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I ~ INTRODUCTION
A. General introduction

Resonant nonlinear three-wave interactions may play
an important role in plasmas (Sagdeev and Galeev,
1969; Tsytovich, 1970; Davidson, 1972; Hers, 1975a;
Hasegawa, 1S75; Kaw et al. , 1S76) in the saturation of
parametric decay instabilities, in the inception of non-
linear "explosive" instabilities of negative-energy
waves, and in nonlinear col.lisions of l.arge-amplitude
wave packets, either externally excited or present in
strongly turbulent plasma. The three-wave interaction
is the lowest-order nonlinear effect (expanding in the
wave amplitudes) for a system approximately described
by a linear superposition of discrete waves. The inter-
action is coherent if the spectral widths in k and ~ of
the interacting wave packets are small, respectively,
compared to the inverse spatial scale l.ength and the
inverse of the interaction time (Tsytovich, 1970). A
derivation of the equations wil. l be outlined in Sec. I.B..
Nonlinear three-wave interactions have also been studied
in the context of parametric amplifiers (Cullen, 1960;
Louisell, 1960), nonlinear optics (Armstrong et al. ,

1962), interactions of water waves (Bretherton, 1964;
McGoldrick, 1965; Benney and Newell, 1967), and
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interactions of bulk acoustic waves (Shiren, 1965) and
surface acoustic waves (Svaasand, 1969; Newhouse
ef; a/. , 1972; Davis and Newhouse, 1975; Vlannes,
1977). Applications will be described in more detail
in Sec. I. C.

In this paper we describe the evolution in time and
one spatial dimension of the coherent three-wave reso-
nant interaction (3WRI) in a lossless homogeneous
medium (Hers et al. , 1976). The equations describing
the interaction are {Bers, 1975)

(
8 8

+v —a =-P.A'*a.a*
&t ' &x

(l. lb)

(l.1c)

Here the a's are (complex) wave-packet amplitudes, the
v's are group velocities, the p's are the signs of the
wave energies, and IC is the (complex) coupling coef-
ficient. The three interacting waves must satisfy the
resonance conditions:

(d ~ + (dk = C0. (1.2a)

(1.2b)

The subscript i denotes the high-frequency wave. We
note that the equations for the two-dimensional (x-y)
steady-state three-wave interaction can be transformed
to the form of Eqs. (1.1) if v», v», and v» are all
positive in some reference frame (Bers et al. , 1976).
All the resu1. ts which we present for the one-dimensiona1.
space-time evolution can be reinterpreted in terms ef
this two-dimensional steady-state interaction. This
reinterpretation will be clarified by the form in which
we plot our solutions.

Early work on the nonl. inear evolution described by
the three-wave equations specialized in space-indepen-
dent interactions in time only, or steady-state inter-
actions in one spatial dimension (Cullen, 1960; I ouisell,
1960; Armstrong et al. , 1962; Coppi ef; aL. , 1969; I iu
and Aamodt, 1976), or in effectively one-dimensional
traveling-wave solutions (Armstrong et a/. , 1970;
Nozaki and Taniuti, 1973; Qhsawa and Nozaki, 1974).
This work is described in Sec. I. D. A numerical study
showed that inclusion of both space and time can lead to
qualitatively different behavior (Bers and Reiman,
1975). This work also demonstrated that, for interac-
tions in which one wave amplitude is initiall. y much
larger than the other two, many features of the nonlinear
evolution can be predicted in terms of the properties of
the linear initial evolution. An inverse scattering trans-
form (IST) for the homogeneous-medium three-wave
equations in time and one spatial dimension has been
developed by Zakharov and Manakov (1973, 1976) and
Kaup (1976a) and is described in Appendix A. Case and
Chu (1977b) have derived a Backlund transformation for
Eqs. (1.1), with which one can generate general 1V-

soliton solutions. Haberman (1977) has obtained the in-
finity of conserved quantities, the first two of which
are simply action and momentum.

Zakharov and Manakov (1975) have attempted to under-
stand the behavior of the interactions through an inves-
tigation of exactly soluble cases. They solve for the
time evolution from the very special. initial conditions
corresponding to A-soliton solutions. They also derive
general formulas for action transfer between colliding
wave packets. Our approach has been to work with those
initial conditions we consider to be physica1. ly interest-
ing, solving numerically for the time evolution to de-
termine the major features of the interaction, and using
inverse scattering theory to obtain a time-asymptotic
description. of those major features. We have found that
the numerical and analytical techniques complement
each other in a very fruitful way. A few of our main
results have been presented in a previous publication
(Bers et al. , 1976). Here we provide a more detailed
description of those interactions previously considered
and also describe several interactions which we have
not previously discussed. Our numerical method for
integrating Eqs. (1.1) is discussed in Appendix C. We
have also shown how inverse scattering methods can be
applied to the interaction in an inhomogeneous medium
(Reiman et al. , 1977). A more complete description of
our work on the inhomogeneous-medium three-wave
interaction is presented in the accompanying article
by Beiman, Part II.

In recent years some progress has been made in
studying the three-wave equations in time and three
spatial dimensions. This work is only described in
Sec. I. E.

In applications, we are often concerned with three-
wave interactions in which one of the three waves is ex-
ternally excited. This is the case, for exampl. e, in
laser pell. et interactions or in lower-hybrid heating of
tokamak plasmas. The other two waves initially have
their amp1. itudes at the noise level. Thus, the ex-
ternally excited wave, ca1.led the "pump, " initially has
an amplitude much Larger than that of the other two
waves. To describe the initia1. devel. opment of the inter-
action, we discard the term of the three-wave Eqs.
(1.1) containing the product of the initially sma. ll ampl. i-
tudes. Thus we obtain a pair of 1.inear equations de-
scribing the evolution of the initially small. waves. In
this approximation the amplitude of the pump is time
independent. If, during the course of the interaction,
the low-frequency waves become comparable in amp1. i-
tude to the pump, the linear approximation breaks down,
and the subsequent evolution must be described by the
full set of nonlinear equations (1.1). We will. see that
there is a close connection between the linear equations
describing the initial stage of the interaction and the
Zakharov-Shabat (ZS) equations (Appendices B and D)
in terms of which we study the subsequent nonlinear
evolution. This wil1. put on a firm basis the connections
previously noticed in numerical solutions (Bers and
Reiman, 1975) between the behavior of the linear initial
evolution and the subsequent non1. inear evolution.

In practice, an externall. y excited wave will. interact
with a whole spectrum of pairs of plasma waves. As
long as the linear approximation remains va1.id, each
such pair evolves independently of the others. We
assume that the unstable spectrum is sufficiently narrow
for the subsequent nonlinear interaction to be described
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by the coherent three-wave equations. Thus, the non-
linear evolution of the pump is determined by its inter-
action with the first pair of waves to grow to large
amplitude.

The three-wave interactions are conveniently classi-
fied according to the signs of the wave energies and the
ordering of the group velocities. Interactions of dif-
ferent type, as determined by these parameters, dis-
pl.ay very dif fer ent patterns of behav ior. Changing the
signs of all the energies leaves the interaction un-
changed (see Appendix E). When P,. = -p„and, say,
P; =P;, we transform Eqs. (1.1) by defining a; =a/, a&
=a;*,P; =P;,Pj =P;, etc. The result is an equivalent set
of three-wave equations in which Pj =pk. Thus in in-
vestigating the possible three-wave interactions we can
set P; =pk without loss of generality. We do so in the
remainder of this paper.

Because we believe them to be of primary importance
for applications, interactions with one wave initially
much larger than the others are the main focus of this
paper. In this case, if one of the low-frequency waves
is initially large, then the solution for the small-ampl. i-
tude waves is oscillatory. If, however, the high-fre-
quency wave is initially large then the low-frequency
waves may grow exponentially until the nonlinear regime
is reached. This is the ease of interest. The equations
describing the linear initial evolution of this interaction
are

8 9—+v —a =y (x)a+jg~ j o k (1.3a)

0 9—+v —a =y (x)a*.k p j (1.3b)

where

y, (x) =—Za, (x) (1.3c)

is time independent (taking the reference frame where
v; =0). The solutions to these linear equations have
been extensively studied (Cassedy and Evans, 1972;
Laval et al. , 1973; Bers, 1975a).When v,v»&0, Eqs.
(1.3) may have growing normal mode solutions, i.e.,
absolute instabilities. When v jvk & 0, the instability is
convective. If the low-frequency modes become com-
parable in amplitude to the pump, the effect of the non-
linear interaction is either to deplete the pump or to
amplify it, depending on whether P; =Pj ——P„or

P P' Pk
In Sec. II we develop the ana, lytieal tools which we

shall use in this paper. Ther'e we include a brief intro-
duction to those elements of inverse scattering theory
necessary for our treatment of the three-wave inter-
action. From this we proceed to describe our method
for solving for the evolution of three-wave interactions.

In Secs. III and IV we discuss interactions with vjvk&0.
Section III deals with those where -P; =Pz ——P„(e.g. , neg-
ative-energy pump with positive-energy daughter waves).
Thresholds for explosive instability of finite-width
wave packets are found. Area and action transfer is
determined for nonexpl. osive interactions. Section IV
deals with the interactions where P; =p; =P» (e.g. , all
waves positive energy). We find that the nonlinear
saturation of absolute instabilities involves only sol. iton

B. Nonlinear coupling of three waves

The nonlinea, r coupling of three waves is typically en-
countered in the description of any conservative non-
linear medium where: (a) The nonlinear dynamics can
be considered as a perturbation of the linear wave solu-
tions. (b) The lowest-order nonlinearity is quadratic
in the field amplitudes. (c) The three-wave resonance
conditions [Eqs. (1.2)] can be satisfied. Thus, for
example, the nonlinearly coupled three-wave equations
can be obtained from an appropriate model nonlinear
equation (Benney and Newell, 1967). We illustrate the
derivation of the basic equations in the context of the
electrodynamics of weakly nonlinear media in general
(Karpman, 1963; Klimontovich, 1967; Hers, 1975a).

The linear electrodynamics of a medium can be rep-
resented in general by a linear (space-time integral)
dependence of the electric current density J(r, t) upon
the electric field Z(r, t). For a homogeneous medium,
using complex Fourier transforms for the fields
/exp[i(k. r —ut)] dependence), this relationship can be
written as

J; (k, &u) = o;, (k, (u)E;(k, ~) . (1.4)

When this is substituted into Maxwell's equations one

transfer, thus allowing a complete solution in terms
of an 1V-soliton formula. In Sec. V we discuss convec-
tive instabilities of positive-energy waves, focusing in
particular on the nonlinear evolution of stimulated
backscatter. A nonlinear modulation of the backseatter
is described.

Aside from initial. conditions with ~a;(x, t =0)~
++ la(x, t =0)l la»(x, t = 0)l, we also look at those initial
conditions cor r esponding to binary wave-packet e o l li-
sions. Nonlinear wave-packet col.lisions may arise in
physical applications where two waves are externally
excited or may occur in a strongly turbulent medium.
For the interactions of Sec. III we describe such col-
lisions between the high-frequency wave packet and
one of the low-frequency wave packets. In Sec. IV we
determine conditions for maximal pump depletion in a
"two-pump interaction": an interaction where the high-
frequeney wave and one of the low-frequency waves are
initially excited. We also describe collisions between
two low-frequency packets. We find that these give rise
to upconverted wave packets which are sharply spiked.

In solving initial. value problems in Secs. III, IV, and
V, we shall always be working with finite-width wave
packets. Of course this is not an essential restriction,
as we can let the widths be arbitrarily l.arge. Note that
we are not treating here the case where the interaction
is restricted to a finite spatial region (Manheimer,
1974; Harvey and Schmidt, 1975; Fuchs and Beaudry,
1976). The oniy boundaries in our problem are those
of the wave packets themselves.

Because we are studying interactions of coherent
waves, we assume that each wave packet initially has a
space-independent phase. For the initial value prob-
lems we are considering we can, without loss of gen-
eral. ity, take the wave amplitudes as initially real. In
Appendix E we prove this, as well as the fact that
we may always take the coupling constant E to be real.
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finds the homogeneous set of equations

D;, (k, (u)E, (k, (u) =0

where the dispersion tensor (MKS units) is

(1.5)

o -+ —kk-+t j (d2 t j (d2 t j (dE 0
(1.6)

The field solutions are thus constrained by the disper-
s ion r elation

D(k, ~) = detD;, .(k, &u) = 0, (1.7)

Z(r, t) = Q Z» exp[i(k r —(u»t)].

For zoeakty di ssipative nzedi a (I &;;I
«

I
o';, I, where the

superscript h stands for the Hermitian part and the
superscript a stands for the anti-Hermitian part) we
take these fields to be the weakly damped (or growing)
propagating waves, i.e., for k real

I vI =—
I imcu»I« I Reer»I

=
I ~I and thus from (1.7) with ID;I =

I 1mD(k, ~)l« IReD(k ~)l =ID I one obtains

(1 8)

D„(k, &u) =0 giving u(k) (1.9)

giving u(k) =u». The linear field solutions can therefore
be written in general as

—+v ~ V+v a

+V, ~ V'+ v, a,

+V, ~ V. + p, a3

=P1&a2a~,

= -p~*a,a3*,

= -p+ +aq a2+,

(1.16a)

(1.16b)

(1.16c)

where, assuming &u& O, p„=sgn(zo»g =+ 1 is the energy
parity,

(1.17)

(d1 = 602 + 403 .
We shall write down the resulting coupled equations
for the slowly varying amplitudes of the three waves
which one obtains when the nonlinearity is conservative.
It is convenient to normalize the slowly varying ampli-
tude u(r, t) so that its magnitude square is the action
density of the wave; l.et this normalized, slowly varying
amplitude be a»(r, t) =a»u»(r, t),

e E2 ~Dko o ko (1.15)
co I 4 ~(d I D or-o

where we have set E» = eE», and (sD»/&~) = e;*(sD», /s~)e, .
Then the three coupled equations are:

v(k) =
(sD„/s ~) (1.10)

Consider now the nonlinear el.ectrodynamics of the
medium as a perturbation. The nonlinear electric cur-
rent density to second order in the electric field will
be given by

g(2) ~ mn EmEni ijk j
where for brevity the superscripts nz and n stand for
the dependence upon (k„, u ) and (k„, &u„), respectively,
of the field variables and the third-rank tensor. We
now assume that this second-order current will produce
a slowly varying space-time ampl. itude variation in the
linear field solutions, so that (1.8) now becomes

X(r, t) = Q Z»u»(r, t) exp[i(k ~ r- (ut)], (1.12)

k =k +k (1.13)

where the r = xi and t variation in M„ is slow compared
to, respectively, k, ' and &u '. [Note: In general, the
perturbation will produce a slowly varying amplitude
and polarization (i.e., orientation) of the electric field
vector. It can, however, be shown that to second order
the dynamic equations for the amplitude are decoupled
from those for the polarization (Karpman, 1963; Hers,
(1975a). Here we shall only consider the amplitude
equations. ] When (1.11) and (1.12) are substituted into
Maxwell's equations and the nonlinearity is ordered with
the slow variation, we obtain an infinite set of coupled
partial differential equations for the sl.owly varying
amplitudes. From the structure of (1.11) it is clear
that the simplest coupling will. consist of a resonari t
triplet of linear waves satisfying

is the group velocity, and A is given by
(2) .—(2)* —.—(2) +

I1~2g 1 2 ' 3 2 1 ~ 3 +3 1 ~ 2~a, a a, I 4~ 4~ (1.18)

C. Physical applications

The principles of nonlinear coupling of modes were
first recognized almost a century and a half ago for
various mechanical systems (Faraday, 1831; Melde,
1859; Lord Rayleigh, 1883, 1887). Similar ideas
developed in relation to electrical circuits in the early
days of radio-telephone communication before World

In Eq. (1.18) the subscripts on the second-order current
indicate the wave amplitudes on which it depends [viz. ,
superscripts on the right-hand side of Eq. (1.11)].
Equations (1.16a)-(1.16c) with all v =0 and each V ~ V

=v„(&/&x) are just Eqs. (1.1a)-(1.1c) for the one-dimen-
sional space and time evolution of the three-wave reso-
nant interaction (3WRI). Also, with ail v = 0, all
(9/&t) =0, and each v ~ V =v (8/Bx)+v, (8/&y), Eqs.
(1.16a)-(1.16c) describe the two-dimensional steady-
state resonant interaction of three waves.

It should be remarked that in nonlinear optics of media
where spatial dispersion is usually ignored, the non-
linear susceptibility of the medium is characterized by
the form of the potential. energy of the atom or molecule
(Bloembergen, 1965). In such cases, for an isotropic
medium with a center of inversion, the lowest-order
nonlinearity in the dynamic equations is cubic and. the
three-wave interaction as described by (1.1) or (1.16)
does not occur. On the other hand, for a medium which
lacks a center of symmetry, the lowest-order non-
linearity in the dynamic equations is quadratic, as in
(1.11), and the three-wave interaction is then possible.
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War I. (See the historical review in Mumford, 1960.)
After World War II, the technological development
of materials, semiconductors, and ferrites led to a
renewed interest in such nonlinear phenomena and gen-
erated novel high-frequency elect onic devices (Uhlir,
1956; Suhl, 1957a, 1957b). Soonafterwardsthese ideas
vrere extended to the nonlinear interaction of waves using
ferrites (Tien and Suhl, 1958), or semiconductor diodes
(Engelbrecht, 1958), or electron beams (Adler, 1958;
Louisell and Quate, 1958). The interest was mainly
in generating new types of low-noise amplifiers at
microwave frequencies (Louisell, 1960). One-dimen-
sional (guided-wave) versions of (1.1) were most com-
monly studied (Cullen, 1960), and the nonlinear solu-
tions involved only the steady-state evolution in space,
i.e., Eqs. (1.1) without the time derivative (Zurkus and
Bobson, 1960 and 1961; Akhmanov and Dimitriyev,
1963; Kravtsov, 1963).

Several standard non/inear optics texts describe the
relevant effects of three-wave interactions (see, for
example, Yariv, 1975). Parametric amplifiers and
oscillators make use of three-wave interactions in an
essential way, using an externally excited high-fre-
quency mode to drive lower-frequency "signal" and
"idler" waves. Other important effects of three-wave
interactions are second harmonic generation and spon-
taneous parametric fluorescence. Spontaneous para-
metric fluorescence is a parametric decay in which
the amplitudes of the idler and signal are initial. ly
determined by the ground-state energy of the electro-
magnetic modes.

Effects of pump depletion relevant to nonlinear optics
were first considered by Armstrong et al. (1962), where
a one-dimensional steady-state interaction was
treated. Equations (1.1) without the time derivatives
were found, and the elliptic function solutions derived.
In later work with Eqs. (1.1), Armstrong et al. (1970)
derived the traveling-wave solutions and showed that
self-induced transparency effects could occur. These
early papers dealt with interactions between three
electromagnetic waves. Recently Steudel (1977) has
analyzed the stimulated Raman scattering (SRS) prob-
lem in some depth and has pointed out that when there is
no inhomogeneous broadening and when the excitation
of the Raman level can be neglected, then the SBS equa-
tions reduce to the 3WBI equations. Along this line,
we should also point out the review by Bullough (1977),
which treats, in general, interactions of radiation with
matter and discusses how solitons occur in coherent
pulse propagation, the sine-Gordon equation, the non-
linear Schrodinger equation, and the 3WBI.

In studies of grater evades the first wave-wave inter-
actions which were obtained were not the 3%HI, but
rather the more complicated four-wave resonant inter-
action (4WRI). This was first noted by Phillips (1960),
where for deep water gravity waves he found that the
3WRI did not occur, but that the 4WBI did. However,
when surface tension effects were included, McGoldrick
(1965) found that 3WRI did indeed occur for these
gravity-capillary waves. Similar results were also
found by Kenyon (1966) and Longuet-Higgins and Gill
(1966) for Rossby waves in the atmosphere. Bretherton
(1964) found solutions of the 3WRI in time only in terms

of elliptic functions. More recently, Case and Chu
(1977a) have refined and extended McGoldrick's calcula-
tions for gravity-caplllal y waves~ and have dlscllssed
these interactions and the soliton solutions in terms of
the inverse scattering solution of Kaup (1976R).

In plasnza physi&, and especially for high-tempera-
ture plasmas in a magnetic field, the linear dynamics
of plasmas involves a very rich variety of waves (Stix,
1962; Allis et al. , 1963). Nonlinear dynamics of plas-
mas can involve both wave-particle interactions and
wave-wave interactions. The latter, in its simpl. est
form, is described by Eqs. (1.16). A large number of
these interactions have been studied since the early
1960's (Oraevskii and Sagdeev, 1963; Silin, 1965;
Goldman, 1966; Dubois and Goldman, 1967; K. Nishi-
kawa, 1968). Such interactions are of importance in
ionospheric propagation (Fejer, 1977), in the evolution
of various plasma instabilities (Coppi et al. , 1969;
Tsytovich, 1970; Hasegawa, 1975), and more recently
in problems of plasma heating with high-power electro-
magnetic sources, e.g. , with lasers for pellet fusion
(DuBois, 1974; Drake et a/. , 1974; Manheimer and
Ott, 1974), and with rf to microwave and millimeter
sources for magnetically confined fusion plasmas
(Bers, 1975b;Ott, 1975;Watson and Hers, 1977;Bers,
1978; Porkolab, 1978). In all cases where the nonlinear
interactions were solved for pump depl. etion, only
their evolution in time was considered.

D. One-dimensional and traveling-wave solotions
When the spatial derivatives can be negl. ected, Eqs.

(1.1) become

(1.19a)

(1.19b)

d
p ~of'a i j (1.19c)

These equations can be solved exactly in terms of Jacobi
elliptic functions (Armstrong et a/. , 1962). The solu-
tion for positive-energy waves (p; =p; =p~) was obtained
independently by Armstrong et al. (1962) and Bretherton
(1964). These solutions are periodic in time. The so-
lution for pj =p~ =-p; may be derived in a simi1. ar man-
ner (Coppi et al. , 1969). These solutions are singular
at some finite time, corresponding to explosive be-
havior.

The complete solutions to Eqs. (1.19) are presented
111 Bevel Rl plRSInR pllys les books (866, fol' exRIIlp16,
Sagdeev and Galeev, 1969; Davidson, 1972; Weiland
and Wilhelmson, 1977). We limit ourselves here to
describing the solution when initially a„=0 and
(aI[ « [a, [. This solution will provide a useful compar-
ison when we later discuss the evolution of the inter-
actions in space an.d time. Note that for p; =p j =p„, if
initially [aj [ » ja, [, Ja~J or [a„J&& [a; (, (aj [, then the large-
amplitude mode performs small sinusoidal oscil. lations
about its initial value consistent with the Manley-
Rowe constants of the motion (PI ja, ( +P,.(a, (') and
(P;[a; ['+P„(a~[ ). These conservation laws follow di-
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r ectly from Eqs. (1.19).
We first consider the solution when p; =pj =pk. Initial-

ly, a; is approximately time independent, and Eqs.
(1.19)can be approximated by the linear pair of equations

—a. = -P -~*a.a*j i (1.20a)

d—Q =-P ~*a Q*. .k k i j ~ (1.20b)

(1.21)

Thus for p, =pk, Qj and Qk are initially growing expo-
nentially with a growth rate jKa;(f = 0)j. When a, and a»
become comparable in amplitude to Q;, depletion of Q;
becomes important and the linea, r equations are no
longer a good approximation. Define a~, = a„(t =0). Then
the solution to the linear equations (1.20) begins to di-
verge substantially from the exact nonl. inear sotution at
a time tD given by

If all the velocities are of the same sign, then the prob-
l.em is equivalent to that of the time-only interaction.
The exact solutions to (1.25) can be given in terms of
Jacobi elliptic functions (Jurkus and Robson, 1960). If
the velocities are not all of the same sign, we must
solve a two-point boundary value problem, rather than
an initial value problem.

The steady-state equations with v;, v j & 0, vk & 0 and
P; =P; =P» were studied by Manheimer (1974), by
Harvey and Schmidt (1975), and by Forslund et al.
(1973, 1975), in both finite and semi-infinite interaction
regions. The solution in the interior of the interaction
region is again exactly expressible in terms of Jacobi
elliptic functions. However, the solutions are now sub-
ject to the boundary conditions of fixed a;(x =0), a, (x = 0),
and a„(x= I ) [or a»(x- ~)]. The boundary conditions of
primary interest are those where aj(x =0) =0, a;(x = 0)» a»(x =I,). In that limit there is a threshold length he-
i.ow which there are no nontrivial solutions of the
steady-state equations,

At this time the linear solution has overshot the non-
linear solution by about 25% (Kulberg, 1975). The non-
linear solution shows that depletion of Q; now becomes
very rapid, with Q; going to zero and Q„going to
a;(f = 0) at a, time t, given by

4ja;, j (1.22)

4jo;,j (l.23)

The one-dimensional steady state (if one exists) sat-
isfies the equations

V~ —Q~ =Pq AQj Qk ~dx (1.24a)

v .—Q = -P A *Q.Q *jd j j. (1.24b)

v —Q =-P &*a Q*.k — k i j (1.24c)

Then Qj and Qk in turn begin to get depleted. The low-
frequency amplitudes Qj and ak are even functions of
to —t, while Q; is an odd function of to —t. The whole
process is periodic, with period 2tp.

When -p; =pj =pk the initial behavior is again well ap-
proximated by the solution of the linear equations (1.20),
with a divergence time given by Eq. (1.21). Now when
Qj and Qk become comparable in amplitude to Q;, Q~ be-
gins to grow rapidly. This l.eads to enhanced growth of
Qj and Qk, and therefore of Q;. The result is an ex-
plosive growth of all. three amplitudes, leading to a
singularity at a time given approximately by

v jvk (1.26)

For L, &34, the solution is not unique. However, there is
only one solution which is stable in time (Harvey and
Schmidt, 1975). The unstable solutions are all oscilla-
tory functions of x, while the stable solutions are
monotonic.

The traveling-wave solutions to Eqs. (1.1) may be
found by making the ansatz that all three amplitudes are
functions only of P =x —Vt, V being the velocity of the
traveling wave. This ansatz reduces Eqs. (1.1) to three
ordinary differential equations of the form (1.19), with
f replaced by g. The Jacobi function solutions for .

p; =pj ——pk have been enumerated by Armstrong et QI,.
(1970), These traveling-wave solutions have also been
studied by Nozaki and Taniuti (1973) and Ohsawa and
Nozaki (1974). Although the Jacobi function solutions
are generally periodic, there are particular limits in
which the period goes to infinity. One of the amplitudes
is then shocklike (a hyperbolic tangent), while the other
two are bounded pulses (hyperbolic secants). For
those solutions in which Q, is the hyperbolic tangent,
either V is greater than all of v&, v j, vk or V is less
than all of these velocities. These solutions are there-
fore somewhat unphysical, depending sensitively on the
exponential tails of the low-frequency waves. In the
traveling-wave solutions of Eqs. (1.1), at least one
wave amplitude is always nonzero as jxj —~. In this
paper we shall be concerned with time-asymptotic solu-
tions to interactions of bounded wave packets, and
ther efor e will not enc ounter such traveling-wave
solutions.

Define 8; =a;/jv, .v»j"', a,. =a, /jv, v„j'~', a» =a»/jv;v, j'~ .
These amplitudes with carets satisfy the equations E. The three-dimensional problem

0; = sgn(v;)p; Aa, a»,dx

d—az ——-sgn(vz)p& A *a;a»*,

d-
a» = -sgn(v»)p~ +a~a/ .

(1.25a)

(1.25b)

(1.25c)

Although in this paper we shall not discuss the general
three-dimensional form of the 3WRI (3D-3WRI), we
shall briefly mention the current theoretical state of
this more general problem. There are certain impor-
tant developments in this area of which one should be
aware, although a full theoretical treatment of the
30-3WRI is yet to be presented. The first step in this
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direction was made by Zakharov and Shabat (1974), when
they were able to obtain the 3D-3WRI as an integrability
condition for two operators. Zakharov (1976) has re-
fined this technique to the point where he can now obtain
special solutions of the 3D-3WRI. However, the general
solution of the initial value problem is still to come.
Earlier, Craik (1971) had analyzed the effects of the
3D-3WRI in shear flows in boundary layers, and he had
found that explosivelike solutions can occur and also
gave some special solutions. More recently, Craik
(1978) has found a class of exact solutions for the
3D-3WRI which is identical to a special case of the in-
verse scattering solution of Zakharov (1976). These
solutions tend to develop singularities and to "burst"
in a finite time. Craik has also developed a criterion
for the bursting to occur and relates the bursting to the
initial wave energies.

jn the three-dimensional Zakharov-Shabat (1974)
scheme, there are several difficulties, some of which
have been pointed out by Miles (1977) and Newell and
Redekopp (1977). They noted that wherever a break-
down occurred in the inverse scattering soliton solu-
tions, one had an exact resonance between three inter-
acting solitons. Yajima, Oikawa, and Satsuma (1978)
have observed the same thing for three-dimensional
ion-acoustic solitons, which they analyzed by the Hirota
(1976) scheme for constructing soliton solutions, instead
of the Zakharov-Shabat (1974) scheme. The exact sig-
nificance of these results for the general 3D-3WRI is
still uncertain, but it does indicate some of the prob-
lems involved. So, for the present, we shall leave the
3D-3WRI and from now on shall only consider the
special case of time-one-space coordinate, or the
steady state two-space coordinates.

Note added in Proof. Just recently, Cornille (1978)
has found another means for solving the 3D-3WRI,
based on the scattering problem of Ablowitz and Haber-
man (1975). And with his result, Kaup (1979) has solved
the initial value problem for the 3D—3WRI when the ini-
tial envelopes are nonoverlapping.

II. INVERSE SCATTER ING TRANSFORM FOR THE
THR EE-WAVE EQUATIONS

In this brief introduction to the method of the "inverse
scattering transform, " IST, we emphasize those fea-
tures of the method which we have found usefuI in this
study of the three-wave problem. For a more complete
discussion of the inverse scattering transform, the
reader is referred to the literature (Zakharov and
Manakov, 1973; Kaup 1976a; Gardner et al. , 1967; Scott
et al. , 1973; Flaschka and Newell, 1975; Zakharov and
Shabat, 1971; Ablowitz et al. , 1974; Kaup, 1977;
Zakharov and Manakov, 1976).

A. The method

The overall strategy of the method of the IST is the
same as that of any transform method: we define a
transform of the original problem into a space in which
the time dependence is particularly simple. After
determi. ning the transformed data at a later time, we
invert our transform to obtain the solution. The IST

has actually been shown to be a nonlinear extension of
the Fourier transform (Ablowitz et al. , 1974). To
convey an understanding of the method of the IST and an
appreciation of its power, we find it helpful to pursue
this connection.

To use the IST, we must, first construct an appropriate
eigenvalue problem from the wave amplitudes Isee
Eqs. (2.1) and (A5) for two such eigenvalue problems].
This eigenvalue problem can be reformulated an an
integral equation which reduces to the Fourier integraI.
in the small-amplitude limit. The "scattering problem"
consists of determining the space-asymptotic behavior
of the eigenfunctions of our eigenvalue problem. This
asymptotic behavior is expressed in terms of the "scat-
tering data. " Thus our eigenvalue problem provides a

- mapping of the wave amplitudes into a set of scattering
data (analogous to Fourier components). The nonlinear
equations can then themselves be expressed in scatter-
ing space, which is analogous to Fourier space. A
certain class of physically interesting nonlinear equa-
tions of motion can be transformed in this manner,
using appropriate eigenvalue problems, to linear equa-
tions of motion (analogous to the class of constant co-
efficient, linear partial differential equations, which
are soluble by Fourier transforms). The scattering
data at any time t is then easily calculated in terms of
the initial scattering data. The wave amplitudes at
time t can be reconstructed using the inverse scattering
equations (also called "Marchenko" or "Gelfand-
Levitan" equations in the literature), which are a non-
l.inear extension of the inverse Fourier transform. If
we let S represent the scattering data, we can sum-
marize the inverse scattering procedure by:

eigenvalue inverse scattering
a; 0 = a;i

prob l em equations

Just as the Fourier transform decomposes a function
into its linear normal modes, so does the inverse scat-
tering transform decompose a function into its analogous
nonlinear "normal modes, " linearly independent in
scattering space. Of these normal modes, there are
two distinct types in the nonlinear theory. The first
is the "soliton, "which has no linear analog, vanishing
in the small-amplitude, linear limit. It has been
studied in the context of ion-acoustic waves, the phe-
nomenon of laser pulse compression, and other effects
as well. The solitons are the manifestation of a dis-
crete bound-state spectrum of the particular eigenvalue
problem (to be introduced later) and are localized,
permanent (or oscillatory), traveling waveforms.
Meanwhile, the continuous part of this eigenvalue spec-
trum gives the other type of normal mode, which is
called "radiation, " since when dispersion is present,
it propagates away from a disturbance as radiation
would. This type of normal mode does have a linear
analog. For weak fields when the nonlinearity can be
neglected, it becomes simply the linear Fourier trans-
form of the weak field. But even in the nonl. inear limit
it retains many of the properties of the linear Fourier
transform, so that one can get a feel for what it is by
simply considering it to be, at least qualitatively, a
"nonlinear Fourier transform. "
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B. Application to the three-wave interaction

Since the three-wave resonant interaction does belong
to that special class which can be solved by an inverse
scattering transform, we can apply this method for an
understanding of how the interaction proceeds. Many of
the required mathematical. details are given in Appendix
A, which is divided into four parts. What we shall do
here will. be simply to describe each part of Appendix
A, and discuss the results, their imp1. ications, and
utility. The inverse scattering solution for these equa-
tions is more complicated than for equations previously
solved by this method, in that the particular eigenvalue
problem required is, in general, of third order. This
third-order eigenvalue problem is briefly discussed in
Sec. 1 of Appendix A, and it is presented there on1.y to
allow the reader to orient himself to the original prob-
}.em if he so desires. But, we must firmly emphasize
that we shall never need to use this most general solu-
tion directly. Bather, by considering only the case in
which the three envelopes initially are well separated
or have smal. l overlap, we can considerably simplify
the origina1. solution. Also note that this is frequently
the phys ical s ituation, in that the envelopes are often
initially separated. -

When these envelopes are separated one from another
with no overlap, the scattering data of the third-order
Zakharov-Manakov (ZM) problem, which contains all
information on the profile shapes and positions of the
three envelopes, can be factored into three sets of
scattering data. Each set of this new scattering data
contains all information on the profile shape and posi-
tion of just one of these three envelopes. Furthermore,
one can determine each of these new sets of scattering
data directly from the original profi1. e shape and posi-
tion of each envelope individual1y, by solving the much
simpler second-order Zakharov-Shabat (ZS) eigenvalue
problem. Thus when the envelopes are initially sepa-
rated, one may take each envelope and decompose it into
a set of Z S s catter ing data.

The advantage of the above is that we can now avoid
having to solve the third-order ZM eigenvalue probl. em.
We in effect do solve it by solving the ZS eigenvalue
problem three times, once for each envelope. However,
our fu1.1er understanding of the ZS problem and our
ability to readily interpret its scattering data makes this.
well worth while. The mathematical. details involved in
this decomposition are discussed in Sec. 2 of Appendix
A.

Now, let us consider the typical case where we start
with separated envelopes at t = 0. As each envelope wil1.
propagate at its own characteristic velocity, eventually
they will collide and start to overlap. However, until
they collide, since they will travel with no distortion
(because dispersion is absent), each set of ZS scattering
date (one for each envelope) will have the very simple
time dependence corresponding to translational. motion.
When they start to overlap, the ZM eigenvalue probl. em
no longer reduces to three ZS eigenvalue problems.
Now the nonlinearity has been "turned on." But in gen-
eral, the envelopes will. eventually separate and emerge
from the interaction region. Now, no longer are they
the same shape as before. How can we determine the

final shapes? Well, let us first note that from the three
sets of ZS scattering data, for the initial profiles, we
can construct the ZM scattering data. Now before,
during, and after the interaction, the time dependence
of the ZM scattering data is known. So, from the initial
three sets of ZS scattering data, we can obtain the ZM
scattering data for the time-asymptotic (i- ~) solution.
I.et us now assume that the time-asymptotic solution has
all envelopes separated. This then means that the time-
asymptotic ZM scattering data can also be decomposed
into three sets of ZS scattering data, one set for each
time-asymptotic envelope. In other words, it is possible
to go from the three sets of ZS scattering data of the
~~ital envelopes, directly to the three sets of ZS scat-
tering data for the final envelopes. The mathematical
details for this relation between the initial and final
sets of the ZS scattering data are derived in Sec. 3 of
Appendix A, with the final. result being given by Eq.
(A17). Almost all of our theoretical. calculations will
be based on this result. It is really the only result
from the first three parts of Appendix A that is needed
to understand the remainder of the paper. From this
we shall be able to ca1culate final-state quantities di-
rectly from initial. -state quantities. Of course, if one
chooses to, one may use the inverse scattering equa-
tions for the ZS scattering problem to reconstruct the
actual final envelopes. However, we shall see that to
obtain the essential information about the interaction,
it is not necessary to solve even these inverse scat-
tering equations for the ZS problem.

Before continuing, at this point it is worthwhile to
pause briefly and to describe the Zakharov-Shabat
eigenvalue problem referred to above, as well as the
definition of its scattering data. The ZS equation is

where

(2.1a)

(2.1b)

0
e as x--~ (2.2)

Then as x-+~
a(A, )e '~

b(A.)e"~

thus defining a(&) and b(A. ). For the continuous part of
the eigenvalue spectrum (A. real) it is sufficient to
determine

=("
i

is the eigenvector, & is the eigenvalue, and q and r are
the potentials where r =+@*. When we use Eg. (2.1) to
decompose the initial profiles into the three sets of ZS
scattering data, we simply set q proportional to each
profile in turn, with the exact relation being given by
Eg. (A14). Then we solve for the scattering data as
described below.

To define the ZS scattering data, we first define @
~ to be a solution of (2.1) which satisfies the boundary

condition
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()p(~) =
(~)

(2.4)

(P(A.», x)-
b $Akxke

as x~ + (2.6)

and when b(A. ) can be analytically continued into the
upper half A.-pl.ane,

(2.7)

Finally, to complete the specification of the scattering
data, we define

. b
D =-i—a''

k
(2.8a)

Ba(A.) (2.8b)

Each pair of [A», D»] corresponds to one soliton, where
the imaginary part of &k determines the amplitude and
width, the real part of &k determines the spatial phase
modulation, and Dk determines its initial position and
phase. The ZS eigenvalue problem is discussed in more
detail in Appendix B. However, the above are the es-
sential features of which the reader should be aware.

The ZS eigenvalue problem also has a, remarkable
physical interpretation for the three-wave problem.
This interpretation is discussed in detail. in Appendix
D and is remarked on at this point in order to give the
reader a better physical understanding of the ZS scat-
tering data before continuing. In order to understand
this interpretation and connection, consider any one
of these envelopes when it is well separated from the
other two. We shall call this envelope the pump. Con-
sider the linear stability problem for this pump, where-
by we assume the other two waves now to be infinites-
imal. We linearize Eqs. (1.1) in the small amplitudes
and Fourier transform in time. Then by linear scaling
and taking out appropriate phase factors, we find that
Eqs. (1.1) become simply the ZS equation (2.1), where
the ZS q is proportional to the envelope of the pump,
and the ZS eigenvalue X is proportional to the frequency

In light of this one can see a: physical correspondence
of these "nor mal modes" us ed in the inverse scatter ing
transform. When the equations for the middle envelope
have bound states, it is known. to be linearly unstable,
with each bound state corresponding to one growing

where p is called the ZS "reflection coefficient. " The
function p specifies the continuous part of the spectrum
and is also frequently called the "radiation. " In the
I.inear limit, p is essentially the linear Fourier trans-
form of q(x). It is convenient to define also

(2.5)

for r =+@*. The function I is analogous to a "power
spectrum" of the linear theory and shall be referred to
as the "density of radiation. "

The soliton part of the eigenvalue spectrum is de-
termined by the zeros of a(A, ) in the upper half A.-plane,
which correspond to discrete eigenvalues (bound
states). We designate these zeros by IAj»", and assume
h' to be finite. At an eigenvalue, we have

0

normal mode. These bound states can also occur for
the fast or slow envelope, but then cannot give rise to
any linear instabilities (see Appendix D). But, in the
language of inverse scattering, the physical manifesta-
tion of a bound state is a soliton, so we then have that
the existence of a soliton in the middle envelope corre-
sponds to a linear instability. To interpret the contin-
uous part of the spectrum, scatter an infinitesimal
wave of time dependence e '"' off the pump. Part of
this wave will be transmitted through the pump, and the
remainder will be converted into the other wave. The
fraction which is transmitted is then either a or I/a,
depending on the relative group velocities of the waves.
In inverse scattering theory, a is known as the "trans-
mission coefficient. " The ratio of the converted wave
to the incident wave is either b or the ratio b/a from
inverse scattering theory, where b/a is known as the
"reflection coefficient. "

The "scattering data" consist of the bound-state eigen-
values, the normalization coefficients of the associated
bound-state eigenfunctions, and the "ref1.ection coef-
ficient, " b/a, for real A. . From this information it is
possible to compl. etely reconstruct the pump (potential)
(see Appendix B). Clearly, when we do the same thing
for al.l three well separated envelopes, we shall end up
with three separate sets of ZS scattering data. Accord-
ing to the above remarks, these sets of scattering data
are nothing more than the complete information about
the behavior of the three well separated envelopes for
linear perturbations. The remarkable thing is that,
given only this information about their linear behavior,
eve can comPEetezy determine hozv this system evolves,
even in the nonzinear regime.

Unfortunately the formal solution of the inverse scat-
tering problem is expressed in terms of the solution of
linear integral equations, which, although mathematical-
ly sound, is in general not easily carried out. We note
as an exception to this the situation when p(X) =0 for A,

real. Then the inverse scattering equations have a
closed-form solution —the "N-soliton formula" (see
Appendix B). We find such solutions emerging in some
cases, but more often we are not so fortunate. Anyway,
in most cases, simply hnozving certain properties of the

finaE enveloPes may be more than adequate. We find
that as we look at some of the most readily accessible
information, on.e can obtain much information by rather
simple techniques. We shall now turn to a discussion as
to what this information is. Derivations of the state-
ments made here are given in Appendix B.

C. Extracting information directly from the scattering
data

The three most readily accessible pieces of informa-
tion about the final envelopes are the (1) solitons, (2)
areas or modal numbers, and (3) actions (energy in an
envelope divided by its central frequency). We shall
discuss each of these in turn. First, the soliton part of
each envelope is always exchanged as indicated in Fig. 1.
The details and reasons for this are discussed in Sec. 4
of Appendix A. Simply note that the middle envelope
always surrenders any and all of its solitons to the
other envelopes. (The time reversal of this is in gen-
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FIG. 1. The lnanner in which solitons are exchanged in three-
wave interactions.

erat unstable. ) Thus the existence of any soliton in the
middle envelope corresponds to a linear instability (in
the nonlinear limit, they are simply "given away"),
while the existence of solitons in the fast or slow en-
velopes does not correspond to a,ny linear instability
(thus in the nonlinear limit they are always "retained"),
in agreement with the results in Appendix D. Thus,
anytime the middle envelope conta, ins solitons, we can
expect it to decay, emitting one soliton into the fast
and one into the slow envelope, for every soliton which
it contained. From the initial. scattering data, we can
predict the final soliton configuration of the fast and
slow envelopes. The mathematical relation between
the final eigenvalues in the fast and slow envelopes and
initial eigenvalues of the middle envelope is given by
(AIB). Each of these final eigenvalues is always small-
er than the original corresponding eigenvalue from the
middle envelope, due to the ordering of the velocities.
How we can apply these considerations will be illustrat-
ed in each section.

%e define "area" as
p OQ

qdx,

where q is the ZS q, and "absolute area, ,
" or "moda. l

number, "by

This "area" is dimensionl. ess, but since it is simply
the total area under the curve q(x), we shall call it
nevertheless an area [as is done in nonlinear optics
for the 2m pulse of SIT (Kaup, 1977)]. When one can
treat the ZS equation by WEB, one then finds a very
simple relation existing between the "absolute area, "
and the number of sol. itons in a ZS envelope [see Ap-
pendix B, Eqs. (B33)-(B35)]. Thus, by simply knowing
the number of solitons in a ZS envelope, we can already
know something about the absolute area, of that envelope.
The area of the final envelopes can be calculated pre-

(which has units of "inverse length" ), which is one of
the infinity of conserved quantities associated with the
ZS equation (Eq. 2.1) and can be given very simply in
terms of the ZS scattering data. In fact, this % de-
compos es linearly into a s oliton part, %„and a radia-
tion part, gg„, as

(2.9a)

where

(2.9b)

dA. in[1+ I (A. )] .
7T ~ QQ

(2.9c)

During an interaction, S is exchanged between enve-
lopes, subject to the two well known global conserva-
tion laws for the three actions, Eq. (A24). As shown
by Eqs. (2.9), the total action can be determined from
the bound-state eigenvalues and the radiation density,
I"(A.). For the time-asymptotic envelopes, since we
know how to determine the final eigenvalues (as dis-
cussed above), we can readily calculate the final soliton
action. Similarly, since we also know how to determine
the final scattering data for each envelope from the
initial. scattering data [Eqs. (A17)], we can also deter-
mine the time-asymptotic value of the radiation action
for each envelope, and therefore know exactly how much
radiation has been exchanged between these envelopes.
The mathematical details of these calculations a,r e
given in Sec. 4 of Appendix A. The calculation of
"soliton action" and "radiation action" for each pulse
provides a check on the applicability of the R-soliton
formula.

By expressing the quantities (such as areas, action,
etc. ) describing the behavior of the interaction directly
in terms of the scattering data, we circumvent the in-
verse scattering equations. The only difficult step re-
maining is that of solving for the scattering data of the
initial pulses. Closed-form solutions are easily ob-
tained for square pulses, and the general ZS solution

cisely if we include some information from the con-
tinuous part of the spectrum. Like the area theorem of
McCalland Hahn (1967,1969)in nonlinear optics, all sys-
tems which can be solved by the ZS inverse scattering
transform do have an "area theorem. " This area is
simply related to the reflection coefficient of the scat-
tering data at + =0, which is detailed in Appendix B,
Eqs. (B27)-(831). (Recall that the linear Fourier trans-
form at 0 = 0 is equal to the area. The same idea applies
here, except the relation is nonlinear. ) Then by knowing
the relation between the i'nitial and final reflection co-
efficients of our three envelopes [Eq. (A17)], it is fairly
simple to determine the final areas (mod2m) from the
initial areas. Applications of these ideas will be il-
lustrated in each section.

For the third piece of information, we look at what is
call. ed "action" by plasma physicists. In terms of the
ZS q, this action is proportional to

OO

q*q dx
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for a square pulse is given at the end of Appendix B.
%KB theory may also be used to calculate approximate
scattering data.

D. Symmetric form of the equations

For purposes of the inverse scattering method, it is
convenient to transform Egs. (1.1) to a more symmetric
set of equations. To do so, we first rewrite our equa-
tions in terms of a;* rather than a; and let A' = ~A ~e",
to obtain

E. Subscript notations

In the following three sections we treat specific three-
wave interactions: the explosive case, the cases with
sol. iton exchange, and the stimulated backscatter. Table
I should be useful in relating the different forms of the
coupled three-wave equations. The form given by Eqs.
(1.1) will be called "plasma notation" while the form
given by Eqs. (2.13) will be cal. led "IST notation. "

II I. THE EXPLOSIVE CASE
[p.—pp —-p;, {vl —vj) {vk —vi)) Oj

(
9 8—+v; —af = p; El[e '"a,*a~*,

9 8—+v —a =-p ~A'~e '"(a*)*a*

(
8 8
a +v, a a„=-p„ljt (le '"(~;*)*a;*.

Now let

q,. = (jf~a,*e '"",

q, =(Ic(a,e "'
q, =[Jr[,

so that the resulting equations become

(2.10a)

(2.10b)

(2.10c)

(2.11a)

(2.lib)

(2.1lc)

Explosive behavior appears only if the negative-energy
wave has the middle group velocity. Then the ZS q's
and r's are given by (A14) as

&(» + &(» *—
~
jc)e"""a,*

g(c, —c,)(c, —c, )
' (3.2a)

When the energy of the highest-frequency envelope is
opposite in sign from that of the other two, the three-
wave interaction may develop a s ingular ity in a finite
time. Without loss of generality we may take the energy
of the high-frequency mode to be negative. We then
have

(3.1)

iI

~~ iI
~~

1
~ j ~ t

9 9—+v; —Q; =p, Q,*Q„*,

8 9—+v —Q = -p Q*Q*j i

(2.12a)

(2.12b)

(2) ' ~(2) ~(2) g-)A)e '""a;*
v'(c, —c,)(c3 —c,) '

q(3) e - & (3) + q(3) g
—(Is [

e"""a,*
V'(c3 —c,)(c3 —cg~

(3.2b)

(3.2c)

(
8 9—+v —Q =-p Q*Q*i j (2.12c)

(
8 0—+c —Q =y Q*Q*1 g+ j. 1 2 3

(
8 8—+c —Q =~ Q*Q*2gX 2 2 1 3

(2.13a)

(2.13b)

Finally we letindex 3 correspond to t&e mode of @ig~est

velocity, index 2 to that of next-big&est velocity, and
index 2 to the mode of lowest velocity; we denote these
velocities by c's. We also define yi —= p;, yj =-pj, y~ —=-p~,
and thus obtain

since we have (i, k, j) = (2, 1, 3).
As is well known, when one ignores the spatial varia-

tion in the envelopes, the solution for this case always
grows explosively in time (Davidson, 1972). It has also
been recognized that when one takes into account the
spatial variation this need not occur (Hers, 1975a). A
necessary and sufficient condition for stability when
A„A.,«A, (where A is the area) has been previously
derived from an IST analysis (Kaup, 1976a) and deduced
from numerical solutions (Reiman et al. , 1977). In the
WKB limit (slowly varying, real envelopes which never
cross zero), this necessary and sufficient condition for
stability becomes

(
8 0—+c —Q =r Q*Q*.
Qt 3 ()x 3 3 2 3 (2.13c) )q&"

( dx& —',2'

TABLE I. Forms of the coupled three-wave equations ~

Explosive
I lasma
notation

IST
notation

Sol iton exchange
Plasma IST
notation notation

Stimulated baekscatter
Plasma IST
notation notation

(i,j, a) =(2, j., 3)

Pi Pj PA&~1 ~2 ~3

(Vi Vj)( y
—Vi) &0~ 1 2 3

~*. C q(»

(1)

~g

ccrc(3)

(z,j, u) =(2, j., 3)

Pi Pj PA~~1

(V i -V j)(VA Vi) &0; Cg &C2 C3

~ Of' ~ q(2)

(~)

(3)

(i,j, k) =- (3, &. 2)

Pi Pj Pk~ ~1

(Vj —V ~ )(V i VA, ) & 0; Cg & C2 & C3

(3)

o.)

(2)

&Q ' = complex wave ampl. itudes; q =—Zakharov-Shabat potentials.
(i)—
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0 2 4

{or y

FIG. 2. (a), (b) Explosive interaction with A&(t = 0) = 2.4,
A &(t = 0) = 0.14, and A 3(t = 0) = 0 in a homogeneous medium. Time
step between consecutive plots is 0.3t~, with t.=1/ Itic; ~(t= 0)l;
x is in units of 1/ Iq~~~ (t = 0) I. The evolution of the decay wave
packets is shown in (a), and that of the high-frequency wave
packet in (b). (c) Explosion threshold in A &(t = 0) and A. &(t = 0}
for initially nonoverlapping pulses 1 and 2 with aj, (x, t = 0):—0.
Values above the curve are explosive.

where X is the absolute area. If this condition is vio-
lated, then singular spikes will develop.

Figure 2 shows a numerical solution for such an ex-
plosive interaction for A., (t = 0) = 2.4& 7r/2. Note the
initial buildup of the normal modes in Fig. 2(a). The
modification of a; remains smalI. until a,. and a~ be-
come comparable to it in amplitude. The instability
then proceeds very rapidly. This contrasts sharply
with Fig. 3, where the interaction is dying away. Here
/i, (t = 0) = 1.13 & w/2.

As discussed in Appendix A, whenever the middle
envelope has 1V, solitons (1V, ~1), then after any inter-
action with either q ' or q

' (even a perturbation),
both the fast and the slow envelope must each contain
exactly 1V, solitons (see Fig. 1). But due to (3.2),
r =+q* for both the fast and the slow envelope, which if
(Bl) is to be satisfied, forbids these envelopes from
having any solitonsl Thus from the IST method, clearly
either (Bl) must be violated for the final envelopes or
the envelopes do not separate. As seen in Fig. 2, nu-
merical solutions show that (Bl) is violated by the
formation of a singularity in a finite time, and also
that the envelopes do not separate. Further analysis
of the IST method does suggest a singular solution. To
show this, one simply solves Eqs. (B11)-(B14)for the
case of x=+q*, retaining only a soliton term (bound
state) in (B11). Solving these equations then gives the
one-soliton solution for this case as being the same
as Eq. (B'20a), but with cosh replaced by a sinh. Thus
the solution is expected to be singular as t-+~.

Thus a necessary condition for stability is that the
middle envelope must not initially contain solitons. As
discussed in Appendix D, this is equivalent to requiring
the stability of the linear equations (1.3). This condition
is also sufficient, as we shall see, when A„A3 Ap.
With the WKB approximation to the solution of the cor-
responding ZS equations (Appendix B, Sec. 6), this
condition reduces to Eq. (3.3). A sufficient (but not
necessary) criterion for infinitesimal stability regard-
less of whether the WKB approximation is valid is
(Ablowitz et aL. , 1974)

t/tc

0O
X

Lc

20

A, & 0.903. (3.4)

Our computer simulations show formation of only a
single spike during the explosion, regardless of the
number of initial modes or solitons. The position of
that spike can be determined approximately for arbi-
trarily shaped pumps by solving for the WKB ampli-
tudes a, (x)e ', a»(x){. ', for the fastest-growing mode,
and finding where a, (x)a„(x) is a maximum.

Requiring the middle envelope to contain no solitons
is not sufficient to give stability against finite pertur-
bations of a& or a„, Figures 3 and 4 are plots of nu-
merical solutions for A, (t =0) & z/2. The interaction
of Fig. 4 is nevertheless explosive. By the time the
initial a; pulse has passed through a„, A, has been
increased above 7r/2. The tails of a» and a, then grow
up in a normal mode pattern, leading to an explosion.

Q

z.~,

t/t,
0

X

Lc

20

FIG. 4. Same ss Fig. 3 except la, (t=O)1=0.381 (ta=O)l,
A g(t = 0) = 0.545.

FIG. 3. Collision of initially rectangular pulses in a homoge-
neous medium: p, =pI, ——p;, v;= 0, e = —v&, a&(x, t = 0) = 0,

I a& ~(t = 0) I
= 0.25 Ia; ~(t = 0) I, A, (t = o) = 1.13, A((t = 0) = 0.389.

Normalization in terms of t~—:1/ I Ka;~~(t = 0) I and
L,.—= 1/ I

q"' (t = o) I.
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C sin A, L
o ()((2))2+Q2 cos2~ L

I (l) 00

(3.6b)

(3.6c)

'~z (g(s) )2 Q2

(g(~) )2 + Q2

with A(') and A.
' given by Eq. (A14). If we choose Eq.

(3.3) to be satisfied, then for Q,L, =A, &))/2, and at
g = 0 = X ') = A. , Eq. (3.5) requires that

(3.7a)

(3.7b)

sxnh2A. ~cot A. (3.8)

where A., =Q3L3. A plot of these critical values is shown
in Fig. 2c. Thus, if we choose A, =1.133&sr/2, then the
critical value of A, is 0.452. [For A, =1.133 and for
A3& 0.452, Eq. (3.5) is satisfied for all values of f, while
if A, is just above 0.452, Eq. (3.5) is violated only for a
corresponding range of g about zero. j The computer
runs for Figs. 3 and 4 have 22=1.133 and A3=0.389 and
0.545, r espectively.

Finall. y, we also note that for Fig. 3 we ean compare
the area theorem and the transfer of action as given by
simulation and theory. From Eqs. (A17), (3.2), (B29),
and (B31), we have

tanhA. ~ ——tanhA30/'C osA 20,

tanA~ ——cos hA. 3~ tao@„,
tanhA, y

——-tan@» s inA3p

(3.9a)

(3.9b)

(3.9c)

for A» ——0. We find good agreement between the theory
and our numerical resul. ts.

This contrasts with Fig. 3. There, after the initial
a; pulse has passed through a~, the tails of a; and a~
ins ide the interae tion, r eg ion s imply die away.

To calculate the nonl. inear threshold for explosive
behavior, note that condition (B26e) is satisfied by the
I'f(3) of (A22a) only when

1 1 1
1 r'" +1 r'2) +1 r'" +

+ 0 + 0 0

This follows by requiring the denominator of (A22a) to
be positive definite. If this is violated, it follows that
one of our initial assumptions must be violated; either
the wave packets become nonintegrabl. e as t- ~, or
the overlap of wave packets does not go to zero at t- ~.
In fact, we find from our numerical solutions that when-
ever (3.5) is violated, the interaction is explosive.

Thus we conclude that if an explosive spike is to be
avoided in the explosive case, (i) the middle envelope
must conta. in no solitons (or linear instabilities), and
(ii) condition (3.5) must be satisfied by the initial data.
This is a necessary and sufficient condition for non-
linear stability. Note that whenever one of the I' 's is
zero, Zp then vanishes.

If one takes the fast (middle) ZS envelope to be a
square pulse of amplitude Q, (Q, ), of width L, (L,), and
the slow envelope zero initially, then the corresponding
I', 's from Eqs. (2.5), (B38), and (B39) are

sin& L,I (3) Qs s) n sLs (3.6a)0 3
I

This gives the final actions in Fig. 3.

IV. THE SOLITON EXCHANGE INTERACTIONS
[p, = p,. = p„, (v,. —v, ) {v„—v, })0]

For this case, where the highest frequency has the
middle group velocity and the energies are all positive,
we have

or

(r„r„r,) = (-, +, -)

(p, p;, j~) =(+, +, +),

(4.1a)

(4.lb)

so that by (A14),
4 v/3

(i) + I+~e + (i) (i) *
C2 —Cl C3 —Cl

(2) & ~(2) q(2) g-(R[e '""a*
v'(c, —c,)(c, cg '

& &/3+ If( I e &. (.) (3),
C3 —Cl C3 —C2

(4.2b)

(4.2c)

where (i,j, k) = (2, 1, 3). Since from Eq. (4.2), ~ = -q + for
all three envelopes, all envelopes may contain solitons.
The general soliton exchange results for both decay and
collisions can be seen from Fig. 1; the high-frequency
mode invariably loses solitons to the other modes. Fur-
thermore, one ean easily show that the ZS inverse scat-
tering equations (B12) for this case always have a unique
solution, and that the envelopes will always separate
asymptotically as t- ~ (Ablowitz et al. , 1974). This
follows from the fact that there are no restrictions on
the magnitudes of the final b/a's in (A17), and thus
(Bl) will be satisfied for the final envelopes. Conse-
quently, in this case, we expect no singularities ever to
develop as in the explosive case. There are two types
of initia. l conditions of interest here, (i) decay of the
middle envelope (pump), and (ii) collision of the fast
and sl.ow envel. opes.

A. SoIiton decay

1. Small perturbations

First we consider the decay of the high-frequency
pump when it is perturbed by a small. amount of the slow
envelope, a&. The initial development of the system
can be described by the set of equations (1.3) obtained
by linearizing in the initial. ly smal. l amplitudes a&, a~.
The behavior of the interaction is determined by the
normal mode structure that develops before the non-
linear regime is entered. This means that the general
character of the solution to the equations in this case
should be determined by the number of initial growing
normal modes. The WEB criterion for having exactly
A normal modes in the pump when a; is a pulse with
only one internal extremum is

The action transfer, we simply use Eqs. (3.2), (A22a),
and (2.9). Then

(3) 1
[[q~()( -[q(;)[ )dx=- d)(»ln (,) „)

w OO

(3.10)
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FIG. 5. Interaction in reference frame with v;= 0; v, = —v&,f" «

I
~ ~;(x, t = 0) I / I P,—~;) (v; —~~) I

'l'= I, a„(~,t = 0) =—0.
Normalization in terms of t ~=1/ ~Ka;~~(t = 0) and I.~= 1/

~ p~~(t = 0) ~. Reference frame fixed by n; = 0.

(x ——,')~ &X, - (w+ —,')~,
where A, , the absolute "area" of the high-frequency
pump~ ls

(4.3)

~4('(x, f =0)(ax. (4 4)
w OO

This condition is the same as that for the existence of
A' sol. itons in the pump, as discussed in Appendix D.
The criterion is exact for a square pump.

Qur numerical results show that, again, when there
are no initial normal modes, little happens (Fig. 5).
But the presence of growing normal modes now l.eads
to pump depletion, instead of an explosive singularity
(Figs. 5, 7). The nonlinear interaction between the pump

-20 20

Lc

FIG. 6. Interaction of initially rectangular pulses with v, —v;=.;—.„P;=f,=P„ l,/i, =3.». I,. «=0)l/I, . (t=0)l
= 0.02. Reference frame chosen with v; = 0. Normalization as
in Fig. 5. (a) Amplitudes at t = 0. (b) Initial mode buildup. (c)
First pair of pulses emerging from flipped pump. (d) Mode
buildup in flipped pump.

0

I I l
'

I

0 jQ PQ x

FIG. 7. (a) The interaction differs from that shown in Fig. 6
only in that I;/l, = 6.4 and ~a, ~{t=0)~/ ~a; ~(t =0)~= 0.002.
Interaction run to t = 28t~. (b) The time-asymptotic profiles ob-
tained numerically for (a) are superimposed on the prediction
of the two-soliton formula.

and each growing mode leads, in our computer simula-
tions, to the emission of a pair of pulses (one fast and
one slow) from the interaction region. Once a given
pair is emitted, they of course simply propagate along
their own characteristics without any further amplitude
changes. And the number of pairs of pulses emitted is
always equal to the number of initial normal modes in
the pump. After all of these pulses are emitted, the
high-frequency pulse is left with a small nonzero am-
plitude, not large enough to sustain a normal. mode.

The solutions of the spatially independent equations
for this case are periodic in time. Some remnant of .

that periodicity is seen, in that a sufficiently large
pump wil. l flip its sign due to the nonlinea, r interaction
with the other two modes.

In Figs. 5-7, we show graphs of the time (spatial) de-
velopment of the wave amplitudes from three different
sets of initial conditions. The initial. pulse profiles are
shown a.longside in Figs. 5 and 6. The initial, perturba-
tion for Fig. 7 was too small to be visible in such a plot.
In these three runs the pul. se profil. es are initially
r ectangular.

For Fig. 5, A.,(t =0)&w/2. After the initial perturba-
tion l.eaves wave packet 2, its tail simply decays away.

Figure 6 shows an interaction when there is initially
one growing norma, l mode. Mode buildup leads to de-
pletion of the pump and subsequent emission of a pair
of pul. ses. The interaction has now gone to completion.
Decaying tails of the emitted pulses are all of waves 1
and 3 that remain in the interaction region. Wave
packet 2 is no longer capable of sustaining growing
normal modes of the linearized equations (3). Note that
the initial a& perturbation is visible on the tail of the
emitted a,. pulse.
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During the course of the interaction shown in Fig. 6,
wave packet 2 flips, being pushed into the negative by
the interaction with waves 1 and 3. Our computer runs
show that as A, (t = 0) is made larger, A, (t- ~) goes
more negative, until the flipped a, has an area of 7(/2
and is itself capable of supporting growing normal
modes. This transition takes place exactly at the point
where a; can initia, lly support two growing normal
modes. An interaction with two initial growing riormal.
modes is shown in Fig. 7. Two pulses are eventually
emitted from the interaction region (these are filaments
in a 2-D steady-steady interpretation). Because the
pump has flipped, the relative sign of the second pair of
emitted pulses is opposite that of the first pair of
pulses.

Turning now to the inverse scattering solution for this
case, we find that these simulation results can be ex-
plained also in terms of IST concepts. First, we con-
sider the final envelope shapes of the two low-fre-
quency pulses and show that they are essentially exact
1V-soliton solutions. This can be seen fr om Eq. (A 17)
as follows. Take bo') =o(e) with e small, b,') =0, and
we have for real values of the eigenvalue A. , b&3) ——o(e)
and bg =o(e). Thus as the perturbation is made smaller
and smaller, (e- 0), both bf' and b&' vanish for real
values of A, , which is the definition of an A'-soliton solu-
tion. Only the discrete part of the spectrum then re-
mains in the daughter waves [(Bll) with p =0].

In fact, with q~o'~ as a, square pulse, it is possible to
determine exactly the scattering data for the final en-
velopes in the limit of q~o' —0. This we.shall now pro-
ceed to do, as well as to show how well this analytical
result agrees with numerical solution of the equations.
Let qo' be a square pulse of area A, and width /, take
c$ +3 C2 0, and let qo' be a s mal. l symmetric blip
centered at a distance E from the left edge of qo', as
shown in Figs. 5 and 6. First, one determines the num-
ber and values of the bound-state eigenvalues for the
middle envelope (pump) by using ZS eigenvalue problem
of Eqs. (2.1). The eigenvalues are given by the common
solution of

2

I(: = -k cott,
where the eigenvalues are

(4.5a)

(4.5b)

=i ~/L (j =1, 2, . . .1V), (4.6)

(4.8)

The scattering data a„,a» are ealeulated from (A5) for
qo' infinitesimal. Taking into account the time depen-
dence, (A11), we find for c, = -c„c2= 0 that

and fV is the total number of solutions of Eq. (4.5). (See
Appendix B.6.) Then by Eq. (A18), the eigenvalues for
the bound states contained in the fast and slow final
envelopes will be given by

(4.7)

Lastly, we need the D,.'s to construct the A-soliton solu-
tion (B19). D; is -t times the residue of I)/a at the jth
eigenvalue. From Eqs. (A9) and (A16) it follows that

(3) )) k, sin(k;t/L) „(„) kg

2I (1+ I(, ) L

I(~ L~ + cqt)
&& sgn(q(~') ) exp

where k =/A. 2 —x~ i. is the right edge of q'o, and

q("(x)e '""dx. (4.10)

With Eqs. (4.5), (4.7), and (4.9) we have all the infor-
mation required for calculating the A-soliton solution
a~(x, t- ~) from Eq. (B19). (See Appendix B.4 for a de-
scription of this calculation. ) Similar calculations give
a&(x, t- ~). The resulting theoretical predictions have
been superimposed on our numerical solutions for the
wave amplitudes in Fig. 7(b). There is a noticeable
error in the predicted separation of sol.itons. This is
due to the fact that we have calculated the D's pertur-
batively, to first order in q, . A similar plot for the
interaction of Fig. 6 reveals no such discernible dis-

crepancyy.

In summary, the IST method ean give us the final
configurations directly from the initial data for the
decay of a high-frequency pump. Of course, Eqs. (4.5),
(4.7), and (4.9) are only va. lid when qo' is infinitesimal,
but we should remark that for both qo' and q, ' as
square pulses it is possible to obtain closed-form analy-
tic solutions of Eq. (A5), which would then give us an
expression for D, ' valid for finite q, ' . However, we
have not done this, due to the complexity of that resul. t„
We also point out that, from the initial scattering data,
we can calculate the amount of radiation action which is
transferred [Eqs. (2.9) and (A22)], and it is well below
the numerical noise level in each case. Corresponding
to Figs. 6 and 7, the final actions of the a„envelope in
the numerical. solutions are 1.389 and 5.863, respec-
tively. From the IST theory [Eq. (2.9)], the values for
these soliton actions are 1.388 and 5.865, giving us
agreement to within the accuracy of the numerical solu-
tion. Moreover the theory shows that these final. actions
are independent of the D,.'s, so the errors arising from
the perturbative cal.culation of D, have no effect here.

Finally, we note one property of Eq. (4.8) which has
not been brought out by the solutions shown in Figs. 5-
7, and that is the dependence of D, on where the initial
a, perturbation is positioned. If I =L, since (-)"'sink&
&0, all the D;~ 's would then have the sa,me sign, which
would give an A-soliton state which never crosses zero.
But for 0 & I & L, the D,.'~ 's can have diff erent s igns,
giving an N-soliton sol.ution crossing zero. In all. these
simulations, we have taken I =L,/2, so, as shown in
Fig. 7, we have an. 6'-soliton solution crossing zero.
The only things which I, will affect are the relative
phases and the time delay for the emergence of a soliton.
For example, if for s ome j, A;I = I m, then Dz = 0,
which would cause this soliton to be strongly delayed.
[The delay time is proportional to in[1/DJ' ]. See Eq.
(B18).] At k&l =Lm, DP = 0, which corresponds to an
infinite delay time. But in any simulations this would
be reduced to a finite value by truncation and round-
off errors (since the pump is still unstable). It is also
interesting to note that the decay of the pump tends to
occur in "quantum jumps. " By WEB, as the initial
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area of the pump passes through each value of (n +;))),
the final areas of each of the fast and slom envelopes
jump by +sr, while the final area of the pump also
changes by +m.

Although we have only, discussed sol. iton decay in the
presence of a definite, finite (although small) slow wave,
one can also treat the case of an unstable pump
(A, &))/2) in the presence of fast and/or slow wave
random noise. This is more the physical situation, in
that such a decay is more likely to be started by random
noise than by any small definite perturbing wave. As-
suming the random noise to be an infinitesimal per-
turbation on the pump, one can use a perturbation ex-
pansion to determine how the addition of noise to the
probl. em affects the scattering data. Similar ideas have
been used by Kaup {1976b)and Kaup and Newell (1978) in
investigating the effects of various perturbations on
sol. iton solutions. Here, if we start off with an unper-
turbed pump, nothing happens. It ddesn't decay until
some perturbation is appl. -ied. Usually, in the physical
situation, this perturbation will be in the form of noise,
and if so, now the pump can decay. To determine horn

l.ong it mil1. take the pump to decay, we simpI. y I.ook at
the averaged (with respect to the noise) scattering data
of the final ZS envelopes, by determining hom the initial
noise levels mill affect it. This is done in Appendix F,
with the final result being given by Eq (F32.). In the
special case where &, =-c„c,=0, this result reduces to

showing that almost all. of the radiation energy can be
taken out of the pump.

To have 1(o') large, since I = IL)/aI', we take A, =))/2
(or 3))'/2, 5n/2', etc. ) so that at & =0, I (() =~ [see Eq.
(B29)j. Then to have I,' broad, so that it remains
l.a.rge over the region where I'p' is essentia, l.ly nonzero,
we want the pul. se width of q

' to be small. An example
of this situation is shown in Fig. 8, where A., =1.571
—= ))/2 and q

' is exactly the same profile as in Fig. 6.
In Fig. 6, the action (total radiation) left in the pump is
0.474, while in Fig. 8, only 0.145 remains. Of course
in this case the pump was already unstable, since A,
=3.25&))/2. But the same can also be done for a smal-
ler pump; when it collides with a narrow pulse with
A, = n/2, most of the radiation energy can also be ex-
tracted from the pump.

One interesting feature in Fig. 8 is the profile of q ',
which is almost a square pulse except for the ramp-
like edges. This shape can be deduced from Eq. (A17a)
upon setting a(p 1 and 5p 0 which gives

~(3) ~(.)
exp(-2i)("c f) {4.13)

Now, for qo' as a narrow pulse, when we use Eq. (B39)
(since b =5*), we have for A,

' not too large and as
L-O,

b(' (A,
' ) =+ (sinA, ) exp[+i'. ' (I(') + I ')) j

Since in this case )( ' =)( ' =(I/2)X ' if we let
~=~(3), then

where v~ is the lifetime due to noise, q, is the initial
soliton amplitude of the pump, and E, and E3 are the
rms average noise amplitudes for q, and q3. Note the
logarithmic dependence of T~ on E, and E,. This is
what one would expect, in that v~- ~ as E, and E,—0,
mhile T~- 0 as E, or E3 becomes large.

2. Large perturbations: Two pumps

(4.11a)

(4.12b)

As shown above, when the pump is infinitesimally
perturbed, only the energy contained in the soliton part
of the spectrum can be released, and not the energy
in the radiation part of the spectrum. However, if me
cause a large wave (either 4(') or q(')) to collide with
the pump, a large fraction of the energy contained in
the radiatiori spectrum of the pu'mp can be released. To
show this, we consider the collision of q

' with the
pump qf2, when q

' is large. From Eq. (A20), upon
setting I'p' =0, we obtain the final radiation densities
for qf(') and qf(')

(z)
p(3) +o p(2)f 1 I(1) P+ p

(2)j-(.) &o
f I + Z ().) (I + F (2 ))

(4.11b)

Now in Figs. 5-7, I'p' mas very small, so that I"f') was
also small and I&(2) =I'(~). But, xf we now take I(p~) to
be large (at least over the region where I",') is essen-
tially nonzero), then Eq. (4.11) becomes

I (3) (4.12a)
Z(2) 0f

, == sinA, exp[i)((E, ' + l ' —2c3tj ("» . (4.15)3 /yx ]

We ignore the phase factor which corresponds to a
simple translation. If b()()/a()() is the "reflection co-
efficient" for q(x), then b(2A)/a(2)() is the reflection co-
efficient for ~ q[(l/2)x] [for example, see Eqs. (B38)
and (B39)]. Thus if A, =))/2, Eq. (4.15) then shows that

(4.16)

0

FIG. 8. Binary collision of initially rectangular pulses with
v; = 0, e - = —ep, &2(t = 0}= 3.25, A. g(t = 0}= 7L/2, I a, (t= 0}I /

(& = o) I
= 2.
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in the limit of q~ approaching a delta function of a,rea
w/2. Note that this provides a means of transferring
any arbitrary shape of q0 to qf, with the scaling
factors being dependent onl. y on the ratios of the rela-
tive velocities. The more general relation, for arbi-
trary velocities, is

)i
Q

»&'&(x) = '* "
»&. & " "x ) .

C —C C —C3 1 3 . 1
(4.17)

Ix,(x)l dx)x;(x)=x;, »&&» ()VIV)

v.
a, (x) = — —' a;, sin

Vp iV

x'

Ia;(x)I dx I .

(4.18)

(4.19)

If A, = v/2, then Eq. (4.18) gives complex action transfer
and (4.19) gives just (4.16). However, if a; and a~ are
both nonzero after passing through the initial a; pulse,
they continue to interact. The interaction is then non-
linear and we must resort to our IST analysis.

Note that in Fig. 8 the linear approximation is not
valid, a& being strongly affected by the interaction.
Nevertheless, a; is almost entirely depleted by the
interaction and has its initial shape well replicated.

B. Upconversion

We now consider the coll. ision of a fast and a slow
envelope. When the initial ZS areas are small, there is
littl. e action transfer. Such a weakly nonlinear collision
is shown in Fig. 9. Since depletion of the colliding
pulses is sma, ll, the generated middle envelope is well
described by a convolution of the initial fast and slow
envelopes. Thus, with the initially rectangular pulses
of Fig. 9, a triangular middle pulse is formed.

Before continuing with the other simulations, we show
how to calcul. ate the final areas and actions from the
initial. profiles. Those that we have checked agree wel. l
with the simulations. From Eqs. (A17) and (B29), we
have for A20=0,

tanA. f ——cosA., tanA,

tanA2 f cos A, f sinA10t nA30

tan A» ——cos A10 tan A30 .

(4.20a)

(4.20b)

(4.20c)

We supplement these equations with the information con-
tained in Eq. (B32), where the signs of the respective
cosines are determined by the number of solitons con-
tained in each envelope. This then allows us to calcu-
late the final areas of all pulses in Figs. 9-12. Note
that by Eq. (4.2b), the sign of q

' is opposite to that of
a; (the high-frequency pump) in Figs. 9-11.

These results can also be established directly from the
three wave equations (1.1). For Ia& (t =0)

i
sufficiently

large, depletion of a, by the interaction may be neglect-
ed, and the three wave equations (1.1) describing the
evolution of a; and a„actually become linear. We work
in the reference frame in which v, =0. If L;
«a;(sa;/sx) ' then a quasisteady state is established
in the interior of a,. and we may in addition negl. ect
Sa(/Bt and Sa„/St. Suppose that a,. is moving to the left,
with a; =a;0 on its left boundary, x =l.. . Then the solu-
tion in the interior of a, is

.6-2.9 2.9

For calculating the action transferred, we need to
know only the initial bound-state eigenvalues and the
initial. I 's as has been discussed in Sec. II. The radia-
tion part of the action is given by Eq. (2.9c) with A. =d' .
One can obtain I't' (A) from Eq. (A20a), since by (A23b)
and (B26d) we have

(3)
( ) 1 1"„

+ f 1 ~I(3)

so

(,)
(

I'(O3) (1/2 )()r (0"(1/2 )).)
I + I-(» (I/2 ) )I-."&(I/2 ) )

'

where since c, = 0, c, = -c„ from Eq. (A14), )(. '
= I/2)(('). For v=1 or 3 and square envelopes, from
Eqs. (B37)-(B38)and (B26d),

(4.2 la)

(„)( )
A'„„sin'(k, )

k -A2 sin'(k„) '

where

k2 = L2 A2+A20

(4.21b)

(4.21c)

and A.„0 and I, are the initial areas and lengths of the
two envelopes. Equation (2.9c) is then evaluated by
quadrature. For the soliton part of g, we simply solve
Eqs. (B41)-(B42) for A. and substitute in Eq. (2.9b).
The ZS action is then simply the sum of these two con-

tributionss,

as given by Eq. (2.9a).
Let us now return to the simulations. In Fig. 10, the

generated middle pulse is no longer a convol. ution of
the initial. envelopes; it is a sl.ightly distorted triangle.
Depletion of the colliding pulses is just beginning to be
important. Here the initial pulses have ZS areas just
below ))/2.

The initial areas in Fig. 11 are well above m/2. A
large spike is now generated by the collision, and sub-
sequently decays as described in Sec. IVA. The initial
col.liding pulses are almost completely depl. eted, with
most of their energy transferred into the soliton tail.

This spike formation can also be understood in terms

Lc
FIG. 9. Binary collision of initially rectangular pulses: p;=p;
=p„, v;=0, v, = —v„, Ia; ~(t=0)I= Ia), ~(t=o)I, A((t=0)
=&3(t = 0) = 0.485. Normalization in terms of t
=—I/ I Ica, (t = o) I »d I,—= I/ I q "~)(t= o) I.
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this situation in terms of the ZS envelopes. The spa-
tial ordering of the envel. opes is the same as in the
final conf iguration. In doing this analys is, we must
recognize that the only difference between this inter-
mediate state and the final state is the way in which
the solitons are distributed between the envelopes. In
particular, after this intermediate state is created, no
more significant radiation density is exchanged. Letting
i designate this intermediate time, we find that

I (2) I (2)
i f (4.24)

.7—
—II

FIG. 10. Same as previous figure except that A &(t = 0)=%3(t = 0)
= 1.82.

g(2) s & g(x)j
C3 —C2

(4.23)

This eigenvalue is larger in magnitude than either
or &,~, and consequently during the collision, when

this exchange takes place, one can expect to see the
middle pulse rise dramatically, and to become higher
and narrower than the initial envelopes (See Fig. 11).
We find that when such a spike forms in our numerical
s olutions, the over l ap between enve lopes b ecomes
small for at least a short time. Thus we can analyze

of the IST theory. In the col.lision of Fig. 11, we have
the time reversal of the soliton exchange shown in
Figs. 6 and 1. Whenever there are solitons in the fast
and slow envelopes which are resonantly paired (as
is the case in Fig. 11) according to

(4.22)

then each of these resonantly paired eigenvalues can be
transferred to the middle envelope, giving it an addi-
tional soliton of eigenvalue

with I'z' given by Eq. (4.2lb). Taking the number of
sol. itons in the intermediate envelopes to be N =1 and
N, 'i =N ~ = 0, gives the intermediate areas in Fig. 11,
in reasonably good agreement with Eq. (4.20). Thus,
what has happened is that upon reaching this inter-
mediate state, the middle envelope has "absorbed" one
soliton from each of the fast and slow envelopes and
has also absorbed a certain amount of radiation from
each envelope. When the interaction goes to comple-
tion the absorbed solitons are finally reemitted, but
with the middle envelope retaining the absorbed radia-
tion.

This then suggests the following description of the
coll. ision process. In a collision of a fast and a slow
envelope, the middle envelope absorbs the amount of
radiation determined by Eq. (4.21) from these envelopes,
as well. as any resonantly paired solitons [according
to Eq. (4.22)]. The remainder of the radiation then will
pass on through, without experiencing any significant
delay. Later, the resonantly absorbed solitons are
reemitted, tacking A'-soliton tails onto the fast and
s low envel. opes.

To see what happens to nonresonant solitons, we
tried a computer run in which the fast envelope had two
solitons (A,

' = 1.52 and 2.56) and the slow envelope had
one soliton (A.

' =2.54) which was resonantly paired with
the largest soliton in the fast envelope, since c, = 0, c,
= -c,. The results are shown in Fig. 12. As before,
the resonant solitons and some radiation are initially

.5-
-l7

Qj

l7

.VV'g-,

Lc

Lc
FIG. 11. Same as Fig. 9 except that A &(t = 0) =A 3(t = 0) = 2.84.

FIG. 12. Binary collision of initially rectangular pulses with
z; = 0, v - = —v z, A.

& t,t = 0) = 3.6, A &(t = 0) = 6.4,
Ia~ (t = o) I I Ia, (t= o) I =1.3.
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deposited in the middle envelope, which takes the form
of a narrow spike. The spike, again, subsequently loses
its soliton, tacking a one-soliton tail onto each of the
wave packets 1 and 3. The nonresonant soliton is un-
affected by the coll. is ion, exc ept that its charac ter istic
profile emerges clearly as the resonant soliton and
some of the radiation of the initial. ly square pulse are
stripped away.

Of course, in practice, one can never have exact res-
onance, so one needs to determine just how close to
resonance is sufficient. As we have already seen, the
resonant soliions are unaffected by the radiation and
other solitons (after the initial collision); we can then
justify considering only these two resonant solitons. In
this case, the solution is given in Kaup, 1976a, Sec. VII.
Upon redesigning some of the constants, and using the
notation that A,

' = g, +ig and )(. ' = (, +ig, are the eigen-
values for the q ' and q ' solitons, respectively, we
have

(,) 2q, exp[a(q&, + () - 2(,z, )]
cosh(2gizi —())

q(2) 0

(,) 2g, exp[i(P, —() —2(,z, )j
cosh(2g, z, + ())

(4.30a)

(4.30b)

(4.30c)

where 6 and 5 are defined by

-6 i6 (4.31)

The time delay v that these two solitons have exper-
ienced is therefore

(q, + g, )5
g,g, (c3 —c, )

' (4.32)

collide, are converted into q ', and as t-+~, q
' de-

cays, giving back the q ') and q ' solitons but shifted
so that

q(') = ' exp[i(P, —2(,z, )]

x exp(2g, z, ) + ' ' exp(-2g, z)
1 3

(2) -16Kgqg~( q
—cq)

D(&, —&,*)(c,—c,)(c, —c,)

xexp[i(y, + y, —2(,z, —2j,z, )],

q") = "' exp[i(y, —2E„z,)]

(4.25a)

(4.25b)

One-half of this time delay is therefore the time re-
quired for the pump q

' to reach its maximum ampl. i-
tude and energy, and similarly is also the decay time.

When g, = g3 and the solitons are almost in resonance,
then v is very large or infinity since 5- . In this
case, due to naturaL noise in any system, q will
probably start to decay before it can reach its maximum
amplitude. The critical time would be the time re-
quired for A, to reach )T/2, since that is the limit of
stability. For q, = g„c,= -c„c,= 0, one can determine
from Eq. (4.25b) that

where

x exp(-2g, z, ) + ',' exp(2g, z, )
1 ' 3

(4.25c)
zo lnze'

2 ~2 ]

where

(4.33)

—x —c t x

g X C t X30

(4.26a)

(4.26b)

w = —,'(Z+e "/Z)+ v'(Z+e-2 /Z)' —4,
with

Z = exp( —2g~[(c~ —c~)i + x3D —x~o)]}.

(4.34)

(4 35)

and

2P„(3)

c —c2 1

(4.27a)

(4.27b)
10 30
c —c3 1

-26

2g, (c, —c,)
' 13.81.32- ' (4.36)

Thus for A, = 7)/2, zo =—3.44 and the first value of i at
which A., =)T/2 when () is large is approximately

D =—exp[2(z, g, +z,g, )]+exp[2(z, q, —z,g, )]

+ " -' exp[2(z, q, —z,g, )]+exp[-2(z, q, +z,q, )].
1 3

(4.28)

From the above we have, as t —-~,

q(') = ' exp[i(&p, —2(,z, )j,2g
cosh 2@1+1

q(2) p

q(') = ' exp[i(((), —2(,z, )],2713

cosh 2'f383

(4.29a)

(4.29b)

(4.29c)

which corresponds to a q ' and q soliton approaching
each other.

First, assume $3 & g, so that the sol. itons are not res-
onant. Then when i = (x,o

—x»)/(c~ —c,), these solitons

Now, since the two solitons appear to coll. ide at
i = (x„—x„)/(c, —c,), then for 6 large, q 2 has reached
an area of ))/2 before the apparent collision, and this
time is essentially independent of 5. If the natural
noise would induce a decay time less than that given by
Eq. (4.32), then these decays would dominate, since
q

' would reach the critical area of z/2 at or just be-
fore the apparent collision of the two solitons. The
calculation of the decay time due to noise is given i.n
Appendix F.

(r„~„.) =(-, —,+). (5.1)

V. STIMULATED BACKSCATTER {SBS}[p,. =p, =p„,
{v;—v;}{v;—vz }(0]

Without loss of generality, we may take the high-
frequency envelope to be the fastest in this case. Then
(i,j,k)=(3, 1, 2) and
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"a

0
—0

t/tc

jg, 1$

~,Ai ——~ (Ah

So from Eq. (A14) we have (we have assumed c &c &c. )2 3

(y} + jf~je aj (I) (1) *
v'(c, —c,)(c, —c, )

' (5.2a, )

(5.2b)

(,) -jlfje '""a, (,)

gc, —c,)(c, —cs) ' (5.2c)

as the transformation from the a's to the ZS q's. Note
that by Eq. (5.2), only the slow (BS) envelope may con-
tain sol. itons. Thus in this case no soliton exchange
effects can occur, since the middle and the fast en-
velopes can never contain solitons.

Without any possible soliton exchange in this case
there are no nonlinear instabilities, and the interesting
process is the collision of various envelopes. In Figs.
13-15, we show numerical solutions where the fast

--- t/tc

0

ri—
V

aj
v \I

Qk JQ;

Lc

FIG. 14. Same as previous figure except ja;m~{t=0)j/
ja, ~(t = 0)j =20, A, (t= 0) = 5.19.

Lc
FIG. 13. Backscatter interaction of initially rectangular pulses:
v, —v;=v; —v„, a, (x, t=0) —= 0, ja;~~{t=O)j=loja (t=o)j

3( = ) = .59, A 2(t = 0) = 2.03. Normalization in terms of
t, = 1/ I I'; (t = 0)j, I.=—1/ I q "' (t = 0)j

Lc
FIG. 15. Same as Fig. 12 except la; ~(t=0)l/ jaq ~(t= 0) I

= 30, A~(t = 0) = 7.78.

envelope collides with the middle-envelope, with pro-
gressively larger values of a;. Both envelopes are
initially rectangular. As one can see, the most ob-
vious feature in this case is the strongly oscillatory
nature of the final state, as well as the slow approach
to the final. state. Although it is clear from Fig. 15 that
the final configuration for the backscattered pulse (the
slow envelope) is essentially achieved for the last time
shown, one can see that there is still considerable
interaction going on in the intermediate region. How-
ever, due to the strong peak on. the left of the middle
envelope, the part of the backscattered pulse in the
interaction region is being prevented from emerging
and is being converted back into the incident pulse. In
the case of SBBS, the fast envelope corresponds to the
incident laser pulse, the middl. e envelope to the acoustic
wave, and the slow envelope to the backscattered laser
pu1.s e.

When the initial envelopes are all well separated and
each one satisfies the condition in Eq. (Bl), then it fol-
lows that unique solutions will exist for the final en-
velopes. This can be shown because by Eq. (A21), we
have I )" (and I')" and I't(" as well) satisfying Eq.
(B26e), and thus well defined reflection coefficients
will exist where jpta}j and jpt("j &1. In passing and for
further completeness, we should point out that the
above argument depends both on the initial envelopes
being integrable and also being well separated, whereas
in the decay ca.se no such further conditions were nec-
essary. This is because in the decay case r = -q* for
all envelopes, and thus none of the final reflection coef-
ficients had to be bounded by unity, as in this case. For
example, we cannot guarantee that initial overlapping,
but integrable, envelopes will have a unique solution.
For a unique solution to exist by the IST one must in-
sure that jpt")j and jp)" j &1. However we note that when
the initial envelopes are square integrable (and even if
they a.re initially overlapping) then from Eqs. (5.1),
(AV), a,nd (A24), we have that the final envelopes must
also be square integrable. As a consequence of the
above we cannot presently & Priori rule out the possi-
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tanhA, f =tanhA»/coshA»,

tanhA f ——tanhA. cosh%, f,
tanAy f —sinhA»tanhA2p,

(5.3a)

(5.3b)

(5.3c)
where sgn(cosA„ &) =+ 1, since no solitons are present.

For the action transfer, we have from Eqs. (A26)
and (5.1)

ln(1+I" 3 )+ln(1+I' )) =const, (5.4a)

ln(1+ I (') ) + I.n(l + r ')
) = const, (5.4b)

t

so that if the fast envelope gains (loses) radiation den-
sity, then the middle and sl.ow envelopes both must
simultaneously lose (gain) a corresponding amount of
radiation dens ity.

From Eqs. (2.9) and (A21) we can calculate the amount
of radiation in the final backscattered envelope, and
when this envelope is initially zero we have

91(l) d) in[i + r(l) ]
1

m QO

where X =X(') and

(2) (3)
l-(&) I'o ~o

1+P(2) '

(5.5)

(5.6)

From Eqs. (5.5) Rnd (5.6) we can cRlclllR'te 'tile 1'ef lection

bility of certain initial overlapping configurations (with
squa. re integrable envelopes) giving rise to final enve-
lopes with long tails which drop off like x 8 with 1/2
& P= 1. If such occurred, the final envelopes of course
would still be square integrable, but not integrable, in
which case the final scattering data would not be well
defined. However, also note that since square integra-
bility is preserved by this interaction, square integrable
initial profiles (overlapping or not) can never give rise
to singular solutions, as occurred in the explosive case.

From the IST theory, we can again discuss how areas
and actions are exchanged between colliding envelopes
for this case; however, due to the strong oscillatory
nature of the final envelopes, the area will not be as
useful a concept as it was in the previous two cases.
This is clear from the typical oscillatory structure as
seen in Fig. 15. Since the final states are not slowly
varying, a, ll of the previous conclusions which were
based on the WKB approximation are not valid. For
example, since the backseattered pulse (for which
) =-q*) cannot contain any solitons, if the WEB approx-
imation were valid we would expect the absolute area
to be bounded by ))/2. This bound on the absolute area
of the BS pulse would then suggest a bound on the BS
energy, and thus one could expect the ratio for the BS
energy to the incident energy (which is the reflection
coefficient R) to decrease at sufficiently high incident
energies. This is clearly not the case, and thus WKB
is not valid. Due to the strong oscillations, it is pos-
sible for the BS pulse to contain no solitons and at the
same time to have its absolute area and energy un-
bounded. Although the area, concept is no longer as
useful as before, the area theorem is still valid and
can again be used to predict the final wave-packet
areas. From Eqs. (A17), (B29), and (B31), when
q ' =0, we have

coefficient R for SBS,

c, —c, f"„~a„('dx c, —c, '~(u f"„(zo„)dx

(5.7)

where m is the energy density.
When the initial pulses are square pulses, as in Figs.

13-15, we have closed-form solutions for 1 o' and l p' .
From Eqs. (A14) and (B37)-(B40), we have for
c~ = —c3 and c2 =0,

r(3)(g) A2g(I2g2 A2)

r,")() ) =A,'(:(4I') '-A,'),
where A. =A('), I.(l) is the length of the laser (acoustic)
pulse, A3(A, ) is the area of the laser (acoustic) pulse,
and

(5.8a)

(5.8b)

I
sin' x'~' f 0x

(5.9)

Thus the reflection coefficient R for this model of SBS
will be, from Eqs. (5.5)-(5.7) and (A14)

ln(1+ r(') ),
7( 3 cl

(5.10)

where Q, is the initial amplitude of the laser pulse.
With Eqs. (5.5)-(5.7) it is possible to evaluate R by
quadrature, and some of the results are shown in Figs.
16-18.

From the analytic expressions given in Eqs. (5.8)-
(5.10), one ean directly deduce many of the properties
seen in the simulations and Figs. 16-18. First, if
we let Q, « Q3, keep Q„Q„and I fixed, and let I - ~,
we can then approximate the integral in Eq. (5.10), and
find that as we expect

1 as 1~00 (5.11)

(Note that even if we are limited to working only with
bounded envelopes, the inverse scattering method will
still apply to unbounded envelopes, if the proper limits
are taken. )

Second, the basic structure of the BS pulse can also
be deduced from I"f', which is the square of the mag-
nitude of (bP /aP ). This will follow since (b/a) is like
the Fourier transform (although nonlinear) of the po-
tential q (Ablowitz et al. , 1974). When the areas of the
laser and acoustic pulses are small, then lf' = I'O' I"o'
and the magnitude of (b/'a) will have a (sinx/x)' behavior
when the initial pulses are square pulses. This would
be consistent with a triangular-shaped pulse as seen in
Fig. 13. Large-area acoustic pulses will not have any
dramatic effects on 1"f' due to the denominator in Eq.
(5.6), but large-area laser pulses will. From Eqs.
(5.8) and (5.9), if A~ increases, say from 1 to 10, then
at ~ =0, j. o' will rise dramatically from an order of
unity to an order of e, with larger values of A., giving
even more dramatic increases. Now, for A&A, /1. , I(os).
is bounded by Am„while for 0& A. &A, /I, , I'(0') becomes
of the order of e2 3. Thus for A.,&&1, I'03 and thus
If take on a localiz ed structure almost a square
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I.O—

FIG. 16. Reflection coeffi-
cient for stimulated back-
scatter as a function of '

dent pulse width, for several
incident pulse heights.
A2(t = 0) is fixed at 0.2, and
Iqi2i«=0)I fixed at 0.1.
Note, on figure Q3

O.OI
O. I I OO.

shape. To obtain a qualitative estimate of what q
'

p y as what is the Fourier transform
of a square pulse. Of course, it is a s ' b h

ic is not shown)w, e p ase variation of b/'a (which ' t h
is ehavior, due tomust chop off the front ha1.f of this beh

causali y, so wp are left with a shape cons t' fconsis ing of an
rapid rise followed by rapidl dec

tions. Of course in the
i y ecaying oscilla-

i ns. course, in the fully nonlinear region we d 't
and shouldn't ex expect quantitative agreement, but we do
note that we do ho ave qual. itative agreement as c b
seen from the sm e simul. ations. Furthermore, since b ' a '
is coniinuousl diffy i ferentiable, we should round off the

, since f ~a&

corners of our s uq are pulse, in which case the Fourier
transform should vanish fast thas er an any power of x as
[x~ —~. We note this feature in the '

l

ood u
in e simulations giving

goo qualitative agreemen't again.

Third, from the
what fe

above argument, we can al d d
a,tures of the initial pulses will aff

so e uce

length of the nonlinear
wi a ect the wave-

o e nonlinearly induced oscillations in the BS
pulse. We ce can expect these wavelengths to be inversel
proportional to the width of I' 'o f, which by the above
is approximately A /'L =Q . In F' . l3 I3 3 n igs . 13—15 we show a
series of simulations where onln y, is changed. As can

e c ea,rly seen a.s , increases, the wavelength of
these oscillations decreases.

Collisions between l.ar e lge aser pulses and large acous-
tic pulses, or between large laser pulses and l.ar
backscatter ulsepulses give similar results. In both

ses an arge

very little of the laser pulse is transmitted. In all
s. n o cases,

cases, it is either the bbuildup or the presence of the
large acoustic pulse which limit th ti s e ransmission.
When it is sufficiently lar e thge, e acoustic pulse en-

I.O,

O.I—
FIG. 17. Reflection coeff
cient as a function of the
area of the incident pulse,
for several values of
e, -=I q"'«= oil.
)q'"&t=O&I=1, L,=2.

O.OI
O. I

I I I I I I

I OO.
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FIG. 18. Reflection coeffi-
cient as a function of A3 for
several values of I-2.

q (3~(t = 0) = l.
q"&(t=o) =O.1.

I I I I I

IO. IOO

provided that l is not too large. The region of ~ where

~21 (3) (y) & 1 (5.13)
will contribute a part t& A which is proportional to A„
and vanishes as A2 —0. But when A3 is sufficiently
large so that there is a region of A, (around zero) which
violates Eq. (5.13), that region can give a dramatically
large contribution to Q. To estimate this contribution,
we determine the value oi' A. at which Eq. (5.13) is just
satisfied, then estimate the integral by assuming
1~' (&)&&1 inside of this region. This region is defined
by &2&A2, where

A2 = (A' —B')/L'
and where B is the solution of

(5.14)

sinhB
B

1
A.3A2

(5.15)

hances decay of the laser beam into backscattered and
acoustic waves. The larger amplitude of the acoustic
pulse then causes further decay of the laser beam to
occur still faster, while at best the backscattered wave
simply leaves the interaction region. As it leaves, it
may interact with the laser beam to transfer energy to
the acoustic wave at an earlier point, which causes the
laser bea, m to decay even earlier.

Returning to Figs. 16-18, for the reflection coef-
fic ient R we note s ome inter es ting general features.
First, from Fig. 16, we see that at constant A„as the
height of the laser pulse Q, goes up, R goes down.
Thus compression of the pulse (which occurs in the
presence of anomalous dispersion) will reduce the back-
scattering. This reduction becomes almost inversely
proportional to the compression when R ~ 1. On the
other hand, from Figs. 17 and 18, we see that as the
area of the acoustic pulse A2 is increased, R increases.
This increase is very dramatic for A2«1, as is seen in
Fig. 18, and has the appearance of a threshold in A3.
We can solve for this threshold for A.,—0 and Q, «Q, .
From Eqs. (5.6), (5.8), and (5.9) we have in this limit

I.(Z) A2I (3) (5.12)

This region exists only if A3&B, so A3 =B is then the
thr eshold value of A3 for R to bee ome nonz er o. Thus
the threshold occurs at

A.„=sinh "(I/A, ) .
When A, &A„, one finds that

(5.16)

R =1- —sin ' -— —— 1 ——,

] ~ (] —B2/Q~)~~2

mA 1 —(1 —B'/A~)" (5.17)

where, for our estimates to be reasonable, we must
require

sinhA3» 1,
A, A, «1.

(5.18a)

(5.18b)

I m

4(A23 —B2) ' (5.18c)

If Eq. (5.18c) is violated, then (5.12) must be replaced
by

I 2s~n2P. (3)
2 2Ig 0

in which case Eq. (5.17) becomes an upper bound for R
instead.

(5.19)

When one compares Eq. (5.14) with the results in Fig.
18 one finds that Eq. (5.17) approximates these curves
very well, with an absolute error in B of no more than
0.02 when & is less than 0.1; the approximation is even
better when R&0.1. Also, we note that Eq. (5.17) does
not give R- 1 exponentially, in distinction to the case
treated by Mannheimer (1974)and Fuchs and Beaudry
(1976). This arises due to the differences in the boundary
conditions, where they are considering a static slab georn-
etry and we are considering traveling pulses inside of a
plasma.

We note that Eq. (5.12) is valid only if l remains
bounded so that 1 0' rem'ains essentially constant for
A. &A . For this to be so, we must also demand
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We may derive the reflection threshold in an alterna-
tive fashion if we ask for the conditions under which the
linear undepleted pump solution of Eqs. (1.3) becomes
invalid. The linear solution is a, (t) =a,.(0)e",a„(t)
=a, (0)e"' with y = ~Aa;(t = 0) [ at the point of maximum
growth. The condition that depletion be important
across the width of a„ is L3(&a;/&x) =a;. Substituting
in Eq. (l. la) and assuming an interaction time of
&,/(v, —v, ), we find that the threshold amplitudes obey
&» exp(A3) =2 '". This is approximately the same as
Eq. (5.16).

Introduction

In this Appendix we outl. ine the IST method for solving
the three-wave resonant interaction (Zakharov and
Manakov, 1973; Zakharov and Manakov, 1975; Kaup,
1976a) and discuss those features which we have found
useful. For the IST, it is convenient to work with the
three-wave equations in the form (see Secs. IID and
11E)

Q1, + c1Q1„—y1Q3 Q3,

Q.&+ c,Q,.=y, Q.*Q,*,

(Ala, )

(A lb)

where Q;(x, t) are the slowly varying envelopes, c; are
the corresponding group velocities, which satisfy

C, &C, &C, , (A2)

yi —sgn(Er x ~, ) (A3)

where E; is the energy of the ith wave, and co; are the
resonant frequencies, whose relative signs are de-
termined from

Note that Eqs (Al) defer from those by Kaup (1976a) by
a factor of i.

To solve Eqs. (Al), one first considers the Zakharov-
Manakov (ZM) eigenvalue problem defined by

-sv ~„+V~2v2 + V~3 ~
= -c~fv»

2& 21 1 33 3 2 2 &

~VS~+ 3x i+ 32 2 3" 3 ~

(A5b)

(A5c)

where v =[v„v„v3] is the eigenvector, f is the eigen-
value, the c; are again the group velocities, and V;,.
are the "potentials, " given by

-iQ1V„= ', V„=-y,y, V,*„ (A6a)

-iQ3
31 g( C )(C C)I 13 yly3 319

-i@~
13 g(c c )(c c ) 31 1 3 13 '

(A6b)

Define Cr"r(n = 1, 2, 3) to be the linearly independent so-
lutions of Eqs. (A5) which satisfy the boundary condi-

APPENDIX A: ZAKHARGV-MANAKGV EIGENVALUE
PROBLEM FGR THE THREE-WAVE INTE RACTI GN

tions

4," —5", exp(-ic, &x) as x- -~ .
Then as x-+~, these sot.utions will approach

4I"r -a„j(&)exp(-ic, .&x) as x-+~
which defines the "scattering matrix, "

S(&) =[a. (&)].

(A7)

(A 8)

(A 9)

In going from Eq. (A5) to Eq. (A9) the potentials
Q„Q„Q, have been mapped into the scattering data S.
For infinitesimal potentials [the linear limit of Eq.
(Al)], the diagonal elements of S become unity and the
off-diagonal elements become simply the l.inear Fourier
transforms of these potentials (the Born approxima-
tion). When the potentials are no longer infinitesimal,
then S is no longer so simpl. y related to the potentials.
But, the relation is nonetheless of such a for m that the
time dependence of S [which follows from Eqs. (Al)
and (A5) —(A9)] is simply

a„(f, t) = a„(f,0) exp i etc, c3c3
1 1

cm cn
(A 10)

This time dependence for S is exactly the same as that
for the linear limit. The nonlinear equations of motion,
(Al), have been transformed into linear equations of
motion in scattering space. Furthermore, knowing
S(g, t), it is possible to reconstruct the potentials at any
later or earlier time, by using the "inverse scattering
equations" (Kaup, 1976a). However, since we shall
never explicitly need these equations, they shall not be
given here.

Q~~ +SAN~ = Q'M~ q

~2x —&~+P —~1. -

(A 1la)

(A 1lb)

Similarly, one can also consider the region where
only P, is nonzero as well as the region where only Q3
is nonzero. In these cases, we again find that Eq.
(A5) reduces to Eq. (All). Thus when the envelopes
are all. initial. ly well separated, it is not necessary to
solve Eq. (A5), but only to solve (All) in each of these
three regions. Now, to solve Eq. (Al), it is still
necessary to find S as given by Eqs. (A7)-(A9). But
this S can also be given in terms of the scattering data

2. Reduction to the second-order ZS problem

Although it does give us the formal solution of Eq.
(Al), the ZM problem is unwieldly. Fortunately, we
can simplify things. Anytime the three envelopes are
well separated (such as happens in general when
t- + ~), the scattering data for Eq. (A5) can be given
in terms of the scattering data of the simpler Z & eigen-
value problem. To see how this comes about, consider
Eq. (A5) in a region of space where Q, and Q, are zero,
but Q, is nonzero. Then by Eq. (A6), the only nonzero
potentials (in this region) are V» and V, . We see that
Eq. (A5c) is now trivial to solve, with v, uncoupled
from v, and v, . Also, Eqs. (A5a) and (A5b) then con-
stitute only a second-order system, which upon taking
out appropriate phase factors, scaling v, and v„and
scaling the eigenvalue gives us the ZS eigenvalue prob-
lem, Eq. (2.1),
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S=S 'S 'S" (i,j, k=1, 2, or 3),
where

(A 12)

0 0

S(l) — 0 ~(l) y(l)

p g( l) &( l)

of the three ZS eigenvalue problems. One finds that if
at some time the envelopes have negligible overlap,
with the ith envelope to the right of the jth envelope
and the jth envelope to the right of the kth envelope,
then S may be factored as

s =s,'"s'"s(" .
Setting these two expressions for S equal, we find

(A16)

g(3)f
~(3)f
g(2)f
~(2)af

+a
~(2)~(3)

(3)f [ (s)b(2)—(x) b(x)b(s)] ( 2 ) (2)
0 0

(A17b)
y(l) g(2)

&g(3)/(2)b(» +b(3)b( ) ex ( 2ig(~)c f )I f o 0 +
af a, a,

(A17c)

p b(»

S'" = 0 S 0

g( 3) y(3) p

S(3) = b(3) a(') 0

(A 13b)

(A13c)

where tf is the final. time, and the arguments of the ZS
a's and b's are understood to be the corresponding ~'s,
given by Eq. (A14). Al. l of our results concerning the
exchange of solitons, the exchange of radiation density
(or action), and the exchange of areas will follow
from Eqs. (A17).

0 0 1

and a ",a ",b ",b " are the ZS scattering data (see
Appendix B) for the nth envelope, where for each en-
velope, q, x, and ~ are given by

(1) ) 2) 3@1 (1) (1) +

4') =g(c, —c,)/2,

(2) @2 r(2) (2) +

[( )( )J
/

= ) 'Y

)(s) g(c c )

(A14a)

(A 14b)

q(3) yl 2~3 Z(3) —y y q(3) +

C3 —Cl C3 —C2

)(. = &(c —c, ) (A14c)

Thus, when we can ignore the overlap between the en-
velopes, we need only to solve the ZS eigenvalue prob-
lem for each envelope, using Eq. (A14) for the poten-
tials and eigenvalue, and then to construct S ~ using
Eq. (A13), which then gives S by Eq. (A12).

If one is not interested in the intermediate state of
the system and only desires to know what the final en-
velopes will be, one never needs to use the ZM eigen-
value problem if the initial envelopes have no overlap.
In such a case we express the final ZS scattering data
directly in terms of the initial ZS scattering data.

If at t =0 the envelopes are ordered (3, 2, 1) from left
to right (if any envelope is zero, it does not matter
where it is placed), then

s =s'"s'"s'"
0 0 0 (A15)

where the subscript "0" indicates the initial value of
the ZS scattering data for the initial envelopes. This
determines S at all subsequent times by Eq. (A10). If
the envelopes separate (sufficient conditions will be
discussed later) as f- ~, we have

3. Relations between initial and final ZS scattering data

4. Soliton, action, and area exchange

The bound-state eigenvalues are given by the poles
of b(+)/a(&) [zeros of a(&)] for & in the upper half plane.
From Eq. (A17a) we see that the zeros of a(O2) and a(o')

become zeros of a&(3). It then follows from Eq. (A17b)
that af(') has no zeros. From Eq. (A17c) we find that
zeros of a,' and a,' become zeros of af' . Thus soli-
tons in the slow or fast envelope are never lost from
their respective envelopes. The middle envelope al-
ways loses its solitons, giving solitons to both the slow
and fast envelopes. This process is pictorially de-
scribed in Fig. 1.

In the SBS case, the middle envelope can never con-
tain any solitons, so this exchange will never occur.
This is due to the sign of the y's given by Eq. (A3),
which by Eq. (A14b) gives r ' =+q ') *. [The ZS case
where r =+q* can have no eigenvalues (see Appendix
B2).] But, in the explosive and soliton decay cases,
Eq. (A14b) gives r ' =-q *, which does allow solitons
to exist in the middle envelope. When these solitons
are present they correspond to a linear instability (see
Appendix D). Furthermore, this can be the case only
when the middle envelope has the highest frequency,
which is a well known result. Also, we note from the
relations between the A. 's given by Eq. (A14) and from
Eq. (A17) that the eigenvalues of the solitons in the
final fast and slow envelopes, which have been received
from the middle envelope, are related to the eigen-
value of the soliton in the initial middle envelope by

g(l) 3 2 )(2)
c —c3 1

g(3) 2 Cl y(2)
3 1

(A 18a)

(A18b)

It follows from Eq. (A2) that these final eigenvalues will
be smaller than the initial eigenvalue &„

I et us now turn to the problem of determining how
action is exchanged between the envelopes. From Eq.
(B26) we know that the action for a separated ZS enve-
lope is composed of a radiation part %„and a soliton
part &,. To calculate the soliton part, by Eq. (B21b)
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we only need to know the bound-state eigenvatues, and
once we know how the solitons are exchanged (which
was discussed above), we then know how this part of
the action is exchanged. Before discussing this any
further and seeing how it is related to the global. con-
servation laws, let us look at the radiation part. For
this part, by Eq. (2.9), we only need to know I'(A. ), which
is defined in Eq. (2.5). Now, Eq. (A17) gives us the
final scattering data in terms of the initial scattering
data, so by Eq. (2.9) we can relate the fina. l I"s to the
initial. I"'s and a "cross term" Z, which we define to be

y, ,*,dx —y, ,*,dx = const,
«s OQ «s OQ

(A24a)

satisfied, but for the explosive case it is possible for
the denominator in Eq. (A22b) to become negative.
When this happens, Eq. (Bl) must be violated for the
final envelopes and jor we cannot expect separation to
occur. This point is discussed more fully in See. III.

As is well known, there are three globally conserved
quantities (in fact there are an infinite number) which
follow from Eq. (A. l). These are

g(1) g(3)(2)—(1) ~ (3) ~a a (A 19) yl t),"Q,dx —rf0, ,"(t,dx = const,
OQ ss OQ

(A24b)

If we now look at our three distinct cases, we have for
the soliton decay case, in which ('Y;) = (-, +, -),

OQ OQ

y2 (t)2d*@2dx —y0 (I)3d'(()3dx = const, (A24c)

r.(3) 1+ I'0 (3) I 0 I'0
1 I (1) 0 +

1 I ( ) +
0 + 0

(A20a)

r("r'"r(
0 0 0

Q Q 1 P(2)+
(A20b)

for the SBS case, in which (y,. ) =(, , ~),

f 1 (1 I(3))(1(1) 1(0) 2R g )

(1) (2) (3)

1+I"(3)
0

(A21b)

I (1)I (2) Z (3)
n n n

(1+1'(»)(&+I(») +
1 /I (»

f 1 P(l) P(2) I (3)
0 n —2ReZ

(1 + I'(")(1 +I'") 1 + r(3)

and for the explosive case, in which (y, ) = (-, —,-),

of which only two are linearly independent. We shall
now proceed to show that, in scattering space, Eq.
(A24) is not only globally conserved, but also pointwise
conserved, and that the pointwise conservation of the
radiation part is directly related to Eq. (A23). (A
linear example is the free-space Schrodinger equation,
where the probability density in x space is only con-
served globally, while in k space it is conserved point-
wise and globally. ) We go through the proof only for
Eq. (A24a). The proof for Eqs. (A24b) and (A24c) is
completely analogous. Using Eq. (A14) to convert
(A24a) to the ZS q's and Eq. (2.9) to convert into the
scattering data, we have

~(1) ~(2)
2t [y (c c') Q ()(( ll * g((l ) y (c c ) P ()((2) * )((2) )]

+y, (c, —c,) — d)((" in[1+ I'("]1
«s OQ

1-~,(c, —c,) — d)('" in[1+ I')]=const. (A25)

0 0 (I + In(1) )(1 + Ix(2) )(1 + It(0) )

The other two I'f's can always be obtained from the
above, from Eq. (2.5), and from the relations

a(1)a(2) a(1)a(2)a& af ——aQ a

a(2) a(3) a(2) a(3)a& a& ——ap ap

(A23a)

(A23b)

which follow from the 11 and 33 components of (A15)
and (A16). Examples of how these equations are ap-
plied for calculating the amount of action exchanged
are given in each appropriate section.

At this point, we can discuss the conditions necessary
for the envelopes to sepa~ ate, and therefore for Eq.
(A16) to be valid. Whenever Eq. (B1) is satisfied, it
follows that Eq. (B26e) is valid, and when (B26e) is
valid (as well as no bound states when x =+q*), then
unique solutions exist to the inverse scattering equa-
tions (Bll)-(814). Thus whenever Eq. (B26e) is not
valid, Eq. (B1) must certainly be violated, and the so-
lution of Eqs. (Bll)-(814) need not be unique and non-
singular. Consequently, in order to maintain Eq. (B1)
for the final. envelopes, it is necessary for the I'&3 's
in Eqs. (A20)-(A22) to satisfy Eq. (B26e). For the
soliton decay case and the SBS case, (B26e) is always

dg[y, ln(1+I' '
) —y, ln(1+I' ' )]=const.

Then from Eqs. (BVa), (B26d), and (A14), we find that
the integrand in the above equation becomes simply
2p, p, Z3 in~a ')a("

~, which by Eqs. (A13), (A15), and
(A16) can be shown to equal. 2y, y2y31n~a»~, where a» is
defined by Eq. (A9). By Eq. (A10), in~a, J is a constant
of the motion, not only globally, but also pointwise.
Thus we have

y, in[1 + I'(') ] —y~ in [1+ I' ' ] = const .
It follows in a similar fashion that

(A26a)

For the soliton part, we need only to consider the decay
interaction. (No soliton exchange can occur in the SBS
interaction, and if such an exchange occurs in the ex-
plosive case the envelopes never separate. ) For that
interaction y, =y, . Then due to the manner of soliton
exchange (Fig. 1), and the relation between the final
and initial eigenvalues, Eq. (A18), the soliton part of
Eq. (A25) is conserved independently for each soliton
exchanged. For the radiation part, we use Eq. (A14)
to replace the integration over the &'s by one over P
which gives
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y, in[1 + I' '
] —y, I n[1 + I" "] = const,

y, in[1 + I 'l
] —y, in[1 + I'l 'l

] = const,

(A 26b)

(A26c)

2. Specialization to r =+q" and to constant phase

For the three-wave probl. em we need only the two
cases where

are conserved for each and all real values of the eigen-
value, g. Of course, Eq. (A26) is only true when the
envelopes are separated. But if the final. envel. opes do
separate, then (A26) will still have the same value for
the final envelopes as it had for the initial envelopes.
This follows from the time independence of a» (as well
as a» and a»), or from the relations (A23) upon taking
the natural logal ithm and using Eq. (B26d).

Since Eq. (A26) is a pointwise relation, it shows that
in scattering space the exchange of radiation density at
one value of the eigenvalue g is independent of what is
exchanged at any other values of P. This is a conse-
quence of the fact that this inverse scattering transform
separates the original nonl. inear system into its "normal
modes, " consisting of solitons and radiation. Of course,
Eq. (A26) only gives us the relative amount of radiation
density which is exchanged. To determine the absolute
amount we only need to know I"f3, which is given by
Eqs. (A20)-(A22).

Finally, the last item which we shal. l. discuss here is
the manner in which areas are exchanged when q is real.
If we consider Eq. (A17) at P =0, then by Eqs. (B27)-
(B32) we obtain equations for either the tangent or the
hyperbolic tangent of the final area of each envelope
in terms of the initial area of each envelope. This gives
us another powerful relation describing the behavior
of the interaction.

APPENDIX B: THE ZAKHAROV-SHABAT
EIGENVALUE PROBLEM

1. The scattering problem

The general properties of the ZS problem have been
discussed in Ablowitz et al. (1974). Here we simply de-
scribe the major features which we shall need. The
potentials of the ZS equations (2.1) are assumed to satis-
fy the condition

When Eq. (B6) is satisfied, we have from the symmetry
of Eq. (2.1), if a and b can be extended off the real axis,

a(A. ) = [a(x*)]*,
b(a) =+ [b(A. +)]+,

(B7a)

(B7 )

and for x =q*

0- Ip(&)I &1 (88b)

When y =+q*,and Eq. (Bl) is satisfied, Eq. (2.1) is
self-adjoint. Thus ~ must be real, and no bound states
can occur. But when x=-q* and Eq. (Bl) is satisfied,
bound states can occur.

When arg(a;) is independent of x for each envelope,
the envelopes may all. be taken to be real, because only
the phase difference

arg(a;) —arg(a, ) —arg(a~) —arg(A)

is important (see Appendix E). This implies that the
q's and x's can all be taken to be real [Eq. (A14)].

Whenever q is real, the eigenvalue spectrum is
further restricted. Equations (2.1) and (2.3) then imply

a(-x +) = a +(a),

b ( a+) = b +(-a) .
(B9a)

(B9b)

Thus for the bound-state eigenvalues, the zeros of a
must either be pure imaginary or occur as conjugate
pairs. In the l.atter case, if ~~ is an eigenvalue with a
nonzero real. part, then there must exist another eigen-
value, call it &;, such that

so these components are not independent of a and b.
This also implies

T(~) =+ [p(&*)]*.

It follows from Eqs. (B4) and (B7) that, if A. is real, then
for x = -q*

q + z dx&~. (B1) (B10a)

by )
ikey

-a(A. ) e"~

Wronskian relations of the solutions of Eqs. (2.1) give

aa+bb = j. .
In analogy to p we define

(B4)

(B5)

This condition guarantees the existence of a(A. ), b(&) as
defined in Eq. (2.7). The other two components of the
ZS scattering matrix a(A. ) and b(A)are def. ined from

0
e as x--~,

Examples of this type of two-soliton solution. are the
"breather" of the sine-Gordon equation (Ablowitz
et al , 1974) and. the 0-w pulse in SIT (Lamb, 1971).
Furthermore, we also have

(B10b)

for these conjugate pairs.

3. The inverse scattering equations

The direct scattering problem for the ZS eigenvalue
problem is used to decompose each separated envelope
in the three-wave interaction into ZS scattering data.
In the inverse scattering problem, we are given the
ZS scattering data, from which we must reconstruct
the ZS potential q, which is an envelope in the three-
wave interaction. %'e shall. use only the inverse scat-
tering equations for calculating 1V-solitons. The gen-
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eral formal solution of the inverse scattering problem
is as follows. First one constructs E(x) A'(x, y) = P D„exp(-q y) exp(-q„x)

E(x) = g D~ exp(i 8~x) + — p(A. ) exp(iAx) dA. ,
w co

and then s olves the linear inte gr al equations

tC(x, p ) + 5 Se(x, s )p(s e X ) ds ='0,

A(x, y) —E'(x+y) — t I7(x, s)E(s +y) dh =0,
"x

where, if Eq. (86) is true,

E(x) =+ E*(x).

(8 11)

(812a.)

{812b)

(813)

QQ

+ PD, ds ds'K(x, s')
l S

x exp[-q, (s ss ') —q s]I,
(817)

The solution may be obtained by noting that K is of the
form

K(x, y) = Q J,(x)D„exp(-q„y) . (8 18)
k=1

Substituting this into Eq. (817), solving for J)„and using
Eq. (814), we find

Then one recovers q from

q(x) = -2K(x, x) . (814)
n

q(x) = P D, exp[-(q,-+q-„)x](1yK'),.~',
j,k=1

(8 19a)

Note that when p(&) =0 for A, real, the kernels in Eq.
(812), E(s +y) and E(s +y), become separable, allowing
a closed-form solution. This is the Ã-soliton solution.
A solution to Eq. (812) always exists and is unique
whenever (i) r=-q*, or (ii) r=+q*, no bound states
occur, and Ip(X)I & 1 for A. real. In case (ii), those
conditions are always satisfied whenever Eq. (81) is
satisfied. Thus if x =+@*, it follows that whenever
bound states occur or Ip(A)I &1, then Eq. (Bl) must be
vio1.a,ted.

Although Eqs. (8ll)-(814) do give the formal solution
for determining the envelopes from the ZS scattering
data, the information contained therein is not readily
accessible. However, as we shall see, there is stil1.
much information which can be obtained without the
use of these inverse scattering equations, which we
shall illustrate. We discuss the A-soliton solution in
Sec. B.4. In B.5 we show how one can determine the
action and area of an envelope directly from the scat-
tering data, thereby bypassing the need for solving
Eqs. (8 ll)-(814) in obtaining this information.

4. The ¹oliton formula and its numerical evaluation

When p(X) =0 for all real A. , the inverse scattering
equations (Bll), (812) are soluble in closed form.
The resulting solutions are called "2V-soliton formu-
las, "where N is the number of bound states. Of
cour se, the bound-state part of the spectrum of Eg.
(2.1) is only present in Eq. (811) when x = -q* [pro-
viding that Eq. (Bl) is satisfied]. This part of the
spectrum is cal1.ed the "soliton" part.

For the cases we consider the eigenvalues are a1.1.

pure imaginary. If we let

where the matrix A is

D, exp[-(q, + q), )x]
o;+n;

In particular, the one-soliton solution is

q(x) =-2q, sgn(-D, ) sech[2q, (x —'x,)],
where the phase x, is defined by

ID I
= 2q„exp(2q, x,) .

(819b)

(820a)

(820b)

n

K(x, y) = g D~ exp(-q, y)[exp(-q, x) +d~(x)],

we obtain a different form of the formula, for q. This
form is less convenient for numerical evaluation than
is Eq. (819) because it involves near cancellation of
large numbers.

Some care is necessary in numerically inverting the
matrix 1+%'. Because of their exponential dependence
on gkx, the elements of this matrix can be of very dif-
ferent magnitude. We handles this problem by a re-
scaling transformation of the form

(821)

M(x) =S(x)[1+A'(x)]T(x) . (822a)

After inversion of M, we recover the solution by

(1+%') ' =TM 'S . (822b)

One such transformation that we have found convenient
is

exp(2q, x)S;~
——exp(2q;x) 6; ., T„,= 5~, . (823)

When the phases of the solitons are well separ'ated, the
A-soliton solution is approximately the linear super-
position of the 6' corresponding one-soliton so1utions.

If, rather than using Eq. (818), we make the alterna-
tive substitution

A. g
——i q;

(811)becomes
n

E(x) = Q D~ exp(-q„x) .

With Eq. (813), Eqs. (812) now give

(815)

(816)

5. Information contained directly in the scattering data

Rewriting the ZS equations in integral form and eval-
uating the integrals asymptotically in g, we find
(Zakharov and Shabat, 1971; Ablowitz et al. , 1974)
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a(&) —1 — . q(x)r(x) dx+ 01 1
~ QQ

(B24)

q*q~x =g, +g„
m Qo

(B26a,)

where

Alternatively, we can use the analytic properties of a(K)
to get an integral representation

(~) - ~[l — '*'"p —
— 1"[1 pp] (B25)

i d(
k=1

Expanding Eq. (B25) asymptotically in P and setting the
coefficient of I/f equal to that in Eq. (B24), we can ex-
press the action directly in terms of the scattering data

b(0) = sinhA, (B3lb)

(-)"
a(0) = (B32)

where N is the total number of the zeros of a(A. ) in the
upper half-plane (and is also the total number of soli-
tons). Comparing Eq. (B32) with (B29a), we see that
when the number of solitons is odd (even), cosA. must
be negative (positive), which then specifies A to within2'. Knowing the N-soliton solution allows us to cal-
culate the areas exactly. The addition of radiation to an
X-soliton solution can change the area by at most + m.

withe still given by Eq. (B30).
From the integral representation of a(A. ), in Eq. (B25),

we see that for real q,

9I~ = 2i Q (A.P —A., ),

1'„=-Jl dA. in[1 + I'(A. )],
~ QO

and when r =+q*, I"(A.) is defined by

1+I'(A) = [1+pp(A. )]",
=[1 lp(A)l']",

(B26b)

(B26c)

6. The direct scattering problem: WKB and an exact
solution

First we sketch the WEB solution for bound states
which we use in the main text. When q is real, slowly
varying, has only one extremum, and does not cross
zero, then approximate eigenvalues can be obtained
from (Kaup, 1977)

= [aa(X)]".
By Eqs. (B4) and (B7)

(B26d) (q' —72)'t2dx = v n+—1
Xg (B33)

0~1'(A) ~~ if A. =real. (B26e)

U(x) =-
q dx.

w QO

Then the solution Q of Eq. (2.1) at & = 0 for r =-q* is

cos II(x)
(B26)

Note how Eq. (B26a) has naturally decomposed into a
soliton part, (B26b), and a radiation part, (B26c). Thus
given jA,);, and lp(A. )l for A. real, one can determine 9l
without recourse to the inverse scattering equations
(B11)-(B14).

In addition to g, when the ZS potential is real (or has
a, constant phase), one can also obtain the area under an
envelope directly from the scattering data. Recalling
that the Fourier transform of a function at zero argu-
ment is just the area under the function, and since
the reflection coefficient p(A. ) is like a "nonlinear
Fourier transform, " it is not surprising that p(0) is
related (nonlinearly) to the area. To show this, we let

where we have set ~ =&g, x„and x, are the classical
turning points, and n is an integer. Letting g- 0 in
Eq. (B33) allows us to determine the total number of
solitons, N, contained in the envelope, and this is

1 — 1N& —A+ —,
g 2'

where

(B34)

q dx

A. & 0.903, (B36)

is the total absolute area under the envelope. Of course,
when q does not cross zero, cos A. = cos X, and we have
complete agreement between Eq. (B34) and the sign of
(829a) as given by (B32).

When q does cross zero, the WKB condition for bound
states becomes more complicated. For example, if q
crosses zero once, we can have a complex eigenvalue.
In this case we never have any real turning points, but
still, one can show (Ablowitz et at. , 1974) that if

-s in II(x)

Thus from Eq. (2.3) we have the exact result of

a(0) = cosA. ,

b(0) = -sinA,
where

(B29a)

(B29b)

then no bound states can ever occur.
Lastly, we give the solution for a and b when the po-

tential q is a square pulse, as wel. l as the bound-state
eigenvalues when r =-q*. We take q to be nonzero only
when 1 &x&.L„and then to have the fixed real value
of Q inside of this interval. Then if we define

%=2( )=f xdx
m QO

[A2 ~ q2]1/2

for r =+q*, we find from Eqs. (2.1) and (2.3) that
B30

(B37)

a(0) = cosh', (B3la)

is the area under the envelope q. This result is closely
associated with the area theorem of McCall and Hahn
(1967, 1969) (Kaup, 1977). Similarly, for r = +q*, one finds

a(A. ) = —exp(iAI ) 1 —— exp(i&L, )2

A.
+ 1+ — exp -iAI (B36)
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b(A. ) =+, [exp(iA4) —exp(-ia4)] exp[ —iA(&, + I )],2i&

(B39)

where

(B40)

is the length of the pulse. Note that a and b are even
functions of &, and thus are analytic functions of A. , even
though Eq. (B37) has branch cuts.

When x = -q *, the bound s tates ar e given by the z eros
of a(A) for A. in the upper half A. -plane. To find these,
we define

k =&4

z = -iA.4.
Then Eq. (B37) becomes

(841a)

(B41b)

(B42a)

where A =@4 is the area of the pulse. Requiring a(A)
to be zero gives

.~ = -k cot@. (B42b)

One will recognize Eq. (B42) as being the same equation
as that which determines the eigenvalues of a Schrodin-
ger particle in a three-dimensional spherical well
(Schiff, 1955). To find the eigenvatues by graphic
means, one plots Eq. (B42b), draws a circle of radius
A. , the intercepts to which (for b and x positive) give
the eigenvalues, by Eq. (B41b). Note that in this case
of a square pulse, since Eq. (B42) also occurs for the
Schrodinger equation (whose eigenvalue, A.', must be
real), we know that A. cannot be complex in general,
and must be either real or imaginary. Thus no breath-
ers can occur. In general, breathers will only occur
when the potential is real if it has more than one
extr e mum.

b, (x, i) -=a, (x+v, i, i) .
The resulting equations,

(Cl)

d—b, (x, i) =p,Kb, (x+ (v, —v, )t, f)b, (x+ (v, —v, )t, t), (C2a)

b, (x, t) = -p~—*b,(x+ (v, —v, )t, f )b,*(x+(v, —v, )t, t ),

(C2b)

—b, (x, f ) = -p,K*b,(x + (v, —v, )t, t ) b,*(x+ (v, —v, )t, f),

no longer have partial derivatives with respect to x. By
writing our finite difference approximation in terms of
these transformed equations, we eliminate the restric-

APPENDIX C: NUMERICAL INTEGRATION GF THE
PARTIAL D I F FE R ENTI AL EQUATIONS

The numerical integration of Eqs. (1.1) has been
carried out using a stable (Reiman and Hers, 1975)
finite difference method.

We first transform Eqs. (1.1) to a set of equations
along the charac ter istics by substituting

t

c, =— (p, la, (x)l'+p, la, (x)l') dx,
ay OQ

(C3b)

provides a running check on the accuracy of our compu-
tations. Conservation of both quantities was generally
better than 0.01%. In addition, we used the exact solu-
tion of the space-independent equations (Armstrong
et al. , 1962), the solution of the linearized equations
for a, large amplitude pump, Eqs. (1.3), and the exact
Ohsawa-Nozaki soliton solution (Ohsawa and Nozaki,
1974) to initially debug and test the program.

The existence of explosive instabilities in solutions
of the equations made the use of a variable time step
necessary. The time step

&& = c/&II~, II'-+ Il~. ll' + II~. II'-,

where II ll„denotes a maximum over x and c is a con-
stant determined by the initial step size, was found to
work well even in the neighborhood of a singularity.
The choice of initial step size was constrained by the
existence of two time scales: 7', = I/IAAI, where A is
the largest amplitude present, and v2 = min(4;/v;),
where 4; is the width of the ith pulse.

The program was run interactively under the time-
sharing option (TSO) on MIT's IBM 370/165. The
interaction allowed for specification of the number of
time steps between pauses in the computation and for
specification of the data to be sent to the terminal and
to disk files during those pauses. It was sometimes
also found convenient to modify the time step s.ize
interac tive ly.

APPENDIX D: PHYSICAL INTERPRETATION GF ZS
SCATTER ING DATA

To find a phys ical interpretation, for the ZS scattering
data of each well. separated envelope, we consider the
effects of l.inear perturbations on the resonant equations
(Al). Replacing the 1, 2, and 3 in (Al) by x, Iu. , and
v, due to the symmetric form of (Al) we can analyze
all possible cases with one derivation upon permuting

tion on &x/&f imposed by the Courant-Friedrichs-
Lewy condition (Richtmyer and Morton, 1969). We
pay for this simplification by complicating the argu-
ments of the amplitudes on the right-hand side of the
equations.

The solutions to Eqs. (1.1) are known exactly for
initial. conditions independent of x. Preliminary exper i-
mentation using these initial conditions indicated that a
relatively high-order difference scheme was expedient
for obtaining reasonable numerical accuracy over
several periods of oscillation of the amplitudes. We
use a fourth-order Hunge-Rutta scheme to integrate
from one time step to the next. The arguments of the
amplitudes on the right-hand side of (C2) generally do
not fal. l on the points of a grid. We use a five-point
polynomial interpolation formula to calculate ampli-
tudes on grid points.

The existence of two conserved quantities,
a)

(p, l, ( )I' p, l, ( )I')d
~ QQ
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5Q~, +c~5Q„„=r„Q„*5Q„*,

5Q. , &+ c.5Q...=r.Q.*OQ.*,
(Dla)

(Dlb)

where 5Q~ and 5Q„are infinitesimal. To analyze the
linear properties of this system, since Q„ is now time
independent (due to c„=0 and no overlap), we may let
5Q~ and 5Q„* vary as e '"'. If we define v, and v, by

v. We consider first the ath envelope. In the re-
gion where it is nonzero, the p.th and vth envelopes are
zero, since they are well separated. We go to the
Galilean frame, where c„ is zero, and analyze the linear
stability properties of this envelope, as well as its
converting characteristics. AI lowing infinitesimal
amounts of the l/, th and vth waves to be present, (A1)
gives

5Q b I
. I-1/a

2iA,qc„exp " (x —c„t) as x-+~,
c~ —cv I

(D8b)

5Q,

5QP -Ic.I

'/'

2i A,~*c~exp (x —c„t) as x- -~,
Cg —cv

Of course, for every eigenmode of Eq. (Dl) with A.„ in
the upper half ~-plane, there is also a conjugate eigen-
mode for & =X~ in the lower half &-plane, where

(D9)

This mode is given by Eq. (B6)-(B8) and has the asymp-
totic forms of

5Q„= ' exp(iwx) exp(-i&et),
y'Ic~

I

5QP = ' exp(iax) exp(-i cut),c,
where

cg +cv~ = CO

2c~c„

then Eq. (Dl) becomes

v, „+iA.V, =qv, ,

V2 ~
—SAV~ =~~ q

which is exactly the ZS equation (2.1), provided we
identify

C~ —Cv

2C~Cv

K
Q' = P~ cM~

&'Ic,c.I

~=r. ~r. oq* (I e., ~ =+q*),
where

(D2a)

(D2b)

(D4a)

(D4b)

(D5)

(D6b)

(D10a)

2SA.q*cv
exp ' " (x —c~t) as x-+~.

C~ —Cv

Cp, &C„=O&Cv (D11)

Then Eq. (D8) is exponentially decaying in time and
(D10) is exponentially growing in time. Note also that
the spatial dependence as x- + ~ is always exponential
decay in x. Thus for the middle envelope, the existence
of a bound state in the ZS scattering data always cor-
responds to a linear unstable growth (and decay) mode.

Now, consider Eqs. (D8) and (D10) when the pump is
the slow envelope, and take

C@ &Cv&C„=O ~

(D10b)

Note that if Eq. (D8) has an exponential growth (decay)
in time, then Eq. (D10) has an exponential decay
(growth).

Consider Eqs. (D8) and (D10) when the middle enve-
lope is the pump, and take

o., = sgn(c„),
o.„=sgn(c, ) .

(D7a)

2ih.~cvexp .
" "(x—c~t) as x- -~

cv

For well separated envelopes, it is exactly Eq. (D4)
which is used in the inverse scattering theory to de-
compose the envelopes into the ZS scattering data, or
normal modes. We now see that this scattering data
must also be related to the properties of the linear
system, (D1), in the presence of the pump Q„.

First, we consider the bound-state spectrum of Eq.
(D4). This can only occur when x=-q* in Eq. (D6b)
(the r =+q* form is self-adjoint) and happens for all
envelopes in the decay mode, the middle envelope of
the explosive mode, and the "backscattered" envelope
in the SBS mode. If we have a bound state at & =&~,
with A~ in the upper half &-plane, then by Eqs. (D2),
(D3), and (D5), the eigenmodes of Eq. (Dl) have the
asymptotic forms of

In this case, Eq. (D8) is the growth mode (in time) and
(D10) is a decay mode. But note the spatial dependence
as x-+~. Now, Eq. (D8) has exponential growth in
x as x- —~, and (D10) has exponential growth in x as
x- +~. IThis growth is solely due to the phase factor
of ~x in Eq. (D2). The eigenstates of Eq. (D4) have no
growth, only decay. J Thus, for the fast envelope, and
similarly for the sl.ow envelope, the existence of bound
states do not correspond to any linear instabilities
(they have none). Rather, they correspond to a growth
rate only when the perturbation is exponentially growing
in x.

I et us now turn our attention to a physical interpreta-
tion of the continuous spectrum of the ZS scattering
data. To do this, we shall simply scatter infinitesimal
waves off of the pump. From Eqs. (2.1), (2.2) and
(D2), (D3), (D5), we want to consider the physical sit-
uation where

5Q„ exp I-im(t —x/c~)] as x- -~
0

(D13)

(D8a) and then we will have on the right
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5Q a(A. )Ic, I
''exp[-i&u(t —x/c, )]

5Qp b(A. )Ic, I
''exp[-i(u(t —x/'c, )]

(D14)

where A. is given by Eq. (D5). First, consider the case
where the pump is the middle envelope, and l.et

c00 00'cp (D15)

c~+c„+ 0~ (D16)

we have p, =3, v=2, and v= 1. In this case, Eq. (D13)
gives the incident wave as being 5Q„ then a(A. ) is the
physical transmission coefficient and b(A)Ic, /c, I'' is
the physical. conversio'n coefficient.

APPENDIX E: THE PHASES IN HOMGG ENEOUS
INTE RACT I GNS

Express

a. = Ia. I exp(te. )

= IIfIe*" (E2)

with Q~ and v real. Taking the real and imaginary parts
of Eq. (1) we get

so that & and ~ will have the same sign. By our con-
vention (A2), p =1, K=2, and v=3, and we can interpret
Eqs. (D13) and (D14) as follows. In (D14), 5Q, is a,

wave incident on the pump from the right, of amplitude
Ia(A. )I Ic, I

" ', while 5Q,* represents the amount of the
fast wave which has been produced by the interaction
of 5Q, with the pump. Meanwhile, Eq. (D13) simply
represents that part of the incident wave which is
transmitted through the pump. Therefore, I/a(A, ) is
the physical transmission coefficient for this system
and [5(&)/a(&)]c,/c, I'' is the physical "conversion co-
efficient, " 5Q, /(5Q, ),, Of course, if the pump has
any linear instabilities, we can only consider the above
as a gedanken experiment and not as an actual physical
experiment.

For the fast or slow envelope as the pump, no linear
instabilities are present. Considering the slow envelope
and taking

The initial phases enter the equations only through 8.
We can alter the initial phases in any manner that does
not change 8, without changing the interaction.

When one of the amplitudes is initiall. y zero, the
phase of that ampl. itude is undefined at t =0. We must
examine Eqs. (1.1) in the neighborhood of t =0 to de-
termine the initial 6. There are two cases.

(1) a;(x, t =0) =0. Then

a; (x, D t) =p; Ea, (x, t = 0)a~(x, t = 0)A t (E 6a)

y,. (t = At) = ar g (p; ) + v + p; (t = 0) + g~ (t = 0) . (E6b)

If P; =1 then 8=0. If P; =-1 then 8=m.
(2) One of the low-frequency amplitudes is initially

zero. Without loss of generality we take a~(x, t =0) = 0.
Then

a„(x, ~ t) = -p~K*a; (x, t = 0)ap(x, t = 0)D t,
y„(t =&t) =m+arg(p„) —v+Q;(t =0) —g, (t =0) .

(Era)

(EVb)

If p„= 1 then 8 = 7]. If p„= -1 then 8 = 0.
Thus the phases have disappeared as an initial param-

eter of our interactions. We can choose the initial
phases to be anything we want without affecting the
interaction.

From Eqs. (E4) we see that if 8 =0 or 8 = v initially,
then the phases remain unchanged except when one of
the a,-'s become zero. In that case the argument of the
preceding paragraph can be applied again, and the
corresponding amplitude changes sign. When one of
the wave amplitudes is initially zero, we can choose
E and all the a, 's to be real at t =0. They will remain
real for al. l. time.

We have seen that for Ia, (x, t =0)I, Ia~(x, t =0)I
« Ia, (x, t =0)I the interaction is initially linear. The
solution to the initial value problem for t small can
therefore be expressed as the superposition of two
solutions, the initial conditions for each of which have
one amplitude initial. ly zero. For one of these solutions
we set a, (x, t =0) to zero and assume the given
a„(x, t =0). For the other solution we set a, (x, t =0) to
zero. The phases again initially adjust themselves
so that either 8=0 or 8= v. The argument now pro-
ceeds as before. We can again choose the initial-am-
plitudes to be real.

—+v; —a;Bt Bg

—+v& — a,.

=p, Isa, a» I cos 8,

= —pz IKa;a„Icos(- 8),

where

8 —v+ Q;+ Q~ —Q.

8 8—+v„— Ia„I =-p, Isa, a, Icos(-8),

(
Aa,. a~—+v, —y; =p, ' ' sin8,

Ot Bx -
' a]

8 8 Ka a~—+v —
&p =-p ' ~ sin(-8)

at ~ ex ' ' a,.

(
8 8 Qa ag—~v —@ =-p ' sin(-8)
og "og ' " a„ 7

(E3a)

(E3b)

(E3c)

(E4a)

(E4b)

(E4c)

APPENDIX F: NOISE-INDUCED SOLITON DECAY

Here, we shall briefly derive how arbitrary noise
levels in all three waves will induce the pump in the
soliton decay case to decay. We also calculate the
decay time as well. as the spread in the eigenvalue of the
pump. For simplicity, we shall assume the pump to be
a single soliton, although we shall not make this as-
sumption until after the general equations have been
derived. The general. approach wil. l foll.ow that of
Kaup (1976b) and Kaup and Newell (1978).

First, we shall determine how a small change in the
potentials 5V&z affects the scattering data. As in Kaup
(1976a), define %t~~(j =1, 2, 3) to be solutions of Eq. (A5)
which satisfy the boundary conditions:

4„' —5'„exp(-tc, gx) as x-+~, (»)
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and 4 ' to satisfy the boundary conditions in Eq. (AV).
%e define the corresponding adjoint states by

how the noise level affects these, we must look at the
r„eros of b» in the upper half g-plane, as well as the
residue of p '

B,t these zeros. At a zero of b»,

db» ——&b, ~+b~~&& =o, (F15)

(F2)

and correspondingly for 41(", where in (F2), e;,.], is
the totally antisymmetric tensor of rank three. Then
due to Eqs. (A5) and (Fl) 1[4,(].) 4,(i). g ) (F16)

where f),', =&b»/&g I. f we designate these zeros by f„,
then from Eqs. (Fll) and (F15),

g, (i)& C-l@,(~) gi

where denotes the matrix transpose and

C = diag[c„c„c,] . (F4)

where the subscript 0 on b,', and the third variable in I
indicates that these quantities are to be evaluated at

To calculate the variation in the residue of p ',
we must also take into account the change in 5g„. Thus

3
64,(i) p ~ 4, (&) (F5)

Inserting Eq. (F5) into the variation of Eq. (A5) then
. gives

As V = [V;;) is varied in Eq. (A5), 4(~) will also vary,
and its variation can be expanded in terms of the in-
dependent 4 's as

21 g 21 gg g 21

Then since D], is -i(b/a')», we have

cD ' =( ') 1*I D' I[c ' 4—' ' ' 0 ]

"z[c" x. s ]I
where

(F17)

(F18)

which with Eq. (F3) gives

dx4'"'" C '(oV)4 ' .

Then from Eqs. (AB) and (F5), since

+(u)w ~ @,(i)z

we have

5a =I[4("' 4"))

(F7)

(F8)

J[U W g ] = i dx —[U C '(5V) W) . (F19

To evaluate the decay time of the pump due to noise,
we assume that the noise is turned on at t =0, that only
the initial noise causes the decay, and that initially
q ' = q ' = 0, and q

' is a one-soliton solution. Now to
lowest order, we may evaluate the integrals in Eq.
(F18) by using the unperturbed states. Thus we can
reconstruct the solution of the ZS equation, from which
we may construct the solution of Eq. (A5). Then we
have

0 b"
where

f[U, W) =—i U C (5V)Wdx.

b 0 1 0

b(2) 0 ~(2)

(F2Oa)

Defining b;, to be the inverse of a;, , then

f[@(9) @(])] (F11)

This allows us to calculate the change in the scattering
data due to variations in the potentials.

For the decay of the pump, since it must proportional-
ly distribute its energy and modes between the two
other waves, we need to consider only q ' to see what
is happening. As t-+~, we have

(
. c+c,

exp -sgx

)( = -a '
1, exp( sic,x), -

(F20b)

(F2Oc)

(I"2od)

p(3)
b(3)
~( 3)

11

and thus

5p(s) Z[4, (].)

(F12)

(F13)

-c P

0
~

ccp(iLx' "), ' (F20e)

~-b @(i) b @(2) (F14)
where

Equation (F12) gives the effect of variations in 5V on the
radiation part of q ). In the decay case, we are more
interested in the solitons emitted into q 3). To find out (F21a)
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( y~ . ~2~ (1 —a~2')Z /0 t a +Z*Z (1~= e~p(-i~"&) „.—
/

~

+1+ZZ
~ ~

1+Z Z ( j
We let the 5q''s be white noise where

e„(u) e*'"da (F23)

(F21b) and

with

Dh)
Z =- —' — exp(2ixd'l)

2g 1

A. =—(i +i@i .
Then

1[@,(x) @(x).g ]

g[@(1) ~. g ] 4iq,

(F2lc)

(F21d)

, [6q'"Z+ 6q'" "Z*(Z*Z)],„j1+Z*Z '
(F22a.)

dx „exp 2ixA, ,
~ (2) ~'~

„1+Z*Z C —C

x [Znq ' +Z*Z6q ' *]. (F22b)

&e„(k)e (0')& =0,
&e„*(k)e (k')& = 6„5(k —k')E„'.

Then upon defining & and P by

D(2) 2 a ig
1

we have
i m

"
(k + 2d'I *)dk

4q, (c, —c, ) „k+2k~"*~
"sinh v

g 'f

~2 e exp i& - + c.c.k +2(~
g]

and since D~~' =0 initially,

(F24a)

(F24b)

(F25)

(F26)

( e, e e' exp i~

sinh n—
~1

a+ 2~'"
&3* exp -i D

2
u+ a~',"

sinh
4q

(F2V)

From Eq. (F26), we can determine how much spread
the noise level causes in the eigenvalue. Since ~,'~
= 2$, (c, —c,), we have from Eqs. (F21d) and (F26)

3-(c —c )
4q, (c, —c,)(c~ —c, )

&6&i& = «i&a

&6&i& =-'&IliEs ~

(F28a)

(F28b)

2E2
&& ln

q, (c, —c,) . c, —c, . c —c
C3 —C~ C3 —C

From Eq. (F27) we also have

(~ nD" ~') = sg, exp (z~ '
3 3.

2 1 Q2

C3 —C2san
3 1C —C

3 2 Q2
C —C 3

1

sin' '

C~ —C~ij
3

(F29)

(F30)

whereas the average position, X o', of the original q
'

soliton was given by

~(2) 1 a
0 2 (F31)

Thus the lifetime of q ' due to noise ls

Since Ai'~ =[(c,—c,)/(c3 —c,)]A~'l, from Eq. (B20b) the
average position, & 0, of the q soliton emitted by the
decay is given by

(F32)

which follows upon determining where the I ines given
by Eqs. (F30) and (F31) intersect.
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