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The authors discuss the coherence properties of neutron scattering from perfect crystals and apply them to
the splitting and coherent recombination of a neutron beam in a Laue-type interferometer. They also point
out the difference between neutron and x-ray scattering in such devices and discuss the effect of a relative

displacement of the various interferometer slabs on the fririge pattern. All this can be done without using
the detailed dynamical theory of x-ray scattering. Various experiments are discussed, especially the
neutron-gravity experiment of Colella, Overhauser, and Werner, which is analyzed both in the laboratory
frame and in a frame freely falling with the neutron beam. The older electron diffraction experiment of
Marton et al. , and its relevance to the Aharonov —Bohm efFect, is also discussed and reinterpreted,
because the standard interpretation is not consistent with the results of the neutron experiment. An
Appendix presents a general discussion of the transformation to a uniformly accelerated reference frame,
as a guide to help analyze future such experiments.
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I. INTRODUCTION
The practical availability of nearly perfect single sili-

con crystals, up to 15 cm .in length, has provided a new

research supported in part by a grant fr'om the PSC-SHE
Research Award Program of the City University of New York.

/Supported in part by the Materials Research Laboratory Pro-
gram at the National Science Foundation.

tool for the performance of neutro~ and x-ray diffrac-
tion experiments. It is now possible to build diffraction
devices of both the transmission and the reflection type
which can divide a beam into two spatially separated
beams, by Bragg or Laue scattering, and subsequently
to coherently recombine them.

The first successful such experiments with x rays
were performed by Bonse and Hart in 1965. (The Laue-
type interferometer is described in Bonse and Hart,
1965a, and analyzed in Bonse and Hart, 1965b, where
the role of the Borrmann effect is emphasized; some
experiments giving insight i.nto the workings of the in-
terferometer are described in Bonse and Hart, 1966a;
the Bragg-type interferometer is described in Bonse
and Hart, 1966b.) The first successful use of such
techniques with neutrons was by Rauch, Treimer, and
Bonse in 1974 (Rauch et aL, 1974). Subsequently, the
technique was used by Colella, Overhauser, and Werner
(COW) (Overhauser and Colella, 1974; Colella et al. ,
1975) to actually measure the phase shift due to the
gravitational potential difference between two neutron
beams at different heights (of about 1 cm) in the earth' s
gravitational field. ' They also used the technique to
show that the wave function of the neutron changes sign
upon a rotation of 360'(Werner et al. , 1975; essentially
the same experiment was done simultaneously by Bauch
et al. , 1975). Further experiments are being planned
by them and others (Werner et a/. , 1976, whose paper
also contains a theoretical analysis of the neutron in-
ter fsr ometer)

In the present paper we provide a simplified guide for
analyzing the coherence properties of such experiments.
%e shall develop a consistent technique for following
the propagation of a wave by analyzing the phase at a
fixed point, whether at a screen or in a crystal. Then if
the wave is subject to a minor perturbation it is a

~This experiment shall subsequenQy be referred to as COW.
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simple matter to calculate the change in phase at that
point. This avoids altogether the very tricky analysis
necessary to try to follow the semiclassical trajectories
along rays, an especially confusing process when these
rays are subject to perturbations. We shall also show
that, without using the highly developed dynamical theory
of x-ray scatterlngq one can still gain a quantltatlve

. understanding of coherence phenomena, and be able to
interpret the various experiments that have been carried
out with neutrons, as well as to appreciate the dif-
ference between neutron and x-ray scattering. We will
specifically discuss the CGW experiment in some de-
tail. Our simplified analysis of these phenomena is the
analog of the type of phase argument one uses in ele-
mentary optics, which successfully treats many dif-
fraction problems, but which for compli'cated geometries
and complex physical situations must be replaced by the
much more elaborate rigorous theory.

We also discuss some aspects of the Aharonov —Bohm
effect, ' as well as the electron diffraction experiment of
Marton (Marton, 1952; Marton et a/. , 1953, 1954; the
theory of the interferometer is discussed by Simpson,
1954), because the accepted interpretation of this ex-
periment, provided by Werner and Brill, jI960, is not
consistent with the experimental results of CGW. We
shall show that the Werner —Brill result is essentially
incomplete4 and reinterpret Marton's experiment in a
manner consistent with both the other Aharonov —Bohm
experiments, and the COW experiment.

In order to establish the consistency of our interpre-
tation of the CGW gravity experiment, we also analyze
the experiment in a uniformly accelerated reference
frame, chosen to eliminate the gravitational field. We
also provide 3. guide to the general use of such a trans-

~A thorough review article on the dynamical theory is
James, 1963. This paper contains references to the pioneer-
ing work of Bragg, von Laue, Darwin, Ewald, etc. A good
introductory discussion is contained in Peierls, 1955, though
there are now a number of recent textbooks available on the
subject (for example, Azaroff et al. , 1974). We have also
found very useful the ariticle by Batterman and Cole, 1964,
which has an extensive discussion of the Borrmann effect
(which we describe in Sec. III), and by Slater, 1958, which
emphasizes the underlying unity of all problems concerning
interacting waves in crystals. Slater's article contains a de-
tailed bibliography. The dynamical theory was extended to
neutrons by Goldberger and Seitz, 1947, who gathered. and
greatly extended earlier unsystematic results. Theoretical
discussion of the Laue-type interferometer j.s contained in
Bauch and Suda, 1974, and Werner et al. , 1976. Two very
recent and much needed review articles on neutron inter-
ferometry are Bauch and Petrascheck (1979), and Bonse
and Graeff (1977). The most up-to-date reference on the
topic will be the Proceedings of the First International Work-
shop on Neutron Interferometry, Institut v. Laue-Langevin,
Grenoble, June, 1978 (Bonse and Bauch, to be published).

3Aharonov and Bohm 1959. The effect had been mentioned
previously by Ehrenberg and Siday, 1949. While there seems
to be universal agreement as to the existence of this effect,
there has been considerable debate as to its implications.
This debate has been summarized by Ehrlichson, 1970. See
also the references cited in Sec. V.

4Professors Werner and Brill concur in this conclusion, and
a reworked version of their analysis is being published.
Brill eg a&. , to be published).

formation, since it may prove useful in further gravity
experiments, even for rapidly moving particles. To
this end we consider, in.an appendix, uniform accelera-
tion in both special and general relativity and apply it
to both the nonrelativistic and relativistic Schrodinger
equation, and to the Dirac equation.

In Sec. II we discuss the scattering of neutrons from
crystals, emphasizing the effect of a small perturbing
force, such as that due to gravity, on the outcome. In
our discussion we strongly endorse the calculation of
changes in phase at a given point, rather than the trac-
ing of individual rays. For a beam that has been co-
herently split and recombined we show that the ultimate
effect of the perturbation is to shift the fringe pattern
and the beam envelope in such a way that they keep step
with each other. In Sec. III we discuss the effect of
transmission through a thick, perfect crystal and de-
scribe the Borrmann effect. We describe the neutron
interferometer and show how the scattering is affected
when the various planes of the crystal are displaced, and
also show how the different absorption characteristics of
neutrons 2nd x rays yield different behavior for the two
types of particles, even under identical conditions. In Sec.
IV we discuss the COW experiment, in both the laboratory
and free-fall reference frames. Both analyses yield
the same fringe shift, as measured by COW. In Sec. V
we discuss the Marton experiment, in the light of the
Aharonov-Bohm effect, and point out the flaw in the
Werner-Brill analysis. We then reinterpret the experi-
ment in a manner consistent with our previous dis-
cussion. In Sec. VI we give a short summary of the
paper, and finally, in an appendix, we present a dis-
cussion of the general problem of uniform acceleration.

II. CRYSTAL EFFECTS GN NEUTRON SCATTERING

A. Propagation in the presence of a weak perturbation

It has often been pointed out that the basic phenomena
involved in the scattering of waves off crystals are sim-
ilar, regardless of the particular type of wave involved.
We are not going to discuss the scattering problem in
great detail, partly because this has been done pre-
viously and partly because we shall need only a limited
number of results. Gur main interest will be in the co-
herence and phase properties of the wave function,
rather than in cross sections or scattering amplitudes,
and so we shall emphasize certain aspects of the sub-
ject which are usually passed over briefly.

First, if one has a free particle propagating along,
subject to a very weak time-independent perturbing po-
tential, this potential will tend to distort the wave func-
tion of the particle, and to deflect its path along a new
trajectory, which will be the classically displaced tra-
jectory. Examples are a neutron subject to the earth' s
gravitational field, or to an inhomogeneous magnetic
field, or an electron subject to a static electromagnetic
field.

If the Schrodinger equation is

(2.1)

whereto is the free-particle Hamiltonian and U is the
perturbing potential, such that in the absence of the
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per turbat ion

H, @ =E,y, Q, =e "o', (2.2)

then we can find a solution in the form given by Landau
and Lifschitz [1958, Sec.45. If the perturbation is due
to a strictly uniform force everywhere in space, the
problem can be solved exactly by Airy functions ibid. ,
Sec. 22, and Appendix (b)]:

& '=&oX &=&o.

Since

(2.3)

(2.4)

then Eq. (2.1) becomes

2ik, &g + VQ = (2m/it ') UX . (2 5)

If we are interested in a semiclassical solution, such
that

(2.6)

then we can drop the VQ term and solve for X.

1 8X Spy Wfl
U, X=exp U ds), (2.7)

X
= exp —— Udt (2.8)

where s measures distance in the direction along k, .
Because we have 8ko/m =p, /m =vo and ds/vo=dt, we can
write

solution, including the denominator, is the &KB wave
function), while the wave packet describes the envelope,
which is centered about the classical solution. This so-
lution satisfies the Schrodinger equation under the ap-
proximations stated.

This solution is actually equivalent in its effects to that
of E(I. (2.8). Consider the following situation, which
will be of use later. Imagine an initially horizontal beam
of free particles which is split into two parts by some
device at point A (see Fig. 1). If the two separate beams
are elastically scattered or diffracted through various
assortments of crystals, such that the magnitude of the
momentum remains p, and the total time taken over the
upper and lower paths are the same, then there will be
no phase difference between the unperturbed beams
when they are recombined at point B (which may be at
different height than A).

If now there is a very weak force in the z direction,
the difference in phase between the two beams will be,
from E(I. (2.8),

C5t j.

C

(2.14)
C5tj.

exp( ,'

hard(

I,
c

5

where go, and |II)o, are the unperturbed wave .functions
along the ith segment, and g ', and g ', are the perturbed
ones. Then, if T is the total time between' andB,

The proper interpretation of this solution comes from
integrating along the unperturbed trajectory, but it may
be extended to include nearby trajectories. As an ex-
ample, if the particle is propagating in the x direction
and subject to a potential

(2.9)

which yields a force perpendicular to the beam, then

(T) lip()) —lip(i)

g, (T) = 110')' = yo(T) exp-
~c~

(', (7') = ll ( ~',
'~ = ((7') exp(—f,

so that

rat),

((e),

(2.15)

(2.16)

Qo = e'"o", (t) = exp(i@~ —im nxs/kok') =- e' " . (2.10)

The semiclassical momentum is given, to lowest order,
by the gradient of the phase

k= vq =u„(ko -mns/@oh') u, l(m nx/k—oA ') . (2.11)

g, (T) = (,(T) exp(: f olldt), (2.17)

where AU is the difference in potential between corres-

If one starts at some point, say x,=z, = 0, then along
the classical trajectory, x =vot, s = nt'/2m, Po=mi)o
=6k,

BEAM I

UNPERTURBED BEAM

p= 6k= U po —ll (2.12)

to lowest order in n (The u,. ar. e unit vectors. )
An equivalent semiclassical wave-packet solution for

expressing the propagation along a path from a point r,
to the point& is

URBE

where the momentum is considered as a function of the
classical path at constant energy, between ~, and ~, and
both the momentum p(r) and the wave packet u are slowly
varying (~l su/sr

I
« Iul ~lap/dr I

«
I p I) The exponential

controls the phase of the function (and this part of the

FIG. 1. Effect of very weak force on phase of recombined
beam. A beam of particles is split at A into two beams, each
of which may be further elastically scattered, such that the
time of flight is .the same for both unperturbed beams when they
are coherently recombined at B. Then 4&(T)
= 4'2(T)exp( —if b Udt/K), where AU is the potential difference
between corresponding points on paths 1 and 2.

Rev. Mod. Phys. , Vol. 5'f, No. 3, January 1979



Daniel M. Greenberger, A. W. Overhauser: Neutron diffraction and gravity

y, (z)=qepx, ~, 5p, dz) .
A

Now, we have

(2.18)

(2.19)

so that

I—i ' '»U
g, (z) =Q, Oexp )

— —dz dt
A

t
=0,.~xv( z I (&(*.) pR)N-); (2.20)

when one carries this over the entire path A. CB, and
compares it with that over AC'B, the total effect will
clearly be that given by Eq. (2.17).

Another simple but very important property we shall
frequently use concerns the question of how the phase
of the wave function at a point is affected by adding a
small perturbation U. Assume a free-particle wave is
propagating between points A. and B. The classical tra-
jectory is shown by A.I3 in Fig. 2. Now let a small per-
turbation change the trajectory to AB'. %e ask what the
phase of the distorted wave is as it hits the same point
B.

The elapsed phase between'. and B is

ds P 'ds
A. 8 (2.21)

Therefore, the phase will not change unless P changes.
However, P will change only if the force has a com-

ponding points on paths 1 and 2, i.e. , between points
reached at equal times along the respective unperturbed
classical trajectories. This is an important formula,
which we shall use frequently. If the two unperturb-
ed beams reach point E at the same time (which will
always be the case for the problems we shall analyze),
then even if the perturbed beams reach B at slightly
different times, this time difference will produce a
second-order effect in the phase integral of Eq. (2.17)
and thus can be ignored.

If we look at the same experiment from the point of
view of Eq. (2.13), we shall have to integrate along the
actual path, which is slightly perturbed from the straight-
line paths. For g„we have

(p+6p)'/2~+ U=&, I6pl = ~U/p

at constant E, and

(2.22)

l 5p l
dr = 6p dr = — U dr/v =— U dt, (2.23)

showing the equivalence between Eqs. (2.8) and (2.13)
in this case also.

B. Scattering from an individual force center

If V represents a short-range potential surrounding a
target partic'le, the Schrodinger equation

(P, + V)g =E$, E=Eo

can be written as an integral equation

(2.24)

(2.25)

where lk, & represents a, free-partic1e incoming wave,
and the second term represents the scattered wave
(Baym, 1969, Chap. 9; or any modern quantum me-
chanics text). In configuration space, the Green's func-
tion becomes

ponent along the motion. In other words, if the force is
perpendicular to the beam, the beam will bend, but to
lowest order the path length wil1. not change.

If there is a screen in the path of the beam, as in Fig.
2, the center of the envelope of the bea.m (the classical
path) will move from B to B'. 'And the phase striking
B' will be different from that at B if the screen is not
normal to the motion, but nonetheless the phase at point
B will be the same as before.

Thus there will be no phase change at a fixed point (to
lowest order in the external force parameter) due purely
to the bending of the beam. However, the phase can
still change at a fixed point because of a change in ~,
and therefore p; this will happen if the force has a com-
ponent parallel to the motion. The phase shift due to
this will be given by [(i/n) J5P dr] or, equivalently, by
I( —t/8) J Udt], as given by Eq. (2.8).

Because of the insensitivity of the phase to the bending
between neighboring paths, it does not matter whether
one integrates along the original path, as in Eq. (2.8),
or along the altered path, as in Eq. (2.13), in calculating
the phase. In the case of the force parallel to the mo-
tion, if one writes P =Po+5P and E=P /202m, then

UNPERTURBED
TRAJECTORY

~i
1 ! ll

' ! 5& ~ I

PERTURBED
TRAJECTORY

The asymptotic form of the equation is

q,, (r) = e'""+a,,e'""/r,

where Q =k,u„, and

(2.26)

(2.27)

FIG. 2. Insensitivity of phase to the bending of the beam. The
bending of the envelope of the beam due to a weak perturbing
force (and therefore the shifting of the classical trajectory
from AE to AB') has no effect on the phase striking a particular
point, B, on a sex'een. (Of course, if the wavelength changes,
it will alter the phase at E.) The phase at E' may be different
from that at E, but it too is unaffected by the bending.

Qy = — . 2 QJ' V'V 8 f y 'V (2.28)

a„=a(ak) =-
2m@

'r' e '~t' V(r') (2.29)

is the scattering amplitude. In the Born approximation,
g under the integral becomes exp(tko r) and

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979
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(B,+ V+ U)(f) = E(l), Z = F, (2.30)

If the equation with U alone can be solved, as in Sec.
II.A

where 4k=k& -k, . For low-energy neutrons, a is a
constant independent of direction, the scattering length.
In a crystal like silicon, where there is no nuclear
spin, a is also independent of the polarization.

If the scattering now takes place in the presence of a
weak background field with potential U, the Schrodinger
equation can be written

C. Scattering from a crystal

If one has a three-dimensional periodic crystal of
scatterers, then the potential V(r) will have the same
periodicity as the crystal. If the origin of the nth unit
cell is located at

r„=n,a, +n;a, +n,a, , n=(n„n„n, ), (2.36)

where the a; are independent vectors defining the
periodicity of the crystal (assuming for simplicity one
scatterer per unit cell), and the n; are integers, then
within the crystal,

(Id', + U)@ —= B,@==EP, (2.31)
V (r+ r„)= V(r) . (2.3'I)

then the scattering equation can be written

IV&
=

I y.&. (E - Ii,)-'vie& . (2.32)

d'k&rl e.&&A. l (~ Ii,)--'I e.&&@air'&

This is similar to Eq (2.2. 5), except that now the so-
lutions of U, the

~

(l)&'s, play the role that the free particles
lk) played previously

The Green's function takes the form

For distances r far from that part of the crystal in
contact with the incident beam, as well as far from the
individual scatterers, we have

~ z 1R july

(l (r) = e'"0'+, d'r' e '~'"V(r') (2.38)

where r is measured from an arbitrary point within the
crystal. Because of its periodicity, the integral can be
broken into a sum over each unit cell r' = r„+p„,

=2m 1
k' (2)))'

d3k exp(i fk dr) exp( -i fk dr')
k2 —k~

(2.33)

'r' e ' ' V(r') = g 3p

x e-~d'" ("' p.) V(r „~p )

In this equation, since H, is diagonal in the lQ&, the only
difference from Eq. (2.26) is the use of the functions
&r l(l)& for the plane waves. There are a number of sim-
plifications to be made in Eq. (2.33). First, the equa-
tion has poles at 0=*k0 so only the corrections in this
region are important. We write the corrections to the
phase factor in the form

exp i k'dr = exp zk'r+i~o. k, r (2.34)

Since we shall be integrating later over r' only in the
region of the scattering center, and U has a negligible
effect over such a small region, we need not bother at
all with the 6n term for the exponential in r'. Finally,
as we integrate over d'k, we note that in the direction
of k parallel to r, we are along the classical trajectory,
while as we vary the direction, we have seen that for
small variations, the phase is independent of the tra-
jectory. In other directions, the phase will vary rapidly
and tend to cancel out.

This statement is equivalent to saying that, off the
classical direction, the phase varies as the second order
in the coupling constant of U. So we can pull the term
5o. (k, r) out of the integral, since only the value of k,
in the direction of r, of magnitude k„ is important to
us. We can finally write Eq. (2.32) asymptotically as

Ilk )(' Pie d3P e P'6 )(' P i)V(P )

=a(ak) g e '~" '" (2.39)

so that

jar
p(r) =, 'e' (a Q e"""

8
(2.40)

An alternate derivation of this result that does not
assume the smallness of the crystal is to write sep-
arately the scattering amplitudes for each scattering
center,

~~0 &n
n

27k fl

elk OX„
dr' V„(r')e-"""

l

x.„ (2.41)

r = x '+ I' (2.42)

and V„ is the potential centered about the atom at r„.
Since all the scatterers are identical, so are all these
integrals. However, we have for x„,

x =
l r —r„l = (r ' —2r ' r„+r„') ' '

where x„ is the vector from the atom to the field point
and r is the vector froro the arbitrary origin to the field
point (Fig. 3). Thus,

) =exp(i )e, 'dr)+ae exp(i )e dr) /r, (2.35) = r(1 —r„r/r3) = r —u„r„,
so thai

(2.43)

where in the last expression k is parallel to r. Thus
the only changes from the free-particle result are that
one must use the phase as modulated by the potential U,
in Eq. (2.35), rather than plane waves.

~x„= kv —ku„r„= kr —k r„, (2.44)

and therefore, since the x„ in the denominator differs
from r only in higher order,

Rev. Mod. Phys. , Vol. 5'l, No. 't, January 1979
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CRYSTAL FACE

LINE OF SCATTERING
ATOMS

Dk=nK

FIG. 3. Geometry of scattering from a crystal. The vector r
is the vector from the origin 0 to the field point P; r„ is the
vector from the origin to atom n of the crystal, and x„ is the
vector from the atom to the field point.

iso (r-rz} iir —ik r„/ (2.45)

iko" + (
-a ak: r„) iver/& (2.46)

The total scattered wave will be the contribution from
all of the scattering parts of the g„', so finally,

4=e' ' +g g„'..„
f, Ar

+ Q e

The sum Z exp( —iEk r„) will add to zero, unless all
the contributions are in phase, which will happen when &k
is an integral sum of reciprocal-lattice vectors K;
defined by

K,. 3,, =2~6,,
This r elation, together with ener gy conservation

k'=(ko+ &k)'= k', ,

(2.48)

(2.49)

gives the Bragg condition as a necessary prerequisite
to getting a scattered wave (Peierls, 1955; or Slater,
1958). Along such directions, which satisfy the Bragg
conditions (see Fig. 4)

(nK)2+2k, nK=0,

,'n F& = ko s in8—, K= 2' /if, k, = 2m /}}.,

nX= 2d sin8,

(where if is the atomic spacing), we have

(2.50)

%e now add up all the amplitudes. However, they all
receive the same incident wave e' 0, so we must
multiply g„by a phase factor to reflect this fact,

g'=e'"0'&g =e'""+ae'""e " '} "/xll n

FIG. 4. Bragg condition for Laue scattering. (a) The scattered
and incident wave vectors are connected by I b.k I

=2n Ik ~=2 Iko I sine. (b} The path difference ABC is given by
ABC =nX= 2a sin8.

Eq. (2.35), namely the factors k ~ r and kr will become
integrals along the classical path of the displaced beam.

If the incident wave is Bragg scattered (or Laue scat-
tered, with transmission) by a crystal, the scattered
waves will have to be rescattered by a second crystal
if they are to be coherently recombined again (Fig. 5),
as was done by COW, as well as by Bonse and Hart.
But if the beam has been displaced by a perturbing
force, it will hi. t the second crystal at a slightly dif-
ferent angle, and so will no longer satisfy the Bragg
condi t ion.

This statement is true even though the phase at a
given point, where it strikes the crystal, will be un-
changed by the bending of the beam, as we have shown.
But the envelope determining the intensity of the beam
will follow its classical trajectory, and so will arrive
slightly out of line.

How then can the beam be rescattered'P One way is
to accomplish the scattering by a thin film or grating,
rather than a thick crystal. In this case the scattering
is only two dimensional, and there is no r'estriction on
the normal direction. Thus, one can always solve the
equations to find a scattered direction, where both the
diffraction conditions and energy conservation hold.
This was the case in the Marton experiment we shall

UNPERTURBED BEAM

N, along Bragg directions,
-fbi

0, elsewhere,

(2.51)

g=e' o '+Mac' /t'. (2.52)

Now if there is a small background perturbing po-
tential U, of the type described previously, the wave
function of Eq. (2.52) will be altered in the manner of

where N is the number of scatterers in the crystal. If
the Bragg conditions are met, then the wave function
will be PERTURBED BEAM

FIG. 5. Effect of a perturbation on the Bragg condition. For a
coherent recombination of the beam, it must be scattered off
successive crystal faces. In the presence of a perturbing
force, the bending of the beam can misalign the beam, so that
the Bragg condition is no longer satisfied, and reflection @rill
no longer take place.
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Therefore the scattering of k into angle (8+p) will be the same as tha. t of k, into angle 8. This proof also shows that

4«(r) =la«, (r) =4«, (& 'r)-
The integral in the scattered wave of Eq. (2.61) is

(2.62)

'r' V(r') exp[(—i)(kP 'u„~ r' —k, r')] = d'~' V(~') exp[( —i)(k, u„~ Jfr' —Ak, ~ Ar')]

d'x' V(r') exp [(-i) (k, u „~ r' —R k ~ r')]

d'x' V(x') exp(( —i) (k, u„~ r' —k,x' —k,y')], (2.63)

while the incident wave is exp[i(k, x +k,y)]. Multiplying
by f (k, ) and integrating over k, gives

jhow

0 =f(y)e*""

)I)„=(af (kd sin&))e"s/A,

where we have used the fact that the y„are equally
spaced,

Y„=nd, —~ &s &+~ .

(2.68)

(2.69)

'~' V(r')f(y')e (2.64)

Thus the scattered wave is weighted by f(y'). For the
nuclear case, where V(~') is concentrated over a very
small region around the nucleus y„, Eq. (2.64) leads to

„=a„(a@)f(y„)e*~"/r„, (2.65)

r„= (A' —2y+ sin&+ y'„)'~'= A —y„sin&, (2.66)

so that Eq. (2.65) becomes, assuming all the a„are
equal,

as might have been anticipated (and where r has been
replaced by the x„of the specific nucleus, from Fig. 6).

The distance from the nucleus to the field point F.
in Fig. 6 is

f(y.) =

0, otherwise

(2.70)

the envelope will be determined by

In Eq. (2.68), f represents the Fourier sexes ampli-
tude, since f(y) is now a periodic function. The function
f is also periodic, and has the period of the reciprocal
lattice, and peaks very sharply at the various diffraction
maxima.

%e see that the scatter ing amplitude is weighted by the
transform of the shape of the incident beam. If the beam
were infinitely wide, the J's would be 5 functions. For
a finite beam of width D =Ad,

1 1—~¹n-~N,

)J)„=Z)t„„=(aZf(y„)e '"" ']e*"'/Z
= jaZf(nd)e-"""' ']e'~/f)', ,

and therefore

(2.67)

x/g

f Zf (y ) -i)i)i„sin 9 g -(i))ii sin 6 «)

—N /2

sin(aNkd sin&)
sin(a kd sin8)

(2.71)

which is strongly peaked in the directions 8& given by the
diffraction condition ~Ad sin6; =jm, j~= d sin0, . About
each order there is an envelope of width

5(sin&)- X/Nd . (2.72)

For the function of Eq. (2.71) we can use the approxima-
tion

fo
= sin( ,'Nkd sin&)/sin—(a kd sin&)

—N exp [-,'4 (N'kad' sin'&)] . (2.72)

In higher orders we canwrite, in general, since f is
periodic,

f = Zf, = Zf, (kd(sin& —sin&&)), (2.74)
FIG. 7. Spread of incident beam. If the incident beam is
spread about the incident direction ko, we need the following
theorem to analyze the scattering, which follows from rota-
tional invariance. The scattering amplitude for scattering
from direction ko into direction k~, at an angle of 0, is the
same as the scattering amplitude for scattering from direction
k into direction k&, at an angle &, where k differs from ko by
having been rotated through an angle y, and k& differs from k&
by the same rotation.

and consider only the central maximum Ln each order.
Finally, we can write the scattered wave as a sum of
each diffraction order

gAA

),„=Z i'ili= (a Zf, (ltd(sine —sinii )), (2.')5)

where the phase, exp(ikR) radiates out uniformly in all
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directions, but the amplitude is sharply attenuated in
almost all directions, namely, those not close to a
diffraction peak, by the envelope factor f,.

%e can now inquire as to how this is affected by the
presence of a perturbing background potential U. %e
have already seen that at a fixed point there is no change
in phase due to the bending of the beam. Nonetheless
there is a definite effect, due to the. phase factor of Eq.
(2.8), which takes into account the changing wavelength.
For simplicity we shall assume that there is a field
in the -y direction, with potential 0.y. To calculate
the integrated phase factor fU dt along path x„(see Fig.
6), we note that along the path from C to E, the average
height is —,'(y„+ Y'), and so

the envelope shifts down to keep step exactly with the
classical falling of the wave packet. But the second ef-
fect we alluded to is that there is also a shift in phase
of the wave packet, in Eq. (2.86). In order to interpret
this phase shift, imagine that the beam is allowed to
interfere with another coherent beam, scattered off
another plane with angle @„., not necessarily parallel to
the first plane, and the resultant pattern is viewed on a
vertical screen at some point (Fig. 8).

The angle between the beams is P = 8; -P, . The
diagonal distance between wave fronts is I = A/sinP. The
lines of maxima (AA', BB', and CC') propagate at angle
y from the horizontal, where y= &P&+ —,'P =2(8;+ @,). The
distance between parallel lines of maxima (AA' to BB')

U dt = uy T = —,
'

&x (y„+ 1')T, (2.76)

where

T =A/v, =f./v, cos8, Y =f. tan8 . (2.77)

Thus, the scattered wave function becomes, in Eq.
(2.67), using the modification of Eq. (2.35),

g„= [aZ f(y„)exp(- iky„sin8)

x exp( f a(y—„+Y)T/2n]e' ~/R

= [af (kd sin8+ ~dT/2e)]

(a)

&& exp(i(kA —~ YT/2n ))/'A . (2.78)
BEAM I

Therefore we see that although there is no extra effect
to be accounted for directly by the bending of the beam,
the phase shift accomplishes two separate tasks. First,
by shifting the argument of f, it lowers the envelope.
To calculate this lowering at one of the maxima, we
write

(b) INED BEAM

AIVI H

6~ - 6),' = 8~ + 56I;,

where

kd sin8,'+ ndT/2h = kd sin8, ,

so that

(2.79)

(2.80)

BEAM I

5(sin8;) = cos8;58; = —aT/2kk. (2.81)

This gives the change in angle. To see how far the
shift is in Y, the height at the screen, we use

(2.82)

which gives, with Eq. (2.81),

I N 1E N S IT Y
ON SCREEN

C~
SCREEN

r(b

—AT I AT
2A k cos8~ 2tH vo cos 6~

Then, using L/v, =A cos8, /v, = T cos8~, we get

5 Y= —(1/cos'8;) —,'(u/m)T'= —(1/cos'8, )6y

(2.83)

(2.84)

where &y is the displacement due to the force n, since
the acceleration is —o/m. Thus, for small angles 8~,

(2.85)

and

q„= [af (kd(stn8 —sine,'}}]e'"~-"r~'"'/A, (2.86)

where 8& is the displaced value of 0;.
Therefore, we see that for small angles of scattering,

FIG. 8. Interference pattern of two beams on a screen. (a)
Beam I, at angle 8~ to the horizontal, and Beam II, at angle P;,
produce an interference pattern at a screen. The circled re-
gion is blown up in (b). (b) Successive maxima lie along lines
AA', BB', and CC'; they produce a pattern on the screen with
maxima separated by distance po. The lines AA', etc. , are at
an angle p= ~ (8;+ $&) with the horizontal. (c) A blowup of the
triangle abc, showing the angular relationships.

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979
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ls

l cos(-,'p) = P. cos(-,'P)]/sinp = A/2 sin(-', P) —= p . (2.87)

SHIFT OF INDIVIDUAL FRINGES

Therefore, on the vertical screen, the distance between
maxima is p/cosy=A/2 sin( —,'P) cosy—= p, , so that

t=2p, stn —,'(0; -p;) cos—,'(0, + P,.)
= po(sin0; —sin@;) . (2.88)

Now the phase angle k(A —o. 1'T/2k@) of Eq. (2.86) has
the interpretation of changing R by the amount

n1'T/25k = nL tan0;T/2mv,

= (a/2m)(T cos0, )T tan0,

= (nT'/2m) sin0, =by„s.in0, .

If we assume (without loss of generality, since it merely
removes an overall constant) that the two beams have
traveled the same time before recombining, then their
difference in phase will be, from Eq. (2.89),

SHIFT OF II

ENVELOPE JP
UNPERTURBED PERTURBED

PATTER N PATTF R N

(ENVELOP E AND FRINGES
SHIFT TOGE&HER}

FIG. 9. Effect of perturbing force on interference pattern. In
the presence of the perturbation, the individual fringes and the
overall envelope, representing the classical trajectories, shift
together, so that the interference pattern remains identical,
but displaced. (An exception occurs in the pure Aharonov-
Bohm effect, Sec. V, where there is no force on the two beams,
so that the fringes shift within the envelope, but the envelope
itself remains undisplaced. )

key (sin0, —sing, ) = key„k/p, = 2m 6y /po; (2.90)

but this means that every time the beam drops by 6y
= p„ the pattern shifts by one fringe. So the phase shift
exactly keeps up with the falling of the beamI

We have therefore derived the following result. If two
beams are allowed to interfere, then in the presence of
a perturbing force, the envelopes of the beams will
drop according to the classical trajectories. But the
phase of the interference fringes will also change in such
a way that these fringes will shift at exactly the same
rate. Thus the interference patternmil1. remain identical,
except that it will be shifted by the amount of the classi-
cal motion (Fig. 9). Thus this effect, which has been
beautifully confirmed experimentally' for the propaga-
tion of perturbed free-particle beams, is also true for
the interference of particles diffracted off crystals.

In this and subsequent analyses we shall make constant
use of the fact that the effect of the perturbation con-
sists of a change in phase of the beam, as given by Eq.
(2.8), which is caused by the change in wavelength. This
effect produces all the shifts in fringes and in the enve-
lope that occur, as we have seen. There is no extra
effect due to the bending of the classical center of the
beam (it has been taken into account by the phase shift).
Alternatively, one could directly take account of the
change in wavelength, as a way of calculating the phase
factor. But in no case is there any extra correction to
the phase at a particular point due to the bending of the
beam.

III. PRGPAGATIGN GF NEUTRGNS THRGUGH A
THICK CRYSTAL

A. Transmission through a perfect crystal

When a beam of neutrons strikes a crystal, to a first
approximation the beam w'ill be totally transmitted. It
is only when a line of atomic planes is so situated as to
produce coherent constructive interference that re-
flection can take place at a specific angle, the Bragg
angle. In that case there are two very different physical

~See the discussion of the Aharonov-Bohm effect, Sec. V.

situations that can occur. If the reflecting planes are
parallel to the face of the crystal, one has the classic
Bragg case, and the incident beam will be reflected back
out of the crystal. There will be a small but finite
range of angles in the neighborhood of the Bragg angle,
the Bragg mirror region where this reflection will be
total. Gutside of this region the ref lectivity drops rapid-
ly to zero.

But if the scattering planes are so situated that the re-
flected beam is inside the crystal (for example in a cubic
crystal, for scattering off a plane perpendicular to the
face of the crystal —see Fig. 10) then one has the case of
Laue scattering. In this case the reflection. is not corn-
plete at the Bragg angle, and its falloff is more gradual
as one moves further away from the Bragg angle. In
the Laue case, there are also additional phenomena that
occur, one of which will be very important for us, the
Borrmann effect. '

To understand this effect, assume that the incident
wave is e' ", where the y direction is the direction
parallel to the crystal, in the plane defined by the di-

CRYSTAI
FACE

k) TRANSMITTED
e '

- BEAM
o o

——:-~—~—~———-PLANE OF SCATTERING
K-RECIPROCAL LATTICE VECTOR

O

k~ REFLECTED BEAM

FIG. 10. Geometry of Laue scattering. The incident beam k
has the same wave vector as the transmitted beam k&, and dif-
fers from the reflected beam k2 by a lattice vector K for per-
fect Bragg reflection.

6This effect was first systematically studied by Borrmann,
1950, although it was first noticed in Borrmann, 1941. It
was independently described by Campbell, 195la, b. The
Borrmann effect was first explained theoretically by von
Laue, 1949. It is treated in detail by Battermann and Cole,
1964. It is also discussed from a field-theoretic point of
view by Ashkin and Kuriyama, 1966.
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rection of propagation and the normal to the crystal —the
plane of the paper in Fig. 10—and the x direction is
perpendicular to the crystal face. The direction of
propagation k is close to that producing Bragg reflection
off the atoms in the x-z plane (the z axis is out of the
paper in Fig. 10. As the wave strikes the crystal it will
continue to propagate in the x direction. Hut if the crys-
tal is perfect and sufficiently thick, then the crystal
itself will play the role of a waveguide, so that the be-
havior of the beam is best understood by considering
the appropriate standing waves in the y direction, which
propagate along the x axis, rather than the two plane
waves represented by ky and k2 in Fig. 10. These stand-
ing waves are then guided in the x direction along the
line of atoms, and will emerge at the far end of the
crystal where they will form the two traveling waves
propagating in the direc tions k, and k, .

We shall carry our discussion through in only enough
detail to give a qualitative picture of the transmission
process, because this is sufficient to yield an under-
standing of the various experiments which have been done
to date that relate to the coherence properties of sep-
arated and recombined beams of neutrons and x rays.
For this, one does not need to know the details of the
dynamical theory of wave propagation. For a discussion
that offers a much more comprehensive treatment of
the phenomena involved, see Bauch and Petrascheck
(1979).

For both the Bragg and the Laue cases, one must ex-
amine the Schrodinger equation inside the crystal, and
match the wave function of the free particle outside the
crystal with that of the particle propagating inside the
crystal. The interesting case, when reflection occurs,
happens when these two functions behave very dif-
ferently, namely, in the neighborhood of a zone boun-
dary.

Because for low-energy neutrons the potential is non-
zero only at the locations of the atomic nuclei in the
crystal, which results only in s-wave scattering, we can
consider the potential to be a sum of 6 functions located
at each of the atomic nucj. ei,

also correct this for the reduced mass of the neutron-
crystal nucleus, and also for the finite temperature of
the crystal. In general, the various nuclei in the unit
cell must be weighted differently, via the nuclear struc-
ture factor, which need not concern us here.

With this potential, Eq. (3.1), we can set up the
Schrodinger equation for the propagation of neutrons
inside the crystal. If me write the solution in the form
of a Bloch function

ll O'I g~ i K&'I
n (3.3)

then the Schrodinger equation becomes (Slater, 1958)

—(II'/2m)V'&+ Vg = Eg,
(m'/2m)Z (k, + K„)'A„e'K '
+ V~~ i( K&+ K~) I Eg~ &iK&

n n

(3.4)

If we change the labeling (K„+K, —K„) in the second
term and equate coefficients of each exp(iK„r) term,
then

(ko+ K„)'A„+Q V,A„,=EX„. (3.5)

[In this equation we have swallowed the (5'/2m) factor
into the definition of k.]

Since we are near the Bragg angle, only the two waves
k, and k, of Fig. 11 (which are different for the Bragg
and Lane cases) will be strongly interacting, and if we
call their difference K,

k, =k, + K, (3.6)

(u', + V, —E)' —V', =0,
with solutions

(3.8)

and let k,'=k'„ then, since in this case the incident wave

k, is just k„we have from Eq. (3.5),

O', A, + V,A, + V,A. ,=I:.A, ,
(3.7)

(k, +K)'A, + V Z, + V X,=Ex, .

Since (k, +K)'= 02= 0'„ the secular equation becomes

L 3

V(r) = g V &(r —a„)= V, P e'" ',
ll S

(3.1)

where we have expanded the 5 function in a Fourier
series, over the size of the unit cell, so that every
reciprocal-lattice constant K, appears with equal ampli-
tude. The expansion will automatically have the correct
periodicity. The atomic locations themselves are a„
= (n,a„,n~„n, a, ) Here 4. is the size of the crystal,
which contains X atoms, and V, must be interpreted as
the average nuclear potential over the unit cell. One
can express V, in terms of the measurable parameter,
the scatteringlengthb, a constant which plays the role
of the scattering amplitude a of the last section. If d
is the atomic spacing, then 6 =4/N'~' (for a cube) and
(Blatt and Weisskopf, 1952)

2+0,
E= k~+

0.

Crystoi Foce

Scot terIng
~+ Plane
I

l

I

I

I

I

(3.9)

Crystol Face

Scat tering
Plane

Vo 2m 5'h/m d', (3.2)

which in this form depends on the parameter 5 [the a
of Eqs. (2.29) and (2.52)] and not on the shape of the
potential well. (The quantity d ' is also the nuclear
density. ) With a. simple multiplicative factor, one can

8rogg Case b) Loue Case
FIG. 11. Helation between the strongly interacting waves in the
crystal. (a) In the Bragg case the appropriate lattice vector,
K=kt —ki, is perpendicular to the crystal face. (b) In the Laue
case the lattice vector is parallel to the crystal face {for a cu-
bic crystal).
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The solutions (A„A,) mix the two waves with equal
amplitudes. The solutions are

(A A ) = 2 ' '(1 1); 2 ' '(1, —1) . (3.10)

k, = k„u„+ (——', K+ q)u, , (3.11)

where q is a small perturbation about the Bragg con-
dition arid the u; are unit vectors, then the secular equa-
tion (3.8) becomes

In the Bragg case, the interacting waves are A,
= (k„, k„) andA, = (-k„,k, ), while in the I aue case the
two waves areA, =(k, k„) andA. , =(k„, —k,). In the Bragg
case, in the mirror region close to the Bragg angle,
there will be no real solutions for the energy because
the solutions to the secular equation produce an energy
gap. At the edge of the region, the energy outside the
crystal is of the form Z,„,= k'k20/2m, while inside, E,.„
is given by Eq. (3.8). In order to have a solution that is
continuous everywhere along the crystal face, which
also possesses a continuous first derivative, we must
have (k,). = (k, ),„,. Then, since the frequency will be the
same inside and out, only k„can differ between the two
cases (see Fig. 12).

It then becomes impossible to match these solutions
because inside the Bragg region any solution to the wave
equation will damp in the y direction. One can see this
by trying to solve Eq. (3.8) for k, as a function of the
energy. Now we cannot satisfy the Bragg condition, so
we cannot say A,', =O', . If we write

)k, ~

= ,'K=~/a„- (3.i8)

q'=[(Vo —c)' —V',]/2(2K'+s —V, ) =s(s —2VO)/K'.

(3.iv)

Equation (3.17) explicitly shows that when 0 ~ s & 2V„
which is the Bragg region, then q'&0. Thus there must
be damping in this region. Equation (3.17) also shows
explicitly that the Bragg mirror region is not symme-
trical about the Bragg angle, for neutrons.

Our main interest, however, is in the Laue case, as
depicted in Fig. 10. In this case the physical situation
differs considerably from that of the Bragg case. Here
the incident beam

e"~"e "~'=e'" "(cosk, y+i sink„y)

splits into two standing waves in the y direction inside
the crystal, and propagates along the atomic planes in
the x direction, as shown in Fig. 13. One of these
standing waves e' ""cosk y =— t/r, is centered at the atomic
sites, and as it moves through the crystal it interacts
strongly with the crystal atoms. The other wave
e'~~'sink„y =—P, is centered between the atoms, and it
moves through the crystal relatively undisturbed. ~hen
the beam reaches the far end of the crystal, it splits
into its components e" ~~ and continues on in free space
as. these two traveling waves. This surprising result
constitutes the Borrmann effect.

In the standing-wave solutions, from Figs. 10 and 11,
we see that

(k,'+ (-,'K- q)'+ V, —Z)(k„'+ (-,'K+ q)'+ V, —Z) —V', = 0.
(3.12)

so that the waves P, and P, have amplitudes

) g, ~

'= cos'my/a, Ig, ~'= sin'gy/a, . (3.19)
If we write

this becomes

o'+ 2(,'EP+ q')o + —(—,'K' —q')' —V, = 0.

{3.13)

(3.14)

~e have implicitly assumed that there is an atom located
at y =0, where the phase of exp(ik, y) is zero; however,
one cannot be sure that the incident wave will see an at-
om located exactly at the origin, so that in general

I e, I'= sin'(k, y —~),

q'= [(-.'K'+o)' —V',]/2(-.'K'-o) . (3.15)

If we assume that the energy is in the neighborhood of
the correct Bragg condition energy,

Vfe can solve this for q' (dropping the q' term), getting where o. is chosen so that P, is centered between the at-
oms and g, is centered at the atomic sites. If one is in-
terested in keeping track of the traveling-wave parts of

E = k'„+ ~ K + &,

then Eq. (3.15) reduces to

OUTSlDE
CRYSTAL

INSIDE
(:RYSTAL

(3.16)

el ky y

&i 2

4

Ii ~

j keye

e-ik), y

FIG. 12. Continuity at crystal surface. The tangential compo-
nent of the beam k~0 Inust be continuous at the interface, so
that only the normal component k~ can change.

FIG. 13. The Borrmann effect. The incident traveling wave,
whose transverse spatial dependence is exp(ikyr), sees the
crystal as a waveguide. It splits into two standing waves:
g&= sink~, which is centered between the atomic sites, and
$2=coskp, which is centered at the atoinic sites. These two
waves propagate normally to the crystal surface, along the lat-
tice planes, and Q& interacts much more strongly with the crys-
tal atoms. At the far end of the crystal they recombine into the
traveling wave /=a exp(ik~)+b exp(-ik~) which propagates as
the transmitted Q exp(ikp)] and reflected fb exp(—ikp)] waves.
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the solution, one can use the fact that

I-,'(e "z'+e'" e 'kz') I'= cos'(k, y ——,
'

rj) = sin'[k„y —(-,' 7I+-,'««)],

BCO r) 2 2 ~(2 k COS9
(3.28)

I

«(e«k&x eiz e-«kzz)
I

z s&nz(k y &«I) (3.21)

~e shall assume that the q phase has been chosenso that
g, represents a. wave centered between the atomic sites,
and g, represents a wave centered on the atomic sites.

Thus, as the wave propagates through the crystal, the
wave g, undergoes a much stronger interaction with the
crystal. By the time the wave reaches the far end of the
crystal, g, has the form

(3.23)

Here a is rea, l and 0&a & 1. pre shall generally be con-
cerned only with the relative strength and relative phase
of g, and g„so even though g, itself may be attenuated
and phase shifted, we will usua, lly normalize its ampli-
tude to 1 {or —,'). For any substance a and c«can be cal-
culated. They depend not only on the scattering ampli-
tude and crys tal s true ture, but als o on the thicknes s of
the crystal. For the crystals that have been used so
far, which are silicon of several millimeters thickness,
there is minima, l absorption for neutrons, so that we can
approximately take a = 1, while there is total absorption
for x rays, for which a = 0.

awhile inside the crystal the standing waves are appro-
priate, beyond the far end of the crystal there will be a
transmitted and reflected wave, so the proper represen-
tation will be in terms of the two traveling waves, the
transmitted wave e'~', and the reflected wave e ' '. For
x rays, where & = 0, one has

for some arbitrary phase p.
Because of this, we shall write (calling kx=k and sup-
pressing k„)

'(ei» ei ze- »«) —(e'kz e«&e «kz) = g2 +2 l 2'

(3.22)

which is true for both the exp(spiky) components of the
beam separately, and therefore for both t/, and P, . In
this, the neutron behaves similarly to a propagating
electromagnetic wave in a waveguide. Curiously, this
has been the subject of some dispute, but it has been
experimentally verified by Shull and co-workers (Horne,
et al. , to be published). 'Theoretically itwas convin-
cingly demonstrated by Squires (Squires, 1978).

This is really all that one needs to know in order to
understand the coherence experiments that have been
done to date, some of whichseemquite incomprehensible
a, t first sight. In reality though, thepicturewe havepres-
ented is a gross oversimplification of all that actually
happens within the crystal, although it is sufficient for
our purposes. Before we proceed we shall merely men-
tion some of the complications that the full dynamical
theory must confront in the I aue case.

For a given energy E within a na, rrow region about the
Bragg angle, if one asks what values of k„are compat-
ible, one must solve the secular equation (3.8) and one
gets Eq. (3.12) with «I=0. This yields

(3.29)

with two real solutions 0„, and k„„ that differ by a very
small amount. Since this equation always possesses
real solutions, there is no sharp cutoff of solutions as
in the Bragg ease; the region of Laue reflection forms
a wider band about the Bragg angle than in the Bragg
case, and only gradually diminishes to zero.

Thus one has four waves inside the crystal, whose
boundary conditions must be matched to the original
incident wave at the crystal face. (A further compli-
cation, which we ignore here, is internal reflection at
the back face of the crystal. ),Thus, within the crystal
one has a wave function,

e ikzx
g L(e «kzz e in e ikzz) e «k~-

4 (k„x+0&y) i ft) t (k„x-k~y)+-2e (3.24)

so that the transmitted and reflected waves have differ-
ent phases, but both have the same magnitude.

For neutrons, where a = 1, we have (again suppressing
k„)

e«0!
«lI (1 eilx) e z (I e«R) e«z e «kz (3 25)

(««e i kz lz + «« ~ e ikzkx) + e xkxx

e«kz&z b e«kz2z) e-«k Z
I 2

If one calculates the currents, one finds

Z, = ( k k,/2m) (o. —P),
Z„=(k k„/2«««)[«k+P+0(&/k )],

where

(3.30)

(3.31)

fg, I'/Ig, '= f(1 —e'")/(1+e' ) f'= tan'(-,'n), (3.26)

but because there is no absorption, the tota. l amplitude
is

so that in this case, the ratio of reflected to transmitted
wave is

and

o. = I««, I'+
I a, I'+ 2 Re(««, a*,e'""),

p= lb, f lb, f
2Re(b,b;e ")

k„= —,'(k„,+k„,), 4 = —'(k, —k„,),

(3.32)

(3.33)

I&l'--:I (I+e")I'+-'I(1- e*' ) I'=1, (3.2'7)

a constant, independent of n. Thus the total amplitude
remains constant, although it is apportioned differently
between the trans mit ted and ref lee ted parts.

'Qfe might point out that inside the crystal the neutron
wave packet, propagating normal to the surface of the
crystal„has a group velocity v cos8, rather than v. This
is because

so that there is a y component of the current present and
the wave propa, gates through the crystal at some angle
normal .to the surface.

It is actually possible to see the effects of the inter-
ference between these two wave fields. If the angle of
incidence 8 is exactly on the Bragg angle 9~, the energy
flow within the crystal will be normal to the crystal
surface and along the atomic planes, giving the Borr-
mann effect as we have described it. But if the angle of
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k
$

kp

FIG. 14. Pendellosung. (a) If the incident beam is restricted
by a very narrow slit, then waves within the Bragg region, but
which are not exactly in the Bragg direction, propagate at some
angle e to the normal direction, varying between 0 and 0&. The
energy distribution oscillates between the upper and lower beam
as a function of 0 —&z. This effect (pendellosung) has actually
been observed in neutron beams (see text for references). (b)
For a wide incident beam and thick crystal, the energy will
propagate normal to the crystal face, along the atomic planes,
producing the Borrmann effect.

incidence is slightly off the Bragg angle, the energy flow
will separate into two beams propagating at. some angle
+c to the normal (see Fig 14). This angle e depends
critically on (9 —9a), and as 9 varies from 9s to a value
typically a few seconds away, e will vary over the whole
range 9 to 9~. As & varies, the fraction of the total en-
ergy going into the reflected, rather than transmitted,
beam is a rapidly oscillating function of e.

Under the appropriate conditions, for example, if one
uses a very narrow entrance slit and the incident beam
is a spherically expanding wave covering a range of an-
gles, this oscillation of the energy distribution, which
Ewald called "pendellosung, " leads to observable fringes
in the transmitted and reflected waves; the phenomenon
is well known for x rays (James, 1963; Batterman and
Cole, 1964) and has also been seen for neutrons in ger-
me. nium and silicon crystals by Shull, in a lovely series of
experiments [Shull, 1968; Oberteuffer and Shull, 1972;
Shull and Shaw, 1973; theoretical considerations for the
neutron case have been discussed by 9/erner et al. ,
1976; Bauch and Suda, 1974; and Bauch and I'etras-.
check, (1979)]. The oscillationfrequency b, depends on
Vo, from Eq. (3.29), and therefore on the scattering
amplitude b, and its measurement yields a precise de-
termination of the scattering amplitude, orders of mag-
nitude more accurate than that obtainable by any other
method.

For a reasonably perfect crystal which is sufficiently
thick and for which the incident beam is a relatively
wide plane wave, such as in the CO~ experiment, these
phenomena will average out and the stra. ight Borrmann
effect will predominate, so that our simplified analysis
is sufficient. In the situation we shall be considering,
the interferometer will be used to produce coherent,
spatially separated beams, and what will be important
to us is the relative phase at the point where the beams
recombine, which can be affected by small perturbing
fields along the paths of the separated beams, or by
displacement of one of the crysta, l slabs used in produc-
ing or refocussing the separated beams, or by the in-
sertion of a strip or wedge of aluminum, etc. , into the
path of one of the beams to shift its phase. Our tech-
nique will be very useful in analyzing all these situa-
tions.

In a sense, our simplified analysis is equivalent to the
type of phase analysis one does in elementary optics,

which for simple geometries gives a good qualitative
picture (with many quantita. tive aspects) of a. large num-
ber of diffraction phenomena. awhile it provides a good
intuitive picture of many physical situations, it does not
pretend to replace detailed calculations using vector
diffraction theory, in the general case. Similarly, our
analysis provides a useful model for experiments such
as the COW experiment, where the rela tive phases of the
separated beams are important. However the method
cannot describe in detail the complex pendellosung ef-
fects taking place inside the crystal, in which the beam
spreads into an angular region from -9a to +9s (which
region is sometimes called the Borrmann "fan"), and
which lead to complicated intensity profiles across each
of the separated beams.

%here these effects are important, one must use the
full dynamical theory. Also, our analysis does not pro-
vide criteria. for its own limits of applicability, and
such limits will have to be provided by the dynamical
theory. Unfortunately, the detailed effects of finite slit
sizes and finite crystal thickness, which limit our an-
alysis, have barely been explored, although they are
now coming under increased theoretical and experimen-
tal scrutiny. (A long series of papers on this topic has
been presented by Indenbom and co-workers. See Inden-
bom and (:hukhovskii, 1972, for a review article, and
Indenbom et a/. , 1976, for a full set of references to
their work. )

It is interesting to note the size of the pendellosung
effects in Laue reflection for a wide plane-wave incident
beam, such as was used in the COW experiment (where
the beam cross section was 3 x 6 mm). In Fig. 15 we
have plotted the intensity of the reflected wave leaving
a, crystal slab relative to the incident wave intensity
(the beam marked A', in Fig. 13, relative to the incident
beam) as a function of the angle b9, the angle by which
the beam differs from the perfect Bragg angle 9~, for
the case of the parameters used in the CQ~ experiment.
These pa. rameters were (Colella, et nl , 1975).: neutron
wavelength, X„=1.445 &&10 ' cm; energy, E =0.039 eV;
velocity, v-2. 7 x 10' cm/sec; crystal slab thickness,
a-0.2 cm (the distance AA' in Fig. 16); overalllength
of crystal, 21. -'7 cm; spacing of slabs -3.5 cm; Bragg
angle, 9~=22.1; length of the fcc cube in a silicon crys-
tal, d =5.42 A; and since the silicon crystal consists of
two displaced fcc cubes, there are eight atoms in the
unit cell; the scattering length of silicon (Oberteuffer
and Shull, 1972) is bs, =0.415 x 10 "cm. We have used
the theoretical formulas for the Laue case kindly pro-
vided us by Werner (private communication; see also
Werner et a/. , 1976) to plot the intensity of the reflected
wave in this experiment. The plot in Fig. 15 shows the
envelope of the Laue region, whose width is about 1 sec
of arc, as well as the width of the pendellosung fringes.
The calculation assumes no absorption of the neutron
beam, which is not a bad approximation to the actual

B. The Leuc-type interferometer

If one single perfect crystal is grown large enough so
that three slabs, all parallel, relatively thick, and
equally spaced, can be cut from it with enough of the
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FIG. 17. Bepresentation of
traveling waves passing
through a perfect crystal in-
terferometer. At each slab
(A, E&, B2, C) the incident
wave becomes a combina-
tion of standing waves g&
and g2. For x rays, only the
wave g~ emerges from the
far end of the slab, g2 being
absorbed, and the wave once
again breaks into its compo-
nent traveling waves, as de-
scribed in the text. The
phases on entering and leav-
ing each slab are shown.

p(-&b ) y(-& ( I )
& ein e-iky (3.40)

(' =-'e'
Y'g& 2

—2 (3.41)

y(+&(y) y&+& (~ I )
& ciao

Therefore
q(+& q(- &(@iky ein e-i&&y)

(3.42)

(3.43)

On the other hand, the beam leaving B,' also splits, and
in this case it is the e'" part that reaches C, so that
from Eq. (3.38),

But this is precisely the combination that produces g„
the standing wave -that is transmitted. The situation is
graphically depicted in Fig. 17. emote also that the dis-
placement I has completely canceled from the calcu-
lation.

It might be noted that in the ensuing interference pat-
tern, because of the Bragg condition nX=2a sin9, where
a is the lattice spacing, each beam separately takes two
atomic spacings to achieve a phase lag of 2m, but the
superposition has a maximum or minimum at every at-
omic site, as the difference in phase between the two
interfering beams varies by 2m over one atomic spacing
(see Fig. 18).

C. Effect of relative displacement of the interferometer

slabs

In the above analysis we showed that for a perfect
crystal the third slab will fully transmit the wave im-
pinging on it. However this slab actually acts as an an-
alyzer, in the sense that if one could shift the slab side-
ways by —,

' the atomic spacing then the maxima would fall
directly on the atoms, rather than between them. Thus
the beam would be completely absorbed and there would
be Qo transmxsslon.

Vfe'can ask what the effect would be if we shifted any
of the slabs sideways by a distance l, ~e shall assume
that the middle slab, B, has been split by a saw (the
thatched region in Fig. 16, so that the sections containing
B

1
and B, can be s hif ted independent ly. Cons ide r that

the incident beam is the same as before, but that at each
location where the beam encounters the crystal, the
slab, and therefore the atoms within it, havebeenshifted
in the +y direction, at A by l » at B, by /» at B, by l,',
and at C by /, .

The incident wave striking point A will still be e' ~,

but; now we must relate it to the position of the atoms
at A, which have been shifted by l,. Thus,

ik3&' fkl y kk (P-l y)
FIG. 18. Interference pattern due to Bragg scattering. Be-
cause of the Bragg condition nX=2a sin8, the phase lag of either
beam separately, between two successive atoms (say A and B),
is only 7r. However, there wi11 be a maximum (or minimum) at
every atom because the phase difference between the two
beams, between two successive atoms, is 2~.

(i eik11)t (eik(~& 1& + pi& e «&&i&' &1&)

(eik(y-l&& @in &-ik(y l&&)]

(3.44)
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Once again the wave (()2 will be absorbed in the slab, so
that wave leaving the slab g~, will be tP, .Furthermore,
the wave ())„, will split into two traveling waves, as re-
presented by the e""' parts of g, . Thus

y( )( ) y( ) (~ I ) e2(k)2

y(~){ } y(+) (~ I ) 4 e2t kl') e 2(kl2 e(ky (3.49)

(+) e iky
A'

l ( ) = eikl 1 ein e-ik(y-l 1) —e2ikl 1 ein e-iky
0

(3.45) q
(+ )

y
(- ) l

( e 2i kl l 8 2ik-)~i 8 i ky
C C + C

2(kl2 e in e ik-y) (3.50)

~hen these beams reach slab B, we will have

eik (y-Ly &

&Bl )t) e 2ikl ~ e i g e-ik (y+Q & )
+B2 (3.46)

Now the slab at B, is shifted by l„and that at B, by I,',
and we must relate t/rs, and (()s2 to the relevant atomic
positions, so

ikl2 eik (y-$2 L,3)3
&Bc

(& eikl2)(Sik(y l2 Ly-)-

This situation is depicted in Fig. 19.
In Eq. (3.50) we have the beam which impinges on the

point C. In order to tell how much of it is transmitted
if the crystal at C has been shifted, we must first relate
this function to the atomic sites. Thus in Eq. (3.49) we
first write e'k' as e'k" e'k" '" and e '"' as e 'k"e '"" '".
Then we write e'k'~ "' and ei" e 'k'~ '~' as linear combi-
na, tions of g, and (I)2. This gives

e ik e-ik(y-l2-I y))
2 ~ (3.47)

l & (e2ik(t (-('2) eikl2 e2ikl2 e-ak(3)

where g, stands for that pa. rt of the wave which will be
absorbed. The transmitted wave ps, , is just this wave
without $2.

Similarly, the wave striking at B, is
y() e2ikl 1 ei& -ikL2 -ik(&-l2+L~)&a2—

X(eik (y-l2) e(2 e ik(y (-2)]-

I 1 I 2fk(()-P2) ikl2 2(k(2 8 ck)2)-

& (
eik(y-t 2) &an&-ik(y (2))]- (3.51)

(
& e2ikl l e i& e ikt2 )-2

&( (e-ik(y-t'2+Ly) 8 (2 ik(-y l'2+Ly))- (3.48)

where we have made the same decomposition as for $~2
in the unshifted case. Finally the wave striking at C will
be gs(, ), a.nd gs', )2 as before, where + refer to the e"k' part
of the wave, so that

I-I, cos'(Il[(l, +I,) -(I, + I,')]j
—=I2 COS (3.52)

Again, only the g, wave will be transmitted, thus the
amplitude of the transmitted wave is proportional to
exp[2ik(l, +E,'+ 2 f2)]+exp[2ik(E2 —2 E2)] and therefore the
intensity becomes

FIG. 19. Representation of traveling waves passing through a distorted crystal interferometer. Slab A has been displaced up-
ward by l&, slab B& by l2, slab B2 by lz, and slab C by /3. The shifting of the phase of the wave from that at the equivalent point
in the perfect undisturbed crystal (Fig. 17) is shown. The slab at C acts as an ~~~lyzer, and the emerging phase is described
in the text.
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a) a}

Effects
Cancel

B2

MOVING SLABS Bi, B~
gOD

)C

Effects
Cancel

MOVING SLABS A, C
FIG. 20. Intuitive picture of effect of distorting the crystal. (a)
If slabs B& and $2 are displaced in opposite directions, the ef-
fects on the two beams are symmetrical and cancel out. (b) If
slabs B& and B2 are displaced in the same directions, the ef-
fects are asymmetrical and add. (c) If slabs A and C are dis-
placed in opposite directions, the effects are symmetrical and
cancel out. (d) If slabs A and C are displaced in the same di-
rections, the effects are asymmetrical and add.

FIG. 21. Effect on the interference patterns of altering the
beams. (a} If a sheet of aluminum is placed in the path of both
beams and rotated, it will alter the optical path of each beam
differently, and thus affect the interference pattern (Rauch et
a/. , 1974). Because of absorption, the effect on x rays will be
different from that onneutrons (see Fig. 22). (b) When two sheets
of aluminum are arranged perpendicular to the beam, both
beams will be equally shifted as the device is rotated (C. G.
Shull, privat~. communication}. Yet there is no effect on the
interference fringes, as the bending of the beam does not affect
the phase striking a point on the screen, as per the text. Only
the envelopes of the beams are shifted. (c) Close-up illustrat-
ing the bending of the classical trajectories {and therefore the
envelope of the beam).

This result agrees with one's intuitive feeling of how
these effects ought to behave, from simple symmetry
considerations. P'or example, if B, and B, are moved
in opposite directions (l, = —l,) the effects cancel, while
if they are moved in the same direction the effects add
(see Fig. 20). Similarly, if slabs A and C are moved
in opposite directions the effects cancel, while if they
are moved in the same direction the effects add. Also,
if any of the slabs are shifted by ~ a (k =z/a), the pa. t-
tern will shift from a maximum to a minimum. This
was experimentally verified by Bonse and Hart (1966a),
who also gave a simple explanation by plotting wave
fronts.

This intuitive argument also shows that the results
calculated for neutrons must be similar to those cal-
culated for x rays. And in fact had we calculated the
transmitted intensity for neutrons, using the incident
wave function, Eq. (3.34), and taking into account the
phase shift exp(io) for g„at every crystal slab (as-
suming no absorption) we would have obtained for the
transmitted and reflected waves

I y Ip s in a, Iz ——Ip cos'a (3.63)

for the perfect crystal. For a crystal with the various
planes displaced as above, Eq. (3.52) would read

Ir =I, sin'o. cos'@D =Ir cos-"@~~Ir,
I~ =I, (1 —sin'o. cos'PD) =I, —Ir . (3.64)

Thus the transmitted beam intensity I» as determined
by the nuclear scattering, is modulated by the same
displacement phase factor, governed by the same @D,
as in the x-ray case.

In Sec. III.8 we assumed that I,wa.s a multiple of the at-
omic spacing. If it is not, it is still formally equivalent

to the above treatment, as moving the beam with respect
to the crystal is equivalent to moving the crystal with
respect to the beam. A change in L is equivalent to
shifting B, and B, in opposite directions, which we have
seen cancels out.

There are two further, experiments we should like to
mention briefly since they illustrate the principles we
have been discussing. Bauch et al. (1974) put a sheet
of aluminum between slabs A and B (see Fig. 21a). When
it was parallel to the slabs, it produced no effect. But
when it was tilted at an angle, it caused a difference in
optical path between the beams, which shifted the pat-
tern recorded. When the experiment was performed with
x rays, the transmitted intensity varied with the angle
of the aluminum sheet, but the intensities of the beams
a.t points D a.nd E were equal (see Fig. 22a). When the
experiment was repeated with neutrons, the maxima of
intensity shifted back and forth between D and E while
the total intensity for the sum of the beams remained
constant (Fig. 22b).

The explanation for this surprising result is given by
Eqs. (3.24) and (3.27), namely, that, for x rays, a.ltering
the relative optical paths will shift the positions of the
maxima, so the transmitted intensity varies. However,
since g, -e' ~+e'"e ' ', the two beams e'"' and e '"~ al-
ways appear with equal amplitude, and they will both
have equal intensity, although the total intensity varies.
On the other hand, for neutrons, the total intensity re-
mains constant, since there is almost no absorption,
but the relative intensities will vary with the optical
path difference.

The second experiment was performed by &hull and
Callerame (1977, private communication). They welded
two sheets of aluminum to a bar, so that both were nor-
mal to the beam, as in Fig. 21b. Then they rotated the
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X —RAY CASE NEUTRON CASE

IV. THE COW EXPERIMENT
A. The experiment in the laboratory frame

Counter E

ANGLE 6
Counter E

ANGLE 6

assembly about a pivot point. Since the beams were both
bent in the same direction by this process, one might
expect that the fringe pattern would move (Fig. 21c). In
fact, they found that the fringe pattern was unaffected.

The explanation for this is that for small angles of de-
flection from the normal, even though thebeam is shifted,
there is no difference in optical path to a given point on
the screen, as we have repeatedly emphasized. In other
words the deflection of the beam from the normal does
not affect the phase arriving at a given point in the neigh-
borhood of C. The apparent shift that takes place in Fig.
21c is actually in the envelope of the beam, representing
the classical trajectory, and not in the relative phase.

FIG. 22. Different behavior of x ray and neutron beams. (a)
When the experiment pictured in Fig. 21(a) is performed with
x rays, the intensity at each counter varies with the angle e,
but both counters, D and E, record equal intensities. This is
because the wave striking C consists of a combination of g& and

At C, P& is absorbed, but P&
—sinky —(e@~—e @~) contains

equal amplitudes of both traveling waves, e~'~~. (b) When the
experiment is performed with neutrons, the total intensity re-
mains constant, but the distribution of intensity between count-
ers D and E alternates between them. This is because there is
little absorption of the neutron beam, and therefore no loss of
intensity. However, the relative phase between g» and g& varies,
leaving different relative amplitudes for the e'~~ and e"'~~parts
propagating to D and E.

In the COW experiment (Colella. et al. , 1975), three
slabs were cut from a single cylindrical silicon crystal
having a diameter of about 2 in. and a length of about 3
in. The beam was then split by the first slab and coher-
ently recombined in the last slab (Fig. 23). Neutron
counters at D and E monitored the beam and recorded
the relative sntensxtxes of the transmitted and reflected
beam. Originally the split beams were in the horizontal
plane. But by rotating the appara. tus through an angle @
about the incident beam, they created a gravitational
gradient

g =g, sin@,
where g, is the earth's gravitational acceleration.

This gravitational field acts as a small perturbation
on the beam, and thereby affects the experiment in three
ways. First, it alters the stress on the crystal assem-
bly, thus producing distortions in the crystal. This ef-
fect was measured by passing an x-ray beam through the
crystal, the x-ray beam not being affected by gravity
to this order. Since this effect was measured and com-
pensated for by the experimenters, we shall not worry
about it further. Second, the beam itself was bent into
a parabolic path. ~e have seen that this effect has no
influence on the phase of the wave function as it strikes
the third slab. And since the intensity at the counters is
a direct measure of the relative phase of the two beams,
this effect has no bearing on the result.

The only important influence of gravity on the experi-
ment is the third, which is the addition of the phase fac-
tor JAU—dt/5, of Eq. (2.17), to the beam. We ha, ve
seen that, for a single beam, the change in phase keeps
pace with the shifting of the envelope of the beam. In
this case, the phase shift is produced by the difference
in potential between the two beams.

In Fig. 24 one can see that the path gb is at a height
(2L ~a) sing, while fd is at height 0, and ae is at an a.v-
erage height (I +~) sing, while cd is at average height
I. sin8. Also, the times t„=t,~=t„=tz~ L/v cos8, and—-

2L sin8
go SIA f

FIG. 23. The COW experiment. Three slabs were cut from a
single silicon crystal such that a neutron beam incident on the
first slab at A. would be coherently recombined at the third
slab, at C. Specifically, the relative intensities of the reflected
and transmitted wave at C were monitored by counters D and E.
The original incident beaTIl was monitored at 5 . The eIltire
apparatus was then rotated around the incident beam AB~, in
order to induce a gravitational potential difference between the
two beams at E& and B2, and the relative intensities atD and E
were measured as functions of $, the angle of rotation.

o sin8~—

FIG. 24. Schematic representation of the COW experiment.
The rotation of the apparatus about the incident beam by an
angle qb creates a, gravitational field with component g sing in
the plane of the beams. The upper beam, abed, is called beam
I, and the lower beam, aefd, is bea.m II.
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t~, = t,z
——a/v cos8, since inside the crystal' v,. = v cos9.

Therefore,

4V dt
dt —V dt

II

B
I I I I I I I I I I I I I

I I I

t,~+ (V„—V,~) dt„

+ (V,„—V„) dt„h

CRYSTAL
ACCELERATED

UPWARD

'JÃg L 0
(21. + a) s in9 + 2L sin9

j v cos9 v cos8

-a sin9

(4.2)

where p is the average potential for a given path, a is
the thickness through a slab, and I. is the distance be-
tween neighboring slabs. '7his phase shift, with g
=go sing, determines the relative phase of the two beams
as a function of p, and was experimentally confirmed
by COW.

B. The accelerated frame

Although the previous analysis seems straightforward
and has been confirmed experimentally, we shall see
that it contradicts the accepted explanation of the results
of a coherent-beam electron diffraction experiment done
by Marton in 1953. %e believe the explanation of that
experiment to be incorrect, but we should like to re-
derive our result in a totally different manner, as a
check on the answer. ~e shall do this by analyzing the
experiment in an accelerating coordinate system, falling
with the acceleration of gravity. According to the prin-
ciple of equivalence, such a system would be equivalent
to one at rest in a static gravitational field.

In a coordinate system falling with accelerationg,
the neutron beam is no longer accelerating but classi-
cally moves in a straight line. However, the rea, l com-
plicating factor is that in the accelerating frame, falling
with gravity, the crystal slabs are accelerating upward,
imparting a time-dependent Doppler shift to the falling
beam. This situation is rather tricky to analyze, but it
turns out that there is a particular coordinate system
that eliminates most of the difficulties. This is a coor-
dinate system that is not only accelerating, but at some
particula, r time (ca.ll it f =0) has a velocity exactly equal
to that of the crystal slabs.

Q7e shall imagine that a snapshot has been taken in this
particular coordinate system, at time t=O. At this mo-
ment, the slabs are at rest, but they have an accelera-
tion g upward. The time chosen for t = 0 can have no ef-
fect on the derivation, as the situation will look the same
to any other accelerating observer, whose velocity at
some given moment is exactly that of the slabs.

~The velocity inside the crystal has been experimentally veri-
fied by C. Shull and co-workers (to be published). At the
time of the COW experiment it was incorrectly thought that
v&

——v, and this wrong value was used in their analysis. It
leads to an error of less than 1%, well within their experi-
mental error.

~C
FIG. 25. "Wave fronts" in the accelerated system. In a system
in free fall with the neutron beam, the crystal is instantaneously
at rest, but is accelerating upward. In this system, as ex-
plained in the text, the "wave fronts" do not evolve into each
other, as the neutrons have constant velocity, but were scat-
tered at different times by the accelerating crystal. Rather,
they represent that value of A which would be the center of a
neutron wave packet at that point. Along AC and BD they start
as perpendicular but gradually bend away, since the waves
closer to C,D were scattered earlier, when the crystal was
moving downward, with a speed proportional to the distance
from A or B The wave fronts along CD are all parallel, but in-
clined to the line CD.

Since we are dealing with a steady-State situation in
the accelerated system, where there is no gravity, we
will examine lines of constant phase, the plane waves,
in this system. In the original system, the laboratory
system with a static gravitational field, the time-inde-
pendent solutions to the Schrodinger equation are Airy
functions. The transformation to an accelerated system
is not a static one, but a time-dependent one, and so
there is no very simple one-to-one relationship between
the time-independent solutions in each reference frame.
Bather, we can compose the time-independent solutions
in one frame from linear combinations of the solutions
in the other fra, me. ~e shall discuss this question in
more detail in the Appendix on accelerated reference
frames.

In the snapshot taken at t=O, while all the neutrons
moving between, say, A and C (see Fig. 25) are moving
with constant velocity, they do not all have the same ve-
locity and direction, as they were scattered from slab
A at different previous times, when the slab was not at
rest. (For simplicity we shall ignore the thickness of
the slabs. ) The momentum vector of the center of the
wave packet for each neutron is determined by the Dop-
pler shift when that neutron was scattered by slab A.

In Fig. 25 the appropriate central plane wave for each
particle packet is drawn as though one had a stationary
wave front, where each wave evolves into the next. This
is only true in a static reference frame. Here, each
neutron moves with constant speed, and so the "snap-
shot" of Fig. 25 is only true at t=O. It should be borne
in mind that each plane wave depicted in Fig. 25 repre-
sents only the appropriate ko about which to construct
a neutron wave packet at that point. Because one is used
to a static configuration in such problems, we have
spelled out the physical description in our reference
frame in more detail in Sec. IV.C.

First consider a neutron impinging upon point A. Part
of the wave function is transmitted to B, while part is
reflected off the dotted crystal plane in Fig. 25, perpen-
dicular to the crystal face, and passes "on to" point C. At
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FIG. 26. Scattering at point & of crystal at earlier time. (a) At t=0, the crystal is momentarily at rest in the accelerating sys-
tem. The beam that reaches point C at t=O scattered off point A at a time T previously. The incident beam was moving hori-
zontally. (b) At time T=-T, the crystal was moving downward at speed n (since it is accelerating upward). t,'c) The scattered
beam has its component normal to the scattering plane reversed. It also picks up a Doppler shift, 6' ——2u cos8, due to the nor-
mal motion of the crystal.

5v~ = 2u cos9, (4.4)

because the scattering plane was moving (the factor of
2 coming from the "moving mirror effect"). The veloc-
ity parallel to the scattering plane is unaffected. Thus
the velocity of the scattered particle is

v' = [(v sin8 + 2u cos8)'+ (e cos8)'] '~'

~ v +u slg28:—v + ~v .
The change in angle is given by

tan8' = ta n(9 + 58) = (e s in9 ~ 2u cos 9)/v cos8
= tan9+2u/v = tan8+ sec'8 58,

so that

59 = (2u/v) cos'8.

(4.5)

(4.6)

(4.7)

~bile a neutron reaching C was scattered at a time T
previously, another neutron only halfway between A and
C was scattered at time 2 T previously, etc. , so that. the
angle &8 increases linearly from zero at A until its val-
ue in Eq. (4.7) at C. (This will be discussed in more

pointA, since the crystal is at rest at t=o, there will
be no Doppler shift. The wave transmitted to B also is
not affected.

Now consider a neutron arriving at point C. This par-
ticle will have been scattered at point A some time ago
(T =L/v cos8, ignoring acceleration effects, which are
of higher order), when the slab at A was traveling down-
ward with velocity u, where

u =gT =gL/u cos8 . (4.3)

(Remember that the crystal is acceleratingupward. ) The
situation at point A when the particle scattered is shown
in Fig. 26. The particle hit the scattering plane with a
normal velocity v sine, and the plane was approaching
the particle with a velocity u cose. Upon scattering, the
normal velocity was reversed, but it also picked up the
Doppler velocity

detail in Sec. IV.C. ) These considerations lead to two

possible effects on the waves composing the wave packet
at C. First, the bending of the beam through ~9 causes
no phase shift at a given point on the crystal at. C, as we
have s tressed previously. Second, there will be a change
in wave number 5k =mls/K leading to a. change in phase
5&]& = j5kdl. ~e shall not calculate this cha.nge in phase,
though, because the path from B to D has identical ge-
ometry to the path from A to C. Therefore the same
change in phase occurs along this path, with the ultimate
effect that the two cancel out.

So the only remaining effect which can change the
phase of the neutron wave packet is that along the path
CD. 'The neutron striking at D at time t = 0 was scattered
off A at time 2T in the past, where it picked up a veloc-
ity 5u =4ucos8, twice as great as that of Eq. (4.5), be-
cause the plane was then moving at twice the speed 2u.
+Then this neutron reached C, the plane at C was moving
downward, away from the neutron, with velocity u cos9.
One can analyze this situation exactly as was done for the
plane at A. But one can see that if moving toward the
beam changes the speed and angle in one direction, then
moving away will change it in the opposite direction.

Thus in scattering off C, the angle will change from
268 back to &8, while the speed will change from v+2&v
back to v+5zr, with 5e given by Eq. (4.3). So after the
neutron is scattered from C it will maintain the constant.
angle &9 from the vertical in Fig. 3, and the constant
speed v+6v. There is another way to see this result,
and that is to note that from the point of view of our
snapshot, C is momentarily at rest, and so it will induce
no extra Doppler shift. Therefore the particle striking
it with speed v+ &v and angle 0+ &8 will be scattered p, t
this same speed and angle.

The effect of this on the phase at D is merely &cb

= f &kdl. Once again the shift in angle causes no change
in phase at a given point. And so the final effect is
given by
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5k ~ I. m 5v I m (u sin29)L
cos8 5 cos8 5cos8

2mI. s in8 gI. 2~gI. "
——tan8,

v cos9 hv

using 5v from Eq. (4.5) and u from Eq. (4.3). This result
agrees both in magnitude and in sign (6Q greater for the
lower beam) with the result of Eq. (4.2). (We have ig-
nored the thickness of the crystal. )

Thus our two derivations, in the laboratory frame and
in an accelerating frame, both give the same effect,
which was experimentally confirmed in the CO~ experi-
ment.

C. The Doppler shift from an accelerating mirror

In the accelerated system the neutrons propagate as a
free-particle beam, while the crystal appears to be ac-
celerating. In this section we shall analyze the Doppler
shift from the accelerating crystal, partly to justify
some of the statements made in Sec. IQ.B, and partly be-
cause the situation is in some respects quite different
from that in the constant-velocity case, and this ought
to be pointed out (although the results confirm the cal
culation of the last section). The amount of absorption
or transmission of the beam does not affect the essential
features of the Doppler shift, and so it will suffice for
us to analyze a much simpler situation in order to indi-
cate the important properties involved. Therefore we
shall examine the case of reflection from a one-dimen-
sional perfectly reflecting mirror.

Consider a narrow wave packet $(x, t), with velocity
v, for which the group velocity approximation is valid,
which is incident upon a mirror whose position is given
by x = g(t), with g(0) =0 (see Fig. 2V). In order to an-
alyze the motion of the packet, we shall have to consider
the component plane waves. 'The incident and reflected
(image) wave both satisfy the free-particle time-depen-
dent 3chrMinger equation, and so the appropriate plane-
wave solution is

&f&(x, f) =exp(ikx —i~t) ~A(k') exp( —ik'x —i~'i), (4.9)

kg(t) —~t = —k'((i) —&u'f . (4.12)

Now in general there is no reflected wave of this form
that satisfies this condition. However, we can find an
approximate solution that works under the condition that
the wave packet is narrow in momentum space. (It works
as well as the group velocity approximation itself. ) We
are also assuming that gravity is a weak perturbation.
In this case the velocity of the mirror ( is always much
less than the velocity of the packet, ( «v.

Consider that the packet strikes the mirror at time ~,
so tha. t P(x, f) will be zero in the vicinity of the mirror
except for t-7. Then we shall see that it is necessary
for us to consider the velocity of the mirror only when
the particle is near it (when v „„,=—u), so that we can
write

(4.12)

Then Eq. (4.11) becomes

exp$ik [(,+u(t —r)] —icot]

= -A exp( —ik'[f, +u(t —7)] —i&a't] . (4.14)

wave is moving in the -x direction, and is initially lo-
cated to the right of the mirror; as usual the entire so-
lution only has physical meaning to the left of the mirror.
~e are not assuming that k =k', or ~ = ~', so that the
incident and reflected waves have different energies.
Rather, the relation between k and k' is determined by
the boundary condition that g vanishes at the mirror,
where x = ((t). Thus

Q(x = ((f), t) = 0 = exp[ikg(t) —mt] +A exp [-ik'$(t) —i&@'t] .
(4. i i)

In order for this equation to have solutions for all
times, the time dependence in the two exponents must
be equal, so

where

8'(u = (hk)'/2m, S&u' = (lk')'/2m . (4.10)
Equating the time-dependent terms in the exponential
gives

The incident wave is moving in the +x direction, initially
approaching the mirror from the left, while the reflected or

(ku —~)t = (-k'u —co')f (4.15)

Incident
packet

I

mirror
l u=g

X

x

X

x

o x
x g ( t }

Ima ge
packet

(4.16)

(k/2m)(k" k')+u(k +k) = 0,
k ' —k =—6k = —2mu/k.

This equation can also be written

(4.17)

(4.i8)

&"/2m yuk'+uk —kk'/2m = 0,

using the explicit form for co(k), Eq. (4.10). Therefore,

FIG. 27. Scattering from an accelerating mirror. The incident
wave packet starts at x= —xo at time t = —to, and approaches
the mirror from the left with velocity v. The image packet
approaches from the right. The mirror is located at x =0 at
t= 0, which is where the waves would cross if it were at rest.
jaut actually, x =((t), with ((0)=0, e =( «v, and the wave
strikes the mirror at t=7. A = -exp[i(k+k')(g„—ur)].=e' (4.19)

So we have the classical result that we anticipated in
Sec IV. 8, that the ref lectedwavewillpickup twice the
speed of the mirror. (This result is independent of the
fact that the phase velocity of the wave is not v. ) We
also have from this that
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Now we can write a. wave-packet solution in terms of
this plane-wave solution. Introduce the wave packet

f (x) = dk a(k —k, ) e"".

The wave function then becomes

P(x, t) = dk a(k —k, ) @(x, t)

(4.20)

dk a(k —ko) [exp(ikx —iat)

(4.22)

Then the first exponential is the incident wave, which
we shall assume to be originally centered at some point
x=-x„at time t=-t, . These points, xp and t„are re-
lated by the fact that the particle will strike the mirror
at t=v', or

x, + g(r) = v(v+ f,) . (4.23)

The reflected wave will be approximately located at
+xp at this sarne time .

The first exponential becomes

e =e&kx-tQt ef (kgc-M pt) f (k-kp) (x-vt )e

elan ef(k-kp) (x tpt)

where, from Eq. (4.22), we have written

(d COO+ v(k —k~) .
The second exponential becomes

exp(-ik 'x —i~ 'f) = exp(-ik~ —i &kx —i&sot + 2ik,ut)

(4.24)

(4.25)

x exp[ i(k —k-,) [x+ (v —2u)tg.

=—exp(iP, ) exp( —i(k —ko) [x+ (v —2u)tP,

(4.26)
where we have used

~' = (k '/2m)[ko+ (k —ko) + 6 k]', (4.27)

with 6k given by Eq. (4.17), and we have discarded the
terms in (k —ko) and (6k)'.

If we assume that f(x) is real, so that a(k —ko) =a*(ko
a*(ko —k), then Eqs. (4.21), (4.24), and (4.26), yield

P(x, t) =e'~i f(x —vt)

-e" "»'f (x + (v —2u) t + 6x) . (4.28)

This solution, which has physical significance on only
one side of the mirror, x &)(t), represents the incident
beam approaching the mirror followed by the reflected
beam bouncing off it with the appropriate corrected ve-
locity. (The small shift 5x comes from the exp(ia) term
as a correction to the initial position. ) The boundary
condition g(x = g(t), t) = 0, is automatically satisfied when
the wave packet is not near the mirror, because of the
narrowness of the wave packet. It is only when the
packet is near the mirror, at time t —r, that one need
worry about this condition, but the plane-wave solutions

-e' exp( —ik'x —i&@'f)] . (4.21)

Assume that this narrow wave packet is centered about
momentum k =kp, so that the velocity is

were explicitly constructed to satisfy the cohdition at
this time, which justifies the approximation in Eq.
(4.18).

This calculation a,iso justifies the assumption we made
in the last section, that the Doppler shift for a, particular
neutron wave packet is determined by the velocity of the
slab at the moment that the wave packet was scatteredby
the slab. (The individual plane waves themselves are
distributed over all space, of course, and so individually
they are never aware of the slab. It is the wave packet
that is scattered by the slab. )

The final feature we shall mention concerns the nature
of the "snapshot" we are using in the accelerated sys-
tem (Fig. 25). In the laboratory system, the neutrons
are falling as they move between the crystal slabs, and
so the plane-wave fronts describing them become dis-
torted. But in the accelerated system the gravitational
field is not present, and so the neutrons move instraight
lines at constant speed between the slabs. Nonetheless,
if you follow the beam along the path AC in Fig. 25, you
will see that at each point the neutrons have slightly dif-
ferent velocities, because they were scattered by the
crystal at different times, and the crystal velocity is
varying.

But if you follow the same accelerating system to the
next instant of time, the situation would be different,
because the neutrons at one point have constant velocity,
and are not "evolving" into the neutrons at the next
point. It is also true that at this next instant, the crystal
would no longer be at rest. In our system, at t=0, the
series of wave fronts along line AC, as shown in Fig.
25, really represents the following situation. If at some
point along AC you wanted to compose a wave packet for
a neutron at that point, you would use plane waves going
in the direction shown at that point in the diagram.
These are the waves that had been scattered with the ap-
propriate Doppler shift velocity u(t), at the right time.

One might also add parenthetically that if instead one
took the next snapshot at a slightly shifted velocity,
such as would be needed to keep the crystal a.t rest, the
extra velocity boost required at a time dt later would be
just sufficient for the neutrons at one point to evolve into
the neutrons at the next point. But of course, one would
then have a truly static situation, and in fact one would
be back in the labora. tory system.

It should be borne in mind that the argument in the ac-
celerated frame depends only on the transformation be-
tween the static and accelerated frames, and has nothing
to do with how simple or complicated a model one uses
for the crystal. In order to demonstrate this point,
Horne and Zeilinger have developed a very simple model
which needs to consider scattering off of only one atom
in the initial interferometer slab, two a.toms in the sec-
ond slab, and four atoms in the third slab (to be pub-
lished).

V. THE AHARONOV-BOHM EFFECT AND THE
IVIARTON EXPE R IMENT

%e have pointed out that the basic wave phenomena
involved in coherent scattering off of crystals are the
same, independently of whether one is using a beam of
electrons, neutrons, or x rays. However, the now
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BEAM I

LINE OF
M~X~M~ l

FIG. 28. Schematic diagram of Marton's experiment. An elec-
tron beam was successively diffracted through three very thin
copper sheets, which acted as diffraction gratings, rather than
Bragg scatterers. At the third sheet the beams were realigned.
The fringes on the film were caused by imperfect realignment
of the beams.

BEAM II

PHOTOGRAPHIC
PLATE

standard interpretation of one of the classic electron
diffraction experiments directly contradicts the results
of the neutron experiment of COW. This electron ex-
periment, done by Marton (Marton, 1952; Marton
et al. , 1953, 1954) at NBS was an extremely difficult
experiment to perform, and the evolution of its inter-
pretation has had an interesting history. The problem
posed by this interpretation was the original motivating
force for the present paper, and since we believe it to
be incorrect, we shall discuss it in some detail.

A schematic diagram of Marton's experiment is shown
in Fig. 28. He modified an electron microscope to
serve as an interferometer, and was the first to suc-
cessfully separate an electron beam into two disjoint
parts and then coherently recombine them. The beam
was scattered off three successive thin copper films.
At the first film, one beam passed straight through
while the other underwent first-order diffraction. (The
film was sufficiently thin to act as a diffraction grating,
rather than a Bragg scatterer, being only about 150 A
thick. ) These copper films were themselves difficult
to produce and had some slight buckling in them, due to
internal strains. At the third film the beams were re-
combined. Because of the imperfect film coplanarity,
plus the fact that they had been aligned by hand, they
were not perfectly parallel after the third film, and pro-
duced a series of interference fringes on a photographic
plate in their path (Fig. 29). (If the bea.ms were out of pa, r-
allel by angle o), the fringe spacing would be M= X/
sinn. )

Each plate was exposed for 6 minutes, and over 1200ex-
posures were required before the first diffraction pat-
tern was observed. These patterns were all but in-
visible to the naked eye and had to be measured with a
microdensitometer. In spite of the incredible patience
and care of Marton and his co-workers, and their
systematic optimization of the numerous experimental
parameters and elimination of "noise, " all carefully
r epor ted in the ir acc ount of the exper iment, highly
visible fringe patterns were never obtained, a fact we
believe to be highly significant. It should also be noted
that there was no persistence among the fringe patterns
obtained, and they usually disappeared after two or
three exposures, and never lasted longer than six ex-
posures.

FIG. 29. Interference fringes in Marton's experiment. Due to
buckling of the planes and lack of parallelism the two beams
were not perfectly aligned after the third diffraction plane. If
the two beams were out of parallel by angle n, the line of max-
ima would travel at angle 2a. to each, and the fringe spacing
would be d =X/sinn.

p„)I - [p„—(e/c)A, ])I), (5.1)

in the Schrodinger equation.
One way to describe the effect of this transformation

is to write
'~ X

) (e)=t).)e) exp —' Ae d)e)

= q, (x) exp[i&ad(x)], (5 2)

where x, is some arbitrary initial reference point, and
the integral runs over some path I between x, and x.
Then

(p „—(e/c)A „))i) oe'

= [(f) /i) (8 „$,+ (ie/bc)A „Q,) —(e/c)A &)|),]e'~

= (p„)C'0)e* (5 3)

Thus, if $, obeys the Schrodinger equation without any
electromagnetic field present, it would also seem to
obey the same equation with the potentialpresent, andthe
whole electromagnetic effect appears to have been re-
duced to the single quantity e'@~"~, which factors out
leaving no observable consequences. Wherein, then,
does the reality of the electromagnetic field lie&

The answer, of course, is that one has assumed the
existence of the function Q(x) in Zq. (5.2). But in fact,
there exists such a function only if the line integral

In 1959, Aharonov and Bohm (1959) wrote their famous
paper pointing out that one could observe some effects
from an electromagnetic potential even in regions where
there are no actual fields present. A simple description
of the idea involved is provided by noting that the gauge
invariance of electromagnetic theory yields a prescrip-
tion for introducing electromagnetic fields, via their
potentials, into any Hamiltonian theory. One simply
replaces the momentum p by the quantity p —(e/c)A,
wherever it occurs in the Hamiltonian. Then in quan-
tum theory,
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JA„dl„ is independent of the path chosen P, between
x, and x. Otherwise there is a different P for every
path chosen, and

Q = P (x, E') . (5.4)

In this case Q is not a single-valued function of x only.
And the criterion for the existence of a unique @ is just
that the curl of A„vanishes

and

(Even though B = 0 outside the solenoid, A 0 0 there, and
A circulates around the solenoid. ) The recombined wave
function will be

~pAv —~uQ = F„„=0 (5 5)
exp — A'dl l+g"" exp— A 'dl.

So the criterion for the potential's producing no real
effect is just that there be no electromagnetic field
present anywhere in the region. If there are real fields
present, then the factorization of Eq. (5.2) is path de-
pendent.

This argument shows the inherently nonlocal char-
acter' of electromagnetic potentials. There must be no
electromagnetic fields present anywhere in the region
for the argument to work, not merely over the path one
happens to be interested in. The specific, remarkable
experiment discussed by Aharonov and Bohm concerned
the coherent splitting of an electron beam into two paths
passing on either side of a solenoid. The magnetic field
of the solenoid is confined to the region inside the sole-
noid itself; if the axis of the solenoid is perpendicular
to the paper in Fig. 30, the magnetic field will also be.

If there is no magnetic field in the solenoid, the wave
functions for the electron taking paths I and II will be
Pion and g',"~. If there is a magnetic field present in the
solenoid, the wave functions at point b, where the waves
recombine, will be

exp~—
E@c

A dl

Solenoid
(top view)

FIG. 30. The Aharonov-Bohm effect. A long solenoid contains
a uniform magnetic field B. Outside the solenoid, B=0. An
electron beam. is split at point a, and the separate beams pass
on opposite sides of the solenoid and are then coherently re-
combined at b. The two beams will pick up a measurable gauge-
invariant phase difference proportional to fA'dl~ J 8'dS, the
Qux through the area contained by the two beams. This is true
even though neithe~ beam ever enters the region of magnetic
field, or feels any magnetic force.

= exp— (5.6)

where

A'dl= —p A dl=—
)

e e
kc kc dS - (5.7)

This phase difference between the beams g is gauge in-
variant, depending on the flux of B through the path.
The only contribution comes from the flux of B inside
the solenoid. Thus turning on the solenoid creates a
phase difference between the two beams„which is of
course measurable by its interference effects, even
though neither beam ever enters the magnetic field
region.

Since neither beam is ever subject to a magnetic force,
the envelope of the combined beam pattern will be un-
shifted, but within this envelope the fringe pattern of
the recombined beams will shift when the magnetic field
is turned on. These conclusions have since been beauti-
fully verified experimentally by Chambers, using a mag-
netic whisker for a solenoid' and by Bayh. ' But at the
time the experiment was first proposed, the reality of
the Aharonov-Bohm effect was subject to a lively de-
bate.

It was quickly realized that the phase factor in Eq.
(5.2) had to be present in order to cause the semiclassi-
cal bending of an electron beam moving in a real elec-
tromagnetic field, and. so the Aharonov-Bohm predictions
were a necessary consequence of elementary quantum-
mechanical considerations.

The relevance of the Marton experiment to these early
discussions is that it was pointed out at that time that
during the Marton experiment there were stray 60-cycle
magnetic fields present in his laboratory (H. Mendlowitz,
1960). Thus, if there were a flux of magnetic field per-
pendicular to the plane of the paper in Fig. 28, it would
introduce a phase shift

B aS(=
eBL 8

hc kc (5.8)

We agree with Y. Aharonov (private communication) in this
interpretation. However it has been subject to debate. The
consistency of the Aharonov-Bohm tA-B) effect with the un-
certainty principle was discussed by Furry and Ramsey,
1960. The single-valuedness of the wave functions in the
A-B effect was discussed by Tassie and Peshkin, 1961, and
problems on locality and the meaning of potentials were con-
sidered by DeWitt, 1962, and Belinfante, 1962. Further
work and answers to their critics, were contained in papers
by Aharonov and Bohm, 1961, 1962, 1963. Alternative, con-
troversial interpretations of the A-B effect have been pre-
sented by Boyer, 1973, and Liebowitz, 1965.

9Chambers, 1960. His beautiful fringe patterns verified the
results that the Aharonov-Bohm effect caused a fringe shift,
while the bending of the beam shifted the beam envelope.
Further whisker experiments were done by Fowler et al. ,
1961. Magnetic zone boundaries were used to produce the
interference by Boersch et a/. , 1960.

~OA more versatile tool, the electrostatic analog of an optical
biprism, was built by Mollenstedt and Bayh, 1962a, b and
used by Bayh, 1962~ in conjunction with a tiny solenoid to
verify the Aharonov-Bohm effect very strikingly. A summa-.
ry of experimental work, with some more up to date experi-
ments, can be found in Woodilla and Schwarz, 1971.
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ti- 6x 10'B rad (fl in G) . (5.9)

An ac line cord, carrying 1 A current, about 1 m
from the apparatus, would produce a stray field of about
10 ' 6, which is also of the order of various solenoids,
transformers, etc. However, the total stray ac field in
a typical laboratory can reach 10 ' 0, and so we esti-
mate that a reasonable value for the fringe shift in his
laboratory would be

N=q/2m —100 fringes. (5.10)

Because of this, it was originally suggested that the
Aharonov-Bohm effect could not be real, because it
predicted that any stray fields in Marton's laboratory
would have blurred out his fringes. However, it was
soon realized by a number of people, and explicitly cal-
culated by Werner and Brill, that there was a second
effect present (Werner and Brill, 1960; they also men-
tion the debate over the reality of the effect a.t that time).
Unlike the case in the original Aharonov-Bohm experi-
ment, in the Marton experiment the stray magnetic
field extends over the actual paths of the electron beams,
and thus the beams are bent by these fields.

In Fig. 31, the two beams are both bent into the arcs
of large circles, and Werner and Brill argued that
therefore they no longer have exactly the same path
length, which alters their relative phase. The amazing
fact is that, to lowest order, this effect is exactly the
same as that of the phase shift due to the magnetic flux
through the path, and so cancels it out. Thus, according
to %erner and Brill, it was the presence of both these
effects, the bending and the magnetic phase factor,
which made the Marton experiment possible. If there
had been no Aharonov-Bohm effect, there would have
been no beam stability. And so instead of Marton's ex-
periment proving the inconsistency of the effect, it
proved the necessity for it.

This beautiful result has become the standard inter-
pretation of the Marton experiment, and coupled with

for small 8, which by varying between aq, 60 times/sec,
would have washed out his interference fringes.

The data, quoted by Marton (Ma.rton et al. , 1954) for
his experiments, when referred to Fig. 28, show that
l- 35 mm, 0- 0.02 rad, d- 1650 A, and we estimate
x- 10 cm. In addition, the wavelength of his electrons
was A. = 0.048 A. The amplif1. cation factor of his magnetjtc
lens was about 500, so that d„ the fringe distance at
the third copper film, was about 3.3 A. This gives about

for angle n between the beams in Fig. 29, which
seems reasonable, considering the buckling of his films.
(One can independently verify this magnitude for n,
which is about the size of the first-order deflection 0.
Marton proved that his diffraction patterns came from
the recombination of the separated beams, by suc-
cessively blocking the individual beams and noting that
the fringes disappeared. However, not all fringing ef-
fects disappeared. There were residual small fringes
of about the same spacing in the individual beams,
which would be produced by buckling of the film by this
order of magnitude. ) One can also check the other ef-
fects of the stray fields on his experiments from this
data. The most significant factor, however, is that the
phase shift ti, from Eq. (5.7), is about

EQUIVALENT E

PERTURB
BEAM

UNPERTURBED
BEAM

FIG. 31. Effect of an external magnetic field on electron tra-
jectories. In the Marton experiment, the external magnetic
field bent the trajectories of the beams into large circles,
changing the relative path length of the beams. The magnitude
of the effect is exactly that of the Aharonov —Bohm effect, to
lowest order. But it is also true that the beams land at differ-
ent points on the last grating, and that the subsequent shifting
of the beams relative to each other cancels the bending effect,
leaving only the original phase shift, f A dl. This shiftis ex-
actly what is needed to confirm our result that the fringes and
beam envelope shift equally.

exp — — ~Vdt, AV= V, —V„
rz

(5.11)

Here the difference in potential between the two beams
at any point x replaces the line integral of A. . This ef-
fect would again be canceled out by the change in path
length between the two beams. In this case thebeams
would be bent into a parabolic, rather than a circular,
arc but to lowest order this does not affect the result.
Neither does the fact that here it is v„ that is un-
changed, rather than the magnitude of v. So, according
to the original Werner and Brill analysis, the same
cancellation occurs for an electric field as for a mag-
netic one.

the successful confirmations of the Aharonov-Bohm ef-
fect itself, it has seemed to close the book on the sub-
ject. Nonetheless, the Werner and Brill interpretation
is essentially incomplete, as originally presented (al-
though of course, the Aharonov-Bohm effect is certainly
real). Professor Werner and Prof. Brill agree with this
conclusion(see footnote 4). However, one should notun-
derestimate the historical importance of the Vferner-Brill
paper. It was their paper which convinced many scientists
that the Martonexperiment did not disprove the Aharonov-
Bohm effect in the period before the effect was directly
conf irmed.

First we would like to point out that if the original
%erner and Brill analysis were applied to the COW neu-
tron-gravity experiment, the results would disagree
with those of the actual experiment. If instead of a mag-
netic field there had been a vertical, uniform electric
field, as shown in Fig. 31, the analysis would follow
almost identically. In this case the phase factor from
the line integral fA„df, „would be —c fVdt instead of
fA 'dl. Therefore, the phase difference ti between the
beams g~'~ and g'n ~, which appears in Eqs. (5.6) and
(5.7), would be
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Finally, there is no formal difference, in the non-
relativistic limit, between a static electric field and
any other force produced by a potential. Of course for
any other force the phase factor is not produced by
gauge invariance, but nonetheless it is there as a cor-
rection to the energy, and in fact a comparison of Eq.
(5.11) for the electric case, and Eq, (2.17) for a con-
servative force, shows that the phase shift is identica1.
for the two cases. The bending of the beam into a
parabola will also be identical, if the force is uniform
and vertical.

Thus the original Werner-Brill analysis leads to the
conclusion that any stray static or slowly varying field,
not. only a magnetic or even electromagnetic one, will
produce no shift in fringes. However, in the COW ex-
periment, the tilting of the apparatus to produce a grav-
itational potential difference between the two beams had
the effect of creating just such a stray field, namely a.
"stray gravitational field. " Therefore, if the Werner-
Brill argument were complete, CQW would not have seen
any fringes. But we know that this result differs from those
of both the experiment and the theoretical analysis, which
we performed in Sec. IV from two separate viewpoints.

In what way, then, is the Werner-Brill argument es-
sentially incomplete? We have actually already anal-
yzed diffraction through a thin film in Sec. II. There we
showed that there is no effect at all due to the bending
of the beam, but rather, the phase shift due to the po-
tential produces a fringe shift, and at the same time a
shift in the envelope of the beam. When one considers
that the ray is deflected by the perturbing force, as in
Fig. 31, one is actually saying that the classical tra-
jectory of the particle has been shifted. But the clas-
s ical traj ectory is jus t the center of the quantum- me-
chanical wave packet, or the envelope of the wave. So
an argument based on the drawing of semiclassical rays
can be interpreted as referring to the envelope of the
wave packet.

As for the shift in phase of the wave fronts, they are
given by the factor in Eq. (2.17). Therefore, one proper
restatement of the calcuLition of Werner and Brill is
that-the envelope of the wave shifts by the same amount
as the phase, which merely confirms the result of our
calculation in Sec. II. So it is really not so amazing that
the two effects are equal in their calculation, as in fact
they must be equal. But from this point of view it would
then be improper to think of their calculations as refer-
ring to two separate phase factors, or to think that the
two effects can cancel out in any sense, as they are two
different types of quantities.

Qf course, if one carried through a perfectly consis-
tent trea, tment by tracing rays, then one could interpret.
the results purely in terms of phases, and one should
agree with our results. In terms of the Werner-Brill
analysis, an extra effect enters, which was left out in
their original paper. This is that the separated beams,
when recombined, no longer meet at the same point.
The sliding of one beam along the final screen, relative
to the other, entails an extra phase factor which exactly
cancels the effect due to the bending.

Qne can see this in detail by referring back to Fig. 2.
If the original ray AB of the initially freeparticle strikes
the screen at B, one can measure the phase at B by the

optical path

pAB AB ~0 0 (6.12)

where p» and r» are the momentum and displacement
a, long this straight ray, of magnitude P„and x,. The
phase of the unperturbed wave at a nearby point B' will
be given by the straight-line optical path

B'

p 'dr=pea ' r~a =&oIr~s+«I

=P (r„'+2 r ar)'I' =0 ~ (1+

=Po&0+ p~a '»
I&~a' I

—&o~ p~s -&or~a~ o~ a &r —r~a' — ~a
= r», . The second term in Eq. (5.13) is just the effect
of the displacement along the screen.

If the ray AB is now deflected by a perturbation to the
curved trajectory AB' then the optical path along the
curved trajectory AB' mill be given by

B'
(p~s+ 5p) ~ d(r y 6r)

Po&O+ 6p ~ &~s gpss ' d(6r)

=Pyo+@5&f& +p~s ~ &r = 8@,+8&@ .
In this calculation the extra path length contribution due
to the bending of the ray f'p ~ d(6r) is exactly the same
as the effect due to the displacement of the beam from
B to B' along the screen. So while the phase at B' is
not equal to the phase at B, neither were they equal in
the original unperturbed beams. The only residual ef-
fect at I3' that is due to the perturbation is @,' —@,= &@,
which is precisely the effect we have always included,
f5p ' dr = fUdt —fA —dl, in the potential or magnetic
case. In other words, the only effect of the perturbation
on the phase at a fixed point (in this case B') is &P. The
bending and sliding effects cancel, leaving a result that
exactly agrees w'ith ours.

The original Werner —Brill calculation gave &f&,
' —Q„

and left out the sliding of the beam along the screen.
Because of the fact that h«f& = —p„s ~ kr in their case,
then @,'=@„and one is led to the erroneous conclusion
that there is no phase shift for the Marton or CQW ex-
periments. [M. Horne and C. Shull have independently
arrived at the conclusion that the Werner-Brill analysis
mus t be supplemented (unpublished). ]

To recapitulate, in the Marton experiment, as in the
COW experiment, as in all other Aharonov —Bohm-type
experiments, the fringes do indeed shift, and the enve-
lope of the wave shifts by the same amount, if the beam
passes through the external field. However this raises
one final question, namely, how was it possible for
Marton to see any fringes at all, if these fringes were
oscillating back and forth with an amplitude of about IOO

fringes, about 60 times/'sec'? The answer is that in such
a case the blurring effect is far from complete, because
a sinusoidally oscillating beam spends most of its time
at the extreme end points- of its oscillation, and so the
major effect is a dimming of the pattern, rather than a.

tota. l obliteration of it.
To see this analytically, imagine a fringe pattern on
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a screen, whose intensity is given by

I(x) =I, cos'vr x/L,

where

A/I. =N»1, (5.1V)

I(x, t) =I„cos' [(m/L )(x Ac-os&et)], (5.16)

so that the fringes are separated by a distance L. If now
the pattern is oscillating back and forth, according to the
formula

3nd N is the number of fringes swept out in the distance
A, the pattern might be expected to wash out for N» 1.
The average intensity at a point x (with T =2'/u), will
be given by

1
I(x) =-

T

+
2 4m'

T (drp 2r
I(x, t)dt= ' dt 1 icos —(x —A cosset)

4m I.
2@x i& 2m' 2mx . 2'

dt cos cos]~ cosset + sin sin cos(dt
p

(5.18)

The second integral vanishes by symmetry and the first
is a standard integral representation of the Bessel func-
tion [Abromowitz and Stegun, 1964, formula (9.1.18)],
giving

I = ,' I, i (~I,—/4w) T cos(2wx/L) J,(2vA/L)

= (-,' I,) [1+@,(2~N) cos(2~x/L)] .
Then, since N» 1,

I=(~IO)[1+( v'N ' ') cos(2' ——,'vr)

x cos (2vx/L )] .

(5.19)

(5.20)

Thus the percentage variation in I, from point to point,
1s

max min
~
cos(2&N &)

~

~I —I 2 2

(2 I,) vN'~ ' N'h

(5.21)

5I/I —
10%%up. (5.22)

Even if N were 1000, we would still have &I/I - 3%. If N
varied during an exposure by about one fringe, it would
wash out the effect, so that in order to see fringes we
would need to have the stray field persistent and stable
to the order

AvV

N B (for a 6-min exposure) (5.23)

So we see that, even though the stray fields in the
Marton experiment were great enough to cause an oscil-
lation of 100 fringes, one could still expect an effect of
up to 10%. We believe that these stray fields caused the
great difficulties Marton had in obtaining fringes at all,
and also explain why he was never able to obtain any of
high visibility. On the other hand we can also understand
why he was able to obtain weak fringes, as well as why
they never persisted for very long. (Furthermore, both
of Marton's published fringe patterns show multiple sets
of fringes, consistent with the possibility that he was ob-
serving bath extremes of the oscillation, or that the .

magnitude of the stray magnetic field varied during the

In Eq. (5.18), &I/I can be anywhere between 0 and 2/
mN' ', depending on the exact value of ¹ The quantity
N is proportional to A. , which is proportional to the mag-
nitude of the stray magnetic field.

So we see that in the Marton case, where N - 100, we
would expect

exposure. ) Thus we believe that all the facts are con-
sistent with our explanation of the Marton experiment,
and that most but not all of the effect was washed out by
stray fields. This explanation is also completely con-
sistent with the Chambers and Bayh experiments, and
allows one to understand why the fringes are present in
the COW experiment.

[We also received a, strong but indirect corroboration
of this explanation during a recent conversation with
Professor Q. Mollenstedt. He told us that he agrees that
the reason his biprism experiments gave much cleaner
results than the Marton one was that the enclosed area
of his separated electronic beams was only about 10% of
Marton's. This had the result of reduc ing the s tray
magnetic flux by a factor of 10. But he also noted that
he still h3d great trouble performing his experiments in
a stray field of 10 '6, and had to remove them to a
structure in which B -1o ' G, where he obtained his
beautiful fringe patterns.

According to our analysis, the reduced flux would have
given him about N-10 fringes at B-10 ' 6, froxnEqs.
(5.8) and (5.10), and then only N-0. 1 fringes at B-10 '
G. Thus the stray fields should ha've strongly affected
his experiment in the former case, but not appreciably
in the latter case —in perfect agreement with his actual
observations. ]

Vl. SUMMARY

We have presented a discussion of the scattering of a
neutron beam off a perfect crystal, emphasizing the ef-
fect of a small perturbing force, such as that due to
gravity, on the outcome. We have shown that the only
effect on the phase of the beam striking a given point on
a screen beyond the scattering crystal, comes from a
change in wavelength produced by the perturbing force.
This will happen if there is a, component of the force (or
vector potential, in the magnetic case) parallel to the
beam. There is no effect on the phase due purely to the
bending of the wave front.

If, now, a beam is split into two coherent, spatially
separated beams which are subsequently recombined,
there will be a shift in the phase of the interference pat-
tern at a given point due to the phase shifts described
above. If the perturbing field is a static magnetic field,
the total phase shift will be exp[(ie/Ic) f A dl], the line
integral being taken around the closed path comprising
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the two beams. If the effect is due to a static electric
field of potential V, the phase shift will be
exp[( —ie/h) f b V dt], where the term AV denotes the dif-
ference between the potentials at corresponding points
along the two beams. Similarly, if the effect is caused
by a static, nonelectromagnetic field, with potential
energy U, the phase shift will be exp[( —i/'h) f b, Udt].

Beyond this, there is also a shift of the classical en-
velopes of the two beams, which keeps pace with this
changing phase, so that overall, the entire interference
pattern on the screen will be shifted, without changing
its relative shape or the fringe distribution within the
envelope.

he only exception to this rule occurs during the pure
Aharonov-Bohm case, where the phase shift is present,
but the split beams never pass through an external field,
so there is no force exerted on the beams, and conse-
quently no s hif t in the envelope of the beams. In this
case the fringes shift position within the stationary beam
envelope.

These statements are true regardless of whether the
beam has been split by scattering off an inhomogeneous
field, a two-dimensional diffraction grating, or a three-
dimensional crystal, and we have corrected the original
interpretation of the Marton experiment by Werner and
Brill, who had concluded that these cases would not be
similar. The resu1ts of the COW experiment are consis-
tent with our conclusions, as wel'1 as those of all the experi-
ments that have been used to confirm the Aharanov-Bohm
effect.

We have discussed the coherence effects present in a
thick crystal, especially the Borrmann effect, and pres-
ented a method for calculating the effect of displacing
the crystal slabs, without recourse to the details of the
dynamical theory of x rays, and have considered a num-
ber of experiments that illustrate the principles in-
volved. And we have pointed out the differences between
the transmission of neutron beams and that of x rays,
due to their different absorption properties.

We have also analyzed the phase shift in the COW ex-
periment, not only from the point of view given above,
but also by transforming into the free-fall coordinate
system, moving with the acceleration of gravity. In this
system the beam is not falling, but rather the crystal is
accelerating upward. In the Appendix we shall present
a more general treatment of accelerated motion, as a
guide to the analysis of future experiments using the
earth's gravitational field.
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APPENDIX: UNIFORMLY ACCELERATED
REFERENCE FRAMES

A. Nonrelativistic ease

We have discussed the COW experiment from the point
of view of an accelerated reference frame. We should,
like to justify some of the implicit assumptions in that
discussion. But also, such an analysis provides a valu-
able check on the results obtained from an analysis in
the laboratory system. Although the only coherence ex-
periment which has beendone to date that uses the earth' s
gravitational field used very low-energy neutrons, we
shall also extend our discussion to include the relativ-
istic case, partly in anticipation of possible future ex-
periments, but partly also for its own intrinsic interest.

According to the principle of equivalence, a static uni-
form gravitational field in the laboratory should be
equivalent to the situation experienced by a uniformly
accelerating observer without a gravitational field. In
the nonrelativistic case, we need not restrict ourselves
to uniform acceleration, but we can consider any rigid
acceleration of the entire reference frame (Bosen,
1972; Elieze r and Leach, 1977; Greenbe rger, to be
published). We shall not consider rotations, however,
although they can be included in the framework of such
a discussion (Greenberger, 1968).

Thus we imagine the entire reference frame to be rig-
idly translated according to the formula

r' = r + g(t), t ' = t . (Al)

1. The classical case

The Lagrangian in the laboratory is

L = —,
' mv' —V(r —r, ) . (A2)

If there is an origin for the force, it is taken to be ro.
Otherwise, any rbitrary point can be chosen as r, . The
important consideration is that, since the entire system
is being accelerated, the relative distance between two
points will be unaffected by the transformation, which
will therefore leave the potential unaffected, i.e.,

r' —r,'= r —ro, V'= V (A3)

The potential V can be chosen to be any force acting in
the laboratory (including a gravitational field).

TJnder the transformation (Al),

V V'=V +$, (A4

and so the Lagrangian becomes

L'= —,'m(v' —f)' —V. (A5)

In this formula (r, t) represents the coordinates in the
laboratory, which is considered to be an inertial sys-
tem, while (r', t') are the coordinates in the accelerated
reference system. The point r' = 0 corresponds to the
laboratory point r = —g(t), so that the accelerated sys-
tem is moving in the ( —$) direction. Thus the acceler-
ated obser ver should feel an inertial force in the + g

direction, producing an accelera. tion + g . To an observer
at rest in the accelerated reference frame, there should
be a potential which corresponds to this force. Of course
in the nonrelativistic limit there are no time dilatation
effects.
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The canonical momentum p' becomes

QL P ~

p' = = m (v' —g) = mv,Qvl

with the equation of motion

p' = m(v' —f) = —V V.

(A8)

(A7)

This equation suffers from the same defect as its clas-
sical counterpart, Eq. (A8).

However, if we make a unitary transformation derived
from the classical generating function, we can write

The new Hamiltonian is

fit pt vt I t P 2t/2m V (A8)

and then the function u will obey the equation

—(h'/2m)(&')'u+ Vu —m j r'u = —(8/i), (A20)

The above Hamiltonian yields the correct equation of
motion but it contains a momentum-dependent potential.
It is not the static potential we are seeking. Also, the
canonical momentum is equal to the old momentum. To
put the Hamiltonian into a more physically transparent
form we make a canonical transformation (type 8 of
Goldstein, 1950) to new variables R, P,

and this is the form of the equivalence principle in quan-
tum theory. In the special case of uniform acceleration
along the z axis,

g= —,'at', )=at, /=a, (A»)
and u satisfies the equation

u+ V~ max'~— (A22)
K=H +t—,E =E(ptt R),Bt

r'= —Vp, F, P = —'V~I'" .
If we choose the generating function

P= —R p mg R+f(t)—,

r'=R, P=p'+mg

(A10)

The transformation between wave functions, Eq. (A19),
becomes

(l)(z, t) =u(z', t) exp[(i/h)( —matz'~6 ma't')]
(A23

= u(z + —,
' at', t) exp[(i/m) ( matz —-', ma't')] .

If the potential V is V=maz, then u will represent a free
particle. If V=0, then u will represent a gravitating
par tic le.

SC=(P —m$)'/2m+V+ j ~ (I —mg) —mg ft+f
=P /2m+ V —m$ ~ R,

provided we choose

f = ,'mP. — (Ala)

Hamiltonian (A12) obviously gives the correct equiva-
Ience principle interpretation to the transformation,
since the extra potential is of the expected static form,
-ma ~ R, where a is the inertial acceleration. It also
gives a clear meaning to the coordinates,

3. Connection between the wave functions

u(z', t) =us(z') e 'z'~" (A24)

will be the Airy function (Landau and Lifschitz, 1958,
Sec. 22, App. 6).

Introducing the dimensionless variable

p = (z'+ E/m a)/l, l '= a'/2ma-, (A25)

lf V=O in Eq. (A20), and we consider only one dimen-
sion z, then the stationary solutions in the accelerated
frame

R=r +$, P =m(v+g) =mR.

he generating function I" is

I" =-R p' —~ ~ R ——
2

( dt),

(A14) we have the solution

uz(z') =A&(-p),
where Q is the Airy function

(A28)

where the first term is the identity transformation,
while the second term generates the required changes.

2. The quantum case

lf g(r, t) is the wave function in the unaccelerated sys-
tem, obeying the Hamiltonian

P(p) =n '~' cos(—,
' rP+qp) dq.

0

If we now substitute a+ 2 at' for z', this becomes

( ),t, dt), (, , ( r)-,
'a et* a/emd))az t t =A'))' —cos

)
s Q l

x exp —(Et ~matz ~ —,ma t5 (A28)

then the transformation (Al) yields

Asymptotically, in the region z ' » 0, the solution be-
comes

Making these substitutions, and setting t =t, gives

—(8'/2m) (&')')t ~ V(l) + (5/i) g ~ 7"(t) = (h/i) $ . — (A18)

y —p-"'sin( —', p"'+ —,')T),

so that we have

0 (z, t) = (4s" —4z '),

where

(A29)

(A&0)
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i(Et+matz ~3 ma2t'), ; ( )S

In this equation, n is the phase of the exponential, and
the slowly varying denominator has been incorporated
into A '.

This is the transformation into the inertial system of
the asymptotic stationary wave of the accelerated ref-
erence system. It is clearly not a plane wave, and so
the question is, how is it related to the plane waves of
the unaccelerated frame? A stationary wave in the ac-
celerated frame will not be stationary in the inertial
frame, since the transformation between them is ex-
plicitly time dependent.

One must look instead for a wave packet of accelerated
solutions, to form the function P(z, t). Take

P"(z, t) = dE a(E) Pz" (z, t) (A32)

a(E) -ae ''z.

Then the phase in the integral of Eq. (A32) is

a, =n —ibE,

(A33)

(A34)

where n is given by Eq. (A31). We evaluate the integral
by the method of steepest descent. The phase will be
stationary at some energy E, given by

B(l'
~

eE
'=0, Btz, , (A35)

and in the neighborhood of this point,

n, —n, (E,)+iP(E -E,)', (A35)

where P will be real and positive, for the correctly cho-
sen complex path, and so

~(.),',(,) fq~;(( - .)* (A37)

The integral will be a slowly varying amplitude factor,
and therefore we are interested only in the phase n, (EO).

If we take the derivative in Eq. (A35), then setting it
equal to zero gives a unique value for Eo,

ED=ma(I [mal(b+t/ )]k' (z+~at')). (A38)

By placing this value of Eo into n„and by using the def-
inition of I, Eq. (A25), we reduce this phase to

n, (E,) =const+mabz ——,
' ma2b'yg.

If we call

(A39)

mab =—4,
then

as the solution. %e can consider the amplitude of a as
slowly varying and need go only as far as the linear term
in the phase,

which of course is the plane wave we are seeking. The
role played by the constant b is to shift the time origin
from t to t+t =t ~hb T. hen v =hk/m =ato, and b relates
only to when the object was dropped and defines its ve-
locity. In this solution, we could obviously have chosen
g(z, t) as the Airy function and derived the function u as
the plane wave, which is actually the case in Sec. IV.

B. Relativistic case

In the c3se of relativity, we shall be restricted to the
case of uniform acceleration, but it turns out that one
can define the concept of a uniformly accelerating sys-
tem in both special and general relativity. In special
relativity" we look for the motion of a particle which has
a constant acceleration in its own rest system. This can
be generalized to the case of a static metric in general
relativity, in which a particle has a uniform accelera-
tion anywhere in space. This metric represents an ac-
celerating coordinate system and is rigid in the sense
that at constant time in this system every point in the
original inertial system has the same velocity. Further-
more, the origin of this system undergoes uniform ac-
celeration in the sense of special relativity. Once the
concept of uniform acceleration is defined, one can set
up the Klein-Gordon equation Bnd Dirac equation in such
a reference frame.

(n')'=y(n'- ~n') =y'a', (n")'=y'a", (n")'.=y'a',

(n')' =y(n' —nn') = 0;
(n") ' = (0, y'a", y'a', y' a') .

(A43)

Thus for motion along the z axis, with g"=a~=0, such
that the acceleration remains constant, we have

1. Uniform acceleration in special relativity

First, we establish our notation (with c = 1): x'=t,
r=(x', x', x') =(x,y, z); metric goo= I, q" = —1; Lorentz
transformation S(8) or S(u), z' =z cosh8 —t sinh8, t'
= t cosh8 —z s inh8, where y = (1 —n') '~ ' = cosh8, sinh8
= my, tanh8 = v; x' = (x', x ', x', x'), or (x', x'); u" = dx~/
dr =(y, vy), v=dx Jdt; n"=du"/d7 =(y'v ~ a, y'a", y'a', y'a'),
a=dv/dt. Latin letters run from 1 to 3, Greek from 0
to 3. Motion will generally be along the z axis, and we
shall occasionally suppress x and y. The Lorentz trans-
formation S(8) will generally be to a system moving along
the +z axis with velocity v, and we shall specify when it
is otherwise.

In order to define uniform acceleration, we seek the
motion of a particle, which has a constant acceleration
in the inertial system which is momentarily at rest with
respect to it. If we transform the acceleration Q.~ into
a system moving instantaneously at the same velocity
v as the accelerating body (a.ssuming v along the z axis),
we find

—,
' ma'b'8= hk'/2m,

and the phase becomes

n, (E,) = const+kz —5' tk/2 ,m

(A41)
~~Hohrlich, 1965, Chaps. 5 and 8. His general relativistic

metric is not the same as ours. The problem is also dis-
cussed in Hamilton, 1978. A more general treatment of the
problem of non-inertial motion also appears in Schmutzer
and Plebanski, 1977.

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979



74 Daniel M. Greenberger, A. W. Overhauser: Neutron diffraction and gravity

y3a' =const = ~ .
This equation is equivalent to

du(l —v') ' '=ndt

and integrates to

(A44)

(A45)

time scale, by setting

f'/f+g'/g =0

the solution to which is

ln fg =const, g =B/f .

(A57)

(A58)

z=[(1+n f )' —1]/n, (A47)

n=nt(l+n't') 'i'=
CV

(A46)

choosing v =0 at t =0. Equation (A46) integrates to

Then, for constant acceleration,

n =g'/2g'

the solution to which is

g=(l —2nz) ',

(A59)

(A60)
where we choose @=0 at t=O. This can be written

(nz +1)2 =1 +n 2t~ (A48)

and represents uniform acceleration. It is sometimes
called hyperbolic motion. For nz «1, Eq. (A48) re-
duces to

(A49)

Equations (A47) and (A48) are the equations z =f(t) for
the coordinates of a particle in the laboratory (inertial)
frame, the particle accelerating in such a way that an
ine rtial obse rve r moving with the same velocity as the
particle will measure acceleration cy. 3ome other use-
ful formulas relating to this motion are

y =(1+n't') '~', dr =(1—e') "~'dt, nt =sinhnr,
(A50)

~=tanbark, y=coshnT =(ye+1 .

where we have chosen g(0) =1, which sets the z scale
for small z.

Independently of this we can ask for solutions of the
metric, Eq. (A51), which represent zero curvature.
The geodesic equations can be written in the form

d2x X dx~ dx"
ds ds ds

V

(A61)

(A62)

(the („~) are the Christoffel symbols, and our notation
is chosen to conform with that of Adler et ~l. , 1975;
note that A~~„=—BA~/sx", the partial derivative, while
&,~„=—D&~/D&', the covariant derivative) which en-
ables us to read off the Christoffel symbols from Eqs.
(A52),

2. Uniform acceleration in general relativity

We should like to find a metric representing a system
where particles have a uniform acceleration along the
z axis. We are seeking a static metric, g „=g „(z),
with no t dependence, so that it will appear that a
static gravitational field is present. Also, we want
there to be no curvature, thus A „=0, so that there is
no matter present, but the field is a pure acceleration
field. We assume a metric of the form

the others being zero.
The curvature equation becomes

&» = f"/2g+(f'/4g)(f-'If+ g'lg) =o
(A64)

This equation has only one independent component in
our metric,

ds' =f(z)dt' —g(z) dz' —dx' —dy' . (A51)

(In what follows, —= d/ds = d/d7. and ' =—s/Bz) . The
geodesic equations are

(0) t +f'zt/f =0, (ft) =const —= I; g =A. (f')'/f . (A65)

the other components being identically zero. The solu-
tion to the equation Boo =0 is

(3) z +f'i '/2g+ g'P/2g =0;
(1) x=0;
(2) i=0.

A first integral of the motion is

(A52)

g=B/f =(1—2nz) ',
which implies

(A66)

Thus for any value of f, this choice of g will give zero
curvature. However the only choice consistent with
constant acceleration is

$2/f gz2 x2 g2 ] f=(1—2nz)/B, f ' =- 2n/B =const, (A67)
In these coordinates, constant acceleration means

z =n = f'l'/2g f' —g'z2/2g . — (A54)

If we assume motion along only the z axis, Eq. (A53)
becomes

and which is clearly consistent with Pq. (A65). We
set B=1, in order to set the time scale t =1 near the
origin. Then our metric becomes

ds' =(1 —2nz) dt~ —dz'/(1 —2nz) —dx —dy . (A68)

gz' =- (1 —E'/f),

so that

n =- I'(f'/f+ g'/g)/2 gf+g'/2g' .

(A55)

(A56)

For regions of weak field, we expect g,o-1+2@/c2,
where Q is the gravitational potential; in our case, this
is the region around the origin. For nz «1 (dimen-
sionally, this means nz/c~ «1) we have

We can choose our solution to be independent of the Q- —nz, (A69)
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which agrees with the equivalence principle, since any
particle will feel a force accelerating it upward, and
this is equivalent to this gravitational potential. We
note that our solution corresponds to the entire coordin-
ate system we are in being accelerated downward, so
that any particle released from rest will feel a constant
acceleration upward. Our metric, Eq. (A68), is the
st~tie solution representing constant acceleration.

ds2 =(dt') 2 —(dx ') —(dy') —(dz') ' .
Such a metric must exist, since R „=0. We write

(Avo)

dz' =~dz —Mt, dt' =cdt —ddz, x' =x, y' =y, (Av1)

where a, 5, c, d are functions of x". Since our x" coordinate
system is itself accelerating in the -z direction, the trans-
formation of Eq. (A71) will be along the +z direction,
and therefore the coefficients g, b, c, d will all be
positive. If we substitute Eqs. (A71) into Eq. (A70),
and compare the result with Eq. (A68), this will give
us three conditions on the four functions a, b, c, d
from matching the coefficients of the dt', dz', and
ddt terms. These conditions can all be satisfied by
writing

dz'= «, dz —(sinhzo)(1 —2 zn)' '(td,
(1 —2nz) '('

dt' =(coshzo)(1 —2nz) I(2dt — «2 dz,
1 —2nz "'

(Av2)

where NI=f(x"). This is as far as one can go algebrai-
cally.

We can obtain two further restrictions on the deriva-
tives of Iu by requiring that Eqs. (A72) should be inte-
grable. Then we could write (t ', z') =f(t, z). These
restrictions come from equating the crossed partial
derivatives in Eqs. (A72). However, if we assume
that III =w(t) only, then both equations will be solved by
eo=nt. (Actually, this is the only integrable solution. )
Thus Eqs. (A72) become

d2' p cosh&t 1/2
(1 —2nz)

dz —(1 —2nz) l snthdnt ~

=(1 2nz) costhdnt I(p dzI i/2 sinho. t
(1 —2nz)I('

3. Connection between the special and general relativistic
solutions

In our solution to the general relativistic problem we
have found a coordinate system in which the equation of
motion for any particle is 2 =a, x=y =0. Since B „=0,
there is no real gravitational field present. Therefore
the coordinate system itself is uniformly accelerating,
in the sense that at a given time t in this system, which
is static, every point has the same acceleration relative
to an inertial system at that point. What we should like
to do is to find this inertial system (x~)' relative to
which our system x~ is uniformly accelerating.

The problem then is this: to find a transformation
from the metric of Eq. (A68) to a coordinate system
with the metric

This is the transformation for which we have been
looking. The integration constants have been chosen
so that t =0 implies t'=0, independently of z, and also
so that at t=O, z-z', for nz«1. So the two coordinate
systems approximately coincide for t=0 and small z.

We can invert the transformation (A74). This gives
the equations

2nz =[1+n2(t') ~] —(1 —nz') ~

tanhnt =nt'/(1 —nz') .
(A75)

Note that this implies that the origin of the accelerated
system z =0 obeys the equation

1+n2(t') 2 =(1—nz')' . (Av6)

dt= (1 —nz') dt '+nt'dz'
(1 —nz') ' —n'(t')'

(A77)

Subsequently, we shall call the accelerating system
0, with coordinates x~, and the inertial system 0',
with coordinates (x~)'. Note that a point at rest in the
0 system, for which dz =0, obeys

v' =dz'/dt' =—nt'/(1 —nz') =—tanhnt . (A78)

This answer is independent of z, so that all points in
0 at fixed t are moving with the same speed with res-
pect to O'. Thus in this sense the accelerating system
is rigid, in that simultaneously in 0, all points of 0
have this speed. This is not true if one looks at a
fixed time t' in O'. If one compares Eq. (A78) with the
equation for v in Eqs. (A50), one sees that t measures
the proper time for a particle at the origin of 0, and
it is with respect to this time that the system is rigid.

4. The Klein-Gordon equation

Qnce we have our transformation completely deter-
mined, it is a simple matter to write the transformed
Klein —Gordon equation. In the inertial system 0'
(setting )I = 1)

( B2 B2 B2 B

~~B(t')' B(")' B(~)' B(y')') ™(A79)

The operator appearing in this equation is the operator
B~B Q. However, if one wants an equation which is
valid in a noninertial system, one must replace the de-
rivatives by eovariant derivatives, 8„-D . For a
scalar,

(A80)

For a vector,

Comparison with Eq. (A48) shows that the origin is
uniformly accelerating along the —z' axis with accelera-
tion n. The special relativistic transformation allows
us to analyze the problem from the inertial system z'.
But we now have a transformation that enables us to
discuss the problem from any point in either coordinate
system. For convenience, we also write the differen-
tial form of Eqs. (A75),

dz =(1 —nz') dz '+ nt'dt',

These equations integrate to
z' =[1—(1 —2nz) It' coshnt]/n,
t' =[(1—2nz) I(2 sinhnt]/n .

(A74) (A81)

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979



Daniel M. Greenberger, A. W. Overhauser Neutron diffraction and gravity

In our metric, the nonzero Christoffel symbols,
Eq. (A62), become

1 —2+z =— =—& 1 —2cvz

~ y3 ~3 3 03 3 y0~3 y3 ~3y0 3~3 0 g 3

(~')'=(y')'=I, (r')'=-1.
(These y are 4X4 matrices). To write the equation in
the x frame, we use Eq. (A84) for B/Bz', B/Bt'. If we
call the vector B/Bx~', expressed in terms of x~, via
Eq. (A84), the vector operator d,

D~D~Q+m2$ =B~B Q+2o. +m2(f) =0 .8
(A83)

8—,~ =—d„(x), (A90)

This is the Klein —Gordon equation. We could have used
our transformations (A73) and (A77) directly to calculate
this result without using the Christoffel symbols. Spe-
cifically,

2, =(1 —202m) t cosho. t —+8 sinhnt 8
Bz Bz (1 —2o.z)"2 Bt '

then the Dirac equation becomes

—iy'd 2t +m/=0. (A91)

The second-order equation is, writing g=(—iy-d —m)X,

(—iy ~ d+m)( —iy. d —m)X=—[(y d)(y ~ d) +m ])t= 0.
(A92)

8 coshcvt 8
2
—+(1 —202@) ' sinhat —,Bt' (1 —202m)'t2 Bt Bz

(A84) 3ince
82 82

(y0d0+y3d3) 2 =(I —202')-' 2 +(1 —2o.z) 2 +2n—
and substituting this directly into Eq. (A79) gives

8 8 B2
qf)

B(t') B(~') Q =(1 —2o.z) '
2

—(1 —2o.z) 2+2+
Bt Bz Bz

=[g (B0) +g {B3) + 2ne3]$

=(B B0+B B3+2ae3)(f& . (A85)

To examine the nonrelativistic limit of this equation,
we write

Bu B'u
Bt

2= —mu —2Zm —+ ~ e™.
Bt Bt (A86)

The second term in this expression is down by v2/c2,
and the last term is down by v4/c0; thus we drop it. We
also note that nz is of the order v'/c2. So, to order
v'/c', Eq. (A83) becomes

„~BR2 . BR A BQ.—(2m) 2
—mnzu —i —= ———= 0 .

Bz Bt PR

Equation (A87) is just the nonrelativistic Schrodinger
equation. The right-hand sade vanishes because,
putting in dimensional constants, (f2'n/mc2) Bu/Bz
-Ii'o)2u/mc2, and after the particle has moved slightly
we will have 0 &Ak, z &Az, and zk &AkAz &1, so

=D()D +D3D, (A93)

SW'S-' =y' cosh+ —y3 sinhe,
~r'S-' =y3 cosh' —y sinhm.

(A95)

In our case, at time t in the 0 system, the entire
system has velocity v =—tanhnt, simultaneously, so
we choose [using (—tanho. t) =tanh{ —o.t)]

ze =—nt,
S(v) =cosh( —,'at) —n3 sinh(3ot) .

(A96)

this exactly gives Eq. (A83) of the Klein —Gordon case.
Nonetheless, this is not the appropriate Dirac equation,
because our y matrices are lined up along the old x
axes. One wants the matrices to have their conventional
numerical form along the new axes x~, in the 0 system.

Thus we must make a unitary transformation to re-
arrange the y's. We do this by boosting them into the
inertial systeminstantaneously moving at the same velo-
city as the accelerating system x". In general, for a
boost along the z axis to velocity v, where e=tanhzv,

S(v) =exp( —,'ur'y') =exp(22vo. ) =cosh(2w) +c23 sinh(-,'w) .
(A94)

As with any vector components, we shall have

Iz'+au A'cyzk zt; rncvz p
RlC DEC BlC Rl C

5. The Dirac equation

(ABB)
In the new system 0, the y's, which we shall call y,
will have the same numerical representation as they had
in the old system, with reference to the old axes. Spe-
cifically,

For a free particle in an inertial frame x', the Dirac
equation is

Sp S ' =y coshat +@3sinhnt = y,
Sy'5 ' =y' coshnt +y' sinhat =—y3, (A97)

~ ~ 8—iy~ —~. g+mg=O.

We shall use the notation of Schweber, 1961, where

t1 0), 0 cr', „0 o"N

(0 —11 ka 0) E,—cr' 01

r' =r'y'r'r' =
~

(r' r"}.=g'"
—io)

cf p
dt ' Ct

—=O.y3, =ay' . (A98)

Y Y p Y

One should note, however, that even though the y are
numerical matrices, whose elements at time t in the 0
system are 0, +1,+i, nonetheless, at every different
instant they are lined up in a different coordinate sys-
tem. So even though they are numerical, (By'/Bt) aO.
In fact, from Eq. (A97) we can see that
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In order to write the static form of the Dirac equa-
tion, we invert Eq. (A97) to find y as f(y), which we
can do by merely changing t to (- t) in Eq. (A97),

(- y'Z(1 —~p)-'- iy'e/sp+y'u'+y'a'+m) q =0 .

(A108)

y =y coshnt —y3 sinhnt,

y =y coshcvt —y sinh&t .
(A 99)

We can write the two-component form of this equation
by setting

Then we calculate y"d, expressing y" as a function of
y~, which gives (A109)

yod +y3d yo( 1 2(yz) ~ /2 +y3(1 2~z) ~ /
0 3 Bt Bg

(A100)

and using our explicit form for the Dirac matrices.
Then

Thus the static Dirac equation is
—i o'v' +v nv=[Z(1 —np) ' —m]u,
i(r3u' —a nu =- [E(1—o.p) '+m]v, (A 110)

2&& -«2 —'+y3 1 2~& «& '
Bt Bz

8+y~ —+y~ g +mp =0,
Bx 8$

(A101)

where '=—s/Sp, and n=k'u„+k2u„. From this we see
that for nonrelativistic positive-energy solutions,
v- (k/m)u «u.

We can also express Eqs. (A110) as a second-order
equation for the large component u alone,

where g is the wave function in the system 0, expressed
in terms of the axes of the system O.

We might note that an alternative derivation of this-
equation can be made by introducing a vierbein, which
is a set of four independent vectors in the tangent space0" to the space O. In our case it is easy to find the
tangent space, which is an inertial system moving at
exactly the velocity of the point x~ in O. Since at time
t the entire system 0 is moving at speed v=tanh( —nt)
with respect to 0', all we must do is transform from
0' to the inertial system 0" moving at this speed, via
the Lorentz transformation S(v),

(1 —op)u' )' (rr x n)'I;a rr'(1 —ap)
Z +m(1 —o,p)) [Z+m(1 —o.p)~] Z+m(1 —o.p)&

x —m(1 —ap))
1 —A'p

(A111)

[Here (o xn) 3 =(a'k' —o'k') and n' =n .n. ] The nonrelati-
vistic limit of Eq. (A111) is

—(5'/2m)u" +[(hn)'/2m]u =(s+mo.p)u, (A112)

where E=m+c. The second term is just the transverse
kinetic energy, so that if we write

dz =dz' cosho t+dt' sinho. t =(1—2c/z) ~/'dz,

dt" =dt' cosho. t+dz' sinho. t =(1—2nz)'/ dt,
(A102)

s, =s —(5n) '/2m,

the equation becomes

(A113)

k" =(E,k),
we can write

g =X exp( —iEt +ik, 'x+i/z'y),

(A 103)

(A 104)

which yields the stationary form of the Dirac equation
(we omit the bars from y hereafter):

8
~

—y'Z(1 —2uz)'~' —iy'(1 —Rnz) —+y'k'+w' '+ 10)X=m0.

One can change variables from z to p, where

(1 —2o.z)'"=1—np .
For nz «1, the nonrelativistic region, p-z, and

(1 —2nz) / —=—.p 8 8
Bz Bp

Thus the stationary Dirac equation becomes

(A105)

(A106)

(A107)

using Eqs. (A73). This transformation completely de-
fines the vierbein, and the Dirac equation cari.be writ-
ten directly in terms of it via the recipe in Sec. 12.5
of Weinberg, 1972. The result is Eq. (A101). (Anan-
dan, 1977, discusses the higher-order effect of per-
forming the COW experiment in a field with real curva-
ture. )

In the Dirac equation, since only one space dimension
is important, we can factor out the t, x, and y depen-
dence. Introducing the vector

—(If'/2m)u" —mnpu =s,u,
the nonrelativistic Schrodinger equation.
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