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The authors review new techniques developed to apply the variational method to the nuclear matter
problem. The variational wave function is taken to be (SH,-, F, ) N; the correlation operators F,, can in
principle induce central, backflow, spin isospin, tensor, etc. correlations, and N is the ideal Fermi gas
wave function. The application of diagrammatic cluster expansion and chain summation techniques to
calculate expectation values with such wave functions is discussed in detail. The authors also give a brief
overview of various other approaches to the calculation of the binding energies of quantum fluids, and a
comparison of results for simple systems such ad helium liquids. Results obtained by various methods for
simplified models of nuclear matter, which include central, spin, isospin, and tensor forces, have
converged significantly in recent months. Results obtained with more realistic models which include the
spin —orbit potentials are also discussed. The potential models considered so far either give too little
binding or too high equilibrium density.
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Matrix defined by Eq. (5.1).
Notation for separable diagrams.
Matrix defined by Eq. (5.22).
The correlation operator for pair
ij; superscripts H and ~ denote the
specific forms used in liquid heli-
um [Eq. (2.20)] and nuclear matter
[Eq. (2.24)] ca.lculations.
Functions used to expand (IIF,-'. &)

[Eq. (4.2)]; the superscript P de-
notes the associated operator.
Jastrow and optimized Jastrow cor-
relation functions.
Correlation function associated
with operator OP, .

Correlations in two-body channels
having isospin T and spin S.
Chain function associated with op-
erator OP, . The subscripts x and

y denote the nature of vertices i
and j at the ends of the chains.
Two-particle distribution function.
Part of the Hamiltonian associated
with OP&.

Single operator ring integrals [Eqs.
(5.29)-(5.23)].
Matrix defined by Eq. (5.2).
Matrix defined by Eq. (5.15).
Generalized Slater function.

Vertex correction factors [Eq.
(5.28)].
Probability factors (Sec. V.C).
Operator labeled by superscript P.
Fermi gas kinetic energy [Eq.
('7.1)].
Parts of "three-body" kinetic en-
ergy [Eq. (7.1)].

GLOSSARY OF SYMBOLS IN VARIATIONAL CALCULA-
TIONS WITH CORRELATION OPERATORS
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Vg g~ V]
and v, ~

Part of the two-body potential as-
sociated with O~,

Potentials in two-body channels
with isospin T and spin S.

A. Properties of nuclear matter

Symmetric nuclear matter is characterized by its
binding energy and equilibrium density po. The binding
energy is given by the volume term a in the semi-
empirieal mass formula for nuclei:

o. (A, B)

fl(A)

4

and esp

Parts of "two-body" interaction
ener gy.
Link functions associated with 0~, ;
x and y denote the type of vertices
2 and g.
Generalizations of the tensor op-
erator [Eq. (9.1)].
Generalizations of the I S opera-
tor [Eq. (9.2)].
Matrix whose P = 1-4 elements
equal unity and the rest are zero.
Backflow correlation function
[Eq. (2.20)].
Integral operator in the chain equa-
tions.
Angle functions in the coupling of
O&,. and O;., [Eq. (5.5)].
Uncorrelated wave function.

Variational wave functions of the
independent pair [Eq. (2.26)],
Jastrow [Eq. (2.6)], and symme-
trized product [Eq. (2.19)] form.

I. INTRODUCTlON

Nuclear matter is a hypothetical system of nucleons
interacting without Coul. omb forces. It is translationally
invariant with a fixed ratio of protons and neutrons,
and can be thought of as an idealization of matter in-
side a large nucleus. The goal of nuclear matter theory
is to obtain empirically known bulk properties, such as
the binding energy, equilibrium density, symmetry
energy, incompressibility, etc. , starting from the
underlying two-body interactions.

A good many-body theory for nuclear matter may be
used to study the details of nucleon-nucleon interac-
tions. The observed phase shifts from scattering exper-
iments plus the properties of the only bound two-
nucleon system, the deuteron, are insufficient to pick
out a un. ique nucleon-nuc1. eon potential. Nucl. ear rnatter
studies can help us understand better exactly how the
different elements of a potential affect the matter
properties, and what sorts of features are required to
produce the observed saturation. It is also conceivable
that a potential model for nuclear forces is simply not
workable; nuclear matter studies may indicate whether
or not this is true.

A solution of the infinite matter probl. em wouM also be
useful as the starting point for a microscopic theory
of finite nuclei. It is the first step in obtaining the equa-
tion of state for dens e matter, which is es s ential in the
study of neutron stars. Finall. y it is simply a very in-
teresting many-body problem in its own right. Methods
developed for it should be useful in other dense
quantum fluids such as l.iquid helium.

+pairing term+shell corrections+ ~ ~ ~ . (1.1)

The original mass formula is due to von Weizsacker
(1935) and Bethe and Bacher (1936). Today there are
many competing versions which add higher-order terms
in the symmetry, surface, and Coulomb effe cts, and use
different methods for calculating the shell corrections.
Values for o., the symmetry term P, the surface term
y, the unit radius wo defined by

—vrx p =1, (1.2)

and other parameters are obtained by fitting over one
thousand experimentally known nuclear masses, and the
fiss ion bar riers for s everal dozen heavy nuclei. A
collection of contemporary mass formulas by many
different authors can be found in At. Data and Nucl.
Data Tables 17 5-6, (1976). Typical values for n are
15 to 16 MeV; yo varies from 1.16 to 1.22 fm, corre-
sponding to densities of 0.15 to 0.13 nucleons/fm' or a
k~ between 1.31 and 1.25 fm '. The values for P and y
are in the ranges 30-40 MeV and 20-21 MeV, re-
spectively.

Also of interest is the incompressibility of nuclear
matter, Z,

(1.3)

which appears as a parameter in some of the more
sophisticated mass formulas, but is not well deter-
mined by them; the values given range from 240 to
300 MeV, with large error bars. Recent experimental
observations of an isoscalar breathing mode in nuclei
by Youngblood et al. (1977, 1978) provide a better es-
timate of A than ever before. They have measured an
Eo. resonance in ' 'Pb at 13.7 MeV, in ' 48m at 15.1
MeV, and in ' Zr at 17 MeV. This energy is related
to the incompressibility of a fin. ite nucl. eus k~ in the
l.iquid drop model by

E~ = (v/3& A'')4(k2/m)k~.

If we insert the simple semiempirical mass formula
(1.1) into Eq. (1.3), we get an expansion for k~,

K —Z g 6eZ
k~ ——%+Kg +Ay& + 4(3,

lVp
(1.5)

where Kz and K, are symmetry and surface incompres-
sibilities, respectively. A simple calculation indicates
E = 260 MeV, Kz = 3 MeV, and K, = -405 MeV. There is
a question as to how valid the liquid drop model ex-
pression (1.4) is for extracting k~ from E,+. An RPA
calculation by Blaizot et al. (1976) suggests that K= 210
MeV will reproduce the observed data.

A good theory should be able to calculate the ground-
state E(p) curve for any given potential. The occur-

M(A, Z) =KM„+ZM„——, nA — —yA. ' ~'—
c g A 5y A'
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rence of a minimum will indicate both the equilibrium
density p, and binding energy E(po). The curvature
of E(p) at po will give us K. To calculate P, we can
allow the number of neutrons and protons to differ
slightly and measure the curvature of E(N, Z) at the
point N =Z. A somewhat more difficult problem is the
calculation of y, which would obviously require the
introduction of a surface of some kind. Additional
quantities of interest that might be obtained by func-
tional differentiation of E(p) include the effective mass
and Landau parameters. In principl. e we may deduce
their values by analyzing the spectra of near elosed-
shell nucl. ei with the Landau-Migdal theory of finite
Fermi systems (Speth et al. , 1977; Brown, 1971;
Backman et a/. , 1979).

B. Nucleon-nucleon potentials

The starting point for any nuclear matter cal.culation
is a two-body potential that models the nucleon-
nucleon interaction. A more fundamental viewpoint
would be a meson theory of nuclear forces (Brown and
Jackson, 1976), or even a quark model for the strong
interaction. The former has not been quantitatively
successful, however, while the latter is still in its
infancy. At present it is necessary to resort to phe-
nomenological. potentials that fit the experimental data,
and inc orpor ate elements that are cons istent with our
fundamental knowledge of strong interactions. The
potentials used are generally nonrelativistic, and of
course cannot take into account many-body forces,
about which very little is known.

"Realistic" potentials are those that give good fits
to the low-energy (~ 300 MeV) two-body scattering data,
and get the binding energy and quadrupole moment of
the deuteron correct. The phase-shift data varies
greatly from channel to channel, indicating a very
complicated potential. To fit the phase shifts in chan-
nels with J ~ 2 a potential requires at least ten opera-
tor components:

v, ~
=v'+v'(a, . a&)+v'(7.; 7;)+v"(a; a, )(T, .T, )

+v'S;& +SV;~(T; 7';)+ v (L ~ S),~+v"'(L ~ 8);,.(7;.v~)

strength in mN interactions. All NN potentials contain
the OPEP but the treatment of the intermediate-range
attraction, which is probably due to mul. tiple m ex-
change, and the short-range repulsion, which comes
from co- and p-meson exchange, is highly varied. One
choice is a superposition of Yukawa forces:

-nor
(v —v, )' = Q y„'

' (l.8)

200

IOO—

I

) j

gO~

Here n may take on a series of integer values, as in
the potential of Reid (1968) (n =2, 3, 4, 6, 7), or it may
have noninteger values to represent. the actual ~-p
range (n = 5.5), as in some of the models of Bethe and
Johnson (1974). These soft-core potentials may be
contrasted to the earlier hard-core potentials such as
those of Hamada and Johnston (1962), which use Yukawa
forces as in Eq. (1.8) at intermediate distances, but an
infinite hard core at short distances, i.e., v =+~ for
r&r„y,=0.5 fm. The hard core was originally used
because of its simplicity, although it is not physically
reasonable.

The v~ obtained from the Reid potentials in the singlet
states 'So and 'P„and the triplet states '8, -'g), and

are shown in Fig. 1. The strong operator
dependence is quite evident, particularly the L ~ S force
at short distances and the pion part (ar and tT) at large
distances. There are many other types of potentials
that can be used to adequately explain the low-energy
(&300 MeV) scattering data and deuteron properties, as
reviewed by Bethe (1971). The onset of inelastic
processes at higher energies makes it difficult to pre-
dict the correct potential behavior inside =0.5 fm.

+V Lgg +V ~L~g(1 ~
.tg) ~ (1.6)

where S;,. =3(a;.y)(a, .r) —a, . a& is the tensor operator,
(L 8);& is the spin-orbit operator, and L;& —(o';.a,.)L'
—2[(a;.L)(a, ~ L)+(a, L)(a;.L)] is the quadratic spin-orbit
operator. The v' are then simple functions of the radial.
distance ~r; —r~~. Even greater operator dependence
might be called for in (1.6) if the lesser studied phase
shifts in J&2 channels were to be fitted.

All realistic nucleon-nucleon potentials exhibit some
common features. These include a very strong repul-
sion at short distances, an intermediate-range attrac-
tion, and a long-range behavior that is well described
by the one-pion exchange potential (OPEP):

v, = ——m, c'(r;-7) ) (a,"aj)+S,~ 1+ +

(1.7)

Here p, =m,c/8=. 7 fm ' is the inverse Compton wave-
length of the pion, and f'/kc =0.08 is the coupling

I I
I
I

l

l

l

l
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I

V~.'J I

. l

l)
0.4

-IOO—

I

I.6
I

l.2
-200 I I

0 0.8
r(fm)

FIG. 1. The v'(r) in models ve and v8 based on the Reid poten-
tials .

Rev. Mod. Phys. , Vol. 51, No. 4, October 1979



824 Pandharipande and 'IIiringa: Variations on a theme of nuclear matter

C. Nuclear matter problem

The problem to be solved may be summarized as
follows. A Large box of volume Q contains A nucleons
which interact via a two-body potential v;, ,

0=g ( v,'.)+Pv;, (1.9)
t&j

We wish to calculate the ground-state energy A.E(p) of
this system in the limit A. , K3- ~, while the density
p =A. /0 is kept constant. The minimum in the curve
E(p) will give both the binding energy and equilibrium
density for the given potential.

At present it is very difficult to do a good many-body
ca?.culation for the full operator-dependent potential
(1.6). Bethe (1977) has suggested that the many-body
theory could be developed in a series of steps by con-
sidering homework potentials that successively in-
corporate more and more sophistication. Starting from
any full potential, one may define a sequence of home-
work potentials which have successively more of the
operator dependences given in Eq. (1.6). At present
it appears that the so-called v, problem, which in-
cludes central, spin, isospin, and tensor forces, can
be treated with reasonable accuracy. Some preliminary
work on the v, problem which incorporates spin-orbit
forces is also avail. able. It may not be profitable to
calculate anything beyond the E{p) curve until many-body
calculations ean be done for a ful. l realistic potential.

II. OVERVIENt OF THEORETICAL METHODS

A. History of the many-body problem

Just two years after the semiempirica?. mass formula
was first suggested, the first nuclear matter calcula-
tions were performed by Euler (1937). Very little was
known about the interaction of nucleons at that time,
however, and only a nonsingular potential was studied.
The modern studies began after the need for a strong
repulsive core in the potential was realized. The
specialized perturbation methods required were pi-
oneered by Brueckner [Brueckner (1954), Brueckner
and i,evinson (1955)], Bethe (1956), and Goldstone
(1957); this approach is called the BBG expansion. It
is a low-density expansion, whose convergence proper-
ties are still not fully understood. It may be useful at
nuclear matter density, but its application to denser
quantum fluids like liquid helium or neutron star matter
is thought to be very difficult.

At the same time the perturbation theory of Brueckner
was first being formulated, Jastrow (1955) suggested an
alternate variational approach for treating the strong
repulsive core. Jastrow recommended the use of a trial.
wave function where the unperturbed wave function is
modified by a product of two-body correlation func-
tions. However, it was thought that the spin, isospin,
tensor, etc., correlations would be difficult to handle
in this way. The discovery of pulsars and their iden-
tification as neutron stars in 1968 revived the interest
in the variational approach, because the method does
not have the density limitations of the BBG expansion.
The study of astronomical objects whose central den-
sities could be several times that of nuclear matter

B. Brueckner-Bethe-Goldstone expansion

The BBG theory has been reviewed by Day (1967,
1978a) and Bethe (1971). It is based on the Goldstone
(1957) linked-cluster expansion for the ground state
E(p). The Hamiltonian is broken into two parts, Ho
and H, :

(2.1)

Here the single-particle potential U is introduced for
ease of calculation; it is chosen so that the perturba-
tion expansion for &, is rapidly convergent. The
singular matrix elements of v are replaced by the re-
action matrix G,

G =U- U(Q/e)G (2.2)

where Q is the Pauli operator and e is an energy de-
nominator. The nonsingular G sums the interaction be-
tween two pa, rticles to all orders. It is obtained by
calculating the perturbed wave function + from the ideal
gas wave function 4,

y =4 —(Q/e}v@,

which implies

vC =GC.

(2.3)

(2.4)

A perturbation expansion in powers of G is not con-
vergent, but the cluster diagrams can be grouped in-
stead according to the number of independent hole
lines. Formal arguments for the convergence of the
hole- line expansion have been advanced by Brandow

would clearly require the development of such an al-
ternate approach.

Nuclear matter calculations in lowest-order ver-
sions of both the variational and BBG methods were in
substantial agreement by 1972 (Pandharipande, 1972),
but disturbingly no realistic potentials had been found
that could explain the energy and density saturation;
typical potentials either gave too little binding or too
high a density (Day and Coester, 1976). More ad-
vanced variational studies by Ba'ckman et al. (1972) and
Pandharipande et aE. (1975) indicated a considerable
discrepancy with the lowest-order results for some
simple model potentials. It has since become clear
that much more careful calculations are required,
particularly for a, weakly bound system like nuclear
matter, where the kinetic and potential energies cancel
to a Large extent.

In. the following pages we give a brief review of the
approaches being actively pursued at present. Whether
the previous failure to achieve the correct matter
properties is attributable solely to the inadequacy of the
many-body theory is not yet clear. In the future when
the various theories are developed to a point where we
have confidence in them, we must still examine the
question of whether a satisfactory nucleon-nucleon po-
tential can be found. At present we can only speculate
on that subject.

Rev. Mod. Phys. , Vol. 5't, No. 4, October 1979
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(1966) which indicate an n-hole-line diagram should be
proportional to a." ', where a measures the probability
that there is an unoccupied state below the Fermi sur-
face. If we neglect many-body clusters, w is given by

where (t) and (t are two-body correlated and uncorrelated
wave functions. This estimate of v, however, depends
critically on the choice of U, a topic of muchdiscussion in
the recent literature. The standard choice in the past has
been to set Uto zero for particle states, and to the self-
consistent Hartree-Fock potential in hole states. For
this choice and the Reid potential, &= 0.15 near the
saturation density. However, the standard choice has
an unphysical gap at the Fermi surface, and several
recent calculations use what is called the "continuous
choice" advocated by Jeukenne et at. (1975).

The hol. e-line expansion seems to be valid, i.e.,
obeys the &" ' prescription, for the short-range corre-
lations induced by the strong repulsive core. A number
of internal checks have been performed by Day (1978a)
without any inconsistencies being found. However,
Friman and Nyman (1978) point out that the pion ex-
change ring diagrams may need to be summed to all
orders. Recent three-body cluster calculations of Day
go up to twice nuc1ear matter density. Even at these
densities, which are below those expected for neutron
star interiors, the necessity of calculating through at
least four-body clusters to get within 10/() of the binding
ener gy is indicated. This is a very diff icult task, which
has not yet been accompl. ished.

with the exac t Monte Car lo integr ations.
Calculations designed to solve the variational problem

&E~/~f~ =0 exactly are called optimized Jastrow calcu-
lations. The optimum correlation f» has a long-range
tail, i.e., I f,o(x) —1](x:v ' as ~- ~, for which the ener-
gy calculation is very difficult (Smith et at. , 1978).
Lantto and Siemens (1977, 1979) have devised a method
of minimizing the (F)HNC energy to obtain f„o„butthe
long tail f~o does not seem to lower the energy signifi-
cantly.

The basic shortcomings of the choice of E(I. (2.6) for
0 J are that it does not allow for momentum dependence
appropriate to interacting systems, or the complicated
operator dependence indicated by the nucleon-nucleon
potential (1.6). Nor'does it allow for three-body or
higher correlations. The simple Jastrow studies have
been useful, however, as a starting point for the more
sophisticated methods we describe below.

D. Green's function Monte Carlo method

The GFMC method developed by Kalos et al. (Kalos,
1970; Kalos et at. , 1974) and reviewed by Ceperley and
Kalos (1978) gives an exact solution for the energy of
an A, -body system in a box of volume Q. It has not
been extended to nuclear matter or even to Fermi sys-
tems at present, but it is useful as a standard of com-
parison in Bose systems, and requires a good solution
for the Jastrow +J as input.

Let 8 denote a multidimensional vector representing
the coordinates r„r„.. . , r~ of the A. particles. The
Schrodinger equation for the ground-state energy Eo is

C. Jastrow theory
H4'0(R) = EO40(R) . (2.8)

The variationaI. wave function in Jastrow theory,
C~, is taken as

(2 6)f~(~;~)4 .

Jastrow (1955) anticipated that the two-body correlation
fz could be an operator in general, but for our nomen-
clature we shal. l use it to designate the case of simple
radial dependence, x;~ = Ir; —r&I. The fz is usually
parametrized in some form, and the parameters are
varied so as to minimize the variational energy E~,

&+g Itf I+z)
&@z I+z&

(2.7)

which should give an upper bound for E(p).
The E~ can be evaluated exactly with a Monte Carlo

integration, or approximately by means of cluster
expansions. The most popular expansion uses the meth-
od of hypernetted chains (HNC), which is based on the
Mayer cluster expansion of statistical mechanics. This
chain summation method was developed by van Leeuwen,
Groeneveld, and de Boer (1959) for Bose systems, and
extended to Fermi systems (FHNC) by Fantoni and
Rosati (1975). There is a hierarchy of approximations
in the method, the simpl. est being called (F)HNC,
followed by (F)HNC/4, (F)HNC/5, etc. HNC calcula-
tions in a wide variety of simple Bose systems by
Pandharipande and Schmidt (1977) and simple Fermi
systems by Zabolitzky (1977) show excellent agreement

Let C„denote the nth eigenstate corresponding to E„,
and G(R, R') be the Green's function

(2.9)

4 ((+I,R) =R(() f G(H, 8')% ((, 8')dR', (2.10)

where E(i) is a normalization constant for 0 (i+ 1, R),
and all the 4'(i, R) are assumed to be normalized. In
the limit & —,

4 (i- ~, R) =4,(R),

E(i ~) =E,
(2.11)

(2.12)

The G(R, R') is actually not known, and it is not prac-
tical to solve E(I. (2.10) directly. However, one can
again use the 0 ~ from the Jastrow problem to define
a4,

4 (i, R) =4 (i, R)4 ~'(R),

and corresponding Green's function G,

G (R, R'}= (I)'~ (R}G(R, R')4'~ (R') .
so that E(I. (2.10) becomes

(2.13)

(2.14)

4 (i+ 1,R) = E(i) G(R, R')4(i, R')d'R'. (2.15)

An initial guess for 4'0 is labeled 4'(0, R); the 4'~ is used
here. A series of successive improved guesses 4(i, R)
is calculated by iterating the equation

Rev. Mod. Phys. , Vol. 51, No. 4, October 1979
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The G(R, R') is still. not known, but it can be sampled
in a Monte Carlo fashion, and very accurate energies
are obtained after about forty iterations of Eg. (2.15).
The practical necessity of using 4, G is where the
limitation to Bose systems comes in. Whereas 4 J. will
always be positive definite in a Bose system, it can
have nodes in a Fermi system causing 4~' in Eqs.
(2.13) and (2.14) to blow up. Whether or not this dif-
ficulty can be overcome in the future is not clear.

E. Correlated basis perturbation theory

A perturbation theory has been developed by Feen-
berg (1969) and collaborators [see the recent review
by Clark (1978)] that gives a prescription for improving
on the Jastrow E~. If y is a suitable many-body corre-
lation operator and

l 4„&is the complete set of ideal gas
states, then the set

l
4 ),

le. &
= ~le.&&e„lv'pic.&- ~, (2.16)

is a normalized, complete, but nonorthogonal set of
"correlated basis functions. " A forma1 perturbation
expansion can be made for the exact ground-state ener-
gy E, which to second order is given by

~ 1&~.Ill~. &
—&~.l~l~.&&~.l~.&l'

&@ lal@ &-&e,lale, &

(2.17)

Here the subtracted part in the numerator of the second
term corrects for the nonorthogonality of l%' ). If f is
just the usual Jastrow choice (2.6) then &C,lHlg o&

= E~.
We also see that the second-order perturbation cor-
rection in Eq. (2.17) always lowers the energy below
the variational result.

The disadvantage of this treatment is that its con-
vergence is difficult to establish; no third-order per-
turbation terms have ever been calculated, and the
second-order terms must be approximated at a small-
cluster level. The most extensive calculations to date
have been done on the Bose liquid 4He by Chang and
Campbell (1977) where the only 4 „usedare

e, =e(0) =W(0)
' f, (r,,),

the f~; in fact its contribution is zero when fzo is used.
The three-phonon term +, essentially introduces three-
body correlations, which are of course absent in 4 ~.
In nuclear matter the perturbation correction in Eq.
(2.17) to date has only been evaluated at the two-
phonon level (Kiirten et al. , 1978, 1979).

(2.19)

where a symmetrized product is required because F;,.
and F;„maynot commute. The F;, includes the Jastrow
f~(r, , ) plus other terms that help to overcome the lim-
itations of the simple Jastrow choice.

Pandharipande (1978) has found that a very good
choice for F in liquid helium is

F";; =f~(r;~)+U(r;, )r;, ~ V, , (2.20)

The V;& in Eq. (2.20) can operate either on other F,~

or on 4. This is a generalization of the wave fu'nction
used by Pandharipande and Itoh (1973) to explain the
effective mass of a 3He impurity in liquid He. For
this case the conventional Jastrow choice would be

+(k, ) = ' ' f~(r, )
''

f~(r „)exp[ik& ~ r&],
m(n

(2.21)

where j specifies the 'He impurity. The effective mass
m* of the impurity is defined by

&e(k, ) la le(k;)& @'

, sk, &4(k, )l+(k, )&
m*

and experimentally is found to be m*=2.34m3. The two
terms involving k& in the energy expectation value are
V, f~(r~ ) ~ V; exp[ik, r;] and V,'exp[ik, ~ r, ]; the first
gives zero contribution because fz is spherically sym-
metric, while the latter gives only I'kz'/2m„which
obviously implies m*=m, . If instea, d we use the F" of
Eq. (2.20) and let the V;, operate only on the
exp[ik, r;], the variational wave function becomes

(2.22)

F. Correlation operator method

I et F;; be a general operator that acts on the degrees
of freedom of particles i and j. The variational wave
function is then of a generalized Jastrow form,

e, =e(m, —m) =X(m, —m) [f, (r, ,)

xQ exp(ik ~ r; -ik .r, ),

=@[m,n, —(m+n)] =N[m, n, —(m+n)] '( f~(r;, )

x +exp(ik ~ r,+ik„r,- i(k + k„)~ r, ) .

(2.18)

The N functions are normal. ization constants, 4, is a
"two-phonon" state with zero total momentum, and 4'3
is a "three-phonon" state. (The corresponding "one-
phonon" state 4, is not used because it cannot con-
serve momentum. ) When placed in Eq. (2.l.7) the per-
turbation correction due to 4, can be used to optimize

0'(kz) =
' ' [f~(r, )+ik, r; q(r„)] 'j fz(r „)exp[ik; ~ r;].

m(n

(2.23)

This is essentially the backfl. ow wave function of Feyn-
man and Cohen (1956), which describes mathemati-
cally the physical flow of 4He atoms around the 'He
impurity. Thebackf low term boosts m* to near its
correct value (2.1 to 2.25 m~ according to the poten-
tial used) through the extra kinetic piece
Vy[&k;. rgmrj(rj„)fJ(rg~)] ~ V~ exp[sky ry]. The general
behavior of m* as the liquid ~He density is changed is
also explained.

In addition to the generation of backflow. terms, the
form (2.20) for F;& also allows for many-body corre
l.ations by letting the &;& operate on other F;~. To date,
only three-body correlations of the type
q(r;~)r;, ~ V;;f~(r;~) have been used, but they provide
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a significant improvement over the simple Jastrow
choice in liquid helium.

It has long been recognized that the Fij used to de-
scribe the correlations induced by the nucleon-
nucleon potential (1.6) must contain several operators,
for example,

(2.24)

where 0;; = 1, (o; v, ), (v; ~ 7,), etc .
At small relative momenta the F" reduces to a cor-

relation that is different in l =0 and i. partial waves.
Interestingly this difference can also be simulated by
the spin-isospin correlations f', f', and f" in F

Thus F provides an approximate method of including
the backflow effects contained in F" at low densities.

The symmetrization of the product of F;j in the wave
function (2.19) increases substantially the complexity
of calculating energy expectation values. The two-body
correlation operator (2.24) can as well be written in
the form f;,.(1+u;,.), where

p

ij ~ pc ~ij ~

p&~ J ij
(2.25)

An alternative approach is the independent-pair approx-
imation suggestedby Owen (1979a), where the many-body
variational wave function is taken to be

4'gp = fgg 1+ gB&&+ g Rg&Rg~+~~ 4I
i (j,o

A&)

(2.26)

so that no products of noncommuting operators are in-
cluded. The wave functions (2.19) and (2.26) are
identical in linear terms of u; j, but the former con-
tains higher-order terms, such as 2 Q;, „$u;&,u»),
which are absent in (2.26).

The chief disadvantage of the correlation operators is
in the difficulty of evaluating accurately the, ,energy ex-
pectation value or other quantities. Much of the work
on this problem has gon. e into the generalization of the
chain summation techniques developed for the simple
Jastrow f~, so that expectation values with F" can be
calculated. While the convergence of (F)HNC methods
has been checked against accurate Monte Carlo integra-
tions in the Jastrow case, there are no such cheeks
at present for operator-dependent correlations. The
advantages of the method are its si.mplieity and wide
range of applicability. The method is easily applied to
both Bose and Fermi systems, and can be used over a
wide range of densities. It has been used successfully
in studying many systems in a relatively short period
of development and still has much room for improve-
ment. The computational facilities required are
miniscule compared to present-day BBQ or GFMC
calculations.

G. Comparison of results for simple systems

Before beginning our detailed discussion of the theory
for nuclear matter, it would be worthwhile to compare
the results of the various methods in simpler systems.
This will point out some of the relative merits and

OW

~ -6-
0

LLI
CBPT

GF

EXPT.
P)e

O.30 0.35 0.40 0.45
P(0 )

FIG. 2. The curves labeled Jastrow, CBPT, CO, GFMC, and
EXPT, respectively, show the E(p) of liquid He obtained with
Jastrow, correlated-basis perturbation theory, correlation
operator, and Green's function Monte Carlo calculations with
Lennard- Jones potential, and the experimental data.

limitations of the different appronches. We shall look
at liquid He and 'He and a simple model potential, v„
which has been widely studied.

There has been very little success in applying the
BBG theory to liquid helium because of the large'value
of x(&0.5 in 'He), which makes convergence practically
impossible. The Bose liquid He h3s been studied in
simple Jastrow, GFMC, CBPT, and correlation opera-
tor approaches. The results are shown in Fig. 2 for
the Lennard-Jones potential due to de Boer Bnd
Michaels (1938):

v„(r)= 4m[(o/'r)"' —(&/r)'j, (2.27)

where c =10.22 K, &=2.556 A. The experimental.
equilibrium density is p0=0.365o and the binding ener-
gy is E(p, ) = -7.14 'K. The GFMC curve of Kalos (1977)
has a minimum at po=0. 375a' with E(po) =-6.85 K.
The GFMC results may be considered exact for v&z,
and the discrepancy with experiment can be attributed
to the inaccuracy of the potential.

Many variational calculations in the simple Jastrow
approximation have been made; the results of
Pandharipande and Schmidt (1977) are typical, yielding
P o0.35& ' and E(po) = -5.9 K. The exact choice of f~
does not seem to be too critical; with reasonable but
different choices of fz Kalos et al. (1974), Pandhari-
pande and Schmidt (1977), and Smith et al. (1978) seem
to get very similar E(p). The f~ used by Smith et al.
should be very close to the fzo. The fact that, the
Jastrow results lie = 1'K above the exact GFMC val.ue
is attributable largely to the lack of three-body or
higher correlations in 4~.

Both the CBPT and correlation operator (CO) methods
include three-body effects, and their results agree
quite well. with the GFMC curve. The CBPT calcula-
tion of Chang and Campbell (1977) gives p, =0.36@ '
and E(po) =-6.6'K, while the correlation operator cal-
culation of Pandharipande (1978) gives p0=0.375a' '
and E(p, ) =-6.7'K. There are approximations in both
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of these advanced variational calculations, but the
energies are probably correct to within =0.2 K. It is
clear that the simple inclusion of three-body correla-
tions makes up for most of the deficiency of the
simple Jastrow 4 J.

In liquid 'He there are fewer calculations available.
Jastrow and correlation operator results are shown in
Fig. 3, along with the experimental E(p) curve which
has p, =0.277& ' and E(po) =-2.52 'K. The GFMC
method cannot be used in Fermi systems, but since
the potential for 'He should be the same as in He, we
can estimate from the Bose results that v~~( should
underbind 3He by =0.3 K, and get approximately the
correct density.

The Jastrow calculation has been done with an
FHNC/4 energy evaluation by Zabolitzky (1977) and by
Monte Carlo integrations by Ceperley et al. (1977) with
various kinds of parametrization for the fz. Again the
two methods agree closely, the exact choice for f~ is
not critical, and the typical Jastrow results have too
little binding with E(p,) = -1.2 'K at a density
pa=0. 24' ' that is too low.

The correlation operator method has been applied
recently by Schmidt and Pandharipande (1979a)
with a wave function of the form

where the Vi, is only allowed to operate on C. The in-
clusion of backflow and three-body correlations lowers
the E(p) curve to near its expected value: E(p~) =

-2.2'K, p, =0.290 '. However, it should be noted that
the E(p) obtained with the CO method is much too flat
This is a reflection of the difficulties associated with
the calculation of the energy expectation value with the
wave function (2.28). The CBPT calculations have not
been done with comparable sophistication in 'He.

From the liquid helium studies, it is clear that the

-l.0 — Jastro

correlation operator t=" of Eq. (2.20) is a significant
improvement over the Jastrow fz, and does a reason-
able job of predicting the binding energy and density
for simple systems. In the &, model of nuclear matter
the potential is assumed to be the central part of the
Reid ('S,—'D, ) potential. It is thus similar to helium
liquids, and was first studied by Pandharipande,
Wiringa, and Day (1975) to compare lowest-order BBG
and variational methods. It has since been studied
more extensively by many authors utilizing different
methods. In Fig. 4 we show Jastrow results for both
Monte Carlo and FHNC energy evaluations, correla-
tion operator results for F" and F, and more recent
BBG results.

The Monte Carlo evaluation of Ceperley et al. (1977),
labeled E~(MC), was done with an f~ of the form:

f~ =A exp[-Br](l —exp[ x/D-])/r, (2.29)

the parameters A. , B, and D being varied to minimize
the energy. Zabolitzky (1977) has carried out FHNC-
FHNC/4 ca,lculations with this fz. He found the con-
vergence to be very good up to more than twice nuclear
matter density, the exact FHNC/4 energy being =2
MeV higher than FHNC at p =0.39 fm, and in agree-
ment with the Monte Carlo evaluation. The Jastrow
results, labeled J, and the F results are due to
Schmidt and Pandharipande (1978), who use correla-
tion functions parametrized by a healing distance. They
use an approximate FHNC/4 calculation, whose error
estimates are shown in Fig. 4. The F" values are
several MeV l.ower than the Jastrow ones throughout
the density range, and indicate that v, is a bound sys-
tem. This is a very subtle feature to pick out in view
of the fact that the smal. l energies shown in Fig. 4 are
the result of a very large cancel. lation between kinetic
and potential energy terms (= -98 MeV potential and
+ 97 MeV kinetic at p = 0.39 fm '). The lower F" values
are almost totally attributable to the qr ~ & terms rather
than three-body effects.

The F" of Eg. (2.24) has no three-body terms, but
can simulate backflow at low momenta through the non-
central. correlations. In this case F, as calculated
in Sec. III, takes the simple form

—l.4—

—l.8—

-2 2—

I

0.20
I

0.24
I

0.28
p(~ 5)

I

0.52

FIG. 3. The curves labeled Jastrow, CO, and EXPT, respec-
tively, show the E(p) of liquid 3He obtained with Jastrow cal-
culations, correlation operator calculations with Lennard-
Jones potential, and the experimental data.

and f'=f'=f". The F results lie between the Jastrow
and F" values, with roughly half the energy lowering
due to the k-dependent backflow terms being picked up
by F" at nucl. ear matter densities. This fraction de-
creases as p increases, as would be expected. Never-
theless, the F" is a sufficient improvement over f~ to
pick out the bound feature of the v, model. The FHNC/
SOC equations discussed in subsequent sections are
used to calculate the energies with F, and the error
in these could be comparable to that in the Jastrow
calculation.

Finally there are recent calculations of Day (1978b)
in which a complete three-body cluster BBG evaluation
has been done. The points in Fig. 4 labeled BBG in-
clude the three-body cluster plus an estimate of the
four-body cluster; the assigned error bar is + the
estimated magnitude of the four-body cluster. These
results are in cl.ose agreement with the advanced vari-
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FIG. 4. The E(p) of nuclear matter model v2. Curves/points
labeled J, F, and F show results of variational calculations
with the Jastrow, F, and F correlation operators and FHNC,
FHNC/4 integral equations. The E&(MC) show exact Monte
Carlo results with the Jastrow wave function. Besults of low-
est-order Brueckner calculations with standard spectrum are
labeled LOBT, while BBG is the sum of two-, three-, and
(approximate) four-hole line terms of the Brueckner —Bethe—
Goldstone expans ion.

I

.3 .5 .6

Ill. CALCULATION OF F

The first step in the variational theory for nuclear
matter is the selection of the correlation operator F.
We discuss here a commonly used method for obtaining
a reasonable correlation operator for the n8 problem,
in which v;& is given by the first eight terms of Eq.
(1.6). The F is assumed to be

ational results F" and F". Also shown is the lowest-
order BBG result (curve labeled LOBT), which includes
only the two-body cluster contribution with the stan-
dard dispersion correction.

From the results in these simple systems, we draw
the following conclusions. Variational calculations of
the Jastrow type, with energy evaluated by means of
chain summation techniques, give reliable upper bounds
to the energy in simple Bose and Fermi systems. The
use of correlation operators, which include backflow
and/or three-body effects, gives lower energies than the
simple Jastrow correlation, and good agreement with
experiment in the liquid heliums. It has not been proved
that the upper bound property is maintained when the
more elaborate chain summation techniques needed for
evaluation of operator-dependent correlations are used.
The results in simpler systems are encouraging, how-
ever, and we believe the energy calculation can be
made with reasonable accuracy.

where the f (r,;) are to be determined by minimizing
the energy. This complicated variational problem is
often simplified somewhat as follows. The two-body
cluster contribution, C2, is minimized subject to the
constraint that the correlated wave function "heal."
smoothly at some distance d. This constraint implies
f'(y &d) =1, and f~"(r&d) =0, and the variation gives a
series of Schrodinger-type equations that include
Lagrange multipliers A. chosen so that the sf~/Sz are
continuous at y =d. The solutions of these equations
gives a set of f~(x;, , d) characterized by the healing
distance d.

The general approach for obtaining correlation func-
tions parametrized by the healing distance was original-
ly deve. loped by Pandharipande (1971,, 1972) for a low-
est-order constrained-variation method, and its
physical assumptions have been studied by Pandhari-
pande and Schmidt (1977). Briefly, this approach
assumes that the long-range part of the potential,
v(x&d), only contributes to the average one-body po-
tential, and should not be used in calculating F. It
thus neglects the l.ong-range y ' component of optimal
two-body correlations, which we believe is relatively
unimportant in nuclear matter. The nature of F is
primarily determined by v(x&d), a smooth part of
which must also contribute to the average field. The
I agrange multipliers ~~ essentially approximate this
part by a constant. The & and d are related by the
requirement that 4 be continuous.

The one-parameter family f~(d), obtained from the
Schrodinger-type equations, can be general. ized by
multiplying each f by a constant factor P~, to produce
a variational F;, with parameters d and P~:

~;,(d, P )= g P f'(~;;, d)O'; . (3.2)

x, r =x'+ (4T - 3)x",
x, ,=x'+ (4r —3)x",

(3.3)
(3.4)

(3 6)

where x may be f or v. The two-body cluster energy
C, in the van Kampen cluster expansion (1961) can also
be broken into its T and S channels,

C, —QC, r~,
T, S

(3.6)

with

Normalization requires that P, = P, = 1, but the P», may
be arbitrary. The full energy E(p, d, P~„)is calculated
and minimized with respect to variations in d and P»,
at each density.

It is convenient here to use the eight channel func-
tions fr» f, r, and f, r, where the subscripts T and S
give the total isospin and spin of the pair, while t and 6
denote the tensor and spin-orbit parts. The potentials
in the T, S channels ar e de~oted by ~ ~, ~, ~, &, ~, , &. The
channel functions are related to the f~ and v~ by the gen-
eral equations

xr ~
—-x'+ (4S —3)x'+ (4T —3)x'+ (4S —3)(4T —3)x",
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(2S + 1)(2T + 1)
2, T, S ~g2

I m. &n &~a
J)dsy d'r„(exp[-i(k .r +k„r„)]—(-1) ' exp[-i(k ~ r„+k„r)])

X [fr, s + 5s, (ft rS.„+fb,r(L .S),.)][(-It /m)(V'. „+k'.„)+v r. s + 5s,

X (V t, TS m n+ Vb, T(L S)na n)]

X [fr s+5st(f t TS „+fbr(L ~ S) „)]exP[i(k r +k„~r„)]. (3.7)

The &' „operates only on the relative coordinate
r „=(r—r„),and k

„

is the relative momentum
2(k -k„);k'

„

is subtracted here to eliminate the one-
body contribution from &2 „operating on the plane
waves.

In the S = 0 channels the tensor and spin-orbit po-
tentials and correlations do not contribute. In this
case we find, after doing the k summations and inte-
grating over R „=s(r +r„),that

(2T+1)
C2 T o

——

3 p d &~nor ofr o

where

X (-(5'/m)[tetr Vo'f , To2+V P (or ~ Vfr o]

+Vr, ofr, oPT, o) t (3.8)

Ar, s =[1—(-1)"~'(km')]'".

The l(x) is the familiar Slater function,

l(x) =3[sin(x) —x cos(x)]/x'. (3.10)

Minimization of Eq. (3.8) with the healing constraint

fr, (r -d) =1,
gives the Euler-Lagrange equation

-(k'/ )m[@ rV 'of r o2+V@ r Vofr o]

+ (V r, o ~T, o)fT, o@T, o

where A, 2. , is adjusted so that

(3.11)

(3.12)

Tb0 09+ (3.13)

[tetr. ,V'fr +2tV(PT t,
~ Vfr, t]+ (-vr, t Ar, t)fr. ter,t.

2 b, T+ 8(vt, T Xt, r)ft, rft, T+ (Vb, T bT) fb,, rgb, r 0
&b1

(3.14)

6
t, TV'ft, r+2Vkt. r Vft, r- —,ft, r@t,r

+[vr. ATt, —2(vt. r —At T) —3(vb, r —Ab r)]ft, r@t.r

4b. r+(vt, r-~t. r)fr. ,er, , —— '
(vb, r-~b. r)fb, rdb. r =0t

t, T

(3.15)

The S =1 channels are more complicated because of
the tensor and spin-orbit potentials and correlations.
A study of the possible operator products shows that the
only terms with nonzero contributions in the integral
(3.7) are accompanied by either the unit operator or L'.
A procedure similar to that for S = 0 states leads to
three coupled equations for fr „f,r,f, r'.

~k
[@b 1 fbT+2 Cbr fbT]+(VT t ~r 1 (Vt T

1
(Vb, r b, r)]fb, TAb, r + ( b, r ~b, r)(fr, t ft, T)Pb, r = 0 t

(3.16)

where

Pt, T IT, S=l s (3.17)

(Pb T =[(k2~r'/5)+(-1) rll']''. (3.18)

The A. T „A,t r, and &b r are chosen so that fr, heals
smoothly to unity and f, r and fb r go smoothly to zero
at ~ =d.

If, as in. most of the work described below, the v„~
is set to zero, i.e., the v, problem, then there is no

f, r correlation. Similarly if v, r =0, then there is no

f, T. However, if a pure central potential is taken,
there is still a (-1) ' dependence in Eq. (3.9) which
will give different fr s in different T, S channels. The
projected F will then have f', f ', and f" terms, even
though the potential is purely central. These terms
approximately simulate the backflow discussed in Secs.
II.F and II.G. In the k- 0 limit the correlation operator
(2.20) just gives f in l =0 states to be fz and that in f =1
states to be (fJ +tl). For a pure central potential, the
f'=f'=f"= f", so that f is f'+3f" in odd l and f'-5f"
in even E states. Thus at small k the operator correla-
tion f" can be used to get backflow effects. However,
at large k the correlation operator (2.20) implies an
explicit k dependence and differences between correla-
tions in l = 0, 2, 4 states, etc. , which the f" cannot
simulate (see Schmidt and Pandharipande, 1978).

The projected f in models v, and vo of the Reid po-
tential are shown in Figs. 5 and 6. The inclusion of
L ~ S forces changes all the fbbecause of the couplings in
Eqs. (3.14)-(3.16). We note that f' is large and infinite
ranged, but the fb" tend to be small and of course are
of range d only. It is dangerous to draw conclusions
from the magnitudes of fbt,"without considering the
contribution of accompanying 0;&.

The chain summation methods [(F)HNC, (F)HNC/4,
etc.] commonly used to calculate E in simple systems
have a better convergence when used with correlations
obtained from a Schrodinger equation such as (3.12)
(Zabolitzky, 1977). These methods are least accurate
at short distances, but since the large bare interaction
is mostly canceled by the V'f term in the Schrodinger
equation, this deficiency in the chain summations be-
comes relatively unimportant. We expect that this will
also be true for the more complicated correlations in
nuclear matter.
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FIG. 5. The correlation functions f~(x, d) in the Reid v6 model
at kz ——1.6 fm and d= 2.25m().

FIG. 6. The correlation functions f~(r, d) in the Reid v8 model
at kz ——1.6 fm ~ and 4= 2.25m&.

A simpler but less sophisticated method for calculat-
ing E is by direct cluster expansion in the number of
particles. Generally the expansion does not converge
with the number of particles in the cluster, and so only
a much more restricted class of F can be used with
this method. Hoping to obtain F for which the cluster
expansion is convergent, Kurten, Bistig, and Clark
(1978) have introduced an additional Pauli constraint

in the equations for F. Their equations are slightly
more complicated than those given above.

IV. DIAG RAIVIIVIATIC CLUSTER EXPANSION

A. Expectation values and diagram rules

The many-body expectation value for any two-body
operator X

„

is given by

A * S '
) F~b X~S „F~b ~dr

a S Fab S Fab ad~
(4.1)

where for simplicity we antisymmetrize only the left-
hand side 4*. The II F„is of course symmetrized be-
cause the F,b do not commute. It is impossible to eval-
uate Eg. (4.1) exactly for an infinite system, so the ex-
pression is approximated by expanding the II F' in the
integrals for both numerator and denominator in powers
of the short-ranged functions, I';„,F~„",f~„"f;P,where

(4.2)

(From this point on we assume each f~„"has an implicit
factor of P~„associated with it. ) This expansion is
conveniently represented by generalized Mayer dia-
grams, and a very general diagrammatic cluster ex-
pansion is given in Wiringa and Pandharipande (1978).
The expansion is valid for n.oncommuting operators of
the type used in nuclear matter or others such as those
used in helium [Eq. (2.20)]. We first give the diagram
rules, and then the derivation of the expansion.

A typical diagram representing one of the integrals
in the expansion will have i points, each standing for
the coordinates r; of particle i. An integration over al.l
r; is implied. The points are connected by the various
lines shown in Fig. 7, that represent the f, exchange
effects due to the antisymmetrized 4*, and the effects

of the two-body operator ~ „.The operator of pri-
mary interest will of course be the Hamiltonian (1.9).
Any F„notoperated on by ~

„

is called a passive cor-
relation, and all passive f;, are replaced by 1+E';~.
The f'„„is not treated this way because X„„maybe
singular, as in the case of the potential. The I",'b are
represented by dashed lines, the R~b' by single wavy
lines, and the f~P'f;,"by doubly wavy lines. The single
(double) wavy lines are labeled with the operator index
P(Pq) associated with them. Thus every wavy line in-
dicates the presence of an operator-dependent link.

The F that are operated on by K „arecalled inter-
acting correlations. This generally includes F „,and
perhaps F~, or F„,as in the case of a &~ or V'„in the
Hamiltonian. We separate out those terms where X

„

only operates on F „,and represent the quantity„~„F„bya thick solid lin. e, called an interaction
line, with indices i,j, k where j is associated with the
operator dependence of ~ „,and i and k with the opera-
tor dependence of the F~ „and F „,respectively. Those
terms where X „operates on quantities other than F

are treated separately. In particular, the &' term in
the Hamiltonian can operate to give V F „~& Q or
V F „~V F,. In this case the V F are represented
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FIG. 8. Examples of proper (8.3,8.4) and improper (8.1,8.2)
exchange diagrams.

FIG. 7. The elements in the diagrams giving the energy expec-
tation value. On summation over k, the elements 4 and 9, re-
spectively, give l,& and &,l,~.

The exchange of particles also involves operator-
dependent terms. The exchange of particl. es a and b
can be represented by an operator e,~:

by the appropriate dashed, single wavy, or doubl. e
wavy lines, with a superposed solid directional arrow
pointing away from point ~, and we shall. refer to them
as derivative lines.

Since the 4 * is antisymmetrized, we need to keep
track of the plane-wave states occupied by the particles
in% *. For this we use solid lines with directions
(open arrows) which are called exchange or state lines.
By convention the particles 1, 2, . . . , A. occupy statesk„k„.. . , k„in the O'. Those terms in the Slater de-
terminant AII, exp[-ik, r, ] of 4'~ where the particles
remain in the same states are called direct, and their
diagrams contain no exchange lines. An exchange line
going from a to b represents the contribution of a term
in 4* where particle b oeeupies state k, . Since each
particle must end up in a definite state, all exchange
lines must join to form closed loops, and only one ex-
change l.ine may pass through any point. The total
exchange pattern in any exchange diagram will con-
sist of one or more nontouching exchange loops.

e„=—+ exp[i(k, —k~) ~ r,~][l + o,.cr~+ r, .w~ q (cr, o~)(T„.-;,.)] .
(4.3)

An n-particle exchange loop is equivalent to a series
of (n —1) two-body exchanges. Thus every such loop
has an associated factor of (-1/4)" ', and all but one of
the exchange l.ines has an operator label n to represent
0",P~. Every exchange line also has the exp[ik, ~ r,~]
factor.

Diagrams like 8.1, 8.2, etc. of Fig. 8, in which un-
correlated particles are exchanged, give zero contribu-
tion due to the orthogonality of plane waves. We shall
refer to these as "improper" exchange diagrams. In
"proper" exchange diagrams only correlated or inter-
acting particles are exchanged; the correlations could
be through other particl. es, as in diagram 8.4.

The summation over k's can be carried out indepen-
dently for every exchange line in a "proper" exchange
diagram. For example, the contribution of diagram 8.4
is given by:

e' "'"'r' "'"5",f' „H'„f„ I- —P O„,IO'„„0'„0„d'rdd r„d'r,.
Q

mWn~ l P=l, 4

We may sum over m, n, and 1, ignoring the restriction men 4 1 because the error is of order 1/0, and obtain

p i~i+ ml ~lH~~ ~~ — O~l O~~Om~O~~d rmd x'~d rl ~

P=ly4

for diagram 8.4. The exchange lines in "proper" di-
agrams simply become Slater functions on particle
summation. Note that all "improper" exchange dia-
grams must be discarded before replacing exchange
lines by Slater functions.

The V @„,V F terms in the energy expectation value
give zero contribution, unless particle m is exchanged,
provided F is independent of k. When the particle mis

I

exchanged, the exp[ik„-r„,]ik ~ V F leads to
V /(kyar~) ~ V F „andwe mark the exchange line from
m to b with a solid arrow to differentiate it from the
regular exchange line. In this notation, derivative ex-
change and correlation lines appear in pairs, and there
is an implied cos 0 dependence between the directions
of the solid arrows.

The contribution of any diagram can be separated into
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(a~ A)(&x, B) =A ~ 8 bio, (A xB),
can be used to express the operator product as

(4.4)

two factors. One is the spatial integral that contains
all the functions E', E~ ~, X, exp[ik r], etc. , rep-
resented in the diagram. The other is the operator-
dependent part which we may write as Q; w'll'0, »

where ze' is a weight factor giving the probability that
the opera, tor product will appear in the specific order i,
denoted by II'O~~. The Pauli identity

inator is unity, and ordered the W, D —1, and E in the
series such that the Pth term contains diagra. ms having
p disconnected pieces. Thus N3 contains diagrams rep-
resented by [I][i][j]; it is the sum of the products of
diagrams I, i, and j, the summation over these being
restricted so that I, i, and j do not have a common
particle. Similar restrictions occur in the summation
over s„s„.. . , s~ m D~:

D~ = —
t [zx][z,] ~ ~ .[i~]

1

II' O,~ =C'+rest, (4.5)

B. Cluster expansion

Let us divide all possible connected diagrams into
two classes: interacting and noninteracting. Interact-
ing diagrams can occur only in the numerator; they
contain the interaction line ~„„(ortwo derivative
lines), and an arbitrary number of correlation lines.
Noninteracting diagrams can contain only correlation
l.ines, and may appear either in the numerator or the
denominator. Diagrams of both classes may have any
number of "proper" exchange loops. There is a
countably infinite number of diagrams in each class.
Let [I ] denote the Ith connected diagram in the inter-
acting class, and [i] the ith connected diagram in the
noninteracting class.

The expectation value is given by

LI1+ [I][] -'(I][~][j]." Z, ~,
D 1+[i]+2[i][jj+ ~ ~ ~ 1+g~Dp

(4.6)

where we have assumed normalization Q '' for the
plane-wave states, so that the first term of the denom-

where C' is a constant independent of spin or isospin
operators, and the rest contains terms in which each
0, or v; occurs at most once. Since the expectation
value requires a sum over all spin-isospin states, the
contribution of II'O, ~ is just given by C'. In general C'
depends on the ordering of operators in II'O, ~, so that
a.ll possible orderings allowed by the SH F,& must be
considered in any given evaluation. We note also that
any operator product due to the exchange of particl. es
must be kept in the order indicated by the direction of
the exchange. Some useful rules for ca.lculating C parts'
will. be given in the next section.

If there were no operator dependence in the problem
then only irreducible numerator diagrams would need
to be evaluated to obtain the expectation value (4.1). An
irreducible diagram is a connected diagram that cannot
be sliced into two disconnected pieces by cutting at a
single point. It is found (see Pandharipande and Bethe,
1973) that reducible and disconnected diagrams from
the numerator cancel with the denominator terms to
within factors of order A. ', which are negligible for
infinite systems. When operators are present, how-
ever, this cancellation of diagrams which have one or
more articulation points at which the diagram is sepa-
rable into different pieces is not exact. The more gen-
eral diagrammatic cluster expansion for use when op-
erators are present is given below.

yl2» ~ ~ ~ ~ ~P
no common particles

1—
1

product of diagrams i„i„.. . , i~;p

(4.7)

[I ][i]=
I, :

one common particle

product of diagrams I and i .

(4.9)
1

In a general term shown as (I][i][j][k] ~ a summation
over I, i,j, k . . - is implied, with the restriction that
I, i,j,k. . . do not have any common particles other than
those indicated by the overhead bars. The E~ are ob-
tained by solving the set of equations

Ep =Nq —Q DqE„5(P—r —q), (4.10)

starting from P = 1. This gives

E, =[I],
E, =(I ](~1-(I ] x (q = -(I ][i]- (I7](i]

E, = [I][i][j]——'(il[jl x [I][i]x([I][jl+[Il[jl
[I](z][I']+;(i][i](j]+(I ][a'](j1+(I ](i7](j]+ ~ .

(4.11)

The first term in E, represents diagrams in which one
common particle occurs in a.ll. the three pieces I, i,

II I

and j The se. cond term in E3 is the sum of -~[I][i][j]
g) ) I

coming from D,E, and +[I][i][j]from D,E,. Giving a
general expression for E~ is a combinatorial problem
beyond the scope of this work. However, it is clear that
E~ consists of terms of type

[I ](&.](~.]" [~.-.]
which are completely connected with overhead bars and
have no gaps of the type shown between i2 and s3:

[I](~'l[i ][~ ] ' ' ' [i - ] ~

A connected diagram having n particl. es has a con-

the I/p! takes care of the overcounting when
i, ~ ~ ~ i~ are independently summed.

In contrast a product N+„for example, is also a
sum of diagrams having P +q disconnected pieces, but
the above restrictions do not occur. We represent such
products by a multiplication symbol &; for exampl. e,

N D, = [I ] x [i]=[I ][i]+[I][i]+[I][i]+~ ~ ~ (4.8)

where the number of overhead lines denotes the number
of common particles,
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tribution proportional to 0 "". However, there exist
=A." such diagrams which have the same topology and
differ only in particle labels. Thus all connected dia-
grams of a given topology have a contribution c~Ap" '.
Disconnected diagrams of a given topology and p pieces
have a contribution ~A. . An overhead line restricts
the summation over one particle index, however, and
reduces the contribution by a factor A. ', we consider

~ indicating a common particle in three pieces as
two overhead lines, etc. The contributions of E~ dia-
grams are proportional to A~ ' where q is the number
of overhead lines. Since at least P —1 lines are needed
to completely connect P pieces, E cannot have con-
tributions ~A"", and in the limit A- ~ we need to
consider only those terms in E~ that have P —1 over-
head l.ines. This gives

-=[I]-[I][~j+-'[I][~][~]+IIj[~][~]+[I][~][~]

r
mI™— J n

nl

(ijk)

9.2

( jk)
„

9.4

n2

2

(Pq)l2

+ four-piece terms + ~ ~ ~ . (4.12)

Now there is a countably infinite set of inseparable
diagrams containing no articulation points. The A.th
(ath) inseparable interacting (noninteracting) diagram
is denoted by [A.] ([aj). A connected diagram that is
separable into s inseparable pieces [I,] or [i,] may be
represented as

[I,] = [A.a,a ~ ~ ~ a, ,], (4.13)

where the overhead lines (which all appear inside a
square bracket) now denote the articulation points at
which the diagram [I,] is separable. For example,
diagram 9.3 of Fig. 9 is represented by the expression
[A.a], where the A. and a denote the disconnected in-
separable diagrams of 9.4. The overhead line specifies
the connection of these two pieces, which yields the
connected diagram. We obviously have

(ijk}

('jk)~n

[I ] =[A]+[Ra]+ [Aab]+ 2[Lab]+ 2[Aab]+ ~ ~ ~

[i]= [a]+ [ab]+ ~ ~ ~,
(4.14)

(4.15)

FIG. 9. Examples of diagrams in the cluster expansion of the
energy expectation va1ue.

with which we may now order E a,ccording to the number
of inseparable pieces it contains:

E = [A]+([A.a] —[A][a]j
+{[Aab]—[Aa][b] —[A.][ah]+ [A][a][b]j
+ {—,'[Lab] —[A.a j[b] + —,'[A][a][b]j
+ {~[Aab] —[AQ][b] —~[A ][ah] + [A][a][b]j
+terms having ~4 inseparable pieces. (4.16)

The first term in E is just [A], which represents the
sum of all connected inseparable interacting diagrams.
The second term is the difference between the expecta-
tion value of all connected diagrams [Aa] that could be
separated at one point into two inseparable pieces, and the
product of expectation values of the two corresponding dis-
connected diagrams [A][a].

The thrice-separable terms ha, ve been grouped into
three categories where (i) a and b share one point in
common, while A shares a different point with a; (ii)
a and b have no points in common, but each shares one
point with A; and (iii) a, b, and A all share one common
point.

The radial integrals of a separable diagram factorize,
and thus are identical in both the separated and con-
nected cases. Whey. no operators are present then all
terms in curly brackets are zero, and only the irre-
ducible diagrams [A] contribute to E. In this case the
expansion reduces to the well-known irreducible cluster
expansion. When operators are present, the additional
terms may be nonzero due to the dependence of C parts
on the ordering of operators in the products, which is
in general different for the connected and separated
cases.

C. Examples of d&agrams

We discuss here some examples of different dia-
grams, as shown in Fig. 9, to illustrate the cluster ex-
pansion. Diagram 9.1 is a typical irreducible inter-
acting diagram. The interaction between particles ~
and n is labeled with its operator dependence (ijk)
while particles 1 and 2 are correlated to m and n by a
number of central correlations, and exchanged with
each other. Diagram 9.2 is also an irreducible inter-
acting diagram representing a V E' „~ik term. The
operator correlations E m» T„2 are also present and
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labeled P „P„2,respectively. Both diagrams 9.1 and
9.2 are included in the class [A] of Eq. (4.16).

Diagram 9.3 is a connected, separable diagram of the
type [A.a]. Point 1 is an articulation point at which the
diagram could be broken into two parts, so it is reduc-
ible. The correlation f~»'f,'," is labeled by (pq)», and
the other operator-dependent correlations are labeled
as usual; although the exchange carries operator de-
pendence, often we do not lable it. Diagram 9.3 arises
strictly from the numerator of Eq. (4.1}. The separated
counterpart of 9.3 is shown in diagram 9.4 and is of
type [A][a]. The interacting portion containing particles
m, n, 1 comes from the numerator of Eq. (4.1), but the
separated portion with particles 1, 2 comes from the
denominator. The C parts of the two separate pieces in
diagram 9.4 are calculated independently, while the C
part of 9.3 must be calculated all at once. In general
these are different and thus the difference between
[Aa] and [A][a] is nonzero.

Some further examples of connected separable dia-
grams are shown in 9.5, 9.6, and 9.7. They are,
respectively, of type [Aab], [A.ab], and [Aab].

I

/
/

/
Cn/

n

I O. I I 0.2

l0.5

/
/

/

n

1

~Pq~n~
m n

I 0.4

1

n

m

I 0.5
FIG. 10. Cancellation of diagrams violating the exclusion
principle.

D. Other cluster expansions

There are a number of other methods for obtaining
the cluster expansion with noncommuting operators.
Some of these are the power-series (PS) method of
Fantoni and Rosati (1978}, Owen's (1979a) generaliza-
tion of the method of Gaudin, Gillespie and Ripka
(GGR) (1971), and factorized cluster expansions such
as those of Iwamato and Yamada (1957) and van Kampen
(1961). All these are presumably equivalent, as can be
easily verified at the three-body cl.uster level.

The Iwamato and Yamada and van Kampen methods
are not diagrammatic, and it is much more laborious
to obtain many-body cluster contributions with them
than with the other methods. The method presented
above is applicable to Bose, Fermi, or Boltzma, nn
systems, whereas the PS and the GGH methods are
primarily developed for Fermi systems.

In Fermi systems we may consider diagrams having
two or more particles in the same momentum state.
On considering all exchanges these will add up to zero;
for example, the two diagrams 10.1 and 10.2 of Fig. 10
having two particles n and n' in state k„,obviously
cancel each other. The diagram 10.1 is essentially of

E I

type [f][i], since n is indistinguishable from n. When
all diagrams of type 10.1 are added to the numerator,
the term N, becomes [I] x [i]. By adding terms having
up to three particles in a given k state we can convert
N, to 2[I ] x [i][j], etc. The denominator can then be
canceled against all "disconnected" diagrams, as is
done in the GGR and PS methods. The expectation value
is given by the sum of all "connected" diagrams, but
these now include reducible diagrams such as 10.3 and
diagrams like 10.2 which superficially look like "im-
proper" exchange diagrams but have nonzero contribu-
tions.

In the simple Jastrow theory the reducible diagrams
are canceled by the nonzero "improper" exchange dia-
grams, and the resulting expansion is irreducible.
However, in the presence of operator correlations,

diagrams 10.4 and 10.5 do not cancel because the 0„,
in 10.4 does not commute with 0 „asthe 0„., in 10.5
does. The C parts of 10.4 and 10.5 are different, and
their sum is simply a term in the [Aa] —[A][a] of
Eq. (4.16).

V. CALCULATION OF C PARTS

A. Operator diagrams

In this section we review some useful rules for cal-
culating the C' of II'O~~. %e give the rules for p =1, 6,
but they are extendible to L ~ S or other operators. The
rules can be expressed most easily in terms of opera-
tor diagrams (OD) in which every particle a, b involved
in the II'O, ~ is represented by a point. Every operator0„is represented by a line ab labeled P. The OD cor-
responding to any regular diagram may be obtained
simply by deleting all central correlations and putting
in the appropriate number of l.ines for every operator-
dependent leg, e.g. , three lines for the interaction linef' „X~„f„

labeled i, j, and k. The OD do not specify
the order of operators in II'0,„;these must be con-
sidered explicitly if necessary.

A sample of the kinds of operator diagrams that we
shall evaluate in this work is shown in Fig. 11. Dia-
gram 11.1 is just the operator diagram for the direct
two-body interaction, either by itself or with various
central dressings added. It is the operator diagram
appropriate to the full. diagram 9.1. Similarly the OD
11.2 corresponds to diagram 9.2.

For an OD to have a nonzero C part, at least two op-
erator lines must meet at each point. This is because
single operators Of, " are linear in o, and/or T, . If a
point is connected to only one operator line, the sum
over the spin and isospin coordinates at that point will
vanish identically and the OD will give no contribution.
If only two operator lines meet at a given point, they
must be of the same "type" to give a nonzero C part.
For the operators 2-6 there are only three types,
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R'~" =0. The order of operators in Eg. (5.3) does not
matter, and we find trivially that K""A." =A" A.'
=K'"'4', etc. This is simply because operators 0
between the same two points commute with each other.
The values of A'~" for i,j, k ~ 6 are given in Table I.

l l.5

zl
Pzlzb

B. Single-operator rings

The order of operators in the II O,b is also unimpor-
tant for determining the C part if the operators form
a single-operator ring (SOB) as in diagram 11.2 of
Fig. 11. This case was first discussed by Pandhar-
ipande and Wiringa (1976). The ring may be arbitrarily
large, but of course to get a nonzero C part al.l the
operators must be of the same type. That the order is
unimportant can be proved simply by noting that

C(0(»12)0(»23) ~ ~ [0(»ab), 0(»bc)] . 0[»(n —1)n]0( nl))

(5 4)

Here we denote 0„'"as 0( ab) for convenience. The
commutator in Eg. (5.4) will be linear in either o» or
7» thus making the C part zero. Of course operators
with completely different indices commute anyway, i.e.,
[0,», 0',~] = 0. Thus in practice, if only two operators
connect at a point b, they effectively commute for the
purpose of ea.lculating the C part.

Further, we can use the Pauli identity (4.4) to
el.iminate completely the operator dependence on point
b. Let O„and 0'„bethe only two operators meeting
at b. Summing over spin and isospin states for particle
b, and integrating over the azimuthal angle Q of r, b,
the product of operators 0„0,', reduces to a sum over
opera, tors 0"„:

FIG. 11. Examples of operator diagrams.
J~d'P»0»0»o= Q ~d4»~ » 0 o ~ (5.5)

which we denote as 0, 7, and v. They are linear in
the 0„7„and0,7„respectively. Obviously 0' and
0' are o-type, 0' is T-type, and 0" and 0"are
v-type.

Consider an operator diagram in which two points
are joined by a pair of operator lines P», q» and no
other operator lines are present. This would be the
OD corresponding to the separated, noninteracting
piece of diagram 9.4. The C part of the product of
these two operators is a simple constant &~,

C(0~„0;,) =A.»6», , (5.1)

0'.,0:,= P fC""0".,
r

Comparing Eqs. (5.1) and (5.2) we find that K "=A 5»,.
The C part of the OD 11.1 is then easily evaluated:

(5.2)

o(o' „o'.„o'.„)=cE«'"o'„„o'„)=«"«".

(5.3)

The E ~ is particularly simple for the O~ "because
they form a closed set. If i,j ~ 6, then for k&6,

where A.~ =1,3, 3, 9, 6, 18 for p =1, 6.
If three or more operator lines meet at a point, as in

the OD 11.1, the C part may be easily evaluated with
the K~'" matrix defined as follows:

vb» Tb

The coefficients g, »", are functions of the inside angles
of the triangle abc, and are zero unless the operators
are of the same type:

alar

g,'»", = 5,„~(3cos'8, —1),
g,"»", =5,„2(3cos'8, —1),
(,'„",= 5,„(3cos'8„—1)+ 5,„—,[-9cos 8, cos 8, cos 8,

—3(cos'8, + cos'8, *cos'8,}+2],
71r(,», =5„.

The g»», for P and q of type v are given by
g(P&)(~&)(r7') gPw .
~abc +abc s

(5.5)

(5.7)

(5.8)

(5.9)

(5.11)

The abil. ity to thus reduce a product of two operators
with a common point to just one operator and some
simple radial dependence makes it very easy to cal-
culate the C part for any SQR. Because the order
of operators does not matter, we may simply ar-
range them in a continuous fashion, e.g. ,
0( ab)0(»bc)0(»cd). .. , and then successively contract
pairs of operators over their common points. Every
contraction will give a g function, and eventually we
reach the final two operators which must have both
points in common. These give a final factor of A. .
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TABLE g. I'he matrix ~""for g = '

k=2

18

The total C part will just be A~ times the product of P,

functions. For example, Eq. (5.10) indicates that a
7-type SOR always has a C part of 3, regardless of
how many operator links are present.

C. lVIUItipie-operator diagrams

(5.12)

In diagrams 11.3 and 11.4 the order of operators does
matter in determining the C part of II'O„. For any
given order, however, it is relatively simple to cal-
culate the C part, and one must then simply multiply
in the appropriate weights ze' for the different order-
ings possible to get the total C part. Operator dia-
grams of type 11.3 and 11.4, and generalizations of
these, are important in nuclear matter, so we discuss
them in detail.

First we prove a very useful theorem: the C part of
a product of operators of type p = 1, 6 is unchanged by
cyclic permutations of the operators. That is,

c 0('af )
'

i 0('iq) = c 0('iq)o( ab)
t

d CO' „Oj„00„,= R""A d

The C pa, rt in the alternate order is defined as

(5.14)

d C O' 0 O' 0 = I." d

(5.15)

(5.13), while the product with the other terms will not
have any C part. The argument can be easily extended
to &- and v-type operators.

As a consequence of this theorem, there will be only
two different orders for the operators in the OD 11.3.
There is a "successive" order in which the 0('mn) and
0('mn) can be placed adjacent to each other, and an
"alternate" order in which they are separated by
0(' ml) or 0(" nl). In the first case we may replace
the two mn operators with a Q, K'"0("rnn), reducing
the product to an SOB with three operators. The C
part is then given by

where IIO(~ij) is any series of operators. This can be
seen quickly in the case that 0{~ah) = r, 7,. The most.
general form for the IIO(~ij) is

0( ij) =terms independent of r, and r,

+terms linear in r, and/or r~, and other 7q

The I" is trivially related to the product X'j"A.":
Li j0 ~~%~i jQ

The + sign applies if

(Ot [OJ 00 ]ok ) 0

(5.16)

(5.1V)

+terms linear in v, 7, . (5.13) and the —sign if

Clearly 0( ab) commutes with the last portion of Eq. c(o'„„&0'.„,0".', )0'„,")= 0. (5.18)
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TABLE H. The matrix I'~ for 0 =~'~.

i j 1 2 3

k=2

9 18

—18

18

18

18 36

-18 -36

k=5 18

18 -18

—18

18 —18

18 —18

—18 -36

72

C~ =C 0 ~xy~
-j=l, +-1

0( J~ J...) 0( x,x)I, (5.19)

It, can be verified that either Eq. (5.17) or Eq. (5.18) is
always true, and if both are true, the I.'j" and K" are
both zero. The val.ues of I.'j" are given in Table II.
Any diagram having a number of operator lines between
two points, plus a single-operator chain (SOC) con-
necting the same two points, as in diagram 11.5, can
have its C part expressed in terms of the matrices
A, K, L, and/.

Diagram 11.4 is of interest because of the diagram-
matic expansion (4.16). There we found that terms like
[Aa] —[A][a] must be calculated, and the OD 11.4 is
representative of any separable diagram which has two
SOR touching at the separable point. One ring will
contain the interacting particles, one of which could
be the common point, and the other will be noninter-
acting. We label these rings Y and Z, respectively,
and the common point is x. The SOB F in diagram
11.4 just contains x, y„and y„but in general there
could be many particles y„y„etc., forming a singl. e-
operator chain between y, and y„oralternatively y,
and y could be the same point. Similarly, a general
SOR for Z would contain x,z„.. . , z, .

Although the spatial integrals of F and Z are the
same in both the connected ([Aa]) and the separated
([A.][a]) diagrams, the C parts can be different. For
convenience we define the C part of a separable diagram
to be the difference between the C parts of the con-
nected and separated diagrams.

I et C, and C, denote the C parts of F and Z when they
are separated:

(5.20)

The C part of the separated diagram is C,C,. That of
the unseparated diagram depends upon the order of the
four operators 0(~xy, ), 0(~y,x), 0(~xz, ), and 0( z„x),
which meet at the common vertex x. %e may succes-
sively sum over the spin and isospin of particlesy„y„.. . , y, , and reduce the 0( xy, )II;.. .0( y; y;.,)
to a second operator 0(~xy, ) at. the position of the
operator 0(~xy, ), with a coefficient C, /A(~xy, ). [We
write A' as A(q) when q has subscripts. ] Doing the
reduction for Z also gives

C(unseparated) = [C,C, /A. ( xy, )A( xz),)]
x C[:0(~xy,)0(~y,x)0(~xz, )0(~z~):]

(5.21)

Q 0'„0~~0"„=5)„A'(1+D;~)0,'~.
fy ~ T

C C

In the case of tensor operators the above equation as-

(5.22)

where the four operators between the:: are to be taken
in the order in which 0(~xy, ), 0( y,x), 0(~xz, ), and
0(~z)x) occur in the unseparated diagram.

The C[:0(~xy,)0(~y,x)0(~xz), )0(~z,x):]has only two
distinct values. The first equals A(~xy, )A(~xz), ) and is
obtained in the case of four possible "successive" orders in
which two 0 (~xy, ) and/or 0 (~xz ~) occur successively and
thus canbe squared. Inthe remainingtwo "alternating" or-
ders of type 0(~xy, )0(~xz,)0(~y~)0(~z~) the C(::)may be
expressed simply as a function of the symmetric matrix
D,.j,
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D = D = D~= D,„=—4/3. (5.23)

Thus the C(::)for alternating order equals
(1+D„,)A(~xy, )A(~xz~) where y and z are the types of op-
erators in the SOR Y and Z.

The operators in C(::) can occur in various orders in
the connected diagram. Let m be the probability of their
occurring in the alternating order. The C part of the
separable diagram is then given by m D„C,C,. For
evaluating the expectation value (4.1) with the diagram-
matic expansion (4.16), such separable diagrams may
be treated as vertex corrections of magnitude

m D, && contribution of ring Z, (5.24)

to the SOR diagram Y at its vertex g.
As an example, we illustrate the calculation of rn for

the diagram 9.3 in the case where 0('mn) = 0( mn) = l.
The operators p» and q» associated with the ff~2'f ]~2'

must be identical or the C part will be zero. One 0(~12)
comes from +* and the other from +, while 0(~nl) may
come from either @* or O'. The 0(1'ml) associated with
the exchange occurs at the far left where the 4* is
antisymmetrized, while the interaction operator for
particles m and n, 0(~mn), must come in the middle.
The possible operator orders are then obtained from:

—,'0(~ml) [—,'(0(~12), 0(~nl)J 0 (~mn) 0(~12)

+ 20(~12)0(~mn)(0( 12),0(~nl)}], (s.as)

where the outside factor 2 compensates for the factor
2 in the definition of E(1'111), and the other factors of 2

account for the normalization of SIT F. By inspection of
Eq. (5.25) the probability of alternating order m is —,

' in
this case.

In general rn depends upon the source of the four op-
erators that meet at the vertex x. The possible sources
are the v, F, and the exchange. The operator from v
defines the center. An operator associated with a single
wavy line E~~' can be on either side of the center with
equal probability. The two operators associated with a
double wavy line f1'~'f'~' must be on opposite sides of
the center. An operator from the exchange must always
appear on the extreme left, where +* is antisym-
metr ized.

The possible types of the common vertex z can be
described by four variables, &„x„z„andx,. The
variable x, specifies the operator elements of the inter-
acting SOR at the common vertex: x, = I if a v' is con-
nected at the vertex, x, =f' if a double wavy line f~~'f'~'
connects at the vertex, and x, = P otherwise. The vari-
able ~, specifies the operator elements coming from
the passive SOB, and it may be f' or P. The
m(x„x,x~, x,) is symmetric under interchange of x1 and
x„exceptfor the ~, = I case.

The ~„~,indicate whether exchange operators con-
nected to the common vertex are present in either the
Y or Z SOR. The possible cases are x„g= d, d for no
exchange, d, e for an exchange in Z connected to the
vertex, and e, d for an exchange in Y. The ease g, ~,

sumes an integration over the angle between r„and r,b.
The value of D, depends only on the types of operators
involved:

D.,=O, D„„=6/9,

c( [A] [&][b])= c„c.c„
C([A a][b])=C&C C&(1+ mz Dz ),

c([A] [a b]) = c„c.c,(1+ .,D.,),

c(fA a b])= c„c.c,(1+ ~„.D„.)(1+ ~.,D.,),
and thus

(5.27)

(5.28)

(5.29)

(s.3o)

(5.31)C(5.26) = C~c,c~m~, m, ~D~,D,~.
I~ I

Similarly, the C part of the diagrams of type [Dab]
can be factorized to C~C, C~ „,m„~D„,D~~. These re-
sults are valid for SOR in general, irrespective of the
nature of the vertex, interacting or passive, and they
allow contributions of separable diagrams in which
there are only four operators at the articulation point
to be treated as vertex corrections. When the articul. a-
tion point has more than four operator lines present,

TABLE III. The I (x~,x~,xg,xq).

XQ y XQ d,f d, P

~P', d,xg,x )
m(I, e.x~,x )
~(I,eg„,x,x )
m(P, d, x~,x )
m(P, e,xg, x )
~(P, ep, xg,x~)
~(f d, xg, x~)

I/2
1
1/2
5/I 2
1/2
5/12
1/2
1/2

1/3
1/2
1/3
1/3
1/3
1/3
5/12
5/12

= e, e cannot be treated as a vertex correction because
the spatial parts do not factorize. There may also be
cases where x is exchanged with some particle that is
in neither SOR, for example the exchange between ~ and
1 in diagram 9.5 of Fig. 9. This "passive" exchange
does not affect the operator order, but it prohibits other
exchanges at the common point. For the case where the
"passive" exchange is in a hypernet of the Y SOR, we
add the category x„x,= e~, d. We can take care of "pas-
sive" exchanges in hypernets of the Z SOR without con-
sidering an z, &,= d, e~ category explicitly.

The ~(x„x,x„x,) are given in Table III. There is
no x„x=f', e because I' would not be an SOB, nor is
the combination x„x,= e,f' allowed. The x, = e~ values
are the same as those for g = d, except that no ~,= e
are present, since the "passive" exchanges do not af-
fect the operator order.

For diagrams of the type [A. a b], as in OD 9.5, we
may define the C part to be that of the appropriate ex-
pression in curly brackets in Eq. (4.16):

1~ ll 1 1~ 11 1

([A b] —[A .][b] —[A][. b]+ [A][ ][b]]. (5.26)

All the terms in Eq. (5.26) have identical spatial inte-
grals, but again the C parts vary. Let C~, C„and C,
be the C parts of the separated SOB in Eq. (5.26), where
we again assume there is only one operator present in
the interaction line in A. Let m~„m,~ be the approp-
riate probabilities for alternating order at vertices A~
and gb. Then it can be shown that
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these relations are no longer exact. Nevertheless the
vertex corrections may still be a useful approximation.

(x).,„„.~n mn mrt mn +mn ~ (6.1)

G „=8(F',;F',„)+8[F.', ;8(F,',;F;„)]
+ e(F' „e[F;,; e(F;,; F,'„)]/+ ~ ~,

e(x„;y;,)= p fx„y,,d'~,

(6 2)

(6.3)

G
„

is called a chain function, and g is an integral op-
erator that connects elements to form chains. Chain
functions satisfy the integral equation

Vi. FHNC/SOC EQUATIONS

A. Single and hypernetted chains in Bose systems

A set of coupled integral equations that sums single
chains of operator links and hypernetted chains of cen-
tral links has been derived by Wiringa and Pandhari-
pande(19'78). These equations are a generalization of
the FHNC equations of Fantoni and Rosati (19'l5), which
in turn are themselves a generalization of the HNC
equation for Bose systems of van Leeuwen et pl. (1959).

Historically, equations to sum single chains of simple
central links were developed first. Consider the dia-
grams having only I links shown in Fig. 12.1. The
contribution of all single chains of I links to the ex-
pectation value (A) of Eq. (4.1) can be expressed as

approximation is not adequate, because G' is large,
being of order unity at least to the radius of the core.
In nuclear matter, however, the SC approximation -may
be good for the noncentral G~ ' because they tend to be
quite small (&0.1 in v, model throughout their range).
For the large central links a better approximation is
that of hypernetted chains.

Consider the two-particle distribution function g(y)
defined by

g(r) = (1/Ap)(&(~ —x „)); (6.5)

g„„=(f')'„exp(G„+E„„). (6.6)

pg(r) gives the probability of finding a, particle at a.

distance y from a chosen particle. The diagrams for
g „canbe classified as composite, nodal, and elemen-
tary; examples of these are shown in diagrams 12.2,
12.3, and 12.4, respectively, of Fig. 12. Composite
diagrams have more than one unconnected path between
rn and yg. Nodal. diagrams have one or more points
through which all paths between nz and pz must pass. By
definition all nodal diagrams are chains, and the sec-
tion between any two nodal points are links, so links
cannot contain nodal points. Diagrams that are neither
composite nor nodal are elementary, and both compo-
site and elementary diagrams can be links. If we let
E „denote the sum of all elementary diagrams in the
same sense that G

„

is a sum of nodal diagrams, then
the exact distribution function g (r) in Bose fluids with
simple central correlations is given by

G,»= 8( [link] &, , [link+ G],.„), (6.4) Expanding the exponential, we have

and we can generalize the kind of chain by generalizing
the link and the g operator. For the simple chain ap-
proximation in Eq. (6.2), the link is obviously E .

For systems like liquid helium the single-chain (SC)
links+ chains (6. I)

I 2

m n

2

I e-

m n
G „=e([g—1 —G],; [g —1],„) (6.8)

Then the sum of all links is obviously just g „—1 —G „,
a,nd substituting into Eq. (6.4) we have the exact rela-
tion

l2. l Single Chain Diagrams

/
/

mg &n

l 2.2

2 5 4
,
' 'gl

m+' '.n
7P---~6

I

mg p An

/

4
Compos i te D i a g ra ms

2
/ ~ $ 40,

m n

2

m n

l 2. .3 Nodal Diagrams

I 2
1 N / I

m n

I . 2

y
V
m n

l2.4 Elementary Diagrams
FIG. 12. An illustration of the classification of diagrams with
a Bose liquid having Jastrow correlations.

in which E
„

is contained indirectly through Eq. (6.6).
The G of Eq. (6.8) is a hypernetted chain, so called be-
cause of the many "nets" of correlations generated.

The E
„

in Eq. (6.6) is hard to calculate, and in gen-
eral must be approximated. The simplest choice is to
let E „=0;this is the HNC or hypernetted chain approx-
imation. All composite and nodal diagrams that do not
contain elementary diagrams are summed by HNC. It
is thus the zeroth order of an expansion in elementary
diagrams. (The HNC/4 approximation mentioned ear-
lier includes the simpl. est elementary diagram, the
four-point diagram in Fig. 12.4. )

B. Modifications for Fermi systems

The generalization to Fermi systems (FHNC) requires
the subdivision of G&~ into parts G„&~in order to keep
track of the exchange patterns. The xy labels indicate
the nature of exchanges at the end points j and k of the
chain: xy may be dd, de, ed, ee, or cc. The subscript
d stands for a "direct" end, e for an "exchange" end,
and c for a "circular" exchange end. G«, ~ thus denotes
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2C„=f' (G~, + G„—L'/s) exp(G«) —G„, (6.12)

I

I

m& &n

where

L= —l+ sG„, (6.13)

I3.l

is a generalized Slater function that includes the G„
chain, and s is the degeneracy factor (s= 4 for nuclear
matter). The G„chain equation is

G„„=e(W„„;[X,.+ L/sj„),
Ã„=f' L exp(G«)/s —L/s .

(6.14)

(6.15)

I 3.2.

The X„,can be constructed by considering the possible
elements E' and 5 and how they may be joined with the

G„,to form composite diagrams that have the proper
exchange character.

The chain equations (6.9) are different, but hopefully
more transparent than those given by Fantoni and
Rosati. Schmidt (19'l8) has demonstrated that the two
versions are exactly equivalent.

I 3.3

l 3.4
FIG. 13. Examp1es of diagrams contributing to the G„~.

G„,,„=g'e(X„,.„.; [~+G]...„), (6.9)

where the sum is over ~'y'= dd, de, ed. The links ~„,
are given by

c2Ã« f' exp(G«) —1 —G„, -—
X~,=f' G~, exp(G«) —G~, ,

(6.10)

(6.11)

the sum of all chains in which neither j nor k is ex-
changed. G„,,„

is the sum of chains in which 0 is ex-
changed with particles in the chain, and j, is not. G,„,~
just reverses the roles of ~ and k and is numerically
equal. to G„,,~. Chains that contribute to G„,~ have
both j and k exchanged in independent exchange loops
contained in the chains, while chains with an incom-
plete exchange loop passing through both j and k are in-
cluded in G„,.~. Examples of dd, de, ee, and cc chains
are given in Fig. 13, diagrams 13.1-13.4. The general-
ized links that enter Eq. (6.4) are designated Ã„,,„and
have the same exchange classification. However, since
a link can be composite, the X„,.~ can have both i and
k exchanged in the same loop, or in two independent
loops within the link.

The end points labeled d, c, and e in chains have
zero, one, and two exchange lines, respectively. Since
any point in a diagram must have either zero or two
exchange lines, we can join X„„,„.with ~ ...~ or G,
at j only in the combinations &'y' = dd, de, ed, cc. For
xy= dd, de, ee, the Fermi chain equations become

I '= Po+f"Go,„, (6.16)

C. Operator chains

In nuclear matter the chain functions become G~
xy, fh

where p denotes the operator dependence associated
with the chain. The G~ '&~ can be easily calculated in
the single-operator chain (SOC) approximation, where
each link can contain only one operator element or
chain, but may have additional central dressings. (For
the remainder of this section, p= 2, 6 unless explicitly
stated otherwise. )

Examples of G~„, G„„andG~, are shown in Fig. 14,
diagrams 14.1-14.3. Because al. l exchange links but
one in an exchange loop carry operator dependence, we
cannot have any correlation operator links in a closed
exchange loop contained within the SOC. For an incom
piete circular exchange chain, there is one "gap" in the
operator diagram which may be filled with either an
E or G« to obtain an SOC. It is convenient to separate
G~, into two parts, G~, and Gt~ (diagrams 14.4 and
14.5), which have the E~ or Gt„in the first and last
links, respectively. A G~, chain with an E~ or G~~„
somewhere in the middle is more easily treated as a
G„with an independent SOR in the middle (diagram
16.4).

The contribution of separable diagrams, whose articula-
tion points are at the nodes of the SOC, can be included in
the Gt„asvertex corrections M(t~, x„x„).The t~ de-
notes the chain type, x, is P or f within a chain, and
g can be d, e, or e&, depending upon the exchange na-
ture of the vertex. The M(t, x„x) are related to the
~(x„x,x„x) of Table III (exact relations are given
below), and we find in practice that M(t&, P, e)
= M(t, p, e ) =M(t, f', e ) generally within 1%. The
M (t, P, d) and M (t,f', d) differ somewhat more, per-
haps 5% from each other and 15% from the e, e~ cases.
It is possible to write chain equations that treat the
M(t~, x„x,) exactly, but they are far more complicated
than necessary. In the equations below we shall simply
denote the (P, e), (P, eg, and (f', eP vertex corrections
by M~ and the (P, d) and (f', d) by M~~.

Defining the direct functions,
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l4. l I 4.2

cc, fk ca, gk cb«fk (6.27)

Every nodal point in G~, is vertex corrected, but not
the end points. Terms linear in [[(&(t«,x„x,) —1] sum
once-separable diagrams like 9.3, while quadratic and
higher-order terms sum diagrams like 9.6. Diagrams
which have three or more SOB touching at the same
point, as in 9.7, are neglected. The exact expression
for IVI is

M(t„x„x,)=1+g D, ,tpt~
y-2«6

I 4.5
n

+gt +q

The J"(x„,x„x,) represent contributions of the passive
SOR. If ~ = d, these SOB can have an exchange at the
articulation point, but if z, = e, they cannot. Thus we
have the class ification:

e "(d d f ') = pA' f d'rf ' 6*

x [(1+G'„,)Md+(G'„,+ G'„,+ G;,)M,"], (6.29)

1465

FIG. 14. Examples of diagrams contributing to the G~„P.

h'= exp(G«), (6.17)

e "(e, d f')=pA' fd'rf" ( 6MG' M )

e "(d d P)= 'pA'f d'rr")*[G" [(1+ G* )M"

(6.30)

the dd, de, and ee links are given by

(6.18)X„„=h h' —G„„,
(6.19)

Xf,=(h'[G'„,'+G;, ]+f' f-(L'/4)& «G+«, +2G'„G' ])h' —G«, ,

3
[=]ua(xlf &;a) PJ" &l-l. x~;».«~. (6.21)

The SOC equations for gy= dd, de, and ee are then

G„",„=g ' P 8'„.„"(X«„.„.; [X+G];,, „)M;,
& «& 0«a

(6.22)

where the vertex correction subscript z = d for g'y'= dd,
and z= e for g'y'=de or ed. For the circul. ar exchange
chains we need the links

(6.20)
where L~= 1 for p= 1,4 and zero otherwise. The g«~&r~

needed to join operator links can be included in the g
function:

+ (G'„+G'„+G', )M"] + G"„(1+G„)M"),(6.31)

e (edr) :p,A f, d =r-r M[G;,[M;.G;M;].G;.,M;],

Jr(d e P) — lp Qr d3+t rp 6 L2Mr

(6.32)

(6.33)

' + A. M' +I G (6.34)

Examples of the J"(x„x„x,) are shown in Fig. 15,
diagrams 15.1, 15.6 with (x,x„x,) = ddf', edf', ddP,
edP, and two examples of deP, respectively. The ar-
ticulation point is denoted by z. The J" themselves con-
tain vertex corrections (but not at the articulation point)
both explicitly and self-consistently through the chain
functions in their definitions. Thus diagrams like 9.5
are also summed. Typical values for M(t~, x„x„)are
given in Table IV.

The G'„,.k continue to be calculated in the FHNC ap-
proximation, but the links may now contain closed SOB.
The dd, de, and ee links become

X' =(f"a —1)L/4

(6.23)

(6.24) X ' G' + A.'I' '+h'G' G' +h~G' kc

The X~„cancome only at, an end specified by z= z, b in
the integral equation, while other links in G,„aregiven
by the ~,', . Since there is only one +~ or G~« link, there
is only one point at which the vertex correction should
be applied, which is done in E(l. (6.23). We find

(6.35)
' G'„,+O'„—L' 4 + A.~M~ ~ +I~G~

G., „=g g«„-,(W',, „;~ [X'„+L/4],„),

G."&, gk= ~&,"k ~'~:., Sg' ~+ G:~.~k

(6.25)

(6.26)

+ h~(G«, + 2G«d, Gd, —L'A~/4)

+f'(G' —6G.' &Ae/Me)] IA* —G' (6.66)

and Eq. (6.9) is still used to ca.lculate these chains. Ex-
amples of the new diagrams containing SOR that are
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I x I

l5.2

l 6.l l 6.2

l 5.5 l5.4

l 6.5 l6.4

l 5.5 l 5.6
FIG. 15. Examples of diagrams contributing to J"(x, xg, x ).

summed are shown in Fig. 16, diagrams 16.1-16.3.
The circular exchange chains are also modified to in-
clude diagrams like 16.4. The G;, equation becomes

FIG. 16. Examples of G~ ~ diagrams containing closed SOB's.

TABLE IV. The M (tp, xt,x~) for the Beid v6 model at k&= 1.6
fm-~, d= 2.25&p, p~~= 0.4pt~= 1.

M(tp, I,d)
M(t&, I, e)
M(t, I, e )
M(t&, P, d)
M(tp, P, e)
M(t, ,P, e,)

M(tp
„ f,ep)

0.881
0.890
0.945
0.870
0.945
0.955
0.818
0.946

0.881
0.893
0.947
0.869
0,947
0.956
0.817
0,948

0.909
0.924
0.963
0.898
0.963
0.969
0.856
0.963

Each closed SOB in the links needs two vertex correc-
tions for where the ends of the f]', I'~, and G~ are
joined. They could be either direct or exchange, de-
pending upon how the link is connected to other links.
For simplicity, we use M, throughout, since in practice
the chains with exchange links give the largest contribu-
tion.

The above G'„equations will generally count diagrams
like 16.5, having touching SOR's, with a wrong C fac-

tor because the commutators are neglected. The biggest
SOR elements, however, turn out to be the exchange
ones, such as on the right side of diagram 16.5, and
since exchanges are prohibited from touching anyway,
the miscounting is probably not serious. The effect of
modifying the G„,to include SOR is relatively sma l
(&1. MeV).

The most important chains in nuclear matter are the
v-type chains, G„"and G„''. The largest of these are
the xy= dd and de chains shown in Fig. 17. They appear
to be small, but their effect is not because (i) they are
often multiplied by A.~, which is 9 for Or and 18 for
tr; (ii) they are long ranged (r'G„",peaks = 2 r,), so
their integrals are significant; (iii) the ~" and ~"dom-
inate the long-range part of the Pf+ interaction. The
chains should therefore be calculated carefully, and
truncation of the chain summation at three- or four-body
level is not justified because some of the G~ are of the
order of E~. However, the small magnitude of ihe I'~
and G~ suggest that the SOC approximation is valid.
Every multiple-operator chain diagram containing a
given number of nodal points is smaller by at least a
factor of G~ or I'~ than a similar SOC diagram.

The central G'„chains are shown in Fig. 18. The
necessity of the central correlation hypernets is evident
from the large magnitude of G«, particularly at short
distances. The G« is always exponentiated, and it gives
about a 15% boost to two-body functions at r =r, It is.
added to every diagram, since it is purely direct. The
G~, is also important, being fairly long ranged due to
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FIG. 17. The functions G&'„(~)
at kz ——1.6 fm ~, d=2.25xo, P;
=1, in t} e acid p, model.
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the exchange Ieg. It frequently has an accompanying
factor of 2 when it is used (to count both de and ed
cases) and can make &5%%uo contributions out to r= d. The
G,', is also important, despite its apparent small size,
because it appears with a factor of 4 in the generalized
Slater function L of Eq. (6.13), and can make a modifi-
cation of =10% to l out to la, rge distances. Only the G'
is relatively unimportant, which is understandable in
view of the fact its leading term is a four-body one, as
opposed to three-body terms in the other G'„,.

Vll. CALCULATION OF ENERGY

The energy expectation value is expressed as a sum
of five terms,

EIA = Tz+ W+ Wz+ U+ Uz,

according to the different parts of + that the Hamilton-
ian (1.9) acts upon. When V' operates only on P we
get the Fermi gas energy T~= 0.3jg'k2+Im. The other
terms must be evaluated through the diagrammatic
cluster expansion. The W includes the potential energy
and kinetic energy terms having V' F „.It is given by
the sum of all diagrams having the interaction line, as
in diagram V. 5, containing the operator H „,

A. Calculation of Nf

The interaction energy W' is the sum of all diagrams
with the interaction line f '„H"f"„.In the FHNCISOC
approximation it may be subdivided into four parts
(Wiringa and Pandharipande, 1979),

W= 8' + TV + 8', + TV (j 3)

go is the sum of all diagrams that do not have an op-
erator chain connecting points m and yz. Central cor-
relation chains do not affect the operator algebra, and-

plus two F „,with the V'„in H „operating only on the
The U represents the sum of kinetic energy terms

V F „VF„,(o W~). Its diagrams have two derivative
lines of type 7.6-7.8. Kinetic energy terms
V F „V@ are counted in the Wz and Uz. As men-
tioned in Sec. IV, they contribute only when particle m
is exchanged, and thus Uz or Wz diagrams have a de-
rivative exchange line and a V F

„

line. If the
exchange pattern of the diagram is such that a
V' / „element appears, the diagram is included in &~,
whereas those having a V' I, element contribute to U~.

0.6—

Q4- G (xlO)de

C

0.2

0.0
~r+ ~ ~

C

Gee (xlO)

FIG. 18. The functions G„'„.{x)
at k~——1.6 fm, d=2.25ro, P;
= 1, in the Reid g6 lnodel.

02 ~P
~ C ~ ~ esa++'

G,', (x IO)

I

ro I.O
I

2.0 d

r(fm)

l

5.0 4.0
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there may be any number of them in a W diagram of
any class. W, diagrams have one SOC connecting nz and
yg in addition to the interaction line, while W, has a re-
ducible SOB at either vertex m or ~. The W„diagrams
have both an SOC between m and ~, and an SOB at m or

This classification is illustrasted in Fig. 19, dia-
grams 19.1—19.4. Diagrams such as 19.5 (19.6) are
included in W, (W,) through the vertex corrections to
the chain functions Q„'„',, as discussed in Sec. VI. Dia-
grams like 19.7 are also included approximately in the
equations for W, and W„,but diagrams like 19.8 have
so far been neglected, along with diagrams with two or
more SOC connecting m and yg.

The expressions for W„W„andW, can be derived
easily with the use of the various matrices defined in
Sec. V. W;, is more difficul. t to calculate, but it is
small, and a relatively simple approximation, which is
physically reasonable and numerically accurate, may
be used to estimate it.

The Wo is given by

W =- d'~ 'II' 'h' 1+ G'd, '+ O' K'&'A. "

d~~y»H jfkj~a L2~nKn»mKjkmAm
8

(7.4)

We assume a summation over all indices i, j, k, rn, pg. . .

i, j,

Wo 19.l

rn ijk n

Wc 19.Z

t, ))k

W~ 19.5

OR
OR

rn
i jk n

Wcs lg. w

OR

fTl i,j,k n

19.5

rn i, j, k

19.6
OR

OR OR

i,j,k

19.7

rn
i ) k n

FIG. 19. Classification of W diagrams. The diagrams may
contain any number of hypernetted central correlation chains
that are not shown; neither are the exchanges shown explicitly.
Only the positions of operator chains, G', and operator rings,
OB, are shown.

—.'[ .' (i, I'}j-$a, I"}+—.
'

(~, I"}j(u,I'}
+ —,'(((I', l"},i} t+'»l + l"il') jk

+ '»j((k,-$I', I"}}+I'I»l" + I I»E')) .
There is an overall 1/4 which compensates for the fac-
tor two in the definition of E' (= 2f',f'„,) and E„'k
(= 2f„'"f'„).The first (second) term in (7.5) has f' in

+ (Q and f„' in y(N); the 1/4 in these terms comes
from the normalization of symmetrized products
S( F F „)and S( F,k

F „).The third (fourth) term of (7.5)
has both f' and f»k in 0* (4) and the 1/6 is the normal-
ization of S( F F„kF „).All other correlation and ex-
change operators that occur in the SOC between points
a and 5 are omitted from (7.5) because their order is
immaterial.

The possible orders of the operators i, j, k, I', /" in
W,(dd) diagrams, and the probability of their occur-
rence are obtained from (7.5) and shown in Table V. It
is not necessary to differentiate between orders such as
il'jul and zl jkE' because interchanging the positions of
E' and l" leaves the C part invariant. If the interacting
particles are exchanged with each other, the W,(dd)
diagram has an additional 0"-„'that appears at the ex-
treme left, and is not explicitly shown in the table.

The C part for any W, diagram can be written as a
product of the g functions, which are built into the
definition of G„'„',and are independent of the operator
order, and a coefficient depending on the order of j,j,
0, /', E" which can be constructed from the A, K, and I
matrices. This coefficient is also exhibited in Table V
for each operator order in both direct and exchange
cases. The result for W,(dd) is

(7.5)

from 1 to 6 unless otherwise indicated. The first term
of Eq. (7.4) includes the interaction line plus all possi-
ble central dressings in which the interacting particles
are not in a common exchange loop. The second term
counts those diagrams in which m and pz are in the
same exchange loop. In the first term there are three
operators between the same two points, giving a C part
of K'~~&~. In the second term there is an additional op-
erator 0"

„

from the exchange, and an intermediate
summation variable m is required.

In the calculation of W, we have to keep track of the
order of operators 0' „,0» „,and 0"

„

from the (fHf) „,
and 0' and 0„'~ from the SQC G'„'„',„,and possibly an
exchange operator 0"=„'.The positions of 0' and 0„'~
depend upon whether these operators come from the
correlations F „F„~,or exchanges e, e„~. It is thus
necessary to divide W, into parts W, (xx') which give the
contribution of 6„'„,to W, .

Let us consider W,(dd) and abbreviate the operators
O'„,0», . . .byi, j, . . . . The W, (dd) diagrams represent
terms in W, that include F',F„'kf' „H»„fk„,and the op-
erators occur in order:

W(dd)= — d'rf»H»f G' 'h'[(1+ 6' )'+G' ] '(11KK»»k™A~+—5K»»~Lk'~+5K»k L»™+3K»"L»' )C dd de ee g4

if3&g »H»gkG l&»1»c Lkf » (KgkmKn»m'Lm' im+ KUmKtkkm'Ln»m'+KknmKm im'Li »m'+ Ki jtkKknm'Lm'tm)
dd I.88

+ 1 (4Kn»mK»»m'Kmm'kAk+ KJkmyPnnm'Lf»m'+KnimKmgm'Lk»m')]
12 (7.6)
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TABLE V. Operator orders in Wc(dd) diagrams.

No.

1
2
3

5
6
7
8
9

10

Operator order

g t

il'jl "k

l'l "ijk
il'l" jk
l'il" jk
ijkl'l"
ijl'l" k
ijl'kl"

Probab il ity

1/8
1/8
1/8
1/8
1/12
1/12
1/12
1/12
1/12
1/12

Direct

~jkmL i l m

A m~i jm~kl m

~kimL jim
~i jmLklm

A mKi jm~kl m

Am~i jm~klm

~jkmL imam

Am~i jm~klm

A m~i jm~kl m

~ijmL klm

Exchange

~gkm~n1m g m Sm

~ ijm~ rnkm ~n l m

~knm~mim'+ jim'

~ijm~knm'I m' Lm

Ak+nl m~i jm'~mm'k

Ak~nlm~ijm'I mm'k

~jkm~ mnm'L i L m'

Ak~nlm~i jm ~/71m k

Ak~nl m~ j ~mm k

~nim~mj m'~klm'

The W,(de) and W,(ee) may be calculated analogously:

W, (de)=p f d'vf'H'f G' 'h'))+0 )

&& L~(2KUmKklmAm+ Kiiml klm+ Kjkml iim) (7 7)

W (ee) ) d3rf iHif kGl&).IicKijmKkimAm
c 2 J ee

The contribution due to cc chains is slightly more
complicated because there is a subset of diagrams that
are reducible [see Pandharipande and Bethe (1973)].
For example, diagrams 20.1-20.3 of Fig. 20 are all

irreducible, 20.1 and 20.2 being taken care of by G,'„
and 20.3 by G,'b. However, diagram 20.4 has a reducible
counterpart in 20.5, which must be subtracted out ac-
cording to the cluster expansion. (This is the ca,se x„
~,= e, e mentioned in Sec. V that cannot be treated as a
vertex correction. ) The magnitudes of G,'„donot de-
pend on the direction of exchange, so in practice we
sum diagrams of type 20.1—20.4 by using G,', and
summing over both exchange directions. The contribu-
tion of diagrams of type 20.5 is proportional to G,',
—G,b, which is subtracted from the sum to obtain
W,(cc):

W (cc) d&rf iHJfkGE&1I e Lg'n[2KiimKkmm'(f nlm'+KnimAm~ ) + I imm'(KijmKnkm'+ KikmKnim') + Kjnm(Kimm'I kim'+ Kkmm Iilm')']
c 4 ca

+ p d3& i+jp k G l&1 G l&& gc L~jkm~nim~m~l~n~ l
ca cb (7.9)

The diagrams contributing to W, are conveniently di-
vided into "direct" and "exchange" categories. Direct
8', diagrams have no exchange between the interacting
particles, while in exchange W, diagrams they are in

L"2
20. I

a common exchange loop. Direct diagrams are con-
structed using the interaction line, with possible cen-
tral chains as dressings, and the SOR function J ' given
in Eius. (6.29)-(6.33) attached at the end points. The
appropriate J'(x„x„x,) is selected so that the common
vertex does not participate in more than one exchange.
The C part is easily calculated by keeping track of the
possible operator orders as in the R', case.

Consider the case where 3'(d, d, f') is the separable
SOR, an example of which is shown in diagram 15.1.
The C part of the separable diagram is given by

'K' A A'(D —i+ De, +D„,), (7.10)

where the D, are given by Eil. (5.23). The C parts of
all R', diagrams can be similarly calculated using the
matrices 4, K, and D. The total W, can be written
compactly as

W = — d'rf 'Hjf kIi'K'~kAk
S

x [M,'„-1+2G'„,(M«M„,—1)+(G;,+ G,',)(M'„—1)]

2 0.5
FIG. 20. The simplest diagrams that contribute to S;(ce).

d'rf 'H'fkh'L'A"(Knj™Kik +K"' Ki~ )A (M' 1)16 ee

(7.11)

The first (second) term is the direct (exchange) part.
Terms linear in (M„„,—1) sum diagrams having only on.e
separable SOR, like 19.3, while those quadratic in
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(M„„.—1) give a fair approximation to diagrams like 19.7
having two separable SOR. The M„„,are analogous to
the vertex corrections M discussed in Sec. VI, but de-
pend on all three variables j, j, and Ep, as opposed to
only one in, for example, M(tt, I, x). The direct M~„
are given by

M„„=1+ Q ( 4 (Dtt+ Dt t+ Dqt) J '(x, d, f )

0

IC-i---+ n

2 l.2

+ —,
' (SDtt+ 5D, t+ 5D~t) J'(x, d, P)

+ 5„,,' (D„+D—„)J '(d, e, P)]. (7.12)
2 l.3 2 l.4

FIG. 21. Examples of U diagrams.
The exchange correction M„depends in addition on the
intermediate summation variable gyes:

M„=1+ P j—,
'

( 2D, + D, , + D„,) J '(e, d,f ')
l

+ —'(6D, + SD, , + 3D„,+ 2D„+2D~t) J '(e, d, P)).
(7.13)

The 8'„is very messy, since we need to keep track
of the orders of seven to eight operators to calculate it
exactly. However, it is small, and of order W,(M' —1),
where M is an appropriate vertex correction. To the
extent the f'Htf' term in W, dominates, we can use the
interacting vertex corrections M (ft, I,x) of Eq. (6.28)
to calculate the contribution of H& to g„.In practice
we find that terms containing H", f", and G" dominate
the 8'„and it is probably adequate to calculate the W„
with M(v, I,x). Keeping track of exchanges, we have

W„=W,(dd)«, [M(v, I, d)' —1]
+ W(de) [M(v, I, d) M(v, I, e) —1]
+ [W,(dd),„+W,(ee)+ W,(cc)][M(v, I, e)' —1], (7.14)

where W,(dd)«, and W,(dd),„arethe two terms of Eq.
(7.6). The exact vertex corrections for W,(dd)«„W,(de)
(which is the dominant term in W, ) and W,(ee) have been
calculated, and we find numerically that the approxima-
tion in Eq. (7.14) is quite good, typically within =0.1
MeV up to k~= 2.0 fm '. The exact calculation requires
the introduction of new matrices, and has not been done
yet for the W,(dd),„and W,(cc), so it is probably not
worthwhile to discuss it here. We believe the above ap-
proximation for g„is valid to within =0.2 MeV.

B. Calcolation of U

The U diagrams are evaluated up to the SOC level
with vertex corrections. They are conveniently divided
into four parts

+de +ddade &

Z„=Z,„L/4. (7.17)

The Y„„,and Z~~', are multiplied by the vertex correc-
tions M~ discussed in Sec. VI to correct for separable
U diagrams:

1 g At(f t'~ htGt ]Mt'hc
y»l

y' = g At (ft (G~t + Gt ) +f~ (Gtt—2Gt L Et/Mt)
peal

+ ht [Gtg G' + G' ) + 2Gtt, G' + G —L 'Bt/4] ]Mt h'

peal

F = PA ~ t[-'th LMto+f' Gt ]Mth'.
peal

Z~" = h'kcM
dd 7

Z '=(h G' +f G«)h'M M

Z&)1 [ht(Ge + Gc ) +fc (G& ~ 2Gt Gc ~t L2/4)]hcMt

('7. 18)

('7.19)

There are no Z~~' links in the SOC approx, imation. The
corresponding functions of y „and~, containing the
gradients are denoted by B„„„F„„,, and Z~„',. They are
obtained by making the following substitutions in Eqs.
(v.1v-v. 19):

fC (fC )I

tions of &„,denoted by A„„,, F„„,, and Z~~', , respectively,
depict central correlations, closed SOR, and operator
links in the U diagrams.

C CIf„=f'h',

U= Ul+ U2+ U3+ U4, ('7.15)
ht -(F~)'+ (f")'G~«, (7.20)

where U, has no operator links and U„U„andU4 have
one SOR passing through the points gag, mph' or mo, and
mnz, respectively. Samples of diagrams contributing
to U, —U4 are shown in Fig. 21, diagrams 21.1-21.4.

The U, can always be expressed as

hU= — p' d'~ '~ cos~u x ~ ~ 716
Sm

and in the FHNC/SOC approximation the u, conta. in pro-
ducts of functions of r „,r „r„„andgt",. The func-

where the primes represent derivatives with respect to
The Z„'„'f"generated by these substi. tutions contain

(f'f'"")' terms. Two new Z links, Z't'" are needed
to take into account the gradients of the tensgr operator.
They are obtained from Z'~'" with the replacements

ht(tt) Fttttl/r

fc 02

The u,(r „,r „r„,) containing all the twenty-nine pos-
sible exchange patterns are given by
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+ Rde, mn( de ee)moRdd, no de, mn de, mo de, no cc, mn cc, rro cc rror' (7.22)

The u2 may be obtained by replacing the R„„,„,in u, by F„„,„,while u, is the sum of the two terms obtained by re-
placing the R„„.„andR„„,, by Y„„,„and 1„„,,„respectively. The u, contains a g&', A tfor the C part and an
(Mad)

' because each Z or Z link has two vertex corrections.

g („';„'.A'/Mt {Z&, „(Z„„+4Z„,+2Z:,)„.(Zt, +Z„'.),.
P, q=2- 6, t ', t ' 7' l =2"6

(7.23)

The ge", having p or q= tr(l'r) give the C parts of SOR containing gradients of tensor operators. Those with non-
zero values are found to be

gt'at gt'ra rtr 3 n o ~ cos28
nn o nmo cos8

g;„t"=(e "'n'= 6(1 —cos'8 ) 5n, + 9 cos8„cos8„cos,+ —' cos', + 3(cos'8 + cos'8„)——', " ' —3 5nt,m n cos8

$t ' "= gt et "'= 12 cos'8„6„+—18 cos8 cos8„cos8.—6 cos'8 —9(cos'8„+cos'8.) — " -'+ —6„.m n o m n o
2 g 2 yt ~

m

(7.24)

(7.25)

(7.26)

C. Calculation of NfF and UF

The W~ diagram's can conveniently be broken down
like TV into parts, W~, W~„Wz„and8'~„.The W~
and Wz, are given by

The u~ is given by

uEl Rdd, mnRee, mo(Rdd+Rde)no Rde, mnRee, rroRdd, ro

+ Rcc, mnRcc, mo ™cc,I7o ~ (7.31)

+ le p dsz (f if 0) rl r Lltc+ rlf trnAnM2 (7 27 )~S 8' Ce '

In the operator algebra the exchange operator j in W~,
diagrams plays the role of the j operator associated
with H' in direct W, diagrams, so the vertex correc-
tion in Eq. (7.27) is identical to the Md, of Eq. (7.12).
At present the W~, and 8'~„arecalculated in strictly
the single-operator ring approximation:

2

while the gg», gg~, and u~4 are obtained by, respective-
ly, substituting the R„„,by 7„„,, the R„,, by E'„„,, and
the B„„,by T„„,in u~. The u~ is given by

u = g g g".A'/Mo, '
/=2 6st st T gs l-2 6

L. ~ddr mn ee, mo, dd de) no ~der mn ee, mo dd, no]

(7.32)

VIII. FURTHER VARIATIONS OF THE THEME

(7 28) A. Hypernetted operator chain equations

The U~ is treated like U, its diagrams being grouped
into five classes which, respectively, have no SOB
connecting nz, n. , and one, SOB passing through either
n ando, m andn, m ando, orna, n, ando. The
rnid and mo links are symmetric in U, but not in
U~, hence the extra class. The U~ may be written as

Fantoni and Rosati (1978) have developed a set of in-
tegral equations that approximately sums hypernetted
operator chains (HOC) by neglecting a number of com-
mutators. Consider the HOC diagram 22.1 of Fig. 22,
and assume for simplicity that all the operator links
are w type. The seven 7, . v~ operators in the diagram oc-
cur in various orders labeled i with weights zo', how-
ever, we could rearrange them and express

(7.29)

The u~t contain (R, Y, or Z)„,„(R,Y, or Z) „,and new
functions (R, Y, or Z), containing the l', :

R =f' lt'l'L/4 r

R = (f' lt' —1)l'

Qurt''I'0, ',=r„r,(~, r,r, ~,)( 7r,r, 7.,)v, r,r, 7„
+ terms having commutators.

On summing over v, and v4 we get

(8.1)

zv
J

Oem=1 7 t(T', r2) T2 '&„+commutator terms.~ ~

1 1

Y.,= QAt[VleM, ' L/4+(f"V 1)ot M~jl &~

gal

+3f +4 ~ 1

Since

(8.2)

Y„=Q AtA~h'heM~ l',
gal

Z~" = ~~Ree ee e (7.30)

(r, v,)'= —6+.7r, v, , . ' (8 3)

the 1-2 link in the first term of Eq. (8.2) is effectively
a single-operator link and may simply be included in
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PP Pa' g PA (8.8)

and the exponentiation is carried out by defining new
A

chain functions Q~ such that

2 2.I

CT'C

22.2
exp Q @~~~ P~ =1+ Q [exp(G~~~) —1]P~.

e6 P~q6

(8.9)

(8.10)

GTc
2 2.3

GT'c

2 2.4

If the commutator terms were indeed small, the HOC
equations would constitute a substantial improvement
over the FHNC/SOC equations. However, there is no
reason for the commutator terms in Eq. (8.2) to be
small. Consider the multiple-operator diagram 22.2.
Its contribution in the HOC approximation is easily cal-
culated by taking the O~ next to the exchange operator
e~ and neglecting the commutators. It is found to be

Cm)

~l

gf//~ + o ~ ~I

I'IG. 22. Diagrams 22.1 and 22.2 are typical of chain diagrams
having multiple-operator links, while 22.3 is the SOC diagram
corresponding to 22.2, and 22.4 is a correction to 22.3. Dia-
grams 22.5 illustrate the simple structure of typical diagrams
that are summed analytically to obtain vertex corrections in
Owen's method.

(8 5)

where P and m are standard spin, isospin projection op-
erators:

and

I' = —'(1 —o, c,), I"=—'(3+a, o,),
m'= —,'(1 —r, . ),7n'= —,'(3+7, v,),

Q= -', (3+cr, o, +S„).

(8.6)

(8.7)

The P~ satisfies equations of projection operators,

the links X O~ of the chain equation (6.22). The commu-
tator terms in (8.2) are much more difficult to sum.

The HOC equations negl. ect all commutator terms,
and have the same form as Eq. (6.22) with the vertex
corrections M," set to unity. The links X„„,however,
include all operator hypernets, such as the one in
diagram 22.1, treated approximately in the manner il-
lustrated above. The X«, for example, is given by the
operator equation

Q K~„o'=(g f'0' 'exp(Q G',~O~ —1 —g O'„0',
p~ ~6

(8.4)

which is a direct generalization of the link equation
(6.10) of FHNC. Fantoni and Rosati have introduced a
very useful set of projection operators P ~ to calculate
the exponential in Eq. (8.4). The P' are l.inear combi-
nations of 0',

+ ~ d ~ +~~~ ~ &~+~ ~ (8.11)

The contribution of this rather simple diagram may be
calculated exactly by treating all the operator orders.
It is found to be zero; the commutator terms of Eq.
(8.2) just cancel the first term in this case.

In the FHNC/SOC summation the multiple-operator
diagram 22. 2 is viewed as a correction to the SOC dia-
gram 22.3. It will be a small correction when the +~~'

and G~ ' are «1, as is the case in nuclear matter.
Further, the SOC diagram 22.3 has other commutator
corrections, such as 22.4, which the present HOC equa-
tions neglect. These vertex corrections can be signifi-
cant when the f~~' have a long range.

B. Calculations with independent-pair wave function

Owen (1979a) has developed a very promising varia-
tional. theory based on the wave function 4» given by
Eqs. (2.25) and (2.26). He has recently (1979b) applied it
to the g, model of nuclear matter. The f~(r, &, d, P ) of
Sec. III are used to calculate the u, &, and so his method
also has the same variational parameters d and P&. In
the low-density limit the +,p and the "symmetrized
product" 4» [Eq. (2.19)] become identical.

The diagrammatic cluster expansion of expectation
values with 4&~ has been carried out by Owen (1979a)
by a generalization of the method of Gaudin, Gillespie,
and Ripka (1971). However, the application of the meth-
od described in Sec. IV gives the same results, and we
shall continue to use the diagrammatic notation of Sec.
IV, which is only superficially different from Owen's,
to describe his method.

The diagrams depicting expectation values with +,p
are formed with the elements 1-9 of Fig. 7; however,
the wavy lines must be labeled either L or B to specify
whether they come from the expansion of the left-hand
+yp or the right -hand +». The 4» has no terms of
type u, &u» in which two or more u's have a common
particle. This restriction of +» is simply incorporated
by an additional diagram rule stating that no two wavy
L lines or B lines touch. A consequence of this rule is
that we cannot have diagrams in which three or more
wavy lines touch at a point.
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and puts all the restrictions and vertex corrections in
his coupling matrix M„'... The elements such as M««
or M,"~,„would obviously need to be zero because such
couplings build wrong diagrams. The elements such as
M~«„which build allowed chains equal the vertex cor-
rection at the vertex j in the chain built.

The somewhat larger number of chain functions does
not seem to pose a significant problem. The main ad-
vantage of the method is that it is much simpler to go
beyond the SOC approximation. Comp1. ieated operator
hypernets such as that in diagram 22.1 do not exist in
this method. The maximum number of operators at a
nodal point in a chain can be four, two from wavy lines
and two from exchange. These generate very few multi-
ple-operator links, such as diagram 22. 2, which ean be
easily calculated.

Separable diagrams such as 9.3, 9.5-9.V do not exist. In
the typical case, for example when' is RdL vertex inboth
the irreducible and the separated parts, only the separated
diagrams illustrated in diagram 22. 5 exist. These
form a simple geometric series which can be summed
analytically. In the previous method the calculation of
separable diagrams having many operator rings with a
common articulation point becomes very tedious. Thus
Owen's method, though a little more complicated at the
SOC level of computation, has enormous advantages in
computing multiple-operator diagrams.

It is interesting to ask whether +zp or +» is a better
variational wave function. Such a question can always
be settled by computing numerically the energy expec-
tation value with both Czp Rnd Cgp but simpler argu-
ments could be more illuminating. The central corre-
lations in @z~ [Eq. (2.26)] are treated in the Jastrow (or
equivalently SP) approximation, but in principle we
could also treat them in the independent-pair approxi-
mation. I et

f'= 1+u'. (8.13)

The wavy lines must also carry the operator label p.
In the previous theory a wavy line labeled p repre-
sented 2f'f ~0~, and the operator O~ could be on the left
or right side of the Hamiltonian H with a probability of
1/2. The wavy lines pL(pR) represent f'f z'Oz' with the
operator on the left (right) of H. The double wavy line
(element 3 of Fig. 7) must now be labeled pL, qR, and
it represents f ~f 'Oz'CP, the operators O~ and 0' being on
the left and right side of H, respectively.

In building chains with the 4» we have to be careful
to avoid connecting links Ã„'„.„.to 2C;,, z~ or G',, ,~ [Eq.
(6.22)] when both contain wavy L lines or R lines end-
ing in the nodal point j. This requires a more elaborate
classification of chains Q~„,» and links ~~„,,&. The
subscript ~ referring to the end j must now specify
both the exchange pattern and the occurrence of wavy L
and jil lines ai j. Thus the number of chains is much
larger. For example, the four parts Q„~~~ q~, Q~~„~ q~,

to be considered explicitly. Symmetry under the ex-
change of L with R can, however, be used to reduce
the number of required chain functions. Owen writes
the chain equation (6.22) in a matrix form

(8.12)

Then the IP analogue of the +~ will become

(8.14)

IX. RESULTS

In this section we summarize the results obtained by
the variational methods using correlation operators, as
discussed in the preceding sections, and compare them
with results obtained by other methods.

A. Neutron matter model L 3

The v, model interaction is of the form v', &+ v'„.(o,"a&);
the v'„.and v'„.are given by Owen (1979a) and are based
on the potentials of Bethe and Johnson (BJ) (1974). The
F operator has the form f;,.+ P, f'z, (g, o,.), and ha.s been
used in both the 4 [Eq. (2.19)] and 4, [Eq. (2.26)]
wave functions. The calculation with ps~ (Lagaris et
al. , 1978) uses the FHNC/SOC approximation, while
that with the 4z~ (Owen, 1979) sums all hypernetted op-
erator chains. The results of both calculations Rre
summarized in Table VI. Owen gives results for both
the PB and JF kinetic energy prescriptions (Zabolitz-
ky, 1977), while the +» calculation uses the PB form
only. Also listed are energies obtained with the Jastrow
wave function. without any f' correlation; both @z~ and
4» reduce to the same +~ in the limit P,—0.

The f' ha.s a very small effect, on the E(p) of the v,

TABLE VI. The E(p) i.n MeU of the v3-model of neutron mat-
ter.

E(+zp, JF) E(4zp, PB) E(4'y, PB) E(eJ, PB)

0.17
0.3
0.4

17.2
29.'1

4'1 .1

17.0
28.2

38.8

17.4
28.8
39,9

17.8
29.2
40.3

This 4» is not a very good wave function; for example,
it gives only half of the correlation energy of Bose
liquids interacting with nuclear-type Yukawa potentials
(Owen, 1978). One understands the deficiency of 4&~
by noting that when the potential has a strong repulsive
core f'(r -0) -0, and 4z-0 as any z,&-0; but the +zr
does not vanish when y,&-0. However, such a simple
criterion for deciding between Owen's 4zp Rnd 4gp is
not yet available.

The gasp has additional terms of the type
fz', f& +,p&~), absent in the +z~. They contribute to
many different separable and chain diagrams, and g
pvjoxj it is difficult to estimate their net contribution.
As a matter of fact, the current results in nuclear
rnatter indicate that +» and +zp give very comparable
energies. The +» has a formal advantage which ean be
easily seen by considering a spin-one-ha. lf fermion
fluid having central z' and spin-spin ~ parts in its two-
body potential. If we completely spin-polarize, the liq-
uid, its variational wave function may be expected to go
over to a Jastrow wave function for fermions interacting
with an effective central potential g'+ v'. The +» has
this property while the Q» does not.
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model due to very large cancellations. The S'0 and &z
decrease, while W, increases, as P, is increased keep-
ing the total energy almost constant. For example, at
d= 2.3&„the E(4», PB) and W, are, respectively, 29.2
and 0.0 MeV for P, = 0, and 28.8 and 7.4 MeV for P,
= 0.5. Thus it is very difficult to calculate the energy
gain due to the f' correlation in this model. However,
it is encouraging to note that the SOC approximation
used to calculate the large W, contributions seems to
be reasonably accurate in this case. Owen also does a
calculation which he calls "SOC" using the +,p. He
fails to obtain a, minimum in E(d) in this calculation,
but his "SOC" calculation is significantly different
from the single-operator chain approximation which is
presented here, and used in the 4» calculations.

Pzo 2 pg 2 4
——0.4

Pi= s, 6=1
Pi=2, 4

TQ

2-body
Wp(MB)

~~(MB) + U~
U

31.85
—65.76
-6.91
13.02
18.30
—2.97
—1.07
—0.91

—14.45

31.85
—59.1 6
-6.30

6.46
12.21
-1.01
—0.20
-0.80

-16.95

31.85
—52.75
-5.28

0.77
10.35
0.05
0.48

—0.60
—15.13

TABLE VII. Retd v6 E(k&—1.6 fm-', d= 2.5&p) ln MeV.

31.85
—10.75

1.97
0.0
0.0
0.0
0.18
1.93

25.18

B. Nuclear matter vs models

The Reid v«and BJ-II z«models are obtained by
expressing the 'S„'S,—'D» 'P» and 'P, —'E, pote&-
tials in the Reid (1968) and Bethe-Johnson-II (1974)
interaction models as Z, v'(r)O'~". The v. ..poten-
tials are neglected in the v, models. The HJ g, model
is obtained by neglecting the (I. S) and quadratic spin-
orbit terms in the Hamada-Johnston (1962) potential,
while the GT-5200 potential of Gammel and Thaler
(1960) is itself of a v, form.

The err and tv correlations and chains are most im-
portant in nuclear matter, and the energy is more sen-
sitive to P„and d than to P„.It is very insensitive to
P„P„andP,. In the calculations based on the FHNC/
SOC equations the equilibrium value of P„is generally
close to unity, but that of P„is generally &1. The con-
tributions to E(kz, d, P,) for the Reid (BJ-II) v, model
at its minimum are given in Table VII(VIII). The f,
f', and f" lower the energy by 2(5) MeV. As in the v,
model of neutron matter, there is a very large cancel-
lation between the two-body and the W, contributions
due to f', f', and f~. The largest contribution of f'
and f"from many-body clusters is via the W, term.
The contributions to E(kz—- 1.3 fm ~) of the Reid, BJ-II,
HJ, and GT-5200 v, models in FHNClSOC calculations
are compared in Table IX.

The E(k~) of the v, and v, models, as obtained in vari-
ous calculations, is shown in Figs. 23-26. A brief de-
scription of the various calculations along with their
references is given in Table X. An estimate of the er-
rors in SOC calculations is discussed in the next sec-
tion. The error in the energy expectation value of the
Reid and BJ-II e, models is -+1 MeV at @~=1.6 fm '.
However, the variational wave function neglects the
explicit k-dependent terms in the correlation operator
F. From Fig. 4 we may expect these to lo~er the en-
ergy in the 0~=1.6 fm"' region by -1 MeV. Thus the
estimated error in the SOC energies in the equilibrium
region is +0 to -2 MeV. The errors in SOC calculations
of the HJ and GT-5200 models have not been analyzed
in such detail, but we may expect them to be similar.

The energies with @zp (Figs. 23 and 24) have been
calculated with the Jackson-Feenberg (JF) kinetic en-
ergy expression, and at all P, =1. The JF energies
were found to be higher by an MeV in the v, model, and
we may also expect some lowering of the 4,p energies

TABLE VIII. BJ-II v6 E(k~——1.2 fm"~, d= 2,25&p) l.A MeV.

Pi=1
Pg=5 6

Pc= p 4=0.6
P) 5 6=1.1
P- 2 4-0

TQ
2-body
Wp(MB)

TV

W~(MB)+ U~
U

1 7.92
—39.70
—0.82

3.43
14.68
—1.03

0.62
—0.19
-5.09

17.92
-35.48
—0.98

1.85
10.73
—0.56

0.42
-0.54
-6.64

17.92
-24.1 7
-0.80

0.58
6.79
0.25
0.12

-0.78
-1.25

17.92
-8.40
-0.12

0.0
0.0
0.0

—0.01
0.45
9.83

by varying the P&. So the error in the preliminary IP
curves is probably -1 to -4 MeV in the range k~
= 1.4-1.8 fm '. The IP energies may be very reliable
upper bounds. Owen's method is capable of giving more
accurate energies and error estimates, which we hope
will soon be available. From the present results it ap-
pears that 4,~ and 48~ may give similar E(p) in Reid v,
and GT-5200 models, the +» being a little better at low
densities, and 4» a little better at high densities.

Typically the I OBT approximation gives too high en-
ergies; however, the three- and four-body cluster con-
tributions lower the BBG energy of the Reid v, model
below the variational SOC and IP energies. The esti-
mated error in BBG energies in the Reid z, model is
-+0.5 to +3 MeV over k~=1.4 to 1.8 fm '. The BHF
equilibrium density for the HJ and GT-5200 z, models
is -30% lower than that given by SOC calculations,
while the RBHF calculations, if carried to higher den-
sities, might give equilibrium densities closer to the
variational results. The RBHF E(p) is probably too low
in the HJ v6 model.

At low densities the CBPT energies are in excellent
agreement with the SOC energies, but at large densi-
ties they are much lower. The cluster expansion is
truncated rather severely at the three-body level, and
only the second-order correlated basis perturbation
term is included in the present CBPT calculations. A
higher-order calculation in the CBPT approach will
probably give higher energies at high p. The failure of
the present CBPT calculations to obtain a minimum in
the E(p) of the GT-5200 model also indicates that they
overestimate the binding at high p.

The present HOC results should be taken with some
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TABLE IX. E;„(k~=1.3 fm ) for various potentials in Mev.

Model

d/xo
P;=2, g

~z=S, 6

Tp
2—body

wc
~s
~c~
W~(MB) + U~
U
E

Reid v6

2.25
0.4
1.0

21.03
—42.28
-0.21

2.79
6 44

—0.42
0.26

—0.59
-12.98

2.25
0.6
1.1

21.03
-37.55
—3.96

4.01
11.71
-0.87
—0.17
—0.76
—6.56

HJ v6

2.35
0.5
1.0

21.03
-37.04
—0.15

2.31
5.19

-0.35
0.23

-0.23
—9.01

GT-5200

2.42
0.75
1.0

21.03
—50.28

1.77
3.43
6.83

-0.66
0.69

-0.32
—17.51

LLI

I.O
-I 5

-20—

-25—

I.2 I 4
I g I

I,8 2.0

SOC

2.2

caution because the calculated energies do not exhibit
a minimum with respect to variations in the correla-
tion range d. The CBPT calculations also have this
problem to some extent at high p. The HOC energies
are quite sensitive to d (Fig. 25) and thus very uncer-
tain. The present HOC calculations neglect all com-
mutator terms, including those of the separable type.
The g, is quite large, and hopefully the HOC calcula-
tions will exhibit minima when the separable and other
commutator terms are included. It was noted by
Wiringa and Pandharipande (i978) that the variational
energies in the FHNC/SOC scheme decrease rapidly
with 4, without exhibiting a minimum when the commu-
tator terms are neglected.

k, (f )

GT- 5200

CBPT
HOC

-QP

FIG. 24. The E(kz) for nuclear matter with the Gammel-
Thaler 5200 potential in various calculations, as described
in Table X.

C. Convergence of FHNC/SOC calculations

There are two major approximations involved in the
FHNC/SOC summations. First is the assumption that
the major contribution of passive noncentral correla-

I.O
-5

l.2 l.4
'I

l.8
l

III
/

LOBT

2.0 2.2

I.O
0

l.2

k (f )

I.6 l.8 2.0 2.2

-I 0; /r

LOST

IO-
O CBPT

SOC

LLI BBG

-l5—
RBH

----~HOC (d=2, lefm)

~HOC (d=2.38frn)

Reid v6

HOC

HJ

-30
FIG. 23. The E(kz) for nuclear matter in the Reid v6 model in
various calculations, as described in Table X.

-25
FIG. 25. The E(kz) for nuclear matter in the Hamada —Johnston
v6 model in various calculations, as described in Table X.
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I.O
0

I.2

k (fm')

I.8 2.0 2.2

-I 0—

-l5—

v and v models (SOC)6

tions can be taken into account with single-operator
chains. Second is that separable diagrams having many
operator rings at a common articulation point are
smaller than those having only two. These two approx-
imations have been recently studied by Wiringa (1979)

FIG. 26. The E(k~) for nuclear matter in Reid models v6 and
vs, Bethe —Johnson II (BJ-II) models v6 and vs, and BJ-IIA mod-
el v8, calculated in the SOC approa. ch, and Reid model v8 cal-
culated with a simple perturbation method (PERT). The solid
line C L denotes the "Coester line" passing through the equili-
brium points of the phase-equivalent v8 models. The curve
labeled EXPT has a compressibility of 250 MeV and the empir-
ical equilibrium point.

by calculating the leading corrections. The corrections
are found to be quite small (-1/10) compared to the
leading terms. Moreover they tend to cancel out, and
the net change in the energy-density curve of the Reid
and BJ-II ~, models is negligible.

The SOC approximation may be tested by looking ai
corrections to W, (diagram 19.2), which gives the con-
tribution of diagrams with one SOC. The bulk of W',

comes from the G~, chain, whose leading contributor
is the three-body diagram 27.1 of Fig. 27 we have dis-
cussed so often. The importance of this diagram was
also stressed by Brueckner (1976), who finds that it
represents the bulk of Pauli exclusion effects in varia-
tional theory. At k~= 1.6 fm ' it gives a total contribu-
tion of -9.5 MeV, where the total g, is -6.5 MeV. The
leading multiple-operator correction to diagram 27.1
is 27.2, which is found to be ——1/7 of 27.1 over a wide
density range. The other possible corrections, such as
diagram 27.3, should be even smaller. For example,
in going from 27.1 to 27.2 an f~ is replaced by 2f ~~',
while the 2f~ in diagram 27.1 goes to f~~' in 27.3.

Terms with more than one SOC have also been ex-
amined. The diagram 27.4 with two G„,chains is typi-
cally much less than 1/20th of the W„which is under-
standable since the G~'s are &0.1 (Fig. 17).

All once-separable diagrams having passive SOR,
plus some twice- and more-separable diagrams like
19.6, are included in the basic FHNC/SOC calculation,
in an exact self-consistent manner. Diagrams like 19.7
are approximated and those like 19.8 are neglected.
The diagrams 19.7 and 19.8 are now calculated; the re-
sults are given in Table XI. The total W, is -64.4 MeV
at the parameters in Table XI. But the part of the W,
(diagram 19.1) having (f'H'f') „doesnot contribute to
separable diagrams. The first line of Table XI gives
the operator ring parts of TV0 which can form separable
diagrams. It is clear that the addition of a separable
ring reduces the diagram by -0.1. The consistent solu-
tion of SQ{ equations sums many important diagrams,

TABLE X. Index to calculations shown in Figs. 23—26.

LOBT: Lowest-order Brueckner theory; two-body cluster calculation with standard choice
[U(k & pq) = 0] of spectrum; Day (1978b); Lejeune and Mahaux (1979).

BBG:

BHF

Br ueckner-Bethe-Goldstone; two-, three-, and estimates of four-body cluster
contributions with standard choice of spectrum; Day (1978b).

Brueckner-Hartree- Fock; two-body cluster contribution with continuous choice
[U(k &QE) ~0] of spectrum; Lejeune and Mahaux (1979).

RBHF: Renormalized Brueckner-Hartree-Fock; two- and parts of four-body clusters with
continuous choice of spectrum; Lejeune and Mahaux (1979).

CBPT: Correlated basis perturbation theory; two- and three-body contributions to varia-
tional energy expectation value plus two-body second-order perturbation correction;
Kurten, Ristig, and Clark (1979).

SOC:

HOC:

IP

Single-operator chain (with commutators): Variational energy for symmetrized
product wave function calculated with FHNC/SOC method; Lagaris, Pandharipande,
and %'iringa (1978).

Hypernetted operator chain (without commutators): Variational energy for symme-
trized product wave function with a fixed correlation range calculated with HOC
method; Benhar, Ciofi degli Atti, Fantoni, and Rosati (1978).

Independent pair; variational energy calculation with independent-pair wave function;
includes hypernetted operator chain and commutator contributions; Owen (1979).
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27.I 27.2
bbc

28. I

I
I

I
'n

bbc

27.5

GP
rx'

27.6
cbc

2 8.3 284
m

27.7 27.8 27,9
FIG. 27. Diagrams illustrating the leading corrections to the
basic FHNC/SOC calculation.

such as 19.6 and 19.7. The remaining diagram 19.8 is
—1/10 of 19.3. The vertex correction in 19.8 must be

iterated self-consistently io sum diagrams of type 27.5
The net correction from these diagrams is 10/o (- —1.5
MeV at kz

——1.65 fm ') to the total W, . These solutions
still do not sum diagrams like 27.6, which would give
-1/o of W, .

The basic equations also neglect separable diagrams
of the type 27.7, 27.8, which have passive multiple op-
erator rings. Of these, 27.7 could be significant, while
the rest should be much smaller than 27.7. The vertex
correction in diagram 27.7 is the largest correction to
the basic FHNC/SOC calculation. It increases the W,
by -15% (-+2.5 MeV at kz ——1.65 fm '). Curiously enough
this repulsive correction just about cancels the attrac-
tive contributions of diagrams 27.2 and 19.7.

Diagrams of type 27.9 superficially appear to be cor-
rections to the large separable diagrams in TV„but in
fact they are much smaller. The 8", is large because
of the long range of f~~'; however, at large r~ the peal

link in diagram 27.9 is practically zero. These dia-
grams are incorrectly treated in the basic scheme as
SOB in the central chains G'„„,[Eqs. (6.34) —(6.37)]. A
modification of the FHNC equations by Wiringa (1979)
allows one to sum all central chains with nontouching
SOR in the middle, and no SOR at either end. Diagrams
like 27.9 can then be added explicitly and exactly. They
give a contribution of - —1 MeV, which largely compen-
sates the change in W, from cleaning up the touching
SQH's in the Q„„,.
TABLE XI. Contribution of separable diagrams W in MeV in
Heid ge model at k&=1.65 fm, d=2. 6yo, p~= pT= p« ——0.5 and

P~
=

P~
= 0.95.

FIG. 28. Diagrams 28.1—28.3 occur only in the ~8 models; they
give zero contribution in v6 models. The leading G„", ' and
BWz terms are shown by diagrams 28.4 and 28. 5.

In view of the cancellations among all these higher-
order corrections, the energy minima for the Reid and
BJ-II v6 models calculated by the FHNC/SOC prescrip-
tion are probably accurate within +1 MeV. This can-
cellation may not persist in other systems or at very
high densities. Hence it is advisable to supplement the
FHNC/SOC calculation with diagrams of type 19.8,
27.2, 27.7, and 27.9 and the corrected G'„„,equation.

D. The vs problem.

There are two striking differences between the v, and
the v, problems. First, the C parts of a product of v,
operators is a number or a function of r„the particle
coordinates, but that of a product of v, operators is in
general an operator because of ihe V in the angular
momentum operator L. So we have a number of new
terms; for example the separable diagram 28.1 of Fig.
28 now contributes because the V's in 5 „operators
(the I S is denoted by 5) can operate on the f~ in the
connected diagram 28.1, but noi in the separated dia-
gram 28.2. Second, the eight v, operators do not form
a closed set. I agaris and Pandharipande (1979) find
that the set of operators needed to treat the v, problem
includes twenty-two operators: 1, a, v, o T, n(A, B),
n(A, B)r, P(A), and P(A)v. Here A and B are i:he vec-
tor operators r, V, and L; n(A, B) are generalizations
of the tensor operator:

o(A, B)= —,(0, Ao, B+ o, .Acr, B) —o, cr, A B;Descr iption

Irreducible OH
Once- separ able
Tw ice- separable
Twice-separable
Twice-separable

Diagram No.

19.3
19.6
19.7
19.8

Contr lbution

—92.0
+18.1
-1.8

1 w 2
—1.9

and P(A) that of the spin-orbit operator:

P(A) = ~ (o, +(r,) A. ' (9.2)

The vector operators A do not commute, but, it may be
verified that

o(A, B)= o(B,A).
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The n and P operators retain the useful. property

o, .o,n(A, B) = n(A, B)o; o, = n(A, B),
o, .o.P(A) = P(A)o, o, = P(A),

of the tensor and spin-orbit operators.
The spin-orbit interaction cannot be treated as a

weak perturbation. The first-order shif t

&E= g,
~

&H
~
4,)/(0,

~
4,),

where

(9 4)

(9.5)

(9.6)

v~~ . O~ +v~&~ . O~& (9.7)

TABLE XII. Contributions to the energy of Beid and BJ-II g8
models.

Beid

p~(fm ')
P~ =P~=P~T
pg =pgg

Z6 (MeV)
B2-Body
aw, (MB)
EIW~
&PWs
&IC
~TOr
jv(~ )

1.7
0.83
1.1
0.65

-14.09
-3.11

0.23
—2.98
+2.44
+0.32
—3.09

-17.18

1
0.9
1.1
0.7

-3.79
—4.82
-0.03
-3.51
+3.05
+0.14
-5.17
-8.95

and +, is the variational wave function for the ground
state of the v, model is quite large and positive. The
Reid v, energies obtained by a first-order perturbation
treatment of the spin-orbit ioteraction are shown in
Fig. 26. The W diagrams containing ft""g 't"f' "'
give the dominant contribution to d E.

As shown in Pigs. 5 and 6, the spin-orbit forces gen-
erate significant spin-orbit correlations and also have
an effect on the ft='. An interesting quantity is the ex-
pectation value of the (&, Hamiltonian with the ft=6 of
the v, correlation operator. This quantity, called "E6"
in Table XII, can be calculated easily with the FHNC/
SOC method. It corresponds to the sum of all energy
diagrams of the vs model that do not contain the v ' "or
f~(~". The E6 is generally 2 —3 MeV higher than the
ground-state energy of the v, model shown in Pig. 26.

Lagaris and Pandharipande (1979) calculate the v,
model energies by adding the contribution of selected
diagrams having v ' "and ft' "to E6 These e.xtra
contributions are prefixed by a letter B in Table XII.
For example the B2-body gives the contribution of iwo-
body diagrams having spin-orbit potential and/or cor-
relations. It is negative, since the contribution from
terms having f'v~(~"f~(t" overcomes the positive con-
tribution, of the f t(tt)t&s(tt)f t(tv) terms It js also much
smaller than the two-body contribution contained in E6.
The order of magnitudes of the contributions in E6 can
be obtained from Tables VII and VIII.

The many-body contributions to Bpp are calculated
with the G'„„,and found to be rather small, while BTV,
containing G~„=,' ' is estimated to be &0.5 MeV and neg-

lected. Separable diagrams having 5 operators in the
interacting ring only (BIW,) and the passive ring only
(BPW, ) are large but tend to cancel. It is necessary to
calculate these separable diagrams correctly to obtain
a reasonable minimum with respect to variation in

P~(t, &. The RIW, has large negative contributions that
are linear in P~(~, &. These come from the L operators
in (&~„andf „operating on the F~. The BPW, is totally
quadratic in P~(~, &

and repulsive.
Unlike the O~&,. ", which are either linear in both g,

and o,. or independent of 0, and 0&, the O~& "have two
terms, one linear in 0„the other in o, Hence operator
rings having single b(br) links do not contribute. The
simplest many-body rings containing two b(br) links
are shown in Fig. 28, diagrams 28.3 and 28.4. These
give rather small contributions, labeled BIC in Table
XII, indicating that the effect of f~(~" in chains may not
be very important. The diagrams containing derivative
b(b7 ) lines also appear to be small. The two-body Wz
diagram 28.5, which is generally the largest, is itself
quite small. In Reid v, it is -0.23 MeV at k~= 1.7 fm
while in BJ-II v8 it is -0.17 MeV at kz—- 1.4 fm; it is
included in. the B2-body of Table XII. The many-body
BR~, BU~, and BU are neglected. The BTOT of Table
XII gives the estimated contribution of all diagrams
containing o'( & and/or f"("), and &(v, ) gives the total
energy.

The Nk~) of Reid v, and v, models is quite similar;
however, this is due to chance cancellations. The in-
trinsic effect of the L'3 correlations is better described
by the difference between Reid (&, (perturbation method)
and (&, (SOC method) curves. The L S potential, s are
much stronger in the BJ-II model (-three times those
in the Reid model), and they have a more visible effect
on the BJ-II E'(kz).

Earlier estimates (Wiringa and Pandharipande, 19'19)
of the effect of L S potentials on the E'(k~) were much
too large, mostly because the repulsive BPW, diagrams
were not calculated in these calculations. We note that
in the present density range (k+&2.5 fm ~) the v, vari-
ational calculations do not exhibit instability towards
collapse as predicted by Calogero and Simonov (1970)
at very high densities.

We have also shown in Fig. 26 the E(k~) of a BJ-IIA
v, model calculated similarly. The interaction in the
TS = 10, 11, and 00 states of this model is the same as
that in BJ-II, but it has the 'S, —'D, potential "5.595"
in the TS= 01 states, where BJ-II uses the potential
"6.55." The BJ 'S, —'D, potentials are labeled by the
percentage of D state in the deuteron. Thus the BJ-IIA
has a slightly weaker tensor potential and it gives a
little more binding.

X. OUTLOOK

The three v, models (Reid, BJ-II, and BJ-IIA) are
phase equivalent; they all fit the 'S„'S,—'D„'P„
and 'P, —'E, phase shifts. The equilibrium points pre-
diced by these models form a "Coester line" shown in
Fig. 26. It misses the empirical point by a significant
margin. This clearly indicates deficiencies in the con-
sidered model Hamiltonians for nuclear matter and/or
the many-body calculation. We first discuss possible
improvements in the many-body theory; much of the
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work reviewed here is meant to eliminate the uncertain-
ties in the many-body calculation. The discussion of
errors in the preceding section suggests that we can cur-
rently calculate the equilibrium energy of Beid type
models with a -2 MeV accuracy, and the equilibrium
k~ within-. 2 fm '.

A. Variational method

In the past few years significant advances were made
in the variational theory of helium liquids to remove in-
herent restrictions in the variational wave function +„.
Euler-Langrange equations were developed, by min-
imizing the energy expectation value, to find the opti-
mized f z without any external constraints such as the
range d (Lantto and Siemens, 1977). Much of this work
has been reviewed recently by Ripka, (1979), and it
could be possible to extend it and obtain Euler-La-
grange equations for the f~ of the correlation operator.
These would eliminate the need for external parameters
such as d and P~. The leading part of the momentum
dependence of the F operator, and a three-body corre-
lation, mere included in the variational wave function
by Schmidt and Pandharipande (1979a), thus eliminating
other restrictions in the traditional +~. It would be
quite possible to calculate nuclear matter energy with
momentum-dependent correlations, which are in fact
no more difficult than the spin-orbit correlations. It
would also be possible to include a simple f,(r„r,, r~)
in the +„.However, comparison of the energies ob-
tained for the v, models with the IP and SP wave func-
tions suggests that we examine the effects of three-body
spin-dependent correlations in nuclear matter. This
comparison could be premature at present, for other
differences such as those in P~ and the kinetic energy
prescriptions also contribute to the difference between
the available SP and IP energies. Nevertheless, the
Qs p contains three -partic le cor re lations of the type
f~(r, ,)f'(x,.~){O~„O;.j absent in. 4». This extra, corre-
lation appears to increase the energy at small p. The
results displayed in Fig. 23 definitely indicate that the
+» energies are too high by -2 MeV in the Reid z,
model at k~= 1.4 fm . If the +,~ energies continue to
remain above the +» energies at high p, even after
varying P~ and kinetic energy prescriptions, then we
have a more complex problem.

In studies of helium liquids it was necessary to im-
prove upon the calculation of the energy expectation
value when more general 4„mere introduced. The PB
kinetic energy prescription, which works quite well
with the short-ranged f ~(d, w), d-2y„can give arbi-
trarily low energies when more general fz allowed. So
most calculations use the JF kinetic energy prescrip-
tion when optimum f~ are used. However, the JF en-
ergy is too high in the HNC approximation, and it con-
verges rather slowly. Smith et aI. (1978) had to calcu-
late diagrams up to HNC/6 to obtain reasonable ener-
gies for liquid He with the optimum f~. Schmidt and
Pand haripande (1979b) find it convenient to generalize the
HNC scheme to three point functions which represent con-
tributions of hypernetted cloth (rather than chain) with
three ends. Such generalizations were considered in

statistical mechanics by Wertheim (1967), and may be
used to calculate leading HNC/5, 6. . . diagrams by inte-
gral equations.

The energy of nuclear matter is much more difficult
to calculate because of the spin operators. The FHNC/
SOC method may be useful only when f~~' and G~~' are
«1. The 4,~ offers many advantages in this respect.
It will probably be necessary to incorporate the com-
mutator terms in Fantoni and Rosati's HOC equations
if it becomes necessary to calculate the energies with
g»'s containing stronger f~~'. The most accurate en-
ergy evaluations are done with the Monte Carlo method.
Development of techniques to perform Monte Carlo
simulations of -spin-isospin correlated nuclear matter
on computers will significantly reduce the uncertainties
in the many-body calculation. Further, it should be
much simpler to treat finite nuclei with the Monte Carlo
method. The chain summation techniques become much
more complex in a finite system (Fantoni and Rosati,
1979).

TABLE XIII. The details of three-hole 1.ine contributions in
BBG theory with acid v 6 potential.

Bubble in

k~ particle line
Three-body Three-body

ring ladder Hole —hole

1.4
1.6
1.8

+3.3
+9 ~ 5

+22.2

-5.7
—10.9
-18.6

0 4
-0.6
-0.9

B. Brueckner-Bethe-Goldstone expansion

The results of BBG calculations stress the need to go
beyond two-body cluster contributions to obtain a rea-
sonable E(p) in the region of equilibrium density.
Rajaraman and Bethe's (1967) work indicated that the
three-hole line graphs that correspond to bubble in-
sertions in particle line, three-body rings, and three-
body ladders have contributions of order KR, and
Day's (1978a) results for Reid u, models, summarized
in Table XIII, confirm this. We note that in all g, mod-
els g&0.25 at equilibrium density (Lejeune and Mahaux,
1978), and zW, is of the order of 10 MeV.

All lowest-order calculations, LOBT, BHF, or
BBHF, can have errors of order KW. Their inadequacy
can be most clearly seen in the results obtained for the
g, model of nuclear matter and summarized in Table
XIV. The zr, model has only a central interaction, and
has been studied by Zabolitzky (1976) with a Jastrow
wave function, and by Lagaris (1979) with a symmet-
rized product wave function. The backflow has little
effect, and the Jastrom wave function is a very good
approximation in this model.

Grange and Lejeune (1979) have studied the v, model
with the standard [U(k &k~) = 0] and continuous [U(k & A;~)
w0] choices of particle spectrum. In this simple model
it is seen that the LOBT energies are too high, BHF
energies are low, and RBHF much too low. At the (two
+ three)-body level the U(k&k~) = 0 and U(k&k~) c0 en-
ergies become rather similar and are only -5%%uo above
the var iational results.

Detailed calculations of the four-body cluster contri-
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TABLE XIV. Nuclear matter mode]. v &.

Method U(k &kg) kg=1. 6 fm -- kg=1. 8 fm

Brueckner theory E(kz) in MeV.

LOBT (2-body)
BHF (2-body)
HBHF (2+parts of 4)-body
(2+ 3)-body
(2+ 3)-body
(2+ 3+estimate of 4)-body
(2+3+estimate of 4)—body

0
&0
+0

0
&0

0
w0

—83.6
-108.4
-115.2
—88.6
—89.3
-89.1
—96.9

-120.3
—164.1
-180.1
—127.4
—133.5
—128.7
—137.0

Brueckner theory ~2

LOBT
BHF

0
Q0

Var iational E(k~)

0.06
0.22

0.07
0.28

Jastrow FHNC
(Symmetr ized product FHNC/SOC)

-95.1
-96.9

—141.2
-143.1

bution are not yet available. Their estimates, how-
ever, seem to be rather different for the two choices.
The present results indicate that the U(k&k~) = 0 ener-
gies converge rather rapidly to a value higher than the
variational result, while U(k& k~) 40 energies have a
poorer convergence, but they may converge to the vari-
ational result. The general trend of cluster contribu-
tions with the U(k&kz) 40 choice is quite similar to that
in variational calculations; the two-body is too low, the
(two+ three)-body too high, and the four-body substan-
tially attractive.

The two-body contribution rc, to the x is quite different
with the two choices, indicating that many-body cluster
contributions to v are significant in either or both
choices of U(k&kz). The possibility of the energy cal-
culated with Brueckner -Bethe-Goldstone theory being
dependent on choice of U(k&k~) was discussed earlier
by Baker and co-workers (see Baker, 1978, and ref-
erences therein). Arguments in favor of a continuous
choice for the U(k) have been recently discussed by
Lejeune and Mahaux (1578). The U(k) in the v, model
can be very large (& 100 MeV), and thus it is suitable
for such studies. Accurate calculations of the four-body
cluster contributions of ihe v, model would be very
interesting.

C. The nuclear Hamiltenian

Of the three v, models, BJ-II is probably the most
promising. In the FHNClSOC approximation it gives
equilibrium k~ =1.4 fm against the empirical 1.3
fm '. However, from Fig. 23 it appears that the FHNC/
SO+ calculation may overestimate the equilibrium
k~; thus it is possible that BJ-II v, gives the ex-
perimental density. It, however, underestimates the
binding by more than 5 MeV. The BJ-IIA has a weaker
tensor force, giving a 5.5/q D state in the deuteron,
while BJ-II gives 6.5%%up. The BJ-IIA gives more binding,
but the po is already too high. The Beid v, and BJ-II
v, have similar tensor forces, but the L'8 potential and
the core in the T, S=1,1 state in Reid are both weaker
than in BJ-II. The Reid v, gives more than enough
binding but too high density.

It is well known that the interaction in the 'D, state is

not as attractive as that in the 'S, state. This difference
indicates the presence of quadratic spin-orbit or just
plain repulsive L' terms in the nuclear Hamiltonian.
The v, models are not very realistic, and a study of vip
models which include L' terms is necessary.

A signficant part of the attraction between nucleons
comes from the coupling of the +-& channel to Pf-b,
and 4-d channels in two-pion exchange processes,
much as the y"' attraction in the interatomic Lennard-
Jones potentials comes from the coupling to 1 dipole
states in two-photon exchange processes. However,
the X-4 mass difference (-300 MeV) is not. enormous
compared to typical energies (-50 MeV) involved in
nuclear matter, and it has been suggested that the +-d
and 4-4 channels must be treated explicitly in nuclear
matter. The coupling is produced by the four operators
(o', S, ,)(r, T, ,), S,',(7', T, ,), (S, , S, ,)(T, , ~ T, ,), and

8,'2~'(T, , T~,) in the nuclear Hamiltonian. The S„T,
are transition spins and isospins that convert nucleons
into 4 s and Sy 2 and S,',"are tens or operators thai con-
tain transition spins S, (see the review by Green 1976).
Nucleon-nucleon phase shifts in the S and I' states can
be fitted by static potentials containing twelve opera-
tors, eight of the v, model and the above four (Smith
and Pandharipande, 1976). Probably two more quad-
ratic L' terms are needed to obtain reasonable phases
in the D waves.

The +-4 and d -b, components in the nuclear matter
wave function can be produced via correlation operators
containing transition spin and isospin. An explicit
treatment of these channels is expected to reduce both
the equilibrium density and binding energy of nuclear
matter. In I OBT the equilibrium pp and Ep with the
Reid potential are found to be = 0.2 fm ' and —11.6
MeV, and these reduce to =0.14 fm ' and -7.9 MeV if
the N-4 channel in the S, interaction is treated in the
LOBT approximation (Day and Coester, 1976). This ef-
fect has also been studied by lowest-order constrained-
variational (LOCV) methods (Howes et ~l. , 1978; Mod-
dares and Irvine, 1979). In this approximation the
equilibrium with Reid potential occurs at = 0.29 fm '
and -23 MeV, and it shifts to =0.25 fm ' and -16 MeV
when the pf-A channel in the 'S, interaction is treated
explicitly. So it appears that to be reasonably realistic
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TtoT 2t

(T~.A)(T, .B)= —,'A B —'ir (—A xB)

(10.1)

(10.2)

(10.3)

which are also valid for S,. The C parts of products of
transition spin operators can be calculated easily.

The three-body force illustrated by the Feynman dia-
gram 29.1 of Fig. 29 is often included in nuclear mat-
ter. Contributions of this force will form a part of the
SOR diagrams of type 29.2, and they are attractive.
However, the presently available results suggest that
the repulsive contributions from diagrams such as
29.3 and 29.4 may be dominant. For example, the con-
tribution of the three-body force, in units of MeV and
fm, is estimated to be - —0.34 k~", while that of the
dispersion and Pauli correction due to transition poten-
tials is estimated from the LOBT (and LOCV) calcula-
tions to be -+ 0.7 k~5 9 (Niskanen, 1977).

The N-N interaction in high partial waves is rela-
tively unknown, but it seems to have a significant in-
fluence on the equilibrium density. In Day's calcula-
tions the leading contr ibution of the interaction in l ~ 3
states is via the three-hole line cluster energy. It is
—5.3 MeV at &~= 1.8 fm ' in the Reid v6 model, and
can influence the p, by 20-30%. These states are rela-
tively unimportant in determining the two-body cluster
energy because of the small momenta of hole states.
Thus a reasonable treatment of the interaction in / ~ 3

S

ijk

29.I 29.2

w'e may have to consider a v, 4 problem in which the
interaction is a sum of 14 operators.

A complete variational calculation with the transition
spin operators S~ and T, in the Hamiltonian and the cor-
relation operator will include a variety of chain and
separable diagrams formed with "transition" correla-
tions. The algebra of transition spin operators is quite
similar io that of Pauli spins. %'e have the basic rela-
tions:

states seems necessary to calculate the many-body
cluster contributions. The N-N scattering data are
very inadequate for determining the potential in high
partial waves. There have been substantial improve-
ments in our understanding of the N-N interaction from
the meson exchange point of view (Brown and Jackson,
1976) which may be useful in choosing the potential in
l ~ 3 states. The recent meson-theoretic potentials are
strongly momentum dependent, and Maxwell and Smith
(1979) have attempted to extend the variational method
to treat them.

In the search for a better nuclear Hamiltonian we may
also take into account some of the failures of the Reid
and HJ models in very light nuclei. For example, the
d(y, p) measurements of Hughes et al. (1976) and calcu-
lations of Arenhovel and Fabian (1977) indicate that the
D-state percentage P~ in the deuteron should be -4%
instead of the 5.5/q-7% in the Reid and BJ models.

Recent measurements of the charge form factors of
'He and He nuclei (Arnold et al. , 1978) suggest that the
point proton densities p~ in these nuclei have a substan-
tial hole. In 'He, for example, the estimated p~ is
-0.08 fm ' at the center, and it rises to a maximum of
-0.13 fm ' at 0.7 fm away from center (Sick, 1978).
The p obtained for 'He by Faddeev calculations with the
Reid model, however, peaks at -0.13 fm ' at the cen-
ter and fal.ls off monotonically.

Thus we must conclude that a suitable nuclear Hamil-
tonian has not yet been found. The many-body theory
for nuclear matter (as well as other strongly interacting
quantum systems) has made considerable progress in
recent years, and we hope that it will prove to be use-
ful in the search for the nuclear Hamiltonian.
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