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A graphical representation of angular momentum is used to evaluate relativistic matrix elements between
antisymmetrized states of many- particle configurations having any number of open shells. The anti-
symm0trized matrix element is expanded as a sum of semisymmetrized matrix elements, which can be
evaluated expediently in terms of radial integrals from easily constructed diagrams. The diagram
representing a semisyrnmetrized matrix element is composed of four diagram blocks, namely, the bra
block, the ket block, the spectator block, and the interaction block. The first three blocks indicate the
couplings of the two interacting configurations while the last depends on the interaction and is the
replaceable component. Interaction blocks for relativistic operators and commonly used potentials are
summarized in ready-to-use forms. A simple step-by-step procedure is prescribed generally for calculating
antisymmetrized matrix elements of one- and two-particle operators. A modified covarient 3-jm coeffecient
is also introduced along with certain new graphical notations. Although we focus on the case of jj-coupled
states, which comes naturally in relativistic formulation, the general procedure holds in any coupling
scheme.
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I. INTRODUCTION

A relativistic treatment including correlation and
quantum-electrodynamic corrections has become es-
sential in many fields of atomic physics; this requires
the evaluation of matrix elements with considerab&e
complexity. In particular, the possibility of forming
highly ionized heavy atoms and the study of their struc-
ture and of their collision and subsequent easeade pro-
cesses necessitate a complete treatment of couplings be-
tween several open shells. On the other hand, the appli-
cation of standard techniques of angular momentum cou-
pling in these problems becomes a tedious and more of-
ten arduous task. The purpose of this work is to provide
nonspecialists with a simple and powerful tool to express
complicated matrix elements in terms of radial inte-
grals, suitable for numerical computation.

One of the essential approximations in the quantum-
mechanical description of a many-particle system is the
central field approximation. Orbitals of the particles
can thus be represented by angular-momentum eigen-
states. The coupling of angular-momentum eigenstates
with irreducible tensor operators depends only on the
rotational properties of the states and operators involved.
This fact leads naturally to the division of the calculation
of a physical quantity into two parts: One consists of
dynamical variables invariant under rotations, and the
other is a geometrical factor depending on the rotational
properties of the physical quantity. It is the %igner-
Eckart theorem (Wigner, 1927; Eckart, 1930) which em-
bodies this notion. The geometrical factor is given by
the CLebsch-Gordan coefficient (also called the Wigner
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or vector co-uPling coefficient) or by a more symmetric
quantity, the Wigner y-j coefficieni (Wigner, 1951; Ed-
monds, 1957). Techniques for the solution of related
algebraic problems for many-particle systems have been
developed by Racah (1942a, 1942b, 1943). [Two other
equally applicable approaches have been described in the
works of Condon and Shortley (1935) and Harter and Pat-
terson (1976), respectively, but will not be discussed
here. ] However. the complicated algebraic manipula-
tions have prevented nonspecialists from carrying out
spec ific calculations.

Attempts to solve the complexity of angular momentum
couplings result in. graphical methods. In the early
stage, angular momentum diagrams were used only in a
qualitative and descriptive way (see, e.g. , Edmonds,
1957, and Judd, 1963). It was the achievement of Jucys,
Levinson, and Vanagas (1962) that a graphical method
was put on a quantitative basis so that angular moment-
um couplings can be solved in an expedient and elegant
manner solely in terms of diagrams. The graphical
method of Jucys et al. starts by assigning a graphical
symbol to the Wigner 3-j coefficient and compounds the
angular momentum coupling to 3n-j symbols . An al-
ternative method given by Danos (1971), however, focus-
es on the recoupling aspect and uses the 9-j recoupling
as the central graphical element. The former has been
particularly effective in extending the range of applica-
tion of Racah's techniques. 'The graphical approach
permits transformations on diagrammatic expressions
and leads on to analytical results in a clear and simple
manner. Besides its utility as a calculational tool, the
graphical method has the appealing feature of revealing,
at a glance, the structure of very complicated couplings
of angular momenta. In addition, we do gain in the
graphical form some physical insight, similar to the
visual understanding of physical processes provided by
Feynman diagrams. In fact, because of the role which
the graphical method plays in extracting the geometri-
cal part of a, Feynman diagram (Bolotin, Levinson, and
Tolmacher, 1964; Judd, 1967; El-Baz and Nahabetian,
1969), it becomes an indispensable supplement to the
Feynman diagrams, where a perturbed quantum-mech-
anical system is studied graphically.

The graphical method has been developed subsequent-
ly by Jucys and Bandzaitis (1967), Massot, El-Baz, and
Lafoucriere (1967), Brink and Satchler (1968), El-Baz
(1969), Sandars (1969), Bordarier (1970), Briggs (1971),
and E 1-Baz and Castel (1971,1972). E I-Baz and co-work-
ers have in particular extended the graphical method to
treat spherical harmonics, irreducible tensors, and
rotation matrices. The basic idea of El-Baz and pastel
(1972) consists in introducing graphical symbols for the
bra (covariant) and ket (contravariant) vectors familiar
in the Dirac notations (Dirac, 1930). The graphical
representation of the Clebsh-Qordan coefficient thus
becomes a straightforward extension of the bra and ket
diagrams. The graphical representation of the signer
3-j coefficient, first introduced by Jucys et al. (1962),
has been modified by El-Baz (1969) to better represent
its covariant property, using %igner's covariant nota. —

tion (Wigner, 1959). We will adopt this idea of El-Baz
with a modified phase factor to have a more coherent
correspondence between the %signer 3-j coefficient and

the Clebsch-Gordan coefficient.
A graphical treatment of antisymmetrization for the

evaluation of antisymmetrized matrix elements has been
given by Bordarier (1970) and Briggs (1971). Bordar-
ier's treatment is general and encompasses many dif-
ferent types of matrix elements, while Briggs using a
similar approach gives a step-by-step procedure for the
evaluation of matrix elements of spin-independent opera-
tors in the ~ coupling. An alternative treatment has
been given by Huang and Starace (1978) for a particular
case. The procedure of Bordarier and Briggs is, how-
ever, a little intricate between purely graphical steps
and manipulations which are better performed analy-
tically. For example, the antisymmetrization of par-
ticles from different subshells may be carried out an-
alytically with ease without resorting to a graphical
phase rule. Furthermore, the interaction diagram is
obtained in the Briggs' prescription. by expanding the
interaction operator in a complete set of particle or-
bitals, whereas a similar interaction diagram may be
obtained by considering directly the m-scheme matrix
element.

In this work, we will prescribe a simple step-by-
step procedure for evaluating antisymmetrized matrix
elements for one- and two-particle operators. Although
we focus on the case of jj-coupled states, which comes
naturally in a relativistic formulation, the general pro-
cedure holds in any coupling scheme. The underlying
idea of the present approach is to express analytically
the matrix element between anti symme&ized many -par-
ticle states in terms of matrix elements between semi-
symmetmzed many-particle states. The semisymmetri-
zed many-particle state is defined as the many-particle
state which is antisymmetric within each subshell but is
not antisymmetric with respect to exchange of two par-
ticles from different subshells. Henceforth, the matrix
elements between semisymmetrized many-particle
states are evaluated by a graphical procedure. The
graphical procedure consists of three major steps:
First, we construct diagrams for the two interacting
semisymmetrized many-particle states and decouple
active particles from the other particles to be referred
to as the spectator particles. Here the active particles
represent the typical particles which actually participate
in the interaction in a semisymmetrized matrix element.
Second, we insert the interaction block corresponding to
the interaction between active particles. The interaction
blocks for commonly used operators and potentials are
summarized in ready-to-. use forms in Appendix B. Last,
we evaluate the resultant diagram by factoring it into
basic diagrams representing 3n-j symbols, for which
analytical values have been tabulated extensively (Roten-
berg et a/. , 1959; Jucys et al. , 1962). Thus the antisym-
metrized matrix element is expressed as a sum of
weighted radial integrals.

The graphical notation and transformation rules used
in this work are given in Sec. II. The covariant 3-jm
coefficient is defined there. In Sec. III an analytical
procedure is outlined for evaluating the antisymmetrized
matrix element in terms of radial integrals. In Sec.
IV we describe in detail how the diagram representing
the semisymmetrized matrix element can be constructed
and evaluated. In Sec. V we summarize the procedure
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of evaluating antisymmetrized matrix elements. A
worked example is given in Sec. VI. Appendix A is a
glossary of definitions of terms used in this work; in
most cases they are identified in the text by italic letters
when they first appear. Graphical forms of commonly-
used operators and potentials are summarized in Ap-
pendix B. Appendix C gives the derivation of one of the
expansion formulas used in Appendix B.

I!. GRAPHICAL NOTATION AND TRANSFORMATION
RU L'ES

We first define angular momentum bra and ket states
and introduce their graphical representations in Sec.
II.A. The coupling of two angular momentum eigenstates
gives rise to the Clebsch, Goxd-an coefficient. The
graphical representation of the Clebsch-Gordan coef-
ficient is presented in Sec. II.B. In Sec. II. C, we de-
fine the symmetrized couaxiant 3 jm coef-ficient and
give its graphical representation. There the transform-
ation from a Clebsch-Gordan diagram to a 3-j m dia-
gram is also described. Rules to transform the com-
bined 3-jm diagram are given in Sec. II.D. Section
II.E summarizes some basic diagrams with their ana-
lytical values.

A. Bia and ket states

zero outside, we can therefore write l jm) in terms of
l j, m, j,m, & as

l jm& = Z I j,m, s, m, )(j,m,j,m, l jm). (2.5)
mi m2

Here the matrix elements. ( j,m, j,m, l jm) effect the
transformation between l j m) and

l j, m, j m ) and are
called Clebsch-Gordan, 8'igner, or vector-coupling
coefficients (Rose, 1957; Edmonds, 1957; Fano and
Racah, 1959).

Graphically we represent a ket (eontravariant) state
by a vertical bar with an outgoing arrow, and a bra
(covariant) state by a vertical bar with an ingoing arrow,

ljm) =

(2.5)

This notational rule is different from that employed by
El-Baz and Castel (1972). They use a single outgoing
arrow to denote a ket state and a double ingoing arrow
to denote a bra state, and a reverse in the direction of
an arrow indicates a sign. change of the magnetic quant-
um number in the corresponding state. In our notation,
we can present the orthonormality and closure relations
of angular-momentum eigenstates as

In the central field approximation, states of a quantum-
mechanical system can conveniently be described by
angular momentum eigenstates. Let

l jm) denote the
ket (contravariant) state which is the angular mo-
mentum eigenstate of both J and 4, , i.e.,

jrn jm =Z
jm

=5~..& ryj

Jm
I

(2.7)

(2.S)

(2.1)

The bra (covariant) conjugate to the ket state l jm& is
denoted by ( jml. The angular momentum eigenstates
l jm) form a complete orthonormal set and satisfy the
following orthonormality and closure relations.

(2.2)

where the summation over the magnetic quantum number
m is carried out graphically by joining the contravariant
and covariant angular momentum lines to form a single-
arrowed line. Similarly the projection operator in (2.4)
can be represented as

(2.3) (2.9)

l j, m, j, m, )(j,m, j,m, l =1,. ~
lflj m2

(2.4)

where 1, , is the unit operator in the j,j, subspace and&1&2

We note, however, that a complete description of a
state cannot be given in terms of the angular momentum
quantum numbers alone. In what follows, we shall not
concern ourselves with these further observables be-
cause they are supposed to commute with the angular
momentum operators.

We now cons ide r the quantum- mechanical system
whose angular momentum J is the sum of two inde-
pendent angular momenta J, and J2. The angular mo-
mentum eigenstates of (Z,'J„)and (J', Zm, ) are denoted
by lj,m,) and lj,mg, respectively; they satisfy similar
relations as (2.2) and (2.3). The Hilbert space spanned
by ljm) =

l ( j,j,)jm) can also be spanned by l j,m, j,m, )
= lj, m, & lj.m, &. By using the projection operator

Hence we can write the expansion (2.5) graphically a.s

Jm

J m

(2.10)

where the last diagram represents a Clebsch-Gordan
coefficient within a phase factor. The graphical repre-
sentation of the Clebsch-Qordan coefficient thus be-
comes a straightforward extension of the bra and ket
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diagrams (El-Baz, 1969). Furthermore, the phase fac-
tor of the Clebsch-Gordan coefficient can also be de-
fined unambiguously by adopting a graphical sign con-
vention; this will be given in the next subsection.

tation (Wigner, 1959), the covariant 3-j m coefficient (or,
simply, the 3 jm-coefficient) which is, e.g. , covariant
in the first two indices and contravariant in the last in-
dex, is defined by

B. The Clebsch-Gordan coefficient

In constructing coupled angular momentum states,
where the Clebsch —Gordan coefficient (to be referred
to as the C —G coefficient) occurs naturally, one finds
that the graphical representation of the C-G coefficient
is expedient to use. A graphical representation (E 1-Baz,
1969) of the C-G coefficient is given by

=(-)' -' -'.(2j +1)-"(j,m, j m, !~,m, ).
(2.12)

We emphasize that each component in a 3-jnz coefficient
is to be treated independently in changing its variance,
l.e.,

(j, m, j, m, ! j,m, ) =
Jz

(2.11) Contravariant: . = (—)' '
—PH,

Covariant: (2.13)
The notational rules are as follows:

(i) Each vertex indicated by a circle represents a, C-G
coefficient. Each covariant component is denoted by a
line with an ingoing arrow, and each contravariant com-
ponent by a line with an outgoing arrow. In labeling an
angular momentum line, the magnetic quantum number
is usually suppressed where no confusion may occur.

(ii) The plus (minus) sign at the vertex means that the
angular momenta are to be read counterclockwise
(clockwise). The change of the sign at the vertex (j,j,j,)
introduces a phase factor (—)'~

As in (2.8), the summation over a pa, ir of magnetic
quantum numbers is performed graphically by joining
the corresponding contravariant and covariant angular
momentum lines to form a single-arrowed line. Although
transformation rules for C-G diagrams have been given
(El-Baz and Castel, 1972), we will not present them here
because we will use the graphical representation of the
C-G coefficient only in constructing many-particle
states.

Because C-G coefficients are components of mixed
tensors, they are asymmetric when the r'oles of the par-
tieip3ting angular momenta are interchanged. A more
symmetric quantity can, however, be obtained by per-
forming an operation corresponding to raising and lower-
ing of indices in tensor algebra. This will be considered
in the following section.

C. The covariant 3-jm coefficient

The maximum symmetry of a vector-coupling coef-
ficient is obtained in the Wigner 3-j coefficient or sym-
bol (Wigner, 1951) which is defined by

where ( jm) can be any one of the three components in a
3-jm coefficient. Note that this definition differs from
Wigner's (Wigner, 1959) in that he used a different
phase factor. Our definition conforms with the definition
that the Hermitian (covariant) conjugate of a contravar-
iant tensor operator T,. is defined as

(2.14)

This choice of phase makes an improvement on the no-
tation for the Wigner —Eckart theorem (Wigner, 1927;
Ecka.rt, 1930). ISee (3.17) in Sec. III. C and the discus-
sion which follows. ] The definition (2.13) also differs
from the definition of El-Baz and Castel (1972) in that
our contravariant component is defined with the same
phase as their covariant component. This modification,
however, does not change the graphical transformation
rules presented in their work. We also emphasize that
the vector-coupling coefficient defined in (2.12) is
called "the covariant 3-jm coefficient" because of their
covar iance properties and m dependence. Accordingly
the name "3-j symbol" or "3-j coefficient" will be re-
served for the coefficient occurring in the hierarchy
of 3n-j coefficients, which have no m dependence. Def-
initions of 3n-j coefficients will be given in Sec. II.E.

By our definition, the Wigner 3-j coefficient is a fully
covariant 3-jm coefficient and is equivalent to the fully
contravariant 3-jm coefficient

(2.15)

~!=(—)'~ '2' ~(2j, +1) ' '(j, m, j,m, !j,m, ),
ml m2 ™3

where the contravariant component! j,m, ) in the C—G
coefficient is raised to become a covariant component.
Nevertheless, there are advantages in keeping the var-
iance of the components in a C-6 coefficient. ; this can
be accomplished by introducing the concept of eovariant
and contravariant components (Herring, cited in Wigner,
1959) of the Wigner 3-j coefficient. In the covariant no-

Note, however, that

(j, j, m~) (m, m, j,)
.)

Graphically we can present a 3-j~ coefficient as

(2. 16)

(2.17)

Rev. Mod. Phys. , VoI. O'I, Na. I, January 1979
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The notational rules are as follows:

(i) Each vertex indicated by a node represents a 3-jm
coefficient. Each covariant component is denoted by a
line with an ingoing arrow, and each contravariant com-
ponent by a line with an outgoing arrow. In labeling an
angular momentum line, the magnetic quantum number
is usually suppressed where no confusion may occur.

(ii} The plus (minus) sign at the node means that the
angular momenta are to be read counterclockwise
(clockwise). The change of the sign at the node (j,j,j,)
introduces a phase factor (- ) &''2' '3; therefore the sign
at the node may be suppressed if (j, +j, +j,) is an even
number. With these notational rules, other examples
of 3-jm diagrams are given by

(i) Add a bar, j, on the angular momentum j which is
unique in its variance character. The bar represents a
multiplication factor (2j+I)'~'.

(ii) The second (third) angular momentum A', counting
from j in the direction indicated by the sign of the C-0
diagram, introduces a phase factor (- )' if j is contra-
variant (covariant). We write a circle around the arrow
of the angular momentum line 4 to denote this phase
factor. When the angular momentum line & is joined to
another angular momentum line to form a linked line,
the circle representing the phase factor (-)' simply
changes the direction of the linked angular momentum
line k.

(iii) Fill the vertex into a solid node and change the
sign at the node.

Examples of such transformations are

m j j2 j3

PP2 g m 2 I3
(2.19)

,, m, .m, ) j,(m, +m, )
(2.18}

We note that the "current" of magnetic quantum num-
bers is conserved at each node due to the selection rule
for magnetic quantum numbers of the 3-jm coefficient;
for example,

An easy way to remember which angular momentum line
k introduces a phase factor (-)' is that the + (-) sign
in the C-G diagram indicates the upper (lower) angular
momentum line is to be assigned the phase factor when
the diagram is oriented as in (2.19). It is obvious that
this phase factor can be omitted when ~ is an integer.
Note the special case

j"-0
(2.20)

where we have the sum of the ingoing currents "m,"
+"m,"=the outgoing current "m, +m, ."

The notational rules for joining angular momentum
lines are as follows:

(i) The summation (or in the tensorial term "contrac-
tion") over a pair of magnetic quantum numbers, one of
zvhich is always conA avariant, and the other cova~iant,
is performed by joining the corresponding angular mo-
mentum lines to form a linked single-arrowed line.

(ii) The change in direction of a linked angular mo-
mentum line j introduces a phase factor (-)'~. As a re-
sult, we can suppress the arrow of a linked angular
momentum line j whenever j is an integer.

Although we do not write the magnetic quantum number
for a linked line, the summation over the magnetic
quantum number is always implied. Nevertheless, in
many cases because of the conservation of the "magnetic
current, " the summation implied by a linked line exists
only formally.

In this work, we will use C-6 diagrams to constr~et
many-particle states. The resulting C-G diagrams will
then be transformed into 3-j~ diagrams by a simple
procedure. To transform a C-G diagram into a 3-jm
diagram, we do the following:

with the sign at the vertex unchanged. Similarly, we
have the equivalence

J=0 j=0
(2.21)

D. Transformation rules for 3-jm diagrams

Transformation rules allow one to manipulate the
combined 3-jnzdiagram. There are only two funda-
mental transformation rules.

We will find frequent uses of these simple relations in
constructing many-particle states.

Rev. Mod. Phys. , Vol. 5't, No. t, January 1979
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Rule I: rive besides others the following additional useful rules:

P, (2.22)
a (2.28)

where a bar on the angular momentums stands for a
multiplication factor (2k+1)'~', and multiple bars for
multiple factors. For example, 3F indicates a factor
(2%+1). In (2.22) we use the blocks o. and P to repre-
sent arbitrary diagrams, either open or closed. By
oPe& or closed, we mean that the diagram either has or
hasn't any free nonzero angular momentum lines. For
example, in the following diagram

Oa
8

ko J,J,
Qa

The direction of the linked line j, in the right-hand side
of (2.28) may be remembered by noting that in the left-
hand-side diagram the "+"sign indicates the coupling of
j, toj, .

~ ~

~ a s ~ e

(2.23)

where the direction of the line & is immaterial.

(2.29)

the diagram block on the left is closed while the one on
the right is open. Vfe will use an encircled Greek letter
@to indicate specifically a closed diagram block.

Rule I follows from the graphical relation for 3-jm
coefficients,

(2.24)

(2.30)

where in the left-hand-side diagram the directions (or
variances) of the lines j„j„andj, are arbitrary so long
as they stay the same after the factorization.

which represents the orthogonality relation

Rule D:
(2.25)

(2.31)

J Ja fg, l7lg

+

(2.27)

(2.26)
where the right-hand side represents the product of the
two adjacent unconnected diagrams. Here the bar under
the angular momentum j& denotes a multiplication factor
(2j, +1) '~'. Also we will use multiple bars to indicate
multiple factors. To prove this rule, we simply note
that for a null block P, Rule 11 becomes

where, as in (2.30), the unspecified directions (or var-
iances) remain the same after the factorization.

The transformation rules I and II and the rules derived
from them allow one to join diagrams together or to fac-
tor out basic diagrams for which analytical values have
been. tabulated. Some of those basic diagrams are pre-
sented in the next subsection. In applying these trans-
formation rules to a particular diagram in hand, we can
change the sign of a node or the direction of a line along
with a compensation phase factor. The variances of open

- angular momentum lines may also be changed by noting
the relations (2.13), (2.15), and (2.16); however, trans-
formations of this kind are usually unnecessary. In
simplifying phase factors, it is useful to note that

j, +j2+j„j,+ ~„etc., are integers if j„j„andj, are
components of a 3-jm coefficient.

This trarisformation rule results from the rotational in-
variance of the corresponding matrix element.

From these two fundamental rules, we can easj. ly de-

E. Analytical values of some basic diagrams

(2.32)
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=2j+1,

l, —(2j +1) 1/2 5
m~m2 ~

=(2j+1)'"6

=(j, y, g, 3 —j symbol

1 d 11, i, l =-j,=(j,.j,),
0 otherwise

(2.33)

(2.34)

(2.s5)

(2.s6)

Further discussion of these 3&-j symbols may be found
in the works by Jucys et al. (1962) and by El-Baz and
Castel (1972). We emphasize that it is the topology of
an angular momentum diagram (i.e., how the various
lines in it are connected to each other) which deter-
mines its analytical value. Therefore by keeping the
topology, we can deform an angular momentum diagram
in any way without changing its analytical value.

A very complete tabulation of Clebsch-Gordan coef-
ficients can be found in Tables of the Clebsch-Gordan
Coefficients, compiled by the Institute of Atomic Ener-
gy, Academica Sinica (1965). Extensive tabulation of
the Wigner 3-j symbol and the 6-j symbol may be found
in the work by Rotenberg et al. (1959). This reference
also contains extensive references in the literature on
3n-j symbols.

1 j2 j3 6- j symbol,
, l, l2 l3

jl j2 j3
9 —j symbol .

k, k, k, !

In general, we have

(2.37)

(2.36)

II I. ANALYTICAL EXPANSION OF
ANTISYlVIMETR IZED MATRIX ELEIVIENTS

The method of evaluating matrix elements between
antisymmetxized many-particle states is outlined analy-
tically in this section. The part of the manipulation
which can be performed more expediently by a graphi-
cal procedure is presented again in detail with graphi-
cal representation in the next section.

In the Dirac —Fock or Dirac-Fock —Slater description
of a many-particle system, a confzguration is specified
by the number of equivalent particles occupying each
subshell. In general, there are N, particles in the sub-
shell j, N, particles in the subshell j~, . . . , Wz par-
ticles in the subshell j&, etc. Accordingly this con-
figuration is denoted by

' ' ~

l, l, l„1'&,
a, a,".a„}

(2.39)
which is defined as the 3n-j symbol of the first kind.
For & =1, 2, 3, it equals the ordinary 3&-j symbol
within a phase factor. We also have tlze 3u-j symbol
of t'he second kind

(jNgjN). . .jN)

For reference purpose, we may order the subshells in
a certain sequence (e.g. , 1s, i„2s,~„2p,~„etc;,for
atomic subshells) and refer them by successive values
of the index &.

We consider states of the many-particle system in
which each subshell ~ of equivalent particles is in a
definite subshell state with the total subshell angular
momentum Jz. Within a subshell ~, if there are sev-
eral states with the same total subshell angular mo-
mentum Jz, there will be additional quantum numbers
n z which are required to specify a subshell state unique-
ly. This coupling scheme is indicated by

(j."') &a. (j,"&) ~o' ' ' (j~ )a~~~

I, E„2
ll

k, k. ~ ~ ~ k.

All the total subshell angular momenta (Z, J~ &„. )
are. henceforth coupled successively to form a grand
total angular momentum J of the whole many-particle
system. After antisymmetrization, such a state is de-
noted by

l[(j.~)o..J'. (j,"&)o&~, . (j ~& )o.~~~ ] o.~~&, (3.1)

(2.40)

where n stands symbolically for the coupling scheme of
total subshell angular momenta.

We will first express the matrix element between
antisymmetriied many particle states (3.1) as a s-um of
matrix elements between semisymmetrized many-Pax-
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ticle states. As mentioned in Sec. I, the semisymmetri-
zed many-particle state is defined as the many-particle
state which is antisymmetri. c within each subshell but is
not antisymmetric with respect to exchange of two par-
ticles from different subshells. Each semisymmetrized
matrix element is then expanded in terms of jm-scheme
maA ix elements. After the evaluation of j~-scheme
matrix elements, we obtain the expansion of the anti-
symmetrized matrix element in terms of radial inte-
grals.

Ta, lmi (1963) and of Fano (1965), we can deduce the re-
sult

(V"') = I(j." )n.J. (in"')n~J& ' (j."')n.J. ' '

x(j~a)n„J ~ ~ ~ ] nJ M

I: (j ." ) n! J!' ' ' (j n
' }n'a J 'a ' ' '

&lj,"')n', J', - (j "~)n,'J„'~ ~ ]n'J'M'

A. Expansion of antisymmetrized matrix elements in

terms of semisymmetrized matrix elements abc cd
( V(2)) (3 '7)

We consider matrix elements of one-particle opera-
tors and two-particle operators in turn.

1. One-particle operator

We define the one-particle operator by

where the summation is over all distinct nonvanishing
pairs (ab, cd) with a ~ b and c ~ d, and ( V[' )„,~ is
defined as

( V(2)) ( )Pabcd
I

N (N 5 WP~I (Nl 5 )][./2

v, .

foal

(3.2)

From the general consideration of de-Shalit and Talmi
(1963) and, particularly, of Fano (1965), we can easily
deduce the result

x(I 1+~., ~., ] ' (q(o&)n JMI v[~, )J q'(cd)n' J'M')

—(1—5, [, )(1- 5,~Xq(&&)»MIv[~-, ~~l q'(dc)n'J'M') }

(3.8}
N

(&r)& ([(i")a=~ . (j" )n J ]a~&
k=1

[(s.")n.'z.' (s,'l)a,'el In'J'I')

with
b d

+
X=a+1 X-C+ 1

(3.9)

ab
(3.3)

(3 4)

with

+ab A~ .
X -e+1

(3.5)

Here (q(a)nJMI and I
q'(5)n'J'M') are semisym-

metrized many-particle states with definite particle
distributions specified by q(a) and q'(5), respectively.
Explicitly q(a) and q'(b) denote the particle distributions
in which the Nth particle (i.e., the active particle) is in
subshells a and &, respectively, while all the other par-
ticles (i.e., the spectator particles) assume the same
distribution in both states. We emphasize that how the
spectator particles are distributed among subshells is
immaterial so long as they keep the same distribution in
both states.

2. Two-particle operator

We define the two-particle operator by

Vgj

Also from the general consideration of de-Shalit and

where the summation is over all nonvanishing subshell
pairs (a, b) with each pair counted once, and ( V ['~),~ is
defined as

(V[») =( ) aa(N N', )'~'(q(a)n JMIv„Iq'(b)n'J'M')

Here (q(at[)n JM
I

denotes a semisymmetrized many-
particle state with the (N —1)th and Nth particles (the
active particles) in subshells a and b, respectively. The
states with the distributions q'(cd) and q'(dc} are defined
similarly. Again we emphasize that all of them have the
same spectator-particle distribution.

B. Expansion of semisymmetrized matrix elements in

terms of jm-scheme matrix elements

To evaluate matrix elements between semisymmetrized
many-particle states we need to single out those parti-
cles which actually participate in the interaction, i.e.,
the active particles Ithe Nth particle in (3.4} and the
(N —1}th and Nth particles in (3.8)]. This can be ac-
complished by fractional parentage expansions of the
subshell states involving active particles. With coef-
ficients of fractional parentage (:o be referred to as
c.f.p. ) as expansion coefficients, the semisymmetrized
many-particle state can thereby be expressed by a linear
combination of parent states. Each of these parent
states can then be decoupled into a product of two parts:
One contains active particles, and the other contains
spectator particles. These expansions and decouplings
enable us to express a semisymmetrized matrix element
in terms of jm-scheme matrix elements. We consider
the cases for one-particle operators and for two-par-
ticle operators in turn:

1. One-particle operator

To evaluate the semisymmetrized matrix element in
(3.4) we first decouple the semisymmetrized many-
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particle states as

&q(a)»MI =+ C.(p»M)&p q(a)l &al (3.10)

By means of the expansions (3.13) and (3.14) we obtain
the first semisymmetrized matrix element (the direct
term) in (3.8) as

I
q'(b)n'J'M') =2 C,(p'; n' J'M')I p';q'(b)&l ».

(3.11)

(q(ab)n JM Iv~, ~ lq'(cd)n'O'M')

=Z C., (p; n JM )C.,(p'; n'J'M') (p; q(ab)l p'; q'(cd))
pw'

x&abl „,,I
d). (3.15)

Here (p;q(a)l and Ip';q'(b)) denote symbolically the un-
coupled subshell states of the spectator particles, i.e. ,
the first (N —1) particles; (al and

I b), or explicitly
(j,m, I

and
I j,m~), are the orbitals of the active par-

ticle, i.e. , the Ath particle. The expansion coefficient
C, (p; nJM) or C, (p'; n' J ' M') stands symbolically, for
the product of a c.f.p. and all the 3-jm coefficients need-
ed in the uncoupling, and the summation index p or P'
for the summations over the c.f.p. and magnetic quantum
numbers. An explicit example will be given in (4.4) in
Sec.IV. 8 when we consider the graphical procedure. By
using (3.10) and (3.11), we can write the semisymmetri-
zed matrix element in (3.4) as

(q(a)n JM
I
v „Iq'(b)n'J'M')

c.(p; n JM)c, (p'; n'J'M')(p;q(a)l p';q'(b)) & alv I »

(3.12)

Here the matrix element (P;q(a)IP'; q'(b)) represents a
product of overlap integrals and is independent of the
interaction. The matrix element (al v„lb), called the
jm-scheme rnaA'ix element, depends on the interaction
and will be evaluated in the next subsection. Readers
may refer to (4.15) for the graphical representation of
(3.12)

2. Two-particl e operator

Here the matrix element(p; q(ab)lp'; q'(cd)) represents a
product of overlap integrals, and(ablv„, zl c@is a jm-
scheme matrix element. The second semisymmetrized
matrix element (the exchange term) in (3.8)can be expanded
similarly as (3.15) in terms of jm-scheme matrix ele-
ments. Readers may refer to (4.16) for the graphical
representation of (3.15).

C. gm-scheme matrix elements

In the last subsection, we have shown how a semisym-
metrized matrix element can be expanded as a sum of
products of two parts: One is the interaction-independent
part involving the coupling coefficients, and the other is
the interaction-dependent part represented by a jm-
scheme matrix element. The jm-scheme matrix ele-
ments for the cases of one-particle operators and two-
partiele operators aregivenby(alvNlb) and(ablv„, „Icd),
respectively. For specific operators, these matrix
elements can be evaluated analytically in terms of radial
integrals. The results for commonly used operators
and potentials are presented in Appendix Balong with their
graphical forms.

In general, any operator can be written as a sum of
products of irreducible tensor operators. Hence in
this- subsection for a general purpose, we consider o„
and &~, ~ to be irreducible tensor operators. The re-
sults are given in terms of reduced matrix elements
as follows.

We decouple the semisymmetrized many-partic1. e
states in (3.8) and obtain

(q(ab)n JMI = g C„(p;n JM)(p; q(ab)l (abl (3.13)

'f. One-particle operator

Assume the one-particle operator ~„to be an irre-
ducible tensor operator of degree j

and
v~ =T,.~(N) . (3.16)

I
q'(cd)n'J'M') =Z C, (p' n'J'1'')I p'; q'(cd)) I cd).

(3.14)

Here (P;q(ab)l and (P';q'(cd)l stand symbolically for the
uncoupled subshell states of the spectator particles, i.e.,
the first (K —2) particles; (abl and lcd), or explicitly
(j,m, j~m, I and I j,m,j„m„),for the states of the active
particles, i.e., the (K —l)th and Nth particles; C„(P;
n JM) and C,~(P''; n'J'M'). for the expansion coefficients
which are products of c.f.p. and 3-jm coefficients; P and
P' for all the summation indices involved. Explicit ex-
amples will be given in (4.'1) in Sec. IV. B. Note that here
a and b (also c and d) may represent either equivalent or
nonequivalent orbitals.

&aiv~l b& =
&j,m, I T,. I j,m, &

J
~

a j jb
(3.1'1)

Here we denote the angular momentum coupling by a
3-jm coefficient, and (j,ll T ~'~II j~) is the reduced ma-
trix element which is usually expressible as a sum of
weighted radial integrals for a specific case. It is of
interest to note that the bra (covariant) state (j,m, l

corresponds to the covariant component in the 3-j~
coefficient, and the contravariant operator T~ and the

By applying the Wigner-Eckart theorem (Wigner, 1927;
Eckart, 1930) we obtain the jm-scheme matrix element
in (3.12) as
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ket (contravariant) state
I j ~nz„& correspond to the two

contravariant components. No extra phase or weight
factor, besides the reduced matrix element, is carried
by (3.17), and the rotational properties of the matrix
element is clearly indicated by the 3-j~ coefficient.
Furthermore for the covariant tensor operator T,.
[defined in (2.14) as the Hermitian conjugate of T, ],
we have

The interaction strength X; (a; b) is defined accordingly
as

~, (~; b) =&j.ll
T"'

ll j,& . (3.21)

2. Two-particle operator

Readers may refer to (4.10) for the graphical represen
tation.

PB
Q

a b

(3.18)

For the case of a two-particle operator, we consider
an irreducible tensor of degree j which is the tensorial
product of two irreducible tensor operators acting on
two different particles, i.e.,

To emphasize the fact that the jm-scheme matrix
element is separated into a geometric part and a dy-
namical part, we rewrite (3.17) as

v~, ~ =T, (K 1,Ã)—

&j,m, j, m, l jm& T,. (N —1)T. (K)
m m 1 I 2 2

1

(3.22)
&a Ivnl b& =G, (a'bÃ;(a'b) ~ (3.1 9)

As before, by applying the Wigner —Eckart theorem we
can obtain the jm-scheme matrix element in (3.15) as

The geometric factor G,. (a; b), which corresponds to a
coupling diagram in the graphical representation and
will be called the interaction dhagxanz, is defined in
this simple case as =G. . . (ab; cd)X, , (ab; cd),

1
(3.23)

(3.20)

for which the graphical representation will be given in-

(4.11). Here the geometric factor G,. ;, (ab; cd) is given
1 2

by

(3.24)

and the interaction strength by

~;; ( b;n«) =&j. ll T "~'Ilj.&&jail T'"'llj~&. (3.25)

semisymmetrized matrix elements. In Sec. III.B we
obtained the semisymmetrized matrix element in terms
of jm-scheme matrix elements, which were later
evaluated in Sec. III.C. Here we summarize the results.

D. Expansion of antisymmetrized matrix elements in

terms of reduced matrix elements

In Sec. III.A we expanded the matrix element between
antisymmetrized many-particle states as a sum of

1. One-particle operator

For V~'~ =g,--, T,. (i), the antisymmetrized matrix
element (3.3) has been evaluated as

&o.JMI V"'I o.'J'M'& =Q (—)" &(N, X')' 'D,.„(ab)X.(a b) (3.26)

where the coupling coefficient D (a; b) is given by

DJ (a; b) = g C, (P; crJM) C~(P '; o.'J'M')&P; q(a)IP'; q'(b)& Gz (a; b) . (3.27)

2. Two-particle operator

For V~') =g„,. T, (ij ) with T& (ij ) .defined in (3.22), we can summarize the results for the antisymmetrized
matrix element (3.7) as

&oJM I V ~'
I o. 'J'M '

&
= g (-) ""[w. (iq, —5., )W". (m,' —5., )] 't'

a.b, cd

i1i2

Here the coupling coefficient Dz (ab; cd) is defined as

D, (ab;cd) = Z C„(P;nJ. M )C,~ (P'; n'J'M ')
& P; q(ab)IP'; q'(cd)&'G&, z ~ (ab; cd) (3.29)
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-with D, (a-b; dc) similarly defined. The interaction
strength X&, (ab; cd ) has been given in (3.25), and Xz,
(ab; dc) is given by a similar expression with c and d
interchanged .

IV.GRAPHICAL EVALUATION OF
SEMISYMIVIETR IZED MATR IX ELEMENTS

Evaluation of the coupling coefficients Dz (a; b) and

D, (ab. ; cd), given in (3.27) and (3.29), respectively, is
a formidable task. Although for many cases they may
be evaluated numerically (Gra, nt, 1973; 1976) by using
a digital computer, these coupling coefficients in gen-
eral have to be obtained analytically for each particular
case, especially for the analytical study of a matrix
element. In this section we will show how to obtain an
analytical expression of an antisymmetrized many-par-
ticle matrix element from easily eonstrueted diagrams.

In Sec. IV. A the graphical procedure of constructing
semisymmetrized many-particle states is illustrated
by an example. Section IV. 8 describes how to decouple
particles graphically from an antisymmetrized subshell
state. T'he bra and ket diagram blocks are also defined
there. In Sec. IV. G the jm-scheme matrix element is
considered. Its graphical, representation is defined as

the interaction block. Specific diagrams are given for
the cases considered analytically in Sec. III. C. Other
interaction diagrams for commonly used operators and
potentials are presented in Appendix B. In Sec. IV. D
the spectator block is defined. Evaluation of the joined
diagram, called the y'ecoupling diag&am, is described
in Sec. IV. E.

A. Construction of semisymmetrized many-particle states

The construction of diagrams for semisymmetrized
many-particle states can easily be carried out in the
C-G representation. The procedure is best demonstra-
ted by working with an example.

Consider a configuration having open shells, a, b, c, d,
and closed shells A., etc. A particular coupling scheme
of the open shells is represented by

where. f, , J, , J, , Z~ are the total angular momenta of
respective subshells, and the parentheses specify the
sequence of the couplings. These couplings can be given
analytically by

(4.1)

which corresponds to the graphical representation All the closed shells are represented symbolically by

I 0J
I

bJ
I

Hence the semisymmetrized many-particle state has the
graphical representation

I J, [ (J.Jn )J„(J,Jg )J., ]JM &

or simply,

(4.2a)

J),=0
I

=0
~ 0 ~

(4.3)

(4.2b)

where n denotes. the coupling scheme of the open shells.
From the above example we can generalize the follow-

ing graphical procedure for constructing the semisym-
metrized bra or ket states:

(i) Represent the grand total angular momentum by a
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line.
(ii) Draw two branches from the grand total angular

momentum and a small circle at the vertex. The two
angular momentum lines added represent the two angu-
lar momenta which are coupled to form the grand total
angular momentum. Write a-sign, + or —,at the ver-
tex to indicate the order of coupling-

(iii) Repeat step (ii), sta. rting from the new angula, r
momentum lines, until all subshells containing active
particles are decoupled.

(iv) Add angular momentum lines for closed shells.
(v) Mark appropriate arrows on the angula, r moment-

um lines.

where the c.f.p. [(j" ')n,J,j I nJ ] and the summation
over it are implied by the square at the vertex
(J,jJ ) . Tke ket block. is defined a.s the portion of the
dia. gram indicated in (4.6); a bra block is similarly
defined in the case of a covariant state.

2. Two-particle coefficient of fractional parentage

To single out two particles from a subshell we use a,

two-particle fractional parentage expansion, i.e.,

It is more convenient to construct bra (covariant) states
from left to right and ket (contravariant) states from
right to left. The so-constructed configuration dia-
grams are to be transformed into diagrams in the 3-jugal

representation by using the procedure given in Sec. II.C.
j" e J, j'J' eJ

B. Decoupling of active particles; bra block and ket block x (jmj rn'IPM'&(J2M2 O'M'I JM&

As states in Sec. III. B, we can single out active par-
ticles from a subshell by a fractional parentage expan-
sion. We consider two cases in turn.

x
I (j "-')n,J,M,&Ijm & Ij~ '

&,

where we have used the abbreviated notation

(4.7)

1. One-particle coefficient of fractional parentage

[(j -')n, J,(j ')J'I nJ] =- [j" '(n,J)j'«'»-I'fj" nJ]

(4.8)
To single out one particle from a subshell we use a

one-particle fractional parentage expansion, i.e. , to represent the two-particle c.f.p. The last expression
of (4.7) gives the explicit example for separating two
equivalent electrons from a subshell, which was given
symbolically in (3.14).

The graphical representation of (4.7) is given by

(j" ')~, J, ~ J

xl(j" ')n,J,M, &ljM& . (4 4)

Here to indicate more clearly the coupling, we use the
abbreviated notation

[(j" ')n,Jj InJ]-=I j" '(n,J,)jJI]j "nJ] (4.5)
Ket block

(4.9)
for the c.f.p. defined by Racah (1943).

The last expression in (4.4) gives the explicit form
of (3.11) in the particula, r case of one subshell. This
decoupling can be represented by the diagram

(j")aJ

where the two-particle c.f.p. [(j" )n2J2(j ) J'I n J] and
the summation over it are denoted by the double squares
at the vertex (J,J'J ). The ket block is defined as in-
dicated in (4.9); a bra, block is defined in the case of a
covariant state.

Tables of c.f.p. may be found in the works of Edmonds
and Flowers (1952), de-Shalit and Talmi (1963), and
Sivcev et al. (1974).

Ket block

C. interaction block

An. intexactien 5&t-"~ refers to the diagram block rep-
resenting (a v„lb& in the case of a one-particle oper-
ator and (ab v„,„)cd)in the case of a two-particle
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, operator. These jm-scheme matrix elements have
been given analytically for general cases in Sec.
III.C. Besides a dynamical multiplication factor, the
interaction stxeygggg. , the jyn-scheme matrix elements
depend only on the rotational properties of the interac-
tion and states involved. We present here the interac-
tion blocks for the general operators worked out in.
Sec. III. C. Specific examples will be given in Appendix
B. Again we consider two cases in turn:

1. One-particle operator

An elementary interaction is represented by an irre-
ducible tensor operator T, of degree j . Its jrn-scheme
ma. trix element was given in (3.19) and has the graphical
representation

a„J„
(I) (I; q(a)lP';q'(b))= ab Jb (4.12)

vrhere n„~„andot,',4,', are the states of subshells a
and b after the active particle has been decoupled out;
&zZ~ and o.~J'~ denote symbolically all the other sub-
shell states or groups of subshell states. From (2.32)
we know that (4.12) represents a product of Kronecker
deltas for the states involved, provided we use the same
orthonormal set of particle orbitals in both the bra and
ket states.

a, J,

(aIv „[b)= (4.10) abi Jb& a b~b

where the coupling coefficient G&(a; b) is represented by
the coupling diagram, and the interaction strength
X,. (a; b) is denoted by the cross "X" at the vertex
(j,jj, ). More complicated interactions can be expres-
sed as a linear combination of this elementary inter-
action.

(ii) (p; q(ab )i p'; q' (cd ) ) =

a,J a„'J„'

(4.13)

2. Two-particle operator
where the notations are defined similarly as in the case
(i). Another example is given by

We assume the elementary two-particle interaction to
be the irreducible tensor operator T&„(N—1, N) defined
in (3.22). Hence from (3.23) we obtain the graphical
representation

( 0; q(«)lb'; q'(cd) &

a.'J.'

&ab~ v v-i N ~ &d ) = (4.11)

a„'J„'
(4.14)

Here the cross "X" at the vertex (j,jj,) denotes the
interaction strength X, , (ab; cd); the bar on the angular

1 2momentum j represents the multiplication factor
(2j + 1)'~'.

D. Spectator block

A spectator block refers to the diagram block repre-
senting the scalar product of subshell states or groups
of subshell states which do not participate in the inter-
action considered in the semisymmetrized matrix ele-
ment. Examples of spectator blocks were given as
(p; q(a)(p'; q'(b)) in (3.12) and (P; q(ab))p'; q'(cd)) in
(3.15). As mentioned in Sec. III. A, the spectator par-
ticles have the game distribution among subshells in
both the bra and ket states. This fact implies that the
scalar product of the composite states can be written as
a product of overlap integrals for all subshells. Graph-
ically, we represent spectator blocks as follows.

where ~„g„is the state of subshell a after two active
particles being decoupled out by a two-particle fraction-
al parentage expansion.

The graphical rule implied by (4.12), (4.13), and (4.14)
is that we simply join together the corresponding
contravariant-covariant angular momentum lines in the
bra and ket blocks. Note however that this simple
graphical rule does not apply when particle orbitals in
the bra state are not orthonormal to those in the ket
state. In such cases we need an extra factor which is
the product of all the overlap integrals of the spectator
particles of the bra and ket states.

E. Evaluation of recoupling diagrams

In Sec. IV. A we demonstrated how to construct dia-
grams for semisymmetrized many-particle states, and
a simple graphical procedure was given. In Sec. IV. 8
we showed how to graphically separate active particles
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from a subshell. There the part of the configuration
diagram involving expansion coefficients and angular
momentum couplings constituted the bra block or the
ket block in the case of a covariant state or contravari-

ant state, respectively. In Sec. IV. C and IV. D, we de-
fined the interaction block and the spectator block; their
typical diagrams were given. Here we summarize the
results by the symbolic diagrams:

(i) (q(a)oZM I v„lq'(b)o. '&'Jlf ')
Spectator block

& p;q(a) I p;q(b)&

ab Jb
I i+ bl Jbl

~ ~ ~ 0 ~ ~ ~ ~ ~ ~I

~ ~ ~ \ ~ I ~ ~ ~ ~

I QC,(p;& JM )
P'

(4.15)

Bra block Ket block

&a lv„lb&

Interaction block

(ii) (q(ab)oJM (v~, „Iq'(«)n'&'half ')

Spectator block

&p;q(ab)lp'; q'(cd)&
+ol al

I

&b( Jbl

a,J,

J
Z C„(p;aJM)

(4. 16)

Bra block
&ablv„,, „lcd&

interaction block
Ket block

After extracting the interaction strength, c.f.p. , and
summations over them in (4.15) or (4.16), we are in
general left with a pure angular-momentum-coupling
diagram, i.e.,

J + J'

a'
(4.17) (4.18)

Here the double lines stand symbolically for all angular
momentum lines connecting two diagram blocks. By..
using the transformation rule (2.30), we obtain

The first factor in (4.18) represents a 3-jIn coefficient,
which is to be expected by applying directly the Wigner-
Eckart theorem to the semisymmetrized matrix ele-
ment. The second factor in (4.18) is a recouPling dia-
g&am. representing analytically a recoupling coefficient.
By using transformation rules given in Sec. II. D, we can
express the recoupling diagram in terms of products of
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3n-j diagrams whose analytical values have been tabula-
ted extensively (Rotenberg et al. , 1959, Jucys et al. ,
1962).

The most expedient way to factor graphically a re-
coupling diagram into 3n-j diagrams depends, of course,
on the particular diagram in question. A simple rule is
to look first for diagram blocks separable on one angu-
lar momentum line and then on two 2nd three angular
momentum lines.

V. SUMMAR I ZE D P ROCE DU R E FOR EVALUAT I NG
ANTISYIVllVIETRIZED MATRIX ELEMENTS

In this section the results of Secs. III and IV will be
summarized in the form of a step-by-step procedure by
which matrix elements of operators or potentials between
antisymmetrized many-particle states can be evaluated.
The prescription is given as follows.

(i) Follow (3.3) and (3.4) for one-particle operators
or (3.7) and (3.8) for two-particle operators to express
the antisymmetrized matrix element as a sum of semi-
symmetrized matrix elements.

(ii) For each semisymmetrized matrix element, con-
struct graphically semisymmetrized many-particle
states:

(a) Begin with the grand total angular momentum and
the two angular momenta coupled to it. Here we use the
bra state to illustrate the procedure:

(5.1)

(b) Repeat step (a) starting from 4, and J, until all
active subshells are decoupled. Closed shells are then
added separately. The resultant diagram is given
schematically as

(d) Repeat steps (a), (b), and (c) for the ket state.
(iii) Insert the interaction block between lines repre-

senting active particles, and connect the corresponding
spectator-particle lines in the bra and ket states. Here
the interaction strength in the interaction block can be
obtained analytically. A summary of the interaction
strengths for various commonly used operators and po-
tentials is given in Appendix B.

(iv) Transform the C —0 dia, gram of the bra and ket
states into the 3-jm diagram by using the transforma-
tion procedure presented in Sec. II. C.

(v) Transcribe analytical expressions from symbols
representing the interaction strength, the c.f.p. 's, and
the summations associated with them. The rest of the
diagram represents a standard recoupling diagram
which may be reduced to an analytical expression.
Transformation rules to reduce an arbitrary reeoupling
diagram to tabulated Bn-j coefficients is given in Sec.
II. D.

(vi) Repeat steps (ii)-(v) for other nonvanishing
subshell pairs, as given in step (i). The final expres-
sion of the antisymmetrized matrix element is thus ob-
tained by summarizing all the analytical expressions
obtained in step (v).

Vl. EXAMPLE

We illustrate the graphical procedure by an example:
Consider the C —AB; D Auger transition (Auger, 1925;
Bambynek et a/. , 1972) in a rare gas ion, where C de-
notes the initial vacancy in subshell C, and the final
state is characterized by one vacancy in each of sub-
shells A and B plus an outgoing electron D. This is one
of the de-excitation processes of an Btom with an inner-
shell vacancy, in which the transition energy from filling
the inner-shell vacancy by an outer-shell electron is
carried off by the ejection of another outer-shell elec-
tron. The transition probability amplitude is given in the
Dirac —Fock formulation by (Huang, 1978a)

T;g (C—AB;D) =( [~y(), ')o', J, (2g')ogden (2,')& J ] oJ'&I

(5.2)

Note that in constructing semisymmetrized many-par-
ticle states those subshells which neither contain active
particles nor involve coupling with other subshells con-
taining active particles can be ignored.

(c) Decouple active particles from respective sub-
shells by making use of the fractional parentage expan-
sions (4.6) or (4.9), e.g. ,

with

+ (o, ~ V,.)(n,. ~ V,. )

(6.1}

(6.2)

(j
' )a J„

(5.3)

where the bra state is the initial state and the ket state
is the final state with j~ the angular momentum of the
continuum electron. Here all the other closed shells
are denoted symbolically by J~. To focus on the essen-
tial feature, we assume that the same orthonormal set
of single-particle orbitals is used for both the final and
initial states. By applying the step-by-step procedure
in Sec. V, we evaluate the antisymmetrized matrix
element (6.1) as follows.
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Step (i): There is only one nonvanishing subshell pair,
i.e.

J,=o +

TV (C-AB;D) = 2 V;,.)i&j ab, cd

with

(6.3)
a -jo ~ ~ ~ ~ ~ B ~

and

N. =2j.+1;

N~ =2jq+1

A, =2j,
6'd ——0

iV', =2j,

(6.4)
J, =o

Initia I state

jb

Interaction Final state

(6.8)

Z (~~ —6~A)+ 2 (~~ —6~a )
X-c+ &

= (even number)- 1 + (even number)

=odd number . (6.6)

T. (C-AB D) =-[(2j +1)(2j +1)(2j +1)]'

Here we emphasize that (6.3) is true only when initial
and final states are chosen from the same orthonormal
set, otherwise more terms appear Fro. m (3.8}we can
rewrite (6.3) as

Here the interaction strength, denoted by the cross "X"
in the interaction block, of the potential (6.2) can easily
be looked up in Appendix B. Note that all the c.f.p. in
the diagram (6.8) are trivially unity although we retain
the c.f.p. symbols to illustrate the decouplings. Also
we have made use of the simple relations (2.20) and
(2, 21) in decoupling closed shells.

Step (iv): The 3-jm representation of (6.8) is given as

J, ,g J,

(6.9)

x((q(s~)cd[ y, , [q'(cd)~ J M'&

—(q(ab)aJM
~ V„,~ tq'(dc)n'O' M') }.

(6.6)

The coupling schemes, indicated implicitly by e and
a' for the initial and final states, respectively, have
not been specified yet. The initial state is composed of
closed shells with a vacancy in one of them and there-
fore has no term structure. The final state consists of
two vacancies and one continuum electron. We consider
the coupling scheme such that the two almost filled sub-
shells A and B are first coupled to form an ion core
specified by the total angular momentum J ~. The core
state is then coupled to the continuum orbital D. This
coupling scheme of the final state is given explicitly as

Step (v): We use the transformation rule (2.27) to
join the nonzero free angular momentum lines j, and &,

p +

Jj c Mmc

jb J

c ~J (6.10}

0 +
Jb

By applying the transformation rule (2.28) to the zero
angular momentum lines in (6.10), we obtain the simple
diag r am

Now we proceed to evaluate the semisymmetrized ma-
trix elements in (6.6) with the coupling scheme (6.7) for
the final state.

Q XJ (ab; cd)(2J', ~+1}'~'

A. Direct matrix element

For the first term in the curly brackets in (6.6), we
obtain the following.

Step (ii)-(iii): Because those subshells J„which neither
involve coupling with other subshells nor contain active
particles can be ignored, we obtain

j~ J,~

x[(2jBy1)(2jq+1)(2jD +1}]

(6.11)

Here we have used the fact that j„j~,j„andj„areal.l
half-integers to simplify the phase factor.
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B. Exchange matrix element

For the second term in the curly brackets in (6.6), we
proceed as fol.lows.

Step .(11)-(ill):

Step (v):

8 8Jjc Mrnc

o+ jo

+ o J, + Jd
~ ~ ~

(6.12)

0

Jb
0

j,

Step (iv):

o+ Jo + Jd + J

J

=&+& be (—)'~ 'u ~aa ZX', (ab; dc)(2J,~+1)'t'
j

ig,

xr(2j, + l)(2j~+1)(2j,+ 1)']
~. j&

C. Antisymmetrized matrix element

(6.14)

Jb ii

-Jb

(6.13) Step (vi): By substituting (6.11) and (6.14) into (6.6),
we obtain the antisymmetrized matrix element (the
transition amplitude} for the C-AB;D Auger transition
in a singly ionized closed-shell atom,

y/2 - ~c ~b ~ah ~& ~b

T,, (C-AB D) =6 - 6„ Ã,. (ab cd) . . + (—)'e 'a ~ed%, (ab; dc)'. (6.15)
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APPENDIX A: GLOSSARY OF TERMS
Clebsch-Gordan coefficient, Wigner coefficient

Alternative names for the vector-coupling coefficient.

Wigner 3-j coefficient or symbol
The symmetrized vector-coupling coefficient defined

by Wigner (1951).

Covariant 3-j m coefficient or symbol
The vector-coupling coefficient defined in (2.12) in the

covariant notation (Wigner, 1959).

3n-j coefficient or symbol
The 3-j symbol is defined as the triangular delta in

(2.36). The 6-j and 9-j symbols have their usual mean-
ings while the 12-j symbols and so on are not unique
(Edmonds, 1957; Jucys et al. , 1962; El-Baz and Castel,
1 972}.

3n-j coefficients or symbols of the first kind and of the
second kind

The symmetrized recoupling coefficients defined by
Levinson and Vanagas (1957). Their definitions are
given in (2.39}and (2.40), respectively. (Jucys et al
1962; El-Baz and Castel, 1972}.

Subshell
A collection of particle states having the same quantum

numbers n, l, and j (or n and ~). (See, e.g. , Grant,
1970; Lindgren and Rosen, 1974}.

Confi gurati on
A configuration is specified by the number ~q of

equivalent particles occupying each subshell ~ and can
be denoted by the aggregate (Nt).

Antisymmetri @ed many -Pa+Ncle state
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The antisymmetrized state of a configuration. In this
work, we mean exclusively the antisymmetrized gj-
coupled state in which each subshell of equivalent par-
ticles is in a definite total. subshell angular momentum
state and the whole many-particle system is in a definite
grand total angular momentum state. d'rU, V U~, (B1)

APPENDIX 8: GRAPHICAL FORMS OF OPERATORS
AND POTENTIALS

In this appendix we will consider the jm-scheme matrix
elements of one- and two-particle operators, i.e.,

&ntisymmetxized matrix element
The matrix element between antisymmetrized many-

particle states. (abI V„l«)-= d 'r, d' r,U t(1) Ut (2)V„U,(1)U~ (2),
(B2)

Semisymmet ized many-Paxti cle state
The many-particle state which is antisymmetric

within each subshell but is not antisymmetric with re-
spect to exchange of two particles from different sub-
shells.

Semi symmetrized maA. ix element
The matrix element between semisymmetrized many-

particle states.

and their graphical- representations.
Dirac orbitals in a central field can be completely

specified by the quantum numbers &, K, and m. For a
definite &, the total angular momentum quantum number
j and the orbital angular momentum quantum number l

of the large component, which determines the parity of
the Dirac orbital, are given as

A. ctive particles
Those particles which actually participate in the in-

teraction in a semisymmetrized matrix element.

Spectator Particles
Those particles which, as opposed to active particles,

do not participate in the interaction in a semisymmetri-
zed matrix element.

jm-scheme matrix element
The matrix element between uncoupled Dirac single-

particle orbitals.

1 iG„,(r) 0~F„,(r)Q (B4)

Here the radial functions G„„and+„,are the large and
small components, respectively, and satisfy the ortho-
normality condition

For example, the values & = —1, 1, —2, and 2 corre-
spond to s, g„P,g„P,g„and d, g, orbitals, respectively.
The magnetic quantum number m is associated with the
z component &, of the total angular momentum. The
Dirac orbitals in (Bl) and (B2) are assumed to be eigen-
states with definite «m and have the explicit form

Intexaction diag Jam
The geometric part of the jm-scheme matrix element

of an interaction, which depends only on the tensorial
properties of the interaction and states involved.

Interaction strength
The dynamical part of the pm-scheme matrix element

of an interaction. It can be expressed in terms of re-
duced matrix elements of tensor operators involved in
the interaction.

Interaction block
The diagram block representing the jm-scheme matrix

element of an interaction, including the interaction dia-
gram and the interaction strength.

Bra and ket blocks
The diagram blocks representing the angular moment-

um coupling of the bra and ket states, respectively,
of the many-particle system.

Spectator block
The diagram block representing the scalar products of

uncoupled spectator-particle states.

decoupling diag mam

The graphical representation of a recoupling coeffic-
ient.

dr(G„,G„,+E„„E'„„)=0„„

»vm =— »arm=~ (tile 2~ V I 2m) &)u (»)Xp
Np

(B6)

where &, are spherical harmonics, and g& are spin
eigenfunctions with s =1/2 and s, = p. given, for example,
by two-component Pauli spinors. We will evaluate (B1)
and (B2) in terms of radial integrals for commonly used
operators and potentials.

We first define various functions, notations, and co-
efficients and present a few useful formulas.

(i) Different combinations of radial uavefunctions

W, (r) =G, (r) G (r) E,(r)E (r)

&,~ (r) = G, (r)G, (r) —F,(r)F, (r)

V, ~ (r) = G, (r)E~ (r) +E,(r) G, (r)

U„(r)=G, (r)E (r) —E, (r)G (r)

F., (r) = U., (r) —"' . ' —V„(r)

The angular functions» in (B4) are normalized spheri-
cal spinors defined as
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(ii) Various radial functions:

R, (r, r, ) =r&'/r& '+'

where r& (r&) is the smaller (larger) of r, and r, '

(B8}

C, (ah; «& =(-)'~'" [(2j.+»(2j, +1)(2j.+1)(2j,+1)1"
~a ~ ~c ~b (B19)

a (r,r.) = i{vs i (~r& )h&({vr& ),
where j, and h, are the spherical Bessel and Hankel
functions, respectively.

(B9)
c,.„(o;r)=('")"c,.(o;o)(" .

'". ') . (B20)

v, (12) =e(r, —r, )[R, , (r, r, ) —R, , (r, r, )]

with e(r, —r, ) the Heaviside step function

1 x~o,
0 x&0.

(B10) 1,(~, m. , ~, m, )=

= m(l, j l, )C,. (a; t ) .

(v) The vector-spherical-harmonics expansion of
U~~o Ub ..

.,(,)h (
s, (r, r ) =(

„a„i.2 -r A(~, )hr, (~r.), r, « .

C; (a; h}0;i (r) &ps (r),

y, {, , ) =7K(l,j l, )[ j/(2j +1)]'~'P„(r),

n(1 j +1'/~)[j( j+1)] '~'(rc, ~c&~)V,~(r),

0;{;„&=~(i.jl.)[(j+1)/(2j+1)]"Q., (r) . (B28)

t, (r, r, ) =

j,({vr,)h, , (~r, ),
I

(B12)

&f (r)& = «f (r),

&P, (~,)l&(~, ~ &)'""=z(rSr &f dr S,', gr, )a, &r,r,. l,

(B12)

(iii) The folloujing notations are used to denote inte-
gxals.'

B(1)=V, d'r, [ U~ (2) a, U~(2)] ~ V, [(e' "» —1)/(w'r„)],

This was first derived by Mann and Johnson (19'{1)
we have verified it independently. Since no derivation
has previously been given for this extremely useful
formula, we present its derivation in Appendix C. Many
of the techniques of the vector-spherical-harmonics ex-
pansion may be found in various books (Rose, 1957;
Edmunds, 1957; Akhiezer and Berestetskii, 1965).

(vi) The vector-spherical-harmonics expansion of
B(1).

& &..(r, )R;(r,r, )Q (r.)&'"

= w(l, jl, )x(l~ jig)

(B14)

is given as (Huang, 19'l8a)

(B24)

dr+„(r,)R,. (r,r, )Q M(r, ), B(1)=i Z {-" (&t;h) {j' (r )& ('@, (B25)

& ~., (r, &R, (r,r, )Q„(r,)& "
= n(l, j 1+i, )n(.l,j+1l„)

(Bl5)
where

0;{, , ) =[i/(2f +1)']"
&jg, ,&~(r, )

—(j + 1 )[g~, + (2j + 1)s,. ]Q M (r, )),

C /r„( )Rr, (r,r, )Q~ (r, ),.

where the parity selection function is defined as

0;{;., ) =[(j+1)/(2j+1)']"&(j+1)gy,QM ( .)

-j [g, , + (2j+1)t,]~., ( .)&;"'". (B26)

1 for l, +j+l, even,

0 for l, +j+l, odd .
(iv) Define the coefficients

~ (a; h) = (- )'~" '[(2j, + 1 )(2j, + 1 )1 ' ~' ('

(B17)

(B18)

In the limit cu-0, we have

B(1)= —
2

V, d'r, U~~(2) aU~ (2) ~ V,,r„,1

and the radial function Qz, in (B26) becomes

even
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2

(B28)

(B29)

where the interaction strength, denoted by the cross
"X" in (B29)

„

is

X(a; b) =6, , (W„f(x)).
Note tha. t 6„

„

=—&, ,
(Bso)

'l. One-particle operator

~e will present the jm-scheme matrix elements of the
operator f(r), p, a .p, cl, r, and a e'+'' in turn.

(i) (a lf (x)
l
b) = 6„,0 (w„f(~})

X(a;b) =b, „(V.„).
(iv) By using the expansion (B22) and the formula

(B21), we obtain

(a la lb) =! I '
!

C (a;b)I, (a;b), (B39)m

PÃ

where the radi. l integra»s

l, (a; b) =i e „(I'„)'"'".
A

Here e is the spherical unit vector (Edmonds, 1957).
Therefore its graphical representation is

(B38)

(B40)

&~l~ pl»=b„...b..., &II.~). (B36)

This agrees with the result obtained us ing other me thods
(see, e.g. , Rose, 1957; Grant, 197O). Hence the graph-
ical representation is

(B37)

with the interaction s trength

(ii) (a l P l b) =

where

(B31)
(al a!b) = (B41)

(B32)X(a; b) = 6. ..(Y'„).

(iii) The matrix element of o) .p may be obtained by
making use of the formula

+ —G,{~),

~a——F,(r),
(B34)

for the radial parts of the orbital lb). By using the ex-
pansion (B22) and the formula

(a la .p b) = i (a la -x—lb') (Bss)

with the understanding that lb') denotes the Dirac orbital
with the substitutions

with the interaction strength

(B43}I,(a; b) = —e, (W,~x)'"'.
(vi) For (a lee'~ lb) we use the expansion (B22) and

the familiar Bayleigh expansion of a plane wave,
2

e'~' = 4v pi j', (kx) P Y, (x) Y', ( k) . (B44)
l-0

The rest of the calculation is straightforward, and the
result is

X,(a; b) = C, (a; b) I,(a; b) . (B42)

(v) For (a !rib) we obtain the same interaction diagram
as (B41) with the radial integral given by

J dQ r ~ Y;, = —W4m 6, ,5„&,,~ ~ (B35) (~
l
~ e'"' lb) = Q G, , (~; b) x, , (~; b) . (B45)

we can easily obtain the result Here the interaction diagram is

( b) (2
~ ]) / ( I I I,) I —m

Im, m~ —m j~ j j

and the interaction strength is l=j —1,

X/, (a; b) =e, C,.(a; b)(4)))'/'i' '&„„()D, (B47)

with D,-, given as
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2. Two-particle operator

~e will deal only with rotational invariant interactions,
which are generally linear combinations of zero-rank
tensors obtained by contracting tensors of the same
rank. The matrix element of these interactions can be
calculated with the result (Huang, 1977, 1978a, and
1978b)

(a, .r„)(a,~ r„)
Q2j +

which represents the transverse photon interaction in
the limit u —0.

I, (ab.; cd) = —(1 —6,,)()i:,+w, )(K»+K&),
)

(V,R, VM&'
+

(ab
~
V(r„)~cd) = QG,.(ab; cd)X,.(ab; cd), (B49) +

j(j+1) 1
(P,~ R, ,P»~&'""

+

where the interaction diagram is

=fj j -5 (j
~C ~C ~C ~y ~g

+ .
8 (Q„R,„Q»~&'"'"

22+

1 even
I

+ —(Q„v,. (12)P»„&'"'"+ —(P„;(21)q»„&'"'"

(B50)

(B57)

(v) Operator a, ~ a„u)hich is proportional to the lead
ing imaginary part (IIuang, 1978a) of the transverse
photon interaction.

4

jb Jd I,.(ab; cd) = —6, , (P„&'""(PM&'"" . (B58)

and the inte rac tion s trength is

I,(ab; cd) =.C,.(ab; cd) I~(ab; cd) . (B51)

Here Iz(ab; cd) is defined in terms of radial integrals,
depending on the specific form of V(r„).We summa-
rize the results for various potentials:

APPENDIX C: VECTOR-SPHERICAL-HARMONICS OF
U'~ O.'Q~

From the properties of the normalized spherical
spinor Q, , we can easily prove that

(i.) Coulomb potential: 1/'r»

I, (ab; cd) =(W. „R~W»~&"'". (B52)

(ii) Covariantphotoninteraction: (1 —a, ~ a,)(e' )2ir )

o ~ LQ„=—(g+'1)0„„,
o .z(r x L) n„=(~+ 1) n„„.

Hence three useful formulas may be derived, i.e.,

(Cl)

I,.(ab; cd) = (2j + 1) (W„g&W»~&"'"

(1 5,,)(~.+x,)(~, +~,),
)

(V..g,. V„&'"'
+1

+j (p„gq,p„&'""+(j + 1) (Q„g,, Q»~&'"'" .

This is obtained by using the expansion (B22) and the
formula

da, dn, g 1,„(r,) 1;.(r,) Y, ,.(r, ) Y, ,...(r,)
v

r dQQt && ~»m» .i(r x L) 1'J —(ic» —x,)iq(K, m, w»m). , »

(C2)

where iz(y»m», x, m, ), etc. , are defined in (B21). To ob-
tain the vector-spherical-harmonics expansion of
U I Uq, i.e. ,

=( )J"' "5, ,, 5„,5 (,) 5)~. (B54)

(iii) Transverse photon interaction:

-(a, ~ a,) (a, ~ V, ) (a, - V, )
~a2 QF &&2

V,'a II, = QC, , (r) Y, , (r),

we simply evaluate the expansion coefficient as

C, , it' )= f dQ Yi, ()')''U. aU, .

(C8)

(C4)

I,(ab;cd) =-(1 —.6„)()i;,+)i:,)(x»+x„),
)
(V„g,V»„&"~~" jib+1

+ (~.—~.)[(V..g;, P~&"'"+(V..g;., 9».&'""1

+j (j + 1)[(P„s;Q»q& (Q+„t; qP& »] .

By using the formulas (C2) .and noting the relations

Y, i; „=(2j+1) "'[j"'r—(j +1)"'i(r x«)] 1'ym ~

[j(j 1)]-)/2L

Y~&,.„)-(2j+1) 'I'[—(j ~1)'I'r j "I'i(r x L)] Y, -
This is obtained by making use of the expansions (B22)
and (B25) and the orthogonality relation

1 Yjim ( x) YJ' pm'( ).) H' l)' mm' (B5

(iv) Brei t interaction:
we can perform the angular integration of (C4). The
expa. nsion (B22) of fI, a II» is thus obtained.
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