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'Within the nonrelativistic approximation the authors discuss three different mechanisms for the capture of
a light particle from a bare heavy. nucleus by another bare heavy nucleus which is incident with a very

high relative velocity. The emphasis is on physical interpretation. For each mechanism a "physical" (i,e.,
more readily comprehensible) derivation is given of the asymptotic form of the total cross section, and a
comparison is made of the relative importance of the different mechanisms' in the case of electron capture
from hydrogenlike "atoms. " (Electron capture is normally referred to as charge transfer). The first
mechanism is knock-on capture, where the two nuclei have equal masses and simply switch places. The
second mechanism is radiative capture, which occurs with the emission of a photon. The third mechanism,
which is perhaps the most interesting one, is double scattering, first suggested within the framework of
classical mechanics by Thomas in 1927. In this mechanism the light particle undergoes two collisions, the
first with the incident nucleus, and the second with the target nucleus; the light particle finally has
almost the same velocity as the incident nucleus and therefore has a reasonable probabi1ity of being
captured. The capture process in the asymptotic domain is a fascinating one theoretically since radiative
capture can dominate over nonradiative capture; what is perhaps more remarkable is that for nonradiative
capture integrated over the forward direction the second Born contribution dominates over the first in the
asymptotic limit. For the capture of an electron bound in a high Rydberg state, capture via the knock-on
the double scattering mechanisms are describable classically (Thomas' result becomes exact!) and (near
the forward direction) the second Born(Born again) term dominates over the first at much lower energy.
(Changing only the notation and the kinematics, the results can be used to study mass transfer processes
in which one of a massive gravitationally bound pair of astrophysical objects is captured by a third
massive object). A number of results for capture into a true bound state can be readily carried over to
"capture to the continuum, " with the electron emerging with a small positive energy relative to the
incident nucleus. An understanding of the asymptotic form of the capture cross section is of considerable
interest in its own right; it may also be helpful in understanding the dynamics of the capture process in

the medium velocity range where applications are important. At medium velocities electron capture is of
interest in many areas of physics such as astrophysics, chemical physics, plasma physics, and atomic
physics; it is also of practical interest, having applications in laser and fusion research.
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l. INTRODUCYIQN

Atomic collisions that involve the capture of an elec-
tron (i.e. , charge transfer collisions) are of interest in
many areas of physics. Cross sections for various
electron capture processes are needed to understand,
for example, some astrophysical processes, the
"paths" of certain chemical reactj. ons, and the proper-
ties of plasmas. In. atomic physics renewed interest in
the theory of electron capture has been stimulated by
the realization that electron capture can play a com-
petitive role to direct Coulomb ionization in the pro-
duction of inner shell vacancies by swift; highly stripped
ions (Halpern and Law, 1973; McGuire, 1973). The
subject may also be of practical interest owing to po-
tential applications in technological areas such as the
development of x-ray lasers and the heating of fusion
plasrnas by the injection of neutral beams. Unfortunat;e-
ly the dynamics of electron capture is still not well
understood. The present article is devoted to a discus-
sion of an old problem —one which has not yet been to-
tally resolved —namely, the determination, within the
context of nonrelativistic theory, of the velocity depen-
dence of the cross section for electron capture from a
one-electron ion or atom by a bare nucleus that is in-
cident with an asymptotically high velocity. This prob-
lem continues to be of great interest since a proper
understanding of the nonrelativistic asymptotic form of
-the cross section may be helpful in developing a reli-
able method for treating electron capture at interme-
diate velocities, the domain relevant to the applications
mentioned above.

In discussing electron capture at asymptotically high
velocities kinematical considerations are of paramount
importance. This becomes apparent when one recog-
nizes that in order for the electron to be captured the
two-particle subsystem consisting of the electron and
projectile nucleus (hereafter referred to in quotation
marks simply as "the subsystem") must lose the very
large interna/ kinetic energy (i.e. , the kinetic energy
of "the subsystem" relative to its center of mass) that
it has initially. One of the very first problems is to de-
termine the dominant mechanisms for ridding "the sub-
system" of this large amount of internal energy. From
the theoretical point of view, the nature of the electron
capture mechanisms which dominate at high impact ve-
locity is extraordinarily interesting. The mechanism
which might be expected to dominate —a "single scatter-
ing" mechanism —corresponds to the first Born approx-
imation with the perturbation taken to be the interaction
between the projectile nucleus and the electron. Now
this mechanism does pgot in fact dominate. The physics

behind this remark has its origin in the simple fact that
a bare nucleus incident on a face electron cannot cap-
ture the electron in a nonradiative process. In this me-
chanism, therefore, the electron can be captured only
if one takes into account the high-momentum component
of the wave function of the target "atom, "a component
which decreases very rapidly with the magnitude of the
incident velocity. Mechanisms which do not require the
high-momentum component of the target wave function
must therefore be considered, even if these mechan-
isms are of "greater complexity" than the single scat-
tering mechanism. There appear to be three such me-
chanisms which contribute significantly to the electron
capture cross section at high impact velocities.

In the first mechanism the incident nucleus and the
target nucleus simply exchange places without appre-
ciably disturbing the electron. However, this can only
occur if the two nuclei have equal or nearly equal
masses. This mechanism, first analyzed in d etail by
Mapleton (1964), is often referred to as the "knock-on"
process since in the lab frame (in which the target nu-
cleus is initially at rest) the incident nucleus gives up
all of its kinetic energy to the target nucleus, which is
therefore knocked forward, but the electron remains
behind and bec om es bound to the inc ident nuc 1eus, which
has come to rest. Hence in the lab frame the internal
energy of "the subsystem" is absorbed by the target nu-
cleus. Note that the knock-on process is a single scat-
tering mechanism, described by the first Born term;
the perturbation is the interaction between the two nu-
cle i.

The second mechanism is radiative capture. (The
emission of radiation can be ignored in the first and
third mechanisms. ) This mechanism was first analyzed
by Oppenheimer (1928). In radiative capture the target
nucleus plays almost no role; the process is essentially
radiative recombination, and the internal energy of
"the subsystem" is transferred to the phot;on. Thus, for
example, for protons incident on hydrogen atoms, the
process p+ H- H+ p+ y is effectively the process p+ e
—H+ y. Remarkably, radiative capture can dominate
over nonradiative capture. The importance of radiative
capture as a mechanism for charge transfer at high ve-
locities has often been overlooked by atomic physicists,
possibly because the cross section is so small when
radiative capture dominates. The first experiment in-
dicating the onset of radiative capture seems to have
been that of Raisbeck and Yiou (1971). Definitive evi-
dence for radiative capture in fast heavy-ion collisions
was first observed by Schnopper et al. (1972), and has
since been observed in a large number of experiments.
The literature can be traced through the proceedings of
the tenth International Conference on the Physics of
Electronic and Atomic Collisions (published by Cen-
tre d'Etudes Nucldaires, Saclay, 1977).

The third mechanism, first pointed out and analyzed
by Thomas (1927) within the framework of classical me-
chanics, and by Drisko (1955) within the framework of
quantum mechanics, is, astonishingly for a high-energy
limit, not a one-step but a gzgg-step process. The elec-
tron is scattered first by the projectile nucleus and then
by the target nucleus in such a manner that the electron
finally has almost the same velocity as the projectile
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nucleus, the velocity of the latter not having changed
appreciably during the collision. After this double scat-
tering has occurred "the subsystem" has lost most of
its internal energy and the electron and projectile nu-
cleus can become bound by their mutual attraction.
Since, in this mechanism, the targ et nucleus interacts
with the electron but not with the projectile nucleus, and
since the electron-nucleus mass ratio is very small,
the energy transferred between "the subsystem" and the
target nucleus is negligibly small in the lab frame. In
this frame the role of the target nucleus is to convert
the internal kinetic energy of "the subsystem" into the
form of external kinetic energy, that is, into additional
kinetic energy of the center of mass of "the subsystem. "

Each of the mechanisms just described is a different
means of ridding "the subsystem" of its initially large
internal kinetic energy, and each mechanism leads to
a different asymptotic velocity dependence for the cross
section. The asymptotic form of the radiative capture
cross section was generalized by Briggs and Dettmann
(19V4) to arbitrary initial and final s states, and to a wide
class of interactions which includes the Coulomb inter-
action as a special case. The asymptotic forms of the
cross sections for the two nonradiative mechanisms
were generalized by Dettmann and Leibfried (1969),
again to a w. ide class of interactions, and with the initial
and final states restricted to being isotropic; no re-
striction was placed on the masses of the three inter-
acting particles.

Although the analyses of Briggs and Dettmann and of
Detimann and Leibfried are fairly rigorous, the physics
of each mechanism is unfortunately, if necessarily, ob-
scured to a large extent by the complexity of the calcu-
lation. The purpose of this article is to give a full dis-
cussion of the physics of each mechanism. We shall
largely restrict our discussion to the nonrelativistic
capture of a light particle from a bare heavy nucleus by
another bare heavy nucleus which is incident with a very
high velocity. For each mechanism we give a nonrig-
orous but "physical, " that is, more readily comprehen-
sible, derivation. of the asymptotic form of the cross
section. No restriction will be placed on the initial and
final states, and the interactions will be almost unre-
stricted. This heuristic treatment not only has merit in
its own right; the insight it provides may enable one to
comprehend the difficulties, if any, that would arise in
an extension to more general cases such as particles of
arbitrary masses, and atoms with many electrons.
Furthermore, one might gain some feeling as to when
relativistic corrections become important. Of course,
the validity of this heuristic approach can only be fully
borne out by the more rigorous approaches mentioned
above. However, we expect to and do obtain the cor-
rect dependence of the different cross sections on their
various parameters; two of the cross sections are ex-
act and the third is correct to within a multiplicative
constant of order unity.

In the subsequent discussion we assume that if a par-
ticle undergoes a large change of momentum in a double
scattering or backward scattering process, it does so
via a binary collision which is close and essentially in-
stantaneous. (A binary collision can be regarded as
close and essentially instantaneous only if the interac-

tion between the two particles participating in the colli-
sion is sufficiently singular at zero separation. Cou-
lomb potentials, for example, are sufficiently singular. A

potential of the form exp[-(x'+ y'+ z')'~'j, where ~, y,
and z are Cartesian coordinates, is also acceptable;
this potential has a branch cut, or, speaking physically,
a cusp at r= 0. The entire class of interactions con-
sidered by Dettmann and Leibfried (1969) is acceptable;
these potentials have Fourier transforms that can be
expanded in powers of 1/k for large argument k.) The
assumption that the collision is instantaneous allows us
to use the sudden approximation of perturbation theory
(Schiff, 1968). We assume that the relative speed g of
the nuclei is large compared to the initial and final or-
bital speeds of the light particle, but we assume that
(v/c)', where c is the speed of light, is small compared
to unity so that relativistic effects are unimportant.

Within the context of atomic physics, the binary colli-
sions referred to in the previous paragraph can be (i)
a close nuclear collision (in backward scattering) or,
(ii) two close nuclear —electron collisions in double
scattering. There are also close encounters of the third
kind, true three-body collisions of the two nuclei and
the electron which do not allow a decomposition into bi-
nary collisions. True three-body collisions occur in ihe
Brinkman-Kramers approximation, which is the first
Born approximation with the nuclear interaction omitted.

The outline of this article is as follows. In Sec. III
we discuss the knock-on process, and in Sec. IV we
discuss radiative capture. In Sec. V we discuss the
double-scattering process; this is perhaps the most
interesting, though most complicated, mechanism, and
Sec. V is a relatively long one. These three sections,
concerned with capture from an arbitrary state, can
be read more or less independently. In Sec. VI we dis-
cuss the relative importance of the different mechan-
isms, in various energy domains, for electron capture
from a hydrogenlike "atom" in its ground state. Those
interested primarily in the numerical values of the dif-
ferent cross sections can skip much of the theoretical
discussion and proceed to Sec. VI. In Sec. VII we con-
sider situations for which the transfer mechanism can
be described classically. Mass transfer processes for the
capture by a massive object of one of a pair of massive
gravitationally bound astrophysical objects are clearly
classical; charge transfer from a high Bydberg state via
knock-on and double scattering is another instance. Much
of the classical material; especially that onknock-on cap-
ture, canbe read independently of the earlier sections.
Section VIQ contains some concluding remarks, and also
a table illustrating, some of the sa:lient differences be-
tween the various mechanisms for electron capture
from a hydrogenlike atom by a bare ion. The reader
may wish to glance at this table from time to time as
he works his way through the article.

Specialized material which may be skipped without
breaking continuity is indicated by a mark (~) at the
beginning of the paragraph.

We first establish a notation.

II. NOTATION

I et yn, M~, and M~ denote the masses of the light
particle and the heavy nuclei, respectively. We refer
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V
dropped. With the appropriate subscript, a cross sec-
tion for capture from a state characterized by yg, ), and
p, to a state characterized by &', l', and p,

' will be de-
noted by o(nip-n'I'p'). (Primed quantum numbers al-
ways characterize a final state. ) The omission of a fi-
nal-state quantum number in any 0 denotes the sum over
that quantum number, while the omission of an initial-
state quantum number denotes an average over that
quantum number. Thus, for example, we have

o(nip -n') = g o(nip-n'I') = g o(nip -n'I'p'),

while

FIG. 1. Diagram showing the relative coordinates. In the
laboratory frame M~ has an initial velocity v = uuz and Mz is
initially at rest.

to the particles by their masses. When considering
Coulomb interactions, we let e denote the charge of yn,
an electron, and we let Z~

~

e
~

and Z~
~

e
~

denote the
charges of M„and M~, respectively. We assume that
initially m is bound to M~, and that MB is incident with
an impact parameter b and a high velocity v relative to
M~. Let r~ and rB, respectively, be the position vec-
tors of m relative to M~ and to MB, and let H be the po-
sition vector of M~ relative to M„; when no confusion
might arise, we omit the subscript Q or B from the po-
sition vector of m. We define a. coordinate frame (~yg)
fixed in space, with unit vectors u„u, , and u„oriented
so that the z axis is parallel to the bea, m axis (see Fig.
1). Let g,.(r~) and g&(ra), respectiveiy, be the normal-
ized wave functions which represent the initial and final
states, i a.nd f, of m. Let W»(A), W„(r~), and Wa(ra)
denote the interactions of M~ with M~, gyes with M„, and
m with M~, respectively; all interactions are assumed
to be spherically symmetric. We denote the Fourier
transform of any function f(r) by f(p), where

(2.1)

when f(r)=f(y), we can write f(p) for f(p). The words
"center of mass" will frequently be abbreviated by c.m.
The knock-on, radiative capture, and double scatter-
ing cross sections are denoted by 0„„0„,and 0~, re-
spectively. The Brinkman-Kramers cross section,
which will also be considered, is denoted by 0». The
coordinate frame 8 is that in which the c.m. of M~ and

M~ is at rest, while the coordinate frame E is that in
which M~ is at rest. The polar axes of all coordinate
frames are defined by v; 8 and Q will always represent

)
polar and azimuthal angles, respectively, while l and p.

are quantum numbers of the angular momentum and its
projection, and ~ is a principle quantum number for a
hydrogenlike system. The normalized hydrogenlike
wave function for an electron with quantum numbers n,
l, and p, in the field of a nucleus of charge Z ~e

~
is de-

noted by

the parametric dependence upon Z will sometimes be

o(n-n') = (n) ' P o (nl-n') = (n) "~~ (2I+ 1) 'o (nllJ. -n').

We use the abbreviation "bd" to represent the sum over
all bound states, and we use "cont" to represent the
sum over all low-lying continuum states. Thus, for ex-
ample, we have

o(n- bd) = g o'(n-n') .

For future reference we note that if W(z) is the pure
Coulomb potential Ze'/x, we have

W(P) = (25/m)'~'(Ze'/P') . (2.2)

A caret denotes a unit vector. For any argument and
for any index, P denotes a probability. The initial and
final internal atomic velocities of m are denoted by v
and v &, respectively; the subscripts f and fwill some-
times be dropped, however.

I I I. KNGCK-QN CAPTU RE

In the knock-on process, M~ emerges with almost the
same velocity which M~ had initia, lly, and vice versa,
but m is not significantly disturbed. (Knock-on is the
only mechanism under which m can emerge with a ve-
locity close to the final velocity of M~ without itself un-
dergoing a collision. ) This can occur only if the masses
M~ and M~ are equal or nearly equal. We assume these
masses to be equal throughout this section. For the
present we also assume M„and M~ to be distinguish-
able. For convenience we discuss the knock-on process
in the frame 8 in which the c.m. of M„and M~ is at
rest, with M„and M~ having incident velocities ——,v
and 2v, respectively. In this frame M~ and M~ back-
scatter from one another through almost identical an-
gles, as shown in Fig. 2. The crux of the argument is.
to show that o.„,can be factored into a cross section for
M~ and M~ to backscatter, with nz playing no role, and
a conditional probability for capture of m by M~ if
backscattering has occurred.

Although radiation may be emitted due to the sudden
accelerations of M~ and M~, the radiation reaction can
be ignored for (v/c)' «l. If Ma scatters through an an-
gle g —8, the momentum transferred to M~ is

q(8) = ——,'Mv[(1+ cos8)u, —sin8u~],

where M =—M~= M~ and whe~e u~ is a unit vector in the
xy plane. The diff erential backscattering cross section
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that the nuclei are at the same point when capture oc-
curs, so that r —= r~ = r~,

2

&(&)= ) & ~(~' &(,(~)(*~' ('(~&, (3.5)

Ms (= M)

—/&y The phases X,. and ~f account for the fact that M~ has a
velocity before the collision which is not quite equal to
the velocity of M~ after the collision. ' The difference
between ~& and ~,. depends upon this difference of the
velocities of the two nuclei and, neglecting a correction
of order m/M, i.s given by

bs for M~ to scatter from M~ through an angle of ~ —8
into the differential solid angle dQ, whether or not it
captures the light particle m, is, in the Born approxi-
mation, which is adequate for potential scattering at the
high relative velocity under consideration,

do„.= t2(-.'M)/4~@'] '(2va)'
~
W„,(g(8))

~

'dn. (3.2)

Let v . be some characteristic velocity of m relative to
the c.m. of the "atom" (m+M~) when this atom is in the
initial state i. Neglecting a correction of order m/M,
the initial (and to a. good approximation the fina, l) veloc-
ity of m in the frame S is of order v, —2v. After the
collision of M~ and M~, the velocity of m relative to the
c.m. of m and Ms is therefore (again neglecting a cor-
rection of order m/M) of order

v.)8)=v„, -V(8), (3.3)

where V(8) is the difference in the velocity of Ms after
the collision and the velocity of M~ before the collision,
that is,

V(8) —= —,'vt(1 —cos8)u, + sin8u, j .
For capture to occur, ~v'&(8)

~

must not greatly exceed
some characteristic speed ~v &~

of m relative to the
c.m. of the "atom" (m+Ms) when this atom is in the fi-
nal state f. Since g» ~v,. ~

or ~v /~, we must therefore
have 8 very small. Roughly speaking, the requirement
that ~v' f(8)

~

= ~v; —(V8/2)u,
~

not greatly exceed ~v f ~

gives u8/2~ n
&

where v &
is of the order of the larger

We th~~~fore have 0 ~ 8c 8
where

(3.4)

8 = 2(v„&/v) .
Within this angular range q(8), dQ and V(8) can be ap-
proximated by —Mv, 2m8d8, and (v8/2)u„respectively.

Assuming backscatt| ring has taken place, we deter-
mine the +elative (that is; conditional) probability for
capture as follows. Since the collision is sudden, and
since yn is not appreciably disturbed, the nucleus to
which m is attached is suddenly switched from M„ to
M~. The sudden approximation of perturbation theory
therefore applies, and the relative probability for cap-
ture is simply the overlap of the initial and final wave
functions multiplied by a factor which takes proper ac-
count of the translational motion of the "atoms. "
Therefore, if M~ is scattered through an angle 7t —6,
the relative probability P(8) for capture is, assuming

FIG. 2. Backscattering in the center-of-mass frame of Mz and
M~.

A,. —X'z ———mV(8) r/h= —(mu8/2h)u, r. (3.6)

cr~, = W» -Mv ' P 8 Od9

2 M Smax
g7 Mv 2

0

where

(3.8)

(3.9)

The integral over s of Eq. (3.8} is independent of ~ and

~See Bates and McCarroll (1958) for a discussion of transla-
tional phase factors.

Failure to account for this velocity-dependent phase dif-
ference has, in the past, led to some incorrect state-
ments about the velocity dependence of the quantum-me-
chanical knock-on capture cross section. In writing
down Ecl. (3.5) we have assumed that the transition takes
place when the separation between the nuclei M~ and M~
is zero. This is not quite correct; classically there is
a distance of closest approach which, however small,
is finite; quantum-mechanically, we expect from the
uncertainty principle that M„and M~ must approach
one another to within a distance of order I/Mv —they
may have to come much closer —to be able to exchange
momentum of the order Mv and therefore to backscatter
at this distance. However, since v is large, the cor-
rection due to the finite separation of the nuclei during
the transition is, in general, negligible. An exception
occurs when g,.(r) and g/(r) are orthogonal and 8= 0, for
then P(0) = 0 according to E(ls. (3.5) and (3.6) and the
correction due to the finite separation of the nuclei be-
comes important, though it is not necessarily the lead-
ing correction. However, we need not consider this
correction in evaluating the tggg) cross section since
for 8= 8 we have 2C,. —X& ——(mu &/8')u, r, which is of
order unity for the maximum value of y that is relevant,
and so P(8 ) need not be small even when g, and (t(/ are
orthogonal.

The differential knock-on cross section, «I,„f» rn
to be captured, with MB backscattered through an angle
~ —I9 into the differential solid angle dQ, is therefore

do, = P(8)der, = (m. 'M'/h)
~
W„(—Mv) ~'P(8)8d8, (3.7)

where we have replaced q(8} by —Mv and dp by 27(8 d8.
The total cross section g», for capture in the backward
direction is obtained by integrating over the angular
range 0 ~ 8 & 6} . If we change the variable of integra-
tion from 8 to s= mL(8/2h, we obtain

Rev. Mod. Phys. , Vol. 51, No. 2, April 1979
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has the dimension of (1/length)'. In this integral we can
replace the upper limit of integration s = mv &/h by

The justification for this is as follows. Since I/s
is of the order of the dimension of the smaller of the
"atoms" described by g,. and g&, the main contribution
to the integral of Eq. (3.9) comes from the region r ~ 1/
s . (As r increases beyond I/s the integrand de-
cays exponentially. ) It follows that f(s) decreases rap-
idly for s&s because of the presence of the oscilla--
tory exponential function in the integrand of Eq. (3.9).
Therefore the region g& g does not contribute appre-
ciably to the integral of Eq. (3.8), and, with little error,
s can be replaced by ~. If this is done the asymptot-
ic form for the knock-on capture cross section given by
Eq. (3.8) is (to leading order in rn/M) identical to that
obtained by Dettmann and Leibfried (1969) using the
firs t Born appr oximat ion.

Note that if W„(—Mv) decreases more rapidly than
1/Mv with increasing v, the expression on the right-
hand side of Eq. (3.8) contains M in the denominator and
is therefore small. If the two nuclei interact via a pure
Coulomb potential, we have, using Eq. (2.2),

(3.10)

The cross section is small, and for capture into an g
state the knock-on process is always dominated by the
radiative capture process when the interactions are
pure C oulombic.

Explicit values of 0~,(ls yg'I') for n'l'= ls and 2p are
given in Sec. VI. A. In Sec. VII we consider v„,(yzl —pg'I')
for n»1 and E rather larger than 1. The resul. ts in that
domain can be given a classical interpretation and give
some new insights into the results obtained above. Thus
the relative speed of m and M~ after the collision is
(2v)8, and e can be interpreted as the angle beyond
which (2v)8 exceeds the escape velocity.

In discussing the knock-on process we treated the
nuclei as distinguishable particles. We now consider
identical nuclei. Roughly speaking, each nucleus can be
described by a wave packet whose linear dimensions (in
coordinate space) are of order h/Mv; each nucleus can-
not be localized to a volume whose linear dimensions
are sma, lier than jg/M~ if the quantum-mechanical un-
certainty in the relative speed of the nuclei is to be
small. compared to g. Provided that the two nuclei do
not approach one another to within a distance of order
5/Mv, the wave packets of the nuclei wil. l not overlap
appreciably, and the nuclei can be distinguished even
when they are identical. . However, in the knock-on pro-
cess the two nuclei must approach one another to within
this distance in order to exchange momentum Mv, and
therefore in this process identical nuclei cannot be
treated as distinguishable; for identical nuclei, not
spin polarized, the knock-on process cannot be distin-
guished from the direct process in which the incident
nucleus passes by the target nucleus with an impact pa-
rameter of order h/Mg or less without picking up the

This symbol () indicates a paragraph which may be skipped
without breaking continuity in reading. It generally indicates
somewhat more specialized material.

light particle. Of course, when the nuclei are identical
the knock-on process contributes to the total elastic
scattering cross section, but its contribution is small
in proton-hydrogen atom scattering, for example. The
knock-on process can be clearly distinguished from the
direct process when the nuclei are not identical as, for
example, in the case of a 'He nucleus incident upon the
atom (e+ H), or a ' C nucleus incident upon an ion con-
sisting of a single electron bound to an ' N nucleus.
However, it should be noted that in these iwo examples
the knock-on process cannot be distinguished from the
process in which there is forward scattering, with the
target nucleus and the projectile changing their identi-
ties by single pion exchange. In fact, the single pion
exchange cross section becomes much larger than the
Rutherford backscattering cross section as the relative
velocity increases.

The nuclear force plays no role in the radiative and
double-scattering processes since, as will be seen in
the following sections, the range of impact parameters
that contributes to these processes is much larger than
the range of the nuclear force.

Equation (3.10) may be readily generalized to target
atoms having more than one electron. If the target nu-
cleus is knocked forward &ith a high speed in the lab
frame, the target electrons will remain behind and
some may be captured while others will be set free.
The form of Eq. (3.10) (and, in particular, the v depen-
dence) remains valid, but in the function f(s) of Eq.
(3.9) the single particle wave functions must be replaced
by their multiparticle counterparts. For capture of a
specified number of electrons g& would be a wave func-
tion for that number of electrons bound with the remain-
ing electrons being in the continuum. r in the exponent
would be replaced by the sum over all (free and con-
tinuum) electron coordinates.

IV. RADi ATI VE CAPTUR E

A. Derivation of the cross section

In radiative capture at high impact velocities, the
target' nucleus M„plays essentially no role and the
total radiative capture cross section at asymptotically
high energies can be determined by assuming that the
light particle m is free initially, the initial binding ul-
timately becoming negligible. Radiative capture is then
simply the inverse photoelectric effect —"the subsys-
tem" (m+ Ms) spontaneously emits a photon and becomes
bound. Invoking detailed balance with the appropriate
density of states the asymptotic form of the total ra-
diative capture cross section, 0„, can therefore be ob-

3By the tm.g et nucleus we mean the nucleus to which m is
bound intially.

This point has often been insufficiently stressed in the liter-
ature. For example, Oppenheimer (1928) discusses both non-
radiative charge transfer and the radiative recombination of
electrons and protons, but he never notes that the result de-
rived for radiative recombination is relevant to charge trans-
fer. That it is was stressed by Haisbeck and Yiou (1971), who
extended the result to radiative charge transfer at relativistic
energies. Note that the target nucleus plays a significant role
in radiationless capture.
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tained from the well-known formulae for the photoelec-
tric effect (Bethe and Salpeter, 1957). However, as it
is not difficult, and since it is more instructive, we
shall obtain a„directly.

Ignoring M~ altogether, treating M~ as infinitely
massive, and proceeding nonrelativistieally, we work
in the projectile frame I in which M~ is at rest. In this
frame, m. initially moves with a velocity roughly equal
to -v and is aPProximately (see below) described by a
plane wave (I/V)'t ' exp( im—v r/'h ) which is normalized
to unity in a volume V, and generates a flux v/V. If m
spontaneously "decays" into the final bound state f rep-
resented by Pf(r), the rate at which photons of polar-
ization A. are emitted into the solid angle dQ is, treating
the electromagnetic field as a small perturbation and
using first-order perturbation theory (Dirac, 1958),

4 2 2 2 '-', ----kk 'dn (4.1)

Note that due to the factor (2 v)' in Eq. (4.2), the
emitted light is preferentially polarized along the beam
axis. Note also that, although we treat m. nonrelativ-
istically, the momentum (mv'/2c)k of the photon need
not be neglected in the argument of g& in Eq. (4.2) since
its relative contribution to the differential cross section
is of order v/c, wherea. s a relativistic treatment of m
would give corrections of order (z/c)'. However, the
relative contribution of the photon momentum to the
integrated cross section O„should be dropped since it
is of order (v/c)'. This can be seen by expanding
~g&(p) ~' as a Taylor series about the value ~g&(-mv) ~',

with p= -mv —mv'k/2c; the expansion is a power ser-
ies in v/c and the second term is odd under the reflec-
tion k- -k so that, since (X v)' is even under k- —k,
it vanishes w hen the integration over k is perf orm ed.
Summing over all polarizations of the emitted radia-
tion, integrating over k (neglecting the photon momen-
tum), and using

dk(X v)'= g' dk sin'8=
3

we obtain the total cross section for radiative capture
to the state f,

cr„=(2'w'mhe'v'/3c')
~
P~( —mv)

~

'. (4.3)

Note that the factor ~gz( —mv)
~

' is consistent with the

Here ~ is the angular frequency of an emitted photon
and hk= hk~/c is its momentum. The value of ~ follows
from energy conservation; since the final (as well as
the initial) binding energy is assumed to be very much
less than the initial kinetic energy of m in the frame I,
we have h~=mv'/2. Since the flux is z/V the differ-
ential cross section for radiation of polarization X to be
emitted when m is captured into the state f is

d+„V dl
dQ v dA

fact that. the photon carries away only a negligible
amount of momentum; yn must be captured into a high-
momentum component of the final bound state. High-
momentum components are generated by the coordinate
wave function gf(r) only for x very small, and the higher
the angular momentum of m in the state f, the less likely
it is that we shall find m near M~. For P& a Coulomb
wave function, ~$~(—mv)~' behaves as v ' " . Note also
that g,. and g~ do not enter into the expression for
the cross section symmetrically —in fact, 7/r. does not
enter at all. This does not violate time-reversal in-
variance since the time-reversed process involves the
absorption of a photon, and therefore radiative capture
from state f to state i, which necessarily involves the
emission of a photon, is not related by time reversal.
to radiative capture from state i to state f.

Equation (4.3) is effectively identical to the result ob-
tained in a three-body approach by Briggs and Dettmann
(1974) and Kleber and Jakubassa (1975) in the same
high-energy limit. (The Compton profile factor, the
only difference, is of no significance in this limit. )

Unfortunately Eq. (4.3) is not quite correct in the
asymptotic limit when I'~ 1 unless Ws(x) is less singular
than the Coulomb potential at x =0. The treatment of
(three-body) radiative capture as (two-body) radiative
recombination introduces no error in the asymptotic
limit, but the subsequent neglect of the effect of W~(y)
on the initial state, that is, the replacement of the initial
state of m by a plane wave state, is inadequate when l'
~ 1. The reason is the following. Rather than being
captured into a high momentum component of the final
state, m can scatter from M» lose most of its large
momentum mv before —being captured, and be captured
into a low momentum component of the final state. Such
scattering corresponds to a considerable distortion of
the plane wave and can occur only if m gets close to M~
in the initial state. It will be sufficient to consider the
dipole approximation, for which only the I =E'+1 com-
ponents of the initial continuum wave function of m con-
tribute to radiative recombination. For L'=0, only the
E =1. component contributes, and the correction to Eq.
(4.3) is negligible, but for l'~ 1 one can have l =I' —1;
the centrifugal barrier is then lower in the initial than
in the final state. Thus, for E'~ 1, m can more easily
get close to M~ in the initial state than in the final state.
It is not difficult to show that the reduced barrier com-
pensates for the additional scattering if l'~ 1 [and Ws(r)
has a Coulomb singularity at y =0], that is, that it is
roughly as "efficient" for rn to scatter from M~ and lose
most of its momentum before being captured as it is for
m to be captured directly into a high momentum compo-
nent of the final state. When this additional possibility
is taken into account, the over-all numerical coefficient
in Eq. (4.3) is altered if I'~ 1, but the v dependence is
unaffected. We shall not generally incorporate this
modification since it is rather complicated to do so and
since the problem has been carefully analyzed (Bethe
and Salpeter, 1957, Sec. IVb). Further, Eq. (4.3) not
only gives the correct v dependence but, at least for
the Coulomb case, can give the correct dependence upon
rs' and Z~ for E' fixed and a sum over p, '; on the other
hand, Eq. (4.3) tends to give incorrect angular distri-
butions. We note that o„(ls-bound) for v-~ will be
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given correctly by Eq. (4.3) since the dominant contri-
butions, o„(ls -ns), are given correctly by Eci. (4.3).
We also note that a number of recent papers obtained
o„,(ls-n', I'~ 1) incorrectly for they ignored the pos-
sibility of the preliminary scattering of m. Further, we
remark that, as for double versus single scattering in
radiationless forward capture, it follows from the above
discussion that for radiative capture into a state with
l ~ 1 via a singular, interaction, a higher term in the
Born expansion does not become negligible as the inci-
dent energy goes to infinity.

If, to be concrete, we consider a bare nucleus incident
on &, we might ask if we can indeed neglect the effect of
the target proton on Hz. Two separate questions arise.
(i) The correct asymptotic form of the wave function is
a product of a hydrogenic function and of a plane wave
describing the relative motion. The relative motion is
not asymptotically Coulombic, and one might question
whether the preliminary Coulomb scattering of the elec-
tron. by the nuclear projectile, discussed in the previous
paragraph, is the correct description. To see that it is,
we note first that the electron and the projectile have a
large relative momentum and that the wave function of
relative motion therefore has many wavelengths within
the shielding, (a,/Z~), and, second, that the significant
aspect of the Coulomb interaction is here not its long
range character but rather its singularity at the origin.
(ii) In its initial state, m has high momentum compo-
nents, and one might ask if these components could (as
for the high momentum components generated in a pre-
liminary scattering of m by M~) make it easier for m to
be captured into a high momentum component. The
answer is no, and is related to the difficulty of then
conserving both energy and momentum. The replace-
ment of the three-body radiative capture problem by the
two-body radiative recombination problem makes it pos-
sible to extend the analysis in a number of directions.
For example, one can directly take over everything
known about'the photoelectric effect; thus, one can almost
immediately obtain the relativistic version of do„,/do
(Raisbeck and Yiou, 1971). As a second example consider
the radiative capture of an electron initially bound in a hy-
drogen atom by an ion with one or more electrons, He' for
instance. The process He'+ H —He+ p+y would then be
equivalent to He'+ e —He+ y., one could approach this much
simpler problem theoretically, or use data for the inverse
(photoelectric) process. For this second example,
where M~ is not a bare nucleus, still another process
could conceivably dominate in some energy range. One
might imagine —this is a point we have not checked-
ihat at high &, though not in the asymptotically high z
limit, the dominant capture process for sufficiently
large Z might be through dielectronic recombination.
In the frame I the incident el.ectron would excite an
inner electron, the two electrons then each being in ex-
cited Rydberg bound states while the system as a whole
would be in a bound state embedded in the continuum,
a bound state which could either auto-ionize oz decay by
the emission of a photon to a true bound state. As a
final example, consider the case in which there are two
or more electrons bound to Mz. To be concrete, com-
pare the capture of an electron from a helium atom by
a proton with the capture of an electron from a hydro-

gen atom by a proton. One would expect O.„for p+ He
-H+ He' to be twice cr„ for p+H-H+ p since details of
the binding play no role, either of the two electrons can
be captured from He, and there should be no interfer-
ence between the amplitude for the capture of one elec-
tron and the amplitude for the capture of the other elec-
tron since the spin projection of the electron which is
captured (or the electron which is not) could in principle
be measured.

dJ(r) 2.ader f d=*[ya, *)[ . (4 4)

[Note that f,"dP(b) is unity since g,.(r) is normalized to
unity. ] Given that radiative capture takes place, dP(b)
is the probability that it takes pla, ce for an impact pa-
rameter between b and b+db. Therefore, with respect
to impact parameter, the differential cross section is

do.„dP(b)
db " db

-tv ' dz . b z

(4.5)

With some manipulation this result also follows from
Eg. (9) of Briggs and Dettmann (1974), a.s sketched in
Appendix A of this article. It i.s apparent from the in-
tegral of Eq. (4.5) that the significant values of b with
regard to radiative capture range from zero to the or-
der of the average radius of the initial orbit of yn, and
this range, of course, is independent of the speed v.
Thus the radiative process explores all but the outer
regions of the target atom (m+M~). Note that the tar-
get nucleus M~ does play a role in the determination of
the impact-parameter dependence of the cross section.

C. Linewidth

The emphasis in this paper is on ihe development of
simple interpretations of and insights into the mechan-
isms for charge transfer, with a total of three particles

B. The impact-parameter dependence

Though it is not necessary to do so since we already
know 0„, it will provide some further physical insight
if we obtain the impact. -parameter dependence of the
radiative capture cross section. We first note that the
collision between m and M~ must be almost head-on
since the effective collision time is short and a large
impulse is needed to cause m to emit a photon of energy
mv'/2. Therefore m must initially be on the path of
M~. In other words, if M~ is incident with an impact
parameter between b and b+ db relative to the target
nucleus M„, the component of the vector joining re and
M~ in the direction perpendicular to the beam axis must
initially be between b and b+ db. The normalized prob-
ability dP(b) that this condition is satisfied is deter-
mined by the initial bound-state wave function. If we
introduce cylindrical coordinates p, P, z, with the z
axis chosen as in Fig. 1, and if we write ~P,(p, z)

~

in
place of ~g.(r) ~', assuming, as is generally the case,
that

~ g,.(r) ~

' is independent of the azimuthal angle we
have
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involved, at asymptotically high velocities. In this sub-
section, however, we digress and discuss matters of
more direct concern to experimentalists. We use the
dipole approximation throughout this section.

Analysis of radiative capture rather than of radiative
recombination is an excellent approximation for the
determination of a„at asymptotically high velocities.
The photon emitted, for a monochromatic incident
beam, will then also be monochromatic, with an energy
A~= mv'/2, neglecting the binding energy of m in the
final state. In reality, the photons will of course have
a spread in energy. To determine the width of the
spread, it will be necessary to take into account the
momentum distribution of m in its initial state. (Here
again the target nucleus M~ plays a role —it generates
the initial momentum distribution. ) To be concrete,
we assume that a. nucleus of charge Zs

~

e is incident
with velocity v on a nucleus of charge Z~ e

~

whi. ch binds
one electron. (The result will be derived in a form ap-
proximately applicable to many-electron atoms. )

The problem can be attacked at a number of levels.
In the crudest approximation the momentum p of the
electron, with respect to the target nucleus which binds
it, has a spherically symmetric angular distribution
and is of fixed magnitude p . The range of the kinetic
energy T of the electron with respect to the incident nu-
cleus is then given by

(P+P )'/(2m) & T &(p-p )'/(2m), (4.6)

where p =mar. The energy spread of T, a measure of
the width of the line, is then 2pp /m, which we can re-
write as 4{T (p'/2m)]' '; T —=p'/(2m) will be of the or-
der of the ionization energy of the electron and the tar-
get nucleus.

An analysis along the above lines was given by Sohval
(1975) and by Sohval et al. (1976). They also went fur-
ther by considering more realistic momentum distribu-
tions, P'(p ), where J @'(p )d'p =1. [If P(p ) is not
spherically symmetric, it can be replaced by the spher-
ically symmetric function obtained by averaging over
angles, for the target atoms are randomly oriented. ]
If n(T)dT represents the normalized distribution of en-
ergies of the electron with respect to the incident nu-
cleus, we then have

a(r)= J2mp'aa„de'((p„)n(T' gp, g)), -(4.7)

We thereby arrive at

n(T)= P @'(P )dP
p

with the range of integration of p given by Eq. (4.8).
Sohval et al. (1976) used a Fock momentum distribu-

tion, appropriate to a hydrogenlike state of principle

where p, =—p p and

T(~ „) . V —
V (P)'

) (
P )„(0 )

There will be a value of p, between -1 and +1 for which
T —T(p, p) = 0 if and only if p lies in the range defined
by Eq. (4.6), namely, if and only if

quantum number yg and of average kinetic energy T„. The
number T„w'as taken to be an open parameter, to be
determined experimentally. (This is equivalent to using
an effective charge in the approximation in which the
electrons of a many-electron atom are considered
to be independent. ) They measured the linewidth for
stripped and partially stripped oxygen nuclei incident
with energies 30 to 65 Me& on targets ranging from
the H, molecule to the 0, molecule. In their analysis,
they used for a„, Eq. (4.3) generalized to include the ef-
fect on the incident wave function of the Coulomb inter-
action between the incident charged nucleus and the elec-
tron to be captured. Furthermore, they corrected for
instrumental broadening, for Doppler broadening, for the
energy dependence of 0„, and for the distribution of charged
states of the "0beam within the gas target cell. The T„
thereby deduced experimentally were in good agreement
with theoretical estimates. [Incidentally, the line is of
course centered not about —,'mn' but aboot ~me'+E~,
where E~ is the difference between the binding energies
of the final and initial states. ]

More recently Spindler et al. (1977) measured the
radiative capture linewidth for partially stripped copper
ions incident on carbon and aluminum foils with an en-
ergy up to 450 MeV. The observed linewidth was well
accounted for- by using highly accurate momentum dis-
tributions for the target electrons.

The above analysis is sufficient for present purposes,
but we note that within the context of the Born approxi-
mation, a rigorous treatment of the three-body problem
was given by Briggs and Dettmann (1974).

It should be clear that folding in the momentum dis-
tribution of the electron not only provides an -estimate
of the linewidth for a monochromatic incident beam,
but also provides an estimate of da„/d(d, the differen-
tial cross section for radiative capture with the emis-
sion of a photon with frequency between ~ and ~+ d~.
Since T=h~ —mv'/2, so that dT= hd(, ), we have, ignor-
ing as above the slight dependence of O„on the initial.
velocity distribution of the electron, da„/d~ = Rda.„/dT
= hn(T)(T„.

D. Galilean invariance for processes involving photons
In their evaluation of the radiative capture cross sec-

tion 0„for p+ H- H+ p+ y, with the particles treated
nonrelativistically, Briggs and Dettmann (1974) found
that a„depended upon the frame of reference used for
their calculation if the relative motion were described
by the Born approximation. This may not seem sur-
prising, since we are concerned with the emission of a
photon, and electromagnetic theory is Lorentz invari-
ant rather than GaI.ilean invariant', therefore we might
not expect a„ to be Galilean invariant. (a„would, of
course, be I.orentz invariant if the particles were
treated relativistically. ) Despite the presence of the
photon, it w'as found that O„was Galilean invariant if
the relative motion of p and H were described more ac=
curately. That 0,„, and, more generally, the cross sec-

A very enlightening discussion of the nonrelativistic limit
of electromagnetic theory has been given by Le Bellac and
Levy-LeBlond (1973).

Rev. Mod. Phys. , Vol. 51, No. 2, April 1S79



Shakeshaft and Spruch: Charge transfer at high impact veIocities

tions for a number of other radiative processes are
Galilean invariant under specified circumstances was
recently pointed out by the present authors, and we
shall touch briefly on this subject.

We begin by remarking that the particle-electromag-
netic interaction is proportional to ~ ' ', to the polar-
ization vector X, and to exp(+ik r). But the Doppler
shift of co and the aberration of X as seen by observers
with relative velocity u will be or order u/c and can be
neglected; further, in the dipole approximation we re-
place the exponential by unity. There is little left
therefore of the. structure of the photon, and in the
above approximation we have what might be called a
nonrelativistic quantum theory of photons. ' (One can
also surely find conditions under which classical radia-
tive processes have Galilean invariant cross sections.
Further, since the gravitational field has spin two, as
opposed to the spin one of the electromagnetic field, we
should expect to obtain a nonrelativistic theory of grav-
itational radiation on using the quadrupole approxima-
tion. ) It turns out that o., is indeed Galilean inva. riant
in this nonrelativistic limit if the initial and final wave
functions describing the motion of the particles are
orthogonal. If the initial and final wave functions a.re
not orthogonal, Galilean invariance does not, in gen-
eral, follow. This can be understood as follows.

It is well known that a free particle cannot radiate.
The mathematica, l proof of this result is that the quan-
tum-mechanical matrix element for the radiation by a,

free pa, rticle contains, as a factor, the product of a.n
energy -cons erving delta function and a momentum-con-
serving delta function; the arguments of both delta func-
tions cannot vanish simultaneously and so the matrix
element must vanish. A free particle that has internal
degrees of freedom, to be referred to as a free system,
such as a He' ion, can of course radiate if the free sys-
tem is in an internal state of excitation. However, one
should not expect the c.m. of the free He' ion to be able
to radiate, at least if, as we assume, the photon mo-
mentum can be neglected. (If the photon momentum is
not neglected, the c.m. of the ion will recoil, and there-
fore radiate, if the ion undergoes an internal radiative
transition. ) The proof that the c.m. of a free system
cannot radiate does not follow from the impossibility of
the arguments of the energy- and momentum-conserv-
ing delta functions vanishing simultaneously. In fact,
of course, both arguments cygne vanish simulta, neously if
the free system is initially in an excited internal state
(which includes continuum states), since energy con-
servation can be satisfied merely by allowing the free
system to undergo an internal transition. It is the
orthogonality of the wave functions describing the in-
ternal state of the system before and after the transi-
tion which precludes radiation from the c.m. If this
orthogonality is not preserved when approximate wave
functions are used to describe the internal state of a
system, the c.m. of the system will, in general, seem
to radiate. As one might expect, the matrix element
for spurious c.m. radiation is proportional to the cur-
rent generated by the c.m. ; the constant of proportion-
ality is zero only if the initial and final internal wave
functions are orthogonal. Since the current generated
by the c.m. of a system depends on the frame of refer-

ence being used (unless the system is electrically neu-
tral, in which case the current is zero in all frames),
it follows that if the initial and final internal wave func-
tions of the system are not orthogonal, the cross sec-
tion for the system to undergo any radiative transition
will not be Galilean invariant in the natural nonrelativ-
istic limit.

This point has been discussed in detail by the present
authors elsewhere (Shakeshaft and Spruch, 1977) and so
we shall not enter into further details here; however,
we should remark that had we performed the calcula-
tion of Sec. IV. A in any frame other than the frame I,
we would have obtained an erroneous result. The rea-
son, of course, is that the wave functions which we
used to describe the initial and final internal states of
(m+Ms) are not orthogonal. (The final state was de-
scribed exactly, but the initial continuum state was de-
scribed by a plane wave rather than by a Coulomb wave
function. ) We obtained the correct result only because
in the frame Il the c.m. of (m+Ms) is at rest and there-
fore generates no current, so that the possibility of
spurious radiation does not arise. The correct result
can be obtained in a frame other than Q, but one must
use a better approximation |tI, , to the initial continuum
wave function $; than a plane wave; we need not have
(g,.„gz) =0, but (g,.„~Pz) must vanish "sufficiently rap-
idly" as p increases for the error introduced by the
lack of orthogonality to be irrelevant.

V. DOUBLE SCATTE R ING

In this section we discuss the double scattering mech-
anism, so called because gpss is captured after undergo-
ing two binary collisions. It should be noted thai the
knock-on process and the double scattering process are
two very different mechanisms for radiationless cap-
ture. In fact, the knock-on process is really not of
great interest since it is never observed in customary
"electron" capture experiments, where, in the lab
frame, only those "atoms" moving with high velocity in
the forward direction are detected. (Recall that in the
knock-on process the incident nucleus comes to rest, in
the lab frame. ) In the double scattering mechanism the
incident nucleus is only barely deflected owing to the
extremely sma. ll ratios yn/M„and m/M~; in other
words, the incident nucleus is scattered into the for
Ized direction through a very narrow range of angles
with little change in speed.

As in the preceding two sections the emphasis in this
section is on the "physical" interpretation. Indeed it is
even more to the point for the present mechanism than
for the previous two to develop further insights since
the present mechanism is a much more complicated one
and one can perform the full quantum-mechanical three-
body calculation of the forward capture cross section
without gaining much feel ing as io what "happened. "
Our viewpoint in this section is the following. In the
days of the old quantum mechanics, and even in the
early days of modern quantum mechanics when the the-
ory was not yet properly understood, one was often
guided by concepts such as the correspondence princi-
pl.e; such concepts enabled one to utilize one's know-
ledge of classical mechanics. We should like not to re-
verse but to update the procedure. Guided by our clas-

Rev. Mod. Phys. , Vol. 51, No. 2, April 1979



Shakeshaft and Spruch: Charge transfer at high impact velocities

sical ~gad quantum-mechanical knowledge, we should
like to develop a simple but accurate picture for the
complicated double scattering process. To develop
such a picture we shall decompose the process into
elements and we shall use classical concepts to evaluate
the elements where possible, that is, , where there is no
violation of the (higher) laws of quantum mechanics; the
uncertainty principle, in particular, will ever be in our
minds. Apart from satisfying an inner need, the above
approach will enable us, using considerable hindsight,
to rederive the asymptotic form of the forward capture
cross section in a fashion very much simpler than that
of treating the problem as a full quantum-mechanical
three-body problem; it is not merely that the analysis and
integrations are simpler, but that there are no integrations
of any kind to be performed! [In the full quantum-
mechanical treatment, the matrix element at one stage
is a 24-dimensional integral. See Eq. (8.4.5) of
McDowell and Coleman (1970). This book, incidentally,
contains an excellent discussion of the single scatter-
ing and double scattering processes. Furthermore,
as is to be expected from its title, the book Theory
of Charge Exchange (Mapleton, 1972) contains a
wealth of information on charge transfer processes. ]
However, our approach is not quite rigorous. It should
be possible to make it rigorous, but at present its full
justification must rely upon agreement with earlier and
more rigorous calculations; more significantly, it
might be difficult to obtain the exact numerical coeffi-
cient with the present approach. Qn the other hand,
the present viewpoint should clarify the limits of
validity of existing calculations, and should suggest
whether possible extensions —to target atoms or ions
with more than one electron, to incident nuclei that are
not bare, or to the relativistic domain, for example—
could be validly treated with merely minor modifica-
tions or whether these extensions would require a far
more elaborate calculational procedure. (With regard
to relativistic corrections, note that the light particle
m never achieves a speed much exceeding that of the
incident heavy nucleus M~ so that m can be treated non-
relativistically if Me can. )

A. Some historical remarks

The double scattering process was suggested by
Thomas (1927) as the mechanism for forward capture
at high impact velocities. Thomas performed the first
calculation of the forward capture cross section; ii was
a tour de force based on a classical. treatment of double
scattering. %e shall describe Thomas's calculation in some
detail in Sec.g.(.. For the present we briefly note that
Thomas supposed that for capture to take place m must ac-
quire a velocity very close to the velocity v of the incident
nucleusM~; the latter moves with essentially constant
velocity. This requires (from conservation of energy
and momentum, as explained below) that, in the lab
frame, m first be knocked by M~ towards the target nu-
cleus M„with a speed very close to v and in a direction
making an angle e, of just about 60' with the direction
of motion of M~, as shown in Fig. 3; m then scatters
from M~ through an angle n, of just about 60, without
change of speed, and emerges with a velocity very close
to v. The mutual attraction bebveen m and M~ then

serves to bind them. Using classical mechanics,
Thomas predicted that the cross section for forward
capture by protons from hydrogen atoms should behave
as 1/v" for asymptotica. lly high v.

The first quantum-mechanical calculation of forward
capture was performed by Brinkman and Kramers
(1930). Their calculation differed from the first Born
approximation only in that the internuclear potential
was omitted. The justification for neglecting the inter-
nuclear potentia. l is as follows: To order m/M~ the
internuclear coordinate is the same as the coordinate
connecting Me to the c.m. of (rn+M„); but an interaction
between two systems which depends only on the coordi-
nate connecting the centers of mass of the two systems
cannot directly affect the internal state of either sys-
tem —in particular, it cannot directly induce charge
transfer. For further discussion of this point see Dett-
mann (1971). The internuclear potential is, of course,
essential to knock-on capture; it is for this reason that
the velocity-independent coefficient is so much smaller
for 0„, than for 0~. %ithin this approximation, Brink-
man and Kramers predicted that the cross section for
forward capture by protons from hydrogen atoms should
behave as 1/v" for asymptotically high v, in clear dis-
agreement with the Thomas result. The Brinkman-
Kramers result was naturally favored, since quantum
mechanics, though still a new theory then, had already
been enormously successful in explaining phenomena
that classical mechanics could not. Nevertheless, de-
spite the overwhelming predilection for quantum me-
chanics, the disagreement between the Thomas and
Brinkman-Kramers results was not viewed without
consternation by Bohr and others; it was difficult to
understand why the conditions for the validity of the
classical treatment were not satisfied since, in the
Thomas picture, m is scattered through /urge ~pggEes
with high speed, and since the classical Rutherford
cross section happens to be correct. (The extent to
which the double scattering process @~yes be treated
classically is discussed in Secs. V.B. 2 and VII. A. ) For
many years it was incorrectly thought that the classical
treatment failed to yield the Brinkman-Kramers re-
sult because it neglected subtle interference effects.
Even as late as 1948 Bohr (1948), in commenting on the
supposed inadequacy of the classical treatment, wrote:
"It must be realized, however, that in the capture phe-
nomena we have not simply to do with two separate col-
lisions, the individual effects of which. . . . . . . are de-
fined by the wave functions at large distances from the
scattering centre. On the contrary, electron capture
presents us with an intricate collision process for the
result of which the interference of the scattered wave-
lets during the overlapping of the atomic fields may be
decisive. " A correct understanding of the discrepancy
between the classical and quantum-mechanical results
was not achieved until 1955 when Drisko (1955) rea-
soned that classical double scattering is a two-step
process which should therefore correspond to a second
Born term in a quantum-mechanical treatment; the first
Born term corresponds to single scattering. Drisko
calculated the contribution from the second Born te rm-
the Born again term, Prof. Paul Berman has called it-
to the forward capture cross section and indeed found
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FIG. 3. Schematic diagram depicting the motion of ~ and Mz in the lab frame for the double scattering process. The paths of m
and ~z are indicated by thin and thick lines, respectively. The initial speed of m is very much less than u and will be neglected.
M& remains effectively at rest, and ~z moves with effectively constant velocity v at an impact parameter of about b relative to

The dots labeled n~& and ~&& and the dots labe1ed ~~2 and MBq represent the positions of ~ and ~z at the times of the first and
second collisions, respectively. Note that I&, n&2, and ~&& form an approximately equilateral triangle with sides of length
26/v 3. The position. vector of n~ with respect to Mz, indicated by a dashed line, is r& =—(xA,0„,PA) with the polar axis parallel to
v. The value of r& for the initial col.lision is roughly r&&-—— (2b/WB, 27t/3, @&). The position vector of m with respect to Mz, also
indicated by a dashed 1.ine, is rz-=- (x&, 0&5~) with the polar axis again parallel to v. At the time of the second collision m is very
close to M&—roughly at the break in the thin line —and rz=r&2 ——(2b/v 3, 27t./3, @z), setting @&= ft)&. The velocities of m after
the first and second collisions are v~ and v&, respectively. Note that, as opposed to the classical. case, the uncertainty principle
prevents us from knowing whether the trajectory of m passes above or below M&.

that for p —H atom scattering it behaves as 1/z" for as-
ymptotically high v. Quantum and classical mechanics
were thereby largely reconciled. However, the classi-
cal numerical coefficient is incorrect by an order of
magnitude; this point is discussed in Sec. VIIB.)

More recently, Dettmann and Leibfried (1969) and
Dettmann (1971) showed that for a system of three par-
ticles interacting via a wide range of potenti. als the con-
tribution from the second Born term to the forward cap-
ture cross section dominates over the contribution from
any other Horn term at asymptotically high velocities.
How'ever, we should stress that in the absence of a
proof that the Born series is at least an asymptotic ser-
ies, it does not immediately follow that the asymptotic
velocity dependence of the forward capture cross sec-
tion is truly determined by the second Born term. Un-
fortunately, almost nothing is known about the conver-
gence properties of the Horn series for three-body
scattering. It is known (Aaron et al. , 1961; Rosenberg,
1963) that the Born expansion of the full three-body
Green's function G(E) in terms of the free three-body
Green's function G,(E) diverges in some region of mo-
mentum space no matter how large E' is. However, it
does not follow from this that the Born series for the
scattering amplitude diverges, since in the expression
for the amplitude G(R) appears inside a weighted inte-
gral over momentum space. Indeed, if the interactions
are sufficiently short-ranged, G(E') appears between
square-integrable functions. This point has been em-

phasized by Dettmann and Leibfried (1966) and by Cor-
bett (1968), who investigated a one-dimensional three-
body problem involving delta-function potentials and
showed that for this case the Born series for the ampli-
tude does converge for sufficiently high E. The present
authors attempted to avoid convergence questions by
expanding the scattering amplitude in a Born series only
up to a certain term and then bounding the remainder.
So far. it has proved to be possible to do this only with-
in the impact parameter approximation where the nu-
clei are treated as infinitely massive, and then only for
certain potentials. Within this approximation it was
shown (Shakeshaft and Spruch, 19'I3), using variational
bounds on transition amplitudes developed earlier by
Spruch (1969),' that for a certain class of potentials the

6In thi. s reference bounds and variational bounds were de-
rived on the transition amplitudes for any system governed by
a time-dependent Hamiltonian. (Note that in the impact-param-
eter approximation the nuclei become moving centers of force
which subject the light particle to a time-dependent perturba-
tion. ) The only unknown in the exact expression for an ampli-
tud, e is the time-translation operator U. This operator was
eliminated by using the Schw'arz inequality and the isometric
property U~ U=1. Contrast the boundedness of the (unknown)
operator U that characterizes transition processes with the
singular natu. re of the (unknown) Green's function G that char-
acterizes time-independent cross sections; the non-normaliz-
able plane wave describing the relative motion of the nuclei
does not appear in the impact-parameter approximation.
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remainder, written as one (explicit) term rather than
as an infinite series, decreases more rapidly, with in-
creasing velocity than the second Born term. Combined
with the work of Dettmann and I eibfried this then
proves that, at least within the impact parameter ap-
proximation, the second Born term truly does deter-
mine the asymptotic form of the forward capture cross
section for the class of potentials considered. '

Before proceeding further, we should J.ike to make it
perfectly clear that the treatment of the double scatter-
ing process that follows is not classical; rather, we
isolate certain factors which can be treated classically.
Indeed, it is not possible to treat scattering by a target
atom in a 1s state classically, and various attempts to
do so lack justification. Double scattering capture from
an atom initially in a hjg@ Hydberg state c~yg be treated
classically; this is done in Sec. VII. We note that the
expression to be derived below, Eq. (5.12), has been
derived within the quantum-mechanical second Born
approximation. The derivation below has, we believe,
heuristic value, but while the mathematics involved is
at an extremely low level, there are many small details
associated with the many uses of the uncerta, inty prin-
ciple. Any reader who is satisfied with the mathemati-
cal derivations in the literature can simply accept Eq.
(5.12) and start reading again at that point, though the
reader might read subsections V.B.1 and V.B.2 and skim
V.B.3 through V.B.6.

B. "Physical" derivation of the cross section

1. Classical aspects of the problem

We let M~ be incident with a velocity v and impact pa-
rameter between b and b+ db relative to M~. With little
loss in applicability, we assume azimuthal symmetry
so that the cross section is independent of the azimuthal
angle, with f defining the pola. r axis. If it is to be pos-
sible to treat M~ classically as well as quantum me-
chanically, db must be large compared to h/Mev; since
z is to be arbitrarily large, this in no way prevents us
from imposing the further condition that db «b for all
relevant b and db« the linear dimensions of the
"atoms" (m+ M„) and (m+ M~). Furthermore, it is
a gn glori reasonable, and will be made quite clear
shortly, that the change in momentum of M~ due to its
collision with m will be of order mz, which is negligible
compared with M~v. The change in momentum of M
due to its interaction with M„ is, for all 5»0/Mev,
also negligible in comparison with M~g. For present
purposes we can therefore take M~ to move with con-
stant velocity v within the thin cylindr ical shell def ined
by b and b+db.

We assume that M„ is initially localized to within a
region of linear dimensions large compared to A!M„v,
but very small compared to b and to the linear dimen-
sions of the "atoms", then in the lab frame ihe initial
speed of M~ can, and will, be assumed io be negligible

'The class of potentials is as follows: W~(~) and W~(~) are
l.ocal, spherically symmetric, decrease faster than 1//x as

~, are bounded for all x, and have Fourier transforms
vyhich for large k have an asymptotic expansion in 1/k. (Un-
fortunately Coulomb potentials are not included. )

2. Kinematics

I et v, and v„respectively, denote the velocities of
nz in the Egb frame after the first and second collisions.
(Throughout, the subscripts 1 and 2 denote quantities
which are related to conditions immediately after the
first and second collisions, respectively. ) Let cled and cv2

denote the acute angles between v, and v and between v,
and v, respectively. We neglect the initial. energy and
momentum of m. It is precisely because we can here
neglect the high-velocity components of m in its initial
state —and also in its final state, as discussed below—
that double scattering can dominate over single scat-
tering. If we also neglect corrections of order m/Me,
it fo11ows immediately from energy and momentum con-
servation that

gpss
= 20 costi . (5.1)

Since m/M~ «I, the energy transferred to m during the
second collision is negligible in the lab frame. There-
fore, in the j.ab frame, m scatters from M~ without
change of speed so that v, = v, . Combined with Eq. (5.1)
and the requirement v, =v, this leads to zr, =v and o,
= o.,= m/3, as indicated in Fig. 3.

We must of course al.low a small spread, of absolute
magnitude do„ in the "scattering" angle o,. (We refer
to o, as the "scattering" angle, although in the lab

compared to v. Since, further, for all b»k/M„v, M~
will absorb momentum which too is only of order mzr,
we are free to think of M~ as remaining effectively sta-
tionary in the lab frame throughout the double scattering
process.

Now there is clearly an enormous advantage to treat-
ing the nuclei as classical pa, rticles, for then the full
quantum problem reduces to a one-body probl. em.
There is, however, a disadvantage, and that is that the
nuclei, when treated classically, must be treated as
external sources which follow classical trajectories
and subject m io a potential which is time dependent.
Fortunately, in the present analysis, it is possible to
extract the advantage without introducing the disadvan-
tage. Spea, king very loosely, we note that the nuclei
can be treated classically Oy quantum-mechanically and
we shall talk about "when" the nuclei are at such and
such a position.

Even in the study of the light particle m, much of the
description can be classical. Each collision will in-
volve a momentum transfer to m of order ~v —w'hich

is large for a particle of mass yn —so that each collision
will be a close one. Since, in addition, the wavelength
of m between the two collisions will be of order @/mv,
which is very much smaller than the separation of the
nuclei for almost all relevant values of b, the motion of
m between collisions is essentially classical. Thus
each collision is truly a binary one; interference effects
between the two collisions are negligible, and we can
work with probabilities rather than amplitudes.

We defer the discussion of the explicitly quantum-me-
chanical aspects of the motion of m until after a discus-
sion of the kinematics of the problem. The kinematics
are of course the same classically and quantum-me-
chanically.
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frame m is not scattered through any well-defined an-
gle since it is at rest initially. ) This spread gives rise
to a spread, of absolute magnitude dg„ in the speed u„.
from Eg. (5.1) we have

du» ——2~ sin~»do. (5.2)

It will turn out that, apart from requiring o» d~»» the
orbital speed of m about either nucleus, we shall not.
need to specify dv, . Let r„=(r„,9„,g„) denote the co-
ordinates of m with respect to M~, with the polar axis
defined by 8. Since m must undergo a very large mo-
mentum transfer in each collision, each collision will
be almost head-on, and we therefore find that at the
time of the first collision g~ and 8~ must have the val. —

ues x» = b/sino „=2b/ 3 and 8» = v —o, , = 2v/3, respec-
tively.

3. Quantum-mechanical considerations and formulation
of the problem

Quantum-mechanically we know the region from which
m is scattered in the first collision only to within ihe
accuracy permitted by the uncertainty principle. This
region, to be denoted by dv„ is centered about the point
specified by r„, —= (2b/W3, 2&/3, @„). The actual size of
dv» is related to the quantum-mechanical uncertainty
in the velocity v, of m after the first collision. The un-

certainty in this velocity, in any direction, can be as-
sumed to be small compared to v but large compared to
the orbital speed of m before the collision. Thus d7,
can be assumed to be small compared to the size of the
"atom" (m+M„), and the initial bound-state wave func-
tion of m will be roughly constant over the region d7».

In the second collision m strikes M~ and emerges into
a, small solid angle with a velocity v, close to v. Let
do, denote the cross section for this second scattering.
The target M~ effectively presents an area do; upon
which m must impinge. Classically, one knows precise-
ly where this area, must be located. Quantum-mechan-
ically, however, one knows the position of the area only
insofar as m is localized during the collision; roughly
speaking, the area do, can be anywhere on a disc whose
plane is perpendicular to v», whose center is at M~,
and whose radius is, for sufficiently high z, very small
compared to b and to the linear dimensions of the
"atoms" (m+M„) and (m+Ma), but somewhat larger
than h/mv and very much larger than the linear dimen-
sions of do, . Note that, for Rutherford scattering, the
differential cross section decreases as i/v with in-
creasing g, and for interactions less singular than Cou-
lomb it decreases even faster; therefore the linear di-
mensions of do, will be extremely small for high z.
Now if we treat the motion of m as classical between
collisions, m can impinge upon the area dg„ for a given

db ™C('hlmv}

FIG. 4. The plane of the page represents a half-plane of fixed azimuthal angle @&. The finely hatched area denoted by do~ repre- '

sents one possible location of the cross sectional area through which ~ must pass if it is to emerge with reasonable probabil. ity
of being captured by ~~ after the scattering by ~&, thus d02 lies in the plane through ~„and perpendicular to v& in a circle cen-
tered on M~ and with a radius of order d &. (The figure has not, of course, been drawn to scale. ) The point Q is an arbitrary
point on do&. The hatched and crosshatched regions at the top of the figure are, respectively, theprojections ofd7'& andd&& ontothe
plane of the page. The point I' within the crosshatched region is a possible initial location of m if m is to bg scattered by M~ to
the point Q so as finally to emerge with a velocity close to v; m must be scattered through an angle between. o'&=60' and 0'&+do'-&

an& pass through the particular area d02 under consideration. For m to pass through any da& which leads to a reasonable probabil-
ity of capture —which is all. that we can ever be sure happened if ~ is captured —m can initially be in the much larger volume dv'f.
The dimension db is somewhat larger than h/~v, by a velocity-independent factor C. (C might be of the order of 100, say. )

Rev. tVlod. Phys. , Vot. 51, No. 2, April 'l979



Shakeshaft and Spruch: Charge transfer at high impact velocities 383

position of this area, only if m is scattered in the first
col1.ision from a certain subregion d7,' of ihe volume d7, .
This is indica, ted in Fig. 4 and will be discussed further
inSec. V.B. 5. Therefore the cross section for m to
finally emerge after the second collision with a velocity
close to v is P„,do, where d|T, is the cross section for
the first scattering and where P„, is the probability that
nz is scattered from the "appropriate" location in the
first collision.

Even if m finally emerges with a velocity close to v it
will be captured into a particular final state by M~ only
with a certain conditional probability, to be denoted by
P, . The actual double scattering cross section for m
to be captured when M~ is incident with an impact pa-
rameter between b and b+ db is therefore

(5.4)

(5.5)

Let dQ, (lab) denote the solid angle corresponding to
dQ, in the lab frame, that is, in the frame in which M~
is at rest. It is not difficult to see that dQ,
= 4 coso. ,dQ, (lab) ='2dA, (lab). Now, in order for m to
scatter into dQ, in the second collision, rn must im-
pinge upon the area der, . Since the linear dimensions of
the area do, are much smaller than the distance y~~ of
m from M~ at the time of the first collision, we see
from Fig. 5 that dA, (lab) = do, /y„, . From x„',= 4b'/3
and dA„= 2dQ, (lab) we obtain

cfo'~ = P) c$0'~P (5.3) dn, =(3/25')da, . (5.6)

We now study the quantities P„„o,
4. Analysis of do„and do2, the binary differential cross
sect io n s

Let dQ, denote, in the c.m. frame of m and M~ (which
is not the lab frame), the solid angle into which m is
knocked in the first collision; let dQ, denote, in the
c.m. frame of m. and M~ (which is, essentially, the lab
frame), the solid angle into which m is knocked in the
second collision. With W„(y) and Ws(r) denoting the
interactions between m and M~ and between m and M~,
respectively, let W„(p) and W~(p) be the associated
Fourier transforms, defined by Eq. (2.1). The momenta
transferred to m during the first and second collisions
are mv, and m(v, -v, ), respectively. We note that

mv and ~m(v, —v, )
~

= me, and that the cross
sections do, and do, are adequately described by the
first Born approximation (since for potential scattering
the first Born approximation becomes increasingly ac-
curate as ihe energy increases for the class of poten-
tials we allow. ) We can now write

The only unknown in do, is therefore the solid angle dQ, .
We need never determine dQ, ; it will be eliminated be-
low by using the uncertainty principle.

5. Analysis of P~, , the appropriate location probability

The "scattering" angle of the first collision lies be-
tween ~, = p/3 and o, + do, . Referring to Fig. 4, the
first scattering must, in the half-plane defined by any .

fixed azimuthal angle @„, take place somewhere within
the intersection of the pair of lines diverging from any
point Q on do„at angles ~, and o, , + do„and the pair
of lines defined by b and b+ db. Since the distance of
the point Q from M„ is very much less than b, the area
of intersection (that is, the area of the crosshatched
region ifhk in Fig. 4) will be roughly the same for all
of the allowed points Q, and in estimating the area of
intersection we can, with negligible error, take the
point Q to coincide with M~. Furthermore, neglecting
only corrections of order 1/z, we can approximate the
area of the region i+@ by the area of the region ighj
We conclude that the area of intersection is approxi-

A
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Qi+
CIGAR
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I
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FIG. 5. m is initially at the
point & within the crosshatched
region defined by ifhk. It is
scattered by ~z, with a cross
section do.&, into the solid angle
dQ&, centered ab'out a "scat-
ter ing angle" of 3 ~. m is then
scattered by ~„, wi. th a cross
section der&, into the solidangl. e
dO& centered about an axis
which is paral. lel to v and which
passes very cl.ose to M&.

dQ2
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mately

d7,'= bdg~ x 4bdbdv, /(3W3v) . (5.7)

The probability that ~ is initially within the volume
dr, defined earlier is

~ g,.(r„,)
~

'dg „where as noted
above, r„,= (2b/v 3, 2~/3, @~), where g,. is the initia. l

wave function of m, and where we have used the fact
that g, is roughly constant over the region dv, . The
probability that if m is within the region dT, it is actual-
ly within the subregion dr,' is d7,'/d7', The.refore, if
MB is incident with an impact parameter between Q and
b+ db, the probability that m is initia. lly in the appro-
priate location to be scattered in the first collision in
such a fashion as to emerge from the second collision
with a velocity close to v is

dT' 8
&...= Ig;(r, )l'&~, (z,

':= l);(~„)l'- ', (5 8)

where we have used Eq. (5.7) and we have integrated
over all azimuthal angles assuming that m has a well-
defined component of angular momentum along 5 in the
initial state f so that

~

iL),.(r~)
~

is independent of p~.
Our use of two different volumes, d7., and dr,', to de-

scribe the initial location of gpss is essential for a quan-
tum-theoretical justification of the calculation, and we
shall comment further on these two volumes in Appen-
dix B.

where in the right-hand side of this equation we have set
o, =~/3 and used Eq. (5.2) to replace dn, by dv, /v 3v. It
follows that, for a fixed position of do„m must be
scattered in the first collision from within a volume

7. The f ina I result

Combining Eqs. (5.3)—(5.6), (5.8), and (5.10), we ob-
tain

do/db=('167)'m /v 3vh')

x
~

W„(mv)W, (mv)q, .(r„,)q, (r„)~'

x d&id2d7 (5.11)

We now evaluate the factor A, dQ, dv, . We can assume
that the uncertainty in the speed of m after the first
collision is essentially dv, . Since m scatters without
change of speed from M„, the uncertainty der, in the
speed of m after the second collision must be equal to
dz, . Noting that v, = g we therefore have dg, dQ,
=dv, dA, =d'v, /v'. Now from the uncertainty principle
we know that d'v, dv, =(b/m)', we shall comment in a
moment on the use of b(= 2)7h) rather than @, and on the
replacement of an inequality by an equality. It follows
that dv, dg, dv, =h'/m'v'. Using this result in Eq. (5.11)
we obtain the essential result

where rs, =(ys„8 „gs). In the first step we recognized
that the linear dimensions of the volume dv, of the
wave packet that emerges after the second collision are
sufficiently small compared to the linear dimensions of
the "atom" (m+Ms) that gz can be treated as a constant
over the volume dv, and can therefore be taken outside
the integral; we also assumed that in the final state nz

has a well-defined component of angular momentum
along v so that

~ g& ~
' is independent of the azimuthal an-

gle @s. The second step follows from the Schwa. rz in-
equa, lity. This inequality. will be a rough equality if y,
is nodeless, a property 4, will possess if, as we as-
sume, 4, represents a nearly minimum, wave packet. '

6. Analysis of P„,the conditional probability of capture

I et rs= (rs, 8s, )t)s) be the spherical coordinates of m
with respect to M~, with the polar axis defined by g,
and let g,(rs) be the (normalized) wave function that de-
scribes m immediately after the second collision. (The
reduction in the intensity of the twice-scattered beam
with respect to the incident beam is accounted for by
other factors, including do; and dQ, .) The probability
that m will be captured into the final state f, charac-
terized by the normalized wave function $z (r ), from
the state characterized by the wave function @,(rs), is
defined as P„. We have

da /db -(2"w'ma/W3v')

x
~
W„(mv)W (mv)g, .(r*) )j~(r*) ~'

where

r* = (2b/~3, 2v/3, @).
It follows that

o' (2 i) mh/v )
~

W (mv) Ws(m )
~

dJ'; x, 2m 3, g J', 2m
b

For the a.tomic case we have, using Eq. (2.2),

(5.12)

(5.13)

P =
z r& 4' r& dx& (5.9)

- ~g~(r, ) ~'d~, , (5.10)

Since m and M~ travel at roughly the same speed ~,
and therefore cover roughly the same distance during
the interval between the first and second collisions, and
since o, =7)/3, the significant values of the coordinates
x~ and 8~ at the time of the second collision are, re-
spectively, &s,

—= 2b/W3 and 8» ——2z/3. Denoting the re-
gion in which 4,(rs) is non-negligible by dv„we there-
fore have

' 2

Z...=
~ y, (r„)~'

~F e,(r, )d'~,

8A minimum I,'Gaussian) wave packet has the property that the
product of the uncertainty in position and uncertainty in mo-
mentum is a minimum. If the description of m presented here
is to be at all meaningful, we must assume that after the first
collision m is described by an almost minimum wave packet.
Therefore 4&(rz) is assumed to be a product of exp
bm(v2 —v) .r~/5] and three Gaussian or Gaussi. an-like func-
tions. The wavelength of oscillation of the exponential function
is roughly equal to the width of the Gaussian functions, and
therefore the presence of the exponential function does not in-
validate the argument. If one were able to determine exactly
the leading term in powers of 1/v of f 42 (rs)d ~s, the final re-
sult, Eq. (5.12), would contain aH of the relevant "physics"
and the numerical coefficient wouM be precisely determined.
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a~(nl p n'I')L) ') (2 m~Z„'Zse'e'/m'v")

x lI'„(2m/3, y)I', , (2~/3, y) ~'

(5.14)

Averages over p and/or sums over p' follow immedi-
ately. For example, we have, averaging over p, and
summing over p,

'

o~(nl —n'l') (2 m'Z„Zek'e'/m'v")

(5.15)

Note that apart from the requirement m/M„«l and
m/Me «1, these results are independent of the masses
M„and M~. Note also that the entire range of impact
parameters, from zero to the order of the smaller of
the characteristic radii of the two "atoms" (m+M„) and
(m+Me), contributes to the cross section.

It might be noted that once one has deduced the ab-
solute-magnitude factor in Eq. (5.11), and recognized
that the coefficient of this term can be a function of m,
h. , and v only, it is no longer necessary to use the un-
certainty principle to obtain the form of the coefficient
and thereby of der~/db; it follows from dimensional analy-
sis. This is not to the point, however, for the deduc-
tion of the absolute-magnitude factor requires the un-
certainty principle for its proper justification.

C. Discussion

The result (5.12) is identical to the asymptotic form
of the differential cross section with respect to impact
parameter obtained in the impact-parameter represen-
tation of the quantum-mechanical second Born approx-
imation (Shakeshaft, 1974a; see also Appendix C). We
expected, of course, that the foregoing analysis would
yield the correct dependence of the asymptotic form of
da„/db on its various parameters, but we should not
have expected to obtain the correct numerical coef-
ficient. That we did was due to our "foresightedness"
in arbitrarily setting d v,dT2 equal to (h/m)3. The un-
certainty principle tells us only that d'v, dT2 ~ (h/2m}'
and we might, for example, have s et d'v, d 7, equal to
(h/m)'. It is satisfying that we obtained the correct
numerical coefficient using a value of d'v, dT, above the
minimum value, but it scarcely proves anything, es-
pecially since we used an uppe~ limit in arriving at
Eq. (5.10).

In the foregoing analysis we borrowed the basic
picture from the ingenious analysis of Thomas (1927).
Our analysis differs from that of Thomas in that an
attempt has been made to build in all of the essential
elements of a proper quantum-mechanical calculation.
In addition to any conceptual, insights gained by the
present derivation, our results are an improvement
over those of Thomas in the following three computa-
tional respects: (i) Thomas assumed that m can
initially be found only on the surface of a sphere whose
radius is equal to the characteristic radius a, say, of
(m+M„); his only use of quantum theory was in the
input value of a. (This point, which has been the source
of some confusion in the literature, will be elaborated

on in Sec. VII.B.) We assume that m can initially be
found in any region of space with a probability deter-
mined by the initial wave function g, of (m+ M„). (ii)
Thomas calculated the differential cross sections for
the first and second scatterings from classical mechan-
ics, whereas we use quantum mechanics. His analy-
sis is thereby limited to the case of Rutherford scat-
tering, for which the elassieal cross section is correct.
(iii) Thomas did not account for any quantum-mechan-
ical uncertainty in the speed of m. In his analysis the
spread dv, in the speed v, after the first collision was
set equal to the spread dv, in the speed v, after the
second collision, and the factor dv, dQ, was eliminated
by supposing that the vector v, should lie within a
sphere of radius u (centered at v, in velocity space),
where u is the escape velocity of m in the field of M~.
Thus Thomas supposed that d'v, = (4m/3)u', with u de-
termined from the equation

—,
' mu' + We (a) = 0 .

Therefore Thomas could determine only the sum of
cross sections for capture into individual states; we
determine the cross section for capture into any par-
ticular final state f characterized by Pf, and we
eliminate the factor dv, dQ, by using the uncertainty
principle. (However, o„(ls —n') can be calculated

- for a particular n' along the lines of Thomas' original
approach. See Sec. VII.B, where it is done for capture
via double scattering from a high Bydberg state in a
way which could be applied, though again not quite legit-
imately for an initial state a 1s state, to capture via
double scattering from the 1s state. )

e In discussing the quantum-mechanical aspects of
the probl. em, in Sec. V.B.3, we did not consider the
effect that the principle of indistinguishability might
have in the case that the nuclei are identical. We now
pause to consider this point. We assume that the nuclei
are identical and examine whether forward capture can
be distinguished from direct scattering where capture
does not occur, but where M~ gives up most of its
kinetic energy in the lab frame to (m+M„), knocking
this "atom" forward with a velocity roughly equal to
v, and exciting it to the final state of interest; this
direct process differs from the knock-on process dis-
cussed above in that nz is not captured by M~ but re-
mains attached to M~. Note first that since the nuclei
are highly localized their wave packets will not overlap
appreciably, and they are effectively distinguishable,
for all impact parameters b&&k/Mv, where M= M„
=Me. Now the range of impact parameters b Kh/Mv
contributes negligibly to the double scattering cross
section, as can be seen from Eq. (5.12); on the other
hand, it is this range of impact parameters which pro-
vides the major contribution to the direct scattering
cross section, since in the direct process under con-
sideration the. two nuclei must collide almost head-on
to exchange momentum of order Mv. Therefore
capture via double scattering can, for practical. pur-
pos es, be dis tinguished from dir ect scattering. For-
ward capture via single scattering (described by the
Brinkman-Kramers approximation} can for practical
purposes also be distinguished from direct scattering,
but only because of the small ratio m/M since, as
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discussed in Appendix D, forward capture via single
scattering occurs for impact parameters b &5/mv.
[To estimate the cross section for the indistinguishable
direct scattering process, note that the characteristic
exchange of momentum in forward capture, whether it
is via single or double scattering, is of order of
magnitude mv. Therefore in forward capture the
stripped nucleus M~ should not have a final momentum
greatly exceeding mv in the lab frame. This means
that direct scattering will be indistinguishable from
forward capture only if, in direct scattering, the in-
cident nucleus M~ has a final momentum of order ~v
in the lab frame, in which case (m+M„) must be
knocked into a solid angle of order (m/M)' with a
velocity roughly equal to v. The cross section for this
latter event can be calculated in a fashion very sim-
ilar to that used to derive the knock-on capture cross
section in Sec. III. For pure Coulomb interactions the
cross section for indistinguishable direct scattering
behaves with increasing v as 1/v""', the coefficient
being proportional to (m/M)4; here f' is the orbital
angular momentum quantum number of the final. state-
we assume that the initial state is the ground state.
This cross section is negligible. ]

It is interesting to note tha. t although the discussions
of I j - and I "p proceeded along quite diff erent lines,
the explicit form of the final expression for do'„/db,
given by Eq. (5.12), is symmetric in the sense that it
is invariant under the interchange of the subscripts i
and f. This symmetry has its origins in the kinematics
rather than in the dynamics, and it does not represent
detailed balance; indeed deta, iled ba.lance follows merely
from the requirement that the interactions be invariant
under time reversal. The symmetry of the kinematics
is perhaps most evident in the frame in which the heavy
nuclei have equal and opposite velocities. In this frame
M~ is incident with a velocity v/2 and, as drawn in the
figures, impact parameter b "above" M~; rn is initial. ly
above M„by a distance b, and ahead of M„by a distance
b/v 3 and m and M~ are initially traveling with a ve-
locity -&v. After the first collision m travels sA"aint
dozon (its velocity is perpendicular to v) with a speed
(+3 /2)zr, while M~ continues to move with a velocity
-v/2. Then m strikes M~ and is captured by M~ at a
distance b below Ms and behind Ms by a distance b/3.
We should Like to thank Professors U. Pano and
B. I ippmann for a useful remark on symmetry.

The present analysis of the double scattering mech-
anism can be extended in a number of directions. We
briefly mention two. The first extension is to arbitrary
masses. [The classical analysis of Thomas was ex-
tended to arbitrary masses by Bates et al. (1964)].
One can consider, for example, electron capture from
hydrogen atoms bypositrons. For this example, ener-
gy and momentum conservation, and the condition that
the electron and positron finally have the same velocity,
require that the positron be deflected in the first col-
lision through an angle of 45 in the lab frame; the
electron is knocked towards the target proton in a di-
rection making an angle of 45 relative to the inci:dent
direction v, and it then scatters from the target proton
through an angle of 90 . One could also consider the
ca.pture of an atom from a. diatomic molecule. The

second extension is to ions or atoms with more than
one electr on. When the tar get "atom" has mor e than
one electron there is the possibility that the electron
to be captured scatters in the second collision from a
second target el.ectron rather than from the target
nucleus; the second electron is then ejected. This ease
does not seem to have been analyzed. One can also
consider molecular targets. Forward capture from the
hydrogen molecule has been studied within the first
Born approximation (Tuan and Gerjuoy, 1960) but not
within the second Born approximation, nor at asymp-
totically high velocities.

The double scattering mechanism seems to be the
dominant mechanism (within the nonrelativistic frame-
work) for radiationless capture into the forward direc-
tion. It is therefore highly plausible that the second
Born term gives the cor rect nonr elativistic asymptotic
form for the radiationless forward capture cross sec-
tion, whether or not the Born series converges. How-
ever, a variety of other asymptotic forms for the for-
ward capture cross section have been suggested;
some of these are presented and briefly discussed in
Appendix D. We conclude this section with two re-
marks. First, although it should be ™possible to detect
double scattering experimentally, as discussed in
Secs. VI.C and VII.B, the significance of the double
scattering mechanism perhaps lies more in what it
teaches us about the high-energy behavior of non-
relativis tie many-body Gr een's functions and scatter-
ing amplitudes —for exampl. e, the fact that the second
Born term can dominate over the first Born term'—

9This is not the only example in which the second Born term
can dominate over the first Born term. Another example is
the excitation of an "atom" (m&+m2) with m& infinitely massive,
by a fast-moving particle m3 in the limit of high-momentum
transfer te m3. This can be understood as follows. Since m&
is infinitely massive it does not recoil, and since m& must re-
main bound to m& the momentum transferred to or from m2
must be relatively small. Therefore the large momentum
transferred to m3 must come from the scattering of m3 from
m&. But the interaction between m& and m& does not contribute
to the excitation cross section in the first Born approximation
owing to the orthogonality of the initial and final wave func-
tions; as a consequence the second Born term dominates. This
result was first discussed in detail by Potapov (1972) and has
been extended to the case where all three masses are arbitrary
by Shakeshaft (1977). Note that the total excitation cross sec-
tion, integrated over all values of the momentum transfer, is
given correctly by the first Born approximation in the limit of
high impact velocity. (If the other conditions are retained, the
present example can be extended to include ionization or
breakup, provided the momentum with which m2 emerges is
small. ) Another example of a case in which the second Born
term dominates over the first, under certain circumstances,
is the high-velocity limit of the exchange process m3+ (m&+m&)—m2+ (m&+m3), where mz and m3 are identical, and m& is in-
finitely massive (e.g. , Potapov, 1972; Bonham, 1972; Joachain,
1977; Shakeshaft, 1978a). Again, the total cross section, ob-
tained by integrating over all values of the momentum transfer,
is given correctly by the first Born approximation at high im-
pact velocities. In contrast, in the capture problem it is not
only the differential cross section that is governed by the sec-
ond Born term, at certain values of the scattering angle (or,
equivalently, momentum transfer), but also the total cross
section (disregarding kock-on, which only occurs when Mz =M~).
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than in the particular application. Second, it is con-
ceivable that in some circumstances double scatter-
ing becomes the dominant radiationless mechanism for
forward capture only at relativistic velocities; if that
is the case, our nonrelativistic description of double
scatter ing can be charac ter iz ed, to quote Ge orges
Temmer on hearing our description, as "anschaulich
but nonphysical. "

Vl. R E LATI VE I MPORTANC E OF THE 0 I FFE R ENT
MECHANISMS FOR CAPTURE FROM THE GROUND
STATE

In this section we examine the relative importance
of the different capture mechanisms discussed in the
previous sections. We consider only the case when m
is an electron whose interactions with the nuclei are
pure Coulombic, this case being of great interest in
atomic physics. We restrict the initial state to be the
ls (ground) state, but the final state can be the 1s or
2p (or, for o~ or a, , the n', I'=n' —1) state; for
the particular case Z~ =2Z~ = I we also give the sum
over al/ final bound states. In addition, we discuss
"capture to the continuum. " We begin by giving the
asymptotic form of the cross section for each mech-
anism. In Eqs. (6.1)-(6.4) below, the cross section
for capture to the 2p state is summed over all mag-
netic substates, but in Eqs. (6.5)-(6.7) we give the
contributions from the individual magnetic substates.
In this section m is the electron mass and ao =8 /me'
denotes the Bohr radius of the hydrogen atom.

A. Asymptotic forms of the cross section

1. Knock-on capture

For this mechanism we assume that M= M„=M~. It
follows from Eq. (3.10) that the total cross section for
knock-on capture into the particular states under con-
sideration is given by

ak, (ls —1s ) 2 Z~Ze m ' e'
wao 3 (Z„+Ze)~ M Iv

a„.(1s -2p) 2"Z„'Z~7 I ' e'
wa', 5(2Z„+Z~)' M kv

(6.1a)

(6.1b)

.(1 -fd) ( e'
wao &M &kv

(6.1c)

capture to the 1s state represents about 78% of this
cross section.

2. Radiative capture

From Eq. (4.3) we have, for the total cross section
for radiative capture into the states under considera-
tion,

v„(ls-Is) 2', .(e')'(e*)' (6.2a)

The results of Eq. (6.1) were obtained by integrating
over all scattering angles in the c.m. frame, but only
e.m. angles between m and w-6, „are significant,
where 8,„=2Z,„(e'/Nv) and where Z,„ is the larger
of Z~ and Z~. For Z& =Z~ = 1 the cross section summed
over all final bound states is

a„.(ls-2p) 3 2', e' ' e'
ma', 4 3 bc Sv (6.2b)

Note that the 1s-1s and 1s-2p cross sections have
different velocity dependences. They are also inde-
pendent of Z~, which is consistent with the assump-
tion that the target nucleus plays no role. Equation (4.3)
would give Eq. (6.2b) without the factor of 3/4, which
has been placed in square brackets. Equation (6.2b) is
correct as it stands, with the factor 3/4, which accounts
for the contribution which arises from the scattering of
the incident electron by the projectile before capture
of the electrom by the projectile. The results of
Eq. (6.2) were obtained by summing over all polar izations
and integrating over all directions of emission of the pho-
ton; it is unnecessary to explicitly integrate over the scat-
tering angle ofM~. Note that the emission of photons is not
sharply peaked in any direction; in fact, in the dipole ap-
proximation the photons have a sin'y distribution, where y
is the angle of emission of the photon relative to 8. On the
other hand, the scattering of M~ is very sharply peaked
in the forward direction; indeed, the scattering angle is
zero if the photon momentum is neglected and if m is
treated as initially free and at rest in the lab frame.
To obtain a nonzero scattering angle we must take into
account the momentum of the photon and/or the initial
momentum distribution of m. Neglecting the Doppler
shift, the momentum of the photon in the lab frame is of
magnitude I&a/c=mv'/2c, The magnitude of the average
initial momentum of m is mZ~e'/k. Therefore the
maximum momentum which can be imparted to M~ is
roughly of magnitude mv'/2c + mZ~e'/k. The scat-
tering of M& will be greatest when this momentum is
imparted in the direction transverse to 8, in which
case the scattering angle is roughly (m/Ms)[(~/2c)
+ (Z„e'/kv)j, which is a very small angle.

For radiative capture the cross section can be
summed over all final bound states in closed form,
using a sum rule derived by May (1964). We obtain

a „(ls—M) 1.202a„(ls —ls ), (6.2c)

with Z~ and Z~ arbitrary; therefore capture to the 1s
state represents about 83% of the cross section for
radiative capture to all bound states for the large ve-
locities under consideration.

3. Double scattering

In this mechanism M~ is again essentially undeflected
and only small scattering angles —of order m/M~ —are
important. The differential cross section actually
peaks at a nonzero, albeit small, scattering angle.
This angle, known as the critical angle (Dettmann and
Leibfried, 1969), is the angle through which the in-
cident nucleus must scatter in the first collision in
order to knock m towards the target nucleus with
speed v in a direction making an angle of w/3 radians
with 8. Since the transverse momentum imparted to
Me is about mv sin(w/3), the critical angle is about
(m/Me) sin(w/3), which for electron capture by protons
is about 1.6'. For all inelastic processes the differen-
tial cross section integrated over angle is the same, to
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o'd, (ls-1s), Z„'Zs e'
2'm

ma', (Z„+Zs ) Kv

od, (ls —2p) 4 Z~Zs
ma', (2Z„+Zs)' Nv

For large n' and for Z~ =Zs =1, Shakeshaft (1974b)
showed that o~(ls -n') —(210/n")(e'/hv)" ~a', . Thus to
evaluate the cross section summed over all bound
states, o~(ls -bd), we use Eq. (5.15) for small n'
and we use the preceding result for large n'. We
obtain, for Z~=Z~ =1,

(6.3a)

(6.3b)

order m /M~ or m/Ms, as the differential cross section
integrated over impact parameter (Wilets and Wallace,
1968}. Performing the integration of Eq. (5.15) we
have, for the total cross section for double scattering,

greater than the initial and final orbital velocities of
the electron, and when v'/c'(&1.

Recently Briggs and Dube (1978) evaluated the as-
ymptotic contribution of the sum of the first and
second order Born amplitudes to the cross section for
1s -n'l'p. ' capture with n', l', .and p. ' arbitrary. The
leading term in the asymptotic expansion of the cross
section is, of course, a 1/v" term; the next term in
the expansion behaves as 1/v" if l' =0 or 1/v" if
l'&0, with third and higher order Born amplitudes
neglected (.The 1/v'3 contribution comes solely from
the second Born term. ) It can be shown that the
interference of the second and third order Born ampli-
tudes gives a 1/v" contribution for all l', but the
velocity independent coefficient is numerically very

mall io

o„(ls- bd)/ma', -243(e'/kv)"; (6.3c)

capture to the 1s state represents about 83% of this
cross section.

A result (Shakeshaft and Spruch, 1978b) which in-
cludes Eqs. (6.3a) and (6.3b) is

77ao

4. Bripkman-Kramers approximation

For the purpose of comparison we give the asymp-
totic form of the total cross section obtained in the
Brinkman-Kramers approximation. Again only small
scattering angles, of the order of m/Ms, are im-
portant. [For example, for 1s- ls capture half of the
contribution to the total cross section comes from
scattering angles less than 0.074 (m/Ms) radians in the
lab frame. ] We have, to order m/M~ and m/M~,

(6.4a)

(6.4b)

Equations (6.4a) and (6.4b) are encompassed in the more
general result

FQo n'(2n'+ 8)(2n' —2)!

5. Capture into states of given orbitat angular momentum
projection

Each cross section given above for capture into the
2P state is a sum of contributions from states with
projections of the angular momentum p. '=+1 a,nd 0.
It can be of interest to know the individual contribu-
tions; this wil. l be the case if, for example, we wish
to know the polarization(s) of the photon(s) that can be
emitted after capture into an excited state. We shall
now consider the individual. contributions for each of
the three mechanisms.

In the knock-on process, it follows directly from
Eqs. (3.9} and (3.10}, on expanding the exponential,
that

&..(»-~'I'v') ll'i .(~ )I'=l&i .(-'~, @)I'.
[Therefore & (lks n'l'g-') is zero if I'- p,

' is odd. ]
This equation can be given a physical basis as foll.ows.
The linear momentum transferred to m in the knock-on
process is mV(6I), where V(6), defined by Eq. (3.4),
is roughly (v 8/2)u~. The angular momentum trans-
ferred to m therefore has zero projection in the di-
rection of u~, and so, since the initial. state is iso-
tropic, the projection of the final angular momentum
on an axis parallel to u~ is zero. Since the final state
has angular momentum quantum numbers l' and o with
respect to u~ as polar axis, the final bound-state
wave function has an angular dependence which is
proportional to I', , [cos(—,v —9)]. Expanding this in
terms of the Y, .„.(e, Q) using the addition theorem,

The Brinkman-Kramers approximation does not give
the correct coefficient of either the 1/v" term (for
ls —1s capture) or the 1jv'~ term (for ls —2p capture)
in the asymptotic expansion of the forward capture
cross section developed from the Born. series; con-
tributions from the second- and third-order Born
amplitudes significantly modify these coefficients. For
example, in the case of 1s —1s capture the contribu-
tion from the first three Born terms is, through order
(e'/hv)" and neglecting corrections of order rn/M~
and m/M~ (Shakeshaft, 1978b),

o-[0.319+5m2 "Rv/(Z„+Zs}e']v, „.
This formula, , an.d the asymptotic formulae given in
Eqs. (6.1)-(6.4) above are valid only when v is much

~ The 1/n~ contribution from the interference of the second
and third order Born amplitudes represents the second order
Born correction to the cross section for one of the two two-
body collisions in the double-scattering process. Each two-
body collision may occur off the energy shell owing to the pre-
sence of the third particle, but corrections from far off the
energy shell are insignificant. The entire range of impact
parameters b ~ ao contributes. In contrast, the 1/v~ (or 1/g )
contribution from the square of the second order Born amp1. i-
tude alone represents corrections from far off the energy
shell. When each two-body coUision occurs far off the energy
shell, the momentum transfer to the electron is not restricted
by the constraint of energy conservation. However, each two-
body collision can occur far off the energy shell only if the
third particle is very close by, which requires. b to be very
small; indeed, only the range b~ h/mv contributes.
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one finds that the coefficients in the expansion. are pro-
portional to I', .„.(2m, Q), in agreement with the above
equation. For the 2p ease of interest, and indeed for
any P state, we have

and

c'k, (is-n'po) =0,

ck.(» —n'P + 1) = -'ok. (ls —n'P) .

(6.5)

(6.6)

In the radiative capture process, it would follow from
Eq. (4.3) that, for a fixed I',

o„(»-n'I'v') ll'~ .(o, 4)l' (6.6)

cd.(ls —n'p ~ 1) = (3/4)o„(» — 'npo)

= (3/10)a „(1s—n'p) . (6.7)

Note that for all three mechanisms the cross sections
are independent of the sign of p. '. This can be under-
stood by observing that, to the extent that the approx-
imations used above are valid, the relative motion of
the heavy nuclei takes place in a fixed plane; the
Hamiltonian is invariant under a reflection in this
plane, a reflection which changes the sign of p. '.

6. Charge transfer to the continuum; the cusp and its

asymmetry

We have thus far restricted ourselves to true cap-
ture, in which the electron and projectile nucleus
emerge bound to one another; we have ignored the
ionization process. This process is, of course, very
important, but it is not of such great interest in the
context of the present paper since the total. ionization
cross section is determined, at asymptotically high
velocities, by the first Born term, as is the differen. -
tial ionization cross section for most velocities of the
ejected electron. However, if the relative velocity of
the emergent electron and the incident nucleus is suf-
ficiently smal1. —we will be more precise in the fol-
lowing paragraph —we expect by reason. of continuity
that ionization may, at asymptotically high projectile
velocities, proceed via a mechanism analogous to the
double scattering mechanism for true capture.

In line with standard usage we use the phrase "cap-
ture to the continuum" if the emergent electron is
moving relative to the projectile nucleus with a
(positive) energy that is small compared to the ioniza-
tion energy of the electron-projectile subsystem.
There has been considerable interest in charge trans-
fer to the continuum since Salin (1969) and Macek

so that the entire contribution comes from the p,
' =0

state. However, Eq. (4.3) and therefore the above equa-
tion are incorrect for l'~ 1. When the correction to the
incident plane wave of the electron is included, one
finds, for example, that the entire contribution for /'=1
comes from the p. '=0 state, but with X rather than v

chosen as the quantization axis (Bethe and Salpeter,
1957).

Turning now to the double scattering process, it
follows directiy from Eq. (5.14) that

v„(» -n'I'u. ') ~
l
I'r. ;(2v/3, y)l';

we immediately obtain

(1970) demonstrated that this mechanism provides a
qualitative explanation for the forward peak observed
by Rudd et al. (1966) in the angular distribution of
electrons ejected from helium atoms by 300 keV
protons, at electron velocities comparable to the pro-
ton velocity. For references to more recent work see
the paper by Vane et al. (1978).

The quantity of experimental. interest is the differen-
tial cross section for the electron to emerge into a
narrow forward cone of specified semiangle with a
speed v, close to v. Let v, denote the velocity of the
emergent electron in the lab frame, and define k by
Nk= m(v, —v). Let gk(r) denote the continuum Coulomb
wave function, that is,

4k(r) =(2~) '"e"'"I'(I+in)e*"
x,F, [ iq,-1, -i(kr+k ~ r)],

where &=lkl and

q =—Zs/(aP) .

(6.8)

5'k'/2m « (Zs e)'/2ao,

or, equivalently, q&&1, we can write

r(1+i')l =2m@/(1- e "") 2mq. (6 9)

We can also replace v,' in d v, by v'. Furthermore,
since the initial state is a 1s state, r*=lr l is ef-
fectively restricted by the initial wave function to sat-
isfy r*&a /Z~o. Now if k k2/2m&&Zse /r* for the
significant range of r, that is, if q »Zs/2Z~, the
energy in the Schrodinger equation for gk(r*) can be
neglected, and gk(r*) depends upon k only through the
boundary conditions so that one expects the form of
gk(r*) to simplify. Indeed, with q» (Z~/2Z„)'' we can
use Eq. (13.3.2) of Abramowitz and Stegun (1970) to
arrive at

iyk(r *)I'- (q/4~') (Z,[2(Z,Xr */a.)'"]]', (6.10)

(6.11)

Equation (5.12) therefore becomes, using also Eq.
(2.2),

Let 0, and g, denote the polar and azimuthal angles of
v„with v the polar axis. To obtain the double scattering
differential cross section for the electron to emerge
with a speed between v, and v, +dv, into a cone of spec-
ified semiangle O„where 6, =K(e'/Iv) with the constant
K«1 and independent of v, we simply replace it/~(r*)I2
in Eq. (5.12) by i $k(r*) i'dN, where dN =(m /h)' d'v„d' v,

vedved@e and dQ~ = sin~e d6e dt's& and we integrate over
8, and @, with 0 ~0, ~8o and 0 ~&[&, &2m; this range of
integration will henceforth be understood. Note that
since f lpga(r) l'd'r =1, we normalize gk(r) so that

J i)k(r)i)k, (r)dsr =5(k- k'). dN is the number of cells in
phase space. [Note also that in arriving at Eq. (5.12) we
integrated over the azimuthal angle of b assuming that
i $;i' and I Pzi' are independent of that angle; ) ~P, i' is of
course here again independent of that angle, as is
J l Pki'd&f, .] Since we are interested in
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d(Yd,,—-='(1s - cont—
d&dv~

2Z~P /Qp

x (~a[2(Ze Yr */ao) (6.12)

The kinematics are similar to those for double scat-
tering capture, and so r*=b/sin 60'. Performing the
integration over 5 using Eq. (6.615) of Gradshteyn and
Ryzhik (1965), we obtain (Shakeshaft and Spruch,
1978a}

ture to the continuum one simply replaces Qz(-mv)j'
in Eq. (4.3) by g~(-mv)~ (m/k)3dsv, . The Fourier trans-
form of the continuum Coulomb wave function P~(r) is
given by Eq. (9.12) of Bethe and Salpeter (1957); there
is no difficulty in taking the limit implied in this
equation since mv &8k. We find that for electrons
ejected into a cone of semiangle 6p,

x ([(v, —v )' + (v 8o)']'~' —
)v, —v j) (ma2O) .

dias e2 9

d
—' (1s —cont) —2'Z~Z3e — (ma2O) I(v, ), (6.13) (6.16)

where

(6.14)

Note that this result differs from that obtained by
Dettmann et al. (1974) for double scattering capture
to the continuum; we hei. ieve that their result is
incorrect, the error originating in Eq. (4.25) of their
paper.

Although we cannot evaluate analytically the double
integral I(v, ), the following properties can be readily
obtained:

(i) I(v, ) behaves as v ' with increasing v since the
solid angle into which the electron emerges is roughly
m8o=wIf (e'/Iv)'. [The denominator [v, -v~ in the
integrand of I(v, ) does not affect the v dependence since
its range, 0~~v, —v~ ~Zee'/k, is independent of v.]
Therefore the v dependence of the differential cross
section is v ".

(ii) I(v, ), and therefore the differential cross section,
have a cusp at v, =v.

(iii) I(v) may be reduced to a one-dimensional inte-
gral.

(iv) If g~(r) is approximated by its s-wave compo-
nent, I(v, ) can be reduced to a closed-form expression.

A cusp in the differential cross section for charge
transfer to the continuum was predicted by Dettmann
et al. (1974) using an approximation analogous to the
Brinkman-Kramers approximation for true capture.
They obtained the result

x)[(v, —v)'+ (v 8o)2]'~' —(v, -v (j(wa2O),

(6.15)

and they verified the presence of the cusp by measur-
ing the differential cross section for ionization of
carbon and gold foils by fast light ions. Note that the
v dependence of the cross section in Eq. (6.15) is v
and therefore at sufficiently high velocities (extremely
high, however) the double scattering mechanism for
charge transfer to the continuum is important.

However, at very high velocities the dominant mech-
anism for charge transfer to the continuum is the one
analogous to radiative capture to a bound state. To
obtain the differential cross section for radiative cap-

Note that the v dependence of this differential cross
section is v '. Comparing Eqs. (6.15) and (6.16) we find
that for Z~ = 1 the radiative mechanism begins to dom-
inate over the Brinkman-Kramers mechanism when
(@v/e') = 23, that is, at proton energies of about 13
MeV.

The cusps noted above arise from the factor 2m'
in the square of the Coulomb wave function. We see
from Eq. (6.15) that the cusp in do'~K/dv, is symmetric
about v, =v (that is, invariant under a change of sign
of v, —v). This is because the probability for capture
via the. Brinkman-Kramers mechanism into a com-
ponent of the continuum with /'&0 decreases relative
to the probability for capture into the component with
l' =0 as 1/v"; thus capture occurs predominantly to
the s-wave component and, to ieading order in 1/v,
the Brinkman-Kramers contribution is therefore
isotropic in the vector v, —v. In contrast, the rel.ative
probability for continuum capture via the double scat-
tering mechanism into components of different /' is
independent of v to leading order in 1/v; many different
angular momentum components of the continuum are
important (and interfere with one another since the
angular region for capture to the continuum is less than
the full solid angle, and indeed is very small). Thus
the double scattering contribution depends on both the
magnitude and the direction of the vector v, —v and, as
a consequence, the cusp in dc~, /dv, is asymmetric
about v, =v. This is apparent from Eqs. (6.11), (6.13),
and (6.14), where do'~, /dv, is seen to depend upon the
direction of k =m(v, —v)/5 through the "asymmetry
source factor" X. We note that since X appears mul-
tiplied by Ze in Eq. (6.14) the asymmetry of the cusp
becomes more prominent as Z~ increases, at least
for Z~ not too large.

The condition for the validity of the asymptotic for-
mulae for bound-state-to-bound-state capture is that v
be much greater than the initial and final orbital ve-
locities. For capture to the continuum the final "orb-
ital" velocity v, —v is negligible (for q» 1) and so we
require, for the validity of Eqs. (6.13)-(6.16}, that
v »Z~e'/k. Note that v is not restricted by the pro-
jectile charge Ze

~
e

~
through this condition, but for

double scattering a further condition on v involving Z~,
must be imposed. In arriving at Eq. (5.10) for P„~ we
assumed that the spatial .width (-5/mv) of the emergent
wave packet is small compared to the characteristic
radius of the atom (m+Me). For the final state a con-
tinuum state, the characteristic radius becomes the
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wavelength of oscillation of g~(r) which, from Eq. (6.10),
is of order ao/(Z„Ze)'I' for large Zs/Z„and for y *
= ao/Z~. We therefore require 0/mv «a~/(Z~Zs)'»',
that is, v» (Z„Zs)' 'e'/k. IO-»

2
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FIG. 6. This figure illustrates the relative importance of the
three mechanisms for 1s—1s electron capture. We plot
(&a/vra02) versus both (h v/e2) and the lab energy per nucleon in
MeV; 0 is the asymptotic form of the cross section for the
appropriate mechanism and the &'s are scaling factors chosen
so that fa is independent of Zz and Zz and K=1 for A=Zz
=Zz ——1. Curve KO represents the knock-on mechanism, with

(Z~+Zg) (ZzZz) &, whereA is the nuclear mass num-
ber; curve BC represents radiative capture, with Q=Z&5,
curve 08 represents double scattering, with & = 2 (Z&+ Z&)
x (Z~Z~)-'.

B. Discussion

In Figs. 6 and i we have plotted (go/7Ia20) versus both
(kv/e~) and the lab energy per nucleon in MeV; here &

is the asymptotic form of the cross section for the ap-
propriate mechanism, and g is a scaling factor chosen
so that go ia independent of the charges of the nuclei,
with /=1 for Z~=Z~ =1. Figure 6 pertains to 1s- Is
electron capture, and we consider this transition first.
Evidently radiative capture is the dominant mechanism
at sufficiently high velocities; nonradiative capture is
eventualIy dominated by the knock-on mechanism, but
nonradiative capture into forward scattering angles can
occur only by single or double scattering. For electron
capture by protons from hydrogen atoms radiative cap-
ture dominates at a proton lab energy of about 6 MeV,
corresponding to (v/c)2= 0.01, and knock-on capture
becomes the dominant mechanism for nonradiative
capture at about 44 MeV, corresponding to (v/c)'= 0.1.
Evidently double scattering does not play a very signif--
icant role in Is- Is capture for the energy considered;

-20

IO-25 i

I

lo
I

20
I

4Q

hv/e

I

eo l60

it plays a more significant role in Is-2p capture, as
indicated in Fig. 7. For Is-2p capture, the knock-on
mechanism dominates at sufficiently high velocities;
radiative capture sti1.1 eventually dominates for for-
ward scattering angles, but not until quite high ve-
locities. Note that the cross section for radiative cap-
ture from the ground state decreases as 1/v"" with
increasing v, where I' is the orbital angular momentum
quantum number of the final. state. Therefore for cap-
ture into states with E'&3 radiative capture falls off
faster than v "and will be dominated by double scat-
tering at high velocities. For Is —2p electron capture
by protons from hydrogen atoms, knock-on capture
becomes dominant at a proton energy of about 16 MeV,
corresponding to (v/c) = 0.04, and radiative capture
becomes the dominant mechanism for scattering into
forward angles at about 24 MeV, corresponding to
(v/c)'= 0.05.

The Z~ dependences of the different mechanisms for
the capture of an electron by a bare nucleus from an
outer shell of a many-electron atom whose nucleus has
charge Z„le~ warrants some comment. Apart from the
applicability to a range of laboratory experiments,
such capture cross sections are of astrophysical
interest; for example, there is the possibil. ity of de-
tecting Ae x-ray lines of Fe+ emitted by astronomical
sources; one way of populating the 2p state is by
capture. Studies of the intensity and width of the line
emitted for Fe iona passing through an ambient medium
of stellar abunda. nces, with energies in the range 1 to
300 MeV/amu, have been made recently by Bussard

FlG. 7. This figure illustrates the relative importance of each
mechanism for 1s—2P electron capture. The notation is the
same as in Fig. 6. The scaling factors & are as follows: KO:
/=3 (2Z~+Zg) Z~ &~ A, where% is the nuclear mass num-
ber; BC: f=Z~, DS: /=3 (2Z~+Z~) Z~ Z~ .
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et at. (1977).
To obtain a crude estimate of the cross section for

electron capture from the outer shell of an atom by a
bare incident nucleus we can take as our initial elec-
tron wave function a Slater orbital (Siater, 1960).
Thus if the outer electron is initially in a shel. l of
principal quantum number n, we use the wave function
Xx" ' exp(-Zg x/nao), where N is a normalization
factor and where Zg~e~ is the effective charge that
the electron sees, which is given by the Slater rules.
To the extent that Zg is independent of Z„we can de-
termine the Z~ dependences of the cross sections as
follows. (The effective charge that an outer electron
sees will vary with Z~—it will. oscilla, te —but it will not
change dramatically. In contrast, the effective charge
that a K shell electron sees increases monotonically
with Z„.) In the knock-on mechanism the capture cross
section depends on Z~ only through the cross section
for the backscattering of the nuclei. The Z~ depen-
dence is therefore Z~; the dependence on Zg is through
the wave functions. In the radiative mechanism there
is no dependence on Z„(nor on Zg). In the double
scattering mechanism the capture cross section de-
pends on Z~ through the cross section for the electron
to scatter from the target nucleus; the nucleus will be
only barely screened during the collision and the Z~
dependence is therefore Z2~. In the Brinkman-Kramers
approximation the cross section depends on Z~ through
the squa. re of the high-momentum component of the
initial wave function. In this case the Z~ dependence is,
for l =0, that of Z~ multiplied by the probability density
for the electron to be at the nucleus; the factor Z~
originates in the cusp of the wave function (in co-
ordinate space) when the electron is near the nucleus.
Unfortunately we cannot use the Slater orbital to de-
termine the probability density for the electron to be
near the nucleus, since the Slater orbital. is a very
poor approximation in this region. To determine the
electron density near the nucleus would require the use
of far more elaborate wave functions than Slater
orbital. s. The density near the nucleus is expected
to be very small because of the Pauli exclusion prin-
ciple, thus enhancing the relative importance of
double scattering. versus Brinkman-Kramers. (For
l&0 the density at the origin is zero and must be re-
placed by an expression involving derivatives of the
coordinate wave function. )

C. Comparison of the second Born and Brinkman-Kramers
cross sections

The Brinkman-Kramers cross section decreases as
I/v'~"'"', where I and I' are the orbital angular mo-
mentum quantum numbers of the initia. l and final. states,
respectively. In contrast, the double scattering cross
section decreases as 1/v" for all I and I'. Therefore,
for a fixed high velocity the Brinkman-Kramers cross
section becomes incr eas ingly inaccurate as l and E'

increase; one must add the double scattering contribu-
tion. In Fig. 8 we compare ad, with &~„ for electron
capture from the ground state-to the 1s, 2P, and 3d
states. For 1s- 1s capture &d, does not dominate
over o'~„until very high velocities, but this is not so

eO
l0-l5 .

l0-20 .

I I I t

5 IO 20 40
ENERGY PER NUCLEON (MeV)

FIG. 8. The asyxnptotic forms of the double scattering cross
section o d, and the Brinkman —Kramers cross section ~8& for
electron capture into various final states are plotted as func-
tions of energy. The curves represent the following capture
proce sse s: 1s 1s ————.1s—2P . — 1S 3Q
—~ —~ —. All possible values of the final magnetic quantum
number are summed over. The scaling factors g are as fol-
lows: 1s—1s: g(DS)=2 ~(Zz+ Z~) (Z~Z~) ~ 4(BK) =(Z~Z~)
Is~2P: f(DS)=3 (2Z~+Z~) Z~ Z~, &(QK)=Z~ Z~ .,
1s 3d: &(DS)=2 (3 ~+Z~) Z~ Z~, &(BK)=Z'~ Z~ . The
cross sections for Is —Is and 1s—2p capture are given in
Eqs. (6.3) and (6.4) of the text. For 1s 3d capture we have
0 d, /mao 2 3 7rZ~Z~(3Z~+ Z~) (e /O'U} and 0.„~/~ao

2293-9 (I/ 7)Z5 Z9 (82/ g & )i 6

for 1s-2p and 1s-3d capture. For example, for
electron capture by protons from hydrogen atoms od,
dominates over 0~K above a, lab energy of about 13
MeV for 1s-2P capture and above 4 MeV for 1s-3d
capture. (For a better theoretical estimate of the
1s —n'E' capture cross sections one should, of course,
evaluate the sum of the first two Born terms ac-
curately. See Briggs and Dubs, 1978).

In Fig. 9 we have plotted the differential cross section
as a function of 'laboratory scattering angle for 1s- 1s
electron capture by protons from hydrogen atoms. The
impact velocity and energy in the lab frame are 40
a.u. and (very nearly) 40 MeV, respectively. The solid
and dashed lines represent the differential cross sec-
tion ca,lculated from the sum of the first two Born
terms and from the Brinkman-Kramers term, respec-
tively. The second Born term was evaluated approx-
imately using the high-velocity formula given by Eq.
(52j) of Mapleton (1972). The contribution from the
double scattering process is clearly evident as the-
second peak in the solid line; this peak becomes a
delta function in the limit of infinite velocity. The
peak maximizes at the critical angle (discussed in
Sec. VI.A.3) of (~3/2)(m/Ms) rad, i.e., 1.6'. lt is
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IO-IO

0.5 I.0 I.5 2.0
SCATTERING ANGLE (MINUTES)

FIG. 9. The laboratory scattering differential cross section
versus the angle in minutes is plotted for p+H(ls} —H(ls) +p.
The impact velocity in the lab frame is 40 a.u. , that is, 40 e /h,
{corresponding to an impact energy of almost 40 MeV). The
solid and dashed lines pertain to the differential cross section
calculated from the sum of the first two Born terms and from
the Brinkman-Kramers approximation, respectively. The
second peak (in the solid line) at the critical angle of 1.6' is
due to the double scattering contribution. The differential
cross section for radiative capture is very small for scattering
angles beyond the vertical arrow marked on the horizontal axis.
The knock-on process can be ignored.

conceivable that this peak could be seen even with the
present limitations on the experimental angular reso-
lution. Note that with the impact velocity fixed, the
scattering angle scales as 1/M~ provided the scatter-
ing angle is small and M~ && m. It follows that if the
projectile were a positive muon ra, ther than a proton,
the curves of Fig. 9 would be stretched along the
abscissa by a factor of roughly 9, and the critical
angle mould be about 14.4'. The gain by a factor of 9
would not, homever, compensate for the additional
difficulties associated with using a muon rather than a
proton beam. If it were possible, it mould of course
be even more advantageous, in this regard, to study
the capture of electrons by fast positrons.

We have not plotted the differential cross section for
radiative capture since this diminishes extremely
rapidly mith increasing angle —recall from Sec. VI.A.2
that- the main contribution to the total radiative capture
cross section comes from scattering angles less than
of the order of (m/M~)[(v/2c)+ (e'/kv)]; this angle has
been marked by a, vertical arrow on the horizontal axis
of Fig. 9. We have also not plotted the differential
cross section for knock-on capture since the hydrogen
atoms produced by knock-on capture are moving very
slowly in the lab frame and mill not be detected in a
normal scattering experiment.

Charge transfer experiments with hydrogen atoms
as targets can be plagued by the presence of contam-
inants with higher atomic number which have much
larger charge transfer cross sections, as discussed in
detail by Gardner (1978). Thus one might consider
using targets other than hydrogen atoms. If the target
atom has nuclear charge Z„IeI, if we consider ls- ls

capture by an incident bare nucleus of charge ZsIeI,
and if we ignore the effect of outer electrons, the cross
sections &BK and Od., for the capture of either of the two
A-shell electrons increase relative to the correspond-
ing cross sections for capture from a hydrogen atom
target by factors of 2Z~ and 2Z~(l+Z~)/(Z„+Z~), re-
spectively, assuming a fixed high velocity; the factor
of 2 accounts for the two electrons in the K shell. How-
ever, the asymptotic forms of the cross sections do
not become valid until v »Z~e'/h, so that the lowest
velocity at which they are valid increases linearly
mith Z~; but increasing v by a factor of Z~ introduces
'factors of Z~" and Z~" into 0„~ and ad, „respectively,
so that in fact the cross sections calculated at the
lowest velocity at which the asymptotic forms are valid
mill decrease rapidly with increasing Z~. One could
use either helium atoms or hydrogen molecul. es as
targets, though in the latter case it mould be difficult
to calculate any accurately. However, in either case
the detection of a peak in the differential cross section
a,t a nonzero scattering angle mould indicate the
presence of a doubl. e scattering contribution. There
will, in fact, be two peaks. One peak will occur, in
the lab frame, at (v'3/2)(m/M~) rad, and the other at
m/M~ rad; this second peak arises from the possibility
that the electron to be captured can, after being scat-
tered by the incident ion, scatter from the other elec-
tron rather than from the helium target nucleus or from
either target proton for the molecular hydrogen case.
If the projectile is a proton the tmo peaks mill occur,
in the lab frame, at about 1.6' and 1.9', respectively.
Note that if the second collision is between the two
electrons, the electron that is not captured will be
ejected from the target with a speed very nearly equal
to v and in a. direction that is almost perpendicular to
the incident beam direction. ; these are simple conse-
quences of the kinematics. Therefore if electrons
ejected perpendicular to the beam direction were de-
tected in coincidence with capture, there would be a
peak in the energy spectrum of the electrons at
roughly &~a'; the width of the peak would be of order
1 a.u.

The possibilities just discussed of detecting the v "
double scattering contribution to the cross section for
electron capture at high impact velocities have been
discussed in greater detail by Shakeshaft and Spruch
(1978b). Perhaps the best possibility is to measure
the cross section for capture from a high Hydberg
state (Spruch, 1978); this is discussed briefly in
Sec. VII. It is the qual. itative, rather than the quan-
titative, changes introduced by the v "contribution
that might be possible to detect. Except for very high
zr, the 1/v" (or 1/v") double scattering contribution is
more significant quantitatively than the 1/u" con-
tribution, but the qualitative effects are less striking.
However, Briggs and Dube (1978) have suggested that
it might be possible to defect the 1/v" double scatter-
ing contribution by examining the polarization of the
light emitted following 1s —2p capture. Another pos-
sibility is to examine the asymmetry in the cusp in the
differential cross section for capture to the continuum
(see Sec. VI.A.6); not only the v "but also the v
double scattering contribution is asymmetric. Indeed,
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the asymmetry in the cusp already observed for pro-
)ectiies of high atomic number (Vane et al. , 1978;
Suter et al. , 1978) may represent the first experimental
confirmation of the importance of the double scattering,
contribution at high impact velocities. See Shakeshaft
and Spruch (1978c) for further discussion of cusp
asymmetries.

by setting

E = -Z'e'/(2n'a, ), (7.5)

I = (l+ 2)A. (7 8)

[As is so commonly done in semiclassical studies, we
use (l+ ~)' rather than l(l+1).] We then find

VI I. CLASSICALLY DESCRI BABLE PROCESSES

A. General remarks

a =n'a, /Z, b/a =(l+-,')/n, v, =Ze'/(nh),

c/a = [1-((l + —,')'/n']. ]". (7.7)

Zg
2Q

RZV p I =mvob. (7.1}

The distance r of the electron from the nucleus lies
in the range

a-c&y&a+c. (7-2)

We have seen that the knock-on and double scattering
capture mechanisms do not depend on the high-mo-
mentum components of the bound-state wave functions,
whereas the radiative and Brinkman-Kramer mech-
anisms do. Now when the classical picture of an atom
is valid, namely, when the atom is in a high Hydberg
state, the (valence) electron moves in a fairly well-
defined orbit and has a relatively narrow momentum
distribution. It is reasonable to expect, therefore,
that when the initial and final states are high Rydberg
states, the knock-on and double scattering processes
should be describable classically, and the cross sec-
tions for kno"k-on and double scattering capture should
be very much larger than the cross sections for the
nonclassical radiative and Brinkman-Kramers mech-
anisms. Furthermore, since the electron orbital ve-
locity is small in the classical regime, we expect the
asymptotic forms of the cross sections to be valid at
much lower v than in the nonclassical regime.

In this section we turn our attention to high Hydberg
states and assume, therefore, that n» 1. (Lasers
have recently made these states accessible. ) For later
purposes it will be useful to record here a few of the
properties of these states; at the same time we es-
tablish a notation, In the classical. description of an
electr'on bound to a nucleus of charge Z~e~, the electron
orbit is characterized by semimajor and semiminor
axes a and 5, respectively; it will be convenient also
to introduce c —= (a' —b2)''. There should be no con-
fusion between the semiminor axis b and the impact
parameter b, especially because most of those rela-
tions derived in this section that are used later are
expressed in terms of a and c. We can express a and 5
in terms of the energy E and angular momentum 1. of
the system and the constants Ze' and m, for we have

We can now readily express the limits on x and v as
functions of n and l.

To obtain some idea of the values of the quantum
numbers involved, at least for one particular case, we
consider c/a«1, for which the ellipse approximates a
circle of radius a, and v is approximately constant,
with the value L/ma. In quantum terms, c/a«1 be-
comes & = n&& 1. The distribution of v approaches a
multiple of 5(v -(Ze'/n8}), but only for very large
values of l and n; even choos ing l =n —1 r equir es n to
be of the order of 15 to reduce the fractional spread
in v, which is 2 c/a for any value of c/a, to about l.

part in 2.
We now have the range of r (and of v ) for a and c,

or n and l, fixed. ' We will also need to know the range
of values of a and c (and of n and l) for which the elec-
tron can be at a specified distarice x. We have 0 & c & a
and a —c & y & a+ c. For fixed g, it follows that
y & a+c & 2a, that is,

a~ ~y.
For fixed y and a, we start from -c & y —a & c; it
follows that c' ~ (a r)', or-

(c/a)' ~ (1—(r/ag'.
In terms of n and L, these two inequalities become

n' ~ (Zr/2a, )

(7.8)

(7.9)

(7.10)

(7.11)

where 0 ~ r/a ~ 2 and where, as above, a =n'ao/Z. The
upper bound on (l+ ~)'/n' is unity, so that the require-
ment l ~n —1(=n —~) is effectively automatically
satisf ied.

We turn now to the normalized distributions in x and
v„, denoted by f(r;a, c) andg(v;a, c), for an orbit
characterized by a and c. Letting dt represent the time
the electron spends at a distane e between x and x+dr, we
have

The ~ange of v =~v ~, where v is the electron orbital
velocity, is given. by

dt 2 Af(r;a, c}dr = —,

T dr/dt (7.12)

I./(a+c) & mv & L, /(a —c), (7.3) where r is the period and we divide by ~T rather than
by 7 since the range of the normalization integral,

v =vo a —c a+c '&v &vo a+c a —c ''=v a+c

f(r; a, c)dr =1,
Q C

(7.13)

(7.4)

We can make the connection with the quantum results
covers only half a period. The result for f(r; a, c) can
be obtained using only elementary mechanics; the der-
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ivation is not too tedious. One finds

(7.14)

the normalized probability of finding a particle in an
ellipse of semimajor axis a and a distribution of values
of c with a velocity (really a speed) between v„and

+dv . It is simpler to obtain g(v„; a) by noting that

f(r; a)dr = P (2l + 1)f(r; a, c)dr/n'

for the normalized probability of finding a particle
moving in an ellipse of semimajor axis a with a
weighted average over c at a distance r to r+dr; n'
is the number of states for the given n. The sum is
from l = 0 to l =n —1, but the condition a —c & r & a+ c
cuts down on the range of l that contributes; the upper
limit on l is easily obtained, and follows from Eq.
(7.11) above, but it need not here concern us since we
shall convert from l to c and we already know .the
range of c. Thus we replace Q, by fdl, and then use
Eq. (7.7) to obtain

2(l + —2')dl = —(n'/a') 2cdc .
We thereby arrive at

(2 la-r I

f(r; a)dr = —
~

—, dr f(r; a, c)cdc
a

2r
(2ar —r')' 'dr . (7.14)'

To obtain the normalized velocity distribution for a
and c fixed, namely, g(v; a, c), we note that

where a —c & r- a+c and r lies in the plane of the
ellipse.

If we average over all orientations of the plane, the
classical. analog of averaging over the projection p. in
quantum mechanics, we get a spherically symmetric
probability density. It will be useful to have an average
over all orientations and over the allowed range of c
for r and a fixed, that is, )r —a~ & c & a. To obtain this
average we must use the appropriate weighting factor
in c. This weighting factor can be obtained purely
classically, but, especially for those whose training
is primarily in quantum theory, it will be simpler to
use quantum theory at an intermediate stage. Thus a-

and c are functions of n and l, and the average over
orientations and c with r and a fixed is equivalent to
an average over all p, and over all allowed l, for r and
n fixed. We therefore have

l OO 2+

g(v;a)dv = ' f(r; a)dr.
0 0

The limits on v are the smallest value of v;„and the
largest value of v,„„,as a function of c for the allowed
range of c; alternatively, we have v = 0 at r = 2a, and
v =~ at r =0. We therefore have

g(v; a)dv = —f(r; a)dr,
and one then finds

32V0V mdv m
g(vms a)dv =, 2 2,4 .

7T(V m+V 0)
(7.17}'

B. Double scattering capture from high Rydberg states

Some of the distributions obtained above have been
derived (e.g. , Mapleton, 1966 and 1972; Abrines and
Percival. , 1966—see also the review by Percival and
Richards, 1975}using elegant but conceptually more
difficult approaches; these same authors also de-
rived distributions in the radial velocity and in the
square of the orbital angular momentum.

The fact that the states with l=n&&1 are classically
describable is well ingrained, but many of us may
have forgotten its justification. We therefore record
the properties that, apart from numerical coefficients
of order unity, we have (r) =n'a, /Z, &r=n 'a, /Z,
(P) = (Zh/na, ), and &P = (Zk/n 'a2), so that the ratios
&r/(r) =n ' ' and bP/(P) =n ' ' vanish for n —~, while
&r&P =@. It follows that r and P can be rather accurate-
ly specified without violating the uncertainty principle.
(The difference in form of the uncertainty principle for
radial and Cartesian coordinates and momenta can here
be ignored. )

Classical physics is obviously applicable to three
astronomical objects interacting gravitationally. The
relevant process will here be mass transfer rather
than charge transfer —one member of a binary will be
captured by an incident star —but the analysis wil. l be
almost identical. We shall. comment briefly on this in
subsection VII.D.

Q+C max

f(r; a, c)dr = g(v; a, c)dv
a-c "min

(7.15)
The result obtained by Thomas (1927) for doubie

scattering capture of a bound electron that initially lies
within a thin spherically symmetric shell of radius a is

where v;„and v „are defined by Ecl. (7.4). Since
and v,„occur at r =a+c and r =a —c, respec-

tively, we have

213/2 ~@2g7 /2 82 11/2

od, (a- bd)-
3 rnv2 a72 (7.18}

g(v; a, c)dv„= -f(r; a, c)dr . (7.16)

With some labor, we find, expressing r in terms of
V sax

g(v„;a, c)dv

av4ov dv

~(a2 c2)1/2(v2 ~v2)2((v2 v2 )(v2 v2 ))& /2
1B foal

(7

for v;„&v &v and v in the plane of the ellipse.
If we average g(v;a, c)dv over all orientations and

over a weighted distribution in c, we obtain g(v; a)dv

The numerical value of the right-hand side of Eq. (7.18)
is unfortunately very sensitive to the value of a. If,
in the study of 0~ for capture from the 1s state of H,
1/a" is replaced by 1/a702, as was done by Thomas,
the resulting estimate for 1s - bd capture is about an
order of magnitude smaller than the second Born re-
'sult, while if 1/a" is replaced by the expectation
value, with respect to the ground state, of 1/r" the
resulting estimate is infinite. Furthermore, the v "
dependence of the Thomas result is not completely
justified. Bates and Mapleton (1966) showed that, in
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the course of his analysis, Thomas approximated the
probability for capture by an expression which ex-
ceeds unity for small values of y; modifications which
are reasonable, if arbitrary, lea, d to a, v ' or a. v '
dependence.

Of course, the question of the asymptotic v depen-
dence of the classical double scattering cross section
for capture to a bound state from the ground state may
very well be an ill-posed question since the ground state
is not completely describable classically. On the other
hand, high Rydberg states are describable classically
and it might be expected that the Thomas resul. t gives
a very good estimate for double scattering capture to
a bound state from a high Rydberg state. (For this to
be true it is of course necessary that capture to a
bound state occurs predominantly tz high Bydberg

, states; this will be shown to be the case. ) Indeed, the
classical estimate of the double scattering cross sec-
tion for nl- bd capture becomes exact, that is, equiv-
alent to the quantum-mechanical results.

In this section we briefly repeat the anal. ysis of
Spruch (1978) to derive an expression for v„(nl bd)-
which becomes identical to the Thomas result, Eq.
(7.18) above, as n, I, and v become infinite, if a is set
equal to n a,/Z„En .route, we obtain simple expres-
sions for c'„,(nl-n'l') and ad, (nl-n') which become ex-
act as n, /, n', l', and v become inf inite.

We start from the quantum result given in Eq. (5.15),
that

region, is defined by the turning points, that is, by the
zeroes of the quantity in parentheses in Eq. (7.23).
As expected, the turning points are at a*c, and we
can write

h'R'„, (h, Z„)Ch = (h/wa)1[(a + c) —h])Lh —(a —c)] ]- ~'

& [2 cos'Q(h)Jdh. (7.24)

We turn now to the estimation of p»(h, Z/)). For
n' »1,R„', (h, Zs) is given by Eq. (7.23) with n, I, and
Z~ replaced by n', l', and Z~, respectively, and
p„, (h, Z~) follows immediately. The values of n' and
I' for which the classical approximation to R„', (h, Z/))
does not vanish are given by equations analogous to
(7.10) and (7.11), that is,

(Z,h/2a, )'/2 ~ n' ~ ~ (7.25)

(7.26)

where

a' = n "a,/'Zs . (7.27)

The summation over E' required to determine p„.(h, Zs)
contains many slowly varying terms; it is therefore
legitimate to approximate the sum over E' by an integral.
over /'. We then introduce a new variab}. e of integra-
tion, e' =—(l'+ z)/n', where 0 «' ~ e,)', with e,' defined by
Eq. (7.26). We find

o'„(nl-n'I')- C Jt ChR'„, (h, Zz)p„& (h, Zs), (7.19a) 23/2 & z/2

pn '(h Zs )), + )./z ) ~ 5/27|g (a ) 2a
where

C =- Z' Z' 2'm'(e'8'/m'v") (7.19b)

and where

P. ) (h, Za) =- (2I'+1)R'. / ~ (h, Zs) (7.19c)

p„,(h, Z, ) =- &, ,p„., (h, z, ) (7.20)

represents the sum over p, ' of the probabil. ity densities
associated with the states n'l'p. '. It wil. l be convenient
to define

for h & 2a', with the range of h/' given by Eq. (7.25).
Simil. arly, in evaluating pb„, we approximate the sum

over n' by an integral, with limits given by Eq. (7.25).
[For small. h, n' can be small, but we shall be using an
approximation to R„.& ~ which is va, lid only for n & 1;
in fact, however, the relevant regions of x wil. l be
large if n is large, and the dominant contributions to
o'«(nl-bd) will. come from large n' —indeed, from
n' =n» 1 (and l' = I) if Z~ and Zs do not differ greatly. J
One easily finds

and p„,(h, Z~) = (2/3z)(2Zs/ha, )+'. (7.29)

p„(h, z, ) =—z„,p„,(h, Z, ).
We can then write

v„(n( —z)-(: Jdrz'„, (r, z„lp (r, z ),

(7.21)

where A represents n'l', n', or bd.
Since we are interested in n&&1, we can use the

WKB approximation for R„, (Bethe and Salpeter, 1957).
We then have

Having obtained relatively simple expressions for
B„,and for the p~, we are now in a position to estimate
o'„(nl-X) for n-~, v -~, and, when n' appears in ~,
for n'-~. For simplicity, however, we shall restrict
oursel. ves to the case l =n&&1. Q„, will then be sharply
peaked about h =a =n'a, /Z~, and we can approximate
p»(h, Zs) by (h'/a')p»(a, Z~). Using the normalization
property of &„&, we immediately obtain, from Eq.
(7.22),

2z'„z„a. z () + —.)*a.
)„3

o'd, (nl- A) - Cp»(a, Zs)/a',
where C and the p» are given by Eqs. (7.19b), the
analogs of (7.19c) and (7.23), (7.28), and (7.29).

In particular, we have, for /=n&& 1,

(7.29')

The precise form of Q(h) need not concern us, other
than to observe that, on integrating over the allowed
range of h and/or summing over I, cos'Q(h) wiLL

average to . The allowed range of y, the classiea, l

tr ( )-bdl 2'"*z'~* z e*/ma*)'"*
7Tao 3n ao

(7.30)

In arriving at this result, we have used a =n'ao/Z~.
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There is no ambiguity in the choice of a, since we
started from a proper quantum-mechanical basis, and
we are concerned with E=n&&1. If we replace n by
(Z~a/ao)'' in Eq. (7.30) we obtain the Thomas result,
Eq. (7.18).

It is not only the final ads(nL-bd) which has a clas-
sical interpretation. On setting 2 cos'Q(r} equal to
unity in Eq. (7.24}, this equation, which represents the
probability of finding m between z and r+dz, becomes
exactly the classical probability, given by Eq. ('1.1.4).
Further, since there are n" states with principle quan-
tum number n', the coefficient of n" in Eq. (7.28) rep-
resents the probabil. ity density averaged over E' and p,

'

of an electron in the n'th shell; the result is identical
to the classical result quoted by Mapleton (1972,
p. 159).

The results deduced above go beyond the results de-
rived by Thomas in a direct classical approach; we
obtained a~, (nl-bd), a„(nl-n'), and a'„.(nl-n'l') as
the classical. limits of quantum expressions, while
Thomas derived only ad, (nl-bd). However, one can
easily adapt Thomas' approach to derive a~„(nL- n') in
a direct classical manner. Thus Thomas required
the relative velocity v, —v of the emergent electron
with respect to the incident nucleus to be below the
escape velocity,

C. Knock-on capture from high Rydberg states

In Sec. III we showed that 0'k„could be written as

o= d&& 6 (7.33)

a,„(nl —bd) -— "' P(nl —bd),da„,(7(.) (7.34a)

where

where P(8) is the conditional probability for m to be
captured by M~, assuming M~ and M~ to have back-
scattered with differential cross section dab, (m —8)/dQ
into the solid angle dQ centered about z-0.

Starting from Eq. (7.33) we now derive classically
the cross section for knock-on capture from a, high
Rydberg state, assuming that the masses M~ and M~
are equal. To simplify the analysis we average over
the initial magnetic quantum number p. and we sum over
all. final bound states. We utilize the simple concept
of escape velocity. As in Sec. III, the differentia, l
backscattering cross section dab, (m —8)/dQ may be
factored out of the integral of Eq. (7.33) since it is
roughly constant over the region 8= 0 where P(8) is
non-negligible. (This will be justified below )W.e
therefore have

—,'m (v, —v)' & Zs s'/r, (7.31) 5'(n(- bd( =f J'(e)dQ. (7.34b)

Zg8 Age m
( )2

2Q+ 2

Z~ e' Z~ e'
r 2a, (n'+ 1)'

Z e2 Z2 e2 Z2e2
y' 2a~" ass" (7.32)

One ean readily show that V„./l'bd =p„./pb, , Since the
cross sections calculated in the direct classical ap-
proach are proportional to the volumes, while the
cross sections cal.culated as the classical. limits of the
exact quantum expressions are proportional to the p's,
it follows that our adaptation of the escape velocity
condition gives the correct result for a„(nl-n'). One
can probably also get a„(nl-n'l') and a„(nL- n'L' ')p
in a direct classical approach by imposing the condi-
tions that the magnitude of the angular momentum
vector of the emergent electron with respect to the
incident nucleus, mr xv» lie between L% and (l'+l)A,
and that its projection along v lie between p, % and
(p. '+ l)k.

At the end of the next subsection we compare the
various mechanisms for capture from a high Rydberg
state.

and the probability of capture into a bound state, which
we shall denote by Pbd, was proportional to the all.ow-
abl. e volume in velocity space, Vbd. This gives

Pbd ~ V„d = (4m /3) (2Z~ e'/mr )'

The probability I'„. of capture into the state n', for all
l' and p. ', is proportional. to the volume V„. in velocity
space, defined by

P(8;r) =1, 0~ 8 8!.,(r),
P(8;r}=0, 8& 8'„!„(r), (7.35)

where, for the atomic ease under consideration, 8'„, (r)
is defined by the classical escape velocity condition

v 6max g ZBe (7.36)

In Sec. III, P(8) was evaluated using the quantum-
mechanical sudden approximation. However, capture
from a, high Rydberg sta, te will. be primarily to high
Bydberg states if, as is the case since M~ =M~, Z~
and Z~ do not differ greatly. [The overlap integral
of Eq. (3.5) will be very small unless n' and l' are
comparable to n and L.] We therefore expect to be able
to evaluate P(8) class icaily.

As a preliminary orientation we take m to be initial. ly
at rest relative to M~, that is, we ignore its initial
velocity distribution. In the frame S, in which the c.m.
of M~ and M~ is at rest, m retains its initial velocity
of -v/2 during the nuclear collision, but Ms emerges
with a speed v/2 at an angle m-8, while M~ emerges with
with a speed v/2 at an angle 8. (See Fig. 2). Thus,
immediately after the nuclear collision m and M~ have
a relative velocity of only (v8/2)u~, where u~ is aunit vec-
tor in the plane perpendicular to v, while M~ has a velocity
close to v with respect to either m or M~. Shortly
thereafter M~ will be far removed from m and M~ and
unable to affect their motions. Thus m will. be cap-
tured by M~ if and only if the relative velocity of m
and M~ does not exceed their escape velocity. For a
given value of the separation x or m and M~ at the time
of the nuclear collision —we shall later average the
probability P(8; r) over r—we have
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Before proceeding further we note that, for g a
characteristic atomic dimension, the maximum allowed
backscattering angle 6;,', ,.„ir) defined by Eq. (7.36) can
readily be shown to be roughly the upper limit 0„,„. „ that
appeared in the quantum analysis of knock-on capture.
We note further that (,'„'.„{r)is proportional to 1/v; this
justifies the neglect of the variation of the differential
backscattering cross section with 0 that was used in
arriving at Eq. (7.34a).

Since the r in Eq. (7.35) is the separation of m and
M~ at the time of the nuclear collision, it is also the
separation of nz and M~ at that time, for M~ and M~
are very close during the collision. We therefore re-
place Eq. (7.34b) by

Spruch and Shakeshaft (1979). It turns out that it is
unnecessary to know the form of g(v ). The result of
performing the integration, assuming for simplicity
that Z~ = Z~ =—Z, is

P(nl —bd) —(20/3)(7)Z'e'/n'mv'ao) . (7.41)

v,.(n)-bd) (OO), (m)'(()(n')' (7.42)

Thus the effect of introducing the initial velocity dis-
tribution is to reduce P(nl-bd) by the factor 5/6.

With M~ =M~ = M the Coulomb backscattering differ-
ential cross section is (Z„Zze'/Mv )'. Inserting this
in Eq. (7.34a), and using Eq. (7.41) for P(nl-bd),
gives, for Z~ =Z~ = Z and M~ =M~ = M,

I'(n)-bd)= f E'(9;r)do = f fE'(8 r)O„', (r)r'drdO, Replacing n by (Za/'a, )'', Eq. (7.42) becomes

(T,„(a-bd) —(20w/3)(Z'e')/(1VPmv'a) . (7.43)

where, as indicated by the presence of R„,(r), the
brackets signify the weighted average with respect to
the initial spatial distribution of m. Using Eqs. (7.35)
and (7.3 6) we have

cj
ax(r)

P(nl-bd) = . 27) sin6d8

()T((:"'-(r))')

= $8/(mZ e'/mv')(1/r)

= (8)(mZ~Z~ e'/n'mv'ao) .

(7.38)

P( -n))=bdf d ",(6,v( rv))G(v„)d'v do, (7.39)

where G(v ) =g(v )/(4mv'), where g(v ) is defined by
Eq. (7.17), and where Eq. (7.35) must be replaced by

rn v0„2 Z~82
P(8; v, r(v )) =1 if ——ud —v

P(8; v, r(v )) = 0 otherwise; (7.40a)

r(v ) denotes the value of r obtained from the equation

,'rnv' —(Z„e'/r) =—-Z'„e'/(2a,n') . (7.40b)

The integration of Eq. (7.39), subject to Eq. (7.40a),
is not difficult to perform. The details are given in

We put the coefficient 8 in curly brackets to indicate
thai it is not the correct numerical. coefficient; the
correct coefficient mill be given shortly.

If capture is to occur the maximum allowable mo-
mentum difference between m and M~, after the nu-
clear scattering process has occurred, is of the order
of the initial characteristic orbital momentum of rn.
It fol. lows that the neglect of the initial velocity distri-
bution, while leading to a meaningful and even quali-
tatively correct estimate of P(nl-bd), is not fully
justified. (Note that in the double scattering process
the momentum transferred to m is much larger than
either the initial or final characteristic orbital velocity
of m, and so the velocity distribution can be ignored. )
We therefore repeat the analysis, this time taking into
account the initial velocity distribution of m. Equa-
tion (7.34a) remains valid, but Eq. (7.34b) must be
replaced by

The only property of the initial state that enters this
last expression is 1/a, and, in this form, the result
is independent of A.

The above analysis differs in some mathematical
details from a classical derivation of o'k„(ls- bd) given
previously in a brief but interesting paper by Bates
and Mapleton (1965)—see also Mapleton (1972)—but
the underlying physics is the same. There is an im-
portant difference, however; one does not know how
accurate a classical analysis of capture from the
ground state for asymptotically high vel. ocities wil. l be,
for there is no true classical picture of the 1s state,
while one has every reason to believe that a classical.
analysis of capture from a high Rydberg state becomes
exact as n, l, and v become infinite. The agreement
between the quantum and classical results, Eqs. (6.1c)
and (7.42), for &„„(ls—bd) is quite good —the numerical
coefficients are 6.86 and 20/3 = 6.66, respectively-
but there are reasons to believe this agreement to be at
least partially fortuitous. There is also the matter
of the velocity distribution to be used for the electron
in its initial state. The appropriate velocity distribu-
tion to be used in an analysis of c'„,(nl-bd) is given by
g(v; a, c) of Eq. (7.17), which depends on c or, equiv-
alently, on l. Gnly if one is interested in the average
over I for a given n, that is, v„,(n-bd), can one use
the "n-shell velocity distribution" g(v; a) of Eq.
(7.17)'. The latter distribution is, of course, appro-
priate for &„„(Is-bd). As it happens, the results are
independent of the velocity distribution. These and
some other points are discussed in more detail in the
article mentioned above (Spruch and Shakeshaft 1979).

We conclude this subsection by comparing o', (nl-bd)
for j = ko, rc, ds, and BK, and for n and l both large.
o &K depends upon the high-momentum components of the
initial state and therefore decreases with increasing
I—as e ~' "—and can be neglected for l sufficiently
large. O„ is independent of the initial state and cap-
ture occurs predominantly to the 1s state so that
a„(nl-bd)= cr„{is—1s), given by Eq. (6.2a); this
equation does not become applicable until v = C(Ze'/h)
where C is of order 20, and where for the purpose of
the present discussion we set Z~ =Z~ —=Z. Since for
the double scattering and knock-on mechanisms capture
occurs predominantly to states with n'=e and l'= l,
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the asymptotic formulae for o~, (nl bd) and o,'„(nl-bd),
Eqs. (7.30) and (7.42), become applicable when
i =C(Ze'/hn), and for this value of v we have

& . (nl-bd) (2" '/3)Z 'n~c "(7ra')

=10Z 'n'C "(ma')

and, with A. the nuclear mass number,

&„„(nl-bd) (20/3)(m/M)'n4C '(mao)

= 10 'A 'n C '(mao) .

(7.43 ~)

(7.43")

Note the n' factor, od, and o„, are proportional to
the area v(n'a, )'. To evaluate cr„(ls -1s) for
v = C(Ze'/Kn) we should use the exact Fourier trans-
form in Eq. (4.3). We expect o'„. to be negligible in
comparison with ad, and &k„at this v.

D. Capture of a gravitationally bound astronomical object

( )
20m GM

v'a (7.44)

Gd (0 bd) (7.45)

a is the semimajor axis of the ellipse defining the origi-
nal motion of m and M&, and we have averaged over all
possible orientations of the ellipse. Note that both o„,
and v„, are independent of m. This is because in both
processes the probability for capture requires the rela-
tive kinetic energy of m and M~ after the last collision
to be less, in absolute magnitude, than their gravita-
tional potential energy, GmMs/a, a condition for which
m drops out if m «M~; in the formula for cr, there are
also two Coulomb (or, rather, gravitational) cross
sections, which are again independent of m, since m
«M~, Me. The formulae (7.44) and (7.45) would be ap-
plicable to the capture, of a planet of mass m bound
initially to a star of mass M& by a second star of mass
M~ incident at velocities much greater than a charac-
teristic initial relative velocity of rn and M~.

A more interesting possible application is to the
question of how a neutron star, believed to be the result
of a violent collapse, can be the component of a binary.
Even if the star which collapsed to become a neutron
star had been the component of a binary, one would ex-
pect the formation of the neutron star to be sufficiently
violent to impa. rt to the neutron star a kinetic energy
sufficient to break the binary bond. Nevertheless, an ap-

It is simple to adapt the preceding classical formulae
for knock-on and double scattering charge transfer to
"mass transfer" between astronomical objects. Thus
in this subsection we suppose that an object of mass
M~ captures an object of mass m which had initially
been gravitationally bound to an object of mass M&. We
need merely make the replacements

Z&Z~e'- —GM&M~, —Z~e'- —GM&m, —Z&e'-- GM&m,

where G is the gravitational constant. For m «M& and
m «M~, requirements for the validity of Eqs. (7.18) and
(7.43)—in the latter equation we recognize that Z'e'/M'
arose from (Z„Zae')'(Zse')/(M„M~) —we immediately
obtain

preciable fraction of the known neutron stars are binary
components. One possible explanation (Hills, 1976,
1977) is that a neutron star, born as an isolated star,
can become a binary component by capturing one of a
binary pair of ordinary stars. All of the formulae we
have written down assume tha, t one of the three masses
is very much smaller than the other two, which would
not here be the case, but the adaptation to the case of
compa. rable masses is relatively trivial, involving only
kinematic details. It may be important to note that if
the mass of the incident neutron star is rather close
to the mass of one of the binary components, knock-on
capture could play a far more significant role relative
to double scattering capture than in atomic physics,
where the factor (m/M)' that appears in cr is less than
sa-'.

Another possible application is to the determination of
the stability of large clusters of stars. It is known
that in the course of time the binding energies of in-
dividual binaries increase, and that eventually the clus-
ter breaks apart. Elaborate numerical codes have been
written to study excita, tion, breakup, and capture pro-
cesses involving binaries and isolated stars. For ex-
ample, more than ten thousand calcula, tions were per-
formed by Hills (1975). The scattering of a massive
object (more massive than a star) by a binary consisting
of massive objects has also been studied a.s a "gravita, —

tional slingshot" in analyses of the structure of extra-
galactic radio sources (Saslaw et a/. , 1974); ten thous-
and calculations were performed. Although capture
processes at asymptotically high velocities play only a
very minor role in these applications —in the cluster
problem, the dispersion in velocity of the stars is small
and one would not expect to find many stars incident
on binaries at very high velocities —a knowledge of the
asymptotic forms of the cross sections does provide a
stringent test of the accuracy of the numerical codes.

Numerical calculations in classical domains of atomic
physics —and in domains for which the classical calcu-
lations might at least be suggestive —have also been
performed (e.g. , Abrines and Percival, 1966). Some
dialogue between atomic physicists and astrophysicists
on these matters might be fruitful.

VI I I. CONCLUSION

We have studied three different mechanisms for the
capture of a light particle at asymptotically high ve-
locities. We have derived, in a heuristic fashion, the
asymptotic form of the cross section for each mecha-
nism, and we have ascertained the relative importance
of the different mechanisms for electron capture from
hydrogenlike "atoms. " We have not, however, precise-
ly stated the range of validity of the asymptotic expres-
sions presented here, To obtain a lower limit on v we
should have to examine the proper asymptotic expansion
of the cross section, if indeed there is one. This would,
of course, be a formidable task; it is difficult to obtain
even an asymptotic expansion of an individual Born
term, other than the first Born term. However, it is
reasonable to expect that the asymptotic forms will be-
come valid when v is between one and two orders of
magnitude greater than the initial and final orbital ve-
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TABLE I. An outline of some results on charge transfer. Bozo (1): the prototype reactions; the photon y is, of course, emitted
only in the radiative process. Bow {2): the cross sections, integrated over all angles —though only certain regions are signif-
icant —for ls —ls capture. See the equations referred to for tke numerical coefficients, and for the Z~ and Xz dependences in the
extension to nuclei other than protons. Note that the coefficient of the double scattering (e /Av) term is leis than 10 times the
coefficient of the Brinkman-Kramers (e /hv) term, and that the coefficients of the v 6 term in the knock-on mechanism and of
the v term in. the radiative mechanism contain {~/I) and (e /Ac)3, respectively, each of these factors being of order 10 . Sec-
tion VI.A contains results for ls —n', )' =n' —1, and ls bd capture. Doze (3): the velocity dependences of the integrated cross
sections for arbitrary initial and final. states. Bozo (4): the exponent of v depends upon )(l') if and only if the reaction requires
high-momentum components of the initial (final) state. Rozv (5): the integrated cross sections for capture from a. high
Bydberg state, summed over all final bound states. Here a =n ao is the semimajor axis of the elliptic orbit that the electron des-
cribes in the classical approximation. Note that, in the double scattering and knock-on mechanisms, capture from a high Rydberg
state occurs predominantly to high Bydberg states. Bzm (6): the analog of row (5) for the transfer of a light astronomical object
between two massive astronomical objects. Bozo (7): the location of the maximum in the angular distribution of the outgoing atom.
Row (8): the xougA widths of the peak in the angular distribution of the outgoing atom. See the text for the extension to nuclei
other than protons.
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locities of m. This expectation is partly substantiated
by the fact that one can evaluate the Brinkman-Era, mers
cross section exactly and show that, for example, for
ground-state to ground-state electron capture by pro-
tons from hydrogen atoms the asymptotic expression
given in Eq. (6.4a) is accurate to within 5% when v is
twenty times greater than the Bohr velocity. Further
evidence is provided in the case of radiationless forwa, rd
capture by a, comparison of the 1/v" term with the 1/v"
term obta. ined from the first three Born terms, again
for the reaction H'+ H(ls) -H(ls) +H; the 1/v" term
dominates over the 1/v" term when v is about eighty-
three times greater than the Bohr velocity. To obtain
an upper limit on v we should have to examine relativis-
tic and particle production effects. This again is a
formidable task. Mittleman (1964) has generalized the

Brinkman —Kra, mers approximation for H' +H(ls) -H(ls)
+ H' to the relativistic domain and finds that relativis-
tic corrections are about 3/0 at 10 MeV (at which energy
v is about 20 times the Bohr velocity. ) Raisbeck and
Yiou (1971), using the known cross section for the rela, —

tivistic photoelectric effect, have generalized the cross
section for .the radiative ground-state recombination of
electrons and protons to the relativistic domain; using
their expression, after correcting some obvious mis-
prints, "we find that relativistic corrections are less

~~The correct expression is simply a factor of k /[(k+ p)
—p ] times the cross section for the relativistic photoelectric
effect, where this cross section, and k and p, , are given by Eq.
(17), Sec. 21, of Heitler {1954).
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than 3% at 10 MeV.
In Table I we summarize some of the salient features

of the various mechanisms for electron capture from a
hydrogenlike atom by a bare ion. It is worth recalling
here the origin of the dependences upon the velocity v
shown in row (3) of the table. ok, factors into the Cou-
lomb differential cross section do„,(m)/dQ for the nuclei
to backscatter, which is proportional to I/v', and a
conditional probability of capture, which is proportional
to the solid angle 2w(0„'„„./2) of a cone with semiangle
& „.; the angle of scattering in the c.m. frame is m —6.

is defined by the requirement that the maximum
relative velocity of m and M~ after the nuclear scatter-
ing process, v6 „/2, be less than the escape velocity,
which is v independent, and it follows that &„„„, behaves
as 1/v and therefore that the solid angle behaves as
1/v'. od, contains as factors the product of two Ruther-
ford 60 scattering differential cross sections, each
proportional to I/v', and also contains a conditional
probability of capture that is proportional both to the
solid angle dO into which the electron must emerge
after its second scattering if it is to be captured and to
the volume element within which the electron must
initially lie; the volume element is proportional to I/v
[see Eq. (5.7)] while the solid angle, as for knock-on,
is proportional to I/v'. Treating radiative capture as
radiative recombination, o„ is the product of 1/F ~ I/v,
where I is the incident electron flux, and the rate I
for recombination. I" is proportional to the density of
final states, to I/&u, and to the square of the matrix
element of the current and therefore velocity operator.
The density of final states is proportional to (d', and
therefore to U4 since ~ is proportional to v', and the
matrix element of the -velocity operator is proportional
to v multiplied by gz(mv/k), the latter behaving as
I/v"' . See the discussion of Appendix D for the ori-
gin of the v dependence of vB„. In that mechanism there
is a single three-body collision, and the physical in-
terpretations require rather more care.

It is also worth recalling the roles of the high-in-
ternal-(or orbital-) momentum components of the initial
and final states. They play no role for either double
scattering or knock-on. In the Hrinkman-Kramers
mechanism the high-momentum components of both the
initial and final states are crucial but in radiative cap-
ture only the high-momentum components of the final
state are crucial —the initial state, and therefore its
high-momentum components, plays no role in the deter-
mination of g„.

In the knock-on and double scattering mechanisms the
matrix element for capture involves a product of the
initial and final coordinate space wave functions, so that
n' and l' must be roughly equal to n and l, resyectively,
if the matrix element is to be significant. That
cr„(nl-bd) and od, (nl- bd) have classical limits for n and
t-~ (with the main contribution coming from n' and
I'- ~) is a reflection of the fact that the. se reactions
proceed without the requirement of high-momen-
tum components, components not possessed by classi-
cally describable states of high quantum numbers. The
situation is different for the Brinkman-Kramers and
radiative mechanisms. For these mechanisms capture
occurs predominantly to the 1s state, regardless of the

initial quantum numbers n and l. This is because cap-
ture occurs to the high-momentum components of the
final state, and for the electron to finally have a high
momentum it must be close to the projectile nucleus,
which is most likely if the final state is a ls state.
Note that for large l' the electron spends little time
near the projectile nucleus. In the Brinkman-Kramers
mechanism the electron must also have high momentum
initially, and as„(nl-bd) decreases with increasing v

as I/v""' and vanishes in the classical limit n, I-~.
Accurate measurements of the cross section for elec-

tron capture from hydrogenlike "atoms" by bare ions
are difficult to perform at high impact velocities. How-
ever, as discussed above, it might be feasible to mea-
sure cross sections for electron capture from helium
atoms 'or hydrogen molecules. -Such experiments might
shed more light on the asymptotic form of the cross
section, and lead to a better understanding of capture
processes.

Notes added Az Proof:

(1) More and more people are using a notation with the
subscripts I' and T denoting projectile and target, re-
spectively. We apologize for not having used this more
descriptive notation.

(2) The two-step dielectronic recombination process
mentioned in Sec. IV is important —see Y. Hahn, 1978,
Phys. Lett. 67A, 345.

(3) Bates et al. (1964) extended the Thomas double-
scattering model and predicted, in particular, that H,'
ions would emerge from the reaction H'+CH~-H, ++CH,
at an angle of about 45 relative to the beam direction
for a beam energy above about 75 eV. This was striking-
ly verified in an experiment by C. J.Cook, N. R. A.
Smyth, and Q. Heinz, 1975, J.Chem. Phys. 63, 1218.
Note that the "orbital" (actually vibrational) velocity of
the active H atom is small in both the initial and final
states, and consequently the beam velocity need not be
high for the picture to be valid. The classical estimate
of the integrated cross section is about a factor of 10
larger than the experimental result; we stress again
that a purely classical analysis of double scattering
need not be valid unless the initial and final states are
classically describable.

(4) In Sec.VI.C we suggested a coincidence experiment to
look for a peak in the angle and energy of electrons
ejected from He targets. This experiment was indepen-
dently suggested, and is now being performed, by
E. Horsdal Pederson at Aarhus. A quantum-mechanical
calculation of the process was recently completed by
J.S. Briggs and K. Taulbjerg (J. Phys. B, 1979, in
press).

(5) Recent reviews include "Electron capture in high-
energy ion-atom collisions, " by Dz Belkic, R. Gayet,
and A. Salin, scheduled to appear in Physics Reports,
July, 1979; "Electron capture processes in ion-atom
collisions, " by D. Basu, S. C. Mukherjee, and E. P.
Sural, 1978, Physics Reports 42@, 147, and B. H.
Bransden, Physicalia. , to be published.
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APPENDIX A: IMPACT-PARAMETER DEPENDENCE
OF RADIATIVE CAPTURE

%e here briefly sketch a proof which shows that Eq.
(4.5) of the present paper ca,n also be derived (though
very much less directly) starting with Eq. (9) of Briggs
and Dettmann (1974). Let A be the amplitude for the
capture of an electron, initially attached to M& in state
i, into state f attached to M~, with the concomitant
emission of a photon of polarization X and propagation
k; ~~ is incident with an impact parameter b. In the
dipole approximation, and neglecting the difference be-
tween the initial and final binding energies, Eq. (9) of
Briggs and Dettmann (1974) is, in our notation,

A = e(k(v) '~'(X ~ v)q~( —mv)
1

de ~
z~'U P 'v cPbP— (Al)

We use Eq. (2.1) and the representation

e(ee) =(—)()(a) =(2 ) de'e""

with

((v --,'mv'/8 + p ~ v/5)

For radiative capture, the differential cross section
with respect to impact parameter is given by

= 2~b d'u g (a ~'. (A3)

Using

8 2 OO

d kg ()('v) . . . . =
3 (v d((). . . . .3c

to perform the integration over p in Eq. (Al) and ob-
tain, after integrating over r and replacing z' by z,

2m '~2 ea
A. = ()( .v)(t) ( mv) d& t( ejve-emee/2)))).

q (b &)
(d 'U

and using Eq. (Al) for A. and the complex conjugate of
Eq. (A2) for A. *, Eq. (4.5) follows from Eq. (A3) on in-
tegra. ting first over (v and then over p. [In the la.st
integration over p we neglect p ~ v in comparison with
~mv' since )t);(p) restricts the range of p and since v
is large compared to the characteristic initial internal
velocity. ]

The impact-parameter dependence of the radiative
capture cross section was also derived in a recent
paper by Briggs and Dettmann (1977).

APPENDIX 8: FURTHER REMARKS ON THE JUSTIFI-
CATION 0F THE DOUBLE SCATTER IN G ANALYSIS

%e here rema. rk further on the use of two volumes,
dv', and d7~, to describe the initial location of m in the
double scattering process. As indicated in Fig. 4, two
of the linear dimensions of d7„ in the half-pla, ne de-
fined by a fixed value of (t)„, are of order db. [We need
not have chosen the dimension parallel to v to be equal
to db. If we call this dimension db', we want db' large
compared to 5/M~v and small compared to b and to the
dimensions of the "atoms" (m+M„) and (m+M))). Sub-
ject to these restrictions, restrictions which we can
a.ssume to be satisfied by db, the final answer will be
independent of our choice of db'. ] Now d(t)„ is the spread
in the azimuthal angle Q„ that helps define d7, . The
dimension of d7, in the direction perpendicular to the
half-plane is therefore bdg&,' choosing d(t)„=db/'b, this
dimension will also be of order db. (Once again, our
choice is a matter of convenience. There is some lati-
tude in the choice of dP„, a latitude which in no way
will affect the final answer. ) The wave packet de-
scribing m immediately after the first collision will
therefore have a spread db in each dimension. Because
of the restrictions imposed upon db, a spread db leads
to a spread in the velocity v, of magnitude small com-
pared to v, so that there is no violation whatever of the
uncertainty principle in stating that nz travels in a
rather well-defined path between collisions. %e turn
now to the much smaller volume dv,'. Two of its di-
mensions are of order db, but its third dimension (see
Fig. 4) is of order bdo.„ that is, of order bdv, /v. If m
is to reach some given point Q on do„ for a given lo-

-cation of dv„ then m must originate at some point P in
d7', . If we really knew that m originated in dT', there
would be an inconsistency, for then the component of the
quantum-mechanical uncertainty in v, in the direction
perpendicular to &, could not be much less than v. But
we do not know exa, ctly where do, is; the center of do2
can be anywhere on a circle centered on M& and with a
radius of order Ch /mv, where C is rather large com-
pared to 1. Thus, although in calculating the probability
of m passing through the point Q we can assume the
point P to be in dr', and write H = ~)I); ~'dv'„ the volume
d7 y can be anywhere within d7, and all we actually know
about the location of E' is that it lies within dT, . The
whole scheme is made consistent by choosing db to be
db = C(h/mv), where C, the constant defined just above,
is independent of e, and large compared to 1. The exact
value chosen for C plays no role, but to be concrete let
us consider C = 100. We then have d7, = 100d7y More
significantly, each dimension of d7, is of order db
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= 100(S/mv), so that the uncertainty in any component
of the velocity of the wave packet emerging after the
first collision is k/mdb =v/100, which, as required,
is rather small compared to v.

One further remark about the two volumes is essen-
tial. Since each linear dimension of the wave packet
that emerges from the first collision is of orders, each
linear dimension of the wave packet that emerges from
the second collision will also be of order db. This lat-
ter wave packet therefore has linear dimensions small
compared to b and io the linear dimensions of the
"atom" (m+Ms) but large enough for the magnitude of
the spread in the velocity v, to be small compared to v.
These last two facts allow I,.„„ to be evaluated in the
manner of Sec. V.B.6.

APPENDIX C: MATHEMATICAL DERIVATION OF
do~, ldb

We sketch, very briefly, a mathematical derivation of
Eq. (5.12), the asymptotic expression for der„, /db.

Let AK be the difference between the final momentum
of the system Ms + m multiplied by Ms /(m +Ms) and the in-
itial momentum of the projectile (that is, the "average"
final momentum less the initial momentum of the pro-
jectile). With K= ~K~, let A~, (K) denote the full quan-
tum-mechanical second-order Born amplitude for cap-
ture from a bound state i to a bound state f. The asymp-
totic form of A~, (K) for H'+ H(ls). —H(ls)+H' was first
derived by Drisko (1955). Drisko's result was genera-
lized by Dettmann and Liebfried (1969) and Dettmann
(1971) to cover a large class of interactions, but with
the initial and final states isotropic. An expression
which is valid for arbitrary initial and final states was
given by Shakeshaft (1978b); we start with this ex-
pression here, but with many notational changes. " We
have

A, (b)--2i""(2m)'~', g, dK,

x W„(A K)Ws(b K)(I(f*(—sT)g, (sK) exp( —,'iDs)

x cos(bK ——,
'

vm ——,'m), (C4)

where K = ——,'q+ K~u . Interchanging the order of inte-
gration and performing the integration over K~ using
the method of stationary phase (the point of stationary
phase is K~ =b/s) we obtain"

A„(b( —(2w)* -— ds( )W„(RK(W—(liKl
0

$2
&& q~*(—s T)q,. (sK)exp[i —q's + i ], (C5)

where now K= ——,'q+ (b/s)u . The method of stationary
phase may again be used to evaluate this last integral
over s. The point of stationary phase is s =b/K«and
therefore K =K o, AK=mv, and k~T~ =mv. It follows
that

u+K cu

pendicular to v. It follows from energy and momentum
conservation that v ~ K= ——,'q (plus a term of order e'/hv,
which we neglect) and therefore v ~ T = —,'q, K = (K'+ q'/4)' ~',
and D = (3/4)q' —K~2. Now for "most" values of K~, D
is proportional to v' and so the integrand of Eq. (Cl)
is highly oscillatory. Therefore A~, (K) is largest when
D =0, that is, when K~ =K~o —= (3'~'/2)q (=q sin3v, the
value of K corresponding to the critical angle). Hence
the main contribution to the integral over ~ in Eq.
(C3) comes from the region near K~ = K«, and, since
most of the contribution to o„comes from b» 6/mv,
we have bK~ » 1. We can therefore replace the Bessel
function by its asymptotic form and we obtain, com-
bining Eqs. (Cl) and (C3),

o„=(2mb'v') '

where

g„(K)i'KdK,
/2

and hence that sK = ( b/K~ c)K= r~, . Similarly, at the
point of stationary phase, -sT =r». Integrating over s
and using do„/db = 2mb ~A ('b) ~' we obtain Eq. (5.12).

A„(K) i(2~)-'k—mW„(uK)W, (kK)

dse' ' 'gq*(-sT)q, (sK),

APPENDIX D' SOME DIFFERENT ASYMPTOTIC
FORMS FOR THE RAOIATIONLESS FORWARD

(Cl) CWPTU RE CRO

where we have neglected corrections of the order of
m/Mz and m/Ms, and where

7=—q+ K, q—= mv/h, D -=q' —K', (C2)

j.
A, (b)-i'

2 K,dK, Z„(bK.)A, (K),

where v= p —p' is the difference between the final and
initial magnetic quantum numbers, and where K~
=u ~ K, the projection of K on a unit vector u per-

with q= ~q~. The second-order Born amplitude, A~, (b),
in the impact-parameter representation (see, for ex-
ample, Wilets and Wallace, 1968) is

Hadiationless forward capture at high impact veloci-
ties has been treated in a variety of approximations,
each leading to a different asymptotic form for the
cross section. In this appendix we present, along with a
few brief remarks, five different estimates of the
asymptotic form of the cross section for ground-state
to ground-state radiationless forward electron capture
by protons from hydrogen atoms. We use atomic units.
The modified Bessel function K„(x) is defined as
(—,'mi) exp(2in7()H„"'(x), where H„"'(z) is the Hankel func-
tion of the first kind.

Brinkman-Kramers approximation (Brinkman and
Kramers, 1930; see McDowell and Coleman, 1970)

~2Note the misprint in Eq. (3.8e) of Shakeshaft (1978b); the 2
should be deleted in the term b pK&/2v~.

'3The integral of Eq. (C5) may diverge at its lower limit. -

This can be avoided by replacing the lower Limit on s in Eq.
(C4) by a small positive quantity.
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do/db - 2'nb'v 'PC, (bv/2)]',

o —(2"m/5)v ".
First Born aPProximation (Jackson and Schiff, 1953)

do/db —2'nbv '0[(bv)'K, (,'bv—) —4', (—,'bv)]',
o- (127/192)(2"w/5)v (D2b)

As opposed to the Brinkman —Kramers approximation,
the first Born approximation includes the proton-proton
interaction.

Second Born approximation (Drisko, 1955)

do/db —(2'~'/W3) v "exp(—Bb/W3),

v- 2'T'v

(D3a,)

(D3b)

Continuum distorted zouave a-PProximation (Cheshire,
1964)

26~ 2v -11 (D4b)

Variational continuum distorted-zvave approxi nzation
(Shakeshaft, 1974c)

(D5a)

(x-2'vr'I v ". (D5b)

where I = 4exp(2. 0)E,(2.0) = 1.109, and where E,(x) is
the exponential integral.

Note that the differential cross sections in Eqs.
(D3a) —(D5a) a.re the same through terms of order b.
Note also that the total cross sections in Eqs. (D3b) and
(D4b) are identical; however, this is fortuitous, and the
continuum distorted-wave approximation would seem to
be inadequate even at very high velocities. (See also
the recent discussion of Belkic, 1977).

The modified Bessel functions K, (x) and K, (x) de-
crease exponentially as x increases. Therefore only
the narrow range of imps. ct pa. rameters b ~ 1/v con-'
tributes significantly to the total cross section in the
Brinkman-Kramers and first Born approximations.
This can be understood as follows. Consider the "prior"
form of the Brinkman-Kramers approximation in which
the perturbation is the interaction of the electron with
the incident nucleus. Momentum is transferred only
between I and M~, and for capture to occur momentum
and energy conservation require that the initial velocity
of m relative to the target nucleus M& be roughly ~v.
Therefore there can be a significant probability of cap-
ture only if m happens to be within a distance of order
8/mv from Mz. (We use arbitrary units now. ) For
capture to occur ng must receive an impulse of order
—,'mv from M~, and this requires almost a direct col-
lision between m and M~; more precisely, M~ must
pass within a distance of order b/mv from m, and
hence from Mz. Therefore only the range of impact
parameters b b/mv is significant. Similar arguments
can be given for the "post" form of the Brinkman-
Kramers approximation and both the "post" and "prior"
forms of the first Born approximation.

Although only a single collision is involved in the

Brinkman —Kramers approximation, this collision is not
a binary one since the effect of the third particle cannot

. be ignored. (The collision takes place far off the energy
shell. ) Without going into details, the v dependence of
cr K can be understood as follows: The probability for
~n to have an initial velocity of roughly ~v relative to
M„ is proportional to ~Q, (mv/2)~', which, for pure Cou-
lomb interactions, behaves as 1/v""; the Coulomb
differential cross section for m to receive an impulse
of roughly ~mv behaves as 1/v'; the probability for m
to be finally at a distance of roughly 8/mv from Ms
is proportional to ~Q& (Br/mv) I', which, for pure Cou-
lomb and other interactions, behaves as 1/v" . Multi-
plying these three factors together gives 0~K proportion-

to 1 /v12+2 l l+'2

There are many other approximations for treating
electron capture besides the ones mentioned above.
The last comprehensive review was given by Bransden
(1972). Since that review a number of interesting papers
have been written. In pa.rticular, Kramer (1972) has
evaluated the second Born terms essentially exactly by
numerical integration, and Briggs (1977) ha, s resolved
a longstanding discrepancy between the asymptotic
forms of the cross section obtained in the impulse and
second Born approximations. Some other approxima-
tions a.re discussed by Chen et al. (1971), Chen and
Kramer (1972), Shastry et al. (1972), Kleber and Na-
garajan (1975), Das (1976), Dewangan (1977), and
Belkic (1977). A combined use of the Brinkman-Kra-
mers and the Drisko second Born approximation in the
analysis of the production of inner shell vacancies via
capture was recently made by Lapicki and Losonsky
(1977).
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