (5. 16 eV) are small enough to be
masked by the experimental and theoretical fluctuations.

This is slightly higher than 13.6 eV, the ionization poten-
tial of the hydrogen atom in the ground state. This is due to
the contributions of the continuum states. Although the dipole
oscillator strengths for these states decrease rapidly with
energy, they are sufficiently large to account for Bethe's
result. The near equality of I with the photoioniz ation poten-
tial accounts for the success of Sternheimer's (1952) semi-
classical calculation of the density-effect correction.

Note that we always interpret I as the logarithmic mean
ionization potential per electron. In this convention, then,
I(H2) =I(H) in the absence of chemical-binding effects.

3. Suggested values of l for gases, liquids, solids and
compounds: Bragg's rule and the low-velocity density
effect

Starting with Bragg and Kleeman (1905) it has almost
universally been assumed in any application of stopping-
power theory that chemical- and atomic-aggregation
phenomena affect stopping power to a very limited ex-
tent. This is embodied in the Bragg rule for the eval-
uation of the mean ionization potential:

TABLE V. Ratio of mean ionization potential in gas phase to
that in condensed phase as given by theoretical models of
Sternheimer (1953b) and Brandt (1956) and by comparison of
exact calculations of Dehmer et al. (1975) to data,

Material
I(gas) /I(condensed)

Sternheimer Brandt Dehmer et al.

Ll
Be
C
Al
Cl

0.84

0.90
0.97

0.88
0.70
0.84
0.73
0.84

0.88
0.75+ 0.16
0.84
0.76
0.95

It seems clear from these observations that chemical
binding does affect the mean ionization potential but
that the effect decreases rapidly with increasing atomic
charge. This conclusion is consistent with the obser-
vations of Thompson (1952), who compa, red the stopping
power of 270-MeV protons in liquid hydrogen, nitrogen,
and oxygen and in solid carbon with that in condensed
compounds containing these elements. Thompson ob-
served that the largest discrepancies from Bragg's law
involved hydrogen and were of the order of 2% in stopping
power. The deviations were negligible for chlorine
(and presumably for heavier elements). Compounds
containing carbon, nitrogen, and oxygen obeyed Bragg's
law to within —1% in stopping power. For the proton
energy utilized by Thompson, a difference of stopping
power of 1% in C, N, O corresponds to a difference in
I of the order of 10 eV. Similarly a difference of 2%
in H corresponds to a difference in I of 4 eV. These
energies are comparable in size to those discussed in
the preceding paragraph. The increased validity of
Bragg's law with increasing Z2 relies on the increased
dependence of I on inner-shell electrons which are in-
sensitive to chemical effects. The NCRP (1961) data
in Table IV on elements from different chemical-bond
configurations are based on those from Thompson's
thesis. They have been renormalized to agree with
I(Al) =164 eV.

Dehmer et al. (1975) interpret the good agreement
of their calculations with observations of I for N2 and
02 gases as indicating that the larger discrepancy be-
tween theoretical values of I and those observed in solids
is due to an atomic aggregation effect. Sternheimer
(1953b) calcula. tes the ra, tio I(gas)/I(condensed) based
on his low-velocity density-effect calculations. Brandt
(1956) finds I(gas)/I(condensed) due to the rearrange-
ment of valence electrons in the condensedphase. These
ratios are given in Table V along with the "observed"
ratio, using the accurate calculations quoted by Dehmer
et al. (1975) as a guide to a measure of I(ga, s). One
would supposedly multiply Sternheimer's results by
Brandt's to obtain the total effect. This is clearly too
small to account for the Dehmer et al. ratios.

Deviations from Bragg's rule should be more apparent
at low energies for which the logarithmic term in the
Bethe formula becomes a sensitive function of I. This
feature has been capitalized on in many recent experi-
ments. Chan et al. (1977) examined the stopping power
of low-energy He ions (0. 06—0. 5 MeV/amu) in satu-
rated alcohols and ethers in the gas phase. They found
that Bragg's rule holds to within 1% in stopping power
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for single bonds at all energies. This was not the case
for double bonds. The stopping power for double-
bonded oxygen was found to be 6/0 higher than that ex-
pected from application of Bragg's rule to single-bond
data at 0. 5 MeV/amu. Lodhi and Powers (1974) per-
formed a similar experiment with C-H, C-F and C-
H-F, C-Br-F compounds. They foundthat, the stopping
power of hydrogen compounds was larger than I;hat ex-
pected on the basis of experimental data for H&.

Baglin and Ziegler (1974) tested Bragg's rule in solid
compounds with 0. 5-MeV/amu He nuclei and found no
breakdown within the 2%% experimental uncertainty of
measurements of stopping power. Langley and Blewer
(1976) have tested Bragg's rule in erbium and erbium
oxide with 0. 1—0. 6-MeV/aniu He nuclei and protons of
the same range of velocities. They observe slight
deviations from Bragg's rule below 2 MeV but none at
the 1% level above 2 MeV.

Feng et al. (1974) have used Mg, Al, Si, and Fe and
their oxides to test the Bragg rule with 0. 25—0. 5-
MeV/amu He nuclei. They observe no deviations from
Bragg's rule at the 2% level. By choosing absolute
stopping cross sections from other work, these authors
conclude that the stopping power of solid oxygen is from
(6-22%) smaller than would be expected from gas-
phase stopping-power measurements. They conclude
that this is a physical-state effect which consists of the
two separate effects of the sort considered by Sternheimer
(1953b) and Brandt (1956).

All of these low-energy experiments are consistent in
quality with what one would expect on the basis of
Thompson's high- ene rgy experiments. Detailed quan-
titative agreement between theory and experiment with
regard to deviations from the Bragg rule and to atomic-
aggregation effects, be they predominantly due to polari-
zation effects (low-velocity density effect) or valence-
electron rearrangements, has not yet been achieved. It
seems safe to conclude that experimental determination
of I is sufficiently accurate to ensure accurate cal-
culation of stopping power for heavy singly charged par-
ticles in the regime between 10 and 1000 MeV/amu. The
error in stopping power should be less than 1%.

In Fig. 5 we plot the data of Table IV (excluding those
of Andersen and Ziegler) along with two semiempirical
functions which have been advocated for use in calcu-

22 I I f I I I I I I I I & I I I I I 1

20—

I8—

I 6—
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od

CV

N
M

IQ—

I
I I I I I I I I I I t I I I I I I I I I

0 I 0 20 30 40 50 60 70 80 90 IOO

Z2

FIG. 5. Plot of I/Z2 as given by experiments. The expres-
sions for I/Z2 as given by Dalton and Turner (1968) and for
I~+/Z2 as given by Sternheimer (1963) are also displayed. The
scatter at low atomic number is due to variations of chemical
and solid-state structure. The scatter at large atomic number
is due to experimental errors.

lating I. Sternheimer (1963) suggests the use of the fol-
lowing formula for the adjusted mean ionization po-.
tential I,d,. :

12 + 7/'Z, eV, Z, & 13
Iadi

Z2
9.76+ 58.8 Z-, '-" ev, Z, &13,

where I,d,- is defined by

lnI d,. =lnI+C/Z2(p = 1) .

(3.40)

(3.41)

I,~ is so defined to avoid the necessity of using the
large-velocity limit of the shell corrections. I,d,. differs
from I significantly only for very large valises of &,.

Dalton and Turner (1968) have suggested that the
expression

11.2+ 11.7 Z, eV, &,- 13

52.8+8.71Z, eV, Z, &13
(3.42)

I. Distributions for energy lost in absorbers: Landau,
Vavilov, Bohr, and Tschalar distributions

The entirety of our preceding discussion has involved
average values of the stopping power. This leads to no
confusion if one is dealing with a regime of projectile
charge and velocity and absorber thickness for which
the distribution of energy lost in the absorber is Gaus-
sianly distributed, as one might expect would be the
case on the basis of the central-limit theorem. This
theorem states that the probability density function of

be used to evaluate I.
The large scatter of experimental points for Z, &10

is due primarily to physical and chemical variations
rather than experimental error. This emphasizes the
fact that it is not legitimate to quote a value of I for
such elements. It is crucial to specify whether the
element is in a compound or not. and to specify if it is
in a solid, liquid, or gas phase. 'The scatter of the
large &, data is a measure of the experimental error
in this regime.

We feel that there are no significant systematic trends
present in the six sets of recommended I v'alues of
Table IV. For this reason we- recommend use of av-
eraged values. We also would place more emphasis
on the unspecified I values of nitrogen than on Fano's
molecular value of 88 eV. These give an average value
of 82 eV which is consistent with the established value
for air, namely, 85 eV. Similarly we treat the un-
specified values of I for 0, on an equal basis as the gas
values. In Table VI we present our recommended val-
ues and the corresponding values for I and I,d,. as given
by Eqs. (3.40) and (3.42), respectively. The quoted
errors for the recommended values are equal to the
standard deviation for the mean value of I obtained
from the author to author averaging procedure.

In Fig. 6 we plot the fractional error in stopping power,
~

M/S ~, as a function of fractional error in the mean
ionization potential,

~

&I/I ~, for various values of I and

P. We use the Bethe formula with Bichsel's shell cor-
rections [Fig. 2(a)]. The energies are small enough so
that the density-effect corrections are equal to zero.
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TABLE VI.
spectively.

Becommended values of I and values for I,. &; and I as given by'Eqs.
All values are expressed in eV.

(3.40) and (3.42) re-

Material Becommended Iaaj

H2
H

H

H

He
Ll
Be
B
C
C
C
C

1
1
1
1
2
3

5

6
6
6

sed compounds)
ensed compounds)

sed compounds)
ensed compounds)
d condensed

s in condensed

ed compounds)N

Op

0
0
0
p~
Ne
Na

Mg
Al
Si
P
S
Cl
Ar

7
8
8
8
8
9

1Q

11
12
13
14
15
16
17
18

d compounds)
compound s)

K19
Ca
Sc
Tl
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As

20
21
22
23
24
25
26
27
28
29
30
31
32
33

Se
Br2
Kr
Bb
Sr
Y
Zr
Nb
Mo
Tc

34
35
36
37
38
39
40
41
42
43

45 Bh
46 Pd
47 Ag
48
49
50
51
52

Cd
In
Sn
Sb
Te

(gas}
{liquid)
{saturated conden
(unsaturated cond
(gas)

(solid�}

(solid)
{solid)
(graphite)
(saturated conden
(unsaturated cond
(highly chlorinate

compound)
(gas)
(liquid)
(amines, nitrate

compounds)
(rings in condens
(gas)
(liquid)
(-0- in condense
(0= in condensed
(gas)
(gas}
(solid)
(Sol 1d)

(solid}
(sol id)
(solid)
(sol id)

{liquid)
(gas)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)
{solid)
(solid)
{solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(liquid)
(gas)
{solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(sol id)
{solid)
(solid)
{solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)

76.8
98.5
98.3
98.5
88.9

120
133
148
156
164
169
172
180
173
188
193
191
216
228
242
260
273
275
296
310
317
322
324
340
338
340
349
357
358
363
370
382
399
414
410
423
442
457
469
467
481
498
494
495

1.5

1
2

9
+ 8

2
1
2

1
6

18.5 + 0.2
20.7
17.6
14.8
42.3~ 0.5
40.0~ 1.6
63.9 + 0.7
76
79.0 + Q. 7
77.3
75.1
64.8

82 + 4
85.1
99.5

19
19
19
19
31

55
67
79
79
79
79

91
91
91

91
103
103
103
103
115
127
139
151
163
172
182
191
200
210
219
228
238
247
257
266
276
285
295
304
314
324
333
343
352
362
372
381
391
400
410
420
429
439
448
458
468
477
487
497
506
516
526
535

23
23
23
23
35
46
58
70
81
81
81
81

93
105
105
105
105
117
128
14Q
152
163
175
183
192
201
210
218
227
236
244
253
262
271
279
288
297
305
314
323
332
34Q
349
358
366
375
384
392
401
410
419
427
436

453
462
471
480
488
497
506
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TABLE VI. ( Continued)

Material Recommended

58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76

Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta

Be
Os

80
81
82

84
85
86
87
88
89
90
91
92

Hg
Tl
Pb
Bi
Po
At

Ac
Th
Pa
U

I
Xe

55 Cs
56 Ba

(solid)
(gas)
(solid)
(so»d)
(solid)
{solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)
{solid)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)
{solid)
(solid)
(solid)
(solid)
(solid)
{solid)
(solid)
(solid)
(liquid)
(solid)
(solid)
(solid)
(solid)
(solid)
(gas)
(solid)
(solid)
(solid)
(solid)
(solid)
(solid)

498
489 + 9
490
483
480
493
507
521
537
548
562
564
585
600
623
640
652
662
672
682
703 ~10
722 + 14
698
707
733 + 3
758 +16
770 + 7
756
748
793 *11
765
775
785
793
7.96
799
808
762 + 64
837
884 +18

545

564
574
584
593
603
613
622
632
642
651
661
671
680
690
700
709
719
729
739
748
758
768
777
787 '

797
806
816
826
835
845
855
865
874
884
894
903
913
923

514
523
532
541
549
558
567
575
584
593
602
610
619
628
636
645
654
663
671
680
689
697
706
715
723
732
741
750
758
767
776
784
793
802
811
819
828
837
845
854

I I I I I I I I I I

= 0.05

0
0 4 6 8 IO 12 14

I arrr I (~)
FIG. 6. Sensitivity of the stopping power to the value used for
I for several values of I and P.

the sum of a set of commonly distributed random vari-
ables approaches a Gaussian distribution in the limit
of an infinite number of random variables. See Feller
(1968) for a rigorou. , discussion of this very important
theorem. If we identify our random variable as being
the energy lost in a very thin slab of an absorber, then
the sum of the energies lost in the complete set of slabs
which constitutes an absorber of finite thickness should
be determined by a Gaussian distribution, provided the
absorber is thick enough to ensure the validity of the
central-limit theorexn.

As is always the case for application of the central-
limit theorem to a specific problem, it is difficult to
estimate how large the number of random variables
(in this case, the thickness of an absorber for a given
projectile charge and velocity) should be before one
can be assured that the probability density function is
reasonably approximated by a Gaussian function. Bohr
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(1915) considered the problem by assuming the absorber
to be thick enough so that this criterion is actually sat-
isfied. He then obtained the standard deviation of the
resulting distribution by adding in quadrature the stan-
dard deviations of the distributions of the thin slabs.
The central-limit theorem does not require the thin
slab distributions to be Gaussian to validate this pres-
cription. This can be written as

max dye

de dX
~min

(3.43)

where it has been assumed that the projectile velocity
is constant throughout the absorber. (dn/du dx)dzu is
the number of collision events per unit path lengthwhich
result in an energy loss between m and m+dze. Bohr
assumed that the collision spectrum could be approxi-
mated by the free-electron spectrum which is given by
a suitable transposition of the Rutherford cross section:

dye 2vrNZ, e
ttZO dX V7'0 28

(3.44)

By assuming nonrelativistic projectile motion, m

= 2m'' for M, » m. It is also assumed that m

»se i„, in which case

0'g=47TNZ e x. (3.45)

In actuality, Eq. (3.43) should be written as a double sum
over excitation levels and momentum transfers in such a way
that QJnl ill depends on the level . Fano (1963 ) discusses thi s in
greater detail. It is shown that

u)mi&(E&) = &&/2~V ) )(V P/'0 ) 28III~ ~

Hence gemj„+& Q)m~ except for small velocities, where shell
corrections start being important.

According to the I jndhard-Scharff theory, 0 =0.~ if P
&3& /Z2, and 0 =2oJ3L for lower velocities than this where L
is defined according to Eq. (3.19).

This is the result obtained by Bohr (1915) and it is the
one against which theory and experiment is usually
compared. Hvelplund (1978) emphasizes that the Bohr
formula requires the following conditions for its vali-
dity: (i) the target must be randomly oriented; (ii) the
energy lost must be much less than the incident en-
ergy; (iii) the projectile velocity must be much larger
than the orbital electron velocities of the target; (iv)
there must be no correlation effects among scattering
atoms; (v) there is no straggling due to variation in
incident energy; and (vi) there is no straggling due to
nuclear scattering. To this list should be added the
requirement that the projectile charge does not fluctuate
due to electron-capture and -loss processes. Much

' recent work has been involved with unraveling energy-
loss fluctuations in the nonrelativistic regime. Bonder-
up and Hvelplund (1971) discuss a modification of the
straggling theory of Lindhard and Scharff (1953)." Hoff-
man and Powers (1976)present evidence that the Bonder-
up and Hvelplund technique does not fit the data well at
low energies (- 100 keV/amu). Sigmund (1976) pointed
out the importance of pair correlation effects in strag-
gling and Chu (1976) has calculated o' with the use of
Hartree-Slater- Fock wave functions. Besenbacher
et al. (1977) and Bednyukov et al. (19VV) have observed

effects due to charge-state fluctuations. The latter
group observes that 0.~ fits the data well for protons
in aluminum at 1 MeV and is still accurate to within
1(P/p (5% accuracy for ae) at 100 keV.

As it is well known by experimentalists, it is much
more difficult to measure the width of a distribution
with any degree of accuracy then it is to locate thepeak.
Hence the experimental data for the widths of energy
straggling distributions are not as reliable as those
for the mean value which, as we have previously noted,
becomes less reproducible below 1 MeV/amu. In ad-
dition, a great multitude of practical and fundamental
complicating factors come into play at these low en-
ergies. Much work needs to be invested in order to
separate the various contributions to low-energy strag-
gling. For the purpose of this review, we will assume
that Bohr's formula is valid above 1 MeV/amu (with
appropriate modifications for relativistic effects) for
those cases where a Gaussian distribution is in order.
For lower velocities the reader should consult the ref-
erences named above for a more complete discussion. "

Bohr s formula is easily modified for relativistic
velocities. One merely replaces the Rutherford cross
section with the first Born approximation of the Mott
cross section. In this review, we will reserve the de-
scription "Mott cross section" for the differentialcross
section for the Coulomb scattering of Dirac particles by
an infinitely heavy scattering center. See Mott (1929,
1932) for a derivation of the exact cross section, without
recourse to perturbation techniques, via an exact phase-
shift analysis. This term is often applied to the cross
section obtained from the first Born approximation
(which considers only single-photon exchange processes).
The first Born approximation to the Mott cross section
yields the free-electron-production spectrum analogous
to Eq. (3.44).

(3.46)

where w =2rnc'P2y' for my«M, . In the above equation
FB denotes first Born. With the use of Eq. (3.46), Eq.
(3.45) becomes

(3.47)

Although Eq. (3.47) is actually a valid expression for
the variance of the energy loss over a wide range of
experimental conditions, it is a measure of the width
in the sense that the full width athalf maximum (FWHM)
is equal to 2.355o. for only a rather limited regime. This
regime is that of the above-mentioned Gaussian dis-
tribution. For any charge and velocity we can always
imagine an absorber which is thin enough so that only
a very small probability exists for ejecting a high-en-
ergy electron (i.e. , a 6 ray). If we let u, denote some
energy well above an atomic electron energy,

It Inight be noted that this transition velocity depends on the
charge of the target and of the projectile; for Z& = 92, electron-
capture and -loss fluctuations become important for T» 1
MeV/amu. Also, ' lead absorbers are more subject to the re-
striction v»gp than lighter absorbers. These factors should
be considered in any practical application.
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P(w, ) =
~m~

O'M) Wax
fop

the FWHM is:

FWHM=4. 02$ . (3.54)
is the probability per unit length of ejecting a 6 ray .

with an energy at least as great as w, . If P(w, )x is less
than unity, the differential spectrum for total energy
loss &, f(x, &), must approach (dn/dw dx)x with the
transcription se =& for &&sea and»&Sx. This is mani-
festly different from a Gaussian distribution, and Eq.
(3.47) cannot be used as a measure of the width of the
distribution. Bohr (1915) recognized this problem and
he realized that the resulting distribution would be
asymmetric with a tail on the high-energy-loss side.
The experimentally meaningful quantities in this case
become the most probable en'ergy loss and the full width
at half maximum (FWHM). It remained for Landau
(1944) to solve the transport equation for f(x, &) in the
limit that M) „-. Landau's treatment also relied on
the assumption that the mean energy lost in the absorber
is much greater than typical atomic energies. This
enabled him to legitimately neglect, the effects of dis-
tant collisions and to use the free-electron-production
cross section.

The key parameter in Landau's theory is

$ = (2mNZ,'e /mv )x. (3.48)

and

] ~ g+fOO

@(x)= . exp[ulnu+Xu]du
2mi -.-;-

y = [~ g(in g/& +1 e)]/~,

(3.50)

(3.51)

with

ln p' =In[(1 —P') I'/2mv']+P' (3.52)

and C =0.577. . . is Euler's constant. Results of the
appropriate numerical integration enabled Landau to
conclude that the most probable (mp) energy loss be-
comes

&,(Landau) = ([In($/s') + 0.373] . (3.53a)

Maccabee and Papworth (1969) have reexamined this
problem. These authors also perform the indicated
numerical integration and obtain

&,= ([»((/c') + o-198] (3.53b)

This differs from Landau's result by 3% for 10-MeV
protons in O. l-mg/cm2Al, by 2.2% for 50-MeV protons
in 1.0-mg /em Al, by 1.7% for 100-MeV protons in 10-
mg/cm' Al, and by 1.2% for 1-GeV protons in 0.5-g/
cm' Al. Maccabee and Papworth (1969) also find that

If (/w &0.01 (where w =2 mc'p' y), there are a suf-
ficiently small number of high-energy 6 rays so that
Landau's approximations are valid. One obtains

(3.49)

These expressions neglect the polarization phenomena
associated with the density effect. Since the density ef-
fect is essentially independent of the close collisions
which govern the overall shape of the energy-loss dis-
tribution, one merely subtracts the mean-density-ef-
fect correction from Eq. (3.53b) to obtain the correct
value for the most probable energy loss:

&, = ([In($/r. ') + 0.198 —5] . (3.53c)

This implies that in this limit

ao
(3.55)

where a, is the Bohr radius .Equation (3.55) is remark-
able in that it is independent of the detailed atomic
properties of the absorbing medium (I has been canceled
by the density-effect correction) and of the projectile
energy.

Crispin and Fowler (1970) have reviewed the experi-
mental status of the density effect. Interpretation of
measurements related to this effect rely on proper
evaluation of the experimental mode (i.e., whether one
measures the mean or most probable energy loss).
Hence any conclusions implicitly contain an assumption
of the validity of the Landau theory (most density-ef-
fect-related experiments are such that $/w & 0.01). It
is found (see Crispin and Fowler for references) that
within experimental errors (typically -+5% in stopping
power) Eq. (3.53c) is valid (any distinction between
Landau's result and that of Maccabee and Papworth is
lost in the noise) when one calculates 6 by Sternheimer's
procedure.

Symon (1948) and Vavilov (1957) have dealt with the
regime between that of Bohr and that of Landau. As
with their predecessers, Symon and Vavilov assumed
negligible slowing and each assumed the free-electron-
collision spectrum. Corrections from this latter as-
sumption should be small {as are those for the Bohr
formula for T & 1 MeV/amu). They are discussed by
Bichsel and Yu (1972), Bichsel (1970), Shulek et al.
(1967), and Blunck and Leisegang (1950). Vavilov's
distribution function is the same as Landau's for g/

& 0.01. For 0.01 & $/w & 1 the distribution function is
rather complicated and is given by Eq. 16 of Vavilov
(1957). For g/w ~ 1 the distribution becomes nearly
Gaussian and a relatively simple expression for the dif-
ference between the mean and most probable values of
the energy loss can be obtained in terms of Airy func-
tions. Sellers and Hanser" (1972)express this difference
as

The express ion for the FWHM remains unchanged. From
Eq. (3.36c) and Table I, we see that

6 —21n(Pyh~ /I) —1 as P —1.

Although it is not mathematically rigorous to do so, one
usually introduces no significant errors in convolving a Gaus-
sian distribution with an asymmetric one of the nature of the
Landau or Vavilov distributions by requ&ring the total (FWHM)
be given by the sum of the squares of the contributing FTHM's.

= (a' t,)q, (3.56)

28Ahlen (1977) has pointed out a minor error in Eq. (4) of
Sellers and Hanser (1972-). This does not affect any of the sub-
sequent discussion.
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where &(&,) is the mean (most probable) energy lost
and where

q = $ (2K) 2/ 3(1 2 p2)1/3

g = &/zv„,

g (2y)~/3(1 —' P2)(1 2 P2)- /

and t~ is found from

1/a = —Ai(t, )/Ai' (t, ) . (8.67)

where
1/S

Q = — for ~ 2.8 and ' &0.4T1 2 T

0 99
T

= 0.985

B T1-3.5 and ' &0.4
2

B T1for —-6.9 and ' &0.6z T2

and where T (T,) is the initial (residual) kinetic en-
ergy per atomic mass unit and

S 2m@2 2 2 C—ln(1 —P') —P'-

P being the incident velocity.
Finally we briefly consider how these fluctuations in

energy loss affect the straggling in range of a projectile.

0.40

0.36

The properties of the Airy function, Ai(t), can be found
in Abramowitz and Stegun (1970). In Fig. 7 we reproduce
Fig. 1 of Sellers and Hanser (1972)which gives (& —& )/
q as a function of 1/a. As an example we use Fig. 7 to
calculate (& —& )/& for a 600-MeV/amu "Ne nucleus
in a 1-cm-thick plastic scintillator. It is found that
K = 6, and that (& —&,)/& = 0.2/0 which is indicative of
how rapidly the distribution becomes symmetric for
K &1.

For very thick absorbers, in which a substantial
fraction of the incident energy is lost, the work of
Tschal'ar (1967, 1968a, 1968b) should be consulted.
Bichsel (1972) gives the following approximations to
Tschalar's results for moderate energy losses:

(8.68)

It is straightforward to invert the standard problem and
to inquire as to the range required to bring a particle
of fixed energy to rest rather than the energy lost in a
fixed thickness. In both cases, the quantity which is
not fixed is subject to fluctuations. Bichsel (1972)
presents results from a calculation of range straggling
for which quantum-mechanical effects involving distant-
collision fluctuations have been included. The distri-
bution of ranges is well represented by a Gaussian func-
tion with a fractional standard deviation for protons,
o'/R, given in Fig. 8. For other particles of mass M,
the fractional straggling is given by

(o/R)(T)„= (m /M, )'/'(v/R)(T), (3.59)

where T is the same energy per amu for protons as for
the heavier particle. To a very good approximation one
can write cr/R-~4m/M, which is of the order of the
fractional fluctuation in the number of electronic col-
lisions needed to bring the heavy particle to rest.

We next turn to a rather critical review of the as-
sumptions and approximations which have been utilized
in this section. The results which have been summa-
rized. agree very well with experimental results ob-
tained with singly charged, fully stripped particles for
data in the regime 10-1000 Me V/amu (- 1%). At smaller
energies, use of shell corrections extends the regime
of accuracy to -1 MeV/amu and for very large en-
ergies (y-1000) Sternheimer's density-effect correc-
tion and I andau's energy-loss distribution provide
agreement with data to within several percent. The
question naturally arises as to what point in charge and
energy significant deviations from this first-order the-
ory will arise.

IV. FAILURE AND EXTENSION OF THE BOHR,
BETHE, AND BLQCH STOPPING-POWER THEORIES

In Sec. III we summarized the early theories of stopping
power and indicated the required conditions for their
validity. In this section we will discuss the modifi-
cations which must be made in order to extend the ap;
plicability of these theories. We will concentrate on
the list of 15 assumptions and approximations given in
Sec. III.E. However, in Secs. IV.F and IV.Gwe will also
discuss the effects of multiple Coulomb scattering and
nuclear interactions which can be important. in certain
instances.
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FIG. 7. (Q D~p)/p as a function of 1/a as given by Sellers
and Hanser (1972). See text for a definition of these variables.

FIG. 8. Range straggling for protons in various substances ob-
tained froxn Bichsel (1972).
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A. Ultrarelativistic effects

1. Radiative correction

In this section we will discuss modifications of the
relativistic Bethe formula at ultrarelativistic veloci-
ties. It is convenient to separately consider ultra-
relativistic effects for distant and close collisions.
These effects are not severe for the distant collisions,
which involve interactions between atomic electrons
and the projectile with impact parameters of the order
1 A or larger. This' distance is huge compared to any
associated with particle-size or wave-packet dimen-
sions so that interactions given by classical relativistic
electromagnetic fields (or their quantized counter parts)
should be adequate. There is, of course, the density-
effect correction which involves the macroscopic po-
larization of the medium, but this again should be ad-
equately handled within the framework of classical
electrodynamics.

The close collisions, on the other hand, are more
subject to nonclassical ultrarelativistic effects since
this class of collisions involves very small impact-
parameter events where a quantum-electrodynamical
description is required. If we consider close-collision
energy loss to be represented by free-electron. scat-
te ring in the c.m. frame, then

S& = i zU dt's+, '/de

w =2mM,'c'P'y'/(2mM, y+M, +m') (4.2)

and u is the projectile energy loss in the lab frame for
elastic scattering with the c.m. scattering angle &:

zv =zv sin 28 (4.3)

(do/dQ)„. „«, is the c.m. cross section for electrons to
be scattered into dA with an energy (in the c.m. frame)
of mc y within an energy resolution window &E.
characterizes how accurately we can determine if the
particle-electron collision resulted in the emission of
a bremsstrahlung photon. (dv/d&)„„ is the c.m. cross
section for the scattering of an electron into d& ac-
companied by a bremsstrahlung photon with an energy
between && and ~c'y. p is the total energy lost by the
heavy particle in the collision. " It should be noted that
Eq. (4.1) does not include energy lost by primary
bremsstrahlung radiation by the projectile. The mag-
nitude of this effect will be considered at the end of this
subsection.

By considering the nature of the bremsstrahlung
spectrum (it is proportional to the inverse of the fre-
quency of the emitted photon) it can be shown from con-

SFor the second integral in Kq. (4.1), zg is defined by Eq.
(4.3) and has no simple physical interpretation.

(4.1)

where 8&„ is the energy loss of the projectile per unit
&top

path length due to collisions with the electrons of the
absorbing material which involve losses greater than
M)p. ~ is the maximum energy which can be lost by
the projectile in the laboratory frame in such a collision
and is given by

servation of energy in the c.m. frame that on the av-
erage

w 1 —1/ln large y, w» mcpÃp y

~C 2
q =&' mc'/ln AE large y, se«mc

cos8

(4.4)

By assuming the heavy particle is sufficiently mas-
sive we can express (do/d&)„„ in terms of the elastic
cross section (Bjorken and Drell, 1964):

m~x
&&

2 w/mc' w «mc'

ln(2w/mc'), w ))mc'
(4.5)

which is valid within a multiplicative constant to a first
approximation for both magnetic and electric charges.
We also make the very crude extrapolation of Eq. (4.5)
to include hard-photon emission by setting k,„
=mc'(y —1) and k,„=&&. We thus find

where

[1~F(p)j ) ( )tgp

(4.6)

0This is strictly correct only for large momentum transfer.
For low momentum transfer the effect of the anomalous mag-
netic moment of the electron depends on A. (q); however,
since the radiative corrections become negligible for small
momentum transfer, this distinction is not important.

The above expression is applicable to scattering off of
a Coulomb potential for soft-photon emission. With the
same assumption of soft-photon emission it canbe shown
that the ratio of bremsstrahlung to elastic cross sec-
tion is independent of the, exact form of the static (where
we assume the projectile to be sufficiently massive so
that itis at. rest in the c.m. frame) electromagnetic
interaction (each of these cross sections is propor-
tional to ~UzA (q)y U,. ~', where A (q) is the Fourier
transform of the static interaction and q is the mo-
mentum transfer). The above expression is therefore
applicable to very massive magnetic monopoles with
the same accuracy as for nuclei and antinuclei. Fur-
thermore, the radiative corrections to the elastic cross
section derived from the Dirac equation arise from
multiplicative vertex and propagator corrections which
depend only on the momentum transfer and not on the
nature of the scattering potential. " This means thatour
treatment of radiative corrections below is equally as
valid for magnetic monopoles as for nuclei and anti-
nuclei.

We now estimate the size of the bremsstrahlung cor-
rection to 8& . We use&18p
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X&P' ln ln small

F(p) =

m&2y 2My p—(ln4y')' ln ln (large y)

(4.7)

with ~-1.
Although && has been described as characterizing

the energy resolution width it has been used here to
divide photon energies into those for which it is legit-
imate to replace q with ~ and those for which it. is not.
&&-yMo certainly serves this purpose. However, since
'll deviates from m by the fraction I/in(rnc'y/&E), the
choice for &E is completely arbitrary, provided this
fraction is small and, can be neglected to this order of
approximation. Hence, &E is not experim entally r elevant
for the energy-loss process. Even if we measure the
energy loss with a detector insensitive to hard photons,
&E is not important since on the average, hard photons
remove much less energy from the massive particle
than the electrons do. To eliminate && we must con-
sider the radiative corrections to the elastic cross sec-
tion.

If we assume that ~y«~~, it is possible to write
the elastic cross section in terms of the Dirac cross
section and the radiative corrections. " By using the
radiative corrections given by Eriksson et al. (1963)
it is found that

S) --[1+F(P)+ G (P)] ~ zu dzv, (4.8)
m $00 D irac

where

TABLE VII. Fractional radiative correction to the Bethe for-
mula for heavy charged particles in argon gas. zoo=I= 186 eV.

g, +g)
Jankus (1953), Q =ryan Jankus, Q =2nzg Eq. (4.10a)

10
20
50

100

0.27
0.45
0.75
0.95

0.19
0.37
0.66
0.88

0.32
0.43
0.60
0.73

4o. , 2mc'P'
P ln (small P)

oa, ,
(

mc'y) ( 2 .c'y')

+ —(&n4y*)*i(tn )
2cY 1Ãc y+ ln +0 (o.') (large y),

7T

(4.9)

and where (do/dQ)D, „„is the cross section obtained by
assuming the scattering center to be infinitely massive.

For P ~ 0.9 E and G canbe safely neglected. For
large ythe big ~ term in C cancels that with &, and
AE can be made large enough so that

2VfE CF + G ——(ln4 y'2)' ln
lT

ZOO

(4.10a)

In Table VII we list the fractional correction to total
energy loss as given by Eq. (4.10a) for heavyprojectiles
in argon gas. The density effect is not considered. We
also list the radiative corrections given by Jankus
(1953) for the same situation and for two values of his
parameter Q:

F'+G o. 0.333(ln2y)'+2. 42(ln2y)2 —'t. 26ln2y —1.541n(Q/m)+6. 18
2 ?7 ln(2mc'y'/cv, )

(4.10b)

Jankus' result is more reliable than that obtained here
due to his more realistic treatment of hard bremsstrah-
lung radiation. However, it is encouraging to note that
there is not a large disagreement between Eqs. (4.10a)
and (4.10b) below y-100. Thus we expect our remarks
regarding monopole radiative corrections to have ap-
proximate validity in this regime. It should be noted
that the radiative corrections are positive, which cor-
respond to the added channel of energy- loss via secon-
dary bremsstrahlung. Consideration of only the cor-

Jackson and McCarthy (1972) emphasize that only for an
infinitely massive scattering center can one make separate
expansions in the strength of the external potential and in the
coupling of the electron to the electromagnetic field. This is
well verified by the calculations of radiative corrections to
Inuon-electron scattering by Eriksson et al. (1963); the close-
collision energy-loss fractional correction due to interference
of these two effects can be shown to be

rections to elastic scattering leads to a negative energy-
loss correction (Jauch, 1952).

Generally speaking, we see that it is legitimate to
ignore the radiative corrections for y&100. The close-
collision energy loss is then given by

(4.11)

In evaluating (do/dQ)D„. „, the renormalized values
for electric (or magnetic) charge are to be employed.
If, as indicated by Schwinger (1966), magnetic and
electric charges are renormalized by the same factor,
then Eq. (4.11) allows comparison between magnetic
and electric stopping powers with no systematic dis-
crepancies. In the event that renormalization is not
universal, such a comparison may be subject to a sys-
tematic error of several percent.

2. Kinematic correction

if Z~ - zA~.
If one uses the first Born-Mott cross section for

(do/dQ)o „and lets I=no and M, =~, then
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2 nAZ,'e' 2m c'P' y'
mv I (4.12) TABLE VIII. Fractional kinematical correction to the Bethe

formula. for protons in argon gas.

dn q, 1+ (m/M )(q'/2Z, )

where

(4.13)

q =2P, y, sin(26')

(8' is the electron scattering angle in the frame where
the nucleus is initially at rest), r, =e'/mc', R, =y„P, c
is the initial projectile velocity in the lab frame, and
y', =1/(1 —P,'). G~(Q) is defined as the nuclear form fac-
tor and is given by

Ge(Q) =
Jr p(r)exp(iQ r)d'r, (4.14)

where r is the nuclear volume, Z ej&(r) is the nuclear
charge density distribution, and Q represents four-
dimensional momentum-energy transfer. G~ =1 for a
point charge nucleus or for Q =0. Equation (4.13) is
valid only for nuclei with negligible spin effects, i.e.,

(q, /Z, )'(m/m, )' «1 .
In order to utilize Eq. (4.11) to evaluate the close-
collision energy loss we must first express Eq. (4.13)
in terms of c.m. coordinates. This is straightforward
and to first order in y =my/M, one obtains for G~ =1

2~1''e4 2mc'P'y'
S~l = " In

PPZ 6 I —P'

P2—ln(l +2y) —y y' (4.15)

It is important to note that all corrections occur
within the large parentheses so that rather than being
of orde r y, the cor re ctions are of orde r

y/In(2m c'p ' y'/ I)

In Table VIII we tabulate the kinematical corrections
to the Bethe formula for protons in argon gas. We
have neglected the density effect for this tabulation.
As for the radiative corrections me tabulate correc-
tions to total energy loss, not just to the close col-

which indicates that 2 of the total energy loss occurs
for close collisions. Equation (4.12) is essentially
that obtained by Bethe for close collisions. It is based
upon the assumption that the projectile is an infinitely
heavy point projectile with no internal structure with a
value of Z, o./P«1 so that the first Born approximation
is valid for determining the projectile-electron differ-
ential scattering cross section. Motz et al. (1964) dis-
cuss in great detail elastic electron scattering off of
atoms and nuclei. They present numerous cross sec-
tions and their conditions of validity. Here we consider
some of the simpler cases which indicate approximate
degrees of validity for the assumptions mentioned above.
In Sec. IV.B we will discuss in some detail the effect
of large values of Z, /P on the close-collision energy
loss.

Motz et al. (1964) give the Mott-Born formula for
electron-nuclear scattering, valid for large momentum
transfer, finite nucleus with recoil, and no atomic
screening:

10
20
50

100
200
500

1000

—0.045
-0.079
—0.17
—0.31
—0.54
—1.08
—1.72

lisions. It is seen that the correction is quite small.
Even when my/M, is equal to 0.5 the correction is only
-2%%uo. For the purposes of this review, where, for the
most part, y& 100 and M, & m~, it is seen to be legiti-
mate to neglect radiative and kinematical corrections.
This is accurate at least at the I%%u~ level.

G~ = (4np/Q')(sinQR„— QR„cosQR„),
where

p = (0.080/A, )P '.

(4.17)

By inserting Eq. (4.17) into Eq. (4.13) and setting
M, =~ (i.e., neglecting recoil effects) we can numeri-
cally evaluate the correction factor to the close-col-
lision energy loss due to internal charge structure.
In Table IX we list the correction factor to total energy
loss (which is 2 of that for close-collision energy loss)
for wo =200 eV (the correction factor changes by only
10/0 in going from wo =100 eV to wo =1000 eV) and for
several values of A, This has been done in the first
Born approximation of the Mott cross section. This
corresponds essentially to the case of an argon-gas ab-

3. Projectile-structure correction

A more severe problem is encountered with respect
to the internal structure of the projectile. This is
represented by the nuclear form factor. One might
suspect that problems relating to nonpointlike-charge
distributions would arise when the de Broglie wave-
length of the electron in the c.m. frame becomes com-
parable to the nuclear radius. With R~ =1.0'7A. ,'~'&'

(Hahn et al. , 1956) for the 50%% peak charge-density
radius, internal-charge-structure effects should be
important at y = 361/A. ,'~'.

For extreme relativistic energies one can replace Q
by mcq, /k. Nuclear form factors can be found in
Herman and Hofstadter (1960). It is beyond the scope
of this work to give accurate correction factors for
nuclear-charge distribution effects based on detailed
electron-scattering information for individual nuclides.
However, it is valuable to have a, ready estimate for the
size of these correction factors. To this end we utilize
a model of the nucleus in which there is uniform charge
density out to a radius R~, beyond which the charge
density vanishes. Motz et al. (1964) give

(4.16)

The form factor is easily shown to be
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TABLE IX. Fractional form-factor correction to the Bethe
formula for nuclei and antinuclei in argon gas.

Ag=l
& (7o)

Ag =10 Ag = 100 Ag =250

10
20
50

100

—0.OG26
—0.0089
—O. 047
—0.16

—0.013
—0.041
—0 ~ 21
—0.73

—0.058
—0.19
—G. 93
—2.68

—0.11
—0.35
—1.60
—4.02

sorbing medium and hence can be directly compared to
the radiative and recoil corrections in Tables VII and
VIII, respectively. It should be noted that the radiative
corrections are independent of projectile mass and that
the recoil corrections scale approximately as 1/A, .
It should also be noted that the signs of all three of
these corrections are independent of the sign of the
projectile charge and hence apply equally to antinuclei
as to ordinary nuclei.

The form factor given by Eq. (4.17) is most suitable
for describing very heavy nuclei. In addition, it is to
be emphasized that it contains only information regard-
ing charge structure. Nuclear-spin effects are taken
into cons ide ration by inc lus ion of the magnetic moment
and magnetic form factor in the scattering cross section
such as in the Rosenbluth and Walecka-Pratt formulas
(see Motz et al. , 1964). Turner et al. (1969) calculate
corrections to the Bethe formula for protons in several
solid absorbers by including the complete set of form
factors and by treating the kinematics exactly. Vora
and Turner (1970) do the same for deuterons. In Table
X we list their correction factors to the Bethe formula
for an aluminum absorber, neglecting the density ef-
fect. In the proton column, we list in parentheses the
correction obtained by adding the appropriate numbers
in Tables VIII and IX. The discrepancy is due to the
naive structure for the proton imposed by Eq. (4.17).

It is quite easy to'estimate the size of the correction
to the total stopping power due to the magnetic moment
of the projectile by using the Walecka-Pratt formula
[this formula as given by Motz et al. (1964), p. 905, is
in error; their Mo should be replaced by the proton
mass. See, for example, Ginsberg and Pratt (1964)J.
Again, in the first Born approximation (as (6-1):

4. Particle bremsstrahlung and pair-production
correction

To conclude this subsection we should briefly con-
sider means by which heavy charged particles can lose
energy via electromagnetic interactions other than by
elastic and inelastic atomic collisions. Such interac-
tions include primary-particle bremsstrahlung as well
as higher-order quantum-electrodynamical processes
such as pair production (electron-positron pairs pre-
dominantly).

A rough comparison of radiative loss to collision loss
is given by Jackson (1975):

4 Z2Z, m , 1
3& 137 M Ld+ rad

dE, (( 4 Z', Z-, m 1n(8192M, /mZP')
3& 137 M

(4.20)
y»]

I.= ln(2m c'P 'y'/I) —P'

and ~ -1. Using the electron-positron pair production
cross section given by Bhabha (1935) it is straight-
forward to show that the ratio of pair production to
radiative (i.e., primary bremsstrahlung) energy loss
is roughly

dF. p~ M~
1000m (4.21)

S =S(Bethe) 1 + ( ) (te —1), (4.19)

where p. =&ek/2rn~c is the nuclear magnetic moment of
the projectile and J is the nuclear spin. For must nu-
clei J is of the order of 1 (within a. factor of 2) and &

is of the order of 3 (within a factor of 2). For extreme
relativistic energies the above fractional correction is,
for these typical values of & and J, (my)'/(2Z, mP,
which is less than 0.1/~ for all nuclei if @&100. It
should be emphasized that the magnetic moment affects
the close collisions much more strongly than the dis-
tant collisions (due to the x ' behavior of dipole fields)
and so is completely negligible in considering the latter
class of collisions. This is reflected by the Walecka-
Pratt formula insofar as it approaches the purely elec-
tric moment cross section as Q —0).

& (10)

Protons Deuterons
(Turner et al. , 1969) (Vora and Turner, 1970)

10
50

100
250
500
750

10.00

—0.044 (—0.048)
-0.088 (-0.22)
—0.30 (-0.47)
-0.69
—1.5

2 ~ 3
—3.1

-0.08
—0.32
—0.71
-2 ~ 57
-5.05
—6.77
—7.47

TABLE X. Fractional form-factor (complete) plus recoil cor-
rections to the Bethe formula for protons and deuterons in
aluminum.

For ordinary nuclei this ratio is -4/Z, which indicates
that relativistic cosmic-ray nuclei lose roughly the
same fraction of their energy to pair production as they
do to primary bremsstrahlung. Muon pair production
is down by a factor 200.

In Table XI, we list the ratio given by Eq. (4.20) for
various values of A. , and y for the case of an argon-gas
absorbing medium.

We see from Tables VII to XI that for y&100, the
ultrarelativistic corrections a, re less than I /0 (when
summed) for protons. For y —100 the corrections a.re
significant for heavy nuclei due to form-factor con-
tributions and to the large amount of bremsstrahlung
radiation (and pair production). We should emphasize
that our treatment in this subsection has involved
average energy loss. If one is interested only in set-
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TABLE XI. Ratio of bremsstrahlung to collisional energy loss for heavy nuclei in an argon gas.

A, =l, Z, =l Ay=10, Zg=5
aatio t,%)

A g
= 100, Zg = 50 Ag = 250, Zi = 100

10
20
50

100
200
500

1000

0.029
0.053
0.116
0.213
0.394
0.895
1.674

0.088
0.158
0.347
0.637
1.177
2.67
5.00

1.02
1.83
4.04
7.41

13.7
31.1
58.2

1.72
3.10
6.82

12.5
23 1
52.6
98.3

ting limits on the size of corrections to the stopping
power, then he need not be too concerned with the dis-
tinction between mean and most probable energy loss.
On the other hand, if quantitative comparisons with ex-
periment are to be made, a careful treatment of ener-
gy-loss statistics will be required, particularly since
the ultrarelativistic effects involve the relatively in-
frequent close collisions. However, for (/w ~ 1, it
should be a good approximation to set the mean and
most probable energy loss equal to one another. For
this case, there is a sufficient number of high-energy

rays produced Up to the kinematic lil11it so thRt GRUS-
sian statistics should prevail. The small effects dis-
cussed in this subsection should not alter this con-

clusionn.

B. Failure of the first Born approximation

In the nonrelativist:ic limit, a well-known property
of the Coulomb force is that its differential scattering
cross section is the same whether obtained by classical
theory, first Born quantum-mechanical theory, or ex-
act quantum-mechanical theory. Unfortunately, this
does not remain the case as relative particle velocities
approach the speed of light. If projectile-recoil and
internal-structure effects are ignored (corrections for
which are indicated in the previous subsection) one re-
quires the elastic scattering cross section for an elec-
tron off a point source located at the origin. Radiative
corrections have been shown to be quite small in the
previous subsection and it is sufficient to evaluate the
cross section for scattering in a static field with com-
plete neglect of the electromagnetic field. Mott (1929,

1932) performed this calculation within the framework
of the Dirac theory of the relativistic electron. The
cross section thus obtained is known as the Mott-exact
"phase-shift" formula and it is given along with other
theoretical cross sections in Motz et al. (1964). As re-
lated by Jackson and McCarthy (1972), it was Fermi
who first considered the effect of the actual Mott cross
sec tion on the stopping power of oppositely charged
particles. He attempted to explain the range discrep-
ancy between positive and negative pions measured by
Barkas et al. (1956) with an incorrect form of the sec-
ond Born approximation to the Mott cross section.
Jackson and McCarthy (1972) repeated Fermi's calcu-
lation with the correct form of this approximate cross
section as given by McKinley and Feshbach (1948). Due
to the slowly converging I,egendre expansions which
are necessary for an evaluation of the exact Mott cross
section, it is difficult to evaluate the accuracy of these
corrections. These expansions have been summed nu-
merically by Doggett and Spencer (1956), among others
(see Doggett and Spencer for additional references).
However the tabulated cross sections are not easily
incorporated into the close-collision energy-loss form-
ula since an integration over c.m. scattering angles is
required. Eby and Morgan (1972) and Morgan and Eby
(1973)have performed such calculations for several
values of g, and P which agree with Jackson and
McCarthy's results for Z, &20. Ahlen (1978a) has taken
advantage of the Z', expansion derived by Curr (1955)
for the Mott cross section to obtain an analytical ex-
pression for the stopping power which is valid to within
1% for (Z, ~/p&. 100. According to Ahlen (1978a),

4 ~N&2e4 2m v 2 y2S= ' lnmv' z I —p' —1 —0.202 ' + — —+ 2G (Z„p) —25 (p) 1 + (4.22)

G(Z~, p) is the close-collision Mott correction which is given by

G (Z„p) = (Z, op)[1.725 +0.52& cosy —2(wo/w ~)'i'v cosy] + (Z, n) (3.246 —0.451 p') + (Z, o)'(1.522p +0.987/p)

+ (Z, a)'(4.569 —0.494P' -2.696/P')

+ (Z, o.)'(1.254P +0.222/P —1.170/P ') (4.23)

where M =2mv2y',

Mw() = Q f~
Ek(d~

is the mean square-root ionization potential. &Rlues
for the oscillator strengths f, and the ionization po. ten-

tials @co can be obtained from the early work by Stern-
heimer. Accurate values for Mo are not critical. It
can be set to zero with negligible error in stopping
power for all but the heaviest absorbers. The function
cosy is defined by Doggett and Spencer (1956) and
various values of this term as a function of (Z, l &IP
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150 Steven P. Ahlen: Energy loss of relativistic heavily ionizing particles

a.re given in Table XIj [note that there is a typographical
error in the Z,' term in Ahlen (1978a)]. The remaining
expressions within the first set of brackets in Eq. (4.22)
correspond to (a) an approximate form of Bloch's cor-
rection which yields the correct stopping power to bet-
ter than 1~/& for IZ, I/P&137 and (b) the density-effect
correction discussed earlier. The remaining term in
brackets corresponds to a distant-collision correction
which will be discussed next.

It is to be emphasized that Z, can be positive or nega-
tive, corresponding to ordinary nuclei or to antinuclei.
Si.nce t

and since the same holds true for the distant-collision
correction, it is apparent that the stopping power is
different for particles of opposite charge at the same
velocity. The physical reason for this is that posi-
tively charged projectiles draw atomic electrons closer
to them while negative charges repel the electrons. For
both the distant and close collisions the dynamics is
sufficiently different for those two cases to alter the
energy transfer. It is not legitimate to explain the
enhanced stopping power for positive charges as being
due simply to the greater "kick" given to the electrons.
This argument should apply equally to close-collision
classical stopping power. It does not in fact apply due
to the rather remarkable fact that the c.m. scattering
angle is the same for positive and negative scattering
centers with the same impact parameter, in spite of
the fact that the positive charge draws the electron
much closer to it than the negative charge does. Rela-
tivistic quantum effects or external interactions
(atomic binding) are required to break this rather pe-
culiar symmetry of the nonrelativistic Coulomb force.

As mentioned above, deviations from the first Born
approximation are more difficult to evaluate for the
distant collisions than for the close collisions due to the
interference of the dipole approximation. In a quan-
tum- mechanical approach the dipoj. e and firs t Born ap-
proximations are imposed separately. The classical
impulse approximation used by Bohr includes both ap-
proximations in a natural way. Barring a completely
second- order solution via quantum mechanic s, it seems

TABLE XII. Values for cosg to be used in Eq. (4.23).

that the most promising strategy for examining distant-
collision corrections lies i,n the classical approach of
Bohr. It is to be recalled that the fundamental assump-
tion of the impulse approximation is that the electron
sees at all times a spatially uniform electric field.
For very small projectile velocities this will be valid
if the separation between projectile and target electron
is very large (dipole approximation) F. or very large
projectile velocities, it seems physically plausible that
small spatial separations will permit the validity of the
impulse approximation if the electron does not move
appreciably until the projectile has completely passed
out of sight. 'This will be the case for very weak inter-
actions (i.e., the analog to the quantum-mechanical
first Born approximation).

By allowing for the first-order motion of the har-
monically bound electron, Ashley, Ritchie, and Brandt
(1972, 1973) have calculated the first-order correction
to the classical impulse approximation. The expansion
is carried out with the ratio of electron displacement
to electron-projectile separation as the expansion pa-
rameter. AsMey et al. separate the distant collisions
from the close ones by an impact parameter given
roughly by the atomic radius. Close collisions are
treated in the free-electron approximation and hence
energy loss scales as Z,' for these collisions in the
nonrelativistic limit. Jackson and McCarthy (1972)
have extended the nonrelativistic calculations of Ashley
et al. to the relativistic case, using a slightly different
dividing impact parameter (which is also given essen-
tially by the atomic radius). The relativistic correc-
tions are shown to be small (in the sense that the value
of the correction to which the relativistic correction is
applied becomes very small at large velocities) and the
correction can be expressed as

(4.24)

where C, is the fractional correction to total energy
loss and V =137P/Z', ~'. C, /Z, is plotted as a function of
I3 for various values of Z2 in Fig. 9.

Hill and Merzbacher (1974) performed a nonrelativis-
tic quantum-mechanical calculation of the energy loss
to a harmonic oscillator by treating the quadrupole term
as a perturbation. The dipole interaction was treated
exactly, without recourse to perturbation theory. They
obtained the same result as obtained by Ashley et al.
(1972, 1973) as one might expect for a harmonic os-

I && ~/0 I

0
0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.00
1.20
1.50
2.00

cosg

1.000
0.9905
0.9631
0.9208
0.8680
0.7478
0.6303
0.5290
0.4471
0.3323
0.2610
0.2145
0.1696
0.1261

10

I 0 2

10

10 I

0.2
I

0.4
I

0.6 0.8

FIG. 9. Distant-collision polarization correction of Jackson
and McCarthy (1972), C~ being the fractional correction to
total energy loss.
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vincing evidence that there may be more validity to
the Bohr approach than one might suspect. This is
further evidenced when one inserts E/mv for a in Eq.
(4.26), thus obtaining ln(1. 60m@'/k&u), which is of the
order of 2 times the result obtained when a is given by
the atomic radius. This is the experimental result.
It seems then that the close collisions are not really
those involving free electrons: polarization effects are
as significant for close collisions as for distant col-
l is ions. "

Andersen et al. (1977) used their measured higher-
order corrections to separate the charge- independent
(to first approximation) shell corrections from higher-
order Born terms. In Figs. 2(c)—2(f) these correc-
tions (C/Z, ) are compared with those which include
higher-order corrections (C/Z, )' and those calculated
by Bonderup (1967) (C/Z, ),„. Good agreement is ob-
tained between C/Z, and (C/Z, ),„.

Finally, the Mott and Bloch corrections from Ahlen
(1978a) are shown in Fig. 12 for an aluminum absorber
for nuclei with atomic numbers 26, 52, 80, and 92.
Electron capture has been accounted for in a manner
to be subsequently discussed. The quantity L in Fig.
12 is given by ln(2mv'y'/P') —P' and the distant-col-
l is ion correc tion is shown for Zp 26 The s olid black
circles are taken from the exact calculations of Eby
and Morgan (1972) for the Mott corrections. The open
circles are taken from Morgan and Eby (1973). They
agree within 1% for total stopping power with those val-
ues obta. ined from the formulas of Ahlen (1978a) for the
Mott corrections. Morgan and Eby (19'73) show that
similar accuracy is obtained for IZ, I//& 20 with the
second Born approximation to the Mott cross section
and for IZ, I/P~ 55 with the third Born approximation.

The first measurement of higher-order deviations
from the Bethe theory for relativistic heavy ions has
been recently achieved by Tarle and Solarz (1978).
They very accurately measured the range of 600-MeV/

Z. O

1.5— Mott co
92 ~o

1.0—
L /10

52
Zo =26

— 52 (C,/Z~) xL

-0.5—

8 loc h correct ion s
—I.O- Density effect-8/2

I I I I I

0.5 0.4 0-5 0.6 0.7 0.8 0.9 1.0
/

FIG. 12. Corrections to the Bethe formula for an aluminum
absorber as a function of atomic number Z o (from which Z&
was derived) and velocity. See text for a discussion of these
corrections.

3 Ashley ep &E. (1972) claim that their expansion in powers of
the electron displacement to separation ratio restricts its val-
idity to the outside of the atomic volume. However, one can
show that this ratio has a maximum value of the order Z~e /
rnid 5, where 5 is the impact parameter. For Z~&/p&1 and
6 &5'/m~ this ratio is less than 1. Hence it is not unreasonable
to adopt Bohr's classical treatment for impact parameters
well within the atomic volume.

amu "Fe ions in a variety of samples. The particles
stopped short of the range predicted by Bethe theory
by -3%, compared with a predicted range discrepancy
of -2% (Ahlen, 1978a).

O'. EIectron capture and loss

The results of the previous sections and subsections
can be unambiguously applied to projectiles such as
fully stripped nuclei or antinuclei. However, it is well
known that as ordinary nuclei slow in matter, atomic
electrons become attached to the nuclei until they be-
come fully neutralized, at which point nuclear scatter-
ing becomes the dominant energy-loss process. The
question naturally arises as to what one should use for

should one use the root-mean-square charge as
measured with static electromagnetic fields, or is it
more appropriate to use the nuclear charge Z„or
something in between Z, and Z '? Betz (1972) reviews
theoretical aspects of charge states and charge-chang-
ing cross sections of fast heavy ions in gaseous and
solid media. He gives numerous references to earlier
work to which the interested reader is directed. Most
of this work involves energies outside of the scope of
this review (in particular, energies less than -1 MeV/
amu). At these low energies there are a multitude of
effects which serve to cloud interpretation of stopping-
power data. However, it is relatively straightforward
to measure initial and final charge states with any of a
number of possible electromagnetic field configura-
tions, Betz presents a number of semiempirical form-
ulae for the ion charge state as a function of Z„p, Z„
and density. The long-known density effect, whereby
charge states as measured with solids are larger than
those in equivalent gases (i.e., fewer electrons are
attached when ions penetrate solid absorbers) has been
explained as one involving capture and loss into excited
states. Whether or not the discrepancy exists in the
material itself or is a transition effect has been the
subject of much discussion. Betz and Grodzins (1970)
have argued that the charge state of the ion is ap-
proximately the same in solids as it is in equivalent
gases (within one or two charges). The apparent dif-
ference between gaseous and solid charge state arises
due to the prompt emission of Auger electrons upon
departure of the ion from the solid. This serves as a
deexcitation mechanism of the ion which does not occur
in the solid due to the fact that Auger processes are not
fast enough to allow the ion to return to its ground state
within the short time between collisions in a solid.

A very desirable consequence of the Betz and Qrodzins
theory is that it explains the difference between the
"effective charge" and the rms charge of ions deter-
mined with solid absorbers. The effective charge is
def ined by

Z.'„=S(Z„~)/S (1, e) . (4.27)
For a summary of experimental work relating to &,ff
the reader should consult Northcliffe (1963). Although
Z,«clearly contains in it higher-order Born terms,
there is a large range of velocities for which these ef-
fects should be small compared to the effects of elec-
tron capture and loss. Hence Z,« is a reasonable mea-
sure of the effective charge of the ion for ionization and
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excitation processes. The most naive initial guess
would be that Z,« -—&, , This would be the case pro-
vided the bulk of the collisions occurred for impact
parameters larger than the radius of the electron cloud
of the projectile. Bohr (1941, 1948a) argues that this
is indeed the case. This conclusion is supported by the
following two observations (see Betz, 1972): (i) Z,f,
does not depend significantly on whether the stopping
material is a gas or solid. (ii) Z,« is very close to

as measured with gas strippers.
Any discrepancies regarding the density effect are

eliminated if one accepts the Betz-Grodzins theory.
'The semiempirical expression originally used by

Barkus (1963) and later modified by Pierce and Blann
(1968) has been widely used for evaluation of Z„,.
This is given by

Z,f, ——Zo[1 —exp(- 130P/Z20~')] . (4.28)

TABLE XIII. Value for Z, ff as given by Eq. (4.28) at the Bohr
velocity of ~&3& Zpc.

Z, jf (Bohr velocity)

10
20
30
40
50
60
70
80
90

8.7
18.5
28.4
38.4
48.5
58.5
68.6
78.7
88.7

The Bohr criterion is that orbital electrons of the ion are
stripped if their orbital velocity is less than the ion velocity,
while they are attached if the opposite case maintains. See
Betz (1972).

It should be noted that this expression is independent
of the atomic number of the absorbing material. This
is certainly not. the case in principle but is a remark-
ably good approximation in practice. It should also be
noted that the fractional stripping of an ion is a function
only of the parameter P/nZ~~'. This corresponds to the
ratio of the ion velocity to the typical velocity of an
electron carried along by the ion. The scaling power
of 3 reflects the fact that the measurements upon which
Eq. (4.28) were based were done at low energies where
a large number of captured electrons are present so
that a Thomas-Fermi description is valid. It is a re-
markable coincidence that Eq. (4.28) appears to work
in the relativistic regime for which there is no inde-
pendent experimental justification (Shirk and Price,
1978, and Fowler et al. , 1977). That this is the case is
not so surprising when one uses Eq. (4.28) to evaluate
Z,ff at the velocity for which the Bohr criterion" pre-
dicts the ion will pick up its first electron, namely, at
P =Z, /137. These values for Z,«are given in Table
XIII. Equation (4.28) predicts the "correct" value, to
within & of a charge, for most values of Zo. Further
justification for the use of Eq. (4.28) at high energies
is obtained when one compares values given by it with
those calculated from reasonably mell-known attach-
ment and loss cross sections for single electrons.

Hence we will assume, with some justification, that

Z, =Z,«(Pierce and Blann). (4.29)

There exist many other semiempirical formulas (see
Betz, 1972) for Z„, but the differences between them
and that of Pierce and Blann are essentially a measure
of experimental accuracy, which is of the order of a
few charge units. For relativistic heavy ions, where
only a small fraction of the ion nuclear charge is neu-
tralized, these errors are quite small compared to
higher-order Born and Bloch corrections.

In order to evaluate fluctuations in energy loss due
to fluctuations in ion charge state it is important to use
correct stripping and loss cross sections, such as those
given by Betz (1972), for thin absorbers. By thin, we
mean small in comparison to the charge equilibration
distance, which is of the order of several p.g/cm' for
low-energy ions. For thick absorbers an ion has ample
time to sample its available. charge state space and
26Z,«/Z, « is a measure of the energy-loss fluctuation
where ~,« is the standard deviation of an ensemble
of charge states as measured with an ion beam.
Nikolaev and Dmitriev (1968) have presented an expres-
sion for Ag, ff for solid strippers:

0 6[Z (1 Z /Z )z.67]1/2 (4.30)

Betz (1972) gives other semiempirical expressions, but
Eq. (4.30) has the advantage that it goes to zero as
~ eff

For a discussion of electron-capture and -loss cross
sections in the high-energy regime where the probability
for loss exceeds by a large amount that for capture, see
Wilson (1978), Raisbeck et al. (1977), Reames (1974),
and Fowler et al. (1970). This problem is quite im-
portant with regard to abundance measurements of
cosmic-ray nuclei which have a very large branching
ratio for nuclear decay via electron capture.

E. Range-energy tabulations

There exist a number of theoretical and semiempirical
tabulations of range-energy relations for heavy ions.
Barkas and Berger (1967) use empirical proton range
data between 1 and 8 MeV and calculate, with the use
of the Bethe formula, Walske shell corrections, and
Sternheimer density-effect corrections, the range from
energies up to 5000 MeV down to the 8 MeV empirical
cut. Heavy-ion ranges are calculated with the expres-
sion

R(P) = (M, /Z', )[&(P) +&, (P)], (4.31)

where &(P) is the range of an ideal proton and El~ (P) is
the ion range extension due to electron capture. I ow-
ene rgy heavy- ion data are used to estimate B~,, wh ich
necessarily includeh higher-order corrections. For
P & ~~ZO the range extension is assumed to be con-
stant, and hence, the stopping power above this velocity
is assumed to scale as Zo which, as we know, breaks
down for large enough values of Zo/P. Northcliffe and
Schilling (1970) concentrate on low-energy heavy ions
(&10 MeV/amu) where extensive use is made of experi-
mental data. Benton and Henke (1969) extend the ap-
proach of Barkas and Berger to energies below 1 MeV/
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amu. A minor modification of the range extension is
utilized by these authors .Steward and Wallace (1970)
divide the Z, , Z„p space into a number of regions with
the use of appropriate theoretical and experimental re-
sults. The range of kinetic energies extends from 10
to 1000 MeV/amu. Bichsel (1972) ca.lculated ranges
for protons based on the Bethe theory with Walske shell
corrections. All of the above calculations apply to con-
tinuous-slowing-down-approximation (CSDA) ranges,
where rectilinear motion is assumed. Multiple-scatter-
ing corrections and inelastic nuclear collisions modify
these results to a small extent for realistic situations.

Fleischer et al. (19'75) and Benton and Henke (1969)
have used dielectric track detectors to accurately
measure ion ranges for Zo= 26 and 7& 10 MeV/amu.
In this regime it is found that good agreement with the
Benton and Henke (1969) calculations (to within -2%)
is obtained for T &0.1 MeV/amu and that for T& 0.1
MeV/amu the Northcliffe and Schilling (1970) tabulations
are most accurate. The calculations, of Steward and
Wallace (1970) are systematically greater than those
of Benton and Henke and of Northcliffe and Schilling as
well as those measured values for the low-energy
region. "

At large energies, all calculated ranges agree, being
based as they are on the Bethe theory. Small differ-
ences in range extensions lead to negligible differences
in ranges for large incident energies. Consequently,
since the Benton and Henke (1969) algorithm is based
on that originally presented by Barkas and Berger (1967),
we adopt the latter calculation as that against which
measurement should be compared. The reader is
cautioned to distinguish between data, calculated
ranges, and polynomial fits to calculated ranges. There
are scant data above 10 MeV/amu. Hence most ranges
quoted in this regime are theoretical. Barkas and
Berger calculate these theoretical ranges by integrating
the Bethe formula exactly down to 8 Me&. They also
fit a polynomial in log(&) vs log(E) which agrees with
the exact integrations to within a rms error of 0.6%
with a. maximum error of 2.8~/(, . Since there is good
reason to believe that above 10 MeV the Bethe theory
(with shell corrections and density-effect corrections)
yields stopping-power results which are accurate to
much better than 1% any comparison with experiment
should be made with Barkas and Berger's tabulated
ranges, rather than with their fitted formulas. It
should be emphasized once more that low-energy re-
sults obtained by Barkas and Berger (below 10 MeV/
amu) a,re based on empirical values which contain
electron-capture effects, shell corrections, and higher-
order effects such as second-order Born terms and
Bloch corrections. The ranges given at these energies
can be assumed to be accurate to within a few percent
for Z, o./P & 1.

Schimmerling et al. (1973)have measured the ranges
of "N, ' Ne, and ' Ar nuclei at energies up to 284
MeV/amu and have found that within experimental error
(-2% in range) the ranges agree with the Barkas and

5In particular, Fig. 3.6 of Fleischer eg al. (1975) shows
that Steward and Wallace calculate the range of Fe at 1 MeV/
amu in Lexan to be -30% larger than the measured value.

Berger values. Tarle and Solarz (1978)have performed
more accurate range measurements of "Fe nuclei at
600 MeV/amu in a, variety of substances and have found
range discrepancies of -3% with Barkas-Berger results.
This is a three-standard-deviation effect and is ap-
proximately consistent with what one would expect if the
Bethe formula were modified as in Ahlen (1978a).
There is still some doubt as to the validity of the Bloeh
correction. The results of Tarle and Solarz indicate
that it may be smaller than as given by the nonrela-
tivistic form of this correction. In any case, it seems
clear that the use of high-energy heavy-ion beams is a
ve ry fruitful means of investigating stopping-powe r
phenomena.

„A MeV'cm'/g .M v2y~2 (4.32)

As summarized by Bichsel (1972), & is defined in
Moliere (1948). For practical purposes, representa-
tive values can be found in Table XIV (Marion and
Zimmerman, 1967). For Z, =1 the values given there
are accurate to within 5%. For Zo&1 Bichsel (1972)
recommends use of the effective charge Z, instead of the
nuclear charge. For Z, -6 and Z, ~ 50 all values
A(P, Z, ) are larger than 0.98&(0, 1) but smaller than
A(0, 1); for Z, - 6 and Z2~ 20 all R(P, Z, ) are larger
than 0.95E(0, 1) but smaller than R(0, 1). The distribu-
tion function xI"(x)dx for the relative number of parti-
cles entering a cone of reduced half-angle x (x = 8/60)
and width dx is tabulated by Bichsel (1972). Qf more
immediate experimental interest is the integral of this
function. In Table XV we reproduce this multiple-scat-
tering integral distribution function given by Bichsel
(1972) for the fraction of incident pa, rticles found inside
a cone of reduced half-angle x. Note that -90~/(-, of the
projectiles are in the cone with half-angle 26p For

F. Multiple Coulomb scattering

In the preceding we have invariably assumed that the
projectile trajectory is well approximated by a, straight
line. Strictly speaking, this is not the case due to
multiple Coulomb scattering. We have also assumed
that the particle maintains its identity as it slows down.
This is indeed the case in the absence of nuclear in-
teractions. For high incident energies, however, it
becomes increasingly probable for the projectile to
undergo an identity-changing interaction before it
comes to rest-. In this subsection we will discuss these
effects.

'The theory of multiple Coulomb scattering is quite
complex and the interested reader is referred to Scott
(1963), Hemmer and Farquhar (1968), and Gnedin ef al.
(1968). For our purposes, it is sufficient to note that
the Moliere theory, which is a small-angle approxima-
tion to the general problem (Moliere, 1948, 1955), is in
agreement with experimental results with the exception
of electrons in heavy elements and at small energies
(P&0.05). Bichsel (1972) gives the square of the char-
acteristic angle for transmission of a charged particle
through an absorber of thickness x:

82 0157 ZlZ. (Z. +»
A
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TABLE XIV. Values of B from Moliere theory from Bichsel (1972).

Z, =l
Z2 px (g/cm ) P = 0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0

Zf 2
0.1 1.0

Z, =6
0.1 1.0

10

20

50

10
p 2

1P 1

1
10 3

10 2

1
1P
]p 2

lp 1

1
10
10 2

] p 1

1
10
]0 2

10
1

10.5 8.8
13.0 11.5
15.4 14.0
17.9 16.4
8.2 8.0

10.7 10.5
13.3 13.0
15.7 15.4
6.8 6.7
9.4 9.3

12.0 11.9
14.4 14.4
4.7 4.7
7.5 7.5

10.0 10.0
12.5 12.5
3.1 3.1
6.0 6.0
8.7 8.7

11.2 11.2

8.3
16.8
13.3
15,8
7.7

10.3
12.8
15.2
6.6
9.3

11.8
14.3
4 7
7.5

10.0
12.5
3.1
6.0
8.7

11.2

7.6
10.2
12.8
15.2
7.4
9.9

12.4
14.8
6.5
9.2

11.7
14.2
4.6
7.4

10.0
12.5
3.1
6.0
8.7

11.2

6.6
9.2

11.7
14.2
6.7
9.3

11.8
14.3

6.2
8.9

11.4
13.9

4. 6
7.4

10.P
12.5
3.0
6.0
8.7

11.2

5.7 4.9 3.8
8.5 7.7 6.6

11.0 10.3 9.2
135 128 118
6.0 5.2 4.2
8.7 8.0 7.0

11.2 10.5 9.6
13.7 13.1 12.1
5.8 5.2 4.2
8.5 7.9 7.1

11.0 10.5 9.7
13.5 13.1 12.2
4.5 4.3 3.7
7.3 7.2 6.6
9.9 9.7 9.2

12.4 12.2 11.8
3.0 3.0 2.8
5.9 5.9 5.7
8.6 8.6 8.4

11.1 11.1 10.9

2.8
5.7
8.5

11.0
3.2
6.2
8.8

11.4
3.5
6.4
9.0

11.5
3e2
6.0
8.8

11.3
2.5
5.4
8.2

10.7

7 4
16.0
12.5
14.9
7.2
9.8

12.3
14.8
6.5
9.2

11.7
14.2
4.6
7.5

10.0
12.6
3.1
6.0
8.7

11.2

4.6
7.4

10.0
12.6
4.9
7.7

10.3
12.8
5.0
7.8

10.3
12.8
4.1
7.0
9.6

12.1
2.9
5.8
8.5

11.0

8.1 7.2
10.6 9.7
13.1 12.3
15.5 14.7

6.8 6.4
9.4 9.1

11.9 11.6.
14.4 14.2
4.7 4.6
7.5 7.4

10.1 10.0
12.5 12.5

3,1 3.1
6.0 6.0
8.7 8.7

11.2 11.2

(s —t)/s =z, (m/M, )(i), (4.33)

TABLE XV. Multiple-scattering integral distribution function
from Bichsel (1972).

8

0.2
p 4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0.046 17
0.168 93
0.330 04
0.488 90
0.61973
0.716 12
0.784 46
0.834 29
0.872 31
0.901 66
0.966 07
0.983 98
0.991 52
0.995 30
0.996 55
0.997 36
0.997 91
0.998 31

0.043 20
0,159 93
0.31815
0.481 56
0.623 59
0.733 00
0.81102
0.864 73
0.901 59
'0.927 09
0.976 97
0.989 34
0.994 29
0.996 76
0.997 62
0.998 18
0.998 56
0.998 83

0.041 95
0.156 16
0.313 16
0.478 56
0.625 54
0.740 88
0.823 57'
0.879 48
0.916 20
0.940 16
0.982 44
0.991 89
0.995 57
0.997 41
0.998 10
0.998 54
0.998 85
0.990 7

0.041 23
0.153 93
0.310 08
0.476 37
0.625 92
0.744 49
0.829 81
0.887 04
0.923 78
0.946 90
0.984 47
0.992 12
0.995 04
0.996 51
0.997 44
0.998 04
0.998 45
0.998 74

0.040 78
0.152 53
0.308 14
0.474 96
0.626 14
0.746 76
0.833 80
0.891 94
0.928 75
0.951 36
0.985 75
0.992 24
0.995 03
0.99655
0.997 47
0.998 06
0.998 47
0.998 76

p-0.5, px-1 g/cm' and Z, /A. , -0.5, 60 is approxi-
mately 9.0 mrad for A., =40, Z, =20. The increased
path length due to this multiple scattering shouM be
considered in evaluation of accurate stopping-power
experiments.

Small-angle Coulomb scattering is also a considera-
tion in experiments for which the total range for a parti-
cle with a given initial energy is measured. In such
cases the actual range or path length is somewhat
larger than the penetration depth because of the multi-
ple scattering. An estimate of the size of this effect
can be found in the review article by Fano (1963). If
the actual path length is denoted by s and the penetra-
tion depth by t, then one has approximately

l (6 ) = (0.032 cm)
pZ, cm' (4.34)

It has been assumed that the incident particle and the
nucleus both have A/Z =2 and it has also been assumed
that A.,»A, so that 00 is the lab scattering angle. For
60=10', p=0.5, Z2=10 and p=3 g/cm', l =0.7 cm. For
.60=20, l =11 cm. The large-angle scattering events
occur about as frequently as do nuclear interactions to
which we now briefly turn our attention.

G. Nuclear interactions

If the projectile is hadronic (i.e., a nucleon, nucleus,
pion, etc. ) it can interact with the matter it is travers-
ing via the strong nuclear force. Electrons and muons,
being leptons, do not interact via this mechanism. At

where (l) is a suitably averaged quantity which lies
between'0. 3 and 0.6. For the worst case (say protons
on lead), the path length is roughly 2% larger than the
penetration depth. For heavier particles, such as we
consider in this review, the effect is usually negligible.
It should be emphasized that the fractional range cor-
rection, Eq. (4.33), is independent of the cha. rge of the
projectile. This is so because px scales as A, /Z,' for
a given velocity. This factor cancels Z,' in Eq. (4.32).

The above remarks are concerned with average scat-
tering parameters. There is always the possibility that
a very massive projectile will undergo a large-angle
scattering collision with an absorber nucleus. Note the
famous Rutherford experiments in which the nuclear
atom was discovered by the observation of these very
collisions. However, the Rutherford cross section is
strongly peaked in the forward direction and such col-
lisions are quite rare. If one assumes unscreened
Coulomb scattering from the nuclei, the Rutherford
cross section yields the following approximate mean
free path for scattering through an angle larger than
6, (measured in degrees):
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low energies (&20 MeV/amu) nuclear interaction cross
sections are characterized by a strong energy depen-
dence caused by compound nucleus effects. At these
energies, neutron stripping reactions are preferred
(due to the absence of a Coulomb penetration factor for
the neutron). At large energies (~1 GeV/amu) the
cross sections approach asymptotic values which are
determined by geometrical factors. The Bradt-Peters
(1948) relation is a useful expression for evaluating the
total inelastic nuclear cross section for two colliding
nuclei. More accurate expressions are available (see
Karol, 1975) but are not necessary for our purposes
here. The Bradt-Peters expression is the geometrical
cross section with a provision requiring an overlap of
the nuclei in order for them to interact:

c=~(R, +a, —2m)',
where

(4.35)

(4.36)

and ~ =0.85&. Iri Table XVI we list the mean free
path for interactions given by Eq. (4.35) in units of the
range of a 1-GeV/amu projectile of the appropriate
type in the given material. It is seen that fewer inter-
actions occur in bringing a nucleus to rest as Z, and
Z2 inc rease.

Fragments produced in high-energy collisions are
most likely to be stripped of only a few nucleons. See
Silberberg and Tsao (1973) for a, summary of theoretical
and experimental partial cross sections. The distribu-
tions in fragment transverse and longitudinal momenta
have been measured by Greiner et al. (1975) for "C and"0projectiles up to 2 GeV/amu. They found that for
peripheral reactions fragments of the projectile have
the same momentum per nucleon as the incident particle
to within 0.1~/~. The distributions for transverse and
longitudinal momenta of the fragments in the projectile
rest frame are Gaussian with a standard deviation from
90 to 160 MeV/c (this is not momentum per nucleon).
The distributions are consistent with isotropy in the
projectile frame.

TABLE XVI. Mean free paths for inelastic nuclear reactions
in units of range at 1 GeV/amu.

Target
Proj ectile

Air Alum inurn Coppe r Lead

'H
12C
20N

4'Ar
56Fe

j.95pt

0.192
0.234
0.314
0.363
0.456
0.606

0.206
0.290
0.401
0.482
0.620
0.874

0.229
0.386
0.548
0.698
0.920
1.39

0.254
0.507
0.756
1.02
1.37
2.30

V. MAGNETIC MONOPOLE STOPPING POWE R

Ever since the prediction of its existence by Dirac
(1931) the magnetic monopole has been the subject of
numerous papers. Stevens (1973) has compiled a
bibliography of 181 references up to 1973 and Carrigan
(1977) has supplemented this with a, bibliography of 323
references for the period 1973-1976. The recent surge

2g =ne/a, (5.1)

where n =a 1,+ 2, . .. in the Dirac (1931) theory and
n =+2, +4, . . . in the Schwinger (1975) theory. Ever
since the introduction of the monopole conjecture it has
been assumed that the monopole mass must be very
large due to its large self-energy. The 't Hooft theory
confirmed this with the result that M(monopole)
=137M(intermediate vector boson) which has a plausible
range of 5-10 TeV/c' (Carrigan, 1977). Dirac (1931)
recognized that the rate of energy loss by monopoles
should be very large due to its large value of
g (+~2 e, +137m, . . . ). He also pointed out that the rate
of ionization would not increase near the end of range
as it does for ordinary nuclei. This is easily seen to
be the case when one recognizes that the electric field
of a moving monopole as seen by an atomic electron
is proportional to P. Stopping power is proportional to
the square of the field and this P' term cancels the P'
denominator term, which causes the increase of elec-
tric-particle ionization.

Accurate theories of monopole stopping power have
lagged behind their electric-particle counterparts for
several reasons. It has been assumed that experimen-
tal searches relying on identification based on ioniza-
tion rates would be not subject to a background due to
the large value of g. Hence very accurate knowledge
of stopping power should not be required. There have
also been problems of a fundamental nature regarding
the proper means by which monopoles should be handled
within a quantum-mechanical framework. Recent de-
velopments have alleviated these theoretical problems
to a considerable degree and it is now well known that
the very heavy component of the cosmic radiation can,
under suitable conditions, mimic the behavior of a
monopole with. a charge as large as 137e. Therefore
it is fitting to carefully consider the manner in which
monopoles lose energy iri matter.

Bauer (1951) and Cole (1951)were the first to extend
electric-particle stopping-power theories to magnetic
charges. Bauer (1951)calculated nonrelativistic stop-
ping power for monopoles both via a semiclassical
technique [as in Jackson (1975) for electric chargesJ
and via the Bethe (1930) technique wherein the mono-
pole-electron interaction was taken to be given by the
nonrelativistic classical dipole interaction. In both

Jones (1977) summarizes experimental results of monopole
searches.

of publications can be attributed to excitement gen-
erated by the monopole candidate detected by Price
et al. (1975) and to thoeretical breakthroughs by 't Hooft
(1974) and Polyakov (1974), Although it is now general-
ly accepted that the Price event was probably not caused
by a magnetic monopole (Price et al. , 1978) it seems
that there is sufficient interest in magnetic monopoles
as hypothetical particles to warrant inclusion of their
effects on matter in this review. It is beyond the scope
of thi. s work to delve too deeply into the particle theory
of monopoles or into searches for these particles. "
We merely summarize some of the more salient fea-
tures. Most monopole theories quantize magnetic and
electric charge:
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cases he obtained, approximately

4&@e'g ' 2.m v '
vAC2

ln I
Cole (1951) followed Bohr (1913) to obtain

4 m&e2g 2 1.61m v ~
ln

PRC

(5.2)

,(5.3)

for the nonrelativistic result. Note that with g =137e
(g =hC/e), Cole's value is essentially the same as
Bauer's.

Tompkins (1965) adopted Fermi's (1940) classical
electrodynamical single-oscillator approach to calcu-
late the distant-collision energy loss for magnetic
monopoles. He made no attempt to calculate the close-
collision energy loss.

Martem'yanov and Khakimov (1972) used the tech-
nique of Landau and Lifshitz (1960) to calculate mono-
pole energy loss in conductors and ferromagnetic ma-
terials. They assumed theee separate projectile ve-

locityy

intervals and obtained:

4z 2Nve'g '
v& vmc v@2

0,

4vN+e'g' 2m'v'c, 1 )
Sm=( g» II„2@ 2 I ~ vo (5.4)

4m&e2g 2 1.213m c2y
ln v c

pKc k(d&

where v0 is a characteristic orbital electron velocity,
v, is the conduction-electron Fermi velocity, a0 is the
zero frequency conductivity, and A* is an effective
electron number density which approaches N as v- c.

Ahlen (1976) has used the relativistic classical cross
section of Lapidus and Pietenpol (1960) to show that the
monopole 5-ray production cross section is given by

dye 2 p~e2 g 2

ck& dx mc w
(5.5)

4 g~g2g 2

PB C

S m 4+~@
ppl c

1 .123m c2P2y2(c —1)'&
ln p&

Sec)p va

1.123mc'Py, 1 —1/P' " 1,
. 1Il

SOP 2 (s —1)

where &=0.08 for the impact parameter & =5/mvy and
falls rapidly to zero as w becomes smaller. For
g =137e the value of ~ for the de Broglie impact pa-
rameter is smaller than the kinematically limited
energy transfer. This prompted Ahlen (1976) to insert
h/mvy into Tompkin's formula for the minimum impact
parameter to obtain the -following expression for total
energy loss in nonconductors:

conclusions can be reached only if as careful a treat-
ment is applied to monopole-atom interactions as is
the case for the heavy ionizing electrical counterpart.
This is certainly not true of any of the above treat-
ments. The most severe problem has been the lack of
knowledge of how to treat the close collisions. We have
seen in Sec. IV how the correct Mott cross section
predicts a close-collision stopping power which is 40%
larger than that given by the Rutherford cross section
for Z, =92, P-1. Since a monopole with g=137e is even
more heavily ionizing than a relativistic uranium nu-
cleus it might be expected that higher-order quantum
electrodynamics would have an even more profound
effect on monopole stopping power. The absence of a
good theory for electron-monopole interactions in the
relativistic regime prevented analysis of this problem
until Kazama, Yang, and Goldhaber (1977) managed to
obtain a solution to the Dirac equation for an electron
moving in the magnetic field of a fixed monopole.
Ahlen (1978b) has used this cross section to obtain the
close-collision monopole energy loss for I gl = ~2& and
for IgI =137e. By using the semiclassical approach of
Landau and Lifshitz (1960) for the distant collisions,
assuming the validity of the magnetic analog to Bethe's
generalized sum rule, and considering the Bloch cor-
rection to be valid for monopoles with the proviso
Z, e-gP, Ahlen has obtained the following expression
for monopole stopping power in nonconductors:

4vxe'~' 2mc'P2y' K(IgI)
PFL C Im

5———= —&(Igl )
2 2

where K(IgI) is the Kazama et al. cross-section cor-

(5.7)

rection.
0.406, IgI = ~2 e

&(Igl) =
0.346, Ig I =137';

Il(IgI) is the Bloch correction:

0.248, Igl = ~e
0.672, I@I =137e;

'(5.8)

(5.9)

and I, ~ are the mean ionization potential and density-
effect corrections which apply for magnetic monopoles.
Ahlen (1978b) has shown that I -I and 6 -5 for gases.
For nonconductors he has shown that I is independent
of density. This is due to the absence of longitudinal
dielectric screening for the monopole-electron inter-
ac tion. ~ For compar is on with their e le ctr ic counte r-
parts we give I and & in terms of the parameter p
defined earlier:

(5.6)
2

lnI =,

(elm[a�(ao)jln

k(u d(u,
FP J0

(5.10)

where c is the low-frequency dielectric constant. Note
that as P-1, Eq. (5.6) is equal to Eq. (5.4) to within
less than 1/o.

It is difficult to compare any of the above stopping
powers with those of electrically charged particles,
beyond saying that for a given velocity the monopole
stopping power is -(gP/Z, )' times bigger than that of
an electric particle with charge &,e. More accurate

2 ™
RQ)p

( p2
cuXm[c, ((u)]in( 1+—,d(u

(d

-'~p'(1 —P ')
(5.11)

The cylindrical symmetry of the electric field of the mono-
pole precludes the existence of a net polarization of the ab-
sorbing medium.
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FEG. 13. Stopping power of lgl =1378 magnetic monopole in
water as calculated by Ahlen (1976) and (1978b). The separa-
tion of the curves at low velocities is due primarily to the
Bloch correction, which was not considered in the earlier
calculation. The curves join at large energies due to the dif-
ferent manner in which the density effect was calculated.

Ahlen (1978b) gives arguments that Eq. (5.7) is accurate
to ~3% for P~ 0.2 (for which shell corrections are
small) and for y~ 100 if the electrical values of I and 5

are used. He emphasizes that higher-order Born cor-
rections to the distant collisions are independent of the
sign of the monopole charge due to symmetry. By
comparing the analogous corrections for electrically
charged particles he shows that this correction should
be less than 1% to stopping power for I@I =137e. Similar
arguments apply to Lindhard's close-collision polariza-
tion corrections. Finally, Ahlen shows that it is com-
pletely legitimate to neglect the electron spin in the dis-
tant collisions (at the &1% level in total stopping power)
for Z, &82, P&0.04, and &&25. As we have previously
mentioned, the radiative corrections for electric
charges apply equally to massive monopoles.

To this list we should add that (i) for @=100brems-
strahlung contributes -5/, of the total energy loss for
Z, =82, M, c' =5 TeV, and Igl =137e; this fraction scales
linearly with Z, z so that for most cases bremsstrahlung
can be completely neglected; (ii) the effect of any mono-
pole spin should be much less than for the correspond-
ing electric-charge case due to the incredibly small
monopole charge to mass ratio for 't H ooft-type mono-
poles; and (iii) unless the monopole has complex struc-
ture analogous to that of nuclei, any internal structure
effects must be completely negligible for y&100.

In Fig. 13 we plot S for IgI =137e monopoles in water.
Shell corrections will probably become important for
P&0.1 but interpolation between P =0 and P =0.1 should
give reliable results since the monopole ionization rate
is a monotonically increasing function of velocity. The
parameters used for.Eq. (5.7) were taken from Stern-
heimer (1956) where we assume I =I and 6 =5. For
comparison the technique from Ahlen (1976) has been
used to calculate S . 'The separation of the two curves
at low velocities is due primarily to the Bloch cor-
rection. The two curves join at large Z due to the dif-
ferent manner in which the density-effect correction was
calculated.

Ahlen (1978b) points out that theoretical knowledge of
monopole stopping power will not be on as firm a foot-
ing as its electric particle analog until the following
tasks are accomplished: (i) derivation of the magnetic

ana. log to Bethe's generalized sum rule and (ii) calcula-
tion of the Bloch correction for monopoles.

VI. RESPONSE OF THE ABSORBING MEDIUM TO
HEAVILY IONIZING PARTIGLES

A. Nature of the excitation of the absorbing medium

In the previous sections the behavior of the projectile
was the principal object of our attention. In this section
we briefly consider the effect which the penetrating pro-
jectile has on the material through which it passes in
terms of ionization and excitation phenomena. It is be-
yond our means to do full justice to this subject which
encompasses the diverse fields of radiation physics,
chemistry, and biology. We will restrict our treat-
ment to those aspects which are relevant to the rela-
tivistic heavily ionizing particles which are of primary
concern in this review. Related topics are covered by
Box (1972) ("Radiation Damage Mechanisms as Revealed
Through Electron Spin Resonance Spectroscopy" ), Up-
ton (1968) ("Effects of Radiation on Man"), Ginoza.
(1967) ("The Effects of Ionizing Radiation on Nucleic
Acids of Bacteriophages and Bacterial Cells" ), and
Mole (1965) ("Dose Response Relationships, Particular-
ly in Mannalian Radiobiology" ). Extensive references
can be found in these review articles.

A proper understanding of the response of any system
to radiation requires knowledge of the spatial distribu-
tion of the deposited energy. To a first approximation,
the stopping power is a convenient parameter which
characterizes the behavior of biological systems and
particle detectors in response to excitation by charged
particles. It has generally been observed that these ob-
jects are affected to an extent which increases with in-
creasing values of S, for a given system linear dimen-
sion. However, it is usually not the case that the effect
increases linearly with S nor is it generally true that
the effect is the same for two different types of parti-
cles with the same value of S. Some specific examples
include the saturation of scintillators (Birks, 1964)
and the notion of a critical dose for the degradation of
certain polymeric substances (Golden and Hazel, 1963).
Scintillator saturation has been satisfactorily explained
in terms of a spatial dependence of scintillation con-
version efficiency (Ahlen et al. , 19'77, and Becchetti
et a/. , 1976) and the concept of a critical dose can be
explained qualitatively in terms of a multihit Poisson
process (Katz and Kobetich, 1968). It is apparent that
any successful theoretical approach to an understanding
of these phenomena must include a description of the
volume distribution of energy deposition, rather than
simply appeal to the projectile parameter S.

An ideal theoretical description of the effects of
charged-particle penetration in matter would include
the volume densities as a function of position and time
for all species: these would include excited and ionized
atoms and molecules, free electrons, free radicals,
and other radiation-induced chemical reaction by
products. Needless to say this is a formidable task
which is nowhere near being solved. The extreme
complexity of the problem has rendered it susceptible
to only the crudest theoretical and experimental analy-
sis. In this section we will be content to discuss only
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the prompt dose. This is defined to be the energy
deposition per unit volume (or mass) due to excitation
and ionization caused by the primary particle and sec-
ondary, knock-on electrons (i.e., primary and secon-
dary excitation and ionization). The time required for
this phase is very short, namely, -10 "s. There are
a host of delayed energy-transport processes which
serve to dilute the prompt dose at any given point.
Among these processes are Auger electron emission,
x-ray fluorescence, optical fluorescence, exciton mi-
gration, long-range resonance interactions, radiative
emission and reabsorption, and chemical and thermo-
dynamic equilibration processes. These effects serve
to smear the prompt dose isotropically. Their relative
-effectiveness depends strongly on the absorbing medium
and in certain instances the observed response to de-
posited energy is the direct manifestation of one or
more of these processes.

There has been a great deal of work done on the cal-
culation and measurement of dose in connection with the
radiation effects of heavy nuclei on biological systems
and nuclear emulsions. Much of the early theoretical
work (Bizzeti and Della Corte, 1959; Katz and Butts,
1965; Kobetich and Katz, 1968; Katz and Kobetich,
1969; and Katz et al. „1972)has been based on a model
in which energy is transferred away from the particle
trajectory by a line source of knock- on electrons. Var-
ious assumptions regarding binding effects, electron
range and transmission formulas, and electron emis-
sion angle have been employed. Katz et al. (1972) sum-
marize these assumptions and indicate that the result

(6.1)

is relatively insensitive to the above assumptions. D
is the secondary dose in units of energy per unit vol-
ume, x is the perpendicular distance from the particle
trajectory, and v is the maximum range of the maximum-
energy & ray. The above expression has been evaluated
to lowest order in the ion-electron interaction strength.
Effects of higher-order Born terms are discussed by
Jensen et al. (1976). Va.rious groups have tested Eq.
(6.1) with nuclear emulsions (Jensen et al. , 1976;
Jacobson and'Hosander, 1974; and McNulty and Filz, .

1977) and have found that it is in good agreement with
experiment for Z, & 26 and P & 0.8.

Fowler (1977) uses a slightly modified version of Eq.
(6.1) for analysis of ultraheavy cosmic-ray data. . He
shows that x-ray fluorescence and Auger emission con-
tribute -10~/~ of the dose in emulsions for 5&x&100 p, m
and obtains the empirical result

where A is a constant. This result relies on the as-
sumption that dose is proportional to the number of
developed grains per unit volume, which is the quantity
measured with emulsions. In view of the large fluc-
tuations in dose which are to be expected at large dis-
tances from the particle trajectory it is not surprising
that Eqs. (6.1) and (6.2) differ nor that omission of
A uger emission and x-ray fluorescence does not
seriously affect the validity of Eq. (6.1). The use of
free parameters to describe grain sensitivity also

LET LE T
2 mr 2 4n t 2 ln (v e r /t )

+

LET
4vr ' ln(v'e r~/x, ) '

(6.8)

where x, and s~ are the core and penumbra radii, re-
spectively;

~~ =(0,768T —1.9 2/5T+1.257} p, m,

x, =0.0116/ p, m,
(6.4)

where T is the ion energy in MeV/amu. LET„ is
simply the stopping power of the ion. It is seen that the
penumbra dose is quite similar to those given by Eqs.
(6.1) and (6.2). Furthermore, it is seen that the core
dose has been averaged over a cross section of radius
r, , the first term being due to distant collisions and
the second being due to scattered high-energy secon-
dary electrons.

The core contribution to the dose has been generally
neglected. Katz et al. (1972) go so far as to discount
it due to detector saturability and Chatterjee and
Schaefer (1976) have, as we saw above, simply aver-
aged it over the core radius. In view of the fact that
completely satisfactory descriptions of the response
mechanisms for most systems remain to be given, it
seems somewhat prematrure to disregard a sjgnificant
source of energy deposition a priori. As has been
mentioned above, there exist a multitude of energy mi-
gration processes which are capable of removing the
energy from the region of high detector saturability,

serves to shroud the accuracy of the above expressions.
Hagstrom (1977) describes a Monte Carlo program
which should be quite helpful in evaluating these secon-
dary dose effects.

'The above expressions should not be trusted for those
values of s which are excluded from experimental
verification by emulsion measurements. Since grain
diameters are of the order of 1 p, m, this should be
chosen as the minimum value of x. Chatterjee et al.
(1973) and Paretzke (1977) have emphasized the im-
portance of the distant collisions in determining track
structure for biological and nonliving organic systems,
respectively. These collisions were not included in the
above-mentioned emulsion dose models since they are
important only for doses well within 1 p, m. Chatterjee
et al. (1973) and Chatterjee and Schaefer (1976) describe
a technique for calculating the promPt dose which in-
cludes three classes of collisions: (i) distant collisions
(& 1 A); (ii) intermediate collisions with electronkinetic
energies between 100 and 1600 eV which sub-
sequently undergo a random walk in becoming therma-
lized; and (iii) close collisions which result in electron
energies greater than 1600 eV; these electrons undergo
linear motion with an ejection angle given by classical
nonrelativistic kinematics. The resultant particle track
is considered as two regions, the core and penumbra.
The core is the small cylinder containing the atoms
which suffer distant collisions while the penumbra is
the region familiar to emulsion workers wherein sec-
ondary processes determine the radiation effects.
Chatterjee and Schaefer (1976) give the following ex-
pressions for water:
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should such a reg ion exist. The h igh degree of linear
response commonly enc ounte red with gase ous and s olid-
state ionization detectors is perhaps the best indication
that full account must in general be taken of all types
of energy depos ition.

It is quite straightforward to calculate the primary
dose. As Fano (1970) has indicated, the classical Bohr
expression for energy transfer to an atom [Eq. (3.1)j
is equivalent to that given by a quantum-mechanical
calculation. The quantum-mechanical approach is
necessary, however, in order to determine the spec-
trum of excited and ionized states. When this is done
it is found that the most likely prognosis for a hydro-
genic atom at impact parameter &» ro is that nothing
at all will happen to it. This is in fact the criterion for
the validity of a perturbation treatment. If something
does happen to the atom, it is most likely for it to be
excited but not ionized. There is a reasonable prob-
ability for it to be ionized, however, in which case the
most probable final-state kinetic energy is ~» the bind-
ing energy. Beyond this, the kinetic-energy distribution
of ejected electrons drops off more rapidly than I/~'
and the relative probability that the kinetic energy ex-
ceeds the binding energy is less than 10 '. In view of
the fact that the close-collision ionization cross section
is smaller by no more than an order of magnitude than
that for distant collisions and that the close-collision
6-ray spectrum falls off only as I/u)', it is safe to con-
clude that of all high-energy knock-on electrons with
kinetic energy greater than the binding energy which
are produced by the passage of the charged particle,
no more than one in 100 are created in a distant-col-
lision event. To quote Merzbacher (1972): "In these
collisions the electron likes best to take on as little
energy as possible. It prefers just barely to get out of
the atom —that's overwhelmingly the most probable
situation. " Thus it is quite reasonable to extend the
division of the distant and close collisions to apply to
dose deposition. The close collisions are almost ex-
clusively responsible for secondary excitation and
ionization while the distant collisions principally pro-
duce only primary excitation and ionization. As 'Fowler
(1977) points out, Auger emission and x-ray fluores-
cence contribute a significant penumbra, or halo dose
in emulsion, of the order of 10/o. This contribution
should not be so great in water or organic compounds. "
By extending Eq. (3.1) to a multielectron atom, the

Garcia et aE. (1973) review inner-shell ionization phenomena
and they point out that: "The emission of an Auger electron
subsequent to K-shell vacancy production is more probable
than x-ray emission for all target Z~ values less than about 30
and several orders of magnitude more probable for Z~ ~ 15.
For higher shells, the range of Z2 over which Auger emission
predominates becomes even larger. " For carbon, the K-shell
fluorescence yield is only 0.24%, and for oxygen it is 0.77%.
Hence, for CH or H20, one would expect that -20% of the dis-
tant-collision dose involves inner shells for which deexcitation
leads predominantly to Auger emission. A carbon Auger elec-
tron will have a kinetic energy of the order 200 eV and will
execute a random walk with a mean displacement from the
origin of the order 15 A in water or plastic. Hencetheprompt-
dose profile should differ from the delayed electronic dose by
about 20%, which will be distributed throughout a cylinder of
radius -15 A.

prompt primary dose is seen to be

over the degenerate substates which have energy E„.
The sum in Eq. (6.5) is over energy levels, not states.
The Bessel functions drop off exponentially for large
arguments, which means that excitation of the kth en-
ergy level extends to a radius

(6.6)'ra = &'U/~a
I

beyond which excitation becomes quite inefficient due
to the adiabatic theorem.

It is quite easy to extend the treatment above to mag-
netic monopoles. The primary prompt dose is given by

(6.7)

In Fig. 14 we plot the functions F'((}= pK,'(() and

g(() = PK'($). It is seen that for small values of
((~0.5), R(g}+g(()=1, and for large arguments, E +G
= 0. Since C ($)- 0 as f - 0 we see that the primary
monopole dose is (gj3/Z, e)' times that of its electric-
particle counterpart. Since this is the same ratio of the
classical free-electron scattering cross sections we
would expect a similar correspondence of doses in the
penumbra, to a first approximation. In Fig. 15 we plot
prompt-dose profiles for a water absorber divided by
Z,' (we neglect higher-order corrections). Curves A
and B are primary doses for P =0.1 and O. S, respec-
tively, from Eq. (6.5) with the relevant values of f„and
cu„ from Sternheimer (1952). Curves C and D are sec-
ondary doses for P =0.1 and 0.9, respectively, as cal-
culated by Kobetich and Katz (1968). The dose is in
units of Mrad, where 1 rad =100 ergs/g. For com-
parison we also show the small-radius limit 2NZ', e4/
nzv 'x' and the large-radius limit which is & of this.

It should be emphasized that for the prompt doses of
Fig. 15 energy-transfer mechanisms have been ne-

1.2

0.8—

0.2—

0
0.01 0.05 0.1 0.5 1.0 5.0

FIG. 14. Parameters used in. the calculation of prompt dose.
E'(() =( II.& (() and G($) =( Ko (() where K& and Eo are modified
Bes sel functions.

where $, =&u,x/Zv, E„=5~, is the kth excited energy level
(the ground state has zero energy), K and K, are the
mod if ied Besse 1 func tions of orde r 0 and 1, repsec-
tively, and

f, =2mb(u JXJ'/O'Z, ,

where ~X,I' is the sum of
2 2g &ui~, ~o&
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FIG. 15. Prompt-dose profiles for a water absorber divided
by Z& (higher-order contributions are neglected}. Curves A
and B are primary doses from Eq. (6. 5) for P = 0. 1 and 0. 9,
respectively. Curves C and D are secondary doses from
Kobetich and Katz (1968) for p =0. 1 and 0. 9 respectively. The
dashed lines are the small and large radius limits. 1 Mrad
= 10' ergs/g.
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glected. Furthermore, polarization effects have been
neglected so that no consideration of the density effect
nor Cerenkov emission has been included. " This should
limit the validity to velocities less than-0. 9 for solids.
The velocity should be limited from below by I3-0.1
at which point the separation of distant and close col-
lisions starts being invalid.

The above discussion has been limited to the micro-
and submicroscopic spatial distribution of energy de-
position. It is sometimes of interest to have some idea
of macroscopic features of energy deposition insofar
as it affects the fraction of the energy lost by a particle
in a thin absorber which is actually deposited in the
absorber. Some energy is carried out by optical- and
x-ray-fluoresence radiation, Cerenkov radiation, Auger
electrons, and & rays. Scintillation and Cerenkov
counters utilize the escaping optical radiation in order
to ascertain various particle properties such as charge
and velocity. 4 At all velocities (even as P-1) the
fraction of total loss which escapes a solid absorber
as Cerenkov radiation is quite small. By using a rea-
listic atomic model, Sternheimer (1953a) has shown
that the fraction of total energy loss which escapes a
silver bromide grain (diameter W.2 p. m) as Cerenkov
radiation is 0.1%)(this includes radia. tion at all fre-
quencies). The most efficient inorgainc and organic
scintillators have energy conversion efficiencies of
25% [ZnS(Ag)] and 5% (anthracene), respectively
(Williams, 1972). Specially prepared plastic scintil-
lators have an efficiency of 3/o for minimum ionizing
radiation. However, the large majority of solids have

Sternheimer (1953a) has shown that Cerenkov radiation can
account for only a very small fraction of energy transfer for
silver bromide grains. The effect is undoubtedly enhanced on
a smaller scale.

Transition radiators produce x rays' which are useful in
measuring ultrarelativistic energies. This effect involves the
action on the particle fields by the discontinuous absorber boun-
daries. In this review we are concerned primarily with bulk
effects, and hence we will not discuss transition radiation.

where k, A, &, and C are empirical constants deter-
mined by Kobetich and Katz (1968) and which describe
R(w) adequately (i.e. , better than 10%) for 300 eV&~
&10 MeV. A, &, and C are relatively insensitive to
material type and are given by A =0.537 (g/cm~)/MeV,
B =0.9815, and C =3.123/MeV for aluminum. h is
given by

6 =0.63Z, /A, +0.27.
To facilitate calculation we make the approximation

(6.9)

1-'l(u ) =aw'. (6.10)

It is well known that this is a good approximation for a
limited range of energies in any given energy region.
~ and a must be chosen to correspond to the appropriate
region. Finally, we assume that the angular distribu-
tion of ejected electrons is given by the nonrelativistic
expression

cos 6(w) =+~/~ (6.11)

where u =2mc'P y'. For the projectile at position X
within the absorber we define w, (X) by

much smaller efficiencies than for these special ma-
terials due to the predominance of nonradiative deex-
citation mechanisms (Birks, 1964). Thus, in general,
optical fluorescence can be ignored as a source of
escaping energy. Similarly x-ray fluorescence and
Auger electron emission are inefficient means of en-
ergy removal for all but the thinnest absorbers. The
mean free path of a carbon (or oxygen) KI. x' ray is of
the order of 100 A in plastic (or water) (Morgan and
Turner, 1972). The practical range of an inner-shell
carbon (or oxygen) Auger electron is of the order of
300 A in plastic (or water) (Bichsel, 1972). Hence an
absorber with thickness greater than -10 p. m will have
less than 1/o of the deposited energy removed by fluor-
escence x rays and Auger electrons. The only efficient
means by which energy can be removed from absorbers
of non-negligible thickness is via emission of 6 rays.
Laulainen and Bichsel (1972) have analyzed this prob-
lem in detail. They present results of numerical analy-
sis in which the amount of energy removed by & rays
is given for various absorbers as a function of absorber
thickness. It is possible, with the aid of several math-
ematical approximations, to obtain an analytical ex-
pression which agrees with the numerical results to
within 5/o for removed energy We. present here for the
first time the details of this calculation.

We first note that since the &-ray effect to be dis-
cussed amounts to less than 10% of the energy lost by
the particle in the detector, a crude theory of the elec-
tron escape energy will suffice. If this theory is ac-
curate at the 10% level, the error in the energy lost
to the detector will be good to -1%. Thus it is sufficient
to use the Rutherford cross section to describe &-ray
production. Consider a particle normally incident on an
absorber of thickness t. Let A(w) be the average pene-
tration of an electron with energy m into the absorbing
material. If we define A(zu) to be the depth for which
the transmission probability is equal to 0.5, then

R(w) =kAnr[l —6'(1+CD)J,
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(t X—)sece(w, ) =A(w, ). (6.12)

If w &w, (X) the 5 ray will escape and remove some
energy fromtheabsorber. If w&w, (X) all of the energy
is deposited in the absorber. It should be noted that
these statements pertain to the ave&age behavior. I.et
Mj„be the amount of energy removed.

w„=w[1 —(w, /w) ~ "/']'/" .
The total amount of energy removed is

"~m
de —

2 26~
"t6 N

where

(6.13)

(6.14)

K =2&1VZ2e4/mv 2

A fair amount of manipulation leads to
t. ~0

5 =K(x+ —,')A(w ), s~ '/'tts
Qp

y (1 x+ 1/2)1/x (6.15)

where s, = 1 if t &A(w ) and

.= Lt/A( 4]'"'""
if t &A(w ). We approximate (1 —y

' )
1 —(I/A. )y""/'. For large s,

—A. ln (6.16)

t/A(u ), t A&( )w

m (6.17)

and the best choice for A. corresponds to ~ since this
is the most efficient energy for escape:

xex= 1. + (I+Cw )'-B(l C+u) (6.iS)

A(w ) should be taken from Eq. (6.8). Results obtained
from Eq. (6.16) are compared with those from Laulainen
and Bichsel (1972) for the case of protons on "thick"
aluminum ([t/A(w )] = 1) in Table XVII. The agreement
is seen to be quite good.

We should emphasize that all of the dose effects dis-
cussed in this section pertain to average behavior.
Consideration of the distribution of these effects re-
quires a greater expenditure of effort. Monte Carlo
programs such as described by Hagstrom (1977) should
be quite useful in determining the statistics involved
with dose distributions. Further refinement would in-
clude the exact Mott or Kazama- Yang-Goldhaber scat-
tering cross sections rather than the usual approxi-

(1-y"'")"=J
s

is small and for small s, J is dominated by the 1/y
factor. In each case, negligible error is introduced
by the above approximation. Some more algebra yields

TABLE XVII. Energy removed from "thick" aluminum absorb-
er by ~ rays produced by passing proton.

T (MeV) & (keV) (Eq. 6.16) ~ (keV) (Laulainen and Bichsel)

10
20
30
40
50

0.62
1.05
1.47
1.87
2.27

0.59
1.05
1.41
1.79
2.18

mate relations. Ultimately, any theory must be tested
fully before it should be trusted. One potential problem
which does not seem to have been considered is that,
for very heavily ionizing collisions, Bloch-type cor-
rections in differential form will be required to evaluate
the c.m. electron scattering cross sections. It must be
realized that even close collisions between bound elec-
trons and heavy nuclei (or antinuclei or monopoles) are
likely to exhibit features not present in free plane-wave
electron scattering off of these same objects.

Having concluded our discussion of every deposition,
we next consider how this relates to response mecha-
nisms for various charged-particle detectors.

B. Charged-particle detectors

In this subsection we will describe various charged-
particle detectors which are currently in use. We will
be emphasizing the underlying physical mechanisms
which determine the response of a system to radiation.
Such an understanding is required for accurate extra-
polation of response curves to untested domains.

cos' (a)) = v„,„,((u)/vp„„„, = I/Pn(&u), (6.19)

where cu is the circular light frequency. The number
of photons per unit wavelength (where wavelength is de-
fined by A. = 2vrc/&u) per unit distance traveled by the
projectile was obtained by Tamm and Frank (1937):

dN 2mnZ, (1 —1/n P )
dA.dx A.

(6.20)

A classical derivation of the above expression is given
by Jackson (1975). A quantum-electrodynamical (QED)
derivation of Eq. (6.20) is quite simple as well as being
very instructive. We will briefly sketch such a de-
ri vati on.

It is straightforward to show that nonabsorbing die-

1. Cerenkov counters

Cerenkov radiation was discovered by Vavilov. (1934)
and Cerenkov (1934). Tamm and Frank (1937) developed
a classical theory for this radiation which has since
been explained by Ginsburg (1940) in terms of quantum
mechanics. Fermi (1940) demonstrated that Cerenkov
radiation is just that component of the distant-collision
energy loss which escapes to infinity. In the most
simple terms, Cerenkov radiation is an electromag-
netic shock wave which is emitted by a charged particle
which moves through a medium at a velocity greater
than the velocity of light in the medium. As such it
propagates at an angle 8 relative to the particle direc-
tion which is given by the Mach relation:
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lectrics are characterized by a quantized vector poten-
tial which is given by Eq. (3.10) with c replaced by
c/v c. This results in a modified dispersion relation:
0' —s&u'/c'=0. It is well known that energy momentum
conservation forbids the emission of photons by parti-
cles moving in vacuum with uniform velocity. However,
as will be seen below, this is not the case for particles
moving in matter.

%e consider the rate for production of photons with
energy Nu and momentum ck with the dispersion rela-
tion above. It is easy to show that momentum and
energy are thus conserved if the emission angle is
given by Eq. (6.19) with n =vs . By using the techniques
outlined in Sec. III it can be shown that the probability
per unit time of producing a photon of momentum @k
and polarization c is given by

4~2g282c 2

(6.21)

where p (p') is the initial (final) momentum of the
charged particle. The Kronecker 5-function expresses
momentum conservation and the Dirac & function ex-
presses energy conservation. The expression (p s )'
demonstrates that the emitted photons are linearly
polarized in the plane of emission. By summing over
p' and photon emission solid angle, and by imposing the
requirement kk«P, one obtains the result of Eq. (6.20).

In addition to emphasizing the role of energy momen-
tum conservation in Cerenkov emission, the QED de-
rivation has the advantage of indicating the existence
of higher-order corrections which is often not apparent
in classical calculations. In Fig. 16 we depict the
first-order Feynman diagram responsible for the re-
sult of Eq. (6.20). Two higher-order diagrams are
shown for comparison. Since the number of photon-
projectile vertices is always an odd number, it is seen
that Cerenkov radiation is a function only of lZ, l, being
the same for both positive and negative charges. It is
difficult to calculate higher-order contributions due to
the need for an accurate knowledge of the detailed prop-
erties of the absorbing medium. Such a knowledge is
not required for the first-order result beyond imposing the
limitation that light is emitted only for those frequen-
cies for which s(&u) is real. In this connection we
might note that Bohr (1948b) first pointed out that for a
medium with no absorption and described by a single
type of dispersion oscillator, the relativistic rise of
energy loss as obtained from Fermi's (1940) theory

dN ng 1 (6.22)

For a given velocity, the monopole Cerenkov radiation
is a. factor (ng/Z, e)' stronger than for an electrically
charged particle. In addition to having a different in-
tensity of Cerenkov radiation, the radiation is polarized
differently for a monopole than for an electric charge.
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should escape entirely as Cerenkov radiation. Stern-
heimer (1953a) has shown that with more realistic
atomic models, only a very small fraction of Cerenkov
radiation escapes for solids, although significant escape
is possible for gases.

By measuring the angle of emission of Cerenkov light
it is possible to determine the projectile velocity as
shown by Eq. (6.19). Litt and Mennier (1973) describe
this technique in some detail. By integrating the total
light collection, projectile charge and velocity can be
measured as indicated by Eq. (6.20). Various experi-
mental aspects of this approach are elaborated on by
Ahlen et al. (1976). A discussion of background light
sources, including Cerenkov-emitting & rays and low-
level scintillation, can be found in this work. The ef-
fects of slowing are also considered and experimental
data are compared with theory. In Fig. 17 we plot a
typical integrated light curve. In this case the Cerenkov
radiator was a piece of 1.27-cm sandblasted Pilot 425.
The incident radia, tion was "Ne. More detailed infor-
mation can be found in Ahlen et al. (1976). Note that
scintillation and Cerenkov. -emitting 6 rays contribute
a sizable fraction of the emitted light. Note also that
the index of refraction as obtained by extrapolating the
Cerenkov curve gives a value of n. = 1.508, which is
lower than the fitted value of 1.518. This is a conse-
quence of the slowing of the ions in the radiator.

Tompkins (1965) has adopted Fermi's (1940) ap-
proach to calculate the Cerenkov radiation for magnetic
monopoles. He finds that for magnetic charges, as for
electric charges, there is no Cerenkov radiation for
P'@&1. For P2s&1 the result, analogous to Eq. (6.20)
ls

400

Lowest Order Next Higher Order

FIG. 16. First- and next -higher-order Feynman diagrams
representing Cerenkov radiation. .

200 400 600
INCIDENT ENERGY (MEV/AMU)

FIG. 17. Typical Cerenkov counter integrated response vrith
the 6-ray Ceren. kov tail and the scin.tillation component indi-
cated. Taken from Ahlen et al. (1976). The Cerenkov radia-
tor was Pilot 425.
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Rather than being polarized in the plane of the projec-
tile and photon motion, the electric field is perpendicu-
lar to this plane. Hagstrom (1975) has suggested a
means of identifying magnetic monopoles by exploiting
this property.

Finally, we note that fluctuations in the number of
Cerenkov photons emitted per unit length are deter-
mined solely by the Poisson statistics implied by Eq.
(6.21). This is due to the fact that the number of atoms
participating in the Cerenkov process is so large as
to preclude energy-loss fluctuations of the type con-
sidered by Bohr, Landau, Symon, and Vavilov.

2. Scintillation counters

The introduction of the use of ZnS screens by Crookes
and Regener in 1908 for visual scintillation counting
and of ionization chambers by Rutherford and Geiger
(1908) marked the beginning of modern experimental
physics. Birks (1964) provides an interesting historical
account of the development of scintillation counters,
which development, along with that of photomultiplier
tubes, has enabled them to remain useful tools in ex-
perimental physics even up to the present time. The
scintillation mechanism is quite simple to understand
in its most elementary form. Some type of radiation
(anything from ultraviolet light to relativistic uranium
nuclei) impinges on a material, causing excitation and
ionization. Some fraction of the excited constituents
radiatively deexcite, resulting in the emission of light.
Everything scintillates to a certain extent. %hat char-
acterizes those materials used for scintillation counters
is an unusually large efficie'ncy for converting high-
energy radiation into visible, or nearly visible, light.
Aside from gases (most of which are efficient scintil-
lators with the notable exception of oxygen), which are
not subject to severe collisional deexcitation, the only
known efficient scintillators fall into two classes: (i)
various inorga. nic crystalline solids; and (ii) organic
solids composed to a large extent of benzene rings. It
will not be our purpose here to delve into the chemical
physics or solid-state physics aspects of scintillation.
This is an extensive subject and the interested reader
would do well to consult Birks (1964), Birks (1967),
Windsor (1967), Birks (1970), Williams (1972), Birks
(1973), or Birks (1975). We will be primarily con-
cerned with experimental aspects of scintillation
counters. In our brief discussion that follows we will
draw heavily from the excellent monograph by Birks
(1964).

Virtually every type of scintillator in practical usage
consists of a bulk material doped with a small concen-
tration of one or more impurities. This is true of in-
organic crystals, liquid organic scintillators, and plas-
tic scintillators. This is not to say that pure substances
cannot scintillate. Examples are anthracene crystals,
diamonds, and pure NaI and CsI. The luminescence of
anthracene reflects its molecular structure. Most other
pure substances which scintillate, do so as a result of
crystalline properties. In diamond, lattice defects
serve as impurity centers, and NaI and CsI need to be
cooled to liquid-nitrogen temperatures for efficient
operation. The purpose of impurity centers in inorganic

Z;'"(P. —0.04Z,), (6.23)

where R is the ion range in mg/cm'. Ahlen et al. (1977)
have shown that this strong saturation (i.e., constant
dl. /dx) does not apply in the high-velocity regime. By
using "Ne ions from 100-600 MeV/amu they have shown
that simplified ionization quenching models used to ex-
plain low-velocity data do not work. They present sup-
porting evidence, and supply earlier references, for the
conclusion that the scintillation process in the rela-
tivistic, heavily ionizing regime is characterized by
two effects: (i) the production of copious quantities of
high-energy 5 rays (w & 1.5 keV) which transport their
energy far from the central track "core" of ionization
and excitation into the "halo" regions which are other-
wise unaffected by the passage of the primary ion; and
(ii) the dominance of ionization quenching in the core
over depletion of luminescence centers as the cause of

systems or added primary and secondary fluors in or-
ganic systems is to provide traps for migrating energy
which subsequently emit radiation to which the bulk ma-
terial is transparent. The energy-transfer processes
can be any one of or several of the following: (i) exciton
migration, (ii) long-range resonant interactions, (iii)
radiative emission and reabsorption, etc. Birks pro-
vides numerous references to work concerned with en-
ergy transfer.

It has long been recognized that scintillators saturate:
dl /dE, the light output per unit energy deposited in the
scintillator, declines as a function of dE/dx. For
anthracene crystals, 1-MeV electrons result in 4.6
times as much light as 1-MeV protons and 15 times as
much light a.s 1-MeV n particles (Brooks, 1956). Simi-
lar behavior is observed mith organic liquid and plastic
scintillators. Inorganic crystals are also subject to
saturation, although to a more limited extent. The 'o/P
conversion efficiency ratio (i.e., the ratio of conversion
efficiency for the response to o. particles and P parti-
cles) is roughly 60% for Csl(Tl) (Gwin, 1962) as com-
pared to 7% for organic scintillators.

Becchetti et al. (1976) have recently presented data.
for the response of NE102, NE110, and NElll plastic
scintillators to heavy ions with Z, = 1 to 35 and with en-
ergies from several MeV to just under 200 MeV. They
observe that different types of scintillators prepared
under similar conditions produced relative light outputs
which are equal to within 10% for ions Z, = 1 to 16.
Ahlen and Salamon (1978) have observed that relative
scintillation efficiencies of NE110, Pilot B, Pilot F,
and Pilot Y are the same to within 4% in response to
atmospheric muons, 600-MeV/amu ' Ne, 'OAr, and
"Fe ions. It seems safe to conclude that previously
reported variations of scintillator saturation reflected
experimental effects or differential aging or radiation
degradation effects.

Early data with o. particles (Birks, 1964) indicated
that the specific luminescence per unit length, dL/dx,
approaches a constant level, independent of dE/dx, for
very high rates of energy loss. This was inferred from
the observed proportionality of light output to a-particle
range. The low-velocity data of Becchetti et al. (1976)
extend this result. They find that

Rev. Mod. Phys. , Vol. 52, No. 1, January 1980



Steven P. Ahlen: Energy toss pf relativistic heavily ionizing particles 165

tained with other detectors. The most convincing evi-
dence for this is the direct comparison of charge reso-
lution for iron-group nuclei in the cosmic rays obtained
by similar techniques with the replacement of plastic
scintillators by ionization chambers. Tueller et al.
(1977) use ionization chambers plus a Pilot425 Cerenkov
radiation to this end and Meyer and Minagawa (1977)
use Pilot Y scintillators plus a Pilot 425 Cerenkov
radiator. The former group achieves a resolution of
o =0.21 charge units while the latter attains o =0.25
charge units. Thus there is no significant difference.

dI- dE dE
dY

(1 —+,)exp -B.(l —&.) ++, , (6.24)

where', B„and Tp are parameters of the model and
&, is the fraction of & rays which escape from the core:

1 ln(2mc'P'y'/To) —P'
2 ln(2mc'P'y'/I) —8' (6.2 5)

3. Particle track detectors

nonlinear response. Saturation is associated with the
quenching, or "turning off," of the track core. Models
of scintillation mechanisms by Meyer and Murray (1962)
and by Voltz et al. (1966) include these features. The
Voltz expression is particularly simple:

Typical values for B, and T, are in Table XVIII. They
are taken from Ahlen et al. (1977) and Buffington et al.
(1978). The latter group do not see any difference be-
tween their scintillator response for different scintil-
lators. The difference between their B, parameter for
Pilot Y and that of Ahlen et al. (1977) can be reconciled,
because of the fact that the scintillator used by Ahlen
et al. (1977) was very old and severely crazed. Also
different photomultiplier tubes are used by different
groups, which can confuse intergroup comparisons.
Recent work with cosmic rays has shown that, while
the qualitative features of the Voltz model are correct,
its validity is restricted to a limited domain of charge
and velocity (Buffington et a/. , 1978, and Tariff et al. ,
1978). Analysis of the experiment reported by Ahlen
and Sala, mon (1978) should help to clarify some issues
of scintillation mechanisms. Pending this and further
developments, it must be concluded that extreme cau-
t1on should be Used 1n extl apolatlng sclntlllator re-
sponses, although Eqs. (6.23) and (6.24) should serve
as useful guides. Furthermore, until a proper under-
standing of scintillation mechanisms is achieved, it will
not be possible to evaluate detector resolution a Priori.
If the bulk of the scintillation light is due to high-energy
5 rays (due to a quenched core) the fractional resolution
will be larger by. a factor of -3 than if all types of en-
ergy deposition were equally effective in causing scin-
tillation. Furthermore, higher-order corrections de-
pend to a large extent on the roles of the distant and
close collisions in the response mechanism.

To close this discussion of scintillators we feel that
it is important to emphasize that, in spite of the nu-
merous problems associated with them, scintillators
.still remain competitive with better understood and
better behaved AE detectors such as ionization cham-
bers and solid-state detectors which have excellent
linearity properties. It is difficult to match the
economy of scintillators, or their ease of fabrication.
In addition, over limited domains of charge and velocity,
resolution achieved with them is comparable to that at-

There are a variety of particle detectors which, in
one way or another, yield a visible record of the pas-
sage of the particle. The most notable detectors which
fit into this category are the cloud chamber, bubble
chamber, nuclear emulsion, spark chamber, and die-
lectric track recorder. A number of other such de-
tectors have been developed and we will not make any
attempt to list them here. Cloud chambers have been
reviewed by Fretter (1955) and bubble chambers are
discussed by Alvarez (1969). Cha. rpak (1970) has sum-
marized recent developments in. the use of spark cham-
bers, including a discussion of related devices such as
multiwi re proportional chambers. The development
of the nuclear emulsion for the study of elementary
particles is described by Powell et al. (1959), and
Barkas (1963, 1973) describes in great detail various
techniques, theories, and applications of emulsions.
Nuclear track detectors are described by Fleischer
et al. (1975). Numerous other monographs and papers
are available which deal with track detectors. The in-
terested reader is directed to virtually any issue of
Nucleax Instruments and Methods or to any H&oceedings
of the IEEE.

In this section we will restrict ourselves to detectors
particularly suited to the study of relativistic heavily
ionizing particles. This essentially restricts us to nu-
clear emulsions and dielectric track detectors, the
others being more suitable to either high-energy ac-
celerator work (and singly charged particles) or fully
saturated applications for which hodoscopic and tra-
jectory information is the primary goal. Nuclear
emulsions have the advantage (or in some instances the
disadvantage) of being sensitive to minimum ionizing
particles. In this regime the ionization rate is low
enough so that the probability of grain sensitization
along the particle trajectory is less than unity. Linear
grain densities serve as a measure of the ionization
rate and the restricted energy loss (REL) is useful in
describing this density (Messel and Ritson, 1950). For
heavy ions, the core of the emulsion track is fully

f

TABLE XVIII. Parameters of Voltz model obtained by several groups.

Source Seintillator type B~ f{g/em )/MeV]

Ahlen et aL. (1977)
Ahlen et al, . (1977)
Buffington et al. (1978)
Buffington et aI .. (1978)

Pilot F
Pilot Y
NE110
Pilot Y

6.29 x10
1.02 x10

5 x10
4.5 x10 3

1.37
1.78
1.5
1.5
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saturated and information related to particle properties
is contained in the halo region as described in
Sec. VI.A. It has been seen that emulsion re-
sponse in this regime has been compared with theoreti-
cal models of energy deposition by 5 rays and that good
agreement has been obtained. This indicates that the
response of emulsions can be most simply understood
in terms of the model of Katz et al. (1972), wherein
the sensitization of an emulsion grain is a one-hit
Poisson process with a minimum energy deposition per
grain characterizing one hit. ' Track structure for
arbitrary charged particles should then be calculable
within the framework of a Monte Carlo program of the
type promised by Hagstrom (1977). Unfortunately, the
understanding of the track-formation process in di-
electrics is not on so firm a footing as for its emulsion
counterpart. We will devote the remainder of this
subsection to a discussion of this process.

It was discovered by Silk and Barnes (1959) that fis-
sion fragments leave permanent observable tracks in
mica. With an electron microscope they observed dif-
fraction contrast images of the damaged regions which

0
were = 100 A in diameter. Fleischer, Price, and Walker
(1965, 1975) and Price and Fleischer (1971) describe
the various theoretical conjectures for track-formation
mechanisms and the numerous applications of particle
tracks in solids. A major contribution of these workers
to the field of particle identification lies in their dis-
covery that the primary localized track is particularly
subject to chemical etching by caustic solutions. This
enables the damaged region to be expanded sufficiently
so as to be observable with visible light through optical
microscopes. To date, the most commonly used ma-
terial for particle identification with this technique is
Lexan polycarbonate. This is a commercial plastic
which is characterized by good large-scale uniformity
and considerable resistance to radiation.

To date, a large number of models have been ad-
vanced to account for the formation of particle tracks
and for the subsequent chemical etching process. See
Fleischer et al. (1975) and Benton (1970). None of the
models advanced so far can be regarded as successful.
Since the detailed shape of the etched particle track
must depend on complicated processes involving dif-
fusion and chemical kinetics and dynamics, it will
probably be some time before particle properties can
be directly related to the final observed track. How-
ever, it is not unreasonable to expect to find some par-
ticular property of the particle which characterizes a
given track. This has been the main thrust of work
which utilizes Lexan for particle identification. At
present the two most popular semiempirical formalisms
used for the analysis of charged-particle data in Lexan
are the Z, /P characterization and the REL characteri-
zation.

In the restricted-energy-loss or REL model (Benton,
1970), it is assumed that knock-on electrons with en-
ergy greater than ~0 are ineffective in causing the

0—

—O. I—

-O.Z—

-05—

-0.4—

-0,5—
O

~ 'sSi

O 5 6Fe

$ zoNe

—0.7—

0.40 0.50 0.60 0.70 0.80
log IREL / ( GeV cm'/gI]

FIG. 18. Etch rate dependence for Lexan on. restricted en-
ergy loss (BEL) as a function of particle type. Data from
O' SUllivan et aE. (1971).

permanent radiati on damage which is the primary track.
Thi s hypothesi s is supported by the observati on that
fission-fragment primary track diameters are less than
100 A in plastic (Fleischer et a/. , 1975). Since high-
energy 5 rays deposit most of their energy quite far
from the particle track it is reasonable to suspect that
they do not contribute significantly to the primary track.
M, is usually assumed to have a value between 300 and
1000 eV [Benton and Henke (1972) have chosen 350 eV].

Shirk and Price (1978) and Fowler et al. (1977) have
used the primary ionization model described by Price
and Fleischer (1971)with constant K set to infinity to
analyze ultraheavy cosmic-ray data. This approach
is equivalent to assuming that a particle track property
is determined solely by the ratio Z,/P. Most experi-
mental data taken in a controlled environment with
known particle parameters have lacked sufficient dy-
namical range to distinguish between the above two ap-
proaches. Furthermore, it is well known that suc-
cessful particle identification over a limited dynamic .

range is insensitive to the response function used in the
analysis (witness the good charge resolution obtained
with plastic scintillators which was referred to in Sec.
VI.B.2). However, the data presented by O' Sullivan et al.
(1971) are sufficiently good to rule out the REL model.
These workers used accelerator ' Ne and ' Si ions and
cosmic-ray "Fe ions." We plot the data of O' Sullivan
et al. (1971) in Figs. 18 and 19. In Fig. 18 we plot
log[Vr/(p/h)] vs log[REL/(GeVcm'/g)], where Vr is the
etch rate of the tracks and ~, was chosen to be 350 eV.
In Fig. 19 the parameter log(Z, /P) has been substituted
for log(REL). There is little doubt on the basis of these
data that Z,/P is to be preferred as a universal pa-
rameter over REL. This is supported by the quite
reasonable ultraheavy cosmic-ray compositions ob-
tained by Shirk and Price (1978) and Fowler et al. (1977)
which, if REL model were chosen as a calibration
basis, would have to be shifted by -10 charge units, re-
sulting in peculiar abundance distributions. We might
note that higher-order corrections to the stopping power
come into analysis of ultraheavy cosmic-ray data to

Jensen et al. (1976) find that the critical energy deposition
per grain is roughly 100 eV. This should be compared to the
sensitivity to visible light. Only several optical quanta are
required to sensitize a grain which corresponds to - 10 eV.

Until very recently it was not known to what extent the iso-
tope spread could affect the interpretation of data like these.
However, Tarle et al . {1978)have shown that the iron iso-
topes consist primarily of Fe.
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- O. I—

collisions, it can be shown (Fano, 1963) that the vari-
ance of the total energy loss is

—03—

o 4 1 ——,'P' 4 (K) 2m'c'

1
(6.26)

-04—

-05—

where (K) is the mean kinetic energy of an atomic
electron in the ground state of the absorbing atom and

—0.7—

o "Fe
+ "Ne lnI, = E„„lnE„E„f„ (6.27)
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FIG. 19. Etch rate dependence on Zj/P as a function of par- .

ticle type. Note that all particle species fall on the same line.
The data are the same for Fig. 18.

second order due to the predominance of the distant col-
lisions in influencing track structure. The corrections
only mildly affect charge assignments insofar as the
rate of change. of velocity is affected.

Katz and Kobetich (1968) have proposed a track-for-
mation mechanism in which the secondary dose at a
radial distance of 17 A characterizes the threshold cri-
terion for track registration in Lexan. By using avail-
able data, their model predicts a critical dose of -10
Mrad at this critical radius. Considerably larger doses
are required to alter bulk properties of Lexan (Golden
and Hazell, 1963) so it seems that this mechanism is
not viable. However, the primary dose at -10 A ls
adequate to account for sufficient energy deposition to
match macroscopic observations (see Fig. 15). Since
the characteristic size of a Lexan monomer is -12 A,
it is tempting to ascribe the total prompt dose at a
radius of -10 A as the parameter which determines the
etch rate. This will not account for the O' Sullivan et al.
(1971) data, however. It is found that the effect of the
adiabatic rolloff of prompt primary dose is sufficient
to cause the doses at 10 A of the overlapping iron and
neon points of Fig. 19 to differ by nearly 100/o (the
slower "Ne ion is less efficient at exciting inner shells
than the faster "Fe ion). If, on the other hand, one
merely considers the prompt dose which goes toward
exciting bonds with energies ~10 eV, then etch rates
are predicted to be a function of Z, /P for velocities
greater than 0.1c. At lower velocities, reduced etch
rates should be expected. Since both of these features
are observed for Lexan, this scenario seems to be quite
valid. It is difficult to see, however, how the primary
track region can be unaffected by the rather violent
inner-shell excitation and deexcitation processes. It
may be that x-ray fluorescence and Auger electron
emission dilute this part of the energy deposition so
that the efficiency for molecular-bond ruptures is re-
duced relative to direct bond-breaking interactions.

If it is true that Lexan responds to only the distant
collisions, as the above comments suggest, then its
intrinsic resolution may very well exceed that of any
other particle detector. " By considering the distant

This feature, if true, has thus far been obscured by a —3%
etch rate scatter due to spatial nonunifornuties of the plastic
itself. Current research on an improved plastic, CR-39
{Cartwright et a)., 1978) indicates that the intrinsic resolution
is indeed much better than this.

For v ++ vp one obtai ns the previ ousl y di scus sed result,
Eq. (3.47). As is true of the Bethe stopping-power
formula, Eq. (6.26) is valid only for rather large ve-
locities so that in this regime, total energy straggling
is characterized by the relativistic Bohr formula to
quite good accuracy. The second term is useful in de-
termining the distant-collision fluctuations however.
The free-electron approximation predicts that the
straggling of energy loss due to collisions with energy
transf er between ~;„and w

„. „ is

2wNZ~e x p 2cmax+2ciiiin
O2(2II,„,2II . ) =

max & 2 1
2 2 2 2 2 ( max min)2mcpy

4 (K) 2mv'
o'(Lexan) = 4mNZ', e x —,ln +

3 pal v I~ ' 2pRv

2

2 2mc y
(6.29)

From the chemical composition of Lexan (C„H„O,)
and the approximate values for E„and f„ from Stern-
heimer (1956), one finds that (K) = 123 eV and that
Iy 32 3 eV. These numbers should not be trusted to
better than 50%%uo. If 2II0= 350 eV, then

10 4
o'(Lexan) = 4mNZ2e'x (16.4 + 3.2 lnP) (6.30a)

The uncertainty in 2c„(K),I„and the nonrelativistic
approximations required for the derivation of the dis-
tant-collision part of Eq. (6.26) render Eq. (6.30a)
suitable only for a rough estimation of fluctuations.

We can compare Eq. (6.30a) to resolutions expected
for other types of particle detectors. In the relativis-
tic heavily ionizing regime we have seen that emulsions
and scintillators are predominantly sensitive to high-
energy 5 rays (&1500 eV). Hence;

1 ——'P
o*(ooiotillaooo, emols'ool = 4oXZ,*e'x ' ), (6.30b)

where we have neglected 1500 eV in comparison to
2c „=2mc'P'y'. Since solid-state detectors and ioniza-
tion chambers are sensitive to all classes of collisions,
Eq. (6.30b) applies to them as well.

Suppose that the above detectors respond to a par-
ticular class of energy losses so that the detector re-
sponse is given by some function + of AE, where

(6.28)

If the response of Lexan is insensitive to collisions
with energy transfer greater than ~0, then the relevant
fluctuations are given by

o' o'(2m —c'P 'y', 2c,) = c'(Lexan):
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27TNZ ~e X ~ig3y,AE= ln—
6'l 'U ~ min

(6.3 1)

For I exan track detectors, ~„,„=350 eV, ~;„=I '/
2mc'P'y'; for scintillators and emulsions,
= 2mc'(S'y', w;„= 1500 eV; for ionization chambers and
solid-state detectors, ~ .„=2mc'P'y' and w, „=I'/
2mc'P'y'. Aside from the binomial statistics associated
with the production of scintillation photons, sensitized
emulsion grains, and electron-hole or -ion pairs, the
quality of a detector of penetrating radiation is mea-
sured by the size of the separation of two signals (for
different values of AE) in units of the intrinsic fluc-
tuation in & due to fluctuations in AE. Since this quan-
tity is independent of the functional form of &, a true
measure of detector resolution is given by the ratio
o/AE. In Table XIX we give this ratio for the detectors
named above. It is seen that for Py 1, and for given
values of Kx, Z„and P, track detectors are about 10
times as good as the total AE detectors which in turn
are about 3 times as good as scintillators and emul-
sions. Of course, there is considerable variation in
practicable sizes for the different detectors. This
should always be considered in any a.pplication.

4. ionization chambers and solid-state detectors

To conclude this section on charged-pa, rticle detectors
we will discuss the most reliable instruments for the
measurement of energy loss. These include the ga, seous
ionization chamber, which detects the number of elec-
tron-ion pairs produced by the passage of a charged
particle, and the solid-state or semiconductor radiation
detector which detects the number of electron-hole
pairs. The use of ionization chambers of one form or
another (and this includes the classical electroscopes)
dates back to the beginning of this century. The solid-
state detector is a more recent development. Reviews
on their properties and performance can be found by
Goulding and Stone (1970), Tavendale (1967), and Miller
et al. (1962).

It has been recognized for a long time (see Bethe,
1930, and Mott and Massey, 1965) that the ionization
cross section has virtually an identical form to that of
the total stopping power. It is not surprising, there-

fore, that a measure of the number of liberated elec-
trons should correspond to the amount of energy lost.
What is somewhat surprising, however, is the broad
range of charge and velocity over which the response
of these detectors is accurately represented as a linear
function in the total energy loss. One is reminded of
the situation for scintillators. For large values of Zy
and P the response is roughly linear to total energy loss
but only because the close-collision energy loss is
nearly a, constant fraction of the total loss. The insen-
sitivity of the scintillator response to distant collisions
is reflected by saturation characteristics involving a
comparison of data taken over a large span of charge
and velocities. The key parameter in the application and
theory of ionization counters and solid-state detectors
ls +~ which is equal to the amount of total dissipated
energy required to liberate one electron-ion or electron-
hole pair, In Table XX we present results taken from
Fano (1963) for values of N' (in eV/pair) for various
gases and semiconductors and for different kinds of
radiation sources. References are given by Fano. The
remarkable constancy of ~ over a large range of ve-
locity (P = 0.05 to P- 1) indicates that all types of col-
lisions partake equally in the detection mechanism. For
example, the fraction of energy loss which goes toward
producing energetic electrons (~1500 eV) in silicon
ranges from 0.39 at P =0.95 to 0.32 at P =0.05. Any
preferential sensitivity to the high-energy & rays is not
indicated by the data in Table XX.

It may seem that direct ionization, i.e., close col-
lisions, should be more effective in producing ion pairs
than the 'relatively inefficient distant collisions which,
as we have previously mentioned, are as like]y to be
excited as ionized. However, the number of these close
collisions is vastly exceeded by the number of distant
collisions. Any deficiency in distant-collision ionization
efficiency can be more than compensated for by this
numerical advantage. " Subsequent secondary ioniza-
tion and excitation is essentially the same as the pri-
mary process, and the ratio of excitation to ionization
events is unaltered. The similarity of the ionization
cross section to the stopping power suggests the
correspondence of the energy lost in a particle track to the
number of primary ion pairs via the relation N= AE/s,

2~~z 2 -i/2 2 2p ~2 -f
TABLE XIX. Detector resolution 0/&E in units of ln—

yyzV 2 I

Detector

Lexan track detector 9.6+2 lnPy

Scintillator' and emulsion

Ionization chamber and
solid-state detector +2Py(2rPZC2) $/2(j &P2) 1/2

By examining Bethe s (1930) derivation, it can be seen that the distant collision ionization cross section is about 5 times as
large as the close-collision ionization cross section.
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TABLE XX. Values of 8' [eV/(ion pair)] for various sub-
stances.

Substance a particles
340- Me V
protons P particles

Gases

Solids

He
Ne
Ar
Kr
Xe
H2

N2

O2
Air
COg

QH4

Si
Ge
Se
InSb
Agcl

42.7,
36.8
26.4,
24.1
21.9
36.3,
36.4,
32 ~ 2~

35.0
34.0,
29.0,

3.55
2.9
3.9
0.6

46.0

26.25

37.0, 36.0
36.5
32.5

34.3
29.2, 29.4

36.5
34.7
32.6
34.4

42.3
36.6
26.4
24.2
22.0
36.3
34.9
30.9
30.9
32.9
27.3

3.55

7.6

~Recent calibrations with relativistic Fe ions (Greiner,
1978) have indicated that for incident angles within —3 of the
electric field lines, charge-recombination effects occur which
distort the charge-collection spectrum of solid-state detectors.
This could be regarded as a form of saturation. It is easily
corrected for, however, by rotating the detector at an angle
greater than 3 .

where aF. is the energy lost by the projectile. Since
roughly one-half of the energy is lost to the close col-
lisions, 26E/s is—the number of secondary ion pairs.
Proceeding with the same a.rgument, (2)'EE/c is the
number of tertiary ion pairs, (2)'AE/s the number of
quaternary pai rs, etc. Since

—+—+—+ ~ = 11 1
2 4

we see that the close-collisions result in the same
number of ion pairs as the distant collisions. External-
ly applied electric fields separate the charge suf-
ficiently to prevent recombination. It can be seen that
~= 2s. Fano (1963) gives additional arguments and
references rega. rding the excellent linearity of these
ionization detectors. "

In addition to having superior linearity, ionization
detectors have the favorable properties of enhanced
counting statistics and excellent temperature stability
over scintillation counters. The statistics governing
charge production and collection are not totally under-
stood (see Fano, 1947, van Roosbroeck, 1965 for a
theoretical treatment). However, the fractional stan-
dard deviation of collected charge is well represented
by (E/N)'~', where E' is the Fano factor and N is the
mean number of electron-ion or -hole pairs. + is of
the order 0.1 for solid-state detectors. In order to pro-
duce one photoelectron in typical scintillation counters,
1000 eQ or more of deposited energy is required. This
is about 300 times more than that required to produce
one electron-hole pair in silicon. The enhanced reso-
lution is therefore -v'300/E- 50 times as good in semi-
conductors as in scintillators. Bichsel (1972) reports
that in going from 300 to 90 K, W increases by 4% for
silicon. This is a much smaller temperature coefficient

than is possible with any phototube-scintillator com-
bination. Temporal drifts can be expected to be reduced
by the same order of magnitude. It should be mentioned
that the one disadvantage solid-state detectors have in
relation to scintillators is expense and size limitation
of fabrication. They are also much more prone to
radiation damage. These factors should always be con-
sidered in the design and analysis of experiments.
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GLOSSARY GF SYMBOLS

=mass of projectile in atomic mass units (1 amu=l. 6605
x 10-24 g)

=mass of absorbing atom in. atomic mass units.
ao ——k /nze = Bohr radius= 0. 5292 A.
e = e /@c= fine structure constant= 1/137. 036.
P = velocity of the projectile relative to the absorbing medium

in units of speed of light in vacuum c= 2. 998 x 10 cm/s.
E =M&c2(y —1) = kinetic energy of projectile.
g =renormalized magnetic charge of the projectile if it is a

magnetic monopole.
= Lorentz factor of the projectile =1/(1 —P~) ~2.

I = logarithmic mean excitation energy.
A. =O. ao ——Compton. wavelength of the electron/27t = 3.862

x jo "cm.
M&

——mass of projectile.
m =rest mass of the electron=9. 110x 10-28 g.
nz& =rest mass of the proton= 1.672 x 10 24 g= 1.0073 amu.
N = volume density of electrons in the absorber.

=o. ao= classical electron radius=2. 818 F (1 F =1 Fermi
= 10 ~3 cm).

= typical radius of electron orbit in a heavy element.
= —dF/dx= stopping power of projectile.

T =E/A.
&

= 931.5 MeV(p —1) =energy of projectile per atomic
mass unit (ofte'n expressed in the unit MeV/amu).

= characteristic electron velocity in a heavy element.
v =pc = projectile velocity.
se =kinetic energy of knock-on electron in the laboratory

frame.
x = path length.
Zo =number of protons in the projectile if it is an ordinary

nucleus.
Z&e=renormalized electric charge of the projectile if it is a

nucleus or antinucleus; —e is the renormalized electric.
charge of the electron: e=4. 803x 10 esu.

Z& = atomic number of the absorbing medium.
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