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The inverse scattering method (ISM) as applied to self-induced transparency {SIT) is reviewed. The linear
scattering equations (Zakharov-Shabat equations) that are the basis of the inverse scattering method
applied to SIT are physically interpreted. They in turn are solved by establishing an analogy with the
equations are shown to follow from application of the principle of causality of the parametric amplifier
analog.
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~NVRODUevtON

The inverse scattering method (ISM) is one of the very
few general methods of solution of a class of nonlinear
differential equations in one spatial dimension and time
(Gardner et a/. , 1967; Zakharov and Shabat, 1972;
Whitham, 1974; Ablowitz et al. , 1974a.; Lamb, 1973).
In the application of the ISM a linear scattering problem
of quantum-mechanical nature is associated with the
nonlinear differential equation (Whitham, 1974). The
sought, -for solution of the nonlinear differential equation
at the initial time t =0 plays ihe role of the scattering
potential or "well" of the linear scattering problem. The
initial conditions of the problem to be solved prescribe
the transmission and reflection coefficients of the lin-
ear scattering problem from which the scattering "well"'
may be determined by standard techniques of (inverse)
scattering theory. The evolution in time of the scatter-
ing problem, which may take several forms (Ablowitz
et al. , 1974a, b), then prescribes the evolution in time
of the solution of the nonlinear equation —or, alternate-
ly, the form of the nonlinear differential equation as-
sociated with this particular scattering problem (see
Fig. 1).

In 1973 Lamb showed (Lamb, 1973) how one may as-
sociate with the equations of self-induced transparency
(SIT) one of the standa, rd equations of the ISM, the Zak-
harov-Shabat equations (Zakharov and Shabat, 1972).
He proceeded through a set of variable transformations
with no apparent physical interpretation. In fact, one of
the intriguing unsolved problems of the ISM is the de-
velopment of a procedure to find the scattering problem
associated with a particular differential equation.

NONLINEAR DIFF.
EQUATION D (g) ~ O
g = u(x, t)

LINE AR SCATTERING
PROBLEM IN x
PRODUCED BY SCATTERING
"NELL" u (x, 0)

EXTEND
U(x, O) TO
ARBITRARY
t

INI T I AL CONDI TI ONS
PRESCRIBE TRANSMIS-
SION AND REF~ECTION
COEFF. OF SCATTERING
PROBLEM; OBTAIN SCAT-
TERING "NELL u(x, 0)

FIG. 1. Flow chart.

In many cases the scattering problem of quantum-
mechanical character will have no physical interpreta-
tion. It is to be expected, however, that in those cases
in. which the physics underlying the nonlinear differen-
tial equation is based on quantum mechanics the asso-
ciated scattering problem must have a direct physical
meaning. In the case of the Josephson transmission line
and SIT, this ha, s been pointed out by McLaughlin and
Corones (McLaughlin and Corones, 1974). The physical
interpretation of the scattering problem obtained after
Lamb had reduced the SIT problem to one amenable to
the inverse scattering method is but one example of
various developments presented by different authors in
the course of time. The present author attempted to
gain an understanding of the ISM by uncovering physical
interpretations for the mathematical steps. Even though
most of the specifics have appeared in the literature
(Gardner et al. , 1967; Zakharov a,nd Shabat, 1972;
Whitham, 1974; Ablowitz et al. , 1974a,b; Lamb, 1973;
McLaughlin and Corones, 1974; Ablowitz et a/. , 1973;
Faddeyev, 1962), this paper may serve as a, guide for
the physically inclined to an important mathematical
method.

The Zakharov-Shabat equations written as differential
equations in normalized time v with the electric field
$(7, z) as the scattering "well" define the linear scatter-
ing problem associated with SIT. The spatial variable z
plays the role of a parameter. In Sec. I we show the
direct connection between the Zakharov-Shabat equations
and the equations of the two-level systems interacting
with the electric field in SIT.

The nature of the solutions to the Zakharov-Shabat
equations may be anticipated by recognizing their sim-
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ilarity with a well-known physical problem: the para-
metric interaction of two waves via a nonlinear medium
excited by a pump wave (Yariv, 1976). This is done in
See. II. In particular, it is known that "unstable" solu-
tions growing in time are encountered in parametric
interactions. This fact may be used to predict the loca-
tion of the eigenvalues of the Zakharov-Shabat equations
in the complex plane.

The inverse scattering problem is solved and the shape
of the scattering well {g(~,g)) is obtained in terms of the
soealled Jost functions which satisfy the Marchenko
equation. In Sec. III we show the "physical" significance
of the Jost function, and in Sec. IV we show that the
Marchenko equation is the re ult of Laplace transforma-
tion of the Zakharov —Shabat equations (i.e. , the para-
metric interaction) and application of causality.

In Sec. V we show that the assumption of independence
of z of the eigenvalues of the Zakharov-Shabat equations
leads to a form of the Maxwell-Bloch equations of SIT.
In Sec. VI we solve the Marchenko equation in the same
way as Lamb has done, filling in some of the omitted
steps.

dVg . 6 E P2~ (1.6)

EQ ~P &ac

(1.7)

These are already the Zakharov-Shabat equations, ex-
cept for a normalization. The density matrix p is the
statistical average of the products of the amplitudes a„
a, or p„v, and their complex conjugates. Since we are
dealing here with a pure state (no collisions) no statis-
tical average need be performed.

P)g= ~a ~~ ~ (1.8)

The positive frequency portion of the polarization P is
given by

I = (iv p„p„)=xp„(v,v,*) (1.9)

where N is the particle density and the brackets indicate
an average over all two-level system. One obtains from
(1.1) and (1.11) by dot-multiplication of both sides by
p„/in-

I. THE ZAKHARGV-SHABAT EQUATIONS AS THE

EQUATIONS OF THE TWO-LEVEL SYSTEMS

P2&'E (1.10.)

BE 1 BE . co+-
Bg C Bt 2c

where c is the speed of light, - the dielectric constant,
(d the "carrier" frequency, and P is the polarization
of the medium. P and Z are parallel to each other and
transverse to the x direction. The polarization of the
medium is obtained from the analysis of two-level sys-
tems with a distribution of energy-level spacings. De-
note the amplitude of the wave function of the upper level
(1) by a„ that of the lower level (2) by a, . One may
write down two differential equations for the amplitudes
a, and a, as coupled by the Z field (Vuylsteke, 1960).
Factoring out the natural time dependences and retaining
only the slowly time-varying portions of the variables,
one has

a, = (i/8)E* p» expi&t a, , (1.2)

Pi*. exp -&«& (1.3)

The Zakharov-Shabat equations are central to the in-
verse scattering method applied to self-induced trans-
parency. In this section we review briefly the equations
of a two-level system excited by an E field and show that
the resulting equations are equivalent to the Zakharov-
Shabat equations (Zakharov and Shabat, 1972) arrived at
by Lamb (Lamb, 1973).

In the slow envelope approximation, the wave equation
for the electric field envelope E(x, t) of a plane wave
propagating in the x direction is in mks units (compare
Lamb, 1973)

Bg/Bg =(2v, v,*)

BVl/ B7'+ 2 gvl = 2$ V2

BV2/B T —2 gv2 = —2$'Vl ~

(1.12)

(1.13)

(1.14)

These equations are already in one of the standard
forms of inverse scattering theory. MeLaughlin and
Corones (1974) have pointed out the relation between
the linear (Zakharov-Shabat) problem and the quantum-
mechanical equations of the Josephson junction. They
also touched on the problem of SIT without making the
connection of the v's with the wave function amplitudes.

For later reference, and to make connection with the
Bloch equations, we also list the differential equations
for the density matrix elements (1.8). They follow di-
rectly from Eqs. (1.6) and (1.7)

~N IP» I'

2SQ

The equation for the electric field (1.10) completes
the system of equations; the solution of the Zakharov-
Shabat equations appears directly as a drive in the equa-
tion of the field. The system of equations is nonlinear
in that the drive is nonlinear in g„v,*.

Through the use of the normalized variables

h =—2p2, ' E/i&O, g =——6/20,
~=n[t —(x/c)], z =nx/c,

Eqs. (1.6), (1.7), and (1.10) assume the form

where 5= co —co», p» is the matrix element between the
two levels and A~» is the energy separation of the lev-
els. If we define

dP .
g Pi2 (

dt
+ 2 Pl2 .~ l Pll P22)

gn

P&s E P"—„(;,—.)= ~ „n.,--„-..)in in
(1.16)a, exp- (i &/2)t =—v,*,

a,exp+ (i &/2)t =—v,*,
(l 4)

we obtain

(1 5) After introduction of the variable r and the definitions
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~ =P22 —Pyy ~

one obtains the normalized Bloch equations

ax/8~+ 2ig&= &iv,

sic'/a~ = --,'(8*x+ 8 ~*) .
(1.17)

(1.18)

Vl

POWER FLOW ENERGY GROUP VELOCITY

Lamb (1973) used the Bloch equations, and the field
equation

8$/sz= (x} (1.19)

as the defining equation of SIT. Lamb had to go through
a, series of transformations to derive the Zakharov-
Shabat equations. Our way of deriving the equations
shows, much more simply, that the Bloch equations are
implied by the Zakharov-Shabat equations,

II. THE SCATTERING PROBLEM

v, ~ exp —i/~ (2.1)

v, ~ exp+i f~. (2.2)

The wave v, propagates in the -7. direction, and the
wave v, in the +7 direction [assuming the physicist's
definition of phase delay as represented by the factor
expire with g&0]. The amplitudes v, and v, are func-
tions of g and ~. We shall consider later the Fourier
transform

We have shown that the nonlinear self- induced transpa-
rency equations are cast naturally in terms of a set of li-
near differential equations for the amplitudes of the
wave functions of the upper and lower levels coupled by
the electric field. These were the equations of Zakharov
and Shabat (1972) central to their formulation of the in-
verse scattering problem for the nonlinear Schroedinger
equation and derived by Lamb (1973) from the density
matrix equations of the two-level system by a set of
variable transformations. In this section we shall elab-
orate on the significance of the Zakharov-Shabat equa-
tions.

We consider them to be a set of equations of mode
coupling in space, treating v as if it were the distance
coordinate, and f as if it mere the propagation constant
(f is real by definition); the amplitudes v, and v, are
then wave amplitudes. The function h(w) playsthe role
of the coupling coefficient. In the absence of anS field,

FIG. 2. Schematic of power flow and energy.

waves are coupled. The coupling is lossless in the sense
that (for real r)

d/'dv. (lv, (&, 7.) I'+ Iv, (g, ~) I') =0 (2.4)

as can be demonstrated easily from Eqs. (1.13) and
(1.14). In Eq. (2.4) waves (1) and (2) may be assigned
powers lvI. (&~ ~) I' and lv2(& 7') I'. Acco rding to Eq.
(2.4), both waves carry power in the same direetion-
say the + 7. direction. Because they have oppositely di-
rected group velocities, their energies must be of oppo-

— site sign (Pierce, 1974). (See Fig. 2.}
The concept of negative small signal energy is widely

used in plasma physics (Sturrock, 1961). Negative ener-
gy commonly occurs in energy conservation principles
derived from the linearized equations of motion of a
nonlinear system which contains an energy "reservoir"
[such as the kinetic energy of a moving plasma or an
electron beam (Pierce, 1974)]. Excitation of a wave
[usually a, so-called slow wave (Sturrock, 1961)]may
lower the overall energy of the system, a fact that man-
ifests itself in terms of a negative energy attributed to
the wave. The energy is quadratic in the excitation
amplitude of the wave. If a, negative-energy wave is
coupled to a positive-energy wave, both wave amplitudes
may grow. 'The growth of positive energy is balanced by
the gromth of the negative energy, net small signal ener-
gy is conserved. One example of such a system is the
backward-wave oscillator (Kleen, 1958).

More familiar may be the example of parametric in-
teraction (Yariv, 1976) of two waves of frequencies &u,

and 2 with a pump wave of frequency p, so that
+ w, = co~. The phase-matching condition of the (collin-
ear) propagation vectors k, and k2 is then 0~=k, +k2. In
the steady state, when phase matching is not realized,
one may define

/de px(-i g y) v( r~) = p, (y, y) . (2.3)
g —= 2[(k, +k2) —kq] .

If g is taken to be a, propagation constant, r„= cu/u with u
the phase velocity of the uncoupled wave, and u the fre-
quency, then y may be interpreted as a time variable
(y =ut}. This further interpretation endows the waves
v, and v, with dispersion-free propagation at group vel-
ocity u, in the absence of S. The original self-induced
transparency problem involving interactions of electro-
magnetic pulses with the nonlinear medium requires that
8(7') has to vanish at lrl-™.Hence Eqs. (1.1'3) and
(1.14) describe coupling of waves in an interaction region
extending from -~ & 7 &+, mith vanishing interaction in
the limit

I
~ I—

In the region where 8 4 0, the forward and backward

The equations of parametric coupling between the two
waves as a function of the spatial coordinate (&) are of
the form of Eqs. (1.13) and (1.14) when the "fast" spatial
variations of the waves are removed and only the slowly
varying variations of "envelopes" are considered. The
energy densities must be reinterpreted as photon num-
ber densities, the power flows as photon number flows,
and energy conservation as photon number conservation.
To be more specific, in a parametric process of the
type where a pump photon (~~) produces a "signal" photon
at frequency „and an "idler" photon at frequency „
the number of signal photons generated either spontan-
eously, or by induced emission, must be equal to the
number of idler photons. The wave amplitudes, vy and
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z„may be so norma)ized that I~i I
and I~2 I' are pro-

portional to the flux of photons in the interacting waves
(1) and (2). Then

may be interpreted as the Manley-Rowe conservation
relations applied to this parametric process (Manley
and Rowe, 1959; Weiss, 1957). A parametric instability
occurs if the group velocities of waves (1) and (2) are
oppositely directed, as indicated by the plus sign in the
above equation.

The waves v, and v, have further properties somewhat
analogous to lossless coupling of electromagnetic waves
that obey reciprocity relations. Indeed, from Eqs. (1.13)
and (1.14) it is easily shown that, given a solution (f is
treated as a column matrix of components f, and f,)

then

the inverse scattering problem: given e, and v„what
coupling function 8 (v) produces this particular v, and v, .
Then by picking solutions for v, and v, one may find
the 8 field that is described by them.

The SIT problem calls for a very special kind of solu-
tion v, (f, T), v, (f, 7'). Indeed, g is the parameter de-
scribing the detuning of the two level systems from the
carrier frequency , . If there is to be no loss,
I~i(c ~)

I
=1 I~2(c, 7)

I
=0forv. —~; i.e. , everytwo-lev-

el system has to start from the ground state before the
arrival of the pulse and must return into the ground
state after passage of the pulse. This requirement in
turn calls for a scattering well 8(&) which produces no
reflection (v, =0) for an incident "wave" v, ($, 7) for any

There are wells that are capable of doing this. The
Schroedinger equation for a secant hyperbolic well has
a continuum of eigenstates that are traveling waves out-
side the well and experience only a phase shift as they
pass through the well (Morse and Feshbach, 1953). The
solutions of the Marchenko equation —to be derived in a
novel way in Sec. IV—prove the existence of such wells
in general ~

is also a solution for the same g (if g is real). Further,
these two solutions are physically different. Indeed,
let f describe the coupling of wave v, to v, via S(w) with
boundary conditions as indicated schematically in Fig.
3(a). The solution f is the one shown in Fig. 3(b). The
function f in relation to f is like the time-reversed solu-
tion of electromagnetic waves used to demonstrate re-
ciprocity.

One may generalize Eq. (2.4) to show conservation of
"cross power, " i.e. , prove the conservation law

We shall concentrate on a particular solution f(g, r)
whose limit for r —-~ is

1
(3.1)0

lim f(g, 7) = e '~' .

In the schematic representation of Fig. 3, the solution
is shown in Fig. 4. Here f(&, 7) represents an experi-
ment in which a wave is incident from 7-+~, partly
transmitted and partly coupled to the (reflected) wave
v, . The complete solutions may be written

d~d~(K&x +f2g2) =0
~ (2.5)

where f and g are any two solutions of Eqs. (1.13) and
(1.14). Using the property that

g2

e -iC'& +
0

where

A, (w, s)
A(7', s) =

A., v, s

ds A(7, s)e (3.2)

is a, solution, if g is one, Eq. (2.5) becomes

(2.6)

This is known as conservation of the Wronskian (Gard-
ner ef a/. , 1967).

Thus far we have studied general properties of the
scattering problem. One may use Eqs. (1.13) and (1.14)
to find solutions v, and g2 for given S. More relevant to
the solution of the self-induced transparency problem is

dK e +'f($, 7)= &(y+7)+A(~, —y). (3.3)

is the so-called Jost function, independent. of g. If we
define A(7, s) =0 for s &7, then the upper limit in Eq.
(3.2) may be extended to infinity.

We can show that Eq. (3.2) is general and, further,
that it has a simple physical interpretation. For this
purpose we Fourier transform Eq. (3.2) as indicated by
Eq. (2.3)

TWO- CROSS SECTIONS OUTSIDE
SCATTERING REGION

MODE {I )

I

(b)
I

f
I

MODE {2)

FlG. 3. "Experiments" defining f and f . FIG. 4. Coupling of modes.
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8(y+7) + Al(T, -y)

y = const.

Ap {T,-y)

equation.
Note that the Jost function does not contain the param-

eter g, because it describes the response in the Fourier
transform space of f (in "time" y). In the spirit of
Fourier (or Laplace) transforms, the functional depen-
dence of f(g, T) is extended into the entire complex g
plane. Hence the physical interpretation of P as the de-
tuning parameter has been abandoned, at least for the
purpose of obtaining a suitable Jost function. The de-
tuning parameter is reintroduced at the end of the anal-
y818 afteI' lllvel 86 Foul'161' tl ansforming A(T, —3)) accord-
ing to Eq. (3.2) and interpreting f(&, w) for real f only.

FIG. 5. The coupling via C' -) as expressed by f(f, 7) in the
space (v) —time (y) domain.

f e- it&
1 1 (3.4)

This is the space (v) —time (y) representation of the coup-
ling of modes experiment in Fig. 4. A unit impulse in
mode (1) is incident from the right upon the coupling re-
gion, pa.rtly transmitted and partly coupled to mode (2).
Here A(w, —y) contains the spreading and scattering in-
formation. It is a general function of the space-time
variables with the sole restriction that A(T, —y) = 0 for
-y & ~, or y+ T & 0. This restriction may be interpreted
as one of causality, namely that the "response" A(r, —y)
does not appear at the position 7 until y +» 0, i.e. , the
time is advanced enough for the impulse to have passed.
The process is sketched in Fig. 5.

The Jost function contains information about the scat-
tering well h(&). This is obvious on physical grounds.
Mathematically the information is extracted as follows.
Consider Eq. (1.13) and Eq. (1.14) in the limit g-~.
Then, with mode (1) incident from the right, v, (f, 7)
is to lowest order in I/g the uncoupled v, so that

IV. THE MARCHENKO EQUATION

0
limg(g, ~) =

Figure 6 shows the experiment represented by g. A
mode (wave) is incident from the left upon the interac-
tion region and partly coupled to the backward mode
(wave), partly transmitted. Because f and f describe
the system completely, g(P, w), must be expressible as
a linear superposition off and j"and

(4.1)

We have pointed out that the function f($, 7.) defined in
Eq. (3.2) represents a coupling-of-modes experiment in
which one mode (wave) is incident from the right of the
interaction region, partly reflected and partly trans-
mitted. Here f is the experiment "run backwards"; f
is also a solution of Eqs. (1.13) and (1.14). The two
solutions f and f are linearly independent because they
describe different "physical events, " Any other solution
may be represented as a linear superposition off andf.
In particular, consider the solution g which, asymptot-
ically, is

The amplitude v, is obtained from Eq. (1.14). Set 4 (&, ~) = &(&)f(&, r) + &(&0(&,T)' (4.2)

(3.5) In the limit v- —~, f(g, r) describes the reflected wave

1

(d/d 7 )V, = —' 2 $ *(&)e " '
to lowest order in I/f Integra. tion gives (remember the
mode v, vanishes at ~ = —~)

limf= e ''
0

and f the incident wave

0

(4.3)

1
V = ——

2 2

1 h *(&)
2 2ig

T 1S*(s)e ""ds =-——g*(7)
2

e ds

(3.6)

e iC'&

-1
The expression

(4.4)

(4.5)
to lowest order in I/f. Qn the other hand, Eq. (3.2)
evaluated to lowest order in 1/r„gives evaluated in the limit

~

7 j
—~ contains the conventional

f (g g) 2( t ) ACT

-zg (3.7)

Comparing Eq. (3.7) with Eqs. (3.6) and (3.5), we find

h*= 4A, (7, v). (3.6)

This relation is important in that it gives the coupling
"well" h (&) for given information on the coupled mode
solution, the Jost function A, . The evaulation of the
scattering well reduces to the evaluation of the Jost func-
tion for given scattering information. In the next section
we show that the Jost function obeys the Marchenko

a(f)
b(g) '

I

b(f)

FIG. 6. The "experiment" described by Eq. (4.5).

~The a and b coefficients are chosen in the notation of Lamb
(1973), which differs from that of Zakharov and Shabat (1972).
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reflection coefficient [a(g)/b(f) je '"' on the left of the
interaction region, and the transmitted wave

on the right. Note that power conservation assures, for
real g..

(4.6)

and thus

(4.7)

The contour may be deformed to coincide with the real
f axis. In this ca.se integrations around the poles of
a(f)/b(f) have to be added. It is easily confirmed that
Eq. (4.10) reduces to

0

-1 &(y —r) +X(7,y)

This is a variant of the conservation relation between
transmission coefficient T and reflection coefficient I'
of a conventional transmission line

+ E(y +a)+ A. (7, s) F'(s +y)ds, (4.11)

T +I —1.. where E(y) incorporates the scattering information,4.8

a(&„~)=a(&,)f(&„~) (4.9)

and g is not linearly independent off. Because g decays
with 7-+~, and f with 7 ——~, we are faced with a
"trapped" solution which decays spatially away in both
directions from the coupling region. This is an "eigen-
mode" of the system described by h(7'). In the para-
metric interaction example this would be the "para—
metrically" unstable solution.

Every solution growing in time is paired with a solu-
tion decaying in time, f -&*. Indeed, taking the solu-
tions v, (f, r) and v, (f, r) of Eqs. (1.13) and (1.14), one
may construct a new solution by the replacement
~,*(K*,~) —~.(K, ~), ~,*(&*, ~) —-~, (K, ~), r *—~

From the preceding discussion we gather that (4.5)
describes the steady-state coupling for real f and that
analytic continuation into the upper half-plane may un-
cover eigensolutions pertaining to zeros of b(K) at r = K„.
The complex conjugate values of f~ also lead to eigen-
solutions which are decaying with time.

Because Eq. (4.5) describes solutions that may be
growing in time (y), the Fourier transform (2.3) must
be replaced by a Laplace transform. In Laplace trans-
forming (4.5) we pick a contour in the upper half-plane
of f at Imp =v

1 )k +oo

dge '~'g(k' 7)/b(&)
27T

In the present case the powers of both waves are posi-
tive, hence the difference in sign of the contribution of
the reflection coefficient. The "steady-state" (real fre-
quency) scattering solution is completely described by
the functions 1/b(f) and a(f)/b(g) for real K The. inter-
action region may give rise, however, to solutions
growing or decaying in time (the Fourier transform
variable y). This is due to the coupling of a positive-
energy wave with a negative-energy wave as explained
in Sec. II. Solutions growing in "time" are contained in
the analytic continuation of Eq. (4.5) into the upper half
of the comp/ex g plane. In doing so, we interpret f($, 7)
as complex conjugated for real g. When f is made com-
plex, it appears as g in f, not as f* Here. b(f) anal-
ytically continued may have zeros in the upper half-
plane. When this happens at f= g~

E(y) =-— dg e '"+ C,e "a',1 " a(g)
2z „b(g)

with

(4.12)

&(7', s) p (s +y)ds = 0, (4.13)

where we have replaced the upper limit in the integral
by r, because A(7., s) =0 for s &r Equatio. n (4.13) is the
pair of the desired Marchenko equations of the inverse
scattering problem. Given the "reflection coefficient"
a(g)/b(f) for real & and the excitation of the eigensolu-
tions C„, one may construct E(y) The A. 's may . be
found from Eq. (4.13). Finally, the scattering potential
is determined from Eq. (3.8).

We have followed here a simple intuitive approach due
to Balanis (1972) in order to arrive at the Marchenko
equation. Zakharov and Shabat (1972) followed a. more
formal approach. " Ablowitz et al. (1974b) presented a,

derivation very similar to the one here, with no empha-
sis on the contour deformation in the complex f plane.

The result —Eq. (4.13) with Eq. (4.12)—has interesting
physical implications. In (4.12) the scattering informa-
tion is expressed in terms of the residues C~ at the
poles g~ of the scattering function a/b, and the value of
a(f)/b(f) on the real g axis. If one chooses values for
the residues, and sets a(f)/b(f) =0 for real r, one pos-
tulates the existence of a scattering "well" that produces
no reflection for an incident "wave" v, ~exp —id~ (7' +~)
for all values of real f. In other words, one postulates
the existence of a reflection-free "well. " If Eq. (4.13)
has a solution under this assumption (in Sec. VI one
such solution is found) one finds S(7') from Eq. (3.8) and

, a(g, )
b'(g )

&

and (f —f~) b'(g~) is the leading term in the expansion of
b(g) around r~ Note . that the C~'s are independent of 7,
a fact that will be exploited later. The term 5(y —~) is
the "incident" impulse producing the response. Clearly,
there cannot be any response until the impulse has ar-
rived. Therefore, for y —7 & 0, or y & 7

A,*(~, y)2 I y + F( ~)
-a~+(~, y)

dg e ' ' f(p, 7)+f (g, 7)
a(f)

$k-~ b r„
(4.10) There is an error in their definition of c&.
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one has proven the existence of such a scattering "well. "
The parameter f has a physical meaning in SIT; it is

the detuning parameter. The complex eigenvalue f~
does not have this meaning —it is only a parameter
characteristic of the potential S(T).

X(g, z, T) -=— "N((, z, T)g(()

"~(5,z, T)g(h)

"~*((,z, T)g(()C lg

(5.1)

(5.2)

(5.3)

V. INVARIANCE OF f WITH z

In the preceding sections we have reviewed the solution
of the Zakharov-Shabat equations and given physical in-
terpretations to the mathematical steps. We recognized
that SIT implies the existence of a reflection free "well"
S (T) so that the lower-level amplitude v, (f, T) starts with
unity magnitude at 7 =+ and returns to unity magnitude
at T -~. Such wells exist and one of them is the well
known secant hyperbolic to be reviewed in Sec. VI. It
is not obvious, however, that such reflection-free wells
S(T) are consistent with the propagation equation (1.12),
which has not been used as yet. Reflection-free wells
are characterized by the zeros g, of the function b(f)
Consistency with the propagation equation (1.12) is pro-
ven when it is shown that g~ is independent of distance z.
Ablowitz et al. (1974a) provided a general proof. The
proof will be presented here in a slightly modified form.

The Zakharov-Shabat equations were shown to be
the normalized form of the two-level system equations.
The parameter g was the detuning parameter, obviously
real. When the Laplace transform was taken in Eq.
(4.10), the r parameter was extended analytically into
the complex plane. No physical connection ean be made
between the responses f, (f, T) and f,(f, T) for complex
f and the two-level system, for which the normalization
~v, ~'+ ~v2

~

=1 holds, a normalization not maintained
for complex f. The complex f has a new significance
not contained in the two-level system equations or the
Bloch equations. A reinterpretation of these equations
in terms of the complex g parameter is in order.

The solutions of the Zakharov-Shabat equations for
any complex K define the well S(T). The same holds for
the solutions of the Marchenko equations written in
terms of the Laplace transform variable y of g. Be-
cause S(T) is also a function of another variable (the
spatial va.riable z in the case of SIT), the solution of
the Marchenko equations contains z as a parameter.
The dependence upon the spatial parameter is a simple
one if y(or g) can be proven to be independent of z. In
particular, in the case of the reflection-free well,
where the solutions are functions of the g~'s and C~'s,
only the C~'s may depend on z. We now proceed to prove
the invariance of g with respect to z. Note that the
Bloch equations were written originally in terms of the
real detuning parameter 5/0 for which we used the
symbol -2$. When f is made complex, by analytic con-
tinuation of the solutions of the Zakharov Shabat equa-
tions, it lost its meaning of a detuning parameter.
Henceforth we use the symbol ( for the detuning param-
eter, which is real by definition. We introduce the
complex g into the Bloch equations by Hilbert transforms
of the functions zV(g, z, T), A(g, z, T), and A. *($,z, T) with
respect to the line-shape function g($)(f"„g($)dg = 1).
We define

When f approaches the real axis, the integration paths
must be interpreted as properly indented.

By transformation of Eqs. (1.17) and (1.18) and the
complex conjugate of (1.18) we find that A, B, and C
obey the equations

= —(-,'Sc+-', S*B), (5.4)

BB+ 2i gB + —,
'

(X& = SA,
97

(5.5)

—2igc ——,
' &~*&=S*&.

BT (5.6)

The field equation may be written explicitly in terms of
the line- shape function g(()

dig(() ~(5). (5.7)

These equations contain the same information as the
Bloeh equations, but now they are written in terms of
the generalized complex parameter g. From here one
may proceed analogously to Ablowitz et aI,. One assumes
that the evolution of v, and v, with the variable z proceeds
according to the equations

Svg/Bz A (fq z q T)v~ —B(gq z q T)v2 q

SV2/Sz = C(f, z-, T)v, +D(f, z, T)v, .

(5.8)

(5.9)

In order that Eqs. (5.8) and (5.9) be consistent with Eqs.
(1.13) and (1.14), cross derivatives 8'/BT Bz must be
equal to S2/az aT From the. requirement that p be in-
dependent of z one finds

(5.10)

where an integration constant has been set equal to zero,
and

ex/a T = (-', Sc+-',S*B),
BB/BT+ 2i rB = —2S,+AS,
sc/BT 2i fc =—zS,*+AS*.

(5.11)

(5.12)

(5.13)

Vl. THEc FIELDOF SIT

From the preceding, one gathers the generality of the
ISM for the solution of the SIT problem. Any given scat-
tering function (4.12), F'(y, c~), leads to the (linear)
Marchenko equation (4.13). From the solution of this
equation one finds A, (T, T) which yields the electric
field S (T) at z = 0. S (T, z) at arbitrary z is obtained from
Eq. (1.12) by integration with respect to z. In the pro-
cess, the f~'s are kept independent of z as shown in the
preceding section.

Useful solutions can be obtained by assuming simple
forms of the scattering function S'(y). Suppose'we as-

~ith Eq. (5.7), these are the transformed Bloch equations
(5.4) through (5.6). Hence conservation of f is proved.
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sume b(P) has only one zero so that

F(y) —C &-i(:~))

where

(6.1)

and thus the differential equation for C, (z) cannot depend
upon 7.. In the limit v--~ all expressions are partic-
ularly simple. From Eq. (6.12),

C, -=i-a(g, )/b'(g, )

a(P)/b(&)-0 for real g.

lim 8 = 4C, exp —2i(n+iP)7 .
From Eq. (3.1)

limf, ($, 7) =e '".

(6.13)

(6.14)

A, (~,y) =T, (7) 1',(y),
A,*(~,y) =T, (~) l, (y).

(6.2)

(6.3)

When these expressions are introduced in Eq. (4.13) we
obtain the two equations

T, (v) Y,(y)+ C, exp —if, (&+y) + T,(~)

The "continuum*' contribution to E(y) of Eq. (4.12) is
then zero. The coordinate z of the original nonlinear
differential equation can appear in E'(y) as a parameter,
i.e., C, is a, function of z.

Next we solve the Marchenko equations by separation
of variables. We set

Here f~((, w) is obtained from Eq. (1.14), using Eqs.
(6.13) and (6.14)

limf,*((,r) =-—'e '" J
'7

8 e""d7

~
-2 j (0i+ j8) g ~ i(&

$ —(u+ip) (6.15)

dC i 1
dz 2 &

—(a+ip) (6.16)

introducing Eqs. (6.15) and (6.14) into Eq. (1.12), one
obtains

T

1 (s) C exp i~ (s+y) ds 0 (6 4) with the solution

+ C,*T,( Y, (s) expig,*(s+y) ds = 0. C, (x ) = C, (0) exp — ) (6.17)

Y, (y) = exp —i K,y,
l, (y) =exp ~f,*y.

(6.6)

(6.7)

The constant multipliers are absorbed in T, (T) and
T, (~). The remaining equations for T, (7.) and T, (~) are
(f) = CK+ i p)

(6.5)
We divide Eqs. (6.4) and (6.5) by exp —if,y and Eq. (6.5)
by exp i/,*y, and obtain sums of functions of & alone ex-
cept for the first term in each of the two expressions.
Hence these must be independent of y, culminating in
the relations

g (r, z) = 4P exp —2in(r —r, ) sech2P (r —T,), (6.18)

=1
(( —e)'+ ()')

1 (( —n)/u
(( —~)'+ p'

By an arbitrary adjustment of the initial position of the
pulse, which picks C, (0), one finds for $(r, z)

T,(r) + (C, /2p) T, (~) exp2pw = -C, exp —i (o. +i p) 7. ,

Ti(7') —(C,*/2$)T2(w) exp 2Pq- = 0

with the solutions

(6.8) vii. coNcLusioNs
(6.9)

CT (~) = — ~ exp —in~ exp3Pr/1+ ~ exp 4P~
2p 2P

(6.10)
CT,(e)= —e', (exp —((e+i)))ei(e —x exp 4))e)

(6.11)
The 8 field is obtained from Eq. (3.8) which, in combin
ation with Eqs. (6.3), (6.6), and (6.11)

h = —4T,(r) Y,(~)=4

C=4 C exp —2i(++i p)v/1+ ~ exp 4p7.1 2P
(6.12)

Through C y which is a function of z, g i s a Iso a function
of z. A differential equation for C, (z) is obtained by sub-
stituting h (r) or Eq. (6.12) into Eq. (1.12) and evaluating
f, (t, ~) and f, ($, r) in terms of C, . A great simplification
is achieved by using the fact that C, is independent of v.

We have shown that the scattering equations of the
ISM applied to SIT are identical with the basic equations
for the wave function amplitudes of the two-level sys-
tem. With the time variable interpreted as a spatial
variable, we have established an analogy of the scatter-
ing equations with the backward-wave oscillator -or the
parametric oscillator equations. The insights gained in
the vast literature on this subject aid the scattering
analysis. 'The Marchenko equation was obtained by a
simple Laplace transform of the scattering equations
and use of the causality condition.

The analytic continuation of the scattering problem in-
to the complex g plane called for an identification of f
distinct frorg. the detuning parameter. To introduce this
parameter into the Bloch equations, a Hilbert-like trans-
form was performed on them. Independence of f from
the coordinate z was then shown to lead to the modified
Bloch equations and the field equation (1.19).

Whereas most of the results in this paper are available
in the literature, the introduction of physical analogies
in the mathematical derivations may help to build up an
intuitive grasp. of the ISM.
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