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Aspects of the theory of homotopy groups are described in a mathematical style closer to that of
condensed matter physics than that of topology. The aim is to make more readily accessible to physicists
the recent applications of homotopy theory to the study of defects in ordered media. Although many
physical examples are woven .into the development of the subject, the focus is on mathematical pedagogy

rather than on a systematic review of applications.
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I. INTRODUCTION

The language, methods, and theorems of algebraic
topology, particularly homotopy theory, have been used
in the study of relativistic field theories for-over a
decade. Their systematic application to the study of
defects in condensed matter physics is more recent,
having started in earnest with the independent studies
of Toulouse and Kleman (1976), Volovik and Mineyev
(1976), and Rogula (1976).

Nevertheless the nonrelativistic applications of
homotopy theory have already had a significant impact.
In one case (the A phase of superfluid helium-3) it was
a nontrivial applicafion of the topological method
(Anderson and Toulouse, 1977) that first revealed the
possibility of some striking and quite unexpected hydro-
dynamical behavior. Applications of the method to
liquid crystals have in many cases brought a new co-
herence, consistency, and simplicity to our under-
standing of defects in these intricate systems. The
study of Poénaru and Toulouse (1977) on the crossing
of line defects demonstrates that the topological point
of view can suggest forms of physical behavior which,
to my knowledge, had not been imagined before, and
can furthermore give a systematic and precise de-
scription of such behavior which is far from obvious
to an intuition unaided by the tools that homotopy theory
provides.

At a minimum, homotopy theory provides tie natural
language for the description and classification of defects
in a large class of ordered systems. Whether it will
eventually gain as wide a currency among condensed
matter physicists as, for example, the language and
theorems of the theory of group representations; de-
pends both on how large that class of systems proves
to be, and on how many of the nontrivial topological in-
sights turn out to have direct manifestations in the
laboratory.

While its eventual importance is not yet clear, there
is no question that the topological method is currently
enjoying a vogue among condensed matter physicists,
leading to an unfortunate barrier between those who
speak its language and those who do not. This article
is intended for physicists sufficiently interested in or
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Topological theory of defects

curious about this novel approach to want to learn the
language and even some of the techniques. I have tried
to write a piece of introductory mathematical pedagogy
which always focuses on the physical applications, but
makes no attempt at a systematic review of the (rapid-
ly growing) list of materials and problems to which

the method is being applied.

The need for such a pedagogical article lies in the
nature of the mathematical literature on homotopy
theory, which can be approached only with great effort
by those with the mathematical background of a typical
physicist (as I can testify from painful personal ex-
perience). The trouble is that expositions which can
be followed by one with such a background—i.e., those
to be found in introductory undergraduate topology
texts—fail to reach many of the theorems and concepts
central to the physical applications. Expositions that
do go far enough, however, place the subject in so gen-
eral a mathematical setting and assume so high a
level of mathematical expertise, that it is not at all
easy to ferret out those occasional bits of the vastly
expanded subject that are physically pertinent.

What follows emerged from my own recent efforts to
feel my way through the mathematical thicket towards
an understanding of the recent developments in the
theory of defects. The reader is firmly warned that
I am not at all expert in topology: Virtually everything
I know (or think I know) is to be found in the pages that
follow. This has the obvious drawback that my expo-
sition may, on occasion, lapse into unnecessary clum-
siness or even error. On the other hand, because I

“plunged into the subject as innocent and impatient as

any mathematically illiterate physicist would be likely
to be, the structure I constructed to support my own
understanding stands a better chance of being con-
genial to those who approach mathematics with a
physicist’s temperament.

The main mathematical background I assume in the
reader is an acquaintance with the most elementary
terms and concepts of group theory (but not, except in
anoccasional inessential remark, with any of the theory of
group representations). Except for references to the ho-
morphism between SU(2) and SO(3), familiar to most
physicists (in slightly different terminology) from the
theory of spin 3, the required background in group
theory can be found in the first few mathematical pages
of any text on physical applications of groups. This
background is summarized in Appendix B.

I do not assume any familiarity with the properties
of continuous groups or the concepts of topology. I
have tried to treat homotopy theory and the topology of
continuous groups in much the same way that elementa-
ry calculus is dealt with by physicists: I rely heavily
on the reader’s firm intuitive grasp of the notion of
continuity, and invite readers possessing the appro-
priate blend of ingenuity and perversity to add whatever
assumptions of regularity are needed to exclude what-
ever pathological counterexamples they may come up
with. This is, admittedly, a dangerous game to play,
but it has had a long and honorable history of success-
ful practice. In my opinion the substantial gain in clar-
ity it achieves more than compensates for the reduc-
tion in certainty. Bridges would not be safer if only
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people who knew the proper definition of a real number
were allowed to design them.

The exposition is organized as follows:

Section II introduces ordered media and their order-
parameter spaces in the conventional way. Several
examples are given which are used repeatedly as il-
lustrations in the sections that follow. The relevance
of topological analysis to the theory of defects is
developed in a special case simple enough to require
none of the formalism of homotopy theory, but general
enough to permit many essential ideas to be fully
expounded.

Section III abstracts the essence of the informal
topological argument of Sec. II into the central notion
of the fundamental group (or first homotopy group) of
the order-parameter space. The fundamental group
is described for quite general a space. When the space
happens to be an order-parameter space, its funda-
mental group is shown to be directly related to the
description of line defects in three-dimensional media
or point defects in two dimensions.

Section IV gives a common group-theoretic charac-
terization to the various examples of order-parameter
spaces introduced in Sec. II. The characterization is
essentially that of the Landau—Lifshitz‘theory of broken
symmetry. Although its group-theoretic statement
might appear perversely abstract, it turns out to be by
far the most natural formulation for the treatment of
defects.

Section V' computes the fundamental group for any
space that can be given the group-theoretic character-
ization of Sec. IV. The implications of this computa-
tion for the theory of defects are illustrated with the
standard examples.

Section VI describes some striking behavior that can
arise in media whose order-parameter spaces have
non-Abelian fundamental groups. In my opinion this is
the most interesting feature yet to emerge from the
topological approach. ‘

Section VII introduces the second homotopy group,
and computes it for spaces having the group-theoretic
structure described in Sec. IV. Its relevance to point
defects in 3-dimensional media is described, and il-
lustrated with the standard examples.

Section VIII discusses whether the class of systems
to which the topological method applies includes
media with broken translational symmetry. (All of the
standard examples are translationally invariant.) I warn
the reader that my views on this point are not com-
pletely orthodox: Much of the basic literature treats
media with broken translational symmetry on precisely
the same footing as media in which only rotational
symmetries are broken, and the reservations I de-
scribe are dealt with casually, if at all. I indicate
what problems I believe must be resolved before the
method can be used with confidence when there is
broken translational symmetry. Some examples are
given in which the method does indeed reproduce well
known results, when used cautiously.

Section IX introduces some further topological ab-
stractions: higher homotopy groups, relative homotopy
groups, and exact homotopy sequences. The exact
sequence is a powerful computational tool, but is
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probably of little interest to readers who are not active-
ly engaged in topological studies. Relative homotopy
groups, however, have recently been given some direct
physical applications in their own right, which are
briefly mentioned. The relevance of the first, second,
and third homotopy groups to the classification of soli-
tons is mentioned.

Appendix A consists of a glossary of technical terms
introduced in the text, with references to where they
are first defined. Words or phrases corresponding to
such citations appear in italics in the text.

Appendix B lists the definitions and theorems of ele-
mentary group theory that are used in the text, and
summarizes the relevant features of the homomorphism
between SO(3) and SU(2).

A few remarks about supplementary mathematical
references: I have found little written after 1960 of
much help for reasons already alluded to. Texts that
try to be clear do not go nearly far enough, while texts
that do go far enough go so far that the task of extract-
ing useful results from the very general setting is at
least as difficult as deriving them from scratch by one-
self. Of the earlier postwar books, I have found
Hilton (1953) and Steenrod (1951) to be the most help-
ful. Steenrod has more than one wants to know (but
not orders of magnitude more) and Hilton, in the
relevant chapters, has not quite enough. However,
both treatises, unlike most of their successors, are
illuminated by somewhat austere but unquestionably
human presences. My favorite books are those of
Pontryagin (1966) and Weyl (1946). (The dates in both
cases are those of the second editions.) Unfortunately
they only bear peripherally on the mathematics of
interest, many important developments having taken
place after the appearance of their first editions. How-
ever, they are so beautifully and humanely written that
I commend them to readers for preliminary background
and would, if I could, make them required reading for
anyone publishing what passes these days for math-
ematical prose.

Citations of the recent literature on physical applica-
tions are only given when the sources cited might
amplify or clarify the points made here. Because this
is a pedagogical rather than an historical review, I
have not cluttered the text with citations whose only
purpose is to acknowledge sources. I have, however,
included among the references those papers from
which I acquired my own understanding of the subject,
even though not all of them are cited in the text itself.

Since few readers are likely to persevere to the end
of my essay I conclude this introductory section with
some personal acknowledgments. Jason Ho and Steve
Shenker persuaded me that I could learn homotopy
theory, Joel Mermin convinced me that I could lecture
on it, Eric Siggia helped me to understand what
Poénaru and Toulouse (1977) and Kleman (1977a) were
saying, and Andrew Somese came through with friendly
mathematical wisdom at some desperate moments.!

11t was M. E. Fisher who first suggested and repeatedly in-
sisted that I should publish my lecture notes, but I am not sure
he deserves thanks for this. -
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But my real teachers have been M. Kleman, V. P.
Mineyev, G. Toulouse, and G. E. Volovik, who have
sent me preprints and reprints from the beginning, as
well as occasional stimulating personal messages.
Finally, on almost every page the benefits can be
discerned of eight years of ongoing arguments on the
rart of pedagogy with N. W. Ashcroft.

Il. ORDERED MEDIA AND DEFECTS

For almost all of our purposes here an ordered
medium can be regarded as a region of space described
by a function f(r) that assigns to every point of the
region an ovder parvameter, The possible values of the
order parameter constitute a space known as the ordeved-
parameter space (or manifold of internal states).

We will generally take the region of space to be all
of ordinary three-dimensional space, though two-
dimensional regions can provide instructive examples
and be relevant to the physics of films. The medium is
said to be uniform if the function f is a constant—i.e.,
if the value of the order parameter is everywhere the
same. We shall be interested in nonuniform media in
which the order parameter varies continuously
through the space except, perhaps, at isolated points,
lines, or surfaces. These singular regions of lower
dimensionality constitute the defects to be investi-
gated.

A few restrictions on the form of the order-param-
eter space will be imposed in Sec. IV.B. All of
these restrictions are satisfied by the examples given
below in part A of this section, and it is through the
examination of these examples that the reader is urged
to acquire a sense of what ordered media and order-~
parameter spaces are. Some important physical
systems (for example crystals, and smectic or
cholesteric liquid crystals) are not among the examples
of part A. Such systems (characterized by a lack
of perfect translational symmetry in the uniform state)
present special problems for the topological method.
Their consideration is deferred to Sec. VIII to keep the
exposition simple and because, in my opinion, those
special problems have not yet been adequately re-
solved.

After the illustrative examples are introduced in
part A, many essential features of the theory of de-
fects are introduced in part B in the context of a
particularly simple example. Readers thoroughly
familiar with the example are nevertheless urged to
read part B, because the important topological ideas
introduced in that limited context turn out to be com-
pletely general. Part C contains a second simple ex-
ample, to illustrate how drastically conclusions can
depend on the structure of the order-parameter space.

A. Examples of ordered media

1. Planar spins

The order parameter is a vector of fixed magnitude
(conventionally set equal to unity) constrained to lie in
a plane. The order-parameter space can therefore be
taken to be the circumference of a circle, under the
usual correspondence between points on the circum-
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ference and directions in the plane. If# and ¥ are a
pair of orthonormal vectors in the plane, then the
function f(r) is of the form

f(r) =ti cos@(r)+70 sing(r) (2.1)

(the circle being specified by the vector coordinates
of its points).

The same order-parameter space also describes
superfluid helium-4, where the order parameter is a
complex scalar field of fixed magnitude ¢, but arbitrary
phase:

P(r) =poe’* ™ .

The circle can now be regarded as the unit circle in
the complex plane.

(2.2)

2. Ordinary spins

The order parameter is a unit vector free to point in
any direction of three-dimensional space. The order-
parameter space can therefore be taken to be the sur-
face of the unit sphere in 3-space. If #, 0, and % are
a fixed orthonormal triad then the function f is of the
form

fAr)=s(r)=s,(r)l +s,(r)0 +s,(r)h, sZ+s2+s2 =1,

[Note that there is no underlying lattice structure.

The reader should either regard the medium as a
ferromagnetic liquid or as a macroscopic continuum
model of a ferromagnetic crystal, in which the scale

of spatial variation of s(r) (taken proportional to the
local spontaneous magnetization) is very large on the
scale of a lattice constant. Refinements to include the
lattice structure as well are certainly of interest, but
are subject to the complications discussed in Sec. VIII.]

(2.3)

3. Nematic liquid crystals

Nematics are like example 2, except that the vector
has no arrowhead (or identical arrowheads at each
end). The order parameter describes the local pre-
ferred axis in a medium of long molecules with the
symmetry of ellipsoids of revolution. There are
various (equivalent) ways of specifying the order pa-
rameter:

(a) As a unit vector but without an associated direc-
tion. The order-parameter space is then the surface
of the unit sphere, as in example 2, except that di-
ametrically opposite points must be identified, since
rotating a molecule through 180° about an axis per-
pendicular to the axis of continuous symmetry results
in a configuration indistinguishable from the original
one. This space is known as the projective plane (P,).
(It cannot be realized as a closed non-self-intersecting
manifold in three-dimensional space, and is better
regarded as the surface of an ordinary sphere in 3-
space, with the appropriate identification of pairs of
points, just as a circle can be regarded as a line
segment with the end points identified.)

(b) If 'one is made uncomfortable by headless vec-
tors, one can define the order parameter to be the
dyadic

fx)=M(r)=a(r)i(r), (M;;=nn;). (2.4)
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Specifying M (which is just the projection operator on
#) gives all the information 7 gives except for the sign
of the direction.

(c) One can subtract from M a constant times the unit
tensor to get a real traceless symmetric matrix with
a pair of degenerate eigenvalues. This is probably the
most physical form in which to represent the order
parameter, since it can be regarded as the deviation
from isotropy of any convenient tensor property of the
medium (e.g., its dielectric constant).

4. Biaxial nematics

None of these have yet been produced, but they are
especially interesting to examine from the point of
view of the theory of defects. Biaxial nematics are like
example 3, except that the symmetry of the molecule
is reduced to that of a rectangular box (proper point
group D,). One can take the order parameter to be a
real symmetric matrix with three (fixed) distinct
eigenvalues (representing, for example, the dielectric
constant of the medium, the moment of inertia of the
object, or some other convenient property). One re-
quires almost the entire three-dimensional rotation
group to specify the orientation of such an object.
However, configurations differing only by 180° ro-
tations about any of the three perpendicular symmetry
axes are indistinguishable, and the order-parameter
space can therefore be identified with a parameter
space for the full proper three-dimensional rotation
group SO(3), provided the appropriate discrete sets
of four points (representing quadruples of equivalent
rotations) are identified. A more precise specifica-
tion of this order parameter space will be given in
Sec. IV.C. The only point to note now is that the
order-parameter space for a conceptually quite simple
medium can be rather intricate.

There is no particular reason why the point group
D, should be singled out for special attention, and we
shall also examine, under the heading of biaxial ne-
matics, media of objects whose proper symmetry opera-
tions comprise arbitrary discrete point groups.

Note that the “objects” need not be taken too literally.
The point group of symmetries of such objects can just
as well be replaced by the point group of symmetries
of the uniform medium, and the local orientation of the
objects by the local orientation of the appropriate
local symmetry axes in the nonuniform medium.

5. Superfluid helium-3

This substance has provided us with order param-
eters quite unlike any hitherto considered; its dis-
covery stimulated the resort to homotopy theory, and
the topological insights thereby gained have led to
significant advances in our understanding. The physics
underlying these peculiar order parameters and the
physical implications of the topological analysis can
be found, for example, in Anderson and Toulouse
(1977), Anderson and Palmer (1977), Mermin (1977
and 1978a) and references cited by these authors.
Here we simply note that there are systems in nature
requiring order parameters considerably more intri-
cate than those of our first five examples, and limit
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ourselves to describing a few of these order param-
eters, without inquiring into their physical interpreta-
tion. Superfluid helium-3 has several phases, and
various regimes within each phase. We consider here
only two examples:

a. Dipole-locked A phase

The order parameter is a pair of (distinguished)
orthonormal axes, arbitrarily oriented (except for

the constraint of orthogonality):
(‘5(1).&(1):6(2),@‘(2):1, &(1),(5(2):0. (2.5)

The order parameter can, alternatively, be described
by a single complex vector field,

e =$(1) +i$<2) , (2.6)
constrained to satisfy
ee*x=1, e-e=0. (2.7)

A system whose order parameter is such an ortho-
normal pair is like a generalized biaxial nematic whose
molecules have no proper symmetries at all, since the
only proper rotation leaving a pair of -orthonormal

' vectors fixed is the identity. The order-parameter

space can therefore be identified with a parameter
space for the full proper three-dimensional rota-
tion group, SO(3). We shall have more to say about
this order-parameter space below. For the moment
we only remark that the order-parameter space for
SO(3) can be taken to be the surface of a unit four-
dimensional sphere with diametrically opposite points
identified® (known as the projective space P;). Thus
the order-parameter space for dipole-locked *He-A
is the analogue of that for an ordinary nematic, one
dimension higher up.

b. Dipole-free A phase

The order-parameter field is now of the form

A(r) =7(r)e(r), (2.8)

where 7 is a real unit vector and e is the complex
nilpotent unit vector of Eq. (2.6). The relative orien-
tations of # and e can vary, as well as their absolute
orientations. The order-parameter space must be
taken as the product of the surface of the unit sphere
in 3-space (S,) ( to represent #) with projective 3-
space (P,) (to represent e) with the identification of
points necessary to take account of the fact that Eq.
(2.8) is unaffected if both # and e change sign.

With this example one begins to understand why
help was sought from the topologists. Since S, is
locally two dimensional and P, is locally three dimen-
sional, the order-parameter space is an object that
is locally five dimensional, complicated by rules spec-
ifying the identification of certain discrete sets
of points.

A small cautionary note should be added to this list
of examples: From a formal point of view the range
of values of the order parameter is, in fact, defined

2See the discussion at the end of Appendix B.
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by the order-parameter space. However, in practice
one usually starts with a definite family of objects in
mind (e.g., vectors, projection operators, cubes) and
only then specifies an abstract order-parameter space
as a convenient means of representing the possible
orientations of the members of the family. It is then
essential to verify that points in the order-parameter
space are indeed in one-to-one correspondence with
members of the family, and that the representation is
a continuous one, with infinitesimally different con-
figurations of the object being specified by infinites-
imally separated points of the order-parameter space.
Conventional coordinates (for example, spherical co-
ordinates to specify the orientation of a unit 3-vector,
or Eulerian angles to specify the orientation of a

rigid body) often fail one or both of these tests, and
their use can seduce one into erroneous representations
of the order-parameter space. For the same reasons
one must also guard against, for example, represent-
ing the orientation of a rigid body by the product of the
surface of a 3-sphere (to specify the direction of an
axis fixed in the body) with a circle (to specify the
orientation of the body in the plane perpendicular to
this axis). Here one has not introduced a coordinate
system, but the fact is that there is no way of using
this particular representation to specify all orienta-
tions of the body without running afoul of one or both of
the requirements of single-valuedness and continuity.?

B. A simple illustration of the topology of defects: Planar
spins in two dimensions

Before embarking upon a general analysis of defects,
we consider the simple example of a medium of planar
spins (example 1) in a two-dimensional physical
space—i.e., a field s(x,y) of unit vectors in the plane.
Suppose we are told that s(r) is continuous every-
where in the plane except, perhaps, at the point P,
and, in addition, we are given the explicit form of
s(r) at all points r farther from P than some distance
d. Are there circumstances under which we can con-
clude that s(r) is indeed singular at P, without any
information about the forbidden region other than con-
tinuity? The answer is yes.

Consider any circle centered on P with radius larger
than 4. The field s(r) is then known on the circle, and
we can easily measure the total angle with respect to
some fixed direction through which the vector s(r) turns
as r traverses the complete circular contour. (Let us
traverse the circle in a counterclockwise sense, and
count counterclockwise increments in angle as positive,
and clockwise increments, as negative.) Since s(r) is
continuous on the circle this angle must be an integral
multiple of 2n. The integer » is known as the winding
number. Configurations of various winding number are
illustrated in Fig. 1.

Now let the circle about P around which the winding
number is measured shrink continuously down to an

3Thus the entire surface of the 3-sphere together with that
part of the circle specifying a 0° rotation corresponds to a sin-
gle orientation of the object, violating the requirement that the
correspondence be one-to-one.
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FIG. 1. Point singularities of planar spins in two dimensions
with winding numbers +1 and +2.

infinitesimal circle about P, far inside the forbidden
region. Because s is continuous except at P itself,
and because the winding number is discrete (i.e., it
can only change discontinuously), we can conclude that
the winding number on every circle of the family must
continue to have the same value #z it had on the original
large circle. If » is nonzero, this requires s to turn
through an angle of at least 27 no matter how small the
circle becomes; the derivative of s therefore diverges
at the point P, and s is indeed singular at P.

This is an old and familiar argument, but one should
pause to admire it: if there is a singularity with non-
zero n at the point P, it leaves its signature on the
field arbitrarily far away from P. Its presence, and '
the value of n itself, can be determined by measure-
ments made as far from P as desired.

Thus # being zero on any encircling contour is a
necessary condition for there to be no singularity at P,
Is it also sufficient? Obviously not, for we can also
manufacture a singularity far inside a circle with
winding number O by suitably pinching the vector field
within a small region, as illustrated in Fig. 2. Such a

FIG. 2. (a) A planar spin
(a) singularity with zero wind-
ing number. (b) The remov-
al of the singularity in (a)
by purely local alterations
in the spin configuration.
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singularity, however, is distinguished from those re-
quired by nonzero 7 in that it can be smoothed out
again without affecting the continuity in the far region.

Contrast this with what must be done to remove a
singularity with nonzero »: The winding number must
be reduced to zero on every contour surrounding P.
Since, however, the winding number is constant for
any continuous variation of s(r), this requires that at
some stage in the obliteration of the singularity at P,
singularities pass across every contour encircling P,
no matter how remote.

The removability of the # =0 singularity of Fig. 2 is
evident from the figure itself. It can be shown, how-
ever that any n =0 singularity can be deformed away
without doing violence to (i.e., producing singularities
in) the order parameter outside of an arbitrarily small
neighborhood of P. Indeed, the removal can be
achieved without altering in any way the value of s
outside of the small neighborhood. The argument that
demonstrates this is typical of many that will follow,
so we give it in some detail. Many of the concepts and
definitions introduced there will be used, without fur-
ther elaboration, in the considerably more intricate
subsequent analysis.

We first give a slightly different way of looking at the
winding number. The order-parameter space for pla-
nar spins is a circle: any possible value s might have
can be specified by an angle, and this angle, in turn,
can be represented as a point on the circular order-
parameter manifold (see Fig. 3). Specifying the ovder
barameter along a contour in veal space thevefore de-
tevmines a mapping of that contour into ovdev-pavam-
eter space, in which the point r on the contour is taken
into that point in the order-parameter space that rep-
resents s(r). This simple fact and a few of its straight-
forward generalizations lie at the heart of the topo-
logical theory of defects.

When the contour in real space is closed, the values
of the order parameter on the contour determine a
mapping of a closed curve (the contour) into a circle
(the order-parameter space). The winding number »
is just the number of times that the mapping wraps the
closed curve around the circle (with appropriate atten-
tion to the opposite signs of clockwise vs. counterclock-
wise wrappings). It is helpful, in visualizing this, to
imagine the real-space contour being lifted out of its
plane and carefully laid on top of the circular order-
parameter manifold, each point r of the contour being
matched against the point of the circle determined by
the value of s(r) (Fig. 4). It should be clear to anyone

)

/ 6
/ (a) FIG. 3. (a) A planar spin
/ in a given orientation.

(b) The representation of

that orientation by a point

in the order-parameter

(b) space.
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FIG. 4. Spin configurations on circular contours (left) and the
maps they determine of the contours into order-parameter
space (right). (a) The spin is uniform over the entire contour.
The contour is therefore mapped into a single point of order-
parameter space. (b) The spin is nonuniform with zero winding
number. The resulting map of the contour into order-para-
meter space can be shrunk to a point. (¢c) The spin is nonuni-
form with winding number 2. The resulting map wraps the con-
tour twice around the circular order-parameter space.

who has ever wrapped a rubber band around a cylinder,
that any mapping with winding number »# can be de-
formed into any other mapping with winding number #,
but that two mappings with distinct winding numbers
cannot be deformed into one another.*

This question of whether one mapping is or is not
continuously deformable into another, plays a central
role in the general theory of defects. Some nomen-
clature is necessary to avoid phrases as clumsy as the
first clause of the preceding sentence. Two mappings
of the closed contour into the order-parameter circle
(and, more generally, two mappings of a given space
into another space) are said to be Zomotopic if one
can be continuously deformed into the other. Any ex-
plicit construction of such a deformation is called a
homotopy. Thus, for example, if f,(r) and f;(r) are two
homotopic mappings taking the points r of some contour
into the circle, then a homotopy would be a continuous
one-parameter family of mappings %,(») which agreed
with f, at £ =0, agreed with f, at £ =1, and was con-
tinuous in both # and ¢£.

It is sometimes helpful to think of ¢ as the time, and
h(r) as a time-dependent continuous deformation of one
image of the contour into the other. Alternatively,

‘Mathematicians devote a lot of strenuous effort to proving
this point, because if the only limitation on the order para-
meter is continuity, one can construct some quite bizarre
mappings. Physical ordered media being, at least in this re-
spect, like rubber bands, we shall cheerfully take the result
to be obvious. Readers who disapprove of this can extract a
proof as a trivial corollary of the much more general results
to be derived later on.
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one sometimes imagines “spreading the homotopy out
in space” by regarding { as an additional spatial vari-
able. Thus a homotopy between two maps of a circular
contour into order-parameter space could be re-
garded as a single map of a cylindrical shell, the low-
est circle being mapped by f,, the highest by f,, and
the circle at height ¢ by %;. (Evidently this is related
to the view of the homotopy as “time-dependent” by
the usual physicist’s trick of depicting events graph-
ically in time by the introduction of another spatial
dimension.)

We now return to our singularity of zero winding
number, and show how it can be removed without
at all altering (much less tearing) the configuration
of the order parameter beyond a small distance d
from the singular point P. It is convenient to intro-
duce polar coordinates with P as origin, writing the
unit vector field as s(r, 6). Note that for fixed 7,

s(r, 6) determines a map of a circle into the order-
parameter space. If we regard » as a parameter (on
the same footing as the parameter ¢ in a homotopy)
then the order-parameter configuration s(r, ¢) de-
termines in a natural way a one-parameter family of
maps of a single circle into the order-parameter space.
Since the order parameter is continuous except at

7 =0, so is the one-parameter family of maps. Note
that this family gives a homotopy between the maps of
a circle into order-parameter space provided by the
function s(7, 0) at any two distinct values of . Since
homotopic maps have the same winding number, we
recover on a rather higher level of abstraction, our
earlier observation on the invariance of the winding
number,

One can invert this rather banal observation to con-
struct from a homotopy of two maps of a circle, a
continuous order-parameter field in real space. This
kind of trick permits us to remove the # =0 singularity
in the following way. First note that a map that takes
the entire circle into a single point of order-parameter
space clearly has winding number » =0. Call such a
map sy(6). Let s,(6) be the map provided by the order
parameter s(d, 6) on the circle of radius d about P.
Since we are dealing with an » =0 singularity, s, has
zero winding number, and is therefore homotopic to
S, via a homotopy s;(6). We can remove the singular-
ity in the order parameter by simply spreading this
homotopy out over the space from » =0 to » =d, thereby
creating a singularity-free patch that joins continuously
onto the original field at » =d. Formally, we define
S(r, 0) by

8(r, 6) =s4(0), lt:r/d . (2.9)

By construction § agrees with s at » =d, it is continuous
for 0s#<d, and it approaches the constant s, as 7
approaches zero. The singularity has been removed.
The 7 =0 singularity was removed by performing
corrective surgery in an arbitrarily small neighbor-
hood of the singular point; in contrast, singularities
with # #0 cannot be removed without tampering with
the order parameter at arbitrarily great distances
from the singular point. An z =0 type of singularity is
said to be removable ortopologically unstable. Sin-
gularities with #» #0 are called fopologically stable.

s
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It must be stressed that topological instability does
not necessarily imply physical instability. To in-
vestigate the latter it is necessary to know the free
energy associated with all of the configurations con-
necting the singular with the nonsingular one. If it is
impossible to get from one to the other without
passing through configurations of higher free energy
then either, then the topologically unstable singularity
may in fact possess a considerable degree of physical
metastability.® However, a topologically stable sin-
gularity cannot be obliterated by a mere fluctuation in
the local configuration and is, in this sense, physically
stable as well.

The result we have proved about # =0 singularities is
a special case of the following more general result:

Let s(r) and s’(r) be two configurations of the order
parameter, both singular only at P and with the same
winding number. Then the structure of s in the neigh-
borhood of P can be replaced by the structure of s’ by
purely local suvgery, i.e., one singular region can be
transformed into the other without any alterations out-
side. of a neighborhood of P—there is no fopological
barrier against transforming one singular structure
into the other.

To prove this one requires a configuration s”(r)
which agrees with s when 7 exceeds a distance 4,
agrees with s’ when 7 is less than d,<d,, and is
continuous for » between d; and d,. Now the map of a
circle into order-parameter space s,(6) provided by
s(d,, 6) is homotopic to the map s,(6) provided by
s'(d,, 0). If s,(0) is the homotopy, then the required
interpolation between s and s’ is given by

8"(r, 0) =8(iar-apiar-ap» ST <d,. (2.10)

Colloquially (and, I hope, more clearly) the core of s’
is fitted into s by an interpolation provided by spread-
ing the homotopy across the intervening region. This is
illustrated in Fig. 5.

I emphasize again that singular configurations with
different winding numbers cannot be transformed into
one another by local surgery, since such a transforma-
tion requires altering the discrete winding number at
arbitrarily great distances from the singular point.

We have therefore succeeded in grouping all singu-
larities into classes (indexed by the winding number #)
with the property that two singularities in the same
class can be deformed into each other by localized
alterations in the order parameter, while singularities
in distinct classes cannot. Singularities in the same
class are said to be fopologically equivalent.

The establishment of this classification scheme used
nothing beyond the simple fact that two mappings of a
circle (the contour) into a circle (the order-parameter
space) can be deformed into one another continuously

’Although the topological method per se does not focus strong-
ly on questions of energetics, one can be led to some rather
peculiar conclusions by altogether ignoring them (as indicated,
for example, in Sec. VIII). Such considerations are beyond the
scope of this review, but it is important to bear in mind that in
many cases the topological analysis provides only a frame-
work, into which a subsequent study of energetics must be
fitted to arrive at a full understanding.
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FIG. 5. (a) and (b). Two planar spin configurations with wind-

ing numbers +1. (c) Configuration (b) has been altered to coin-
cide with configuration (a) in the core region near the singular

point, but remains unaltered away from the core region.

if and only if they have the same winding number.®
The classification scheme for the singularities was
thus entirely determined by a certain topological
property of the order-parameter space. We shall find
that similar conclusions can be reached for a large
class of ordered systems. In many cases, however,
the corresponding topological features of the order-
parameter space are not nearly as easy to grasp
intuitively, and a certain amount of mathematical
machinery can be of considerable help in extracting
the analogous results.

Before leaving the example of planar spins, we note
a few additional useful points of more general validity.
Suppose there are two singular points P and @, with
winding numbers # and #. To find the winding number
for a contour that encircles both singularities, we
exploit the invariance of the winding number under de-
formations of the contour in the nonsingular region.
Thus we can deform the contour into one that encircles
P, another that encircles @, and two pieces that cover
the same ground but in opposite directions, to join the
pieces around P and . The part around P contributes
n, the part around @ contributes m, and whatever the
contribution from the third piece, the fourth piece
makes an equal and opposite contribution. The pro-
cedure is quite analogous to the evaluation of contour
integrals by the method of residues, and is illustrated
in Fig. 6.

Thus if we allow for pairs of defects, a contour with
winding number z might contain a pair the sum of
whose winding numbers is #, rather than just a single
defect with that winding number. However, by pre-

51t is an unfortunate feature of this example that closed real-
space contours (of importance in all examples) have the same
topological structure as the order-parameter space itself,
which in general, of course, can have any number of struc-
tures.
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FIG. 6. Two point singular~
ities P and @ and two sur-
rounding contours. The
winding number on the inner
contour is the sum of the
winding numbers deter-
mined by P and @ separate-
ly. Since the inner contour
can be continuously de-
formed into the outer one,
this is also the winding
number for the outer con-
tour.

cisely the same reasoning as we have followed above,
we can argue that a pair of defects can be transformed
into a single one with the total net winding number,
without requiring the surgery to extend beyond the in-
terior of any contour surrounding the pair. If we ex-
tend our notion of equivalence to pairs of defects, then
any defect pair is equivalent to a single defect with
winding number equal to the sum of the winding num-
bers of the separate members of the pair (Fig. 7).
Thus we have not only classified the defects by the
additive group of integers, but we have also found that
defects can only combine to give ones characterized by
the sum of the characterizing integers. It is the gen-
eralization of this group-theoretic description of de-
fects and their combination laws that we shall be con-
structing in the sections that follow.

The following point is also worth noting: a special
case of the above conclusion is that a pair of defects
with winding numbers z» and —# is equivalent to a non-
singular configuration. The physical manifestation
of that equivalence is that the defects can annihilate one
another within a bounded region without the need for any
rearrangement of the order-parameter field at large

/
\

(b)

\
A

FIG. 7. (a) Two planar spin defects with winding number +1.
() The topologically equivalent single planar spin defect with
winding number +2.
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distances. The converse of this observation suggests ‘
a simple mechanism for eliminating a stable defect:
Simply bring in from infinity another stable defect with
the opposite winding number and allow the two to an-
nihilate when they meet. Note that the process of
bringing the antidefect in from infinity does indeed
produce singularities at contours arbitrarily far from
the first defect, '‘as we saw that it must. ‘

C. An even simpler illustration: Ordinary spins in the plane

To emphasize how intimately the classification
scheme depends on the structure of the order-param-
eter space, suppose we replace the planar spins by
ordinary 3-dimensional spin vectors (still keeping the
physical space two-dimensional). The order~param-
eter space is then the surface of a three-dimensional
sphere, and a simple argument shows that all defects
are unstable. From the topological point of view this
amounts to the assertion that any continuous map of a
closed loop into the surface of a three dimensional
sphere can be continuously deformed into the constant
map (or, putting it more vividly, shrunk to a poi’nt).
The required homotopy is constructed as follows (see
also Fig. 8):

(i) Pick any point on the sphere which has a neigh-
borhood about it through which the loop does not pass.
(We assume the mapping of the loop into the sphere
is not so pathological as to produce a space-filling
curve.) ) )

(ii) Punch a small hole in the sphere within that
neighborhood.

(iii) Map the surface of the punctured sphere onto a
circle in the plane. The image of the loop will be
some loop in the interior of the circle.

®,
\J

FIG. 8. Procedure for shrinking a loop on the surface of a
sphere to a point. Punch a hole (square in the figure) into any
part of the sphere where there is no loop, regard the sphere
with a hole as a bounded simply connected portion of the plane,
and shrink the loop to a point within that region.
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(iv) Map the interior of the circle continuously onto
the center by simply shrinking the radius to zero. The
image of the loop will thereby be taken continuously
into the single point at the center of the circle.

The result of these steps is an explicit specification
for shrinking the original loop on the sphere contin-
uously to a point. It amounts to simply sliding the
image of the loop on the sphere away from the point
picked out in (i) until it collapses down to, for example,
the antipodal point.

i1l. THE FUNDAMENTAL GROUP

We wish to generalize the procedure just described
for planar spins to arrive at a classification scheme
valid for all of the media described in Sec. I. The
central feature of that classification scheme emerged
from examining the mappings of closed curves in
physical space into the order-parameter space. Note,
first, that the restriction to a two-dimensional physical
space is inessential. The conclusions apply equally
well in three dimensiona, provided the singular regions
to be studied are not points, but lines.” In either case
the aim is to associate a discrete invariant with closed
contours surrounding the singular point (two dimen-
sions) or line (three dimensions). The invariant is
constructed by noting that the values of the order pa-
rameter on any such closed contour provide a mapping
of a circle® into the order-parameter space. Any two
contours that can be continuously deformed into each
other within the nonsingular region of physical space
provide homotopic maps.® Since any closed contours
that surround the singular point (two dimensions) or
line (three dimensions) exactly once can be so de-
formed into one another, we have the basis for a
classification scheme in terms of classes of homo-
topic maps of closed loops into the order parameter
space.

In this section we shall examine the general structure
of classes of homotopic maps of closed loops into any
order-parameter space R. Our aim is to show that
these homotopy classes can, in fact, be given a group
structure, and that the combination law for that group
[known as the fundamental gvoup or first homotopy
group of R, almost invariably denoted by the symbol
7, (R)] is closely related to the combination law for
physical point (two dimensions) or line (three dimen-
sions) defects.

Since maps of real-space loops or circles into order-
parameter space give closed curves (or loops) in

"The study of point defects in 3-dimensional space is taken up
in Sec. VII. '

8Regard the circle as the parameter space for the contour.
The parametrization of the contour maps the circle onto the
contour, and the values of the order parameter map the contour
into order-parameter space. The combination of the two maps
the circle into the order-parameter space.

9The deformation of the contours is given by a one-parameter
family of contours starting with the first and ending with the
second. Since each contour in the family provides a map of the
circle into order-parameter space, we have a continuous one-
parameter family of maps of the circle into order-parameter
space, which is the required homotopy.
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order-parameter space itself, we shall usually speak
simply of loops in order-parameter space or homo-
topy classes of loops in order-parameter space-[rather
than, more clumsily, “maps of circles (loops) into
order-parameter space” or “homotopy classes of maps
of circles (loops) into order-parameter space”].'°

It turns out that the group structure we need can
in general be imposed only on the set of homotopy
classes of loops that have a single point of order-
parameter space in common. This is done in part A.
In part B it is shown that the structure of the resulting
group does not depend on the choice of the special
point, so that the group does indeed reflect the struc-
ture of the order-parameter space as a whole. In part
C we examine the relevance of the fundamental group
for the classification of defects, where loops of inter-
est need not have any points of order-parameter space
in common, and in D we similarly examine the relation
of the fundamental group to the combination law for
defects. We conclude the section with a theorem and
definition that are used in the two sections that follow
on how actually to compute the fundamental group.

Throughout this section (and throughout the entire
paper) we shall take the order-parameter space R to
be connected, in the sense that any two points can be
joined by a continuous path lying entirely in R. Putting
this more formally, we shall assume that if x and y
are in R, then there is a continuous map f of the in-
terval [0, 1] into R such that f(0)=x and f(1)=y. This
connectedness assumption is, in fact, no restriction,
since any closed real-space path that steers clear of
order-parameter singularities can only give a mapping
into a single connected component of the order-pa-
rameter space. Therefore if there should be more
than one connected component to R (as there often is)
one simply has distinct classification schemes for each
separate component. Putting the point differently, un-
less the order parameter is singular on a subspace
large enough to cut physical space into disconnected
pieces, one can produce a classification of order-
parameter fields according to the connected compo-
nents of the order-parameter space in which they take
their values. For analytical purposes one can then
regard the classes associated with distinct components
as independent physical systems.'!

104 cautionary remark: One can sometimes become confused
by simply forgetting whether a particular loop is a loop in
physical space or a loop in the order-parameter space. Since
a real-space loop and a given order-parameter field f (r) de-
termine an order-parameter-space loop, it is easy carelessly
to identify the two loops in one’s thinking. Such carelessness
should be avoided: Always know which space which loops lie in.

11f one is interested in defects that actually do divide physical
space in pieces (line defects in two dimensions or plane defects
in three) then the connectedness of the order-parameter space
does play a role, but the resulting structure is trivial: Such
defects are topologically stable if and only if the order para-
meters on either side are in disconnected pieces of the order-
parameter space. This conclusion is sometimes obscured by
being stated in terms of the so-called zeroth homotopy group,
my(R), which is simply the set of disconnected pieces of R,
which can be given a group structure for many order parame-
ters of interest.
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FIG. 9. Successive loops at x in a homotopy. The loops are
labeled by values of the parameter ¢ in the homotopy. The ini-
tial and final homotopic loops are solid, the intermedjate ones,
dashed.

A. The fundamental group at a point

Before we can describe the fundamental group of the
order-parameter space as a whole, we must describe
the fundamental group associated with the order-pa-
rameter space R together with any one of its points
x, called the base point. The fundamental groups
associated with different base points will turn out to
be isomorphic to one another, and the fundamental
group of R itself is then defined to be that abstract
group of which the fundamental groups at the various
base points are isomorphic copies.

1. Loops at x

Consider all closed continuous directed curves in R
that pass through the point x. We call them loops in R
at x. They can be described in terms of continuous
maps f of the real interval 0 <z <1 into R, with
f(0)=f(1)=x. The sense of the loop will be indicated in
figures, when necessary, by an arrow indicated the
direction of increasing z. Note that the words “curve”
or “loop” are being used somewhat more generally
than usual, since f(z) identically equal to x is such a
mapping. The loops can have such degeneracies, pro-
vided only that they are continuous and start and end
at x.

2. Homotopies based at x

We introduce a restricted notion of homotopy, saying
that two loops f and g are komotopic at x, if there is
a continuous family of loops, all passing through x,
such that f and g are members of the family (see Fig. 9).
Formally, there must be a family 4#,(2) of mappings of
[0, 1] into R such that % is continuous in both ¢ and z and

i) h,=f,
(ii) h,=g,
(iii) %,(0)=h,(1)=x, for all ¢.

(3.1)

Except for the additional restriction (iii) this is the
definition of homotopy we used in Sec. II.'? Based

121f one wishes to emphasize that a homotopy need not be tied
to the base point, one refers to it as a free homotopy and to the
homotopic maps as freely homotopic.
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FIG. 10. The loop product fog. Firstf is traversed, then g.
Loops homotopic to fog will also start and finish at the base

point, but need not return to the base point in midjourney, as
indicated by the dashed interpolation.

homotopy is a more restrictive relation, since all
members of the family giving the homotopy are re-
‘quired to be tied down at the base point x.

3. The product of two loops

We define the product, fog, of two loops fand g as
the loop obtained by first traversing f, and then g (see
Fig. 10). Formally,

fog(z)=f(22), 0<z<j;;
=g(2z —-1), 3szsl. 3.2)

This composition law underlies the binary operation of
the group we are constructing, and we shall refer to

it repeatedly in proving many elementary theorems.
However, Eq. (3.2) cannot be used to impose a group
structure on the set of individual loops at x. One
problem, for example, is that if we regard as distinct
two loops specified by distinct maps f, then the com-
bination law given by Eq. (3.2) is not even associative,
for although f o (g o k) gives the same curve in R as
(fog) ok, the maps are parametrized differently.
[The map f o (g ok) gives f for the first half of the
interval, g for the third quarter, and %k for the fourth;
the map (fog) ok gives f for the first quarter, g for
the second quarter, and & for the last half.] A more
serious deficiency is that the product of two loops nec-
essarily passes through the base point x at z = 3, which
leads to severe restrictions on how (if at all) an arbi-
trary loop can be represented as a product of other
loops.

The way out of these (and similar) difficulties is to
extend the notion of product from pairs of loops, to
pairs of classes of mutually homotopic loops. (Since
it is classes of homotopic loops, rather than individual
loops, that characterize defects, this extension is a
very natural one for our purposes.)

4. The product of homotopy classes of loops

If f is a loop, we define [f] to be the set of all loops
homotopic (at x) to f. Evidently we can divide all pos-
sible loops at x into distinct classes of mutually homo-
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topic loops. We call any particular loop in a class a
representative of that class. We shall denote classes
of loops either by Greek letters, or in terms of a par-
ticular representative, with the bracket notation. Thus
(to illustrate the nomenclature) if o is a class of loops
and f-and g both belong to @, then a=[f]=[g].

We wish to define the product of two classes by

[flolgl=[fog]. (3.3)

This definition makes sense, provided the homotopy
class of the product f og does not depend on which par-
ticular representatives f and g we choose to form that
product. This in turn follows from the trivial theorem
that if f~f’ and g~g’, then fog~f'o g’. [We take the
symbol ~ to mean “is homotopic to at x,” throughout the
ensuing discussion. We shall also term a result ¢+ivial
if (a) it follows from the underlying definitions without
any trickery or ingenuity and (b) a written specification
of how it follows runs the danger of suggesting that it
is nontrivial. ]

The definition of class multiplication [Eq. (3.3)] has
many virtues. By going from the product of loops to
the product of classes of homotopic loops, we have
freed the definition of product from the particular pa-
rametrization used to represent the loop. (Trivial
theorem: Two loops that differ only in their pai‘am—
etrization are indeed in the same homotopy class.)
More importantly, the product loop no longer reveals
telltale signs of its origins, for although the product
of any particular f and g is tied to x at z =3, a general
representative of [ fo g] certainly is not (Fig. 11). The
greatest virtue, however, is that under the combination
law [Eq. (3.3)] the homotopy classes of loops at x form
a group.

5. The fundamental group at x, m; (R, x)

To verify that the homotopy classes of loops form a
group under Eq. (3.3) we must verify:

(i) Associative law: (ao B)oy=ao(Boy). To prove
this simply take any three maps f, g, and % from each
of the three classes and note that (as observed above)
(f og) ok differs from f o (g o k) only in parametriza-
tion. Hence the two belong to the same homotopy class.
Since the homotopy class of products is independent of

FIG. 11. (a) Two based
loops f and g drawn in a
plane with two holes in it.
@ (b) The figure also represents
@ the loop product fog. (b) and
(c) Two other based loops

homotopic at the base point
to fog.
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FIG. 12. (a) The loop product fof -lis given by making a round
trip from the basepoint in the clockwise sense, followed by an-
other round trip in the counterclockwise sense. (b)—(f) Succes-

sive stages in the homotopy between fOf~! and the constant map.

The loops in the homotopy (which are all degenerate loops, be-
ing mere lines) go from the base point out to the end of the line
and back.

the representatives chosen to construct the classes,
this establishes the associative law.

(ii) Identity. Let e(z) be the constant map: e(z)=x.
(The corresponding loop is a single point.) The
homotopy class [e] is then the set of all loops at x
which can be shrunk down to the single point x (al-
ways with at least one point tied to x throughout the
shrinking). It is trivial to establish that

[e]e[fl=[f]elel=[f],

so that € =[e] is the group-theoretic identity.
(iii) Inverse. Let f~! be the loop given by traversing
the loop f in the opposite direction:

f =) =f(1-2),

If f and g are homotopic at x then (trivially) so are !
and g~'. We can therefore associate with any homotopy
class @, a class a”!, defined by

FIt=0r71.

We now prove that @' © @ =€, Note first that since we
can represent the product a™! o a by the product of any
mapping in @ with any mapping in @™, we can, in
particular, choose the mapping representing o™ to

be the inverse of the mapping representing @. We need
therefore only show that the loop ™! © f is homotopic

to e (i.e., can be shrunk to a point at x) for any f. The
required homotopy is pictured in Fig. 12. Analytically,
the homotopy can be taken to be

hy(2) =f(22t),
=f(2t(1 - 2)),

This establishes that the classes of homotopic loops
at x form a group. The group is called 7,(R, x), and is

(3.4)

O0szs1, (3.5)

1
Oszs<z;

1
zSszs1,

(3.6)
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known as the fundamental group of R at x (the “at x”
usually being omitted, as a consequence of the con-
siderations in part B below). The subscript 1 antici-
pates the fact that there are other groups (associated
with the mappings of S,—the surface of a sphere in
Euclidean n + 1 space—into R) called 7,(R, x¥). The
fundamental group is sometimes called the firs¢
homotopy group (and m, is then called the nth homotopy
group.)

The group 7,, need not be Abelian, as the last of the
following examples reveals.

6. A few simple examples

(a) The circle. The homotopy classes of maps into
the circle with base point x (like the homotopy classes
of unbased maps) are specified by the winding number
n. (Whether there is a base point or not is immaterial
for all maps except those in the class of e, since all
maps not homotopic to a constant take on all values in
the circle.) The product of classes given by # and m,
has winding number # +m (where » and m can be
positive or negative). The fundamental group is there-
fore Abelian and isomorphic to the additive group of
the integers (known as Z). Evidently the group struc-
ture does not depend on the choice of base point. One

writes
mS,)=2Z. (3.7)

(b) The surface of a sphere. Any mapping of a loop
into a sphere can be shrunk to a point (as described

(b)

X

FIG. 13. The figure-eight space: a plane with two holes in it.
(a) Two based loops. Although they are freely homotopic, the
loops are not homotopic at the base point since one cannot be
deformed into the other without becoming detached from the
base point at some stage of the homotopy. (b) A loop that is
homotopic at x to cofoc™! [where ¢ is the dashed loop in (a)] and
that also is clearly homotopic at x to g. Since f and g are not
homotopic at x, the loop products cof and foc cannot be homo-
topic at x.
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fc

(b)

X

FIG. 14. The loop products (a) cof and (b) foc. They are not
homotopic at x, but are freely homotopic.

earlier). Thus the fundamental group of the surface
of a sphere (at any base point) consists only of the
identity. Using an additive group notation, one usually
writes

,(5,)=0. (3.8)

(c) The figurve-eight space. This is important to keep
in mind as one of the simplest examples of a space with
a non-Abelian fundamental group. Consider the space
R consisting of a plane disc with two holes punched in
it. Two loops, f and g, are shown in Fig. 13. Because
they pass on opposite sides of the lower hole, there
is no way to deform the loop f into the loop g while hold-
ing a point fixed at x (though, of course, the two.
loops are trivially freely homotopic). Note, though,
that if ¢ is the dashed loop in the figure, then we do
have :

cofocTi~g, (3.9)

Since f and g are not homotopic at x, it follows from this
that ¢ o f cannot be homotopic to fec, i.e., the funda-
mental group of the space is non-Abelian. Loops in the
classes of ¢ o f and fo ¢ are shown in Fig. 14. Although
they are trivially freely homotopic, it is impossible to
construct a homotopy that stays attached to the base
point at all ¢.

B. The fundamental group of a connected space

1. The isomorphism between fundamental groups based at
different points

We first show that if x and ¥ are any two points of R,
then we can associate with any path ¢ connecting x and
y a natural group-theoretic path isomorphism between
(R, x) and 7 (R, ). The structure of this isomorphism
may depend on the choice of path.

We first give a formal definition of a paiZz in R which
is the obviously generalization of our earlier definition
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®
X y
(a)
¢ FIG. 15. (a) A loopf at y
© ° and another point x. (b) A
X y path ¢ joining x toy. (c)
(b) The loop cofoc™! at x.

b J

(c)

of a loop: a path ¢ between x and y is determined by
a continuous mapping c(z) of the interval 0<z <1 into
R, such that ¢(0)=x and ¢(1)=y. Thus a loop is a path
that starts and ends at the same point.

If a path ends where another path begins then we can
define the product of the two paths as the single path
given by traversing first one, then the other. Should
the paths happen to be loops, this reduces to our
earlier definition of the loop product.

If ¢ is a path from x to y and f is a loop at y, then
cfc™! is a loop at x, as shown in Fig. 15.'* By ¢~ we
mean the path ¢ traversed in the opposite sense. More
formally

c"Hz)=c(1=-2), 0<zs<1, (3.10)

If f is homotopic to g at v, then cfc™! will be homo-
topic to cgc™! at x, for if &, is the homotopy between
fand g at y, then ch.c™! will be the required homotopy
at x. One can therefore associate with the path ¢ a
mapping between the homotopy classes of loops at'x
and y:

c([fD=[cfec], (3.11)

where the correspondence is independent of the choice
of representative f. Note that every class of loops at
x is the image of a class of loops at y (for [g] is the
image under ¢ of [c¢"'gc]). Note also that if ¢([f,])
=c([f,]) then [£]=[f,]{as a consequence of the fact
that [f,]=c"*(c([f;])).} Thus the correspondence (3.11)
is a one-to-one correspondence from the classes of
loops at ¥ onto the classes of loops at x.

Finally, it follows from the trivial result

(¢fe™ ) ege™) ~ c(fg)e™

that the mapping (3.11) preserves the algebraic struc-
ture of homotopy class multiplication:

(3.12)

B3From this point onward we simplify the notation for loop or
path products from fog to simply fg. We shall reinsert the
little circle should there be a danger of confusing the loop or
path product with some other kind of product.
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@ y

C2

FIG. 16. A loopf aty and two paths ¢y and ¢, from x to y. The
loop at x given by cloc§1 surrounds a hole, and therefore ¢; and
c; can give distinct path isomorphisms between m(R,y) and
m(R,x).

c(a)e(B)=c(ap). (3.13)

Taken together, these results establish that a—c(a)
is in fact an isomorphism between 7, (R,x) and 7,(R,y).
Theve is thus a single abstract group, m,(R), of
which the based fundamental gvoups ave isomorphic
copies. This abstract group is known as the fundamen-
tal group of R.

The existence of a single abstract fundamental group
characterizing the entire order-parameter space is of
central importance in establishing the classification
scheme for unbased mappings of loops into R, i.e.,
for establishing the classes of freely homotopic loops
in R. We shall show that if the fundamental group of
R is Abelian then there is simply a one-to-one corre-
spondence between classes of freely homotopic loops
and elements of the fundamental group; if, however,
the fundamental group is non-Abelian, then the cor-
respondence is between classes of freely homotopic
loops and conjugacy classes of the fundamental group.'*
To establish these conclusions (which translate im-
mediately into conclusions on the classification of line
defects) we must examine the relation between the
‘various isomorphisms [f]- ¢([f]) associated with
different choices of the path ¢ linking x and y.

2. Uniqueness (or lack of uniqueness) of the path
isomorphisms between based fundamental groups

The path isomorphism is independent of the choice
of path, if and only if the fundamental group of the
space R is Abelian. To see this, suppose first that the
path isomorphism depends on choice of path. There are
then two paths from x to y, ¢, and ¢,, and a class of
loops a in 7,(R,y), such that

c,la]#c,[a]. (3.14)

If f is any y-based loop in @, then Eq. (3.14) asserts
that the x-based loops ¢, fc,”! and ¢, fc,”* are not
homotopic at x¥ (Fig. 16). It follows from this that the
y-based loop f is not homotopic to the y-based loop
(e1tcy)f(erte,)™. But cflc, is itself a y-based loop—
call it g. We then conclude that f*gfg™! at y, or,
equivalently, that fg/#gf at y. Thus m, (R, y) and
therefore m,(R) itself is non-Abelian.

14Readers whose group theory is a bit rusty might consult the
summary of basic group-theoretic terms in Appendix B.
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x e
<

( FIG. 17. Two loops at y.

a) (a) The loop g. (b) The loop
Z that differs from g only by
the addition of an intermedi-
ate round trip to x.

(b)

Conversely, suppose that 7,(R) and hence 7, (R, y) is
non-Abelian. Then there are two y-based loops,
fand g, with fg/#gf or, equivalently, with f#gfg~'.
We now replace g by the homotopic (at ¥) loop g which
follows the same course as g, except that at a certain
moment it makes a detour over to x and then retraces
that detour, as shown in Fig. 17. We can decompose
£ into two paths ¢, and ¢, from x to y, as shown in
Fig. 18:

S -1
g=Cy7C,y.

(3.15)

The statement that f/gfg~! now becomes the statement
that ¢, fe[*# ¢, fc;t. Thus the path isomorphism given
by ¢, is not the same as that given by c,.

Thus if 7 (R) is Abelian there is a unique natural
isomorphism between the 7, (R, x) for different base
points x: namely the path isomorphism ¢, which does
not depend on the particular choice of path. If, on the
other hand, 7,(R) is non-Abelian, then the various path
isomorphisms between 7, (R, y) and 7,(R, x) can differ,
but only by an inner automorphism'® of 7,(R,x). For
suppose ¢, and ¢, give two distinct path isomorphisms.
Then k =c,c;! is a loop at x, and the two mappings of
m,(R,y) onto 7, (R, x) are related by:

c feit~k(c,fe et

Thus the two isomorphic images of m,(R, y) differ by the
inner automorphism:

[a]—~[k]o[a]o[k]™"
of m,(R, x).

Note that given any inner automorphism of (R, x),
we can take a loop from the class [k] generating the
inner automorphism, break it up into two paths from x
to ¥ (as in Figs. 17 and 18), and use these two paths to
generate path isomorphisms between (R, y) and
7, (R, x) that differ by the given inner automorphism.

Now the conjugacy classes of a group are invariant
under inner automorphisms.!® Thus the path isomor-

(3.16)

(3.17)

15See the group-theoretic glossary in Appendix B.

18proof: If @ is an element of the group G, then the conjugacy
class of a is the set of all elements of G of the form bab~! for
arbitrary b in G. Under the inner automorphism g—cgc™! for
fixed ¢ the members of conjugacy classes can be permuted
within each class, but cannot be moved from one class to an-
other, since bab™!—c@ab™!)c™'= (cba (cb)™.
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FIG. 18. The decomposition
of the loop g of Fig. 17(b) in-
to paths ¢y and ¢y from x to
v, with g=c3locy.

-,

X c2

phisms establish a unique (i.e., path-independent cor-
respondence between the conjugacy classes of the based
fundamental groups, but not between the elements of
the groups themselves, unless the fundamental group
is Abelian (in which case the conjugacy classes consist
of single elements).

C. The fundamental group and the classes of freely
homotopic loops

As in the example of Sec. II, quite generally we can
test the nature of a line defect!” by examining the order
parameter on a real-space closed contour surrounding
the line. For a given configuration of the order-pa-
rameter field, such a contour yields a loop in the
order-parameter space R which is just the image of
the contour in order-parameter space determined by
the values of the order parameter along the contour.

As the real-space contour is slid, shrunk, or other-
wise deformed in the region free of order-parameter
singularities, one generates a family of mutually ho-
motopic loops in order-parameter space. In general
there is no reason why all loops in this family should
share a single common point in order-parameter
space.'® A line defect is therefore characterized by a
set of loops equivalent under free homotopy in the order-
parameter space.

When homotopies are released from the base point
then loops f and g at x representing elements from the
same conjugacy class of 7 (R, x) may be freely homo-
topic even if the elements themselves are distinct. For
if f and g represent elements from the same conjugacy
class then there must be a loop b at x with

f~bgb™t.
The required homotopy between f and g is given by re-
tracting b and b~ back into g, as in Fig. 19.

Conversely, two loops at x are freely homotopic only
if they represent elements from the same conjugacy
class of m(R,x). This follows from a somewhat more
general result:

Let f and g be two loops (which need not have a com-
mon point). The loops are freely homotopic if and only

(3.18)

"From this point on I shall stop reminding the reader that,
except for such intrinsically three-dimensional effects as en-
tanglement, what is said about line defects in a three-dimen~
sional space also holds for point defects in two dimensions.

18This. complication is barely noticeable in the case we exam-
ined in Sec. II, since all but the trivial class of maps of a con-
tour into a circular order-parameter space cover all points of
the order-parameter space and therefore necessarily have
common points.
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(a)

(b)

Bah

(e)

FIG. 19. (a) The loop bogob'1 which first traverses b, then g,
then b again in the reverse order. (b)—(d) Intermediate loops in
a free homotopy between bogob™! and g itself. Each loop starts
at the loose end, goes to the base point along what remains of
b, traverses g, and then returns along the fragment of » to the
starting point. (e) The.loop g.

if there is a path ¢ connecting a point x of f to a point

y of g, with £ homotopic at x to cgc™. (Should x and y
be the same, ¢ becomes a loop b and we are back to the
more restricted case.)

Now g is freely homotopic to cgc™, the free homtopy
being simply a continuous retraction of the round trip
from y to x along,c, back into the single point y (as il-
lustrated in Fig. 19 in the special case where c is a
loop b). Thus the existence of ¢ with f ~cgc™ at x, in-
sures the free homotopy of f and g.

Conversely, if f and g are freely homotopic, let z be
the homotopy, so that z,(z) is a continuous family of
loops with k,=f, h;=g. As ¢ ranges from O to 1, the
points h,(O) trace out a path ¢ connecting f and g [Fig.
20(a)]. But f is homotopic at the point £(0) to the loop
cgc™, the homotopy %, being given by the free homotopy
h, embellished by the “umbilical cord” provided by the
segment of ¢ connecting & ,(0) with 7,(0) = f(0), as shown
by Fig. 20(b).

This result can be stated in terms of path isomor-
phisms: a loop f at x is freely homotopic to a loop g
at y if and only if there is a path isomorphism c taking
the homotopy class [f] of m(R, x) into the homotopy class
[g] of m(R,y). The set of all such path isomorphisms
establishes a unique connection between the conjugacy
classes of the two based fundamental groups, but can
arbitrarily rearrange the elements within a given con-
jugacy class, depending on the path. Therefore classes
of freely homotopic loops in R can be labeled by the con-
jugacy classes of 7,(R). To construct such a labeling
scheme single out any point x of R for reference, and
assign to any loop f in R the (unique) conjugacy class
of m (R, x) with which f is identified by the path isomor-
phisms linking (R, y) with m(R,x), where y is any
point of f. |
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(a)

(b)

FIG. 20. (a) Two freely homotopic loops f and g. The heavy
dots are f(0) and g(0). The path ¢ connecting £(0) to g(0) is
traced by the starting points 7 4(0) of the loops of the free homo-
topy between f and g. (b) A stage in the homotopy at f(0) be-
tween f and cogocl.

When the fundamental group of an order-parameter
space is Abelian the conjugacy classes consist of
single group elements (since aga™'=g, if a and g
commute). Thus any contour encircling a line defect
determines a unique element of the fundamental group
of the order-parameter space (just as, in the case of
planar spins, a unique winding number was deter-
mined). Line defects are thus characterized by the
members of the fundamental group. Two defects
characterized by distinct members of the fundamental
group cannot be transformed one into the other by local
surgery for precisely the same reasons as in the case
of planar spins. Furthermore if two line defects are
characterized by the same element of the fundamental
group, then one can be given the core of the other by
purely local surgery.'® Thus (in the Abelian case) line
defects are topologically equivalent if and only if they
are characterized by the same elements of the funda-
mental group of the order-parameter space.

The situation in the case of a non-Abelian fundamental
group is somewhat more intricate, and considerably
more intriguing. We defer a discussion to Sec. VI,
where all the peculiarities of media with non-Abelian
fundamental groups will be examined together.

19The reader is invited to construct the argument. It is a
slightly more complicated than the corresponding argument in
Sec. II, but only because of the jump from two spatial dimen~
sions to three, and not because of the jump from winding num-
bers to an arbitrary (but Abelian) fundamental group. Thus the
homotopies between loops surrounding the two line defects must
now be appropriately stacked together along the direction of the
line, to provide the desired interpolation between the outer re-
gion of one type and the core region of the other. This is more
easily done than said.
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D. The fundamental group and the combination of line
defects

The discussion at the end of Sec. II.B on the combina-
tion of line defects in the planar spin system applies
directly to the general case. Suppose there are two
(nonintersecting) line defects P and . A real-space
contour that surrounds both lines will give a loop in
order-parameter space that is freely homotopic to the
product of the loops determined by contours that sur-
round each line separately (see Fig. 21).

Since freely homotopic classes of loops in order-
parameter space are associated with conjugacy classes
of the fundamental group, we conclude that a single
defect equivalent to the combined lines can only be
characterized by conjugacy classes of the fundamental
group whose members are the products of members of
the classes characterizing the original pair of defects.
The reader is urged not to ponder the preceding sen-~
tence at this stage; we shall return to the point in the
discussion of non-Abelian fundamental groups in Sec.
VI. If the fundamental group is Abelian, the combina-
tion law is simplified by the fact that conjugacy classes
consist of single group elements, and the product of
conjugacy classes is the unique (and order-independent)
product of those elements. We therefore have a simple
generalization of the law that winding numbers add
when defects are combined, for media with Abelian
fundamental groups.

(a)

(b)

(c)

FIG. 21. (a) Two defects P and @ and an encircling contour.
(b) Two contours with a common point that encircle P and @
separately. The loop in order-parameter space determined by
the values of the order parameter along the two successive
contours in (b) is in the homotopy class of the product of the
homotopy classes determined by P and @ separately. This
loop is freely homotopic to the loop in order-parameter space
determined by the values of the order parameter along the con-
tour in (a). To construct the free homotopy deform one con-
tour into the other via intermediate contours such as that in
(¢). The homotopy is provided by the family of loops in order-
parameter space determined by the values of the order para-
meter on the family of real-space intermediate contours.
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If the fundamental group of the order-parameter
space is Abelian, then when two defects characterized
by elements a and B of the fundamental group combine,
the new defect is characterized by the element
aofB=p0 a Note that the process of combination
envisioned here is via the same local surgery by which
a trivial defect can be removed, or a nontrivial one
given the core of another characterized by the same
homotopy class. Given any distance 7, no matter how
small, we can continuously deform the medium so
that the two line defects lie inside a cylinder of radius
v. Circular contours on the surface of the cylinder
will then give maps in the class @ o B, so that ho-
motopies can be used to replace the configuration with-
in the cylinder by any single line defect in the class
a o B, without in any way altering the configuration out-
side of the cylinder. In contrast, two defects a and 8
cannot be converted to one that is not homotopic to the
product (in the Abelian case) without having to alter
the medium at arbitrarily large distances from the
defects.

Thus we conclude that in media with Abelian funda-
mental groups, the rules for the combination of line
defects are given precisely by the multiplication table
for the fundamental group. If the fundamental group is
non-Abelian, the combination laws are given by the
class multiplication table, a state of affairs to be
elaborated upon in Sec. VI.

We have therefore reduced the problem of classify-
ing and confining-line defects to the problem of com-
puting the fundamental group of the order-parameter
space. This is taken up in the two sections that follow.

We conclude this section with a definition and a
theorem.

Definition: A connected space R is said to be
-stmply connected if its fundamental group contains
only the identity [a property usually written in the no-
tation of additive groups as m,(R)=0]. In more down-
to-earth terms, a space is simply connected if any
loop in the space can be shrunk continuously to a point.

Theovem: Let R be the product of two spaces R,
and R,. By this we mean that R consists of pairs of
points from R, and R, with a notion of continuity given
by the stipulation that a sequence (x,,y,) in R con-
verges to (x,y) if and only if ¥, converges to x in R,
and y, converges to y in R,. Thus the real plane is the
product of the real line with itself, a cylinder is the
product of a circle with a line, etc. More precisely,
such a product space is called a fopological product
as a reminder that the property inherited by the pairs
from the two spaces is that of continuity (rather than,
for example, some algebraic structure). If R is the
topological product of R, and R, then the fundamental
group of R is simply the group-theoretic direct product

of the fundamental groups of R, and R,:
T (R, XR,)=m,(R,) X T (R,). (3.19)

The proof of this follows trivially from the equally
trivial?® result that two loops are homotopic in R if and

20«privial” is used here in the technical sense defined in Sec.

IIL.A 4.
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only if their projections in R, and R, are independently
homotopic in R, and R,. [The projection in R, of the
loop (x(2), ¥(2)) is the loop x(z), etc.]

IV. GROUP-THEORETIC STRUCTURE OF THE ORDER-
PARAMETER SPACE

In the preceding section we saw that a group could
be associated with an order-parameter space—its
fundamental group—whose algebraic structure was
intimately related to the behavior of line defects in
the ordered medium. In this section we shall make
further use of the language and elementary theorems
of group theory to describe ordered media, but in
quite a different way from Sec. III. Indeed, except for
the final subsection, this section is quite independent
of the topological concepts developed in the preceding
section. The reason for this independent excursion
into group-~theoretic terrain is this: The computation
of the fundamental group of an order-parameter space
can be enormously simplified—in fact reduced to a
simple algorithm—provided one expresses the struc-
ture of the order-parameter space in terms of the
structure of certain groups of continuous transforma-
tions which can act on the uniform medium.

In part A the notion of a continuous group is intro-
duced and some basic properties of such groups are
extracted. In part B the representation of order-
parameter spaces in terms of the appropriate contin-
uous groups is described, and it is illustrated with the
standard examples in part C. In part D we show that
the fundamental group of a space has some special
properties when the space is itself a continuous group.

A. Continuous groups

A continuous group (also known unfortunately as a
topological group) is a group (an infinite group, if the
continuity is to lead to nontrivial structure) which in
addition to its group multiplication table has been
endowed with enough structure to enable one to apply
the usual notions of continuity to sequences or sets.of
group elements. (This might require defining a metric
giving the distance between any pair of group elements,
or, more generally, specifying a topology by charac-
terizing the open sets.) For us the notion of continuity
will be obvious since the groups we shall examine are
always groups of transformations and it will be clear
what is meant by two transformations differing only by
an infinitesimal transformation.

The group structure and the topological space struc-
ture (i.e., the structure associated with continuity) are
not independent of one another, but are fused by the
further requirement that the group operations them-
selves be continuous. This means that if a, and b, are
two sequences of group elements converging to ¢ and
b, then the sequence of products a,b, should converge
to ab; furthermore, the sequence of inverses, a;
should converge to ¢™!. Both requirements can be
merged into the single requirement that a,b,;* converge
to ab™! whenever a, converges to @ and b, converges to b.

In most physical applications the term Lie group is
used much more often than “continuous group” or
“topological group.” A Lie group is a continuous group



N. D. Mermin: Topological theory of defects 609

FIG. 22. Schematic picture of a four-component continuous
group G. The piece of G containing the identity e is called G,.

satisfying the somewhat stronger regularity condition
that some neighborhood of the identity should admit of
a smooth parametrization by variables ¢,,%,,¢,,....
All of the continuous groups described here (and all I
can imagine ever arising in condensed matter physics)
are Lie groups as well. However, except in a few
rather technical theorems, it is continuity rather than
the existence of a suitable parametrization that plays
the essential role for us. We shall therefore retain
the more intuitive term of “continuous group,” except
when quoting theorems which explicitly require the
additional structure afforded by a parametrization.

To indicate the kind of arguments one can produce
when dealing simultaneously with group structure and
continuity, we consider a few simple theorems, which
will also be of considerable use in the development
that follows.

1. Let G be a (not necessarily connected) topological
group and let G, be that subset of G that is connected
to the identity (known as the connected component of
the identity—see Fig. 22. Then G, is a normal sub-
group of G.

To prove that G, is a subgroup we must show that if
a and b belong to G, then so does ab™'. Since G, is
the connected component of the identity e, there must
be a continuous path @, in G such that ¢,=¢ and q, =a,
and similarly for b. But if a; and b; are continuous
paths, then so is a;b;'. Since this last path starts at
e and ends at ab™!, we have established that ab~! is
also in G,.

For G, to be a normal subgroup we must have cac™
in G, for any ¢ in the subgroup G, and any ¢ in the
full group G. This follows from the fact that if a, is
a continuous path from the identity e to @, then ca;c™?
will be a continuous path from cec”'=cc"!=¢, to cac™!.
Thus cac™! is also connected to the identity.

2. The disjoint connected components of G are just
the cosets of the subgroup G,.

Recall that if G is a group and G, is a subgroup, then
the coset® aG, is defined for any a in G to be the set of

2 Actually what is described here is a left coset. However,
the left and right cosets of a normal subgroup are the same. -
Note also (I hope) that the proof of theorem 2 is trivial. I have
run the risk here of confusing the reader with a trivial proof,
because I believe it is important to illustrate the kinds of ma-
nipulations one can subject continuous groups to.
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all elements in G of the form ak, where % is any ele-
ment of G,. It is an elementary purely algebraic theo-
rem that two cosets are either identical or have no
elements in common at all. To show that the set of
disjoint cosets of G, is identical to the set of con-
nected pieces of G, we must show (a) that each coset
is connected and (b) that any elements in G that can be
joined by a continuous path of elements are in the same
coset of G,. Crucial to proving both (a) and (b) is the
observation that if g; is a continuous family of group
elements and a is some fixed group element, then

ag,; is also continuous. Using this fact, we proceed

as follows:

(a) If b, and b, are both in the coset aG, then there
are elements 2, and 2, in G, with b,=ah,, b, =ah,.

Since G, is connected there is a continuous path %, of
group elements entirely in G, connecting %, to &,.
Since every %, is in G,, the set of elements given by
ah, is entirely in the coset aG,. But this set is also
a continuous path, and it connects az, with a%,. Thus
aG, is indeed connected.

(o) Let b; be a continuous path connecting two
elements b, and b, of G. Then b3'b, is a continuous
path connecting the identity (b;'d,) to the point b3'd,.
Thus by'd, belongs to G,, the connected component
of the identity. Hence b,(=b,(b;'b,)) belongs to the
coset b,G,. But so does b (=bge, e, the identity). Hence
b, and b, are indeed in the same coset.

These two theorems have the combined consequences
that one can impose a group structure on the discon-
nected pieces of a topological group G. For these are
just the cosets of the normal subgroup G,. By another
elementary and purely algebraic theorem, the cosets
of a subgroup G, can be themselves given the structure
of a group (known as the quotient group and written
G/Go) provided the subgroup is a normal subgroup.

In the quotient group the product of two cosets is
simply the unique®? coset containing the product of any
two members of the two cosets.

The quotient group G /G, formed by the connected
pieces of G is sometimes also written as 7,(G). The
notation is intended to suggest that it be regarded as a
zevoth homotopy group of G. The basis for the analogy
is that 7, (G) characterizes the sets of equivalence
classes of mappings of loops (one-dimensional) into G,
whereas =, characterizes the sets of equivalence
classes of mappings of points (zero-dimensional).

B. Group-theoretic description of the order-parameter
space

All of the order parameters described in Sec. II.A
and most of the order parameters commonly en-
countered in condensed matter physics, have associ-
ated with them a group of transformations G, with the
property that if f; and f, are possible values of the

2270 establish the uniqueness group-theoretically one needs
the fact that G, is a normal subgroup. From the topological
point of view, however, it is immediately obvious from simple
continuity considerations that the products of pairs of elements
from two connected pieces of G must all lie in a single connect-
ed piece.
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order parameter, then there is a transformation g in
G which takes f, into f,: f,=gf,. We shall illustrate
this .in some detail in part C of this section. A group
G of transformations on a space R with this property
is said to act transitively on R.

For given f, and f, the transformation taking f, into
f, need not be unique. There may (and in general there
will) be many g in G satisfying f, =gf,. Indeed, the
group G itself need not be unique. If, for example the
order parameter is a three-dimensional unit vector,
then the group of proper rotations SO(3) contains many
different operations which take a given unit vector s,
into another specified unit vector s,. So does the
group O(3) of proper and improper rotations. The de-
scription that follows will be valid for any group G
that acts transitively on R. The most convenient choice
of G is not necessarily the “smallest” such group.

If f is any given value of the order parameter we
define Hy to be the set of all transformations in G that
leave f unchanged. Thus a transformation g belongs
to Hy if and only if

gf=r. (4.1)

Evidently H; is a subgroup, for if a and b leave f fixed
so does ab™!, It is variously known as the isotropy
subgrvoup of f or the fixer of f or the little group of f.
If the order parameter is a unit three-vector s and G is
SO(3) then H, is the subgroup of rotations about the axis
s. If G were taken to be O(3) for the same order param-
eter, then H, would also include the produces of rotations
about s with mirrorings in the plane of s.

In general H; is not a normal subgroup. Indeed, if
f, =gf,, then it is readily verified that

Hy, =gH; g7t (4.2)

The example of three-dimensional spins makes it clear
that this is not in general equal to Hy : The subgroups
of rotations about distinct axes are distinct subgroups.

We shall characterize the order parameter space in
terms of the group G, and the isotropy subgroup H,for a
particular valuef of the order parameter, chosen arbi-
trarily but thereafter fixed. We shall call that fixed
value the reference ovder parameter or standavd ovder
parameter. In the case of 3-spins, for example, the
standard order parameter might be taken to be a unit
vector along the z axis. When no confusion can result
we shall drop the subscript “f” from H, which should
then be understood to be the isotropy subgroup for the
reference order parameter.

The structure we shall describe is independent of the
arbitrary choice of reference order parameter. For
changing the reference order parameter from f to f’
changes A into gHg™! [where f’ =gf—see Eq. (4.2)].
Whatever structures we build out of G and H; can
therefore be converted to the corresponding structures
built from G and Hy, by the inner automorphism
G —~gGg™'. This transformation preserves all group-
theoretic structure; furthermore it is a continuous
transformation and it therefore preserves all topologi-
cal structure. If we can characterize the order-pa-
rameter space R entirely in terms of the algebraic
and topological properties of G and H, that characteri-
zation will not depend on the particular choice of ref-
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erence order parameter.

There is, in fact, a very simple such characteriza-
tion: The ordev parameter space R can be taken to
be the space of cosets of H in 'G. Denoting the coset
space by G/H, this assertion is compactly summar-
ized in the formula®

R=G/H. (4.3)

To establish that (4.3) gives a representation of the
order-parameter space we must show that there is a
correspondence between cosets of H in G and values of
the order parameter which (1) is one-to-one and (2) is
continuous. The correspondence itself is set up as fol-
lows:

Let f be the reference order parameter, so that H is
the set of elements g of G satisfying gf=f. Any other
value f’ of the order parameter is of the form f' =gf
for some (not necessarily unique) g in G that is not in
H. The correspondence associates with this f’ the co-
set gH,

We now prove that the correspondence has the desired
properties:

1. One-to-one Ifafandbf arebothequal tof’ for two ele-
mentsa and b of G, thenf =a™'bf, which showsthata™'b isa
member of the isotropy subgroup H. Asaresultb[=a(a™'b))
belongs tothe cosetaH. Sodoesa (=ae). Thusa and b
are in the same coset: The choice of coset is indepen-
dent of the particular group element chosen to convert
f into f’, so that a given f’ determines a unique coset.
Conversely, given the coset we can recover a unique
order parameter f’ by letting any member of the coset
act on the reference order parameter f; for if af + bf,
then a™'b is not a member of the isotropy subgroup H,
so that b cannot belong to the coset aH that contains a.

2. Continuity We haveyettodefinewhat is meantby con-
tinuity ina space of cosets. Thedefinitionis, infact, con-
structed to ensure that the one-to-one representation of or -
der -parameter values by cosets does indeed preserve con-
tinuity. A sequence of cosets is taken to be a conver-
gent sequence if and only if it can be represented as a
sequence g,H, where g, is a convergent sequence in the
group G.?* Thus two cosets are nearby if and only if
they can be constructed by multiplying the subgroup H
by two nearby elements of G. It follows at once that a
convergent sequence of cosets corresponds to a conver-

A cautionary remark: When H is a normal subgroup the
coset space is itself a group (the quotient group) and we have
already introduced the notation G/H for that group. In the pres-
ent context H is not necessarily a normal subgroup, but the
coset space can still be defined and is given the name G/H even
when a group structure cannot be imposed upon it. The order-
parameter space is a space of cosets, but not, except in very
special cases, a quotient group.

2Not any representation of a convergent sequence of cosets
will have this property. For example, the trivially convergent
sequence H,H,H,... can be represented as hyH, hyH, h3H,...
where k, is a completely random (and hence nonconvergent)
sequence of group elements all of which belong to H itself. On
the other hand the sequence can also be represented by one in
which all the &, are the same element of H, which clearly does
converge. The crucial point is that there must be some repre-
sentation in terms of a convergent sequence of elements of G.
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gent sequence of order parameters f,=g,f.?® Converse-
ly, a convergent sequence of order parameters is rep-
resented by a convergent sequence of cosets. For sup-
pose the sequence of order parameters f, converges to
)_’. Then for an arbitrarily small neighborhood of the
identity element e in G, there must be an integer N such
that values of f, for » greater than N can be represented
in the form f,=e,f, where the e, are in the small neigh-
borhood of e. If f is represented by the coset K, then
the f, will be represented by the cosets ¢,K, which do
indeed converge to eK =K.

Although this description of the order-parameter
space as a space of cosets may seem unfamiliar, it is
important to note that it is nothing but a rather abstract
formalization of the commonplace practice of describing
ordered media in terms of broken symmetry. Consider
a uniform ordered medium and let the reference order-
parameter f be the value the order parameter every-
where assumes. The group G must contain enough
transformations to convert f into any other possible val-
ue of the order parameter. For this purpose the full
symmetry group of empty physical space will certainly
suffice, though it might be convenient to chose a smaller
or a larger group, as we shall see. In any event, the
full symmetry of the group G is broken by the ordering,
since not all elements of G leave f invariant. The iso-
tropy subgroup H is the set of transformations in G that
do leave the system invariant, even after the ordering
has set in, i.e., H is the symmetry group of the ordered
phase. The fact that the ordering breaks the underlying
symmetry is expressed in the fact that H is only a sub-
group of the underlying group G. I the symmetry were
completely broken (so that H consisted of the identity
alone) then all transformations of G would yield distinct
order parameters, and we could identify the order-~
parameter space with G itself. If, however, the ordered
phase retains some residual symmetry (characterized
by the group H) then unique values of the order param-
eter will correspond to whole sets of elements of G.
These sets are the cosets of H in G, and the collection
of all these sets is the coset space G/H.

To summarize the conventional picture, G is the sym-
metry group of the disordered phase (more correctly,
““a disordered phase,” since we need not choose G to be
the full symmetry group of empty space) and H is the
subgroup of G that describes the symmetry of the or-
dered phase. Both the formal and the intuitive content
of the representation of the order parameter by a space
of cosets should be illuminated by converting the de-
scriptions of the standard examples of Sec. IL.A. into
this language.

C. Examples of order-parameter spaces as coset spaces

We now illustrate the ideas developed above with the
various examples of Sec. IILA. The reader should note
that important general remarks will be made in the dis-

%5We naturally define continuity in the group G itself so that a
convergent sequence of transformations acting on any particu-
lar value of the order parameter yields a convergent sequence
of order parameters.
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cussions of particular examples, which should therefore
be perused even if the reader feels fully in command of
a given case.

1. Planar spins

The order parameter is a unit vector in the plane. A
suitable group G is therefore the two-dimensional (pro-
per) rotation group SO(2). No transformation other than
the identity in SO(2) leaves a vector fixed, so H is the
trivial subgroup consisting of the identity alone, regard-
less of the choice® of reference order parameter f.
The cosets of the subgroup consisting of the identity
alone are the group elements themselves. Thus the or-
der-parameter space for planar spins can be taken to
be SO(2) itself. From this point of view the circle we
used in Sec. II to represent the order-parameter space
plays the role of a convenient representation for SO(2).
But the order-parameter space is SO(2) itself.

It is important to realize that any other choice of G
would lead back to the same order-parameter space.
We could, for example, have taken O(2) rather than
SO(2) as the group G, including improper as well as
proper rotations of the plane. If the reference order
parameter were taken as a unit vector along the x axis,
then H would consist of the identity and the operation

)

m =

0 -1

of reflection in the y axis. The cosets of H are pairs of
elements, consisting of a proper rotation and that same
rotation followed by the reflection m. Evidently the co-
set space can be parametrized by parametrizing the
proper members of the pairs, and we are back to the
original circle.

A more important example of this flexibility in de-
scription is the following: Suppose we took the group G
to be not the proper rotation group SO(2) but the one-
dimensional translation group, T(1). This would be a
natural choice if we represented the spins in the form
s =% cosf +j sinf. The operations of G would consist of
the transformations 6T 40 =6 — ¢. The isotropy sub-
group would be the subgroup of T(1) consisting of trans-
lations through 27, independent of the choice of refer-
ence order parameter. Since T(1) is Abelian this is a
normal subgroup, and therefore the order-parameter
space G/H would itself be a group. This group—the
one-dimensional translation group with translations
differing by 27 identified —would be isomorphic to SO(2),
and we would again recover the original order-param-
eter space. The importance of this example will emerge
later on.

Both of these alternative descriptions suggest a useful
way of looking at coset spaces: Taking elements of the
order-parameter space to be cosets of the group G is
the same as taking the order-parameter space to be G
itself, with the proviso that elements in g belonging to

%Note that H will in general be independent of the choice of
reference order parameter if and only if it is a normal sub-
group of G. If H is a normal subgroup, then G/H is itself a
group, and the order-parameter space itself can be given a
group structure.
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the same coset are to be identified. Thus closed loops
in coset space can be represented by open paths in G,
provided the paths start and stop at points in the same
coset. Further aspects of this point of view will emerge
in the examples that follow.

2. Ordinary spins

The order parameter can be any unit vector in
3-space, so the full proper three-dimensional rotation
group SO(3) is required to take any value of the order
parameter into any other. If the reference order pa-
rameter is taken to be a unit vector along 2, the iso-
tropy subgroup is the two-dimensional proper rotation
group SO(2) with respect to the z axis, and the order-
parameter space is R =G/H =S0O(3)/SO(2). It may seem
a bit pompous to replace the simple surface of a sphere
S, by the space of cosets of SO(2) in SO(3), but, as we
shall see, this is in many ways the simpler and more
natural representation to use. Still simpler and more
natural, as we shall also see, is the representation
given by replacing SO(3) by SU(2); i.e., we take advan-
tage of the homomorphism?’ between SU(2) and SO(3) to
take the larger group SU(2) as the one that acts transi-
tively on the order-parameter space. The isotropy sub-
group H is now the subgroup of SU(2) that leaves the z
axis fixed. This consists of all unitary matrices of the
form .

ei® 0
exp(ifo,) =< ) >
0 e-19

and is evidently isomorphic to U(1), the group of one-
dimensional unitary transformations. The topological
properties of three-dimensional spins turn out to follow
most directly from viewing the order-parameter space
as R =SU(2)/U(1).

3. Nematics

If the group G is taken to be SO(3) then the isotropy
subgroup consists of the group D, of rotations about the
molecular axis and 180° rotations about axes per-
pendicular to the molecular axis. Thus the order-pa-
rameter space is R =S0(3)/D... If we were to include
inversions by taking G to be O(3), we should have to
add improper operations to the isotropy subgroup H,
extending D, to D,,,. The coset space would retain the
same structure. Here again (and in all the other cases
as well) we shall find it most convenient to take G to be
SU(2), and H the inverse image in SU(2) [known as the
lift in SU(2)] of the subgroup D, of SO(3).

Note that the unadorned sphere (representing 3-spins—
arrows) and the sphere with diametrically opposite
points identified (representing nematics —headless ar-
rows) appear on a more symmetric footing in this de-
scription. One is SO(3)/SO(2) [or, in more conventional
point group notation, SO(3)/C..] and the other is SO(3)/
D,. By starting the description in both cases with the
group G =SO(3) instead of directly with the surface of

2TThis homomorphism, though introduced here in an inessen-
tial way, will eventually play a central role in our analysis.
It is reviewed in Appendix B.
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the sphere many points must be identified in both cases.
The distinction between the two cases now lies in the
isotropy subgroup: SO(3)/C. =S,, the 2-sphere; SO(3)/
D_=P,, the projective plane.

4. Biaxial nematics

If G is taken to be SO(3) then the isotropy group of the
rectangular box is only the four-element group consist-
ing of the identity and 180° rotations about three mutual-
1y perpendicular axes (D,). Order-parameter space is
R =S0(3)/D,. We shall see that the lift of D, in SU(2) is
the group @ of quaternions.?® The natural representation
for the order-parameter space R of a biaxial nematic
turns out to be R =SU(2)/@. More generally, if the
“molecules” of the biaxial nematic have a proper point
group H,, then the natural order-parameter space turns
out to be SU(2)/H, where H is the lift of H,,.

5. Superfluid helium-3

The order parameter in the dipole-locked A phase is
a pair of orthonormal axes. If we take the reference
order parameter to be the pair %, §, then there is a
unique correspondence between pairs of orthonormal
axes and proper rotations of %,¥, i.e., the group G can
be taken to be SO(3) and the isotropy subgroup H con-
sists of the identity alone. Thus the order-parameter
space is R =G/H =S0(3).

If, instead, we take G to be SU(2), then the isotropy
subgroup H is independent of choice of reference order
parameter and consists of the two elements of SU(2)
that map onto the identity of SO(3) under the homorph-
ism. These are the two elements represented by the
2X 2 matrices 1 and -1, corresponding in the conven-
tional picturesque but confusing language to the identity
and “the 360° roation.”

The dipole-free A phase affords an unusual example
of a case where G must be bigger than SO(3). The order
parameter [see Eq. (2.8)] is the product of an arbitrary
unit 3-vector # and a complex 3-vector of the form
it +i0, where @ and ? are an orthonormal pair. The ori-
entations of # and # +9 are uncoupled. If we take the
reference order parameter to be A;; =z,(x; +éy;) then we
can generate an arbitrary order parameter by letting
one rotation act on the index ¢ and another in general
distinct rotation act on the index j. Thus G can be taken
to be the direct product of SO(3) with itself: G=S0(3)

X S0(3), elements of G consisting of pairs (R, R’) of dis-
tinct rotations. The isotropy subgroup H contains all
elements of the form R(Z, 8)X1 (where 1 is the identity
rotation), since left rotations about the z axis leave the
reference order parameter unchanged. Although any
distinct rotations take % +4y into distinct pairs, the ro-
tation that changes the sign of ¥ +7§ will leave the order
parameter A;; unaltered if it is paired with a rotation
that changes the sign of 2. Therefore the isotropy sub-
group also contains all elements of the form R(ii, 7),

ZTranslation: the subgroup of SU(2) that is carried into D,
under the homomorphism between SU(2) and SO(3) is isomor-
phic to that eight-element non~Abelian group known as the
quartenion group . The quartenion group will be examined
explicitly in Sec. V.B.4.
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R(2, m) where @ is any axis in the x-y plane.

In all of these cases we have gone from a representa-
tion of the order-parameter space by a geometric ob-
ject (a circle, a sphere, a projective space, etc.) to
a representation by a coset space of a topological group.
From the group-theoretic point of view, the geometric
object is simply a particular way of parametrizing the
coset space. Because there is a continuous one-to-one
mapping of the coset space onto the geometric object
and vice versa, the topological properties of one are
identical to the topological properties of the other. The
fundamental groups of the coset spaces of interest,
however, can all be computed at once, by virtue of a
single powerful theorem, which will be developed and
applied in Sec. V.

Before turning to the matter of central interest, how-
ever, we must examine some features of the fundamen-
tal group m,(R) of a space R, when that space happens to
be a continuous group G .

D. Properties of the fundamental group of a topological
group

A continuous group is also a space, with continuity
defined in it. Ignoring the additional algebraic struc-
ture, we can examine the general topological properties
of that space, and, in particular, its fundamental group.
The algebraic superstructure possessed by the space by
virtue of its being a group can be of help in such topo-
logical investigations, and can lead to some quite gen-
eral simplifications in the topological structure. Per-
haps the most important such simplification is the fact
that the fundamental group of a continuous group is al-
ways Abelian. We prove this result below because it is
of some use in the development that follows, because
some of the subsidiary concepts and results are also of
interest, and because it furnishes an especially simple
example of the study of the homotopy groups of continu-
ous groups—a study that will become rather more elab-
orate in subsequent sections.

Because the fundamental group of a space is isomor-
phic to any of the based fundamental groups, to compute
7,(G) it suffices to compute the group 7,(G, e) of classes
of loops based at the identity. Now a loop based at the
identity is simply a map f(z) of the interval 0<z <1 into
the continuous group G, which starts and finishes at the
identity

F(0)=£(1)=e. (4.4)

The path product of two loops f(z) and g(z) is defined in
the usual way [Eq. (3.2)] as the loop at e given by first

I

v FIG. 23. Various homotopic
paths in the unit square con-
necting 0,0 to 1,1. Such
paths determine homotopic
loops in G at e, given by the
values of f(u)g(v) as » and v
traverse the path.

0,0 u —
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FIG. 24. Three paths con-
necting 0,0 to 1,1 in the unit
1 . square. The corresponding
v loops f(u)g(v) are all homo-
topic at e in G. The diago-
nal path gives the group
product [Eq. (4.5)]. The -
path with double arrows
yields the loop product fog.
The path with triple ar-
rows gives gof.

0,0 u— 1,0

traversing f and then g. Because G is a group, in addi-
tion to the loop product fo g, we can also define a group
product, fXg, which is given at any z by the group-
theoretic product of the values of fand g at that z:

Xgl.=f(@)g(z). (4.5)

Since e?=e, the group product of two loops at e is alsoa
loop at e.
The group product of two loops, or rather a slight

" generalization of the group product, provides the basis

for a quite simple proof that 7,(G) is Abelian. The basic
result is this:

If fand g are two loops at e in G, then the loop prod-
uct fog, the loop product gof, and the group product
fXg, are all mutually homotopic at e.

Since 7,(G, e) consists of classes of homotopic loops at
e, this establishes that [ f]o[ g] ={ glo[ f]—i.e., that the
multiplication of such classes is commutative.

To prove the basic result, consider the continuous
map of the unit square 0<u, v, <1 into G, given by

(4.8)

The image in G of any line within the square connecting
0,0 to 1, 1 is evidently homotopic to the image of any
other line, the homotopy being provided by any convenient
deformation of one line into the other within the square
(Fig. 23). The image of any such line is a loop at e in
G, so by tracing various paths from 0,0 to 1, 1 in the
square, we produce various loops in G that are homo-
topic at e. Now the loop produced by going along the
diagonal of the square is just the group product (4.5).
However (Fig 24), by taking a route that goes along the
edges of the square, one produces either fog or gof,
depending on which pair of edges one chooses.?® This
completes the proof.

Although the proof that 7,(G) is Abelian for any con-
tinuous group is quite elementary, the result is, from
some points of view; quite startling. Recall, for ex-
ample (Sec. III.A.6.c) that the fundamental group of a
figure eight is non-Abelian. It follows that although a
circle can be taken as the parameter space for a con-
tinuous group, a figure eight cannot. Elementary as
our proof was, I doubt that many people, first intro-
duced to the notion of a group, would realize that “non-
figure-eight-parametrizable” was one of its very basic
attributes.

u, v~f ) g ).

2Remember that along the edges of the square either the f or
the g in Eq. (4.6) is equal to the identity e, since f (0)=f (1)
=g(0)=g@l)=e.
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FIG. 25. The universal covering group for the two-dimensional
proper rotation group SO(2) is the one-dimensional translation
group T(1). A point at the angle 0 in the circular order-para-
meter space for SO(2) is the image of all the points x=0+ 272
along the linear parameter space for T(l), under the covering
homomorphism. '

V. THE FUNDAMENTAL GROUP OF THE ORDER-
PARAMETER SPACE

A complete classification of the line defects of an
ordered medium and their combination laws is provided
by the fundamental group of the order-parameter space.
We now give a simple rule for finding the fundamental
group for any ordered medium whose order-parameter
space has the structure described in the preceding sec-
tion. The rule is developed in general terms in part A,
and applied to the standard examples in part B.

For the reasons given at the beginning of Sec. III, it
suffices to consider connected order-parameter spaces,
and therefore to consider only connected transformation
groups G. For rather more subtle reasons it also suf-
fices to consider only simply connected®® transformation
groups. This follows from a theorem that any continu-
ous group can be imbedded in a larger group (known as
its universal covering group) that is simply connected.
The precise nature of the imbedding is that the group G,
is the homomorphic image®! of its simply connected uni-
versal covering group G, .

The most familiar example (to physicists) of a group
and its universal covering group is the three-dimen-
sional group of proper rotations SO(3) (which, as we
shall see, is not simply connected) and its universal
covering group, the special unitary group SU(2) (which
is). The relation between the two is a homomorphic
mapping of SU(2) onto SU(3) which takes a pair of 2X2
unimodular unitary matrices (differing by an overall
minus sign) Into each 3X3 real orthogonal unimodular
matrix. (See Appendix B for a more detailed descrip-
tion.)

A simpler example is the two-dimensional group of
proper rotations SO(2). A parameter space for SO(2)

30Recall that a space is simply connected if its fundamental
group contains only the identity (i.e., if any loop can be shrunk
to a point).

3More explicitly, there is a map ¢ of G, onto G, associating
with each element of G, a distinct pair (or triple, or, for ann
to one homomorphism, z-tuple) of elements of G,. The map
preserves the group structure, in that ¢(a) ¢(b)=¢(abd).
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FIG. 26. The real line is simply connected. (a) A loop in the
real line. Points on the loop are taken into the point on the real
line directly below. The squashing of the loop into the line has
not been carried to completion in the figure to make it clear
that the loop is a loop. (b) and (c) Successive stages in the
shrinking of the loop to a point.

is the circle, so the fundamental group of SO(2) is iso-
morphic to the integers. The universal covering group
is the one-dimensional translation group T(1). The
homomorphism (see Fig. 25) associates with the rota-
tion through 6 all the translations through 6 +2m» for

any integral » (positive, negative, or zero). A param-
eter space for T(1) is evidently the entire real line.

This is simply connected, since any continuous image

of a loop in the real line can be scaled continuously down
to a point (see Fig. 26).

In applications the only universal covering groups we
shall make use of are those for SO(3) and SO(2). We
shall therefore dispense with a proof of the general the-
orem that such covering groups always can be con-
structed,®® the construction being explicitly given in the
cases of interest.

Note that if one can describe with a group G, the
transformations taking the standard order parameter
into any particular value, then one can equally well con-
struct a description using the universal covering group
G,. One merely replaces the set of transformations in
G, giving any particular value of the order parameter
with the (larger) set of transformations in G, that cor-
respond, under the covering homomorphism, to the
first set. The discussion of planar spins in Sec. IV.C.1
serves as an explicit example. The point to keep in
mind is that if G is enlarged then so is the isotropy sub-
group H. Such changes “factor out” of the coset space
G/H, which represents the order-parameter space pre-
cisely because it eliminates any such redundancies.

We now proceed to the fundamental theorem.

A. The fundamental theorem on the fundamental group

Theorvem: Let Gbe aconnected, simply connected con-
tinuous group. Let Hby any subgroup of G. Let H,be the
set of points in A that are connected to the identity by con-

32A straightforward and old fashionedly readable exposition of
the theorem can be found in Pontryagin (1966), p. 351ff.
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tinuous paths lying entirely in H. Then H, is a normal
subgroup of H, and the quotient group H/H, is isomorph-
ic to the fundamental group 7,(G/H) of the coset space
G/H.

That H, is a normal subgroup of H is the content of the
theorem proved in Sec. IV.A.1. When going through the
proof of the main part of the theorem, it is helpful to
keep in mind three different possibilities for the struc-
tures of H, H,, and the quotient group H/H,:

(i) The subgroup H may be discrete, i.e., the set of
‘members of H is a discrete set in G. (Formally, a set
is discrete in G if each of its points has a neighborhood
in G containing none of the other points, i.e., none of
the points are too close together.) If H is discrete then
H,, the connected component of the identity in H, must
consist of the identity alone. The quotient group H/H,
is then just the subgroup H itself, and the theorem iden-
tifies the fundamental group with the isotropy subgroup.

(ii) The subgroup H may be a connected subset of G.
This is the opposite extreme from (i). If H is connected
then H, is all of H, the quotient group H/H, is the one-
element group, and the fundamental group is 0: The
order-parameter space G/H is simply connected.

(iii) The subgroup H may consist of two or more dis-
joint connected components. If these components are
single points we are back to case (i). If they are not
then H, is a proper subgroup of H, and H/H, is neither
the full group H nor the trivial one-element group. The
elements of H/Ho—the cosets of H, in H—are the con-
nected components of H.

In all three cases the order® of H/H, (and hence the
order of the fundamental group) is just the number of
connected components of H. Since cases (i) and (ii) are
clearly special cases of (iii), case (iii) is the one to
keep primarily in mind in following the proof.

Note, finally, before embarking on the proof, the use-
fulness of the final result. It reduces the problem of
loops in the coset space G/H to some elementary alge-
braic features of the isotropy subgroup H. One needs
only to count up the connected pieces of H (which con-
stitute the elements of H/H,) and work out the multipli-
cation table for these pieces by noting the (unique) piece
that contains the product of any two representative
members of each pair of pieces. That multiplication
table s the multiplication table for the fundamental
group.

The proof is given in two stages. First, the precise
correspondence between loops in coset space and com-
ponents of H is described in some detail. It is essential
to understand that correspondence if one wishes to make
full use of the result. Then the isomorphism asserted
by the theorem is proved. Readers willing to take my
word for it can skip the second part.

1. The correspondence between loops in coset space and the
connected components of the isotropy subgroup

First note that if g(z) is a continuous path in the group
G, then the path in coset space given by

33The order of a group is simply the number of elements it
contains.
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K(z)=g(2)H (5.1)

is continuous by the very definition of continuity in co-
set space (point 2 of Sec. IV.B). The converse proposi-
tion is more subtle but also true: If K(z) is a continu-
ous path in coset space then it can be represented by
some (clearly not unique) path g(z) in the group, through
Eq. (5.1). An honest proof of this is a fairly delicate
matter, and all the proofs I have seen require the con-
tinuous group G to be a Lie group as well. For our pur-
poses, however, the validity of the converse is amply
demonstrated by the following observation:

Given a continuous family of cosets, K(z), let f(z) be
the corresponding continuous family of order param-
eters with f(z,) given by the action on the reference or-
der parameter f of any of the members of K(z,) (the re-
sult being independent of the particular choice of mem-
ber). It is intuitively clear that one can trace out the
continuous trajectory f(z) in order-parameter space by
applying a continuous sequence of transformations g (z)
to the reference order parameter f. But this means
that each g(z) itself belongs to the coset K(z), so that
K(z) can indeed be represented in the form of Eq. (5.1).

We need not apply Eq. (5.1) to arbitrary loops in coset
space, for the structure of the fundamental group is
given by any based fundamental group. It is convenient
to take as base point in coset space the subgroup H it-
self. To represent a loop at H in coset space via Eq.
(5.1), the path g(z) in the group G must start and finish
in the subgroup H, though, of course, the path in the
group need not be a closed loop, since gH =H for any g
in H. Note that for any group element % in H, g(2)h
gives the same coset loop via (5.1) as does g(z) itself.
Hence by picking % to be the inverse of g(1) we can en-
sure that the representative path ends at the identity e.

We therefore can represent loops at H in coset space
by continuous paths in G connecting points in H to the
identity e. We classify the representative paths accord-
ing to which of the connected pieces H; of H they start
from (Fig. 27).

FIG. 27. Various paths in the group G that connect points in
the subgroup H with the identity e.
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FIG. 28. Construction for determining the product of two paths
gy and g3 in G, connecting points in the components H; and H, of
the subgroup H to the identity e. Shift the path g; by multiplying
each of its points by g5(0). This gives a path gg,(0) that ter-
minates at the starting point of g5. The path product gyog, is
defined to be the composite path given by first traversing
2122(0) and then continuing on to e along g,.

Consider now two loops at H in coset space, K,(z) and
K,(z), that can be represented by paths g,(z) and g,(2),
respectively connecting points in H, and H, to the
identity. We construct a path in G representing the loop
product K,0K, as follows:

Since g,(0) belongs to H, and hence to H itself, the
path g,(z) g,(0) also represents the coset loop K,(z).
This path, however, connects the point g,(0) g,(0) of G
to the point g,(1) g,(0) =eg,(0) =g,(0), which is the start-
ing point of the path that represents K,(z). Thus we can
put the two paths g,(z) g,(0) and g,(z) together (first
traversing the former, then the latter) to get a single
continuous path that starts at g,(0) g,(0) and ends at e
(see Fig. 28). By its construction this path represents
the loop product K,0 K,. Its starting point, g,(0) g,(0)
lies in the component of H that corresponds in the quo-
tient group H/H, to the product of H, with H, .>

That constitutes the essence of the theorem: Loops
in coset space based at H correspond to paths in G con-
necting the elements of the factor group H/H, (i.e., the
connected pieces of H) to the identity. The loop product
of two loops at H in coset space can be represented by a
path in G originating from the piece of H which is the
product (when considered as an element of H/H,) of the
two pieces connected to e by the paths representing the
two loops.

2. Proof of the isomorphism between 7, (G/H) and H/H,

To complete the argument given above we require a
demonstration that the correspondence just described
between homotopy classes of loops at H in coset space,
and connected pieces of H in G, is in fact a one-to-one
correspondence. We must thus show (a) that any two
paths in G connecting a given component of H to the
identity yield via (5.1) homotopic loops at H in G/H and

3see the remarks following the proof of theorems 1 and 2 in
Sec. IV.A, if this is not obvious.
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FIG. 29. Two paths g, and gy connecting points in the same
component H’ of the subgroup H to the identity e. A third path
c can be drawn entirely in H’ connecting the starting points of
go and gy.

(b) that two homotopic coset loops in G/H at H can only
be represented by paths in G connecting the same com-
ponent of H to the identity. We take up the points one by
one. .

(a) Consider two paths g,(z) and g,(z), each of which
joins a point in the same component H' of H to the iden-
tity e. If we can find a continuous interpolation g,(z)
between the two paths which starts in H’ and ends at ¢
for each £, then we are done, for the required homo-
topy in coset space will be just K,(z) =g,(z)H. We con-
struct the required interpolation as follows:

Because H’ is a connected piece of H, we can find a
path ¢ in G that connects g,(0) to g,(0) and lies entirely
in H' (see Fig. 29). The path given by first traversing
¢, then traversing g,, and then traversing g, in reverse
order, is a closed loop in G. But G, by assumption, is
simply connected.?® Hence that loop can be shrunk to a
point in G. The shrinking homotopy can be viewed (Fig.
30) as a continuous map of a triangle into G, the edges
of the triangle going into g,, g,, and ¢. By simply re-
parametrizing that triangle (Fig. 31) so that ¢ describes
paths connecting various points along ¢ to e, we can
construct from it the required interpolation.

(b) Let K,(z) be a homotopy at H between two coset
loops at H, K,, and K,. For any fixed value of ¢ let
f(z) and g (2) be two paths in G terminating at the iden-
tity and representing K,(z), so that

K, ()=f(z)H=g () H . (5.2)

It follows from Eq. (5.2) that f(z)'g (z) belongs to the
subgroup H for every choice of z. But f!g is itself a
continuous path in G that terminates at the identity.
Since it never leaves H its starting point £(0) 'g (0) must
lie in the connected component of the identity H,. On
purely algebraic grounds it follows that £(0) and g (0)
belong to the same coset of H,. Since the cosets of H,
are the connected pieces of H, the paths f and g must
start in the same component of H.

We have thus established that for any given ¢ there is
a unique component of H from which any path to e in G
representing K,(z) must start. Since the family of coset
loops K,(z) is continuous in ¢, this unique piece of H

351t is here (and only here) that we require G to be the univer-
sal covering group. .
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FIG. 30. The loop cogiogy! in G formed by the paths in Fig.
29, Because G is simply connected the loop can be shrunk to a
point. Successive loops in a shrinking homotopy are shown.

must vary continuously with ¢. But the pieces of H con-
stitute a discrete set, so the piece associated with K,(z)
cannot vary at all with {. Letting ¢ vary all the way
from O to 1 we conclude that paths representing K, via
Eq. (5.1) must connect the same connected piece of H to
the identity as the paths representing K,, which is what
we set out to prove.

We now illustrate the use of the theorem by computing
the fundamental groups of the order-parameter spaces
of our standard examples.

B. Computing the fundamental group of the order-
parameter space

To apply the theorem to the examples of Sec.Il.A we
must represent their order-parameter spaces as coset
spaces, as described in Sec.IV.C, being sure to choose
for the group G one that is connected and simply con-
nected.

1. Planar spins

The representation s =% cos6 +9 sinf permits us to
take the group G to be the full one-dimensional trans-
lation group T(1): T,(6)=6 —¢. Here T(1), being pa-

rametrized by the entire real axis, is simply connected.

(Note that the more “natural” choice for G, the two-
dimensional rotation group, has a circle as its param-
eter space and is therefore not simply connected.) The
isotropy subgroup H consists of translations through
integral multiples of 27:

e

FIG. 31. A reparametrization of the shrinking homotopy of
Fig. 30, showing that the homotopy also provides a continuous
deformation of the path g into the path g; via a family of inter-
mediate paths, all of which start in the subgroup H’ and end at
e.
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H={T21rn, n =0, il,iz""} . (5.3)

This is a discrete group, i.e., the connected component
of the identity consists of the identity alone. Hence H/H,
is equal to H itself, and the fundamental group of the
planar spins is isomorphic to H, which in turn is iso-
morphic to the additive group of the integers, Z:

(5.4)

We recover our old classification by integral winding
numbers.

T, (R)=Z (planar spins) .

2. Ordinary spins

Because SO(3) is not simply connected, to apply the
theorem we must represent a general order parameter
by the action of the simply connected group SU(2) on a
reference order parameter.® If the reférence spin is
taken to be along the z axis, then a general spin is given
by

s=R(#,0)2, (5.5)

where R is the rotation in SO(3) through the angle 6
about the axis #. To apply the theorem we must use for
G not SO(3), but SU(2), in terms of which Eq. (5.5) be-
comes

s-o=ut(, 6)o,u#, 6), (5.86)
where
u (i, 0)=expli(6/2)ii-o] . (5.7)

[ The two-to-one nature of the relation between SU(2)

and SO(3) can be seen from the fact that « (%, 6 +2m)

= ~u(#, 6) would serve as well asu (7, 0) in Eq. (5.6).]
The reference order parameter is left invariant [i.e.,

Eq. (5.6) gives s =2] for just those u with #=2 (as is

evident, if one thinks about the corresponding rotations).

Thus H is the subgroup of SU(2) of 2X2 matrices of the

form:

eielz 0
u(z, 9)=ei(e/2)°z=< 0 e-ie/z) (5.8)

Evidently this is a connected subgroup: Any two such
matrices can be joined by a continuous family of them.
Thus H,=H and H/H, is the trivial group 0.>” We recover
our old conclusion that there are no stable line defects:

m,(R)=0, (3-spins). (5.9)

3. Nematics .

We continue to represent the order parameter as in

case 2, but the isotropy subgroup of SU(2) must now be

expanded to include transformations that take £ —-2,
i.e., rotations through 7 about arbitrary axes perpen-
dicular to Z. Such a rotation can always be represented
as a 180° rotation about a particular axis (say y) fol-

36The connectivity of SO(3) and SU(2) and the relationship be-
tween them is reviewed in Appendix B.

3"When the fundamental group is Abelian the general conven-
tion is to describe it in the language of additive (rather than
multiplicative) groups. In particular the one-element group is
always named 0 (rather than 1).
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FIG. 32. The only topologically nontrivial line singularity in a
nematic: the 180° disclination.

lowed by a suitable rotation about 2. Since rotations
through m about § are represented by

" . 01
u(P, M) =xioc, ==+ ,
-1 0

(5.10)

the isotropy subgroup H includes, besides u of the form
(5.8), products of these with ¢g,. [The products with
—-io, are then automatically included, since 66 +27
sends u——u in Eq. (5.8).] Thus in addition to the set
(5.8), H will include:

0(2, 9) =u(2’ ‘9)(7:0'3,) =(‘ 0 ei9/2> '

—eio/2 0

(5.11)

Evidently the connected set (5.11) is not in the con-
nected component of the set (5.8). Since the identity is
of the form (5.8), the matrices (5.8) give H,. The set
(5.11) is of the form H,(ic,). The full isotropy sub-
group H is the union of these two sets, H, being a nor-
mal subgroup of H and H(¢0,) being the (single) coset
not equal to H,. The group structure of H/H, is there-
fore that of the two-element group consisting of the
identity and io, which (like any two element group) is
isomorphic to the integers modulo 2, Z,. We conclude
that

m(R)=Z,, (nematics). (5.12)
T
A T >
7T 72
‘\,\T)) FIG. 33. Escape in the third
— == — o —f —{ —f —f dimension of two 360° dis-
N l\’ clinations. The lines have
N 1 N been given “nail heads” for
(\/ Y ease in description, but one
1 e end is still to be considered
l (a) indistinguishable from the
other. The escape is
achieved by rotating each
nail about a perpendicular
line lying in the plane of
ATy the page, until the head
- N points straight out of the
2 2N ) page. The resulting con-
TT T"__L 11 figuration is uniform.
A\
Sy
= (b)
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FIG. 34. The escape route of Fig. 33 fails when applied to the
180° disclination of Fig. 32, for nails on opposite sides of the
line extending vertically from the singular point would have to
rotate in opposite senses, and the intermediate configurations
in the escape could not be everywhere continuous away from the
singularity.

There is thus precisely one class of nonremovable line
singularities in a nematic.

Note that the structure of the nonremovable singular-
ity is implicit in the foregoing analysis. It corresponds
to a loop in coset space represented by a path in SU(2)
connecting Hy(ic,) to the identity. One of the simplest
such paths connects 7o, itself to the identity, and can be
taken as the family of rotations through 6 about the y
axis, where 6 runs from 7 down to zero. Thus a non-
removable singularity can be represented as one in
which the headless vector # characterizing nematic or-
der rotates in a plane through 7 as the singular line is
encircled as shown in Fig. 32. Such a singularity is
called a 180° disclination.

Note that when the net change in angle is 27 the sing-
ularity is topologically trivial. This follows algebrai-
cally from the fact that a 27 singularity can be viewed
as the loop product of two 7 singularities, and is there-
fore described by the square of the coset Ho(icy). But
the square gives back H, itself (the square of the non-
trivial element in the two-element group must be the
identity) which corresponds to the class of removable
singularities. For the 27 singularities depicted in Fig.
33 the removal can be simply achieved by everywhere
continuously rotating the local # to an orientation per-
pendicular to the page. The fate thus suffered by the
removable 27 singularity is known as “escape in the
third dimension.” Note that the 7 singularity of Fig. 32
cannot be eliminated in this way; if the attempt is made
to escape out of the page, a singular line is produced
throughout the “collapse” extending from the singular
point out to infinity (Fig. 34).

4. Biaxial nematics

The only rotations that take a rectangular box into it-
self besides the identity are three 180° rotations about
three mutually perpendicular axes. If G is taken to be
SO(3) the isotropy subgroup is therefore the four-ele-
ment point group, D,. If we take G to be SU(2), then H
is expanded to the eight-element subgroup of SU(2)
which is taken into D, under the homomorphism. We
have

+1-1,
(5.13)
tu@, m)=xifi-c-R@®, ),
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and therefore

H= {1; _1y iox ’ "'iox ’ i()'y, —ioy’ io’z) _ioz} . (5'14)

This is isomorphic to the quaternion group3® @, and
since it is a discrete subgroup of SU(2), H/H,=H. Thus

m(R)=Q, (5.15)

Note that @ is non-Abelian. The biaxial nematics are
therefore an especially interesting system from the
topological point of view. We defer a discussion of their
defects until the general discussion of the non-Abelian
case in Sec. VL.

Note the form analogous to Eq. (5.15) for the general-
ized biaxial nematics. A medium that can be viewed as
a field of objects with a discrete symmetry group P
whose subgroup of proper rotations® is P,, has a fund-
amental group given by the lift of P, in SU(2)—i.e., the
subgroup of SU(2) whose order is twice that of P, which
is carried into P, under the homomorphism. Such sub-
groups of SU(2) are important in the theory of magnet-
ism in crystals, where they are known as double groups.

(biaxial nematics).

5. Superfluid helium-3

As noted in Sec.IV.C.5, the isotropy subgroup of the
dipole-locked A phase is the identity alone if G is taken
to be SO(3), and is the two-element group (1, -1) if G
is taken to be SU(2). Since H is a discrete subgroup of
SU(2), H, is the identity, and H/H,=H, the two-element
group. Thus

m(R)=Z,, (dipole-locked *He-A).

In the dipole-free A phase we noted that G can be
taken to be the direct product of SO(3) with itself, in
which case H consists of elements of the form [R(z,6),1]
and [R(#, 7), R(2, m)] for any axis # in the x-y plane. To
construct a simply connected*® G, we must replace each
SO(3) by SU(2). To compute the fundamental group we

(5.16)

must therefore determine the lift of H from SO(3) X SO(3)

to SU(2)XSU(2).** The elements [R(z, 6), 1] are lifted to

3As originally defined by Hamilton, the quaternion gvoup con-
tains, in addition to +1, elements +¢, +j, and % satisfying
i2=j’=k%’=ijk=—1. These relations suffice to determine the
entire 8 X8 multiplication table. They are satisfied by the
identifications i~—1% o, k~—1 0, and j<—1 o,.

390nly the proper point symmetries are relevant because P,
plays the role of the isotropy subgroup H of the full group G.
To apply the theorem G must be connected, and can therefore
include only proper rotations. The improper symmetries of
the object are therefore irrelevant.

40The theorem (proved at the end of Sec. III) that the funda-
mental group of the product of two spaces is the product of
their fundamental groups assures us that SU(2) XSU(2) is sim-
ply connected. (The product of the trivial group with itself re-
mains the trivial group.)

YA cautionary note may be in order at this point. When deal-
ing with SU(2) XSU(2) one must not be seduced into error by a
‘notational convenience that is perfectly safe when used in a
single SU(2). If g is a member of SU(2) then the member —g is
not the real number —1 times the group element g [though it
may be in a particular representation of SU(2)]. For SU(2) is
not an algebra but an abstract group and scalar multiplication
is not defined. The group-theoretic meaning of the notation
“—g” is this: there is an elementf in SU(2) which is not the
identity, but commutes with all the other group elements and
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elements
[u(z, 0), 1], [u(2, 6), 1], O<@<dm, (5.17)

of SU(2)XSU(2). [We do not need to specify an addition-
al pair with a minus sign attached to u(2, 6) since

—u(2, ) =u(z, 6 +2m).] In treating the elements [R(?, 7),
R(2,m)] it is convenient to represent rotations through
7 about arbitrary axes # perpendicular to 2 in the equiv-
alent form of rotations through 7 about a fixed axis
(taken here as the x axis) compounded with arbitrary
rotations about 2. Doing this, we find that these ele-
ments of H lift to '

[u(®, M u(2, 6), u(z, ],

(5.18)
[w(z, T)u(2, 6), —u(2,7)], 0<O<4m.
If we now define an element g of SU(2)XSU(2) by
g=[u®, m),u,m], (5.19)

then we can characterize the pieces of the subgroup H
of SU(2)XSU(2) given by Egs. (5.17) and (5.18) as fol-
lows:

The connected component of the identity H, is the first
of the two sets of elements given in Eq. (5.17); the first
of the two sets given in Eq. (5.18) is just the coset gH,,
the second in Eq. (5.17) is the coset g?H,, and the sec-
ond in Eq. (5.18) is the coset g®H,. Thus the quotient
group H/H, has the same structure as the cyclic group
of order 4 generated by ¢, g, g2, and g* and we con-
clude that

m(R)=Z,, (dipole-free *He-A). (5.20)

V1. MEDIA WITH NON-ABELIAN FUNDAMENTAL
GROUPS

Two loops in order-parameter space are freely homo-
topic (i.e., one can be continuously slid about until it
coincides with the other) if and only if they are charac-
terized by the same conjugacy class of the fundamental
group. The discussions in Secs. II.B and III.D on wheth-
er line defects can be transformed into one another by
local surgery used no feature of order-parameter space
topology beyond the organization of loops into equival-

satisfies f2=1. The symbol “—g”’ is simply a shorthand nota-
tion for fg. The notation is used, because it follows from the
properties of f that (fg) (f)=gh and f(fg)=g, and these are
automatically taken care of by the minus sign notation. How-
ever, one cannot identify the element [-g,—%] in the direct
product SU(2) XSU(2) with the element [g,%]. Indeed, [-g,~h]
is more properly written as [fg, f2]. The two f’sinthis expression
appear with different members of the direct product and cannot be
combined to give unity. This may appear to be an obvious
point, but in practice one almost always treats SU(2) XSU(2) as
the product of the two corresponding groups of unitary matri-
ces. Since these matrix groups happen to be algebras as well,
it is very tempting (but wrong) to endow the direct product
with this additional structure, and collapse two —1’s associ-
ated with distinct elements. The confusion is compounded by
the habit of identifying SU(2) (the abstract group) with SU(2)
(the faithful representation of that abstract group by 2 X2 ma-
trices). Calling the latter structure “SU(2)”’ the problem arises
from the fact that “SU(2)”” X-“SU(2)” is not a faithful represen-
tation of SU(2) XSU(2).
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ence classes under free homotopy. Thus the criterion
for the topological equivalence of planar spin defects in
terms of winding number, which generalized to any
Abelian medium?® in terms of elements of the fundamen-
tal group, applies in the most general case in terms of
conjugacy classes of the fundamental group:

Two line defects are topologically equivalent (in the
sense that one can be given the core of the other by
purely local surgery) if and only if they are character-
ized by the same conjugacy class of the fundamental
group.

The implications of this in non-Abelian media are
rather subtle. We shall examine the non-Abelian case
in this section, using the biaxial nematic as an illus-
trative example.*® In part A we describe in more de-
tail the categories of biaxial nematic line defects; in
part B we describe the combination law for line de-
fects in non-Abelian media; and in part C we examine
some curious things that can happen when one tries to
pull one line defect across another in a non-Abelian
medium.

A. More on the nature of line defects in biaxial nematics

We have noted (at the end of Sec. V.B.4) that a medium
of objects with a discrete point group symmetry has for
its fundamental group the lift in SU(2) of the proper sub-
group of the point group. The smallest non-Abelian
fundamental group one can construct in this way is the
eight-element quaternion group @, so the biaxial nemat-
ics are the simplest such non-Abelian medium.**

The elements of the quaternion group are given in
terms of their representation by Pauli matrices in Eq.
(5.14). They can be grouped into five conjugacy class-
es*s:

Co={1}, Co={-1},
C,={xio,}, C,={zio,}, C,={tio,}. (6.1)

The class C, contains removable defects; C, contains
defects in which the object rotates about 360° as the line
is encircled; the classes C,, C,, and C, contain defects
in which the rotation is through 180° about each of the
three distinct symmetry axes.

Examples of these defects are shown in Fig. 35. For
simplicity the figure shows not a rectangular box, but
a pair of sticks of unequal length that perpendicularly

421 shall sacrifice accuracy for brevity, referring to a medi-
um whose order-parameter space has an Abelian (non-Abelian)
fundamental group, as an “Abelian (non-Abelian) medium.”

43Biaxial nematics have not yet been made in the laboratory.
The claim has been made, however, that line defects in cho-
lesteric liquid crystals have the same fundamental group. The
validity of this, and similar assertions about media with bro-
ken translational symmetry, is considered in Sec. VIIIL.

44The non-Abelian abstract group of lowest order is the group
Dy of order 6. However, the only proper point group of order
3 is C3, which lifts to the Abelian group Cg in SU(2). Similar
observations reveal that @ is the only non-Abelian group that
can be reached by lifting a four-element proper point group to
SU(©2).

45This follows directly from the fact that the Pauli matrices
anticommute and give unity when squared. Thus, for example,
(io,)™ = —io,, and hence (io,)(i0,)(i0,) = —ia,.
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FIG. 35. Representatives of three distinct classes of line de-
fects in the biaxial nematic. The object with the symmetry of

a rectangular box is here represented as two mutually bisecting
perpendicular sticks of unequal length. (a) C,: a 180° disclina-
tion in both sticks. (b) C,: a 180° disclination in the long stick
at uniform short stick. (c) C,: a 180° disclination in the short
stick at uniform long stick.

bisect one another. The symmetry group is the same.
The four nontrivial classes can then be described as a
360° disclination (C,), a 180° disclination in the long
stick with no variation in the short (C,), a 180° disclin-
ation in the short stick with no variation in the long (C,),
and a 180° disclination in both sticks (C,). One might
wonder why the 360° disclinations do not come in three
varieties. The reason is that the trick that produced
escape in the third dimension in the ordinary nematic
(Sec. V.B.3) thereby rendering its 360° disclination
trivial, has the effect in the biaxial nematic of convert-
ing the various candidates for distinct 360° disclinations
into one another (Fig. 36). Note, also, that two defects
described by distinct elements of the fundamental group

.I.
X 4+ X
* X FIG. 36. The fourth class
\‘I‘;( of line defects in the bi-
—+ —+ —';(‘{" -+ —+ axial nematic, Cy. Itis
x + x shown in (a) as the 360° ana-
< + . logue of Fig. 35(a), andin (b)
+ (a) as the 360°analogue of Fig.
35(c). An attempt to make
(a) escape in the third di-
mension by a 90° rotation
A about the short stick sim-
. 0= ply results in (b). An al-
o - ® ternate escape route via a
+ ¢ : + b ¢ 90° rotation about the long
L S _axis results in the 360°
w = analogue of Fig. 35(b).
- - =
> (b)
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FIG. 37. Positive (a) and negative (b) 180° disclinations of the
C, type. One can be continuously transformed into the other
by applying to every molecule the same 180° rotation about a
horizontal axis in the plane of the page. Note that (a) and (b)
are associated with distinct elements of the fundamental group,
but the same conjugacy class.

in the same conjugacy class, can indeed be continuously
converted into one another, as illustrated in Fig. 37.
With defects characterized by conjugacy classes of the
fundamental group instead of distinct group elements,
one might expect the combination law to be related to a
multiplication table for conjugacy classes rather than to
the group multiplication table itself. This expectation
is confirmed in part B. Before turning to this we note
some purely algebraic features of class multiplication.
The product of two conjugacy classes of a group is de-
fined to be the set containing all the products of all the
pairs of elements from the two classes. If a given
group element occurs in more than one way as such a
product it is taken to appear that many times in the

P Q

FIG. 38. Two line defects P and @ and a surrounding real-
space contour c.
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product set (so that the product set contains as many
elements as the product of the number of elements in
the two classes). It is a simple exercise in elementary
group theory to show that the product of any two classes
consists itself of one or more whole classes, and that
class multiplication is commutative, even though the
group itself may be non-Abelian. The product of any
two classes can therefore be specified by indicating the
number of times each class of the entire group is pres-
ent in the product set. This is usually written in an ad-
ditive notation, so that, for example, the equation C,C,
=C,+4C4+3C, means that in the set of all products of
pairs from the classes C, and C, each element of class
C, is to be found once, each element of C4 is to be found
four times, each element of C; is to be found three
times, and no elements from any other classes are to
be found.

The class multiplication table for the quaternion group
is particularly simple:

Cc, C, C, c, C,
Cyl| Co C, C, C, C,
¢, | C, ¢ C, c, C,
Ce| G G 2¢,+2C, 2¢C, 2¢,
¢, ¢, ¢ 2C, 2C, +2C, 2C,
C.| C. ¢, 2C, 2C, 2C, +2C,
(6.2)

Note that the product of two classes determines a unique
class in all cases except for the product of any of the
three distinct 180° disclinations with itself, where the
result is a combination of the trivial class and the 360°
class. This ambiguity is to be expected. On the one
hand two identical 180° defects will clearly combine to
give a 360° defect. On the other hand a 180° defect and
the —180° defect that annihilates it are in the same class.
These observations account for the ambiguity, but the
question remains of how one is to tell what results when
such a pair of defects merge.

B. The combination of defects in the non-Abelian case

That this is a matter of some delicacy in the non-
Abelian case can already be seen when one draws a
loop around the pair. Who is to say whether the loop
is to be viewed as first encircling P, then @, or the
other way around? The characterization of defects by
conjugacy classes resolves this dilema, for ba is in the
same conjugacy class as ab (=a(ba)a™).

We may therefore draw a real space contour sur-
rounding both defects (Fig. 38) without concern for “the
order in which they are surrounded.” The image of that
contour in order-parameter space provided by the val-
ues of the order parameter along the contour is char-
acterized by a unigue conjugacy class of the fundamen-
tal group. Without altering the configuration outside
the loop we can replace the configuration of the order
parameter inside the loop by that of any single-defect
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in that conjugacy class.*® To arrive at a combination
law we need to know how the conjugacy class character-
izing the image of the encircling contour is related to
the conjugacy classes characterizing the pair of defects
the contour surrounds.

Ambiguities are absent when one deals with based
fundamental groups. If all loops in order-parameter
space are required to share a common point then the
combination law is simply given by ordinary group mul-
tiplication of individual elements in that particular
based fundamental group. We therefore single out a
point x, on the encircling real-space contour, and take
the value of the order parameter f(x,) =f, as our base
point in order-parameter space. The contour is then
mapped into a loop in 7,(R, f,) that is in the same homo-
topy class as the product of the two loops at f, deter-
mined by the two separate singularities. When the base
point is abandoned each identification of a loop with a
distinct element of the fundamental group must be re-
placed by an identification with the entire conjugacy
class containing that element. Since the conjugacy class
containing a product of elements must be contained in
the product of the conjugacy classes containing those
elements, we can conclude that when two line defects
are combined the resulting defect must be character-
ized by a conjugacy class contained in the product of the
two conjugacy classes characterizing the original de-
fects. When these two conjugacy classes have a unique
class in their product, the combination law is unambig-
uous.

It can happen, however (as in the case of two 180°
disclinations of the same kind in the biaxial nematic),
that the conjugacy classes characterizing a pair of de-
fects combine to give more than a single conjugacy
class. Since defects in different conjugacy classes can-
not be transformed into each other by local surgery,
for a given pair of defects each surrounding contour
must be characterized by a unique conjugacy class. An
ambiguity in class multiplication can therefore only
mean that the class of the combined defect can depend -
on the choice of the surrounding contour. When the
class multiplication table does not specify a unique
product, the class of the composite defect depends on
where one chooses to perform the local surgery.

In considering this fact it helps to think of the local
surgery as being performed simply by bringing the two
line defects closer and closer together until they co-
alesce into a single one. Specifying the surrounding
contour sets limits on the choice of paths along which
the defects can be brought together; they must be con-
fined to the interior of the contour. Instead of specify-
ing a contour within which local surgery is to be per-
formed, we can just as well specify a path along which
the two defects are to be brought together. The contour,
if we wished to have it back, could then be taken to be
any one that encircled both the defects and the line join-

46To avoid clumsy complications irrelevant to the point at
hand, we revert to a nomenclature appropriate to point defects
in two dimensions for the rest of this subsection. In three di-
mensions one must deal with a cylindrical locus of loops sur-
rounding a line defect. The point to be made about non-Abelian
order-parameter spaces remains the same.
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FIG. 39. Two paths ¢; and
¢y connecting defects P and
Q@ on opposite sides of a
third defect.

ing them.

As long as two paths joining the defects can be de-
formed into one another, the class of the combined de-
fect cannot depend on the choice of path. Such a defor-
mation will be possible unless (Fig. 39) the two paths
are on opposite sides of some third defect. We conclude
that when class multiplication fails to provide a unique
product class, the various possible forms for the pro-
duct defect are associated with the various ways in which
the path along which the defects are brought together
winds its way among whatever other defects are present.

Rather than spelling this out further in confusing gen-
erality, we illustrate the point in the case of the biaxial
nematic. Two identical 180° x disclinations will, of
course, combine to give the 360° disclination in the ab-
sence of any other line defects. If, however, a 180°y
or z disclination is also present, the x disclination can
be converted into its antidefect by transport about a
closed path surrounding the y or z disclination. [This
is the topological content of the algebraic identity:
~(io,) =(io,)(io,)(Eo,).] Thus looping one x disclin-
ation around the y or z disclination before combining
it with the other alters the result from the 360° defect
to the trivial one. The general point is much the same:
If many defects are present, the element of a based
homotopy group representing a given defect will depend
on the particular way in which the based loop that sur-
rounds it weaves its way through the forest of other de-
fects; this may lead, in the non-Abelian case, to a cor-
responding path dependence in some of the combination
laws.

Note, in passing, that this observation can be turned
upside down, leading to the conclusion, in the biaxial
nematic, that any 180° disclination can catalyze the top-
ological decay of a 360° one. For we need only to dis-
sociate the 360° disclination into two identical 180° ones
of a type different from the catalyst, and then bring
these together around opposite sides of the catalyst,
thereby bringing about their mutual annihilation.

FIG. 40. Two line defects
surrounded by two contours
with a common point. If the
value of the order parame-
ter at x is fixed at f, then
the values of the order
parameter on each contour
determine homotopy classes
o and B in m(R,f,) which_
are used to label the defects.

(=D
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FIG. 41. The line « is
moved across the line .

C. The entanglement of line defects

Poénaru and Toulouse (1977) have pointed out some
intriguing behavior that can arise when two line defects
are made to cross one another in a medium with a non-
Abelian fundamental group. Two such defects, initially
rectilinear and far apart, are shown in Fig. 40. We
chose a point x of physical space at which the order pa-
rameter has the value f. We assume (and this can eas-
ily be arranged without diminishing the generality of -
our conclusions) that x and the value f of the order pa-
rameter at x are fixed throughout the manipulations that
follow. The values of the order parameter on real-
space contours passing through x determine maps of
those contours into order-parameter space based at f.
Those loops in order-parameter space represent class-
es a and B of the based fundamental group 7,(R, f) and
the line defects themselves are characterized as being
of type a and 8, with respect to the base point f.

Suppose one now attempts physically to deform the

(= .

JAN

B a

FIG. 42. An attempt, after the crossing shown in Fig. 41, to
reconstitute two separate line defects. Whether or not this can
be done depends on whether or not the image in order-para-
meter space of the contour at x is homotopic to a constant.
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FIG. 43. Configuration
equivalent to that of Fig. 42
if the contour in Fig. 42 has
a nulhomotopic image in
order-parameter space.

B a

order parameter in such a way that the top part of o
moves over 8 while the bottom part of @ moves under 8,
leading to the configuration in Fig. 41. If the two lines
in Fig. 40 are not strictly coplanar (for example, if they
are at 90° to one another) precisely this type of en-
tanglement will result when they try to pass one an-
other.

Let us now attempt.to make the resulting configur-
ation look as much as possible like a simple interchange
of the original pair of rectilinear lines. We deform
Fig. 41 to Fig. 42 which can be regarded as two straight
lines 8 and a, a pair of horizontal lines joining them,
and two somewhat complicated but completely localized
regions in which the pair of horizontal lines join up with
B and a. If the two horizontal lines can annihilate one
another, then with purely local surgery we can arrive at
the configuration in Fig. 43. (The little loop aroung B
can be removed by additional local surgery.) The lines
will then have passed through one another without leav-
ing any topologically stable traces, and can continue on
their way as if they had passed without getting entangled.

If, however, the pair of horizontal lines in Fig. 42 do
not jointly constitute a topologically trivial linear de-
fect, then one cannot avoid an additional singular line
connecting @ and B, as in Fig. 44. In this case the
crossing leaves a spectacular scar in the medium, in
the form of a third topologically stable line singularity

FIG. 44. Result of the at-
tempt at moving two lines
across one another if the
contour in Fig. 42 has an
image in order-parameter
space that is not homo-
topic to a constant.
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FIG. 45. A series of continuous deformations of the contour in Fig. 42 demonstrating that its image in order-parameter space is

homotopic to the loop Bo coploa,

The straight line B and the bent line @ should be regarded as rigid and immobile. The con-

tour should be thought of as flexible and elastic. The striped arrows indicate successive deformations of the contour with the
usual convention that at intersections the solid line lies over the broken line. A point of the contour has been left tied to the
point x at all stages, so the homotopies are based at x. The final step from (e) and (f) pinches four points of the contour to-
gether at x. Comparison with Fig. 40 reveals that the final contour in (f) is justo ao g oa,

connecting the other two. The energy associated with
this third singular line will grow linearly with any ad-
ditional separation between o and 3, and will constitute
a considerable physical barrier against their further
separation. Since the mobility of line defects can play
an essential role in determining the macroscopic prop-
erties of a medium (a spectacular example being the
role played by dislocations in the deformation of crys-
tals) it is important to be able to determine whether a
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given pair of line defects can (Fig. 43) or cannot (Fig.
44) be freely passed through one another.

Whether Fig. 43 or Fig. 44 results depends entirely
on whether the loop in order-parameter space provided
by the contour encircling the double line in Fig. 42, is
or is not homotopic to a constant. The homotopy class
of this loop in 7,(R, f) can be related to the homotopy
classes o and B characterizing the original pair of lines
through the series of x-based deformations of the con-
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tour shown in Fig. 45.*" These deformations demon-
strate that the contour in Fig. 42 is homotopic at x to
the contour in Fig. 45(f). Comparing the latter contour
with those in Fig. 40 used to define the homotopy class-
es a and B of the original lines, we conclude that the
homotopy class in 7,(R, f) determined by the contour in
Fig. 45(f) (and hence by the contour in Fig. 42) is just
the product BaB8'a™.

We conclude that @ and 8 can cross without the pro-
duction of an additional line defect connecting them, ‘if
and only if BaB @™ is in the homotopy class of the iden-
tity

BaB lat=1.

This, in turn, will hold if and only if @ and 8 are com-
muting elements of 7,(R, f). Thus two line defects can
be made to cross one another without leaving traces (in
the form of a connecting umbilical cord) if and only if
they are characterized by commuting elements of the
fundamental group.*®

In media with Abelian fundamental groups all line de-
fects can cross one another without producing the um-
bilical cord of Fig. 44. In the non-Abelian case of the
biaxial nematic, an examination of the multiplication
table for the quaternion group reveals that the only val-
ues assumed by BaB e’ are 1 and -1, for any pair of
elements. The homotopy class -1 characterizes the
360° disclination, and noncommuting pairs correspond
to 180° disclinations of distinct types. We conclude that
line singularities in a biaxial nematic can cross without
the production of a connecting line except for the case
of two 180° disclinations of distinct types, which are
necessarily joined after crossing by a 360° disclination.

Arriving at these conclusions without the aid of homo-
topy groups requires a higher order of geometrical im-
agination than I, at least, possess; I commend them to
the attention of those who suspect that the use of homo-
topy groups simply obscures with intricate and arid
formalism what would otherwise be intuitively clear.

VIl. THE SECOND HOMOTOPY GROUP AND THE
CLASSIFICATION OF POINT DEFECTS IN THRE
DIMENSIONS ‘

We have focused exclusively on the question of line
defects in three dimensions (or point defects in two).
However similar considerations can be brought to bear
on classifying and determining the combination laws for
point defects in three-dimensional media. If a medium
in three-dimensional space is everywhere continuous
except, perhaps, at a single point P, then on any spher-
ical surface surrounding P the order parameter will be
continuous, thereby providing a continuous mapping of

4'Readers who have difficulty following the figure are urged to
construct the lines « and g out of stiff wire, introduce the con-
tour in the form of a loop of string about the horizontal wires,
and execute by hand the motions of the contour leading to Fig.
45(e).

“85ince fundamental groups at different base points are re-
lated by path isomorphisms, the validity of the condition af
= Ba is independent of basepoint and can be determined from the
structure of the fundamental group itself.
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a sphere into the order-parameter space. By straight-
forward repetitions of the arguments used for line de-
fects, one sees that point defects will be characterized
by freely homotopic classes of maps of spheres into
order-parameter space. Trivial (or “removable” or
“topologically unstable”’) point defects are associated
with mapp’ings that can be deformed to the constant
map—i.e., the image of the sphere in the order-param-
eter space R provided by the surrounding field can be
continuously shrunk to a point. More generally, one
point defect can be given the core of another using pure-
ly local surgery, if and only if they correspond to the
same homotopy class.

It turns out that a group structure can also be imposed
on the homotopy classes of maps of spheres into order-
parameter space. This is the so-called second homo -
topy group, Ty(R). As with the fundamental group m,(R),
the second homotopy group is best introduced through
the intermediary of the second homotopy groups 7,(R, x)
associated with a base point x in order -parameter space.
These are described in part A. The second homotopy
group 7,(R) itself is introduced in part B, along with
certain “path automorphism classes” into which it can
be sectioned, which play a role analogous to conjugacy
classes in 7,(R). In part C we give an algorithm for the
computation of 7,(R) analogous to that given in Sec. V.A
for the computation of 7,(R). Because the classes of
elements of 7,(R) associated with a given type of point
defect are not simply conjugacy classes® a further al-
gorithm, given in part D, is required for their compu-
tation. In part E these results are illustrated through
applications to the standard examples.

A. The second homotopy group at x, 7, (R, x)

Though point defects in three dimensions are charac-
terized by freely homotopic maps of spheres into the
order-parameter space R, it is again useful to intro-
duce the intermediate notion of based mappings and
homotopy with respect to a base point. We therefore
consider continuous maps of a sphere into R with the
restriction that the image of the sphere should contain
the point x of order-parameter space; i.e., we consider
spheres® tied down to x, just as we considered loops at
x in constructing the based fundamental group.

In the case of loops, it was convenient to view a loop
based at x as a map f(z) of the unit interval, 0<z <1 in-
to R, subject to the restriction £(0) =f(1) = x; i.e., the
loop was formed by joining together the two ends of a
line segment. In a similar way, we shall regard the
images of spheres in R as being given by mappings
f(u, v) of the unit square, 0<u,v<1 into R, subject to
the restriction that f take the entire circumference of
the square into the single point x: £(0, v) =£(1, v) =f(u, 0)
=f(u, 1) =x. The sphere is thus represented by closing

¥ Indeed, we shall see (part A) that second homotopy groups
are always Abelian, so that conjugacy classes are just individ-
ual group elements.

50Lacking a word which is to “sphere” as “loop” is to “circle”
I shall simply continue to use the word “sphere” itself, after
warning the reader that spheres in order-parameter space can
be very floppy spheres, just as loops are very floppy circles.
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(a) (b)

(c) (d)

FIG. 46. A sphere can be represented as a square with all
boundary points identified. The square is shown in (a) with
some stripes to identify its interior. In (b) the square has been
puffed up (in three dimensions) into the surface of a sphere
with a square hole, given by the original boundary. In (c) the
square hole has been shrunk and in (d) it is reduced to a single
point. Because all boundary points of the square are identified,
the point in (d) is nonsingular.

up the border of the square, as if by pulling on purse
strings (Fig. 46).

The convenience of this representation is that it pro-
vides a natural definition of the product of two maps of
a sphere into R at x: One simply joins together the two
squares representing the domains of the two maps f and
g, and compresses the resulting oblong back into a
square, to get the map fog. Analytically, the definition
is almost exactly the same as for the product of two
loops [cf. Eq. (3.2)]:

fogu,v)=f(2u,v),

=g2u-~-1,v), Fsu<1l,.

1
0$u$5’

(7.1)

This rule for forming the product can be represented
pictorially as in Fig. 47, whose conventions we shall
revert to on occasion for the provision of intuitive pic-

fog

FIG. 47. Rule for forming the product of two maps of squares
into R at x.
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(b) ()

FIG. 48. Proof that the product rule in Fig. 47 is commutative.
The product fog is shown in (a). The boundaries of both the
vertically and horizontally striped rectangles are taken into x.
In (b) both rectangles have been continuously deformed into
smaller squares, imbedded in a sea of white, all of which is
taken into the single point x. Next (b) may be further deformed
by moving the little squares about within the big one. In this
way their positions can be interchanged and the resulting figure
(c) can then be reexpanded to give the product gof (d). Note
that the argument can also be used to show that the homotopy
class of the product defined in Fig. 47 does not depend on
whether the squares are joined side to side or top to bottom,
etc.

torial “proofs” of results whose verbal or analytical
demonstration could be quite cumbersome.

Routine extensions of the arguments given in Sec.
III.A establish-that multiplication can be defined for
homotopy classes of maps of spheres into R at x, the
class containing the product of any two representative
maps being independent of the choice of representatives.
The identity in the group is represented by the map that
takes the sphere into a single point, and the inverse of
the map f(u, v) is f(-u, v). This group of homotopy
classes of maps of spheres into R at x is called the
second homotopy group, 7,(R, x).

In contrast to the fundamental group, the second hom-
otopy group is always commutative. This is demon-
strated in Fig. 48, which illustrates how to construct
an explicit homotopy between fog and gof. Unfortun-
ately, as we shall see, this does not imply that the
group multiplication table by itself gives the combin-
ation law for point defects. Classes of group elements
again play the central role, but they are no longer con-
jugacy classes. Their nature emerges in the course of
examining the relation between the based second homo-
topy groups 7,(R, x), and the second homotopy group
Ty(R).

B. The second homotopy group, 7, (R)

We next establish that the second homotopy groups at
different base points are isomorphic. This permits the
introduction of the abstract second homotopy group,
m,(R), of which the based homotopy groups are isomor-
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phic copies. In the case of the fundamental group 7,(R),
these isomorphisms are unique unless 7,(R) is non-
commutative. In the case of m,(R), even though second
homotopy groups are always commutative and even if
7,(R) should be commutative, there still need not nec-
essarily be a unique isomorphic mapping between sec-
ond homotopy groups at different base points.

The extent to which the isomorphisms between based

- second homotopy groups are not unique bears directly
on the question of how the physically pertinent classes
of freely homotopic maps of spheres into R are related
to the second homotopy group. It also enters into de-
termining the laws governing the combination of point
defects. The issues are quite similar to those we en-
countered in Secs. III.B, C, and D, and VLI.B. I shall
therefore present them rather more sketchily, except
insofar as the peculiar features of m,(R) play a special
role. k

Given a path ¢(z) connecting two points x and y in
the order-parameter space R, we can construct a cor-
respondence between m,(R, x) and 7,(R, y) by simply
joining any sphere at x to the point y by means of the
line ¢(z), and regarding the resulting “balloon plus
string” as a mapping of a sphere into R at y, which is
rather degenerate along the string (Fig. 49). If fis a
mapping of a sphere into R representing a homotopy
class in m,(R, x), then we denote the mapping at y con-
structed in this way as ¢(f). The notation is intended
to suggest that the path ¢ acts on the map f based at x to
produce the map c¢(f) based at y.

We can give a more formal construction of ¢(f). Take
the unit square in the u-v plane and inscribe in it a ’
square half as big at its center. On the inner square
define c(f) to act precisely as f acts on its entire
square, so that c(f) takes the inner square into exactly
the same balloon at x as f takes its entire square into.
Divide the remaining part of the square between the in-
ner and outer circumferences into a family of square
circumferences growing continuously from the inner to
the outer one, as z goes from 0 to 1. Let ¢(f) take the
circumference parametrized by z into the single point

(a) X
FIG. 49. (a) A sphere at x

and a second pointy. (b) A
path ¢ joining x to y. (c) The
sphere at y given by the ac-
tion of ¢ on the sphere at x.
Note that part of the sphere
at y has degenerated to a
line, but it can be “rein-
flated” by an appropriate
homotopy.

(c) y
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FIG. 50. The diagonally striped square in the lower right rep-
resents a sphere in order-parameter space, the entire cir-
cumference being taken into the single point x. The square in
the upper left represents the sphere c(f) aty. The inner part
of that square is just the striped square at x, scaled down in
size. It is surrounded by a family of square circumferences
which expand outward to fill the rest of the square. Each cir-
cumference is taken into a single point along the curve ¢ from
x toy, the innermost going into x and the outermost to y.

c(z), as indicated in Fig. 50.

By drawing pictures of the appropriate squares one
immediately sees that if f and g are in the same homo-
topy class of m,(R, x) then c(f) and c(g) will be in the
same homotopy class of m,(R,y), and conversely.>' This
permits one to define the operation of ¢ on an entire
homotopy class a, c(a) being the class containing c(f),
where f is any representative map of @. An equally
simple result is that the product of the maps c(f) and
c(g) at y is homotopic to the map c(fg). Consequently
the map of m,(R, x) onto m,(R,y) given by a—-c(a) is an
isomorphism.

This isomorphism will be unique if and only if the
automorphism of 7,(R, x) onto itself produced by any
closed path starting and ending at x, is the identity
automorphism; i.e., if and only if any balloon at x is
homotopic at x to the balloon produced by forming a
loop at x out of the balloon string as in Fig. 51. As we
shall see, such a homotopy need not, in general, exist.
If there are balloons and paths for which the homotopy
does not exist, then 7,(R, x) will act as a nontrivial
group of automorphisms on m,(R, x).5% If the group of
automorphisms is trivial, consisting only of the iden-
tity—i.e., if the homotopy between balloon and balloon
+looped string always exists—then R is said to be 2-
simple.

The single abstract group 7m,(R), of which the based

5176 establish the converse regard f as ¢~![c(f)] and similarly
for g, and apply the original theorem. [The homotopy between
f and ¢ !(c(f)) consists simply of retracting the double string
back into the balloon.]

%2The automorphism group need not be isomorphic to 7. How-
ever, the automorphism given by the product of two loops will
coincide with the product of the corresponding automorphisms,
so the automorphism group will be a homomorphic image of 3.
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(a) X

FIG. 51. (a) A sphere atx.
() A loop at x. (c) The
sphere at x formed by the
action of the loop in (b) on
the sphere in (a). Part of
the sphere is degenerate,
being only a line.

groups (R, x) are isomorphic copies, is known as the
second homotopy group of R. By arguments that are
simple generalizations of those in Sec. III.C, one es-
tablishes that point defects are in one-to-one corre-
spondence with the elements of 7,(R) (i.e., freely homo-
topic maps of spheres into R are in one-to-one corre-
spondence with based maps) if and only if the space R is
2-simple [i.e., if and only if the only loop automorphism
of 7,(R) is the identity automorphism].5® More general-
ly, if R is not 2-simple, i.e., if 7,(R) acts as a nontriv-
ial group of automorphisms on m,(R), then the point de-
fects are characterized by automorphism classes of
elements of 7,(R) under the group of loop automorph-
isms provided by 7,. By theterm “automorphism classes”
we mean the following: GivenagroupA of automorphisms
ofagroup G, one easily verifies that under the automorph-
isms the elements of G split up into disjoint classes withthe
properties (i) that if two elements of G are inthe same class
then there is an automorphism in A taking one into the
other and (ii) no automorphism in A takes an element in
one class of G into another.

Note the similarity to conjugacy classes, which are
just the automorphism classes of G under the group of
inner automorphisms. From this point of view the as-
sociation of distinct line defects with the conjugacy
classes of m, is strictly analogous to the association of
distinct point defects with the loop automorphism class-
es of m,: The conjugacy classes of 7, are its loop auto-
morphism classes.

The bearing of these conclusions on the combination
of point defects closely follows the analogous consider -
ations on the combination of line defects given in Secs.
III.D and VI.B. If the order-parameter space R is 2-
simple then point defects correspond to elements of 7,,
and defects corresponding to elements a and b of 7, can
only combine to give a defect corresponding to the pro-

53We have established for each x that m1(R,x) is homomorphic
to a group of automorphisms on m(R,x). Further contempla-
tion of path isomorphisms establishes that the structure of this
automorphism group does not depend on the base point, so one
can speak generally of the action of T on .
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duct element ab. If, however, R is not 2-simple, then
defects correspond to automorphism classes of 7,. One
easily establishes that the set of all products of ele-
ments from two given automorphism classes is a union
of whole automorphism classes, but in general it will
contain more than one such class, When this happens
the result of combining two point defects will depend
upon the path along which they are brought together, it
being possible to alter the result by changing the way in
which the path weaves among whatever line defects are
present. This behavior is quite analogous to that de-
scribed in Sec. VI.B, ‘though I emphasize once again,
that it can arise even though 7,(R) is necessarily Abel-
ian and even if 7,(R) is also Abelian; what matters for
the path dependence is that 7, should give a nontrivial
group of automorphisms on m,. This is particularly
well illustrated in the case of the ordinary nemafic,
described in part E, below.

C. The fundamental theorem on the second homotopy
group of coset spaces

We now examine a theorem, analogous to that de-
scribed for the fundamental group in Sec. V.A, which

- immediately yields the second homotopy groups for all

of our standard examples. We continue to represent the
order-parameter space R as the coset space G/H of a
simply connected group G. The theorem then asserts
that 7,(G/H) is isomorphic to 7,(H,), where H, is the
connected component of the identity in the isotropy sub-
group H. By using the theorem we therefore can reduce
the computation of 7, for a coset space to the computa-
tion of 7, for a group. The latter computation, however,
is easily achieved by the techniques we have already de-
veloped (though in all the cases we examine, the con-
nectivity of H, is so elementary that no further compu-
tation is required).

For the theorem to hold it is necessary, as in the
theorem of Sec. V, that G be simply connected. As dis-
cussed there this can always be arranged by taking G to
be a universal covering group. It is also necessary (as
was not the case for the theorem of Sec. V) that the sec-
ond homotopy group of G should be trivial: m,(G)=0.
This additional restriction presents no practical diffi-
culties, because of a theorem of Cartan (1936) that 7,
vanishes for any compact Lie group.

The theorem of Cartan is not an easy one; indeed,
even succinct statements of it are not easily found in
the mathematics literature that I have perused. How-
ever, in all the cases we shall be interested in we do
not require Cartan’s theorem in its full generality. The
group G will be either SU(2) [the simply connected group
of which SO(3) is the homomorphic image|, T(1) [the
simply connected group of which SO(2) is the homomor-
phic image], or products of these. One easily estab-
lishes that the product of two spaces with vanishing 7,
also has vanishing 7,. Any mapping of a sphere into the
real line [the parameter space for T(1)] can be contin-
uously deformed to a single point by a scale transfor-
mation. Any mapping of a sphere (S,) into the surface
of a 4-sphere [S,—the parameter space for SU(2)] can
be shrunk to a point by the construction described in
Sec. II.C for maps of a circle (S,) into S,, escalated up
by one dimension. We can therefore proceed to the
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proof of the theorem, assuming that both 7,(G) and m,(G)
are 0.

As in the theorem on the computation of the fundamen-
tal group, it suffices here to consider a based second
homotopy group in coset space G/H, taking as basepoint
the isotropy subgroup H itself. Also in analogy to our
earlier theorem, the basis for the proof,. and for an in-
tuitive understanding of the result, is provided by a
suitable representation of the appropriate maps of
squares into coset space, by corresponding maps of
squares into the group G itself.

Consider a map g(u, v) taking the square 0<u, vsl
intothe groupG. This determines a map K(u, v) =g (u, v)H
in coset space, which g(u, v) is said to represent. If K
is to be a sphere in G/H at H, then g must take the en-
tire circumference of the square into H. Since that
circumference is connected, it will be taken into a sin-
gle connected piece H, of H. If H, is not the connected
component H, of the identity in H, then we can replace
g(u, v) by g, v)h, where & is the inverse of any ele-
ment in H,. The replacement leaves K (u, v) unchanged
(since hH =H) and gives us a new g that takes the cir-
cumference of the square into H,.

It can be shown that any sphere at H in coset space
can be represented in the form

K(u,v)=g(u,v)H,

where g takes the circumference of the square into H,.
This is almost evident when one regards coset space as
order-parameter space, and notes that the problem is
simply that of specifying a two-parameter continuous
family of transformations in G that will spread out the
reference value of the order parameter into the given
sphere in order-parameter space. However, a proof,
even on the primitive level of rigor I am willing to set-
tle for, would be neither graceful nor informative.
Readers disposed to pursue the point further would be
well advised to start with the covering homotopy theo-
rem, as given in the Lemma on p. 372 of the second
edition of Pontryagin (1966), which has our result as a
direct corollary.

We therefore take as our starting point the represen-
tation (7.2) of spheres at H in coset space by maps of
squares into G which take the circumference into H,,
or, to introduce a more compact terminology, by maps
of squares into G,H,.** The theorem is based on the
following four observations:

(1) Two homotopic maps of a sphere into G/H at H,
are represented by homotopic maps of squares into
G,H, This is “obvious” to the same degree as is the
general validity of the representation (7.2); readers who
require more convincing must, again, learn the cover-
ing homotopy theorem. Given this, it follows that a
homotopy class of maps of spheres into G/H at H can be
associated with a single homotopy class of maps of
loops into H,. A representative of that class is given
by restricting the correspond'uig maps of squares into

5We shall also take the term “homotopy”’ to mean “homotopy
via a family of maps that takes the circumference into H, at
every stage” whenever the term is applied to maps of squares
into G, H,.
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(a)

T

(b)

FIG. 52. (a) Two maps of squares into G, the circumference of
each square being taken into Hy. If the circumferences in (a)
are homotopic in Hy, then the homotopy can be used to con-
struct a map (b) of the surface of a cube into G which agrees
with the maps in (a) on the top and bottom faces and takes the

four vertical faces into H,.

G, H, to the circumference. (The homotopy between any
two such representative loops in H, is provided by a
similar restriction of the homotopies between the cor-
responding squares.)

(2) The preceding observation associates with each
element of 7,(G/H), a unique element of m,(H,). We next
establish that this association is one-to-one: homotopic
loops in H, must come from homotopic spheres in G/H
at H. This result is specific to the case 7,(G)=0. Con-
sider two squares that map into G, H,, representing
spheres in G/H at H. If the images of the circumfer-
ences of the squares in H, are homotopic, then the
homotopy can be regarded as an extension of the maps
of the two squares to the four walls of a rectangular
cylinder of which the squares form the top and bottom
(Fig. 52). Since m(G)=0, the image of this surface
(which is topologically equivalent to a sphere) can be
deformed to a point in G. This deformation, in turn,
can be regarded as an extension of the mapping from
the entire surface of the rectangular cylinder to its in-
terior. Finally, this mapping of the solid rectangular
cylinder into G, which takes all four walls into H,, can
be regarded as a homotopy between the image in G, H,
of the squares at the top and the bottom. But such a
homotopy is precisely what is required to establish the
homotopy of the original spheres in G/H.

(3) The preceding two observations establish a one-to-
one mapping of 7,(G/H) into m,(H,). We next establish
that the mapping is onto, i.e., that any loop in H, can be
so associated with a sphere in G/H at H. This result is
specific to the case m,(G)=0. Since G is simply con-
nected a loop in H, (which is, of course, also a loop in
the larger set G) can be shrunk to a point in G. The
homotopy that specifies the shrinking, however, can be
viewed (Fig. 53) as a map of a square into G that takes
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FIG. 53. The outermost square circumference gives a loop in
H,. Because Hjlies within the simply connected group G, that
loop can be shrunk to a point in G. The shrinking is specified
by the images of the series of nested square circumferences
starting with the outer one and ending with a single point.
Viewed as a whole this shrinking homotopy provides a map of
the square into G which gives the loop in Hy when restricted to
the circumference of the square.

the circumference into H,. This is precisely what we
require to associate with the loop in H, a sphere in
coset space, via Eq. (7.2).

(4) The preceding three observations establish a one-
to-one mapping of 7,(G/H) onto m,(H,). To establish that
this correspondence is an isomorphism it only remains
to establish that the product of homotopy classes of
spheres in G/H at H is taken into the products of the
corresponding homotopy classes of loops in H,.%®

To establish that the mapping carries the algebraic
structure of 7,(G/H) into that of 7,(H,) it is useful to
represent each sphere in G/H at H by a map of a square
into G, H, of a special canonical form. Given any map
of the square into G, H, we can first continuously deform
it into a map that takes at least one point on the top edge
of the square into the identity. We can then continuously
extend that part of the circumference which is taken into
e until it includes the entire top edge and both side
edges of the square, compressing the image of all of
the original circumference into the bottom edge (Fig.
54).

Note that the corresponding loop in H, is still apparent
from this canonical representation, for the bottom edge
of the square provides a map of the interval [0,1] into
H, with both end points being taken into e, i.e., precise-
ly aloop at e, Now it is evident from the defintion (7.1) of
the product of homotopy classes of spheres at a point,
that the product of two elements in 7,(G/H, H) is repre-
sented by a map of a square into G, H, of the canonical
form, given by the combination of representative maps
shown in Fig. 55. The bottom edge of the combined
square, however, is precisely a representation of the
loop product at e of the bottom edges of the original two
squares; thus the correspondence does take products in
7{G/H) into products in m,(H,).

55We can speak unambiguously about the product of unbased
loops in H, because H, is itself a continuous group, and its fun-
damental group is therefore Abelian. This was proved directly
in Sec. IV.D. (It is about to emerge again as a consequence of
the theorem we are proving and our earlier proof that second
homotopy groups are always Abelian.)
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(c) (d)

(e)

FIG. 54. (a) Map of a square into G, the circumference being
taken into the connected component H, of H that contains the
identity e. By continuously deforming the image of the square
in G one can arrange for at least one point of the circum-
ference to pass through e itself. That point is represented by
the heavy dot in (b). One can then continuously extend the part
of the circumference taken into e, as indicated by the thick-
ened portions of the circumferences in (¢) and (d). In this way
one arrives at the map in (e), which is homotopic to the origi-
nal map in (a) and which takes the interior of the square into
G, the base into Hj, and the other three sides into the identity
e.

D. The action of 7, on 7, : Classes of freely homotopic
spheres in G/H ’

The preceding discussion has established that if G is
simply connected, then 7,(G/H) is isomorphic to m,(H,).
The basis for the correspondence is quite intuitive:
spheres in G/H can be represented by open “purses” in
G, whose “mouths” wind about contours in H, repre-

fog

FIG. 55. Two homotopy classes in my(G/H) can be represented
by maps f and g of the form shown in Fig. 54 (e). Their prod-
uct fog is then again of that form and the bottom edges of the
squares, which represent loops in H,, combine as in the ordin-
ary loop product.
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senting the various homotopy classes of m,(H,).

In classifying point defects in G/H it is also necessary
to know the automorphism classes of 7,(G/H) under the
path automorphisms provided by the action of 7,(G/H)
on 7(G/H). These loop automorphisms also have a
simple interpretation in terms of the algebraic struc-
ture of the isotropy subgroup H.

Two elements of 7,(G/H) belong to the same auto-
morphism class if they can be represented by balloons
in G/H at H which differ only by a closed loop at H (see
Fig. 51). Now a closed loop in G/H at H is represented
in G by a path joining one of the connected components
of H to the identity. Let f(u,2) be the mapping of a
square into G, H, representing the balloon without a loop
in G/H at H. To represent the same balloon with a loop
we proceed as follows: '

Let the loop be represented by a path g(z) in G, with
£(0) belonging to the connected component H; of H, and
g(1)=e. Let f, be the image of the circumference of
the square f(u,v) in H,. Consider the family of loops in
G given by I(z)=g(z)f,. For each z, since f, lies en-
tirely in the subgroup H, of H, X(z) lies in a single left
coset of H and therefore represents a single point in
G/H. As z varies from 0 to 1, the path in G/H traced
out by the cosets I(z)H is just the loop at H we wish to
attach to the balloon. Since the terminal point of the
path is now represented by the loop f,, which is the
mouth of the purse, we have succeeded in attaching the
loop to the balloon.

The only problem is that the set we have constructed
in G representing the balloon and loop in G/H is based
on the loop g(0)f,, which lies in the component H, of H.
This is easily remedied, for by shifting any set of G by
right multiplication by an element of H, we do not alter
the corresponding set of cosets in any way. We can
bring the base of the loop back into H, by right multi-
plying by g(0)?, for H, is a normal subgroup of H, and
therefore g(0)f,2(0)™ belongs to H,.

We have therefore demonstrated that if £, is a loop in
H, representing an element of 7,(G/H) [via the iso-
morphism with 7,(H,)] and H, is a connected component
of H representing an element of 7,(G/H) (via the isomor-
phism with H/H,), then the automorphism of m,(G/H) giv-
en by the element of m,(G/H) takes f, into hf,h"', where
h is any®® element in H;.

This conclusion can be stated compactly in the asser-
tion that the action of 7,(G/H) on 7,(G/H) is given by the
action on 7,(H,) of the inner automorphisms of H. For
m,(H,) contains classes of loops, g,, in H, that corre-
spond isomorphically to the classes of spheres in
71{G/H). Elements of m,(G/H) correspond isomorphical-
ly to the connected components H, of H. The action of
any element of 7,(G/H) on an element of 7,(G/H) is to
transform that element from one corresponding to the
loop g, in H,, to another corresponding to the loop
hg,h* in H,, where £ is any element of the component
H, of H that corresponds to the element of 7;,. Such
transformations are the inner automorphisms of H.

Note that if the isotropy subgroup H is Abelian, then

%6Since H; is connected the loops produced by different ele-
ments 2 of H; are all homotopic in Hy.
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its only inner automorphism is the identity. In that case
7,(G/H) acts trivially on 7,(G/H) (in technical terms,
G/H is “2-simple”) and point defects are in one to one
correspondence with the elements of 7,(G/H), obeying
combination laws given by the group multiplication table
in 7,

Note also that if H is discrete, then H, is a single
point, which is trivially simply connected. In this case
7{G/H)=m,(H,)=0: Ordered systems with discrete iso-
tropy subgroups have no stable point defects.

Thus the only case in which 7; might act nontrivially
on 7, arises when the isotropy subgroup is non-Abelian,
and the connected component of the identity in the iso-
tropy subgroup contains more than just the identity it-
self.

E. Examples of point defects

We illustrate these results by applying them to our
standard examples.

1. Planar spins

The planar spins must be distributed in three-dimen-
sional space for the discussion of point defects to be
relevant, and the system is probably better thought of
as being superfluid helium-4. The isotropy subgroup is
a discrete translation group and there are therefore no
stable point defects.

2. Ordinary spins

The isotropy subgroup is the subgroup (2, 8) of SU(2) -
representing rotations around a single axis. This is
isomorphic to the two-dimensional rotation group, and
therefore its fundamental group is the group of winding
numbers, Z: m,(G/H)=Z. Since 7,(G/H)=0, G/H is 2-
simple, and point defects are classified by positive or
negative integers.

3. Nematics

The isotropy subgroup has two components: the sub-
group u(2, 6) of SU(2), and the coset of this subgroup
with jo,. Thus H, is again (2, 6), and n,(G/H) is again
the integers, Z. However it is a simple exercise in al-
gebra to verify that the inner automorphism (2, 6)
—~(io)u(, 0)(ic,)™ simply sends u(Z, 6) into u(Z, —6).
Thus loops in m,(H,) with winding numbers of equal mag-
nitude but opposite sign are taken into each other under
the inner automorphisms of H. The corresponding point
defects are therefore topologically equivalent to one
another, and the nontrivial point defects in nematics
correspond to pairs of elements in 712(G/H) associated
with » and —x. With respect to a given basepoint, a de-
fect characterized by » can be converted into one char-
acterized by —-» by bringing it around a closed loop that
surrounds a 180° disclination line.

The nontrivial point defects are therefore character-
ized by positive integers, without regard to sign. The
combination law allows » and m to coalesce to either
n+ m or [n -m | , depending on how the two are brought
together.

Note that a nontrivial line defect (of which the 180°
disclination is the only type) can catalyze the removal
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FIG. 56. (a) An attempt at

a hedgehog point singularity
in a biaxial nematic. Be-
cause the quills of the hedge-
hog have rectangular cross
sections there are addi-

( CI) tional singularities on every
surrounding sphere, i.e., a
line singularity extends out-
ward from the point. If (b)
the quills had circular cross
sections, as in an ordinary
nematic, then the singular-
ity on the spheres would
vanish and an isolated point
singularity could indeed be
produced.

(b)

of a point defect of even index: one merely decomposes
the 2y defect into two identical defects of type »n, brings
one of them around the line defect to convert it to type
—n (with respect to an arbitrary fixed base point), and
then allows the » and the —» to annihilate through re-
combination. More generally, a nontrivial disclination
can catalyze the elimation of all point defects if the sum
of their indices is even, or the transformation of all
point defects into a single n=1 defect if the sum of their
indices is odd.

4. Biaxial nematics

H is discrete so there are no stable point defects. It
is worth noting why a configuration that does give a sta-
ble point defect in an ordinary nematic, fails to do so
in the biaxial nematic. Consider, for example, the
simple point defect given in an ordinary nematic by let-
ting the director lie everywhere along the radial direc-
tion from the singular point P (a “hedgehog”). Suppose
we try to construct such a point singularity in a biaxial
nematic, by letting the z axes of the rectangular boxes
point radially outward from P. This hedgehog in a bi-
axial nematic differs from the hedgehog in an ordinary
nematic in one important respect: the nematic quills
have complete rotational symmetry about the radial
axis at any point; the biaxial quills do not, having a
cross section of rectangular symmetry. Consequently,
if one inscribes a sphere about P, the quills of the bi-
axial hedgehog specify a field of rectangles on that
sphere. It is, however, impossible to construct a field
of rectangles on a sphere without somewhere introduc-
ing a singular point on the sphere. Thus our effort to
construct a point singularity has been unsuccessful,
since the field is not regular except at the point P it-
self. We have instead, produced a line singularity (Fig.
56).

5. Superfluid helium-3

The isotropy subgroup of the dipole-locked A phase is
discrete so there are no stable point singularities. As
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in the case of the biaxial nematic, it is worth convinc-
ing yourself that simple attempts to construct point sin-
gularities inevitably lead to line singularities emanating
from the point. In the dipole-free A phase the subgroup
H, is the subgroup of operations of the form [u(Z, 6),1]
in SU(2) xSU(2). Once again this has the topology of a
circle, so that 7, is isomorphic to the group of winding
numbers Z. The full subgroup H consists of H, and the
three cosets gH,, g°H,, and g°H,, where g [see Eq.
(5.19)] is the element [u(%,7),u(Z,7)]. We have

glu(2,0) x1]gm=u(2, —6) X1,
g2u(2,0) x1]g2=u(2,0) X1,

22 u(2,0) x1)g3=u(2, -0) x1, (7.3)

and therefore the classes of equivalent point defects are
as in the nematic case: Winding numbers » and —n cor-
respond to the same class of defects. Note, though,
that to transform an » defect into a (—») defect it must
be transported around a line singularity of the type g or
g°; transporting it around a g? line singularity will not
change its sign.

Vill. ORDERED MEDIA WITH BROKEN
TRANSLATIONAL SYMMETRY
IN THE UNIFORM STATE

Our standard examples have all had complete transla-
tional invariance in the uniform state. The assumption
of such translational invariance has also been implicit
in much of the general discussion, though in some rath-
er subtle ways, which I hope this section will serve to
clarify.

The complications attendant upon applying the topo-
logical method to media with broken translational in-
variance in the uniform state (which I shall refer to
generically as crystalline media) have not received the
attention I believe they require. This may be because
there is an exceedingly natural way of generalizing all
of our conclusions to crystalline media.’” This gen-
eralization (which I shall call the naive genervalization)
makes reference only to the structure of the symmetry
group of the uniform medium, and it can therefore be
formulated and applied without considering any of the
loops, cylinders, surgery, and the like, that underlay
our original formulation. Such considerations must be
raised, of course, in justifying the naive generalization.
Such a justification has yet to be provided, and I very
much doubt that it can be, at least on the level of gen-
erality for which the method is valid for translationally
invariant media.

One reason justifying the naive generalization may
have received so little attention, is that in many cases
it obviously works. It can give a very neat expression
to many familiar, important, and intricate results. It
can provide some rather novel conclusions whose valid-
ity can often be easily verified. I believe, however,
that it can also produce conclusions that are at best ob-
scure, possibly nonsensical, and, in either case, of a
kind requiring a return to earlier more picturesque and
ad hoc methods for interpretation and possible confir-

5TThe broadest statement of this generalization is that given
by Kleman and Michel (1978).
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mation. In short, the naive generalization of the meth-
od to the case of crystalline systems demonstrably has
something of interest to tell us, but why it should have
and how much it can be relied upon are very much open
questions.%®

In part A of this section the naive generalization is
stated without any attempt at justification and with a
minimum of critical comment. It is shown to reduce to
our earlier procedure when applied to translationally
invariant media. In part B I try to formulate in general
terms my own reservations about the validity of the
naive generalization, indicating where I think gaps in
the argument remain to be filled in, or where limita~
tions and restrictions are likely to prove necessary. In
part C the naive generalization is applied to some rep-
resentative cases, and characteristic triumphs, curi-
osities, and disasters are noted. It is beyond the scope
of this review (and beyond my present capabilities) to
relate these systematically to the reservations raised
in part B; my aim is only to convey an impression of
what I believe is the current state of the subject.

A. The naive generalization

1. Order-parameter space

Take as reference system a completely uniform spec-
imen of the medium that fills all of space. Describe the
configuration of the nonuniform medium at a point r by
specifying a rigid body operation on the reference sys-
tem that brings its local structure into coincidence with
the local structure of the nonuniform system at the point
r. The set of all these rigid body operations forms a
group G containing translations as well as proper®® ro-
tations. The group G is the proper part of the full Eu-
clidean group. Let H be the subgroup of G containing
those rigid body operations that leave the reference
system invariant (i.e., bring it everywhere into coinci-
dence with its original configuration). The subgroup H
is the proper part of the conventional space group of the
uniform medium. The naive generalization takes the
order-parameter space R to be the coset space G/H.
Note that points of G/H are in continuous one-to-one cor-
respondence with the physically distinguishable config-
urations of the uniform medium. The non-trivial (and
questionable) assertion is that configurations of the non-
uniform medium can still be described by maps of re-
gions of physical space into G/H, as they can in the case
of noncrystalline media.

2. Defects and homotopy groups

All our earlier conclusions relating classification
schemes and combination laws for line and point defects
to the first and second homotopy groups of G/H and the
action of 7, on 7,, are assumed to remain valid for
crystalline media.

%8The reader is again warned that my views on this point are
rather more conservative than those I have encountered in pri-
vate communications, and very much more conservative than
those expressed in the published literature.

59As earlier, we ignore the comparatively trivial defects that
can separate the medium into disconnected pieces (surface de-
fects in three dimensions and line defects in two).
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3. Computing the homotopy groups

The homotopy groups (and the action of 7, on 7,) are
computed by the same algorithm: One lifts the proper
subgroup of the full Euclidean group to a simply con-
nected covering group [by replacing the rotations by the
corresponding operations in SU(2) (three dimensions) or
T(1) (two dimensions)]. Taking that to be G and the
corresponding lift of the isotropy subgroup as H, one
takes, as before, 7,(G/H) to be the quotient group H/H,,
where H, is the connected component of the identity in
H, and one takes m,(G/H) to be m,(H,). (The action of m,
on 7, is also given by our earlier prescription.)

Step 3 presents no problems; the arguments of Secs.
V.A and VIL.C and D were purely group theoretic in na-
ture and applied to coset spaces of any connected, sim-
ply connected group. (The vanishing of 7, is easily es-
tablished for the covering groups of the proper two- and
three-dimensional Euclidean groups.) Steps 1 and 2,
however, are more doubtful. Indeed, if taken literally
they are demonstrably false in almost all cases of in-
terest, as we shall see in part B.

Note, however, that our earlier results on transla-
tionally invariant systems are correctly contained in
the naive generalization, which simply expresses them
from a slightly different point of view. We had re-
garded ordered systems asfields f (r) of objects (vectors,
headless vectors rectangular boxes, projectionoperators,
etc.) characterized by a certain point group symmetry.
The local configuration was specified by the point group
operationtaking a standard orientation of the object into
thelocal one. Notranslational operationswere mentioned
or required.

We could, however, have taken as reference system
not a single representative object but a complete space-
filling specimen of the uniform system, as specified in
step 1 of the naive generalization. Because the uniform
system has full translational symmetry the translation-
al part of the rigid body operation specified in step 1
would be completely arbitrary. Consequently the iso-
tropy subgroup H would be the old isotropy subgroup of
the point group augmented by the addition of all possible
translations. (In more technical and precise terms, the
new H would be the semidirect product of the old point
group H with the full translation group.) Similarly, the
group G would now be the old proper rotation group aug-
mented by all possible translations (the full Euclidean
group). These identical augmentations of G and H will
simply cancel out when the coset space G/H is formed
(just as G/H is unaltered by augmenting both G and H
to include improper operations, or raising both to the
universal covering group).

In contrast to the translationally invariant case, in a
crystalline medium the isotropy subgroup H only con-
tains a subgroup of the full translation group, while
G continues to contain all translations. The coset space
G/H can therefore have a very different structure from
any coset space of a point subgroup in the proper rota-
tion group.

B. Critique of the naive generalization

The weakness of the naive generalization stems from
the fact that when translational symmetry is broken in
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the uniform state, then the local configuration of the
nonuniform system cannot be fully determined from its
properties at a single mathematical point. Thus speci-
fying the microscopic mass density at a single point r,
limits the possible configurations of a coinciding uni-
form crystal in the neighborhood of r,, but does not
completely pin it down. To characterize a point in the
nonuniform crystalline medium by a unique configura-
tion of the reference medium one might, for example,
specify the density at all points in some neighborhood of
r,. The neighborhood could be very small. Indeed, it
would have to be small, even on the scale of a single
primitive cell, if the information the region contained
about the local configuration were not to be rendered
ambiguous by distortions resulting from the larger-
scale nonuniformity itself. The best one could do would
be to specify the density and suitable derivatives of the
density at r,, reducing, as it were, the small neighbor-
hood of r, to infinitesimal dimensions.

However it is done, a certain degree of microscopic
nonlocality enters into the description of the nonuniform
crystalline medium: to specify the configuration at a
point one must provide some partial information on how
the system is changing as one departs from that point.
This microscopic nonlocality of description creates
problems for both steps 1 and 2 of the naive generaliza-
tion.

The difficulty for step 1 stems from the fact that in a
general nonuniform configuration of a crystalline medi-
um each microscopic cell will undergo slight distor-
tions. Thus (Fig. 57) a slightly bent simple cubic crys-
tal cannot be built from perfect cubical blocks; if the
crystal bends the blocks must also suffer some distor-
tion. As a result of these distortions in the local
microscopic structure there will be no configuration of
the uniform medium that agrees precisely with the non-
uniform medium in an appropriate microscopic region.
Even if the region is infinitesimal, there will, in gen-
eral, be a small disparity in derivatives. A slight am-
biguity is therefore introduced into the specification of
the medium at every point by a point in order-param-
eter space.

Concern over this ambiguity might seem pedantic
fussiness. The distortions in individual cells will be
minute, if, as is essential in a macroscopic theory,
one restricts distortions to ones that vary slowly on the
scale of the cellular dimensions. Nevertheless, some
of the singularities of interest—dislocations, for ex-
ample—can be viewed as arising precisely from the ef-
fect of many such minute distortions adding up to some-
thing of the order of a cellular dimension, when a path
passing through very many cells is traversed.

I believe this difficulty can probably be dealt with by

FIG. 57. Unit cells of a
slightly bent crystal are
themselves distorted °
from the form they as-
sume in the uniform
crystal.

Rev. Mod. Phys., Vol. 51, No. 3, July 1979

N. D. Mermin: Topological theory of defects

extending the group G to include not only rigid body op-
erations on the reference system, but also an appro-
priate set of the tiny compressions and shears needed
to bring the reference medium into unambiguously pre-
cise agreement with the local structure of the nonuni-
form medium. It would have to be shown that the aug-
mented set of operations still had the topological struc-
ture of G/H. If this could be done step 1 of the naive
generalization would become valid. We would have an
order-parameter space with the topology of G/H which
could be used to specify any configuration of the nonuni-
form medium in terms of a map of physical space into
order-parameter space.

Much more serious difficulties would still remain
with step 2, which is entirely based on the converse of
this last proposition: any map of physical space into
order-parameter space must specify a configuration of
the nonuniform system. In the case of a translationally
invariant medium which can be characterized by a
strictly local field, this is trivially the case. One need
only give the order parameter at r, the value deter-
mined by the point of order-parameter space associated
with r, by the mapping. If this mapping is continuous
from real space into order-parameter space, then the
corresponding physical field will also be continuous.

In the case of crystalline systems, however, the order
parameter contains a certain amount of nonlocal infor-
mation. Its value at a point gives some limited infor-
mation on how it is to be extrapolated to nearby points.
If the order parameter is known at a point its values in
the neighborhood of that point are restricted by more
than just the requirements of continuity. Further com-
patibility conditions must be imposed to ensure that the
values in the neighborhood are consistent with all that
is implied by the value at the point. Consequently not
every continuous map of physical space into order-pa-
rametey space need corvespond to a physical state of
the nonuniform cvystalline medium.

This fact opens up a considerable gap between one’s
knowledge of freely homotopic loops and spheres in
order-parameter space and the classes of defects in the
physical medium. It is not, for example, even clear
that a given homotopy class can be realized at all in the
physical medium. And even when there do exist maps
in a given homotopy class that satisfy the compatibility
conditions, the question remains of whether there are
homotopies between two such maps that satisfy the
compatibility conditions at every stage. If there are
not, then the corresponding defects will not be topolog-
ically equivalent.

Without a detailed study of compatibility conditions
all one can conclude with confidence is that any defect
that can be produced in the crystalline medium will
(granting the validity of a suitably modified step 1) be
associated with a homotopy class. The topological
equivalence of two defects in the same class is an open
question to be decided on a case by case basis; indeed
the mere existence of any defects whatever in a given
class cannot be taken for granted.

Having made all these gloomy remarks, I hasten to
reemphasize that the conclusions produced by blind ap-
plications of the naive generalization are often quite
interesting and instructive. I conclude this section
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with a survey of typical applications to illustrate both
the nature of my reservations, and the elegance and
power of the method, when it works.

C. Some applications
1. Crystals (dislocations only)

For simplicitly we begin with an example in which ro-
tational symmetries are ignored by imposing the addi-
tional requirement that the nonuniform crystal should
everywhere have the same orientation as the uniform
reference crystal.’® The nonuniformity is then char-
acterized entirely by displacements without rotation of
the local primitive cells from the sites they would nor-
mally occupy. The full proper Euclidean group can then
be replaced by the subgroup T(3) of translations, while
the isotropy subgroup H becomes the subgroup of T(3)
consisting of translations through Bravais lattice vec-
tors. Since T(3) is parametrized by all of Euclidean
three-space it is connected and simply connected; since
H is discrete, our fundamental theorem identifies 1r1(G/
H) with H itself. Thus the line defects are character-
ized by Bravais lattice vectors. :

This is precisely the conventional description of dis-
locations. The Bravais lattice vector characterizing
the dislocation (line defect) is known as its Burgers
vector. Homotopy theory has landed us on familiar
ground. Indeed, it has made some points that are not
always emphasized in elementary descriptions of dis-
locations. There is, for example, a conventional dis-
tinction between screw and edge dislocations, depend-
ing on whether the Burgers vector is parallel or per-
pendicular to the dislocation line. The topological the-
ory makes no reference to the orientation of the line
defect: it is characterized by the Burgers vector alone.
The distinction between screw and edge dislocations is
thus nontopological. There should be line defects whose
character alters from one type to the other as the line
is traversed. How to construct such a line is shown in
Fig. 58. It is encouraging that the topological method
automatically brings such possibilities to our attention.

Because H is discrete 7,(G/H)=0: the theory pre-
dicts no topologically stable point defects. There are,
of course, physically stable point defects of great im-
portance in crystals, the simplest example being a va-
cancy or void—the absence of an ion from an isolated
site. Vacancies do indeed leave no tell-tale discrete
signature in the far region (Fig. 59). The fact that the
removal of a void by local surgery requires the local
creation of matter is, from the topological point of
view, a mere quibble. Note, nevertheless, that the

80Note, already, an example of one of the difficulties men-
tioned in part B. If the sides, for example, of every cubic cell
of the nonuniform crystal are parallel to the sides of a single
cube then no nonuniformity can in fact be present. Some slight
distortion of the cubic cells is essential to produce a nonuni-
form state. A more accurate approach would build in the pos-
sibility of such floppiness and (one hopes) show that it leaves
the conclusions unchanged. I shall treat the examples in the
same uncritical spirit in which the naive generalization was
first put forth, focusing on problems such as this one only to
illustrate some of the objections voiced in part B.
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FIG. 58. (a) Portion of a cubic crystal cut away to reveal a
screw dislocation ‘(after Ashcroft et al., 1976). The dislocation
line and its Burgers vector are along the arrow. (b) Portion of
a cubic crystal cut away to reveal an edge dislocation. The
dislocation line is along the arrow; its Burgers vector is per-
pendicular to the line and the same as the Burgers vector of
the screw dislocation. Note that the two parts of the figure

can be superimposed (the groups of cells with dots on their
surfaces being brought into coincidence by the superimposition).
In the crystal that results there is a single dislocation line

with a right-angle bend, which is a screw dislocation on one
side of the bend and an edge dislocation on the other. No sin-
gularities are present on the extrapolation of either segment
past the bend.

physical means of removing a void—its cell by cell
transport to the surface or its annihilation by an inter-
stitial point defect—are strikingly reminiscent of the
nonlocal means available for the elimination of topo-
logically stable defects. In contrast the analogous top-
ologically unstable defect in a nematic, a bubble, can be
removed by a continuous inflow of matter whose flux
becomes arbitrarily small in the far region.

2. Crystals (dislocations and disclinations)

When the prohibition against local rotations is
dropped, the fundamental group is identified with the
double group that arises from the proper space group of
the crystal by lifting the rotational parts of the group

) D S S W \
N A\ 74 A\ 74
— D— ,
FIG. 59. A vacancy in a
square lattice. Note the
—4 D— absence of any informa-
tion about the vacancy in
the far configuration.
—q 9_
S €
T 1T 7
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FIG. 60, A —90° disclination in a square lattice. As the singu-
lar point is circumnavigated in a counterclockwise sense, the
orientation of nearby square cells rotates 90° clockwise. Con-
siderable deviations from a locally uniform structure accom-
pany such a defect. If the plane were an elastic sheet it would
relieve such strains by buckling into the third dimension to as-
sume a saddle shape.

operations from SO(3) to SU(2) in three dimensions, or
from SO(2) to T(1) in two. For most interesting crystal
structures this group is non-Abelian with an extremely
intricate structure of conjugacy classes.

Discrete operations inthe space group withno transla-
tional part correspond to line defects in which the local
crystal structure rotates through an angle associated
with a point group operation as the line is encircled.
Such defects are known as disclinations. A simple dis-
clination in a two-dimensional crystal is shown in Fig.
60. Notethatthe cellsare severely distorted from their
shape in the uniform medium at large distances from the
singular point. Disclinations fail to meet the basic pre-
mise of the entire scheme that away from the singular
point the medium should be locally indistinguishable
from a suitably oriented uniform medium. Dislocations
also violate this tenet, but not as dramatically as dis-
clinations do.

This may well be rectifiable by expanding the group
G to include the appropriate deformations of the uni-
form crystal, but to my knowledge nobody has yet taken
up the challenge. Since isolated disclinations do involve
gross distortions in large regions, they are energeti-
cally so costly as to be of little physical interest, so an
incentive for repairing the basic theory might seem to
be lacking. However compensating disclination pairs
need not be so disastrously difficult to create, and can
even be of physical interest. The naive generalization
has some instructive things to say about such pairs,
which a simple two-dimensional example illustrates.

Consider a square lattice in two dimensions. Ele-
ments of the lift of the isotropy subgroup (and therefore
elements of the fundamental group) are associated with
a pair of translations: A translation in the plane
through a Bravais lattice vector a, and a one-dimen-
sional translation " associated with a rotation through
nw/2. The composition law for a pair is the usual one
for space groups:

(a, t™: (b, ™ =(a+ R, t™™) , (8.1)
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FIG. 61. The sublattice of
Burgers vectors of disloca-
tions which, in conjunction
with a 90° disclination, form
a single conjugacy class.

T '
& o—
® —@
& ' & T y S I &
where R" is a rotation through »7/2 in the plane of the

lattice. It follows from Eq. (8.1) that inverses are giv-
en by

(a, "™ =(=R""a,t™"). (8.2)
This in turn implies that
(a, (0, t)a, ") =(a - Ra, ). (8.3)

Thus the conjugacy class of the pure 90° disclination
(0, t) contains elements superposing such a disclination
with all dislocations whose Burgers vectors lie in the
sublattice shown in Fig. 61. The same is true of the
-90° disclination. We conclude that when two such dis-
clinations meet they can turn into any dislocation char-
acterized by a Burgers vector in the sublattice of Fig.
61. Conversely, any such dislocation is equivalent to a
disclination pair.

This is interesting, important, and not immediately
obvious to those with limited artistic talents. It is il-
lustrated in Fig. 62. Note, though, that as the disclina-
tions move apart the number of dislocations into which
they are resolved grows. This can be regarded as a
measure of the strain attendant upon the production of
isolated disclinations. It also suggests that in a less
naive generalization one may well have to deal with den-
sities of defects that are very high indeed, requiring a
much more careful examination of just what the appro-
priate length scales are.

1

(a) (b)

FIG. 62. (a) Nearby disclinations of +90° and —-90° in a square
lattice. The far configuration is that of a single dislocation
with Burgers vector (1,1). (b) The +90° and —-90° disclinations
of (a) are moved further apart. The equivalent dislocation now
has Burgers vector (3,3). Note that the strains in the fig-
ure are so evident that it seems to-pop out of the page. Indeed,
such a configuration is precisely that seen at the corner of a
swimming pool whose bottom and sides and the surrounding
ground are paved with square tiles.
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3. Directed stripes in the plane

A simple illustration of the difficulties with the naive
generalization is provided by a two-dimensional medi-
um consisting in the uniform state of equidistant par-
allel directed lines (Fig. 63). We take the lines to be
directed to the right and given by y=0, +d, +2d,***. The
proper isotropy subgroup of the two-dimensional Eu-
clidean group contains a discrete group Z of transla-
tions through d along the y direction and a continuous
group 7 of arbitrary translations along the x direction.
When this is lifted to the covering group another dis-
crete translation group appears, associating the iden-
tity rotation with translations through 0, +27, +4w,*-.
Thus the entire isotropy subgroup lifts to the Abelian
group H=Z X Z X T. (The lift is Abelian because the
trivial rotation commutes with all translations.) The
connected part of the identity in H is H,= T(1), the sub-
group of translations along x. The fundamental theorem
then identifies 7,(G/H) with H/H,= Z x Z. This is also
Abelian, so that classes of defects are characterized
by a pair of integers, a disclination number and a dis-
location number.

In contrast to the square lattice this medium can have
nontrivial nonuniform states even when we impose a
condition of strict local agreement with the uniform
state, by requiring that when curved the lines should
still remain a distance d apart. It is then easy to as-
sociate with any point of the nonuniform medium (on or
between lines) a unique (to within an operation of the
isotropy subgroup) configuration of the uniform medi-
um, bringing it into coincidence in position and slope
with the nearest parts of the stripes nearest the point.

If, however, the curved stripes are everywhere equi-
distant, the possible singularities are quite unrelated
to the topological classification scheme. For a single
stripe now determines all other stripes in the family as
the envelopes of all circles of radii d, 2d, 3d. .. with
centers on the original stripe. The singularities of the
medium are then the lines generated by the points of
intersection of all the normals emanating from any giv-
en stripe (since at those and only those points the local
structure will receive competing messages on how it
is to be oriented).

This state of affairs is not limited to artificial mod-
els. A smectic liquid crystal is characterized in the
uniform state by a family of equidistant parallel planes.
Local agreement of the nonuniform smectic with the
uniform one is ensured by the requirement that the dis-
torted plane surfaces should remain everywhere at the
uniform separation distance. The singularities of such

y=2
y =l
y=0
> y=-I
y=-2

FIG. 63. The plane medium of directed stripes.
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FIG. 64. (a) A pure dis-
(b) clination with winding num-
ber +1 in a medium of di-
rected stripes. (b) A pure
disclination of winding num-~
ber —1. (c) A pure disclin-
ation of winding number + 2.
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a system turn out to be a family of surfaces. Energetic
considerations rule out all such surfaces except those
which degenerate into lines. Purely geometric reason-
ing then reveals that the only lines that can be arrived
at in this way are the so-called focal conics. Such line
singularities are commonly observed in smectics. Ex-
cept in a few isolated cases they bear no resemblance
to the line singularities indicated by the naive general-
ization of the topological scheme, and that scheme gives
no accounting whatever for the origin of the focal con-
ics.®

The topological scheme, if it applies at all, can only
hold in a regime in which the constraint of strict local
agreement with the uniform medium is relaxed. As-
suming that the naive generalization can be made to
embrace this complication, we examine some charac-
teristic singularities of the two-dimensional directed
stripes. -

Fig. 64(a) shows a pure disclination with winding
number +1, which does satisfy the condition that the
lines should be everywhere equidistant. A pure dis-
clination with winding number -1 is shown in 64(b). In
this configuration the constraint on uniform spacing is
violated in the 45° directions even far from the singular
point. The violation is, however, bounded in amplitude,
the ratio of maximum to minimum interlinear distance
being a factor of about v2. In Fig. 64(c) is drawn an at-
tempt at a pure disclination with winding number +2.
The constraint on interlinear spacing is much more
grossly violated: the distances between some lines
must, in fact, become arbitrarily large at sufficiently
large distances from the singular point.

$1Kleman and Michel (1978) give a detailed exposition of the
application of the naive generalization to smectics.
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FIG. 65. Easing the gross
strains in the + 2 disclina-
tion of Fig. 64 (b) by the
introduction of a large
number of dislocations.
The dislocations occur

in pairs of opposite po-
larity.

These examples are typical. Pure disclinations with
negative winding number can be incorporated into the
scheme provided one introduces an appropriate range
of variation for the interlinear distance. Pure disclin-
ations with winding numbers greater than one, how-
ever, cannot be accomodated by so well controlled an
extension. No matter how wide the range of interplanar
distances is made, far enough away from the singular
point still wider separations will be required. These
come close to being examples of homotopy classes with
no physically acceptable defects.

The gross distortions far from these singular points
can be repaired with the aid of dislocations. By intro-
ducing enough dislocations one can keep the interplanar
spacing between respectable limits, as illustrated in
Fig. 65. Many dislocations are needed to do the job but,
at least in the example shown, the indices of all the
dislocations add to zero. This easing of disclination
strain by dislocation densities will probably play an im-
portant role in a correct generalization of the topolog-
ical method to crystalline media.

The striped plane also provides some simple exam-
ples of the difficulty in translating maps of physical
space into order-parameter space, into acceptable con-
figurations of the medium itself. The very well behaved
n=1 disclination is characterized by a map of physical

[ ]

FIG. 66. (a) A uniform me-
dium of equidistant parallel
lines. The dot is the origin.
(b) The configuration pro-
duced by specifying that the
uniform medium is brought
into coincidence with the lo-
cal structure at the point
8 with polar coordinates # and
6 by counterclockwise rota-
tion through 6+ 90°, indepen-
dent of the value of .
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FIG. 67. I the instructions

are to rotate the uniform

medium of Fig. 66 (a) count~
(a) erclockwise through 6 to
construct the configuration
at » and 6 then either (a)
the constraint on constant
interlinear spacing will be
grossly violated or (b) in-
finitely many dislocations
of the same polarity will
be required.

(b)

space into order-parameter space specifying that at an
angle 6 from the physical x axis (and at any distance
from the origin) the reference medium is to be rotated
through 6+ 90° (without translation) to bring it every-
where into coincidence with the local structure (Fig.
66). If we simply change this prescription by dropping
the 90° from the rotation angle, we get a new map of
physical space into order-parameter space homotopic
to the first. (The homotopy proceeds through a suc-
cession of maps in which the 90° part of the angle drops
continuously to zero.) The new map suggests a pattern
of lines radiating outward from the origin. This con-
figuration can only be realized by gross relaxations on
the constraint on interlinear distance [Fig. 67(a)] or by
the introduction of many dislocations whose indices do
not add to zero [Fig. 67(b)].

If all nonuniform media were as simple as the plane
of directed stripes, the topological method would not
be worth salvaging. If, however, one merely drops the
direction from the stripes, then 180° rotations appear
in the space group and a non-Abelian fundamental group
of considerable intricacy results. This fingerprint me-
dium or two-dimensional smectic was introduced by
Poénaru and Toulouse (1977) as a particularly simple
example of a non-Abelian medium. The naive general-
ization of the topological method reveals the same
interplay between dislocations and disclination pairs as
we described for the square lattice. It also leads to all
the anomalies encountered in the simpler case of di-
rected stripes. At a minimum one should be able to
characterize the sources of the difficulty in the anom-
alous assertions, so that the assertions that are correct
and instructive can be used with confidence and without
the need for case by case confirmation.

4. Cholesteric liquid crystals

This is a particularly interesting case since choles-
terics actually exist, the naive generalization yields an
unusually simple set of defect classes, and examples of
all such defects were identified well before the topo-
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logical approach was formulated.
A cholesteric is characterized in its uniform config-
uration by a headless vector field®? of the form

d=4%cosgz + 3y singz . (8.4)

If the wave-vector ¢ were zero, Eq. (8.4) would de-
scribe a uniform nematic. Cholesterics are twisted
nematics. In planes perpendicular to the z axis the di-
rector field is uniform, but the direction turns through
360° as the plane moves through a distance p=27/q
along the z axis. .

The naive generalization associates with such a struc-
ture a fundamental group that can be constructed as fol-
lows:

The connected component of the identity in the iso-
tropy subgroup of the full Euclidean group is a subgroup
HE of operations of the form

(12,R(2,q1), (8.5)

coupling translations along the z axis through [ to rota-
tions about the z axis through ¢l to restore the original
orientation. In addition the structure (8.4) is invariant
under point operations consisting of 180° rotations about
the x, y, and z axes. (The latter two symmetries use
the fact that d and —d are identified.) Thus the full
proper isotropy subgroup HZ consists of HE and its
cosets with the operations

(0,R(%,m), (0,R($,), (0,R(2,m). (8.6)

When this is lifted to the covering group there is a
doubling of the rotational parts. The connected compo-
nent of the identity H, consists of the operations

(12,u(2, q1)) (8.7)

and the other seven pieces are the cosets of H, with the
operations:®®

(0,-1), (0,%d0,), (0,xi0,), (0,xiv,). (8.8)

Thus the quotient group H/H, is the quaternion group.

The naive generalization therefore endows choles-
terics with the same defect structure as biaxial nemat-
ics. Four nontrivial classes of line defects are speci-
fied and no point defects. Such conclusions were, in
fact, drawn some time before the development of the
topological approach, simple pictures of the defects in
each class being given, for example, in the text of de
Gennes (1974).

On the other hand it is easy to invent simple maps of
real space into order-parameter space which, as in the
case of the striped plane, correspond to no configura-
tion of the physical cholesteric. It is not at all clear
that the kind of configurational flexibility will hold for
cholesteric defects that permits one, in the biaxial
nematic, to contemplate such processes as the cross-
ing of defects. Maps of physical space into order-pa-
rameter space and the homotopies of such maps are al-

%2We use the term “headless vector” in the same sense as for
nematics; d is a local anisotropy axis which has no direction
associated with it.

83The composition law for the lift of a subgroup of the Eucli-
dean space is: (a, u (7, 61)) X (b, u (723, 0))= (a+R(ﬁ\1,91)b,

u (ﬁ“ 01) u(ﬁz, 92)).
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most certainly subject to further constraints.

I have neither the intent nor the ability to solve the
cholesteric problem here and now, butI cite it as an
important challenge which the topological method has
yet to come fully to grips with.®

IX. HIGHER HOMOTOPY GROUPS, RELATIVE
HOMOTOPY GROUPS, AND EXACT SEQUENCES

We conclude by setting some of our earlier results
into a broader contéxt. The homotopy groups m, and 7,
are special cases of the general nth homotopy groups.
These, in turn, are special cases of the so-called rela-
tive homotopy groups. When these generalizations are
made, the two fundamental theorems we have given for
the construction of m, and 7, can be displayed as a spe-
cial application of a very general series of homomorph-
isms between absolute (i.e., ordinary) homotopy groups
and relative homotopy groups, known as the exact
homotopy sequence.

The higher homotopy groups are described in part A;
the relative homotopy groups, in part B. The exact
homotopy sequence is described in some detail in part
C, and its relation to our earlier results is given in
part D. We conclude with some remarks in part E on
the relevance of the third homotopy group to problems
somewhat broader than those posed by the theory of de-
fects, mentioning, in particular, the relation between the
topology of defects and the topology of solitons.

A. Higher homotopy groups

The definition of the zigher homotopy grwups and the
demonstration that they have the appropriate properties
are quite analogous to points made in our earlier treat-
ment of the second homotopy group. The group 7 (R, x)
is the set of equivalence classes of maps of the »-di-
mensional unit cube, 0 <z,<1, j=1...x, into the space
R, such that all surface points on the cube (i.e., all
points with at least one z; equal to 0 or 1) are taken into
the base point x. The composition of two maps is as in
the case of 7,) given by joining the cubical domains of
the maps along the faces nromal to one of the axes and
rescaling the resulting oblong domain back to a cube by
compression along that axis. The homotopy class of the
product is independent of the choice of axis and, as in
the case of the second homotopy group, the composition
law for homotopy classes is commutative.

One again introduces path isomorphisms to show that
the nth homotopy groups based at different points are
isomorphic. The unbased group 7,(R) is the abstract
group of which the based groups are isomorphic copies.
Considering just those path isomorphisms given by
loops, one again realizes m,(R) as a group of auto-
morphisms on 7, (R). If the only such automorphism is
the identity, then R is said to be n-simple. If R is n-
simple then the classes of freely homotopic maps of the
surface of the unit. sphere in »+ 1 dimensional space
(known as S,) are in one-to-one correspondence with the
elements of 7, (R). More generally, they are in one-to-

84 Bouligand et al. (1978) raise some additional delicate points
bearing on defects in cholesterics, but do not question the gen-
eral assumptions of the naive generalization per se.
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one correspondence with the automorphism classes of
7,{R) under the action of the group of automorphisms
provided by m,(R).

The proofs of these properties are straightforward
restatements of the proofs for m,, stepped up by the ap-
propriate number of dimensions.

B. Relative homotopy groups

For concreteness, I describe the relative homotopy
groups for n=2. The generalization to higher » should
be evident. There are a few complications for »=1 and
a few simplifications for »>2, which I shall state at the
appropriate places.

The relative homotopy groups of the space R are de-
fined with respect to a base point x and a subset A of
R, which contains the base point. In the special case in

which A contains only the base point the relative groups

reduce back to the absolute ones, and textbooks which
value efficiency over clarity sometimes deal with rela-
tive groups from the very start, treating the absolute
groups as special cases.

The relative homotopy group m,(R,A, x) is constructed
out of maps of the unit square into R that take three of
the edges into the point x. The image of the remaining
edge, however, can lie anywhere in the set A. The
structure of the map is indicated schematically in Fig.
68.

The product of two such maps is defined in the manner
depected in Fig. 69. The elements of 7,(R, A, x) are the
equivalence classes of such maps under homotopies
which have the structure shown in Fig. 68 for each val-
ue of . The group structure is provided by the product
operation of Fig. 69, which can be shown to determine
a homotopy class independent of the choice of repre-
sentative maps used to form the representative product
map.

The nth relative homotopy group 7, (R, A, x) is con-
structed in an analogous way out of continuous maps of
the » cube into R which take all of the surface into the
single point x except for the cube face z,=0 (which we
shall refer to as the base of the » cube) which can be
taken anywhere in the subset A of R.

One can “relativize” many of the concepts and results
developed for the absolute homotopy groups. In partic-

A”

FIG. 68. Schematic representation of a map of a square into
the space R, which takes the base into the subset A of R, and
the other three edges into the single point x. Such a map is
described as taking the square into R,A,x.- Homotopy classes

of such maps constitute the relative homotopy group m(R,A,x).
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A
(b)

FIG. 69. (a) Two maps representing homotopy classes in
T(R,A,x). () The product of the two maps shown in (a). The
interior of all squares can be taken into the full set R. The
edges go into the point x or the subset A, as indicated.

ular the proof that (R, x) is Abelian can be carried
over to m (R, A, x) for n=>3. However the second rela-
tive homotopy group need not be Abelian.

The first relative homotopy group need not even be a
group. It consists of maps of the interval 0 <z <1 into
R which take 1 into the base point x and 0 into any point
in the set A. If R has no further structure, then the
product of two such maps cannot be defined since (in
contrast to the case n=2 of Fig. 68) there is no obvious
way to put the maps side by side. If, however, R is a
group G, A is a subgroup H, and x is the identity e
(which is the case of major interest for us) then the
product can be defined. If two classes f, are repre-
sented by paths connecting %, with the identity e, then
to represent the product f,of, we shift £, by uniformly
multiplying all of its points by %, on the left, thereby
constructing a path from 7%, to #,. This path can now
be joined to the path f, from 7%, to e, giving a single
path from 7,2, to e, as illustrated in Fig. 70. Since H
is a subgroup, 7k, is also in H, so the product path is
again of the required form.

Note an analogous situation that arises for the abso-
lute homotopy groups. One can define a set my(R) of
freely homotopic maps of single points into R. The ele-
ments of 7, evidently correspond to the set of connected
pieces of R. In general there is no natural group struc-
ture for such a set, but if R is a group G, then 7, can
be given the group structure of G/Go, where G, is the
connected component of the identity. (Compare the dis-
cussion of IV.A.) The zeroth homotopy group and the
first relative homotopy group often fit quite naturally
into the hierarchy of higher groups, when they can be
defined.

Many properties of the absolute homotopy groups are
better formulated in the broader context of relative
homotopy groups. Perhaps the most important example
of this is the discussion that follows of the exact homo-
topy sequence. However, the relative homotopy groups
can also have direct physical applications in their own
right. They will be pertinent, for example, if there is



N. D. Mermin: Topological theory of defects

fa

FIG. 70. (a) Two paths in a group G that connect elements of a
subgroup H to the identity e. The paths represent homotopy
classes in m(G,H,e). (b) Rule for forming-the product of such
paths: shift the second by multiplying it point by point by the
starting point of the first and form the combined path.

only a restricted region S of physical space in which the
order parameter can assume values in the full order-
parameter space R, its value being constrained to lie
in some subset A of R at points of physical space out-
side of S. Such a state of affairs can be produced by
boundary conditions: S might be the interior of a cyl-
inder at whose surface the order parameter was re-
stricted to values in the subset A of R.*® Cross sections
of the cylinder would then determine homotopy classes
of maps of a square into R in which the circumference
was taken into the set A—i.e., elements of m,(R, A).
Alternatively A might be the full order-parameter
space, and R a still larger space containing A, from
which the order parameter was ordinarily excluded on
energetic grounds. Near the cores of singularities in
which the order parameter ranged only through A in the
far field, it might be advantageous to expand the order-
parameter space to the larger space R, if divergent
gradient energies could thereby be reduced. The rela-
tive homotopy groups of R and A again give a concise
classification of the cases one can encounter in this
context (see Mermin, Mineyev, and Volovik, 1978).

C. The exact homotopy sequence

Consider the relative homotopy group 7 (R, A, x). This
consists of classes of maps of the » cube into R, which
take all the sides except the base into the point x. The
base of the » cube [which is an (z —1) cube] is taken into
A with the restriction that i¢s circumference [i.e., the

$5gee Bailin and Love (1978) and Volovik (1978). This case
can be complicated by the fact that different subsets A of R can
be required at different points of the surface.
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FIG. 71. Map of a 3-cube

— into R,A,x. Note that it
;--‘:\ carries on its base (here, a
>( vertical face) a map of a 2-
cube into A,x. This is the

basis for the natural homo-
morphism vy, from m3(R, 4, x)
into 7y (4, x).

surface of the (z — 1) cube] must be taken into the point
x, to join continuously onto the rest of the surface of the
n cube. This is pictured (in the case = 3) in Fig. 71.

Thus each map of the » cube into R,A,x carries with
it a map of the (»z — 1) cube into A,x.°® The rule giving
the product of maps of » cubes into R, A, x (illustrated
for n=2 in Fig. 69) is designed so that the associated
maps into A, x of the (x —1) cubes forming the bases
compose under the ordinary product rule for represen-
tative maps in 7,4(A,x). There is therefore a natural
homomorphism vy, from 7 (R, A, x) into 7,,(A4,x), given
by simply ignoring all of the n cube except its base.

The correspondence v, is a homomorphism but not nec-
essarily an isomorphism for two reasons: (a) The cor-
respondence need not be onto—there is no guarantee
that every homotopy class in 1r,,_1(A,x) can be repre-
sented by the base of a mapping from a class in
7{R,A,x); (b) The correspondence need not be one-to-
one: It is possible that nonhomotopic maps of the » cube
into R, A, x might yield homotpic maps of the (n —1) cube
into A, x.

The form the homomorphism vy, can assume is limited
by the topological structure of the sets R and A. These
limitations are embodied in the so-called exact sequence
of homomorphisms. To characterize the exact sequence
we must first describe two other kinds of homomorph-
isms between homotopy groups.

1. Since A is a subset of R, any map of an » cube into
A at x is also a map of the n cube into R at x. This es-
tablishes a homomorphic correspondence g, between
m{A,x) and 7 (R, x). Once again, the correspondence is
a homomorphism rather than an isomorphism because
of the following: (a) It need not be onto: there is no
guarantee that every map of a cube into R at x is homo-
topic in R to a map of a cube into A at x; and (b) it need
not be one-to-one: maps of the cube into A at x that are
not homotopic in A might prove to be homotopic when
the homotopy is allowed to range through the wider
space R.

2. Since the base point x belongs to the set A, any
map of an  cube into R at x is also a map of the » cube
into R, A, x, in which the side going into the set A hap-
pens to be taken into the single point x of A. Once again
this correspondence 8, is clearly a homomorphism be-
tween 7,(R,x) and 7 (R,A,x). For the same pair of rea-
sons as in the other two cases, the homomorphism need

86Wwe adopt an obvious shorthand notation. A map of a cube
into R,A ,x is one that takes the cube into R, its base into A,
and the rest of its surface into x. A map of a cube into 4,x
takes the cube into A and all of its surface into x.
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X as X Bs X Y3
A i SR -
x |* x| X A X
X %2 X BZ X 72

—_— — —_—

FIG. 72. A portion of the exact homotopy sequence [Eq. (9.1)].

not be an isomorphism.

We can now put together a chain of homomorphisms.
Starting with the »th homotopy group of the subset A of
R, we are carried by the homomorphism ¢, that allows
the interior of cubes in A4, x to expand from A to R, into
the »th homotopy group of R itself. From the nth homo-
topy group of R at x we are carried by the homomorph-
ism B, that allows the base of the cube to expand from
the point x to the subset A, into the relative homotopy
group 7,(R,A,x). From this relative homotopy group
we are carried by the homomorphism ¥, that ignores
all but the base of the cube into the (» — 1)th homotopy
group of A. We are then in a position to repeat the
cycle at the next level down in . The sequence is sum-
marized in Eq. (9.1)® and is pictured schematically in
Fig. 72.

T (A, x) 2L 7 (R,x) —B"-7r,,(l'3,A,;vc)—7'L

- By -
ToalA, )25 (R, 2) 2 (R, A, x) 0%

B 7.
(A, 0) 2 1R, x) 27, (R, A, x) &

1(A) 2% 1(R) . (9.1)

In addition to the fact that it is a chain of group homo-
morphisms, the sequence of maps in Eq. (9.1) has one
further general property: it is exact. The sequence of
homomorphisms

0 0 0
G~ G,—% Gy —2+-G, ***

(9.2)

$7The last three homomorphisms on the list make sense if R
is a group G, A is a subgroup H, and x is the identity e, for in
this case we can give m(R,4,x), m(A), and mo(R) a group
structure. To establish that the mappings remain homomor-
phisms in these cases requires slightly different arguments,
which are essentially those used in establishing the fundamen-
tal theorem for computing the fundamental group.
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X 73 X 2 X
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| X
A\ x| A |x x| R |x
X X

FIG. 73. The homomorphisms vy3 and a,.

is said to be an exact sequence if the subset of G,,, into
which G, is taken by the homomorphism ¢, is the ker-
nel of the next homomorphism ¢,,, taking G,,, into

G;. ».°® Put succinctly, a sequence of homomorphisms
is said to be exact if the image of each is the kernel of
the next. To establish that Eq. (9.1) is an exact se-
quence we must show that the image of each of the three
types of homomorphism is the kernel of the homo-
morphism that follows.®®

(1) The image of y, is the kernel of @,.,. Figure 73
illustrates the two homomorphisms in question. The
crucial point here is that any image of an # cube in
R,A,x can be regarded as a homotopy in R at x between
the map of the (x — 1) cube into A at x provided by the
base, and the trivial map of the (# —1) cube into x alone
provided by the face opposite the base. The parameter
¢t of the homotopy is simply the coordinate z, of the cube
normal to the base (Figure 74). Conversely, any such
homotopy provides in the same way a map of the » cube
into R,A,x. It follows immediately from this that the
image of v, is just the set of homotopy classes in
Tp1(A, x) containing maps of the (» — 1) cube into A4, x
which are homotopic to the trivial map when the homo-
topy is allowed to range through all of R. But this last
set of homotopy classes is the kernel of a,.,, since
that homomorphism acts on the homotopy classes of
7,1(A, x) by precisely such extensions of their repre-
sentative maps.

(2) The image of B, is the kernel of y,. Figure 75 il-
lustrates the two homomorphisms. The central point
here is that v, acts on homotopy classes of cubes in
R,A,x by separating off their action on the base of the
cube alone, so that classes taken into the identity of
Tp-1{A, x) by v, will be represented by cubes in R, A, x
whose bases are homotopic to a constant in 4,x. But
it is precisely cubes of this type that represent classes
in the image of §8,, since B, acts on representative maps
of cubes into R, x by allowing the bases to expand from
the single point x into all of A. Furthermore any class
of cubes of this type in R, A, x can be realized by such
an expansion of a cube in R, x, as shown in Fig. 76. The
image of B, is therefore precisely the kernel of v,.

(8) The image of a, is the kernel of 8,. Figure 77 il-
lustrates the two homomorphisms. The image and the
kernel in question are both homotopy classes of maps
of the » cube into R,x. The assertion is proved by not-
ing that such a map is representative of either class if

%The kernel of a homomorphism is the set taken into the
identity by that homomorphism.

89The main difficulty in following the three arguments is sim-
ply keeping straight in one’s mind which homomorphism is
which. Readers are urged to focus their attention on the ap-
propriate figures and their captions, using the text itself only
as a guide to the figures.
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t /

&

FIG. 74. The 3-cube in R,A,x on which vy;3 acts, reinterpreted
as a homotopy showing that the associated map of the 2- cube
into A ,x is homotopic to a constant in R. This is the crucial
point in establishing that the image of v; is the kernel of a,.

and only if there is a map of an (z+ 1) cube into R which
agrees with the map of the » cube into R on one of its
faces [called the “side” of the (n+ 1)-cube] and takes an
adjacent face (called the base) into A and the remaining
faces into the point x, as shown in Fig. 78.

‘That the side of Fig. 78 furnishes maps of the » cube
into R, x representing homotopy classes in the kernel of
B, follows from the fact that the image of the (n+ 1) cube
provides (or can be constructed out of) a homotopy be-
tween a map of the » cube into R, and the trivial map
of the » cube into x, via maps taking the » cube into
R,A,x. [The parameter ¢ in the homotopy can be taken
as the coordinate along the direction normal to the side
of the (n+ 1) cube. Successive maps in the homotopy
are given by vertical slices of Fig. 78.]

However, by using a different parametrization we can
associate with the (n+ 1) cube of Fig. 78 an extension of
a map of an % cube into A, x [the base of the (z+ 1) cube]
to a map of an x cube into R, x [the side of the (n+1)
cube]. Successive stages of the extension are provided
(Fig. 79) by swinging the base through 90° into the side
about their common edge. Conversely, one can con-
struct such an (z+ 1) cube from the extension to R, x of
any map of the » cube into 4, x. Since the homomorph-
ism @, acts by just such extensions, the side of Fig. 78
furnishes all maps of the » cube into R, x that represent
homotopy classes in the image of a,,.

D. Recovery of the fundamental theorems from an exact
sequence

If the sets R, A, and x are a group G, a subgroup H,
and the identity e, then we can formulate our earlier
theorems as corollaries of the appropriate exact se-
quences. In doing this it is necessary to establish that
nn(G/H) —the fundamental group of the coset space G/
H—can equally well be represented as the relative
homotopy group 7 (G, H). Substantial parts of the argu-

X Bs X Y3 x
s > S -
[t X H X
X A X A Ix
X

FIG. 75. The homomorphisms B3 and vy;.
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FIG. 76. How to construct a cube in R,x that B3 takes into any
cube in R,A,x that represents a map in the kernel of ¥;. The
cube in R,A, x is on the lower left. Since it represents a map
in the kernel of v3, its base is null-homotopic in A,x. The
cube on the lower right represents such a homotopy. When the
two cubes are combined, A face to A face, they yield the cube
in R, x shown at the top. The base expanding homotopy leading
from this cube back to the original cube in R,A, x consists of
shaving off successive layers coming from the cube in A,x
starting at the x face and working down to the A face. (The
shaving is accompanied by the length rescaling necessary to
keep the object a cube at each stage.)

ments given in establishing the fundamental theorems
were devoted to this point. The underlying geometric
idea is simply that requiring that the image of the en-
tire surface of the cube go into the single coset H in
coset space is tantamount to requiring that the entire
surface of the cube go into the subgroup H, in a rep-
resentative map of the cube into G. The subtlety in the
argument lies in establishing that any continuous map
of a cube into coset space can, in fact, be represented
at all by a map of the cube into G.

If we identify 7,(G/H) with 7,(G, H, e), we arrive at
the exact sequence:

e 1 (G) =1 (G/H) =7, (H) =7, (G) ===~ (9.3)

Our fundamental theorems now follow from the follow-
ing very general observation:

If, in the exact sequence G, - G,% G, ~ G,, the groups
G, and G, consist of the identity alone, then the homo-
morphism ¢ between G, and G; is in fact an isomorph-
ism. To establish that ¢ is an isomorphism we must
show (i) that it is onto and (ii) that it is one-to-one.
The first point requires that the image of G, in G, be
all of G,. Exactness tells us that the image of G, in G;
is the kernel of the next homomorphism. But the next
homomorphism is into the group G, consisting of the
identity alone, so its kernel is indeed all of G;. Point
(ii) requires that the only point in G, taken into the
identity of G; by ¢ be the identity of G,, i.e., the kernel

FIG. 77. The homomorphisms o, and B,.
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FIG. 78. A cube in R,A ,x.
The three unlabeled faces
and the edge between the R

A -
1

N face and the A face are all
:LI'\'\' taken into the point x. The
| interior goes into R. The

J—-R —_—tF—— cube can be interpreted as a
7 homotopy in R,A ,x between
7/ a square in R,x (front ver-
v tical face) and the constant
map (rear vertical face).
The front vertical face
therefore represents an ar-
bitrary class in the kernel

t of B,.

of ¢ is to consist of the identity alone. But exactness
tells us that the kernel of ¢ is the image of the preced-
ing homomorphism. The preceding homomorphism,
however, acted on the group G, containing only the
identity, and therefore its image in G, is indeed the
identity alone.

Thus if the nth and (% + 1)th homotopy groups of G are
zero, then 7,(G/H) is indeed isomorphic to m,.,(H), as
our fundamental theorems asserted.

E. Uses of the third homotopy group; solitons

The third homotopy group provides the answer to the
following classification problem:

Consider two singularity-free configurations of the
order parameter, each subject to the constraint that
the order parameter be uniform sufficiently far from
the origin. Such a configuration provides a mapping of
a solid cube into the order-parameter space, in which
the entire surface of the cube is taken into the single
point representing the constant asymptotic value. Thus
any such configuration can be associated with a class of
mappings that comprise an element of the third homo-
topy group. Two such configurations can be deformed
into one another without altering the uniformity in the
far region or introducing singularities, if and only if
they are associated with the same element of 7,. Thus

FIG. 79. The same cube as in Fig. 78. All unlabeled faces
again go into x, as does the edge between the R and A faces.
Another set of vertical plane sections is indicated that provide
a homotopy in R between a map of a square into A, x and a map
of a square into R,x. The front vertical face therefore repre-
sents an arbitrary class in the image of a,.
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as m, classifies line singularities and =, classifies point
singularities, 7, classifies nonsingular configurations.
(For some applications, see Shankar, 1977).

Non-singular configurations can also be associated with
the elements of the first and second homotopy groups,
and it is into this scheme that the configurations given by
7, fit most naturally: '

Consider singularity free configurations of the order
parameter that are subject to the constraint that the or-
der parameter approaches a single value far from a giv-~
en plane. A line drawn between the two regions of uni-
formity then determines a closed loop in the order pa-
rameter space, and two such configurations can be de-
formed into one another without the introduction of sing-
ularities if and only if the loops they determine are homo-
topic (at the base point determined by the fixed value far
from the plane). Such configurations are therefore char-
acterized by the elements of 7,(R).

Similarly, singularity free configurations subject to the
constraint that they are uniform far from a given line,
are classified by the elements of 7,(R). The 7, configur-
ations result when uniformity is imposed far from a sin-
gle point.

The relation between the configurations classified by
7, or m, [called planar or linear solitons by Mineyev and
Volovik (1978)] and the corresponding line or point sin-
gularities is quite intimate. If a line (or point) singular-
ity moves across a uniform medium it will leave a planar
(or linear) soliton in its wake. Conversely, to remove a
planar (or linear) soliton without relaxing the constraint
far from the plane (or line) it suffices to move a line (or
point) defect of the inverse type across a plane (or along
a line) in the region of non-uniformity.”

The point solitons classified by 7, have a somewhat
tenuous physical stability, for the following reason: As-
sociated with any deviation from uniformity there is a
“bending energy”” density which to leading order is gen-
erally quadratic in the gradients of the order parameter.
Now any nonsingular configuration of the order parameter
f(r) that is uniform for »>R can be deformed into a non-
singular configuration f,(r)=f(r/¢) that is uniform for
r>tR. As t—-0 a singularity builds up in the neighbor-
hood of the origin. The divergence in the bending energy
density is of order 1/t2. However, the bending energy
density is only nonzero for »< tR—i.e., in a region whose
volume is of order . The energy associated with this
collapse of the configuration is therefore monotonically
decreasing with £ and actually vanishes at the moment of
singularity. The topological singularity fails to provide
an energy barrier for “phase space” reasons, and the
topological classification scheme is spurious without the
presence of additional stabilizing features.

“The planar solitons have precisely the spatial structure of
the solitons beloved by students of nonlinear equations. Every-
thing we have said about the classification and combination of
line defects can be translated into the corresponding statements
about such solitons. Note that planar solitons are unstable
against expansion for the same energetic reasons that point (r3)
solitons are unstable against collapse. This is why they are
always considered in the presence of uniform symmetry break-
ing fields that compress the nonuniformity into the neighbor-
hood of a single plane.
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There are ways of stabilizing the configurations. One
could, for example, take into account additional higher-
order gradients, which would restore the singularity at
the moment of total collapse. These, however, would
lead to a configuration of minimum free energy in which
the equilibrium configuration would have a microscopic
size determined by the ratio of the coefficients of the
second and fourth order gradients. The topological
scheme would again be relevant, but the kinds of ob-
jects it was describing would be rather different.

It is appropriate to conclude on this cautionary note.
Not only can there be energetic barriers as well as
topological ones, but—at least in the present example—
topological barriers need not, in general, imply insur-
mountable energetic barriers. The energetics of a
problem must always be examined before conclusions
from the topology can be used with complete confidence.

APPENDIX A: GLOSSARY OF TECHNICAL TERMS

This short glossary lists the most important fre-
quently recurring terms. Citations are to the defini-
tions. If the citation is to a section number alone (e.g.,
III) then the definition appears at the beginning of the
section before the appearance of subsection letters; if
the citation is to a section number and subsection letter
(e.g., IILA) then the definition appears at the beginning
of the subsection before the appearance of subsubsec-
tion numbers. When a term is defined in the text it ap-
pears in italics (unless it appears in a heading) to make
the references easier to locate. Technical terms of a
purely group-theoretic nature are not listed in the glos-
sary; the reader should consult Appendix B for a sum-
mary of basic group-theoretic concepts and results.

Action of m, on 7, VILB,D
Action of m, on 7, IX.A
Based fundamental group m,(R, x) IILA.5
Based homotopy IILA.2
Biaxial nematic ILA.4
Burgers vector VIIL.C.1
Cholesterics VIIL.C.4
Classes of homotopic loops IILLA.4
Compatibility conditions VIILB
Continuous group IV.A
Crystalline media VIII
Defect II
Directed stripes VIIL.C.3
Disclination in crystals VILC.2
Disclination in liquid crystals V.B.3
Dislocation VIILC.1,2
Double group V.B.4
Exact homotopy sequence X.C
Exact sequence of homomorphisms IX.C
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First homotopy group=fundamental group

Fixer
Freely homotopic
Fundamental group ,(R)

Based m,(R, x)

Group—see homotopy group, Lie group,

topological group, etc.
Group product of loops
Higher homotopy groups = ,(R)
Homotopic
at a point
freely
Homotopy
based
classes
Homotopy group, first, =,(R)
nth, 7, (R)
relative, 7 (R,A)
second, my(R)
zeroth, 7(R)
Homotopy sequence, exact
Isomorphism, path
Isotropy subgroup
Lie group
Lift
Liquid crystal, biaxial nematic
cholesteric
nematic
smectic
Little group
Local surgery
Loop product
Manifold of internal states
Naive generalization
Nematic
biaxial
n-simple
nth homotopy group = ,(R)
Ordered medium
Order parameter
Order parameter, reference
Order-parameter space

Ordinary spins

IV.B
I1.C
II1.B.1
IILA.5

IV.D
IX.A
ILB
ILA.2
II.C
ILB
IILA.2
IILA.4
I

IX.A
IX.B
VILA
IILA,IV.A,IX.B
IX.C
ILB.1
IV.B
IV.A
IV.C.3
ILA.4
VIILC.4
ILA.3
VIILC.3

IV.B
II.B

IILA.3
i
VIII, VIILA

ILA.3
ILA.4

IX.A
IX.A
II
II
IV.B

ILA.2
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Path

Path isomorphism
Planar spins

Product, classes of loops
Product, group, of loops
Product, loop

Product space

Product, spheres
Product, topological
Projective plane, P,
Projective space, P,
Quaternion group
Reference order parameter

Relative homotopy group, = (R, A),
1 {R,A,x)

Removable singularity
Representative
Second homotopy group, 7,(R)
based, (R, x)
Simply connected
Smectic
Solitons
Spheres, product of
Sphere, S,
Spins, ordinary
planar
Standard order parameter
Subgroup, isotropy
Superfluid helium-3
Surgery, local
Topological barrier
Topoiogically equivalent defects
Topological group
Topological product
Topologically stable, unstable
Trivial
Two-simple
Uniform medium
Universal covering group
Vacancy
Winding number
Zeroth homotopy group 7R)
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III.B
IIL.B.1
ILA.1
IIL.A.4
IV.D
IILA.3
IILD
VILA
II1.D
ILA.3
ILA.5
V.B.4
IV.B

X.B
ILB
II1.A.4
VILA
VILA
IIL.D
VIIL.C.3
IX.E
VILA
IX.A
ILA.2
ILA.1
Iv.B
IV.B
ILA.5
II.B
ILB
Io.B
IV.A
II.D
IL.B
IILA.4
VILB
II

A%
VII.C.1
IL.B

IILA,IV.A,
IX.B

APPENDIX B: A SUMMARY OF THE RELEVANT
ELEMENTARY GROUP THEORY

A group G is a set of elements and a rule (or combi-
nation law) associating with any two elements ¢ and b,
a third, ¢, known as their product (or sum) and written
c=ab (or c=a+b). The combination law need not be
commutative. If it is the group is said to be Abelian
and the additive notation is often (but not always) used.
If the group is non-Abelian only the multiplicative nota-
tion is used.

For a set G and a combination law to constitute a
group the combination law must be associative [i.e.,
a(bc)=(ab)c for all g, b, and c in G], there must be a
unique identity element e in G satisfying ea=ae=a for
all @ in G, and every element ¢ in G must have an in-
verse a"! satisfying aa"*=a"*a=-e.

Groups can have a finite number of elements or in-
finitely many. In the finite case the number of elements
is called the order of the group. Finite or denumerably
infinite groups are said to be discrete.

Two quite different kinds of group play major roles in
the topological theory of defects:

(1). Continuous groups of transformations that act on
a space of vectors, tensors, etc. Such groups are
commonly encountered in many branches of physics and
particularly in the quantum theory. The combination
law is simply given by the successive application of two
transformations.

(2) Discrete groups (homotopy groups) characterizing
the topological structure of spaces. Such groups are
the mainstay of algebraic topology, but have played a
relatively limited role in physics. The elements of
such groups and their combination laws are quite dif-
ferent from the kinds tranditionally encountered in
physical applications of group theory.

In our treatment of transformation groups the most
important secondary concepts are those of subgroup,
coset, normal subgroup, and quotient group. In our
treatment of homotopy groups the most important sec-
ondary concepts are those of conjugacy classes, iso-
morphism, automorphism, and homomorphism.

A subgroup H of a group G is a subset of G which is
itself a group. It is easily shown that H is a subgroup
of G if and only if @b~! lies in H for every g and b in H.

If H is a subgroup of G whose elements are h;and g
is any given element of G (which may or may not lie in
H itself) then the set of all elements gh; is called a
coset of H. Such a coset is denoted by the symbol gH.
(More precisely we have defined here a left coset,
vight cosets are similarly defined, but since we deal
almost exclusively with left cosets, we drop the quali-
fication except where the distinction between left and
right cosets is essential.) A very important elementary
theorem establishes that if g, and g, are two elements
of G then the cosets g, H and g,H are either identical
sets, or have no common elements whatever. Thus a
given subgroup provides a partitioning of the group into
disjoint cosets. This space of cosets of the subgroup
H in the group G is denoted by the symbol G/H.

H is said to be a normal subgroup of G if the left
coset gH contains the same elements as the right coset
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Hg, for each g in G. If the subgroup H is a normal sub-
group then one can impose a group structure on the
coset space; defining the product of two cosets to be
given by (g,H)(g,H) =(g,8,)H. (One needs H to be a nor-
mal subgroup to show that the result of this composition
law is independent of the choice of elements g, and g,
chosen to represent the cosets.) When H is a normal
subgroup the coset space G/H is called the quotient
group or factov group.

The divect product of two groups G and K is a set
G XK of pairs (g, k) which can be shown to be itself a
group under the combination law (g, ?,)( g5, &5)
= (&1 82 R Feo).

Two groups are said to be isomorphic if their group-
theoretic structures are identical. More precisely,
there must be a one-to-one map ¢ associating with each
element g of the group G an element k= ¢( g) of the
group K, such that every member of K is associated in
this way with some element of G(i.e., ¢ is onto K) and
such that the element of K corresponding to a product
of elements of G is the product of the corresponding
elements:

w(g,82)=0(g)e(g,). (B1)

If the groups K and G are the same group (so that ¢
simply permutes the elements of G) then the isomorph-
ism is called an qutomorphism. A homomorphism is a
correspondence between elements of two groups which
is not necessarily one-to-one (i.e., it can take many
elements of G into the same element of K) and which is
not necessarily onto (i.e., it can leave some elements
of K unassociated with any element of G) but which does
satisfy the structural condition (B1). The set of ele-
ments of G taken by ¢ into the identity of K is called
the kernel of the homomorphism. The set of elements
of K that are associated with elements of G by ¢ is
called the image of the homomorphism. For a homo-
morphism from G to K to be an isomorphism its ker-
nel must consist of the identity of G alone and its image
must be all of K.

Two elements a and b of G are said to be conjugate to
one another if there is an element g of G such that »
=gag™*. The set of all elements conjugate to a given
element ¢ is called the conjugacy class of a. (In the
theory of group representations conjugacy classes are
usually refered to simply as classes.) It is an elemen-
tary theorem that G can be partitioned into disjoint con-
jugacy classes.

The operation of conjugation by a fixed element g (a
—gag™! for each g in G) defines an automorphism of G
known as an iuner automovphism. Only non-Abelian
groups can have nontrivial inner automorphisms.

The most important continuous groups we make use
of are the groups T(x) of all translations in »z-dimen-
sional Euclidean space, the groups SO(xn) of all proper
rotations in n-dimensional Euclidean space, and the
group SU(2) of 2 X 2 unitary matrices with unit determi-
nant. [We make little use of the full group O(%) of prop-
- er and improper rotations. |

The most important discrete groups we make use of
are the groups Z, isomorphic to the additive group of
integers modulo » (also known as the cyclic groups of
order %), the group Z, isomorphic to the additive group
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of the integers, and the quaternion group @, defined in
Sec. V.B.4.

We make use of the following features of SU(2) and its
homomorphic correspondence to the three-dimensional
proper rotation group SO(3):

Let o,, o0,, and o, be the Pauli matrices:

01 0 —i 10
°x=<1 0)’%: i o)"’z: 0 -1/"

Any unitary 2 x 2 matrix with unit determinant can be
written in the form

(B2)

u=aqy+ia‘o, (B3)
where (a,, a,, a,,a,) is a real unit 4-vector:
ai+ai+as+ai=1. (B4)

The parameter space for SU(2) is thus the surface S, of
the unit sphere in Euclidean 4-space, which is shown to
be simply connected by the same argument as is given
for the surface S, of the unit 3-sphere, in Sec. IL.C.

Instead of parametrizing SU(2) with a unit 4-vector as
in (B.3), one can use an equivalent parametrization in
terms of a unit 3-vector # and an angle 6 in the interval
0=<6<47n:

(7, 6) = cosz 0+ i sin} 8(73+ o) = exp(i( 6/2)73* o) . (B5)

Note that u(#, 6+ 27) = —u(#, 0).

The clumsier parametrization (B.5) permits the
homomorphic correspondence between SO(3) and SU(2)
to be stated quite simply. Let R(#, 6) be a proper rota-
tion about an axis 7 in 3-space through an angle 8. Then
the mapping

¢: u#, 0)~R(i, 6)

is two-to-one from SU(2) onto SO(3), since R(3, 6)
=R(7, 6+ 2m). Furthermore it can be shown to be a
homomorphism in the sense of (B1).™

The topological significance of this relation is that
SU(2) is the universal covering group for SO(3)—i.e., it
is a simply connected group of which SO(3) is the homo-
morphic image. It is for this reason that SU(2) and its
subgroups play so central a role in the topological the-
ory of defects in three-dimensional media.

Because » and —u correspond to the same rotation
under the covering homomorphism, if SU(2) is para-
metrized by the surface of a 4-sphere [as in Eqs. (B3)
and (B4)], then the parameter space for SO(3) can be
taken to be the surface of the 4-sphere with the identi-
fication of diametrically opposite points. Alternatively,
if SO(3) is parametrized directly through the rotation
axis # and rotation angle 6, then the parameter space
can be taken to be a solid 3-sphere of radius 7 (con-
taining points 67) in which diametrically opposite sur-
face points are identified (since rotations of 7 and -7
about the same axis are identical).

(B6)

"Phis is readily verified for infinitesimal rotation angles. If
0=6¢ in EQ. (B5), then 6 wou’)=(i/2) 6¢ln-o,0l=05¢hx0, the
last form following directly from the commutation relations
[0;, 0;]1=2i€, ;,0;, obeyed by the Pauli matrices (B2). But this
last form is precisely the change induced by an infinitesimal
rotation about the axis # through the angle 6¢.
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