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Several common modes of crystal growth provide particularly simple and elegant examples of
spontaneous pattern formation in nature. Phenomena of interest here are those in which an advancing

nonfaceted solidification front suffers an instability and subsequently reorganizes itself into a more

complex mode of behavior. The purpose of this essay is to examine several such situations and, in doing

this, to identify a few new theoretical ideas'and a larger number of outstanding problems. The systems

studied are those in which solidification is controlled entirely by a single diffusion process, either the flow

of latent heat away from a moving interface or the analogous redistribution of chemical constituents.

Convective effects are ignored, as are most effects of crystalline anisotropy. The linear theory of the

Mullins-Sekerka instability is reviewed for simple planar and spherical cases and also for a special model

of directional solidification. These techniques are then extended to the case of a freely growing dendrite,

and it is shown how this analysis leads to an understanding of sidebranching and tip-splitting instabilities.

A marginal-stability hypothesis is introduced; and it is argued that this intrinsically nonlinear theory, if
valid, permits aone to use results of linear-stability analysis to predict dendritic growth rates. The review

concludes with a discussion of nonlinear effects in directional solidication. The nonplanar, cellular

interfaces which emerge in this situation have much in common with convection patterns in

hydrodynamics. The cellular stability problem is discussed briefly, and some preliminary attempts to do

calculations in the strongly nonlinear regime are summarized.
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I. INTRODUCTION

Qutside the realm of biology, some of the most beau-
tiful and familiar examples of spontaneous pattern
formation in nature can be found in the growth of cry-
stals. We all have admired snowf lakes; and most
physicists are aware of the dendritic —that is, tree-
like~microstructures which, occur during the solidifi-
cation of alloys. Solidifying systems are extremely
interesting for scientific and technological as well as
aesthetic reasons. Compared to complex biological
processes, these systems represent conceptually sim-
ple examples of self-organization; but we shall see
that, even here, the underlying mechanisms are not well
understood.

Traditional studies of crystal growth, especially
among physicists, have focused primarily on symme-

+Research supported in part by AFOSR Grant F44620-76-C-0103.

tries of atomic arrangements, surface anisotropies,
and, more generally, on those near-equilibrium pro-
perties which are dominated by atomic and crystallo-
graphic effects. The formation of complex solidifica-
tion patterns, however, is an intrinsically nonequili-
brium phenomenon which has been studied, out of neces-
sity, mostly by metallurgists who must deal in a very
practical way with these phenomena in the design of
materials processes. ' In this essay, I shall present a
physicist's interpretation of some of the previous work
on the nonequilibrium problem, and shall supplement
this review with a more speculative discussion of re-
cent developments. I shall try to describe the problem
in such a way as to emphasize its relationship to a num-
ber of apparently similar self-organizing systems that
have become fashionable among physicists, chemists,
biologists, and mathematicians.

As prelude to a more detailed presentation of special
solidification problems, it will be useful to think a bit
about the snowflake. Real snowf lakes —those that fall
from real clouds —are formed by more complicated
processes than those which we shall consider here;
but they provide a good starting point for posing ques-
tions. A typical snowflake, traced from a photograph
by Nakaya, (1954), is shown in Fig. 1. The pattern is
planar and has the hexagonal symmetry characteristic
of ice crystals. The snowflake has grown out from a
central nucleus; and growth has occurred in a number of
stages, each stage being governed by the external condi-
tions encountered by the developing crystal as it is
carried through different regions of the atmosphere.
The six main dendritic branches of the crystal are
essentially, but not precisely, identical to one another.

iI shall make no attempt here to provide a complete review
of the metallurgical literature. A good starting point for such
a survey is the bookCrystal Gwozeth, , edited by B. B. Pamplin.
In particular, see the articles on interfacial stability by Delves
(1975) and dendrites by Doherty (1975). A more basic
reference is Chalmers (1964).
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FIG. 1. Snowflake, adapted from a photograph by Nakaya
(1954).

There is no internal controlling mechanism which
coordinates the growth of these branches, no prede-
termined set of plans for the construction of this par-
ticular snowflake. On the contrary, the growth at any
instant must have been controlled only by a simple set
of spatially uniform external conditions —the ternpera-
ture and the humidity and, perhaps, the concentrations
of various air pollutants. These slowly varying quanti-
ties have determined nearly identical growth patterns
along each of the branches.

The snowflake brings to mind some of the most basic
questions in the problem of pattern formation. How do
patterns emerge from a structureless environment&
Vfhy, under some circumstances, does nature make
snowf lakes instead of, say, simple shapes such as discs
or hexagonal plates or, at the opposite extreme, dis-
ordered structures'? Why are the patterns so very
sensitive to growth conditions and material parame-
ters? Minute changes in temperature and humidity
cause qualitative changes. in growth patterns; thus, no
two snowf lakes seem to be alike. As we shall see,
crystalline anisotropy may be a relatively weak effect;
yet it accurately controls the symmetry of dendritic
structures. How can we account for this special sensi-
tivity?

Several steps toward answers to the first of these
questions are understood in some detail. We know
that substances in which the molecules are. tightly
bound on crystallographic planes will form regularly
faceted solids under wide ranges of growth conditions.
A grea. t deal of progress has been made in understand-
ing the energetics of facet-formation (Jackson et ~l. ,
1967) and in modeling mechanisms for the slow growth
that occurs on molecularly smooth crystalline surfaces
(see reviews by Muller-Krumbhaar, 1978; Weeks and
Gilmer, 1979). Our emphasis, however, will be on the
opposite situation. We shall consider only those sub-
stances for which molecular binding at the surface .is
sufficiently weak that growth is rapid and is controlled
solely by the diffusion fields in the neighborhood of the
solidification front. For such substances, the fluid-
solid interfaces are rough at the molecular level but

smoothly rounded on a macroscopic scale. Substances
in this latter category include most metals and alloys
and some organic crystals that have been specially
useful for experimental purposes. Ice, as it turns out,
is an intermediate case in which slowly growing facets
occur parallel to the basal plane but surfaces are
rounded and growth is rapid in the hexagonal directions.

The other part of the solidification problem in which
significant progress has been made has to do with the
stability of simple growth forms. Given diffusion con-
trol, as opposed to interface control of the solidifica-
tion process, we shall see that simple shapes such as
planes, spheres, cylinders, etc. , are unstable under
certain commonly encountered growth conditions.
Roughly speaking, this instability occurs because diffu-
sion kinetics favors configurations in which the grow-
ing solid has as large a surface area as possible. La-
tent heat, for example, is dissipated more rapidly in
such configurations. Ultimately, this morphological
instability of the solidification front is limited by capil-
lary for ces; and it is the interplay between capillary arid
kinetic effects which somehow produces the complex
growth patterns that we see in nature.

The big, unsolved part of the problem is how these
complex shapes are selected. In only one case, that of
the free dendrite, do we seem to have found a clue to a
special selection principle; and the evidence to date
indicates that this particular mechanism is more subtle
than had previously been suspected. Superficially,
however, this close connection between instabilities
and pattern formation seems to fit the general scheme
that is emerging in related areas of investigation. We
shall see that there is a striking similarity between
the planar instability that leads to cellular solidification
fronts and the Benard instability that produces convec-
tion cells in a fluid; and, in addition, there are analo-
gous theoretical difficulties in predicting the features
of these dynamically restabilized systems. More ana-
logs are found in chemically reacting systems (Liese-
gang rings, Zhabotinsky reactions, etc.), in lasers, in
superconducting devices, and even in classical nonlinear
systems such as musical instruments.

The phenomenological picture looks seductively gen-
eral. In each of the above examples, an initially
quiescent system becomes unstable at a critical value
of some control parameter —the temperature gradient,
the composition, the pump-rate —and then restabilizes
into a more complex, space- or time-dependent con-
figuration. As the control parameter is increased fur-
ther, the system may undergo additional transitions
into more complex states or into states which are in-
trinsicaHy chaotic. The hydrodynamic system may
become turbulent; the musical instrument may produce
noise. The apparent universality of this class of
phenomena has inspired a number of important attempts
to construct a unified theoretical framework for their
analysis. Most prominent among these theoretical
programs are Thorn's catastrophe theory (Thorn, 1975),
Prigogine s concept of dissipative structures (Glans-

The basic reference for the convective instabilities is Chan-
drasekhar (1961). For a more recent review of both the ex-
perimental and theoretical situations, see Whitehead (1975).
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dorff and Prigogine, 1971; Nicolis and Prigogine, 1977),
and Haken's synergetics (Haken, 1977). Each of these
formalisms has had notable success in the description
of systems where the number of relevant degrees of
freedom is small, as in the few-mode laser or the
spatially homogeneous chemical reaction.

My own opinion, which motivates much of what is said
in thiy essay, is that neither the breadth nor the depth
of the conjectured universality principle are well es-
tablished, and that what is needed now is not further
generalization but detailed analysis of experimentally
realizable, physical systems. In the solidification
problem, there emerge rich mathematical structures
which are specific to particular models, which do not
seem to have analogs in, say, the nonlinear theory of
homogeneous chemical reactions, but which appear to
be absolutely essential for the understanding of parti-
cular modes of crystal growth. Perhaps, when we
understand these mechanisms more completely, we
shall see that they fit neatly into the formal schemes
that have been proposed. My intention is nOt to cast
doubt on the validity of any of these schemes, but sim-
ply to argue that the appropriate next phase of research
in this area should consist of a large amount of open-
minded spadework.

With this bias in mind, I have organized the main sec-
tions of this paper as follows. Section II contains quali-
tative descriptions of several selected classes of solid--
ification processes and brief mathematical statements
of what are believed to be the simplest physical models
capable of exhibiting the observed phenomena. Section
III is devoted to linear stability analyses of the quie-
scent, planar and spherical, steady-state solutions of
these models. Thus Secs. II and III constitute, for the
solidification problem, a selective review of the first
part of the pattern-formation analysis —the identifica-
tion of the initial instabilities. In the following two
sections, we shall look at the restabilization problem,
first for free dendrites in Sec. IV, and finally for per-
iodic cellular structures in Sec. V.

' It. PHENOMENA AND IVIODELS

A. Solidification of 8 pure liquid

The simplest situation of interest to us is the solidifi-
cation of a pure substance from its melt, for example,
the freezing of ice in a sample of pure water. (The
reverse process, melting, can be equally interesting;
and all of the phenomena described below have re-
verse analogs. For clarity, however, it will be easiest
to think primarily about solidification. ) In the case
of a pure substance, the process is governed entirely
by heat flow. That is, the rate of solidification at any
point along the liquid-solid interface is governed by
how rapidly the latent heat generated (or absorbed) at
that point can be conducted into the bulk of the sample
or removed at the boundaries.

Consider, . now, the two related experimental arrange-
ments illustrated schematically in Fig. 2. In both
cases, a pure fluid is contained in a vessel whose walls '

are held at some temperature T~ which is less than the
melting temperature T~; thus heat is extracted through
the walls. In the first case (a), the liquid is initially at

Tw TM

I"IG. 2. Schematic illustration of solidification occurring in
(a) stable and (b) unstable configurations.

a temperature T ~ T„,and the solid is allowed to start
forming at the walls. As we shaLL see, this situation is
completely stable. The solidification front S moves
smoothly and uniformly in toward the center, its mo-
tion being determined by the rate at which the excess
heat energy of the solidifying fluid can be conducted out
through the surrounding solid. The second case (b)
is more interesting. Here, the liquid is initially under-
cooled to a temperature T & T~, and solidification is
initiated at a seed crystal at the center of the vessel.
The latent heat generated at the interface S must be
conducted through the liquid in order for the crystal to
grow. If one is careful, convective heat transport can
be eliminated, so that the problem remains one of
thermal diffusion. This situation is intrinsically un-
stable; the interface S breaks up into dendrites which
grow relatively rapidly out from the central seed. The
crucial difference between the stable ca.se (a) and the
unstable case (b) is that, in (b), the solidification front
advances into a metastable phase, that is, into an under-
cooled melt.

Real snowf lakes are formed under conditions which
are roughly analogous to case (b); they grow out from
seeds in an environment of supersaturated water vapor.
Of course, growth is much slower in the atmosphere
because the density of water molecules in the vapor is
very much less than that in liquid. Another difference
is tha.t there is a.ir present to transport heat. These
differences seem to be of only second-order impor-
tance, however. The experimental arrangement of
case (b) is capable of producing dendritic crystals
under conditions which can be carefully controlled and
which are convenient for theoretical analysis.

The most complete experiments of this kind have
been carried out by GLicksman, Schaefer, and Ayers
(1976) who used succinonitrile as a working substance.
Similar experiments using ice have been performed by
Fujioka (Fujioka, 1978; Sekerka, 1976; Langer et al. ,
1978). To illustrate the technique, I have reproduced
one of Fujioka's artificial snowf lakes in Fig. 3. The
crystal has been seeded inside a uniformly supercooled
sample of fluid by allowing the solid phase to grow
through a vertical capillary tube and to emerge through
an orifice at the center of the container. Subsequent
growth of the crystal has been observed photographi-
cally. The most interesting quantities to measure are
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r~~( )so&&d Dr~~( )~&, &dl (2.2)

where the left-hand side is the rate at which heat is
generated at the boundary, and the right-hand side is
the rate at which this heat flows into the bulk phases on
either side. Here, L is the latent heat per unit volume
of the solid; g~ and c~ are the specific heats per unit
volume of the liquid and solid, respectively; v„is the
normal velocity of the interface; and n is the unit nor-
mal at the interface, directed into the liquid. The gra-
dients are evaluated at the interface in the indicated
phases. In order to preserve a purely diffusive model,
we shall ignore any density difference between liquid
and solid phases.

o complete the specification of this model, we must
introduce a thermodynamic boundary condition at the
interface. The simplest choice would be to say that
the temperature must be exactly the bulk melting temp-
erature along the surface of instantaneous two-phase
coexistence; and, if we do this, we recover something
which is, in principle, very much like the Stefan pro-
blem as it occurs in the mathematical literature. Un-

fortunately, this relatively tractable mathematical ver-
sion of the problem omits the effect of surface tension,
which provides the crucial stabilizing force necessary
for pattern formation. The correct form of the thermo-
dynamic boundary condition is

T(interface) = T~ [1 —(yX/L)], (2.3)

FIG. 3. Photograph of dendritic ice crystal grown in pure
water at an undercooling of T~ —T=2.34'C (Fujioka, 1978).

Dr% T=BT/Bt, (2.1)

where D~ is the thermal diffusion constant. In general,
we must write (2.1) separately for the liquid and solid
phases, which usually will have different values of D~.
In the following, we shall use primed symbols to denote
properties of the solid, and shall let unprimed symbols
refer to the liquid. Thus the diffusion equation for the
solid is the same as (2.1) but with Dr replaced by Dr.
The condition of heat conservation at a point on the
moving interface takes the form:

the growth velocities and shapes of the frontmost tips
of primary dendrites, and the spacings of emerging
sidebranches. These quantities turn out to be ac-
curately reproducible as functions of the initial degree
of undercooling of the fluid, which is the single control
parameter in this system. We shall return to this ver-
sion of the solidification problem, with special empha-
sis on the succinonitrile experiments, when we discuss
the theory of dendritic growth in Sec. IV.

The mathematical problem of predicting the motion of
the solidification front in the above examples may
loosely be described as a Stefan problem (Rubinstein,
1971), although there are several important differ-
ences between the version of this problem which is of
interest to us and the way the problem usually is under-
stood by mathematicians. The basic ingredient is a
diffusion field, in this case the temperature T, which
satisfies an equation of the form:

where y is the liquid-solid surface tension, and X is
the curvature of the interface, here understood to be
positive if the center of curvature lies on the solid side
of the interface, that is, if the solid bulges into the li-
quid. Equation (2.3) is a form of the Gibbs —Thomson
relation (see Turnbuil, 1956) which predicts, among
many other things, a. reduction of the melting tempera. —

ture for small particles, and a finite activation energy
for homogeneous nucleation of a solid in an undercooled
liquid. Note that the ratio y/L has the dimensions of a.

length. It turns out that, without this length or some-
thing else to replace it, the conventional Stefan problem
cannot conceivably describe pattern formation of the
kind seen in nature; it lacks the dimensional informa-
tion needed to set the scale of a pattern.

Equations (2.1), (2.2), and (2.3) completely specify
the model of solidification of a pure substance which
we shall adopt for study later in this paper. Before
going on to the description of other models, however,
a few remarks about mathematical and metallurgical
points of view may be useful.

As has been indicated already, the free-boundary
problem posed above appears to be much more fero-
cious than the 3tefan problem as conventionally posed
by mathematicians. Not only do we need a more diffi-
cult boundary condition in (2.3), but we insist on deal-
ing with complex surfaces in three dimensions instead
of the effectively one-dimensional situations most
often considered in mathematical studies. We do have
a few compensating advantages, however, in that we do
not ask for really general solutions of the problem. We
never need to concern ourselves with externally im-
posed space- or time-dependent temperature distribu-
tions at the walls of our systems; and, most often, we
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shall be able to replace these walls b'y simple boundary
conditions at infinity. Moreover, we are permitted
occasionally to use some cautious physical intuition
in place of rigorous mathematics in order to assure
ourselves that problems are well posed and that solu-
tions exist.

While the free-boundary problem posed here may
seem impossibly complicated to a mathematician, it
still appears to be naively oversimplified to a metal-
lurgist. We are omitting convection in the fluid and
are ignoring a number of potentially crucial effects
caused by impurities or other defects in the system.
Most important, we are assuming that all interfaces
are molecula. rly rough (i.e., not faceted), and that we
can neglect all effects of crystalline anisotropy. One
of the most striking characteristics of the snowf lakes
in Figs. 1 and 3 is their hexagonal symmetry; yet this
symmetry seems nowhere to be included in the pro-
posed model. In principle, we should include an orien-
tation dependence in the su'rface tension y, and also
should allow for anisotropic heat flow in the solid.
Another potentially important crystalline anisotropy
occurs in the molecular attachment kinetics, an effect
which we have omitted entirely so far. To see what this
effect is, note that the thermodynamic boundary condi-
tion (2.3) is a local-equilibrium approximation. Strictly
speaking, it applies only to a stationary interface in
thermal equilibrium with its surroundings. In a non-
equilibrium situation where the interface is moving, a
finite discontinuity in the chemical potential across the
interfacial region may be necessary to drive liquid
molecules onto the solid surface. This effect is usu-
ally assumed to show up as an additional anisotropic
term proportional to some power of the growth velocity
v„on the right-hand side of (2.3) (see Tarshis and
Tiller, 1967). For example, such a term can reflect
the fact that ice crystals grow only very slowly in a
direction perpendicular to the basal plane, and thus
snowf lakes turn out to be flat, feathery structures
(see Hobbs, 1974).

Despite these valid objections, we shall continue to
work with the isotropic, local-equilibrium version of
this model. As it stands, this model exhibits a rich
variety of instabilities and self-organizing processes.
With only a modest supplement to account for crystal-
line anisotropy, the model even seems to provide a
quantitatively accurate explanation of dendritic growth
rates.

chemical diffusion (especially in a metal), temperature
deviations must relax in times which are much shorter
than the time required for rearrangement of chemical
species; thus solidification is effectively isothermal and
chemical effects are dominant. In the quenched ingot,
it is chemical kinetics which causes interfacial insta-
bilities.

To see the analogy between the thermal and chemical
cases, consider a typical phase diagram of a binary
alloy„a portion of which is illustrated schematically
in Fig. 4. Here, C denotes the concentration of what
we shall call the solute, and To is the local temperature
which, for present purposes, we shall assume to be
constant over a large region of the sample. In two-
phase equilibrium, the solute concentration in the li-
quid is appreciably greater than in the solid; that is,

is greater than C' . Thus an advancing solidifica-
tion front rejects solute molecules in much the same
way as, in the pure thermal case, it releases latent
heat; and the rate at which the excess solute can be
transported away from the interface governs how ra-
pidly the interface can move.

The analogy to the thermal case becomes particularly
clear if one writes the equations of motion in terms of
chemical potentials instead of concentrations. Let p.
be the chemical potential of solute molecules relative
to that of solvent, ' and let p, be the difference between
p and its equilibrium value for two-phase coexistence
at To

peg(TO) . (2.4)

If the deviations from equilibrium are small, we have
relations of the form

P(Liquid) = 5C; P (Solid) = 5C';8 p.

c=c c=c

Do% P. = 8 P/8 t, , (2.6)

where Dc denotes the chemical diffusivity; and there

L lqUld

(2.5)

where the 5C's are the local concentration deviations.
Then the diffusion equation in the liquid can be written

B. Isothermal solidification of a liquid mixture

Alert readers may have been puzzled by the state-
ment, some paragraphs ago, that the solidification pro-
cess illustrated in Fig. 2(a) is intrinsically stable.
This process looks much like the quenching of an ingot
of molten metal; and such quenched specimens usually
exhibit extremely irregular solidification patterns. The
difference is that metallurgical materials are seldom,
if ever, pure substances. In alloys —even those which
are very dilute —the diffusion of chemical species may
control the motion of a solidification front in a manner
exactly analogous to the way the motion is governed by
thermal diffusion in the case of a pure substance. Be-
cause thermal diffusion is always very much faster than

o-phase region
L iqoid + Solid)

I I

i I I

0 Csq Co Csq C

FIG. 4. Portion of the phase diagram of a binary solution.

For simplicity, we specialize to the case in which the par-
tial molar volumes are the same for all species and do not
vary from phase to phase.
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will be a similar equation with D~ denoting the corres-
ponding diffusivity for the solid. For simple systems
of this kind, it is conventional to write the diffusivity
in the form

Do ——M(s p./8 C), (2.V)

where I is proportional to a mobility. Then the con-
tinuity equation analogous to (2.2) becomes

& &C —[M (&p)solid Jif(+&)Li w~ (2.8)

p(interface) = —(y/&C)X (2.9)

where y and X are surface tension and curvature as de-
fined following (2.3).

What, then, happens in the quenched ingot& Suppose
that the quench is spatially uniform, so that the system
finds itself initially everywhere at Tp in the liquid
phase. Of course, the initial concentration, say Cp,
must be less than C„,or else no solidification will
take place. A plausible assumption is that the initial
quench takes the system to a temperature Tp which is
just low enough that Cp is slightly less than CeqI that is,
the liquid in the bulk of the container is at the point in
the phase diagram indicated by the X in. Fig. 4. This
liquid is effectively supercooled [the metallurgical term
is "constitutionally supercooled" (Tiller et ~I., 1953)];
and the solidification front which starts moving in from
the walls toward the center is unstable. Under the
conditions' described here, a forest of solute-poor den-
trites (C = C,', ) will grow inward from all sides, filling
the container, and leaving solute-rich fluid in the inter-
stices which, at this temperature, constitute most of
the volume. If the temperature is subsequently re-
duced, the interstitial fluid will solidify; but evidence
of the dendrites will remain in the solute-segregation
pattern. Moreover, because each dendritic branch re-
tains the crystalline orientation of -the primary stem
from which it arose, each individual dendritic structure
plus its associated solid interstices forms a coherent
crystal, that is, a grain. Thus the dendritic mechanism
determines both the chemical microstructure (usually
on a. scale of microns) and the larger-scale grain
structure of the quenched alloy.

where AC is the miscibility gap shown in Fig. 4.
[Strictly speaking, the AC appearing in (2.8) should be
modified by curvature effects; but that correction turns
out to be negligible under ordinary circumstances. j
Finally —and this is the main advantage of the chemical-
potential notation —the condition of local equilibrium at
the interface is simply that p be continuous there and
that it have the value

T= Tp+Gz. (2.10)

Here, z is the position coordinate shown in Fig. 5 Tp
is some reference temperature to be chosen shortly;
and G is the impressed temperature gradient. [The
problem of the coupling between thermal and chemical
effects has been examined in much more detail by
Wollkind and Segel (1970), to whom we shall refer in
Sec. V. J

We are already in a, position to understand much of
what happens in this system. Let us suppose that the
sa.mple is long enough and that the interface is stable
enough that we can achieve steady-state motion with
the given v and G. Now consider the phase diagram
in Fig. 6. Because of Eq. (2.10), the T axis in this
figure is effectively a z axis, and we can draw the com-
position profile C(z) directly on the diagram. This is
the heavy dashed line, shown here for the case of a flat
interface at temperature Tp, that is, at x=0. Note that

4

HOT CONTACT

~ L I QUID
0 ~

~ 0

~ ~

sic—i.e., Benard-like —pattern-forming transitions.
The basic features of the system are shown in Fig. 5.

The sample consists of a long rod or a long thin strip
of the working material which is drawn, at a predeter-
mined velocity g, through a, fixed temperature gradient
established by stationary hot and cold contacts at &
and B, respectively. The temperatures at & and B are
supposed to be chosen so that the sample is molten at
Q and solid at B, and so that the interface is visible in
between.

Strictly speaking, this system is one in which both the
thermal and chemical diffusion fields are nontrivia, lly
coupled to one another. As long as the thermal diffu-
sion constant is much larger than the chemical diffu-
sivity, however, and as long as the latent heat is not
too big, we may ignore the heat generated at the inter-
face. Then, without much additional loss of generality,
we may assume that the thermal conductivities are about
the same in both liquid and solid phases, and write sim-
ply that the temperature throughout the active region
(A B) is-

C. Directional solidification

The third and final kind of model that I should like to
introduce is one which is relevant to processes like
directional solidification or zone refinement of multi-
component materials. As in the la.st example, the
dominant kinetic effect will be chemical diffusion; but
here we shall impose an additional temperature gradient
to control the orientation and velocity of the solidifica-
tion front. With this extra degree of control, the sys-
tem can be made to undergo one or more of the clas-

COLD CONTACT

FIG. 5. Schematic arrangement of a directionaj. -solidification.
experime nt.
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uid

So lid

L iqui1

Soiid

I

I I

)

Co= Ceq Ceq CE C

FIG. 7. Cellular interface of the kind seen by Jackson (3.97I)
in directionally solidifying thin samples of CBr4. The solidi-
fication. front is moving in the positive-z (upward) direction. .

FIG. 6. Portion of the phase diagram of a binary solution.
The heavy dashed line indicates the composition profile in
the neighborhood of a Qat interface for a system undergoing
directional solidification as described in. the text.

the steady-state condition requires that all of the solute
in the liquid be absorbed by the solid; thus C =Cp at
infinity on both sides of the interface. The intersection
of the vertical line, C =Cp, with the solidus determines
the temperature Tp and, therefore, the position of the
interface. From here on, we shall adopt this definition
of the reference temperature Tp, even for situations
where the planar interface is a completely unstable
steady-state solution of the problem.

The dashed line in Fig. 6 also illustrates the "spike"
in solute concentration whigh must build up in front of
the advancing interface. The concentration gradient in
this region must be just large enough to drive the re-
jected solute forward into the liquid at the velocity p.
As p increases, this gradient increases, and, as is
shown in the figure, the concentration profile enters the
two-phase region. Thus, with increasing v (or de-
creasing G), we encounter constitutional supercooling
and the possibility of an unstable interface. I want to
be careful not to overemphasize this point lest I seem
to imply that we are dealing with a purely thermody-
namic rather than a kinetic instability. We shall see
in the next section that the interface in this model does
become unstable at a critical value of the ratio v/G,
but that this critical value depends on the diffusion co-
efficients in both the solid and the liquid, and that the
underlying mechanism is truly kinetic in nature.

This instability is parti. cularly interesting because
apparently, under some conditions, the interface re-
stabilizes into a periodic cellular pattern. Again, I
want to insert a word of caution. The conditions under
which this theoretical model is known to produce a
stable cellular interface are not precisely the same as
those for which cellular interfaces have been observed
experimentally. We shall review the theoretical situa-
tion in Sec. 7. For the present, let us assume that the
model described here contains all the essential ingre-
dients, and go on now to look at a few experimental ob-
servations.

One particularly elegant- set of observations has been

made by Jackson (1971, film), who looked at a thin sam-
ple of C Br4 contained between two microscope slides
and passed at constant velocity across a pair of hot and
cold plates exactly as shown in Fig. 5. Stability was
most conveniently controlled in this case by successively
adding small amounts of impurity rather than by in-
creasing the velocity. The system was seen toundergo
two transitions, first from a flat interface to a cellular
one, and, second, from cellular to dendritic. A typical
cellular pattern of the kind seen by Jackson is drawn
in Fig. 7. The structure appears to be nearly station-
ary in the interface frame of reference, that is, in the
frame defined by the coordinates x,z in Fig. 5. Note
the asymmetry of this pattern: the warmer leading
edges are round and smooth, whereas the cooler trail-
ing grooves are very sharp. The impurity is absorbed
almost entirely in these grooves; thus the scalloped in-
terface leaves behind it a evolute segregation pattern
consisting of parallel lines of impurity-rich material
running the length of the sample. Closer inspection of
Jackson's photographs, or direct observation of the
cells through a microscope, reveals that the steady-
state picture may break down in the grooves. It ap-
pears that t;he impurities may be deposited as a series
of droplets, the action of the groove-root looking like
that of a leaky faucet. If thi. s is always true, then the
restabilization mechanism is significantly more inter-
esting than one might have expected.

As simple as these experiments may seem, they have
not yet been carried out accurately enough to answer
some of the most crucial questions. It is not known for
sure whether the cellular and dendritic transitions are
really sharp and reproducible. It would be especially
interesting to know whether these transitions are hys-
teretic, that is, whether the critical velocity is the
same for both acceleration and deceleration (see Ver-
hoeven and Gibson, 1972). So far as I know, no-
body has looked carefully at how the sizes and shapes
of the cells evolve as one varies the growth parameters
past the threshold of instability. Such measurements
have yielded extremely interesting information about
the onset of convection patterns in hydrodynamic sys-
tems.

Cellular solidification patterns are known to occur in
a wide variety of metallurgically important situations.
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P(Liquid) = p —g (To) — Gz -=

c=c,~

p(So»d) =- 4 —)i (&0) — Gz =— &C
I

T T C c c'
0 6Q

(2.11)
Then the diffusion equation in the liquid has the form

8 9
BZ Qg

(2.12)

and, as before, we must replace Dc by Dc for the solid.
Note that we have allowed for the fact that our coordin-
ate system is moving with velocity v in the z direction
with respect to the material in the sample. The con-
tinuity equation is essentially unchanged from (2.8),
except that we can write a more specific form for the
left-hand side. I et the interface occur at a position

z(Interface) = g(x, t), (2.13)

where x is the two-dimensional coordinate shown in
Fig. 5. Then we have

During solidification of a dilute a.lloy, an initially flat
interface may develop an hexagonal pattern of bulges
and depressions which looks very similar to the classic
pictures of Benard convection (Tiller, 1961; Morris and
Winegard, 1969). Hexagonal solute segregation pat-
terns are sometimes observed in directionally solidi-
fied semiconductor crystals. Related phenomena are
known to occur in the formation of aligned euteetics
(Jackson and Hunt, 1966). The process of interest in
the latter case involves directional solidification of a
eutectic alloy near the concentration C~ shown in the
phase diagram, Fig. 6. Under stable conditions, the
eutectic solid consists of a solvent-rich matrix in
which is imbedded a finely spaced array of solute-
rich rods or plates aligned parallel to the direction of
solidification. At off-eutectic compositions, say C &Q~,
and at large enough growth velocities, the periodic li-
quid-eutectic interface itself may become unstable;
and a widely spaced pattern of parallel, solvent-rich
rods or dendritic structures may emerge within the
eutectic solid (Verhoeven and Gibson, 1973). These
situations are intrinsically more complicated than
anything we have considered so fa,r because they in-
volve three-phase equilibrium; but they are extremely
important technologically. Many common alloy phases
are really eutectics, e.g. , pearlite in steel; and diree-
tionally solidified eutectics can have remarkable mech-
anical or electrical properties. It would be extremely
interesting to understand the principle which governs
the formation of these structures.

I.et us conclude this section by writing down the de-
tailed equations of motion for the two-phase model of
directional solidification. These equations are straight-
forward extensions of our earlier cases. If we want to
retain our description of the diffusion field in terms of
the chemical potential, we must subtract the variation of
p, associated with the temperature gradient. That is,
we must write:

where z is the unit vector in the z direction. Finally,
the thermodynamic (Gibbs- Thomson) boundary condi-
tion is

III. THE MULLINS-SEKERKA INSTABILITY

A. Pure substance: planar interface

In this section, we are going to examine several sim-
ple cases of the interfacial instability which drives the
pattern-forming process in solidification. Qur under-
standing of this mechanism is due largely to Mullins
and Sekerka. (1963, 1964; see also Sekerka, 1973) who
were the first to perform systematic linear-stability
analyses and to point out the underlying kinetic nature
of the process.

As so often happens, it is the simplest possible exam-
ple which provides us with the most physical insight.
Accordingly, let us start with either the pure thermal
or pure chemical model described above, and consider
a flat solidification front advancing with velocity v into
an undercooled melt. This is formally the same as the
model of directional solidification, but without the
stabilizing thermal gradient. I shall emphasize the
equivalence of the thermal and chemical models by
introducing a dimensionless diffusion field u:

T T+ (Thermal model);I. cu=

(Chemical model) .
KCBp. BC

(3.1)

Note that (3.1) has been written using the unprimed
liquid-phase parameters c~ and (B)i/BC). This one-
sided convection seems simplest, but will cause an
artificial asymmetry in some of the following formulas.
Note also that, in order to preserve the exact equiva-
lence between the two models, we are neglecting the
curvature dependence of the miscibility gap ~Q. We
shall account for this dependence in the more detailed
discussions of directional solidification to be pre-
sented in Secs. III.C and V. ,

The form of the diffusion equation is unchanged from
(2.1) or (2.6); and we shall simply use the symbols D
and D' to denote the diffusion constants in the liquid and
solid, respectively. The continuity condition is

(2.15)

and here it is T rather than T0 which appears as the
argument of p. . Assuming that first-order differen-
tial approximations are adequate, we can expand (2.15)
about T, and use the result to evaluate (2.11) at the in-
terface. We find

ii(Liquid Interface) = — X —
~

Gfy ( p. dC
C (BC c c d

P(Solid Interface) = — X — Gf
Bp, dC~

&C BC c c' dT
(2.16)

where the quantities
~

dC„/dT
~

and ~dC' /dT
~

are the
slopes of the liquidus and solidus respectively.

V+ tl 'Z = M VP' Solid ~ + jLL Li id

(2.14) where

(+ )Soiid (+ )Li id~ ' (3.2)
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D'cJDc~ (Thermal model)

M'/M (Chemical model) .
(3.3)

Finally, the Gibbs-Thomson condition can be written

u(Interface) = -doX,

where do is a capillary length defined by4

yT„c~/L (Thermal madel)
0

y/(& C)2( Sp/BC) (Chemical model) .

(3.4)

It will be convenient in some of the following discussion
to talk in the language of the thermal model, that is, to
call u the "temperature"; but it should be clear that the
analysis applies equally well to the chemical case.

In the frame of reference moving in the z direction at
the interface velocity v, the steady-state diffusion equa-
tion has the form:

V u+ — =0,2 BQ

Bz
(3.6)

where / is the diffusion length:

2D, 2D'
(3 7)

The solution of (3.6) and the continuity condition (3.2)
ls:

2Z
exp ———1 (Liquid, z ~ 0)

Q=
0 (Solid, z ~0) .

(3.8)

The flat interface has been placed at z =0. Note that
this steady-state solution exists for any positive v but
requires a unit undercooling at infinity; that is, u- -1
as z-+~. The uniqueness of the undercooling is a
result of the same conservation condition which allowed
us to determine To as a function of Co in Fig. 6; the
interface must be warmed uniformly to the melting
temperature by the released latent heat. For different

There has been some confusion in the literature regarding
evaluation of the capillary length, especially in the chemical
model. The problem is that B p, /B C is not easily measured
directly. A commonly encountered form {see Mullins and Sek-
erka, 1964) can be derived by using the Clausius-Clapeyron
equation for the latent heat L of a solution:

I = —7.'~(AC)

The quantity (d p/dT), ~„is the slope of the coexistence line in
the p, -T plane, which can also be written in the form

dT coex BC dT BT

Solving for (B p/B C) and substituting into (3.5), one obtains
dc'
47

do(Chemical) =
( )2 (

g,
+qr~wc a

For di].ute solution, vrhen bC is very small, the quantity Bp/BT
may be neglected, so that

undercoolings, no planar steady-state solutions exist.
Note especially that the steady-state velocity v is not
fixed by the undercooling. This is a situation which
will recur in an important way in what follows.

The linear-stability analysis for this system can be
performed in complete generality; but it will be best
for purposes of this review to go directly to what is
called the "quasistationary" approximation. %e are
looking for a linear equation of motion for the inter-
facial position, z (interface) = g(x, t), as defined in Eq.
(2.13). In general, this equation contains memory ef-
fects; that is, a deformation of the interface causes a
perturbation of the diffusion field which, in turn, af-
fects the motion of the interface at later times. How. -
ever, in most of the situations of interest here, it
turns out that the interface moves so slowly that it
remains effectively stationary during the time needed
for relaxation of the diffusion field. Thus it seems
reasonable to solve the problem approximately by,
first, solving the time-independent diffusion equation
(3.6) subject to the thermodynamic boundary condition
(3.4) on the quasistationary interface f(x, t), and then
inserting this result into the continuity condition (3.2)
to find an explicit expression for 8&/St. We shall use
the method throughout this paper and shall test it for
consistency in connection with the present stability
analysis. A completely time-dependent treatment of
certain planar instabilities may be found in Sekerka
(196Va,b), Langer and Turski (1977), or Langer (1977).

Returning to the problem at hand, we carry out the
quasistationary analysis as follows. Consider a small
perturbation of the steady-state interface:

g(x, t) = g„exp(ik ~ x+ (o,t), (3.9)

-(2/l)q+q —k =0
(2/l)q'+q' —k =0 (3.11)

The amplitudes u„and u„' are small, of order g„,and
can be obtained by evaluating (3.10) at z = g, linearizing,
and imposing (3.4). The result is:

-(2/I) 0„+u„=u„'=-dok' j, . (3.12)

With the same linearization, (3.2) becomes:

Finally,

(2v/I) f~+ Dqui+ PDq'u~ . (3.13)

where k is a two-dimensional wave vector perpendi-
cular to v and co„is the amplification rate whose sign
determines stability. The corresponding solution of
the diffusion equation (3.6) and its (primed) analog for
the solid must have the form:

u(Liquid) -=exp(-2z/l) —1+u, exp(ik x —qz+ (u, t)

u'(Solid) =—u„'exp(ik ~ x+ q'z + m~t)

(3.10)

where q and q' are the positive solutions of

do(Chemical) m
& &

—
& &

—do(Thermal).g C)L, dT (&C) dT ep

Note that the chemical capillary length can be several orders
of magnitude 'larger than the thermal capillary length.

ru, =v[q —(2/i)] —D(q +pq')d, k'

= kv 1 ——(1 + p)dolks (3.14)
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&, = 2&/k, = 2&ov'Ed, , (3.15)

where the second, approximate, form of ~& is valid in
the limit that kk»1 so that q= q'—= k.

Because the formula (3.14) contains most of the phys-
ics to be encountered in this essay, it is worth some
extra attention. The formula consists of two parts: a
positive, destabilizing term which is proportional to the
velocity, and a negative, stabilizing term which contains
the surface tension. To see how these terms arise,
consider the planar and deformed interfaces illustrated
in Fig. 8, parts (a) and (b), respectively. The thermal
fields u are indicated by dashed isotherms on the left
and are shown explicitly for points along the z axis on
the right. The steady-state function given in Eq. (3.8)
appea. rs in the right-hand side of part (a). In the ab-
sence of capillarity, a forward bulge in the interface
like that at point A in (b) steepens the thermal gradient
in the fluid ahead of it, which means that heat flows
rapidly away from the surface and the bulge grows un-
stably. Similarly, a depression like that at E tends to
melt back. With finite surface tension, however, the
curvatures in (3.4) are such that the temperature is re-
duced at A and increased at &; and the resulting heat
flow from B to A tends to restore the flatness of the
interface. It is the competition between these two ef-
fects that determines the sign of m& in (3.14), and thus
the overall stability of the interface.

For the case considered here, the interface is always
unstable at sufficiently long wavelengths. The wave-
number 0, at which u& vanishes, that is, the neutral
stability point, sets a length scale for the problem.
Using the second form of (3.14), we have:

where a is a dimensionless factor which is ordinarily
of order unity:

(3.16)

The most rapidly growing deformation occurs at the
wave number k, /W3. It seems reasonable to guess that
patterns which emerge from this instability will, at
least initially, have a characteristic size of order ~,-.
The capillary length d, is a microscopic length of order
angstroms. In Ising-like mean-field theories, d, is
essentially the same as the correlation length or the
interfacial thickness. ) The diffusion length I is usually
macroscopic, in which case ~, is of order microns, and
I/&, =2vk, l»1. Because we are interested primarily
in deformations on the scale of ~„this is just the con-
dition that we need in order to justify using the approxi-
mate version of Eq. (3.14). The quasistationary assump-
tion is also easy to justify for these wavelengths. The
dominant instabilities have growth rates of order
w „-k,v; whereas the relaxation rates for corres-
ponding perturbations of the diffusion field are ud;«-
-Dk2. Thus the ratio u„;«/m, „

is of order k, l»l, as
required. Conversely, when one encounters situations
in which k, l is small, that is, when the wavelength of
the deformation is comparable to or larger than 5, then
the quasistationary approximation is invalid except for
strictly stationary states of the system.

B. Pure substance: growing sphere

The second simple case that will be useful to con-
sider is that of a solid, sphere of a pure substance im-
mersed in an undercooled melt (see Mullins and
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FIG. 8. Schematic illustration of the Mullins —Sekerka instabQity.
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RQ 2d—6+ 6—,K+R

u, (r) =
0

R 0 P

0

(3.1 8)

where r is the radius measured from the center of the
sphere, and the boundary condition (3.4) has been im-
posed at r =Ro. The continuity condition (3.2) deter-
mines the growth rate:

d R (3.19)

Next, consider a slightly deformed sphere whose
radius R is given, in terms of the polar coordinates 8
and Q, by

R(6, @)=Ro+6, 7; (8, @) exp(co,.t), (3.20)

where 0,. is the small deformation amplitude, and Y,
is the spherical harmonic of order j, m. Associated
with this deformation is a diffusion field of the form

u(r, 6, @)=u, (r) +u, (r) Y, „.(8, @.) exp(~,.t),
where

(3.21)

(a,./r'")(Liquid, r &R)
u,. (r) =

bp'(solid, r &R) . (3.22)

We calculate the coefficients a, and &,. by evaluating
(3.21) at r R, linearizing and imposing the boundary
condition (3.4). To do this, we must know that the
curvature in spherical coordinates is

2 1
+—&R+ ~ ~ ~R R (3.23)

where A is,the angular part of the Laplacian whose
eigenstates are Y,. with eigenvalues j(j+1). The re-
sult is

0 0
(3.24)

In a similar way, the continuity condition (3.2) becomes:

Sekerka, 1963). There is no true steady-state solution
in this geometry, because the rate of growth of the
sphere depends upon its radius which is increasing
with time. What is interesting to study is the spherical
shape-preserving mode of growth, which is the quies-
cent state for our purposes, and the manner in which
this mode becomes unstable.

Consider first the purely spherical situation. Let the
radius of the sphere be RQ, and let the undercooling at
infinity be D; that is

(3.1'7)

In the quasistationary approximation, the diffusion
f ie ld s imply sat isf ie s Laplace's equation eve rywhere;
thus

direct analogs of (3.12) and (3.13). From these, we ob-
tain the amplification rate:

(j —1)vs
1 1 1, Dd.j(j +2) (3.26)

R~ 1 1' =1+— 1+—. +I6 j(j+2); j-2.R* 2 j (3.28)

The smallest R,*. occurs for j =2; thus, for the metal-
lurgically interesting chemical case where P«1, this
first instability sets in at RQ=VR*. Spheres of this size
are really quite small. The capillary length dQ is usual-
ly of order angstroms, and characteristic values of A

are of order 10 '. It is not certain how large the sphere
must be before the size of the deformation becomes
comparable to the sphere itself —we shall need a full
nonlinear theory plus some analysis of the thermal
fluctuations which drive the instability before we can
answer such questions. But it seems likely that den-
drite-forming instabilities originate with crystalline
seeds typically in the submicron range.

C. Directional solidification

We return now to the planar situation and reintroduce
the controlling thermal gradient described in Sec. II.C.
The necessary linear-stability analysis is much the
same as in III.A. The appropriate dimensionless dif-
fusion field, u, is defined in Eq. (3.1) (chemical model)
with P. defined in (2.11). For purposes of our linear
analysis, we replace (AC) in (3.1) by (b.C ), the width
of the miscibility gap at the reference temperature TQ.
Because the gap is no longer constant, however, we
must rewrite the continuity equation (3.2) in the form:

which bears a close resemblance to (3.14) and, indeed,
is identical to the latter equation in the limit of finite
wavelengths on a large sphere, that is, in the limit
Ro-™,j -~,j/R, =k.

Equation (3.26) has been expressed in terms of the
local growth velocity v~ instead of D, the undercooling
at infinity. This form of the relation points up the
similarity to the planar case and will be particularly
useful later in our discussion of the dendritic insta-
bilities; but it obscures the most direct interpretation
of this analysis. To see what is happening to the sphere
as it grows, let us use Eq. (3.19) to eliminate v~ in
favor of the critical radius R*

(3.27)

Readers will recognize R* as the critical radius for
nucleation, that is, the minimum radius at which a
droplet will grow rather than melt at the given under-
cooling. If RQ is &ust slightly larger than R*, then v~
is small and positive, and tu, as given in (3.26) must be
negative for any j—the sphere is completely stable.
The interesting quantity to compute is the radius at
which the sphere becomes unstable. Let us define R&
to be the neutral stability radius for the jth mode,
that is, the value of R, at which ~, vanishes. We find:

2v~ (j+1)Da, (3.25) ( )u„DIP(vu)=.—(Vu), ,~] (3.29)

Equations (3.24) and (3.25) have been written here as where

Rev. Mod. Phys. , Vot. 52, No. 1, January 1980



J. S. Langer: Instabilities and pattern formation in crystal growth

= 1 — g+,' —1 dox . (3.30)

He re we have intr oduced the quantities:

d C,'q
dT

dC, q

dT (3.31)

which becomes the conventional partition coefficient
for dilute solutions, and

in the metallurgically interesting case where D' «D,
this stability criterion looks precisely the same as con-
stitutional supercooling. To see this, note that the
steady-state concentration gradient just ahead of the
planar interface is v(ACO)/D; thus the condition that the
dashed C vs 7 curve in Fig. 6 remains outside of the
two-phase region is

(3.39)

&c ~C c c ~C c c' (3.32)

The thermal length I,~ is defined by

G dC=q

l r (aCO) dT

We shall also need the analogous quantity

1 D'G 'dC,', '

l'r PD(b, Co) dT

(3.33)

(3.34)

The second and third terms on the right-hand side of
(3.30) describe changes in AC due, respectively, to
displacement of the interface relative to the thermal
gradient and to the Gibbs-Thomson effect.

The solutions of the diffusion equation are again given
by (3.10) and (3.11); and the thermodynamic boundary
conditions analogous to (3.12) are obtained from (2.16):

1
zz(Liquid interface) = —d, X—

(3 36)

zz(Solid interface) = —doX ——,
T

For metallurgical purposes, this is a good rule of
thumb for estimating stability limits, at least for this
particular class of problems. From a theoretical point
of view, however, the criterion can be misleading be-
cause the instability actually involves a more complex
interplay of kinetic effects than is contained in the sim-
ple thermodynamic interpretation of (3.39). Even with-
out capillary corrections, Eqs. (3.37) and (3.38) imply
that an appreciable diffusivity in the solid can stabilize
the interface against a certain degree of supercooling
in the adjacent fluid.

The quantity v is a dimensionless group of parameters
which plays the same role here as do the Rayleigh or
Reynolds numbers in hydrodynamics. The system is
quiescent at small v and passes through cellular and
dendritic stages as v becomes larger. To increase v

experimentally, one either increases the velocity v,
decreases the thermal gradient G, or changes the solute
concentration in such a way as to increase the misci-
bility gap (AC,). The theoretical problem of predicting
the shapes of nonplanar solidification fronts at super-
critical values of v will be discussed in Sec. V.

After some algebra, one finds

q+Pq' ——1 ——, DdoIz
2 p~

—= kv 1 —— +, ——(1+P)d,lk'l 1 P 1
2 IT LT 2 (3.36)

where q and q' are defined in (3.11). As before, the
approximate version of (3.36) is valid when kl, » l.

The obvious new feature of this formula is the k-in-
dependent, stabilizing (i.e., negative) term inside the
brackets, which we shall denote by v ':

(3.37)

According to the second version of (3.36), the inter-
face is completely stable as long as

v & vc
-=l. (Stability) (3.38)

In this approximation, the first instabilities seem to
occur near 0= 0 when v exceeds unity; but the approxi-
mation is not accurate at such long wavelengths. Closer
examination of the exact formula (3.36) reveals that the
onset of instability occurs at a finite k, and that the
critical v exceeds unity by an amount which depends on
the surface tension but which ordinarily is small (see
Sec. V.) Let us assume that (3.38) is accurate. Then,

IV. DENDRITIC GROWTH

A. The needle crystal

In dealing with the dendrite problem, we are going to
proceed exactly as we did in the planar or spherical
cases; that is, we are going to find a quiescent state of
the system and then examine the linear equations of
motion for perturbations of this state. The mathematics
will be more complicated than before; and we shall
emerge with a picture of a phenomenon which is in-
trinsically time dependent and nonlinear. But the actual
analysis will be no different in principle from that of the
last section.

The artificial snowflake shown in Fig. 3 presumably
started forming when its central seed became unstable
in the manner described in Sec. III.B; arid its subse-
quent growth was governed by the full nonlinear equa-
tions appropriate for the simple thermal model. From
direct observation, we know that the tips of each of the
six primary dendrites move outward at constant speed-
a speed that we should like to be able to predict. More-
over, the measured values of v indicate that the char-
acteristic range of the diffusion field, l = 2D/v, while
generally very much larger than the scale of the micro-
structure near the tip, is appreciably smaller than the
spacing between primary tips. Thus each primary
dendrite may be considered to be growing, by itself,
into its own uniformly undercooled environment. In a
frame of reference which is moving at constant velocity
with the tip, the dendritic structure still appears to be
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time dependent because of the sidebranching activity.
But, if one either neglects the sidebranches altogether
or assumes that it is only some sort of time-averaged
shape which matters, one arrives at a model in which
a relatively simple, "needle"-shaped solidification
front remains stationary in the moving frame.

A schematic drawing of the tip of a needle crystal is
shown in Fig. 9. Remember that the planar interface
is inconsistent with steady-state heat conservation for
any undercooling A other than unity [see Eq. (3.17)].
At the small undercoolings of interest here, the solidi-
fication front must bend back so that the thermal flux
(normal to the dashed isotherms shown in the figure)
diverges from the leading edge of the tip where the
latent heat is being generated. Unfortunately, analytic
steady-state solutions of this problem are known only
in the case of zero surface tension, where the interface
is always at the bulk melting temperature. The known
solutions are paraboloids of either circular (Ivantsov,
1947) or elliptical (Horvay and Cahn, 1961) cross sec-
tions. These isothermal solutions are going to play an
important role in what follows.

I et us restrict ourselves to three-dimensional situa-
tions in which the steady-state solutions have cylin-
drical symmetry about the growth axis of the dendrite.
(The stability analysis has not yet been performed for
the more general elliptic case. ) We define a system of
parabolic coordinates (, g, 0, moving with the tip of the
dendrite, as shown in Fig. 10:

5=(~-~)/p; n=(~+ z)/ p. (4.1)

Here, r is the radial distance measured from the
origin 0; and p is the radius of curvature at the tip of
the parabola defined by p = 1. The angle 8 measures
rotations about the z axis. In terms of these variables,
the quasistationary diffusion equation becomes:

1 8 Bu 8 Bu 1 9 gg P Bgg Bu
7i+$ Bq Bq 8( at 4q) 88 2q+g Bq st

(4.2)

where u is the dimensionless diffusion field defined
previously; and

r =- p~/» = p/I (p' = pv/-2D') (4.3)

is known as a Peclet number. The instantaneous position
of the interface will be given by q, ($, 9, 7'), where

~ -=2v t/p .
Then the continuity condition (3.2) becomes

(4.4)

1-
[q p, (Liquid)], (4.5)

where

814 8'g BR 'g +( 8'g~ 914
' 87I 8$ 8( 4q, ( BO 89 (4.6)

In the absence of capillarity, the thermodynamic
boundary condition requires simply that u vanish on the
interface. In this ease, there exists a stationary so-
lution of (4.2) and (4.5) with q, = 1, for which the dif-
fusion field u =u, is a function only of p:

(4 I)

where E, is the exponential integral:

(4.8)

This field is consistent with (4.5) as long as

& =P~'&, (P) . (4.9)

Equation (4.9) represents the full content of the zero-
capillarity, steady-state hypothesis —the undercooling
A determines P and thus fixes only the product of the
parameters v and p. Of course, a complete theory must

Liquid

=0
IC uIC, ,

0IC

FIG. 9. Schematic picture of a needle crystal with a spherical
tip.

FIG. 10. Parabolic coordinate system used for stability
analyse s.
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predict separately both of these parameters.
Much of the recent history of the dendrite problem

consists of attempts to introduce capillarity into the
steady-state needle-crystal model, the hope being that
one might discover some property of the solution which
will identify a natural growth rate. The easiest way to
understand the effect of capillarity is to go back to a
simple approximation originally suggested by Fisher
(see Chalmers, 1964). Just in front of the tip of the
dendrite, the temperature field shown in Fig. 9 looks
roughly like that in the neighborhood of a growing
sphere of the kind discussed in Sec. III.B. This picture
suggests that we use Eq. (3.19) to write
I

(4.10)

where we have simply identified the forward velocity
at the front of the dendrite with the radial growth rate
of the sphere. Equation (4.10) is illustrated in Fig. 11
along with the Ivantsov result and two more accurate
approximations which we shall describe shortly. The
effect of surface tension is to reduce v appreciably for
small values of p. Most notably, v passes through a
maximum at p=2R~, where R* is the critical nucleation
radius defined in (3.27). It frequently has been con-
jectured in the metallur. gical literature that the maxi-
mum velocity locates the natural operating point of the
dendrite. This hypothesis now appears to be incorrect,
but it has served as a theoretical framework for much
of the research on solidification during the past twenty
years and, in this role, has stimulated some very use-
ful investigati ons.

Equation (4.10) is not a very good approximation to

the true v —p curve, but possesses most of the qualita-
tive features of the exact steady-state theory. In ad-
dition to exhibiting a maximum in v, the 'equation il-
lustrates the general scaling law:

v= (2Dld. )&(~,p), P= Pl-&. ;

or alternatively:

z =w(p, v),

(4.11)

(4.12)

(4.13)

The Temkin method (Temkin, 1960) preserves (3.4)

where V and A are dimensionless functions of their
arguments and may, in addition, depend on P. The dif-
ficulty in obtaining the exact relationship is that, be-
cause of the Gibbs-Thomson condition (3.4), the steady-
state solidification fronts are neither isothermal nor
exactly pa, raboloidal. Nash and Glicksman (1974) have
developed a numerical technique for solving this prob-
lem, but so far have used their method only to compute
maximum velocities rather than, say, complete V-p
curves for various values of A. Two approximate cal-
culations are of special interest because they are based
on the Ivantsov solution and are consistent with it in the
limit of large p. Both of these approximations assume
an exactly paraboloidal dendrite, and then adjust for
this assumption by partially relaxing either the thermo-
dynamic boundary condition (3.4) or the continuity con-
dition (3.2). In the "modified Ivantsov" method of
Sekerka et al. (1967), the $-dependent curvature in (3.4)
is replaced by the constant value 2/p. The interface
is still isothermal, so the steady state is unaffected by
heat flow in the solid. One finds simply

I I I I l I I

l

IO

IO I I I I I I I

IO

I I I I I I

lO

1 I 1 I I I I

FIG. 11. Dimensionless dendritic growth velocity, V =&dp/2D, as a function of tip radius, ™p=p/dp for a dimensionless under-
cooling D = (T& —T)c&/I = 0.05, determined by the four steady-state approximations as indicated. The experimental point (solid
circle) has been provided by Glicksman (to be published) from recent measurements on succinonitrile.
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in the form

d, 2+(
u(interface) = ——'

a (1+5)' ' ' (4.14)
Iii I I Il

I I I I I I I lm I

I I I I I

&P ~ I I I I III

where the right-hand side is the correct curvature for
a paraboloid of revolution, but imposes the continuity
condition (3.2) only at $ =0. The result is:

(4.15)

where

1.819;

949 .

D'=0, 6 =0;

D'=D, /= 1. (4.16)

The quantity b is actually the small-P limit of a weakly
p-dependent function (Trivedi, 1970). Ejluations (4.13)
and (4.15) are illustrated in Fig. 11 for the case ~
= 0.05.

By far the most important investigation which has
been stimulated by the needle-crystal theory is the ex-
perimental work of Glicksman et al. (1976) on suc-
cinonitrile dendrites. The basic scheme of this ex-
periment was described in Sec. II.A. Succinonitrile was
chosen because of its convenient melting temperature,
cubic symmetry, and relatively small la.tent heat which,
it was hoped, would minimize anisotropies associated
with attachment kinetics. To my knowledge, this is the
only experiment in which p has been measured as well
as v, so that the steady-state theory can be tested in-
dependently of the maximum-velocity hypothesis. To
indicate the nature of the results, I have marked the
experimental p —V point for A =0.05 in Fig. 11. Figure
12 is a muLtiple-exposure photograph of a downward-
growing dendrite tip from which one can measure p and
v and also observe the sidebranching mechanism.

The results of these experiments are clea, r and very
interesting. When observed closely, as in Fig. 12, the
succinonitrile dendrites exhibit smooth, paraboloidal
tips. There is always sidebranching activity, which
emerges within a distance of a few radii p behind the
tip and, initially, consists of a smooth surface undula-
tion with a well-defined wavelength of order p. At
larger distances from the tip, these deformations
coarsen and grow out into well-developed sidebranches
whose spacing is considerably larger than the initial
wavelength. In the immediate vicinity of 'the tip, how-
ever, the core of the dendritic structure looks very
much like a paraboloid of revolution. It seems to be
generally true at all accessible undercoolings that the
experimental point (p, v) lies on or near the steady-state
curve —as in Fig. 11—at a place where p is so large
that the difference between the Ivantsov result (4.9) and
the capillary modifications (4.13) and (4.15) is no more
than a few percent. These experimental points deviate
from the most reliable. maximurp-velocity predictions
(Nash and Glicksman, 1974) by factors of 5 or more in
both p and v. Thus there is a clear contradiction of the
maximum-velocity hypothesis; but the underlying
steady-state, needle-crystal model seems to be valid.
Best of all from a theoretical point of view, the natural
operating point of the dendrite seems to correspond to
a nearly isothermal needle crystal —one whose shape

I@II
C Ill

IR a
IhR

mmj 'j

I' I

FIG. 12. Multiple-exposure photograph of a downward-grow-
ing succinonitrile dendrite (Glicksman, to be published).

is not much affected by capillarity. The obvious ques-
tion is: how does nature choose this particular operat-
i.ng point? As one might guess, the answer to this ques-
tion has to do with stability.

B. Dendritic instabilities

The idea that instabilities and associated nonstation-
. ary processes might play an essential role in dendritic
crystal growth is by no means a new one. Glicksman
et al. (1976), in their test of the maximum veloc-ity
theory, postulated that time-dependent considerations
may be necessary in order to understand their data.
Holtzmann (1969) emphasized the potential importance
of a stability analysis in the introduction to his thesis,
and predicted that the ultimately correct mathematical
model of dendritic growth will exhibit periodic motion
of some sort. Oldfield (1973), in connection with his
numerical studies of the dendrite, proposed a simple
stability criterion which turns out to be similar in its
basic idea to what will be described below.

In the following paragraphs, I shall summarize some
results that have been obtained recently by Muller-
Krumbhaar'and myself (Langer and Muller-Krumbhaar,
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19VV, 19V8). This work is by no means complete, but
the basic features seem to fit together so neatly that I
think they belong as a central feature of this essay.
The mathematics has a 19th century flavor which I
shall try to convey without including all the technical
details. (Serious readers will find a more thorough
description of the analysis in the original papers. ) In
order to make the procedure as clear as possible, I
shall present each step as a direct analog of a corres-
ponding step in the solution of the simple planar sta-
bility problem IEqs. (3.8) through (3.14)].

The key to a feasible stability analysis for the dendrite
is the expected small size of the capillarity induced,
steady-state shape corrections. Strictly speaking, the
linear perturbation theory outlined in See. III makes
sense only if the shape correction is known exactly and
can be incorporated into the description of the quiescent
state whose stability is being examined. Because the
correction is small, it can accurately be evaluated to
first order in the surface tension and the result used to
compute a, corresponding first-order correction to the
stability equation. Even this relatively straightforward
procedure is computationally very difficult, and may
turn out to be feasible only in a simple two-dimensional
version of the problem. The only calculations that I
shall report here are those in which the shape correc-
tion has been neglected altogether. These are the cal-
culations which lead to a convincing mathematical de-
scription of the sidebranching instability; and their
internal consistency lies in the fact that the sidebranch-
ing modes have very little of their intensity in the im-
mediate vicinity of the tip where the shape correction is
appreciable.

In the absence of a steady-state shape correction, the
quiescent diffusion field —analogous to (3.8)—remains
as given by Eq. (4.V). The perturbation of the interface,
the analog of (3.9), can be described in the form

)I,($, 8, $) —1=E (g, g)exp(im8); m =integer; (4.1V)

where v is the timelike variable defined in (4.4); and
we have taken advantage of the cylindrical symmetry
to presume a periodic 8 dependence of the deformation.
The function I" is actually a parabolic coordinate, but
may conveniently be visualized as the normal displace-
ment indicated in Fig. 10. In contrast to (3.9), we have
not immediately assumed an exponential v dependence
of E in (4.1V) because, for reasons which will become
clear, we shaQ want to supplement the previous kind
of eigenvalue analysis with a direct study of the time
dependence of certain perturbations.

This problem has no special symmetry in the s di-
rection; therefore we cannot a Priori assume any par-
ticular & dependence of E, nor can we avoid the con-
struction of a general solution of the quasistationary
diffusion equation (4.2). The best we can do in analogy
to (3.10) is to take advantage of the separability of
(4.2) and write

~(L~m(&) =~.(n)+ g ~.~. (Pn)(P()' '"I'"'(P()~'"',
n=O

31(So»d) = g &.II". m(p'&)(P'&)t "L ~(p'&)e™
n=O

(4.18)

If(0) If{1)E eime + ]
1
p

(4.20)

where K'" is the coefficient of d, /p on the right-hand
side of (4.14), and

2g d'E 2+3) dE 4+2)+ g2
m (I + g)1/2 dg2 (I+ j)3/2 dg 2(1+g)5/2 m

131
(1 ])1/2E (4.21)

Then the analog of (3.12) is

-PE.(5) + p~.~...(P) (P &) "L.'(P &)
n=O

(4.22)

Similarly, the analog of the continuity equation (3.13)
is found by inserting (4.18) into (4.5) and linearizing:

(I+&) s
= —(1+P)E —& 8™+D,

Xg h 3. (P ) (P.()l I/2J I l((P~))
Bp

S+n.m(p)
(pg) [m~ /2L ~ m) (pg)

n=O

(4.23)

The coefficients a„andb„areobtained in terms of
E (g) by using the orthogonality of the I aguerre func-
tions in (4.22). The equation of motion for E, which
results from substituting the expressions for a„andb„
into (4.23), contains divergent and generally unpleasant
sums over special functions. To make further pro-
gress, Muller-Krumbhaar and I have taken the limit
p- 0. This is an experimentally justified approxima-
tion; observed values of P are in the range 0.01.-0.l
for the suceinonitrile experiments and are an order of
magnitude smaller than that for Fujioka's ice dendrites.
In this limit, the sums over n in (4.23) become integrals
and, after a bit of manipulation, we obtain:

where the I 's are associated Laguerre polynomials,
and the W's are confluent hypergeometric functions
which satisfy

u ", +(1+M) d
™— n+ + ~ 8'„=0. (4.19)

d'W„. dW„„~m(

A8 Ac

The separation constants (integer n) have been chosen
so that the diffusion field is well behaved along g = 0.
Then the solutions to (4.19) are uniquely determined by
the conditions that, in the liquid, 8' must vanish for
q-~ a,nd, in the solid, W' must be regular at &=0.

The coefficients a„andb„areunderstood to be first
order in the perturbation E. The next step, in analogy
to (3.12), is to evaluate these coefficients by imposing
the Gibbs-Thomson condition at the interface. To do
this, we need to know the curvature X in parabolic
coordinates to first order in I". The required formula
ls:
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(1+F) "' =- —(FF )+
~

G ($, g')[1+oKt'i]F (g')d('
QQ

+, Gt (g g I) ot A(1)y ((i)dgI .
0

(4.24)

I

G„'(5,$') =
Jl dP p 1nI„(2v4) J (2vP))J„(2v'p$').1'

p

(4.26)

The J, K, and I are the conventional ordinary and
modified Bessel functions (Abramowitz and Stegun,
1964).

Once the limit P —0 has been taken in (4.24), the only
system parameters remaining in the stability problem
are:

24~ )f&, 'I .
p v I, 2mp]

(4.27)
o' =po;

where A,, is a stability length defined in analogy to
(3.15):

A,, —= 2m''dol . (4.28)

We have arrived here at a very general feature of the
dendrite problem —a feature which persists when the
shape correction is taken into account and which is, in
fact, a simple consequence of dimensional considera-
tions. The removal of the Pbclet number P from the
stability analysis means that the diffusion length has
been taken to be so large that it scales out of the prob-
lem. This leaves us with only two lengths in the sys-

.tem: the tip radius p and the stability length ~„and
only the ratio of these lengths can enter into a properly
scaled theory. Therefore, if the operating point of the
dendrite is to be determined by a stability criterion,
then that criterion must have the form [see (4.11)]:

G (&, g') = d p - p „- -= lnE' (2v g) J (2v p & )J (2v' j,(');
o dP ~ri

(4.25) for all real, positive values of A. The equation is
solved by performing a Fourier-Bessel transforma-
tion:

(4.31)

which, for a =0, reduces (4.24) to a differential equa-
tion for g(p). The solution of that equation can be
written in the form:

4', n(i") = Am(2~&)
J

di"' ~~ (2~i) ~

I

To make sense of this result, it is best to look in the
limit of very large 0, in which case one finds

(4.32)

(4.33)

An illustration of (4.33) is shown in Fig. 13 for the
case rn =2 and 0=5. The tip is shown in two successive
positions as it grows in the upward direction; and the
time interval has been chosen such that the tip has
moved a distance 0.2p between the two pictures. (The
second stage of the deformation is well beyond the limit
of validity of the linear theory. ) Note that, because
this is the m = 2 mode, a section through the dendrite
perpendicular to the plane of the paper would show this
deformation with the opposite sign; that is, the pro-
tuberances would become indentations.

It follows from these results that the Ivantsov needle
crystal is manifestly unstable in the absence of capillary
forces. There is no upper bound to the spectrum of
eigenvalues O. According to (4.33), the instabilities are
tip-splitting deformations which are localized at the
leading edge of the dendrite and which grow more rap-
idly —0 increases —as they become sharper and more

limit, o = 0. Unfortunately, the curvature operator in
(4.24) constitutes a singular perturbation, and we
cannot use this exact solution as a starting point for an
approximation scheme; but the result is of interest by
itself. .

With o =0, Eq. (4.24) can be solved in the sense that
one can find characteristic modes of the form

(4.30)

2d J3
g LJ ~ ~

O
p2v p2+ (4.29)

where o * is a constant which may depend on P, but not
on dynamic quantities like p or v. In conjunction with a
p —V relation of the form (4.11) or (4.12), Eq. (4.29)
would constitute a solution of the dendrite problem in
that it: would allow us to predict both p and V as func-
tions of ~. It remains to show that a stability mecha-
nism really exists, and then to compute a value for o *.
To do this, we must return to the equation of motion
(4.24).

It ig useful to think of the parameter o as locating a
point along the steady-state p —V curve. Small values
of o correspond to slow, fat dendrites for which capil-
larity is unimportant; and larger values specify sharper
dendrites with greater growth velocities. The stability
problem (4.24) is soluble analytically in the Ivantsov

FIG. 13. Unstable tip-splitting mode in the case of vanishing
surface tension, computed from Eq. (4.33)-with 0=5 and m=2.
The deformation, is shown at two different times; and the time
interval is such that the tip has moved upward a distance 0. 2p
between the two pictures.
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closely spaced.
To see how the capillary terms in (4.24) restore sta-

bility to this system, we have had to resort to numeri-
cal, techniques. In the computer experiments performed
to date, we have looked only at cylindrically symmetric
perturbations with m = 0; and we have neglected heat
flow in the solid, that is, we have dropped the term
proportional to o' in (4.24). The latter omission, plus
the neglect of the steady-state shape correction, ser-
iously limits the quantitative validity of these calcula-
tions; but it is the qualitative features which are of
greatest interest at the moment. We have performed
two kinds of numerical experiments. First, we have
integrated (4.24) forward in time, either starting with
an initial perturbation or applying a persistent random
noise at the tip. A more sensitive technique has been
to use the ansatz (4.30) and, again, to look for sta-
bility eigenstates F„.(That is, we have diagonalized
the same finite matrix that was used to approximate the
linear-stability operator in the forward-integration
method. This is not necessarily equivalent to finding
eigenfunctions of the exact operator on the semi-infinite
domain 0 & ( ~ ~; and it is not even clear that such
eigenfunctions exist. ) What we find is as follows. For
small, finite o, the tip-splitting deformations occur as
before, but they now generate secondary perturbations
which move down the dendrite at a speed which keeps
them roughly stationary in the laboratory frame of
reference. These secondary perturbations grow in amp-
litude as they move away from the tip; thus the capillary
term in (4.24) produces a sidebranching instability. At
larger values of v, the tip stabilizes and there appears
to be no eigenvalue 0 with a positive real part; but the
sidebranching behavior persists. If one starts with a
bump on the dendritic surface near g = 0, this bump will
move down the dendrite leaving an unperturbed parabo-
loid near the tip. The bump itself will develop into a
group of sidebranches growing normal to the main stem
of the dendrite at some position which remains fixed in,
the laboratory frame.

The theoretical sidebranching behavior is illustrated
in Fig. 14 for the special case cr =0.025, which we be-
lieve to be something like the natural operating point
for this model of the dendrite. The tip is just marginal-
ly stable here, and what is shown is the most active
mode, for which BeG = 0, in five successive positions
as the dendrite grows up the page. The dashed lines
indicate approximate growth paths for the secondary
tips. The general features of this figure are encourag-
ingly similar to those of the re+i succinonitrile dendrite
shown in Fig. 12.

C. The marginal-stability hypothesis

At this stage of the discussion, it appears that the '

linear stability analysis has left us with no new pre-
diction of dendritic growth rates. It would have been
nice, for example, if the analysis had shown that there
is only one value of 0 for which the steady-state system
is completely stable. We find, however, that the capil-
lary forces stabilize the tip of the dendrite whenever
the dimensionless parameter 0 exceeds some critical
value. Thus there appears to be a continuous family

/
/

/
/

l
/

/
/

/

FIG. 14. Dominant sidebranching mode for o.= 0.025. The tip
is showy in five successive positions as the dendrite moves up
the page. The dashed lines indicate approximate growth paths
for the secondary tips.

of relatively sharp, rapidly growing needle crystals,
all of which are acceptably stable candidates for the
role of main stem of a freely growing dendrite.

Muller-Krunbhaar and I have argued that nonlinear
effects must enter the analysis at this point. When a
sidebranching deformation attains an appreciable amp-
litude, it must begin to grow more rapidly outward than
inward so that, eventually, the troughs between secon-
dary branches stabilize while the secondary tips con-
tinue to grow. The result of this nonlinear behavior
must be an effective thickening of the dendrite. The
thermal field at the tip will look as if it has been gen-
erated by a paraboloidal surface with a larger p, which
means that v and v will decrease. Moreover, the side-
branching instability is stronger at smaller velocities;
thus a downward fluctuation in velocity will carry the
system further toward small o than an upward fluctua-
tion carries it in the other direction. The net effect;
we believe, is that the ever-present sidebranching ac-
tivity drives dendrites toward slower, fatter configura-
tions —downward and to the right along the steady-state
p —V curve. If v becomes too small, however, the
dendrite becomes unstable against the tip-splitting de-
formations described in the previous paragraphs. This
suggests that the natural operating point of the dendrite
occurs where the tip is just marginally stable. That is,
even though dendritic growth appears to be an intrinsi-
cally nonlinear process, we hypothesize that the o* in
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0 = —(j —1)Ll ——,
' c j(j+ 2) (1+p+ j-')j, (4. 34)

from which we deduce

(4.29) can be obtained from a linear stability analysis
by finding the minimum 0. for which the eigenvalues 0
have no positive real parts.

Unfortunately, it has turned out to be difficult to
evaluate o * accurately from first principles. In our
original numerical analysis, Muller-Krumbhaar and I
found 0* to be in the neighborhood of 0.025, which gave
an encouragingly good fit to experiment. However,
these calculations assumed cylindrically symmetric
deformations and neglected heat flow in the solid. They
also omitted the capillarity-related steady-state shape
correction, which is probably not serious for the side-
branches but may be crucial for a quantitative study of
tip stability. All three of these deficiencies are going
to require further investigation, especially if we are
ever to understand in detail the dynamic behavior of the
dendrite tip.

To get a better idea of how the various geometric and
kinetic factors may enter into the calculation of 0*, it
is useful to look again at the spherical model of the
dendrite tip that was introduced in Eq. (4. 10). The
stability analysis for the growing sphere was performed
in Sec. III.B; and the relevant eigenvalue spectrum is
given in Eq. (3.26). If we identify vz with v and Rowith
p, as in the derivation of (4. 10), we obtain:
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Shaefer, and

I/o*= '.j (j +2)(I-+()+i ') . (4. s5) Mill ler—
For succinonitrile, P is very nearly unity. (SeeGlicks-
man et a/. , 1976, Table II. ) The appropriate value
of j is not obvious. The smallest possible choice would
be j = 2, corresponding to a cylindrically symmetric
mode with azimuthal index vg =0, in which the tip be-
comes sharper or blunter depending on the sign of the
deformation. This gives 0*=0. 1, which is much larger
than is observed. On the other hand, if one assumes
that only rn =4 modes are permitted by the cubic an-
isotropy, as seems to be the case in the experimental
photographs, then the lowest possible mode with tip
deformation is j=5; and 0*=0.026. Glicksman's most
recent experiments, in which he has made an allowance
for convective effects, are in excellent agreement with
o*= 0. 0195, j =- 6 (Glicksman, private communication).
But the spherical approximation is much too crude to be
taken so seriously. The feature of (4. 35) which is likely
to remain valid in a more accurate theory is the de-
pendence of 0'* on P, and perhaps some part of its de-
pendence on crystal symmetry via j. It would be very
inter es ting to I"epeat the measure ments of dendri tie
growth rates for a substance with the same cubic sym-
metry as succinonitrile but with a thermal conductivity
ratio P which is appreciably different from unity, and to
see whether 0* changes as expected.

In the absence of a really reliable, first-principles
estimate for 0+, it seems better to think of the stability
hypothesis as a one-parameter theory. As is shown in
Fig. 15, the value 0*=0.025 predicts growth rates in
succinonitrile adequately over two decades in the di-
mensionless velocity V and one in the undercooling

The theoretical curve in this figure has beendrawn
by using the simple Ivantsov relation (4. 9) for D as a

I i

IO IO 10 I
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function of p, and then evaluating

(4. s6)

A similar comparison can be made for the tip radii,
for which case we again use (4. 9) plus

p =1jcr+p . (4. s7)

Glicksman (private communication) reports that his
most recent, convection- corrected measurements of
p are also in excellent agreement with (4. 37) with v*

FIG. 15. Dime n sionle s s growth velocity, V = t do@a, as a
function of dimensionless undercooling A= (T& —T)c&/L. Ex-
perimental points are for ice and succinonitrile as shown.
The square points summarize a large body of older
data obtained using methods which are not the same as
that described in the text, by Lindenmeyer and Chalmers
(1966), Hallett (1964), Pruppacher (1967), and Macklin and
Ryan (1966, 1968). Omitted from the figure are data at small
6 by Ryan (1969) and by Kallungal and Barduhn (1977). These
latter points are scattered, but generally are consistent with
Fujioka's results. A composite picture showing all the ice
data appears in Sekerka (1976). The theoretical curve is
drawn for a*=0.025. The dotted extension to this curve iden-
tifies the region where the Peclet number p is greater than
0. 1, so that the assumptions leading to Eq. (4.24) may be in-
accur ate.
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= 0. 0195. The overall agreement between theory and
experiment, for both V and p over a wide range of under-
cooling A, seems to provide strong support for the sta-
bility hypothesis.

Surprisingly, Fujioka's data for growth rates of ice
dendrites also fit nicely on the V(A) curve in Fig. 15.
For ice, P is roughly 4; and the twofold, rather than
fourfold, symmetry about the growth axis would seem
to require j ='3 in (4. 35). The resulting value of v*
=0. 025 seems exactly right; but, in view of the major
uncertainties in the theory, I think that this precise
agreement must be largely fortuitous. It seems to me
that the present form of the theory cannot be adequate
to describe so highly anisotropic a system, and that,
in particular, anisotropic attachment kinetics must be
included in both the steady-state calculation and the
s tability analysis.

Despite its apparent success in the interpretation of
experimental results, the stability theory of dendritic
gr owth is fundamentally incomplete. The stable oper-
ating point of a, dendrite seems tobe acomplex, dynamic,
essentially nonlinear state of the system; and I must
emphasize that we do not understand this state at. all
yet. We have no satisfactory model of the mechanism
by which the tip instability at 0 &0* restores 0 to the
neighborhood of 0* without destroying the dendritic
structure. Presumably, there exists some higher-
order coupling between the unstable modes and the
steady-state parameters p and v. This coupling might
cause the system to move in some sort of stable limit
cycle in which p and v oscillate, and in which the fre-
quency and amplitude of the oscillation are completely
fixed by nonlinear extensions of the deterministic equa-
tions of motion derived above. On the other hand, the
motion might be irregular, perhaps some sort of Brow-
nian motion driven by thermal fluctuations. Until we
understand this point, we shall not know whether the
stability criterion is exact, or is just an approximation
with a limited range of validity, or really whether it
makes any sense at all. Nor shall we know how to corn-
pute a number of interesting quantities, most parti-
cularly, the amplitudes and ultimate spacings of the
sidebranches.

We have not made much progress in analyzing the
dendritic operating point along the lines suggested above.
The difficulty, I think, is a clue to answering the ques-
tion raised in the Introduction regarding sensitivity to
growth conditions and material parameters. Our hy-
pothetical operating point is marginally unstable against
three independent and nontrivial modes of deformation.
First, of course, is the dominant tip-splitting or
sharpening mode whose neutral stability point occurs
just at 0 =0~. In addition, there is the simple trans-
lation along the growth axis; and, because we have in-
sisted that our basic paraboloid be a steady-state so-
lution of the equations of motion, there always must be
a third marginally unstable mode in which p and v shift
together along the steady-state p-v curve. This si-
multaneous occurrence of three modes of deformation
for which the linear restoring force vanishes produces
an extremely delicate nonlinear situation in which de-
tailed behavior is controlled by relatively small, higher-
order terms in the equations of motion. These terms
are difficult to evaluate. In principle, however, this

delicacy is exactly what we need in order to understand
the apparent sensitivity of pattern forming processes.
The sidebranches must be initiated by microscopic
thermal fluctuations near the tip of the dendrite; but
they never fail to occur and to play a dominant role in
the dendritic growth process. If their amplitudes are
controlled by small, nonlinear terms, then it is plau-
sible that these amplitudes, and also the orientations
and shapes of the sidebranches, will be sensitive to
small changes in temperature or small anistropies in
molecular attachment coefficients.

V. CE LL0 LAR I NT ER FAC ES

A. The one-sided model

Because of the special simplicity of its planar geo-
metry, the problem of directional solidification pro-
vides a good opportunity for carrying out in detail a
fully nonlinear analysis. The purpose of such an an-
alysis is to follow the development of an initially un-
stable perturbation and to understand the actual mech-
anism by which new patterns are formed. In the planar
situation, a limited version of the problem can sys-
tematically be reduced to a set of coupled nonlinear
equations involving only a finite number of degrees of
freedom. Specifically, we can assume that the inter-
facial displacement f, as defined in (2.13), is always
st-rictly periodic in, say, the x direction. Then

(5.1)

where k, is the fundamental wave number and, without
loss of generality, we may assume the amplitudes &„
to be real and to satisfy & „=A„.In a quasistationary
approximation, the &„will satisfy equations of motion
of the form

dA„/dt =C '"'(A), (5.2)

where each of the 4 ~' is in principle a function of all
the &'s. If the Fourier series (5.1) can be approximated
by a small number of terms, then the system of equa-
tions (5.2) can be studied numerically. Furthermore,
if the fundamental amplitude &, can be assumed to be
small —for example, for short times after the onset of
instability or for nearly critical growth conditions—
then the right-hand side of (5.2) can systematically be
expanded in powers of &,. Research along these lines
has been carried out for many years in connection with
the hydrodynamic instabilities (Segel, 1966), especi-
ally the Benard problem where the planar geometry
permits Fourier analysis as in (5.1); but the analogous
solidification problem has remained relatively unex-
plored. In what follows, I shall summarize recent de-
velopments in this area, my main purpose being to di-
rect attention to some promising lines of investigation.

Before plunging into nonlinear analysis, it is impor-
tant to choose some particular model and to adopt ap-
propriate descriptive parameters. We shall consider
two such models in this chapter: first, a realistic but
mathematically difficult one and, second, an idealized
but slightly more tractable system. The model for which
there is a better chance of finding experimental com-
parisons is what I shall call the "one-sided" model. The
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basic features of this system are:

(a) Latent heat is negligible.
(b) Thermal conductivities are the same in both liq-

uid and solid phases; eI O~ =e& D~.
(c) The chemical diffusivity vanishes in the solid;

D,'=0.
Assumptions (a) and (b) already were built into the an-
alyses of Secs. II.C and III.C. Remember that it was
this pair of assumptions which permitted us to use a
constant thermal gradient G and thus to decouple the
thermal field from the motion of the interface. Point
(c) is new, but is quite accurate for dilute alloys—
probably more accurate than (b). Given all three as-
sumptions, we are left with only three characteristic
lengths in the problem: the chemical diffusion length
/ =2D,/v, the thermal length /r defined in (3.33), and
the capillary length d, defined in (3.5). Any pair of
ratios of these lengths will serve as a complete set
of dimensionless system parameters. We already have
introduced ~ =2/r// in (3.37), and have concluded that
the interesting values of this parameter are of order
unity. Of the ratios involving d„we choose d, //, and
note that this quantity is the same dimensionless group
of parameters that we denoted by V in Sec. IV.

The most detailed study of the one-sided model, and
probably the most comprehensive piece of work in this
field to date, is that of Wollkind and Segel (1970). These
authors do not adopt assumption (b) but, rather, keep
the thermal diffusion fields on both sides of the inter-

face as space- and time-dependent quantities. They
also do not explicitly make a quasistationary approxi-
mation for the chemical diffusion field. The resulting
analysis is exceedingly complicated, but has the po-
tential advantage of being directly comparable with ex-perimentt.

To understand the nature of the Wollkind —Segel re-
sults, it is necessary first to go back to the linear-
stability result (3.31). For the one-sided case, we can
write the exact version of this equation in the form:

= (q/ —2+2K) 1 ————V(A/)'—
cu)2 1 1, 2K

where

q/ = 1+@'I+(k/)',

(5.3)

(5.4)

and V=d, //. In writing (5.3), we have made the addi-
tional assumption that the ratio p,,/p. '„defined in (3.32),
is identical to the partition coefficient ~. This assump-
tion seems to be common in the metallurgical litera-
ture. The right-hand side of (5.3) is sketched in Fig.
16 as a function of kl for fixed V and several different
values of v. (Think of keeping the velocity v constant
and varying the stability parameter v by changing the
temperature gradient G or the impurity concentration. )

The quantity in square brackets in (5.3) passes
through a maximum as a function of k. In the limit of
very small V, this maximum occurs at large k, spec-

2
L Cd

FIG. 16. Amplification rate co for the one-sided model, as a function of wave number k, for V= 0.001, E= O. l, and for three values
of v as shown.
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ifically, k =@0 where

(5.5)

The critical value of v, which we denote by vo occuI s
when this maximum passes through =0; thus'

v, = 1+3(K'V/2)' ' V«1 (5.6)

For values of v less than v„the plane is stable against
infinitesimal deformations of all wavelengths. For v

greater than v„however, there is a band of unstable
deformations with wave numbers k between k', and k„
as shown in Fig. 16. Equation (5.6) illustrates, for a
specific model, the way in which capillary and kinetic
effects induce deviations from the simple rule of con-
stitutional supercooling.

The nonlinear analysis presented by Wollkind and
Segel is of a special kind which is not easily generalized
to large-amplitude deformations, but which gives very
interesting information for near-critical growth condi-
tions, that is, for v=—v, . The calculation starts, in ef-
fect, with an expansion of the functions 4'"' in (5.2) in
powers of the amplitudes &„.The principal step in the
analysis is the construction of a formal solution of
(5.2) in terms of a single time-dependent function which
I shall denote, f'or simplicity, by s(t). It turns out-
and we shall see this more explicity below in connection
with the symmetric model —that if &~ is small of order
s, then there is a. solution of (5.2) in which A, is oi order

3 of order c', etc. More precisely, &, can be ex-
pressed as a series in odd powers of g starting at c,',
&, as a series in even powers starting at g', etc. The
function c satisfies an equation of the form

Cf E/Qt = 00 g —Q~ f + ~ ~ ~

where a, is the linear stability parameter:

(5.7)

(5.6)

Equation (5.6) describes the small-V portion of the neutral-
stability curve for this system. The corresponding curve in
Wollkind and Segel (1970) is shown in their Fig. 4, where their
G is essentially the same as our 1/v 0, and their y is propor-
tional to our V. Their curve is drawn incorrectly at small V
but this graphic'error does not affect the validity of their an-
alysis.

The crux of the Wollkind —Segel paper is the calcula-
tion of the Landau constant. a, . Strictly speaking, both
a, and a, are functions of k, as well as v and V. By
definition, a, changes sign as one moves from stable
to unstable conditions; but a, might be reasonably con-
stant in the transition region. Thus Wollkind and Segel
evaluate a, at the neutral stability point, v = &„k,=ko,
for different values of V. Positive values of a, are
taken to. indicate the possibility of a restabilized cel-
lular interface with, according to (5.7), s'=—a, /a, .
Choosing a partition coefficient. K=0.2, they find that
a, is positive only for values of & larger than about
0.3, which corresponds to values of@,l (their a, ) smaller
than about 0.5. This regime of parameter values is
awkward theoretically because, as we have seen at the
end of Sec. III.A, the quasistationary approximation is
invalid at such small values of k, . To achieve this sit-
uation experimentally, one must arrange that the capil-

lary length d, be large and comparable to l, so that V

is large. This can be accomplished by working with
very dilute solutions [see Eq. (3.5)]; and, indeed, cel-
lular solidification fronts have been observed in very
dilute metallic alloys under roughly the conditions de-
scribed here.

For appreciable solute concentrations, d, becomes
microscopically small, and the nonlinear analysis for
the one-sided model seems to indicate that an interface
will make a direct transition to some kind of dendritic
or otherwise non-steady-state behavior upon the onset
of instability. It is possible that stable cellular so-
lutions exist, but that they are beyond the range of the
small-amplitude approximation. This seems unlikely,
however, in view of the results to be described in the
paragraphs which follow.

u = 6C/&C, (5.9)

whe re &C rep res ents the dif fe rence between the local
concentration and its phase-dependent equilibrium value
at the reference temperature T,. [See Eqs. (2.11) and
(3.1) and Fig. 6]. The field u satisfies the diffusion
equation with D =D, everywhere, and obeys the boundary
condition n- —1 infinitely far ahead of the advancing
solidification front. The interface very simply plays
the role of a distributed source for this field, the source
strength per unit area being proportional to the normal
velocity of the surface. The general equation of motion
for this interface can be obtained as follows. Let 9 be
the Green's function for diffusion in a frame of reference
moving in the z direction with velocity v:

B. The symmetric model

The one-sided model possesses several mathematical
complexities which make it difficult —but, I think, not
impossible —to extend a nonlinear analysis beyond the
first terms shown in Eq. (5.7). The basic difficulty is
that the diffusion law itself —not just thediffusionfield-
is discontinuous across the two-phase interface. As a
result, the diffusion field is perturbed by the interface
whether or not the interface is playing any kinetic role
in the process, i.e. , generating latent heat or rejecting
impurities. To achieve a more tractable situation,
Turski and I have introduced what we call the "sym-
metric model" (Langer and Turski, 1977; Langer,
1977). The thermal properties of this model are the
same as those of the one-sided model; that is, there
is a fixed temperature gradient, and points (a) and (b)
in Sec. V.A rema. in unchanged. Instead of (c), however,
we assume:

(c') Chemical diffusion is identical in the twophases;
D,'=D„M'=M; P =1; and we further specify that:

(d') The miscibility gap &C is independent of tem-
perature; K= p.,/p,'=1. These new assumptions are
unrealistic for solidification problems; but the model
retains most of the qualitative features of interest here,
and it may also provide a useful description of non-
equilibrium interfaces in certain liquid-liquid or solid-
solid systems.

%e now need only a single diffusion field u to describe
the entire two-phase system:
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1
9(x, z, t)=

( „t,exp4mDtj' '
x'+ (z+ vt)'

4Dt
(5.1O)

I"„(dA,/dt) + . . = C,"'A, + C,"'A,'+ ~ ~ .
More generally,

(5.16)

Note that 8 describes the field at (x, z, t) arising from
a point source at the origin, and that 9 vanishes at in-
finity. Integrating over the source distribution on the
interface, and assuming that there are no other sources
or perturbations in the system, we find the field at any
point (x, z, t) to be

d&'l
u(x, z, t)= —1+ dt' d x'9 (x —x', z —d', t —t') v+

~ OQ

(5.11)

where g' denotes g(x', t'). This expression is well defined
everywhere, even for points on the interface where ~
= f(x, t). At such points, u must satisfy the thermo-
dynamic boundary condition deduced from (2.16), (3.1),
and the symmetry assumptions (c', d');

u(Interface) =u(x, &, t) = d,g—fj —(I/tr)g.
Combining (5.11) and (5.12), we obtain

(5.12)

d,x(k'I+ 0(x, t)+ ~
dt' d'x'9 (x —x', & —&', t —t')

df'
)& v+ —1=0.dt' (5.13)

This is a nonlinear integrodifferential equation' for
g(x, t).

The memory effect shows up clearly in (5.13); in
order to compute the interfacial velocity at time t, we
must know the history of the interface at all earlier
times t . This is not a major difficulty for linear-
stability analysis; but we shall find it very useful to
go directly to a quasistationary approximation for pur-
poses of the nonlinear theory. The conditions for the
validity of this approximation remain as described in
Sec. III.A. As applied to (2.13), the approximation re-
quires that g vary so slowly in time that we can replace
k(x', t') by f(x', t) everywhere inside the integrand. The
remaining integration over t' can be performed ex-
plicitly. If we then insert the Fourier expansion for f,
Eq. (5.1), we obtain from (5.13) a set of coupled, non-
linear equations of the form:

I fA) n' $&n&fAP (5.14)

where the matrix I' is computed in an obvious way from
9. F is nonsingular and can, in principle, be inverted
so as to write (5.14) in the form of (5.2).

Let us look first at a small-amplitude expansion of
(5.14) analogous to the method used by Wollkind and
Segel. If f vanishes, the Green's function 9 recovers
translational symmetry, and the matrix ~ is diagonal.
The leading nonlinearities occur in the expansion of
C '"' on the right-hand side. The first two equations
have the form

r„((L4,/dt)+" = C &'&A, + C &'&A, A, + C&,'&A,'+ ~ ~ ~ (5.15)

6Similar, more general, integral-equation methods have been
used for problems of this kind by Nash {1974)and by Strassler
and Schneider {1974).

I' (&fA /dt)+ ~ . =C ("'A +4 (")A"+- ~ ~
n, n n 1 n n I (5.17)

The rule for writing higher-order terms on the right-
hand side is that, in any product of terms &

( y (+ ( g )+ )

appearing in the nth equation, k+l+rn+. ' must equal
n. The Fourier indices k, l, m can have either sign, but
we continue to use & „=&„.Because of the symmetry
of the model, the mode ~ =0 does not appear here.

The first-order terms in these equations reproduce '

the results of the quasistationary linear-stability the-
ory. Specifically,

C, (n&/I m(nk )

where

(5.18)

(5.19)

Equation (5.19) may be obtained either directly by ex-
pansion of (5.13) or by setting P = p.,/)L&,

' =K=1 in the
general first-order formula (3.36). In writing this last
result, we have used the same definitions of / and V

as in the previous sections, and have used v =I r/l as
required by (3.37). The higher order -coefficients in
(5.15) through .(5.17) are obtained by expanding the 4 's
in powers of the &'s. Specific formulas for these co-
efficients may be found in I anger (1977).

The %ollkind-Segel analysis is valid when v and k,
are very near their critical values, v, and k„sothat
&d(k, ) just vanishes at k, =k, and is negative elsewhere.
For the symmetric case (5.19), and very small V, we
have

1/3
v =1+-'(2V)' ' k I =— U«1

0 2U
(5.20)

dA~/dt = &d(k&)A& —A~A& +' ' '

where the Landau constant turns out to be:

(5.21)

a (, )~ —C &,
" =— 4 (v= vo; k, =ko; V«1).

(5.22)

In contrast to the one-sided model, the Landau con-
stant a, given by (5.22) is always positive, at least for
small V. This means that, under just slightly super-
critical conditions, v ~ vo, the symmetric model may

The near-vanishing of ~(k, ) means that &d(2k, ) &0, and
thus the mode A, is stable. According to (5.16), A. ,
relaxes to a value of order A,' at a rate &d(2k, ) which is
fast compared to the rate ~(k, ) at which A, is varying.
Similarly, higher-order amplitudes &„relaxeven
more rapidly to values of order A", . Equation (5.7) ef-
fectively picks out a special formal solution of the equa-
tions of motion in which there are no initial transients
in the higher modes and the process is dominated by the
slow mode A, . Under these circumstances, there is
nothing to be lost by simply setting the left-hand side
of (5.16) equal to zero, solving for A2, and then re-
writing (5.15) as an equation of motion forA, . The re-
sult is similar ';o (5.7):
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form restabilized cellular interfaces with wave num-
bers k, near ko. These cellular structures have sta-
tionary amplitudes &„:

A„=[(o(k,)/a, ]'~ '; (5.23)

and (5.21) can be recast in the form

d
—(A, -A„)= -2(u(k, )(A, —A„)+~ ~ ~, (5.24)

which implies cellular stability for positive &u(k, ). Thus
within this single-mode, small-amplitude approximation,
there exists a stable, nonplanar, stationary interface
at any wave number k, for which the plane itself. is un-
stable.

Studies of the symmetric model have been carried
beyond this point in two general directions. First, we
have performed a more complete stability analysis of
the small-amplitude cellular structures which are
stationary solutions of (5.21). The second extension
is a search for finite-amplitude steady-state solutions
at larger values of v. Much of this work is described
in the 1977 paper; but some portions of the material
to be presented below are new.

The general stability problem arises because the
equations of motion (5.2) or (5.14) describe only very
special deformations of the interface, specifically, those
which preserve a fundamental periodicity k, . A com-
plete analysis must test the interface for stability
against all possible smooth, infinitesimal deformations,
including those which tend to change the periodicity.
To perform this analysis, we can write the general in-
terfacial displacement f(x, t) in the form

g(x, t) = f,(x)+f(x) exp(cut), (5.25)

where f, (x) is the stationary cellular' solution, and f is
an infinitesimal deformation. The equation of motion,
(5.13), can then be linearized in f. If we make a quasi-
stationary approximation, the resulting eigenvalue
equation for ~ has most of the properties of aSchro-
dinger equation for a particle moving in a periodic po-
tential of wave number k, . In particular, one candefine
a Bloch wave number ~, and can compute bands N of
eigenvalues co~(k„w) for values of g in the ". Brillouin
zone", -k, /2 ~ x ~ k, /2. Stability requires that no cu,

for any ~ in any band, be greater than zero.
For the small-amplitude states where the in-phase

deformations, i.e. , those described by (5.24), are
stable, the most dangerous modes turn out to be those
associated with sidewise translations of the cellular
pattern. An infinitesimal translation, for which f in
(5.25) is proportional to dl, /dx, must have a vanishing
relaxation rate ™. Such a mode is not accessible to our
previous analysis because it must be described by a
Fourier series whose coefficients are antisymmetric,

Vfe further argue that this translation mode
must correspond to a state with w =0 in a band of defor-
mations which cause shifts in the fundamental peri-
odicity of the original cellular pattern. To see this,
suppose that, for small but nonzero w, the mode shifts
the cells near x =0 slightly to the right. The same shift
mill recur at positions along the x axis separated by the
Bloch wavelength 2m/v, which we may imagine to be
much larger than the underlying cellular spacing 2~/
k, . In between these positions, the cells are shifted

to the left; and, at the ~- and +-Bloch wavelength po-
sitions, respectively, they are compressed and ex-
panded. If the system is unstable against compression
or expansion of the cells, the amplitude of such a mode
will grow exponentially.

To determine whether this sort of deformation is
stable, we need simply examine the translation band,
denoted by N =0, in the neighborhood of ~ =0. By sym-
metry, we must have

(do(ki, K) — X)0(kg)K +' ' ' (5.25)

v, (k) = vo+3VI (k —ko) +' '' . (5.27)

Here, &0 and ko are the critical values of v and k given
by (5.20). The exact function v, (k) is indicated by the
solid curve in Fig. 17. The parabolic minimum of this
curve is given by (5.27). At a given v, points k inside
this curve (k,'&k&k, ) indicate wave numbers atwhichthe
planar interface is unstable, and at which stationary-
but not necessarily fully stable —cellular interfaces
will occur with fundamental wave numbers k, =k. The
locus of points at which Go(k) vanishes turns out to be

3.0—

2.0—

I

I.o —I
I

I

I I

I I

I l

I I

o t io 2O f
kcL kcL

FIG. 17. Regions of stability in the v-k plane for the symme-
tric model with V=0.G01. The planar interface is stable at
points outside, i.e. below, the solid curve. Small-amplitude
cellular interfaces are differentially stable (against longi-
tudinal deformations) in the shaded region. above the dashed
parabola. It is not known what happen. s to this region at
large values of v. Values of k~ and k~ are shown for the spe-
cial case v=2e

Negative values of K), (k, ) can be taken to imply dif-
ferential stability of the cellular structure with wave
number k, . A detailed calculation of X),(k, ) is reported
in the 1977 paper for a fixed value of v. The calculation
indicated that there exists a finite range of values of
k, for which the cells are stable.

It is useful to recast the results of the above stability
calculation in terms of the dimensionless control pa-
rameters introduced in this review. Consider a very
small, fixed value of the dimensionless velocity V. If
we set to zero the quantity in square brackets in the
formula (5.19) for cu(k), we obtain a function v, (k)
which, for very slightly supercritical v„canbe written
in the form
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given by a similar relation:

v~(k) —= vo+ QVl'(k —ko)'+ ~ ~ (5.28)
k)A

VP

which is indicated by the dashed parabola in Fig. 1V.
Points in the shaded region inside the latter parabola
locate ceOular states which have complete differential
stability. 7

Note that we have arrived at a situation which is
reminiscent of the dendrite problem. The most we can
do experimentally is to fix V and v; and the system
itself must then determine its interfacial configuration,
including the wave number k, . Just as in the dendrite
problem, however, our mathematics has produced a
whole family of linearly stable steady-state solutions.
Unfortunately, the experimental situation here is not
so clear as it was for the dendrites; we do not know
yet whether nature has a strong preference for just one
of these states. The analog of the dendritic situation
would be a nonlinear mechanism tending to drive the
system toward the left or right boundary of the stable
shaded region, at which point the system would be mar-
ginally unstable and would, perhaps, undergo some sort
of limit cycle. Alternatively, the system might retain
whatever periodicity formed most rapidly after the
onset of planar instability; or the periodicity might
always be determined by boundary effects. As far as
I know, there exist no theoretical or experimental
reasons for favoring any of these hypotheses.

Let us turn, finally, to the question of what happens
at strongly supercritical values of the control param-
eters. Very little is known with any certainty in this
area, but one important qualitative conclusion seems
to be emerging from the work done so far: the picture
of smooth, stationary, restabilized cellular interfaces
seems to break down outside of a rather narrow range
of values of the control parameter v. %'e have tried

0 different IQathematical approaches to this probleIQ.
First, as described in the 19VV paper, we have looked
at an approximation that ought to be valid when both
the fundamental mode Rt wave number k, and the first
harmonic at 2k, are simultaneously unstable. The sec-
ond approach is a direct numerical search for stationary
solutions of the integral equation (5.13). The numerical
approach, which will not be described here in any de-
tail, has served to check the accura, cy of the expansion
method and to extend the cellular calculations some-
what beyond the point where the expa, nsion method
breaks down.

Most of the important results of these calculations
are summarized in Figs. 18 and 19. These figures
actually have been obtained by the numerical method
for the case v=1.40, which is just beyond the apparent
range of the expansion technique; but the higher-order
expansion also produces the qualitative features illus-
trated here. Figure 18 shows the root-mean-square
amplitude of a cellular interface:

0.2—

O. I—

////////////// J/////////////// /////.

c
k(L

FIG. 18. Boot-mean-square amplitude of cellular interfaces,
X, as a function of fundamental wave number, k&, for the syxn-
metric model with V= 1.4x 10-4, v= 1.4.

(5.29)

S

in units of the wavelength 2v/k„as a function of the
fundamental wave number k, . The shaded region along
the k, axis indicates the range of wave numbers between
k,' and k, where the planar interface is unstable. The
solid curve shows values of & for cellular interfaces
which are stable against wavelength-conserving per-
turbations, that is, which are stable against smaH vari-
ations of the amplitudes A„.The dashed lines describe
stationary solutions which are manifestly unstable. (It
is not known whether any of these solutions possess
complete differential stability. ) The interfacial profile
g, g) illustrated in Fig. 19 has parameters k„Aindi-
cated by the point X in Fig. 18.

A variety of interesting things have happened in Fig.
18. Note that the point k,—the maximum k at which
the planar interface is unstable —is a bifurcation point
for the planar and cellular stationary solutions, and
that it makes sense to use a smaH-amplitude expansion
to study these solutions near this point. However, the
Landau constant a, defined in (5.21) and (5.22) but
evaluated at v=1.4, k, =k, has become negative. Ac-
cordingly, the small-amplitude stationary states occur
with k, & k, and are unstable. [See (5.24) and note that
u&(k, ) & 0 in this case. ] The possibly stable cellular
states all have relatively large amplitudes and occur
with wave numbers k, in a range which-extends beyond
k,. If the interface is to make a direct transition to a

~For a different but closely related analysis of the stability
of Benard convection patterns, see Newell and%hitehead (1969).
In comparing the two results, remember that here we have
considered only longitudinal deformations (expansions and com-
pressions) of the ce1ls, whereas Newell and Whitehead have
included transverse deformations of their rolls.

FIG. 19. Cellular interface corresponding to the point labeled
X in Fig. 18.
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state at k, & k, without undergoing a change in perio-
dicity, it must start with a finite rather than an in-
finitesimal deformation. The small-amplitude states
near the lower bifurcation point k,' also are strongly
unstable. At wave numbers just above k,', there seem
to exist no stationary cellular solutions at all. The
smallest wa.ve number at which cellular solutions ap-
pear is roughly equal to the smallest k, for which the
first harmonic 2k, is stable. In other words, the bottom
of the band of stationary solutions is approximately k, /
2.

The interfacial profile shown in Fig. 19 exhibits the
symptoms, if not the fully developed features, of the
cellular structure shown in Fig. 7. The leading edges
are relatively flat and the groove-roots are sharply
curved. The pattern is shifted forward so that most of
the interface is warmer than the reference temperature
T„and the solute is concentrated in the cooler, narrow
grooves.

Our attempts to extend the numerical calculations
much beyond v =1.40 have so far been unsuccessful, and
the breakdown of the calculation occurs in a way which
suggests that there may not exist truly stationary,
finite, and stable cellular structures in that regime. At
v = 1.50, the smooth solid curve which locates s table
solutions in Figure 18 seems to twist and break up into
pieces; and none of these apparent solutions seems to
be either physically plausible or numerically reliable.
Both the numerical evidence and the observations de-
scribed in Sec. II.C and illustrated in Fig. 7 suggest
that the stationary solution breaks down in the grooves.

It would be very useful if we could somehow avoid
having to perform a completely time-dependent com-
putation in order to analyze these large-scale cellular
structures. One possibility is that the mathematical
grooves might actually become infinitely deep and
sharp, as shown in Fig. 7, and that the thermodynamic
boundary conditions can be relaxed at the isolatedpoints
of infinite curvature. Unfortunately, this relatively
simple picture cannot be exactly correct at any finite
value of v. Deep inside the grooves, where the inter-
faces are parallel to the direction of growth, there are
no nearby sources for the diffusion field and (5.13) must
reduce to

(5.3O)

Thus, if g becomes large and negative, the curvature
must become appreciable; and this is inconsistent with
our original picture. One way out of this difficulty is
to let v become infinitely large, that is, to look first
at the limit of va,nishingly small thermal gradient. If
mell-behaved stationary solutions exist in this limit,
then one might guess that, for large but finite v, these
solutions would remain accurate for the frontmost
portions of the cells, and that nonstationary behavior
might occur at a distance domn the grooves determined
roughly by setting the curvature on the left-hand side
of (5.3O) equal to the inverse cell spacing. It turns out
that these infinitely elongated cellular solutions can be
found numerically. They seem to occur within a rather
narrow band of wave numbers 0, in the neighborhood of
2k„where 0, / =—V ' 2 is the inverse stability length

originally defined in Eq. (3.15). Note that the spacing
of these cells is smaller than the smallest wavelength
for which the plane is unstable. Figure 7 is actually a
computed cellular structure, obtained by a numerical
procedure based on the stationary version of (5.13) with
v = ~, V = 0.004.

Vl. SUMMARY: OUTSTANDING PROBLEMS

Throughout this essay, and especially in the last two
sections, we have encountered a wide variety of un-
solved problems in solidification theory. 'The best way
to summarize this paper as a whole may be simply to
list the most interesting of these unsolved problems.
We then may try to gauge present progress and future
opportunities by the extent to which we can pose pointed
and sensible questions.

I et us start. with questions pertaining to dendrites.
The sidebranching mechanism and the marginal-
stability hypothesis have provided us with a new starting
point for both theoretical and experimental investi-
gation. However:

(1) We have no firm theoretical basis for the mar-
ginal-stability hypothesis. Is it correct? If so, what
actually happens in the nonlinear operating mode of the
dendrite? Does the system undergo a limit cycle?
What role is played by thermal fluctuations?

(2) We have no reliable and systematic means for
evaluating the stability parameter o.". Part of the prob-
lem is in the numerical analysis. How does one ob-
tain accurate solutions to a non-Hermitean stability
problem, Eq. (4.24), for a. semi-infinite system
(0 ~ $ &~) in which the most interesting deformations-
the sidebranches —grow without bound at large (? Does
the spherical approximation have any validity? How
important are capillary corrections to the steady-state
solution?

'These are the most basic and immediate theoretical
problems. Questions of more practical interest in-
clude:

(3) What is the effect of crystalline anistropy? How
does one include anisotropic attachment kinetics in the
steady-state problem or in the stability analysis? Can
one construct a quantitative theory for a strongly anis-
tropic system such as, say, ice?

(4) What role do impurities play in dendritic growth?
There is some evidence (Lindenmeyer, 1959; Fujioka,
1978) that the growth rates of ice dendrites are en-
hanced in dilute solutions. I have proposed a stability
mechanism to explain this (Langer, 1978), but the an-
alysis is not yet complete or convincing. In general,
the metallurgically important problem of the inter-
play between thermal and chemical instabilities in
solidification seems ripe for new theoretical and ex-
perimental investigation.

(5) Ail of the work on dendrites to date has focused
on the behavior of the tip —its velocity, its shape, and
the initial sidebranehing activity. As can be seen in
Fig. 12, the mature sidebranches well behind the tip
have coarsened via some kind of selection mechanism;
and their ultimate spacing is not the same as the wave-
length of the initial disturbance near the tip. It is the
coarsened structure which is most interesting met-
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allurgically. Can it be predicted? Does the ultimate
spacing scale simply like the tip radius as a function of
growth parameters, or is there some more complex
relationship?

(6) The experimental observations, especially at the
smaller undercoolings, indicate an appreciable effect
of convective transport in the fluid. How ean this ef-
fect be accounted for theoretically?

Consider, next. , the problems having to do with di-
rectional solidification and cellular interfaces. These
are the solidification theorist's versions of the Benard
or Taylor instabilities in hydrodynamics. The soli-
dification problems are less thoroughly explored than
their hydrodynamic analogs, and there is a notable lack
of accurate experimental data —this despite the fact
that there exists a rich variety of accessible and tech-
nologically interesting phenomena. The most basic
questions seem to be the following:

(7) Under what growth conditions do stable, sta-
tionary, ce11ular interfaces occur? A complete dif-
ferential-stability analysis has been performed only for
the somewhat artificial symmetric model and, there,
only for the small-amplitude structures which occur
when the plane is just weakly unstable. Are larger
structures, like that shown in Fig. 19,' stable? Are
there any stable cellular solutions at all for the more
realist:ic one-sided model? How ean one generalize a
differential-stability analysis to deal with the possible
breakdown of the quasistationary approximation in the
latter model? Existing theories deal only with one-
dimensional variations of the interfacial displacement.
Can the analysis be extended to two-dimensional pat-
terns, for example, hexagonal cells?

(8) What determines the natural periodicity of a
restabilized cellular structure? Does there exist a
principle of marginal stability which is relevant to this
situation?

(9) What happens when the steady-state theory breaks
down? How does this breakdown occur'? Do the sta-
tionary solutions simply disappear? Or do they become
uns table while continuing to exist mathematically? What
is the role of finite-amplitude —as opposed to differen-
tial —instabilities? Are there hysteretic effects?

(10) What sorts of nonstationary solutions occur?
Do there exist, for either of the models described in
Sec. V, nearly stationary solutions of the kind shown
in Fig. 7 where the time-dependent behavior occurs
only in the groove roots? Under what conditions does
a planar solidification front become dendritic' ?

(11) Is there an analog, in the solidification prob-
lem, of the onset of turbulence in hydrodynamics?
That is, are there situations in which the solidification
pattern becomes intrinsically chaotic'?

The reader will note that, in the last sets ofquestions,
I have ventured away from specific cellular problems
and into an area of general principles, and that I am in
danger of violating my introductory appeal for detailed
spadework. I shall go even further astray in a con-
cluding line of inquiry.

(12) The most interesting pattern-forming processes
appear to be intrinsically time dependent. If thy mar-
ginal-stability hypothesis is valid, they are intrinsically

nonlinear. And, if the sidebranching mechanism is
characteristic, they are spatially unbounded in a spec-

I

ial, controlled sort of way. Is there some generalized
notion of stability which is relevant here'? As far as
I can tell, equations of motion such as (5.2) cannot be
recast to look like potential flow. There does not seem
to be a simple I iapounov function. Nevertheless, might
there be some meaningful and useful variational for-
mulation that describes these processes? What are we
missing?
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