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Correlations in the distribution of galaxies provide some important .clues about the structure and evolution

of the Universe on scales larger than individual galaxies. In recent yeary much effort has been devoted to
estimating and interpreting galaxy correlations. This is a review of these efforts. It is meant to provide

both an introductory overview of the subject and a critical assessment of some recent developments.
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I. INTRODUCTOR Y RE MAR KS

Galaxy clustering has been a subject of considerable
interest and importance in astronomy for the better
part of a century. It exhibits a variety of forms, is
related to a variety of astrophysical problems, and has
been described in a variety of ways. In recent. years,
much effort has been devoted to developing a descrip-
tion of galaxy clustering in the language of probability
theory and to interpreting it within the framework of
cosmological theory. In this approach clustering is
expressed in terms of correlations in the distribution
of galaxies, and recent efforts have centered on both
estimating and explaining these correlations. In many
respects this approach has turned out to be a fruitful
one and some of its methods and results have already
been accepted into the canon of astronomical knowledge.
Much of the credit for this must go to P. J. E. Peebles
and his associates at Princeton.

For methods and materials, workers in this field have
drawn liberally from several branches of astronomy,
mathematics, and physics, and the technical literature
on the subject has now become rather formidable. The
somewhat abstract nature of the subject and its bearing
on several fundamental topics, such as the mean mass
density of the Universe and the spectrum of primordial
fluctuations, has also given rise to some stimulating
controversy. My purpose in writing this review is

therefore twofold: first, it is to give readers not
familiar with the correlation approach an introductory
overview, and second, it is to offer a critical assess-
ment of some recent work in this field. ' Comments on
some aspects of the subject at the semipopular level
have been given by Davis (1976) and by Groth et al.
(1977).

This article is not meant to be a comprehensive review
of the general subject of ga.laxy clustering. The corre-
lation approach tends to focus attention on an important
bui nevertheless restricted subset of problems within
this vast subject and is perhaps best thought of as being
complementary to other approaches. For reviews
which emphasize other aspects of galaxy clustering the
reader is referred to the a.rticles by Abell (1975) and
Bahcall (1977). Even within the statistica. l approach
this review is not meant to be comprehensive. Prior
to the recent interest in correlation functions, various
statistical methods have been used to describe and
interpret galaxy clustering. However, since most of
this work has already been reviewed by de Vaucouleurs
(1971) and Layzer (1975) and since it has had surpris-
ingly little impact on the present subject matter, it will
be referred to only occasionally in what follows. This
imbalance is not intended to be a reflection of the im-
portance of the earlier work, but rather of the relatively
self-contained nature of the recent work.

The remainder of this article is organized into two
fairly distinct parts. The first part, consisting of Secs.
II and III, is meant to be a relatively informal overview
of the correlation approach. Here the basic definitions,
assumptions, and most widely accepted empirical re-
sults are introduced, and the simplest and most con-
crete theoretical ideas for interpreting these results
are discussed. This part is largely self-contained but
often sacrifices completeness in the interests of sim-
plicity. The second part, consisting of Sec. IV, treats
several problems of current research interest, in-
cluding some of their more technical and controversial
aspects. Topics include the problem of estimating cor-
relations in very deep samples and recent work on the
nonlinear development of clustering, especially within
the framework of K-body simulations and kinetic
theory. The article is concluded in Sec. V with some
attempts at assessing the present status of the subject
and its prospects for future development.

~The final literature search for this article ended in July,
1978.
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il. BASIC EIVIPIR ICAL RESULTS

The distribution of galaxies is remarkable for its
diversity of form. Anyone who has even casually
inspected high Galactic latitude prints from the Palomar
Sky Survey must have been struck by this fact. There
are isolated galaxies, pairs, groups, and clusters with
as many as several hundred members. There are also
configurations intermediate between these simple cate-
gories and configurations best described as combina-
tions of them. The first aim of the correlation approach
to galaxy clustering is to supplement various aspects of
this subjective impression with some simple, well-de-
fined, and relatively objective measures of clustering.

A. Definitions, assumptions, and methods

The basic element of the correlation approach is the
spatial pair correlation function, , which is usually
denoted by (. It is defined such that

()p(r) = n'[I+ ~(r)]()v, 5v,

is the joint probability of finding galaxies in the elemen-
tal volumes 5v, and 5v2 separated by a distance y, where
n is the mean space density of galaxies. If galaxies were
distributed in a uniformly random or Poisson manner the
joint probability of finding any two galaxies at any two
points would be independent of their separation and
equal to n'Gv, 6v, . The fact that galaxies are not dis-
tributed in a Poisson manner results in a nonzero value
of $ and the variation of this function with separation r
then tells us something about the strength of pairwise
clustering on various scales. Before proceeding, two
remarks about the definition of g are in order. First,
it has been defined in terms of the "probability" 5p,
as is now common practice. It is clear, however, that
6p is a true probability only for infinitesimal 5v, and
5v, because it does not have unit norm even when ((r)
vanishes for all y. Nevertheless, this does not affect
the interpretation of $ as an "excess probability. "
Second, a statistical version of the cosmological prin-
ciple —the assumption that the Universe is homogeneous
and isotropic in the large is alre—ady implicit in Eq. (1)
since g has been written as a function only of the magni-
tude of the relative separation between galaxies. In the
language of probability theory, the distribution of
galaxies is assumed to represent a "stationary random
process. "'

Since only a limited amount of information about the
positions of galaxies in space is available, most esti-
mates of g have been derived through a subsidiary
function which is usually denoted by zv. This angular
pair correlation function is defined in direct analogy
with its spatial counterpart;

is the joint probability of finding two galaxies in the
elemental solid angles 5(T, and 0o2 separated by an
angle 8, where Z is the mean angular (or surface) den-
sity of galaxies in the sample under consideration.
Estimates of gg can be made directly from counts in a
sample for which the positions of individual galaxies on
ihe sky are available using the formula4

2()N (8) =NX[l+ w(8)]27)8I)8.

Here 5N~(8) is the total number of pairs with angular
separations lying in the interval (8 —258, 8+ 258), N is
the total number of sample galaxies, and the approxi-
mate equality emphasizes the fact that a statistical
estimate of zg is being made. When the sample consists
of counts of galaxies in cells, a slightly different ap-
proach is required. A basic assumption of the correla-
tion approach is that although ( is not directly measur-
able, its character is universal in the sense that esti-
mates of it from large but different samples will agree
to within statistical uncertainties (sampling errors).
Even apart from statistical uncertainties, estimates of
zp will, however, vary from one sample to another
depending on the sample depths and other factors.

The basic relation between the angular and spatial
pair correlation functions is a linear integral equation
which was first derived by Limber (1953). The deriva-
tion of limber's equation from the basic definitions (1)
and (2) above is straightforward and, in the "narrow
angle approximation, " takes the form'

dxx'y'(x)
OO 2

&y)[(x'&*+y*)'~'] J &xx'Ob')
0

(4)

@(x)= 4 (M = m —5log(x/Mpc) —25) . (5)

Since C is in general a rather broad function [cf. Eq.
(ll) below], any features in g, when convolved with )P'

in Ec(. (4), will be suppressed or even lost in estimates
of zo.

Here @(x) is the sample selection function, defined as
the mean number of sample galaxies per unit volume
of space at a distance x from Earth. This equation is
analogous to the relation between the spatial and pro-
jected densities of a spherical star cluster, except
that, through )P, it includes the effects of galaxies
sampled at different distances. It can also be inverted
in closed form (Fall and Tremaine, 1977; Parry, 1977).
For a sample which is magnitude-limited at the apparent
magnitude m„ the selection function is readily express-
ed in terms of the integral luminosity function for
galaxies 4(M) (the mean density of galaxies brighter
than absolute magnitude M):

2Statisticians often refer to this function and related quanti-
ties as "covariance functions" and often take expressions like
Kq. {23)below as the basic definition. In statistical physics the
term "correlation function" is in general use and will be
adopted throughout this article.

The word "stationary" is unfortunate in this context as it re-
fers to the spatial rather than the temporal distribution.

4This formula follows directly from the definition of zowhen
allowance is made for overcounting in pairs. It is important to
recognize that estimates of ze made using Eq. (3) will have in-
tegrals over the sample area which are very nearly zero even
if the underlying distribution has a spatial pair correlation func-
tion $ which is everywhere positive.

This approximation, introduced by Totsuji and Kihara (1969),
is valid when ( (d/dr)ln)f)(r) ) «) (d/dr)lng(r) ( as will be the case
ln practice
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scaling relation (Peebles, 1973) which is useful in
comparing estimates of ge from different samples. If
the selection functions for a collection of samples
are similar and differ only in their characteristic
depths D*, then the selection functions for these
samples dtd(x; D*) must depend on x and D* only through
the dimensionless combination x/D*. A straightforward
change of variables in Eq. (4) then gives

zo(8) = (1/D*)E(8D*), (7)

where F is a function which is determined by ( but which
depends on 8 only through HD*. This relation simply
means that on a given spatial sca, le 8D*, the apparent
strength of clustering decreases inversely with the
sample depth D* because the number of uncorrelated
intervening galaxies along the line of sight is propor-
tional to D*. (Fig. 1 illustrates this point in another
way. )

As a practical example, suppose one has estimates
of zp from several samples which are limited at various
magnitudes mo, and that these estimates all show simi-
lar power-law form (same index y). Then according to
Eqs. (6a) and (7), the amplitudes of the angular correla. -
tion estimates should scale as

A=BC(D*)~, D*~ de x(&n I)0, (8)
)80 0

90

FIG. 1. Distribution of galaxies on the north celestial hemi-
sphere: top, galaxies in the catalog of Zwicky et al. with
R~+ 13~ bottom~ same but Kith %~+ 15 Note how clustering
appears to smear out with increasing sample depth; cf., the
scaling relation (7) and I ig. 2. The numbers indicate celestial
coordinates ~ (right ascension) and 6 (declination) in degrees.
The large blank areas are due to obscuration in the galactic
plane. The Local Supercluster is at ~ = 190, 6 = 13' and the
Perseus-Pisces chain is at ~ = 20, D = 35 . (Reproduced with
the kind permission of N. A. Sharp. )

Two simple but important results follow directly
from Limber's equation. The first is the pouez-lan
solution

~(8)=&8'-", g(r) = flr-"

(6b)

where y, A, and B are constants and I' denotes the usual
gamma function. Although the relation between the
amplitudes A. and B of these two power law functions
depends on the sample selection procedure, their in-
dices y- 1 and y always differ by unity because a distri-
bution in space has been projected onto the sky. The
second simple consequence of Limber's equation is a

where C is a constant that depends on y and the shape
of the luminosity function through Eqs. (5) and (6b).
This scaling relation has proved useful in assessing
the reliability of correlation estimates and the assump-
tion that ( is universal. More complete discussions
of the method outlined above and its relation to other
methods, particularly those involving power spectra,
have been given by Peebles (1973) and by Layzer (1975).
For a more detailed treatment of Limber's equation and
its properties, the reader is referred to Fall and
Tremaine (1977). For a discussion of some of the
practical problems which can arise when estimating ge,
the reader is referred to Sharp (1979).

y~ = 1.8, A, ~ = 8 x 10-'(deg)", (9)

(L for Lick) over a moderate range of angular separa-

B. Pair correlation estimates

From time to time various statistical measures of
galaxy clustering closely related to or equivalent to the
correlation functions defined above, have been estimated
(Neyman, Scott, and Shane, 1953, 1956; Limber, 1954;
Rubin, 1954; Karachentsev, 1966; Kiang, 1967; Kiang
and Saslaw, 1969). The present discussion, however,
will begin with the work of Totsuji and Kihara (1969).
They used essentially the procedure outlined above and
the galaxy counts made by Shane and Wirtanen (1954,
1967) from the Lick survey plates (Shane, 1976). This
sample has an average magnitude limit of roughly 19
(or perhaps slightly less), includes nearly a million
galaxies (!), and has a mean density of about 1.5 x 10'
galaxies per steradian. The original Lick data consist
of counts in 10'x 10' cells but they were consolidated
into 1 && 1 cells for the published version of the cata-
log. Totsuji and Kihara found that their estimate of zo

was fitted best by the power-law model and
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tions. Using a Gaussian differential luminosity function
d&gM)/dM, they then obtained a. power-law estimate
of ( with amplitude E~ =16(Mpc/h)". (Here and
throughout A denotes Hubble's constant II in units of
100 km s 'Mpc '; it is now thought to have a value some-
where in the approximate range 0.5 & h ~ 1.0.) Although
Totsuji and Kihara's (1969) paper is rather brief and
was largely neglected until recently, it is remarkable
for what is perhaps the basic empirical result in this
field, namely the power-law form of ( with index 1.8.
Unaware of this paper, Peebles and Hauser (1974)
repeated the analysis of the 1 && 1 Lick counts in
somewhat greater detail, but with essentially the same
result as the angular correlation estimate (9).

Peebles and Hauser also analyzed counts from the
cata. log of Zwicky et al. (1961-1968)and gave a more
thorough treatment of the spatial correlation function.
Their estimates of m from the Zwicky catalog also
show power- law form and can be fitted with

O

I

0.03

0

I

O. I

() O«a

o~e~ ~
oQ lg I

I

I.0
elf h/ Mpc

I l

IO SO

I I I

Zwicky m & I5

Zwicky m s l5

c) LiCk

y~ = 1.8, A~ =0.7(deg)"

(Z for Zwicky) when the sample is limited at 15.0
and corrected for Galactic absorption (with a, cosecant
model). In order to estimate (, Peebles and Hauser
evaluated the integrals of EcI. (6b) with a. luminosity
function of the form

(10)

dex [P(M M*)] (M&M')

e(M) dex [~(M M*)] (M*&M &M, )

0 (M &M,).
Apart from the cutoff ai the bright end, this function is
of the form introduced by Abell (1962) for galaxies
in rich clusters. Peebles and Hauser adopted the
parameters

n = 0.75, P = 0.25, Mo =M* —2.67,
18.6+ 5logh,

and then computed the coefficient C in the scaling
relation (8) using the definition

D*—= dex[5(m, —M*) —5] Mpc

(12a)

(12b)

for the characteristic sample depth. The results of the
integration' are C = 1.83 for y= 1.7, C = 1.58 for @=2.0
and, by interpolation

C=1.75=42 (deg)", (y=1.8). (14)

D+ =50' Mpc.

An estimate of the amplitude of ( for this sample is
thus

a, =20(Mpc/h)"

(15)

(16)

by Eqs. (8), (10), and (14).
In principle, an estimate of the depth of the Lick

sa.rnple could be made in the same way, bui since its
limiting magnitude is not known to very high accuracy

6C is 2GH/E'2 in Peebles and Hauser's notation.

Kith the magnitude limit of 15.0 for the Zwicky sample,
Eqs. (12b) and (13) give the characteristic depth

FIG. 2. Scaled correlation estimates from the Zwicky and Lick
catalogs (limited to the region of sky with b~ 40, &~ 0 ). The
counts have been corrected for galactic obscuration and, in the
case of the m & 13 Zwicky sample, galaxies within 14 of the
Virgo cluster center (+=187, 6=13.5) have not been included.
The solid line is ze(&) = 0.70 (deg/6) ~7 and the assumed sample
depths are Dz(13) = 20 h-~ Mpc, Dz(15)= 50 h ~ Mpc, and DL
= 220 h-~ Mpc. The dependence of these estimates on sample
depth is in reasonable agreement with the scaling relation (7)
and indicates that the estimates have been made from a "fair
sample" of galaxies. (From Peebles, 1974a, with kind per-
mission. )

another method is required. The method adopted by
Peebles and Hauser begins with their estimate [Eq. (15)]
for the Zwicky sample depth and then scales this depth
by the ratio of sample densities

D*=D*(X /X )'~'=220h ' Mpc. (17)

~For a different opinion, see Wesson (1976).
BFollowing Hubble (1936), Peebles (1973) has called this the

"Fair Sample Hypothesis. "

In conjunction with the estimates of ze for the Lick
sample [Eq. (9)] and the scaling relation [Eq. (8)], this
method, however, leads to an estimate of the amplitude
D~ of g which is some 50% larger than B~. This dis-
crepancy probably gives some indication of the internal
consistency of the method. Peebles (1974a) has also
analyzed the 15th-magnitude Zwicky sample at smaller
angular separations than was done in the original analy-
sis and has made correlation estimates from this
sample with a 13th-magnitude limit. The results,
along with those from the Lick sample, are shown in
scaled form in Fig. 2. Although the log-log nature of
this plot can be somewhat deceptive, it does indicate
that the galaxy pair correlation function has convincing
power-law form over a fairly broad range of scales
and that estimates from different samples do scale
roughly as expected. '

The scaling of these correlation estimates indicates
that the samples from which they were derived are at
least approximately representative of a universal under-
lying distribution. ' It also indicates that the estimates
of $ are very largely the result of real galaxy clustering

Rev. Mod. Phys. , VoI. 51, No. 1, January 1979
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in space and are not due to patchy Galactic obscuration
because obscuration would affect estimates of w(8) on
fixed angular scales 8, whereas clustering in space
affects estimates of ur(8) on fixed spatial scales 8D*.
As the solid line in Fig. 2 indicates, the best correla-
tion estimates probably come from the 15th-magnitude
Zwicky sample. With the luminosity function (11)
above, this gives [cf. Eq. (16)]

F(r) = (r,/r)", (0.1 h ' Mp«r & 10h ' Mpc), (18)

y = 1.8 + 0.1, r, = 5.3(1.5)"h ' Mpc .
The uncertainties indicated above are entirely subjec-
tive and are meant to reflect three separate effects.
(i) Scatter in the data: error estimates of pair correla-
tion data depend on higher-order correlations and are
therefore difficult to make. (ii) Uncertainties in the
luminosity function: the amplitude of ( depends on the
shape of the luminosity function, particularly at its
bright end (cf. Peebles and Hauser, 1974, Table 3).
(iii) Uncertainties in the magnitude scales: a change
of 0.5 (for example) in either M* or m, would result
in a 26% change in D* and hence in r, .

Figure 2 and Eqs. (18) indicate in a succinct way
that pairwise galaxy clustering is a long-range phenom-
enon with no obvious features on scales ranging almost
from those of individual galaxies up to about 10k ' Mpc
(and perhaps even more). Recently, Groth and Peebles
(1977) have done a high-resolution analysis of the Lick
counts using Seldner et al. 's (1977) reduction of the
original 10' && 10' counts. The new analysis is more
complicated than the previous one by Peebles and
Hauser (1974) arid includes statistical corrections for
plate-to-plate variations *in the limiting magnitude and
corrections for the overlap of different fields. The
results a.re essentially the same as Eq. (18) (with r,
=4.7 h ' Mpc), except that there is some indication that
beyond about 2 .5 the estimates of ze fallbelow an extrapo-
lated power law. The corresponding spatial scale of
the feature is y ~=2y„which is where the amplitude
of the spatial correlation function is f, =0.3 (indepen-
dent of ro and D*). For reasons that will be explained
in Sec. III.C, such a feature may have interesting cos-
mological consequences. In view of the large number
of corrections made in the data analysis, however, it is
difficult to assess the significance of the feature Groth
and Peebles claim to have found. '

All of the correlation estimates discussed up to this
point have used only two-dimensional information
about the positions of galaxies. Redshifts, however,
give some information about the positions of galaxies
in the third dimension through Hubble's relation p =II~
(v and x being, respectively, the radial velocity and
distance). If all galaxies had perfect Hubble motion,
with no random, or peculiar velocities, one could esti-
mate g directly (without having first to estimate w). Of
course, galaxies do have peculiar velocities and this

9In this connection, it is worth noting that shortly before the
feature was found, it was predicted by Davis and Peebles (1977)
and that it is not present in the "unsmoothed" correlation es-
timates of Groth and Peebles (1977; cf. their Figs. 2 and 3).

tends to smooth out the power-law behavior on scales
smaller than a few megaparsecs when f is estimated
in this way. On larger scales, however, the method
should give a reliable estimate of ( which is free from
uncertainties in the luminosity function, and on smaller
scales it should give information about the peculiar
velocities of galaxies. The only difficulty is in obtaining
redshifts for a sample of galaxies which is large enough
to be representative in the sense discussed above.
Davis, Geller, and Huchra (1978) have recently applied
the method to a. 13th-magnitude sample (essentially,
the Shapley-Ames list with about 800 redshifts). Their
correlation estimates have an amplitude of about x,
=3h ' Mpc, considerably smaller than those from esti-
mates of ze, and their estimate of the rms peculiar
velocity is about 300 km s ', a fairly typical value.
Since the sample is dominated by the Virgo cluster
and surrounding supercluster (cf., Fig. 1), Davis et al.
regard these results as tentative. Within the near
future, enough redshifts should be available for consid-
erably more reliable estimates.

C. Higherwrder and cross correlations

From the previous section it should be clear that an
enormous amount of information about the distribution
of galaxies has been neglected in obtaining pair corre-
lation estimates. Additional information is contained
in the higher-order correlation functions, such as the
sPatial triPlet correlation function, which is usually
denoted by f ( and is often referred to as the "three-
point function"). This function is defined such that

is the joint probability of finding galaxies in the three
elemental volumes ivy 6v2 5'v3 separated by the dis-
tances x», x», and x». It must be a symmetric
function of these arguments. The middle- three terms
on the right hand side of Eq. (19) account for the cluster-
ing in triples from uncorrelated singles and correlated
pairs, while the last term P accounts for purely tripje
clustering and is therefore referred to as the "irre-
ducible" triplet correlation function. A corresponding
angular function, usually denoted by z, can also be
defined in direct analogy with P and can be estimated
from galaxy counts by a procedur'e analogous to that
described above for estimating zg. The triplet functions
f and g are related by a straightforward generalization
of I imber's equation, which also has power-law
solutions and a simple scaling property. For details,
the reader is referred to Peebles and Groth (1975).

They have used this procedure to estimate f from the
15th-magnitude Zwicky sample and the 10'&& 10' I ick
counts (Groth and Peebles, 1977) and find that the data
can be fitted by a function of the form

f(r», r», r») = Q[$(r») f(r») + ((r23) g(r»)+ g(r») f(r»)],
(20}

with @=1.3+ 0.2. This interesting result has played an
important role in theoretical work in this subject (Sec.
III.A}. Uncertainties in it are somewhat larger and the
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range of scales over which it applies are somewhat
smaller than those for $. Fry and Peebles (1978) have
recently estimated fourth-order correlation functions
for the 10' x 10' Lick counts and have found them to be
consistent (in a rough way) with a straightforward gen-
eralization of Eq. (20). In principle, one could esti-
mate even higher-order correlation functions, but in
practice the required effort increases rapidly with the
order, and in any case the amplitudes would be so low
that the estimates would be dominated by sampling
errors.

As a complementary method for exploiting some
additional information about galaxy clustering within
the correlation approach, cross-correlation techniques
have also proved useful. In direct analogy with the
other correlation functions, one can define a spatial
cross coryela-tion function f,~ for objects of type a and
objects of type b;

6p(~) -=n.n, [I+ ~.„(~)]6m.5~,

is the joint probability of finding objects of types a and
b, respectively, in the elemental volumes 5v, and 5v,
separated by the distance r when the mean densities
are n, and n~. (Note that („and $~, are equal by this
definition and that ( is the "autocorrelation function" (
where g refers to individual galaxies. ) As a. hypothetical
example, one might cross-correlate x-ray counts with
galaxy clusters in order to study the extent of hot ga"
in clusters. The methods for estimating F„„andits
angular analog n, ~ are much the same as those describ-
ed above except that the selection functions Q, and Q,
enter Limber's equation with the product Q (x)y, (x)
replacing g'(x) in the numerator of (4) and g,"dxx'Q, (x)
x J,"dyy'@, (y) replacing the entire denominator.

Using the 10'&& 10' Lick counts, Seldner and Peebles
(1977a) have repeated Peebles' (1974b) original cross-
correlation analysis of Abell (1958) cluster centers and
galaxies in the 1 && 1 Lick cells. The analysis is com-
plicated by the fact that Abell's definition of a cluster
is distance dependent, but when averages are taken over
distance and richness classes, the results are con-
sistent with a. power-law model for $„with y, =2.4 and
B„=170 (Mpc/h)" over the range 0.5h ' Mpc to about
15h ' Mpc. There are uncertainties in the results, but
they do seem to be in good agreement with the cluster
density prof ile

v(r) ~r, n =2.3~0.2, (2h ' Mpc& ~& 15h ' Mpc)

found by Chinca, rini and Rood (1976) to fit the distribu-
tion of Zwicky galaxies in the Coma cluster field. This
should not be surprising because on scales small enough
that the clustering of clusters (superclustering) can be
ignored, f„ is essentially the (dimensionless) density
run of a typical rich cluster with the "background"
taken out. Together with estimates of the correlation
between the positions of Abell clusters themselves
(Hauser and Peebles, 1973), Peebles (1974b) has sug-
gested that estimates of g„are consistent with a picture

. in which clusters and galaxies are grouped in great
"clouds" or "superclusters" with about two rich clusters
per cloud and about 25% of all galaxies as members of

some cloud. [This represents a change of view from
the earlier conclusion of Yu and Peebles (1969); see
also de Vaucouleurs (1971) and references therein. ]

Several other applications of cross-correlation tech-
niques are worth mentioning here. These include Davis
and Geller s (1976) cross-correlation analysis of
galaxies of different morphological types in the Uppsala
catalog (Nilson, 1973), Sharp, Jones, and Jones' (1978)
cross-correlation analysis of DDO (dwarf) galaxies
and galaxies in the Zwicky catalog, and Seldner and
Peebles (1978) cross-correlation analysis of 4C radio
sources and galaxies in the Lick survey. It is impor-
tant to recognize that the interpretation of these results
in terms of $„ is quite sensitive to the assumed lumino-
sity functions for the different types of objects a and b

through the selection functions Q, and P,. If the lumino-
sity functions are known to high precision, $,, can be
reliably estimated from sv, „." Conversely, if the
clustering properties of the different objects, and
therefore P„», are known (or assumed), some informa-
tion about the luminosity functions can be inferred from
estimates of ze, ~.

((~) = (Z(x) a(x+ r)) —6(~)/n,

&(x) -=n(x)/n —1, n =- (n(x)), n(x) = Q 6(x —x,.) .
gal axi es

(23b)

Here 4(x) is the density contrast at x, 6 denotes the
(three-dimensional) delta function, the averages are
over large volumes, and n (without a position argument)
is the mean density of galaxies (as before). This ex-
pression can be shown to be equivalent to the definition
(1) in terms of probabilities (e.g. , Ichimaru, 1973;
Layzer, 1975). The second term on the right hand side
of Eq. (23a) accounts for the self-correlation of discrete
objects and must be interpreted as vanishing in the
continuum limit. Similarly, correlation functions of
order s can be expressed as averages over s factors of
&, each with a different position argument.

A useful measure of clustering closely related to
is the pozoer spectrum or structure factor S(k). It is
defined as ( ~A„~') (up to proportionality) where &„ is
the Fourier transform of E(x); thus

S(k) = 1+P(k), (24a)

P(k) = 47m drr ((r)sin(kr)/(kr) . (24b)

Sometimes, P(k) is also called the power spectrum

~ Note that not a11 cross-correlation functions can have power-
law form with different indices because, for example, n~(«
=n~$~~+n~(~ where a and b refer to galaxies g of different
types.

D. Power spectra and related measures

In what follows, it will sometimes be helpful to think
of the distribution of galaxies as representing a fluctuat-
ing density field. In this case, an alternative expres-
sion for the spatial pair correlation function $ in terms
of the local density of galaxies n(x) is useful:
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because it is equa. l to S(h) in continuum. In an analogous
way, one can define an angular power spectrum u, in
terms of averages over spherical harmonic transforms
of density fluctuations on the sky (Peebles, 1973). This
in turn can be related to the angular correlation function
u by an integral transform, which, in the narrow angle
approximation, reduces to the usual two-dimensional
Fourier transform:

u, =2m'2 d86w 8 J le
0

(25)

where 4, denotes the Bessel function of order zero. The
power spectra P(h) and u, are related by an equation
which is completely equivalent to I imber's equation
(4) and which also has a simple scaling property; u, (D*)
is a function of the single va.riable I/D*. (This fact
follows directly from Eqs. (7), (25) and XCCD*'.) For
the power-law model (6), one has

P(h) = 2m'ygBh' '/I" (y —1)sin[v(y —1)/2], (1 & y&3)

(26a)

u, = ~TED(l/2) 'I (———y)/I'(y/2 ——'), (—& y& 3) . (26b)

r.

=(r) = 4mn dss'((s) .
The second is o'(r), the variance in R(r)/(R(r)), where
N(r) is the number of galaxies in a randomly placed
volume of radius r [given by an integral over n(x)] and
(K(r)) is the average number (given by 4wnr'). On the
length scale r, 0(r) is a good measure of the "typical"
density contrast and from Eq. (23) it follows that this
quantity is given by the expressions

(27)

In principle, the power spectra contain no new infor-
matiori about pairwise clustering. Nevertheless, esti-
mates of P(h) and u, a.re not in general equal to the
Fourier transforms of estimates of ((r) and zo(8) with
a finite amount of data; so in practice the power- spec-
trum approach is complementary to the correlation
approach. Indeed, because of the convolution property
of power spectra, it is often more convenient to remove
any scale-dependent selection effects (e.g. , variations
in plate sensitivity) in the transform domain. Peebles
(1973) has developed an elaborate procedure for esti-
mating power spectra in the distributions of extra-
galactic objects, and he and Hauser have applied it to
the Zwicky, Lick, and cabell catalogs in conjunction with
their correlation estimates (Hauser and Peebles, 1973;
Peebles and Hauser, 1974; Peebles, 1974b). For
alternative and more direct approaches to the problem
of estimating power spectra, the reader is referred to
Webster (1976a).

Two other statistical measures of clustering are of
interest here. The first is =(r), the expected number
of galaxies, in excess of the Poisson number, within a
distance x of a randomly chosen galaxy:

delta-function term in Eq. (23a). For the present distribu-
tion of galaxies, the first terms of Eqs. (24a) and(28b) are
small on most of the scales where E has been estimated
(Fall, 1978). Neglecting these "discreteness terms, "
one has the following power-law relations

(29a)

(29b)

(29c)

where A. denotes the mean intergalaxy separation yz '~',
and ihe coefficients have been evaluated specifically
for the case @=1.8.

These relations have some useful consequences. From
Eq. (29c) it follows that typical fluctuations on scales of
about 1 4 vp have unit amplitude. 4 randomly placed
sphere of this radius contains, on average, about 12(ro/
X)' galaxies. According to Eq. (29b), a sphere of the
same radius, centered on a galaxy, typically contains
another 15(r,/A)' galaxies, for a total of 27(rolk)'
In order to estimate this number and. the coeffi-
cients of Eqs. (29a) and (29b), an estimate of the mean den-
sity + is required. Because of the large number of
faint galaxies, this is in general a difficult quantity to
define [cf. Eqs. (11) and (12) above]. However, most of
the galaxies counted in a magnitude-limited sample
have absolute magnitudes near the shoulder of the lum-
inosity function at j/I*. Thus, for many purposes, a
reasonable definition of n is 2/L* where Z is the mean
luminosity density and I * is the luminosity corres-
ponding to M*. Recent estimates of these quantities
give n =0.02 h' Mpc ' and hence X= 3.6h ' Mpc (Felten,
1977). With this estimate and Eq. (18), the number of
bright galaxies in typical fluctuations of unit amplitude
is of order 80. This number, however, depends sensi-
tively on the values of X and &,.

Finally, a few additionaL remarks are in order con-
cerning the distribution of bright galaxies as inferred
from spots of light on photographic plates. In dynami-
cal arguments, it is usually assumed that this distribu-
tion reflects the underlying mass distribution and, in
particular, that the number density n(x) is proportional
to the mass density p(x). To the extent that the mass
and light distributions are proportional, ( and g are also
two- and three-point correlation functions for mass
density fluctuations. This is a natural assumption to
make and is one that will be made throughout the re-
mainder of this article, but one should remember that
the evidence for it is not terribly compelling. (It con-
sists mainly of the fact that the virial mass-to-Light
ratio of groups and clusters varies by about five or
less for thousandfold variations in mass; see Sec. III.D).
In this case, the average mass contained within a sphere
of radius z, centered on a randomly chosen galaxy, is

r
M(r) =4' dss'[1+ &(s)]=4.3 && 10"m~

o'(r)(&(r))' -=([&(r)—(&(r))]')

d'y(( ix —y i).

(28a)

(28b)

&&Ah '(r,h/5 3Mpc)'(r. lro) "[1+0 4(r/ro)" ], .
(30)

lyl

The first term of Eq. (28b) is due to the 'usual 0 K fluc-
tuations in a Poisson distribution and results from the

where mo is ihe mass of the sun, p is the mean mass
density, and 0 is the cosmological density parameter
[defined by Eq. (38) below]. This is a reasonable mea, —
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sure of the mass of a fluctuation of characteristic
dimension r. The mass of a typical fluctuation of unit
amplitude (~ = 1.4~, ) is therefore

M, = 10"mo Qh '(@oh/5 3.Mpc)'. (31)

This is a useful datum for theoretical discussion, but
its exact value depends sensitively on xo.

A. Connection with traditional descriptions

Before considering evolutionary and dynamical prob-
lems it will be useful to make at least a rough connec-
tion between the foregoing description of galaxy cluster-
ing in terms of correlation functions and more tradi-
tional descriptions. " This is also worthwhile because
the correlation approach may at first seem somewhat
foreign to one's intuitive notions of clustering. Three
additional measures of galaxy clustering are of use
here. (i) Internal density profile: counts of galaxies
in the fields of several rich clusters are consistent with
a power-law density profile of the form

~(~) ~r (32)

with index o. in the range 2.1 to 2.5 [cf. Eq. (22) above].
It seems reasonable to suppose that this relation applies
in some average sense to smaller clusters and groups.
(ii) Membership size re-lation: Carpenter (1938) first
noticed that clusters and groups follow a number of
members, m, versus size, E, relation of power-law
form

m(l) ~ l' (33)

de &aucouleurs (1971) has coined the term "thinning
factor" for the index 8 and advocates the value 1.7 for
it." (iii) Membership spectyum: this is closely related
to the (differential) luminosity function and mass spec-
trum of groups and is often referred to as the "multi-
plicity function. " It has been studied by Holmberg (1940)

~~In keeping with the remarks at the end of the previous sec-
tion and the crude nature of the arguments to follow, the terms
"mass, " "membership, " and "luminosity" will be used more
or less inter changeably throughout this subsection.

~~Carpenter suggested Eq. (33) with 8 = 1.5 as an upper enve-
lope for the membership-size relation, but a power-law fit
through his data is better with a somewhat larger value of 0.
In view of point (i) above, the notion of a cluster "size" is very
subjective, and Carpenter's relation should be regarded ac-
cordingly.

III. SIMPLE THEORETICAL IDEAS

The distribution of galaxies poses an important and,
as it turns out, surprisingly formidable challenge to
theorists: How did the present distribution come about
and what does it tell us about the Universe in the past?
Of course, these questions are not new to cosmologists.
On the basis of some simple order-of-magnitude argu-
ments it has usually been assumed that some form of
gravitational instability in the context of a hot big-bang
cosmological model has done the job. The recent
studies of galaxy clustering, particularly those in-
volving correlation functions, however, have stimulated
a rethinking of the problem at a much more detailed
level and in a somewhat different language.

and, more recently, by Gott and Turner (1977b). They
have found that, in their recent group catalog, the
number of groups q(m)5m with membership in the inter-
val (m, m+, 5+ can be fitted by a. power law

q(m) ~m~, (34)

~3The hierarchy envisaged here is essentially the same on
small scales g~~p) as that advocated by de Vaucouleurs (1971)
but differs on larger scales in that here the mean density is
assumed to have a well-defined finite value n. (See also Man-
delbrot, 1975, 1977.)

with index P =2.3 over the range 1 & rn & 300.
It is remarkable that all three of these measures of

clustering have no preferred scales and can be approxi-
mated by power laws, even though they refer to three
different aspects of the distribution of galaxies. One
may therefore wonder to what extent the power-law
forms of the pair and triplet correlation functions,
and (, reflect these different aspects of clustering.
Because each measure gives only a partial description
of clustering, it is not possible to make exact compari-
sons. Some impression of their relative importance,
however, can be gained by considering the following
extreme models for clustering. Model I (Isolated
clustering): all ga.laxies are in clusters and all clusters
are alike; each cluster has a power-law density profile
with index n =2.4 and the cluster centers are randomly
distributed (no subclustering or superclustering).
Model H (Hierarchical clustering): all galaxies are
members of some aggregate (group or cluster); each
aggregate is a member of a larger one and contains
smaller ones (subclustering and superclustering is
nested); the mean density of aggregates of different
sizes follows Carpenter's relation with 8 = 1.8. Model
I is, of course, rather naive and can already be ruled
out on the basis of Carpenter's relation and the multi-
plicity function. Even model H is not completely realis-
tic because it is easy to find groups which cannot be
assigned to a larger cluster and clusters which show few
signs of subclustering. " Nevertheless, it is instructive
to compare the estimates of g and f on these two simple
models.

Peebles and Groth (1975) have given the following
arguments to suggest that the estimates of f and g are
more consistent with model H than with model I. In the
case of model I, f(~) is proportional to the density pro-
file overlap f d' xv( x)v( x+ r), or to y' ', for small
r (x s r, ), (Peebles, 1974a). Thus the correlation and
density profile indices are related by the equation y= 2n
—3, which is in good agreement with y=1.8 and n =2.4.
On this model, however, l(y, r, r) is proportional to
fd'»(x)&'( +xr), or to r' '", for small r Compari. son
with the Peebles —Groth expression (20) for f in terms
of ( then gives 2y=3o. —3, which is not compatible with
y=1.8 and n =2.4. With model H, on the other hand,
the correlation index y and the thinning factor 8 are
equal, in reasonable agreement with de Vaucouleur's
estimate 8 =1.7. This is because with each galaxy at
the top of the hierarchy, the probability of finding
another one at a distance x is proportional to the density
on that scale and ((r) is therefore proportional to m(~)/
r (for r —x,). Similarly, the probability of finding a.
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(x» 1)
g(y„, r„,x„)=-', g(r r r) t ( 1),const (35)

triplet with the separations (x, x, x) is proportional to
the square of the density on that scale so f(x, y, r) is
proportional to rn'(r)lr (for r ~ r, ) .Evidently, these
arguments suggest that hierarchical clustering is an
important contributor to the forms of the lower-order
correlation functions. However, as Shanks (1979) has
recently emphasized, the Peebles-Groth arguments
are not as convincing as they seem and there may be
statistics better than the correlation functions for
testing different models of clustering.

It is also interesting to compare the pair correlation
estimates with the multiplicity function on the hierarch-
ical model. This may be done as follows (McClelland
and Silk, 1977b). An aggregate with I members will
have —,nz(m —1) pairs, so the number of pairs contribut-
ed by aggregates with membership in the interval (m,
re+ 6m) is roughly —,m'q(m) 6m, and this is proportional
to l" ~'" 'l" 5l by Carpenter's relation IEq. (33)].
On model H, it is a.iso proportional to $(l)l'6l (for f & r, ),
so the indices 8, P, and y are related by the equation
y=3(e+ P) —6P —6. With the specific values 8 =1.7 and
P =2.3, this gives y=2. 1, which is probably satisfactory
considering the crude nature of the argument. '4 The
relations between correlation functions of various orders
and traditional measures of clustering have been con-
sidered in some detail by Peebles (1974f), McClelland
and Silk (1977b, 1978), Soneira and Peebles (1977,1978),
Bhavsar (1978), and White (19V9).

Correlation studies have also had a bearing on several
related issues: specifically, the existence of "holes"
round clusters, the existence of a "field" population
of galaxies, and the existence of "chains" of galaxies.
The fact that all of the correlation estimates discussed
in Sec. II are positive, at least on scales up to about
15h ' Mpc, suggests that, in a statistical sense, there
are not prominent holes round clusters" and that the
density profiles of clusters merge smoothly into the
background (Peebles, 1974a). Correlation studies a.iso
suggest that it is difficult, if not impossible, to isolate
a genuine field population which does not participate in
the general pattern of clustering (Turner and Gott,
1975; Fall et al. , 1976; Soneira and Peebles, 1977).
Finally, estimates of the triplet correlation function g

suggest that the importance of chains is mi.nimal on
small scales (f ~ ro) One w.ay to see this is as follows.
Consider a triplet (1, 2, 3) with separations r» = y,
r» =r( ,'+ X'- Xp.)'~', and r»—=x(4+ X'+ A. p, )'~', where p,

is the cosine of the angle between the line joining 1 to
2 and the line joining 3 to the midpoint of (1,2), and X

is the ratio of the lengths of the two lines. With this
notation and the Peebles-Groth form [Eq. (20)] for r„,
one has

which is independent of p, , and hence the orientation of
the triplet, for both large and small displacements of
the third galaxy from the other two. On scales larger
than about 10k ' Mpc, this argument does not apply.
Indeed, some very long chains do appear in the maps
of Selder et al. (1977), but their significance is difficult
to estimate quantitatively (Groth and Peebles, 1977).

(
1da ' 4 8

+ —=-mGp p~a
& dt a2 3

(36)

where 6 is the gravitational constant, p(t) is the mean
mass density, and f~ is a constant, which in the relati-
vistic formulation determines the curvature of the model
(negative for 0 & 0, positive for 0 & 0). Depending on the
context, it is sometimes convenient to specify evolution
in terms of the redshift z, which is related to a and
therefore to t by the expression

B. Linear evolution of clustering

The description of galaxy clustering in terms of
correlation functions suggests a gravitational origin
for the structure of matter on scales larger than those
of individual galaxies, especially in view of the long-
range, scale-free nature of gravitational attraction.
One of the goals of the correlation approach has been to
make this connection more precise within the framework
of the "standard big-bang" cosmological model. This
model (with & = 0) will be adopted throughout the rema. in-
der of the article; that is, it will be assumed that the
Universe is homogeneous and isotropic in the large, that
redshlfts are cosmological and that the 3 background
radiation has an extragalactic nature and is the relic
of a dense "fireball" phase of the Universe. " (For
overviews of the standard model, the- reader is referred
to the books by Peebles, 1971; Sciama, 1971; and
Weinberg, 1972.) Moreover, for reasons that will be-
come clear later, the "recombination epoch, " when the
fireball plasma became transparent, will be taken as
the starting point. This, of course, leaves out of con-
sideration the many interesting pre- recombination
processes which have traditionally played a role in
attempts to understand the origin of structure in the
Universe.

In homogeneous cosmological models, the large-scale
evolution is completely specified by the eosmozogiea&
scale parameter a(t), which may be thought of as the
average proper distance between particles at epochs
specified by the proper time t. After recombination,
matter and radiation evolve separately, with matter
the only dynamically significant component. " In this
case, the Newtonian approximation applies and Fried-
mann's equations for the scale parameter take the
familiar forms

~4Since the Gott-Turner procedure for identifying groups in-
volves a minimum surface density criterion, it is likely that
the effective value of & for their sample is somewhat smaller
than 1.7 (i.e., m/l2~ surface density = const). This results in
a smaller value of p by the above arguments; e.g. , y= 1.6 with
g~ 1 0

~5A11 of the remarks of this paragraph apply in a statistical
sense; it is easy to find individual exceptions.

~6These assumptions are made here to keep the discussion
concrete. Much of what follows, however, could easily be
adapted to other models (cf. Layzer, 1975).

~~Unless the intergalactic medium received a substantia1 in-
put of heat at recent epochs, recombination took place at the
redshift z„= 1500 and the energy densities of matter and radi-
ation were equal at the redshift z, = 4.3 & 104QA2. Thus, if
Qh ~ 3.5 && 10- is satisfied, recombination occurred after the
epoch of equal energy densities.
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n(t) —= a(z) ~ 1/(1+ z),

Q—:po/p .
g

= 8 776po/3FP, (38)

where the subscript 0 refers to the present epoch
(z=0, f = i,), H is Hubble's constant [the present value
of d(lna)/dt], and p„« is the critical density (1.9 x 10 "
h' gm cm ') required to close the Universe. If Q is
greater than unity, the Universe will eventually stop
expanding and begin to contract; otherwise it will
expand forever. At early times, the solutions of Eq.
(36) all have the Einstein de Sitt-er (k = 0) form, a(t)
~ t2 3. The solutions for the open model (k & 0, Q & 1)
may be approximated by the expressions

/

i'" (z~z )f
a(t) ~ zq —-0 ' —1,

t (z~z)

with the later evolution corresponding to undecelerated
expansion. The solution for the closed model (k&0,
Q&1) is a cycloid. The values of Q which are of current
interest lie in the range 0.02 to 1, corresponding, res-
pectively, to the density associated with the luminous
parts of galaxies and the closure density. The value
0 =0.1 is becoming fairly standard but is subject to
uncertainty (see Sec. III.D, Gott et al. , 1974, and Gunn,
1978).

The behavior of inhomogeneities in the "background
universe" described above depends on whether they
are "linear" or "nonlinear, " that is, whether the
density contrast 6p/p associated with them is smaller
or larger than unity. The behavior of small-amplitude
perturbations is relatively straightforward and may be
obtained by linearizing the basic fluid-dynamical equa-
tions (for conservation of mass, energy, and momen-
tum) about the Friedmann equations (36) (see, for
example, Harrison, 1967; Weinberg, 1972). Neglecting
pressure gradients, the result is

2dad& d&= 4zcp&, v~~ cf=a
dt' a dt. dt

where a is 6p/p and v, is the compressional component
of the proper peculiar velocity associated with the per-
turbation. These equations apply to perturbations on
mass scales larger than the Jeans mass, which is of
order 10' mo just after recombination and decreases as
a~ ' from then on. They have the approximate solutions
for Q&1 [cf. Eq. (39) above1

P" (z&z ) t"' (z~z~)
a~'(f) cc , (41a)

const (z&z~) o (z&z~)

t~~' (z& z~)
. (41b)

(z& z,)

with z = 0 corresponding to the present epoch and g ——1500
corresponding to the epoch of recombination (on the
stands. rd model; cf. footnote 17).

The character of the solutions of Eq. (36) is deter-
mined by the cosmological density parameter

S„(u) u", (-3 &n- 4), (43)

where n is an index to be determined (and not to be con-
fused with the mean number density of galaxies). Ac-
cording to. Eqs. (24) and (42), the present linear part
of f has the form (Peebles, 1974d; Bonometto and
I ucchin, 1978a)

&(r) ~ r '" "sgn( —n), (r & r,), (44)

so long as Eq. (43) applies on mass scales larger than
M, [given by Eq. (31) above]. The exact range of scales
over which Eq. (44) applies may depend somewhat on Q but,
in any case, it is not likely that present estimates of (
are reliable on large enough scales to determine unam-
biguously the exponent n from this linear relation.
When large samples of galaxies with measured red-
shifts become available, it may then be possible to
estimate n directly from the linear part of (.

C. Nonlinear evolution of clustering

One might reasonably expect that the nonlinear devel-
opment of inhomogeneities is not so simple because it
should depend not only on the cosmological model and
the spectrum of fluctuations at recombination but also
on the specific physical processes involved in the for-
mation and clustering of galaxies. In one picture (see,
for example, Peebles, 1974c), inhomogeneities on all
mass scales larger than some "seed mass" (-10'-10'm )
managed to survive the fireball" (e.g. , the fluctuations
had an isothermal component). Fluctuations on all
larger scales then grew by purely gravitational clus-
tering to form structures in the approximate order:
subgalactic structures, galaxies, cores of rich clusters,

~ In addition, there is another decaying mode associated with
the rotational component v~ of peculiar velocities: v~~ a-~.

~~The notion of a "seed mass" can be made somewhat more
precise; from Eqs. (28), (41}, and (43), it follows that densi-
ty fluctuations on the mass scale M had amplitude (15000)
(M~/M) ~ + "~ at recombination {where M& is the current non-
linear mass scale). Extrapolating to smaQer scales and using
Eq. (31), one finds that the nonlinear mass scale at recombi-
nation was about 6 && 108ppg. for 0 = 1.0, n= 0 and about 3 & 10~mo
for 0=0.1, n=-l.

The growing mode (+) "freezes out" at a, redshift zz of
about 0 ' —1 when the universe begins undecelerated
expansion. After that, only nonlinear perturbations
continue to grow. The decaying mode (-) is usually
neglected because, even if present at recombination, it
soon becomes negligible. " In this case, it follows from
the fact that f(r) is (b(x)b(x+ r)) (in the continuum limit)
and the fact that linear modes behave independently,
that the linear part of f is proportional to its recombi-
nation form at any later time; in fact

(a(z)/a„)' (z & z~)
((& z) = („(«„/&(z)) (g & 1), (42)

const (z & zz)

where the subscript x refers to the recombination epoch
and the argument y denotes proper separation.

It is now common practice to assume a power-law
model for the spectrum of fluctuations at recombination,
over at least some range of scales
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groups, etc. In another picture (see, for example,
Doroshkevich, Sunyaev, and Zel'dovich, 1974), inhomo-
geneities on all mass scales smaller than those of pre-
sent clusters (10"—10'~mo) were either absent initially
or were erased in the fireball (e.g. , adiabatic fluctua-
tions damped by photon viscosity on mass scales smaller
than MD=10"0 ' 'h ' 'm~). These large-scale pertur-
bations then condensed out fairly recently (z =3 —5),
collapsed into flat structures ("pancakes"), shocked
while in the gaseous state and fragmented into sub-
structures which later became small clusters and
individual galaxies. " Intermediate pictures, embodying
some features of each of these two extremes, are also
possible (e.g. , White and Rees, 1978).

In any picture, one of the fundamental problems has
been to explain the characteristic masses and sizes of
galaxies. Recently, a number of authors (Binney, 1977;
Rees and Ostriker, 1977; Silk, 1977) have noticed that
the condition that a protogalactic gas cloud be able to
cool and fragment into stars on its free-fall time-scale
leads naturally to just such masses and sizes (m
=10"m~, r, =75 Kpc). This is not the place for an
exhaustive discussion of the basic pictures and the de-
tailed models which have been constructed within them;
the reader is referred to Jones (1976), Gott (1977), and
Rees (1978) for recent reviews of galaxy formation
which emphasize the connection with galaxy clustering.
A persistent question in recent work on galaxy cluster-
ing concerns the degree to which the present nonlinear
pattern of galaxy clustering reflects the distribution of
matter at earlier times. Is the present distribution the
inevitable result of relaxation or dissipation or does it
uniquely reflect the distribution at recombination?
Clearly, the answer to this question depends to some
extent on which of the general pictures mentioned above
is correct.

Peebles (1974d) has suggested that in a, picture involving
purely gravitational clustering, the present nonlinear
pattern of galaxy clustering should reflect the distribu-
tion of matter at recombination, and he has given a
simple scaling argument for relating the two distribu-
tions in the case 0=1. In slightly modified form, the
argument runs as follows (Fall, 1978). The initialpower
spectrum is assumed to have the power-law form [Eq.
(43)] with exponent n over all mass scales larger than
that of individual galaxies. According to Eq. (28) above,
density perturbations then have typical amplitudes
which vary with scale 3 as

v„(l) l "'"' ', (-3&n- 4).

A perturbation of size l„at the recombination epoch z„
grows roughly at the linear rate until it reaches a
maximum size l at redshift g and then condenses out
of the general expansion (see Fig. 3). At that time its
mean internal density is a fixed factor n times the mean

0

FIG. 3. Model behavior of a condensing inhomogeneity assumed
in the scaling arguments of Sec. III. C. The dashed line at the
upper left indicates the behavior of the cosmological scale fac-
tor a, and the horizontal dashed line indicates the final equilib-
rium size of the condensed aggregate (lo= -l ).

((r) = (ro/r)~, y = (9+3n)/(5+ n), (r ~ r, )(Q = 1) (47)

for the nonlinear part of $. Since empirical estimates
of g have y=1.8, this argument suggests n=0, a,

"white noise" spectrum at recombination for 0 = 1.
Assuming that the resulting hierarchy is stable, the
nonlinear growth law for f is

((r, z) = (1+z) '(r./r)', -($ o 1)(Q = 1), (48)

because p$(r), the typical density within a condensed
aggregate of size y, is constant.

The scaling arguments in their simplest form neglect
several potentially important effects. First, spherical
perturbations on most of the scales over which g has
been estimated could not yet have reached their equili-
brium sizes (lo) as was assumed in the derivation of
Eq. (47). Indeed, the density contrast of a spherical
perturbation which has just reached equilibrium is of
order 10' or more, corresponding to scales of order
10 'r, or less (Gott and Bees, 1975). Second, two-
body and collective relaxation within condensed aggre-
gates and the disruptive collisions of subunits within
them might be expected to influence the small-scale
form of $ and its growth rate (Press and I ightman,

cosmological density": n = 5.5. Thus the characteris-
tic size, amplitude, and internal density of the pertur-
bation at z are related by the expressions

l =l„a, n =a o'„(l„), p —o.p„a 3, (46)

where a is the expansion parameter (I+z„)/(1+a„) and

p„ is the mean cosmological density at z„. Assuming that
the final size of the resulting aggregate lo is approxi-
mately —,'l (by the virial theorem), these equations lead
to a characteristic density-size relation po(l, ) ~ l, in
the form of Carpenter's relation" with 6 =(9+3yg)/
(5+n). With the Peebles-Groth (1975) arguments for a
hierarchical pattern of clustering, this gives

2 In the picture of Doroshkevich et al. , one might have ex-
pected to find a prominent feature in ( on some nonlinear scale
set by the transition between gas-dynamical and gravitational
effects. The fact that one is not observed may therefore be
difficult to reconcile with this picture. (See, however, Doro-
shkevich and Shandarin, 1978).

2~The value & = 5.5 follows by considering a uniform density
spherical region; it evolves according to the Freidmann equa-
tions (36) with a higher density than that of the background
(see, for example, Gunn and Gott, 1972; Field, 1975).

A relation equivalent to this one for 0 has been derived in a
different way by Press and Schechter [1974; cf. their Eq. (27)t.
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1978). It is therefore somewhat surprising that the
N-body experiments designed to simulate gravitational
clustering agree reasonably well with Eq. (47) and the
notion of R stable hierarchy over most nonlinear scales
(Aarseth, Gott, and Turner, 1978; Fall, 1978). In
part this may be due to the tendency for perturbations
to develop into nonuniform and nonspherieal shapes Rnd
thus to smear out much of the distinction between ex-
panding, collapsing, and stationary aggregates (Icke,
1973}. However, for reasons that will be discussed in
Sec. IV. B, the interpretation of the W-body experiments
is, in many cases, difficult and Eq. (47) has been well-
tested only for the case n=O.

The relations (4V) and (48) should hold on sufficiently
small scales for any value of Q. Qver some range of
scales, the form of ( should depend on the cosmological
model because perturbations on scales near rp would
have stopped growing some time ago if 4 is small. Un-
til recently, there have been two distinct views of how

g should reflect this process. In the first view (Peebles,
1974d, Davis, Groth, and Peebles, 1977), the pair cor-
relation function is expected to have a prominent bend
at g, = 0.3Q ' with Eq. (44) holding at smaller g and Eq.
(47) holding at larger g. Assuming the bend in Groth and
Peebles' (197V) analysis of the 10' x 10' Lick counts is
real, one has Q = 1 and n=0. In the second view (Gott
and Bees, 1975), lower values of Q are expected to
steepen ( to an approximate power law over most of the
scales on which it has been estimated. In this case, one
requires more long-range correlation in the matter dis-
trQ)utlon Rt recomb1natlon for snlRller VRlues of Q. This
implies negative values of n with the exact value depend-
ing sensitively on Q. Recent N-body experiments sug-
gest that the second view may be more nearly correct
(Efstathiou, 19V9, and Figs. 5 and 6 below), perhaps be-
cause of smearing effects. But once again the interpre-
tation is not straightforward and is deferred to Sec.IV. B.
Finally, it is worth noting that some efforts have been
made to connect the recombination spectra inferred
from these arguments with pre-recombination processes
(Zel'dovich, 1972; Gott and Bees, 1975; Eichler, 197V;
Jones, 19VV; Liang, 1979). There is, however, scope
for further work along these lines.

3 6 x 10-~k-2(2/10sI Mpc-s)&m/L (49)

where is the mean luminosity density. Recent esti-
mates typically give 2 = (1 —2) x 10' lt L~pc ' (Felten,
1977) and &m/L&o = (100—300)k (Gott and Turner, 197Va),

D. Estimates of the mean mass density

Dynamical methods for estimating 0 have traditionally
been based on the eirial tkeorem, applied either to indi-
vidual galaxies or to groups and clusters. In the case of
aggregates of galaxies, one estimates the total kinetic
energy from the radial velocities of member galaxies
and the total potential energy from their positions on the
sky, both averaged in ways meant to account for projec-
tion effects (e.g. , Burbidge and Burbidge, 1975). Ap-
plying the virial theorem to the aggregates then gives an
estimate of the mean mass-to-light ratio &m/L& of their
members, including any material between the galaxies.
An estimate of Q then follows from the expression

~=2p d'r -G r r T=—2 A)2 (50)

where the integral is over a large comoving volume, v
is the peculiar velocity of a galaxy, and the average is
over all galaxies. The basic relation between T and TV

is a cosmic energy equation

1 da—(T+ W)+ ——(2T+ W}= 0,dt a dE

which guarantees that the total energy of an expanding
system is conserved23 (Irvine, 1961, 1965; Layzer,
1963; Dmitriev and geldovich, 1964). An additional
equation and some boundary conditions are required to
derive an exact. relation between T and W, but an entire-
ly satisfactory expression can be obtained as follows.
Neglecting the decaying modes, Eqs. (4la) and (42)
above indicate that at early times both T and S' grow as
t'~' In this case T= ——', W according to Eq. (51). In the
other extreme, where perturbations have condensed in-
to bound aggregates which have reached dynamical equi-
librium, the result is T = =,W (the ordinary virial the-
orem). Throughout the clustering process, one may
therefore expect the relation

to hold' (except at very early times if dynamically un-

This equation applies to a system with Quctuations of arbi-
trary amplitudes so long as thei. r characteristic Length-scale
is xnuch smaller than the horizon [or, so long a.s

~ $ (r) ~

—0, at
least as fast as x-2 for large xf. It can be derived from either
the Quid-dynamical equations or the BBGKY equations (Sec. IV.
c}.

24This equation is sometimes referred to as a "cosmic virial
theorem, "but the use of this term is to be discouraged because
Eq. (52) applies even when most of the contribution to T and S"
is from scales on which perturbations have not reached a state
of virial equilibrium. Perhaps "cosmic energy condition" is a.
better name for it.

so the corresponding value of 0 is of order 0.1, inde-
pendent of Hubble's constant. The major disadvantage
of this method arises from the problem of assigning gal-
axies to a parent group. Geller a,nd Peebles (19V3) have
developed a. statistical version of the method which av-
erages over groups and thereby reduces the member-
ship problem somewhat. Another disadvantage of these
methods is that the virial theorem can be applied only
to the pa, rts of groups and clusters which have reached R

state of dynamical equilibrium. To overcome this pro-
blem, several methods for estimating Q from the de-
celerated expansion in the outer parts of clusters have
been developed, but the application of the methods to
real data has not yet given unambiguous results (Sand-
age, Tammann, and Hardy, 1972; Silk, 1974; Peebles,
1976c).

Basically, there are two new dynamical methods for
estimating Q from correlation information and, in prin-
ciple, they are free of some of the difficulties mentioned
above. The simplest method (Fall, 1975; Peebles,
1976b) balances clustering against the peculiar (non-
Hubble) motions of galaxies. It does this by associating
with each of these effects a, corresponding energy (per
unit mass)
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(53)

where R is an effective cutoff scale beyond which
l g(2) l

decreases more rapidly than 2' ' [corresponding to
n& -1; cf. Eq. (44) above]. For example, R is about 2ro
if the Groth Pee-bles (197V) bend at 9|'2 ' Mpc is real.
Note, however, that this estimate of 0 is not sensitive
to the exact value of A; it changes by a factor of only
four for a thousandfold change in R (with y = 1.8). Also,
the above estimate of 0 is not sensitive to the shape of
$ because g enters Eq. (53) only through the integral
quantity W (Fall and Tremaine, 1977). Thus the major
uncertainties are in 2'0 and in (v2). With ro = 5.3 h ' Mpc,
& = 2, & = 2&0, and (v2) i = 300 km s ', one has 0 = 0.OV,
in reasonable agreement with traditional methods and
the Deuterium arguments (Wagoner, 1973). With the
same parameter values, except r, = 3.0 (Davis et al. ,
19V8) or (v2) i= 600 kms ' (Smoot et a/. , 1977) one has,
respectively, 0 = 0.2 or 0= 0.3. Note that this method
is also independent of Hubble's constant because II en-
ters all of the distance estimates which occur in Eq.
(53) in the same way.

As Peebles (1976b) bas emphasized, the quantity (v2)
required for the estimates of Q given above is some-
what difficult to measure because in practice one only
observes the relative motions of galaxies and not their
absolute motions with respect to a universal comoving
frame. Thus one can imagine that, even though the
small-scale relative velocities of galaxies are small,
the quantity (v') may be large because of large-scale
matter currents. However, as the following argument
shows, this criticism only applies for certain values of
the initial spectrum index n. The typical peculiar ve-
locity induced by perturbations on the scale l should
vary with 1 roughly as

C~(f)/f (i ~ 2.)
(V2(f))=,g()) ~lO(l),

[g(f)/lit (» .) (54)

supported peculiar motions are present). Cosmological
K-body experiments indicate that Eq. (52) is satisfied
for a fairly wide range of initial conditions and values of
0 (Fall, 1976a.; Aarseth et a/. , 1978).

An estimate of Q now follows directly from estimates
of g using Eqs. (38), (50), and (52). For the power-law
model [Eq. (18)j, the result (with y&2) is

Peebles (1976a, b) bas developed another dynamical
method for estimating 0 with correlation information.
This method is also a statistical method but differs
from the previous one in that the required velocities
are the relative velocities v»(2") of pairs of galaxies
separated by the distance x, and are therefore directly
measurable. Like traditional methods, Peebles' meth-
od requires the assumption of dynamical equilibrium on
the scales to which it can be applied, and he has given
it the name cosmic vixial theorem. The derivation will
not be given here but the result is

0=—m (2/'„(r))I(r)/ff',
4

(56)

dx x ' d2y(x. y/y')k(x y lx —yl)

where g is the triplet correlation function. For the val-
ues @=1.8, F0=5.3k ' Mpc, and the Peebles-Groth
(1975) form for f, the function I(x) bas tbe approximate
value 1.2 x 10 h Mpc at g = 1h ~ Mpc. Thus, with
(v»(h ' Mpc)) =3 (300 kms ')', the result is 0=0.05,
which is in good agreement with the other methods. A
more complete discussion. of these methods and their
relation to other methods, particularly that of Geller
and Peebles (1973), can be found elsewhere (Fall,
1976a; peebles, 1976b; Davis et aE. , 1978; Geller and
Davis, 1978). Finally, Seldner and Peebles (197Vb)
have recently proposed a method using cluster-galaxy
cross-correlation estimates in a fairly straightforward
application of the virial theorem. The method seems
promising, but the application to existing data is sub-
ject to several important uncertainties. "

IV. FURTHER DEVELOPMENTS

~ith a few notable exceptions, the material covered
to this point is fairly widely recognized as the best es-
tablished part of the subject. Much of what follows con-
cerns developments which are so recent that they have
not yet gained general acceptance. They are included
here because the general methods are certain to play a
role in future developments even if some of the specific
results are found to be in need of modification. Some
of the material in this section, however, is quite stan-
dard and has been included only because of its close re-
lation to recent work.

f(2-r&/2 (g~~ )
(~'{~))' "

(1+tl) /2 ($ Q 2 )0

(55)

With y = 1.8, the small l variation of (v2(E)) l is very
weak but the large l variation of (v2(Q)*'depends on n
For n&-1, the major contribution to (55) is from small
scales and it is safe to estimate (v2), and hence Q,
from the relative velocities of galaxies separated by a
few Mpc. Otherwise, the method does not apply.

since the rms peculiar acceleration g{E) is proportional
to E ' times the mass enhancement of a perturbation,
which is proportional to Po(l). Thus, according to Eqs.
(33) and (45), one has

A. Deep samples and related problems

In the gravitational instability picture described
above, galaxy clustering evolves with time and the pos-
sibility exists that we may actually be able to "observe"
this evolution by studying the correlation of galaxies in
very deep samples. The problem, of course, is a dif-
ficult one and no conclusive results have yet been ob-
tained, but several attempts have shown that it is an in-
teresting and important problem for future research.

~5The preferred value of Seldner and Peebles is 0 = 0.7. This
method, however, is sensitive to the assumed run of velocity
dispersion with the radial. distance from cluster centers; little
is known about this at present.
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In addition to the evolution of the pair correlation func-
tion (, the simple scaling relation (7) above cannot be
expected to hold for deep samples because: (i) proper
lengths and the angles they subtend are not linearly re-
lated (curvature effects), (ii) the spectral energy dis-
tributions of galaxies are not the same in the emitted
and observed wavebands (K corrections), (iii) the lumi-
nosities of galaxies have almost certainly changed dur-
ing the look-back times (evolutionary corrections).
Curvature effects can be included simply by generaliz-
ing Limber's equation to include them. Similarly, K
corrections can be included in a straightforward way

but, empirically, they are still somewhat uncertain in
the relevant wavebands (e.g. , Pence, 1976). Evolution-
my corrections can either be computed theoretically
(e.g. , Tinsley, 1976; Gunn, 1978; Sunyaev et al. , 1978)
or determined empirica. lly (e.g. , Ellis, Fong, and Phil-
lipps, 1977; Butcher and Oemler, 1978), but at present
they are not understood very well. Finally, if and when
these three effects are accounted for, the comparison
of deep samples with shallow samples will give infor-
mation about the evolution of (.

In the narrow-angle approximat;ion, the xezativistic
generalization of Limber's equation (4) takes the form

1, dz"f'(z)g'(z)P'(z)(1+z)'f '„dy"&$[f'(z)e'pg'(z)y']'~', zj
[ j", «f'(z)g(z)4(z)(1+z)']'

(57)

f z c(q,z + (q, —1) [(2q,z + 1)'~ ' —1]j
aq, '(I + z) ' (58a)

g (z ) = c [H(1 ~ z) '(2q, z + 1)'~ '] ', (58b)

where c is the speed of light, II is Hubble's constant
(present value), and q, is the present value of the de-
celeration parameter (equal to 2 Q in the cosmological

(Dodd et al. , 1976; Fa.ll, 1976b; Dautcourt, 1977b;
Groth and Peebles, 1977; Phillipps et a/. , 1978). Here
g(z) is the number of sample galaxies per unit proper
volume at the redshift z, f(z) is the angular diameter
distance at z, and g(z) is the derivative of proper dis-
tance with respect to z

g (~, z) = {r,/~)" {1+z) '"", ($ ~ 1,z ~ 1), (59)

models considered here, A=0). The arguments of
$(x, z) are the redshift z and the proper separation r of
galaxies at the corresponding epoch. This equation re-
duces to the nonrelativistic version of Limber's equa-
tion when P(z) decreases rapidly to zero for z )z*
where z* is small (z*«1) and, in some cases, can be
inverted (Bonometto and Lucchin, 1978b). For a fairly
detailed treatment of Eq. {57) and related equations the
reader is referred to Dautcourt (1977b).

In order to make further progress, it is necessary to
make some assumptions about the evolution of f and the
selection function g. A useful one-parameter model for
correlation evolution is

where E is an evolutionary parameter to be determined. " In this case, the angular correlation function also has
power-law form, w(9) =Ae'~, and Eq. (57) can be put into a form" analogous to Eq. (6)

—= &sr — — r(-,' y),A y
B 2 2

(60a)

dzf'- (z)g(z) q'(z)(1+ z)'- dzf'(z)g(z)y(z)(1+ z)' ',
J

(60b)

where, as before, B is &~. If the selection procedure
and evolutionary and K corrections are known (or as-
sumed), the selection function Q for the sample can be
constructed, and from it the "scaling factor" S can be
computed using Eq. (60b). In principle, one ca,n then

6The case & = 0 corresponds to stable clustering [cf. Eq. (48)
abovet and & = & —3 and & = 3 —p correspond, respectively, to
clusters expanding and collapsing at the same rate as the Uni-
verse expands.

~YThe scaling parameter 8 in Kq. (60) is identical to the one
used by Phillipps et al. (1978}. The parameter & (Groth and
Peebles, 1977) is q —3 in the notation of Phillipps et al. and is
s —3 in the notation of Dautcourt.

determine the evolutionary parameter & from the angu-
lar correlation estimates for a deep sample (D) and a
shallow sample, such as the Zwicky sample (Z),
through the relation"

w, /a, =s,/s, . (61)

The left-hand side of this expression is empirical and
the right-hand side depends on a; it is independent of
x„ is virtually independent of q, for z*~ 1, and de-

~8This assumes that the estimated correlation indices p& and
p2 are equal; if they are not equal comparison can still be made
but a slightly different approach is required.
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pends on H only through the time-scale for luminosity
evolution [cf. Eq. (64) below].

For deep samples, it is necessary to include sepa-
rately the contributions to P from spiral galaxies (s)
and elliptical galaxies (e) because galaxies of different
types have different spectral energy distributions, dif-
ferent evolutionary histories, and different image char-
acteristics; thus

If'a deep sample is limited at the apparent magnitude
mo, the selection functions g, and g, can be related to
the present integral luminosity functions 4, and 4, as
follows:

P, (z) =C,.(M, (z)) (i =s, e),
M,.(z) =m, —5 log[d(z)/Mpc] —25 —K, (z) —E,.(z),

(63a)

where K» and E» denote K corrections and evolutionary
corrections in the relevant wavebands for galaxies of
different types (i =s, e), and d(z) = (1+z)'f(z) is the lu-
minosity distance corresponding to ~. For a sample
deeper than about m, =20, the assumption that the sam-
ple is magnitude-limited is likely to be a bad one. This
is because the images of galaxies in such a sample are
so small and so faint that the'way in which they are
recognized must also be included in P. If the data are
taken from plates which have been scanned by an auto-
mated device, this can be done in an objective way.

Evolutionary corrections and K corrections become
important for z larger than about 0.1 and, in models
with galaxies brighter in the past, these effects tend to
cancel each other. In the most naive model for galactic
evolution, ga1axies begin their lives with a single burst
of star formation at a redshift of order 10 or less and
then become contiguously fainter as their stars evolve
off the main sequence and onto the giant branch of the
color-magnitude diagram. In this case, evolutionary
corrections take the simple form

E(z) = (1.3 —0.3x)in(f/t, )

=-(1.3 —0.3x)ln[(1+z)(1+Qz)'~'], (Qz s1)
where x is the logarithmic slope of the initial stellar
mass function and to is the age of the Universe. (t,
= I/H = 10'o yr and x = 1.35 in the solar neighborhood. )
This model is thought to be a reasonable one for the
recent (z ~ 1) evolution of ellipticals because they show
no signs of recent star formation. The evolution of
spirals, however, is more difficult to model because
vigorous star formation is currently taking place. Ne-
vertheless, fairly sophisticated mode1s for both kinds
of evolution have been constructed. (See, for example,
Tinsley, 1976, 1977, and references therein. ) Like
other cosmological tests, the scaling relation (61) is
sensitive to luminosity evolution. Thus, although our
theoretical understanding of luminosity evolution is un-
certain, some information about it can be obtained em-
pirically from the number-magnitude and number-an-
gular diameter relations in a way that is independent of
correlation estimates. In principle, this information
can then be fed into the scaling relation through g in or-

der to estimate correlation evolution.
To date, the only serious attempt to carry through a

program like the one outlined above is th3. t of the
Durham group (Ellis et a/. , 197V; Phillipps et al. ,
1978). They have analyzed machine-scanned Schmidt
plates taken in two colors (R and 4) at a high Galactic
latit. ude. The sample consists of about 4000 galaxies,
most of which have redshifts between about 0.1 and 0.4.
A moderate amount of luminosity evolution is consistent
with their results but an unexpectedly large amount of
clustering evolution is required to scale the deep sam-
ple correlation estimates with those from the Zwicky
sample (c =6). If correct, the importance of these re-
sults to cosmology is very great indeed. However, be-
cause of the many difficult steps in the procedure re-
quired to obtain them, the results of Phillipps et.al.
must be considered as tentative. ' Other deep samples
have been analyzed in less ambitious ways. The one
that has received the most attention is the 6 x 6 Jagel-
lonian field, which has a limit somewhere near 20
(Rudnicki et al. , 1973). It has been analyzed by Peebles
(1975), by Dautcourt (1977b), and by Groth and Peebles
(1977), but each with a different result. 'o Perhaps this
is another indication of how difficult and uncertain this
kind of work is.

A closely related problem concerns small-scale fluc-
tuations in the brightness of the night sky. Theoretical-
ly, this is identical to the problem discussed above be-
cause fluctuations in the cosmic background radiation at
optical frequencies are thought to be due to the cluster-
ing of unresolved ga, laxies (Gunn, 1965; Dautcourt,
1977a). Observationaily, however, a, somewhat differ-
ent approach is required (Shectman, 1973, 1974). Us-
ing power-spectrum techniques, Shectman has mea-
sured intensity fluctuations on scales of the order of a
few arcminutes on deep Schmidt plates. Unfortunately,
the interpretation of his results is no less difficult than
the interpretation of the results from deep samples with
resolved sources. Another related problem concerns
the clustering of I'adlo sources. At the 1arge redshlfts
of these objects, their distribution on angular scales of
a few degrees gives information about the homogeneity
of the Universe on spatial scales of order 10' Mpc.
Webster and others have analyzed the distribution of
radio sources in several catalogs using power-spectrum
techniques (Webster, 1976b, 1977; Webster and Pear-
son, 197V; Fa.nti et al. , 1978). As might be expected
from the extrapolation of the small-scale clustering of
galaxies, their results are consistent with a uniform
distribution on these scales. On smaller scales, Seld-
ner and Pe'ebles (1978) have found marginally signifi-

~~The machine-scanned data of Phillipps et al. {1978)are
from a different area of the same plate as the eye-scanned data
of Dodd et al. ($976). %ith the Dodd et al. sample, correlation
scaling is nearly satisfactory (with & = 0), but the analysis is
not thought to be as reliable as that with the Phillipps et al.
sample.

In the present notation, the assumptions of Groth and Pee-
bles are E~ = E,= 0, K,= K~ = 3.0z, mo ——20. 3. Those of Daut-
court are E,=E,=O, K,=K,=2.6z, mo -—20. 0. Both studies
assume a luminosity function of the form of Eqs. (11) and {&2)
above. The results of Groth and Peebles are consistent with
~ = 0, whereas those of Dautcourt require & = 3.
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cant evidence for both the self-correlation of radio
sources and the cross correlation of radio sources with
galaxies in the Lick sample. These results seem to in-
dicate that the luminosity function for radio sources is
broader than was previously thought and that. the frac-
tion of radio galaxies in clusters is higher than the
fraction of rad. io-quiet galaxies in clusters.

Open

B. Cosmological N-body experiments

Computer experiments with expanding N-body sys-
tems have been done by several groups (Haggerty and
Janin, 1974; Press and Schechter, 1974; Miyoshi and
Kihara, 1975; Peebles and Qroth, 1976; Aarseth, Gott,
and Turner, 1978; Fall, 1978; Efstathiou, 1979). Par-
ticular attention is directed to the forthcoming series of
cosmological N-body experiments by Aarseth et al.
(1979). The appeal of the experimental method is ob-
vious; it is relatively free of the many approximations
which are made in the simple models for the nonlinear
evolution of clustering. In principle, the method is
simple. One puts down a distribution of discrete mass-
es within a spherical boundary that expands according
to the Friedmann equations and then one integrates nu-
merically the Newtonian equations of motion for the N
particles. Particles are specularly reflected from the
boundary in order to mimic the effects of particles
whose peculiar motions would have brought them into
the system from outside. 'The pair correlation function

or any other measure of clustering, is then computed
at various time intervals. In practice, one requires
an integration code, such as the one developed by Aar-
seth, which minimizes the buildup of numerical errors
during the-calculation. In this case, one can test some
aspects of the clustering process described in Sec.III.C.
The results of two 1000-body experiments are shown in
Figs. 4-6.

'The N-body method does, however, have its limita-
tions. Because of the relatively small number of par-
ticles that can be handled by current integration codes
(N =10'), experiments designed to simulate the cluster-
ing of galaxies must "break into" the clustering process
at times corresponding roughly to the epoch of galaxy
formation (z —10). This is despite the fact that struc-
ture in the real Universe has already undergone consid-
erable prior development. It is difficult to put down a
distribution of particles at the start of anN-body ex-
periment which does not have white noise formon small
scales. This is because of the discreteness effects
mentioned in Sec.II.D. They almost guarantee that the
initial power spectrum S(k) will be nearly constant on
scales smaller than the mean interpa. rticle separation
even though real galaxy clustering, developing from
subgalactic seed masses, would not be expected to have
this feature. By the scaling arguments of Sec.III.C,
this leads to a. final N-body pair correlation function
with index y = 1.8 on the corresponding mass sea, les
(about four particles). On scales comparable with the
size of the system, the clustering process may be in-
fluenced in an artificial way by the expanding boundary.
With N = 10', this leaves only a sma, ll range of mass
scales (roughly 4 to 400 particles) and an even smaller
range of spatial scales (less than a decade) over which

Closed

FIG. 4. Results of two cosmological 1000-body experiments
with identical initial distributions (Poisson) but with different
(final) density parameters: top, 0=0.26; bottom, 0=1.0.
Crosses mark the positions of particles, projected onto the
plane of the page, after each system had expanded by a factor
of 9.0 from its initial size. Large-scaIe clustering has ceased
to grow in the low-density experiment. {From data which were
kindly supplied by S. J. Aarseth. )

to test for the effects of initial conditions and cosmo-
logical pa. rameters. Except for the Poisson (n =0) case,
it is not a simple matter to guarantee that the initial
spectrum has power-law form, as assumed in the scal-
ing relation (47), over this range of scales. " In addi-
tion, the results of individual experiments tend to be
noisy and experiments with statistically similar ini-
tial conditions often have slightly different distributions
at later times.

At the time of writing (July 1978), the conclusions
that can be drawn from the N-body experiments would
seem to be the following. " (i) In ann=0, 0=1 model,
g develops power-law form with index 1.9 over most

~~For this reason, it is to be hoped that the published results
of future N-body experiments will be accompanied by discussion
and plots of the initial power spectra (at least, for the non-
Poisson eases).

3~Unfortunately, the results and conclusions of Aarseth et al.
(1979) are not yet available for comparison with previous work.
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n=0.26
Poisson

Q)0
2'—

0—

log (rp), )
0

FIG. 5. Correlation estimates for the low density N-body ex-
periment of Fig. 4 {open). The expansion parameter at which
the estimates were made is denoted by a and the instantaneous
mean separation of particles n '~ is denoted by A, . The dashed
line is a power law with y= 1.8 arid ~0

—-1.4M. , corresponding to
empirical estimates (See. II and Fig. 2). A power-law fit to the
estimates at a = 9.0 gives y= 2.4 (for 0.03%~/A~ 1). The be-
havior of the correlation function in this experiment illustrates
the steepening effect discussed in Sec. IV. B and is to be com-
pared with Fig. 6.

nonlinear scales (Aarseth et a/. , 1978; Fall, 1978; Ef-
stathiou, 1979). This is in reasonable agreement with
Peebles' (1974d) scaling relation (47). (ii) The later,
nonlinea. r development of g depends somewha. t on the in-
itial distribution of particles but, because of discrete-
ness effects, a test of the scaling relation for nonzero
values of n will be difficult to make with current inte-
gration codes (Fall, 1978). {iii) The evolution of g de-
pends on the density parameter in the sense that lower
values of Q result in steeper correlation functions (Ef-
stathiou, 1979; Figs. 5 and 6). For Q&1, g has rea-
sonably convincing power-law form over a wide range
of scales, possibly with a weak bend; but the 0 de-
pendence has been tested only for n =0. (iv) The evo-
lution of ( is consistent with the notion of a stable hi-
erarchy on small scales and is not sensitive to the in-
ternal evolution of condensed aggregates. This last
conclusion is based on the comparison of ordinary N-
body experiments with some special ones in which the
motion of particles within aggregates was stopped just
after condensation (Fall, 1978). lt is also based on
several non-expanding N-body systems in which a hi-
erarchical distribution of particles was found to be
fairly stable as measured by g (Peebles, 1978). Relax-
ation and disruption effects are certainly important in
the cores of rich clusters (White, 1976) but these exper-
iments indicate tha. t g is not sensitive to them, probably
because so few particles are involved. (For different
opinions see Aarseth et al. , 1978, and Press and I ight-
man, 1978).

The behavior of $ in low-density N-body experiments
suggests a simple way to modify the scaling relation for
0&1. The argument is similar to the one given by
Gott and Ress' (1975) and runs as follows. Up to the
time at which the Universe begins free expansion
(zz —-Q ' —1), the nonlinear part of the correla. tion func-
tion g(x, zf) should have the Q =1 power-law form
(x,z/x)"f with index yz given approximately by Eq. (47).
At later times, and on nonlinear scales larger than x„
(sa.y), $ has the approximate power-law form (ro/r)"8
with y, increasing as Q decreases (cf. Fig. 5). Now x,
and x,& are related by the expression x, =& 'x«because
the scale of perturbations with unit. amplitude simply
expands as (1+z&)/(1+z) after z&. By assumption,
clustering on the scale r„ is stable so (x,/r„)" is ap-
proximately equal to Q '{r,z/y„)"s Combi. ning these re-
lations gives

0

-1
Ice (re)

0

FIG. 6. Correlation estimates for the high density N-body ex-
periment of Fig. 4 (closed). The notation and positiori of the
dashed line are the same as in Fig. 5. A power-law fit to the
estimates at a =9.0 gives p= 1.9 (for 0.03» ~/XK 1). The be-
havior of the correlation function in this experiment is reason-
ably consistent with the simple scaling argument of Sec. III. C
and is to be compared with Fig. 5.

&(~)=(~,/~)", y, = g, g ", (1~(~Q-')—3 logQ + log)
—logQ +yz'log)„'

(65)

Here g„= $(x„zz) is the amplitude of perturbations when
they first reach a stable equilibrium st@,te and must be
considered as a parameter to be determined from the
N-body experiments. With Table I of Efstathiou (1S79)
one finds that the best fitting value of log) is some-
where between 2.0 and 2.3. Using Eq. (47) for yz one
then finds values of n between —1.5 and -2.0 for the
case y, =1.8, and Q =0.1 [cf. Eq. (16) of Gott and Rees,
1975]. Although qualitatively reasonable, these ar-
guments are obviously rather crude and should not be
taken too seriously until they have been tested more fully.
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Most of the cosmological N-body experiments done to
date have ignored the effects of galaxy collisions and
mergers. If galaxies have large halos, as most astro-
physicists now believe (e.g. , Ostriker and Peebles,
1973), these effects may have been important in their
evolution (White, 1978; Silk, 1978; White and Rees,
1978; Efstathiou and Jones, 1979). Indeed, Toomre
(1977) has suggested that elliptical galaxies are made
during the collision and merging of spirals. It is not
difficult to include the merging of particles in the stan-
dard N-body codes in a way designed to test for its ef-
fect on the very small scale development of g. The re-
sults of such calculations will be presented soon (Aar-
seth and Fall, 1979). Finally, it seems appropriate to
mention Fourier transform schemes. They may enable
one to treat systems with up to 10' particles and there-
by avoid the discreteness effects which have plagued
recent N-body experiments. This seems a promising
approach to future studies of the nonlinear development
of clustering.

C. FIUctuation theory and kinetic theory

Up to this point, two extreme approaches to the prob-
lem of describing the nonlinear development of struc-
ture have been considered: the simple scaling argu-
ments relating y to n and the direct N-body experi-
ments. Because of the various limitations from which
each of these descriptions suffers, several recent re-
search efforts have been devoted to developing a con-
vincing description of clustering at an intermediate lev-
el. These studies are based on some form of fluctua-
tion theory or kinetic theory or a hybrid of the two. In
the first approach, the distribution of galaxies is treat-
ed as an expanding continuum with a fluctuating density
field, and the dynamics of the system are assumed to be
governed by the usual fluid-dynamical equations for
conservation of mass, energy, and momentum (Euler's
equations). Information about the velocity distribution
is discarded or approximated in some way. In the sec-
ond approach, the distribution of galaxies is treated as
an expanding system of point masses and the statistical
properties of the system are assumed to be governed
by some set of kinetic equations for the position-veloci-
ty dls trlbutlon func tlons of various 0 rd el s. The kine tlc
theoretical approach is more fundamental than the flu-
id-dynamical approach but it is necessa, rily more com-
plicated. In fact, both approaches a, re so technical and
contain so few concrete results, in proportion to the
mathematical effort required to derive them, that only
a brief introduction to this part of the subject will be
given here. 'The interested reader is urged to consult
the literature cited below for further details.

Perhaps the most stimulating recent work on the non-
linear gravitational development of fluctuations is that
of Press and Schechter (1974). In a somewhat different
formalism, they gave what is essentially a more de-
tailed version of the scaling arguments of Sec.III.C. In
addition, they were able to derive the following multi-
plicity function for bound aggregates [cf. Eq. (34) above]:

where, as before, z denotes redshift and n is the index
of the initial fluctuation spectrum. 33 In principle, this
expression gives another indication of n, but unfortu-
nately, the comparison with the distribution of galaxies
on the sky involves several uncertain projection effects
(cf., Gott and Turner, 1977b, and footnote 14). Although
Press and Schechter's work is closely related to much
of this subject, their aim was not to predict correlation
functions. Recently, Lightman and Press (1978) and
McClelland and Silk (1979) have developed interesting
numerical schemes with this goal in mind. Their ap-
proaches are based on more elaborate versions of the
scaling arguments, which are intended to include the
effects of nonlinear condensations that have not reached
equilibrium. Although these calculations illuminate
some of the physical processes involved, it is not clear
that their quantitative predictions are any better than
the simple scaling arguments of Secs.III.C and IV.B.

As yet, not much work has been done on the fully non-.
linear fluid-dynamical equations except to consider
some of their special properties. For example,
Peebles and Groth (1976) have studied a so-called "in-
tegral constraint" for the evolution of g which is a use-
ful aid in the interpretation of N-body experiments. The
focus of other studies has been mainly on determining
the domain of validity of the scaling arguments. Ac-
cording to Eq. (66), the mass m, of an inhomogeneity
which is just beginning nonlinear condensation varies
with proper time as m, ~ i'~ '""' at, early times (z )zf).
In this connection, Peebles (1974e) and Doroshkevich
and Zel'dovich (1975) have noted that any momentum-
conserving process giving rise to the fluctuation spec-
trum prior to recombination will lead to the condition
n ~ 4. Thus the minimum expected growth rate for the
condensing mass scale is ~,~t' '. Since the mass
within the horizon varies as mH ~I;, fluctuations giving
rise to galaxy clusters could have been set up by causal
processes only if e is less than+1.

Apart from a sign difference in the two-body interac-
tion potential, a system of self-gravitating particles is
formally identical to an electromagnetically interacting
plasma. This formal difference, however, gives rise
to a wealth of different phenomena, mainly because of
the lack of charge screening in the gravitational system.
(For a review of kinetic theory as applieg to non-ex-
panding gravitational systems, see Haggerty and Se-
verne, 1976.) Indeed, gravitational systems are often
cited as the standard counterexample to many of the
basic postulates and theorems of ordinary statistical
mechanics and thermodynamics. Thus few if any of the
results of plasma and liquid kinetic theory can be taken
over directly without some modification. The statistical
description of a gravitational system must therefore be-
gin at the most fundamental level: Liouville's theorem,
which merely states that the number of particles in the
system is conserved. " Equivalent to this statement is
the Bogoliubov Bo~ Green Ki-wkwoo-d Yvon-(BBGKY)-
kiexawchy of equations for the functions f, (e.g. , Ichi-
maru, 1973), The distribution function of order s is

q(m, z) o=m ~exp( —[m jm, (z)]' '&},

P=3j2-n /6, m. (z) (I+z)'«~-"
(66)

33In Press and Schechter's notation, P is 1+a.
34In the cosmological conte', this statement refers to a

large comoving volume of space.
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defined such that f,(x„u». . ., x„u,)d'x, d'u, . . .d'x, d'u,
is proportional to the probability that particles 1
through s are in the position-velocity elements
d'x, d'u, . . .d'x, d'u, at the phase point (x„u, . . .x„u,),
where the x,- are comoving position coordinates and
the u; are some kind of non-Hubble velocities (see be-
low). These functions are assumed to be symmetrical
with respect to the interchange of any pair of particle
labels and a.re often denoted by f,(1, . . . s). They are
also functions of the proper time t and the masses of the
particles if the system has a continuous mass spec-
trum.

The connection behveen the BBGKY hierarchy and the
correlation approach to galaxy clustering is made ex-
plicit by introducing the usual position-velocity correla-
tion functions of kinetic theory:

f(1)=f,(1),g(1, 2) =—f, (1, 2) —f(1)f(2),
h(1, 2, 3) —=f~(1, 2, 3) —f(1)g(2, 3) —f(2)g(3, 1)

-f(3}g(1,2) -f(1}f(2}f(3},

d3u, f(1)= a'n = const,

d'u, d'u, g(1, 2) =a'n'g(1, 2), (68b)

d u, d'u, d'u, h (1, 2, 3) = a'n'g(1, 2, 3), (68c)

etc, where & is the expansion parameter, n is the time-
dependent mean pr'oper density and $ and r are the
time-dependent position correlation functions defined in
Sec.II. The BBGKY equations turn out to have the sim-
plest forms if u,. is taken to be av,-, where v,. is the
proper peculiar velocity of the ith particle. In this case,
the first two equations of the hierarchy for a system of
identical particles of mass m are the following

Sf(I)/st = a ' d'x, d'u, 8„g(1,2),

[s/et ~ a '(u, —u, )

x a/e(x, x,)]g(1,2) =a-'8„[f(1)f(2)+g(1, 2)]

~a ' d'x, d'u, [8„f(1)g(2,3)+8, f(2)g(1, 3)

(69)

+(8„+8„)I(1, 2, 3}], (70)

where t is proper time and the binary interaction oper-
ator e,z is defined by the equation

8fg =—Gm ~xg —xy
~

(xg —xy) ~ (8/Bug —8/Buy) . (71)

These equations can be derived by first setting up a
corresponding hierarchy in an inertial (non-expanding)
frame of reference, then changing variables to the co-
moving coordinates x, and the peculiar velocities u; de-
fined above and finally removing the mean fieM terms
using Euler's equations (Fall and Severne, 19V6). Al-
ternatively, they can be derived from a Lagrangian
principle (Davis and Peebles, 19VV).

etc. The most natural normalizations for these functions
are the following:

Seve ral inte res ting results can be de rived directly
from the BBGKY equations in the form (69)-(71), in-
cluding the basic energy balance equation (51) above
(Gilbert, 1965a; Fall and Severne, 1976; Davis and
Peebles, 1977). In order to actually solve the equa-
tions, some approximations are required. In the "weak
coupling" approximation, where all terms but the f(1)f(2)
term on the right-hand side of Eq. (70) are neglect-
ed, the equations can be solved almost exactly for
g if some form is assumed for the single-particle func-
tion f (Fall and Saslaw, 1976; Inagaki, 1976b; Yahil,
1976; Norman and Silk, 1978). The weak coupling term
is responsible for classical two-body relaxation effects
(Fall and Severne, 1976) a.nd it va.nishes in the contin-
uum limit: rn 0, n-~, mn finite. 3' If the system is
initially uncorrelated (i.e., if it has an initial Poisson
distribution), the weak coupling approximation will be
valid for at least some time until higher-order correla-
tions become important; but it is not applicable to the
recent evolution of clustering. Another approach is to
drop all of the terms which vanish in the continuum lim-
it and then to take velocity moments of the resulting
equations (Saslaw, 1972 Inagaki, 19V6a; Davis and
Peebles, 197V). This drastically reduces the number of
independent variables in the problem but only at the ex-
pense of neglecting two-body relaxation effects and of
creating a hierarchy of moment equations in addition to
the hierarchy of kinetic equations. If some closure
scheme is adopted for the moment hierarchy, the re-
sult is essentially a set of fluid-dynamical equations for
the position correlation functions. If this set can also
be closed in some way, the resulting equations may be
tractable, if only by numerical integration. '

The only serious attempt. to date at a program like
the one outlined above is that of Davis and Peebles
(19V7). Their goal was to calculate the evolution of $,
particularly in the transition region (( =1). The basic
assumptions of the Davis-Peebles theory are the fol-
lowing: (i) the background cosmology is Einstein —de
Sitter (0=1); (ii) the initia, l power spectrum ha.s power-
law form with exponent n; (iii) discreteness effects are
negligible (continuum limit); (iv) throughout the evolu-
tion, the relation between h and g is the same as the
Peebles-Groth relation (20) between f and g with Q con-
stant; (v) the distribution of relative velocities of pairs
of particles has zero skewness about the mean; (vi) the
large-scale form of g is given by the linear equations
(42), (44), and the small-scale form of $ is given by
the results of the simple scaling arguments, Eqs. (47),
(48). Assumptions (i), (ii), and (iii) mean that there

t

35If the system is considered to be completely collisionless,
a Vlasov approach can be adopted {van Albada, 1960, 1961;
Gilbert, 1965b; Bisnovatyi-Kogan and Zel'dovich, 1971). In
this case, the single-particle distribution f is assumed to be a
function of both position and velocity and all correlation func-
tions are ignored. In a comovirg system of variables, the
Vlasov equation can then be solved for first-order perturba-
tions about some basic state such as the adiabatically cooling
Maxwellian distribution. The results show growth at the usual
linear rate for fluctuations larger than the Jeans length and a
kind of Landau damping on smaller scales.

36The Kirkwood closure scheme, often adopted for liquids and
turbulent plasmas (Rice and Gray, 1965; Ichimaru, 1973), is
not consistent with Eq. (20) (Davis and Peebles, 1977).
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are no characteristic lengths, masses, or times in the
problem and that the equations admit similarity solutions
in terms of the single variable s =x/t, with o.

=2(1/y —1/3). Assumption (iv) closes the BBGKY hier-
archy, and assumption (v), although difficult to justify,
closes the moment hierarchy. In addition, several oth-
er approximations B.re made and the final equations are
then solved numerically. " The results are various
predictions for the shape of g a.nd for some of the velo-
city moments. They are definite enough that they can be
compared with observational data and with N-body ex-
periments. One of the most attractive features of the
theory is that it correctly predicts the value of Q.

Because of the large number of approximations re-
quired by the Davis-Peebles theory, checks against the
N-body experiments would be especially useful. It
would also be interesting to see the results of similar
calculations made with some different assumptions
(e.g. , 0 «1). In this way, it may be possible to discard
some of the less important terms and arrive at a sim-
pler theory for the evolution of clustering. Another
possibility might be to exploit the similarity between
the fluctuations that develop in a self-gravitating system
and the fluctuations that develop in a system near the
critical point of a phase transition (Totsuji and Kihara,
1969; Saslaw, 1972; Liang, 1979). At the liquid-gas
transition, for example, the homogeneity of the system
is neutrally stable and density correlations have a long-
range I/x behavior (e.g. , Landau and Liftshitz, 1959).
Whether this is just an intriguing analogy or is some
how related to a deeper principle is mostly speculation
at this stage. ' It may, however, be an important key
for further understanding of the development of struc-
ture in gravitational systems like the expanding one
considered here.

V. CONCLUDlNG REMARKS

The nature of this subject. does not readily lend itself
to a list of specific technical conclusions. Instead, it
seems best to emphasize the methods of the correlation
approach to galaxy clustering. Much progress has been
made on both the observational and the theoretical sides
of the subject and many of the basic problems have been
well-posed, if not actually solved. It should be clear,
especially from what has been said in the previous sec-
tion, that there are still some important gaps in our
understanding of the distribution of galaxies and its
evolution. 'The following is a list of specific research

3~The most worrisome of the supplementary approximations
made by Davis and Peebles is that the velocity part of g (1,2)
can be decomposed canto the form G~ (u~-u~) +~ (up + u2) [cf.
their Eq. (59)]. In this case, the distribution of relative veloc-
ity {u& -u2) and the distribution of center-of-mass velocity

(u~ + u2) are assumed to be independent. For weak correla-
tions, this approximation is valid; but when triplet correlations
are important, the relative velocities of pairs become corre-
lated with their center-of-mass velocities through the tidal in-
fluence of other particles.

It is interesting to note that the weak coupling solutions of
the BBGKY equations (69)-(71) also have the form ((~)~ 1/x,
up to the distance particles could have traveled at the rms
velocity in the elapsed time (e.g. , Fall and Saslaw, 1976).

problems and programs which, when completed,
would help to fill these gaps:

A. Observation

(a) Redshift samples. More redshifts are required. A
direct estimate of the linear part of $ may be possible.
More velocity data will increase the accuracy to which

can be estimated.
(b) Deep samples. Larger samples and a, better un-

derstanding of evolutionary corrections are required.
An empirical test of the gravitational instability picture
may be possible.

B. Theory

(a) Kinetic theory and fluctuation theory. Work in con-
junction with computer experiments seems the most
promising.

(b) Triplet correlation function. Why does f have the
Peebles-Groth form (20)? Why is Q nearly equal to
unity'

(c) Pre-recombination physics. Why does the fluctua. —

tion spectrum at recombination have the forms inferred
from the scaling arguments (0&n 2 -2)?

(d) &ongravitational effects. The possible influence of
gas-dynamical and related processes on g should be
studied in more detail.

C. Experiment

(a) N-body simulations. More care with initial condi-
tions is required. Fourier transform techniques seem
promls1ng.

(b) Fluid-dynamical simulations. This may be the
cheapest way to study the nonlinear development of
flue tuations.

Finally, I cannot resist mentioning a nonscientific is-
sue raised by the recent work on galaxy clustering.
Studies of galaxy correlations have shown that despite
the rich variety of clustering patterns, the distribution
of galaxies has a remarkably simple underlying form.
'The philosopher Santayana discussed a similar issue
from an aesthetic point of view in his famous book, The
Sense of Beauty (1896). There, he considered the ques-
tion: why is the night sky beautiful'F I.ike the distri-
bution of galaxies, the distribution of stars is not one of
random placement and it is not one of repeating geo-
metrical patterns. It is something more varied, and
yet it seems to have a simple underlying form. Santay-
ana thought this was the key to the question he had
raised about the distribution of stars; it is beautiful be-
cause it has enough underlying regularity to satisfy our
sense of the simple and it has enough diversity to satis-
fy our sense of the novel. Santayana also commented
on the fact. that music and speech have similar proper-
ties, but he wrote at a time when very little was known
about the distribution of matter outside our own galaxy.
His explanation, though, of why we find a complex pat-
tern with a simple underlying form to be so pleasing
seems especially intriguing in the light of recent stud-
ies of galaxy clustering.
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