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Electrons incident on a crystal surface can be temporarily trapped in surface states at energies above the
vacuum level. These temporary or nonstationary surface states are observed as narrow fluctuations of
elastic scattering intensity with respect to variation of electron energy and incidence direction. The
scattering process is called electronic surface resonance scattering. The temporary surface states that are
intermediate states in resonance scattering are called electronic surface resonances. The article surveys
both experimental and theoretical research on electronic surface resonances as observed by scattering of
low-energy (<1 keV) electrons. A critical account of experiments on AlI(001), W(001), Ni(001), and
oxygenated Ni(001) surfaces is offered together with theoretical commentary. Plots of the electronic

surface resonance band structure E(k)) (E = resonance energy, k;

= reduced surface-parallel

momentum) are compiled and the signficance of E (k) plots for surface characterization is indicated.
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I. OBJECTIVES AND SCOPE -

Electrons incident on a crystal surface can be tem-
porarily trapped in surface states at energies above the
vacuum level. These temporary or nonstationary sur-
face states are observed as narrow fluctuations of elas-
tic scattering intensity with respect to variation of elec-
tron energy and incidence direction. The scattering
process is called electronic surface resonance scat-
tering. The temporary surface states that are inter-
mediate states in resonance scattering are called elec-
tronic surface resonances. Other terms in common
use include electronic bound-state resonance, surface-
state resonance, surface wave resonance and surface
barrier resonance. All of these have exactly the same
meaning as electronic surface resonance. Generally
the term surface resonance is applied to any nonsta-
tionary surface state, but in the present article it is
applied exclusively to temporary but long-lived sur-
face states that exist at energies above the vacuum lev-
el in the absence of externally applied fields. The ob-
jectives of this article are to survey observations of
electronic surface resonances and to indicate their sig-
nificance for characterizing crystal surfaces.

The chief objective in the study of these and other
surface states is to determine the dispersion of sur-
face-state energies with respect to the surface parallel
momentum—the electronic surface band structure—and
to correlate the surface band structure with surface
properties such as the geometrical or electronic struc-
ture of surfaces. The particular advantage of studying
surface resonances is that, unlike surface states below
the vacuum level, resonances are accessible to direct
observation in elastic scattering experiments. In the .
elastic scattering of electrons at crystal surfaces both
the energy and the surface-parallel momentum are con-

541



542 E. G. McRae: Electronic surface resonances of crystals

served quantities. Therefore the surface resonance
band structure may be determined by mapping the po-
sitions of resonance fluctuations observed in any elec-~
tron scattering experiment in which both the electron
energy and momentum are resolved.

The earliest observations of electronic surface res-
onances were made in the course of pioneering high-
energy (>10 keV) electron scattering experiments dating
back to the 1930s. Since about 1960, however, almost
all observations of electronic surface resonances have
been made using low-energy (<1 keV) electron scat-
tering methods. Only these low-energy electronic res-
onances are covered fully in the present article. A
few references to high-energy electronic resonances
and to analogous resonances in atom scattering are in-
cluded but these are intended for historical perspective
only. The coverage of low-energy electronic surface
resonances is complete through 1978.

The present article is the first to offer an extended
survey of low-energy electronic surface resonances.
Miyake and Hayakawa (1970) reviewed resonances as
observed in high-energy electron diffraction, and they
pointed out that basically similar descriptions should
apply at low energies as well. Other previous coverage
of low-energy electronic surface resonances has been
limited to brief outlines in publications on low-energy
electron diffraction (Estrup and McRae, 1971; Pendry,
1974).

Background information on the interaction of low-
energy electrons with solid surfaces and on the sur-
face crystallographic nomenclature used in the present
article may be found in a review by McRae and
Hagstrum (1976). To save repeated references on the
part of readers not familiar with these topics, the es-
sential pieces of background are set out as follows:

Surface puvity and suvface ovder are paramount con-
cerns in all experiments on crystal surfaces. Con-
sequently, as a matter of routine, all experiments are
done in ultrahigh vacuum, surfaces are prepared in
vacuum by special methods (e.g., cleavage, sputtering,
chemical reactions) and surface condition is monitored
(e.g., Auger electron spectroscopy for purity, low-en-
ergy electron diffraction for order).

Terminology of diffraction: ‘“Net,” “reciprocal net,”
and “unit mesh” are 2-D (two-dimensional) analogs of
“lattice,” “reciprocal lattice,” and “unit cell,” respec-
tively. A ‘“beam” is a plane wave incident on a crystal
surface or a plane wave reflected from a crystal sur-
face as a result of elastic scattering (diffraction) of an
incident wave. In the elastic scattering of electrons at
crystal surfaces, the projection of electron momentum
parallel to the surface is conserved mod2ng where g
is a reciprocal-net vector. A diffracted beam resulting
from parallel-momentum transfer 27g is conventionally
indexed by the components of g referred to the basic
‘vectors of the reciprocal net of the substrate crystal.
For example, if g=2a} - la}, where af, and ay are
basic vectors of the reciprocal net, the beam is in-
dexed (21). The net axes are designated by a crystal-
lographic convention (Wood, 1964) indicated in. Fig. 1.
Throughout this article, notations of quoted authors are
changed where necessary to conform to the conven-
tion.
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FIG. 1. Definition of angle variables 6 and ¢ for incident
particles and conventional designation of net axes. K denotes
the total momentum, K, the surface-parallel momentum, n
the unit outward surface normal, a, and a, the basic vectors
of the net, and vy the angle (in general obtuse) between a, and
Q5.

Designation of crystal suvfaces: If the unit mesh of
a crystal surface has sides (b,,b,) and is rotated by an
angle a #0 with respect to the unit mesh (a,, a,) of the
ideal substrate surface, the surface periodicity is des-
ignated by [(b,/a,) X (b,/a,)]a. If a=0 the angle des-
ignation is omitted. Usually c(2 X 2)—“centered”

(2 X 2)—is used instead of (V2 xv2)45° and p(2 x 2)—
“primitive” (2 x 2)—is used instead of (2 x2). Crystal
surfaces are designated by shorthand such as

Ni(001)c(2 x2)O [Ni substrate crystal, (001) substrate
net plane, ¢(2 x2) surface periodicity, O atoms adsorbed
on the surface]. For atomically clean surfaces the des-
ignation (1 x1) is usually omitted so that, e.g., Ni(001)
means Ni(001)(1 x 1).

The material of this article is arranged as follows.
Section II deals with the observation and identification
of resonances. It consists of a schematic description
of resonances and resonance scattering (Sec. II.A) fol-
lowed by a chronological account tracing the introduction
of various experimental methods (Sec. II.B). Section
11T deals with theory aimed at the description of the
surface resonanceband structure and of the width and
lineshape of resonances as observed in low-energy
electron scattering experiments. The topics treated
are the general properties of resonances approached
from the viewpoint of the analytic structure of the scat-
tering amplitude and the relationship between reflection
and emission intensities (Sec. III.A), general theoretical
approaches including the two-dimensional nearly-free-
electron description (Sec. III.B) and the layer multiple-
scattering description (Sec. III.C), and a survey of ap-
plications of theory, including such special applications
as temperature effects and spin polarization (Sec. III.D).
Section IV offers a critical summary of experimental
results available to date together with theoretical com-
mentary. The material is arranged by crystal sub-
strates comprising A1(001), w(001), and Ni(001) (Secs.
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IV.A-C). The article ends with a survey of prospects
for surface characterization by resonance experiments
(Sec. 1V.D).

I1. INTRODUCTORY SURVEY
A. Nature of electronic surface resonances

An electron in a surface resonance has total kinetic
energy above the vacuum level, but the part of its en-
ergy associated with the normal component of momem-
tum is below the vacuum level. Therefore the electron
is prevented from escaping into vacuum by the surface
potential barrier.

1. Limiting cases

Electronic surface resonances may be described ap-
proximately by either of two theoretical pictures that
represent limiting cases of real situations. These
cases correspond respectively to strong and weak over-
lap between the resonance electron density and the bulk
scattering potential of the crystal.

The strong overlap (SO) picture is similar to the mod-
el customarily used for ordinary surface states at en-
ergies near or below the Fermi level. A SO resonance
differs from an ordinary surface state only in having
a large group velocity parallel to the surface. The SO
resonance electron density is centered in the region
occupied by the first few atom layers of the crystal.
Like the band structure for ordinary surface states, the
SO surface resonance band structure depends mainly on
the effective potential near the atoms. It does not de-
pend strongly on the long-range image potential outside
the outermost atom layer. The SO resonance samples
the bulk electron density of the crystal;, so that the res-
onance intensity fluctuations are lifetime broadened by
electron—electron interactions to the same extent as
intensity features due to bulk scattering, e.g., Bragg
peaks. The extent of the broadening is roughly equal
to twice the imaginary (absorptive) part of the bulk
optical potential. For most solids, measured values
of the inelastic mean free path of low-energy electrons
translate to absorptive-potential values of about 3 eV
for electron energies above 50 eV. For decreasing
electron energies the absorptive potential decreases to
about 1 eV at energies near the vacuum level.

The weak overlap (WO) picture resembles the mod-
els used to describe the surface states of particles
trapped in their image potential well, e.g., electrons
at liquid He surface (Cole, 1974). The WO resonance
electron density is centered outside the outermost atom
layer of the crystal. The WO surface resonance band
structure depends strongly on the long-range part of
the potential, while the laterally periodic potential vari-
ation due to the shorter-range effects of surface atoms
has a secondary role only. The appropriate starting
point for a description of the surface resonance band
structure in the WO case is that in which the electron
motion in the two dimensions parallel to the surface is
free. This is called the 2-D free-electron picture. WO
resonances sample an electron density much smaller
than that of the bulk crystal, so in that case the lifetime
broadening of resonance intensity fluctuations is much
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smaller than that of bulk-scattering intensity features.
~ Experimentally, resonance intensity fluctuations may
be identified as such on the basis of their width in en-
ergy. All observed elastic-scattering features less
than about 1.5 eV wide can be assigned to resonances.
This criterion admits only resonances conforming ap-
proximately to the WO picture. All observed features
that have been assigned to resonances exhibit 2-D free-
electron-like dispersion, as is consistent with the WO
picture. Resonances conforming to the SO picture have
been predicted but in electron scattering experiments
they would be difficult to disentangle from bulk scat-
tering features.

2. Two-dimensional free-electron description

The more important regularities and nomenclature of
electronic surface resonances may be conveniently in-
troduced in the framework of the 2-D free-electron de-
scription. It is obtained by replacing the scattering po-
tential U(z, r) of the crystal by a potential that retains
the 2-D periodicity of the surface while approaching
indefinitely closely to the laterally averaged potential
U,(z) defined by

Uo(z)=A"f Uz, r)dr. 1)

Here z denotes the inward surface normal coordinate,
r denotes a position vector in the plane of the surface,
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FIG. 2. Laterally averaged potential Uy(z) for a crystal,
together with energy levels pertaining to resonances according
to the 2-D free-electron description (schematic). z is the
inward surface-normal coordinate. E., (k,) denotes the
threshold energy for the diffraction beam indexed by recipro-
cal-net vector g, e, denotes the »nth bound-state energy
eigenvalue for potential U;(2) and e,+E., (k,) denotes the
resonance energy. k, is the reduced parallel momentum.
Broken lines indicate an idealized form of potential adopted
for an approximate calculation of the eigenvalues e, (text,
Sec. III.C).
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the integration is over one unit mesh of the surface,
and A denotes the unit-mesh area. A possible shape of
the laterally averaged potential U,(z) is sketched in
Fig. 2.

In general the laterally averaged potential U,(z) sup-
ports bound surface states with wave functions

|ng) =1,(2) exp ik, + 27g)ar] n=1,2.... 2)

Here #,(z) denotes the nth surface-state solution (i.e.,
a solution vanishing for |z| —«) of the Schrédinger
equation for the potential Uy(z). The existence of such
solutions is well known (Jones, 1975). It depends on
“forbidden gaps” in the band structure derived from
Uy(2). The forbidden gaps, together with the surface
potential barrier, have the effect of confining electrons
in the surface region of the crystal. The second factor
of the wave function in Eq. (2) represents free-electron
motion parallel to the surface. Here g denotes a vector
of the reciprocal net of the surface and k, denotes the
reduced parallel momentum—i.e., the momentum in
the plane parallel to the crystal surface, mod27rg. The
total parallel momentum is k, + 27g.

The electron energies corresponding to the 2-D free-
electron wave functions of Eq. (2) are

Eng(kn):en +ang(kll) ’ (3)

where ¢, denotes the energy eigenvalue corresponding
to 9, in Eq. (2), and the second term in Eq. (3) has the
expression

E,k,)=3k, +2mg|2. (4)

Here and in all equations in this article, Hartree atomic
units (#=m =e=1) are used and all energy values are
referred to the vacuum level as origin. E_(k,) is the
threshold energy (grazing emergence energy) for the
diffracted beam indexed by reciprocal-net vector g.

The energy-level separation E_, - E,, = — ¢, means the
binding energy of the nth surface state associated with

a given threshold, relative to the threshold.

The pattern of energy levels represented by Eq. (3) is
sketched in Fig. 2. It is often convenient to think of the
energy levels as consisting of sequences of levels where
each sequence converges on its corresponding threshold
level. Figure 2 shows one threshold level and one
member of sequence converging on it.

The dispersion E(k,) of surface-state energies E is
called the surface band structure. The beam threshold
functions E.(k,) for different g values collectively
make up the surface band structure in the free-electron
limit U(z,r)~0. In the 2-D free-electron description,
the surface band structure for a given level index 7 is
displaced to lower energies from the free-electron lim-
it by a fixed amount equal to the binding energy —e,.

The orders: of magnitude of the quantities appearing
in the 2-D free-electron description of low-energy
electronic resonances may be appreciated from the
examples given in this article, especially in Sec. IV.
Typical values of the binding energy of ann =1 level
lie in the range 0.5-3 eV.
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FIG. 3. Classification of perturbations of 2-D free-electron

(FE) levels. Double-headed arrows connect interacting levels
in each type of perturbation (see text, Sec. II.A). All levels
have the same value of reduced parallel momentum and the
same point symmetry. The subscripts 0, g, andg’ label the
beam thresholds in accordance with notation introduced in

the text. Some representative energy values referred to the
vacuum level as origin are indicated at the left. Shading
indicates types of continuum state according to regions of
electron propagation: V-—propagation in vacuum only (for-
bidden gap); C—crystal only; VC—both vacuum and crystal.

3. Classification of perturbations of 2-D free-electron states

The 2-D free-electron description gives a picture of
discrete surface states whose dispersion mimics that
of the beam threshold conditions. This picture is mod-
ified by inclusion of the lateral variation of the poten-
tial. If the lateral variation of the potential is viewed
as a perturbation, there are modifications arising from
interactions between zeroth-order states with the same
k, value and the same point symmetry. The possible
kinds of interaction are indicated schematically in Fig.
3 and may be classified as follows: (1) resonance in-
teractions between surface states and a continuum of
states of electron propagation; (2) nonresonance inter-
actions between surface states and a continuum; and
(3) interactions between different surface states.

Each continuum state has the form of a superposition
of plane waves in vacuum and a superposition of Bloch
waves in the crystal. These plane waves and Bloch
waves comprise both propagating waves and nonprop-
agating or evanescent waves. For each k, value there
are some energy ranges in which electron propagation
is confined either to vacuum or to the bulk crystal. For
energies less than E_,(k,) = 3 k2 there are no propagating
plane waves. For energies lying in the range of a for-
bidden gap in the 3-D band structure of the crystal there



E. G. McRae: Electronic surface resonances of crystals

are no propagating Bloch waves. The term “forbidden
gap” refers to the 1-D section through the band struc-
ture fixed by the value of k,. There may of course be
some energy ranges that are not strictly forbidden gaps
but within which the interactions with states of prop-
agation in the crystal are weak; these ‘“partially for-
bidden” gaps have qualitatively the same significance
as forbidden ones.

Resonance interactions (interactions of type 1, Fig. 3)
are the basis of elastic-scattering methods of investi-
gating electronic surface states. Resonance interactions
provide first the mechanism whereby surface states can
be populated by elastic transitions from propagating
states, and second they provide a mechanism of decay
of surface states to propagating states with attendant
broadening of surface levels. Narrow resonances are
expected only in the energy ranges of forbidden or par-
tially forbidden gaps. Inside a forbidden gap, reso-
nances can decay only to states propagating in vacuum.
Outside any such gap, but above the threshold E . (k,),
resonances can decay to continuum states that are prop-
agating both in the crystal and in vacuum.

The other interactions represented in Fig. 3 cause
shifts of 2-D free-electron levels. In particular the
surface state—surface state interactions (type 3, Fig. 3)
depend critically on the geometric and electronic struc-
ture of the surface. The resulting pattern of levels is
characteristic of the crystal surface in question.

4. Mechanism of resonance scattering

Resonance scattering of electrons at crystal surfaces
is a special case of a general phenomenon having an
important part in several branches of physics such as
nuclear physics and atomic physics (Newton, 1966). In
the most general sense of the term, resonance scat-
tering denotes the capture of an incident particle by the
target to form a compound state which subsequently
decays to release the scattering products. A given
compound state can generally decay by several paths
or “channels” which are characterized individually by
the final quantum states of the target and of the scat-
tered particles. Resonance scattering occurs with ap-
preciable probability only in a narrow range of incidence
energy and momentum characteristic of the compound
state. It always occurs at the same time as “direct”
or nonresonance scattering, whose probability varies
relatively slowly with respect to the incidence condi-
tions. The coherent superposition of the resonance and
direct contributions to the scattering amplitude results
in a fluctuation of scattering intensity centered at values
of incidence energy and momentum for which the mag-
nitude of the resonance contribution is at a maximum.
The width in energy I" of the fluctuation is related in-
versely to the lifetime A? of the compound state through
the relation I'Af{= 7.

Each of the general properties of resonance scat-
tering has a particular realization in scattering at crys-
tal surfaces. In surface resonance scattering the inter-
mediate compound state is a surface state. In an elec-
tron scattering experiment, a resonance is observed
as a fluctuation of scattering intensity centered atvalues
of incidence electron energy E and reduced parallel mo-
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FIG. 4. Resonance and direct mechanisms of electron scat-
tering at a crystal surface: (a) elastic reflection, (b) in-
elastic reflection, (c) elastic emission, and (d) inelastic
emission., Straight arrows denote incident or elastically
scattered electron waves, wavy arrows denote surface states,
broken arrows denote inelastically scattered electron waves,
open circles denote elastic scattering with change of surface-
parallel momentum, filled circles denote elastic scattering
with or without change of surface-parallel momentum, and
open squares denote inelastic scattering.

mentum k, characteristic of the surface state.

The mechanism underlying such observations in in-
dicated schematically in Fig. 4. The intermediate sur-
face state may be excited by an electron incident from
vacuum [reflection case, Fig. 4(a), (b)] or from the
bulk crystal [emission case, Fig. 4(c),(d)]. The sur-~
face state may decay by an elastic channel [ Fig. 4(a), (c)]
or an inelastic one [Fig. 4(b), (d)]. Resonances may be
observed in either elastic or inelastic scattering ex-
periments, depending on the decay channel monitored.

The (E,k,) values derived from observation of a nar-
row resonance intensity fluctuation are independent of
the scattering mechanism responsible for it. However,
the line shape of the fluctuation depends critically on the
mechanism. This is so because the scattering ampli-
tude is the superposition of two contributions, namely
the resonance and direct contributions as indicated
schematically for each process in Fig. 4. The line
shape is the sum of the squared modulus of the res-
onance amplitude contribution and the cross-term due

. to the interference between the resonance and direct

terms. There are important limiting cases depending
on the ratio of the magnitude of the resonance ampli-
tude contribution at its maximum to that of the direct
contribution. In the limit of small resonance/direct
ratios the line shape is due to the cross term only, so
that it may be a peak, a dip, or an asymmetric feature
depending on the phase of the superposition of reso-
nance and direct contributions to the amplitude. In the
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opposite limit, only the resonance term is present so
that the fluctuation must be a symmetric peak.

B. Chronology of surface resonance observations

Surface resonance observations depend on the de-
termination of the energy E and the parallel momentum
k, of particles incident on or emitted from a crystal
surface. The experimental variables are the energy
E, the colatitude angle of incidence or emission 6, and
the azimuthal angle of incidence or emission ¢. Def-
initions of the angle variables for incident particles
are shown in Fig. 1. The corresponding definitions for
emission are obtained by reversing the directions of the
total momentum K and of the parallel momentum K, .

1. Atom scattering

Surface resonances are known in the contexts of both
atom scattering and electron scattering. There has
been a parallel development in understanding of res-
onances in these two contexts. The first observations
of surface resonances were made in the course of atom
scattering experiments by Stern and his co-workers in
the early 1930s. Their experiment on the reflection
of He atoms by a LiF(001) surface (Esterman and Stern,
1930; Frisch and Stern, 1933) was the first to show
diffraction of atoms by crystals. It also showed nar-
row minima in the intensity of specular reflection under
incidence conditions near those for beam thresholds.
These features were explained (L.ennard-Jones and
Devonshire, 1936; Devonshire, 1936) by a process in
which an incident atom is temporarily captured in a
surface state. Subsequent experiments have confirmed
the role of surface states in atom scattering by re-
solving an expected pattern of several features con-
verging on a single threshold. This kind of pattern was
introduced in Sec. II.A with reference to electronic re-
sonances but the same picture applied to atomic sur-
face resonances as well. The early observations showed
line shapes consisting exclusively of minima, leading
Lennard-Jones and Devonshire to propose a resonance
process with inelastic decay analogous to that of Fig.
4(b). They called this “selective adsorption.” However,
it is now known that a variety of line shapes are pos-
sible and that both types of resonance reflection process
indicated in Fig. 4 can occur in atom scattering. Re-
cent developments in atom scattering have been re-
viewed by Goodman (1977).

2. High-energy electron diffraction

The first observation of resonance scattering of elec-
trons at crystal surfaces was made by Kikuchi and
Nakagawa (1933). Their observation was made as part
of a study of high-energy (40-100 keV) reflection elec-
tron diffraction at the (011) cleavage face of zinc blende
crystal. They reported that the intensity at the Bragg
peak of the specularly reflected beam is at a relatively
very high maximum under conditions later recognized
by Miyake, Kohra, and Takagi (1954) as being close to
threshold conditions for diffracted beams. The effect
was called an “intensity anomaly” by the original au-
thors but is now more commonly referred to as “en-
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hancement.” The review by Miyake and Hayakawa
(1970) traces the evolution of the interpretation of en-
hancement and contains photographs of diffraction pat-
terns to illustrate that phenomenon.

The definitive interpretation of enhancement as a
resonance-scattering effect was given by Kohra,
Moliére, Nakano, and Ariyama (1962). They recognized
explicitly the role of a “surface wave” or surface-lo-
calized electronic state. The mechanism involved is
that of Fig. 4(a). The appearance of a very high inten-
sity maximum apparently means that the resonance/
direct ratio is large. The interference between res-
onance and direct contributions is relatively unimportant,
but some degree of interference is evidenced by asym-
metric line shapes in some experiments.

While Kohra et al. were the first to deal theoretically
with the enhancement phenomenon, the nature of elec-
tronic surface resonances at energies of the order of
50 keV was earlier treated by Artmann (1947) in con-
nection with Kikuchi lines in the background to diffrac-
tion patterns.

Artmann’s work dealt with anomalies in the vicinity
of Kikuchi-line envelopes. These terms require some
explanation. Kikuchi lines are due to electrons that
have suffered inelastic scattering followed by multiple

-

FIG. 5. Geometry of Kikuchi lines and envelopes of Kikuchi
lines. The wave field due to inelastically scattered electrons
in a crystal is imagined to be resolved into plane-wave com-
ponents. The propagation vectors for three special compon-
ents of the same energy are indicated at left by 1, 2, and S.
Vectors 1, 2, and S lie in a common plane perpendicular to
the surface. In this plane the reciprocal lattice has points
indicated at the right. Vectors 1 and 2 are vectors for which
Bragg reflection conditions are satisfied. Vector S is parallel
to the surface. The initial vectors 1 and 2 are related by
Bragg reflections to vectors 1’ and 2’ respectively. The
momentum transfers are 27 times those indicated by arrows
at right. The initial vector S is related to S’ by the same
surface component of momentum transfer, i.e., 27 times that
indicated by the broken arrow at right. Projections of 1’ and
2’ on a viewing screen are points on Kikuchi lines. The pro-
jection of S’ is a point on the envelope of all Kikuchi lines
corresponding to the same surface component of momentum
transfer. The complete Kikuchi lines are intersections with
the viewing screen of cones having axes 11’,22’. The com-
plete envelope is the intersection with the cone having axis SS’.
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elastic scattering in the course of their escape from the
crystal. The dominant process of elastic scattering is
Bragg reflection in the bulk crystal. The term Bragg
reflection denotes conservation of momentum mod2w
times a vector of the reciprocal lattice. Thus, for ex-
ample, in Fig. 5 inelastically scattered waves that have
the same energy and that travel in directions 1 and 2
give rise to Kikuchi lines in emission directions 1’ and
2’, respectively. In the azimuth represented in Fig. 5,
the limiting direction of all the Kikuchi lines that can
be obtained for a given surface component of momentum
transfer in that azimuth is the direction S’ corresponding
to an initial direction S parallel to the surface. Gen-
erally, the emission directions suchasS’, corresponding
to initial directions parallel to the surface such as S,
form envelopes of Kikuchi lines. From Fig. 5 it is
apparent that the emission directions for a Kikuchi-line
envelope are related by reciprocity to the directions
for the thresholds of diffracted beams. In other words,
in the notation of Sec. II.A, the (E,k,) values for a
Kikuchi-line envelope satisfy a relation of the form
E=E, g(k(l)' )

Artmann showed that the mechanism responsible for
intensity anomalies near the Kikuchi-line envelopes is
emission by a resonance scattering process of the type
represented in Fig. 4(c). He further described the in-
tensity distribution near the envelope as a sequence of
“surface” Kikuchi lines parallel to the envelope and
converging on it. In the notation of Sec. II.A, the (E,k,)
values for this sequence of Kikuchi lines were found
to satisfy an equation of the form E=E,(k,), n=1,2,....
Just as in electron reflection resonances form a se-
quence converging on each beam threshold, so in elec-
tron emission resonances form a sequence of surface
Kikuchi lines converging on each envelope of bulk
Kikuchi lines.

3. Low-energy electron diffraction (LEED)

The first observation of resonance elastic scattering
of low-energy electrons was reported by McRae and
Caldwell (1964). They made LEED observations using
the experimental setup diagrammed in Fig. 6. They
used the retarding field mode of operation in which the
sample is biased negatively with respect to the first
grid. The retarding field serves as an additional fo-
cusing control of the primary beam and it reduces
distortions of the beam due to stray magnetic and elec-
tric fields. In the retarding mode, diffracted electrons
traveling parallel to the crystal surface are pulled
back to the fluorescent display screen as indicated in
Fig. 6. Thus as the electron energy increases, the
grazing emergence of new beams as well as the intensity
variation of existing beams may be monitored. In ob-
servations on Li(001) surfaces, later extended to cleav-
age faces of NaF and graphite (McRae and Caldwell,
1967), resonancé intensity minima were seen as dark
lines traversing the (00) spot under the same condi-
tions as for the grazing emergence of the (01) beam.
Corresponding to this visual observation, plots of the
(00) (specular) beam intensity versus electron energy
were found to contain narrow minima (width<2eV) dis-
placed by an amount of the order of 1 eV to the low-en-
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FIG. 6. Schematic cross section of conventional LEED
apparatus indicating the retarding-potential mode of operation.
The sample is biased negatively with respect to the first grid
so that the focus of the incident beam is improved for low
incidence energies. The diffraction pattern is contracted as
indicated. Grazing emergence beams are pulled in to points
A. Beam intensities are determined using a spot photometer
to measure the brightness of diffraction spots. (Reproduced
from Henrich, 1975).

ergy side of the beam thresholds. The displacements
from the threshold were found to be insensitive to the
incidence direction. A pair of experimental curves
illustrating this regularity is reproduced in Fig. 7.
Other LEED observations with qualitatively similar
results were made on Cu(001) (Andersson 1970) and on
other metal (001) surfaces (See. Sec. IV). A resonance
associated with an adsorbate induced beam threshold

| 1
5 10 15

ELECTRON ENERGY (eV)

FIG. 7. LEED intensity curves for LiF (001). The measure-
ments were made at the indicated colatitude angles of inci-
dence in the [11] azimuth [crystallographic notations and
beam indices refer to the LiF (001) net]. The resonance is
observed as a (00) intensity minimum about 2 eV wide,
centered near 18 eV. The (11) beam threshold is marked by
the rise of (11) intensity near 19 eV (see Fig. 6 for the experi-
mental method for grazing-emergence beams). The figure
illustrates the correlation between the energies of the reso-
nance feature and of the 11 threshold. (Reproduced from
McRae and Caldwell, 1967).



548 E. G. McRae: Electronic surface resonances of crystals

was observed by LEED on W(001)c(2 x2)H (McRae and
Wheatley, 1972).

The LEED observations can be accounted for by the
mechanisms of Fig. 4(a) and (b). The role of an inter-
mediate surface state was pointed out by Hirabayashi
(1968) in a theoretical treatment patterned on that of
Lennard-Jones and Devonshire for atom scattering.

In terms of the 2-D free-electron description of the
intermediate surface state (Sec. II.A), the resonance
structure observed by LEED may be assigned arbi-
trarily to the lowest-order (2 =1) resonance for each
threshold, and its displacement from the threshold may
be identified with the binding energy —e,. The assign-
ment of the structure to »n =1 rather than some larger
integer is arbitrary as there is always the possibility
of additional, lower-energy resonance structure too
broad to identify as a resonance. Higher-order (rz >1)
resonances are predicted in general (Sec. II.A) but can-
not be observed in conventional LEED experiments be-~
cause of the limited energy resolution of those experi-
ments (typically 0.5 eV). The cited experiments esta-
blished that the resonance binding energy —e, is of the
order of 1 eV. :

The resonances observed in LEED are qualitatively
the same as enhancement in high-energy electron dif-
fraction (Miyake and Hayakawa, 1970). In LEED, how-
ever, the resonances apparently conform most often
to the case of small resonance/direct ratios and a vari-
ety of resonance line shapes may be obtained. The
gradual development from LEED resonances to en-
hancement with increasing electron energy up to a few
keV was demonstrated in experiments on MgO(001) sur-
face by Hayakawa and Miyake (1974).

Kikuchi lines due to low-energy resonances were first
observed by De Bersuder (1968) in the course of LEED
experiments on Al1(001) surface. The experiments were
done using a LEED goniometer (De Bersuder, 1974;
Fig. 8) whose performance in resonance experiments
has proved superior to that of the widely used LEED
apparatus as shown in Fig. 6. De Bersuder noted that
the quasielastic background to the LEED pattern con-
tained special Kikuchi lines related to the two-dimen-
sional periodicity of the surface. He called these
Kikuchi lines K2 lines to distinguish them from ordinary
Kikuchi lines (K3 lines) that arise from the three-di-

GLASS — BACKED
FLUORESCENT
_______ SCREEN

1
<>

[
FIG. 8. Schematic cross section of a LEED goniometer.
Beam intensities are determined using a traveling spot
photometer mounted behind the glass backing of the fluores-
cent screen. (Adapted from De Bersuder, 1974).
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FIG. 9. Geometry of K2 lines observed for A1(001) surface.
The center of the figure corresponds to the surface-normal

direction. Two K2 lines are shown by thick lines for clarity.
Electron energy 500 eV. (Adapted from De Bersuder, 1968).

mensional periodicity of the bulk crystal and that are
also present in the LEED background. A stereographic
projection showing the geometry of the K2 lines (ob-
served as dark lines) is reproduced in Fig. 9.

The geometry of K2 lines may be summarized by the
statement that the K2 lines correspond within experi-
mental error to emission directions that are related
by reciprocity to the incidence directions for the thresh-
olds of diffracted beams. De Bersuder suggested that
the mechanism responsible for K2 lines is a resonance
scattering mechanism analogous to that responsible for
LEED resonances. In line with that suggestion, McRae
(1971) proposed the resonance emission mechanism
represented in Fig. 4(c) of the present article.

The intimate connection between the K2 line and the
resonance effect in LEED beam intensities was dem-
onstrated by LEED experiments on Ni(001) (Andersson
and Kasemo, 1971) in which the incidence conditions
were varied to make the (00) spot cross a K2 dark
line. As it crossed the K2 line, the spot was split sym-
metrically under the same conditions as those for a
resonance minimum in the total spot intensity. Thus
in LEED experiments as cited above, where the LEED
spot is traversed by a resonance dark line, this dark
line is geometrically the prolongation of a K2 line (pos-
sibly of very low contrast) in the background.

Apparently the K2 lines are completely analogous to
the surface Kikuchi lines near the Kikuchi line en-
velopes as first treated in the high-energy case by Art-
mann. However, it has not been possible as yet to re-
solve structure due to individual members of the ex-
pected sequence of K2 lines converging on the envelope
of K3 lines. Nor has it been possible to detect the
displacement of K2 lines from the envelope of K3
lines.
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FIG. 10. Net-current plot for A1(001) surface, normal inci-
dence. E; denotes the incidence electron energy. The
quantity plotted is the derivative of the negative of the net
current, which is proportional to the derivative of the sec-

-ondary yield 6 (see text, Sec. II.B). The arrow indicates the
(11) beam threshold. The intensity fluctuation at almost the
same energy as the threshold is interpreted as a resonance
associated with that threshold. (Reproduced from Henrich,
1975).

4. Net-current low-energy electron reflection

A variant of the LEED method of observing reso-
nances was introduced by Henrich (1975). It is called
the net-current low-energy electron reflection method.
The experimental setup is similar to that of conven-
tional LEED (Fig. 6) but instead of measuring the re-
flection intensities in individual beams one measures
the net current passing between the cathode of the elec-
tron gun and the crystal. To simplify the interpretation
of the experiment, the conditions are chosen so that an
electron reflected by the crystal has a negligibly small
chance of returning to the crystal or to the mount in
contact with it. Under these conditions the negative
of the net current varies like the total reflection co-
efficient (secondary yield) with respect to variation of
incidence energy or direction. It is assumed that the
inelastic reflection coefficient is a slowly varying func-
tion of the incidence energy and direction, in which
case the resonance fluctuations of the net current occur
at the same (E,k,) values as those in the total elastic
reflection coefficient. In practice it is important to
remove the background due to inelastic scattering and
nonresonant elastic scattering so as to accentuate the -
relatively narrow resonance structure. In Henrich’s
experiment this was done by analog differentiation. An
illustrative experimental curve obtained in the deriv-
ative mode is reproduced in Fig. 10.

The surface resonance band structure derived from
the net-current low-energy electron reflection method
is the same as that from LEED because all diffraction
beams have resonances in common. However, different
and relatively complex line shapes may be observed
because they are in general the superpositions of line
shapes from different LEED beams.
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5. Secondary electron emission

Another experimental approach to electronic surface
resonances is angle- and energy-resolved secondary
electron emission. The most useful form of the method
is that in which the direction of collection can be varied.
This kind of technique was introduced first by Best
(1975) and was used soon afterwards by Willis, Feuer-
bacher and Christensen (1977). The type of apparatus
used by the latter authors and some representative ex-
perimental curves are shown in Figs. 11 and 12(a),
respectively.

The observation of resonances by secondary electron
emission is an extension of earlier work of Willis and
co-workers in which that technique was used to deter-
mine the surface projection of the bulk density of states,
including in particular the edges of forbidden gaps. The
useful energy range of the technique extends from the
vacuum level up to the bulk plasmon energy nw,; at en-
ergies above 7w, the structure is smeared out by elec-
tron-electron interactions. Figure 12(b) shows reduced
secondary electron emission data of Willis ef al. to-
gether with identifications of the features attributed to
resonances and forbidden gaps. The assignment of spe-
cific features to resonances was based in this case on
the correlation with the forbidden gap.

The mechanism underlying the observation of res-
onances in secondary electron emission is not well
understood. One extreme possibility is that the con-
tributions to the emitted wave field due respectively
to the decay of bulk and surface states are relatively
incoherent. This situation would obtain if the surface
states were excited solely by direct electronic transi-
tions from states below the Fermi level as has been
assumed in the interpretation of some recent experi-
ments (Best 1979a, b). In this “incoherent” case, the
secondary emission spectrum would be a superposition
of bulk and surface density-of-states contributions,
each modified by slowly varying transition matrix fac-
tors. All resonances would be observed as symmé-
trical intensity peaks. The opposite extreme possibility
is that bulk- and surface-state contributions to the
wave field are relatively coherent and so can interfere
with each other in the manner indicated by Fig. 4(c)

CHANNELTRON
@ DETECTOR

130° ANALYSER

TARGET — o
CRYSTAL

INCIDENT
ELECTRON BEAM

FIG. 11. Schematic cross section of apparatus used in mea-
surements of angle and energy resolved secondary electron
emission. (Reproduced from Willis, 1975).
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FIG. 12. (a) Angle- and energy-resolved secondary electron
emission (SEE) spectra for W(001) surface. SE —intensity
of secondary emission. B—background curve subtracted in
the reduction of data. E,,, and %w, denote the vacuum level
and the bulk plasmon energy, respectively. The peak
centered at E,, was subtracted in the reduction of data. ¢
and %, denote the colatitude angle of emission and the reduced
parallel momentum, respectively. (b) Reduced secondary
electron emission data (M) compared with a theoretical plot
of the bulk density of states (DOS). Vertical lines indicate
the edges of the forbidden gap (width E,, ). S denotes the
position of the resonance feature. [Adapted from Willis,
Feuerbacher, and Christensen (1977)].

20 30

and (d). In this “coherent” case the secondary emission
spectrum in the absence of surface states would still
resemble the density-of-states plot, but resonances
could appear with various line shapes depending on the
phase of interference between resonance and direct
contributions to the wave field. Theory for the co-
herent case (Sec. III.A) indicates that the (E, k,) de-
pendence of secondary emission intensities resembles
the (E, -k,) dependence of one minus the total elastic
reflection coefficient.

6. High-resolution LEED

The electron scattering and electron emission experi-
ments described above all lack the resolution required
to detect fine structure due to the expected sequence of
electronic surface resonances converging on each
threshold. Only the lowest-energy (2 =1) member of
each sequence has been resolved in these experiments.
However, Adnot and Carette (1977a) reported LEED
measurements with a tandem of 127° electrostatic elec-
tron spectrometers capable of resolving higher-order
structure. Results obtained for the W(001) surface
(Fig. 13) clearly show the first three members of the
resonance sequence converging on the (01) beam thresh-
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FIG. 13. LEED (00) beam intensity measured with high
resolution as a function of incidence energy for W(001) sur-
face. Colatitude angle of incidence 48°, incidence azimuth
[01]. Three peaks, at 4,75, 4.97, and 5. 03 eV, respectively,
are identified as members of a sequence of resonances as-
sociated with the (01) beam threshold near 5.1 eV. (Adapted
from Adnot and Carette, 1977a).

old near 5 eV (Adnot and Carette, 1977b). Similar re-
sults were reported subsequently by Willis (1978).

7. Photoemission

While elastic electron scattering is the simplest ex-
perimental approach to electronic surface resonances,
it is also possible to observe resonances by spectro-
scopic methods—i.e., by the excitation of electronic
transitions. This possibility was realized in photo-
emission experiments by Rowe, Margaritondo, and
Christman (1977) as interpreted by Schliiter and Cohen
(1978). The surfaces studies were clean, hydrogenated,
and chlorinated Si(111)(2 x 1) surfaces obtained by
cleavage.

The experiment was of the “constant initial state”
type. In this type of experiment the photon energy 7w
is varied and the measured quantity is the flux of emit-
ted electrons of kinetic energy E = 7iw — AE where AE
is fixed. The experiment yields a transition density
function for initial states at an energy AE below the
vacuum level. The observed structure in the transi-
tion density function was found to extend up to 15 eV
above the vacuum level. The structure was assigned
to electronic surface resonances on the basis of a com-
parison with computed transition densities. The com-
putation involved separate determinations of the sur-
face resonance band structure and of the relevant tran-
sition matrix elements. The band-structure compu-
tation did not take account of the long-range potential,
so the results referred to resonances having “strong
overlap” with the bulk crystal potential. The experi-
mental results were not resolved with respect to emis-
sion direction, so the computational results were av-
eraged to make the comparison with experiment as
shown in Fig. 14. .

Another type of photoemission technique—the partial
photoyield technique—has also been used to detect res-
onances (Bachrach, Chadi and Bianconi, 1978). A peak



E. G. McRae: Electronic surface resonances of crystals 551

Si(111)-cg —— EXPERIMENT
cis --- THEORY
m-STATES
lP-POL.

m-STATES
S-POL.
1

o-STATES
P-POL.
|

INTENSITY (ARBITRARY UNITS)

N\ o -STATES
! S-POL.

| =
5§ 7 9 11 13 15

ENERGY (eV)

FIG. 14. Constant initial state (CIS) spectra for Si(111) with
chemisorbed Cl. The experimental curves were obtained
using synchrotron radiation at an incidence angle of 45° and
polarized either parallel to the plane of incidence (s polari-
zation) or perpendicular to it (p polarization). The value of
AE (see text, Sec. II. B) was set to select either g-type or
m-type initial states localized at Cl atoms. The agreement
between the theoretical and experimental curves confirms
that the final-state effects are due to transitions to electronic
surface resonances. (Reproduced from Schliiter and Cohen,
1978).

in the photoyield is observed for photon energies
matching those of transitions from core levels to res-
onances. Transitions from the AlL, ;level to reso-
nances were observed for A1(001) and Al(111) surfaces.

8. Other observations

Any electron reflection or election emission experi-
ment ought to contain resonance structure. Other but
as yet isolated examples are cited in connection with
theory (Sec. IIL.D).

11l. THEORY
A. General properties
1. Analysis of reflection amplitudes

Some of the general properties of resonances can be
described with reference to the analytic structure of
the scattering amplitude considered as a function of
complex electron energy E. In this kind of description,
all properties of physical significance are obtained in
a limit of real energies such as

ImE-4+0. (5)

However, these physically significant properties are
described with reference to singularities that are in
general complex. The analysis is given in textbooks
(Landau and Lifshitz, 1965) for scatterers of finite
size. Some modifications of the textbook analysis are .
needed to treat electron scattering by a semi-infinite
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crystal (Gersten and McRae, 1972). The following is a
condensed account of the analysis giving the main re-
sults bearing on surface resonances. Only the reflection
case is treated. The relation between reflection and
emission intensities is treated subsequently (Sec. IIL.A.2).

The important properties of reflection amplitudes may
be obtained by considering an incident plane wave and
any two elastically reflected wave. Other reflected
waves will always be present, but they play no part in
the present discussion.

Imagine that the electron wave field in vacuum con-
sists of an incident plane wave with energy E and sur-
face-parallel momentum k, and two elastically reflected
waves with surface-parallel momenta k, and k, + 27¢g,
respectively, where g is a reciprocal net vector. Along
the surface normal passing through the origin of coor-
dinates, the wave field has the expression

a(B, k) (k) exp(ik(Vz) +a(E, — k() (e (*)"1/2

xexp(—ik®z) +a(E, -kE)(RE) 12 exp(-ik%’2), (6)

‘where z is the inward surface-normal coordinate, the

a’s are plane-wave coefficients (independent of z) and
k{® k& denote surface-normal momentum components.
The plane waves are normalized to the same surface-
normal current density. In terms of the beam threshold
energies E_, and E_, introduced in Sec. II.A, the nor-
mal momentum components have the expressions

k@ =(2E - 2E_,)'?, W)
k¥ =(2E —2E_,)'/2. (8)

Hartree atomic units (#=m =e =1) are used.

The above expression for the wave field, Eq. (6),
does not suffice to define the reflection amplitude. Ad-
ditional specifications of the real and imaginary parts
of the surface-normal momentum components are
needed: (i) to identify the incident and reflected waves
as such, and (ii) to specify the boundary condition sat-
isfied by the reflected wave field in the limit z = — o,
Particular specifications are

(i) Re 2 >0, Rek¥’ >0, 9
(ii) Im%2©@ >0, Imk® >0. (10)

The first of these specifications (often referred to as
the “outgoing wave” condition) identifies the first term
in the expression for the wave field, Eq. (6), as the
incident wave and the other two terms as reflected
waves. Consequently the ratio of coefficients

T(E)=a(E, - k) /a(E, k() (11)
is an amplitude reflection coefficient. The second spec-
ification, Eq. (10), is equivalent to the physically ac-

ceptable boundary condition that the reflected wave field
vanish in the limit z = — «. It corresponds to one sheet,

- called the “physical sheet,” of the many-valued function

T(E) (Fig. 15).

The amplitude reflection coefficient T(E) is required
on physical grounds to satisfy the additional physical
requirement of causality. It means that T(E) must be
analytic over the upper half-plane of the physical sheet.

The following discussion deals with representative
singular points of the reflection amplitude coefficient
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FIG. 15. Diagrams illustrating the analysis of amplitude
functions. The circles are corresponding circuits on the
k{8 plane and E plane (see text, Sec. III.A). Numbers de-
note representative points on these circuits. On the E plane,
numbers inside the circle refer to points on the unphysical
sheet. The shading denotes the branch cut and the cross
denotes a pole.

T(E). These singularities comprise a branch point at
the beam threshold energy E;g and poles representing
the resonances associated with this threshold.

The existence of the threshold branch point may be
explained in physical terms as follows. The wave field
of Eq. (6) is “physical” (satisfies the physically accept-
able boundary condition of finiteness for z — — ) or
“unphysical” depending on the value of the square root
in Eq. (8). The values of the amplitude reflection co-
efficient T'(E) are usually different in the two cases
because in the physical case there is one incident wave
and two reflected ones, while in the unphysical case
there are two incident waves and one reflected one. At
the branch point there is no difference between the two
cases because 2%’ vanishes and the third wave travels
parallel to the surface. In the vicinity of the branch
point, the amplitude reflection coefficient is still an-
alytic with respect to variation of 2’ and so has the
expansion

T(E)=T(E,,) +<(E —E_)'"?, (12)

where € is a constant.
In the vicinity of the pole E
tion coefficient has the form

T(E)=T(E) + P/(E - E,,,,), (13)

oler the amplitude reflec-

where T denotes a slowly varying “background” func-
tion and P denotes the residue of the pole. At the pole,
a reflected wave exists in the absence of an incident
one. Thus a stationary surface state is represented by
a real pole of T(E). A resonance is represented by a
complex pole. The possible locations of poles on the
complex-energy plane are limited by the outgoing-wave
condition, Eq. (9), and by the causality condition.
These limitations together mean that the poles must
lie on the lower half of the unphysical sheet. In other
words any pole is reached from the upper half of the
physical sheet by going down continuously across the
real axis (Fig. 15).

For real energies E in the vicinity of an isolated pole
E o1 the reflection intensity |T(E)|? has a resonance
fluctuation centered at Re E and having natural width
T given by

pole
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I'=-2ImE (14)

pole *
The line shape has a characteristic form that is in gen-
eral asymmetric. It may happen, however, that a res-
onance pole is not in fact isolated; typically there may
be a sequence of resonances converging on and over-
lapping the corresponding beam threshold. To deal with
this case in a simple way for the lowest-energy res-
onance, assume that the higher-energy ones can be
lumped together and treated as part of the branch cut.
The combined effect of the pole and branch-point sin-
gularities is then given in view of Eqs. (12-and 13) by

T(E)=T(Ex,g)+1/(01+[3€1/2+ye), (15)
where e=E - E_, and the constants are related by
a=PYE,, —E,.), B=0a%,
V=04 B(E 1o = Enp)'?1/(E g = Epore) -

If the resonance is far from the threshold, Eq. (15)
reduces to Eq. (13) and the simple pole-type line shape
is obtained. However, if the resonance overlaps the
threshold as it does in the case —ImE,,;,>E., — ReE .,
Eq. (15) indicates a substantial departure from the sim-
ple pole-type line shape due to the distorting effect of
the branch point.

2. Relation between reflection and emission intensities

There is an exact relation between the electron re-
flection coefficients of a solid and its coefficient of
thermionic emission (Herring and Nichols, 1949). A
similar relation applied to any electron emission prob-
ability provided the initial distribution of electrons in
the solid resembles a thermal distribution.

The exact relation may bé derived as follows. Let
C(K) denote the thermionic emission coefficient and let
R(K,K’) denote the intensity reflection coefficient of a
crystal surface at a particular temperature. C(K)dK
is the current density due to electrons emitted with
momenta between K and K +dK. R(K,K’)dKdK’ is the
number of electrons reflected with momenta between
K and k +dK, per incident electron with momentum be-
tween K’ and K’ +dK’. Suppose that the crystal surface
forms one wall of an evacuated cavity in the bulk crystal
and that thermionically emitted electrons are in ther-
modynamic equilibrium with the walls of the cavity.
Inside the cavity the value of the current density due to
electrons traveling away from the surface with mo-
menta between K and K +dK is the sum of contribution
from electron emission and electron reflection. It has
the expression

CO(K)=c(K)+f R(K,K")C,(K")dK’. (16)

Because of the stipulation of thermodynamic equilib-
rium, the total current density CO(K) due to electrons
with momenta between K and K +dK is independent of the
direction of K. The integral in Eq. (16) may be broken
up into an integral over inelastically scattered electrons
and a summation over the discrete beams in elastic
scattering. Using the time-reversal relation R (K,K’)
=R(-K!-K) for elastic scattering, one obtains
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C(K)=C0(K)[1 -D R,(- K)J -f R®W(K,K")C,(K')dK",

am

where R’ denotes an inelastic reflection coefficient and
Rg(—K) denotes the elastic reflection coefficient for in-
cident momentum - K and surface-parallel momentum
transfer 27g. The probability of thermionic emission

of an electron with momentum K varies linearly with
one minus the total elastic reflection coefficient for in-
cident momentum - K.

An expression similar to Eq. (17) has been proposed
to describe the relation between LEED and secondary
emission intensity distributions (Feder and Pendry,
1979). The “coherent” case of secondary emission was
assumed. The inelastic reflection coefficient has an
approximate expression

RPK,K)=SK)Y(K') K’'>K
=0

(18a)

K'<K, (18b)

where S(K) denotes the normalized current density due
to secondary electrons emitted with momenta between
K and K +dK and Y(K’) denotes the secondary yield:

f " sk ax =1, 19)

Y(K’) = f R*¥(K,K’)dK. (20)
On replacing C(K) by S(K) and C(K) by S,(K) in Eq. (17)
and using Eq. (18) one obtains

S(K) =S4(K) [1 - R,(- K)] , (21)

S3(K) =sQ(K)/<1 +4m f T SyENY(K) dK') . (22)

The factor S4(K) is presumably slowly varying with re-
spect to the momentum K. Provided that the initial
electron distribution induced in the crystal by the inci-
dent electrons resembles a thermal distribution, the
probability of secondary emission of an electron with
momentum K is nearly proportional to one minus the
elastic reflection coefficient for incident electrons with
momentum - K.

B. Description using 2-D Fourier expansions

The description has as a starting point the 2-D Fourier
expansion of both the electron wave field and the scat-
tering potential of the crystal. By this means the
Schriddinger equation for an electron moving in a 2-D
periodic potential is reduced to a set of coupled ordi-
nary differential equations. From a formal viewpoint,
the theory may be identified as a special case of a gen-
eral treatment of scattering given by Feshbach (1958)
in a paper entitled “Unified Theory of Nuclear Reac-
tions.” In this application to the surface resonance
band structure, the theory is the 2-D analog of the
nearly-free-electron theory of bulk crystal band struc-
ture.
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1. Simplified treatment of elastic scattering

In Feshbach’s treatment of scattering, the wave func-
tion for the entire system, incident particle and target,
is expanded

T:Zujfj,

where f; is a wave function describing the jth state of
the target and u; is a function of the coordinates of the
incident particle. Each of the indices j labels a scat-
tering ‘“channel.” In the case of elastic electron-sur-
face scattering, the expression corresponding to the
summation in Eq. (23) is the 2-D Fourier expansion of
the electron wave field for a given value of (Ek,):

(23)

> u,(z) exp ik, +27g) - r] . (24)
I 4

Formally, the role of the jth “target” state f; in Fesh-
bach’s theory is taken by a function representing free-
electron motion parallel to the surface with momentum
k, +2mg. The “target” coordinates are replaced by the
electron position vector projection r parallel to the sur-
face. The “particle” coordinates are replaced by the
inward surface normal electron coordinate z. The chan-
nel index is the reciprocal-net vector g. For each val-
ue of g there is one pair of diffraction beams—one in-
going beam and one outgoing beam. Thus in the case of
elastic scattering there is a one-to-one correspondence
between channels and pairs of diffractionbeams. “Open”
and “closed” channels correspond respectively to prop-
agating and nonpropagating or evanescent beams. The
target energy eigenvalues correspond to beam thresh-
old energies. By taking account of these correspon-
dences, all theoretical results for elastic electron sur-

face scattering may be obtained by a straightforward

transcription of Feshbach’s formulas.

The essential elements of the theory using 2-D Fou-
rier expansions may be introduced for a simplified case
where (i) The expression for the wave field, Eq. (24),
contains two terms only, and (ii) The resonance is
isolated—i.e., there are no branch points or other re-
sonance poles in the vicinity of the pole considered ex-
plicitly.

Suppose that one of the terms in Eq. (24) corresponds
to an open channel labeled by reciprocal-net vector 0
while the other term corresponds to a closed channel
labeled by g. By substituting Eq. (24) into the Schrédinger
equation and integrating over the coordinates r, one ob-
tains the coupled equations

(V,+Uy+Epo—=Eug=-U_,u

-7

(25a)

(Vo4 Ug+Ep = Edup=—U,u,, (25b)

where V|, is the kinetic energy operator for the surface-
normal coordinate, E, and E_, are threshold energies,
and Ug(z) denotes a Fourier coefficient of the potential
U(z,r):

Ug(z)=A'1f exp(—i2ng-r)U(z,Tr)dr. (26)
The integration is over one unit mesh of area A.

The required solutions of the equation system Eq. (25)
are those having the following asymptoic forms far out-
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side the crystal (lim z — — );
uy(2) ~ (R{) 12 exp(ik(?z) + T, exp(- ik ?z)], @n
u () ~exp(— ik ©z) . (28)

The normal momentum components are as defined in
Egs. (7) and (8) and satisfy the conditions of Eqs. (9)
and (10).

The electron wave field outside the crystal will usu-
ally be described quite well by solutions of the homo-
geneous equation corresponding to Eq. (25a). However,
if ug(z) resembles a bound-state solution of the homo-
geneous equation corresponding to Eq. (25b)—i.e., if
u,(z) resembles a surface state for the potential Uy(z)—
then the magnitude of the inhomogeneity — U_,u, in Eq.
(25a) may assume relatively large values. In this way
the wave field outside the crystal is perturbed under
approximately the conditions for existence of surface
states.

A formulation of the above idea may be obtained fol-
lowing Feshbach by first of all introducing a formal
expression for the closed-channel function into Eq.
(25a) to give

(Hoo— Eug==U_[1/(E +in-H,)] U,u,. (29)

Here H,, stands for V, + U, + E.,, H,, has an analogous
meaning, and - +0 is specified to satisfy the outgoing-
wave condition, Eq. (9). The next step is to introduce
the spectral representation of the operator in Eq. (29)
using the eigenfunctions of the operator V +U,. The
eigenfunction spectrum consists in general of a set of
discrete bound-state functions ¢,.(z) with energy eigen-
values e,, and a contiuum (e, z) with energies €. The
spectral representation is

— Izb,u><¢,,,\ = | p(e))P(e) I de
E+zn -H,, ‘ZE o E+in-E.,—¢"
(30)

The assumption of an isolated resonance may now be
introduced to simplify subsequent calculation. For en-
ergies E close to one of the bound-state energies E,,
=E_, +e,, it is a good approximation to keep only the
term n’=n from Eq. (30) on the right side of Eq. (29),
replacing E by E,, in the remainder and lumping it with
U, to give an effective potential U{™ and Hamiltonian
H& on the left side. This yields

HE —E)ug=-MN,U_ ¥, (31)
with
A=, Uupy/(E-E,,) . - (32)

To complete the calculation of A,
for u,, namely

the formal expression

Uy=Vo+ A (E +in=HE)U_ 4, (33)
is introduced into Eq. (32) to yield:

A=, U, v)/(E~E, - AE,,), (34)

AE, = WU (E+in-HE)U_ 4. (35)

In Egs. (33 and 34), v, denotes the solution for the
homogeneous: equation corresponding to Eq. (31) that is
asymptotically (z — —):
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vo(2) ~ (B {2/ 2[exp(ik {Vz) + T {Mexp(-ik (¥2)].  (36)

It represents the incident wave plus an outgoing wave
due to the potential U (™.

The final step is to obtain an expression for the am-
plitude reflection coefficient 7, from the asymptotic
expression for the wave field. The required expression
is obtained from Eq. (33) using

(E+in—HE)™ ~ |exp(=ik {72) > <vo()], 37
and the result is
=T M+ WU U, v /(E - E, ,~ AE,,) . (38)

The second term on the right of Eq. (38) represents
the resonance contribution to the reflection amplitude.
The numerator is the product of the probability ampli-
tudes for the transition from a propagating ingoing state
to a surface state and the transition from the surface
state to a propagating outgoing state. These transitions
result from interactions designated as type 1 in Fig. 3.
The resonance amplitude contribution is centered at en-
ergy E, .+ ReAE,,. It has natural width I'=-2ImAE,
[cf. Eq. (14)]. AE ¢ is the perturbation of the surface-
state energy E, , due to interactions with the continuum
of propagating states (to see this use the spectral
representation of the operator in the expression for

E,.). This interaction is of type 2 in Fig. 3.

2. Extensions of simplified treatment

The simplified treatment takes account of only one
closed channel. It may be extended to include many
closed channels by replacing the operator H,, by the
matrix operator

A+ E_D ‘ (39)

Hyo=Vi0g et Uy, ogVgg

Interactions between different zeroth-order bound
states i, (interactions of type 3, Fig. 3) may occur
because of the off-diagonal elements of this operator.
The resonance denominator must be changed to E- E,
— AE, where E, is an eigenvalue of H,,., and AE, is an
energy displacement analogous to AE,, in Eq. (38).

Another kind of extension is required to deal with the
indirect effect of inelastic channels on the elastic scat-
tering amplitude. These inelastic channels may be
taken into account as “absorption” of the elastic wave
field by assigning a positive imaginary part to the po-
tential U Y, The resulting complex potential is usually
called “optical potential.” The elastic decay of the sur-
face state to propagating Bloch waves is indistinguish-
able from inelastic scattering and may be treated as ab-
sorption in calculations of reflection intensities.

Finally the simplified theory may be extended to deal
with the case where there is more than one open chan-
nel. For example, if there is an open elastic channel
g’ in addition to the open channel 0 and closed channel
g, the reflection amplitudes for scattering into these
channels have the expressions

To=T "+ WoU_ ) U, v)/(E - E, - AE,,) (40)
and '
Tyo= TW+ v, Uo ) U,v)/(E~E, - AE,,), (41)

where AE,, has a meaning similar to that indicated by
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Eq. (35): A
AE,,= (U E+in— H)U_,) 1 3
+ WU, (E+in = HE) U, 0, (42) 1 §
w
and v,. is the solution of g

(V,+Ug+E, o= Eu,.=0 (43)
that is asymptotically (z - —)
v h2) ~ (k{8227 W exp(~ik (£z). (44)

The important points are that the resonance denomina-
tors are the same for the two channels, but the reso-
nance numerators differ with respect to the probability
amplitude for transitions from the surface state to the
final outgoing state.

The above remarks apply to elastic scattering, but a
similar description applies to inelastic scattering as
well. To treat inelastic scattering in channel g’ with
energy loss OF, all equations and definitions of the
previous paragraph apply except for replacement of
E, .by E,,.— 5E in Eq. (43) and in the definition of the
normal component % (¢ of the propagation vector.

3. 2-D nearly-free-electron scheme

The surface resonance band structure may be calcu-
lated approximately by a perturbation scheme based on
the 2-D free-electron functions

|ng) = ,(z) explik, +27g) *r]. (45)

This is called the 2-D nearly-free-electron scheme.
Starting with the Hamiltonian H=T, + T\, + U(z, r), where
T, is the surface-parallel kinetic energy operator, one
has the energy matrix

(ng|H|n'g" = fw 5(2) H,, (2)0,(2)dz , (46)

where H,, . results from integration over surface-parallel
coordinates and has the expression given in Eq. (39).

The eigenvalues of the energy matrix Eq. (46) are iden-
_ tical with the approximate resonance energies E, in the

Feshbach theory for many closed channels—i.e., they
are resonance energies calculated neglecting interac-
tions with the continuum.

A useful approximation to the energy matrix may be
found from the following gross properties of the func-
tions ¢,(z). These functions are bound-state eigen-
functions of the Hamiltonian T, + U,. Their gross pro-
perties depend on the shape of the potential in the sur-
face region near and outside the outermost atom layer
of the substrate crystal. A convenient description of
this situation is obtained by dividing the potential into
“surface” and “bulk” parts at a suitably positioned
plane z=0. In the case of a metal crystal surface, the
boundary plane can be chosen so that in an approxima-
tion good enough for the present purpose the “surface”
potential has the image form 1/4z (z <0) while the “bulk”
potential is a periodic function of z. The required wave
functions are solutions of the Schrodinger equation for
the image potential that vanish for z — -« and join
smoothly to the bulk wave functions at z=0. The nature
of the boundary condition at z=0 is not important for
the present discussion. It suffices to treat only one
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FIG. 16. Plot of the image potential with energy levels and
electron density distributions (shaded plots) corresponding to
the boundary condition that the wave function vanish at the ori-
gin.

case, namely that for which the bulk wave function
vanishes at z=0. In that case the Schrodinger equa-
tion is the same as the =0 radial equation for the hy-
drogen atom, where the radial coordinate is replaced
by 2z. The binding energies are given by —e,=1/32x2.
The energy levels and electron density distributions
[,(2)|? for n=1 and 2 are sketched in Fig. 16.

Two points bearing on the energy matrix stand out
clearly from Fig. 16. First, the overlap between wave
functions with different indices » is small. Second,
wave functions with indices »>1 have relatively weak
overlap with the bulk potential. It follows (at least for
metals) that by far the most important off-diagonal
matrix elements (ng|H|n'g’) are those for which n’=#»
=1. The energy matrix reduces approximately to

glH[1g) =W, = [ U, d, @) 4Ta)

=el+Eeng’ (glzg)- (47b)
The quantity (UH,.> is the (g - g’)th Fourier component
of the “surface-weighted potential”—i.e., the potential
weighted with respect to the electron density of the n=1
resonance.

The 2-D nearly-free-electron description reduces to
the 2-D free-electron one if the off-diagonal elements
are comparatively small, i.e., if the following inequality
is satisfied:

’<U€-g'>]<<IE°°g—E°°g’l’ (g:#g')- (48)

On the other hand the lateral variation of the surface-
weighted potential causes comparatively large displace-
ments of degenerate or nearly degenerate 2-D free-
electron levels such as occur for k, values near the
crossings of different branches of the free-electron
band structure.

The interactions between 2-D free-electron levels are
generally accompanied by systematic variations of reso-
nance intensities. These trends can be related to selec-
tion rules based on elementary symmetry properties.
As is apparent from the form of the resonance numera-
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tor in Eq. (38), the only “allowed” resonances are those
having the same symmetry as the incident wave field
under the point-group operations of the surfaces. For
example, suppose that the reciprocal-net vectors g and
g’ are related as mirror images with respect to the
plane containing the incident beam and the surface nor-
mal. The interaction between the 2-D free-electron
states [1g) and |1g’) results in resonances with wave
functions and energies

[1g)+ |1, e, = U, 2. (49)

In this case the symmetric (+) combination is “allowed”
and the antisymmetric (-) one is “forbidden” by sym-
metry.

C. Layer multiple-scattering description

The elastic scattering of electrons at a crystal sur-
face may be described as multiple scattering between
two “layers” of potential that correspond respectively to
the surface region and the bulk crystal (Artmann, 1947,
McRae, 1971). In principle the mode of division of the
crystal into these two regions is arbitrary but the prac-
tical advantages of the description depend on choosing
a suitable dividing surface. A popular choice is to
terminate the bulk crystal by a plane located one-half of
one atom-layer spacing outside the center of its outer-
most atom layer. This choice is illustrated in Fig. 2.
The origin plane z=0 is chosen to coincide with the
termination of the bulk crystal, so that the surface re-
gion lies to the left of the origin. The division of the
crystal into bulk and surface regions inevitably calls
for a degree of idealization of the potential. This is in-
dicated by broken lines in Fig. 2.

1. Simplified treatment

The essential elements of the layer multiple-scatter-
ing description may be introduced for a simplified case
where only two pairs of diffractionbeams are considered
(four-beam case). In this case, an expression for the
scattering amplitude is obtained by summing over chains
of diffraction processes such as those indicated in Fig.
17. In Fig. 17, S and 7° are scattering amplitude fac-

RESONANCE DIRECT
S3o, S35 S [s% sk {s%
(Q)REFLECTION ST
% Téa T3 T
I ™ v ed b
Sgg _ Sog jsoo Sgg {Soo

' 0
(b)EMISSION 9

TS TS TS

FIG. 17. Decomposition of resonance scattering into diffrac-
tion processes. In each of the four diagrams, upper and
lower horizontal lines represent the surface and bulk regions,
respectively. Filled circles denote diffraction events. The
sequences of events indicated between broken lines can be
repeated to generate chains of diffraction processes. The
notations are those used in the text, Sec. III.C.
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tors for the surface and bulk regions, respectively.
Subscripts gg’ refer to the diffraction process with
parallel-momentum change 27(g’ — g). Superscripts
I, II,..., denote transmission or reflection amplitudes
at the surface region as indicated in the figure. All of
the amplitude coefficients are functions of £ and k,.

Consider the case of electron reflection represented
by Fig. 17(a). Fig. 17(a) corresponds to the elastic re-
flection case of Fig. 4(a). The resonance contribution
to the specular reflection amplitude T, is obtained by
summing terms such as

SEy TS, SI(T9, ST TS SE, §=0,1,... .

Og™egg £8 T 88
Summing over resonance terms and adding in the corre-
sponding direct contribution gives

Too=See"+ S(I)ngoS(IJo +S5y ngngg oséo/(l - ng ng .

(50)

The direct term and a factor of the resonance numera-
tor are relatively slowly varying functions of (E, k), so
the amplitude reflection coefficient has the form

T=C[1+RS/(1-1T°S)], (51)

where C and R are slowly varying and unnecessary sub-
scripts and superscripts are omitted.

A similar treatment applies to electron emission.
The emission amplitude may be calculated by summing
over chains of diffraction processes such as those in-
dicated in Fig. 17(b). Figure 17(b) corresponds to the
elastic resonance case of Fig. 4(c). Let F, denote the
amplitude of emission from the crystal for electrons
with parallel momentum k,+27g, and let F‘:, denote the
corresponding quantity for the bulk. A derivation simi-
lar to that of Eq. (51) gives

F=C[RS/(1 -T°S)] (52)

where however the slowly varying terms represented
by C and R are now

S™FJ and SénggFg/c ,

respectively.

As is apparent from Eqs. (51 and 52) the resonance
energy for given value of k, is the energy at which the
magnitude of the resonance denominator 1 — 7°S is at a
minimum. The energy dependence of the resonance
denominator can be understood readily in a hypothetical
case. Suppose that the scattering is purely elastic and
that off-diagonal diffraction amplitudes such as Tp, all
vanish. Then S=S}. is of modulus unity for all energies
less than the threshold energy E.,, and T°=79, is also
of modulus unity across each forbidden gap. The value
of the resonance denominator then depends entirely on
the phase of the product 7°S. The resonance denomina-
tor vanishes at the energies E,,, identical with 2-D
free-electron energies, for which the following phase
condition is satisfied:

T+0=2n, n=1,2,..., (53)

where T=7targ7° and o= rtargS. Physically, Eq. (53)
means that the phase advance of an electron wave in
each cycle of multiple scattering between the surface
and bulk regions is an integer multiple of 27. Thus
there exist states of sustained multiple scattering or
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stationary bound states with energies E,,

In the above hypothetical case, each stationary state
corresponds to a resonance that has zero width (since
the resonance denominator vanishes) and zero reso-
nance numerator [the resonance numerator R in Eqgs.
(51) and (52) is proportional to off-diagonal diffraction
amplitudes such as ng]. If, however, the off-diagonal
diffraction amplitudes are taken into account, the pro-
duct 7°S must satisfy the unitarity condition |7°S|<1.
The resonance energy is still given approximately by
Eq. (53), but the resonance necessarily has nonzero
width due to the interaction of the discrete state with
the continuum. An expression for the characteristic
width of the resonance may be obtained by expanding the
resonance denominator 1 — 7°S about the resonance energy
E,, and using Eq. (14). This gives for the width (assum-
ing |T°S| independent of energy)

T,,=2(1 - |7°S|)/[|T°S|n(dT/dE+ do/dE)[Eng 1

Further reduction of |7°S| with broadening of the reso-
nance results in general from inelastic scattering. Thus
in Egs. (51 and 52), inelastic scattering may be repre-
sented phenomenologically by adjusting the value of
|T°s|.

2. General treatment

The simplified treatment described above can be ex-
tended to take account of all possible chains of diffrac-
tion processes of the type shown in Fig. 17 (McRae,
1971). A matrix notation is useful for this purpose. In
the reflection case, for example, the matrix of ampli-
tude coefficients T, . may be calculated by steps analo-
gous to those leading to Eq. (50). The result is

T=SIII +SIV7vosl+sIVIvOSII(I_ TDSII)-lTOSI ,
where I is the unit matrix and other symbols stand for
matrix analogs of the amplitude coefficients in Eq, (50).

In terms of the eigenvalue representation of the matrix
I‘Osll_

T°SUy=UA, (56)

(55)

where A is a diagonal matrix—Eq. (55) may be written
=C, ,+Z Ag"B'w ) (57)

Here C is the direct part and A and B stand for matrices
S TSI and UATOST,

respectively. Equation (57) differs from the one origi-
nally published (McRae, 1971) with regard to the divi-
sion into direct and resonance contributions.

The general description is of the same form as the
simplified one but calls for replacement of each term
such as 79,55 in Eq. (50) by an eigenvalue A of the
matrix 7°S™,

The surface resonance band structure is to be found

by mapping the (E,k,) values at the minima of
|det[r — 7°S™]|. (58)
Under certain conditions it is a good approximation to

replace the matrix 7°S™ by a single term such as
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T9,St.. In this case one recovers the simplified treat-
ment described under heading 1. above. The conditions
are

(i) The off-diagonal elements of 7°S' are compara-
tively small so that the inequality

IE T, Sy |<<| D0 T, w St =D T, uSS .
r =
£

<« g+e)

(59)

is satisfied for all reciprocal-net vectors g and g’, and
(ii) The lateral variation of potential in the surface
region is weak so that the off-diagonal elements of SII
are comparatively small.
If (i) is satisfied the eigenvalues are approximately
equal to the diagonal elements, and if (ii) is satisfied
the diagonal elements are approximately products such
as T9,SII. These conditions are satisfied or not in the
same circumstances as is the corresponding condition
for the 2-D nearly-free-electron description, Eq. (48).
In particular, near a crossing of the branches E_, and
E_,. ofthe2-D free-electron band structure, each of the
terms on the right of Eq. (59) approaches unity and so
their difference is comparatively small.

3. Results for the image potential

Applications of the simplified layer multiple-scatter-
ing treatment to the image potential 1/4z (z <0) offer a
preliminary estimate of resonance energies, widths,
and line shapes for metals. The simplified treatment
gives expressions relating these quantities to the sur-
face reflection phase parameter o= 7" argS and the bulk
reflection phase parameter 7= r1"arg7° As before S
and T° denote amplitude reflection coefficients for the
resonant wave at the surface and bulk, respectively.

In applications of the simplified treatment, the slowly
varying quantities C, R, and |T°S| are replaced by con-
stants. Thus the results depend only on the variation

of the phase parameters with energy.

The energy dependence of the surface reflection phase
parameter for the image potential has the expression

ole)=%(-2e)1/2.1 : (60)

where e denotes the energy referred to the threshold
in question—e.g., e=E - E_, for the gth threshold
(McRae, 1979).

In the absence of detailed information about its energy
dependence, the value of the reflection phase 7 is as-
sumed to be constant. The meaning of this assumption
can be understood from results of the “two-beam” de-
scription of reflection electron diffraction, which is
equivalent to a one-dimensional model. For a one-di-
mensional crystal terminated in the manner indicated
in Fig. 2, the value of T increases by 1 on crossing
a forbidden gap. The value goes from 0 to 1 or from
1 to 2 depending on the ordinal number of the gap
(McRae, 1971). The small amount of experimental
information that is available for real crystals appears
to indicate that the increase of 7 on crossing a gap is
indeed of order 1 (McRae, 1975). The assumption of a
constant 7 is thus valid for the “wide-gap” case inwhich
the width of the gap is much larger than the binding en-
ergy of the lowest-energy resonance.
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By inserting Eq. (60) into Eq. (51) the reflection am-
plitude is found to be (p=7"targR)

|RS| explin(p +3(~2¢) /2 — 1]} ]
1 - |T°S| exp{in[7 + 3(-2¢)"Y2 -1} | °

T(e)=C [1+

(61)

By inserting Eq. (60) into Eq. (53) the binding energy
for the nth resonance is found to be

—e, =1/[32(n +a)?], (62)

where the “quantum defect” a is —3(7 — 1). Equation
(62) (with an unspecified constant a) was derived by
Rundgren and Malmstrom (1977a). It shows that the
resonance energies form a modified hydrogenic series
converging on the beam threshold. If the wave function
vanishes at the origin, the bulk reflection phase 7 is 1
and the hydrogenic series shown in Fig. 16 is recovered.
As the possible values of 7 range for 0 to 2, the values
of the binding energy of the n=1 level allowed by the
model range from # to % hartree (from 0.4 to 3.4 eV).

By inserting Eq. (60) into Eq. (54) and taking |7°S|to
be a constant, the characteristic width I', of the nth
resonance is found to be

I‘n=2(1-JT“S[)/[‘[TOSI327r(n+a)3]. (63)

The n=1 resonance can be resolved as long as its width
is less than about twice its binding energy. By com-
paring Egs. (62) and (63) the criterion for resolution of
the n=1 resonance is found to be approximately |T°S|
>[1+7(1+a)]?. As n increases, the resonance widths
decrease at the same rate as the mean level separation
from neighboring resonances. Therefore, for a con-
stant value of |7°S| satisfying the above criterion, all
resonances converging on a given threshold are in prin-
ciple resolvable. This result was derived by Pendry
‘and Echenique (1978).

One does not expect the value of [T°S[ to be quite con-
stant as assumed for the above derivation. The magni-
tude of the surface reflection coefficient S is reduced
by inelastic scattering or “absorption” in the surface
region. There is theoretical evidence (Inkson, 1973)
and experimental evidence (McRae and Caldwell, 1976b)
that the range of the absorptive potential representing
inelastic scattering at metal surfaces is much smaller
than the range of the image potential. On going to higher-
order resonances, the resonance electron density has
progressively weaker overlap with the absorptive po-
tential. Consequently, as the order number increases,
[S| should increase with a corresponding reduction of
resonance widths. The extent to which the value of S|
for the =1 resonance is reduced by inelastic scatter-
ing depends on the overlap of the electrondensity distri-
bution |¢,(2)|? with the absorptive potential. This in
turn depends on the value of the bulk reflection phase
7. In the vicinity of the plane z =0 bounding the bulk
crystal, the resonance wave function has the form

(2) = [T°]exp [i(T 7 - &, 2) |+ explik,2) (64)

required to match the bulk crystal wave function (7° de-
notes the amplitude coefficient of reflection and %, de-
notes the inward surface-normal component of electron
momentum). Ordinarily the maximum of the density
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distribution [y, (z)|? lies outside the z=0 plane as shown
in an extreme case (T=1) in Fig. 16. But as shown by
Eq. (64), as T approaches 0 or 2 the maximum moves
towards the bulk crystal and up to the z=0 plane. Thus
the broadening effect of inelastic scattering is ata max-
imum for 7=0 or 2.

The above results for the image potential are derived
by the simplified layer multiple-scattering treatment
and so omit perturbations due to off-diagonal elements-
of the matrix 7°S™. In a first approximation, however,
the effects of these perturbations can be accommodated
merely by changing the value of the constant 7. Thus
Eqgs. (61)-(63) can be used to fit experimental data even
if there is evidence of interaction between 2-D free-
electron states, but in that case 7 will not have exactly
the meaning of the bulk reflection phase parameter.

While the image potential is a useful starting point for
the interpretation of resonances, at least three modifi-
cations are needed for quantitative calculations. First,
the correct form of potential at large distances from the
surface is 1/4(z — z,) where according to calculations
(Appelbaum and Hamann, 1972; Lang and Kohn, 1973)
the image potential origin z, is located about 1 a.u.

(1 a.u.=0.53 A) to the vacuum side of the bulk crystal
termination indicated in Fig. 2. Second, exchange and
correlation effects are known to be quite important at
distances within about 2 a.u. of the bulk termination
(Lang and Kohn, 1970, 1971) and so could affect reso-
nance energy levels, including especially the =1
level. These theoretically expected modifications of the
image potential were taken into account in calculations
of resonance intensity curves by Read and Jennings
(1978) (see Sec. III.D). The third point is that because
of retardation of the polarization of the crystal in re-
sponse to the incident electron, the actual potential
should become progressively weaker than the image
potential on going to higher energies. The chief retar-
dation effect will arise from the electron velocity com-
ponent parallel to the surface. This case has been dis-
cussed theoretically (Harris and Jones, 1974) but quan-
itative estimates are lacking.

4. Comparison with 2-D Fourier transform description

The layer multiple scattering and 2-D Fourier trans-
form descriptions have complementary advantages and
disadvantages.

The 2-D Fourier transform description is well adapted
to the semiempirical representation of the surface reso-
nance band structure. It can be applied to inelastic as
well as elastic scattering amplitudes. Its disadvantage
is that it yields a simple form for the reflection ampli-
tude only for the “isolated resonance” case; thus it
does not offer any convenient way of visualizing the ef-
fects of overlapping resonances and branch points.

The layer multiple-scattering description has a prac-
tical advantage for model computations since some of
the quantities involved such as the bulk reflection ampli-
tude are already programmed for LEED intensities. A
disadvantage is that the use of a scattering matrix ra-
ther than an energy matrix makes it difficult to visualize
the surface resonance band structure. On the other
hand, the amplitude expression retains the correct



E. G. McRae: Electronic surface resonances of crystals

analytic form in all approximations [cf. Eq. (15)] so
that the effects of overlapping resonances and branch
points are readily included.

D. Applications and comparison with experiment
1. Intensity curves

Calculations of intensity curves containing resonance
features were reported by Read and Jennings (1978) and
by Jennings and co-workers in earlier publications
(Jennings and Read, 1974, and references given by
them). The layer multiple-scattering method was
applied to the calculation of LEED intensities at clean
metal (001) surfaces. The bulk reflection matrix was
calculated as in standard LEED intensity analysis (Pen-
dry, 1974) but a more detailed treatment was applied to
the surface scattering. The standard LEED procedure
uses “no-reflection” boundary conditions equivalent to
neglecting the off-diagonal elements of the surface scat-
tering matrix. This provision artifically suppresses all
resonance structure. In the calculations of Jennings
and co-workers the scattering matrix was calculated
exactly for assumed one-dimensional potentials in the
surface region. This made it possible to study the effect
of varying potential parameters on resonance positions
and lineshapes. Results obtained with the image poten-
tial and various modifications of it were reported. Us-
ing a modified image potential joining smoothly to the
bulk crystal potential, Read and Jennings varied the
image-potential origin z, to bring the calculated reso-
nance profile for Cu(001) surface into agreement with
LEED observations (Andersson, 1970). The results
confirmed that the image-potential origin is about 1 a.u.
outside the bulk crystal termination. Calculations of a
similar type, again for metal (001) surfaces but on a
finer scale to show detailed resonance structure, were
reported by Rundgren and Malmstrom (1977a,b) and by
Jennings (1978). So far all theoretical calculations of
intensity curves have been limited to what inthis article
is called the 2-D free-electron description—in other
words the interactions between resonances deriving
from different thresholds have not been taken into ac-
count in a full-scale calculation.

2. Surface resonance band structure

In addition to calculations of intensity curves, there
have been several calculations dealing specifically with
the surface resonance band structure by methods al-
ready established for surface states near the Fermi
level. In this category may be cited publications by
Smith and Mattheiss (1976) (for comparison with ex-
periment see Sec. IV.B of the present article), by Bisi,
Calandra, and Manghi (1977) and by Schliiter and Cohen
(1978) (see Sec. II.B). All of these calculations neglect
the long-range potential and thus refer to the “strong
overlap” type of resonance (Sec. II.A).

Another approach to the interpretation of surface
resonance band structure is the semiempirical one in-
troduced by McRae, Landwehr, and Caldwell (1977).
The treatment is based on the 2-D nearly-free-electron
scheme (Sec. III.B). If used in a purely theoretical
calculation of the surface band structure, this scheme
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would require the use of a pseudopotential to obtain con-
vergence. In a semiempirical application, however,
the procedure is inverted to extract a pseudopotential
from a fit to experimental data. The fit is obtained by
adjusting the values of the binding energy and of a
small number of off-diagonal elements of the energy
matrix. The interaction elements so evaluated may be
identified with Fourier coefficients (U, > of a surface-
weighted pseudopotential defined by

W= [ ) ule, )z,

where U(z, r) denotes the pseudopotential and the nota-
tion is otherwise as in Sec. III.B. Thus the surface-
weighted pseudopotential may be synthesized from its
empirically determined components according to

U(r)= > (U, exp(i2ng  1). (65)

3. Temperature dependence of elastic reflection intensities

Calculations were reported for the MgO(001) surface
(Kawamura, Ohkawa, and Miyake, 1976) and gave good
account of resonance intensity measurements for that
surface (Wada, Suzuki, and Ichnokawa, 1976).

The idea underlying the calculations is that for a dif-
fraction beam corresponding to electron momentum
transfer H, the intensity I(H) as given in the kinematic
(single-scattering) approximation is proportional to
exp[~-2M(H)], where M(H) is a temperature dependent
Debye—Waller parameter whose momentum dependence
is

M(H) < [H[?. (66)

However, for a reflection resonance scattering process
involving two successive momentum transfers G and

H - G as illustrated in Fig. 18, the effective Debye—
Waller parameter is given by

M’'(H)=M(G)+M(H - G) = |G|*+ |[H—G|?, (67)

which is in general different from M(H). For example,
if H is normal to the surface and the normal component
of G is larger than the parallel one as shown in

Fig. 18, then the effective Debye—-Waller factors satisfy
M'(H) <M (H) and the temperature dependence of inten-
sity at the resonance is relatively weak.

Another and completely different perturbation of tem-
perature dependence can arise from the variation of the
depth of the crystal sampled by incident electrons with
respect to incidence conditions near a resonance. For
incidence conditions close to a resonance the elastic
electron wave field samples mainly the region contain-
ing the outermost atoms. Off resonance, the elastic
wave field is more deeply penetrating and is limited
only by the Bragg reflections (primary extinction) and
by the inelastic scattering. Consequently, electron
scattering measurements of a crystal property under
resonance incidence conditions should yield a relatively
good approximation to the “surface” as opposed to the
‘“bulk” value. This idea was applied to the determina-



560

FIG. 18. Reciprocal space diagram illustrating the role of
resonances in the temperature dependence of diffraction in-
tensities. The circle denotes the Ewald sphere, broken
arrows denote propagation vectors for (1) the incident beam,
(2) the reflected beam, and (3) the intermediate or resonance
beam. Vertical lines denote reciprocal-net rods. H, G, and

H-G denote possible momentum transfers (see text, Sec.III.D).

tion of the sublattice magnetization of NiO(001) surface
layers by LEED (Namikawa, 1978).

4. Spin polarization of reflected electrons

The spin polarization of electrons reflected by solids
has the same origin as spin polarization in electron-
atom scattering—namely the interaction between the
electron spin and the magnetic field due to the orbital
motion of the electron. For atoms the spin polarization
increases rapidly with increasing atomic number and
increasing scattering angle. For solids the spin polari-
zation is broadly similar to that for the constituent
atoms, but there are substantial differences attributable
to interatomic multiple scattering.

On physical grounds one expects these differences to
be largest for conditions close to that for a resonance.
The differential cross sectionfor electron-atom scatter-
ing is largest near the forward direction (small scatter-
ing angles) so that electron reflection by a solid will
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ordinarily involve relatively few back scattering (large-
scattering-angle) events. On the other hand, resonance
scattering involves on the average a relatively large
number of back scattering events at substrate atoms

as the electrons undergo multiple reflections between
the substrate and the surface potential barrier. Polari-
zations due to individual back scattering events will
contribute additively to the total spin polarization.

The correlation between spin polarization and reso-
nances was investigated in calculations by Jennings and
Jones (1978). They calculated the relative numbers Nt
of electrons reflected with spin up and NV reflected with
spin down for low-energy unpolarized electrons incident
on W(001) surface. The polarization difference N4 —
was found to fluctuate rapidly with respect to energy at
energies near a resonance simulated by their model.
The results of the calculation have not been checked ex-
perimentally, but indications of a correlation of the
type predicted are offered by experiments on Au(011)
surface (Muller, 1978).

5. Resonance fluctuation of inelastic reflection intensities

The overall process underlying any observation of
inelastic reflection of electrons at surfaces is usually
pictured as a sequence of events including an elastic
reflection event. Thus in the simplest case of this pic-
ture there is (i) elastic reflection followed by inelastic
scattering and (ii) inelastic scattering followed by elas-
tic reflection. The obvious consequences of this simplest
case are (i) the inelastic reflection intensity will exhibit
resonance fluctuations with respect to varying incidence
conditions at (E,k,) values for elastic resonances and
(ii) the inelastic reflection corresponding to excitation
energy E’ and parallel momentum transfer k| will ex-
hibit resonance fluctuations for (E,k,) values displaced
by (E’,k/) from elastic resonances. The first of these
effects has been observed as resonance enhancement of
the electron energy loss spectrum of W(001) with and
without adsorbed H (Ho, Willis, and Plummer, 1979;
Willis, 1978).

In addition to elastic resonances, experiments suchas
electron energy loss spectroscopy should also detect
resonances decaying by inelastic channels. The nature
of these resonances is indicated by the relevant formulas
resulting from Feshbach’s theory [Eqgs. (40)—(42) and
following paragraph]. The resonance numerator will
have appreciable values only for those excited states
having sufficiently large overlap with the intermediate
surface state. This means that decay channels corre-.
sponding to surface excitations (e.g., surface plasmons,
surface vibrational excitations) as opposed to bulk ex-
citations will be most likely to exhibit resonances. A
possibility indicated by theory is that the probability of
a surface excitation starting from the intermediate sur-
face state is high enough for the resonance term to make
a dominant contribution to the amplitude. In such a
case the resonance would enhance the inelastic scatter-
ing intensity. Such resonance enhancement need not
follow the selection rules for the direct transition and
could have a weaker dependence on the parallel momen-
tum transfer.
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FIG. 19. Intensity data for A1(001) surface (Lauzier, 1971).
The (00) beam intensity Iy, is plotted versus azimuthal inci-
dence angle ¢ for the indicated values of colatitude incidence
angle 6 and electron energy E=20.8 eV. Vertical arrows
indicate threshold conditions for the indicated beams.
Horizontal arrows point to the side of the threshold to which
the indicated beam is propagating.

IV. EXPERIMENTAL RESULTS AND COMMENTARY
A. AI(001) ’

1. Experiments

Measurements of the (00) LEED beam intensity as a
function of the azimuthal angle of incidence ¢ were re-
ported by Lauzier (1971) and by Lauzier, De Bersuder,
and Hoffstein (1971). The measurements were made at
a fixed electron energy of 20.8 eV for each of a series
of values of colatitude angles of incidence 6 ranging
from 0° to 76° in steps of 2°. The LEED goniometer
(Fig. 8) was used. Samples of the raw data (recorder
tracings) are shown in Fig. 19.

2. Line shapes

Lauzier identified the weak and relatively narrow
intensity fluctuations near the beam threshold positions
(Fig. 19) as resonances. To locate the resonances as
accurately as possible and to reveal their line shapes,
he subtracted an arbitrarily smoothed background
curve from each experimental curve. A representativé
line shape obtained in this way is shown in Fig. 20(a).
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To simplify discussion, the line shape is here plotted
against e=E — E_g(k,) rather than against ¢ as in the
original presentation. While the procedure used to re-
move the background is a subjective one, it is definitely
established that the line shape is asymmetric with a

dip on the side far from the threshold, followed by a
peak closer to the threshold.

The qualitative features of the line shape may be re-
produced semiempirically using Eq. (61). The calcu-
lated line shape is shown in Fig. 20(b). The main physi-
cal assumptions underlying the calculation are of an
image potential in the surface region and the “wide gap”
assumption. To simulate theinstrumental broadening
in the experiment, the intensity |T|? calculated by Eq.
(61) was convoluted with a Gaussian of width (FWHM)
0.5 eV. This is a typical value of incidence energy
spread for the type of equipment used.

The calculated line shape [Fig. 20(b)] has two quali-
tative features whose presence does not depend on any
special choice of parameters in Eq. (61). They are a
long “tail” extending to the low-energy side, and a
relatively narrow “blip” due to imperfectly resolved
fine structure close to threshold. Neither of these
features is present in the experimental line shape, Fig.
20(a). The absence of the tail might be an artifact of the
background subtraction. Going back to the raw data,
one can draw in another but equally plausible background
curve that subtracted leaves a tail. While the threshold
blip is not present in the cited experiments of Lauzier,
there are other experiments on A1(001) (Henrich, 1975)
that show a narrow feature located at the threshold (see
Fig. 10). This narrow feature probably corresponds to
the threshold blip in the theoretical curve, Fig. 20(b).

(a)

FIG. 20. (a) Representative lineshape of resonances observed
at A1(001) surface (Lauzier, 1971). The lineshape shown was
obtained by background subtraction from the plot of (00) beam
intensity I, versus azimuthal incidence angle ¢ for electron
energy E =20. 8 and colatitude incidence angle 54°. e denotes
the electron energy referred to the threshold energy of the
(10) beam. (b) Semiempirical fit to the observed line shape.
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The parameter values used in Eq. (61) were chosen
as follows:

[TOS]=O.5 (fit to energy separation of intensity
extrema),

7=1.67 (energy positions of extrema),

argR =-0.47 (ratio of positive and negative intensity
excursions),

iR]= 0.01 (the observations apparently conform to the
case of small resonance/direct ratios ([R]
«<1- [TOSI) in which the line shape is in-
sensitive to the value of |R|).

From the above value of ]T"S{ one infers, assuming
,Sf= 1, an intensity reflection coefficient of 0.25 for the
intermediate wave involved in the resonance. The
characteristic width of the resonance exclusive of in-
strumental broadening, as given by Eq. (63), is 1.8 eV.
The value of T yields through Eq. (62) a resonance bind-
ing energy —e¢, =1.9 eV. Thus in this case the reso-
nance position is close to the mean of the intensity ex-
trema.

3. Surface resonance band structure

The part of the surface resonance band structure
E(k,) that can be obtained from available experimental
data is shown in Fig. 21. The points plotted are the co-
ordinates of k, for which the resonance energy E(k,) is
equal to the electron energy at which the measurements

e

(k) )oa/m

1
(k) s

Surface resonance band structure for A1(001).
Broken
Solid

FIG. 21,
Open circles—experimental values (Lauzier 1971).

lines—branches of the free-electron band structure.
lines—branches of the 2-D free-electron band structure with

binding energy 1.8 eV. (k); and (%), denote components of
k, in the directions of the unit-mesh vectors a; and a,,
respectively (cf. Fig. 1). a=2.863 A is the unit mesh side
for A1(001). The first surface Brillouin zone is outlined.
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were done (20.8 eV). The k, values were calculated
from an angular plot of resonance positions given by
Lauzier. The conventions observed in making the con-
versions are those of Fig. 1. The formula used reads

K, =k, +27g=(2E)2sing[4, cos¢p+ 4, sinep]. (68)

The carets denote unit vectors. In the present instance
v in Fig. 1 is 90°. In accord with the interpretation of
line shapes, the resonance energy was taken in every
case to be the average of the intensity extrema.

The experimental points in Fig. 21 form series that
are approximately parallel to branches of the free-
electron band structure E,_ (k,) labeled 10, 10, and 11,
respectively. Note that, according to Eq. (4), each
branch E,, is circle centered at —27g.  The points
associated with the 10 and 10 branches can be fitted
approximately by the 2-D free-electron band structure
E(k,)=E,k,)+ e, with a binding energy -e, pf 1.8 eV.
The three points belonging to the 11 branch would re-
quire a binding energy of about 3 eV for fit. The results
plotted in Fig. 21 show no indication of any interaction
between resonance levels such as one might expect to
observe especially near the crossings of free-electron
branches.

B. W(001)
1. Experiments

Measurements of the (00) LEED beam intensity as a
function of energy were reported by Edwards and Propst
(1972) (EP). The measurements were made at a fixed
colatitude angle 6 =53° in the [01] azimuth (¢ =0). The
energy range was 0-40 eV. The apparatus used was a
tandem of 127° electrostatic electron spectrometers
providing electron energy resolution better than that of
the conventional LEED experiment. The EP data showed
narrow structure near 4 eV. This structure was inter-
preted by McRae (1971) as a resonance associated with
the (01) beam threshold.

McRae and Wheatley (1972) (MW) reported conventional
LEED measurements of the (00) beam intensity as a
function of energy in the range 2—15 eV. The retarding
field mode of LEED was used. The measurements were
done at nominal § values from 0° to 20° for two ¢ values,
0° and 45°. The incidence angle 6 was not well deter-
mined in the MW experiments because the effect of the
retarding field is to increase the angle by an unknown
amount. Resonance structure was observed and corre-
lated with that observed by EP. The assignment of the
resonance to the (01) beam threshold was confirmed by

these experiments.

Willis, Feuerbacher, and Christensen (1977) (WEC)
observed resonances by the method of angle- and energy-
resolved secondary electron emission. Measurements
were reported for 6 values from 0° to 70° on the ¢ =0
azimuth, and for emission energies from 0 to 30 eV.
The resonances were observed as peaks lying inside the
range of a forbidden gap [Fig. 12(b)].

High-resolution measurements of the (00) beam inten-
sity spanning the energy range of the resonance were
reported by Adnot and Carette (1977a) (AC). The ap-
paratus used was a tandem of 127° spectrometers pro-
viding useful current density with energy resolution 15
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meV and angle resolution better than 0.8°. The experi-
ments were done for a fixed incidence direction (6 =48°,
¢ =0) but a range of 8° in § was scanned by defocusing
the primary beam and rotating the analyser. Willis
(1978) (W) reported high-resolution experiments similar
to those of AC but extending over a much wider range
of colatitude angle of incidence §. The range was 27°
<6 <80°.

2. Line shapes

The (00) beam intensity curves of EP and MW contain
a peak about 1.5 eV wide centered near 3.5 eV, together
with a narrower peak at higher energies. The curve of
AC (Fig. 13) has an envelope similar to that found by
EP and MW but the narrower peak observed in the
earlier work was resolved by AC into a sequence of
peaks starting with one at 4.75 eV. The peaks in this
sequence become progressively narrower on going to
higher energies.

The peak at 3.5 eV could be interpreted either as a
very broad resonance of the “strong-overlap” type or as
a Bragg peak. There is no easy way to distinguish be-
tween these two possibilities experimentally. The re-
maining structure starting with the peak at 4.75 eV is
assigned to resonances of the “weak overlap” type.

The peaks making up this sharper structure are num-
bered in order of energy starting arbitrarily with n=1
for the 4.75 eV peak. .

The qualitative features of the lineshape may be re-
produced semiempirically using Eq. (61). In order to
obtain a fit, it was necessary to adjust the value of the
threshold energy E. . The adjusted value used was
5.10 eV, about 0.15 eV higher than the (01) beam thres-
hold energy for the 6 value of the experiment. The
origin of this upward displacement is not known but it
might be simply the error in the determination of ab-
solute electron energy in the AC experiment. The part
of the AC intensity curve containing the resonance
series is shown on an expanded energy scale in Fig.
22(a). The calculated curve is shown in Fig. 22(b).

The intensities are plotted against e=E - 5.10 eV. In
the calculated curve, instrumentalbroadening was simu-
lated by convolution with a Gaussian of width 0.03 eV.

-10 -05
e(ev)

FIG. 22. (a) High-resolution intensity data for W(001) sur-
face (Adnot and Carette, 1977a). The (00) beam intensity Iy,
is plotted as a function of energy e referred to an adjusted
value of the (01) beam threshold (5.10 eV —see text, Sec.
IV.B). (b) Semiempirical fit to the observed intensity curve.
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The parameter values used in Eq. (61) were chosen as
follows:

|7°S|=0.3 (fit to widths of two-highest-energy peaks) ,
7=-0.1 (energy positions of extrema),

arg R=-0.5 (ratios of peak heights),

|[R|=1.2 (ratio of peak heights to background).

From the above value of |7°S| one infers (assuming
|S|=1) an intensity reflection coefficient of 0.1 for the
intermediate wave involved in the resonance. The
characteristic widths of the first four resonances ex-
clusive of instrumental broadening, as given by Eq. (63)
with |7°S[=0.3, are 0.34, 0.08, 0.03, and 0.01 eV, re-
spectively. In fact, however, the width of the lowest-
energy resonance peak in Fig. 22(a) is about twice that
in the calculated curve [Fig. 22(b)]. The extra broaden-
ing is probably due to the overlap of the n=1 resonance
electron density distribution [¢,(z)[> with the crystal ab-
sorptive potential, resulting in a value of |S| less than
unity. As explained in Sec. III.C, this broadening effect
ought to be particularly important for a small value of
T as apparently applies in the present instance.

The result that |R|is of the same order as 1 —|T°S|
means that the resonance is intermediate between the
limit of small resonance/direct ratios ( |R|<<1-|T°S|)
as represented by results for A1(001), and that of large
resonance/direct ratios (JR[> 1~|7°S|) or enhancement
commonly encountered in high-energy electron diffrac-
tion. i

The value of 7 yields through Eq. (62) an n=1 reso-
nance binding energy —e, =0.34 eV. Thus in this case
the n=1 resonance position is close to that of the first
intensity peak at -0.33 eV on the scale of Fig. 22.

That the fit requires a negative value of 7 is an ap-
parent anomaly that probably arises from the arbitrari-
ness in numbering of resonances. Thus if the lowest

‘sharp peak were assigned to n=2 instead of n=1, 7

would be 2.0~ 0.1=1.9. In fact a fairly good fit to the
entire line shape (Fig. 13) may be obtained with renum-
bered levels and a slightly smaller value of 7, viz.,
7=1.6. The n=1 resonance binding energy in this case
is —e,;=1.73 eV and the resonance positions are again
close to those of the observed peaks.

In the secondary emission intensity curves of WFC,
the resonance is observed as a peak about 1 eV wide.
This peak is superposed on a rising background con-
taining additional structure associated with variations
of the bulk density of states [Fig. 12(b)]. The experi-
ment was not capable of resolving higher-order reso-
nances.

3. Surface resonance band structure

Experimental determinations are shown (Fig., 23) in
comparison with the (01) and (00) beam thresholds and
the positions of the edges of the forbidden gap. Also
shown is a dispersion curve calculated by an LCAO
method (Smith and Mattheiss, 1976).

The LEED experimental points (open symbols in Fig.
23) were calculated from experimental (00) beam inten-
sity curves using Eq. (68). In accord with the interpre-
tation of line shapes for the AC data, the resonance en-



564 E. G. McRae: Electronic surface resonances of crystals

E(ev)

GAP EDGE

1103
)
n
o
H
)
o
o
@

ky a/m

FIG. 23. Surface resonance band structure for W(001).

Open symbols—values of =1 resonance energies from LEED
experiments. Filled circles—values from secondary
emission experiments. Authors are identified in the text,
Sec. IV.B. Broken lines—beam thresholds. Chain line—
LCAO theory. Shaded lines—forbidden gap edges as given by
WFC. @=3.165 A is the unit mesh side for W(001). The
first surface Brillouin zone is shown (inset, top left) with
indications of symmetry points and reciprocal-net points.

ergies were taken in every case to be 0.2 eV higher than
the energy at the maximum slope of the (00) intensity
with respect to energy. This amounts to a slight revi-
sion of published estimates (McRae, 1978). The secon-
dary emission experimental points (filled circles) are
those obtained by WFC from their observed emission
peak positions. The error bar is that published by WFC.

The LEED and secondary emission results do not
agree with each other. The discrepancy might be due to
error in locating the resonance center from the avail-
able secondary emission intensity curves. In these low-
resolution results it is difficult to discriminate between
resonance structure and structure associated with the
bulk density of states.

The experimental dispersion curve represented in
Fig. 23 by open symbols is close to the (01) threshold
curve. The apparent binding energy varies from 0.9 to
0.3 eV with k,a/7 increasing from 0.6 to 0.9. This
variation of apparent binding energy could be due to an
increase in the bulk phase parameter 7 on passing up-
wards through the band gap. This could cause an in-
crease in binding energy on approaching the upper edge
of the gap as observed (Fig. 23). The LCAO results ap-
parently apply to the broader structure observed at
lower energy, supporting an assignment of that structure
to a resonance of the “strong overlap” type.

C. Ni(001) and oxygenated Ni(001)
1. Ni(001)

Measurements of the (00) LEED beam intensity as a
function of electron energy were reported by McRae,
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FIG. 24. Intensity data for Ni(001) surfaces (McRae,
Aberdam, Baudoing, and Gauthier, 1978). The (00) beam
intensity Iy, is plotted versus accelerating potential for the
colatitude angles 6 and azimuth indicated. Circled features
are identified as resonances.

Aberdam, Baudoing, and Gauthier (1978) (MABG). The
measurements were made in the energy range 5-40 eV
for colatitude angles 6 ranging from 5° to 80° in both the
[01] and [11] azimuths. The LEED goniometer (Fig. 8)
was used. Samples of the raw data (recorder plots) are
shown in Fig. 24.

MABG identified narrow features such as those cited
in Fig. 24 as n=1 resonances. The positions of all fea-
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FIG. 25. Surface resonance band structure for Ni(001).
Crosses and open circles—experimental values taken from
observed (00) beam intensity maxima and minima, respec-
tively. Broken lines—branches of the free-electron band
structure. Solid lines—branches of the 2-D free-electron
band structure with binding energy 3.5 eV. a=2.492 Ais
the unit mesh side for Ni(001). The first surface Brillouin
zone is shown (inset, right) with indications of symmetry
points and reciprocal-net points. (McRae, Aberdam,
Baudoing, and Gauthier, 1978).
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tures with widths estimated to be less than 1.5 eV were
plotted to determine the surface resonance band struc-
ture as shown in Fig. 25. As the resonances were very
weak compared to the background it was not possible in
this case to determine the resonance lineshapes. The
positions plotted in Fig. 25 were of maxima or minima,
whichever appeared the more prominent.

As illustrated in Fig. 25, the observed band structure
is fitted accurately (+ 0.3 eV) by the 2-D free-electron
formula with a binding energy —e, =3.5 eV. The value
of binding energy is close to the maximum value for the
image potential (3.4 eV). These data show no evidence
of interaction between 2-D free-electron states. How-
ever; no resonances were observed in the vicinity of
2-D free-electron branch crossings, where a given in-
teraction would produce the largest level displace-
ments. Only a loose upper limit—0.5 eV—could be
placed on the magnitudes of the interaction elements.

Net-current low-energy electron reflection measure-
ments were reported by McRae and Caldwell (1978) (MC).
The measurements were made in the energy range 0-30
eV for colatitude angles 6 ranging from 0° to 8° in the
[01] azimuth. This range of 6-values spansthat omitted
in the LEED experiment of MABG. The data were ob-
tained in digital form, and narrow structure was accen-
tuated by the use of a digital high pass filter as de-
scribed by McRae, Landwehr, and Caldwell (1977)
(MLC). In this technique the maximum width of the
structure to be accentuated is selected by setting the
passband cutoff frequency of the filter. The maximum
width is roughly the reciprocal of the cutoff frequency.
Representative examples of raw and filtered data are
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FIG. 26. Net-current data for Ni(001) surface (McRae and
Caldwell, 1978). R denotes the negative of the net current,

V the accelerating potential. Changes of R are directly pro-
portional to changes of total reflection coefficient (secondary
yield) with respect to variation of the accelerating potential.
The data refer to the colatitude angle 6 and azimuth indicated.
The arrow marks the position of the (01) beam threshold.

(a) Raw data, (b) filtered data, passband cutoff frequency
1/3.0 eV, and (c) filtered data, passband cutoff frequency
1/0.96 eV-!. Numbers alongside each curve indicate relative
magnifications of the vertical scale.
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shown in Fig. 26. Figure 26(b) shows broad structure
(width 3 eV) in roughly the positions expected for the (01)
and (10, 10) branches of the band structure shownin Fig.
25. In addition there is a narrower intensity fluctuation
of which the peak (width 1 eV) is located exactly at the
(10,10) threshold. This fluctuation is present in Fig.
26(b) but is shown against a flatter background in Fig.
26(c). It is probably the “threshold blip” due to im-
perfectly resolved fine structure that appears in cal-
culated line shapes [cf. Fig. 20(b)]. Apparently the
resonances observed by MABG are still present (though
greatly broadened) near the center of the surface
Brillouin zone.

2. Ni(001)c(2 X 2)O

Net-current low-energy electron reflection measure-
ments on oxygenated Ni(001) surfaces were made by MC
and by MLC. The measurements were made in the en-
ergy range 0-30 eV for colatitude angles 6 ranging from
0° to 16° in the [01] azimuth. The results were found to
depend not only on the surface periodicty [p(2% 2) or
c(2x 2)] but also on the degree to which oxygen was in-
corporated in the bulk crystal. Figure 27 showsfiltered
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FIG. 27. Filtered net-current data (passband cutoff fre-
quency 1/0.96 eV-!) for Ni(001)c(2 x 2)O surface (McRae,
Landwehr, and Caldwell, 1977). R denotes the negative of the
net current and V the accelerating potential. The numbers

at right give values of the colatitude angle of incidence in
degrees. The results refer to the [01] azimuth. Curves
corresponding to both senses of rotation of the crystal are
presented as a check of the normal incidence setting.
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data reported by MLC for a Ni(001)c(2 X 2)O surface
prepared under conditions designed to minimize the
bulk oxygen concentration. These results illustrate two
commonly observed though imperfect regularities of
resonance intensities: (i) Relatively large intensities
are observed for a metal with an overlayer of ad-
sorbed atoms compared with the pure metal, and (ii)
Intensities increase with increasing values of colatitude
incidence angle 6. Apparently, and not unexpectedly,
the interactions driving resonances increase with in-
creasing surface roughness and with decreasing sur-
face-normal momentum transfer in the excitation step.
Figure 28 shows the surface resonance band structure
obtained by mapping the positions of the minima in Fig.
27, together with a 2-D nearly-free-electron fit to the
observed band structure. The interpretation given by
MLC takes account of the relative intensities of the
resonances. In Fig. 27 there is a series of pronounced
features near 25 V and a parallel series of weaker fea-
tures near 30 V. These series were assigned respec-
tively to allowed and forbidden resonances associated
with the doubly degenerate (10) and (10) thresholds. In
accordance with the discussion leading to Eq. (49), the

S
2
w
o | | | | |
-0.6 -04 -0.2 (o] 0.2 0.4 0.6
k” a/m
FIG. 28. Surface resonance band structure for Ni(001)c

(2 x2)O surface. Open circles—experimental values taken
from minima in filtered net-current curves. Lines denote
branches of the surface resonance band structure calculated
by the 2-D nearly-free-electron scheme with parameters
adjusted to fit the data. Full and broken lines denote ‘“allowed”
and ‘“forbidden’’ resonances, respectively. The partly broken
line denotes a resonance forbidden at symmetry point T'. «
=2,492 A is the unit mesh side for Ni(001). The first surface
Brillouin zone is shown (inset, top left) with indications of
symmetry points and reciprocal-net points. The arrows
indicate the range of %, spanned by the main figure (McRae,
Landwehr, and Caldwell, 1977),
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y/a

FIG. 29.
(2 x 2)O surface. The potential is presented as a contour
plot extending over one Ni(001) unit mesh of side a.

Surface-weighted pseudopotential for Ni(001)c

interaction element responsible for the splitting was
found to have a negative sign and a value half that of the
splitting, giving (U20)= -2.5 eV. The positions of the
resonances gave the binding energy —e, =1.0 eV. The
one other nonzero interaction element required to fit the
observed band structure with due attention to the inten-
sities was (U,,)=1.5 eV. The error in each of these
determinations was + 0.2 eV.

The results shown in Fig. 28 demonstrate abilities to
determine the surface resonance band structure and to
fit it semiempirically by a method incorporating para-
meters describing the surface structure. These abili-
ties amount to a means of surface structure determina-
tion.

In the case illustrated (Fig. 28) the structural param-
eters are Fourier coefficients of the surface-weighted
pseudopotential. The surface-weighted pseudopotential
synthesized from Fourier coefficients by Eq. (65) is
shown in Fig. 29. As the angular range of the experi-
ment did not extend far enough to permit a determina-
tion of the coefficients (U, /21727, the results shown in
Fig. 29 must be interpreted as an average over the four
Ni(001) unit meshes in one c¢(2 X 2) unit mesh. The main
features of the potential plot in Fig. 29 are a central
region of negative potential and four regions of positive
potential on the unit-mesh diagonals. These features
are consistent with what is known about the structure of
the Ni(001)c(2 x 2)O surface from LEED intensity anal-
ysis (Demuth, Jepsen, and Marcus, 1973). The central
negative (electron-attracting) region in Fig. 29 may be
attributed plausibly to an adsorbed O atom located above
the center of the square formed by four adjacent Ni
atoms. The four positive regions may be attributed to
diagonally directed Ni-O bonds.

D. Prospects for surface characterization

The developments surveyed in this article belong
mainly to an exploratory stage in which the emphasis
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has been on phenomena and physical mechanisms of
resonances. The observations have been made in the
course of experiments designed for other purposes.
Beyond this exploratory stage there are prospects of
using the observation of resonances as a means of
characterizing surfaces. These prospects depend first
on the properties of resonances as they are now under-
stood in broad outline, and second on the existence of
experimental and theoretical techniques that can be
applied specifically to resonances.

1. Properties of resonances

The properties that bear on surface characterization
may be summarized as follows.

Widespread occurrence

Low-energy electronic surface resonances are ob-
served for all types of crystals (metal, insulator, and
semiconductors) at energies up to at least about 50 eV
and over a substantial fraction of the surface Brillouin
ZOne.

Identification

Resonance features in electron scattering intensity
plots are characteristically of small width in energy.
Most features of width less than about 1.5 eV can be
confidently assigned to resonances. Ancillary criteria
include correlations with beam thresholds and with for-
bidden gaps.

Band structure

The electronic surface resonance band structure can
be measured by electron scattering methods that are
simple and widely available, e.g., LEED. It has been
shown that the surface resonance band structure from
observations of narrow resonances is well described
by 2-D nearly-free-electron formulas. The ability to
determine lateral surface structure by a fit to the sur-
face resonance band structure using elementary theory
has been demonstrated. It is feasible totest 3-D models
of the effective potential at the surface by full-scale
computations of the surface resonance band structure
and comparison with experiment.

Line shapes

Fine structure of resonance profiles may be observed
in high-resolution experiments. It is feasible to test
models of the effective potential outside the outermost
atom layer of the crystal by calculations of the line
shape and comparison with experiment.

Relation to electron spectroscopies

Resonances may be observed as final states of elec-
tronic transitions as in photoemission spectroscopy or
through resonance enhancement of inelastic scattering
intensities as in electron energy loss spectroscopy.

Surface selectivity

Resbnance experiments sample the spatial region ly-
ing largely outside the bulk crystal. This high degree
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of surface selectivity depends on the use of a high-pass
filter or other means to accentuate narrow structure
as opposed to broader “background” structure in elec-
tron scattering intensity curves. Resonances or other
electronic states whose electron density distribution
lies largely inside the bulk crystal are broadened by
inelastic electron-electron collisions and so are not ob-
served as narrow structure. Resonance experiments
employing an effective means of background removal
are more highly surface-selective than other electron
scattering methods of surface characterization.

Simplicity of interpretation

Resonance observations are inherently simpler to in-
terpret than other comparable types of observation.
First, only one electronic state of the crystal is in-
volved, not two as in photoemission spectroscopy or
other electron spectroscopies. S,ec‘ond, the structure
sensitive quantities are energy levels, not intensities
as in conventional LEED.

2. Experimental and theoretical methods

The usefulness of resonance observations is limited
by difficulties in locating resonance centers from mea-
sured intensity profiles and in resolving the finer de-
tails of these profiles. However, there is a very good
prospect of overcoming these difficulties by exploiting
available experimental techniques to measure intensi-
ties with higher angular and energy resolution, and by
applying available theory to the computation of reso-
nance lineshapes.

Experimental

The resolution required is about 1° and 30 meV FWHM.
This is similar to that of electron energy loss spectro-
scopy as applied to vibrational spectroscopy of surfaces,
and in fact elastic reflection resonance observations
can be made conveniently in conjunction with electron
spectroscopy. However, the resonance experiment is
essentially simpler than the spectroscopic one in that
high resolution is needed for only excitation or decay
channels, not both. For example, the ideal resonance
reflection experiment is in principle the same as con-
ventional LEED except for ;Srovision of an electron
monochromator in place of the electron gun. In prac-
tice two other modifications of conventional LEED would
be desirable. First, channel electron multiplier arrays
or other means should be used to offset the reduced in-
cident current. Second, since resonance intensities
tend to increase with increasing colatitude incidence
angles 6 the setup should permit display of the specular
beam for 6 values going up to 90° (grazing incidence).

Theoretical

Current theoretical calculations of LEED intensities
and of surface band structure contain all but one of the
elements required to deal with resonances. The missing
element is the long-range part of the potential. By in-
cluding this element it would be possible to trace the
progression from “strong overlap” to “weak overlap”
cases. Theoretical calculations could also offer much
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needed guidance to the connection between line shape,

the surface resonance band structure and band structure

of the substrate crystal. Finally the interplay between
theoretical and experimental studies of resonance line
shape might clarify the nature of the long-range inter-
action, including especially its dependence on electron
velocity.
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