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A comprehensive review of the known classical solutions of SU(2) gauge theories is presented. The author
follows the historical development of this subject from its beginning (the first explicit solution found was
an imbedded Abelian static Coulomb solution) up to the most recent work in the field (in particular the
solutions which represent monopoles, instantons, and merons). As well as being a detailed survey, this
article is intended to serve as a self-contained introduction to the subject.
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l. lNTRODUCTlON

A. Quantum Yang-Mills theory

Non-Abelian gauge theories were invented by Yang
and Mills nearly twenty-five years ago (Yang and Mills,
1954). For most of this period it was not known
whether any of the interactions observed in nature can
be described by a non-Abelian gauge theory. Neverthe-
less, the elegance of these theories attracted interest.
Quantization and renormalization were the central top-
ics of research. For physically relevant theories with
massive gauge bosons it turned out to be quite difficult
to demonstrate renormalizability. First, the Higgs
mechanism (Higgs, 1964) had to be discovered before
one knew how to break the non-Abelian local gauge sym-
metry without introducing Goldstone bosons. Several
years later the first proof ('t Hooft, 1971)was given
that a Yang-Mills (hereafter YM) theory stays renorm-
alizable when its local gauge symmetry is broken in
this fashion. After renormalizability had been estab-
lished, so that one had confidence in Feynman diagram
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calculational techniques, the door to quantitative YM
phenomenology was finally open.

Many years earlier there had been attempts to de-
scribe physical phenomena in terms of YM theories.
These were originally based on the assumption that the
YM field could acquire a'mass, dynamically, through
its self-interaction. If this were true then YM fields
would be short range, like the interactions between
hadrons. Efforts were made to set up a YM theory of
the strong interactions (see, for example, Sakurai,
1960; Schwinger, 1964). However, these theories were
not successful: The basic assumption was wrong; YM
fields do not acquire a mass through their self-interac-
tion. The local gauge symmetry apparently has to be
broken by hand, and this introduces Goldstone bosons
uriless the Higgs mechanism is used. Higgs-like models
of the strong interactions could, perhaps, be devised.
But with the widespread belief that hadrons are not
"elementary, " one nowadays has little interest in such
models.

Following the discovery that the charged weak current
has V -A structure, so that the similarity between the
weak and electromagnetic interactions became apparent,
it was natural to try to combine these two theories with-
in a larger gauge theory. Obviously the latter would
have to be a non-Abelian gauge theory. Glashow (1961)
constructed an SU(2) x U(l) model along these lines
which had many attractive features, but lacked the vital
Higgs fields which induce spontaneous gauge symmetry
breakdown. These were later introduced by Weinberg
(1967) and Salam (1968) into the SU(2) XU(l) model. The
resulting field theory (the Weinberg-Salam model as it
is now called) has turned out to be extraordinarily suc-
cessful. This success has convinced most physicists
that non-Abelian gauge theories of the weak and elec-
tromagnetic interactions are good physical theories.
The coming generation of accelerators is expected to
provide final experimental proof of this through the
discovery (as particles) of the massive vector bosons
that carry the charged and neutral weak interactions.

The many successes of the quark model have made it
clear that hadrons are composite. With this realization
it became necessary to find an adequate theory of the
quark-quark interaction. One particular theory has
emerged which seems to have a good chance of success,
namely quantum chromodynamics (QCD) (see the review
by Marciano and Pagels, 1978). This theory involves
only quarks and an SU(3) gauge field. (The gauge sym-
metry is unbroken, so there are no Higgs fields pres-
ent. ) The quarks carry a charge called color, which by
assumption cannot exist outside of a hadron since quarks
have never been observed as free particles. The un-
known mechanism which keeps the quarks (and also the
gauge particles which are called gluons) inside hadrons
is called confinement. The existence of this unproven
property of YM theories is the major open question in
QCD. Confinement is an infrared phenomenon, and YM
theories are extremely singular in the infrared region.
Therefore it is very difficult to do quantitative work on
the confinement problem. In the ultraviolet region QCD
is in much better shape because of "asymptotic free-
dom" (Gross and Wilczek, 1973; Politzer, 1973). In
QCD, or any other YM theory with a semisimple gauge

group, the effective coupling constant gets smaller with
decreasing distance. Thus for deep inelastic lepton-
hadron scattering one can do perturbation theory calcu-
lations. The QCD predictions are in agreement with a
large body of experimental information. Asymptotic
freedom also means that the effective YM coupling in-
creases with increasing distance. Eventually the per-
turbation theory estimates on which all asymptotic free-
dom arguments are based break down, and one cannot
follow this increase to large values of the effective
coupling constant. however, it is believed by many that
the effective coupling becomes strong enough to confine
qua rks.

The Weinberg-Salam model (or generalizations of it)
and QCD are the two existing YM theories of real phe-
nomenological importance. These theories can be form-
ulated in terms of Feynman path integrals, i.e. , func-
tional integrals over all classical field configurations
weighted by a factor exp(-action). If one knew every-
thing about classical field configurations, then in prin-
ciple all questions concerning the quantum theory could
be answered. Partial information about classical fields
might yield, at least, some insight into the quantum
theory. This is the basic hope which motivates present
research activity in classical YM theory.

B. Classical Yang-Mills theory

For many years there was little activity in the classi-
cal sector of YM theory. The first exact solution of the
classical equations of motion of the pure SU(2) gauge
theory was found by Ikeda and Miyachi (1962). This so-
lution is the electromagnetic Coulomb solution inzbedded
in the larger theory, so it is not truly a YM solution.
Loos (1965) observed that the imbedding works for any
gauge group. Solutions of this type naturally did not
arouse a great deal of interest.

A genuine non-Abelian YM solution was found by Wu
and Yang (1968). Rosen (1972) rediscovered this same
solution within the context of a general gauge theory.
Like the Ikeda-Miyachi solution, the Wu-Yang solution
is pointlike, i.e. , the gauge potential behaves like I/x
everywhere. A very interesting property of the Wu-
Yang solution is that it describes a (pointlike) non-
Abelian magnetic monopole. The Wu-Yang monopole is
not attached to a string (unlike a Dirac monopole}.
From this one might conclude that YM theories provide
a natural setting for magnetic monopole solutions.
(Several years later, when the nonsingular 't Hooft-
Polyakov monopole was discovered, this became much
clearer. )

YM theories admit static solutions more complicated
than pointlike ones. The first explicit solution of this
type was found by Treat (1967). In addition to an elec-
tric Coulomb-like component in the gauge potential,
Treat's solution has short-range potentials which be-
have like e ~". The constant I is essentially the value
of a component of the gauge potential at spatial infinity.
If this value were zero then, the short-range potentials
would become long range. One has a very-similar situ-
ation in.the nonsingular monopole and dyon solutions
discussed below, where the nonvanishing field at infinity
is a Higgs field+ Treat's solution does not have the
attractive physical properties of these later solutions,
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but it does contain some of their essential ingredients.
Important progress was made by Nielson and Gleson

(1973), who introduced a "classical Higgs mechanism"
into classical gauge theory. This mechanism is quite
analogous to the quantum field-theoretic Higgs mech-
anism: It causes the classical gauge theory to become
"massive" in the sense that certain components of the
gauge potential must behave like e "at large x for the
energy to be finite. In their SU(2) example, Nielson and
Oleson used two Higgs triplets to make all gauge field
components decrease exponentially away from an axis.
The gauge field is essentially contained within a tube or
"vortex." This very original calculation directly led to
another discovery.

In 1974 the slow-growth period of classical YM theory
came to an end. 't Hooft (1974) and Polyakov (1974) in-
dependently discovered a magnetic monopole solution of
the SU(2) gauge theory with a Higgs triplet. This solu-
tion is nonsingular and has finite energy. It represents
an extended, localized object with magnetic charge and
topological stability. (The solution is cha, racterized by
a mapping S —S of a, sphere onto a sphere, covering
the latter once. It is certainly the lowest-energy solu-
tion in this topological category, and therefore it must
be stable. ) These interesting properties, together with
the fact that the YM theory involved has spontaneous
symmetry breakdown (precisely the type of theory be-
lieved to be capable of unifying the weak and electro-
magnetic interactions), naturally attracted great in-
terest. Much additional work was done on solutions of
this type. An SU(2) dyon solution was found [this is the
SU(2) monopole with an arbitrary electric charge].
Monopole and dyon solutions of theories with larger
gauge groups were not difficult to find once the basic
ingredients of the SU(2) solution were understood. [This
involved the application of some basic results from
homotopy group theory (unknown to nearly all physicists
in 1974).] "No-go" theorems were established which
clarify the extent to which the monopole solutions are
unique. These and other developments are discussed in
the non-Abelian monopole review by Goddard and Olive
(1978). [See also the annotated monopole bibliography
for the period 1973-1976 by Carrigan (1977).]

Unfortunately, one very important development did
pygmy occur. To this date, no one has found a multimono-
pole solution with acceptable physical properties (e.g. ,
finite energy). Nor is it known whether such a solution
exists. This makes one reluctant to accept the 't Hooft-
Polyakov monopole as a particlelike object which might
conceivably be realized in nature. One would at least
like to know that two of them can exist with less than
infinite separation. The lack of a multimonopole solu-
tion is mainly responsible for the greatly diminished
interest in non-Abelian monopoles at present. Another
reason has been the lack of a physical use for these
solutions. Non-Abelian monopoles are very hea, vy
(probably some thousands of GeV); one does not know
what to do with them.

I et us now go over to Euclidean space-time (E') to
mention a result w'hich has stimulated even more in-
terest than the SU(2) monopole. This is the extraordi-
nary solution of the Euclidean SU(2) gauge theory found
by Belavin, Polyakov, Schwartz, and Tyupkin (1975),

called the "instanton" or "pseudopa, tiClee. " The main
properties of the instanton solution are as follows:

(i) it is nonsingular and localized (symmetrically) in
all directions in E' including the imaginary time axis
(hence: instanton);

(ii) it is self-dual (which means that it carries zero
energy);

(iii) it is characterized by a topological charge q= 1
(i.e. , characterized by a map S'- S' which covers the
latter sphere one time).

Moreover —and this is very important —exact solutions
representing, an arbitra, ry number of instantons have
been found (Witten, 1977; 't Hooft, 1977c) with topo-
logical charge equal to the number of instantons. Thus
one is compelled to accept instantons as "objects"
which are present in YM theories and could lead to
physical effects. As these objects carry zero energy,
they are evidently some kind- of localized vacuum fluc-
tuation.

Instantons are solutions in Euclidean space-time, and
this means they have something to do with tunneling in
Minkowski space in the quantum YM theory (Im. agi-
nary-time-solutions of classical theories are usually
interpreted as real-time tunneling in the corresponding
quantized theory. ) The K-instanton solution is a vacuum
fluctuation with Ã units of a topological charge. What
can one conclude from this information' Evidently
there must exist an infirlity of topologically distinct
Minkowski vacua ~n) with topological charge n. One in-
stanton tunnels from ~n) to ~in+ 1), N instantons tunnel
to ~n+1g, an anti-instanton tunnels to ~n —1), and so on.
This is actually true; the topological vacua ~n) are easy
to construct classically. Thus the vacuum in a YM
theory is a great deal more complicated than one rea, -
lized a few years ago. It used to be thought that the YM
theory is based entirely on the e =0 perturbative vac-
uum (i.e., W„=O). Now we know that the YM vacuum
has topologically distinct sectors, and that instantons
tunnel between these, removing the degenera, cy tha. t
would otherwise be present. The true YM vacuum is
a superposition of the topological vacua, teeming with
instantons. These large vacuum fluctuations lead to
qualitatively new physics.

It has not been ea,sy to unravel the physical implica-
tions of the new and quite intricate YM vacuum. Some
aspects of the problem are partially understood. Qne
important result is that massless fermions cause sup-
pression of instanton tunneling, while massive fer mions
do not have this effect. Conversely, a massless ferm-
ion when placed in an instanton field becomes massive.
Therefore, instantons seem to be connected with quark
ma, ss generation and chiral symmetry breakdown —one
of the deep problems in hadron physics. Another deep
problem is quark confinement. Poiyakov (1975) was
the first to suggest that instantons, through their dis-
ordering influence, might be responsible for quark
confinement. [More precisely, by restoring the gauge
symmetry of the YM vacuum they might be responsible
for a phase transition from the massless (nonconfining)
to the massive (confining) phase of the YM theory. ]
This idea has in the meanwhile been abandoned, as
semiquantitative estimates indicate that instanton ef-
fects are not enough to confine quarks. Nevertheless,
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the situation with respect to confinement is still very
unclear, and instantons may really play a key role.
Many other possible physical effects of instantons have
also been suggested. %e do not want to list these here.
The point we do wish to emphasize is that "instanton
physics" is a very active and challenging field at pres-
ent. This will surely continue to be the case for some
time to come,

Another type of exact Euclidean YM solution has been
much discussed lately. These are the "meron" solutions
(de Alfaro, Fubini, and Furlan, 1976, 1977; Glimm and
Zaffe, 1978a). A meron is a pointlike concentration of
one-half unit of topological charge. Because of their
singular nature meron solutions have infinite action,
which makes their physical relevance somewhat obs-
cure. However, multimeron solutions have been shown
to exist (the only known explicit solutions describe two
merons or a meron and an antimeron). Therefore, one
is inclined to take them seriously. Unlike instanton
solutions, meron solutions are not self-dual.

It is known that merons correspond to tunneling be-
tween two different vacua in real time. These vacua
have topological charges n = 0 and n = —,', respectively.
A short digression is necessary to explain how meron
tunneling works.

Gribov (1977) has discovered an ambiguity in the Cou-
lomb gauge formulation of YM theory. He shows that
the gauge-fixing conditions ~,= 0, 8;~& = 0 do not
uniquely fix the potential ~„. Even the Coulomb gauge
vacuum is not unique. In addition to the perturbati. ve
vacuum W&

——0 there are (at least) two others W„4 0
which are nonsingular pure-gauge potentials. Re-
markably enough, these new Gribov vacua are loca-
lized; they have a size and position in three space (as
if they were some sort of object). Moreover, they
carry one-half unit of topological charge. Merons tun-
nel between the Gribov vacua and the ~& = 0 vacuum,
which has zero topological charge. Instantons on the
other hand, tunnel from one Gribov vacuum to the
other, but do not connect these with the ~& =0 vacuum.
Therefore it seems that merons may be necessary to
restore the gauge symmetry of the YM vacuum in the
Coulomb gauge. This is a hint that they may play a
vital role in the confinement problem.

Callen, Dashen, and Gross (1977, 1978a) have sug-
gested that an instanton consists of two merons, and
that instanton dissociation into meron pairs signals a
phase transition of the YM theory into the confining
phase. Instantons alone, they argue, cannot confine
quarks (at least not the dilute gas approximation where
semiclassical estimates can be made). But a plasma of
logarithmically interacting merons might be able to do
this. Such a plasma might generate a linear force be-
tween quarks. The arguments which lead to this result
are at best semiquantitative, however. Moreover, it
is not known whether instanton dissociation into merons
is a physically meaningful concept. A good deal more
has to be learned before we fully understand this con-
finement mechanism.

A rather more phenomenological statement of the ef-
fects of instantons and merons on quarks can be made
(e.g., Callen, Dashen, and Gross, 1978b), namely, that
a "bag" is formed which confines quarks by the follow-

ing mechanism. Normally, the YM vacuum seeths with
instantons and merons, for this is the state with lowest
energy. (Recall that instantons and merons reduce,
and perhaps eliminate, vacuum degeneracy by tunnel-
ing. Quantum mechanically this would be expected to
lower the energy. ) However, these topological objects
cannot exist where strong YM fields are present. (This
is the crucial observation in the present context. It has
to be proven. ) Inside hadrons there are certainly strong
YM fields (in QCD) because of the quark sources.
Therefore instantons and merons are expelled: A
hadron is a bubble of three-space in which no instantons
and merons "occur." This bubble cannot expand be-
cause this costs energy. Moreover, the quarks cannot
come apart because such a bubble cannot form about a
single quark.

By now the interest in classical YM theory has be-
come so widespread that many workers are involved
in the search for new solutions. At any time a com-
pletely new and unexpected type of YM solution might
be found that could change the direction in which the
subject is developing. Up to now (excepting the vortex
solution) only three really importa. nt types of solution
have been found: monopole, instanton, and meron.
These have largely determined the subject as it now
exists.

C. Contents of this review

In this paper the reader will find (a) a largely com-
plete review of the known classical solutions of SU(2)
gauge theories; (b) a discussion (where relevant) of
the physical properties of these solutions; and (c) an
extensive study of classical YM theory as a whole. To
make these statements more specific we mention here
some of the interesting work on classical YM theory
which has not been included:

(i) stringlike or vortex solutions;
(ii) considerations which involve fermions moving in

a classical gauge field, e.g. , a monopole field;
(iii) the classification of YM fields and potentials;
(iv) the geometrical interpretation of gauge fields;
(v) solutions of theories with gauge groups larger

than SU(2).
(vi) solutions with sources.

An adequate treatment of these topics would have
doubled the length of this article.

In one respect this article is substantially complete.
%e shall discuss nearly every known solution of a clas-
sical SU(2) YM theory (excepting the vortex solutions)
in some detail. The most important solutions (mono-
pole, instanton, and meron) have been mentioned in the
preceding subsection. Besides these there are many
others, which do not have any obvious physical signifi-
cance. We have included these for historical reasons
or for the sake of completeness. It has been our goal
to show clearly how each solution works —i.e., how it
satisfies the nonlinear YM equations of motion. If
there is more than one way to do this we usually choose
the easier. Throughout this article we shall pay close
attention to technical details. Ansatze for the YM po-
tential will play a very important role. The properties
of the most useful ansatze are studied in great detail.

Physical applications of classical YM theory begin
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with exact solutions. The physical properties of mono-
poles, instantons, and merons are particularly impor-
tant, and these will be examined in some detail. Not
all interesting calculations have been included, un-
fortunately, owing to natural limitations on the length
of this manuscript. (For example, the problem of
fermion motion in the field of a monopole has been
studied, and also the corresponding Euclidean problem
for instantons and merons. We do not report the results
of these calculations. ) As mentioned previously, the
main activity at present is in the Euclidean domain. In
Sec. VII we give an extensive introduction to this sub-
ject. Even here, however, a really complete review
of all the work on all the various conjectured or es-
tablished instanton effects was hardly feasible. There-
fore we have been somewhat selective in Sec. VII,
limiting our discussion largely to the aspects of instan-
ton physics which seem to be fairly well understood.
(Here one should perhaps read: "most familiar to the
author. ") In particular, with regard to instanton ef-
fects, we must apologize to authors whose work has not
been cited.

Classical YM theory can be studied independently of
exact solutions, of course. This is an interesting pur-
suit, because any results gained may lead to improve-
ments in the path-integral formulation of quantum YM
field theory. We do not report on the work in this di-
rection.

The structure of our review is evident from the Table
of Contents. Some technical points concerning Min-
kowski SU(2) YM theories are discussed in Sec. II. The
following three sections are devoted to Minkowski so-
lutions, which are, respectively, invariant under the
full SU(2) gauge group; (Sec. III) invariant under a local
U(1) subgroup; (Sec. IV) nongauge invariant (Sec. V).
(In the last category no very interesting solution is
known, but a number of nonexistence theorems are
available. ) In Sec. VI we discuss an important ansatz
for the Minkowski SU(2) gauge potential in terms of a
scalar field Q which must satisfy the Q' theory equa-
tion of motion. Section VII is an introduction to instan-
ton physics. There we encounter Euclidean solutions
for the first time. The known instanton and meron so-
lutions are studied in great detail, together with more
general aspects of Euclidean YM field theory. We
emphasize the role of topological charge and the tunnel-
ing interpretation of Euclidean solutions. Finally, in
the concluding section, we attempt to summarize the
present situation in classical YM theory.

There are nine Appendices. In these a large number
of mathematical details are discussed.

Several other reviews have appeared on the subject of
classical YM theory. The reader should be aware of the
following:

Jackiw (1977): review of soliton quantization including
monopoles; discussion of topics in instanton physics;

Jackiw, Rebbi, - and Nohl (1977): review of recent
developments in classical YM theory;

Goddard and Olive (1978): review of non-Abelian
monopole theory;

Callen, Dashen, and Gross (1978): physical applica-
tion of instanton and meron solutions;

Crewther (1978): topological charge in YM theory and

its consequences.
An extensive study of nonperturbative effects in QCD
with emphasis on hadronic physics has recently been
published (Shifman, Vainshtein, and Zakharov, 1979).

II. SOIVIE RESULTS IN CLASSICAL MINKOWSKI
YANG-MILLS THEORY

and the Higgs potential is

(2.4)

The label a = 1, 2, 8 is an SU(2) label and 2 is invariant
under local SU(2) transformations, with @, and W'„both
transforming like the adjoint representation.

In this classical theory there is, nevertheless, vio-
lation of local SU(2) gauge invariance. This is caused
by the Higgs potential U(@). The Higgs field must be
nonvanishing at spatial infinity in order that the po-
tential energy be zero there. Thus any physical solution
must satisfy

P, —(m/vZ)n, (r), n.n, =l, r (2.5)

This is like spontaneous symmetry breaking in the
quantum theory, where one gives the Higgs field a non-
zero vacuum expectation value (@,) 40. (By a,ssumption,

In this section we derive some technical results which
are useful (some of them are essential) for understand-
ing the Minkouski-sPace solutions in Sec. IV below.
(Explicit solutions will not be discussed here. The
reader who is not interested in full details can proceed
directly to Sec. III.) The most important Minkowski-
space solutions are the monopole and dyon solutions,
which have nonvanishing Higgs fields at infinity. In
a sense this behavior is the classical equivalent of
spontaneous symmetry breakdown in the quantum
theory —the Higgs fields explicitly break the local SU(2)
gauge symmetry. Moreover, the Higgs fields provide
the monopole and dyon solutions with their topological
quantum number. The first two subsections are de-
voted to these aspects. We see how the gauge sym-
metry gets broken by the Higgs field. Then we show
that for static solutions the time component ~0 of the
gauge potential can do the same thing. In both cases a
topological charge is involved. In subsection C the con-
cept of a self-dual gauge field is introduced and shown
to be equivalent to the Bogomol'ny condition. Also, we
give Bogomol'ny's original derivation of this condition,
which so nicely brings out its connection with energy
minima and topological charge. Then we turn to com-
plex SU(2) gauge fields. A number of interesting com-
plex solutions are known; however, their interpretation
is a problem. In subsection D some work of Wu and
Yang on this open question is reviewed.

A. Julia-Zee correspondence

The SU(2) gauge theory with a Higgs triplet is de-
fined by the Lagrangian

(2.1)

where

(2.2)

(2.8)
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Z, = --,'G'„„G~ --,'~(m'/~+W')',
gag p

p a

(2.6)

(2.7)

This is a pure YM theory with a local gauge symmetry
breaking potential. To minimize the potential energy
at infinity we require

W'- —m '/A. , (2 ~ 8)

This boundary condition plays essentially the same
role as does Eq. (2.5) in forcing physical solutions to
be noninvariant under SU(2) gauge transformations.
When m'-0, A. —0 with m'/A. &~ the gauge symmetry
breaking term in Eq. (2.6) vanishes. However, the
boundary condition (2.8) is only consistent with full
gauge invariance if m'/A. = 0.

The reason why we concern ourselves with the La-
grangian (2.6) and the boundary condition (2.8) is the
Julia —Zee correspondence. Julia and Zee (1975), in
their study of the dyon solution, observed that the gauge
potential component ~; enters the equations of motion
very much as a Higgs field does. In fact, for m'=0,
A = O, m'/A. &~ one can reinterpret W; as an imaginary
Higgs field i@, or conversely @, as an imaginary gauge
potential i~;. This is only true for static fields, how-
ever. To see why, consider an arbitrary gauge trans-
formation ~, under which the Higgs and gauge fields
transform like

there is vacuum at spatial infinity in the classical case. )
If @,4 0 at infinity then it necessarily selects a direction
n, in group space. This "breaks" local SU(2) gauge in-
variance (in the manifold of physical solutions) in the
sense that any solution that satisfies Eq. (2.5) cannot be
invariant under the full SU(2) gauge group. This solu-
tion will, however, be invariant under a U(1) subgroup
of the SU(2) gauge group. The vector n.,(r) determines
this subgroup. In the quantum theory, the vacuum ex-
pectation value (Q, ) w 0 similarly determines the un-
broken U(1) subgroup.

In the limit m '- 0, A. —0 with m'/A. &~ the Higgs po-
tential U(&f&) in Eq. (2.4) vanishes. In this limit the local
SU(2) gauge symmetry of the classical solution may or
may not be "restored. " It is restored if the limiting
value of m'/A. is zero, but not otherwise.

Besides the Lagrangian (2.1) we want to consider
another one:

Wo and ~',. w 0 . (2.11)

Then these two solutions are mathematically Ore sayyze
if

W' = jg' W'. = W". .0 ti& i i (2.12)

This is true for any m' and A.; thus it is true in the
limit m'-0, A. -0 with m'/A. &~ when the theory (2.6)
becomes the pure gauge theory. We now give two sim-
ple demonstrations of statement (2.12).

The first proof is to show that the two Lagrangians
corresponding to the two solutions are identical. The
potential terms are the same because W'= —@"+ W"
follows from Eq. (2.12). The kinetic terms are the
same because G';& =G,", and

G'. = B,W;+ ee,~,W~W) ———jD, @,' = —iDqgl,

so that
pp 1

~Gp, G, —~G],G, +~Go,.G,
= —'G "G'" —'D'Q'D—"Q'4 fj a 2 j a a

~ Gi~ GIP~ &DI yiDlp/I4 pu a 2 p a a '

Here we have used

(2.12)

B"G'„'„=ee, t [GI,"„W,'" —(DI Qs)Q,']

—W"x(m'/Z+ W" —@"),
B "D„'P,' = ee, (D'„P')W,'"

+ P,'X(m'/A. + W" —qb") .

(2.14)

(2.15)

For static fields satisfying Eq. (2.12) these equations
can be rewritten

B'G'' = ee b IG&'W' —(D @t)f']
—W;~(m'/~ —p" —W,')

B'Dg4' = «.a. (D)@f)W,'

+ g.'~(m'/~ —P"—W.') .

(2.16)

(2.17)

The static equa, tions of motion for the unprimed so-
lution are

B'Gu =ee,~IG;;W, +G;OW, ]

lgl —
Q GPG —Q

which only holds for static fields.
The second proof uses the equations of motion, which

for the primed solution are

W„- (gpW„~ ' —(j/e)(Bq(i))(u (2 9) —W;Z(m'/Z+ W'), (2.18)

Wo"=0; @,' and W&'WO; (2.10)

and a static solution of the pure YM theory (2.6) with
the form

where 2x 2 matrix notation is used (see Appendix A).
If u is time independent then Bo~ =0 and Q and Wo
transform in the same way. Therefore it is to be ex-
pected that Wo and Q will contribute to gauge-invariant
quantities (such as the Lagrangian) in much the same
way. For time-dependent fields this will not be the
case.

We now give a precise statement of the Julia-Zee
correspondence. Let us consider a static solution of
the theory (2.1) with the form

—W',Z(m'/z+ W') . (2.19)

Using Eq. (2.13) we see that Eqs. (2.16) and (2.17) are
identical with Eqs. (2.18) and (2.19), which completes
the proof.

B. Fields at infinity and topology

Static YM solutions may have nontrivial topological
properties if a group-nonsinglet field is nonvanishing
at infinity. Then the solution defines a map of the two-
sphere at infinity into some well defined manifold; and
in many cases this map is nontrivial. An elegant way
to analyze this problem —in. terms of homotopy
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groups —was first pointed out by Tyupkin, Fateev, and
Schwartz (1975) and Monastyrskii and Perelomov
(1975). We now review this analysis, trying to stress
the generality of the considerations involved. The
reader who is unfamiliar with homotopy groups will
find an elementary treatment in Appendix I.

Let us begin with the SU(2) case. Recall the boundary
condition (2.5) where the unit vector n, (r) depends on
direction. This unit vector defines a mapping of the
sphere at infinity S„onto the unit sphere S', in group
space,

n, (r): S„'-S', . (2.20)

The mapping may cover S& zero times, one time, or
any integral number of times. (Other possibilities can
be imagined, but they are not topologically different
from the ones just mentioned which have an integral
winding number. For example, if only the northern
hemisphere of S', gets covered, this is topologically
the same as the map with zero winding number. ) Thus
any map (2.20) is characterized by an integer n which
is sometimes called the "winding number. " Maps with
the same n are topologically equivalent, or homotopic,
to one another. (Homotopic maps are continuously de-
formable into each other. ) Maps with different n are
inequivalent. The existence of this equivalence relation
enables one to separate all maps (2.20) into equivalence
classes. Remarkably enough, these equivalence classes
themselves form the elements of a group, called the
second homotopy group, which in this case is (see Ap-
pendix I)

w, (S', ) =R. (2.21)

The elements of Z are the integers, i.e., the winding
number n. As every physical solution must satisfy the
boundary condition (2.5), we can also separate the mani-
fold of physical solutions into topologically distinct
classes, i.e. , solutions with the same winding number.
Later on, in Sec. IV, we shall seethatthiswindingnum-
ber or "topological charge" is the magnetic charge of
static solutions of the theory (2.1).

We have seen that physical solutions of the theory
(2.1) belong to topological classes. Within each class,
the solutions with lowest energy should be stable. If
this were not so, then when one solut"'on "decayed" into
another with, say, low'er n, the boundary condition
would have to change. However, this would entail a
discontinuous change in topology. One assumes that
this is somehow forbidden by an infinite energy bar-
rier. A better way to put it would be that a time-de-
pendent solution that interpolates between two solutions
with different n has infinite action. [To visualize this,
think of changing the n = 1 solution with n(x) =r into the
n =0 solution with n(r) =z.] Therefore, by introducing
a nonzero Higgs field at infinity, and thereby equipping
all physical solutions with maps S'- S', we have ar-
ranged that certain of these solutions are "topological-
ly" stable.

The preceding remarks concern the theory (2.1) with
a Higgs field. However, we know from the Julia-Zee
correspondence (2.12) that any static solution of the
theory (2.1) implies the existence of a, static solution
of the theory (2.6). If the Higgs field satisfies the

boundary condition (2.5) then in the pure YM theory
the corresponding boundary condition would be

lV; —i(rn/v Z)n, (r"), x-~ . (2.22)

Here topological equivalence is implied.
It may be taken for granted that all classical fields at

spatial infinity take values which belong to M,

(2.25)

for any solution with finite energy. This boundary con-
dition of course defines a mapping of the sphere at in-
finity into the manifold M,

$, (6, @): S (2.26)

Two such maps are either homotopic (i.e. , continuously
deformable into one another) or not. Thus all maps
(2.26) can be uniquely a,ssigned to equivalence classes.
These classes are the elements of the homotopy group
w, (M) (see Appendix I). If we are able to calculate
w, (M) then we will know quite a lot about the topology
of the classical solutions of the theory If w2(M) .=0 is
the trivial group then there can be no monopole solutions
of the theory in question because the elements of w, (M)
are labeled by the allowed monopole charges If w, (M).
+ 0 then monopolelike solutions may exist.

From Eq. (2.24) it follows that

It should be clear that static solutions which satisfy
this boundary condition have exactly the same topo-
logical structure as the solutions of the theory (2.1)
that we have been discussing up to now. Thus it is not

. really necessary to introduce Higgs fields to introduce
topology. Nevertheless, Higgs fields are the most con-
vincing way to do this, just as they provide the most
convincing way known at present to break the local
gauge symmetry in a YM theory.

The reader mill, no doubt, have recognized that the
homotopy group analysis of the simple example under
discussion is rather an extravagance. One could just
as well replace the key formula (2.21) with the primi-
tive concept of the winding number. This is because
a very simple mapping (S'-S') is involved. When one
goes on to study larger gauge groups it is obvious that
more complicated mappings S'-M will be encountered.
Usually it is rather difficult to grasp the topological
structure of these maps by merely inspecting them.
This is a problem, because the topological structure
of the map is closely related to the magnetic "charge"
of the classical solution, and therefore we want to
understand it. Fortunately, homotopy group theory is
available to help us.

Let us consider a YM theory with gauge group G
which is broken to a local subgroup H (in the quantum
theory) by some set of Higgs fields P, . This theory
will have a manifold M of constant vacuum solutions

M=(P, = V„iVq =0~&]&' fixed).

Since H is unbroken, the constant fields Q, = V, are in-
variant under the action of H (by assumption). Another
manifold whose elements are invariant under H (by
construction, in this case) is the coset space G/H.
These two manifolds are essentially the same

(2.24)
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s2(M) = m2(G/H) . (2.27) a a4 a ng+ ~a~. ~ma&.

Thus if we can calculate iT, (G/H) then we will know
whether monopole solutions can exist. This is easily
done for any simply connected group G, for there ex-
ists an identity

=--.(G:.+iG'..)(G: -iG: ).
The components of 6~„are

6n~ = ~(E„E„'+B„'B„')= Q

(2.33)

ii, (G/H) = ~,(H) . (2.28) ~oj = -&j .&' &: (2.3 5)

C. Self-duality and the Bogomol'ny condition

We shall call any Minkowski-space SU(2) gauge field
self dua/ if it sa-tisfies the condition

a a
Cgtj ~~V Volg~a ~fj V y

or equivalently,

(2.29)

Thus we only need ii, (H), which is known for all I ie
groups H (see Appendix I). If H is simply connected
[like SU(n), for example] then 7i, (H) =0 and there are no
monopole solutions. If II is not simply connected then
w, (H) is nontrivial, and there may be monopole solu-
tions. For the frequently occurring ca.se H = U(l) we
have ii, (H) =Z, and there should be monopole solutions
with a single integral charge. For H = U(l) U(l)
the monopoles would carry several different charges
because ii, (H) =ZEBZEB ~ ~ . . Equation (2.28) has to be
modified if G is not a simply connected group, but these
cases can also be easily handled.

Gn Gn (@ @ H ~) (2.3 7)

is minimized (or maximized) by a self-dual solution.
Within the framework of the theory (2.1) Bogomol'ny

(1976) introduced a condition which is closely analogous
to the self-dual condition in a pure YM theory. The
Bogomol'ny condition is

(2.38)

Any static solution of this equation with W'0=0 is a
solution of the equations of motion for the theory (2.1)
in the limit U(&P)- 0. The proof is simple.

All we need is the general correspondence (2.12)
between a solution of the type considered by Bogomol. 'ny
and a pure SU(2) gauge theory solution. From Eq.
(2.12) we find

E'„=-zD„@,,
and then the Bogomol'ny condition (2.38) can be
written

(2.36)

Obviously 6i„„=0for any field configuration with B„'
=+zE'„. Moreover, the Lagrangian

are the SU(2) "electric" and "magnetic" YM fields.
The factor z in this definition of self-dual. ity is un-
avoidabl. e because we are working in Minkowski space
where G~„=-O'„„. Clearly, in Minkowski space any
self-dual. field configuration contains complex fields.
(In Euclidean space E the factor i is absent and self-
dual fields can be real. )

Self-dual fields are interesting because they &u&-
matinal/y satisfy the equations of motion of the pure-
gauge theory. In the SU(2) case the relation

a vt"~„=ec,~,t"„„W,
is nothing more than an identity. For a self-dual field
this identity becomes the equation of motion for the
SU(2) gauge theory. Any potential W'„which leads to a
self-dual tensor 6'„„is therefore a solution of the equa-
tion of motion.

Qne can try to make use of this fact by searching for
solutions of the self-dual. equations, which are first
order, rather than trying to solve the second-order
equations of motion. Interesting solutions ean be found
in this way. But sel.f-duality is a very special property
which most solutions do not have. In the long run it
might be more rewarding to try to solve the equations
of motion directly.

Another comment: YM fields in any theory with an
explicit local gauge symmetry breaking term in the
Lagrangian cannot be self-dual. This statement is easy
to verify.

Any self-dual solution in Minkowski space has a vari-
is hing energy-momentum tens or

B„'=+zE„,
which is precisely the condition (2.30) for a self-dual
SU(2) gauge field. Q.E.D.

Now we give Bogomol. 'ny's derivation of condition
(2.38). This derivation has two important features.
It shows that (i) condition (2.38) minimizes the energy
of a static solution with W; =0, and (ii) that this
minimum energy is proportional. to the topological
charge of the solution.

The total energy is

E= d'x —,'O',-jG', j+,'-D, .Di .+U y

+ ~ojGoj+ ~DA"D8"]. (2.39)

i j &i jnDn a + & n~n+ (2.40)

Sn~n &i jn n[Gi j@n] &i jnGi j Dnf'a ' (2.41)

Ignoring possible singularities Gauss's theorem then
leads to

E = dQ ~c;j„y'y'„G;'j

+ d x —' gij —gij„D„, +U

The potential U(Q) vanishes in the limit A. —0, m'- 0,
m'/A. finite. In this limit the total energy is obviously

The last two terms are absent for a static solution with
W p 0 Dropping thes e terms we rewrite E in the form
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minimized by functions which satisfy the Bogomol'ny
condition (2.38). Then the energy is given by the first
term in Eq. (2.41), which is proportional to the topo-
logical charge of the solution.

This is not difficult to show. All we need is a suit-
able definition of the physical magnetic field at large
r, for example

Choosing the arbitrary angle 8 as follows:

sin8 =q/v'g'+q', cos 8 =g/&g'+q', (2.53)

E = (m/DA. )&g' + q' + s . (2.54)

Now suppose that a solution exists with s =0. Then

we obtain an interesting formula for the total energy,

= 1f3„—= s;i„G';;Q, . (2.43) E = (m/VA, ) Vg2+q2, (2.55)

/

(See Appendix E. For large r all definitions of the
electromagnetic field tensor become the same. ) The
first term in Eq. (2.42) can therefore be written

dQ g~'r„&«= = ~ ~ g; (2.44)

g -=dn [r'r„a„]„ (2.45)

E = d x 4 Gs~ —cos ~egg„D„~ + g Go„—sing„

+ U(p) + 2 cos 8a„J„+sin 8a„R„],

with J„as in Eq. (2.41) and

a„K„=a„[@,G', „]
= Gc„D„@,+ Q, [a„G',„—ee„,Gb, „W„'].

(2.46)

(2.47)

Here the square bracket is zero because of the equa-
tion of motion

a'G', =es, ,[G„„W,"—(D Q )Q, )

and the assumption Dc@b =0. Defining the physical.
electric field at large ~ by

where the boundary value Q =m/HA. of the Higgs field at
infinity has been used. If the integral (2.45) is finite,
then it is clearly equal to the magnetic charge of the
solution. As we shall see in Sec. IV, this magnetic
charge is proportional to a conserved topological.
charge.

A similar result can be established for static solu-
tions with nonzero Wc (Bogomol'ny, 1976; Coleman,
Parke, Neveu, and Sommerfield, 1977). One has to
assume that Wc and Q, are paral. lel in group space,
so that Dc@,=0. Then Eq. (2.39) can be rewritten

and the separate conservation of electric and magnetic
charge implies that this static solution is stable.

A stable solution with c =0 can only exist in the l-imit

U(Q) =0. The solution must also satisfy the first-
order equations

Gij c 8eiin n@a t

G', „=s in 8D„Q, ,

(2.56)

(2.57)

where tan 8=q/g. These equations are a generalization
of the Bogomol'ny condition (2.38). It is possible to
trivially satisfy the second condition (2.57) by assum-
ing that Wc and Q, are the same function up to a
constant:

W 2 = -sin 8$, .
This leaves Eq. (2.56), which can now be written

[gG'..] = -'e';.[qGli].

(2.58)

(2.59)

D. SU{2,C) gauge theory

Some general features of the problem of complex
YM gauge potential and fields have been discussed by
Wu and Yang (1975, 1976). These authors have shown
that a gauge theory with complex potential and gauge
group G is equivalent to another theory with &eel po-
tential. s whose gauge group is the complex extension of
G. The complex extension of G is the group whose
generators are L, and i L„where I, are the genera-
tors of G. The complex extension of SU(2) is the group
of matrices

u = exp[i &,(Q, +if,)/2],
where p, , g, are real functions. This group is
called SU(2, C). In general id' Wu&

' and the SU(2, C)
matrices are nonunitary. The generators of SU(2, C)
satisfy the commutation relations

we find

Jh

Ga (2.48) [2+ay 2ob] [2 2 Gay 2 Sob] = —z[zoay 2 Lob] —2 sabc oc/2,

(2.60)

where

(2.49)

(2.50)

Consider a complex SU(2) gauge potential

g ~ =u„+is~,
where

u~ = ReW'„; v'„= ImW~

(2.61)

E = (m /VX )(g cos 8 + q s in 8) + s, (2.51)

d & ~ G;z —cos 8c;~„D„,' + ~ G' „—s in OD

+ U(4)]. (2.52)

is the electric charge of the solution. Therefore the
total energy of the solution is

are real functions. The matrix form of the gauge po-
tential is

18'„=~0~&„=u„+v„ (2.63)

where

Qn = 2(ra@a q V n
= (1, /2)(7aV n . (2.64)

Now suppose that we interpret the ia, /2 as generators

Rev. Mod. Phys. , Vol. 51, No. 3, July 'l979



Alfred Actor: Classical solutions of SU(2) Yang-Mills theories

of SU(2, C). Then W„ in. Eq. (2.63) becomes the matrix
gauge potential for the gauge theory based on SU(2, C),
and the components of this potential are the real func-
tions u'„and v ~. Using this trick we have converted
a complex gauge potential into a real. one. The price
we have paid is the introduction of the noncompact
gauge group SU(2, C).

Returning to the SU(2) gauge theory we write down
the field strength tensor following from the complex
potential (2.61):

'„,= U„„+iV~„.
Here the real and imaginary parts of G~„are

(2.65)

(2.67)

are the equations of motion of the SU(2, C) gauge theory.
These statements are trivially verified with the help
of the SU(2, C) structure functions in Eq. (2.60).

There is a fundamental difference between the gauge
theories based on SU(2) and SU(2, C). The latter group
is noncompact, and this has important consequences.
Perhaps the most important one is that the energy in
the SU(2, C) theory is not positive definite. ~u and
Yang (1976) have explained how this comes about. To
construct 4, (9 z, . .. in a gauge theory one has to de-
fine a scalar product in group space. This amounts
to introducing a metric q,». For SU(2) the metric is
simply q, » =5,». But for SU(2, C) there is more free-
dom; the metric can be parametrized by a real angle

Let us introduce a two-component notation for the
SU(2, C) gauge theory:

gra )J Gg pv (2.68)

Then the metric in this theory can be written

icos 6 sin6 )la» 5a»

i -sin8 cos & )
[The proof of this statement is to show that gauge in-
variance under SU(2, C) transformations is consistent
with the metric (2.69) for arbitrary &.] The Lagrangian
constructed with this metric,

(2.69)

1 g pv& =-M4ubCI V~~

(2.70)

is SU(2, C) invariant. Comparing this Lagrangian with
the SU(2) Lagrangian calculated from the complex po-
tential (2.65) one finds immediately that

@[SU(2,C)] =Re(e-"X[SU(2)]j.
Similarly, for the SU(2, C) Hamiltonian one finds

3C[SU(2, C)] =Re(e ' X[SU(2)]j.

(2.71)

(2.72)

(2.66)

Now these real functions are the field strengths in the
SU(2, C) theory. Moreover, the SU(2) theory equations
of motion

This Hamiltonian is real, but clearly it is not positive
definite.

In Sec. V we show that static, real, finite-energy
solutions of the SU(2) gauge theory do not exist. How-
ever, complex solutions with these properties do exist.
An explicit example of such a complex solution due to
Hsu and Mac (1977) is discussed in Sec. IV. The Hsu-
Mac solution is self-dual. and therefore the total energy
is zero. Being complex, it can be reinterpreted as a
real solution of the SU(2, C) gauge theory. This so-
lution is an example of the general correspondence
(2.12) between pure SU(2) solutions and solutions
of the SU(2) gauge theory with a Higgs triplet. Equa-
tion (2.12) enables us to rephrase the nonexistence
theorem in Sec. V as follows: There exists no static,
finite-energy solution of the latter theory with imag-
inary Higgs field and real gauge fiel.d. Such a solution
wouM be difficult to interpret physically.

e~abc~pv ~c s (3.1)

which are invariant under the full SU(2) gauge group.
Quite a variety of such solutions are known: non-
Abelian plane waves, imbedded Abelian solutions, a
sourceless non-Abelian magnetic monopole solution,
a class of complex solutions (obtained from a certain
ansatz}, a real solution representing a Minkowski-
space meron-antimeron pair, and an el.liptic general-
ization of the meron-antimeron solution. These solu-
tions are al. l interesting from the mathematical or
historical viewpoint. Most of them have not found
physical applications, however. An exception is the
Wu-Yang monopole, which is the prototype of a non-
Abelian string-free magnetic monopole solution. The
physical meaning of the meron solutions is not yet
understood. In this section we shall discuss the mathe-
matical. properties of these various solutions, with
little mention of their possible physical applications.

A. Non-Abelian plane wave

A non-Abelian plane-wave solution of Eq. (3.1) has
been given by Coleman (1977b). Consider the wave
moving in the positive z direction with velocity v =c,
whose potential has the form

W' = TV' = 02

W', =-W; =x,E,(x —x,)+x,G, (x —x, ) . (3.2)

One can easily verify that the SU(2) field strengths are

~01 ~13 +c &

G~ =G2~ = -Gg,

'I

Given G'„, it is easy to see that Eq. (3.1) is satisfied,
and therefore Eq. (3.2) is indeed a, solution for arbi-
trary functions E, and G, . (The trivial generalization
of this solution to an Ã-parameter gauge group in-
volves 2N independent functions. ) Note that the plane-
wave solution (3.2) is essential. ly non-Abelian in nature.

III. SOLUTIONS WITH SU(2) GAUGE INVAR IANCE

This section is devoted to Minkowski-space solutions
of the equations of motion of the pure gauge theory
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Waves moving in different directions cannot be
superimposed. This is to be contrasted with imbedded
Abelian plane-wave solutions W~ =A., expih ~ x(A., =const)
which can be superimposed for fixed A,

B. Ikeda-Miyachi solution

The first explicit static solution of Eq. (3.1) was
found by Ikeda and Miyachi (1962). This solution can
be written in the form

W~ = 6,3(A/x+B), W; = 0, (3.3)

The field equations are trivially satisfied except for
one equation

a~G',
~ =5„&'(A./x+B) =0,

which is satisfied everywhere except y =0. All we have
needed up to this point is the antisymmetry of the SU(2)
coupling constants c,b, . But the coupling constants of
any Lie group are antisymmetric in the relevant two
indices, and therefore this result is generally valid.

For any gauge group one can make the ansatz

W'„=&,A.„, &, =const. (3.5)

This linearizes the field strengths and the equations
of motion,

G~, =A,,(a A., —a„A„), a'G'„„=0.

Thus any Abelian solution can be imbedded in a YM
potential.

The preceding discussion shows that any pure YM
theory has a static solution in which only the long-range
potential is excited. At this point it is natural to ask
if this long-range component is necessary'ly present in
all. static solutions. We shall answer this question in
some detail in See. V. Our conclusion is that, barring
quite extreme boundary conditions at infinity, there
will indeed be a long-range field component. This con-
clusion is not difficult to understand. Consider the
pure SU(2) theory equation of motion (3.1), which we
rewrite in the form

a"(a„W', —a„W'„)= ee, ~,[G„„W,"—~"(W„W„')]. (3.7)

At large e a derivative & is roughly equivalent to a
factor 1/w. Therefore, barring possible cancellations,
the equation of motion in the static ease looks s ome-
thing like

1 . 1—,(potential) —(potential)' + (potentia, 1)3,

which impl. ies

(potential) 1/r .
Assuming things are this simple, it is clear that not
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with A. and B constant. Other, gauge-equivalent forms
of this solution are given in the original. paper. The
potential (3.3) with B = 0 is essentially a static, point-
like Coulomb potential. .

We now verify the Ikeda-Miyachi solution (3.3). The
simple calculation involved shows that a solution of
this type can be found for any gauge group. From Eq.
(3.3) one finds the field strengths

(3.4)

all components of the potential can decrease exponen-
tially. In terms of gauge symmetry the equivalent
statement is that no solutions (with reasonable boundary
conditions) exist which correspond to completely
broken local SU(2) gauge invariance. There do exist
solutions which correspond to local SU(2) broken to
U(1), of course, and these solutions contain the ex-
pected l.ong-range potential.

One might be tempted to interpret a pointlike solu-
tion like (3.3) as an electric charge at rest. This so-
lution satisfies l.inear field equations, and it may look
as though an Abelian formalism ean be set up. But
this is not possible. To see why not, let us imagine
two of these charges separated by a great distance so
that they do not interact. The potentials associated
with these charges are W', ,„=A.", ,A, ,„, where ~', and
&,' are constant vectors in group space. The directions
of these vectors are completely arbitrary because of
gauge invariance. Now we bring one of the charges
near to the other one. If &', and ~,' are paral. lel. then
we stil. l have an Abelian problem with linear field
equations. But there is no reason why &', and ~,' should
be parallel since the individual charges are indifferent
to the directions of these vectors. If ~', and &,

' are not
parallel, then the sum W'~ =~;A.,„+~,'A.,„ is not an
exact solution of the equations of motion. As the
charges move together, the nonlinear terms in Eq.
(3.1) eventually become important and the solution
worsens. For very small separation, W'„ is meaning-
less as a solution.

The point of this discussion is to convince the reader
that even in this very simple case one cannot circum-
vent the essential. ly nonlinear nature of the problem.
Two sources of YM fieMs may experience a mutual
Coulomb interaction at large distances, but at small
distances the interaction is bound to be more eompl. i-
cated. This is true even if the sources are pointlike.

C. Wu-Yang solution

Let us now go on to discuss some other pointlike
solutions of the pure SU(2) theory. These solutions
are obtained by introducing the following ansatz [first
discovered by Wu and Yang, 1968, for Wo = 0; sub-
sequently extended by other authors (Julia and Zee,
1975; Hsu and Mac, 1977) to the case WOWQ],

eWo=ix, g(r)/r
eW'; = s„.„x„[1-h(r)]/r '. (3.8)

This ansatz reduces the SU(2) equations of motion to
the following coupled equations (see the discussion to
follow)

~ g" =2gh

r'h" =h(h' —1+g') . (3.9)

.Constant g .and h evidently imply unbroken local SU(2)
gauge invariance because TV'„ is a pointlike long-range
potential in this case.

There are constant solutions of Eqs. (3.9). Two of
them,

A =1, g =0 and h =-1, g=0,
are vacuum solutions with G'„„=0 (W~ =0 for the first
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h. =0, g =C =const. (3.10)

%hen h = 0 the remaining equation of motion g" = 0 has
the solution g = C+Dx where C and D are constants.
For nonz ero D the potential W 0 is nonvanishing at
infinity, W, —ir,D/e. However, this contribution to
H/ o is trivial. , as it can be removed by a gauge trans-
formation. Therefore, up to a gauge equivalence,
Eq. (3.10) is the only solution for h =0.

Let us now make a brief digression to bring the
theory (2.1) with the Higgs triplet into our discussion.
Equation (2.12) tells us that we can also interpret any
static solution of the pure SU(2) theory as a solution
of the larger theory (2.1), in a certain limit. Thus
Eq. (3.10) also gives us a pointlike solution of the lat-
ter theory. The relevant ansatz corresponding to Eq.
(3.8) is

one while for the second W'„ is pure gauge). The non-
trivial constant solution is

ponents of the gauge potential which are excited in the
solution. Another gauge, called the unitary gauge or
"string gauge, " can be introduced to clarify some of
these things. It is related to the former gauge by the
local SU(2) transformation

cos&2 e' sin&2

) -c' cic(C/2) ccc(C/C) j
which rotates the r = (8, P) direction in group space
(note that this direction is identified with the r direc-
tion in three-space) into the z-axis z = (0, 0). This
transformation is discontinuous along the negative
z axis, and therefore the pure-gauge term in the
transformed gauge potential is singular along this
axis, the singularity being the Dirac string (see Ap-
pendix D). The string gauge potentials A.'„obtained
from the ansatze (3.8) or (3.11)by the gauge transforma-
tion (3.14) are

eg, =r,g(r)/r', W', = 0,
eW'; = c„„r„[1—h(r)]/r (3.11)

A; or i q, = 6.,i g(r)/er

A.,' = -(1/2er)h(r)[Q cos@ + 8sing],
The equations of motion obtained from the Lagrangian
(2.1) are

&"G'„,= ee„,[G,.W", —(D„&j,)@.],
8 "D @,=ee, ,(D Q )W, +m2$, —A@,))))'.

The ansatz (3.11) reduces these equations to

r 'g" =g(2h' — mr'+ +'/e');
r ~h ~' —h (h2 1 ~g 2)

(3.12)

(3.13)

eW; =c„„r„W(r), e&P, =r,f(r).
The first equation in (3.12) (trivial for p. =.0) becomes,
for p =zp

s„„r„[W"+(4/r)W'+SW' —r'W'+ f'(1 —r'W)] =0,
while the second equation becomes

r, [f"+ (4/r )f ' + 4fW —2r fW + m f—Ar2f 3 j = 0 . .

Changing variables,

W= (1 —h)/r'2, f=g/r',
one easily obtains Eqs. (3.13).

Equations (3.8) and (3.11) define what is sometimes
called the radial or "no string" gauge. This gauge is
useful for the purpose of reducing the equations of
motion to the forms (3.9) and (3.13) that can then be
solved. However, it rather obscures certain important
aspects of-the solutions such as the number of com-

which coincide with Eqs. (3.9) when m' = 0, A. =0 as they
should. For nonzero nz', X there are no constant solu-
tions of Eqs. (3.13) (see Appendix H).

It is worthwhile going through the derivation of Eqs.
(3.9) and (3.13); this is one of the important calcula-
tions in classical YM theory. From Eq. (3.11) one finds
that G', ~

——0, Dog, = 0, and

eG';, = 2e„,W-+ e;,„r„r,W' —[e„„r&—s,,„r&jr„W '/r,
D;P, =5;,(1-r'W)f+r, r;(f '+rf W)/r,

where here we use the notation

A', = (i/2er)h(r)[-Q sing + icos@]; (3.15)

A. ', = -(1/2er) tan-,'8[j],
where 8 and Q are unit vectors associated with the
polar angles 8 and Q in three-space. A. '; is the familiar
Dirac string potential (Appendix D), and Af' are the
remaining two components of the SU(2) potential. These
components are essentially determined by the function
h(r) When .spontaneous symmetry breaking occurs
then h(r) is an exponential function and A~' are the
massive gauge field components. But A. ', depends
neither on h(r) nor g(r); it is determined entirely by
the form of the ansatz (3.8) and is always pointlike and
massless, regardless of whether the local SU(2) sym-

. metry is broken or not.
We return now to the pointlike solution (3.10) above,

which in the string gauge becomes

Ao or i&), =5„iC/er,
Ai~ =A2& =0

A', = -(1/2er) tan~8[/]; . (3.16)

With C =0 this is the original solution obtained by Wu
and Yang (1968), and in the form presented above it
evidently corresponds to a magnetic monopole. For
C 40 the solution can be interpreted as a dyon with
electric charge Q =iC/e in the pure SU(2) theory

D. Rosen's ansatz

Rosen (1972) introduced the ansatz

eW; = (Cxo, i Cxo, i )a; @/Q, W 0
= 0, (3.17)

Any static solution of this equation leads to a complex

where C is a constant and &p = Q(x) is a static function.
The SU(2) field strengths are easily found to be

(3.18)

The equations of motion (S.l) therefore reduce to
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solution of the YM theory.
A spherically symmetric solution of Eq. (3.19) is

y =a+b/r.
The nonzero gauge potentials are

eW', = -(Cx„iCx„i )(br; /r '(ar + b)),
and the corresponding field strengths are

G» = -i G» —— C-br; /er '(ar + b) .
Rosen's ansatz is successful (in the sense that it

drastically simplifies the YM equations of motion)
because G', , =0. This implies that W; in Eq. (3.17) is
a pure-gauge potential. It is easy to verify that

eWg = -2(e; co)co

where the gauge transformation is

» = -'(0+ I/@)+n a-.(4 —I/O),
n = i(Cx., iCx, i) .

(3.20)

(3.21)

But S'0=0 is not the corresponding time component of
the pure-gauge potential, and therefore the ansatz
(3.17) leads to nontrivial YM field configurations.

As an exercise, let us gauge-transform the potential
(3.1V) using the inverse of »,

(u '= a(@+IA ) —n ~ o' ,'(y —1-/y),

to obtain the equivalent ansatz

(3.22)

W', =O, W', =O, W', =-iW', =-(C/2e)(@'- I). (3.23)

The cor r esponding fie ld s tr engths ar e

is also a useful Minkowski version of this ansatz,
namely

elV = ——A.a Xa
0 r Q 0

a -+n xx x,x; 1
eWS elaa 2 ( + 4.) + '.'&i + t'ai 2r r r

(3.27)

where the four ansatz functions depend on t and r.
This ansatz is useful for finding real, time-dependent
rotationally symmetric YM solutions. The equations
of motion following from (3.27) are

eo(r '&,~) = 2(4'iD&42 —42Di4'~)

e, (r'&., ) =2(A,D.4. —.A,D.4,),
r '(DQ. -D,D, )4. = 4.(I —0,' —4.'),

where

(3.28)

» =- exp[-,'if(r, t)r a]. (3.3 0)

I ~„=—~„A.„—~,A.~,
D~4" =—a~4" + &.»~4'~

with indices p. , v taking the values 0 and 1 and co=a/exo,
&, =&/&r. Notation (3.29) emphasizes the remarkable
property of Witten's ansatz, that it reduces the SU(2)
problem to an Abelian Higgs model problem in two
space-time dimensions. To show what is meant by this
statement let us consider local SU(2) gauge transforma-
tions of the form

G', , =0, G =0, G', = iG'; =-(C/e)B, Q, (3.24)
Under this gauge transformation the ansatz functions
transform as follows:

and one easily finds again the equation of motion &'Q
=0

E. Q4 ansatz

In Sec. VI we shall discuss an ansatz due to 't Hooft
(1976a, b, c), Corrigan and Fairlie (1977), and
Wilczek (1977) which, like Rosen's ansatz above, is
complex and involves one unknown scalar function.
It is

(3.31)

Let us use this ansatz to find a real, nonsingular YM
solution with finite energy and action (Actor, 1978c).
Set A.„=o and Q, =0 so that the equation of motion re-
maining in (3.28) is

eWO =+is, Q/Q, eW'; =e;,„8„@/@*i5„&op/'p. (3.25)

This W'„satisfies the YM equations of motion if @
satisfies

(3.26)

r'(e.e, —e, e, )y, = y, (1 —y,').
A solution of this equation is

@,=+ (1/2 vy2)(1+x'), y' = —,'(1+x')'+r'.
The corresponding potential is

(3.32)

where & is an arbitrary constant. In particular, we can
choose A. =0, and then if Q is time independent it must
satisfy the condition (3.19) in Rosen's ansatz. (In this
case, the two ansatze must be gauge equivalent. )
Clearly we can obtain a large class of complex Min-
kowski YM solutions from the ansatz (3.25). All
harmonic functions (i.e., solutions of Q =0) provide
us with YM solutions, for example. There also exist
elliptic solutions of Eq. (3.26) which lead to elliptic
YM solutions. (See Sec. VI for more details. )

F. Witten's ansatz

In Sec. VII we discuss an ansatz for the Euclidean
space-time gauge potential due to Witten (19VV). There
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eW', =0, eW', =c;,„(x„/r')[I+ (1+x')/2'']. (3.33)

f=+ tan '[2r/(1+x')],
s inf = + r/MX' cosf = -@,= (1+x')/2 My'

At r =0 either 8'& vanishes or it becomes pure gauge,

eW; = c;,„2x„/r' =.-i Tr[0,(e;(u)(u '],
a=co =-0' r1

so there is no singularity at r=0.
The solution (3.33) is a gauge-transformed version

of a well known solution due to de Alfaro, Fubini, and
Furlan (1976). Choosing + = —in Eq. (3.33) we perform
the gauge transformation (3.31) with
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and obtain new ansatz functions

Ao = + rx, /y', A.,' = + (1/2y') (1 + x', +r '),
@l =+ (r/2y')(1+x'), 4.' =-I+r' jy'.

The new gauge potential is

eW; = (1/y') [~x~,],
eW'; = (1/y')[e;, „x„s5„2(1+x')a x,x, ] . (3.35)

so that the (Minkowski) solutions he finds are neces-
sarily complex. It turns out to be possible to find
SU(2) gauge symmetry breaking solutions in this way.
All the solutions found by Ju are singular at r =0 ex-
cept for the Prasad-Sommerfield-Bogomol'ny solution
which we discuss in the following section. In fact,
Ju's work provides a nice demonstration of the unique-
ness of the latter solution.

This solution has been found by several different
methods, as we discuss in Sec. VI. It is the continua-
tion to Minkowski space of the meron-antimeron so-
lution in Euclidean space-time (de Alfaro, Fubini,
and Furlan, 1977).

A more general (elliptic) solution can a, lso be ob-
tained from ansatz (3.27). Choose the ansatz functions
to be (Actor, 1978c)

sinf, P, = -cosf, (3.36)

with f as above. Here E{u) is an elliptic function which
satisfies E"+ aE+ bE' = 0 where a and b are constants
(see Appendix F). The argument u in Eq. (3.36) is
u =tan '[2x,/(1 —x')]. It is not difficult to verify that
the equations of motion (3.28) are satisfied by the
ansatz (3.36). (Note that u = f=0, au ~ af=0,
au ~ au = -af &f = 1/y' where the notation is two dimen-
sional. ) The Abelian gauge field strength is

1=+ —-f-2b E' uy' a (3.37)

e = 1 + (-b ja)' 'E(u M2/a ) .
This elliptic function satisfies the equation

e" +2e(1 —z)(2 —e) =0.

(3.39)

The Ansatz functions (3.38) lead to the gauge potential
(3.35) multiplied by e. This real elliptic solution was
first given by iuscher (1977) and Schecter (1977).

We have not yet specified E. Two real, nonsingular
solutions are obtained from E=sn, cn:

2k' " '~' u H2e=l+ 1, sn &,, k),
2k" " ( u&2E;=1*.

&
„col~ +, , k') .

(3.40)

In (3.40), e- 1 in the limit k- 0 and we recover the
de Alfaro-Fubini-Furlan solution (3.35). In (3.41),

0 or 2 when k- 0; both of these are vacuum solu-
tions.

Ju (1978) has used Ansatz (3.27) to search for stattc
YM solutions. He imposes the condition of self-duality,

Gauge-transforming with f we obtain new ansatz func-
tions

A. '„=-ca~f, Q,
' =-e sinf cos f, 1+ Q,' = r. sin'f,

(3.38)

IV. SOLUTIONS WITH U{1)GAUGE INVARIANCE

In this section we examine classical solutions which
are invariant under a U(1) subgroup of the local SU(2)
gauge group. Such solutions have one long-range com-
ponent, corresponding to the unbroken U(1) gauge
group, with the remaining YM field components being
short range. The famous 't Hooft-Polyakov monopole
solution belongs to this category. In subsection B we
devote many pages to the study of the 't Hooft-Polyakov
monopole and its generalization, the Julia-Zee dyon.
These solutions have several interesting properties:
They are topological solitons, carry string-free mag-
netic charge, etc. One aspect that we want to discuss
separately is the analogy between the Higgs mechanism
in quantized YM theory and the corresponding "classi-
cal Higgs mechanism" that is used to limit the gauge
symmetry of the monopole and dyon solutions to U(1).
Subsection A is devoted to this analogy. In subsection
B we study the individual solutions.

A. The Higgs mechanism in classical and quantum field
theory

Nielson and Oleson (1973) were the first to introduce
a Higgs-like mechanism into classical YM theory.
Everyone knows what this is in the quantum theory.
A Higgs potential "spontaneously" breaks the local
gauge invariance by inducing an asymmetry in the
physical vacuum. Some neutral Higgs fields @, get
nonzero vacuum expectation values (P,) 40. These
constants (Q,) are invariant under a definite subgroup
II of the full gauge group Q, but not under G itself.
When (Q,) is subtracted from Q, to make the Higgs
fields Q, physical. (Q,' =Q, —(@,)), and the YM theory
is then rewritten in terms of these physical fields &P,',
it turns out that certain components of the gauge poten-
tial W„become massive (Higgs, 1964). These compo-
nents are determined uniquely by the Higgs fieM-gauge
field coupling. All. the other components of W'~ remain
massless. (The number of mass less components
equals the number of generators of the invariance sub-
group H of the vacuum solution. ) Moreover, the
charged Higgs fields Q, with zero vacuum expectation
value (@„)=0 disappear from the theory. These fields
get absorbed by the massive gauge fields, the latter
thereby acquiring their extra degree of freedom. We
now discuss the parallel situation in classical YM
theory.

Within the context of classical field theory it is
natural to identify the vacuum with the two-sphere
at spatial infinity. Therefore the Higgs field should
be nonzero on this sphere. One introduces a Higgs
potential, e.g. , (m'/A. —p')', and requires that it vanish
in the limit r- ~ like O(r ~). Thus Q2 —m'/A. -O(l/r')
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e@.—pn. (r),
eW f- e,~,[a~n, (r)]n, (r),
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(4.2)

(4.2)

as r-~. This amounts to the introduction of a bounda-
ry condition at infinity

P, —(m/HA. )n, (8, @)+O(1/r), r (4.1)

where n, (6, P) is a unit vector. As we have discussed
in Sec. II.B, such a boundary condition provides the
classical solutions of the theory with a definite topo-
logical character. (For example, the monopole solu-
tions correspond to the mapping of a sphere onto a
sphere. ) There seems to be nothing in the quantum
theory which is directly analogous to this topological
aspect of the classical theory. Nevertheless we can
draw an analogy between the expectation value {P,) 40
in quantum field theory and the nonzero value (4.1) at
infinity of @, in the classical theory In. both cases the
"vacuum expectation value" is not invariant under the
full gauge group G, but only under a subgroup H~ G.
In the classical. case an element A~& is a l.ocal gauge
transformation which does not change the unit vector
n. (~, 0).

I et us turn to gauge symmetry breakdown. In the
quantum theory this is manifested by certain gauge
field components becoming massive. The same thing
happens in the classical theory: these components of
W'„also become massive, i.e., they fall off exponen-
tially in r like exp(-Mr), where M is the "mass" of
the component in question. The other components (one
for each generator of H) remain massless, just as in
the quantum theory. All finj.te-energy sol.utions will.
have this behavior. (This statement is the classical
equivalent of the quantum field-theoretic statement
that fields become massive. ) In known solutions like
the monopol, e and dyon one finds the short-range com-
ponents explicitly. Their presence in the general case
can be inferred from the equations of motion. At
large r these equations can be simplified by substitut-
ing the boundary value (4.1). The resulting equations
will only have solutions if particular components of
W'„are exactly zero (i.e., they vanish faster than any
power r ") These .components are the massive ones.
Other components of W'„need only vanish like 1/r and
they are, of course, massless.

Quantum-mechanically, the "charged" Higgs fields
(those whose initial vacuum expectation values are
necessarily zero), do not appear in the final theory.
Classically, the same thing happens: there are no
charged Higgs fields in classical solutions. This is an
automatic consequence of the way in which one defines
the "neutral" direction in group space. In the SU(2)
example to follow we show expl. icitly how this works.

The Higgs mechanism provides the surviving physi-
cal Higgs field @,' with a mass. Thus one would expect
that P,' will also decrease exponentially at large r in a
classical solution. This is indeed the case in the
monopole and dyon solutions studied below.

Let us return to the SU(2) theory (2.1) and study in
more detail the workings of the classical Higgs mech-
anism. We consider a hypothetical static solution with
W, = 0 and nonzero W„@„assuming the r-~ be-
havior

where P= em/vX and n, (r) is a unit vector. For this
solution Dog, = 0, Go, =— 0, while for large r

eD; Q, —P[a;n, + e,~,s~~,n,n, (&;n~)]

=Pn, n„&;n~ =0,
eG';; —O(l/r ') . (4.4)

Equation (4.2) should be regarded as a boundary con-
dition which determines the behavior (4.3) of the gauge
potential Wq. Indeed, if Wq had any other behavior
for r- ~ [except for a possible term A;(r)n, (r) that we
ignore] then the covariant derivative D, @,would be
O(1/r) and the energy would diverge.

As we have mentioned several times previously, the
boundary condition (4.2) insures that any finite-energy
solution is noninvariant under the SU{2) gauge group.
However, there will be a local U(1) invarianee group
of this solution. To make this explicit we consider a
local SU(2) transformation with the form

(u = exp[ if(x)e,P.(x)], (4.5)

where

+u = 'PaW~ ~ (4.7)

Under a transformation (4.5) one can easily verify
(using formulas in Appendix A) that A„ transforms as
an Abelian gauge potential should:

A~ -A„+(1/2e)& J'.
The two components of 8"'„orthogonal to A.„are

(4.9)

where the unit vectors e', , and e3 =Q, (r) form an
orthonormal basis in group space. Under a transfor-
mation (4.5) one can show, using results in Appendix
A, that t/'„' transform like a two-dimensional repre-
sentation of the local U(l) gauge group,

(V&) -& f cosfsinf ) (V&)
I V'„ f q-sinfcosf j (Vi~ j

At large r it is easy to show that the potentials
A.; and V&' behave lake

A.;-0,
and

Vs e2gsng p +$ eggg&g ~

(4.10)

(4.11)

(4.12)

We see that A. ; vanishes faster than any power r "
while V&" is O(l/r). This seems to contradict our
claim that A. is the gauge potential associated with the
unbroken U(1) gauge group; the long-range component

(4.6)

is a unit vector and f(x) is any function. For a given
@, the set of transformations (4.5) closes to form a
U(1) subgroup of the SU(2) gauge. This group differs
from point to point in space. At infinity the boundary
condition (4.2) is unchanged by the U(l) subgroup. By
definition, this is the invariance gauge group of the
solution in question.

The Abelian gauge potential associated with the local
U(1) gauge group (4.5) is
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of the potential. is evidently in W,"and not in A.;.
Curiously, this apparent contradiction is a gauge arti-
fact. The boundary condition {4.2) determines a rather
unusual gauge in which the topology of the solution is
made explicit (i.e., the map S'-S'). [A good name for
this gauge is the topological gauge. Sometimes it is
called the no-string gauge (see Sec. III.C).] In this
topological gauge the Abelian gauge potential is es-
sentially zero. (Note that for small x there is no way
to distinguish the massless and massive components
of the potential, so it does not matter how A. ~ behaves
in this region. ) Hence the long-range part of the so-
lution is necessarily in the components V' . How can
one show this explicitly'P It can be done by a gauge
transformation to a more conventional. gauge, where
A; and V&' have the behavior at large y that one ex-
pects. A good example was given in Sec. III.C where
n, (x) =x, in the topological. or no-string gauge. After
the gauge transformation (3.14) to the string gauge,
where n, (x) =6„, the gauge potential has the form (3.15)
with the expected behavior as x- ~. Note that this
gauge transformation changes the topology of the solu-
tion. Also it mixes massless and massive components
of the potential. This explains how the I/x term comes
to be in V", 2 in Eq. (4.12).

%hat about the "charged" Higgs fields, which are
supposed to disappear into the massive components of
the gauge potential'P These components are identically
zero, as they should be. By definition, the Abelian
gauge potential A. ~ = P,W~ determines the "neutral" di-
rection in group space, namely @,. Thus, trivially,
Q, has no charged components.

A final comment concerns the boundary condition
(4.2). Clearly it is necessary to specify the function
n, (j) before trying to solve the equations of motion.
This function is a distinct field variable which has to
be distinguished from W~ and Q, . Therefore, by im-
posing nonzero boundary conditions at infinity, one
introduces additional. fiel.d variabl. es into the problem.
Several authors (Gervais, Sakita, and Wadia, 1976;
Christ, Guth, and Weinberg, 1976; Wadia, 1977) have
shown how these new variables ean be included in the
classical canonical. formalism.

B. Solutions

Now we come to the interesting solutions of SU(2)
gauge theories which incorporate SU(2) gauge sym-
metry breakdown, with an unbroken residual U(l)
gRuge group.

The first expl. icit exampl. e of a YM gauge theory
solution with short-range potentials was given by
Treat (1967). This paper, which is not very often re-
ferred to, contains results which are really quite
similar to the monopole-type solutions discovered sev-
eral years later. In particular, using a specific
ansatz, Treat was able to find an explicit solution of a
pure YM theory with local. symmetry breaking. In this
solution Wo is nonvanishing at infinity, aod the gauge
potential has one long-range Rnd two short-range com-
ponents. [One should compare this solution with the

eW', =5„G(r),
eW; = b.,n,.(r)E(r), (4.13)

where n; (r) is a unit vector that we do not yet specify.
The field strengths are

eG', = -5,~~;5 + 5,3n, QE,
eG', , = 5.,[~, (n, E) —S,(n, E)]. (4.14)

This ansatz is successful in simplifying the SU(2) equa-
tions of motion because G';, and 8"; are parallel in
group space. The equations of motion are easily shown
to be

(4.15)

—(n ~ V)GE = (n ~ VG)E,

S,[S,(n, E) —S,. (n, E)] =n, G'E.

(4.16)

(4.17)

For n, Treat chooses the unit vector Q in spherical
pol.ar coordinates. The functions I" and G depend on
(x, &) but not on Q. Then the second equation of motion
(4.16) is trivially satisfied. Moreover, the Q compo-
nent of the third equation (4.17) is

V'E = [I/x ' sin' & —G'] E, (4.18)

while the r and 6 components are trivially satisfied.
(Recallthat V.

&P =0, VQ = Q/r sin0, V'Q =0 and V'Q=-Q/
sin'8. ) Any solution of this type is necessarily &

dependent.
Already from Eq. (4.15) we can see that E must be

short range. Assume that G-A. /x for y- ~. Then
since V2(l/r) =0 (r 4 0) is follows that E falls off
faster than any power of x, that is to say, exponential. -
ly. Thus, for any solution obtained from the ansatz
{4.13), the mere assumption that Wo is a Coulomb po-
tential forces W'; to be a short. -range potential. .

2. Prasad-Sommerfield-Bogomol'ny solution

Next we discuss the Prasad-Sommerfield-
Bogomol'ny solution, which we shall first write down
as a solution of the pure SU(2) gauge theory. Hsu and
Mac (1977) discovered the solution in this form. We
return to the ansate (3.8) leading to the equations of
motion (3.9). An explicit solution of the latter is
(Prasad and Sommerfield, 1975; Bogomoi'ny, 1976)

Hsu-Mac solution of the pure SU(2) theory (see below). ]
It is more complicated than the known monopole solu-
tions becRuse Its tw'0 basic funet1ons depend on ~ Rs
well. Rs on y. %e shall not go into the details of this
solution because it cannot be realized within a theory
whose gauge group is smaller than SU(3), and there-
fore it falls outside the scope of this article.

Treat also introduced a different ansatz which can be
realized within the SU(2) framework. He was not able
to find an explicit solution using this ansatz, but he
could demonstrate the existence of short-range poten-
tials in any solution (of the type considered) which has
a long-range component. For the sake of comparison
with later work we now briefly review Treat's results.

A slightly generalized version of Treat's SU(2) ansatz
ls
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A(r) = Pr/sinhPr,

g(r) = -1+Pr coshPr/sinhPr, (4.19)

W', =0, y, =r,g(r)/er',
W',. = z.,„r„[l h—(r)]/er'. (4.22)

h(r) =+ pr/sinh(pr+ e),

g (r) = -1+Pr cosh(Pr+ e)/sinh(Pr+ e), (4.21)

where E is an arbitrary constant. Equations (3.9) are
satisfied, and this solutio'n is self-dual. The large-r
behavior is still given by Eq. (4.20) above. However,
for Ex 0 the solution (4.21) is not regular at the origin:
h = 0 and g = -1 at r = 0 and therefore the potentials
(3.8) have 1/r singularities there. Note that in the
limit e- ~ the solution (4.21) becomes h- O, g —-1+Pr
which is a solution already encountered in Sec. III.

3. 't Hooft-Polyakov monopole

Now we come to the famous 't Hooft-Polyakov mono-
pole solution. 't Hooft (1974) and Polyakov (1975) in-
dependently discovered this solution of the equations
of motion (3.13) for nonzero m2 and A.. These equations
follow from the ansatz (3.11) which we give again
here:

as the reader can ea'sily verify. P is an arbitrary
constant here.

For p a 0 the solution (4.19) corresponds to broken
local SU(2) symmetry because

h —Pre ", g —Pr, i @,= W 0- r, i P/e,

(4.20)

Thus P is the mass of the two YM field components
which acquire a mass through the local gauge sym-
metry breaking. These components are given explicitly
in the string gauge by Eq. (3.15). When P 0 we see
that A- l,g- 0, and the solution (4.19) becomes the
vacuum solution W' =0. For P & 0 the solution (4.19)
is regular at r =0 (h =1 and g =0 there). This solution
has topological charge n = 1, as we see from the
boundary condition Wo=r", (i p/e) at r =~. Furthermore,
the solution in the Hsu-Mac form (4.19) is self-dual
in the sense of Eqs. (2.29) and (2.30). This is discussed
in Appendix E.

In the spirit of Eq. (2.12) we can reinterpret the so-
lution above as a solution of the SU(2) theory with a
Higgs triplet. The relevantansatz is (3.12), and this
is the form in which the solution was originally found
by Prasad and Sommerfield (1975). The equations of
motion (3.13) are satisfied when m' =0, A. =0 but not
otherwise. We recall that the Bogomol'ny condition
(2.38) corresponds to self-duality in the pure SU(2)
theory. As the solution (4.19) is self-dual, it also
satisfies condition (2.38). Bogomol'ny independently
found the solution by- impos ing this condition.

Bogomol'ny's derivation shows that the energy of the
solution (4.19) is less than the energy of any other
solution obtained from the ansatz (3.12). Moreover,
this minimum energy is proportional to the topological
charge of the solution. We have already discussed
these points in Sec. II.C.

Protogenov (1977) also rederived the solution by
solving the self-duality conditions (2.29). Moreover,
he noticed the following generalizations of it,

The important properties of the solution are
(1) W~ and &P, are nowhere singular,
(2) the long-range component in the solution corre-

sponds to the electromagnetic field of a static mag-
netic monopole,

(3) the solution has finite energy and is believed to
be stabl. e,

(4) within a class of ansatze more general than the
one in Eq. (4.22) above, the solution is unique.

Unfortunately, the solution cannot be given in closed
form when m' and A. are nonzero (we discuss some of
the reasons for this in Appendix G), but it can be
obtained numerically. In the limit m —0, A. —0 with
m'/A. fixed it becomes the Prasad-Sommerfield solu-
tion (4.19) above. The boundary conditions satisfied
by the solution at large r are (see Appendix G)

QO

h(r) A(m—, A. , e)re ~", p= [em/vX]'~'—
g(r)- (me/~A. )r+D(m, X, e)e

W;. —s„.„r„/er ',
y. —r.[(m/R~ ) + (D/er)e ~ ""]

(4.23)

(4.24)

(4.25)

(4.26)

From Eqs. (4.27)-(4.29) we see that the energy density
e,o is O(1/r4) at large r and therefore this contribution
to the total energy is finite. The massive components
of the gauge potential fall off like e ". Roughly
speaking, these massive components cannot penetrate
into the region beyond r-1/P where the Higgs field
takes its constant asymptotic value. The long-range
component of course penetrates the Higgs field without
diff iculty.

The boundary conditions at small r are (see Appendix
G)

r-0:
h(r) —1+eB(m, A. , e)r',
g(r)- eC(m, &, e)r',
W'; —-c„„r„B(m,A. , e),

@,—C(m, A. , e)r, .

(4.30)

(4.31)

(4.32)

(4.33)

Here J9 and C are constants. The main characteristic
at small r is that all functions are nonsingular:
and W'; vanish, while

U(y) - m'/4~,

G';; —e „q2P .
(4.3 4)

(4.35)

[Itis interesting to note that one can reinterpret the
't Hooft-Polyakov monopole solution as a solution of the
pure YM theory (2.6) with nonzero m' and A.. Equation

A. and D are constant. The main characteristics of the
solution at large r are

(4 27)

(4.28)

(4.29)
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1 g 1 1
Eav = . QaGvv 3 ZabakaDv@~Dv@a

&P e
(4.36)

be identified with the electromagnetic field tensor.
This tensor can also be written in a more transparent
form (Arafune, Freund, and Goebels, 1975):

Il'„, = a A„—a,A„—(1/e)e, ,(f),a

where

(4.3 7)

(2.12) provides the necessary connection. ]
Because of its importance we shall discuss this so-

lution in considerable detail. Certain technical points
are rel. egated to Appendices D, E, G, and I.

First of all we show why this solution has a natural
interpretation as a monpole. 't Hooft and Polyakov
demonstrated this in different ways. 't Hooft's ap-
proach was to search for a suitable definition of the
electromagnetic field within the theory (2.1). This
definition must be invariant under SU(2) gauge trans-
formations for obvious reasons. 't Hooft proposed that
the tensor

obtaining the potentials (3.15) appropriate for this
gauge. Since the function h(r) is practically zero
everywhere except near r =0, only the Dirac string
potential,

A. '; = -(1/2er) tanz 8[/];, (4.42)

2= 2a~p a" (jb —U(Q),

U(y) = —,'X(m'/Z —q')'. (4.43)

Making the ansatz

remains important when one leaves the vicinity of the
monopole. As we discuss in Appendix D, the object
corresponding to this potential is a magnetic monopole
at rest with magnetic charge 1/e and no electric
charge.

Next we want to show why the monopole has finite
energy. We follow Polyakov's discussion of this point
because it nicely emphasizes the different roles played
by the gauge and Higgs fields.

Let us consider a Higgs triplet theory with no gauge
field:

x„-=j.w'. , 4.=-y./@. (4.3 8)
y, =r. P(r)/r (4.44)

Here A.„ is the massless component of the gauge poten-
tial Wv. For the ansatz (3.12) one easily verifies that
A„=O (in the no-string gauge the massless potentiai
isidentically zero). Also, Q, =r, and so

Eo; =0,
E;, =-(1/e)s„,r, a;r",a;r",

= -(1/e) z,„r,/r. '
(4.39)

(see Appendix E). This is the electromagnetic field of
a point magnetic monopol. e at rest with magnetic charge

g =1/e. (4.40)

Now the minimum magnetic charge allowed Qy the
Dirac quantization condition (see Appendix D) is
g = 1/2e (e is clearly the basic unit of electric charge
in the theory under discussion). The 't Hooft-Polyakov
monopole has twice the minimum charge.

According to 't Hooft's definition the electromagnetic
field tensor depends only on P, in the no-string gauge.
In the string gauge things are reversed. There
&p, =d, a and the Higgs term in Eq. (4.37) is zero. The
massless component of the gauge potential is A.„=W'„
and

(4.41}

In quantum field theory one usually calls this the
unitary gauge.

In Appendix E we discuss 't Hooft's electromagnetic
tensor in more detail. Its definition is, perhaps,
somewhat too singular, and alternative definitions are
possible. However, in spite of its singular nature, it
is a good definition which neatly separates the long-
range part of the solution from the rest. Also, it
emphasizes the role played by the Higgs field boundary
condition at infinity in determining the long-range
potential and the unbroken local U(1) gauge group as-
sociated with the solution.

Polyakov used the following, very direct, approach.
He gauge-transformed his solution to the string gauge,

for the Higgs field one obtains the equation of motion

P" + (2/r)P' —(2/'r ')0+ m'0 —&P' = 0. (4.45)

This equation has a solution (of course, we cannot give
a closed expression for it) with the behavior

(m/PA. )(1 —1/m r2+ ~ ~ ~ ), r
Q- r x const, r 0. -

(4.46)

(4.47)

Because the nonleading term in Eq. (4.46) is O(1/r'),
the potential energy density U(Q) is O(1/ra) at large r
and therefore the potential energy term is not, divergent
at infinity. However, the kinetic energy term is di-
vergent there. From Eq. (4.44) we find

vy. = yv(r. /r)+r. ry /r',
which leads to a term

Q'V(r, /r) ~ V(r, /r) —(3m' /D)(1 r/')

(4.48)

(4.49)

in the energy integral. This term is linearly divergent.
The difficulty here is clearly caused by the direction-
dependent factor r, /r in the ansatz (4.44): Different
directions in SU(2) space are related to different di-
rection in three-space.

A virtue of this infinite-energy solution [which
Polyakov called the "hedgehog" because of the way it
looks in SU(2) space] is that it is stable. There are
two ways to see this. The potential energy is only
important-for small r, while the kinetic energy is
negligible there, but not for large r. This peculiar
situation is caused by the unique behavior of the Higgs
field, which vanishes as r- Obutnotas&-. Thus the
solution is like a spherical cavity in an infinite medium
(the Higgs field). Expansion of the cavity costs poten-
tial energy in the small-r region. Contraction of the
cavity costs kinetic energy in the region outside the
cavity.

Another argument is that the solution seems to be
toPologicatly stable. The boundary value Q, (r =~)
=r,m/vX is nothing other than a mapping of the sphere
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From the large-r behavior in Eqs. (4.23)-(4.26) it is
clear that D; Q, is well behaved at infinity.

One easily verifies that all other terms in the energy
integral. are well behaved at infinity if the boundary
conditions (4.25) and (4.26) are satisfied. Furthermore,
there is no difficulty with & =0, because all functions
are well behaved there. The total energy is thus finite.

In the limit m'- 0, A. —0 with m'/A. finite we have the
, explicit Prasad-Sommerfield solution (4.19). The en-
ergy of this solution is

d3x 600 = (4s /e')M~, Mg = P .

For nonzero m' and & the energy is larger,

(4.51)

d3x 6 = (4m/e )M C(A:/e ), M = em/vA. , (4.52)

where C(A/e ) is a slowly increasing function of its
argument, with C(0) =1. Some numerical estimates are
C(0.1) =1.1 and C(10) =1.44 ('t Hooft, 1974), C(0.5)
= 1.18 (Julia and Zee, 1975), and C(~) =1.787
(Bogomol'ny and Marinov, 1976). The lower bound
(4.51) on the monopole mass is 137M&. If M~ is the
mass of the charged vector boson in the weak inter-
actions, then the monopole mass is (at least) several

at infinity onto the unit sphere in SU(2) space. This
mapping covers the latter once; hence one says that
it has a winding number (or topological charge) n = l.
[A mapping which covers the unit sphere in SU(2)
space n times has a winding number or topological
charge equal to n .The mapping @,(r =~) = 5,3m/vX
maps the entire sphere at infinity onto the north pole
of the SU(2) sphere, and this mapping has n =0.] Now
there exists no continuous operation which changes n.
The only way to change n, say from n = 1 to n = 0, is
to perform a discontinuous operation. [A relevant ex-
ample here is the discontinuous gauge transformation
(3.14) between the no-string and string gauges, which
changes n =1 into n =0.] Such an operation presumably
involves infinite energy in some sense. Therefore,
one argues, n cannot change in the normal. time de-
velopment of the system. That is, a topological charge
like n is conserved. In particular, the charge n = 1 of
the hedgehog is cons er ved. This s olution is presum-
ably a minimum-energy field configuration because of
its spherical symmetry. Therefore it should be stable.

Now let us switch on the SU(2) gauge field. This has a
very crucial effect: The divergence in the kinetic en-
ergy of the hedgehog is removed by making all direc-
tions in SU(2) space equivalent [for we can now perform
local as well as global SU(2) transformations]. The
troublesome function a~@, in Eq. (4.48) gets replaced by
D, g„a dnwe can arrange that Dq@, =O(l/r') at large r
so that the kinetic term becomes finite there. We
make the ansatz

W) = e„„r„[1—. h(r)]/'er'

and then

D; Q, = &; Q, + ec,~,W,'Q,

tIzousand Ge V.
The stability of the monopole solution is, of course,

very important for its physical interpretation. If this
solution is really stable then any small change in the
SU(2) potential or the Higgs field (for fixed parameters
m, A. , and e) must increase the total energy of the
solution. To date, no one has been able to prove that
this is the case (see, however, Yoneya, 1977; Cole-
man, Parke, Neveu, and Sommerfield, 1977). But
there are other indications of stability, as we have
seen. The monopole is obtained by the usual Higgs
mechanism with a nonzero Higgs potential (unlike the
Prasad-Sommerfield solution). Furthermore, the
magnetic charge is essentially a topological quantum
number that is conserved. If there is no field config-
uration with the same charge and lower energy, then
the monopole ought to be stable. Most workers are
willing to believe in its stability. One reason for this
has been the demonstration that "nearby" solutions
with a comparable degree of rotational symmetry do
no( exist.

One can look for "radial excitations" of the monopole,
that is, different solutions of Eqs. (3.12). In the limit
m'- 0, A. —0 with m'/A. finite, at least, there are no
such solutions (Frampton, 1976). Evidently, then, if
other solutions are to be found, the ansatz (3.11) has
got to be replaced by a more general one.

The following more general @ns&~& has been investi-
gated (Weinberg and Guth, 1976; Cremmer, Schapos-
nik, and Scherk, 1976; O'Raifeartaigh, 1977; Michel,
O'Baifeartaigh, and Wali, 1977):

(4.53)

with W', = 0. Note that the r dependence is factorized
from the angular dependence, and all indices are at-
tached to the angular functions. For a solution with
finite energy, one can show that only the magnetic
charges g =0 and 1/e are possible. No solution with
g ~ 2/e and finite energy is possible within the ansatz
(4.53). Furthermore, the solution with g = 1/e is
identical with the 't Hooft-Polyakov solution.

The method of proof is, in principle, . quite straight-
forward. From the assumptions of real fields and
finite energy it follows that every term in the energy
integral must be finite. These ar e examined one by
one. The most crucial requirement is that D;Q, vanish
sufficiently rapidly as r- ~ (as we have already seen).
This couples the gauge and Higgs fields.

The most general proof was constructed by Michel,
O'Raifeartaigh, and Wali (1977). These authors were
able to show that, for any YM theory with a compact
gauge group G and a Higgs field in any real representa-
tion of G, the gauge potential will vanish outside of a
fixed SU(2) subgroup of G, while inside this subgroup
the gauge potential coincides with the 't Hooft-Polyakov
potential.

The result of Michel, O'Raifeartaigh, and Wali just
mentioned admits the possibility that the Higgs field is
not in the adjoint representation, i.e., that there are
more than three Higgs fields. However, if there are
more than three Higgs fields present, then the extra
ones are necessarily copies of the fields in the basic
triplet representation of SU(2). For example, when the
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gauge group is SU(2) then one can obtain all integral
representations from the isotensors @,@~ . P„con-
structed from @, (see, for example, Shankar, 1976).
If two different isovectors P, and @,' were used, with
different behavior at infinity, then the local SU(2)
gauge invariance would be broken completely: There
would be no unbroken U(l) gauge group and no long-
range component in the gauge potential hence no
monopole.

4. Julia-Zee dyon

Julia and Zee (1975) showed how to give the 't Hooft-
Polyakov monopole an electric charge. (A monopole
with el.ectric charge is called a dyon, following
Schwinger. ) The way to do this is to change the ansate
(3.11) by allowing Wo to be nonzero:

W'; = e„„r„[l—h(r)]/er'.
Then the equations of motion (3.12) become

h(r) -Ar exp[ r-v'P' —M']

f(r)- Mr+ C, +O(1/r), C, = const,

g(r)- (em/HA. )r+ ~ ~ ~, (4.57)

where P =(em/KA. )'', and M is a new parameter with
the dimension of mass. If M is real then M&P. One
can also choose M to be pure imaginary, in which case
~M~ is arbitrary. This amounts to choosing Wo to be
pure imaginary. The boundary conditions at x- 0 are
the same as for the monopole (f and g behaving in the
same way, of course).

The dyon mass is finite. This is easy to verify since
the only new contributions to the monopole energy
integral come from G'„.[-O(l/r') for r- ~] and
D @,=—0 [as W', and &P, are parallel in SU(2) space].

To determine the electric charge of the dyon we must
first find the el.ectric field. At large y all definitions
of the electromagnetic field tensor are the same (see
Appendix E) and we can use the simple definition
E~„=@,G~,. Then the dyon electric field at large r is

r 'f" =f(2h'),

g " g (2h2 m2r z +~2/e'),

r 'h ~ = h (h' —1 +g ' —f') (4.55)

= r, [-a„W',] = r.a„[r,f-(r)/er ']
= —a„[f(r)/er] = C,r„/'er', (4.58)

Here we see very clearly that when m'=O, A. =0 the
functions f and g (that is, Wo and Q, ) play essentially
the same role up to a factor ~. Julia and Zee were the
first to comment on this fact. Note that f(r) and g(r)
are only indirectly related through h(r).

Assuming that Wo is nonzero, we have nonzero Go, ,
and therefore an electric field in addition to the mag-
netic field of the monopole. Easy to state in words,
this extension of the 't Hooft-Polyakov solution only
becomes meaningful when one has shown that a solu-
tion exists with f(r) 4 0. Fortunately this can be done.
Indeed, in the limit m' =0, A. = 0 with m'/A. finite, an
explicit solution of Eqs. (4.55) is known (Prasad and
Sommerfield, 1975; Bogomol'ny, 1976),

h(r) = Pr/sinhPr,

f(r) =sinhy[-1+Pr coshPr/sinhPr],

g(r) = coshy[-1+ Pr coshPy/sinhPy], (4.56)

where p and y are arbitrary constants. Mathematically
there is little difference between this solution and the
one with y =0 discussed earlier in connection with the
pure monopole. Wo and Q, are the same function up to
a constant.

The solution (4.56) can be slightly generalized in the
way suggested by Protogenov (1977) for the y =0 case:

h (r) = Pr/sinh(Pr + e),
f(r) = sinhy[-1+ Pr cosh(Pr + e)/sinh(Pr + e)],
g(r) =coshy[-1+ Pr cosh(Pv+ s)/sinh(Pr+ e)].

For nonzero m' and &, as in the case of the mono-
pole, one cannot solve Eqs. (4.54) in closed form. But
a solution can be found by numerical methods which
satisfies the boundary conditions at infinity,

There is no indication that this charge is quantiz ed at
the classical l.evel.

The dyon mass is a slowly increasing function of Q.
Julia and Zee give the following numerical results for
A./e =0.5:

Q(dyon) = 0 44e 169e

M(dyon) = 162M~ 171M~ 253M~

where M~ is the mass of the W boson in the theory.
Because of the weak dependence of M(dyon) on Q, it
seems that the decay of a dyon with electric charge Q

into a dyon with charge Q —e by W-boson emission is
energetically forbidden. The dyon may be stable.

The exact solution (4.56) is easily shown to be stable,
for its energy is given by Eq. (2.55),

E' = (m j+A. )(g'+q')'~'. (4.60)

q =Q =(4m/e)C, =-(4m/e) sinhy (4.61)

is the electric charge in Eq. (4.59). Comparing Eq.
(2.58) with Eqs. (4.56) we see that

sin& =q/Vg'+ q' = -tanhy,

sinhy =-q/g, coshy =(1/g) v'g2+q2.

The magnetic charge g = 4s/e defined by Eq. (2.45)
differs from the magnetic charge g = 1/e used through-
out this section. Thus

R = (4m/e)(m/KA. ) coshy = (4w/e')M~ cosh'y, (4.62)

where C, is the unknown constant in the boundary con-
dition (4.57) for f(r). . This constant has to be found
numerically. The dyon electric charge Q is

(4.59)

Rev. Mod. Phys. , Vol. 5], No. 3, July '1979



Alfred Actor: Classical solutions of SU(2) Yang-Mills theories 481

where M~ = em/H&coshy is the vector-meson mass in
the dyon solution.

C. Remarks

Before leaving the subject of SU(2) monopole and dyon
solutions there are some additiona. l things we wish to
mention.

(1) No one has yet succeeded in finding a solution
which represents a monopole with magnetic charge
larger than g = 1/e. The no-go theorems mentioned ear-
lier compel one to work with spherically nonsymmetric
ansatze which lead to extremely complicated coupled
differentia. l equations. All efforts to circumvent these
difficulties have been unsuccessful (see, for example,
Manton, 1978b).

The no-go theorems say nothing about solutions with
several monopoles at different locations, of course,
because such field configurations are not rotationally
symmetric. One can trivially imbed an arbitrary num-
ber of Dirac monopoles in the SU(2) theory by choosing
the Abelian gauge P, =5,3 (Arafune, Freund, and Goebel,
1975). In this gauge, A3„ is the imbedded Abelian poten-
tial, which can be written as a sum of individual Dirac
monopole potentials. The strings of these Dirac mono-
poles can, in fact, be gauge-transformed away. How-
ever, one does not obtain true non-Abelian multimono-
pole solutions by this procedure (see Bais, 1975).

In an interesting calculation Lohe (1978) has obtained
a three-monopole solution of the SU(2) theory (2.1) in
the limit m -0, A. —O, m /A finite. This limit is essen-
tial for the calculation, which involves Backlund trans-
formations of a known explicit self-dual solution of the
pure SU(2) gauge theory. The known solution is the
Prasad —Sommerfield solution (4.19) in the form (3.8)
discovered by Hsu and Mac. This complex static solu-
tion can be interpreted as a self-dual solution in a
thr ee-dimensional Euclidean space. Now some rather
powerful results concerning self-dual solutions in four
dimensions ar e known from work on the instanton prob-
lem (Corrigan et al. , 1978). It has been shown how to
transform a given self-dual solution of the pure SU(2)
gauge theory in F~ into more complicated solutions with
higher topological charge. Lohe noticed that parallel
ma.nipulations in the F.' monopole problem can be per-
fo rm ed. By m cans of BKcklund trans for mations it is
also possible to generate multimonopole solutions from
the original one-monopole solution.

The details of the calculation are too complicated for
us to reproduce here. Even the end formulas are quite
lengthy. Therefore we shall be content with a descrip-
tion. First, the monopole solution in the Hsu-Mac
form is gauge-transformed into the Yang R gauge (Yang,
1977) appropriate for this three-dimensional problem.
Then the Bhcklund transformation of Corrigan, Fairlie,
Yates, and Goddard (Corrigan et a/. , 1978) is per-
formed twice to obtain a real three-monopole solution.
(The two-monopole solution obtained from one Backlund
transformation turns out to be complex. ) Solutions with
more monopoles can be constructed by repeating the
procedure. U'nfortunately, the explicit three-monopole
solution is so complicated that Lobe could not say
where the monopoles are located; only that they are all

positioned on the z axis. The same would be true of the
higher monopole so lutions.

Lohe s solution has been criticized by Bruce (1978),
who points out that it has infinite energy. This is not
altogether surprising, for it is known that in Euclidean
space-time the solutions generated from the instanton
solution by the Backlund transformation are singular.
Nevertheless this is an interesting direction of re-
searchh.

(2) An exact multimonopole solution would enable one
to determine the interaction between 't Hooft-Polyakov
monopoles to any degree of precision. Unfortunately
this exact solution is not available, and one can only
study the interaction by approximation methods. It is
clear that two well separated monopoles, or a monopole
and an antimonopole, will interact in first approxima-
tion via the Coulomb force for point magnetic charges
because the magnetic field is the only long-range field
in the monopole solution. More interesting is the prob-
lem of intermediate or small monopole separation.
Magruder (1978) has investigated the two-monopole in-
teraction using trial functions that reduce to the one-
monopole solution at each monopole and that satisfy
other necessary boundary conditions. He obtains upper
and lower bounds on the interaction energy for arbi-
trary separation. It turns out that the interaction ener-
gy remains comparatively small even when the separa-
tion R goes to zero. Two monopoles experience a mu-
tual repulsion which increases as R decreases; how-
ever, the interaction energy remains finite in the limit
R —O. A monopole and an antimonopole simply annihi-
late.

In the limit m2, A. —0 (m2 /A. finite) there is a remark-
able change in the interaction of 't Hooft-Polyakov
monopoles (Manton, 1977). The Higgs field becomes
mass les s, and th e attractive fo rce as soc iated with it
becomes long range. This force exactly cancels the
repulsive magnetic force between like magnetic charges,
and doubles the attractive force between unlike charges.
Thus two Prasad-Sommerfield-Bogomol'ny monopoles
do not interact with a Coulomb force if they have the
same magnetic charge. (This is rather obvious when
one reinterprets these monopoles as Hsu-Mac dyons,
which have an imaginary electric charge. ) Magruder
(1978) obtains an upper bound of order O(l/R2) on the
interaction energy for like charges. A more restrictive
bound would be useful. Bogomol'ny's result (2.42) and
(2.45) that the total energy of a, static solution with topo-
logical charge N is N times the monopole mass (in the
Prasad-Sommerfield —Bogomol'ny limit) suggests with-
out proving that there may in fact be no monopole-
monopole interaction at all in this case. At the same
time Eq. (2.42) also shows that 't Hooft-Polyakov mono-
poles definitely interact, and repulsively, for any sepa-

rationn.

Does any monopole-monopole interaction survive in
the limit m~, A. -0 (m2/A. finite)'? So far as we know,
this question has not yet been answered. The best way
to answer it would be to find an exact static two- (or
N-) monopole solution in the limit considered. If this
solution had the energy of two (or N) single monopoles
then obviously there would be no interaction. Then the
situation would be analogous to the N-instanton problem
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discussed in Sec. VII, where the action is N times the
action of a single instanton (which means that instantons
do not interact with instantons). On the other hand,
there is an interaction between instantons and anti-
instantons, and this would be analogous to the (doubled)
Coulomb force between monopole and antimonopole.

In this connection it is interesting to mention Poly-
akov's demonstration of confinement in the (2+1)-
dimensional Qeorgi —Glashow model (Polyakov, 1977).
For this or any other theory, static solutions in (3+1)
dimensions are instanton solutions in (2 +1) dimensions.
Polyakov was able to show that a dilute gas of these in-
stantons can confine quarks in the (2+1)-dimensional
model. He does this by reexpressing the functional in-
tegra, l in the qua. ntum YM theory (a.pproximated by only
considering multimonopole configurations) as the parti-
tion function of a three-dimensional Coulomb gas. The
Coulomb interaction between well separated monopoles
seems to play an essential role in producing confine-
ment. Because of the success of this calculation, it
was originally hoped that instantons in (3+1) dimen-
sions might also confine quarks. This hope was based
on an incomplete analogy, however. As mentioned
above, instantons do not interact with instantons. Mono-
poles (perhaps) have this same property in the m2, A. -O
(nz /A. finite) limit, when they become self-dual (i.e. ,
when they can be reinterpreted as Hsu-Mac dyons,
which are self-dual). Only in this limit do monopoles
become truly analogous to instantons in (3+1) dimen-
sions. But then they lose their Coulomb interaction,
and the confinement argument seems to break down (we
have not checked this in detail, however).

(3) In the gauge theory (2.1) we have found a soliton
solution with ma, gnetic charge @=I/e. By changing the
sign of the Higgs field rj&, in this solution [note that this
has no effect on the equations of motion (3.13)) we triv-
ially obtain a solution with magnetic charge g= -I/e.
[This is evident in Eqs. (4.36)-(4.40).] Therefore,
there are two massive monopoles M' with opposite
charge g=el/e in the soliton sector of the theory (2.1).
This magnetic charge is a topological charge and there-
fore it is conserved. The soliton sector of the theory
is classical. At present little is known a,bout how to
quantize it.

The conventional interpretation of the theory (2.1) is
that, after spontaneous symmetry breakdown, it con-
tains two massive vector mesons W' with charge Q =me

and a massless photon y. Here Q is a Noether charge
which is conserved because the electromagnetic current
is conserved. We refer to this as the normal or per-
turbative sector of the theory (2.1). In this sector
quantization proceeds according to standard rules.

There exists an interesting symmetry between the
soliton and normal sectors of the theory (Montonen and
Olive, 1977). Assume that the photon y belongs also to
the soliton sector. Then an SU(2) triplet (IVI', y, M )
can be constructed, and the theory in the soliton sector
looks very much like the theory in the normal sector if
the rnonoPole has sPin one. [The spin of the SU(2) mono-
pole is unknown. ] Note that the photon couples in ex-
actly the same way to electric charge in the normal
sector and to magnetic charge in the soliton sector.
We summa, rize the situation as follows:

Normal s ector Soliton sector

Particle

Charge

TV', y, 0.

+e, 0, 0

M', y, a

1
+ —,0, 0

Mass Mg, O, M~ m, O, m„

where o is the Higgs field which remains after spon-
taneous symmetry breakdown. We have assumed that
the Higgs field, like y, plays the same role in both
sectors of the theory. The masses are

M„, = en'/ A, M~ =v 2m,
Jif „=(4~/e')m C (~/e') =(4~/WZ)gm C(zg'),

in which Noether and topological charges exchange
roles. In the "dual" theory, where the monopole is
elementary, the vector bosons W' are 't Hooft-Polya-
kov solitons.

This conjecture is supposed to hold in the limit rn2

-0, A. -O with m2/Afinite. Then the m. onopole mass is
M =4zgm/WA which (except for the 4~) is the mass ob-
tained from MN, = em/v A. by the replacement e-g=1/e.
(The 4v is irrelevant; it can be absorbed by changing
the units of electric charge. ) For A. e 0 the constant
C (A/e ) & 1 may spoil the argument. Montonen and Olive
also cite Manton's result as evidence for their conjec-
ture. Manton(1977) found that Prasad-Sommerfield-
Bogomol'ny monopoles with like charge do not interact
at long range because the effects of the massless Higgs
field exactly cancel the repulsive magnetic force. This
is, of course, just what one would have in quantum
field theory.

We mention the Montonen-Olive conjecture because
it nicely emphasizes certain global aspects of the SU(2)
monopole problem. However, it is by no means clear
that the monopole has spin one. On the contrary, a re-
cent calculation of the zero modes of a Prasad-Som-
merfield-Bogomol'ny monopole (Mottola, 1978) implies
that the spin is, in fact, zero.

(4) If one insists on the electromagnetic interpreta-
tion of the SU(2) monopole and dyon solutions, then it
seems unlikely that these particular solutions are
realized in nature. The reason is that the SU(2) gauge
group does not play a fundamental role in the weak and
electromagnetic interactions of quarks and leptons. As

where C(0) =1 and C (A/e2) is a slowly increasing func-
tion of its argument. Note that when the symmetry
breaking is switched off (m'/A. —0) both of the masses
~w a.nd M vanish

Montonen and Olive conjecture that if one knew how to
quantize the soliton sector of the theory, the result
would coincide with the normal quantized theory, but
with M' playing the role of the massive vector boson
W'. Moreover, the SU(2) coupling would be g= 1/e and
not e. The operator X.agrangian would be the one in Eq.
(2.1) but with these changes. Essentially, the conjec-
ture is that a kind of duality exists at the quantum level
between the normal and soliton sectors of the theory.
The duality operation is

W ' —iaaf ', e —g = I /e,
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everyone knows, the smallest gauge group which is
compatible with the existing data is the SU(2) xU(1)
gauge group of the Weinberg-Salam model. Although
extremely successful, this model with its two indepen-
dent coupling constants is not expected to survive indef-
initely as the best unified theory of weak and electro-
magnetic interactions. A larger compact group G
should eventually emerge as the fundamental gauge
group. Whichever group this is, it will have monopole
and dyon solutions. [General topological arguments in
support of this statement are given in Appendix I. Here
we mean new solutions —and not merely imbedded SU(2)
solutions —which belong to the group G.] The SU(2) so-
lutions are interesting prototypes of these (possibly
physical) more complicated solutions.

The reader may be curious to know if the Weinberg-
Salam model has a monopole solution. The answer is
no; there is no topological charge in this model. A

Higgs doublet Q = (P„P,) induces spontaneous symmetry
breakdown in the Weinber g- Salam model; at infinity
the boundary condition is

I+, I'+ I+, I

= const.

Since Q, and Q, are complex, this is essentially the
statement that a vector in a four-dimensional Euclidean
space has fixed length. The tip of this vector traces out
a sphere S . Because the map 8 -S' has trivial topo-
logical structure [i.e. , El, (S ) =0] there is no topological
char ge.

One can search for a nontopological monopole solution
(Hsu, 1976). There exists such a solution in the Wein-
burg-Salam model which is algebraically very similar
to the SU(2) monopole. The monopole charge turns out
to be

gm = (1/e) sill 9gr', sin 9gr =g (g + g )

where g and g' are the eouplings of the SU(2) and U(1)
gauge groups, respectively, and e is the electric
charge. It is not surprising that g depends on the mix-
ing g.ngle 9~, because this angle determines the mixture

' of the initial SU(2) a.nd U(1) gauge groups in the final
unbroken U(1) gauge group. Note that the present ex-
perimental value sin20~= —,

' leads to a magnetic charge
g =4e which is one-half of the minimum Dirac unit g
= 2e. This indicates that the solution is unphysical.

(5) Certain (dyon) solutions of the SU(2) gauge theory
with one Higgs triplet are mathematically equivalent to
static solutions of a larger gauge theory with two Higgs
triplets. Here, equivalence in the sense of Eq. (2.12)
is meant. To demonstrate this we now derive a gener-
alized version of the equivalence (2.12). Then we show
how the dyon solutions can be reinterpreted as a mono-
pole solution with two Higgs fields.

We base our discussion on the following Lagrangian,
which is a genera. lization of (2.1) and (2.6):

1 12 = ——G~cG," + D~Q, D" Qa+ D~ga—D"g, —

2 2 +gJ'2

Note the coupling of Q, and lt, in the last term. For this
term to vanish, in the vacuum solution for example,
and lt, have to have the same direction in group space.
Therefore in the theory (4.63) the vacuum is character
ized by a single constant vector v, in SU(2) space. This
implies that local SU(2) symmetry can be broken to
U(1), but not completely broken.

Again we consider two types of static solution, an un-
primed one with fields

@,—= 0, Wo, W', , a.nd P, c0,
and a primed one with fields

Wo":—0, W,", Q,', and g,'0 0.

(4.64)

(4.65)

These two solutions are mathematically identical if we
make the identification

W', = i @,', W'; = W,",
Proof: From Eq. (4.66) we find

Go, = -iD,'@,',
Dot =ie~abc4'bit'c ~

(4.66)

(4.67)

(4.68)

The Lagrangian for an unprimed solution of the type
(4.64) can therefore be rewritten

/2 f2 +~ /2

12
2

e aabceamn 4bkc 4mltn (4.69)

It is easy to see that this Lagrangian is the same as the
one obtained from Eq. (4.63) for a static solution of the
primed type (4.65). This completes the proof.

In the dyon ansatz (4.54) we can replace f(x) by if(x).
Then from Eq. (4.66) we find the corresponding ansatz
for the theory with two Higgs triplets,

p. = r.f(~)/el', lt, =~.g(~)/ex',

W; = 0, W'; = &„„1„I1—h(x)] /el 2. (4.70)

h(x) = Pl /sinhP1',

f('F) = silly( —1 +p 7Co'tilp'V) ~'
g(l ) =cosy( —1+Pe cothPE"). (4.71)

Here y is a mixing angle which determines the relative
contributions of the two (practically identical) Higgs
fields. One can switch off Q, (g, ) by choosing y =0(lr/2).
Of course, when g, and Q, are required to satisfy spe-
cific boundary conditions at infinity, say

Choosing A.
' = 0 in the Lagrangian (4.63) it is easy to see

that the equations of motion for this theory are reduced
by the above ansatz to Eqs. (4.55), except for a sign
change in the third equation,

x'h" =h(h' —1 +g '+ f ') .
In the usual limit nz' = 0, A. =0, nE2/A. finite one finds from
Eq. (4.56) the exact monopole solution

1 e2 2 2 2 (4.63)
it- I/W~, y-m'/~~',

then y is determined,
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tany = (m'!nz) SX/Z' .
The essential features of the monopole solution (4.71)

are clear. It has one unit of topological charge, coming
from either Higgs field B. ecause P, =tang/, there is no
ambiguity in the definition of I'„,. The total energy is
finite.

B,D= d x[9,—x;a 8;,]

d'x f 0„+x,a, e,, ]

d'x [~..+a;(x;&;,) —&;;1

V. SOLUTIONS WITH NQ RESIDUAL GAUG E
INVAR I ANCE

d'xa, (x;e;, ) =0, (5.4)

To gain a better perspective on the monopole and dyon
solutions of YM theories we shall make a digression in
this section. Our topic here is the complete breakdown
of local SU(2) gauge invarianee. Unfortunately, no in-
teresting solution of a completely broken SU(2) gauge
theor y is known, and so our dis cus sion is essentially a
qualitative one. For the pure SU(2) gauge theory, how-
ever, some interesting mathematical results are known
which limit the range of possible solutions. More gen-
erally, it is possible to make definite statements con-
cerning the type of boundary conditions at infinity that
are needed to achieve complete local gauge symmetry
violation. In many cases 'it can be shown that these
boundary conditions necessarily lead to infinite-energy
solutions. The comments to follow summarize what is
presently known about these aspects of SU(2) gauge the-

ories'~

{I)Suppose that there exists a static solution of the
pure SU(2) YM theory with no residual loca. l gauge in-
variance. This solution would have only short-range
potentials; it would correspond to an object localized in
space and constructed entirely from gauge fieMs —a
classical "glueball. " [One could, of course, a.iso spec-
ulate on the existence of a classical glueball with a.

long-range component like the SU(2) monopole. ] For a
particle interpretation of the glueball to be possible the
solution should have finite mass. But this property
brings it into conflict with the following theorem (Cole-
man, 1975; Deser, 1975; Pagels, 1977):

Theorem:

There exists no static, real, finite-energy solution
of the pure SU(2) gauge theory other than the vacuum
solution. We give Pagels simple derivation of this re-
sult.

Recall that the energy-momentum tensor 0„, for the
SU(2) theory satisfies

7 heof em:

The only finite-energy, real solution of the SU(2)
gauge theory which satisfies

lim r~~'" G'„, = 0 (s & 0) (5 5)

uniformly in x and t (with t & 0) is the vacuum solution.
The condition (5.5) is the requirement that no energy be
radiated out to spatial infinity. Coleman has shown that
the only solution of the pure SU(2) gauge theory with
this property is the vacuum. Thus any solution with
finite energy will, eventually, radiate its energy away
to infinity.

Weder (1977) proved a more general version of Cole-
man's result.

Theorem:

There is no real, finite-energy solution of the pure
SU(2) gauge theory for which there exists s, R, T & 0
such that

by Gauss's theorem. If we make one more assumption,
namely that 0;, is independent of x, as would be the case
for a static solution, then it follows immediately that
the energy E=O. The only real solution with E =0 is the
vacuum solution. Therefore, there are no (static)
-classi cal glueballs.

This proof says nothing about the existence of com-
plex solutions, of course. Indeed, in Sec. IV we have
discussed an explicit static, complex solution of the
pure SU(2) gauge theory which has F = 0 because it is
self-dual.

(2) The existence of time-dependent solutions with
finite energy has been investigated by several authors
(Coleman, 1977a; Weder, 1977; Magg, 1978). Coleman
proved the following theorem.

~OO= Q ~~a &o ~

Z (x,)-= d x0pp~ C, &xp& T. (5.6)

Assume that the energy

F= d x0pp

is finite and constant. This implies that

0 p»0~ x'~~ ~
}if I)

Now consider the quantity

d XX 0 p= d x xp0pp —x0p

which is constant under the above assumptions;

(5 I)

(5.2)

(5.8)

In words, this theorem states the following. For arbi-
trarily large x, the .energy F„(x,) inside the sphere
x &tt cannot remain larger than the {arbitrarily small)
number c. Therefore, energy must be radiated outside
the sphere, i.e., out to spatial infinity.

An explicit solution of the pure SU(2) theory which
does radiate energy out to infinity, and which has finite
energy, will be discussed in the next section. This is
the de Alfaro-Fubini-Furlan solution in a real gauge.
At xp =- the energy is distributed on the sphere at in-
finity. The fields move inward as xp becomes finite,
until the energy is concentrated about the origin at time
xp 0 For xp + 0 everything proceeds in revers e. This
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W', —Pn, (r), i"-™,
W3- p'n,'(i ),

(5.7)

with W', ,—0. Here n, (x) are two different unit vectors,
each of which determines a local U(1) subgroup which
would be unbroken if the other were not present. These
two subgroups are incompatible, of course, and so no
subgroup remains unbroken. Note that the boundary
conditions (5.7) are quite unphysical within the context
of a three-dimensional problem, because the field
strength G„does not vanish at infinity (unless n, =n,'),

is precisely the type of solution which is allowed by the
preceding theorems. There is no localization; the
boundary conditions at infinity are nonstatic; there is
no indication of local gauge symmetry breakdown. Some
long-range effect is evidently responsible for drawing
the energy at infinity into a finite region about x=0 and
then forcing it back out.

(3) In the pure SU(2) theory it is possible to complete-
ly break the local SU(2) gauge symmetry by introducing
boundary conditions such as

Vl. CONNECTION BETNfEEN YANG-IVIILLS THEORY
AND P4 THEORY

There exists a useful and interesting connection be-
tween the SU(2) YM theory and the scalar @ theory.
This connection is a specific ansatz for the YM poten-
tial W'„ in terms of a scalar field @ [see Eq. (6.1) be-
low]. This ansatz reduces the complicated equations of
motion of the YM theory to the single equation of motion
for the Q» theory. Therefore one can find explicit solu-
tions of the SU(2) theory by solving the much simpler
scalar theory. In this section we shall review the known
Minkowski-sPace solutions of this type. There is also a
Euclidean sPace-time version of ansatz (6.1); the Eu-
clidean solutions obtained from it are discussed in the
following section. The ansatz was discovered by
't Hooft (1977b, c) in connection with the instanton prob-
lem [see also Corrigan and Fairlie (1977) and Wilczek
(1977)]. Uy (1976) had previously given a solution of the
pure SU(2) theory which corresponds to Q =xyz+C. Re-
writing Uy's solution in covariant form one is led im-
mediately to the static version of the ansatz.

G' —ep p'c.„n,(r) n.'(~). (5.8)
A. Ansatz for the Yang-Mills potential

Therefore, boundary conditions such as (2.5) lead to
badly divergent total energy. We see that it is not pos-
sible to arrange for complete symmetry breakdown in
the pure SU(2) gauge theory.

(4) In the SU(2) theory with a Higgs triplet one can
arrange for complete breakdown of local gauge invari-
ance by imposing the following boundary conditions

Wo- Pn, (i ), y —~,
@.—p' 'n( )~,

(5.9)

with W', - 0 as usual. When n, (i') 0 '(rn) then no residual
U(1) local subgroup is left unbroken. [If n, =n,', a.s in
the Julia-Zee dyon solution where n, =n,' =r, then a
local U(1) subgroup is still unbroken. ] The boundary
conditions (5.9) lead to infinite energy, of course, be-
cause D, @, does not vanish at infinity (for n, on,'):

D,y. —ePP'c. ..n, (r")n,'(i""). (5.10)

This is very much like the situation in the pure SU(2)
theory [Eq. (5.8)]. We see that complete local gauge
symmetry breakdown is not possible in the SU(2) theory
with one Higgs triplet.

(5) Is it possible to spontaneously break the loca.l
SU(2) gauge symmetry completely in any SU(2) theory?
The answer is no; at least, not in the type of theory we
are considering here with an SU(2) gauge field and some
number of Higgs triplets. Suppose we consider a theory
with two uncoupled Higgs triplets Q, and tt„which have
the boundary values at infinity

In Minkowski space the ansatz for the SU(2) gauge po-
tential 8"'„ is

e Wo = aia, @/Q

eW', = c,.„a„@/y~ i5.,s,@/@, (6.1)
where Q is a Lorentz scalar function which we assume
has the dimension L ' of a physical field. Equation
(6.1) can also be written in the form

Wt = n.~.a'4'/4'

where

(6.2)

'Oa p v
= &o pv + &gapRvo+ ~Cavg pg (6.3)

is the Minkoski-space version of a tensor introduced
by 't Hooft for the Euclidean problem. In Eq. (6.1) the
potentials W'„are complex for real P. This is an un-
fortunate property of the ansatz, as one would like to
find real solutions of the SU(2) Yang-Mills theory. But
complex solutions are also interesting, and furthermore
there exists the possibility that for a particular solution
Q the SU(2) potentials (6.1) can be made real by a suit-
able comPlex SU(2) gauge transformation. For arbi-
trary Q this is not possible. But we shall discuss an
explicit solution for which this is possible, and we will
obtain the corresponding explicit, real solution of the
pure SU(2) gauge theory.

The ansatz (6.1) is useful for the following reason. It
reduces the equation of motion

Q. —pn. (» ),

y, —p'n.'( ), i (5.11)

(6.4)

for the pure SU(2) gauge theory to the much simpler
equation (Corrigan and Fairlie, 1977; Wilczek, 1977)

For n, o n,' there is no unbroken U(1) subgroup. But we
again run into conflict with a nonvanishing energy den-
sity at x =~. The reason is that with a single gauge
field W'„one cannot arrange for both D„P, and D„g, to
be O(1/i') as x- ~. (Recall our discussion in Sec.
IV.C.) This is only possible when n, =n,'

(I/@)a„0 = (3/4')a„@ (6.5)

Equation (6.5) can be integrated once to give

@+~y'= 0, (6.6)

where A. is an arbitrary integration constant. Solutions
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P —
2 m @+A@ =0. (6 9)

Now if the vector-meson mass m, is real, then the mass
term in the scalar equation (6.9) has the wrong sign.
Equation (6.9) is the equation of motion for the Q theory
with spontaneous symmetry breakdown, whose Lagran-
glaIl ls

of Eq. (6.6) are known, and in Eq. (6.1) these lead auto-
matically to explicit solutions of the SU(2) 'gauge theory.

The ansatz (6.1) is often written with 9 „&f&/Q replaced
by 9„in'. We prefer B„Q/P because we think that Q can
be interpreted as a physical field, and not merely as an
aesatz function. When one considers the extension to
massive fields, it becomes apparent that Q has a. natu-
ral interpretation as a Higgs-like field.

Let the SU(2) field have real mass m. Then the YM
equations of motion are

(6.7)

These are reduced by the ansatz (6.1) to (Actor, 1978a)

(1/0)( +In')9„@=(3/@')9,4
which in turn is satisfied if Q satisfies

For re' =0 we have

2e2Z, = 9 „(9"y/y) —3~2@'. (6 14)

Next, consider the pseudoscalar density D(x) defined
by

D(x) = --,'iG'„,G~' = -iE„'B„'. (6.15)

D(x) is simply related to 2(x) as we see from Eq. (6.12),
e'(g + D) = ,'e'(B—„'—iE„')' =

2 ( (p/p)' . (6.16)

e E: 0 Xe 9OO

In fact, for a self-dual solution D = +g.
Another quantity of primary interest is the energy-

momentum tensor 6„,(x) tsee Eqs. (2.33)-(2.36)]. This
is easily shown to be

4 2
CXe 9 =-. —9 QB p ——8 8 Q+g g ——8"$8 QI.v ~ ~2 p v

~ V v p v

(6.17)

A self-dual solution has 8„,= 0 because Q =0.
The total energy for the case m =0 is

,0 = —', 9"PB„y —-';&(@2 —n22/2Z)2. (6.10) = —6X d'x t-,'(B,y)'+-,'(Vy)2+-,'~y'], (6.18)
The vacuum solution of this theory is Q = +nI P&&, and
the corresponding YM field in Eq. (6.1) is W'„= 0.

We now give formulas for several quantities of inter-
est, following from the ansatz (6.1). The YM field
strengths are

where we have neglected surface terms at infinity. Note
that E = —(6A/e2)E„where

E, =
t

d3x I';(9,@)'+ (Vq)2+-.'~y']

1 2eE„' = eG', „=s„,

2+i —9„9,$ ——29„@9,@ (6.11)

is the to tal energy for the scalar theory (6.10) with
m =0. For real Q we see that E&0 implies A. &0.

On«i»1 co~~ent: Eq. (2.12) tells us how to change
any static solution of the pure SU(2) gauge theory into a.
static solution of the theory with a Higgs triplet. There-
fore, if we make the ansatz (note that it is real)

eW'; =c;,„B„g/g, eW3=0, ep, =B,pig,
eB'„= 2ec „;,G;',—= ai e E„' + 5,„(1/p )

The self-duality condition B„' = +iE„' evidently implies
@=0, or n12=0, A. =O in Eq. (6.9). The field strengths

E„' and B'„are in general complex. However (remark-
ably enough) their squares are both real, and this
means that the energy and Lagrangian densities ob-
tained from the ansatz (6.1) are real, even though the
potential W„ is complex (see, for example, Bernreuth-
er, 1977).

The Lagrangian density Isee Eq. (2.37)] is given ex-
plicitly by

for the latter theory then the equations of motion (3.12)
(with m2 =0, X =0 of course) are satisfied by any g which
is a solution of

—V g+ytt =0.
[To avoid a collision of notation we have renamed the

ansatz function in (6.1) it, and the dimensionless con-
stant II1 Eq. (6.6) y. ]

We now come to the known explicit solutions of Eq.
(6.6) and the corresponding solutions of the unbroken
YM theory. No explicit solutions of Eq. (6.9) are known
to the author except for the rather trivial "plane-wave"
type of solution.

+ —
3 I — $9 (f) 9 „P+ 49"9 Q 9„@BPQ],

+ —
~ [—39 @9 @9 $93$]

2

I= 9.(9 @/e)-—

B. de Aifaro-Fubini-Furlan solution

(R V)2 I 2

A(x —u)2(x —v)2i (6.19)

A solution of Eq. (6.6) which we shall discuss in the
next sec tion is

6
+ —9 QB P ——$9"@9

y2 Ix p3 cL (6.13)

where u and v are constant four-vectors. This solution
is singular at the points x =u, v. However, as remarked
by de Alfaro, Fubini, and Furlan (1976), these singu-
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2x„(1—x'), 2x,(1 +x')
&«(I x2)2+4x2 ~~ (1 x2)2+4x~ ' (6.21)

For the field strengths we find

eE„' = 4x,(c„. 2x (1 +x20+ x')

+ i4x,(- 6„,~'+x„x.)] [(1—x')'+4x', ] ', (6.22)

with B„' given by Eq. (6.12). The square of the electric
field is real:

e'E„'E„' = 128xy.~/[(1 —x2)' +4xo] (6.23)

One easily verifies that E„'R„'=0, and therefore D(x) =0.
From Eq. (6.16) we find that

e'g = 24 [(1 —x')'+4x']-' (6.24)

The energy density is

At time x, =0 this simplifies to

e'8OO(x, = 0) = 24/(1+ ~')'.
The total energy is E =3m2/e'.

In the limit xo- + ~ we note that @ behaves like

y —(-4/Z)"'/x'„~ finite,

y -(-4/&)"'/2~, x = ~x, ~
.

(6.26)

The general space-time development of @ is as follows.
At time xo=-~, @ is distributed thinly and isotropical-
ly at spatial infinity. For finite xp the field moves in-
wards, until at time xp =0 it is concentrated about the
ol 1gln~

For xp& 0, everything proceeds in reverse.
The YM potential (6.21) exhibits similar space-time

behavior. In the limit x,—+ ~ we see that the potential
is distributed at spatial infinity with sufficient density
for the tota. l energy to be nonzero. At time x, =0 the
field is localized around the origin.

larities lie outside physica. l space if u and v are not
real. Suppose that we choose u = —v = (i, 0). Then the
solution (6.19) becomes

4/&) is 2 [(1 x ~)2 +4

=(-4/X)"'([I+(x, +xP][1+(x,-~)']) "'. (6.20)

This solution of Eq. (6.6), which is nonsingulaw every-
where, was first given by Castell (1972). de Alfaro,
Fubini, and Furlan (hereafter DFF) recognized that a
corresponding nonsingular solution of the YM theory
exists. Now this is perfectly obvious when one is aware
of ansatz (6.1). But DFF did not have this advantage,
as the ansatz had not been discovered when they wrote
their paper. Their construction of the solution involves
conformal group manipulations which we shall not re-
produce here. Instead, we shall discuss the nonsingu-
lar YM solution within the context of the ansatz (6.1).

For simplicity, we choose + in Eq. (6.1). Then the
YM potential obtained from P in Eq. (6.19) is

2x.(1 —x')
(1 -x')'+4x' '

The complex DFF potential (6.21) 'can be transformed
into a real solution of the SU(2) gauge theory. This real
solution is (Liischer, 1977; Schechter, 1977; Rebbi,
1978; Bernreuther, 1977)

eWO = +(I/y2)xox, ,

eW'; = (1/y')[s;, „x„+6„—,'(1+x )k x, x,],
y' =-'(1+x')'+x' =-,'(1 —x')'+x' (6.27)

g ',(x) = x,A;( y), W',. (x) = -A;( y) +x, A', (y) .
Defining field strengths A'„,(y) in the usual way, it is
easy to show that

G'„(x)= -x,A;, (y),
G',-, (x) =A,;,-(y) —x;A~(y)+x, Ao;(y) .

Let A'„(y) be the one-meron potential (see Sec. VII):

eA.;(y) =+y./y',

There are various ways to obtain it.
(1) The SU(2) gauge theory is covariant under the

O(4, 2) Minkowski conformal group, which is a trans-
formation group in a six-dimensional Euclidean space.
All of Minkowski space-time can be mapped onto a hy-
pertorus in this six-dimensional space (Luscher, 1977;
Schechter, 1977):

r =2x/v A, x, =(1+x')/v x, x„r„=1,
R, = 2xo/WA. , Ro =(1 —x )/WA. , R;R; = 1,
A —= (1+x')'+4x' = (1 —x')'+4x,'.

Independent rotations of ~„and R; belonging to an O(4)
x O(2) subgroup of the full conformal group leave this
hypertorus invariant. The above mapping leads to an
SU(2) gauge theory on the hypertorus, with equations of
motion in the new variables which one can try to solve.
If one requires that the (real) solution be invariant un-
der the O(4) xO(2) invariance subgroup of the hyper-
torus, then the YM equations of motion reduce to a
single elliptic differential equation in one variable
whose real solutions are (i) a constant [this corre-
sponds to solution (6.27) above] and (ii) an elliptic func-
tion (this corresponds to the elliptic generalization of
the DFF solution discussed in the next subsection, in a
real gauge). These solutions are not self-dual.

(2) The formalism just sketched can also be used to
find a complex, self-dual solution of the SU(2) gauge
theory (Rebbi, 1977). Requiring self-duality as well as
O(4) invariance leads to a first-order differential equa-
tion in the hypertoroidal variables. This equation has a
simple complex solution. Projecting back to Minkowski
space one obtains a self-dual (hence necessarily com-
plex) solution, which has the remarkable property that
its real part is also a solution, namely, Eq. (6.27).

(3) The solution (6.27) can be obtained from the one-
meron solution of the Euclidean SU(2) gauge theory (see
the following section) by a coordinate transformation
(Bernreuther, 1977). We choose to give this derivation
because it involves a minimum of formalism. Introduce
Euclidean space-time coordinates y „and potentials

A. '„(y) as follows:

y, = —,'(1+x'), y; =x;;
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eA.;(y) = -s;.„y„/y'+ b„y,/y'.
This Euclidean solution satisfies the conditions

—ec.„[A,",A;+A,",A', ]

—x; (a,'A', —ec„,A„A„')= 0

because the one-meron potential A'„(y) is a solution of
the Euclidean equations of motion. W'„(x) is the rea. l
solution (6.27) above.

(4) de Alfaro, Fubini, and Furlan (1976) show that
their original solution (6.21) is a continuation to Min-
kowski space of the me&on-me&on solution in Euclidean
space-time. The same authors (de Alfaro et al. , 1977)
show tha. t the real solution (6.27) is a continuation to
Minkowski space of the slightly different Euclidean so-
lution which represents a rnexon and an antimeron.
Moreover, they give the gauge transformation which
connects these two Euclidean solutions.

(5) In Sec. III.F we have given a. simple derivation of
the real solution (6.27) in the Wo= 0 gauge using Wit-
ten's ansatz. There the elliptic generalizations of this
solution are also derived.

C. Elliptic solutions

The nonsingular DFF solution described above can be
generalized with the help of Jacobi elliptic functions.
Cervero, Jacobs, and Nohl (1977) (hereafter CJN) were
the first to show how to do this. Their approach was
systematically developed by the author (Actor, 1978b).
We now show how to construct elliptic solutions of the

and YM theories. The elliptic generalization of the
DFF solution is then given as an example.

Suppose that we are searching for an elliptic solution
of the equation

y+~y'=0, (6.28)

and that we have already found an explicit solution f(x)
of this same equation. We make the ansatz

y(x) =f(x)E(u(x), k), (6.29)

where E(u, k) is an elliptic function which satisfies a
differential equation of the form

E"+ a(k)E +b (k)E' = 0, (6.30)

where a(k) and b(k) are constants (see Appendix F on
elliptic functions). The argument u=u(x) of the elliptic
function has got to be determined. One easily verifies
that Eq. (6.28) is satisfied if f(x) and u(x) satisfy

f- (aZ/b)f'=0,
2a"f B„u+f u=0,
a ua u —(z/b)f'=0.

(6.31)

(6.32)

(6.33)

We assume that f(x) is a known solution of Eq. (6.31).

y„A'„=0, y„A.'„, =0, y„B„'A' =-A.'„, y„B„'A.' 8
——-2A'„&,

where a„' =a/By~. Given these conditions, it is easy to
verify that the equations of motion for W~(x) are satis-
fied~

This leaves Eqs. (6.32) and (6.33) to be satisfied by the
unknown function u(x). If this function exists then an
elliptic generalization of f(x) exists. Solving the condi-
tions (6.32) and (6.33) for u(x) is the essential step in
the construction. Once u(x) has been found, the elliptic
generalization of the YM solution obtained from f(x)
follows automatically from ansatz (6.1).

There are 12 Jacobi elliptic functions (see Appendix
F), and one might expect that 12 different elliptic gen-
eralizations of f(x) exist. Actually, five of these are
redundant. The remaining ones are (Actor, 1978b)

sn -, k =i sc,k', 6.34

dn, k = dc, k', 6.36

ns qk =2 cs ~k (6.37)

(6.38)

fsd, k =if sd —,k'), (6.M)
v' —1 +2k' —1 +2k '2

d =jds, k = f' ds —s,k'), (6.40)
Q —1+2k2 u' —1+2k"

eWq(kid) =eWq(f) +(E'/E)Gq, (6.42)

where W(f ) is the YM potential corresponding to f and

Go=+id, u, G'; =c;,„&„u+i5„.~Du. (6.43)

In Eq. (6.42) we see that the elliptic YM potential will
have singularities at points where the elliptic function
E(u) has zeros. This makes two of the elliptic solu-
tions especially interesting, namely the ones with F.
= dn and E =nd = I jdn. These elliptic functions have no
zeros on the real-u axis, and they can therefore lead
to YM solutions which are nonsingular.

Let us return to the DFF solution in subsection B
above. The corresponding solution of Eq. (6.31) is

f(x) =(4b/aA)' 'k(x), k(x) —= [(1—x')'+4x,'j "2. (6.44)

One ean easily verify that the function u(x) needed for
the elliptic generalization of f(x) is

u(x) = (I/v a) ta.n '[2x,/(1 —x')]. (6.45)

Therefore, from Eqs. (6.34)-(6.40) we obtain seven
elliptic solutions of the scalar theory.

To understand the properties of the elliptic YM solu-
tions, it is important to notice that f(x) and u(x) in this

where a = 4 —a(k) u(x), and Jacobi imaginary transfor-
mations have been used to obtain the second form of the
solution with parameter k'. In each case, f(x) satisfies
Eq. (6.31) with the appropriate constants a(k) and b(k)

Proceeding now to the YM theory, we note that

a „0/y = a„f/f+ (E'/E)a„u (6.41

in Eq. (6.1). Therefore the YM potential obtained from
Q has the form
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f 9 98u = a„uas f+ 9 fBqu —g„aa"fa„u,

2a f'a„ua~u = 49„fas f 2f—8 aa f
-g @

—— +9& eq
Aa 4

(6.46)

(6.47)

example satisfy the two identities [which are exten-
sions of (6.32) and (6.33), respectively]

tion cannot be satisfied because K(1)= ~ while tan '2xo/
(1 —x') cannot exceed 7r. But for k ~ k, the condition can
be satisfied, so that there are singularities [k, is de-
fined by K(k') =(1+0'2)"27r]. The CJN solution reduces
to the nonsingular DFF solution for parameter k =0 be-
cause dn(u, 0) =1. As we see, this solution is the limit
of a continuous sequence of'nonsingular solutions.

The latter identity can also be written

(6.48)(e b /aA. )9„8(f) = 2af 9 u S&u —(ah/2b) g„sf
where 9„&(f) is the energy-momentum tensor calcu-
lated from the YM potential W(f). This leads to a par-
ticularly simple formula. for 9„8(f):

9„q(f) =(8/e )(4n„ns —g„)k (x),
where A is the unit vector

n„= k( x)[(1 —x')b„, +2x,x„].

(6.49)

(6.50)

An important consequence of Eqs. (6.46) and (6.47) is
that the energy-momentum tensor 9 z(Q) for a.ny of the
elliptic YM solutions W(P) is proportional to 9„8(f),

9 s(@)= (bc/a'-)9„s(f ), (6.51)

where c =c(k) is another constant associated with the
elliptic functions (see Appendix F). For the elliptic
solutions with E =dn, nd that we are interested in, the
proportionality constant in Eq. (6.51) is

bc/a' -= 2(1 —k2)/(2 —k')'. (6.52)

After a somewhat lengthy calculation, one finds the
pseudoscalar density D(@) for any one of the elliptic
YM solutions to be

k D(y) = (3X'/4e') f [E —4c'/b'E ] . (6.53)

From Eq. (6.16) it follows that the action density is

g (y) = -(3~'/4e') f'[E '+4c'/b'E ']

For the solutions with E =dn, nd we find

(6.54)

+ D = @[48k4(x)/e'(1 + k '2)'] [dc4(u, k') —k" cd~(u, k')],

(6.55)

g = —[48k (x)/e (1+0")'][dc (uy k')+k" cd (ulk')] y

(6.56)

where

u = (1/41+k") tan '[2x,/(1 —x')], (6.57)

and q =+1(-1)for E =dn(nd). Note that we have chosen
the second form of @ with parameter k' in Eqs. (6.36)
and (6.38) because a(k) = —(1+k") is negative for these
so lutions.

The elliptic YM solution following from Q in Eq. (6.36)
is the one found by CJN. The other solution with F. =nd
is obviously gauge equivalent. CJN mention that their
solution develops singularities when the parameter k
exceeds a certain critical value k, (numerically, k',
= 0.173). To show that this happens, we note that
cn(u, k') in the denominator in Eqs. (6.55) and (6.56)
vanishes at space-time points which satisfy the condi-
tion u=K(k'). The elliptic YM solution is therefore
singular at these points. For k =0(k' = 1) this condi-

VI I. EUCLIDEAN SOLUTIONS

A. Introduction

1. Euclidean SU(2} gauge theory

In Euclidean space-time the gauge-theory Lagrangian

2 =g Gq pGq~ = 2 [E„'E„'+B'„B„'],

The energy-mom entum tensor is

9„s= G'„„G'„8-g„sC =g (Gq„+G'„)(G'„Gs'„8).
Clearly 9 8 =0 for any self-dual solution. A gauge-
invariant quantity which plays an extremely important
role is the pseudoscalar density

D-=-.'G' G' =-E'B'=(1/2e')a J
D is the four-divergence of the current

(7.1)

Now we come to the instanton and meron solutions of
the SU(2) gauge theory in Euclidean space-time. These
exact solutions have attracted a great, deal of interest
since their discovery, and for good reason. In quan-
tum-mechanical problems which have classical analogs,
tunneling is bound to occur when there exist Euclidean
(i.e., imaginary-time) solutions of the classical equa-
tions of motion. Usually an approximate description of
the quantum tunneling effect can be obtained from these
classical solutions. The classical instanton and meron
solutions of the Euclidean YM theory therefore imply
ihe existence of tunnelimg effects in the quantized the-
ory. Traditional (perturbative) quantum field theory
allows no room for such effects, and the evident con-
clusion is that perturbative field theory is only one
sector of a la,rger mathematical structure in which
tunneling occurs and is approximately described by in-
stantons, merons, and perhaps by other Euclidean
space objects whj. ch have yet to be found.

At first sight it is not obvious where one should look
for the new tunneling effects in the quantized SU(2)
gauge theory. One has to examine the details of the
classical solutions to find this out. There are three
basic types of Euclidean solution known (at present),
which we give the names instanton, meron, and elliptic
solutions. To appreciate the differences between these
three types of solution it is necessary to understand
certain topological properties of the Euclidean gauge
theory. We first review these properties. Then we
describe the various solutions and their physical inter-
pretation. This discussion is a fairly self-contained
introduction to instanton physics. Following this intro-
duction we study the individual solutions in considerable
detail. ,Two ansBtze will be discussed separately from
the solutions in subsection B.
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(1/2e')2„—= —', c„„qI[W'„aaWI+ —', ec,p, W'„W'BW'I]. (7 2) lent to the vacuum as x —~,

This result follows directly from the basic definition of
j9 and the trivial identity

—
& Trp g~ (dK 88(d(d B~(d(d (7.4)

The second and third terms are divergence free, and

„J„ is gauge invariant, as it should be.
Integrating over 0 we obtain the topological index ox

charge of the Euclidean field configuration,

q —=
2 ~ d x D=, lim Ii) d Q „J„+q „„,.Bm2 ]6&2

(7.5)

Here, in using Gauss's theorem, we have to admit the
possibility that the field configuration is singular. Thus
q„„,=—0 for any nonsingular solution, For singular so-
lutions q„„~may or may not be zero. For example,
q„„~=0 for the singular one- and two-meron solutions.
Note that q is different from a Noether charge, i.e. , a.

charge of the form f d'x Jo(x, i). It is impossible to
make q time dependent. This is characteristic of a
topological charge.

q can have any value from -~ to +~ depending on the
YM field considered. It is useful to group all possible
YM fields into classes, the fields within a. class (and
only these) ha.ving a given va. lue of q. One can then ask:
Are all values of q interesting? At the present time
only classes with integer q or half-integer q are thought
to be physically important. The fields in these cia.sses
describe collections of instantons and merons, respec-
tively.

The total action is bounded from below by ~q ~
for any

real Euclidean solution. This follows from the in-
equality

(G+ ~ Qa )2 ~ 0

which implies that 2 ~
~
D

~
and

W = d ~x 2 ~ (8II'/e')
~ q ~

.

In the q =0 topological sector the action W can be arbi-
trarily small; this is the perturbative sector. In the

~q ~

= 1 sector the action cannot be smaller than BII'/e2.
This is the one-instanton sector; the one-instanton so-
lution with action W = BII /e' saturates this low'er bound.
Similarly, the N-instanton solution saturates the lower
bound in the ~q ~

= N sector. In general, it is clear that
only self-dual solutions can saturate this bound (be-
cause 2 = ~D ~

implies self-duality). It is conjectured,
although not yet proven, that only self-dual YM solu-
tions can have finite Euclidean action.

We now explain what q has to do with topology. I et
us assume that the YM potential becomes gauge equiva-

coney c.b. c...w VWUTV nWB -0
In matrix notation the current (7.2) has the form

(1/2e') J = Trc„BI[W„a&W& +(2e/Si)W„WBW&]I. (7.3)

Under a local gauge transformation

W„-W„' = IdW„Id ' —(i/e)(a~~)cu

J„ transforms as follows

J„.—J„' = d„+2i eTrc„„s&a„(a&wW&&u ')

eW„- —i(a„cu)u ', x2-~ . (7.6)

q= — d& 1 24@2 c
&& Tr

To simplify the integrand let us parameterize (d by
three suitable angles 0,(a =1, 2, 3). Then a~au =a„6,a, &u

where from now on (until we finish the proof that q =n)
a, Id

—= a~/a0, . The integral for q then becomes

q = — dQ~ 1 47t c~~gyB~0, ~802&~ 03

x Tl [ a &co(d a2co(d a&(d(d

Next, we need the following formula,

d0d0 d0 dQ g 0 080~ 0

which may look complicated but is easy to understand.
The surface element dQ„=x„x2dQ is parallel to x„and
therefore d Q„c„„zzprojects out the components of the
derivatives 0, ~ perpendicular to x„. These per-
pendicular components are essentially the derivatives
a0 /ag, where p; are three angles which charac-
terize points on S'. The formula above is therefore
es sentially

d0, d0, d6, = (Jacobian) dg, dp~, dp3.

[The reader who has difficulty with this formula should
consider the corresponding U(1) problem, where a
circle with angle P is mapped onto a. circle with angle
0. Here the topological charge is given by the surface
integral

where &u = exp(i0) and x„=(x, y) = I (cosp, sing) while
d0~ =x~dl/). Tile lntegrand is

dQq c~,a, 0 =dg cq, xqa, 0=dp(a6/ag)=d0,

This boundary condition associates an SU(2) group ele-
ment ~ with each point on the infinite sphere S3 in F. ~.

Therefore any solution with the behavior (7.6) will de-
termine a map S'„-SU(2) of this sphere into the SU(2)
group manifold. Now the SU(2) group is topologically
the same as a. three-sphere S' in E . Therefore the
solution determines a map S' —S . All maps of the
three-sphere S' onto itself fall into homotopy classes
labeled by a, topological index or charge n (see Appen-
dix I). The integer n is simply the number of times S3
gets covered by the map of S'. Correspondingly, all
solutions with the behavior (7.6) at infinity fall into
homotopy classes labeled by n. For these solutions,
the topological charge q defined in Eq. (7.5) is this in-
teger n.

It is straightforward to prove that q =n (Belavin et ai. ,
1975). For a pure-gauge potential the current j„ is

J& = —
3 c &~8& TI' [a~(dc' aacv(d a &(dc' ] .

Thus, for a solution which satisfies the boundary con-
dition (7.6) at infinity, the surface integral in Eq. (7.5)
becomes
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and ther efore

n
q =— d6} =n

2w

is the winding number n in this U(1) problem. ] Return-
ing to the SU(2) case we write q in the form

d6}& d02 d83 Tr 9&(dna) ~2(d(d 340(d

If {9, are the Euler angles,

(u = exp(-,'i8, o', ) exp(-,' i8,0,) exp(-', i8,&,),
then one easily verifies that

Tl [82(t)(d 9&(t)(t} 93(t)(t) ] = -4 sln8»

so that

= 2n
q =,

J d8, d8, d83sin82=n.

The extra factor 2 here comes from the fact that the
Euler angle parametrization of ~ corresponds to a
proper rotation. The improper rotation -~ also has
to be counted to obtain the full SU(2) group manifold.

For the purpose of illustration let us consider the
simplest nontrivial case n =1. This is the one-instanton
solution of Belavin et al. (1975), which satisfies the
boundary condition (7.6) with

w '=o„n„o„=. (1, io), n„=x„/~~2.

Here we see how ~ maps the direction x„ in F-' onto the
unit vector n„ in another four-dimensional space &4.
The SU(2) group manifold in Rd is the locus of points
touched by n&, i.e. , the unit sphere S'. Obviously this
sphere gets covered one time by the mapping.

We now explain how the topological charge q is re-
lated to tunneling in Minkowski space. For this purpose
we introduce a second, nonconsexved charge

logically equivalent to the unit sphere S' in a four-
dimensional Euclidean space. Moreover, the group
SU(2) has the topology of S'. Therefore the local gauge
transformation co(xQ, x) defines a map 8'-S'. As we
discuss in Appendix I, all maps of S' onto S' are char-

' acterized by an integral topological. index n (n is the
number of times the latter sphere gets covered). This
means that (i) every gauge transformation (d carries an
index n; (ii) all gauge transformations with different n
are topologically inequivalent (i.e. , they cannot be con-
tinuously deformed into one another); and (iii) gauge
transformations with the same n are fully equivalent.
The charge Qr is the topological index of the gauge
transformation. This can be proved using essentially
the same argument just given for q. Introducing Euler
angles 8, we can rewrite Eq. (7.8) in the form (where
ad(d = a(t)/a 8d)

Q, =-(i/2") f d xx,„r,d, x, d, t, d,

x tr[a, (u(u 'a, (ceo 'a, ~co ']

= —(x/2x') f dd, d&, dt!, (--,' xintt, )

A local gauge transformation can change n. In contrast,
q is absolutely gauge invariant. In general one can
think of Qr(t) as a number which characterizes a YM
field configuration in normal three-space at time t. For
an arbitrary field, Qz, (t) will not be an integer nor will
it have any topological meaning. But for a pure gauge
field Qr(t) is the homotopy class label of the gauge
transformation.

We can now write down an expression which compact-
ly summarizes the relationship between Euclidean so-
lutions, Minkowski-space tunneling, and the two types
of topological charge q and Qr. This is

Q {t)—= {1/16r') f d'xd . (7.7) q=Q, (&=+-) —Q (f= —"), (7.9)

This charge is only conserved if D = 0 (assuming that
surface integrals at infinity can be ignored). Therefore,
nonconservation of Qr is related to the presence of
topological charge. Note that under a gauge transfor-
mation

Q -Q =Q —(1/24r') f d'xr. ,t

tr[a;(d(d 'a, (u(u '&,~u) '].
Thus for a pure-gauge potential eW& = —i(a„w)&u ' the
charge Qr is

Q (t} = —{1/24x*)f 4'xt.„ tr[4;txtr '4, tr '4 txtr '].

(7.8)

Now we want to show that Q~ is the homotopy class
label associated with the gauge transformation ~. Let
us consider a fixed time xQ, and assume that ~=to(xo, x)
satisfies the boundary condition u- 1 for &- ~. Then
~(xQ, x) defines a map of three-space with all points at
r = ~ indentified into the SU(2) group manifold. Now
three-space with all points at infinity identified is topo-

where we assume that J vanishes faster than O(1/x') as
The evident meaning of this formula is that a

Euclidean solution W&(xQ, x) interpolates between the
real-time potentials W&(t = + ~, x) in the distant past and
future. Imaginary time xo plays the role of an inter-
polating parameter. In general, one cannot caI.l this
continuous interpolation a tunneling process because
there is no barrier separating the initial and final field
configurations. But when the fields W„(t=+~,x) are
pure gauge, so that the charges Qr(t = a ~) are homotopy
class l.abels, then tunneling is the appropriate expres-
sion for q 40. The initial and final states have zero en-
ergy and they are homotopically inequivalent for q 40
so that a barrier must separate them. This is a tunnel-
ing situation.

2. Instanton solutions

An instanton (also called a pseudoparticle) is a local-
ized, nonsingul. ar solution of the Euclidean gauge theory
with one unit of topological charge. The name instanton
is derived from this localization in E which corre-
sponds to finite duration as well as spatial extension in
Minkowski space, i.e. , to an "event. " All instanton
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solutions are self-dual, and therefore they have zero
Euclidean energy. A self-dual solution in Minkowski
space also has zero energy. This seems to suggest that
the existence of instantons may be related to a tunnel. ing
effect in Minkowski space between different vacua. If
only one vacuum exists, then of course there is no pos-
sibility for tunneling. More than one vacuum would be
necessary. The topological nature of the instanton sug-
gests that a denurnerable infinity of vacua ~n& might
exist, the vacuum ~n& having topological index n T. hen
the one-instanton solution would connect ~n& with ~in+ 1&,

the two-instanton solution (which is also self-dual)
would connect ~n& with )n+2&, and so on.

We shall see immediately below that these specula-
tions are correct; there are really infinitely many
topologically inequivalent vacua. If the instanton solu-
tion did not exist then (other things being equal) these
vacua would all be absolutely disconnected from one
another, and all but one of them could be ignored. As
it is, they all have to be taken into account.

It is not difficul. t to show the existence of an infinity
of inequivalent vacua in the SU(2) gauge theory (Jackiw
and Rebbi, 1976a; Callan, Dashen, and. Gross, 1976).
Choose a gauge with WO=O. The (Minkowski-space)
vacuum solution of the theory is then a pure-gauge po-
tential,

eW;(x) = —i[a, (u(x)]co '(x) .

Here we must exclude time-dependent gauge trans-
formations, as these would lead to nonzero W,'. It is
technically advantageous (although not essential) to
make the additional assumption that &u(x) —1 as +- ~.
Then, &v(x) defines a map of three-space with all points
at infinity identified into the SU(2) group. As we have
already discussed, these maps fall into homotopy
classes l.abeled by an integer n. Correspondingly, the
gauge transformations u(x) fall into homotopy classes,
and so do the pure-gauge potentials eW„= —i(a„cu)co '.
The totality of pure-gauge potential. s determines the
YM vacuum. This vacuum therefore consists of an in-
finity of sectors, which are distinguished from one an-
other topologically in the way just described.

The traditional (i.e. , perturbative) gauge-theory
vacuum is the one with n=0, for this vacuum contains
the potential W';=0. All other vacuum potentials in the
n=0 class are obtained from 8& ——0 by gauge trans-
formations that are continuously deformable to the
identity &uo(x) = 1.

A gauge transformation which is not continuously de-
formable to &u,(x) = 1 is (Jackiw and Rebbi, 1976a)

x-02

1(x) 2 2 2 X 2 2+g K +X

This gauge transformation belongs to the class with n
= 1, as one can show by rewriting it in the form

(u, (x) = &„n„, &„=(1, i&),

identified (~, —1 as Y- ~), onto S', covering it once.
The sphere S' here can also be identified with the SU(2)
group manifold. Therefore we see that &u, (x) is indeed
an n = 1 gauge transformation. A gauge transformation
in the ~th homotopy class is

&u„(x) = [&s,(x)]".

Let us return to the instanton solution. This Eucli-
dean solution (in the Wo =0 gauge) can be shown to have
the following behavior for large negative and positive
imaginary time:

-eW;. —i(a;(u, )(u, ' xo=it ——~;
e%";—0, xo=it —+ ~.

In words, it interpolates between the n = 1 vacuum field
configuration in three-space and the n=0 configuration.
There is no difference between three-space in F and
in Minkowski space-time, of course. Therefore the
meaning of the instanton solution for Minkowski space-
time is clear. It connects the n = 1 vacuum with the
n =0 vacuum via an exact solution of the imaginary-time
equations of motion. This is the classical equivalent of
tunneling. We have not said through what potential bar-
rier the tunneling occurs. [See Bitar and Chang, 1978;
Eylon and Rabinovici, 1977, for discussion of this
point. ] However, it is clear that an energy barrier
must be present because a topological number gets
changed. As we have seen, there does not exist a con-
tinuous sequence of zero-energy (i.e. , pure-gauge) so-
lutions which connects two vacuum solutions in differ-
ent homotopy classes. Therefore it is necessary to go
under an energy barrier, and this is precisely what the
instanton does. [Bitar and Chang (1978) give an inter-
esting discussion of the tunneling process in Minkowski
spac e. ]

Let us now try to construct the physical vacuum of the
pure SU(2) gauge theory. This vacuum should be a su-
perposition of all the different topological. vacua. The
latter we represent by vectors ~n& in a Hilbert space.
In this space the gauge transformation &u, (x) which
changes topological charge by one unit is represented
by an operator G with the property

G (n&= (n+I&, ~n&=G" ~0&.

We also introduce a topological charge operator

with the properties

q, (n&=n]n&, [q„G]=G.
The physical. vacuum should be invariant under G, and
this constrains it to have the following form, which is
called a 0 vacuum,

x
pg = —2A.~2 +g2 0 y2 +g2 where 0 «0 «2m. Then

As x ranges over all of three-space, the unit vector n~
traces out a sphere 8' -in a four-dimensional. space.
Thus u, maps three-space, with all points at infinity

and the L9 vacuum is invariant under G up to a phase.
There is a continuum of these 0 vacua and each one is
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a suitable ground state for the physical SU(2) gauge
theory. Theories based on different 0 vacua are dis-
tinct. Note that the 0 vacua are. orthogonal,

&8'(8&= P e""'

=5(8 —8) P e ' lim &m~e "'"~0&

= 8(8' —8) P e ' 'f d[W]„exp(—fd'ed)
m

= 5(8 —8) Q fd[W]

Here we have normalized the topological vacua accord-
ing to &n~m& = 5

If there were no isolated instantons there would be no
vacuum tunneling, and all of the ~n& vacua would be de-
generate in energy (E„=O). Instantons remove this de-
generacy, in the same way that vacuum tunneling splits
the ground state in the familiar symmetric double-well
problem in ordinary quantum mechanics; The symme-
tric ground-state wave function has lower energy than
the antisymmetric one. This implies that the 6} vacua
have energy E(8) &0 and that E(8) increases monotonic-
ally with 8 (to avoid degeneracy). (8=0& is the fully
symmetric vacuum with lowest energy, and

~
8 =m& is

the maximally antisymmetric vacuum with highest en-
ergy. This can, of course, be verified explicitly
(Callen, Dashen, and Gross, 1976, 1978).

The fact that the physical vacuum is
~

8& for some
angle 0 leads to an effective Lagrangian for the pure
SU(2) gauge theory,

Z, „,= 4[G'„„G'„,+i8 (e2/8vr ) G'„,G'„„].

We give a qualitative proof below, but first let us point
out an implication of the extra term in g,«. This gauge-
invariant term violates I' and T invariance. Therefore,
the peculiar structure of the 0 vacuum leads to spon-
taneous breakdown of these symmetries for 0~0. The
strength of the breakdown is determined by the angle 8.
Note that the extra term in g,« is a four-divergence
[see Eq. (7.1)]. Such a term is usually thought not to
have any physical consequences, but this is clearly not
the case here. The integral of the extra term is non-
trivial even classically (being proportional to the topo-
logical charge).

I et us now show that g,«has the form claimed above.
First we write down the vacuum transition amplitude
between topological ly distinct vacua (Callen, Dashen,
and Gross, 1976)

((m (mle ' "In)= f d[W]„„exp (- f d'xd)
+0~ oo

where 2 = &G'„,G'„, is the pure gauge theory Lagrangian,
and for simplicity we forget about the gauge-fixing and
ghost terms in the exponent. The functional. integration
here is restricted to Euclidean gauge fields which ap-
proach vacuum fields in the (n —m) homotopy class at
infinity. These are the only Euclidean gauge fields
which can interpolate between the vacua ~n& and jm&.
Next, we calculate the transition amplitude between 8
vacua:

(1/2n) lim (8 ~e Os~8)~ oo

= (I/2w) g e'" " ' lim &m~e "'"~n&
n, m,

&& exp — d'x g + e' 8m'

= 8(8 —8) f d[W] exp(- f d'xd„, ).
Here we have used Eq. (7.5) for the topological charge
nz. This calculation shows explicitly how the 8 term
comes to be in the effective Lagrangian in the theory
built upon the 6} vacuum.

Now let us introduce massless fermions into the
gauge theory. This has a very important effect: name-
ly, that isolated instantons are stronglY supjressed. In
other words, the presence of massless fermions de-
stroys the tunneling between vacua }n&, tm& with differ-
ent topological charge, as first noticed by 't Hooft
(1976a). This happens because, by introducing fer-
mions, one has effectively introduced a conserved axial
charge into the theory. Because of the triangle anomaly
this conserved charge has an extra term of topological
character in addition to the usual chiral charge Q, .
This extra term forces Q, to change when the topologi-
cal index changes. But Q, cannot change in a vacuum
tunneling situation, where no fermions are present, and
therefore isolated instantons and anti-instantons are
suppressed. (Bound pairs of these objects are not sup-
pressed, however. ) Note that the argument leading to
this suppression of isolated instantons is only valid for
massless fermions. When the fermions somehow
acquire anon-negligible mass, then instantons and anti-
instantons are liberated.

Consider N& massless fermion doublets ]i)(. In the
usual way one can define a gauge-invariant axial cur-
rent

]i j Y ask[)( ~

This current is not conserved. Instead, because of the
well known triangle anomaly (Adler, 1969; Bell and
Jackiw, 1972),

aq J'„=—(e'/167r')Ny G'„„Gq„—(N~/87r') ——a„J„,
where J„ is the current defined by Eq. (7.2) above. The
usual axial charge,

Q, = f d'xd', ,

therefore does not commute with the Hamiltonian, al. —

though (by gauge invariance) it does commute with the
topological charge operator 6,

A conserved axial current can, however, be defined,

d(lq —= J q+ (N~/8n' )Jq.

The cor responding conserved charge
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commutes with the Hamiltonian, but it is not gauge in-
variant:

[Q„,G] = 2X, [Q„G]= 2&V, G.

Assuming that Q„~O) =0 one easily verifies that ~n) is an
eigenvector of Q „,

Q z( n) = 2nN&
~
n) .

Then, by considering the quantity (n~ exp( —xqH)Q„~m),
it is trivial to show that

(n)ie &" )m) =6 (n~e 'q" (n).

Thus tunneling between different vacua is suppressed
when massless fermions are present.

Even though vacuum tunneling is suppressed in a the-
ory with massless fermions, the physical vacuum in
such a theory is still a 8 vacuum. [This is certainly
true if the limit (fermion mass) —0 is smooth. When
the fermions are massive Q„ is not conserved, and
vacuum tunneling exists, necessitating a {9 vacuum in a
theory with massive quarks. ] However, all 8 vacua are
now physically equivalent. This is because Q„ is the
operator which rotates 0,

e'"'~~8&= g e'"'e &~n)

e'" e'"'" ~ n = 0+2nD

Since Q„ is conserved all 8 vacua have the same ener-
gy. Indeed, they all. define the same theory, even
though (8

~
8) =0 for 8 o 8. Consider the transition am-

plitud e

(I/2m) lim (8 ~ie
"'"~ 8)

= 6(8' —8) lim Q (nle *qHln)

Here there is no extra term 6G&, C&, in the effective
Lagrangian. The theory is independent of 6). In particu-
lar, this means that I' and T invariance have been re-
stored by the introduction of massless fermions.
The nonconservation of Q, in the presence of instan-

tons appears to solve an old problem. This is the U„(l)
problem in Lagrangian theories with massless quarks
(see Pagels, 1976, for a review). Such theories have a
U„(1) symmetry whose generator is Q, . There is no
such symmetry in nature, nor is there a Goldstone
boson which corresponds to broken U„(l). Instantons
break this symmetry in a way which does not generate
a Goldstone boson ('t Hooft, 1976a), and this seems to
resolve the dilemma.

The rule AQ, +2M& b,Qr ——0 connects change of chirality
with change in topological charge. Consider the one-
instanton case EQ~ = 1; the change in chiral. ity is then
bQ, = —2N&, where N& is the number of fermion types.
This means that N& fermions have to change chirality
when an isolated instanton occurs. We must therefore

conclude that an effective interaction exists betureen
one instanton and 2N~ fermions ('t Hooft, 1976a, b).
This is a very important result, which (with due modi-
fications) holds for any non-Abelian gauge theory.
Such an interaction can lead to qualitatively new phys-
ics. 't Hooft (1976a) has given an amusing example.
By applying his triangle anomaly argument to the Wein-
berg —Salam model he obtained a violation of baryon
and lepton number, caused by instantons, which en-
abl. es the reaction P +n- e'+ v„ to take place. Of
course, like all instanton transitions, the amplitude
for this process contains a factor exp( —Bn'/e'). This
factor is practically zero if e is the electric charge,
and so the reaction above will never occur. For the
same reason, all instanton effects in gauge theories of
the weak and electromagnetic interactions are negligi-
ble. (These are sometimes called "weak instanton" ef-
fects. ) But in @CD the effective YM coupling can be
much larger than the el.ectric charge. One therefore
looks for instanton effects in this theory.

Another comment concerning the effective instanton-
fermion interaction: We mentioned earlier that the
rule AQ, = —2N& implies suppression of isolated instan-
tons. Evidently this would not be the case if there were
many massless fermions present and the instanton were
not too smail. But suppose that we are interested in
smal. l-scale effects deep within a hadron. Then, for a
single instanton to be important it must (i) be of this
same small scale, (ii) interact with several quarks at
once. This is unlikely to happen, and the conclusion is
again that. isolated instantons are suppressed.

Now a word about quark confinement. Much of the at-
tention instantons have received can be attributed to the
suggestion (Polyakov, 1975, 1977) that they might pro-
vide a mechanism for confinement. A YM theory is
thought of as having two phases. In phase (a) the gauge
fields are the massless Goldstone bosons associated
with a degenerate vacuum. There is no tunneling be-
tween different vacua to remove the degeneracy, i.e. ,
no isolated instantons. As we have seen, this would
correspond to massless quarks. In this phase the cou-
pling is small (we are deep within the hadron) and there
is no confinement. In the se'cond phase (b) the vacuum
degeneracy is removed by tunneling; isolated instantons
can appear. This means that the quark masses are no
longer negligible. The gauge fields are no longer Gold-
stone bosons; they are now massive. In phase (b) the
coupling is large (the entire hadron is involved) and
there is confinement.

At present, the concensus of opinion is that instan-
tons do not confine quarks. Meuller (1978) has studied
the confinement probl. em in a way which does not de-
pend on the detailed mechanism which is responsible
for confinement. His result is that the Euclidean YM
field configurations which are needed for confinement
cannot be solutions of the equations of motion. Specifi-
cally, he finds that the low-momentum Fourier com-
ponents of these fields necessarily (and maximally) vio-
late the equations of motion. Therefore these fields
must deviate more and more from exact solutions as
x'- ~. Taken l.iterally, this rules out the many-instan-
ton and many-anti-instanton configurations, because
these are exact solutions for al. l. x'. It also rules out
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instanton-anti-instanton configurations, which are not
exact solutions, because these configurations become
increasingly good (as approximate solutions) when x'

Most quark confinement discussions (including Meul-
ler's analysis above) are based on Wilson's quark-loop
argument (Wilson, 1974). The idea is to calculate the
average over all. gauge fields of the quantity

I
I

1[w] =& exp —Ie fdx„w„e xp ——,
' f 1'xG]„G'„„

C I

where C is a large contour or quark loop in I' and I' de-
notes path ordering of the matrices W„(x) along the con-
tour If .C is rectangular with sides T and R (T»R) i.n,
let us say, the xo —x, pl. ane, then this average has the
form

[llZ) f d[W]1[W]=e

Here c(R) can be interpreted as t. he energy of a, pair
of massive quarks with spatial separation R. This is
the function of interest for quark confinement. There
is no confinement if c(R) does not grow with increasing
&, for then it does not cost energy to pull the quarks
apart. But if c(R) increases with R to arbitrarily large
values then quarks may be confined. If instantons are
assumed to dominate the functiona1. integration over
gauge fields one can calculate e(R). This is a rather
technical. calculation and me just state the results
(Callen, Dashen, and Gross, 1977, 1978; Rath, 1977).
An ensemble of well. separated instantons without long-
range interactions (i.e. , a dilute gas of instantons) does
not confine quarks but only leads to a renormalization
of the quark mass. Ensembles with large, overlapping
instantons are left out of the analysis because one does
not know how to handle them. Presumably many large
overlapping instantons and anti-instantons could trans-
mit long-range forces, throughout the entire hadron for
example-. Trying to sol.ve this probel. m is l.ike trying to

' solve the strong-coupling version of the confinement
problem —one does not know how to do it. The hope of
instanton physics is that confinement mill already be-
come a fact before the coupling gets strong. Instantons
do not seem to accomplish this, but merons might (see
below).

The generation of quark mass by instantori effects has
been discussed in a number of papers. Caldi (1977) has
estimated the quark mass with the help of the effective
interaction Lagrangian for the instanton-2N-quark in-
teraction worked out by 't Hooft (1976b). Carlitz (1978)
obtained a formula for this mass,

Hl =C dp p8 p 8

3. Meron solutions

A meron is a local. ized, singular solution of the
Euclidean gauge theory with one-half unit of topological
charge. The name meron derives from a Greek word
meaning part (of a unit of topological charge). The
topological charge of the meron is concentrated at the
point where the solution xs singular. This is to be con-
trasted with the instanton's nonsingular cloud of topo-
logical charge. Another difference between instanton
and meron solutions is that the latter are not self-dual.
Therefore we can expect that merons correspond to
some new sort of tunneling in Minkowski space. Un-
fortunately, we shall not be able to say a great deal
about this tunneling. The main difficulty is the absence
of an explicit solution describing an arbitrary number
of randomly located merons. Without this solution it is
not easy to fully understand the role merons pl. ay in YM
theory. Nevertheless, some parts of the picture are
fairl. y cl.ear.

Exact one- and two-meron solutions are known (de
Alfaro, Fubini, and Furlan, 1976). The gauge potential
of these solutions has the form

eWq ——p[ —i(s~g)g '],
which, as we see, is one-half of a pure-gauge potential.
[It is conjectured (de Alfaro, Fubini, and Furlan, 1978)
that all meron solutions have this form. ] To investigate
the tunneling property of merons let us calculate the
current J„ in Eq. (7.2) that determines the topological
charge density D for the potential above. The result is

g C~ ~8]' tr[ ~gg agg egg ] .

This is one-half of the current obtained from a pure-
gauge potential. Thus, if the gauge function g(x)&SU(2)
defines a mapping at ~x[= ~S'- S' with homotopy index
n, then the meron potential above has topological
charge q =n/2. This shows that 'the topological meaning
of the charge q' is basically the same for merons and in-
stantons. However, there are very important differ-
ences. An instanton becomes pure-gauge only at infini-
ty, while a meron solution is one-half of a pure gauge
potential everywhere. Moreover, the tunneling be-
havior of merons is not simply related to the tunneling
behavior of instantons. The latter tunnel between vacua
constructed from the gauge functions co„ that contain a
size parameter (essentially the size of the instanton).
Merons have no such parameter. (In Appendix H we
show in detail how merons tunnel in the Coulomb gauge. )

A very important property of merons is their connec-
tion with magnetic monopoles. In the %"o= 0 gauge the
one-meron solution is

(here e(p) is the running YM coupling, p is the instanton
"size," and C is a known constant), by calculating the
quark propagator in the presence of a dilute instanton
gas. The same result was obtained in a calculation
(Carlitz and Lee, 1978) of the electromagnetic (quark)
current correlation function in the presence of a single
instanton with all sizes. (This correlation function
turns out to have the behavior for x'- that is charac-
teristic of massive quark fields. )

As xo-+~ this potential vanishes, while for xo- —~

eWf- — „e„(x2„ r/') = —k(&, &u)&u ', ~=&u '=& ~ &.

Here we can see explicitly that the meron interpolates
between two pure-gauge vacuum configurations. The
one in the distant future is trivially zero. The one in
the distant past is not quite trivial. , but it is nonsingul. ar
at &=0 and has topological charge Q&=Q. For negative
xo the interpolating three-space configurations are non-

Rev. Mod. Phys. , Vol. 51, No. 3, July 1979



Alfred Actor: Classical solutions of SU(2) Yang-Mills theories

singular at & =0. Note that the x0=0 configuration is
the Wu —Yang static point monopole [see Eq. (3.8) and
below]. This is the most prominent three-space con-
figuration through which the meron solution passes. At
earlier (later) times the interpolating field is coming
from (returning to) the vacuum through a sequence of
configurations which somewhat resemble a monopole.

In the WO=O gauge the two-meron solution with both
merons located on the imaginary time axis at points xo
=a, b is

x„&'+ (xo —a) (x, —b)
i iian 2 [( )2( b)2]1/2

For x,—+ this solution becomes the same pure-gauge
potential discussed above. If the separation ~a —bi is
large then W'; becomes approximately a Wu-Yang point
monopole at times xo=a, &.

Clearly, the physical interpretation of these meron
solutions is that colored magnetic monopoles with finite
lifetimes can spontaneousl. y appear in the YM vacuum.
A gas of merons in E' corresponds to a continuously
renewed gas of these short-lived monopol. es in normal
three-space. It has been argued (see Mandelstam,
1975) that a vacuum containing colored monopoles might
lead to quark confinement. The mechanism would be
that a superconducting state of colored monopoles
comes into existence which expels colored electric
fields. These fields are the gluon interactions between
quarks, and if they are confined to tubes then these
tubes are strings which bind the quarks together.

Meron solutions have infinite action because of their
singularities. But one can smooth out the gauge poten-
tial in the neighborhood of each singularity to obtain an
approximate solution with finite action, which only dif-
fers from the genuine solution in the immediate vicinity
of the singular points. This is, of course, a valid field
configuration for the path integral. An important fact
is that the action of a smoothed meron pair increases
with larg'e separation & like lnR (Call. en, Dashen, and
Gross, 1977). This is most easily shown by using the
solution @ = (Xx ) '~', where P is the usual. scalar an-
satz function. This solution represents a meron at x=0
and another at x'= ~ (see subsection E). From its ac-
tion density 2= 3/2e'~x~' the total action of the meron
pair is found to be

d'xg =, =, ln

where c&O, R &~ represent the smearing of the point
charges at the origin and infinity, respectively. The
value of c depends on the details of the smearing and is
not important because R is large (R is the separation of
the two merons). We see that the interaction between
widely spaced merons is logarithmic.

A very interesting suggestion, due to Callen, Dashen,
and Gross (1977, 1978a) is that an instanton may consist
of two merons. (This might seem to imply that merons
are, in some sense, more fundamental than instantons.
Indeed, one is accustomed to think of pointlike charges
as being more fundamental than extended ones. ) The
merons are tightly bound for small effective coupling e,
but when this coupling increases to a certain critical
value they will dissociate. This can be illustrated quite

easily. The gauge potential for an instanton with center
at the origin is

eW', = [x'g(x'+ v')][—i(&„g)g '],

g = (x ~ &+ ix,) / V x',
where v is the size of the instanton. The gauge poten-
tial for a meron at the origin is

e~ „=4( &(—I g)g ')
~

with the s am e matrix g. We see that

and in the limit v- 0 of vanishing instanton size the in-
stanton becomes two merons. The reader is cautioned
not to take this argument too literally because W „be-
comes pure gauge in the limit v-0. However, one can
imagine that the merons become slightly separated, so
that the limit of 8'„ is not quite pure gauge.

The quark confinement picture proposed by Callen,
Dashen, and Gross (1977, 1978a) has three phases.
Here we are viewing the hadron from inside, as a
quark would.

Phase I: Very small distances deep within the hadron
are probed. The effective YM coupling e is very small
according to the standard asymptotic freedom argument.
Quark masses are practically zero. This means that
instantons and anti-instantons are bound together [as
explained in part (2) above], and tunneling between the
topological. vacua ~n) is suppressed; the vacuum is de-
generate. The perturbative (n =0) vacuum is the physi-
cal ground state for QCD with massless gluons and
(practically) massless quarks.

Phase II: Somewhat larger distances (still deep with-
in the hadron) are probed. The effective coupling e has
increased beyond a small critical value and a phase
transition has occurred: Quark masses are nonzero,
instantons are now free, and there is tunneling between
the topological vacua ~n). The physical ground state

~
8)

=Qe'" ~n) is a superposition of all of these vacua.
Chiral symmetry is broken. Perturbative methods still
work, although there are nonperturbative corrections.

Phase III: Distances approaching the hadronic scale
are probed. e has increased beyond a second (still
small) critical value and another phase transition has
occurred. Instantons have dissociated into meron
pairs: The resulting meron plasma confines quarks.
We are near the surface of the hadron in this phase.
(If the surface were passed the instanton and meron
density would abruptly diverge. ) Nonperturbative ef-
fects are overwhelmingly strong.

All three phases are analyzed with the help of semi-
cl.assical arguments. This means the effective YM cou-
pling must be fairly small even in phase III. Otherwise
the entire picture collapses.

It is possible to estimate the effective coupling at
which a meron plasma might become important (Callen,
Dashen, and Gross, 1977, 1978a). Merons are small
and their interaction is weak (logarithmic). Therefore
they can be treated like the particles in a gas with en-
tropy roughly proportional to ln Y, where V is the vol-
ume occupied by the gas. This means that the probabil-
ity of finding a meron within a l.arge volume &', say
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with center at the origin, is roughly proportional to B .
Suppose that this meron interacts with another which is
outside the volume. The action of the pair is then W
= (3m'/e') lnR. This leads to a total probability for find-
ing the meron within R,

~4 -m ~4-3~ ge2 2
e

which vanishes (blows up) when R —~ for e'/3m' & —,
'

(&—,').
The relatively small coupling e'/8s' = ~ therefore
seems to be a critical value at which merons may be-
come important. For smaller e the action of a meron
pair with large separation R grows too rapidly for the
merons to come apart. But at the critical coupling the
action grows slowly enough that it is just compensated
by the increasing entropy. This implies that the merons .

dissociate. Note that if the meron interaction were
stronger than logarithmic, the entropy could not com-
pensate' for the diverging action, and there could be no
d is sociation.

Finally, we come to confinement. A meron plasma is
supposed to confine quarks because the gauge potential
of an individual meron behaves like I/(x~ for all lx(x0.
This means thatthenumber of merons which make asigni-
ficant eontributi. onto a Wilsonloop integral of area TED i.s
proportional to TR3. (Here merons which are further than
R from the loop are not counted. ) Ignoring interactions be
tween merpns this would naively seem to imply that the
quark interaction energy is e(R) -R' so that quarks are
confined. Including the logarithmic interaction between
merons reduces this to c(R) R with n 1 (see Callen,
Dashen, and Gross, 1978a). Again, because of the
logarithmic action, the confinement mechanism "turns
on" at a critical value of the coupling constant which is
still fairly small. This is all very qualitative, but
nevertheless suggestive; particularly so when one ob-
serves that the argument above does not go through for
a gas of small instantons. The instanton potential also
falls off like 1/jx~, but it is pure gauge and cannot con-
tribute to the loop integral.

singular cloud of topological charge in E' with total
charge g =1. For k &1 there appear two point singu-
larities within the cloud. As k —0 these point singulari-
ties increase in strength, eventual). y becoming merons
when k = 0, whil. e the cloud becomes weaker and total. ly
disappears at k =0. This might be a description of the
phase transition occurring when an instanton dissociates
into two merons.

According to the elliptic two-meron solution an in-
stanton v ith size A, would dissociate isotropically into
merons with separation 2~. In other words, the merons
would come into existence out near the edge of the in-
stanton. This is not a Priori obvious; one could only
have guessed that the meron separation would be C~ for
some constant C.

There may exist a much more general elliptic
solution which interpolates between a 2N-meron config-
uration and an ¹instanton configuration. Clearly there
are many different possibilities for pairs of merons to
coalesce into instantons. The sizes of the instantons
would depend on the separations of the various meron
pairs. Until an explicit multimeron solution has been
found, there is little chance of discovering this more
general solution, unfortunately.

eW,'= w B,P/@,
eW;= c;,„B„p/@+ 5„8,@/@. (7 10)

The SU(2) equations of motion are reduced by this
ansatz to Eq. (6.5), which we write here in the form

If g is a solution of

B. Ansitze

1. 't Hooft-Corrigan-Fairlie-Wilczek ansatz

We have already encountered the Minkowski-space
version of this ansatz in Sec. VI. In Euclidean space it
ls

4. E lliptic so lution (1/@) P + A.@ = 0, (7.11)

Instantons and merons are the two basic types of ob-
jects which have been found so far in E'. But a more
general exact solution of the Euclidean SU(2) theory is
known which interpolates between these basic solutions.
The more general sol.ution involves Jacobi elliptic func-
tions, and it is cal.led an elliptic solution. The physical
meaning of this solution is not yet understood. One in-
teresting possibility is the conjecture (Callen, Dashen,
and Gross, 1977, 1978) that instantons are two merons
bound together, and a phase transition occurs in which
these merons come unbound. If this is true then the el-
liptic solution may describe how this happens. The el-
liptic 'solution depends on a continuous parameter k,
and for k = 1 it reduces to the one-instanton solution
while for k = 0 it becomes the two-meron solution.
These two quite different Euclidean YM field configura-
tions are connected by a continuum of exact so-
lutions which interpolate between them (Cervero,
Jacobs, and Nohl, 1977). The topological charge dis-
tribution of the elliptic solution depends on k as follows.
In the instanton limit k = 1 there is, of course, a non-

then the gauge potential (7.10) is a solution of the YM
equations of motion. A. is an arbitrary integration con-
stant. The YM field strengths are

1 2eE„'=e„, —8,8 y ——,8 @8
I

1 2 1 1
+~.. —Bod ——.(804'80@ —8 48 4)

1 2—8 8„$——28 $8„@

eR„' = + eE„' —5„,(1/@) (7.12)

The self-duality condition Z„'= +R„' implies ( @)/P =0.
[This statement is slightly too strong, as we shall see
in the following subsection. ( qb)/P can be nonzero for
a self-dual field if E„' and &„' are both proportional to
6„,.] From Eq. (7.12) we easily find

(7.13)

Equations (6.13) and (6.14) for 2 are still valid here,
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D = + (I/2e') s, [ (&„@/y)]. (7.14)

Then from Eq. {'7.5) we find a formula for the topologi-
cal charge of a nonsingular solution.

q =~(1/167r') dQx x„[ (&„@/@)]. (7.15)

The behavior of Q as x'- ~ is closely related to the
value of the topological charge q'. Suppose that

and the energy —momentum tensor is given by Eq. (6.17).
A particularly useful formula is

singularity arith nnit strength. in the topological charge
density (e'/8m')D. No matter what kind of YM solution
is involved, near the singul. ar point one can write the
gauge potential in the form (7.19), which shows that it
is nonsingular there. Thus the delta-function singulari-
ty in D must be spurious. For any point topological
charge with strength q 4+1 this is no longer true. Such
a singularity is not spurious; the gauge field really does
have a singularity.

2. Witten's ansatz

y- C/(x')",

Then using Eq. (7.15) one easiiy verifies that

(7.16) Witten (1977) introduced the following ansatg, for the
Euclidean gauge potential,

@ = C/(x —u) ', s „@/g = —2 (x —v) „/(x —v)' . (V. 18)

Near this point the corresponding YM potential is pure
gauge,

eW~ = —i(~~co) M

co = (1/&(x —v)')[&. (x —v) +i(x, —v,)]. (7.19)

There appears to be a singularity in W„at the point x
= v, but it can be gauge transformed away. Near this
point the YM field is gauge equivalent to the vacuum.
However, the scalar function (7.18) is genuinely singu-
lar there. One consequence of this is that Eq. (7.14)
for D breaks down at x= v. Let us calculate D near this
point using @ in Eq. (7.18):

(e'/87r')D = a (1/16~') [—4/('x —v)') = ~ &(x —v) . (7.20)

According to this result there is a point topological
charge with unit st rength at x = v. But we have just
seen that this is wrong; there is a vacuum at this point.
To correct matters we must subtract the delta-function
singularity from D. This is conveniently done as fol-
lows. In the expression (7.14) for D we can make the
replacement @-(x —v)'Q and use the formula

(7.17)

If @ is a solution of @+A.Q' =0 then only two values of
o.'are allowed: (i) n = 1, which is the instanton solution
with A. = 0, and (ii) a = I/2, which is the meron solution
with X arbitrary. Note that in deriving Eq. (7.17) we
have ignored singularities. We now discuss the way in
which singularities in @ can change q by an arbitrary
integer.

Suppose that @ has a singularity at the point x= v of
the form

a +n xa xi XX'1
(7.23)

(a=exp[ —'i f(x, ~)y ~ &]. (7.24)

Under this gauge transformation the ansatz functions
transform as follows:

A„-A„=A„—s„f,
COS Sln

—sin cos

Here, and below, we use the notation

(7.25)

s = s/Bx 8, =8/By.

Equations (7.25) reveal the most interesting property of
Witten's ansa~z: It reduces the pure YM problem in E
to a simpler probl. em, namely the Abelian Higgs model
in two space-time dimensions (with a curved metric
g„,=r'6„,) The Ab. elian gauge potential is A„= (A~, A, )
and the complex (charged) Higgs field in the model is
@ = Q, —i@,. The Abelian gauge group is, of course,
the subgroup {7.24) of the SU(2) gauge group. To em-
phasize this property of his ansatz Witten introduces
the notation

where A, (xoy), A, (x„y), p, (x„&), and @,(x„y) are func-
tions of y = (x', +x,'+x,')'~' and x,. This ansats is sym-
metric about the time axis in E . In three-dimensional
space this corresponds to symmetry under spatial. ro-
tations.

The ansatz (7.23) is form invariant under the local
U(1) subgroup of SU(2) with elements

ln(x —v)' = —4s'5{x—v)

to obtain the correct result

(7.21)
I „,—= ~„A,—8 A. „,
Dp@.-=sp4. +&.~Ay@~ (7.26)

D = a (1/2e') in@

—+ (1/2e') in[(x —v)'Q] =D v (2m'/e')5(x —v) .

(7.22)

This operation only changes D at the point x = v where
the original formula is wrong.

One can regard the operation just defined as a singu-
lar (but allowed) gauge transformation which eliminates
the spurious singularity from D. Quite generally, this
situation will arise whenever there is a delta-fuylction

where al, l indices take two values.
The YM field strengths obtained from Eq. (7 23) are.

1 xx- XX 1—

eE„'=E„uxor

—2DO@2+ '4" Po, + 6,„—'2" —Dog, ,r
(7.2V)

Using these expressions one can easily cal.cul. ate the
action density of the Euclidean YM theory,
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2 = 2 [(1/2r )D ~@,D~Q~+ 8 F~„F~„
+ (1/4r') (1 —@', —y,')'].

The pseudoscalar density (7.1) is found to be

2e'D = (1/r') a„J„,
where

J„=2c„,[c~P,D, @,+A,].

(7.28)

(7.29)

(7.30)

C. Belavin-Polyakov-Schwartz-Tyupkin instanton

The famous instanton solution of the Euclidean SU(2)
gauge theory was found by Belavin, Polyakov, Schwartz,
and Tyupkin (1975) (hereafter BPST). This solution is
manifestly nonsingular,

2x.eS"0= +
X +'U

The equations of motion following from Eq. (7.23) are eW( ———e;,„[2x„/(x'+ v')] +5„.[2x /(x'+ v')]. (7.33)

ap(r'F pv) = 2c~4.DA ~

r'D pD pl" = d&.(I —4 i —0') (7.31)

Moreover, it is self-dual:

eB„'= + eF„'= 5,„4v'/(x' + v')' . (7.34)

or more explicitly,

ao(r Fm) = 2[@iDi@2—

4"Dilly]

ax (r'FM) = —2[4 i D04" —42 D04'i]

r'[a~(Dpd") +c~ A~(D~@.)] = 4.(1 —@i —@') . (7.32)

It is always possible to gauge-transform one of the
fields Q, to zero. For example, to make Q, =0 we
choose f=tan '(P, /@,) in Eq. (7.25). Setting @,=0 in
the equations of motion of course simplifies these equa-
tions considerably.

There exists a region of overlap betmeen Witten's
ansatz (7.23) and the @ ansatz (7.10). If @ = P(xo, r) de-
pends only on & and xo then the two ansatze coincide if
A, = @,/r and

which is the equation of motion for a @' theory in two
space-time dimensions (with the curved metric g&,
=r'5„,). According to Manton's result above the gauge
potentials obtained from solutions of this equation are
gauge equivalent to potentials (7.10) for some @
= 4'(xo r).

An extension of Witten's ansatz has been introduced by
Leznov and Saveliev (1978). The more general ansatz
depends on a constant four-vector b& in such a way that
it reduces to Witten's ansatz when b„= (1,0). The four
animate functions depend on two variables x„&„and
[x' —(x„b„)']'~' which become xo and r for b„=- (1,0).
Leznov and Saveliev discuss the symmetries of their
ansatz and give equations of motion and other formulas .

of interest in terms of the ansatz functions. Moreover,
they give an interesting expression for the N-instanton
solution with all instantons on a line.

The gauge potential A„here automatically satisfies the
Lorentz condition „A& ——0, which is essential for the
construction of solutions in Witten's approach. Now an
interesting question is: Under what conditions are the
two ansatze equivalent? Manton (1978a) has answered
this question. He shows that if ~&A& ——0 is satisfied,
then any solution obtained from Witten's ansatz is gauge
equivalent to a @ solution. This result holds indepen-
dently from assumptions such as self-duality.

Meron solutions correspond to A& ——0, @,=0 (or gauge
transformations thereof) in the ansatz (7.23). The equa-
tions of motion (7.32) then reduce to

Therefore the energy —momentum tensor is identically
zero. The potential (7.33) falls off like O(1/~x') as x'
—~ and normally this behavior would imply that the so-
lution has infinite action. But in Eq. (3.34) we see that
the field strengths decrease like O(1/x ) and, because
the solution is nonsingular, this means that the action
is finite. The field strengths decrease this rapidly for
large x' because the instanton potential becomes a
pure-gauge potential in the limit x'- . To show this
explicitly we can rewrite Eq. (7.33) in the form

eW„= [x'/(x'+ v')][—i(a„g)g ']; (7.3 5)

g = (I/~x') (x ~ &+ ix,), g ' = (I/~x') (x. o a ix,) .
The instanton solution defines a particular mapping of
the sphere S' at infinity onto the SU(2) group manifold.
This mapping has topological index q =+1.

Actuall. y, we are being somewhat careless with our
terminology here because two topologically distinct
field configurations are involved. The lower (upper)
sign in Eqs. (7.33) and (7.35) gives the instanton (anti-
instanton) solution with topological charge q =+ 1 (q
=-1). In Eq. (7.34) we see that the instanton is self-
dual and the anti-instanton is self-antidual. However,
we find it convenient to discuss the two solutions to-
gether, and to loosely refer to an instanton that can
have either charge, when this cannot lead to confusion.

To show that the potential (7.33) really is a solution of
the equations of motion we observe that it can be writ-
ten in the form

eW;= + a,Q/@,
eW'= &;,„a„@/Q +b„a @/p,

where

(7.36)

@ = C/(x'+ v'), a„P/Q = —[2x„/(x'+ v')]. (7.37)

Moreover, for C = (8v'/A)'~, Q is a solution of the equa-
tion /+X@'=0. Since Eq. (7.36) coincides with the qb

ansatz (7.10) (with + in place of a), it follows that the
YM equations of motion are satisfied. Now the atten-
tive reader will notice an apparent contradiction here,
namely that @ satisfies @+A,@'=0 with nonzero A, and
not @ =0. In subsection B it was mentioned that
=0 is the condition for a self-dual solution based on the

ansatz (7.10). But there is no contradiction, as we
now show. The reason is that the extra term in Eq.
(7.12), which would seem to conflict with the self-duali-
ty of the solution, has the same form as the field
strengths E'„' and B„' in Eq. (7.34). In fact we can rewrite
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the self-duality equation (7.34) as

eE„' = v eE'„' —5,„( @/Q),

which is precisely Eq. (7.12) with the change a-w taken
into account.

Now that we have the instanton solution in the form
(7.36) we can easily calculate the topological charge.
Indeed, this has already been done in Eq. (7.17). Since
P- 1/x' as x'- ~, it follows that I@I= 1. The topologi-
cal charge density is easily found with the help of Eq.
(7.14),

(7.38)

Integration over all space gives g =+1, as it should.
In Eq. (7.33) it is clear that the instanton is centered

at x~ = 0. Translation ln E, x~ ~ x~ +Q~, sl.IIlply moves
the instanton to a new location. The constant v' in the
denominator determines the size of space-time extent
of the instanton. For v'- ~ it extends (thinly) over all.
of E; this is a large instanton. For v'=0 the effects of
the (small) instanton are concentrated near the point x'
=0. The fact that the SU(2) gauge theory has no built-in
scale is responsible for this arbitrariness in the size of
the instanton. Note that the instanton cannot become so
small that it is pointlike, for when v'=0 the instanton
potential becomes pure gauge. Taking the limit v'- 0
destroys the instanton.

, There is a connection between the BPST solution
above, and the "kink" solution of the Q theory in two
space-time dimensions (Marciano and Pagels, 1976;
Calvo, 1977). This can be shown by a change of depen-
dent and independent variables;

(2/4) (d0/«') = (I/x') I.f(y) —I]

y = 2' in(x'/v'), f(y) =tanhy = (v' —x')/(v'+x') .

The function f(y) satisfies

f +2f 2f'=o, -
which is the static equation of motion for the two-
dimensional theory with Lagrangian

f=tanhy is the well known static kink solution of this
theory. Translation of the kink, y- y+a, corresponds
to a change of scale in the instanton solution v'-v'/X
with a = 2 ink. . The two vacua of the kink theory, y = + ~,
correspond, respectively, to the pure-gauge instanton
potential at x' = ~ and W„=O at x' =0 [see Eq. (7.35)].

It is generally conjectured that Euclidean YM solu-
tions which are not self-dual (or self-antidual) cannot
have finite action. (Nonsingular self-dual solutions, on
the other hand, are guaranteed to have minimum action
in any given topological sector. ) Support for this con-
jecture can be found in the one-instanton sector. Let us
restrict the discussion to solutions which are symme-
tric under rotations in E (simultaneous gauge trans-
formations are allowed). Many authors have investi-
gated such field configurations (Hwa, 1977; Ball and
Sen, 1977; Calvo, 1977b; Actor, 1978b; Mukher jee and
Roy, 1978; Wada, 1978; Arik and Williams, 1978). It
is found that the instanton solution is the only one suit@,

finite action. All other O(4) symmetric solutions, self-

dual or non-self-dual, have infinite action. The elliptic
solutions which we discuss later show clearly how this
comes about. For elliptic parameter 0 =1 these solu-
tions become the nonsingular instanton. But for all k &1
the ell. iptic solutions are singular at x'=0 and the action
is (logarithmically) divergent. The value k =0 is unique
in this respect, and this illustrates the uniqueness of
the instanton solution. (See subsection G below for
more details. )

The conformal properties of the instanton solution
have been investigated by Jackiw and Rebbi (1976b).
Dilatations x&- Ax„change its size, n'- v'/A. '. Thus a
large instanton becomes a small one when E' is
stretched enough. More interesting is the behavior
under coordinate inversion, x~- x„/x'. This operation
changes an instanton into an anti-instanton, hence q' =+1

To prove this statement we note that x„/
~x', and hence the matrix g in Eq. (7.35), is unchanged
by coordinate inversion. The coefficient in Eq. (7.35)
becomes

x ' I /gP

x +U x +I/O

Comparing the resulting expression with Eq. (7.39) be-
low, which is a gauge-transformed version of Eq.
(7.33), we see that coordinate inversion changes the
sign of the instanton charge, and the size v into I/v.
Jackiw and Rebbi go on to show that the instanton solu-
tion is invariant under the O(5) subgroup of the O(5, 1)
conformal group in E'. This large symmetry group is
another indication of the uniqueness of the instanton so-
lution.

D. N-instanton solutions '

1. 't Hooft's solution

The first multi-instanton solution we discuss is the
one found by 't Hooft (1976c), and later generalized
slightly by other authors (Jackiw and Rebbi, 1977a;
Ansourian and Ore, 1977). The latter solution is still
the most general explicit self-dual solution known. We
emphasize that the solution to follow describes config-
urations of N instantons or N anti-instantons, but not a
mixture of instantons and anti-instantons. It is gener-
al. ly bel. ieved that no exact solution exists which de-
scribes one instanton and one anti-instanton.

't Hooft was able to write down a multi-instanton solu-
tion after he had discovered an ansatz which linearizes
the equations of motion, namely ansatz (7.10). Now this
is not quite obvious when one looks at the BPST instan-
ton solution in its original form (7.36), because @ in
Eq. (7.37) satisfies /+A@' =0 with A. c0 and the prob-
lem is not linearized. However, 't Hooft noticed that
the BPST solution can be.written in a different form
with a new scalar function @ which satisfies (I/@)
=0. This essentially linearizes the problem, as we now
show.

Let us gauge-transform the BPST solution (7.35)
using the inverse matrix g '. The new potential. is

(7.3.9)

Rev. Mod. Phys. , Vol. 51, No. 3, July 1979



Alfred Actor: Classical solutions of SU(2) Yang-Mills theories

Explicitly, the components of W
&

coincide with the
ansafz (7.10),

+2e'D = —2e'Z

in[(x —a, )' ~ ~ ~ (x —aN )'P] ~ (7.45)
eW,'=+ a,Q/@,

eW = e;,„a„@/p + b,~a,@/@;

where

@ =1+v'/x', a„@/y = —2v'x„/x'(x'+ v') .

(7.40)

(7.41)

N

=1+
(x —a„)' '

This scalar function satisfies

(7.42)

The corresponding YM field is self-dual and nonsingu-
lar (by the argument following Eq. (7.18)), and it has
topological charge p =N (as we show immediately).
Therefore it is, as claimed, an N-instanton solution.
Note that the parameters b„are the (size)' of these in-
stantons, and therefore they are positive.

Let us now prove that the scalar function (7.42) leads
to topological charge p = +N in the YM theory. For this
we need Eqs. (7.13) and (7.14), which we write in the
form

e 2e D = —2 e 2 = 1n&/& . (7.43)

This is an explicit formula for the densities g and D,
both of which should be nonsingular because the YM so-
lution is nonsingular. But there are delta-function
singularities in Eq. (7.43), because Eq. ('7.43) breaks
down at the points where @ is singular as we have al-
ready mentioned in subsection B. To show this explicit-
ly we write down the identity

ln[{x—a )' ~ ~ -(x —a )'y]
ln(f) + ln(x - a,)'+ ~ ~ ~ + ln(x —a~)' (7.44)

in@ —4m'5(x —a, ) —~ ~ ~ —4s' 5(x —a~) .

The left-hand side here is nonsingular because
(x —a, ) . ~ (x- a„)'P isfinite for ~x~&~. Therefore
the delta functions on the right must cancel singul. ari-
ties in 1ng. These singularities are not physical
(because the YM field is nonsingular) and they have to
be canceled. Away from these singular points, the fac-
tor (x —a,)' ~ ~ ~ (x —a„)' in the argument of the l.ogarithm
on the left in Eq. (7.44) has no effect whatever. There-
fore the correct Lagrangian and pseudoscalar density
for 't Hooft's solution are given by

This scalar function Q satisfies ( Q)/P =0 because

[1/(x —a)'] = —4w'5 (x —a) .

Therefore the instanton solution is self-dual, as we
have already seen. Although Q is singular at x' =0 this
is not true of the YM potential W&, as shown explicitly
by Eq. (7.39). When x'- 0 the potential W „becomes
pure gauge, and there is no singularity.

The solution (7.40) and ('7.41) represents an instanton
with size ~v~ centered at the origin. Given the BPST
solution in this form, it is trivial to write down an
exact solution of the equations of motion which repre-
sents N instantons with arbitrary sizes, centered at
arbitrary points x = a„ in E, namely

To complete the argument, we recall the result in Eqs.
(7.16) and (7.17) above, which relates the behavior of
the argument of ln as x'- ~ to the topological charge.
In Eq. (7.45) we see that the exponent of the argument
is a = —V, because of the V extra factors, and there-
fore the topological charge is q =+ a= +N, as it should
be for an V-instanton solution.

Jackiw and Rebbi (1977a; see also Ansourian and

Ore, 19'77) pointed out that the scalar function (7.42) is
not conformal invariant. In other words, this function,
and the corresponding N-instanton solution of the YM
theory, change their appearance under conformal
transformations. A scalar function that is conformal
invariant is

@ = g b„/(x —a„)'.
n=0

(7.46)

The action is therefore independent of the positions of
the instantons. This means that instantons do not inter-
act with instantons, nor anti-instantons with anti-in-
stantons. [A correction to this statement should be
made when the centers of two instantons are made to
coincide. Then, as we see in Eq. (7.42), the two in-
stantons merge to become one instanton with a new size
parameter, and a unit of topological charge gets lost. ]

There is a logarithmic interaction between instanton
and anti-instanton. A rough argument demonstrates
this. Consider an instanton and an anti-instanton with
large separation R (R»the instanton size). The gauge
potential representing this situation is A„= W„+ W&
where W„and W„are the potentials of the instanton and
anti-instanton. A.

&
is an approximate solution of the

equations of motion. The field strengths calculated
from A„are, in an obvious notation,

Now concentrate on the contribution of the last term to
the total action. W„and W„behave like I/jx~ and 1/
~x —&(, respectively (the instanton is located at the
origin), and in cal, culating the action we find a contribu-

As Jackiw and Rebbi show, this function is form invari-
ant under the full Euclidean conformal group. One
easily verifies that it, too, gives rise to an N-instanton
YM solution because the topological charge is q = +¹
We can even change the solution (7.46) into the 't Hooft
solution (7.42) by taking the limit bo- ~, ao- ~ with
bo/ao= 1. But this is a rather nontrivial limit, and it is
not surprising that the parameters of the solution (7.46)
no longer have an obvious physical interpretation.
There are 5N+4 parameters in Eq. ('7.46) (an overall
constant factor is irrelevant). This is four more than
in the 't Hooft solution. The four extra parameters are
necessary for conformal invariance.

Let us turn to the question of interactions between in-
stantons. Because of self-duality, the. N-instanton (or
N-anti-instanton) solution saturates the lower bound on
the total action,
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tion lnR coming from the smal. l-x region. Evidently
this logarithmic interaction is attractive, for when the
instanton and anti-instanton overlap they tend to cancel.
When their centers coincide, and they have the same
size, then the cancellation is complete and a pure va-
cuum is the result.

The 't Hooft N-instanton solution has 5N parameters,
and its conformal-invariant generalization has 5N+4
parameters. One may wish to know if further general-
izations are possible, and if the maximum number of
parameters is limited or unlimited. Answers to these
questions have been given. The most general N-instan-
ton solution [defined as a self-dual solution of the pure
SU(2) gauge theory with topological charge q =N] de-
pends on 8N-3 parameters. These parameters have
the following physical. interpretation. 5N of them deter-
mine the position and size of the instantons. A further
3N parameters are needed to specify the orientations of
the instantons in SU(2) space. [Instantons are SU(2)
vectors because W'„ transforms l.ike the adjoint repre-
sentation under global SU(2) transformations. ] But
three of the orientation parameters are meaningless
because a global SU(2) transformation cannot have any
physical effect. This leaves 8N 3para—meters (Jackiw
and Rebbi, 1977b; Brown, Carlitz, and Lee, 1977).
Note that ansatz (7.10) does not allow any freedom in
the SU(2) orientation of the individual instantons. Es-
sentially, the orientation is determined by the positions
of all the instantons. Therefore 3N —3 orientation pa-
rameters are missing, leaving the 5N parameters in
't Hooft's solution.

A more rigorous derivation of the number BN-3 has
been given (Schwartz, 1977; Atiyah, Hitchin, and
Singer, 1977). This work is based on a very fundamen-
tal theorem in mathematics known as the Atiyah —Singer
index theorem. An interesting aspect of this approach
is that normalizabl. e zero-eigenvalue solutions of the
Euclidean Dirac operator (with a self-dual. gauge poten-
tial) determine the instanton number. This turns out to
be equal to the number of such solutions with positive
chirality or helicity minus the number with negative
chirality. The explicit zero-mode solutions of the
Dirac operator for the 't Hooft N-instanton solution
have been found (Jackiw and Rebbi, 1977c; Grossman,
1977).

ao@.+ &0@.—ai@2 —&if i
9 p —A @ = (a @ +A &f& ),-
a,a, —a,X,= (1/~')(1 —@,

' —y', ) .

(7.47)

(7.48)

(7.49)

2. Witten's solution

The first multi-instanton solution was constructed by
Witten (1977) with the help of Ansatz (7.23). Because
thi. s ansatz is O(3) symmetric the instantons are nec-
essarily arranged along the imaginary-time axis in E4.
't Hooft's solution above is more genera. l (and simpler),
and for this reason Mitten's solution has received less
attention. Nevertheless, this solution has interesting
mathematical properties and it, deserves study.

Witten begins by imposing the self-duality condition
E'„= B'„. From Eq. (7.27) we see that self-duality im-
plies

Then the gauge 9„A, =0 is chosen, which implies that
A has the form A, = a, g, A, = -a,g. Then Eqs. (7.47)
a.nd (7.48) become

A change of dependent variable p, = y, e~, p, = y, e~ re-
duces the latter two equations to

-~'(a,'+ a,')q=1 —e"(f*f).
A further change of variables,

g= Iny —2 lnf*f + p,
brings Eq. (7.50) into the form

(a', + a,')p= e".
Here we have used the fact that

(v. 50)

(v. 51)

(ao+ a~) lnf*f = 0

for any analytic function f.
The general solution of Eq. (7.51) is known,

p = —ln [2 (1 —g*g) ] + ~z ln
~

dg/dz
~

',
where g=g(z) is any analytic function. Changing back
to the variables f and g we see that

f = dg/'dz, y = —in [(1/2r)(1 —g*g) ] (v.52)

is a solution of Eq. {7.50). For iiI to be nonsingula. r,
Witten chooses

g(z)= II ( "„),Rea„&0.
n=0

Because Rea„& 0, g (z) has no poles in the (physical)
half-plane Beg = g ~ 0. Also, gg*= 1 along the boundary
r =0 so that P is not singular there.

Where are the instantons? It turns out that their po-
sitions and sizes are determined by the zeros of the
function dg/dz. [This function has N zeros when g is
given by Eq. (7.53).] Let z= z, be one of them. The
rule is that Imp, . is the position of the instanton along
the imaginary-time axis and Rez,. is its size parameter.
This is not trivial to prove. Nevertheless, we can
easily convince ourselves that the zeros of f = dg/dz
are quite unique points, for Eq. (7.50) is invariant under
the transformation

f -f'= hf, g-g'= ——, Inh~h+ P, (7.54)

where h is any analytic function. The zeros of f are
unchanged by this (gauge) transformation.

It is instructive to calculate the one-instanton poten-
tial. Take K= 1 in Eq. (7.53) and let the parameters g,
= g, =X be equal and real. The a~sate functions are
most easily calculated from f' and P' defined by Eq.
(7.54) with h=(X+z),

f '= h(dg/dz) = -4~(X —z)(~+ z),

0X1 1~2 & OX2 1X1 '

These are just Cauchy-Biemann equations that guaran-
tee the differentiability or analyticity of f(z) =y, —ix„
z =r—+i ,x. Only the third self-dua. lity equation (7.49) re-
mains to be solved. In terms of the new variables it is
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r/r' = —ln [(I/2y)(l —g*g )v' h*h] = —in[4K(x'+ X') ] .
f ' vanishes at z = 1, which means that the instanton is
centered at go= 0 and has size X. The gygs~tz functions
are

X,= -2r/'(x'+ ~'), X, = 2x,/(x'+ ~'),

@,= -(X'+ x,'- ~')/(x'+ ~'), y, = -2~x,/(x'+ ~'}. (7.55)

To obtain the usual form of the instanton potential (7.33)
(lower sign) we have only to perform the gauge trans-
formation (7.25) with f = -7r/2.

3. Atiyah-Hitchin-Drinfeld-Manin construction

Atiyah, Hitchin, Drinfeld, and Manin (1978) have
shown how to construct the general self-dual solution
of a Yang-Mills theory with arbitrary compact gauge
group. This very general constructive procedure re-
duces the self-duality equations to purely algebraic con-
ditions that are much easier to solve. An explicit, fully
general solution of this algebraic problem has not been
given. Nevertheless, the algebraic construction of
Atiyah et ~$. is the next best thing to a complete solu-
tion of the self-duality problem. We now show how this
construction works for the SU(2) gauge group. The
reader is referred to recent papers by Corrigan, Fair-
lie, Goddard, and Templeton (1978) and Christ, Wein-
berg, and Stanton (1978) for a more detailed discussion.

For the gauge group SU(2) we have to work with quat-
ernions. These are 2 x 2 complex matrices of the form

which depend on four real numbers. It is convenient to
introduce a basis

e,=(1, -i(r)

and to write quaternions as follows,

Q, —iQ, —Q, -iQ )

Then Q'Q= Q Q„I,=(detQ)I, and the inverse of Q is Q
'

= Q'/detQ. If detQ=1 then Q c SU(2). A position vector
z „ in E is repres ented by the q uaternion

The following properties of the basis quaternions e are
easy to verify:

where g and q are the symbols introduced by 't Hooft
(1976a).

The construction of Atiyah et ~E. begins with the ~~-
satz for the SU(2) gauge potential

eW =iM'8,M=i[M;8 M, + ' +M+„a„M„],

where M=M(x) is a column vector of quaternions M„
My M with Jf + 1 q uaternion e lem ents. This ansat~
looks very much like a sum of pure-gauge terms (how-
ever quaternions are not SU(2) matrix elements unless
they are unimodular). The quaternion vector M is re-

quired to satisfy the normalization condition

M'M = Mo Mo+ ' ' ' + M„'M„= I2.
If n = 0 then M, c SU(2}, and we simply have a pure-
gauge potential. For yg&0 this will not be the case.
Note that the normalization condition implies

(a „M )M+ M'(a.M) = 0,
just as for an SU(2) matrix element. Therefore W'„= W
is Hermitian and the gauge potential g ' is real. An
SU(2) gauge transformation ~ of the gauge potential in-
duces the following change in M,

M'- ~M'= (~MO, ~M~, . . . , ~M„') .
Therefore a gauge transformation changes the elements
of M by a common unimodular factor.

So far we have only an ansatz. The quaternion ele-
ments .of M(x) have to be determined such that W is a
seU-dual solution of the equations of motion. To this
end let us introduce a matrix of quaternions with a very
specific x dependence,

where A and D are const~ygt quaternion matrices with
dimension(n+ 1) xn and Bx means each element of B is
multiplied by ~. The constant parameters in A and E
are the parameters of the solution: In other words,
these matrices determine the solution. They cannot be
chosen arbitrarily, however, for the algebraic con-
struction to follow is only possible if b, (x) satisfies the
conditions

&'(x)~(x) = Z(x), detB(x) ~O,

where B(x) is an n xn matrix of real numbers (i.e. , the
elements of A are real numbers times the two-dimen-
sional unit matrix I, so that they commute with o).
M(x) is now required to satisfy the condition

This condition and the preceding one insure that eg „
= iM'9 ~ is a self-dual solution of the field
equations.

The latter statement is surprisingly easy to prove.
First we calculate the field strengths,

-ieG „= a ~'(I —MM+)B„M —a„M"(1 —MM')a „M,
noting that, (1-MM') is a. projection operator which an-
nihilates M. Another projection operator with the same
property is E(A'E) '6'. Moreover, the product of
these operators in either order equals b, (E'b. ) 'b, '.
Therefore they are the same operator,

1-MM'= ~(~ ~)-'~,
and the field strengths can be rewritten

-ieG„„=a,M'~(~'~) 'a'a„M a„M.~(r .r )-'Z.a M

= M a.~(~ ~)-'a„z 'M -M a„r (~ ~)-'a„~ M

= M'Be„(&'6) 'e„'B'M —M'Be„(d 'b, ) 'e' B'M

= M'B(b '6) [e„e„'—e,e' ]B'M

Here we have used
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(s,M')~+ ill'(s, ~) = o,
9 E= J3e, (E'E) 'e = e (dL'b, ) '.

This last equation shows why b, '6 = R must have ele-
ments which are real numbers and not quaternions.
When this is so then G„„is proportional to q, „, i.e. , it
is self-antidual. To find a self-dual G „we have only to
replace x by x" (or e by e').

The construction of an explicit solution begins with a.

particular choice of constant matrices A, and B such
that A'b, =A, ~R~ 40 are satisfied. These conditions
determine the number of independent parameters in the
solution. , which for SU(2) turns out to be 8yI, —3. Thus
yz here is the topological charge. To find the gauge po-
tential one has to solve M'4= 0 for M. Unfortunately
this is generally rather difficult. An exception is the
't Hooft solution below for which this step is easy.

To illustrate the construction of Atiyah et a/. let us
give the 't Hooft ~-instanton solution in the new lan-
guage:

an

0 0

Here a,.= a,. e specifies the ith instanton position and

A, = X,.I is its size. One trivially verifies that D ~= @
is satisfied. The condition M+4 = 0 leads immediately
to

the merons at infinity. Vite begin with this simpler solu-
tion.

e w;. = —s,.„x„/x'+ &.,x,lx'.
In matrix form,

8 W = 2 [—i(& g)g '],
g=(1/v x')(x'a six,), g '=g'.

(v. 5v)

(v.58)

As we see, the one-meron solution is a pure-gauge po-
tential multiplied by 2. (A pure-gauge potential multi-
plied by any numerical factor other than 1 is, of course,
no longer gauge equivalent to the vacuum. ) The na, me
"meron" comes from the distribution of topological
charge

(e'/8~')D=+(1/16~') s,(8,@/y)

= ~(1/16~') ( 2/x') = ~-.'5(x). (7.59)

This charge is concentrated at a single point in E' and
has the strength q = + ~.

The solution (7.57) represents a meron positioned at
the origin. By translation invariance the meron can be
moved to any other location. Note that by gauge-trans-
forming the matrix potential (7.58) with ~=g ',

6ne mel on at intlnltp

The one-meron solution of the YM theory was first
given by de Alfaro, Fubini, and Furlan (1976). This
solution is easily written down with the help of the p'
ansatz (7.10). The function

(7.56)

satisfies @+Xq = 0 (Petiau, 1958) and therefore pro-
vides a, solution of the YM theory, namely

eW0= +x,/x

or

~,. iaaf;+ i';.(a,. —x) = O, ew', =g '—'[-i(s,g)g '] g-i(e, g ')g= —,
' [-i(e„g ')g],

(7.60)
M;. = [~,/(x —a,.)']M&x —a,.)'.

Then normalizing M'M= jL we find

M, = 1/Wy, M, =[~,./(x —a,.). '](I/~y)(x —a,.),

we obtain the potential for a meron with the opposite
topological charge.

The one-meron solution (7.57) can also be expressed
in terms of Witten's ansatz (7.23) as follows,

where

y = 1+ x, /(x —a, )'+ ~ ~ ~ + X„/(x —a„)'
(1/~)(1. q, ) =+~.= ~/ '= s. tan-'(~/ .),
(I/~)p, =A, =+x,/x'=+&, tan '(~/x, ). (7.61)

is the familiar scalar ansatz function for the 't Hooft
solution. A short calculation then leads to the gauge
potential

eW = ——'a, q „(8„@/@).
More complicated SU(2) solutions have been studied

by Christ, Weinberg, and Stanton (1978). In particular,
they address the problem of finding a (recognizable)
+-instanton solution where the instantons have arbi-
trary SU(2) orientation. In the limit of large instanton
separation an approximate solution can be given explic-
itly.

E. Two-meron sotution

Exact one- and two-meron solutions are ava. ilable.
The former is a special case of the latter with one of

eW,"=O, eW',.'= (c/rx-')(1-x. /~x'). (7.62)

2. Two-meron solution

The scalar function for the two-meron solution is

@ = [(a —b)'/&(x —a)'(x —b)']"'. (7.63)

This is a solution of @+X@'=0. (To recover the one-
meron solution we can take the limit a -0, b - , X -~
with b'/X finite. ) It is easy to show that the YM poten-

Note that 4 is pure gauge. Choosing f = stan '(x/x, ) in
Eq. (7 25) (i.e. , sinf = +~/~x', cosf =x,/vx') we obtain
a simpler form of the one-meron potential with a&+at@
fun«ion»', = 0, @~=0 and Q,'= -x,/~x'. The new gauge
potential is
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tial calculated from g represents two merons. We ob-
serve that @ satisfies

s e/4=-[( — ) /( — )' ( -b)„/( -b)']. (7.64)

Therefore

& (& y/@)= -2[1/(x —a)'+1/(x —b)'],
and the topological charge distribution is

r'+ (x, —a)(x, —b)

[(x —a) '(x —b) ']"'

The new gauge potential is

eR"'= 0,p

x. 1
2'+(x, —a)(x, —b)

i ia1l 2 2 [(x )2( b)2]1/2

(7.74)

(e'/8m')D=+(1/'167/') & (8„@/@)
=+—,

'
[&(x —a)+ &(x —b)] (7.65)

with the merons located at the arbitrary points a and b.
The action density of this solution is, from Eil. (7.13),

2 = +D —(3/2e') [(a —b)'/(x —a)'(x —b)']' . (7.66)

The explicit two-meron potential is (de Alfaro, Fubini,
and Furlan, 1976)

"(x —a). (x —b).

The solution we have been discussing represents two
merons or two antimerons (see Eq. (7.65)). A similar
solution is known which represents one meron and one
antimeron (de Alfaro, Fubini, and Furlan, 1977). To
derive this solution de Alfaro et a$. begin with the one-
meron potential (7.58) and make the conformal trans-
formation

x, —y, = a „/2a' —(x+ a) „/(x+ a) '.
Then the potential (7.58) becomes

eW. = —.'[-2(e.c)G '],
(x-a). (x-b). (x-a). (x-b).eW'. = —c. "+
(x - a)' (x - b)' " (x - a)' (x - b)'

G = (y a+iy, ) .
2

Because

(7.76)

This is just the sum of two one-meron potentials.
Suppose that the two merons are positioned on ihe

time axis in E~ at points a= (a, 0), b = (b, 0). Then the
two-meron solution (7.67) takes the form of Witten's
ansatz (7.23) with

y„/ 9 y 2 =[a'(x+ a) '(x —a) ] '/ ' [a (x+ a) ' —2a'(x+ a) „],
the new solution is singular at the points x= +a. To
show that the new solution represents a meron and an
antimeron we choose the constant vector a to be a
=(a, 0). Then after a straightforward calculation we
flnd

A, = W —(1+@2)=W —,+r ' (x —a)' (x —b)'

X, -a Xp-b
+41 ( a)2 ( b)2 (7.68)

el'" = —4axQx, /(x+ a)'(x —a)',
eW;. = [4a/(x+ a)'(x —a)'] [—as, ,„x„

—x.x, + 2~.,(x' —a')] .

(7.77)

Again A. is a pure-gauge potential,
Near the singular points x, = +a, x= 0 the new solution
becomes

&.= e.f f=f.+f,

Using the formulas

r Xp —asinf, =+, cosf, =
v'(x a) 2

'
& (x —a)'

it is easy to show that

r(x, —a)+ r(x, —b)
[( )2( b)2]l/21

2' —(x, —a)(x, —b)
[(x —a)'(x —b)']"' '

('7.69)

(7.70)

(7.71)

e~;=+x,/(x+a)',
eW', = -s,.„x„/(x + a) ' ~ 6„.(x, + a)/(x + a) ',

which is the potential for an antimeron at x= a (a meron
at x= —a). de Alfaro, Fubini, and Furlan also show
that the meron-antimeron solution above can be obtained
from the meron-meron solution by a gauge transforma-
tion.

Comparing Eq. (7.77) with Witten's ansatg (7.23) we
see that the meron-antimeron solution corresponds to
ansatz functions

axpr
(x+ a)'(x —a)' '

(x, —a)(x, —b) + 2
'

[(x —a)'( —b)']'/' '

(x, —a)(x, —b) + r'
42 f

[( )2( b)2]l/2' (7.73)

1/ 2 2X

Xp+ a Xp —a +r
(x+ a)'(x —a)'

The Abelian potential here is pure-gauge:

('7.78)

Then from the gauge transformation (7.25) we find new
ansatz functions A' = 0, @,f= 0 and A„=a„f, f=tan ( ) tan ( ) (7.79)
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Moreover,

)t), = sinf cosf, @,= -cos'f (7.80)

be solved for @,

(7.85)

(x, —a) —(x, + a)smf =f'
[(x+ a)'(x —a)'j""

(x + a)(x —a) + r '
[(x+ a)'(x —a)'] '/'

The gauge transformation (7.25) then leads to simpler
ansatz functions A' = 0, )t),'= 0, and @,'= —cosf. The new
form of the meron-antimeron potential is

eke a P0 x„x—a2 2

i ian+2 + 2 2 1/2

Unlike the meron-meron potential {7.75), W;. here van-
ishes in the limit ~,- +~.

F. Multimeron configurations

The N-meron problem is still unsolved. The problem
is, of course, to find an exact Euclidean solution which
represents N merons located at arbitrary points in E .
(A better statement of the problem would be to find an
exact solution representing arbitrary numbers of mer-
ons and antimerons arranged in. an arbitrary fashion.
For, as we have seen above, exact meron-antimeron
solutions exist. ) The fact that this solution has not been
found, although serious efforts have been made, sug-
gests that it may be quite complicated. Hopeful. ly,
someone will discover a linearization of the problem
which leads to a fairly general solution. %e now re-
view the results on multimeron configurations which are
presently available.

To get some feeling for the difficulties involved in the
construction of a multimeron solution, let us try to find
one using the g ansata (7.10). From Eq. (7.14) for the
topological charge density it follows that if p satisfies
the condition

(7.83)

then the corresponding YM field describes & merons at
the arbitrary points z= &,

Proof: From Eq. (7.83)

a,(a,@/y) = -a,V', = -2 g 1/{x —a,.)',

and therefore the density of topological charge is

For N= 1., 2 we recover the one- and two-meron solu-
tions. But for N& 2 the scalar function @ in Eq. (7.85)
satisfies neither condition (7.83) nor the equation of mo-
tion.

A scala, r function which does satisfy Eq. (7.83) and
therefore leads to an N-meron configuration is

@=@i4.' ' '@n

where @,. is the one-meron scalar function @,.
= [X(x —a,.)'] '/'. Because

a,y,. = —(t,.(x —a,.),/(x —a,.)',
it follows trivially that Eq. (7.83) is satisfied. More-
over, P is a solution of Cl&f&+X'p'=0 for a certain X'

(whose value is unimportant) near the singular points
x = a, , and therefore the YM potentia, l obtained from @
above is a solution of the equations of motion in the vi-
cini. ty of each meron. (In fact, this YM potential is just
a sum of one-meron potentials. ) But this is not a good
approximation to a genuine &-meron solution. Obvious-
ly it is not a good approximation when the merons a,re
bunched together. - Neither is it a good approximation at
large x'. The scalar function behaves like (x') ~/' and
for N& 2 this is inconsistent with the equation of motion

p+ Xp'= 0. The approximate gauge potential is simply
& times the one-meron potential at large ~', and of
course this is not a solution —the gauge potential is too
la.rge.

Having had no luck with the @ ansatz, let, us turn to
Witten's ~ns~tz (7.23) for the gauge potential. We have
already seen that the one- and two-meron. configurations
(with the merons on the imaginary-time axis) are quite
simple when. expressed in terms of this ~jgs~tg. Glimm
and Jaffe (1978a) have shown that an arbitrary config-
uration of merons and antimerons arranged along the
imaginary-time axis can be just as easily represented.
They give an explicit formula for the Abelian gauge po-
tentia, l A„. The two Higgs field components p, are ex-
pressed in terms of an unknown scalar function that
must satisfy the equation

(7.86)

with appropriate boundary conditions. Note that Eq.
(7.86) is the equation of motion remaining in Eq. (7.32)
when A„= 0, @,= 0, and p, =)t. The reason why this is
the basic equation to solve is that A„and @, can always
be gauge-transformed to zero, for any number of mer-
ons.

The construction of Glimm and Jaffe (1978a) is very
simple. They choose the following pure-gauge form for
the Abelian potential A. ,

i=a

&x —a, (7.84)

which corresponds to + merons or antimerons. In gen-
eral, however, condition (7.83) seems to be incom-
patible with the equation of motion @+X@'=0. If one
assumes that both equations are satisfied then they can

The corresponding Higgs field components are

@).= —sinf @, @2=cosf

(7.87)

(7.88)
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where @ is still undetermined. Performing the gauge
transformation (7.25) one obtains new ansatz functions
A'„= 0, @,'= 0, and @,'= @, where p satisfies the equa-
tion of motion (7.86) above. This is the unsolved part
of the problem. Returning to the ansatz functions (7.87)
and (7.88) we note that E „=0 except at the singular
points and therefore the first equation of motion in Eq.
(7.31) implies that e,~@,D„@~=0. Then from Eqs. (7.29)
and (7.30) we see that the topological charge density is

(e'/8~')D = (1/8~'~')E„.

2 g~/

g( 2 —k') &x'

lnf,
4, =fnd , ', k),v'2 —y2

2(1 b2) L/2

(2 —a')ax'

(7.92)

(7.93)

It is easy to verify that

S;,=2~&(r) Q 6(x, —a,.) —Q &(x, —b,). The solutions have no zeros for finite g'.
Proceeding to the YM theory, we find from Eq. (6.42)

that the gauge potential in this case is

W'(g) = [1+E'/Ev' a] W— '„(f) . (7.94)
for the pure-gauge potential (7.87) above; this is just
Gauss's theorem in two dimensions (x„y). However,
only the half-plane r ~ 0 is physical, and for this rea-
son only one-half of each delta function counts. Thus

(e'/8m')D= —,'6(~) Q 6(x, —a,.) —Q ~(x, —b~)
i j

(7.89)

G. Elliptic solutions

In Sec. VI we have shown how to construct elliptic
solutions of the @4 and YM theories using a known solu-
tion of the @4 theory as input. The discussion there ap-
plies also to Euclidean space-time. Using this method
we now construct elliptic generalizations of the one-
and two-meron solutions. The former solution is a
special case of the latter (with one meron. at infinity).
Nevertheless, it is worth a separate discussion because
of its O(4) rotational invariance.

1. One-meron solution

In the one-meron case we begin with the solution of
Eq. (6.31)

f(x) = (-b/a&x')'~'. (7.90)

The function u(x) needed for the elliptic generalization
ls

u(x) = (1/& —a)»f(x) . (7.91)

Both conditions (6.32) and (6.33) are satisfied by u(x).
Therefore we can construct seven elliptic solutions of
the p4 theory: the solutions (6.34)-(6.40). Most of
these lead to singular YM solutions. The two interest-
ing ones are (6.36) and (6.38), which we give again
here.

where a,.=(a, , O), b, =(b, , O). . We emphasize that this re-
sult follows from two assumptions: (i) A is given by
Eq. (7.87). (ii) The relevant equation of motion is sat-
isfied. To complete the construction one must solve the
remaining equation of motion (7.86) with suitable bound-
ary conditions (for example, @(f,y = 0) = +1). So far no
one has been able to do this. The one- and two-meron
solutions are known, of course. A numerical investi-
gation of the four-meron solution has been done by
Jacobs and Rebbi (1978). An existence theorem for the
general solution has been established (Johnson ef a$. ,
1978).

For the solutions @» the elliptic factor here is

E'/E = —qk' snu cnu/dnu, (7.95)

where @=+1(—1) for @,(@,) and u= inf/v'2 —O'. This fac-
tor is nowhere singular. Let us now discuss the two
elliptic solutions W (@»). We need the following ex-
pressions for the topological charge density (Actor,
1978b), which can be derived from Eq. (7.14),

k'sc 2d 2(1 —A,") 4"
4&2 q2 2 —u2 (2 —u')d'

(1 —k')'
8v'( 2 —k') 'x4 (7.96)

W (P„k= 1)=, [2W (f)],
which is one form of the instanton potential. We see
that the elliptic solution W„(&f&,) has topological cha, rge
q= 2 for k= 0 and q= 1 for k= 1. For arbitrary k this
solution corresponds to a point charge surrounded by a
charge cloud, as already mentioned. When k -0 the
cloud disappears and the point charge becomes the mer-
on. When 0-1 the point charge is switched off and the
cloud becomes the instanton. This behavior can be
verified directly from Eq. (7.96). When k-0 the sec-
ond term vanishes and the first term becomes + —,'6(x).
For k= 1 the coefficient of the delta function vanishes
(recall that 71=+1 here) and the second term becomes
the instanton charge density

3A.
87(2+~~' )

2772 (1+y /2)4

Note that W (@,) is singular at x'= 0 for all k & 1. The

Note that the elliptic solutions correspond to a pointlike
topological charge surrounded by a cloud of charge.
The strengths of the point charge and the cloud both de-
pend on the parameter k.

The soluti. on W (@,) reduces to the one-meron solu-
tion when 4-0. In the limit 0-1 it becomes the in-
stanton, because the first factor in Eq. (7.94) becomes

2x'
1+d'/d = 1 —tanhu = x'+ 2/~

in this limit and thus
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instanton solution is unique in this respect.
The other solution W (P,) also reduces to the one-

meron solution when k-0, while for k= 1 it becomes

This is another form of the instanton potential. . Thus
both W (p, ) and W (g,) interpolate between the one-
meron and one-instanton solutions. For k= 1 the topo-
logical charge density (7.96) is

Jacobs, and Nohl (1977). For arbitrary k it represents
two identical point charges surrounded by a cloud of
charge with the same sign. In the limit k - 0 the cloud
dissipates, leaving the point charges that have become
merons. In the limit k-1 the point charges disappear,
leaving the cloud which has become an instanton.

IV (P,) a.iso interpolates between the instanton and
two-meron solutions. It becomes the two-meron solu-
tion when k-0. In the limit k-1 the point charges in-
crease to unit strength (so that they can be ignored) and
the cloud becomes an instanton.

We have learned that the delta-function singularity with
unit strength can be ignored. This leaves the charge
density corresponding to an instanton, as we expect.

2. Two-meron solution

To construct the generalized two-meron solution we
begin with the following solution of Eq. (6.31):

f(x) = (-4bv /aX) / h(x),

h(x) —= [(x+ v)'(x —v)'] '".
In this case the function u(x) is

u(x) = ~(x)/& —a, ~(x) —= —,
' »[(x —v)'/(x+ v)'],

(7.97)

k' sc—q —[&(x+ v) —&(x —v) ]

6v'
~

'
4 (1 y')'+q. ..h(x) d (7.101)

where 7l=+I( —1) for @,(g,), and the elliptic functions
all have argument u(x) and parameter k. When. k= 0
this reduces to the two-meron cha. rge density

+(e /87r')D(@. ..k= 0) = —,
' [6(x+ v)+ 5(x —v)]

as it should. The charge distribution for k= 1 is

+(e'/8~')a(@, „u= 1)

= a(1 —n) [~(x+ v)+ &(x —v)]+ q6v'/~'(x'+ v')'.
W (@,) is the solution first discovered by Cervero,

which satisfies conditions (6.32) and (6.33). The two
elliptic solutions of the g' theory which interest us are

@, = [8v'/X(2 —k') ]'/'h(x) dn(~(x)/v' 2 —k', k), (7.99)

y, = [8(1 —&')v'/&(2 —&') ]'/'l(x) nd(~(x)/v' 2 —0', 0) .

(7.1oo)

The YM potentia. ls are given by Eq. (6.42). As these
potentials are rather complicated we do not give them
explicitly. (See Actor, 1978b, for full details. ) The
two identities (6.46) and (6.47) are satisfied by f(x) and
u(x) and therefore Eqs. (6.48), (6.51), (6.53), and (6.54)
are va. lid here as well, with modifications due to the
singularities at ~= +~. The quantity we are especially
interested in is the topologica. l. charge density. After
some computation this is found to be

Vill. CQNCLUSION

Three particularly interesting types of YM solution
have been discussed in this review. We now' briefly
summarize the present theoretical situation with regard
to each of these.

A. Monopoles and dyons

Developments have not matched the enthusiasm gen-
erated by the discovery of the 't Hooft-Polyakov mono-
pole. It is known that solutions of this type generally
exist for YM theories with arbitrary semisimple gauge
group. All of these monopoles are topological solitons
in 3+ 1 dimensions, and theoretically they are extreme-
ly interesting. One can think of two obvious directions
for future research.

(1) Phenomenological: Monopoles may be realized in
nature as physical objects, as Dirac speculated many
years ago. The YM monopoles would be attractive can-
didates because they are extended, nonsingular, string-
free objects which seem to be stable. There would be
the question of which gauge group is the correct one,
of course just as for unified theories of the weak and
electromagnetic interactions. Perhaps these would be
related questions.

(2) Theoretica. l: The mathematical properties of YM
monopoles could be studied independently of physical
applications. One could try to set up a quantized theory
of monopoles. The classical monopole-monopole inter-
action could be investigated, etc.

At the present time both of these directions are un-
fortunately blocked. SU(2) monopoles probably have
masses of several thousand GeV, as we have seen in
Sec. IV. While such a large mass may be commensu-
rate with the large magnetic charge g= 1/e, it makes
monopoles impossible to produce experimentally. If
there are none already on the earth, then no monopole
will ever be found. Perhaps a huge monopole mass is
the true reason why none have ever been seen. If this
is the case, we shall never be able to verify it.

Theoretical work on monopoles is hindered by the ab-
sence of an exact multimonopole solution. All efforts
to find such a solution with physically acceptable prop-
erties have failed. It is not known whether multimono-
pole solutions with finite energy exist. Without these
solutions one can only superficially investigate the
monopole-monopole interaction. Even solutions de-
scribing two or more pointlike Wu-Yang monopoles
would be helpful; but no one has found these solutions
either. The theoretical situation has rather stagnated,
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awaiting a clever ~~sgtz or idea which may break things
open.

B. Instantons

The most spectacular impact on YM theory has cer-
tainly been the discovery of the instanton solution. Ex-
act multi-instanton solutions were found soon after-
wards, and it is now clear that one must accept the
presence of complicated ensembles of these objects in
the YM vacuum. Instantons (which are mathematically
unobjectionable solutions of the YM equations of motion
carrying a unit of nontrivial topological charge, al-
though they have zero energy) imply that the true YM
vacuum consists of an infinity of topologically distinct
sectors connected by instanton tunneling. The YM vac-
uum is therefore very complicated. Recognition of this
fact has forced theoreticans to reexamine the existing
YM formalism. A variety of possible physical instan-
ton effects have been suggested.

The physical implications of instantons may be very
important —this is still an open field for research.
Weak instanton effects, i.e. , those in unified models
of the weak and electromagnetic interactions, seem to
be negligible because of the small coupling. QCD in-
stanton effects could be large, however. Massless
quarks suppress instanton tunneling (for reasons which
are not easy to understand). Conversely, if instantons
are present then quarks have gotten masses through
some dynamical mechanism. Instantons may therefore
be related to chiral symmetry breakdown in QCD.
Another fundamental problem is quark confinement.
A dense ensemble of instantons could have such a dis-
ordering influence on the YM system that only short-
range effects survive. In other words, when the den-
sity of instantons becomes large enough, there could
be a phase transition from massless to massive ghuge
fields which signals the onset of confinement. This
phase transition (if it exists) has not yet been. formu-
lated in a mathematically precise-fashion. Many other
possible effects of insiantons have been proposed.
These generally involve quarks in one way or another,
e.g. , quark-quark forces which affect hadron masses.
None of these instanton effects has been firmly es-

tablishedd.

C. IVlerons

existence of additional vacua in the Coulomb gauge
with topological charge Qr —-+2 besides the usual
Qr-—0 vacuum. Instantons tunnel between the Qr = —,

' and

Qr ——-2 vacua, but this does not entirely remove the de-
generacy of the vacuum. Merons are needed for this:
they tunnel between the Qr= + —,

' and Qr= 0 vacua, there-
by completely restoring the vacuum symmetry. Thus,
gluons are not necessarily Goldstone bosons when mer-
ons are present, and there may be a phase transition to
a confining phase of the YM theory in which gluons are
massive. Unfortunately, this simple picture is ob-
scured by the singularity of the meron solutions. Mer-
ons do not have the impeccable mathematical properties
of instanions, which make the latter so compelling.
Before one can understand the physical role of merons,
one has to understand why they are singular. So far,
no one has satisfactorily explained this.

Further research on merons is hampered by the lack
of an exact solution describing an ensemble of merons
and antimerons. This is the outstanding problem which
has to be solved before one can calculate multimeron
effects. If no muliimeron solution is found, then prog-
ress on merons will be difficult. It is clear that this
problem is more difficult than the ~-instanton problem.
Meron solutions are not self-dual, and this makes them
more truly non-AbeH~yz than instanion solutions are.
The non-pure gauge behavior of the one-meron potential
at large ~x

~

makes it difficult to superimpose several
merons and still satisfy the equations of motion.

There is one very interesting aspect of merons that
should be kept in mind, namely their connection with
YM magnetic monopoles. We have seen that a meron,
when viewed at different times along the g, -axis in E,
starts off as a pure-gauge potential in three-space at
~,= -~, then becomes nontrivial for finite ~0, and at
&,= 0 it is exactly a Wu-Yang monopole. For x, -+~
it decays into the vacuum again. This is probably a clue
to the physical meaning of merons: These are tunnel-
ing solutions between vacuum configurations, whose
least trivial intermediate configuration is the pointlike
SU(2) monopole solution. If one forgets about tunneling,
then merons can be thought of as short-lived YM mono-
poles. At this point one is reminded of the fact that the
multimonopole problem, like the multimeron problem,
is still unsolved. Quite possibly there is an important
connection between the iwo.

To date, the physical meaning of meron solutions re-
mains unclear. These solutions exist (the two-meron
solution is known explicitly, and the multi-meron solu-
tion has been shown to exist) and one has to decide what
to do with them. It could be argued that they are un-
physical because they are singular; hence, the action
is infinite, and in the path-integral formulation of, quan-
tum YM field theory such solutions ought to play a neg-
ligible role. But, as advocates of meron effects have
stressed, this is not necessarily true, because the
functional integration measure could possibly overcome
the weight factor exp(-action). Under certain circum-
stances merons might dominate the path integral.

Elementary arguments in support of the physical rel-
evance of merons have been presented in Appendix H.
These are based on the Gribov ambiguity, i.e., the
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APPENDIX A: SU{2}YANG-MILLS THEORY

Yang-Mills fields can be introduced in the following
fa, shion(Yang and Mills, 1954; Utiyama, 1956). Con-
sider a multiplet g(x) which transforms locally under
the action of some gauge group Q according to the rule

where m(x) belongs to the relevant representation
of G. Let us try to define a derivative D Q of g which
has this same simple transformation property. We
make the apgsatz
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where D' = & —ieW'(x) .This leads to

(8„-iew'. )~ = ~(a. -iew. ),
which can be rewritten

W'„= (uw„(u ' —(i/e)(a, cu)(u
'

~ (A5)

W,(x) is the Yang-Mills potential in matrix form, and
Eq. (A5) is the local transformation rule for this po-
tential under the gauge group G. If the potential W„(x)
is not introduced, then one cannot define the-covariant
derivative D P with its simple trariformation property
(A3). The existence of this covariant derivative is im-
portant, for it enables one to construct Lagrangian kin-
etic terms which are invariant under the gauge group
G (e.g. , D pD p and gy~D p for scalar and spinor
fields, respectively). One can then proceed to con-
struct theories which are locally gauge invariant.

W (x) is analogous to the four-potential in electro-
magnetism. The Yang-Mills forces, or field strengths,
are dined a,s follows:

G.,= a,W„- 8,W.+ (e/') [W., W„] .
No experimental results lead one to this definition; but

G„, has the simple transformation property

G„„-G'„„=~G~„co '

under the gauge group G, as follows from Eq. (A5).
G „ is therefore the "natural" generalization of the
field strength tensor I „ in electromagnetism. Note
that Q„„is not invariant under gauge transformations,
whereas I „„is gauge invariant. This is an important
difference between Abelian and non-Abelian gauge the-
ories.

Let us now particularize the discussion to the gauge
group G = SU(2). In the 2 && 2 representation

(A8)

D.g= (8, —ie W.(x)) P(x),

where W (x) is a matrix function. By assumption, D P
transforms like

potential. (ii) The gauge potential appears explicitly in
the equations of motion. It seems that the YM potential
plays a more basic role than the potential in an Abelian
gauge theory. At least, ibis i.s true in the conventional
formulation of the theory which directly involves the
potential W'. In electromagnetism one can work ex-
clusively with the field strengths E and B. Things are
not so simple when the gauge group is non-Abelian.
(For a formulation of YM theories directly in terms of
field strengths see Halpern, 1977a, b. ) In Abelian
gauge theories the field strengths locally determine the
gauge potential up to an arbitrary gauge transformation.
The same is not true for non-Abelian gauge theories
(Wu and Yang, 1975): two YM potentials that are gauge
inequivalent can provide the same YM field strengths.
This leads to an interesting problem, namely, the de-
termination of all possible gauge potentials that yield
a given field strength tensor. (For recent literature on
this problem see Eguchi, 1976; Deser and Wilczek,
1976; Calvo, 1977a; Roskies, 1977.)

Local SU(2) gauge transformations are usually written
in the 2 x 2 matrix form

(u(x) = exp [i-,'a.8,(x) ]
= cos—', 8(x)+ in, (x)o, sin —,'8(x),

where n, (x) is a unit vector defined by

(A 13)

eW'(pure gauge) = n,—,b 8. (A18)

To calculate the term ~w„~ ' in Eq. (A5) we need the
formula

8,(x) =—n.(x)8(x) . (A 14)

It is useful to have gauge transformation formulas for
the components of the gauge potential. The pure-gauge
term is easily found to be

eW'(pure gauge) —= —i »cr, (& ~)~ '
= 2 n, a 8+ 2 sin8(a n, )+ sin'(8/2)s, ,(8 n )n, .

(A 15)

When yg=const, the pure-gauge term is simply

where

The local SU(2) gauge transformation ~(x) can be
written

(A9)

+a Oa COS~+ Sin~Gabe b+c

+ 2n, (n (r) sin'(8/2).

It follows that

~O, W' ~ ' = cos0cr, W' + sin8c, b,g ' "bg,

(A 17)

(@=f0+ io'„f~, (u '= fo io~f~, f—,f,+f~f ~—= l. (A10)

2= —gG' G~".
pv a (All)

For a real SU(2) transformation, ~'= ~ ', f, and f~ are
real. For a complex SU(2) transformation these func-
tions are complex.

A Lagrangian which is invariant under any local real
or complex SU(2) transformation is easily constructed,

+ 2 sin'(8/2)n, w'„(n 0) .
Finally, Eq. (A5) can be written

TV" = cosHW' + sin8c, b, W'b~,

+ 2 sin'(8/2)n. (n, W"„)

+(1/e)[—,'n, a 8+ —,
' sin88 n,

+ sin'(8/2)s, ~,(a n~)n, ] .

(A18)

(A19)

The equations of motion obtained from g are

Here we see two important new features of non-Abelian
gauge theories which are absent in electromagnetism:
(i) The equations of motion are nonlinear in the gauge

At any given space-time point &, the component of
W' parallel to n,(x) transforms like an Abelian gauge
potential,

n.W': = n.W'. + (1/2e) 8.8.
Projecting out the components of TV' perpendicular to
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n.(x),

we see that they transform like

I' +~i W'„' ) ( cose sine ) (e,' W' )
e; W'„" —sin8 cos8 e; gi'

(A 21)

Now let us make the gnsgtz

W"= W', A. =a

W",=0 A&3

A=a

@~=0 A&S, (ag)

for the gauge and Higgs fields. Then it is easy to verify
that

8 . 8in- e,'& n,

/sin cos g 2 p, Q/
2 2

(A 22)

G",„=0, A&3,
D $,= a„p, + ee, b, wb@,

D /~=0, A&S,

(a10)

(B11)
Here e,', e» and n, = c,„,e,'e', are orthonormal basis vec-
tors. and furthermore that the equations of motion (B5) a.nd

(B6) become

APPENDIX B: IMBEDDING SU{2}SOLUTIONS a "c'.„=ee.„,(cb„„w."+(D„y,)y,], (B12)

Solutions of SU(2) gauge theories ean be imbedded in
any larger gauge theory. . This is because all non-
Abelian groupa have at least one SU(2) subgroup, and
this is the necessary requirement. The imbedding is
rather trivial, as we discuss in this appendix. Our ex-
ample —the YM theory with an arbitrary gauge group
and a Higgs field in the adjoint representation —should
adequately demonstrate the generality and triviality of
the imbedding procedure. Some of the exact solutions
of SU(S) and SU(4) gauge theories discussed in the re-
cent literature are imbedded SU(2) solutions, while
others are not. It is useful to be able to distinguish one
type from the other.

Consider the gauge theory

D~@~= a ~@~+ef sew, lc ~ (as)
where A, B, C, . . .=1, . . . , N and the gauge potential 9""
and Higgs field g„both transform according to the N
dimensional adjoint representation of the semisimple,
compact gauge group. The structure constants f~ac are
real and completely antisymmetric. They determine
the commutation relations of the Hermitian generators
T~ of the gauge group,

(T~ &a] =~f~acTc.
The equations of motion obtained from the Lagrangian
(Bl) are

a 'D.y. = «.„(D„y,)w." (@.Iy) U-'(y), (als)
where @'=@,@,. These are precisely the equations of
motion for the SU(2) theory. If these equations are sat-
isfied then so are the equations of motion (B5) and (B6)
of the larger gauge theory. This statement is obviously
still true when the Higgs fields are identically zero and
we are dealing with pure gauge theories.

The imbedding procedure just considered can easily
be extended to subgroups H larger than SU(2). Any ex-
plicit solution of a gauge theory based on the group II
can be imbedded in a similar larger gauge theory whose
gauge group contains JI as a subgroup.

The basic propertI. es of the SU(2) solution are not af-
fected by the imbedding. For example, a self-dual
SU(2) solution or a local gauge symmetry breaking
solution has this same property in the larger theory.
Moreover, the correspondence (2.12) between static
solutions of the SU(2) theory with and without a Higgs
field is still valid after the imbedding. . Thus we can
change any imbedded static solution of the theory (Bl)
with U(p) = 0 into an imbedded static solution of the cor-
responding theory with no Higgs field. [Of course, one
can also do this for more general static solutions of the
theory (Bl) than the simple imbedded type, because
rule (2.12) can be generalized to an arbitrary gauge
group. ]

APPENDIX C: CONFORIVIAL TRANSFGRMATIGNS
AND YANG-IVI ILLS F IELDS

a'C",.= ef~ac IC;.

Wc+�(D,

@a)4c]

"DA'~ =f~ac(~.@B)Wc (eA~e) U'(4)—. (B6)

(1) Consider a general coordinate transformation x„
-y =y (x) where y„(x) is any function of x. Define a
corresponding transformed YM field W' by

Suppose that the gauge group has an SU(2) subgroup,
whose generators we name T„T„and T,. Then the
structure functions satisfy

W'„(x) —W'.(x) -=(a ~ )W:(y).
Given this transformation rule it is easy to verify that
the YM field strengths transform contravariantly,

fabc= abc & c'„„(x)—c'..(x) = (a.y")(a„y')c:,(y) . (c2)

fab. = 0
~

where a, b, c take only the values 1, 2, or 3.
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This result follows trivially from the antisymmetry of
C„„. However, W'„(x) is not a solution of the YM equa-
tions of motion in general, even if W (x) is a solution
of these equations: the SU(2) gauge theory is not invari-
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ant under general coordinate transformations. [A gen-
eralized O(4) gauge theory which is invariant under the
general nonlinear group has been constructed by de Al-
faro, Fubini, and Furlan, 1978.]

(2) The SU(2) gauge theory is Poincare invariant.
This means that if x -y is a Poincare transforma-
tion, then W'„ in Eq. (Cl) is a, solution if W' is a, solu-
tion. However, the SU(2) gauge theory has a larger in-
variance group, namely the Minkowski conforma. l group,
which is the group of transformations that leaves in-
variant the form dx~dx = 0. This is a ja. 5-parameter
group, with the ten-parameter Poincare group as a
subgroup. Besides Poincard transformations there are
other kinds of transformations which leave d'x= 0 in-
variant:
(i) Global scale changes, or dilatations,

with Poinca. re invaria. nce and scale invariance, this
proves the conformal invariance of the massless YM
theory. It is obvious that the same proof holds for in-
versions. Thus the gauge theory is invariant under the
inversion (C4).

(4) The massless @' theory is also conformal invari-
ant. (This is relevant here because of the importance
of the @ ansatz for the gauge potentials. ) The trans
formed scalar field is

@(x)—= [1/o (x) ] (t (y ) .
Its gradient is

(C12)

&,@(x)=(1/rr)&, y &'„@(y)-(1/o')e, oy(y)

where e„'—= e/sy . Using cr=8c', e ere c=4 'cooke easily
verifies that

x~-y~= &x~,

where X is a dimensionless constant.
(ii) Inversions

2
x~ y~=x~/x

for which

(C3)

(C4)

& g(x)8'@(x) = (1/o')&' y(y)

x 8'"y(y) —e, [(e'o/o')y'(y)].
The transformed @ theory Lagrangian is

@x)=-'spe'j -(~/4)y'=(1/o')&(y), (C13)

(e„y )(8 "y~)=g ~/x',
d'y = d'x/x'.

(jii) Special conformal transformations

(C5)

(C6) d'x &(x) = d'y &(y) . (C14)

where we have dropped the divergence term. Conforma, l
invariance then follows from

x,-y, = (1/o'(x))(x„+ c„x'),

(x(x) = 1+ 2cx+ c'x',
APPENDIX D: THE DIRAC STRING

C7
Many years ago Dirac (1931) showed how to incor-

porate magnetic monopoles into electromagnetic theory
at the first-quantized level. He based his extended
theory on a single four-vector potential & . This
would seem to minimize the departure from the con-
ventional theory. However, a substantial departure
turned out to be unavoidable. Dirac had to introduce
the concept of a "string, " i.e., a continuous line along
which & is singular. Any four-vector potential which
provides the magnetic field associated with a magne-
tic monopole necessarily has such a singularity line.
A simple example of such a potential is

(c is a constant four-vector with dimension 1. ) for
which

(&„y )(& "y,) =g, /~'(x),

d'y = d'x/o'(x) .
Special conformal transformations are equivalent to an
inversion, followed by a translation, followed by anoth-
er inversion. Thus inversions and special conformal
transformations are not independent; and for the pur-
pose of investigating group structure the latter are
more convenient. The generators of the Minkowski
conformal group consist of the ten Poincare genera-
tions, the dilatation generator, and the four generators
of special conformal transformations. This 15-param-
eter group is locally isomorphic to the group SO(4, 2).
(See Mack and Salam, 1969 for an extensive list of
references. One very readable paper is Wess, 1960.)

(3) Let us prove that the SU(2) gauge theory is con-
formal invariant. We already known that it is Poincare
invariant, and for the scale transformation (C3) the
proof is trivial, so we restrict the proof to the special
conformal transformation (C4). From Eqs. (C2) and
(C5) we find the transformed SU(2) gauge theory La-
grangian

A, = 0, A = —Qg sing/y(1 —cos8), (Dl)

Z(x) = ——,'G;,(x)G.'"(x) = [1/o'(x) ] @y) . (C10)

Then using Eg. (C9) we find

d'xX(x) = d'y@y) .
Therefore W'(x) defined by Eq. (Cl) is a solution of the
equations of motion if W„(x) is a solution. Combined

which describes a monopole at rest at the origin be-
cause V&A=gr/y3 The pote.ntial (D1) is singular
along the positive z axis. Now this singularity line,
or string, can have no physical meaning. One can
tolerate its presence in the mathematics, and even de-
rive an important result —the Dirac quantization con-
dition —from the fact that it is unphysical. Neverthe-
less the string is a feature in the theory which many
physicists have found disturbing. In the four and one-
half decades since the publication of Dirac's paper
many people have studied the problem of extending
classical and quantum electrodynamics to include
magnetic monopoles [Stevens (1970) has given an an-
notated bibliography for the period 1931—1970]. Elim-
ination of the Dirac string has been one of the main
goals. It is clear that new potentials have to be in-
troduced to accomplish this.

The need for the Dirac string is immediately clear
when one examines Maxwell's equations in the presence

Rev. Mod. Phys. , Vol. 51, No. 3, July 1979



Alfred Actor: Classical solutions of SU(2) Yang-Mills theories

of electric and magnetic charge currents J and g,
re spe ctive ly,

B~E „=Z, (D2)

(D3)

is no electromagnetic field. However, P will be non-
integrable near a string: for a small loop enclosing
the string the change in P is

dP = e d s ~ V x A = e [flux] = 47' eg = 2mn .
where

0 x z

E„O —Bz B

0 —B„
(D4)

eg =n/2 . (D8)

The flux in this equation is the total magnetic flux
within the string, which equals the total magnetic flux
4 =4' of the monopole. Dirac's famous quantization
condition then follows immediately,

and

~gv & + p vms'~

0

—B
—B

V

—Bz

B„B, B.
0

0

E„O

(D5)

[The equations (D2) and (D3) are symmetric under the
interchange of electric and magnetic quantities
E —B J —g, whereas the usual Maxwell's equations
do not have this symmetry. The former therefore
seem to enjoy some aesthetic advantage, it has sometimes
beenargued, despitethe fact that the real world does not
exhibit this symmetry in an obvious way. ] Now let us
introduce a four-vector potential,

APPENDIX E: ELECTROMAGNETIC FIELD TENSOR IN

YANG-MILLS THEORY

There is generally a long-range component in static
solutions of YM theories which have an unbroken local
U(1) gauge group. It seems natural (or attractive, in
any ease) to interpret this long-range component as an
electromagnetic field. To do this one has to define
the electromagnetic (EM) field tensor S' „ in a gauge-
invariant fashion (invariant under the full non-Abelian
gauge group), using the ingredients available in the
gauge theory in question. Here we discuss briefly
how this can be done. The definition of I' „, we em-
phasize, is not unique.

For the theory (2.1) with the IIiggs triplet, 't Hooft
(1974) has proposed the gauge-invariant definition

S' „=8 A.„—B„A

We find at once from Eq. (D3) that

gv =~vp, ng~

(D5)

(D7)

(E1)

Arafune, Freund, and Goebel (1975) pointed out that
this tensor can also be written in the more transparent
form

In other words, g„+0 implies that S.„=s.a. —s„a„—(1/e) s.„j.s.j,s„p. ,

where

(E2)

and therefore &8 must be singular. On any simply
connected surface surrounding the monopole Az need
only be singular at one point on the surface. If one
imagines an outward succession of such surfaces,
then one is led to visualize a continuous line of points
extending from the monopole to infinity, along which
the four-potential is singular [recall Eq. (Dl)].

The Dirac string can be visualized as an infinitely
long, thin solenoid. Magnetic flux lines emanate in
all directions from the monopole and return from in-
finity through the string. Clearly the position of the
string and any motion it may experience are unphy-
sical and undetectable. Therefore an electron or
other particle should not exhibit unusual behavior in
the vicinity of a string. In particular, the phase of the
particles' wave function g should change by at most
some integral multiple of 2p when a small closed loop
is described about the string. I,et us assume that the
monopole is far away and that no other forces act on
the particle. Then g satisfies the wave equation for
a free particle. Write $ in the form g = Pe'8 where
@ is a function with a definite phase at every point.
Then P satisfies the wave equation for a. particle in
an electromagnetic potential eA= VP. This is en-
tirely trivial if P is an integrable function, for there

(E3)

E,- = Io~ ——0,
B,= (1/2e)c„,c„,r",s,r",e, r,=r,/er', "- (E4)

which is the static electromagnetic field of a mono-
pole with magnetic charge g=l/e. The "no-string
gauge" form (3.12) of the monopole solution has the
peculiar feature that the massless component & of
the gauge potential is identically zero, and therefore
the EM component of the solution is not in the gauge
potential W . Instead it is in the Higgs field, as we
see from Eq. (E4). This is a consequence of our
gauge choice, and by means of the gauge transforma-
tion in Eq. (3.14) we can transfer the EM content of
the solution back to the gauge field where one expects
to find it. This results in the "string gauge" version
of the solution given by Eq. (3.15). In this gauge A
=A3 is the usual Dirac string potential, and the Higgs

Here Q„ is the massless component of the gauge poten-
tial. 't Hooft s definition (El) has many good features.
I3ut it is singular at any point where P = 0.

We recall that the ansatz (3.12) leading to the 't
IIooft —Polyakov solution is such that A =0, Q, = r,
for all r &0. From Eq, (E2) we find immediately that
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field contributes nothing to E „.
The fact that the monopole field (E4) corresponds to

a point magnetic charge, while the 't Hooft-Polyakov
solution corresponds to an extended nonsingular ob-
ject, might be regarded as a drawback of the defini-
tion (E2). This definition forces all of the magnetic
charge to concentrate at the point x=O, where the
Higgs field vanishes. A less singular definition may
be preferable. Qne possibility is

+[es, $,W W„+ W'a, p —W'„9 Q ],
with A defined by Eq. (A3). In the unitary (or
string) gauge where Q, = 5,3 we have A = W' and

(E5)

eB„"= —&,„(k /r) + (r,r„/r') [1+ rk ' —k'] .
For the Prasad —Sommerfield solution (4.19) we find

B„'=r,B„"=r„(1—k )/er

(E7)

The nonlinear term here, which is absent in the EM
tensor (E2), contains only short-range components.
Therefore E' „and E'„differ only in their short-range
be havior.

Let us calculate I ', for the monopole solution. First
we work out the SU(2) field strengths. These are
E„"=O and

From Eq. (4.19) it is easy to verify that

fE ' = B ' = (r/er ) [1 —(Pr/sinhPr) ] . (E12)

The electric and magnetic fields are the same except
for the factor i, and the Hsu —Mac solution is there-
fore self-dual.

The Hsu-Mac solution is, of course, just the Prasad-
Sommerfield —Bogomol'ny solution with the Higgs field
Q, reinterpreted as iWO. Because the Higgs field is
massless in this solution it gives rise to a long-range
electric field. When nz cO the physical Higgs field is
massive and this reinterpretation is not possible.

APPENDIX F: ELL!PTIC FUNCTIONS

There are twelve Jacobi elliptic functions (see, for
example, Gradshteyn and Ryzhik, 1965, Abramovitz
and Stegun, 1970). We introduce a generic name E
=E(u) = E(u, k) for them, where u is the variable argu-
ment and k is the parameter. These functions are
solutions of the nonlinear differential equation

E"+ ~E+ bE = 0,
where the prime means d/du and a=a(k), b=b(k) are
constants which depend on the parameter k. E also
satisfies

(E ') + aE + 'bE = c .—

= (rJer')[1 —(pr/sinhpr)'] . (Es)
The constants g, 5, and e for the twelve Jacobi elliptic
functions are as follows:

W', —Pn. (e, y), r- (F9)

where n, n, = 1. Replacing &P, by n, in Eqs. (E2) and (E5)
we obtain suitable EM field tensors for the pure SU(2)
theory.

Co~sider the Hsu —Mac solution (4.19) of the pure
SU(2) gauge theory. For this solution n, = „md awe

find the same magnetic fields j;-,. and j',-'& as before.
But now there is an electric field in the game
because

Therefore the definition (E5) above leads to a, magnetic
field B' which corresponds to an extended distribution
of magnetic charge concentrated about the origin
rather than a pointlike distribution.

Next, let us consider the pure YM theory with no
Higgs field. Both the definitions (E2) and (E5) above
make use of the unit isovector P, to define the isoscalar
EM tensor I" „. But now we have no Higgs field, and
it may look as though one cannot construct a suitable
EM field tensor. For unbroken local SU(2) gauge
symmetry this is indeed the case. All components
of the gauge field are long range, and no one of them
can be distinguished from the others as being the EM
field. However, when the local gauge symmetry is
broken to U(l) then a unit isovector is always available
for constructing 9' „. This is the isovector n, (0, Q)
in the boundary condition.

E a
sn 1+k2

cn 1 —2k
dn —(2 —k')
ns 1+k
nc 1 —2k
nd —(2 —k')
sc —(2 —k')
sd 1 —2k2

cs —(2 —k')
cd 1+k2

ds 1 —2k
dc 1+k2

-2k
2k
2
—2
—2(l —k2)

2(1 —k')
—2(l —k )
2k (1 —k)
-2
-2k
—2
—2

1
1 —k
—(1 —k )
k
-k
—1
1
1
1 —k 2

1
—k (1 —k')
k

There are three basic Jacobi elliptic functions,

sn(u, k) =—sing, cn(u, k) —= cosQ,

dn(u, k) —= dQ/du = [1 —k' sin~/]'~ ~,

where @ is implicitly defined by the elliptic integral
of the first kind,

dt[ 1 —k' sin t] '~

From the definitions above it follows immediately that

s'= cd, c'= —sd, d'= -k2 sc .

Ao ——ig(r)/er
is nonzero. From the definition (E5) we find

(E10)
Here we have shortened the notation to s = sn, c = cn,
d=dn with argument u and parameter k in each case.
In the same notation,

-i eE„"= —ieGO„

= —5,„(l/r')gk+ (r,r„/r )[g —rg'+gk] . (Ell)

s =1 —c = (1 —d )/k

c =(1 —1/k )+d /k
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d =1 —h s =(1—h )+h c

The constants &, b, and e above can be easily calculated
from these results.

Jacobi elliptic functions are doubly periodic func-
tions of the complex argument u. Specifically,

sn(u+ 4mK+ i2nK') = snu,

cn(u+ 4mK+ 2n(K+ iK')) = cnu,

dn(u+ 2mK+ i4nK'} = dnu,

where I and n are any integers and

K=K(h) =

K'=K'(h) =K(h'); h '= (1 —h')'t2

are complete elliptic integrals. Restricting u to be
real we see that snu, cnu, and dnu have periods 4K,
4K, and 2K, respectively. The shortest period corres-
ponds to h =0, when K(0) =v/2 and

snu = sinu, cnu = cosu, dnu = 1 .

K(h) &g/2 for h &0; and in the limiting case with infinite
period K(~) = ~ we have

snu = tanhu, cnu = dnu = 1/coshu .
The basic functions sn, cn, and dn are finite every-

where on the real-u axis and have the following zeros
on this axis:

sn(u, h) =0 at u=2mK,

cn(u, h) =0 at u=(2m+1)K,

dn(u, h) wo for h &1,

where m is any inte ge r. Only for paramete r 0 = 1 does
dnu have zeros on the real axis, namely, at u=+~.

The Jacobi imaginary transf orm ations

sn(iu, h) =i sc(u, h'),
cn(iu, h) = nc(u, h '),
dn(iu, h) = dc(u, h '),

enable one to change from real to imaginary argument
or conversely.

As an example of the use of elliptic functions, we
consider the static equation of motion of the P4 theory
with spontaneous symmetry breakdown,

y "(x) +m'y(x) —}y'(x) =O.
A solution of this equation is

ey. = (r./r')g(r); w', = O;

e W',. = s.,„(r„/r')[I —h(r)]

r h"=h(h —1+g ),
r'g" = 2gh' —m'r g+ (X/e')g~ .

(G2a,)

(G2b)

1. g(r} =0
Let us first consider the case with no Higgs field,

g = 0. Then we have the differential equation studied by
Wu and Yang (1968),

r h"=h(h —1) . (GS)

This equation has three constant solutions, h. =+1 and
h=0. The first two are vacuum solutions, while h=O
in the ansatz (Gl) corresponds to the gauge potential
of a point magnetic monopole. Note that if h is a solu-
tion of Eq. (GS) then so is —h.

In a region where h» 1, Eq. (GS),becomes approxi-
mately x h"= h, which has the solution

Here we discuss some properties of these coupled
differential equations. For m ~0, XcO they evidently
cannot be solved analytically; at least, no one has
succeeded up to now. The explicit Prasad-Sommer-
field solution is known in the limit m =0, X= 0 with
m2/X finite, of course. One can verify that solutions
of Eqs. (G2) are analytic in the coefficients m2 and
X/e near the values m = 0, X/e = 0 because a power
se rie s expansion in these coefficients can be set up.
Therefore it is possible to continue away from the Pra-
sad-Sommerfield solution. To date this has only been
done numerically.

We make two preliminary comments. For m+0 it
is trivial to verify that no constant solution of Eqs. (G2)
exists which has g cO. This means that for m gO no
pointlike solution can be obtained from the ansatz (Gl)
with nonzero Higgs field. Of course one expects this:
rn c0 means that the local gauge symmetry is broken,
and so there must be short-range potentials present-
i.e., the solution is nonpointlike. To obtain a pointlike
solution one must either switch off the Higgs field
entirely (g=0), or switch off the gauge symmetry
breaking (m =0).

For I=0 and arbitrary X there is a constant solu-
tion of Eqs. (G2), namely

g' = ll(1 —&/2e'), h' = 1/(1 —2e'/X) .
The Higgs and gauge fields in this case correspond to
unbroken local SU(2) symmetry ($,-0 at infinity).

Q = (m/VA. )(—b/a) E(mx/Ma, h), h=rov2/(r —ro) . (G4)
where E is any of the 12 Jacobi elliptic functions.
Choosing E= sn and setting the parameter k = 1
we find the well known kink solution

y = (m/~}) tanh(mx/W2) .

APPENDIX G: 't HOOFT-POLYAKOV DIFFERENTIAL
EQUATIONS

The equations of motion following from the 't Hooft-
Polyakov ansat&

Therefore h(r) has a singularity at some point r=ro in
this region. When h «1, on the other hand, Eq. (GS)
becomes approximately z k"= -k, which has the solu-
tion

h(r) =Aur cos(U3 lnr) + BWr sin(WSlnr) (G6)

with constant'A and B. This function is poorly behaved
in the limit z-~ and therefore the boundary condition
h-0 for x-~ is unphysical.

Solutions of Eq. (G3) which are analytic about the
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points x=O or x=~ mill have the folloming power-
series expansions (Rosen, 1972):

b = 1+ (a~) ' + —,', (ar)' + —,', (a~) '+ ~ , ~

h = 1+ (b/~) + —,'(b/r) '+
—,", (b/~)'+ ~

(G6)

(C7)

Homever, no singular solution exists which connects
these two power series except for the constant solu-
tion with ~ = b = 0.

Wu and Yang found a numerical solution of Eq. (G3)
with the behavior h —1 for y —~ and k-0 for x-0.
Equation (G5) gives the general form of b in the limit
r-0. Although h is everywhere nonsingular in this
solution, the gauge potential W',. in Eq. (Gl) is singular
at t =0. Besides this solution and the constant solu-
tions 8 =0, 1 there are no other solutions of Eq. (G3)
which are finite for all 0 (j.&~.

2. g(r) WO

Now let us see how the situation improves when the
Higgs field is switched on. An essential change occurs
in the equation for b" when b is small: x b"=k(g —1).
The presence of g here enables h. to vanish smoothly in
the limit y -~ [unlike Eq. (G5)]. Since g-(em/vA. )x in
this limit (for the energy to be finite) we see that h be-
haves like

g/w= em/v X, k = 0 at w= ~

and their values

Recently Gribov (1977) has discovered an ambiguity
in the Coulomb-gauge formulation of non-Abelian gauge
theories. In this gauge the potential 8' is not uniquely
determined by the usual gauge-fixing conditions

r'=0- 8 r'=0.
p (H1)

there is some remaining gauge freedom. To investi-
gate this we perform a time-independent gauge trans-
formation w ' = &u '(x) leading to a. new potential with
W()

——0 and

g/r =-0, h = 1 at v" = 0 .

This solution changes smoothly into the Prasad —Som-
merfield solution (4.19) when m2-0, X-0 with m /A.

finite. Frampton (1976) has discussed the general
form of the solution. in this limit. The absence of nodes
in g,y) is obvious in this limit, for Eq. (G2b) becomes
g"= 2@k /r ~ 0. Thus g" is everywhere non-negative,
and g(x) must become infinite as x-~.

(me/ X)t)r (G8)
W,.'= ~ 'W,.a —(i/e)(s, .co ')cu . (H2}

This is, in fact, the behavior we wish to have because
M~= em/vA. is the mass of the massive gauge-field
components.

The "physical" Higgs field 0 is defined as follows:

r. (m/-W~+ a) .
This field should acquire a, mass M„= W2m through
the Higgs mechanism. We can see that this happens
from Eq. (G2b). Substituting 0 =y/ex in this equation
me find

~'y "= 2y(k'+ m' r') + (2m e/v X )~h'

+ (3rnVX /e)xy'+ (X/e2)y3.

At large x, assuming (G8), y satisfies y"=2m y and
therefore

Next, consider the small-y region. It is easy to show
that Eqs. (G2) are satisfied by the expansions

h(r) =1+sr'+; g(~) =C~'+. ~ ~

for some constants B and C. Note that these boundary
conditions have the good property that P, and W',. in
Eq. (Gl) vanish with y, so there is no singularity at
x= 0.

The existence of the 't Hooft-Polyakov solution re-
duces to the following question: Does there exist a
nonsingular solution of Eqs. (G2) that connects the
boundary conditions at y = ~ in Eqs. (G8) and (G9)
with the boundary conditions at += 0 in Eq. (G10) P

The answer is yes. A numerical solution has been
obtained by computer. (For a good discussion of the
numerical calculation see Bais and Primack, 1976.)
The functions g/w and k in this solution interpolate
smoothly and without nodes between. their values

This potential will also satisfy the transversality con-
dition B,. W,.'=0 if co satisfies

a,.[(s,.(u)(u '] = (e/i)[(s,.(u)(u ', W,.],
i.e., if the covariant divergence of the pure-gauge
potential —(i/e) (B,w) ~ is zero. Gribov shows that
for rotationally symmetric W; Eq. (H3) has nontrivial
solutions —hence the ambiguity mentioned above. This
lack of uniqueness in the gauge-fixing procedure leads
to obvious technical problems in the quantum theory
whose consequences have to be carefully investigated.
The Gribov ambiguity is more than a technical pro-
blem, however —it is deeper than that. &cry important
physical questions in non-Abelian gauge theory seem
to be connected with this ambiguity.

(~ribov pointed out that there is a probable connec-
tion mith the confinement problem. The conditions
(Hl) reduce the number of independent gauge-field
components from 12 to six, which correspond to
the six spin degrees of freedom of three massless
vector bosons in the quantized theory. However,
because of the ambiguity or remaining gauge freedom,
there are in fact more than six independent functions
present at the classical level. This seems to imply
that the theory cannot be formulated in terms of mass-
less fields alone.

We can make this argument more precise by noting
that the SU(2) gauge theory has tkxee rotationally
symmetric vacua; the usual one TV, = 0 and two other
(Gribov) vacua with W, w 0. (Beyond these there may
be an infinity of nonsymmetric vacua. .) The usual
vacuum has topological charge Q ~ = 0 and the Gribov
vacua have Q ~= +2. All three are gauge equivalent,
and the Coulomb-gauge vacuum is initially degenerate.
Instantons do not remove this degeneracy, for they
only tunnel between the Qr ———,

' and Qz, ————,
' vacua.

Rev. Mod. Phys. , Vol. 51, No. 3, July 1979



Alfred Actor: Classical solutions of SU{2}Yang-Mills theories 517

However, merons tunnel between the Qr ——+ —,
' vacua and

Jr=0 vacuum, thus restoring the symmetry of the
vacuum and eliminating the need for Goldstone gauge
quanta. Thus when merons are present the gauge
theory may be in the confining phase. But this is not
true when only instantons are present. We see that
the discove ry of the Gribov vacua provide s additional
support for the conjectured confinement mechanism
of Callen, Dashen, and Gross (1977, 1978), where in-
stantons dissociate into meron pairs at a critical value
of the effective YM coupling when the theory goes into
the confining phase.

The potential W;. in Eq. (H4) will be singular at r = 0
if @2(r=0) a+1, i.e., if there is not vacuum at r= 0.
Q, =+1 does not provide a real value of o. , but Q, = —1
leads to o =—1 in Eq. (H10) and therefore

f=Mr, r=O. (Hl 1)

Quite generally, if the potential is well behaved at the
origin, the Gribov gauge transformation f will have the
behavior (Hll) at small r N. ote that the mere exis-
tence of such a gauge transformation implies the exis-
tence of a scale or "mass" M in the small -y region.
M is, of course, arbitrary because of scale invariance.

l. Spherically symmetric fields

We first discuss the Gribov problem for spherically
symmetric fields, using Witten s ansate (3.27) for the
Minkowski gauge potential which we give again here
for convenience,.W, = -(x./r)A„

eW',. =e,,„(x„/r )(1+P2)

+ (x,x;/r')A, + (6„—x,x,/r') (1/r) P, .
We shall also need the transformation property

A -A~ —8 f,
cos sin

—sin cos

under the gauge transformation w =exp[2if(r, t)r" ~ a].
Qp —0 in the Coulomb gauge, and the trans ve rs ality
condition is

(H5)

8, (r'A, ) =2$„8,=8/ar. (H6)

After the gauge transformation (H5) the transversality
condition becomes

2. Vacuum solutions

r —2sin =0. (H12)

To visualize the solutions of this equation it helps to
introduce the variable t=lnr. Then Eq. (H12) be-
comes

The usual Coulomb-gauge vacuum is W,. =0. Gribov
discovered two additional vacua with no@zero gauge po-
tential 8'~, which are gauge equivalent to the usual
vacuum. The new vacua, which we shall refer to as
Gribov vacua, have topological charge Qr=+ —,', while
the usual vacuum has Q~ = 0. This reminds one of the
situation in the temporal gauge Wo =0 (discussed in
Sec. VII.A.) where there are infinitely many topologi-
cally distinct vacua. The difference is that the temporal
gauge was never supposed to be a complete gauge
specification, while the Coulomb gauge was previously
thought to uniquely determine the gauge potential.

The new vacua are obtained from the usual one (A
= P, =0 and P, = —1 in Witten's ansate) by a gauge
transformation f. From Eq. (HB) we see that f must
satisfy

8,[r (A, —8,f)]= 2(cosfg, + sinf@,), (H7) f+f 2s inf = 0, — (Hla)

w = e"' ~ '"'= six 0 .

In particular, the pure-gauge potential constructed
from ~ is transverse. One does not have this free-
dom in an Abelian gauge theory.

Nontrivial gauge transformations f which vanish
at r =0 are more interesting. Let us suppose that

f= (Mr), o. &0, r = 0 .

(H9)

or using (H6)

81(r 81f) = 4 sill f[sin f@1—cos f/2] .
Here f=f (r) if we wish to remain in the Coulomb
gauge.

A comparatively trivial example of the Gribov am-
biguity can already be given. Consider any configura-
tion with A1 —p, =0 so that Eq. (H6) is identically
satisfied. A different configuration is obtained by the
gauge transformation f= +1r, where A' =A
The transversality condition (H6) is still satisfied.
Note that f= +g is the gauge transformation

f-Me, t- —~,t

f -n+eA' c'os(+ —,'v7 t+ R), t-+m.
(H14)

(H15)

where the dot means d/dt. This is the equation of
motion of a damped pendulum, as discussed by %adia
and Yoneya (1976), Gribov (1977), and others. The
pendulum points upwards when f= 0 (mod2n1r) and down-
wards when f=+7r (mod2nv). One can B.lso think in
terms of a particle moving with friction in a potential
V= —4 sin 2f where f' is the position of the particle.
The usual vacuum corresponds to the particle remain-
ing at the top of the potential, i.e., at f=0. The Gribov
vacua correspond to the particle starting at f= 0 in the
distant past (t=-~ or r = 0) with zero velocity and
sliding downhill to the left or right, coming to rest
at the bottom of the potential f= +Yr in the distant fu-
ture (t=~ or r =~). Moreover, the solutions with
positive and negative f are identical except for the
sign. The positive f solution satisfies the boundary
conditions

If @, is nonsingular at r = 0 then from Eq. (H8) we
obtain a formula for n

e (a + 1) + 2/ 2(r = 0) = 0 . (Hlo)

[Jackiw, Muzinich, and Rebbi (1978) give the numerical
solution f(t) over the full range —~ &t &~. The particle
slides down, slightly overshoots the bottom of the poten-
tial because its velocity is nonzero, but the friction soon
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eliminates the residual motion. Therefore, the com-
monly made statement that ~f ~

&n for finite t is slightly
incorrect. ]

For large r (where f= v) the Gribov vacuum poten-
tial has the form

eW', =e,,„(2x„/x ) = i Tro—,(a;m)u ', (H16)

eW. = —'L(a co)Q), (d = 8

From the definition (7.8) of the topological charge Qr
one finds after some algebra (Abbott and Eguchi, 1977)

2
J'0 ——

2 (f sinf ), —

and therefore

d'x J;= [f—sinf ]"=," .
27t

(H20)

For the Gribov vacua with f—+m as x —~ we see that
1Qr=+z.

If we drop the transversality condition then it is easy
to show that the three symmetric Coulomb-gauge vacua
are gauge equivalent to the infinity of symmetric tem-
poral gauge vacua with Qr=n (Abbott and Eguchi, 1977).
Moreover, one can construct an additional set of vac-
uum potentials by replacing f in Eqs. (H18)-(H20) by
nf. These new potentials have topological charge Qr
=n/2 (Abbott and Eguchi, 1977).

with ~ =x ~ 0. This is gauge equivalent to the usual
vacuum W, =0. For small x [where f=Me —(Mx)'/30
+ ~ ] we find

(H17)

This potential correctly yields G „=0. Curiously, if
we kept only the first (constant) term then W; would be
a vacuum solution of the massive YM theory with mass
=zv2M.

Now we calculate the topological charge of the Gribov
vacua. The pure-gauge ~nsatz (H4) with

Ao = 0, A, = df/dw, —Q, = —s inf, Q, = —cosf,
can also be written in the form

so that in the distant past and future we have the same
potential V(f) as before. For finite time f wecanchange
the shape of the new potential V(f) as we wish. The
particle begins at f=0 as before, and it may return to
f = 0 at the end of its motion, or slide down to f = 7r as
before, or end up at the new position f =27r, and so on.
Turning things around we may say that there exist many
functions @, for which the Gribov ambiguity exists.
These functions may or may not be solutions of the
equations of motion —that is a problem for future study.
The important point is that the Gribov ambiguity is
present at a general level for nonvacuum fields.

Bender, Eguchi, and Pagels (1978) have examined the
problem of finding infinitesimal Gribov gauge transfor-
mations for the static potential P, = &f&,(r), @,=A
The change of variable f(x) =(1/v)y(x) in Eq. (H21) leads
to the Schrodinger-like equation for infinitesimal y(r),

y "+[E+ (2/~')4, ]y = o,

where E =0 is the energy of interest. Bender, Eguchi,
and Pagels discuss the solutions of this Schrodinger
equation assuming that the function Q, (x) which deter-
mines fhe potential V = —2@ /'r ls monotonic with
&f&,(0) = —1. For @,(~) &0 (&0) there are, of course,
bound states (no bound states). Moreover, if Q, (~) )—,

'
there is an accumulation of bound states at E =0. This
amounts to an accumulation of infinitesimal gauge trans-
formations which satisfy the transversality condition.
The authors argue that this accumulation phenomenen
implies an interaction energy growing like x' between
nonsinglet sources, and therefore confinement.

4. One-meron solution

The meron solution has topological charge q = —,', and
one would expect that it describes tunneling between
the Gribov vacuum and the normal vacuum. One known
form of the meron solution in the Coulomb gauge does
not have this property:

e W', = e,,„",(1 ~x,/~x') .

3. Nonvacuum solutions

We now consider the general field configuration &f&,

=A =0, Q, =&]&,(x, x,). The transversality condition is

a, (r'a, f) + 2 s inf = 0,
and the equation of motion for &f&, is

(H21)

(H22)

which is a particle moving in a more complicated po-
tential U(f) than in the vacuum problem. Evidently we
can obtain many different solutions by choosing the
function @,(t) suitably. Suppose that @,--1 for t-+~

Here we are interested in the r dependence of f, and the
time x, is regarded as a parameter.

Gribov (1977) has discussed the solutions of Eq. (H21)
without restricting @, to be a solution of the equation of
motion (H22). The mechanical analog problem here is

f+f+2 sinful, (t) =0, (H23)

This solution interpolates between the vacuum W,. = 0
at xo = —~ and the vacuum 8W; = r. „„2x„/x' at xo = + ~,
both of which are Qr =0 vacua. However, there exists
a gauge-equivalent form of this solution which does
tunnel between the two vacua (Chiu, Kaul, and Takasugi,
1978).

The one-meron solution corresponds to Q, =x,/~x' in
Eq. (H4) with the other ansatz functions zero. The
transversality constraint (H8) on any gauge transfor-
mation of this solution is

a, (~'a,f) i 2 sinfx, /~x'= 0. (H25)

The nontrivial solutions of this equation are time de-
pendent, f=f(r, x,), and therefore the gauge-transformed
one-meron solutions are not in the Coulomb gauge be-
cause 8'oco. However, in the distant past x, ——,Eq.
(H25) reduces to the vacuum transversality condition
(H12) whose solutions are the Gribov vacua. and the usual
vacuum. Moreover, in the distant future x, —+~ we see
that f-f+v where f satisfies Eq. (H12). Therefore, a
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where

n x, &0

g(~, ~x, ~) x, )0

& g(~, ~x,
~
) x, «

0 x, &0

g(r, 0) = ir for x g 0, g (0, ~x,
~
) = 0,

g(i' lxo I) Gribov function, ~x, ~—

Both solutions tunnel between the normal vacuum and
the Qribov vacuum. These solutions are discussed in
more detail by Chiu, Kaul, and Takasugi (1978). The
topological charge density is still —,'5'(x), as for the
original meron solution. In contrast, the solution (H24)
above has zero topological charge. [This has been ab-
sorbed by the singular gauge transformation used to
obtain the form (H24) from the original solution. ]

5. Instanton solution

In Sec. VII.D we have shown that in Witten's (Eucli-
dean) notation the instanton solution has the form

2~/(x'+ ~'), a, = 2x./(x'+ ~'),

y, = 2~x,/(x'+ ~2), y, = (~'+x', ~')/( +x~') .
A gauge transformation to the Ap=0 gauge is

(2~/gw'+ x' ) tan '(x,/«'+ ~') ~

(H27)

(II28)

The new ansatz functions A,' and @,' are somewhat cum-
bersome, and we do not give them explicitly. However,
it is interesting to note that in the limits xp -+~ these
functions become A,'= —B,f, pi = —sinf, @,'= —cosf
where f= am /4''+&', which corresponds to a pure
gauge potential with gauge function

&=exp[+2i(«/~& +~ )&.o] -+i r.a, ~-~. (H29)

Here we see that, in the 8'p=0 gauge, the instanton
interpolates between two Qribov-like vacua at large x.
As we demonstrate shortly, there exists a Coulomb-
gauge form of the instanton solution which exactly inter-
polates between the two Qribov vacua with topological
charge =+ —,'. These two vacua are therefore connected

nontrivial solution f(r, xo) of Eq. (H25) may very well
interpolate between the Qribov vacuum and the normal
vacuum. But this interpolating potential is not in the
Coulomb gauge.

How do the solutions of Eq. (H25) behave '? First of
all we note that at time xo=O f satisfies a, (x'a,f) =0
(for r cO), which implies that f is constant everywhere
in space. (The solution f=c/x is unacceptable. ) Next,
consider the small —x region where Eq. (H25) becomes

a, (&'a,f) + (xo/
~
xo

~
)2 s inf = 0 .

For x, &0 (xo&0) the nontrivial solution is Ax(Ax+aT).
In the limit x- ~ the transversality condition becomes
a, (x'a,f) =0 (for finite x, ) and f is either constant or
O(l/x). Evidently, a nontrivial solution which is con-
tinuous at x0=0 must have one of the forms (Chiu, Kaul,
and Takasugi, 1978) ~ = exp[ ——,

' i (2m/v'v'. + x') ~ g]

= cos(iri /V'i'+ X') —i~ u sin(m~/l~'+ X') .
This is essentially the gauge transformation w, used in
Sec. VII to construct the topological vacua ~n). Her'e we
have explicit verification of a claim made in Sec. VII
that the instanton tunnels between the vacua

~
0) and ~1)

in the 8'p 0 gauge.
Now on to the Qribov problem. We begin in the gauge

(H27), noting that the transversality condition
a, (i' a, A, ) =2/, is not sa.tisfied in this gauge. We have
to find a gauge function f=f(x, x, ) which satisfies the
transversality condition (H8) (Wadia and Yoneya, 1976)

4' p 4x2
a, (x'a,f) —2 sinf =, ', (1 —cosf) — » sinf .x x2 g2

(H30)

In the limit ~x,
~

—~ this condition becomes the condition
(H12) for the Gribov vacuum. Moreover, among the
ansatz functions (H27) only @,——1 remains nonzero in
this limit. Therefore the transformed instanton so-
lution must go smoothly into one of the Qribov vacua
when xp-+ ~. It is clear that different Qribov vacua
are connected in this way becuase f in Eq. (H30) must
change sign at x, = 0. Therefore the solution of Eq.
(H30) has the form (Sciuto, 1977; Abbott and Eguchi,
1977)

where

g(~, ~x, ~, x) x, (0
g(r, ~x, ~, ~) x, )0

(H31)

g-0 8 g-0. x -0 ~

g- Gribov function; ~x,
~

-~.

6. Vacuum tunneling in the Coulomb gauge

We have seen that merons tunnel between the Qribov
vacua and W„=0, while instantons only tunnel from one
Qribov vacuum to the other. This seems to imply that
merons play a physical role in YM theory, as they are
necessarily present in the ground state of lowest en-
ergy. On the other hand, all meron solutions are sin-
gular and thus have infinite action. 'This obscures their
physical interpretation. 'The situation with respect to
merons would be clarified if one understood why they

by instanton tunneling (Sciuto, 1977; Abbott and Eguchi,
1977).

First we make a parenthetical remark. Any function
of r can be added to f in Eq. (H28) without changing A,'

Let us consider the gauge transformation

f = —(2~/v'~'+ X') [tan ' (x,/v'~'+ &') + —,'ii ]

with the limiting behavior

f-O, x, ——~;
f——2m /v'~' ~ x', x, —~

In the limit x, ——~ the gauge-transformed potential
obtained from (H27) becomes the vacuum W„=O. In the
limit x, -+ ~ the same potential becomes pure gauge
with gauge function
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are singular. Ideally, meron advocates would like to
be able to show that merons have tobe singularonphys-
ical grounds. No proof of this is known to the author.
However, we believe that the singular nature of merons
is dictated by their connection with the Qribov vacua
(Actor, 1979).

A Qribov vacuum has size and position. Its size is
essentially 1/M, where M is the parameter in Eq.
(H14). In the limit M- ~ the Gribov vacuum becomes
pointlike and singular:

0 &=0

x&0
(H32)

If it were not for the point x=0 this singular Qribov
vacuum would coincide with the perturbative vacuum

=0 up to a trivial gauge transformation. Thus its
topological charge Qr = —,

' is concentrated at the singular
point x=O. Now the limit tI/I- ~ is only a scale change,
which one is allowed to make because of conformal in-
variance. (This scale change of course does not affect
the pointlike meron solution. ) Obviously a nona ingular
Euclidean solution could not interpolate between the
pointlike Gribov vacuum and TV„=O. However, the sin-
gular meron solution has just the right form for this
interpolation. Indeed, the pointlike nature of merons
enables them to tunnel from Gribov vacua of any size
to 8', =0.

The meron's topological charge is concentrated at a
point in F.'. From this we conclude that the meron tun-
neling in Fq. (H26) proceeds in the following way. Con-
sider the tunneling W (Gribov) —W, =0 to be explicit.
At xo= — there is a Qribov vacuum with arbitrary size
1/lVl. For finite x, &0 this configuration shrinks until
it is finally pointlike. At x, =0 the pointlike meron can-
cels the singularity in the pointlike configuration and
what remains is a nonsingular configuration (with Qr = 0)
which dissolves into the W~ =0 vacuum as x, —~. (For
more details see Actor, 1979.)

Merons are the only known YM solutions with half-
integral topological charge. There probably does not
exist a nonsingular solution with q = —, which could inter-
polate between a finite Gribov vacuum and W, =0. Like
merons, this hypothetical solution would have equally
strong self-dual and self-antidual parts at large x .
However, it is generally believed that finite-action,
non-self-dual solutions do not exist.

Next consider instanton tunneling, as in Eq. (H31).
Here the instanton interpolates smoothly from one finite
Qribov vacuum to the other. If we make a scale change
such that the Gribov vacua become pointlike, then the
interpolating configuration must also become singular,
i.e., a two-meron configuration. This is an indication
that instantons are in some sense equivalent to meron
pall s

~hat about multi- ins tanton solutions ? Ademollo,
Napolitano, and Sciuto (1978) pointed out that there is
no room for these solutions in the Coulomb gauge, for
the only symmetric vacua are the ones with Q„=O,

If we try to write down a two-instanton solution
in this gauge, then at some time x, = T it must have a
discontinuity at which Q~ changes by one unit. . Suppose
the two instantons are very far apart, and the tunneling

begins in the Qr = ——,
' vacuum and proceeds to the Qr

=+2 vacuum at x, =T. At this time the potential must
change discontinuously back to the Qr = ——', Gribov vac-
uum. Then the second instanton tunnels continuously to
the Qr-+ ~ vacuum again. For multi-instantons the dis-
continuity is repeated. Multimeron solutions would also
have to have discontinuities.

Because '= ' it is necessary that the four real func-
tions f, satisfy

f2 f2 (12)

Thus one can interpret f as a unit vector in a four-
dimensional Euclidean space. The manifold of points
touched by the tip of this vector is the unit sphere S'.
This sphere is the SU(2) group manifold.

(3) The topological structure of the SU(2) group mani-
fold is of immediate relevance for Euclidean solutions
of the SU(2) gauge theory. In Euclidean space-time any
physical solution W of the Yang-Mills equations of
motion should become pure gauge as x'-~,

eW ——i(a cu)&u '. (I3)

The gauge transformation co defines a mapping of the
sphere at infinity, S„, into the SU(2) group manifold
S'. This mapping can cover the latter sphere zero
times: All points on S„' are mapped onto one group
element, say the identity element, so that 6'„-0 as

It can cover the latter sphere once: each point
on S'„ is mapped onto a different point on S'. It can
cover the latter sphere n times: then n points on S„' are
mapped onto one point on S'. The general situation is
clear. Euclidean solutions of the SU(2) gauge theory
which satisfy the boundary condition (I3) automatically
define a mapping S„'-S' that has a topological index n
equal to an integer. A mathematical expression of
this fact is

~,(SU, ) =~,(S') =Z. (I4)

APPENDIX I: TOPOLOGICAL CONSIDERATIONS

(1) Sometimes it is useful to think of a. local SU(2)
gauge transformation as a mapping of space-time onto
the SV(2) group. This helps one to visualize its topo-
logical structure. Although most gauge transformations
are trivial in a topological sense, there are certain
ones with very interesting topologicalproperties. These
are gauge transformations which define a mapping of
some topologically nontrivial object in space-time onto
a similar object in the SU(2) group manifold. The topo-
logically nontrivial objects we have in mind here are
loops, spheres, (tori'?), etc. The mapping of a loop
onto a loop, or a sphere onto a sphere, can cover the
latter n times where n is any integer. Mappings with
different n are topologically inequivalent, and this is
an impo rtant dis tinction.

(2) The manifold of all space-time points has no in-
teresting topological structure. However, the SU(2)
group manifold is topologically nontrivial: It is topo-
logically equivalent to S'. To see this we recall that an
arbitrary SU(2) transformation can be written
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Here Z is the group of additive integers, and m, is the
third homotopy group. Before saying what this group
is, we mention another interesting case.

(4) In the SU(2) monopole solutions discussed in Sec.
IV the Higgs field satisfies the boundary condition at
infinity @,—j, m/v X. Such a. boundary condition is
needed to make the potential energy vanish as x-~.
(Specifically, @,@,-m /X is necessary. ) This partic-
ular boundary condition defines a map of the sphere
at spatial infinity, S'„, onto a sphere S' in the SU(2)
manifold. [Here we regard the SU(2) manifold as a solid
ball in a three-dimensional Euclidean space. The sphere
S' is determined by QP, = const where @, is a vector
in this space. ] The latter sphere is covered one time.
Other boundary conditions can easily be. imagined in
which the sphere S' is covered n times. The mathe-
matical exp res s ion of this is

w, (s') = z,
where m, is the second homotopy group. We now proceed
to a discussion of the homotopy groups.

(5) I.et us begin with the simplest homotopy group,
making no pretense of giving a mathematically rig-

orous treatment. We are only trying to explain what
homotopy groups are. For an excellent review of re-
sults on homotopy groups, with many references to the
mathematical literature, see Boya, Carinena, and
Mateos (1978). A standard (although slightly outdated)
reference is Steenrod (1951).
Definiti on of w(X): The first homotopy group is a group
whose elements are equivalence classes. The elements
which are collected into these equivalence classes .be-
long to the set of all maps of the unit circle S' into a
topological space&. This unit circle, or loop, is given
a direction, say counterclockwise, and some point. P
on the circle is chosen to play a special role. One can
think of P as the start (and end) point. of a circular path
traversed in the chosen counterclockwise direction.
Moreover, a base point X in the space X is chosen to
play a special role. The map S'-X is such that P al-
ways gets mapped onto R; otherwise the mappings are
arbitrary (but continuous). Two maps are said to be
equivalent, or homotoPic, if they can be continuously
deformed into one another. This is a meaningful equiv-
alence, which for mappings of loops can be easily visu-
alized. Given this equivalence, one can readily group
all maps S'-X into equivalence classes. Each equiv-
alence class is an element of w, (X), and these elements
fo~m a gvouP. This is the essential idea to grasp in
connection with all homotopy groups; the higher ones
are defined analogously.

The identity element of w, (X) is the map S'-N of the
entire loop S' onto the point K inX, together with all
maps which are homotopic to this one (i.e., all maps
whose image inX can be continuously contracted to the
point N). IfX is simply connected, then, by definition,
w, (X) consists only of the identity element. IfX is not
simply connected, then w, (X) is nontrivial. For the sake
of illustration we now consider a particular topological.
space X.

As an example (see Roman, 1975) let us takeX to be
Euclidean two-space with a hole cut out, so that it is
not simply connected. Then we have the situation shown

in Fig. 1. In Fig. 1(a) we see the type of map which
belongs to the identify element of w, (X). In Fig. 1(b) we
see another type of map which is clearly in a different
homotopy class, and Fig. 1(c) shows yet another map
which belongs to a third group element of w, (X). It
should be clear that the various homotopy classes, or
group elements, are distinguished by the number of
times the image of S' winds around the hole. This num-
ber can be any positive or negative integer n, because
the loops are directed. There are an infinite number of
group elements in w, (X), labeled by the integer n.

Group multiplication is defined by taking a represen-
tative map from each of the two group elements in
question (clearly it is irrelevant which maps are, chosen)
and joining their images inX into a single loop [Figs.
1(d), (e), and (f)]. The latter generally determines a
new group element with a new winding number n. But
if one of the original group elements is the identity
then the winding number does not change [Fig. 1(d)].
Moreover, because the loops are directed, two loops
with opposite direction can annihilate [Fig. 1(f)]. This
shows how inverse group elements are defined.

Group manifolds are topological spaces, and one can
calculate the first homotopy group w, (G) for any group
G. Some examples are

w, (U, ) = w, (S') =Z, U, -S'

w, (U, x U, )=w, (U, ) xw, (U, )=Z xZ;
w, (SU,) =w, (S') =0; SU, -S'
w, (U,) =w, (S'xS')

= w, (s') xw, (S') = Z; U, —S' x S'.

(I6)

(IV)

(I8)

(I9)

These examples are easy to understand. The first one
is essentially the example in Fig. 1. Note that w, (S') =0
(the trivial group) because S' is simply connected. In
examples (IV) and (I9) we see that when S' is mapped
into a product space the result is a product group m, .
This is not difficult to visualize.

(6) The nth homotopy group is defined as follows.
Definition of w„(X): The nth homotopy group is the set
of equivalence classes of maps of the unit sphere S"
in n dimensions into a topological spaceX. The north
pole N of S" gets mapped onto a chosen base point P
in%, just as for m, . Two maps are equivalent, or
homotopic, if they are continuously deformable into
one another. This determines the equivalence classes
which are the group elements of w„(X). Group multipli-
cation is defined by the joining of images inX, just as
for m, . Inverse group elements are defined by maps
with the opposite "direction. " Unfortunately, all of this
is difficult to visualize for the higher homotopy groups.
This is the reason why we went to some pains to explain
the group m„where things are easily visualized. The
higher homotopy groups can thenbeunderstood, to some
extent, by analogy with m, . Note the following results
concerning m„:

w„(A x&) = w„(A) x w„(&)

w„(S )=0, & nm
w„(s")=z
w„(S')=0, n&1
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Times equals

{a)

Times equals

{e)

Times equals

(c)

FIG. 1. (a)—(c) Representative mappings belonging to the elements of the first homotopy group r&@) with winding number 0, 1., and
2, respectively. (d)-(f} Examples of group multiplication. Here the image space X is a plane with a hole cut out.

~,(S")=0, n~2

s, (S")= 0, n o 2, 3

w, (s') =7r, (s') =z.
The topological spaces~ of interest in YM theory are,

of course, non-Abel ian group manifolds G. The base
point N in G is always chosen to be the identity element
of the group. It is generally a very nontrivial exer-
cise to calculate the homotopy groups m„(G). We quote
without proof some interesting results:

~, (so„)=z„

7r, (U„) =Z, n ~ 1

~, (SV„)=0, n 2

~, (SU„/Z„) = Z„, n - 2

w, (G)=0, G=any Lie group

(7Gr) = Z, G = any simPle Lie group

~,(sa, ) =z &&z

~,( os„)=,z &4n

~„(V,) =0,
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n even

7r (G/H) 40. (I10)

Moreover, if G is a simply connected group [like
SU(n)] then this condition takes the very simple form

~, (H) ~ 0

because for simply connected G

~,(G/H) = ~, (H) . (I12)

As the calculation of w, is generally quite easy, Eq.
(Ill) provides an extremely practical, as well a.s gen-
eral, criterion for the existence of monopole solutions.
If the subgroup H is simply connected, then 7r, (H) —= 0
and no monopole solution is possible. If K is multiply
connected, then monopole solutions may exist. This
general topological argument provides no guarantee of
existence, of course, nor does it provide insight into
the functional nature of solutions. Essentially one is
told where to look for solutions, and where not to look.

Eq. (Ill) does prov'ide information on the possible
values of the monopole charge. The group elements
of m, (H) are essentially labeled by these values. For
example, in the 't Hooft-Polyakov monopole problem
the gauge group G =SU(2) is simply connected, and
H=U(l). From Eq. (I6) we see that 7r, (H) =Z in this
case, and the integer n which labels the group elements
of Z represents the allowed monopole charges. (Of
course, only the e =1 solution has been found to date.
~e know from the no-go theorems described in Sec. I&
that solutions with n &1 are necessarily very compli-
cated, and it may be practically impossible to find them.
But the topological analysis suggests that they exist. )
Another example is provided by the SU(3) gauge theory
with an octet of Higgs bosons. In this theory one can
break the local SU(3) gauge invariance down to an un-
broken local subgroup H = U, or H = U, x U, (see Corrigan,
Olive, Fairlie, and Nuyts, 1976; Sinha, 1976). Equa-
tions (I7) and (I9) show us what happens in these two
cases. For K= U, there is a single monopole charge,
while for II = Q, && U, there are two independent charges
(the elements of Z x Z are labeled by two independent
integers).

One can easily understand why condition (I10) above
involves the second homotopy group. In general, the
Higgs field @, is nonzero on the sphere at infinity, S„,
to minimize the potential energy there. This-implies
a boundary condition

P.(~=~) =f.(~), f.f.=const,

Rev. Mod. Phys. , Vol. 51, No. 3, July 1979

(113)

Z tl odd

(U„) =Z„,

Here Z„ is t;he cyclic group of order n.
(7) The power of homotopy group methods in classical

YM theory is beautifully illustrated by the following the-
orem (Tyupkin, Fateev, and Schwartz, 1975; Monastry-
skii and Perelomov, 1975):
Theorem: A YM theory with gauge group G and a Higgs
mul. tiplet which breaks the local gauge invariance,
leaving an unbroken local subgroupK, canhave monopole
solutions only if the second homotopy group of the factor
space G/H is nontrivial, i.e., if

which clearly defines a mapping of S„' onto the group
manifold of G. More precisely, this map is such that
the sphere S„' gets mapped onto the manifold of cosets
G/H, and this is why w, (G/H) and not 7r, (G) is the rel-
evant homotopy group. This is the only difficult aspect
of condition (I10) to grasp. (Besides the two references
above, the reader might consult Coleman, 1975; Shan-
kar, 1976; Sinha, 1976). The basic idea is as follows.
By definition, the boundary condition (I13), written in
matrix form, commutes with the elements of the un-
broken subgroup H (recall our discussion in Sec. IV).
Thus the group elements in K have no effect on the map
S„' -G. They can therefore be factored out from the
group manifold G —this is precisely the meaning of the
coset space G/H —without affecting the topological na-
ture of the map. What rema. ins is the map S' —G/H.

~e do not know of any really simple derivation of the
identity (I12). One can convince oneself that this. formula
is plausible, however. It must hoM for any subgroup
H of G. For the trivial subgroups II =e (the identity
element) and H=G the formula tells us that

~,(G/e) =~,(G) =~,(e) =0,

7r (G/G) =7r (e) =z, (G) = 0.

The second is obviously a correct statement; m, (G) —= 0
because G is simply connected. The first statement is
also correct because m, (G) =0 for any I.ie group G.

(8) Homotopy group methods can help one to clarify
and understand other problems in classical. YM theory
besides monopoles. gee mention two more examples.
(a) Equation (I4) implies the existence of instanton
solutions of the Euclidean SU(2) theory which are la-
beled by an integral topological charge. A very modest
input, namely that Euclidean solutions become pure
gauge at infinity, is sufficient to make this statement.
Now static solutions in Minkowski space can become
pure gauge as x-~, and one might ask: Can instanton-
like solutions be found in this ease? The answer is no.
Maps of S„' into the SU(2) group are characte, rized by
the homotopy group

~, (SU, ) =v, (S') =0. -

Therefore, no instantonlike solution exists in three-
space. (b) Do there exist instantonlike solutions in E»
of theories with gauge groups G larger than SU(2)'?
Imbedded SU(2) solutions do exist, as we have explained
in Appendix B. But one is interested in more general
solutions, which are characteristic of the group G and
not the group SU(2). Now we have seen that w3(G) =Z for
any simple Lie group G. This extremely general result
suggests that instanton solutions beyond the SU(2) ones
exist for all such groups. [See Bitar and Sorba
(1977) for a study of imbedded SU(2) instanton solutions
in larger gauge theories. Bernard, Christ, Guth, and
Weinberg (1977) have given a quite general discussion
of instanton solutions of arbitrary gauge theories based
on the Atiyah-Singer index theorem. An explicit in-
stanton solution of the SU(3) gauge theory which is not
an imbedded SU(2) solution has been found by Bais and
Weldon (1978).j
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