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The propagation theory of multimode and single-mode optical waveguide fibers is reviewed. The subjects
reviewed include basic propagation theory, the influence of the glass medium on attenuation and pulse
dispersion, and tQe effects of perturbations of the waveguide*s geometry and index profile.
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I. INTRODUCTION

Since the announcement by Corning Glass %orks in
1970 of a 20 dB/km glass optical waveguide fiber (Kap-
ron et a/. , 1970), rapid advances have been made in
the development of low-attenuation optical waveguides
suitable for long-distance communications. The low

attenuation, high information bandwidth and low pro-
jected manufacturing cost of glass waveguides make
them an attractive alternative to the coaxial cables and
multiple wire pair cables presently in use. The optical
fiber's small size, low weight, and immunity to electro-
magnetic inter fer ence offer important additional bene-
fits.

Following the development of laser and light-emiiting-
diode (LED) sources in the early 1960's, Kao and Hock-
ham (1966) recognized that glass waveguides could be a
practical transmission medium if transmission losses
could be reduced to 20 dB/km by elimination of metallic
imp ur itic s.

The vapor phase oxidation or chemical vapor deposi-
tion (CVD) technique has been spectacularly success-
ful at achieving this. The vapors of high-purity liquids,
such as SiC14 and GeCl, „can be oxidized under controll-
ed conditions to form a glass soot which is collected
either on a rotating rod (Keck, Schultz, and Zimar,
1973) or on the inner surface of a tube (Keck and
Schultz, 1973; MacChesney et a/. , 1974). According to
the method of soot collection, these are, respectively,
referred to as either the outside or inside processes.
Oned the soot is deposited the resulting preform can
be consolidated into glass and subsequently drawn into
fiber.

The use of purified liquid reactants and the avoidance
of conventional melting techniques can reduce contamin-
ation by metallic impurities to less than a- few parts per
billion (Maurer, 1973). By 1973 losses of 5 dB/km were
being reported for a GeO, -SiO, core, SiO, clad waveguide
(Schultz, 1973; Keck, Maurer, and Schultz, 1973). At
longer wavelengths where the intrinsic losses are lower,
attenuation rates of 0.5 dB/km have recently been achieved
in a. P,O, —SiO, waveguide (Horiguchi and Osanai, 1976).
The use of B,O, (French et a/. , 1973; Kato, 1973) and
P,O, (Payne and Gambling, 1974) as waveguide mater-
ials has increased the range of useful compositions.

A number of variations of the vapor phase deposition
technique have been used successfully to make optical
waveguides. For a comprehensive review of this subject
see the paper by Schultz (1979).

Although the inside process was first conceived at
Corning Glass Works (Keck and Schultz, 1973), it was
actively pursued and more fully developed at Bell Tele-
phone Laboratories (MacChesney &/ a/. , 1974). The
use, external to the collecting tube, of a traversing
burner serves to initiate the reaction and consolidate
the soot in a single step (MacChesney et a/. , 1974). A
further variation of the inside process using a plasma-
activated reaction has also been demonstrated (Koenings
et a/. , 1975; Geittner e/ a/. , 1976; Jaeger e/ a/. , 1978).

Recently the outside process has been modified to
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achieve continuous preform fabrication by depositing
soot on the end of a rotating silica rod (Izawa et al. ,

1977). By means of such an axial deposition of soot, the
soot can be deposited and then consolidated in a continu-
ous process.

With the exception of the axial deposition, all these
variations build a preform by depositing soot or glass
in concentric layers. Since the composition can be
varied from layer to layer, the process is well suited
for fabricating fibers with precisely controlled graded-
index profiles. This is an important advantage because
the properly graded-index profile has an information
ba,ndwidth 10'-1o' greater than that of the ungraded pro-

filee.

An alternative to the vapor phase oxidation technique
is the double crucible method (for a review see Newns
et nl. , 1977). Beginning with high-purity batch mater-
ials, the fiber is pulled continuously from a high-purity
double platinum crucible. -In 1974, much interest was
generated when researchers (Koizumi ef aL, 1974) at
the Nippon Sheet Glass Company reported 20 dB/km
parabolic index profile SELFOC fiber which had been
fabricated by the double crucible process. The attain-
ment of lower loss has proved to be difficult because of
the requirement of very high-purity starting materials
and the need to maintain purity during processing. At. —

though losses as 1'ow as 5 dB/km have been achieved
(Ikeda and Yoshiyagawa, 1976; Newns eg ~L, 1977), the
difficulty of maintaining the highest purity levels and of
accurately controlling the index profile puts the double
crucible process at a disadvantage in the manufacture
of low-attenuation, high-bandwidth fibers. In applica-
tions where the required fiber transmission properties
are less severe the double crucible process may still
be competitive.

Essential to the rapid progress in optical communica-
tion systems has been the simultaneous development of
low-loss fibers and reliable, low-cost sources and de-
tectors. While the subject of this review is the propa-
gation characteristics of the optical waveguides, a brief
survey of available sources and detectors seems ap-
propriate for the reader who is not familiar with the
field of optical communications.

The development of GaAs and GaAlAs LED's and in-
jection lasers began in the early 1960's (for a review see
Miller et a/. , 1973). LED's with predicted lifetimes in
excess of 10' h have been available for several years
(Hersee and Goodfellow, 1976). Lifetimes of 10' h are
now being predicted for injection lasers (Ladany et al. ,
1977; Hartmann et al. , 1977). These sources operate in
the spectral range 0.8-0.9 gm, where fiber attenuations
of 3-5 dB/km are routinely achieved. Today GaAs and
GaAIAs sources are used in almost all operating optical
communication systems and field trials.

The attenuation of optical fiber decreases to 0.5-1
dB/km in the 1.0-1.5 p, m spectral range. The several-
fold increase in repeater spacing made possible by such
low attenuation makes optical communications at these
wavelengths even more attractive. An additional attrac-
tion of the longer wavelengths is a first-order zero in the
material-related pulse dispersion occurring near 1.3
pm. Transmission at this wavelength lea.ds to a poten-
tial increase in the information bandwidth by one to two

orders of magnitude.
Results have been reported on the recent development

of GaInAsP/InP lasers (Shen ef aL, 1977) and LED's
(Gibbons, 1977) which operate at these longer wave-
lengths. These devices appear to be very promising and
are expected to be commercially available in the near
future.

In the region 0.8-0.9 gm, silicon avalanche photodi-
odes (APD's) and silicon P-i-n photodiodes are available
for optical communication systems (for a review see
Misugi and Takanashi, 1977). At wavelengths greater
than 1.1 p m, where the Si detectors cut off, Ge APD's
can be used. Because of excess noise, at a fixed bit-
error rate they are about 10 dB less sensitive than the
Si APD's„Gallium-indium-arsenide-phosphide alloys
are also being studied for use in the longer-wavelength
region. An excellent review has been given by Pearsall
(1978).

For an up-to-date survey of sources, detectors, and
optical systems design, the reader is referred to the
review by Conradi et al. (1978).

This paper follows 'a number of excellent review arti-
cles. Maurer (1973) discussed the properties of the
glass medium, while the article by Miller et al. (1973)
deals in detail with propagation in optical fibers, de-
vices, and systems considerations. Gloge (1975a) has
provided an excellent review of waveguide propagation
theory.

In addition to these references, there are several text-
books available which offer an introduction to optical
waveguide theory (Kapany and Burke, 1972; Marcuse,
1972c, 1974a; Arnaud, 1976b; Unger, 1977).

Since the publication of these reviews and texts, con-
siderable progress has been made in the understanding
of waveguide propagation, particularly in understanding
the influence of the glass medium on propagation char-
acteristics. Thus, many new developments, not pre-
viously reviewed, are included here.

Section II. of this article reviews the propagation
characteristics of the unperturbed multimode optical
fiber assuming an ideal, lossless, dispersionless di-
electric medium. Section III considers the very im-
portant effects that the glass medium has on waveguide
propagation, and Sec. IV deals with deviations from the
ideal multimode waveguide geometry, such as curvature
of the waveguide, the finite cladding thickness, and
perturbations. The final section reviews the properties
of the single-mode waveguide.

I I. THE MULTIIVlODE OPTICAL WAVEQUIDE

A fiber optical waveguide consists of a cylindrically
symmetric core region surrounded by a cladding region.
If the refractive index of the core is greater than that of
the cladding, t.ight is guided along the waveguide core.
The ideal waveguide is straight, eylindrieally symmet-
ric, has a cladding of infinite thickness, and is made of
a lossless, dispersionless dielectric material. The
theory of the ideal unperturbed multimode waveguide is
reviewed in this section.

The core of radius a is taken to lie along the positive
z axis with input end at the origin. A cylindrically sym-
rnetric, but otherwise arbitrary, refractive index pro-
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file can be defined by the expression

n'(r) =n', [1—2'(r/a)], r ~ a,
n (r) =n,' =n, [1 —2'(l)], r ~a (2.1)

where the profile function f(r/a) is normalized so that

f(0) =0,

(1) = 1 . (2.2)

The refractive index along the waveguide's axis is yg, and
the index of the cladding is n2. The quantity 6 is defined
as

« —a(n't ' g)'"
W = a(p' —n,'a')"',

(«2 ~ ~2) L/2

(2.12)

(2.13)

(2.14)

The leaky modes are in many ways analogous to the
well-known resonant states of quantum mechanics.
Their power is only temporarily confined within the
core region of the waveguide.

In analyzing guided mode propagation, it is convenient
to introduce parameters U, TV, and V by the equations
(Snyder, 1969),

~ =(n', —n', )/(2n', ) . (2.3)
Together these three equations define p in terms of the
waveguide parameters,

For optical waveguides used for telecommunication, the
difference between yg, and g, is on the order of 10 '.
Thus,

~= (n, —n, )/'n, , (2.4)

and & is referred to as the relative index difference.
For waves with free-space wavelength X propagating in

the positive z direction, the electromagnetic fields can
be written as

E(r, 8, z, t) = E(r, 8)e' t 8'

H(r, 8, z, t) =H(r, 8)e't~' ~" (2.5)

x curlH(r, 8) =0, (2.7)

where 0 =2'/k is the free-space wave number and Vr is
the transverse gradient operator.

The propagation constant P, introduced in Eq. (2.5) is
very important for characterizing solutions to the wave
equation. For real P, two classes of solutions exist
(Snitzer, 1961). For p in the range

n, k~ IpI -n, k, (2.8)

propagating electromagnetic fields exist only within the
core region, and these solutions decrease exponentially
in the cladding. For this class of solutions, one is led
to an eigenvalue equation and a finite number of guided
mode solutions.

If P is real and in the range

n k&P&-n k, (2.9)

waves can fully propagate in both core and cladding, and
a continuum of solutions exist. These are referred to as
the radiation modes or continuum solutions.

There is also a third class of modes (Snyder and
Mitchell, 1974; Snyder et at. , 1974), called leaky modes,
which can be characterized by the conditions

ImP& 0 (2. 10)

n, k& Rep& -n, k. (2.11)

where P is the propagation constant and a is the angular
frequency (~ =2m/). Maxwell's equations for the optical
waveguide can be written as (see Born and Wolf, 1970)

[V —p' +k'n'(r) ]E(r, 8) +V[E V log[n'(r)/p, ,]j=0,
(2.6)

[Vr' —p'+ y'n'(r) ]11(r, 8) +Vflog[n '(r)/p, ]j.

V =n~ka~2& . (2.15)

Later discussion will make it clear that V provides a
measure of the waveguide's mode volume,

For the special case of a step-index waveguide having
a. uniform core of index n„ f(r) is identically zero and
Eqs. (2.6) and (2.7) reduce to

[&&+k'n'(r) —p']E(r, 8) =0,

[&,'+ k'n'(r) —p']H(r, 8) = 0. (2.16)

Optical waveguides used for telecommunications have
small relative index difference. A 4 of about 0.035 is
the largest value yet reported (O' Connor et al. , 1977),
but 6 values in the range 0.01-0.02 are more typical.
For such small index differences, the "weak guidance"
approximation (Snyder, 1969; Gloge, 197la) leads to
simplified solutions of the wave equation which prove to
be extremely useful. The following discussion of the
weak guidance approximation is based on the work of
Gloge (197la, 1975a).

In the weak guidance approximation, the transverse
fields are assumed to have the form

J, («r/a)
,/n, , J,(«)

E,(r, 8) =H, =E,(a) cos(v8),
sop, n, ' K, Wr a

sc,(w)
(2.17)

where the upper and lower equations are for core and
cladding, respectively. v is a non-negative integer
referred to as the azimuthal or angular mode number.

Longitudinal fields, E and H, can be calculated
from the derivatives of the transverse fields. They are
reduced in amplitude relative to the transverse fields by
a factor of order A' '. Differentiations of the longitudin-
al fields to regenerate the transverse fields lead to
fields which differ from the, ,originals by order A. Thus
the assumed fields of Eq. (2.17) satisfy Maxwell's equa-

Exact solutions (Snitzer, 1961) to Eq. (2.16) are known.
The exact eigenvalue equation and the field solutions
are very complicated, and it is difficult to use them to
gain physical insight into waveguide propagation. For a
discussion of the exact solution, the reader is referred
to either the original paper by Snitzer (1961) or to one
of the available texts (Marcuse, 1972c, 1974a) on the
subj ect.
A. Weak guidance approximation
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Z.'(U) K.'(W)

~.(«) K.(W)
(2.18)

tion to within correction terms of order A.
Equation (2.17) must also satisfy continuity conditions

at the core-cladding interface. To order 6, pg, is equal
to yg„so that in the weak guidance approximation the
boundary condition requires continuity of the fields and
their derivatives. This gives the eigenvalue condition

B. Step-index prafile

The number of modal solutions of Eq. (2.19a) can be
determined as follows. Since W and K,(W) are positive,
the right-hand side of Eq. (2.19a) is always negative.
As a result of the oscillatory nature of the J, Bessel
functions of positive argument, the left-hand side of
the eigenvalue equation oscillates between -~ and +~,
in much the same way as the tangent functions. In fact
for lar ge U one has

Using the recurrence relation for Bessel functions, the
eigenvalue equation (2.18) can be written as either Z, ,(U) v~= -P tan fJ ————

g (U) 2 4 (2.24)

J, ,(U) K, ,(W)j,(U) K~(W)
(2.19a) Since p lies in the interval given by Eq. (2.8), from the

definition of p, one has

or O(P(V (2.26)

J„,(U) K~, ,(W)
J,(U) K,(W)

(2.19b)

Gloge has shown that these simplified equations can be
derived directly for the exact eigenvalue equation.

In Eq. (2.17) the orthogonal orientation, with angular
dependence sin(v8) instead of cos(v8), is an independent
solution, as is the orthogonal polarization, with x and y
interchanged. Thus if v =0, there are two independent
solutions, and if vt0, there are four.

Before discussing the solution to the eigenvalue con-
dition, it is interesting to consider thephysical interpre-
tation of the weak guidance approximation.

Equation (2.16) is formally identical to the Klein-
Gordon equation describing the quantum-mechanical
wave function of a, massless, scalar (spin zero) field
propagating in a potential. Using the well-known rela-
tions for the momentum operator in quantum mechanics,

Between each zero of J, ,(U) in this domain, there is a
solution. Successive solutions will be labeled by the
non-negative integer p, , which is referred to as the
radial mode number. Designating the successive zeros
of J„,(U) by Z,„and the successive solutions by U,„,
one thus has

(2.26)

Gloge (1971a) has introduced the label LP, „,, to desig-
nate these linearly polarized solutions. Each I.P
mode is a superposition of two of the exact modal solu-
tions which are approximately degenerate.

For modes with large radial mode number

(2.27)

and one has the approximate restriction on mode num-
ber

2p, +v & 2V/vr. (2.28)
p =—. v,

and for the energy operator,

6 8

ic Bt

(2.20)

(2.21)

Equation (2.28) is valid for waveguides with large V
values.

Counting both angular orientations and both polariza-
tions, the total number of modes N of the step waveguide
is approximately given as (Gloge, 1971a)

The approximate wave equation (2.16) can be written as

&(~) ljp~I = &, — (2.22)

where the potential is defined as

v(~) = -e 'u'[n'(~) —~;] . (2.23)

Equations (2.22) and (2.23) show that in the weak guidance
approximation Maxwell's equations are equivalent to the
field equation of a scalar particle freely propagating
along the waveguide's axis and confined by a potential in
the transverse directions.

The neglect of the field's polarization implicit in Eqs.
(2. 16) and (2.22) can be understood as a consequence of
the small grazing angle the guided waves make at the
core-cladding interface. For total internal reflection
at the interface the grazing angle 0 must be in the
range 0 & 8 &(2b,)"'. The Fresnel reflection formulas
show that reflections are independent of polarization to
order 4. Hence in the weak guidance approximation the
photon's polarization can be neglected.

N= —V = —V
7T' 2 (2.29)

The power density in a mode is given as (Gloge, 1971a)

Z'.(Ur/a)

P(y, 0) =a, —, 2
&

)
cos'(v8),

t&' 2P J '(U)

K2(W)

where

~, = K'.(W)/K, ,(W) K„„(W)

(2.30)

(2.31)

and P is the total power per unit length. The power dis-
tribution given by Eq. (2.30) is the near-field intensity
pattern of a mode and can be directly observed if an in-
dividual mode is excited. From Eq. (2.30) it is clear
that the near-field pattern of mode p, , p is characterized
by p. radial nodes of zero intensity, corresponding to
the zeros of J',(Uv/a), and 2v azimuthal nodes corres-
ponding to the zeros of cos'(vR).

By integrating Eq. (2.30), one finds the power fraction
in the cladding to be (Gloge, 1971a)

Rev. Mod. Phys. , Vol. 51, No. 2, April 1979
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I.O

0.8— 0.2

stant =yg Q. s P decreases, b decreases for each
mode until it reaches the cutoff point where b =0 and

P =n, k.

0.6—
CL

O

0.4—

CL

LJJ

0.6

0.8

C. Parabolic-index profile

Optical waveguides with parabolic- or nearly parabolic-
index profiles have transmission bandwidths which are
orders of magnitude greater than those of step-index
waveguides (Miller, 1965; Kawakami and N' hami an ishizawa,

Uchida e] ///. , 1970) and play a central role in
long-distance optical communication. The parabolic
prof ile is def inc d as

10
= I.O
12

a.,QZ = (V2/V')(1 —~,) .

This function is plotted in Fig I fig. or some of the low-
order modes. As V increases, each mode becomes
more strongly confined to the core and the fraction of
power in the cladding approaches zero.

The modal propagation constants are of great im or-
tance in calcuculating modal group velocities and for

rea impor-

ana yzing the effects of perturbations. Soluti
q. & . & are shown in Fig. 2 as a function of the

parameter k, defined as (Gloge, 1971a)

V

FIG. 1. The frraction of guided mode power in the cladding of a

(Mt Gl
step-index wave guide is plotted vs the w 'd

er oge, 1971a).
e wavegui e s V value

n'(r) =n, [1 —26(r/a)'j, r & a,
n'(r) =n', [1 —2z ] =n'„r & a.

Exact solutions of the scalar wave equation

V
2 2

——r ———+22 — 2
y'———,+kn, —p — — — E(r) =0,

are given as (Olshansky, 1976a)

~(r) ~e -P/2 P/2 I v( )p D

(2.34)

(2.36)

where

p = V(r/a)', (2.37)

iV=2V(p. t/(p. + v)t)'",
so that

(2.38)

and I.'„(p) xs the generalized Laguerre polynomial. The
normalization factor & is defined as

V 2m', k'a (2.33)
'V 6tJ'

O CP
(2.39)

'~"arious approximations for cal l tcu R ing 5 cRn be found in
the literature (Marcuse 1972 1974 ).c, aj. From Fig. 2,
it can be seen that the re igion of single-mode propagation
(&Ppy or PE] y

'mode) occurs for V ~ 2.405. Single-mode
waveguides are discussed in d t 'le ai in Sec. V.

As in, ac mo e, eventual-As increases, b increases for e h d

y approaching the limit 5 = I wh thw ere e propagation con-

1.0

0.8—

The propagation constant of the parabolic profile is

p =n, k[1 —4b, (2V. + v +1)/ V) ]"' (2.40)

The field solutions given above are usef l fu or analyzing
propagation in waveguides with parabol - do ic-in exprofiles,
and, as discussed in Sec. IV for analyzing the effects of
index profile perturbations.

The solutions given by Eq. (2.36) are based on the im-
plicit assumption that the parabolic profile extends to in-
finity. As a result the se solutions become inaccurate
for the hi hest-or'g — rder modes having P nearly equal to
n2k (Hashimoto, 1976; Okamoto and Okoshi 1976

0.6—

0.2—

D. WKB approximation

met od yieldsFor multimode waveguides the %KB h

simple and useful approximations for the propagation
constants of graded-index waveguides. The mathema-
tical details of the technique and the approximate solu-

in e ppendix. Theion for the fields are discussed in the A en

1973)
resulting eigenvalue equation is (Gloge and M t'1',RrCR 1 i,

IO 12

+— +

ding

1

(2.41)

V

FIG. 2. ThThe propagation parameter b is shown
g for some f th le o e ower-order modes

er ~s shown as a function of

guide.
s of a step —index wave-

q(r) = v'k'n'(r) —P' —v'/r' (2.42)

r, and r are the2 positive, real zeros of q(r) and are re-
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EFFECTIVE INDEX PRQFILE FQR %KB ANALYSIS
2

(p/K)

applied by Streifer and Kurtz (1967) to studythe o.-class
of profiles. This method, developed by I.anger (1949)
and McKelvey (1959), approximates solutions to the
cylindrical radial wave equation by Bessel functions
having modified arguments. It is completely analogous
to the normal %KB approach which approximates field
solutions by sines and cosines having modified argu-
ments. The I,anger-Mcxelvey method offers the ad-
vantage that the inner turning point, resulting from the
angular momentum term, is automatically taken into
ac count by use of the 4, Bess el func tion.

The resulting eigenvalue equation is (Streifer and
Kurtz, 1967)

OC
LLI

C3

(2g + v+ I)—=
2

Cr v'k'n'(r ) —P'

where r, is the solution of

(2.48)

(2.49)

For power-law profiles, Eq. (2.48) has the solution

P =n k) 1 2/(m/~)»&& &+»]»2

where

{2.50)

0 0.5 I 0 I 5
RADIUS (r/a)

FIG. 3. The effective index profile (dashed curve) is the sum of
the actual index profile and angular momentum term. The
caustics for a mode with propagation constant p are indicated.

ferred to as either caustics or classical turning points.
The location of the caustics for a typical graded-index

profile is illustrated in Fig. 3. The combination of the
index profile term and the angular momentum term form
an effective index profile shown by the dashed line, and
defined as

n'.„(r)= n'(r ) —v'/(kr)'. (2.43)

n, k o- P, o- P, o- P, & P„&n, k.
They have found the solution

p =n, kI I —2~(n/X) "'"+"]"'
where the total number of modes ~ is

(2.45)

(2.46)

N = n', k'cP~ .
cv +2 (2.47)

A modif ic ation of the fam iliar WEB method, developed
explicitly for cylindrical geometry, had earlier been

Most of the power in mode p, , v is confined between the
caustic s at r, and r, . For r ~ r„ the power decreases
as {r/a)', while for r ~ r, the power falls exponentially,
as given by the WEB eigenfunction of the Appendix.

The integration of Eq. (2.41) can be performed explic-
itly only for step-index and parabolic index profiles.

Gloge and Marcatili (1973) have considered the special
class of power-law or a-class index profile defined by

(2.44)

For this class of profiles, it is possible to introduce a
mode-ordering number + which enumerates the modes
in order of decreasing propagation constant, that is,

(2.51)

and

(n, ka)'~ .
+ 2

(2.52)

The mode number m defined by Eq. (2.51) is called the
principal mode number or mode group number. Equa-
tions (2.50) and (2.51) show that the degeneracy in pro-
pagation constant found in Eq. (2.40) for the parabolic
index profile (o =2) is approximately valid for all power-
law profiles. In fact, Eq. (2.48) shows that this degen-
eracy is approximately valid for all cylindrically sym-
me tr ic pr ofiles.

The Streifer-Kurtz solutions are in close agreement
with the Gloge-Marcatili solutions provided one makes
the identification

m =un,
(2.53)

between the principal mode number m and the mode-
ordering number n.

For cy =2, these two methods give propagation con-
stants which are identical to the I.aguerre-Gauss solu-
tions. For nearly parabolic profiles (n= 2), the error of
either method is expected to be small. Although an exact
analysis of the errors has not been made, differences
between the %KB method and the Langer-McKelvey
method are expected to be of the same order as the dif-
ference between the approximate and exact solutions.

E. Ray approximation

A plane-wave or ray approximation can frequently pro-
vide helpful insight into the propagation characteristics
of the multimode waveguide. In a step-index waveguide,
a mode can be approximated by a plane wave or a con-
gruence of rays (Maurer and Felsen, 1970) propagating
at an angle 0 defined as

(2.54)
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Using the WKB expression for P gives

(2.55) c &12
(2.63)

for the step-index profile.
For the graded-index fiber the plane-wave concept

does not apply, but it is still illuminating to consider
a mode as a congruence of rays whose propagation angle
6(w) varies with position. Defining 9(r) as

cose(x) = P/n(r)k (2.56)

and using the WKB result, Eq. (2.50), for a-class pro-
files give the relation (Olshansky et aL, 1977)

{2.57)

Equation (2.57) is useful for estimating the model exci-
tation pattern produced by a specified launch condition.

F. Pulse propagation

Modal. delay times, calculated from the guided mode
propagation constants, are required for analysis of pulse
broadening in the multimode optical waveguide and for
calculation of its information-carrying capacity. In
practice, the information bandwidth of the waveguide is
greatly affected by the dispersion of the glass medium
(Olshansky and Keck, 1976) and by the source spectral
linewidth (Gloge, 1971a; DiDomenico, 1972). The ef-
fects of dielectric dispersion are discussed in Sec. III.
Here it is assumed that ihe medium is dispersionless,
that is,

An ==0 for all X.
nA.

(2.58)

z dP„,
c dk

(2.59)

where c is the speed of light. After expanding the ex-
pression Eq. (2.50) for the modal propaga. tion constant
of a-class profiles in powers of 6, one finds the result
(Gloge and Marcatili, 1973)

(2.60)

For e =2, the modal delay differences vanish to first
order in 4. If one chooses n =2 —2A, the m =1 and m
=M modes have the same delay time, and an extra re-
duction in pulse broadening is achieved (Gloge and Mar-
catili, 1973).

The rms impulse response for uniform excitation, de-
fined as

m — . , 261

is a useful measure of the pulse broadening (Personick,
1973). For o.-class profiles, the rms pulse width is
minimized if (Olshansky and Keck, 1976)

o =2 —12&/5

and the minimum pulse broadening is given as

(2.62)

Because of the g dependence of the phase factor,
exp(iP„,g), in the field solution Eq. (2.5), a pulse of radi-
ation will propagate with a delay time

For a step-index waveguide, the corresponding pulse
width is

Pl j
step (2.64)

Thus the optimal a profile reduces pulse broadening by
6/10, or about three orders of magnitude for a typical
multimode waveguide.

A n appr oximate me as ure of the inf or mation bandwidth
can be obtained from the expression (Personick,

1973)

a =0.2/o, {2.65)

where B„is given in gigahertz and g iq. nanoseconds.
Equation (2.65) gives the 3 dB bandwidth of a Guassian
pulse with rms width 0. and is a good approximation for
other pulse shapes. For the step-index waveguide with
6 =0.01, the rms pulse broadening is 14 ns/km corres-
ponding to an estimated bandwidth of 14 mHz-km. For
the optimal n profile, the broadening is 0.014 ns/km and
the estimated bandwidth is 14 gHz-km.

Several studies (Cook, 1977; Ishikawa et al. , 1977)
have shown that the introduction of an additional term to
the n-class profile provides a new degree of design flex-
ibility which can be exploited to further reduce the pulse
broadening below the rate obtained for the best cy profile.
Although this concept is indeed correct, it is not clear
that the approximation used in these calculations has
sufficient accuracy to determine the optimal values of
the pr ofile par arne ter s.

G. Effect of the cladding

In the Laguerre-Gauss solution for the parabolic pro-
file, and in the WKB approximation, the cladding is ig-
nored. The graded-index profile is treated as though it
extended to infinity and a mode cutoff is artificially im-
posed at P equal to n, 0.

The presence of a uniform refractive index cladding
leads to a substantial correction for the fields of a
parabolic slab waveguide (Hashimoto, 1976). Studies
based on variational techniques have shown that the delay
times (Okamoto and Okoshi, 1976) of the highest-order
guided modes of the fiber are significantly altered. The
effect of the cladding can also be treated in the WKB ap-
proximation (Olshansky, 1977a). In a typical parabolic
waveguide the majority of the modes are unaffected by
the cladding, but the delay times of 5/g of the highest-
order modes are decreased by as much as several
ns/km.

If the highest-order modes are unattenuated, Qkamoto
and Okoshi (1977a) have shown that the delay time shift
can be corrected by introducing an index valley between
the core and uniform index cladding. However, only
0.2 dB of high-order mode loss is required to attenuate
the affected modes (Olshansky, 1977a). In any practical
communication system, bending losses, splice losses,
or other geometrical perturbations are likely to atten-
uate the highest-or der guided mo des and make the index
valley unnecessary.
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n, k& Re p& v'(n p)' —p'/a' (2.66)

are partially bound within the core, but can tunnel
through the angular momentum barrier and radiate into
the cladding. These modes are equivalent to the well-
known resonant states of quantum mechanics. Snyder
and coworkers (Snyder and Mitchell, 1974; Snyder,
Mitchell, and Pask, 1974; Snyder, %hite, and Mitchell,
1975) were the first to predict the existence of leaky
modes agd to derive their attenuation rates in step-
index fibers. For graded-index fibers the mode volume
of leaky modes has been analyzed (Adams et a/. , 1975;
Stewart, 1975b) and their attenuation coefficients cal-
culated (Petermann, 1975; Olshansky, 1976b; Snyder
and Love, 1976b).

In the %KB approximation the leaky mode attenuation
rates for a parabolic profile are of the form

(2~) 1/2

y a exp( —2p ),2 (2.67)

where P, is a. WKB-type integral across the angular
momentum barrier. The exact expression is given in
the Appendix. Most leaky modes attenuate very rapidly,
at rates as great as 10' dB/m. However, a. few leaky
modes, particularly those with large v and P nearly
equal to yg, k, must tunnel through a. very wide angular
momentum barrier. Their attenuation rates can be less
than 0.1 dB/km and, practically speaking, they are in-
distinguishable from guided modes. Leaky mode atten-
uation coefficients for a, typical parabolic profile wave-
guide are shown in Fig. 4. For fixed m (constant P), the
loss decreases as p increases because of the increasing
size of the angular momentum barrier. For fixed v,
loss increases as m increases because the effective
barrier becomes smaller.

Love and Pask (1976) have calculated universal curves
for the decay rate of total leaky mode power in step and
parabolic profiles. In a typical multimode waveguide, if
all guided and leaky modes are initially excited, after
1 m of propagation 10'//, , -30/~ of the remaining power is
predicted to reside in leaky modes. After 1 km this
fraction is reduced to 10%—20$. Thus, for the ideal
waveguide, leaky modes are predicted to have a large
influence on measurements of a waveguide's optical
properties, particularly on a measurement, such as the
near-field profile (Sladen et cr/ , 1975; Arna. ud and De-
rosier, 1976), which is made on a short (-1 m) length of
fiber.

Although leaky modes have been observed (Stewart,
1975a; Zemon and Fellows, 1976), they appear to atten-
uate much more rapidly than predicted. Near-field

H. Leaky modes

In addition to the guided modes, having propagation
constants in the range n, k& P&n, k, there exists a class
of modes, called leak. y modes, which are only partially
confined within the core of the waveguide (Snyder and
Mitchell, 1974; Snyder et a/. , 1974). The existence of
leaky modes can be understood from the effective index
profile shown in Fig. 3. The presence of the angular
momentum term introduces an angular momentum bar-
rier shown by the shaded area. Modes having the real
part of p in the range
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FIG. 4. Leaky mode attenuation rates predicted for a typical
parabolic profile waveguide.

profiles uncorrected for leaky modes agree better with
the actual index profile (Arnaud and Derosier, 1976;
Costa and Sordo, 1976) and lead to better predictions
of pulse broadening (Olshansky and Keck, 1976). Leaky
mode propagation over kilometer lengths of waveguide
has not been reported.

Petermann (1977a, 1977b) has shown that a small el-
lipticity causes a large increase in leaky mode attenua-
tion rates, particularly in parabolic index profiles.
Leaky mode losses also increase in the presence of in-
dex profile perturbations randomly varying along the
fiber length (Olshansky and Nolan, 1977).

I I I. EF FECT GF THE 6LASS MEI3IUM GN
WAVEGUIDE PRGPAGATIGN

In the previous section, the waveguide medium was
treated as an ideal, lossless, dispersionless dielectric.
In practice, the optical properties of the glass play a,

critical role in determining the attenuation rates and in-
formation bandwidths that can be achieved. These im-
portant properties of optical waveguide glasses are dis-
cussed in this section.

Although much of the discussion presented here is ap-
plicable to any glass composition, many specific refer-
ences will be made to doped deposited silica glasses
(Maurer and Schultz, 1972) containing GeO, (Keck,
Maurer, and Schultz, 1973; MacChesney ef al. , 1974;
Maurer and Schultz, 1975), B,O, (Kato, 1973; French
et ~/. , 1973), and P,O, (Payne and Gambling, 1974).
These compositions are conveniently made by the vapor
phase oxidation method (Keck and Schultz, 1973; Keck,
Schultz, and Zimar, 1973; Schultz, 1973; Macchesney
et a/. , 1974) and presently considered to be the choice
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dopants, for waveguides'used in telecommunication sys-
tems.

A. Attenuation

In optical quality glasses prep»ed by conventional
melting techniques, the primary source of attenuation
is absorption from transition element impurities. The
absorption losses in dB/km per part per billion weight
(ppbw) of the more common metallic ions are listed in
Table I (Schultz, 1974; Bates, 1962), along with the
wavelength of the absorption peak. The absorption of
the elements varies critically with oxidation state. For
telecommunication applications, transition element con-
tamination must either be kept below a few ppbw or the
oxidation state must be controlled.

The vapor phase oxidation technique has provided a
simple and practical method for achieving these purity
levels. High-purity raw materials such as SiC14, GeC14,
BCl„and POC1, are readily available and can be oxi-
dized under controlled conditions to form the corres-
ponding oxide glasses. Recent results (Osanai ef al. ,

1976) indicate that the effect of metallic impurities can
be reduced below 0.1 dB/km in the wavelength range of
interest for telecommunications.

Progress in the double crucible melting technique (for
a review see Newns, 1977) has shown that by starting
with high-purity oxides, optical waveguides can be made
with impurity absorption of only a few dB/km.

Once the effects of metallic impurities are eliminated,
the remaining material losses are caused by intrinsic
properties of the glass, 0-H absorption bands, and
drawing-induced absorption bands. In the spectral range
between 0.6 and 1.3 p, m, there is a broad window where
intrinsic absorption is small or negligible. At the short-
er wavelengths, there is an ultraviolet absorption tail or
Urbach edge (Urbach, 1953) which decreases exponential-
ly from the electronic band edge. At longer wavelengths,
there is an exponential tail from the infrared vibrational
bands (Osanai et al. , 1976; Izawa, et al. , 1977; Bagley
et al. , 1976).

Within this broad window, the dominant intrinsic losses
are Rayleigh scattering losses from density and concen-
tration fluctuations frozen into the glass lattice (Keck,
Maurer, and Schultz, 1973; Pinnow et al. , 1973). In the
critical range from 0.8-0.9 p. m where GaAs and GaA1As
solid state sources operate, Rayleigh scattering is the
only important intrinsic loss source.

TABLE I. Absorption rates in dBkm- ppbw- of some of the
more common metallic ions and the wavelength of the absorp-
tion peak.

yUv =C exp(E/Eo) (3.1)

known as Urbach's rule, where E is the photon energy
and Q and Eo are empirical constants. Atlower energies,
secondary exponential edges are commonly observed
(for a discussion see Tauc, 1976). In several instances,
the secondary edge has been identified as a charge trans-
fer impurity absorption band, but in other cases the sec-
ondary edge may be related to structural defects of the
material. Since the ultraviolet absorption edge of optica. l
waveguide glasses can in principle extend into the near
infrared, its origin and magnitude are of interest.

For fused silica, the reported values for the primary
Urbach edge (see Bates, 1977) extrapolate below 0.1
dB/km for wavelengths greater than 0.23 p, m. Whether
there are "intrinsic" secondary ultraviolet edges which
extend to longer wavelengths is unknown. There appears
to be no evidence of intrinsic SiO, absorption contribu-
ting measurably to waveguide attenuation in the near in-
frared. In view of the comparable ultraviolet transpar-
ency of B,O„ the Urbach edge of borosilicas is also be-
lieved to be negligible in the near infrared.

For GeO, and P,O, doped silicas, the bandgap is
smaller and the Urbach edge is expected to shift to
longer wavelengths. Measurements of ultraviolet ab-
sorption in GeO, -SiO, fiber (Keck, Maurer, and Schultz,
1973) and in bulk samples (Schultz, 1977) show the pres-
ence of a GeO, band at 0.24 p, m whose Urbach edge is
negligible for X ~ 0.4 p, m. A secondary edge (Keck,
Maurer, and Schultz, 1973; Osanai et al. , 1976) contrib-
uting about 0.2 dB/km at 0.82 p, m and 10 dB/km at 0.5

p, m has also been observed. Measurements of more re-
cent fibers (Olshansky, 1977b) have failed to show this
secondary edge.

2. Infrared absorption edge

At longer wavelengths, there exist absorption bands
produced by the silicon-oxygen, and cation-oxygen vi-
brational modes. The location and identification of these
bands are given in some recent references: for SiQ„
Spitzer ef al. , 1961; for GeO„ Izawa et al. , 1977; for
B,O„Tenney eg al. , 1972 and Izawa et al. , 1977; and
for P,O„Wong, 1976. The fundamental vibrational
band lies at the highest frequency and has an exponen-
tial tail extending into the region 1.3—1.6 p, m at a sig-
nificant absorption level. This IR edge has the exponen-
tial form

't. Ultraviolet absorption edge

The U7 edge of the electronic absorption bands of am-
orphous and crystalline materials are well described by
the empirical relationship (Urbach, 1953)

Cr3'
Co~'
Cu~'
Cu~'
Fe~'
Fes'
Ni+
Mn3'

625
685

&800
850

1100
&400

650
460
725

dBkm-~ ppbw ~ (800 nm)

1.6
0.3.

&0.01
1.1
0.68
0.15
0.1
0.2
2.7

y,„=C»exp(-E/E, ) . (3.2)

The frequency ~& of the fundamental absorption peak
satisfies the approximate relation

where p, ~ is the reduced mass of the cation-oxygen pair.
Thus for a dopant cation such as Ge which is
heavier than Si, ~z is smaller and the infrared absorp-
tion in the region below 2 p, m is reduced. However, for
boron, with atomic mass of 10.8, the boron-oxygen vi-
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where (5n')' is the mean-squared fluctuation in refractive
index-squared and 5V is the volume over whichitoccurs.

For multicomponent glasses
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5

(3.5)

where 5p is the density fluctuation and QQ,. is the con-
centration fluctuation of the Eth glass component.

Statistical mechanics (see Landau and Lifshitz, 1958)
gives

0

LLJ

I

(3.6)

where P, is the isothermal compressibility evaluated at
the fictive temperature VF, and K~ is Boltzmann's
constant. The concentration fluctuations are given as
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FIG. 5. Spectral attenuation rates measured for three very-
low-loss optical waveguides (after assai et al. , 1976).

(5C )2 — B F
X;8 p, ,/&C(

(3 7)

where ~,. is the number of moles per unit volume of com-
ponent i and p. , is the chemical potential.

In a. single-component glass only density fluctuations
can occur. From the definition of the photoelastic co-
efficient fr, one can derive the relation (Schroeder et al. ,

1973; Pinnow et al. , 1973)

brational band is shifted to higher frequencies and boron-
doped waveguides show significantly increased infrared
absorption. These trends can be seen in the spectral
attenuation data obtained (Osanai et al. , 1976) on 1-km
fibers and shown in Fig. 5. If optical waveguides are
operated at wavelengths greater than 1.2 p. m, lowest
losses will be obtained in B,Q, -free compositions.

3. Ray leigh scattering

In the low absorption window lying between the ultra-
violet and infrared absorption tails, the dominant intrin-
sic source of waveguide attenuation is scattering losses
from refractive index fluctuations frozen into the glass
lattice. These losses follow the characteristic X ' Ray-
leigh scattering law. In the important spectral region
0.8-1.1 p, m they are the only significant intrinsic loss
mechanism.

The lowest value reported for Rayleigh scattering in
bulk SiO, is 3.9 dB/km at 0.6328 p, m (Schroeder et aL,
1973). Rayleigh scattering does vary with sample qual-
ity, and the values 4.8 dB/km (Maurer, 1973) and 5.4
dB/km (Rich and Pinnow, 1972) have also been reported
for bulk SiO, . At 0.8 p. m the lowest attainable loss for
SiO, is thus predicted to be 1.5 dB/km.

In multicomponent glasses, the Hayleigh scattering
can be greater or less than that of fused silica, and the
dependence of these losses on composition is of consid-
erable interest. The physics of Rayleigh scattering in
glasses is a complex subject (see Fabelinskii, 1967)
and the scattering levels observed in optical waveguides
are not well understood on the basis of first principles.
In the following paragraphs, some of the theoretical and
experimental work on this subject is reviewed.

Scattering'from refractive index fluctuations frozen
into the glass lattice is given a,s

8
yas= 4 (n ')26V,

(3.8)

8 ~
QRs 3 4 n f P K Tpr') (3.9)

Alternatively, from the Lorentz-I. orenz formula one
finds the approximate relation

n'= 1 + p6n' (3.10)

(p ) = (n
' —1 )' . (3.11)

Equations (3.4)—(3.6) and (3.11) thus give (Stacey, 1956;
Maurer, 1973)

8p
yRs —-

3 4 (n —1) p~Kr)TF . (3.12)

For an annealed sample of fused silica, the fictive
temperature is estimated as 1400 K, the high-tempera-
ture isothermal compressibility is 6.8 x10 " cm'/dyn
(Laberge et al. , 1973), and the photoelastic coefficient
is 0.286 (Schroeder et al. , 1973). At 0.6328 trm, Eq.
(3.9) gives 4.9 dB/km and Eq. (3.12) gives 3.7 dB/km,
in reasonable agreement with the reported values for
scattering in fused SiO, . Both Eq. (3.9) and Eq. (3.12)
indicate that lower scattering from density fluctuations
is expected in low-temperature, low-index, low-com-
pressibility glasses. In fact, scattering losses as low
as 25% of the value for fused silica have been reported
for alkali-aluminosilica glasses (Gupta et al. , 1975;
Pinnow et al. , 1975), which have both low index (n= 1.5)
and low fictive temperature (-700 K).

Estimates of Rayleigh scattering in multicomponent
glasses must include the additional effect of concentra-
tion fluctuations. If phase separation or clustering
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8m' i&n'
(3.13)

where ~ is the number of dopant molecules per unit
volume and (6~)' is the mean-squared fluctuation of N
due to ideal mixing. Elementary statistics give

does not occur, the assumption of ideal mixing provides
a plausible model. As an illustration, consider a system
consisting of SiO, plus a single dopant. The Rayleigh
scattering y, due to the difference in molecular yolariz-
ability can be written as

OYOSHIDA ET AL (1977)
6AMBL ING E T AL ( l976
SC

@HO

RAYLE IGH SCATTERING VS
E 20

C?
)

E

CQ

I.5—

W

(mV)' = C(I —C) (3.14) IO-
Ljj

n' =n', + C(n', —n', ), (3.15)

where C' is the mole concentration of the dopant, M its
gram-molecular weight, and p its density.

This model can be illustrated by considering the
GeQ, -SiQ, binary system. The index-squared is well
described by a linear form (Fleming, 1976; Kobayashi
et a/. , 1977) 0.5

z0

- SIO, (euLK)

o—P 0 -SiO2 5 2
I

0.5 I.O

( /o) R E LATIVE TO SI 0&

15

where z ~ and &.~ are, respectively,
dices of fused SiO, and fused GeO, .
=1.458, n„=1.603, pa =3.6 g/cm',

finds the concentration fluctuations

the refractive in-
With the values yg~

and M'~ =104.6, one
are given as

, = C", C) 3.3dB/k — ~m- . (3.16)

At low GeO, concentrations, this is about 0.07 dBkm
mol /o

' GeO, at 0.82 p. m. It is not possible to directly
compare this number with measured values because
the effect of GeO, on density fluctuations is not known.
The number derived from Eq. (3.16), however, is not
too different from the total increase in scattering of
0.05 dB km ' mol% ' GeO, observed in optical wave-
guides (Yoshida et a/. , 1977).

Measurements of bulk samples show that ideal mixing
fails badly for Na, O-SiO, glasses. Gupta et a/. (1975)
conclude that alkali-silica and alkali-aluminosilica
glasses are nonequilibrium, nonideal solutions.

A number of workers have reported empirical rela-
tionships between Rayleigh scattering and optical wave-
guide composition. O' Connor et aL (1976) find the scat-
tering increases linearly with numerical aperture (NA)
in GeQ, -SiO, waveguides containing a small amount of
B,O, . Gambling, Payne, Hammond and Norman(1976) re-
port that in P,O, -SiO, waveguides, the scattering increases
linearly with P,O, concentrations. Sommer et a/. (1976)
have reported a 1 dB/km decrease in scattering at 0.82

p, m upon substituting a small amount of P,O, for B,O, in
a GeO, -SiO, waveguide. A more detailed study of this
effect (Yoshida. et a/. , 1977) has found that, for compar-
able values of 6, substitution of P,Q, for B,Q, reduces
scattering losses by 25-30/&. The data are summarized

, in Fig. 6, where Hayleigh scattering in dB/km at 1 gm
is plotted versus 6 in percent.

The lowest Rayleigh scattering value, 0.6 dB/km at
1 pm, has been reported (Horiguchi and Osanai, 1976)
for a 0.18 NA P,O, —SiO, waveguide containing 2 mole%
P,O, in the core and 14 mole% B,O, in the cladding
(Horiguchi, 1978).

FIG. 6. Rayleigh scattering at 1.0 pm is plotted vs A for dif-
ferent compositions. All data except for fused Si02 are from
fiber samples.

In addition to the intrinsic loss sources, there are
two kinds of nonintrinsic losses which play an impor-
tant role in optical waveguides. The first is absorption
from the har monies and sidebands of the fundamental
Q-H vibrational band at 2.8 p. m. The second is absorp-
tion from various drawing-induced defects or color cen-
ters which have been observed.

4. 0-H absorption bands

Early work (Keck, Maurer, and Schultz, 1973;
Kaiser et a/. , 1973) reported on the presence of various
O-H bands in a low-loss optical waveguide. These re-
sults are reproduced in Fig. 7. If the O-H level is kept
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FIG. 7. The 0—H absorption band observed in a Ge02 —SiO2
optical waveguide (after Keck, Maurer and Schultz, 1973).
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below a few parts per million (ppm), the only significant
band in the region below 1.15 p. m is the second over-
tone at 0.95 gm, which absorbs at a rate of about 1
dBkm 'ppm '. At longer wavelengths, the first over-
tone at 1.3& p, m and its sideband at 1.25 p. m are strong
absorbers. At 1.25 pm, the Q-H absorption is about
2 dB km ' ppm ', and at 1.25 p. m it is about 40
dBkm 'ppm '.

Using specially purified reactants, it has been possible
(see Fig. 5) to reduce the 0—H content to as low as 50
ppb (Horiguchi and Osanai, 1976; Osanai e/ a/. , 1976).
%ith this very low Q-H content, total attenuation rates
as low as 0.5 dB/km have been achieved at 1.2 gm.

The position of the fundamental Q—H band is reported
to be shifted to 3.1 pm in phosphosilica. waveguides
(Mita et a/. , 1977).

5. l3rawing-induced absorption bands

The rapid quenching which occurs during the drawing
process can result in the presence of nonequilibrium ox-
idation states for any of the cations or ionic complexes
present in the glass. These states can give rise to opti-
cal absorption bands which are referred to as drawing-
induced coloration or- defect bands.

The presence of a drawing-induced absorption band at
0.62 p, m in fused- silica optical fibers was first reported
by Kaiser (1974). He found that this band can be elimina-
ted by heat treatment of the fiber after it is drawn. Al-
though the band is occasionally present in GeQ, -SiQ,
fibers, it usually produces only a few dB/km excess
loss at its peak and does not extend into the 0.8-0.9 gm
range. Excess scattering associated with this band can
increase the measured scattering at 0.6328 pm (Kaiser,
1974). If this is not taken into account, measured scat-
tering may be misinterpreted as anomalously high Bay-
leigh scattering.

A more troublesome drawing-induced absorption band
appear s at 0.55 pm in P,Q, -8iQ, fibers. This band can
be very large and broad, contributing excess losses as
high as a few dB/km at 0.8 gm. Modifications of draw
conditions (Yoshida ei ~/. , 1977) or subsequent heat
treatment (Yamauchi ef a/. , 1977) can be used to elim-
inate this source of attenuation.

This completes the discussion of the sources of loss
l

introduced by the glass medium. Additional attenuation
can result from deviations from the ideal geometry and
index profile. Such effects are discussed in Sec. Ig.

B. Pulse broadening

In Sec. II, the glass medium is treated as a dispersion-
less dielectric. In practice, refractive index dispersion
significantly affects optical waveguide pulse propagation
in two ways. As a consequence of index dispersion,
modal delay times 7„depend on wavelength. Pulse
spreading occurs in proportion to both the derivative
of 7 and the source spectral width. Refractive index
dispersion also influences the mode dependence of 7
and this affects the choice of index profile which mini-
mizes intermodal pulse broadening.

1. Intramodal pulse broadening

The rms intramodal pulse broadening o, is approxi-
mately given as

I. cPn,
Q =—A. 2 ayc AX

(3.17)
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FIG. 8. A, d~ /dA, vs A, for Si02 (Malitson, 1965) and '7.9 ~o&%
Ge02 (Kobayashi et al. , 1977).

I 4

where 1. is the waveguide length and g~ is the rms
source spectral width. This type of pulse broadening is
frequently referred to as material or chromatic disper-
s ion.

GaAlAs I.ED's, emitting between 0.8 and 0.9 pm
typically have spectral widths on the order of 20 nm.
At 900 nm, IX'dn'/dX2I is about 0.02 for GeO, —SiO,
glasses (Fleming, 1976; .Kobayashi et a/. , 1977) so that
the spectrally induced broadening is on the order of 1.5
ns/km for LED sources. This is small compared to the
15 ns/km pulse broadening caused by modal delay dif-
ferences in a step waveguide [see Eq. (2.64)], but it is
an order of magnitude greater than the intermodal broad-
ening which can now be routinely achieved by proper
grading of the index profile.

For conventional GaAs and GaAlAs injection lasers,
spectral widths are in the range of 1-2 nm. The re-
sulting pulse broadening of 0.08-0.15 ns/km is greater
than the inter modal broadening of the best graded- index
fibers which have been reported (Keck and Boullie,
1978).

Recently, the successful fabrication of single-longi-
tudinal-mode GaAs lasers has been reported (Ikeda
e/ z/. , 1977; Nakamura e/ a/. , 1977). They have line-
widths less than 0.1 A. For systems operating with this
type of source, intermodal delay differences will be the
dominant factor limiting transmission bandwidth.

As a function of wavelength the refractive index of any
glass has an inflection point, d'n/dX' =0, in the infrared.
Figure 8 shows a plot of X'd n/dX' vs A. for fused silica
(Malitson, 1965) and GeO, —SiO, glass containing 7.9
mol /o GeO, (Kobayashi et a/. , 1977).

At the inflection point the first-order calculation of
spectral pulse broadening, Eq. (3.17), is zero (hence
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TABI,E II. The index change 4n per mol /o dopant (relative to silica), tabulated as it has
been reported by different researchers.

Dopant

GeO2

B203

Sample

Preform

Fiber
Preform
Fiber
Fiber
Fiber
Preform
Fiber
Fiber
Fiber

~n/mol ~/p

x j0-3

1.57

1 ~31
—0.10
—0.56
—0.52

—(0.59-1.00)
0.95
0.79
0.60
0.84

Reference

Fleming 1976. Kobayashi
et al. , 1977

Hammond and Norman, 1977
Fleming, 1976
French et al. , 1976
Hammond and Norman, 1977
Presby and Kaminow, 1976
Katsuyama et a/. , 1977
Katsuyama et aE. , 1977
Hammond and Norman, 1977
Presby and Kaminow, 1976

Measurement of GeO, —SiQ, fibers (Hammond and Nor-
man, 1977) using the near-field technique (Sladen ef n/. ,

1975) gives the index change as 1.31 x 10 '/mol%%ug GeO, .
It is not clear whether the differences in these values
is due to quenching effects or to differences in the GeQ,
determination.

A small quenching effect has been reported for P,Q, —
SiQ, fibers (Katsuyama e/ g/. , 1977). Because of an
apparent difficulty in determining the P,Q, content of
fiber samples, reported values for the index change per
mol%%uo P,O, vary from 0.60x 10 to 0.84x 10 ' (Ha.m-
mond and Norman, 1977; Katsuyama ef n/. , 1977;
Presby and Kaminow, 1976).

These index data are summarized in Table II.
As a result of quenching effects, it is desirable to

base calculations of the optimal o. profile on index mea-
surements of fiber samples. For GeQ, -SiQ, glasses the
most accurate index data available are for preform
samples (Fleming, 1976; Kobayashi e/ a/. , 1977). For
B~O3-SiO~ and P~O5- SiO compositions, dispersion data
for several fiber compositions are available (Presby
and Kaminow, 1976), More'recently dispersion data
extending over the range 0.4-2.0 p. m have been obtained
for GeO, -SiQ„P,Q, -SiO„and B,Q -SiO samples by
measuring numerical aperture as a function of wave-
length (Sladen et a/. , 1978). At present the data of
Sladen et a/. (19'/8) appear to yield the best determina-
tion of the optimal cv value, particularly at the longer
wavelengths.

To illustrate the variation in pulse broadening as a
function of wavelength, data for a 7.9 mol%%uo GeO, on-
axis composition (Kobayashi et a/. , 1977) and a fused
silica cladding composition (Malitson, 1965) have been
used to calculate o.o(X) from Eq. (3.22). The result is
shown in Fig. 10. From Eq. (3.19) the rms pulse broad-
ening as a function of X can be calculated. For a fiber
profile optimized for minimal broadening at 0.85 p. m,
ry =2.08 and the spectral variation in broadening is
shown in Fig. 11. Because of the variation of the op-
timal a value with wavelength, the minimum dispersion
is observed for only a narrow spectral band. Although
intermodal pulse broadening less than 0.04 ns/km is
achieved over the important spectral region 0.8-0.9 !Lj.m,
at longer wavelengths, A. ~ 1.06 pm, the intermodal pulse
broadening is greater than D. l ns/km.

For some applications, it may be desirable to achieve

minimum dispersion over a broader spectral range or at
several different wavelengths. This not only allows for
the possibility of wavelength multiplexing but also offers
the user flexibility to change source wavelength as im-
proved sources become available or as system require-
ments change.

Kaminow and Presby (1977) have shown that it is pos-
s ible to find compo sitions s uch that

(3.23)

at a specified wavelength. They have studied the P,Q, —
GeQ, -SiQ, system and found that if the on-axis compo-
sition is silica doped with C mole% P,Q, and the compo-
sition at x = a is silicadoped with 0.086C mol%%ug GeO„ the
optimal n is approximately flat over the range 0.6-1.1
p. m.

GeOp —Si0~
6=.085

2.2

cL 2. l

C)

2.0

.9 l 0
WAVELENGTH (p. m)

FIG. 10. The optimal ~ vs A, for a Ge02 —Si02 composition.
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GeOq- SiQq
E= Oea
0 = 2079

(3.32)

From the partial differential equation (3.28), it is clear
that there are additional multiple-+ solutions of the
form (Olshansky, 1978)

F(r, z) =Q 2&, (X.)(r/a)

where

(3.33)

zQl

C0

D
CO

LLI

The multiple-u profiles of Eqs. (3.32) and (3.33) have
the same low dispersion as single-~ profiles, but pro-
vide extra degrees of freedom for profile design. Qne
has the freedom to specify how each of the d dopants is
to be divided among the q terms of the profile. Assum-
ing that the compositions at z =0 and x =a are already
specified, there are d(q —1) new degrees of freedom
which can be used to impose conditions on the qo. ;(X)'s.

For example, with q =2 one could achieve low disper-
sion over an extended spectral range .by requiring either

dA ~' =0 at X„g=1,2,
gX

(3.34)

O~6
1

8 9 IO
AAVEL ENGTH (urn)

I 3

6. Multiple-n proifles

Using the WKB method, Marcatili (1977) has shown
that the modal delay time is of the form

FIG. 11. Pulse broadening vs & for a GeO~ —Si02 & profile de-
signed for minimum dispersion at 0.85 p, m.

or

a, (&,) =o. , (X,), i =1, 2. (3.35)

A condition such as Eq. (3.34) or Eq. (3.35) imposed
on a single-e profile (q =1) specifies a, particular com-
position which is not necessarily compatible with all
the other fabrication constraints. The multiple-o. pro-
files introdoce a further degree of complexity to wave-
guide fabrication, but have the advantage of extending
the range of compositions for which conditions such as
Eq. (3.34) or Eq. (3.35) can be satisfied.

iV,I 1 —B/D
Pv (1 B)l/2 (3 24) c. o. profile plus correction terms

where

Equation (3.24) is valid if the profile, defined as

n'(r) =n', [1—F(r, &)],

satisfies the condition

1+(r/2F)(sF/sr)
1 —(n, /2~, )(X/F) (aF/8 X)

(3.25)

(3.26)

(3.27)

r—+D —'X—+2(1 —D)E =0.BF n, BI'
Br gq BX

The cy class of profiles, defined as

(3.28)

where D is a function of X, notof r. This is ageneraliza-
tion of the result for a-class profiles. Equation (3.27)
can be rewritten as a partial differential equation

To achieve even lower intermodal dispersion, several
authors have considered the addition of an (r/a)» term
(Cook, 1977; Ishikawa et a/. , 1977) or an (r/a)'" term
(Geckeler, 1977) to the o.-class of profiles. Optimiza-
tion of this class of profiles reduces the minimum rms
pulse width by more than an order of magnitude. While
it is clear from these studies that addition of small cor-
rection terms to the profile can reduce the intermodal
broadening below that obtainable for a pure a-class pro-
file, it is not clear that the approximation methods
used in calculating modal delay times have sufficient
accuracy to determine small corrections to the opti-
mal profile shape. Further work is required to under-
stand the uncertainties introduced by the use of the
scalar wave equation [Eq. (2. 16)] and by the WKB method
of solution.

d. Compensation for nonlinear di spers! on

F(r, ~) = 2~+.)(r/a)",
satisfies Eq. (3.28) if

n =2(D —1)—
A dA.

The rmspulse dispersion is minimized. for

(3.29)

(3.30)

(3.31)

The theory of the optimal n profile is based on the
assumption that the profile shape [Eq. (2.44)] is main-
tained over the spectral width of the source. This is
true if dn'/dX is proportional to n' over the range of n'
in the core of the fiber. Arnaud and Fleming (1976)
have reported a calculation based on bulk index mea-
surements of GeO, -SiO, ,samples (Fleming, 1976); it
shows large apparent deviations from linearity. The
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Xdn /dX FOR GeOz — S)Oz AND BpO& -SiOz GLASSES tant to choose the core radius a and rel. ative index dif-
ference 6 so that bending losses incurred during normal
use do not significantly affect propagation. The cladding
must also be designed to be sufficiently thick that the
signal propagating in the core is not appreciably attenua-
ted by whatever medium surrounds the cl.adding. These
two topics are addressed in Secs. IV.A and IV.B.

Section IV. C discusses index profile deviations arising
from factors such as random fluctuations in the fabrica-
tion process, systematic profile perturbations introduced
during fabrication, and microscopic random bends pro-
duc ed by external str esses.

All such effects can be described as special cases of
a general index profile perturbation, 6n'(r, 0, z). In Sec.
IV. C the disc us sion is s ubdivided ac cording to whether
the perturbation is length independent, length dependent
with low spatial frequency so that no mode coupling re-
sults, or length dependent with high spatial frequencies
producing mode coupling.

A. Curvature Ioss

-042
0

~ KOBAYASHI ET AL (I9
0 Fi EMING (l976)
& PRESBY AND KAMINOW

(I976)

6 8
MOLE /o DOPANT

I

IO
l

l2

FIG. &~. &dn /d~ at 0.85 pm vs mol% dopant for Ge02 —SiO2
preforms (Fleming, 1976; Kobayashi ep a/. , 1977) and B203-
Si02 fibers (Presby and Kaminow, 1976). The data do not show
evidence of a nonlinear dependence.

IV. PERTURBED IVIULTIMOI3E WAVEGUIDES

In Secs. II and III, the waveguide has been treated as
geometrically perfect. It has been assumed to be
straight, to have infinite cladding thickness, cylindrical
symmetry, and no variation along the fiber length.
Deviations from this ideal geometry can play an impor-
tant role in waveguide propagation characteristics and
in waveguide design considerations. The effects of
deviations from the ideal geometry are discussed in this
section.

'

No matter how perfect the fabrication technology, an
optical waveguide has a finite cladding thickness and,
unless it is very short, undergoes bends of finite radius
of curvature.

In the design of the multimode waveguide, it is impor-

Fleming data for dn'/dA vs n2 are shown in Fig. 12
along with more recent bulk sample measurements re-
ported by Kobayashi et nl. (1977). It is not clear whether
the spread in data points in Fig. 12 represents random
error introduced by the measurement and the derivative
calculation or whether it represents real changes in
dispersion resulting from variations in sample prepar-
ation. At present there are not sufficient data to justify
the conclusion that the GeO, -SiO, system exhibits non-
linear dispersion effects.

If nonlinear dispersion corrections are required in
optical waveguides, several studies (Arnaud and Flem-
ing, 1976; Arnaud, 1976a; Geckeler, 1978) have shown
how to incorporate these effects in profile design.

pb) = p(0) (4. 1)

where & is the bend radius. This maintains an equiphase
plane traverse to the waveguide axis. In the cladding
region, the mode field var ies as

E(r) ~exp— (4.2)

where

W(r) = a[p'(r) —n,'k']'" (4.3)

is the generalization of W defined by Eq. (2.13). At a
point r„defined by the relation

(4 4)

the model propagation constant is equal to the value of
light freely propagating in the cladding, and radiation
occurs.

For a step-index profile, this model leads to a curva-
ture loss (Gloge, 1972)

(4.5)

In terms of the principal mode number m

and the curvature loss is

(4.6)

A number of researchers have analyzed curvature
losses in slab waveguides and in cylindrical step fibers.
Solutions to the scalar wave equation can be obtained in
the case of the slab waveguide either in terms of Bessel
functions (Marcatili, 1969; Marcuse, 1971b) or by using
the %KB approximation to solve a conformal transforma-
tion of the wave equation (Heiblum and Harris, 1975).

The analysis of the cylindrical fiber is more difficult
because of the added geometrical complexity. A result
of some of the earlier work (Marcatili and Miller, 1969;
Shevchenko, 1973; Gloge, 1972) was the following simple
model for bending loss: As a mode propagates through
a bend, as a function of radial position the phase velocity
p(r) must have the form
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r, = W,ax[1 —(~/M)'J

2 m 0 I
3/2

x exp ——n, k 2a 3"Z 1 — -—' — — . 4.7
M al»'. J

The factor n, A(26)"' is of the order of 10' cm '. The
curvature loss thus varies from completely insignificant
values to 10' dB/km depending on the mode number. For
modes with m approximately equal to or greater than a
critical value m„defined as

M=' ~R

all power is immediately radiated, while lower-order
modes are not significantly affected. The main result
of a bend is thus to truncate the waveguide's modevolume
at m, . For a typical waveguide with a=25 p, m, ~ =-0.01,
and a 5 cm bend radius, the loss is 0.2 dB for a step-
index profile.

For a parabolic profile, one can use the appropriate
expression for 8', that is

showed that the effect of field distortion due to the curva-
ture led to corrections to an earlier result (1976a).
Recently Gambling and Matsumura (1977a) observed
that near-field patterns are strongly distorted in curved
fiber and the resulting mode patterns are well des-
cribed by a parabolic coordinate system. Gloge's
solution, Eq. (4.12), derived fromparabolic coordina-
tion, must include the effects of field distortion and thus
may offer greater accuracy than alternative approaches.

B. Cladding thickness

A low-loss optical waveguide must have a region sur-
rounding the core which provides optical isolation of the
core light from the more outlying regions. The term
"cladding" is used to denote such a region of low-loss
glass immediately adjacent to the core. In accordance
with Eq. (2. 1), the cladding index is n, Its radius shall
be designated by 5. The cladding can be considered to be
surrounded by a third region of complex refractive in-
dex

Wq= ygPV2b, [1 —(m/M)]'/ (4.9) n nR3 + zny3 (4. 15)

to find

(4.10)

The curvature loss in a parabolic fiber having the same
values of a and A is thus twice the loss of the step fiber.

By considering bending in a slab waveguide, Heiblum
and Harris (1975) showed that under a conformal trans-
formation, the curved guide corresponds to a straight
fiber with the transformed index profile

g(~) = [1+(~/A) cosgJn(r), (4. 11)

w'
xIexp -z —,

(n, ka)'
2/3 '

2 3/2 ()
R (4. 12)

where

here p is the polar angle measured from the center of
the fiber perpendicular to the plane of the bend. From
the transformed index profile for a step waveguide, it
is clear that the curvature loss can be understood as a
tunneling phenomenon. The guided mode tunnels from
the core to the caustic created in the cladding by the
presence of the bend.

Gloge (1975a) reported that the wave equation for the
cylindrical fiber with the transformed index profile [Eq.
(4.11)]could be separated in parabolic coordinates and
solved by the WKB method. The result is

tJ
& [4W'+n, f ae"'/AJ"'

a'n2k V'

If the cladding is too thin, excess losses can occur if
the outer region is a region of high loss (large n„)» if

3 + n 2 In the latter case, l ight from the core can tun-
nel through the cladding and radiate away.

The theory required to evaluate these effects involves
straightforwar d generalization of the basic theories
presented in Sec. II. Numerical calculations .for merid-
ional modes (t/ =0) of a step fiber have been discussed
by Kuhn (1975) and by Roberts (1975). Using an analysis
of meridional rays in a step fiber, Cherin and Murphy
(1975) have presented extensive numerical calculations
of total transmission loss versus cladding thickness for
various fiber parameters.

A general formulation equally applicable to step- and
graded-index fibers has been presented by Snyder and
Love (1976). They have used a "local plane-wave con-
cept" to determine the power loss from the evanescent
field extending into a lossy cladding, The attenuation
coefficient is given as

Iq(~) I«,

(4.17)

E3 R3 exp (4. 16)
z~ Iq(b) I'

where q(~) is defined by Eq. (2.42), r, is the outer caus-
tic, and &~ is the distance between successive outer
turning points on the ray path. In terms of modes, re-
sults of the WKB method (see Appendix) can be used to
show

z =-', a&2k,

v+=' for even v

p for odd v

(4.13)

(4.14)

where P, is the integral on the right-hand side of Eq.
(2.41). For the case of the parabolic profile, Z» is just
one-half of the focal length,

(4.18)
For v =0, the exponential factors in Eqs. (4.12) and
(4.5) are the same.

Many other approaches have been used to calculate
curvature losses with qualitatively similar resu}ts
(Lewin, 1974; Snyder et aL, 1975; Marcuse, 1976a).
Using the transformed index profile Marcuse (1976b)

While Eq. (4.16) is appropriate for evaluating the ef-
fects of a lossy outer region, even greater losses can
occur if n»&n, Gloge (19.75) has given a result for the
step waveguide. Using the %KB approximation, an
analogous result can be derived for an arbitrary index
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profile (see Appendix)

y2 2 p2 2/f 2 1/2 b

Z, 8' —k'n', + v' b'

(4. 19)

Kashima and Uchida (1977) use the weak guidance ap-
proximation to analyze this type of loss in a step wave-
guide. They develop expressions involving Bessel func-
tions and make numerical calculations of total loss
versus wavelength for different waveguide parameters.
Their results show that, even for a 15 pm cladding
thickness, excess losses on the order of 1 dB/km can
result. Using the WEB method, they have recently ex-
tended this analysis to graded-index waveguides (Kashima
and Uchida, 1978).

C. Index profile perturbations

Fiber curvature and the finite cladding thickness are
departures from the ideal geometry which are physically
unavoidable in long-length fibers. However, by proper
choice of fiber parameters, a, b, and D. , the multimode
waveguide. ean be designed to reduce these potential loss
sources to negligible levels.

A second class of departures from the ideal waveguide
geometry are index perturbations introduced by factors
such as random fluctuations and systematic deviations
characteristic of the fabrication process, or micro-
scopic random bends produced by external stresses.
All such effects can be described as special cases of a
general index perturbation, 6n'(r, S, z). Index perturba-
tions can be conveniently divided into three classes ac-
cording to the perturbation's dependence.

Define the Fourier-transformed perturbation as

pone nt

(4.22)

Although coupling can occur within a mode group, the
more important mode coupling effects which have been
observed and extensively studied involve coupling be-
tween adjacent mode groups (Gloge, 1972b), that is,

f6m[=I. (4.23)

From Eq. (2.50), one has

( — )~( )
6p=

ca+2 a M
(4.24)

for the difference between propagation constants of ad-
jacent mode groups. Equations (4.22) and (4.24) can be
used to divide the frequency spectrum of perturbations
into a low-frequency region

(n-2)g(c +2)

(0( & +2 a M
(4.25)

which does not produce mode coupling and a high-fre-
quency region

(~-2)q(~+~)

v+2 n M
(4.26)

~2~5(= (4.27)

while for a step-index profile the separation between
propagation constants of adjacent mode groups extends
over the range

which does (Olshansky and Nolan, 1976).
For a parabolic profile, the modal separation is inde-

pendent of mode number

L
6n (r, 0, m) =— dz e' '5n'(r, 8, z) .

0
(4.20) 2 2'

— —&PjP(
RlkQ 0

(4.28)

1
66'(~, 6', 0) = —

~ d 6n'(r, g, z).
0

(4.21)

Maxwell's equations have lossless guided mode solutions
for an arbitrary profile n'(r, 0). Thus no zero-frequency
perturbation by itself can produce excess loss. In com-
bination with other loss mechanisms, the presence of a
zero-frequency perturbation may result in excess loss,
but this more complicated interaction between two dif-
ferent effects has not been considered in the literature
and will not be discussed further.

The principal interest in zero-frequency perturbations
is the effect they have on pulse broadening in fibers with
parabolic or other optimal profile shape. Such pertur-
bations are of great importance in waveguide fabrication
because these index perturbations must be controlled
and limited to obtain waveguides exhibiting low pulse
disper sion.

Non-zero-frequency perturbations can be subdivided
into two classes according to whether or not they pro-
duce mode coupling. It has been shown (Marcuse, 1969a.;
Snyder, 1970) that coupling of power between modes i
and j occurs only if the Fourier-transformed perturba-
tion, defined by Eq. (4.20), contains a frequency com-

The fir st class consists of the zero-freq ueney component,
which is just the length-averaged perturbation,

For many random perturbations, the power spectrum of
the perturbation, defined as

P(r, 9, ~) =
~

nn'(r, 8, (u) P, (4.29)

the period is 1.3 mm for the parabolic profile and in the
range 0.9-26 mm for the step profile.

Many perturbations introduced during fabrication fall
in the low-frequency region. A 10 cm length of preform
can produce up to several kilometers of fiber, so that
the dram-down ratio is on the order of 104. For a per-
turbation of the preform to fall into the mode coupling
region, the perturbed region of the preform must be
about 0.1 p, m in extent. Most nonuniformities of the
preform are believed to extend over much larger dis-
tances and thus fall. into the low-spatial-frequency, non-

is a strongly decreasing function of cu, so that adjacent
is dominant over nonadjacent mode coupling. If such is
not the case, then frequencies above the ranges of Eqs.
(4.27) and (4.28) must be considered.

For a typical waveguide with &=30 p. m, ~ =0.01, and
X = 1 p, m, the coupling frequency for the parabolic pro-
f&le zs 4.7 mm ' and the range for the step-index pro-
file is 0.24 to 6.7 mm '. In terms of a perturbation
per loci,

(4.30)

Rev. Mod. Phys. , Vol. 51, No. 2, April 1979



R. Olshansky: Propagation in glass optical waveguides

o,„=50 — (ns/km) .
an~A

(4.31)

Khular et al. (1977) have used the same calculational
approach to study the effect of the index dip on meridion-
al modes (v =0). They present curves for the modal de-
lay shift versus P value for different size perturbations.

While only v =0 modes propagate substantial power
near the axis, a much larger number of modes are af-
fected by a perturbation located off-axis. Perturbations
of this type can occur as a result of uncontrolled changes
in reactant flows or temperature during preform fabri-
cation. Calculation by first-order perturbation theory
shows that the excess pulse broadening increases pro-
portionally as (Olshansky, 1976a)

cr.„~x[1 —(r/a)' I (4.32)

for a localized perturbation at position x. For equal
modal excitation, the right-hand side of Eq. (4.32) ex-
presses the radial power distribution. The factor
[1—(x/a)'j comes from the parabolic index profile and
the factor x is the weighting appropriate to cylindrical
geometry.

In the vapor phase oxidation process either glass
oxide soot or the glass itself is deposited in layers.
This produces a striated refractive index distribution in
the preform. The number of stria can vary from ten to

mode-coupling class. Similarly, the power spectrum
of diameter variations introduced during the draw pro-
cess also falls into the low-frequency region because of
the relatively fast draw speeds, above 0.5 m/s, and the
relatively slow mechanical and thermal response of the
preform (Runk, 1977). The known index perturbations
of the optical waveguide itself thus fall into the low-fre-
quency portion of the power spectrum. The only source
of mode coupling which has been observed is from
microbending caused by factors such as high winding
tension (Keck, 1974; Gardner, 1975) or uneven jacketing
(Gloge, 1975b). No mode coupling intrinsic to the wave-
guide itself has yet been reported.

In the following subsections, all three classes of index
perturbations are discussed.

1. Zero-frequency perturbations

For the zero-frequency or length-averaged index per-
/

turbation, the principal subject of interest is the effect
the averaged index perturbation has on the pulse broad-
ening of fibers with optimal or near optimal profiles.

Two types of perturbations have been analyzed, a
localized index deviation (index bump or dip) (Olshansky,
1976a; Khular et aL, 1977; Checcacci et nL, 1977) and
an index profile deviation which is periodic in x (Olshan-
sky, 1976; Arnaud and Mammel, 1976).

The presence of an index dip on the axis is character-
istic of fibers made by the inside fabrication process be-
cause of dopant volatilization during tube collapse.

Using the I.aguerre-Gauss solutions for the parabolic
index profile, Eq. (2.36), and first-order perturbation
theory, the rms pulse broadening caused by an on-axis
index dip can be calculated (Olshansky, 1976a). For a
small dip, of index depth 5 and rms width zv, the excess
pulse broadening for a typical multimode waveguide can
be expre s se d as

several hundred depending on the fabrication conditions
and the core radius.

Arnaud and Mammel (1976) have used a time-of-flight
method to calculate the rms pulse broadening making a
stairlike approximation to the optimal e profile. For
Q =0.02, the total rms pulse width is found to be 0.08,
0.2, 0.8, and 4.0 ns/km, respectively, for ~, 40, 20,
and 10 stairs.

Olshansky (1976a) has considered the effect of a
sinusoidal index perturbation of the form si n( 2~1Uxla)
For a fixed-amplitude perturbation, the largest increase
in pulse bro ade ning occur s fo r

y= 0.15 t/'. (4.33)

The effect is found to be two orders of magnitude small-
er for pf == 0.35 t/'. For a typical parabolic waveguide, a
sinusoidal perturbation having an amplitude of 0.01K pro-
duces a. maximum excess broadening of 1 ns/km if the
period is given by Eq. (4.33).

2. Low-spatial-frequency pel tut bat lons

For low-frequency perturbations characterized by
Eq. (4.24) the electromagnetic modal fields can adjust
adiabatically to the perturbations as they are encounter-
ed during propagation. Although the modal delay times
will vary along the length of the waveguide, the mean
delay shift averages to zero in first-order perturbation
theory, except of course for the zero-frequency com-
ponent.

Low-frequency perturbations do produce excess at-
tenuation of the high-order modes. In regions of the
waveguide where perturbations reduce the fiber's guided
mode volume, some of the high-order modes adiabatical-
ly convert to either leaky modes or radiation modes,
and power is lost. Olshansky and Nolan have used a
s tatis tie al approach to evaluate the exces s high-order
mo de loss resulting fro m random diameter variations of
a step-index (1976) and a parabolic index (1977) profile.
A 1% rms diameter variation produces an excess loss
of a few tenths dB in the first kilometer of propagation.
Other types of low-frequency index profile perturbations
will have a similar effect on high-order attenuation.

High-spatiai-&requency perturbation (mode coupling)

Perturbations having a sufficiently high spatial fre-
quency can satisfy the phase-matching condition [Eq.
(4.22)] and cause mode coupling. The theory of mode
coupling has been studied extensively in the literature
and an excellent summary of this work can be found in
Marcuse's text, Theory of Dielectric OPtica/ Waveguides
(1974a).

The earliest investigations of mode coupling in optical
waveguides (Marcuse, 1969a, 1969b) were concerned
with the excess losses which can result from the coupling
of guided modes to radiation modes. Later Personick
(1971) predicted that as a result of random coupling
among the guided modes, the pulse broadening would in-
crease as only the square root of the waveguide length,
not in proportion to it.

Qne can understand this result by assuming that the
input pulse consists of energy packets which, as a re-
sult of perturbations, make random transitions among
the modes. Each packet of signals arriving at output
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Ck C'o
ic (z) = —.—' r drdR 6n'(r, 9, z)E,~ F=,r, (4.34)

where E,~ is the transverse electric field for mode z, c
is the electrical permittivity of the vacuum, and P is a
normalization coefficient.

Strong coupling between modes occurs only if the
Fourier transform of EC;,(z) contai.ns a frequency com-
ponent (~ which satisfies the phase-matching condition
(Marcuse, 1969a, b)

will have propagated in a large number of different
modes and the arrival times of the packets will be dis-
tributed about a mean delay time representing a weighted
average of all the modal delay times. The distribution
of arrival times about the mean is inversely proportion-
al to the square root of the number of transitions each
packet makes. If d is a measure of the coupling strength,
the number of transitions is proportional to O'I, and the
width of the distribution about the mean is proportional
to (I./d)"'. Thus in the presence of strong mode coup-
ling, the pulse width increases as (L/d)'".

A number of authors have contributed to the detailed
analysis of mode coupling effects. Marcuse worked out
mode coupling coefficients for slab waveguides (1969a,
1969b, 1973a). Snyder (1970, 1971) and Marcuse (1973b)
derived coupling coefficients for the round fiber.

The coefficient K,, (z) for coupling between modes i and

j is given as (Marcuse, 1973b)

interpreted as a gradual coupling into higher-order
modes. This suggests that the mode coupling is domin-
ated by transitions between adjacent mode groups, and
hence

P (z, i) = P(m, z, i) . (4.38)

The result of these approximations is that the coupled
power equations can be reduced to a diffusion equation

BP BP 0 BP
+ ~ (m) = -y (m) P +— md(m)

Bz Bt 8 fly 8 PR
(4.39)

where the mode group number m is now treated as a con-
tinuous variable. Equation (4.39) can be solved exactly
in a number of inter e sting cas es.

Gloge (1972b, 1973) showed that for

y(m) =y m' (4.40)

d(m) =d, (4.41)

there exist simple closed-form solutions. These solu-
tions express the interesting result that, regardless of
the input excitation, after a distance greater than the
coupling length, defined as

(4.37)

As a further simplification, Gloge approximated the
discrete mode spectrum by a modal continuum

(4.35) I., =(y,d, ) '", (4.42)

If an index perturbation does cause coupling among the
guided modes, M axwell's equations lead to coupled wave
equations for the amplitudes g,. of the electromagnetic
fields of modes i = 1. . .N. Rowe and Young (1972)
showed that in the presence of random perturbations in
a two-mode waveguide, one can derive coupled equations
for the power P, in each mode. Marcuse (1972a) gen-
eralized this result to & modes and derived the coupled
power equations

BP,. BP,
~, „'+ ' = d, , (P,. —P, ) —y,.P, , .

/=1

where 7; and y,. are, respectively, the delay time and
attenuation rate of mode i, and d, , is the coupling coef-
ficient for a transition between modes i and j.

Equation (4.36) expresses the result that in the pres-
ence of a random per turbation, the phase information
contained in amplitude coefficients A,. can be ignored and
only the total power evolution in a mode, P; (z, i), is of
physical interest. The coupled power equations express
the intuitive result that the total change in power per
unit length in mode i (left-hand side) is equal to the
total gain (Pd, ,P, )minus the total l. oss (Pd;,.P,.) in
power due to mode coupling, minus the direct attenua-
tion (y,.P,.) in mode i.

On the basis of observed propagation in optical
waveguides, Gloge (1972b) introduced several important
simplifications to the analysis of the coupled power equa-
tions. First he showed that in a. step waveguide the
principal mode number m is proportional to the propa-
gation angle 0. Observation of a length-dependent broad-
ening of the far-field pattern in a waveguide excited by
a low-numerical-aperture launch beam could then be

the mode distribution reaches a steady state having an
attenuation rate

y, =2(y,d,)'" . (4.43)

In the time-dependent case, the solutions give the pulse
broadening as a function of length.

If in the absence of mode coupling the pulse width in-
creases as

v, (z) =cr,z, . (4.44)

then in the presence of strong mode coupling (when z
» L,) the pulse broadening is given as

(4.45)

d(m) =d, (m) ". (4.46)

All these models have the general feature that, once
the power distribution has achieved the steady state,
the pulse reduction

R = o, (z)/'cr, (z)

and the excess attenuation due to mode coupling

(4.47)

y( )=y, (4.48)

The features of the transition between the weakly coupled
domain (z « I,,) and the strongly coupled domain (z» L,)
can be studied in detail from Gloge's solutions.

Marcuse (1973c) extended the analysis to the case of
a parabolic index profile with a mode-independent atten-
uation coefficient. Olshansky (1975) generalized these
results to cv-class profiles and mode-dependent coupling
of the form
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satisfy a relationship

R'y =q for z»1, (4.49)

(4.50)

where C(6P) is the power spectrum of the fiber's curva-
ture, C(z), and is defined as

(4.51)

The brackets in Eq. (4.51) indicate that an ensemble
average is being taken. 6P is the difference between
propagation constants of adjacent modes and is given by

2wa
(m) (4.52)

for a step-index waveguide. Marcuse, (1973c) has ex-
tended these results to the parabolic index profile.

Fiber microbending under different types of loading
(Olshansky, 1975a, b; Gloge, 1975b) has been studied.
The results suggest that the curvature power spectrum
can be parametrized as

(4.53)

where p ~ 1 in a number of the models studied. This
leads to the interesting result (Olshansky, 1975b) that
the excess loss due to microbending has the dependence

y (4.54)
/

Since the study of models suggest p ~ 1, Eq. (4.54) indi-
cates that microbending loss can be controlled either by
reducing the fiber's core radius or increasing its num-
erical aperture. These trends have been qualitatively
verified (Gardner, 1S75; Fox, 1977).

D. lVlultimode N/-fiber

The name W-fiber has been coined (Kawakami and
Nishida, 1974, 1975) for the optical waveguide surround-
ed by two claddings, an inner cladding of index yg, and

The constant q of Eq. (4.49) is independent of a]I dimen-
sional parameters and refractive indices. It depends
only on the profile shape and mode dependences of the
coupling and attenuation coefficients. Equation (4.49)
expresses the result that for a, given loss penalty y the
pulse broadening is reduced by a factor (q/y)'". It has
been proposed (Miller and Personick, 1972; Marcuse,
1974) that by suitably controlling the perturbation, the
tradeoff parameter q can be substantially reduced so
that large reduction in pulse broadening can be achieved
for minimal loss penalty. Such controlled mode coupling
has not yet been demonstrated in practice.

4. Microbending losses

Gloge (1972b) proposed that the observed mode coupling
in multimode optical fibers was caused by microscopic
random bending. This was confirmed by Keck (1974),
who induced mode coupling by applying an external
stress. For adjacent mode coupling (~b.m

~

=1) in a step
waveguide, the coupling coefficient for microbending is
(Marcuse, 1969b, 1973b; Gloge, 1972b)

thickness t = 6 —a and an outer cladding of index n3 where
Q3 + e, . Although originally proposed for a single-

mode fiber, the TV-f iber design has also been suggested
for reducing curvature and microbending losses of
multimode fibers (Kawakami ef al. , . 1976).

The modes of the S'-fiber canbe divided into bound
modes having

n, k& P&n3k,

and partially bound modes having

n, k& P&n, k.
For sufficiently long waveguides the second group of
modes can tunnel through the inner cladding and radiate
away. This effect has been analyzed theoretically
(Maeda and Yamada, 1977) and observed (Tanaka et al. ,

1977). If the ratio t/X is large enough, tunneling is
negligible and the waveguide behaves as a singly clad
fiber with cladding index ~,. For smaller values of
f/A. , the partially bound modes radiate quickly and the
waveguide behaves as a singly clad fiber with cladding
index ~3. In neither case does the W fiber appear to
offer any advantage over the corresponding singly clad
design.

An experimental study of power transmission and
splice lossed in N'-fiber showsthe best results were
obtained for small n, -n, and large t (Uchida et al. , 1978).

V. SINGLE-MODE OPTICAL WAVEGUIDES

Although some of the earliest low-loss optical wave-
guides propagated only a single mode (Kapron et al. ,

1970), much of the subsequent research and development
activity has concentrated on the properties of multimode
waveguides. Because of its large core radius and large
numerical aperture, the multimode fiber offers the ad-
vantage of efficiently accepting the signal from LED
sources, whose reliability is well established and whose
cost is low. Even when injection lasers are the chosen
optical. source, the problem of making low-loss splices
or connec tions between optical fiber s is cons ider ably
more difficult for the single-mode fiber because of its
relatively small core diameter, typically on the order
of 5-10 p, m.

Recently, progress in the development of injection
lasers with long lifetimes (Ladany et af. , 1977; Hart-
man et ai. , 1S77) and the development of techniques for
making low-loss single-mode splices (Tynes and De-
rosier, 1977; Tusuchiya and Hayakayama, 1977) indi-
cates that difficulties originally confronting single-mode
communication systems have been greatly ameliorated.

Although these coupling problems are a disadvantage of
single-mode systems, the single-mode fiber offers the
great advantage that no well-controlled index profile is
required to achieve ultrahigh information bandwidths.

Single-mode fibers will inevitably play an important
role in future communication systems. Particularly
in very high bit rate systems, the single-mode fiber
offers bandwidths which can be orders of magnitude
greater than will be possible with multimode fibers.

The properties of single-mode waveguides are re-
viewed in this section.

Rev. Mod. Phys. , Vol. 51, No. 2, April 1979



R. 0lshansky: Propagation in glass optical waveguides

p=n, k(i+An) t (5.1)

(5.2)

and fJ is determined from the eigenvalue condition, Eq.
(2.19). For a given value of V, the corresponding value
of b can be determined from either Fig. 2 or Fig. 13.

The fraction of power propagating within the core is a
function of V and is given as (Gloge, 1971a)

P y~/Pg t y (TI/V) (1 K~) (5 3)

where v„ is defined by Eq. (2.31). This fraction is plot-
ted in Fig. 2.

The unperturbed waveguide supports pure single-mode
propagation only in the region

A. Unperturbed single-mode propagation

1. Weak guidance approximation

The step-index single —mode waveguide is well des-
cribed by the weak guidance approximation &Gloge,
1971a). With [I, W; and V defined by Eqs. (2. 12)—(2.15),
the propagation constant of the LP„(II&») mode is

This approximation will simplify the analysis of the ef-
fects of per turbations on graded-index single-mode
pr opag ation.

For power -law profiles, Gambling, P ayne, and Mat-
sumura (1977) have analyzed the shift in cutoff value as
a function of the profile. For ~ =2, they find +=3.50,
in agreement with an earlier result of Dil and Blok
(1973).

Becaus e o f the diff r ac tion-lim ited natur e of s ingle-
mode propagation, the conventional near-field and far-
field measurements, which are used successfully to de-
termine p and 6 for multimode waveguides, do not direct-
ly pr ovide a measurement of the single-mode wave-
guide's parameters. Gambling and Matsumura. (1977a)
have shown how a more detailed analysis of the far-field
pattern can yield a measure of a, 6, and V. Timmer-
man (1977) has provided a. simplified closed-form ex-
pression for the single —mode far-field pattern which is
useful in analyzing the measurement.

2. Pulse dispersion

The rms pulse broadening of a single-mode waveguide
is given as

0 =- V &2.405. (5.4)
(5.5)

However, as can be seen in Fig. 2, for V ~ 1.4 less than
half of the modal power propagates in the core. As a
result, single-mode waveguides having small t/ values
are subject to high losses caused by factors such as
curvature, limited cladding thickness, or microbending.

Qn the other hand, in the region above the single-
mode cutoff, the next set of modes (LP„) have a large
fraction of their power propagating in the cladding. For
example, at V=2. 7 about 50% of the I.P» power is in
the cladding. Thus, in the region above cutoff, the I.P1y
modes are susceptible to various loss mechanisms
(Gambling et al. , 1977b; Tasker et al. , 1977) and only
the I.Ppy mode can successfully propagate.

The properties of graded-index single-mode wave-
guides have been partially explored. Marcuse (1978) has
shown that for power-law profiles the waveguide's
fields can be well approximated by a Gaussian function.

d (vb)

FIG. 13. Functions characterizing single-mode propagation
are plotted vs V (after Gloge, 1971b).

where g~ is the source spectral linewidth. The pulse
broadening can be written as the sum of a pure material
dispersion term and a. waveguide-related term (Gloge,
1971b; Kapron and Keck, 1971; Dyott and Stern, 1971),

nlat wg (5.6)

I.
&mat =

C
(5.7)

and (Gloge, 197lb)

L o„d'(Vt)
0 wg

p
1 ' pe (5.8)

The factor Vd'(Vh)/dv' is shown in Fig. 13.
In the spectral region 0.8 —0.9 pm, the material dis-

persion proportionality factors, Ad'n/cd%. ', vary from
106 to 66 ps km 'nm ' for fused silica. The waveguide
term can be neglected in this spectral region.

For the high-silica compositions presently being used,
the material dispersion term has a zero in the range
1.25-1.35 p. m. The exact location of the zero for dif-
ferent compositions has been discussed in Sec. IIIB 1.
The zero in the total pulse dispersion is shifted slightly
to longer wavelengths by the waveguide term of Eq. (5.6)
(Kapron and Keck, 1971). The shift can be as large as
100 nm for waveguides with large A values (Kapron and
Keck, 1971; Cohen and Lin, 1977).

The observation of the zero dispersion point at 1.27
IJ m ~ n a B2Q3-S iQ, s ingl e-mode waveguide has been re
ported by Cohen and Lin (1977).

At the zero dispersion point dv. /dX vanishes and the
actual pulse broadening is determined by higher outer
terms. Kapron (1977) has made this analysis for a SiO,
waveguide and found that the minimum pulse dispersion
is 2.5 x 10 ' ps km 'nm '. The carrier frequency limit
is 2@10 'ps.
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B. Perturbed single-mode propagation

In designing single-mode fibers, one should select the
parameters g, g, and V so as to make the spot size
large enough to obtain low splicing and interconnection
losses, and yet small enough that curvature and miero-
bending losses are negligible. The low-loss cladding
surrounding the core should be sufficiently thick that
losses due to either an absorptive outer layer or a high-
index outer layer (n, &n, ) are negligible. These topics
are discussed below.

't. Single-mode curvature loss

As is true for the curvature loss of multimode fibers,
the theory is quite difficult, and a large number of re-
searchers have derived qualitatively similar results
for the single-mode curvature loss. Many of the calcu-
lations approximate the fields of the curved fiber by the
fields of the straight fiber (Shevchenko, 1973; I.ewin,
1974; Arnaud, 1974; Snyder ef, al. , 1975; Marcuse,
1976b). The modal fields, however, are considerably
distorted by the bend (Kuester and Chang, 1975; Mar-
cuse, 1976c; Miyagi and Yip, 1977) and this leads to
increased loss for the IP» mode. The use of para-
bolic coordinates (Gloge, 1975) appears to be the most
natural description of the distorted fields since it gives
a qualitatively good description of the observed fields of
a bent fiber (Gambling and Matsumura, 1977a).

In addition to the radiation from a bend of constant
curvature, there is a transition region between the
straight and bent fiber (Miyagi and Yip, 1977). In the
transition region, the radiation emitted in the transverse
direction is in the form of discrete beams (Gambling,
Payne, and Matsumura, 1976). The radiation from the
transition region has been analyzed in terms of coupling
between the LP„mode and the LP» leaky mode (Sam-
mut, 1977).

As a practical matter, curvature losses are predicted
to be negligible for bend radii encountered in a typical
communication system. From the results of Gloge
(1975), a single-mode fiber with a & 5 jm and V& 2.0 is
predicted to have less than 1 dB/km bend loss for curva-
ture radii greater than 2.5 em. The results of Marcuse
(1976c) yield a completely negligible loss for a & 5 um,
P~ 2.4, and Q& 2.5 cm.

2. Single-mode microbending loss

A more serious practical consideration in single- .

mode propagation is the magnitude of the microbending
losses. For a fixed V value and source wavelength, the
single-mode microbending losses increase as cP "~,
where P is the parameter characterizing the curvature
power spectrum defined in Eq. (4.53). For this class
of power spectra, the microbending losses have the form
(Petermann, 1976a, 1976b; Marcuse, 1976a.; Olshan-
sky, 1976c)

(5 9)

where G is a factor depending only on V and P, and C,
is the coefficient of the power spectrum. , There is not
complete agreement on the value of G(V, P) but it de-
creases with V and is of order unity for &=2.4. For a

curvature power spectrum having P= 1 —2, the single-
mode microbending loss is about the same as that of a
multimode fiber having a =30 g and ~ =0.01 if the single-
mode fiber's core radius is 4-5 p, m.

Several researchers (Petermann, 1976a, 1976b; Mar-
cuse, 1977; Gambling, Matsumura, and Cowley, 1978)
have emphasized that it is the spot size of the I.P„mode,
not the core radius, which is the important parameter
controlling splice losses. The spot size m„defined as

ZOO
= F. re, (5.10)

is given by (Gambling and Matsumura. , 1977b)
'2 S(f/) 1

mo =a — +—+TV -' —1J
3 I/g, (rg) 2

(5.11)

In the range 1.6 & V & 2.6, Eq. (5.11) can be approxima-
ted as either

w, = 1.9 a/V (5.12)

1.9
(2n, a)'/' ' (5.13)

Although spot size is proportional to core radius if V is
fixed, Eq. (5.13) makes it clear that the spot size is
more directly controlled by A. and A.

Using Eq. (5.9) and Eq. (5.13), at fixed V, we find
that the microbending losses are proportional to

(2+4' &, &2+2~)
y ~M1O k (5.14)

(5.15)

where t=b —a is the cladding thickness.
If 4z, & P, but the outer medium is lossy, the LP„ab-

sorption loss is given by the fraction of power propaga-
ting in the outer layer multiplied by its loss coefficient

y = y, tc,(f//V)' exp(- 2Wt/a) . (5.16)

If the difference (n, —p/0) is 10 ', the loss predicted
by Eq. (5.15) is equivalent to that of Eq. (5.16) with y,
= 10' dB/km. Thus the mode-stripping effect of a. slight-
ly higher index outer layer is much more troublesome
than that of a low-index (|M,& P) but lossy outer layer.
Gloge (1975) has estimated that in the former case f/a
= 8 is required for a typical single-mode waveguide if
the excess loss is to be limited to less than 1 dB/km.

Equation (5.14) shows that, for constant splice loss
(fixed ~a, ) and fixed V, microbending losses will de-
crease strongly with wavelength. This result can be
qualitatively understood from Eq. (5.13). If the spot
size is fixed, transmission at longer wavelengths per-
mits higher Q. This gives tighter confinement and
lower microbending loss.

3. Cladding thickness

If the cladding is surrounded by a medium of index z3
and loss coefficient y„ two types of loss mechanisms
can occur.

For Am, & p, the outer layer acts as a mode stripper
and light is very rapidly lost unless the cladding is quite
thick. Gloge (1975) has analyzed this case and his re-
sult can be expressed as
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C. Single-mode 5'-fiber q(x, ) =q(x,,) =0, (A2)

ng&&3&&2 ~ (5.17)

A doubly clad single-mode fiber, called a W-fiber, has
been proposed (Kawakami and Nishida, 1974, 1975) as a
method of reducing both bending losses and pulse disper-
sion. The TV-fiberhasacore of radius a and index pl

an inner cladding of thickness f =6 —a and index g.„and
an outer cladding of index ~„such that

))(r) =, „„exp( —.

(xq)

2 r
R(r) =, „„cos

(xq)
qd'F ——,'Yi& 'v& g~,

(A3)

(A4)

then in the core the transverse electromagnetic fields
have the radial dependence

The core region supports more than one mode but the
index yg, is chosen great enough so that all modes but the
I Po, tunnel through the inner cladding and do not con-
tribute to the transmitted signal.

1. Microbending loss

q (g'Y +2 cos

x exp +
2

j. r
R(r) =, „„sing,exp

qdr, r, &x& a, (A 5)

The LP» mode of the W-fiber ismoretightly confined
than the L-Ppy mode of a singly clad fiber of core radius
g and cladding index pg, . It has lower microbending loss,
but a].so a smaller spot size. Since the small spot size
leads to higher splicing losses, a meaningful compari-
son can be made only between singly and doubly clad
fibers with the same spot size.

Petermann and Storm (1976) find the microbending
losses of the R'-fiber are comparable to or greater
than the losses of singly clad fibers with equal spot
size. The W-fiber's microbending loss can be qualita-
tively understood using the analysis of single-mode spot
size made by Gambling and Matsumura (1977b). Taking

U=ka(n', —n')"' (5.18)

for the TV-fiber, their results show that a large core
radius is needed to obtain a spot size equivalent to that
of a, normal single-modefiber. For a large core radius,
the mode spacing between the LP» and LPII modes ls
small, and increased mode coupling losses result.
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2. Anomalous dispersion

At wavelengths shorter than the zero dispersion point,
the material dispersion (T„,,.„and the waveguide dispersion
(T, of the singly clad fiber have the same sign. In the W-
fiber, they have the opposite sign so that cancellation be-
tween them is possible (Kawakami and Nishida, 1974,
1975). However, the index difference (n, —n, )/n, must'be
on the order of 1% and the difference (n, —n, )ln, must be
even larger for full cancellation (Kawakami ef af. , 1976).
Such a waveguide design seems impractical because of
the small core size and large index differences re-
gUll ecI.

qdr. (A6)

CladdIng neglected

If the presence of the cladding is neglected (Gloge and
Marcatili, 1973; Olshansky and Keck, 1976), then Eq.
(A5) is taken as valid for all x ~ r, Th.e requirement
that R(r) be zero at infinity gives

cosp, =0 (A7)

or

y, =(u +-')~. (AB)

The solution of this equation is discussed in Sec. II.

2. Infinite cladding

The cladding can be taken into account by writing the
cladding fields as (Olshansky, 1977)

))(r) =, „„exp(—
jxq j"'

where

q =~k' ' —p' v'/~'I'~'

(A9)

(A 10)

Requiring that R(r) and dR/A be continuous at r = a
gives the eigenvalue equation

cosp, =6,
where

d'n'

()'d

(A11)

(A12)

The field solutions for r & a vary according to the problem
under consideration.

The author is very grateful to Dr. D. B. Keck, Dr.
H. D. Maurer, and Dr. P. C. Schultz for many helpful
s uggestions.

APPENDIX: WKB SOLUTION FOR 6BAD ED-INDEX
OPTICAL WAVEG Ul DES

qdr. (A 13)
r2

Since the right-hand side of (A12) is small, the eigen-
value equation can be solved as a Taylor expansion
about 5 =0. This gives the result

The &KB solution for graded-index optical waveguides
is summar-ized below. If

ski» p
(A14)

q(r) =( ' k'n(~) —p' —v'/g'~')'

and the caustics x, and x, are defined as

(Al) The shift in delay time caused by the cladding can be
calculated from (A14).
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3. Finite cladding

If the low-loss cladding extends only to radius b, and
for x & b there is a second medium of complex index z3,
two important cases need to be considered.

(a,) Ren, & n, and Imn, = 0

In the cladding region, the fields are given as

A(r) = „,' Aexp — qdr +Bexp qdr
Q a

g&x +b,
(A 15)

and the outer region as

1
A(r) =, —„„Cexp i

I,xq)

where

r
q&, b~x, (AI8)

q = ~a'n' P' v')r' ~"'

(b) Ren, =n, and Imn, g 0

(A17)

In this case of a low-index, lossy outer medium, the
cladding field is still given as (A15) and in the outer
region

1
R(r) = —„, exp — qdr). 5 r.

rq "' (A 18)

The boundary conditions at x = a and x = b lead to an
eigenvalue equation of the for m

cosp, = Re 5 + i Im5 . (A 19)

Again making a Taylor series expansion one finds the
attenuation coefficient is

2 Im5
y =2Im6p=-

aAi~sp
(A20)

Expressions for y are given by Eqs. (4. 16) and (4.19).
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