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The J. Robert Oppenheimer Lectures are given annually at the Institute for Advanced Study, Princeton,
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~e consider the temporal evolution of a finite-ampli-
tude perturbation z at to. If I' and p are the unperturb-
ed pressure and mass density, respectively, then each
point (v, P, p) on the initial profile will propagate with
a ve&ocity

I. I NTRODUCTION

In this lecture, I should like to discuss some impor-
tant laboratory and astrophysical phenomena concerned
with the development of discontinuities in plasma sys-
tems. In general, many different types of discontinu-
ities are possible. Clearly, those which persist for
long times are most important. For this reason, we
shall deal here with only two kinds of discontinuities:
shocks and neutral layers. 'These are also the ones of
greatest practical importance. Let us begin with
shocks.

II. SHOCKS

'The present status of the collisionless shock problem
can be summarized a.s follows (Sagdeev, 1966; His
kamp, 1973). Collisionless shocks have been proved
to exist both in laboratory and in space plasmas. 'Their
physics is qualitatively understood, and comprehensive
quantitative models have been developed for a variety
of soluble limiting cases. Other cases can and have
been treated with numerical simulation.

hat collisionless shocks should even exist, however,
was not obvious in the early days of investigation.
Let us therefore develop the concept of a collisionless
shock by first reviewing the collisional shock of con-
ventional gas dynamics. This shock arises as a result
of nonlinear wave steepening, which may conveniently
be discussed in terms of the Riemann solution (Fig. 1).

+This written version was edited by J.A. Krommes from text
supplied by Professor Sagdeev. It has been reviewed and ap-
proved by the author.

As we see from Fig. 1, this gives rise to a steepening
of the profile. %hen this steepening becomes sufficient-
ly large, dissipative processes begin to compete.
Eventually, the balance between dissipation and the v
'Vv steepening leads to a shock structure, whose thick-
ness we can estimate from

v ~ Vv- v(8 v/Bx') .
Here v is the kinematic viscosity, of order /v„where
l is the mean free path, and v, is the molecul3r ther-
mal speed. 'Thus the shock thickness A,„becomes

p 1
v (SR —1)

where SR is the Mach number [we used v- (6R —E)c,].
If one attempts to apply these arguments directly to

the conditions of space plasma, say the solar wind, one
fails rather badly. Since the Coulomb mean free path
is measured in astronomical units, whereas the ob-
served shock-like behavior occurs over much shorter

dx dp
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PEG. 1. The steepening process and formation of a conventional
collisional shock. Definition of the shock thickness 4.
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FIG. 2. The sudden onset of magnetic storms caused by plasma
from solar flares impinging on the earth.

distances, it seems absurd to use the collisonal shock
concept. Also, in the rarified laboratory plasmas we
have the case l & L, where L is the size of the device,
but again almost discontinuous behavior is observed
over scales short compared to L. Clearly, a new con-
cept is called for.

Since the earliest days of investigation of the pl3, sma
state, it has been recognized that the collective behav-
ior of even the collisionless plasma can be of crucial
importance. Among the many hypotheses related to
anomalous collective effects was the concept of a col-
lisionless shock. 'The first clear observational evi-
dence for this idea came from the study of phenomena
related to solar flares. In particular, an apparent
paradox arose when one considered the sudden onset of
magnetic storms caused by the sola. r flares (Fig. 2).
It was natural to argue that the geomagnetic field should
be strongly disturbed when the plasma cloud ejected by
the flare arrived in the vicinity of the earth. If ~v rep-
resents the characteristic velocity spread of the cloud
ions, then one would expect the characteristic rise
time bt for the magnetic storm to be of order rM/t
—Av/v. The actual measured rise time is extremely
short, with 4t of the order of several minutes; this
would imply an unbelievably small velocity spread: bet
n-10~. One could hardly imagine that any natural
process of plasma acceleration, especially of an explo-
sive type, could produce such monoenergetic ions.
However, in 1955, T. Gold suggested that there would
be, in fact, no paradox if the interplanetary medium
could propagate shocks. Further support for the col-
lisionless shock concept came from basic plasma theo-
ry and rapid development of the guiding center models
for magnetized plasma. Finally, in the early 1960's,
a fairly self-consistent picture of collisionless shocks
began to emerge from theoretical analysis. This was
confirmed in some detail by l3boratory experiments,
measurements of the solar wind, and numerical simu-
lations.

Two distinct limiting cases bound the scope of the
collisionless shock problem. These are:

1) fluid-like behavior (which can occur even for col-

lisionless plasma) and

2) nonfluid behavior (particle free-streaming).

The first case is simpler (though far from simple! ).
It is based on the observation that, under certain con-
ditions, the collisionless plasma can exhibit many of
the features of fluid-like media. One could readily ex-
pect such behavior, for example, for the cross-field
motion of particles frozen to magnetic field lines. If
one considers motion on scales much larger than a
gyroradius, then the E x B drift adequately represents
the particle behavior (if we ignore free-streaming
along the lines). This guiding center description has
equations of a structure identical to those of magneto-
gas dynamics. The only difference is that for the
plasma we need a specific heat ratio of y = 2, to take
proper account of the adiabaticity of the magnetic mo-
ment p=—mv~2/B = const.

For strongly nonisothermal plasmas (T,» T,), the
fluid-like behavior persists even in the absence of a
magnetic field. This we can see from, the following
arguments. Suppose that the electric potential changes
sufficiently slowly so that the electrons adjust to a
Boltzmann distr ibution

n, = n, exp(e @ /T) .
Assume also that ion thermal motion is negligible. %e
can then use a truncated form of the moment equations
for the ions,

&n,./Bt+ V (n,v;) = 0,

M[eq, /Bt+ (v, 'V.)v;] = —eV@,

together with

(la)

(lb)

(1c)

(ld)

For scales much larger than the Debye length, we can
to lowest order replace Poisson's equation by the quasi-
neutrality condition n;=n, =n For e@/. T, &1, we can
also approximate e xp(e&j) /T) = 1+e@/T, . The resulting
model

M —+ (8 ' V)8 = —T V(n/n ),

corresponds to a fluid picture with y=1. [The eigen-
modes in this case —ion acoustic waves or phonons-
would exhibit only a small additional amount of kinetic
damping -(m/M)'~' due to the electron Landau reso-
nance. ] Naturally, all such fluid-like models will exhi-
bit the Riemann behavior (Fig. 1). Arguing as before,
we arrive at a need of some process to balance the non-
Linear steepening. This turns out here to be a disper-
sion effect, arising from the deviation from quasineu--
trality, which competes for sufficiently small scales.
Let us examine this effect qualitatively. A typical form
of dispersion relation would be

(u/k = (const) [1+k'6'+ 0 (A, ') ],
where 6 is a constant depending on physical parameters.
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FIG. 3. Initial ( ).and final (---) profiles when dispersion
CA(m/k) = —k 6 ] is effective in balancing v ~ V'v steepening.

The P'5' term corresponds to the dispersive effect of
higher-order derivatives in the equation of motion. We
can qualitatively assess their effect by inserting a new
term in the Riemann solution: ~(~/A;) = +k'6' =+6'8'/Bx'.
Now, consider the initial profile of Fig. 3 and examine
the subsequent behavior in the vicinity of S v/Sx =0.
I et us first consider the choice of lower sign in the ex-
pression for &(m/0). Then, to the right of the point
where v" =0, we will have b, (~/0) &0, which is just what
we need to compensate the v. Vv steepening. On the
other hand since A(co/0) & 0 just to the left of point 0
points near Sec. A, where S'v/Sx' again -0, will attempt
to overtake those just io their right and the profile will
develop the shape shown in the dotted lines. We can ex-
pect this competition of effects to result in a steady
state, where all quantities vary as x-ut, with u being the
shock speed. For the model (1) with T,» T, , the approp-
riate calculations are simplest. We do not now im-
pose quasineutrality. Reduction of (1) then leads to a
second-order differential equation for the potential
(Sagdeev, 1966)

d'&f& d
(2a)

where

(2b)

and C is an integration constant.
It is convenient to visualize the solution of this equa-

tion by thinking of the analogous problem of a particle
moving in a nonlinear potential well V [in (2), we replace

X- ut

FIG. 5. The oscillatory shock, or train of solitons, which re-
sults when a small amount of dissipation is added to a soliton
solution (see also Fig. 4). I: Preshock (unperturbed region;
II: postshock (perturbed) region.

x- f, g-x] (Fig. 4). The solution with p-0 as x-~
represents a. solitary wave (soliton). Even a very small
(even symbolic) amount of dissipation would produce an
entire wave train of solitons (particle falling slowly into
the bottom of the well). Figure 6 illustrates such a
structure and shows that we can introduce the concept of
an oscillatory shock which connects the unperturbed
(preshock) plasma (I) with the perturbed (postshock)
plasma (II). In this. case, one should modify the Hugon-
iot-Rankine relations to include ihe energy and momen-
tum of the oscillatory structure (train of solitons).

If we solve Eq. (2) with the soliton conditions @'-0
as @—0, we can find the dependence of u (or 5|I=—u jc,)
'on the maximum potential @

exp ffl ~ $ exp 111~ f m ax

A critical amplitude, above which propagation is im-
possible, is given by e@ = I/2Mu', the point at which
ions can no longer get across the potential barrier. Thus
there are no solutions if SK&6tI, =1.6, or P&@ =1.3
T,/e.

One assumption, in particular, of the above treatment
needs to be discussed carefully. To what extent can we
trust the Boltzmann approximation n —exp(eP/T, ) for
collisionless electrons? If one starts wi:th Maxwellian
electrons exp( mv /2T) going—"up the hill" -e@, there
seems to be no problem: f(v) —exp[-(1/2rnv' —e&f&)/T];
the shape of the distribution does not change. However,
consider the opposite case of electrons rushing "down-
hill" into the potential well (an example would be the
electric potential of a soliton). Here, if one follows the
development of the well in time (Fig. 6), one concludes

V($) t=0

tz

t~

FIG. 4. The potential V(fthm) for an ion acoustic shock with soli-
ton boundary conditions [C= 4m&~(Mu "+T)]. Dashed line is so-
liton solution (no dissipation); dotted line is behavior with
small amount of dissipation (see Fig. 5).

X-ut

FIG. 6. Schematic development of potential well with time.
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FIG. 7. (a) Maxwellian at $ = 0. (b) Maxwell —Boltzman distri-
bution j- exp(eg/T)]. (c) [shaded area] distribution with trapp-
ing included.

that the electrons trapped in such a well will have a
distribution significantly different from Maxwellian. In-
deed, while the well is growing, each time electrons
approach the well from either side, a small fraction of
them will be trapped if they enter with sufficiently small
velocities. Those which were already trapped sink yet
deeper, conserving their adiabatic invariants as they
do so. Such an argument implies that the velocity dis-
tribution for trapped electrons is constant, equal to the
value just outside the well:

In Fig. 7 the shaded area represents the electron density
n, (Q) modified to include the effects of trapping. This
agrees with the Boltzmann distribution only for 8$/T
«1; otherwise, n, (@)&no exp(ep/T). This modification
has some quantitative effects for the solitons. For T,.
= 0, the critical Mach number becomes M, = 3.1 instead
of 1.6, for example. However, we should not take either
of these values too literally for many reasons, of which
we mention only two. Even the initial electron distribu-
tion could be non-Maxwellian in the most general case.
Furthermore, the critical Mach number is very sensi-
tive to even a very small ion thermal spread; we do not
have good quantitative control of this feature.

For any case where the plasma behaves in a fluid-like
fashion, the steady-state oscillatory structure of the
shock is easy to find. One has just to solve a system
of ordinary, nonlinear differential equations similar to
Eq. (1). Generally, the characteristic space scale for
these steady-state waves is of the order of the char-

FIG. 9. A typical dispersion law with two branches.

acteristic dispersion length g. For example, a collision-
less shock perpendicular to a strong magnetic field
(8vnT/ED«1) would appear as a wave train of solitons
with 6-c/~~. The amplitude of the magnetic field would
not exceed 3B„and the Mach number would be less than
two (Sa.gdeev, 1966).

If we considered the other possible case b, (~/g) = p'6',
we would obtain rarefaction solitons instead of compres-
sional ones. This is the case when the shock propagates
at angles slightly oblique to the magnetic field:

The corresponding shock structure is sketched in Fig.
8.

More complicated dispersion laws can produce soli-
tons of quite exotic shape. For example, if we have
two ion species and thus two branches to the dispersion
relation (propagation J R; see Fig. 9), the wave train
of solitons appears as in Fig. 10.

For many uses where the quadratic approximation to
the dispersive correction is adequate, the Korteweg-de-
Vries equation is often used as a quite general, rea-
sonably simple model which describes the competition
between nonlinearity and dispersion:

Bg Bg B3+

The analysis of this equation led to an exciting break-

FIG. 8. The oscillatory shock profi& in the case of rarefaction
solitons.

I IG. 10. The oscillatory shock which results from the disper-
sion law of Fig. 9.
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through in nonl. inear mathematical physics. Kruskal and
his collaborators showed in 1967 that inverse scattering
techniques, originally developed in quantum mechanics,
could be used to generate exact solutions of the Korteweg-
deVries equation. Subsequently, many other related
nonlinear equations were also attacked successfully us-
ing the inverse scattering technique. Nevertheless,
most of the-remaining problems in collisionless shock
theory lie, for physical reasons, completely outside the
scope of the Korteweg-deVries equation or, more gen-
erally, the inverse scattering technique. I et us first
list, then discuss, three of the most important out-
standing problems:

(1) particle orbits and effects of thermal motion;
(2) %&sit;,
(3) instabilities and turbulence.

1. Particle orbits

The interaction of particle thermal motion with the os-
cillatory structure leads to dissipation of the wave en-
ergy. In magnetic shocks, the magnetic moment need
not be conserved (Fig. 11). Furthermore, we can have
particle reflection (Fig. 11). The reflected ions would
stream ahead of the shock carrying the perturbations of
density and field at a speed greater than the shock speed.
This means that the total profile is no longer in steady
state; the "foot" or "pedestal" (immediate preshock
portion of the waveform) will run away. This process
could be stopped only by transverse or nearly transverse
magnetic fields (u&B); in this case, the size of theped-
estal would be of the order of a gyroradius. Instabili-
ties produced by ihe reflected beam would also even-
tually stop the pedestal runaway. , Magnetic modes seem
most efficient for this purpose. Some of these effects
have already been studied numerica. lly (Biskamp, 1973).

2. QR) 5K
For sufficiently large-amplitude perturbations,

steady-state wave solutions no longer exist —the dis-
persion, at last, cannot compete with the nonlinear
steepening. The same thing happens to shallow water
solitary waves, as me mell know. This mavebreaking
signifies the breakdown of the moment approximation;
the plasma no longer behaves like a fluid, the motion
becomes multistreaming and likely unstable. The lat-
ter means that an effective "turbulent viscosity" would

X-Ut

FIG. 11. Some realistic phenomena in shocks. (a) Magnetic
moment is not conserved in regions of steep gradients (magnet-
ic shocks only). (b) Particle reflection. ( ) Shock profile in
absence of reflection. (———-) Profile with reflection; the
"pedestal. "

be important.
In some sense, the wa.vebreaking and multistreaming

is a limiting case of a very pronounced pedestal. If this
runaway multistreaming is stopped by a transverse
magnetic field, the thickness of the resulting shock be-
comes of the order of several gyroradii. This kind of
shock has again a close analog in shallow water hydro-
dynamics —the so-called hydrodynamic bore.

Before the multistreaming could be mixed due to the
Larmor rotation, it might well be unstable. The lower
hybrid mode is probably the fastest growing, with Im&e
-(m„~„.)'~'. For oblique shocks, whistler generation
may predominate. A potential mixer for the multi-
streaming would be the ion-ion beam acoustic instabil-
ity. However, it is believed that this saturates at a too
low level of turbulence, producing only a minor change
in the multistreaming ion distribution function. Thus, if
the plasma supports only ion acoustic modes, it is like-
ly that there will be no collisionless shocks for suffic-
iently high Mach numbers, gg~ 3-5.
3. Instabilities and turbulence

There are various instabilities which transform the en-
ergy of regular (laminar) nonlinear motion (wave
trains) first into chaotic, turbulent motion, then into
random particle motion. The most obvious mechanism
is the parametric decay instability of the almost period-
ic wave trains of the oscillatory shocks: (),—~, + ~„
kp ky + k2 A s a cons equenc e, the regular nonlinear os-
cillations would be damped more rapidly than the theory
of laminar shocks would predict, since the energy is
transferred to the entire noise spectrum. This decay
type of instability mould be more appropriate for dis-
persion with b(w/k) &0.

For nonlinear waves in a magnetic field, the most
obvious type of instability is the beam instability, when
the mean electron velocity relative to the ions exceeds
the mean electron thermal velocity (v, &(T,/m, )'~'].
Physically; this instability says that the electrons mov-
ing relative to the ions lose momentum and energy not
only because of ordinary collisions, but also because of
anomalous electric resistivity. We expect, of course,
that the bulk of the energy will go into the electrons
(see Lecture I). Thus the effective electron tempera. —

ture will increase relative to that of the ions. At some
point, then, ion acoustic instability must become oper-
ative. For this case, me already know the anomalous
resistivity 0 =ne'/mv* (see Lecture I). It is then a
standard procedure to find the shock thickness; in an-
alogy to the viscous dissipation discussed ea,rlier, one
finds that the anomalous resistivity leads. to a shock
thickness

a,„-c'/(4mcr*) .
When me consider the possibility that the plasma ex-

hibits nonfluid-like beha. vior (that is, when a particle
kinetic equation must be used), the collisionless shock
situation becomes extremely complicated. Vfhen one al-
lows only free-streaming (Bo = 0), no simple models of
collisionless shocks exist. Note thatme have already dis-
cussed a similar situation; multistreaming at Sk&5k,
remain valid here. Therefore it is quite probable that
when one does not permit magnetic modes, there will

Rev. Mod. Phys. , Vol. 61, No. 1, January 1979
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FIG. 14. Centrifugal distortion of field lines in firehose insta-
bility.

FIG. 12. Plasma streaming along an unperturbed magnetic
field Bo. A small volume element is shown.

be no collisionless, turbulent shocks. Numerical sim-
ulations are of great help in this complicated business.
Much more computational effort is required.

Various mechanisms can prevent particle free-
streaming. We will now discuss one of the best under-
stood, the so-called "fire hose" instability. Let us con-
sider free-streaming parallel to the direction of the un-
perturbed magnetic field. What is the subsequent plasma
behavior in the presence of a small perturbation? The
net particle distribution in a small volume element con-
sists of the superposition of the unperturbed plasma and
the perturbed particles which stream into the volume
element (Fig. 12). This distribution is obviously aniso-
tropic, with the paralleI pressure

P„=rn dv(v „—V „,)'f (v)

growing faster than the perpendicular pressure I', . As
a function of time, the pressure &p —=p —p, within the
given volume element would behave qualitatively like
curve (a) in Fig. (13). We expect an instability when bp
&TO'/4m. When the instability threshold is exceeded, a,

drastic change in the free-streaming will result. Let
us discuss briefly the physics of this change. The per-
turbation will lead to fluctuations in the magnetic field
lines. The particle flow along the curved field lines
gives rise to a centrifugal force, for each particle E,
-nay'„/R or summed over all particles E-p„/R. (A is
the effective radius of curvature of the line. ) This
force in turn tends to increase the curvature, maintain-
ing the instability (Fig. 14). Thus the mechanism makes
the magnetic lines turbulent. As the turbulence level
(6B'/8m) grows, it will react back on the particle dis-
tribution via the quasilinear effect. This we can esti-
mate qualitatively. Since the instability is low frequen-

Mk B0
'

k

The spectrum evolves according to

—/6a, f'=2y, /6a, /', (4a)

(4b)

cy, the parallel adiabatic invariant J = fdin„should be
conserved for each particle. (df is the arc length along
a magnetic field line. ) Since the effective line length
grows as the turbulence develops, we would predict
dp„/df &0, while dp, /dt&0 from the conservation of mag-
netic moment. Curve (b) on Fig. 13 shows the expected
behavior of bp, while curve (c) shows the associated
growth of magnetic energy in the fluctuations. The si-
tuation is reminiscent of the isotropizing effect of col-
lisions in an ordinary gas; in the present case, the
"collisions" are scattering on the magnetic field irreg-
ularities, which are themselves produced by the plasma
in a nonlinear, self-consistent way. The particle mo-
tion also reminds us of the problem of cosmic ray dif-
fusion in random magnetic fields.

In the "fire hose" problem, the difficulty, of course,
lies inthe self-consistent description of the turbulence.
However, if bp»BO/4z, we can use weak turbulence
theory. In particular, we can use quasilinear equations
to describe the kinetic interactions of the particles with
the turbulent fields. In the present case, the equation
for the space-averaged distribution (f) is of the form
(Sagdeev and Galeev, 1969)

d(f) e 8 (f) 1 8 8(f)
(3)

8 8(f) dW", dt

where W is the energy density in the magnetic fluctua-
tions in dimensionless units:

hP
II J.

Let us consider a steady-state situation in which all
quantities vary as x-ut. If we use the magnetic energy
g instead of the time as an independent variable, Eil. (3)
becomes in the moving frame

FIG. 13. Time dependence of anisotropy AP due to free-
streaming II B. (a) EP in absence of quasilinear modification
of particle distribution. g) 4P with quasilinear effect. (c)
Associated growth of magnetic fluctuations W= (&M2)/8r.

Solution of this equation is not completely straightfor-
ward because of its singular character; however, this
solution has been carried through (Galeev a.nd Sagdeev,
1969). We will not repeat those details here; however,
we can show that shock-like solutions arise by using
simphfied estimates. Two different contributions to the
pressure anisotropy are: adiabatic relaxation and quasi-

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979
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v 0/ )

1 t

FIG. 16. The shock-tirge solution admitted by the quasilinear
equations of the fire hose instability.

U0

FIG. 15. Quasilinear modification of the ion distribution func-
tion: (--—) Maxwellian distribution ahead of the shock front.
( ) ion distribution after quasilinear relaxation. (a) and (b)
show the comparison between the quasilinear slope and the
slope of Maxwellian distribution for different positions of the
resonant veloc ity.

linear relaxation of ihe distribution function in the vicin-
ity of the singular point v„=u0. Adiabatic relaxation is
described by Eg. (3). Taking the appropriate moments,
we find that this contribution io the pressure anisotropy
is proportional to wave energy and negative (stabilizing):

p„-p„=-const W(negative) .
(Here and later we neglect the small magnetic tension
for EPo/4)) «po. ) Quasilinear relaxation in the vicinity of
the resonant velocity v„'=uo is described by Eg. (5). We
see that a. simple (Iuasilinear "plateau" (Bf/Sv„= 0) does
noi represent the solution of this equation, so the dis-
tribution function has some finite slope as a result of
relaxation. For small resonant velocity u„ this slope is
larger than for Maxwellian distribution (case a of Fig.
15};as a result, the pressure anisotropy decreases with
W. That means stabilization of the fire hose instability.
But for sufficiently large velocity u„quasilinear effects
become destabilizing (case b of Fig. 15). The increase
in pressure anisotropy with the wave energy growth for
the latter case could be estimated as follows:

a(P „—),) =fm(vl, ')(f~,(v„,u„w) f„(v„,v—,)—) . —

Taking into account that the main contribution to the in-
tegral comes from the vicinity of the resonant velocity
v„=u, with the width b, v „-(u,v~W)' ' [see E(I. (5)], we
obtain in order of magnitude

+0 +f'll

a(p „-p,) -m u() (v() —u())
80 Il

-i((d —kv, )5f + i 5A. (a) —kv, )
' + kv'fo Bf

mC ' '
&V, '&V,

0 0

k 5A =—6j~;4m

aj„= g (ne). J dvu, ay .
S

Combining these gives readily the dispersion relation

~s C (d —O'Vz Vz

with a characteristic spatial scale length of the order
of a few ion gyroradii. Strictly speaking, this solution
is restricted to weak turbulence, 3g —1 & 1. However,
the "fire hose" mode is a viable scattering mechanism
for all Mach numbers —in fact, it should be even more
effective at high 9R, since p„-3R'c'.

For the "fire hose" mode, it was essential to have a
small but finite B0. What about the limiting case B0—= 0.
Here, too, there is a magnetic mode due to the anistropy
of the particle distribution —the so-called Vfeibel mode.
Let us again consider the situation of Fig. 12, but with
R, —= 0. If we associate the parallel index "~~" with the
free-streaming direction y, then once again p will be-
come larger after interpenetration than p~. This means,
for example, that the effective temperature T, will be
larger than T,. Let us consider the linear stability of
such a plasma against magnetic perturbations 5B
= x5B„expti(ks —&ut)]. If we think about particle orbits
in the vicinity of 5B =0, then it is easy to see (Fig. 17)
that the motion will be such as to produce a current in
the y direction with a sign such that the i'nduced magnetic
field enhances the original magnetic perturbation. This
produces a pinching of the current perturbations, and an
instability. It should also be clear from this argument
that thermal motion in the z direction would tend to
stabilize this instability.

Mathematically, the linear behavior of this instability
follows from the linearized Vlasov-Maxwell equations.
With 5B = V&&5A= -ik5A, x, and neglecting displacement
current, these read

t} II

-m n, (SR' —1)(av„)'- (SR' —1}p 0W'~' (positive} .

Here the factor (SR' —1) is responsible for the change of
the relative slope of the quasilinear and Maxwellian dis-
tribution functions at some critical resonant velocity
uo (SR' = u', /u', ). Combining the adiabatic and reso-
nant contributions to the pressure anisotropy, we obtain

P „—P ~ =(SR'- l)P,W'~' —constW.

With the help of this equation, it is then easy to see the
existence of a shock-like solution (see Figs. 13 and 16),

In the limit where &o/k«v, , this simplifies to

h
SB=xBxexp i(kz-+t)

FIG. 17. Physical mechanism for current pinching and the
Weibel instability. The arrows indicate particle orbits in a
vicinity where BB=0.
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v(x)

Bp {X)

jp {x)-v

FIG. 19. The model potential for the 1—D Schrodinger equation
for the tearing eigenmode.

FIG. 18. Simple equilibrium with neutral 1.ayer.

where

(7)

as an eigenvalue problem, equivalent to a SchrOdinger
equation with the effective potential sketched in Fig. 19.
In fact, if we are clever, we can find the equation for
the tearing eigenmode by analogy with Eq. (7) for the
Weibel mode. In the present case, we have a nonuniform
equilibrium Bo(x), so we should replace k,' by k,'.

AT—= T —T

We have assumed ~4T
~

«1 and also dropped terms
small in the square root of the mass ratio. We see that
instability is possible for &T &O. More specifically,
the growth rate is positive for

The equation for the y component of the vector potential
then becomes

O'Q co 1
d ' '+ ' ' (k )'

In this limit, one can show that the wave is a negative
energy mode.

As the instability develops, we expect the current
pinches to develop randomly throughout the plasma.

here is as yet no successful nonlinear theory for the
self-consistent, effective scattering of these random
pinches. Thus it remains an interesting open question
to find the shock thickness.

-i( )
~

I
A=0,

where the terms in square brackets are to be taken only
in the inner region x & (aQ)'~', and where v, (x) plays the
role of the effective 4T. For calculating e„ it is com-
putatiorially convenient to take as zero-order distribution
the Harris equilibrium, constructed from the constants
of the motion v' and P =mv +eA, /c. We choose a form

III. NEUTRAL LAYERS

We can now make a smooth transition to the problem
of neutral layers, collisionless tearing modes, and the
reconnection of magnetic fieM lines. Such a situation
occurs in the earth's magnetic tail. Quite rema, rkably,
in fact, the same mode we just discussed in collisionless
shock theory is also crucial for tearing in neutral layers.
Physically, this is because the relative drift of electrons
through ions is in a sense equivalent to anisotropy. We
may thus expect an effective 4T-V'. In general, the lin~
ear theory is more complicated here, since in the neu-
tral layer problem we have a nonuniform equilibrium
(Fig. 18). However, we can simplify the problem by
noting that the particles are effectively unmagnetized
within a region around Bo = 0 of thickness d, ,

- (a, ,l )'~',
where a, , is the electron or ion gyroradius, and
L is the thickness of the neutral layer. Only the unmag-
netized particles will contribute to the Landau resonance
term im ((u~/c')(m/kv, ). The problem can now be cast

where v,T = const. This we rewrite in the more conven-
ient form of a Maxwellian distribution

) )
I,. ' ' -1/2m~fv„'+(v, —r, )'+v', ]&v =ax exp Tr

where

n(x) =n, exp ' ' A, (x)
j J

and V~-T, /e&. Using Ampere's law.

A ~ = 4m/c Q n, (x) e, v~, .

with boundary conditions

dA&/dx(0) =0; A„=+Box,x -+~,
we obtain the equation for magnetic field profile
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Sv

b) b~ b); b

FIG. 21. Resonant contribution 6V to real part of effective po-
tential V, for tearing layer with normal magnetic field
(y =-a,/a, ).

have as yet only the qualitative scenario by Kadomtsev
(1976). There is some hope that certain of these non-
linear considerations bear on the collisionless case as
well.

In conclusion, the phenomena of shocks and discontin-
uities have significant places in many problems of cur-
rent interest, both in astrophysical applications and in
the laboratory. Our understanding of these matters has
improved considerably over the last decade; however,
there is yet much to be learned. Particularly noteworthy
is the close connection of the shock-like phenomena dis-
cussed in the present lecture to the phenomena of plasma
turbulence discussed in Lecture I. We cannot truly
understand the former until we have mastered the latter.
'The proper marriage of these two aspects of plasma
physics represents a major goal for the future.

In these two lectures, I have tried to point out some of
the most interesting and important problems of nonlinear
plasma physics. In these few short hours, I have really
only scratched the surface. It should be clear, t.hough,
that plasma physics is a vital and alive science, rich
with fascinating problems and important applications.
The challenge of gaining a yet better understanding of the
nonlinear plasma medium is one hard to ignore.

O.l—

I

0.3

z
Metastab le

FIG. 22. Stability regimes for the collisionless tearing mode.
The cycle of events I-II—III is Galeev's and Zelenii's scenario
for the interpretation of magnetic substorms. The numbers
(1)—(6) are keyed to Fig. 20.

tearing mode thought to play a major role in the MHD
behavior of Tokamaks, of considerable interest in the
quest for thermonuclear fusion. The equations are more
complicated in the collisionless case (since we must
deal with complicated particle orbits), while the geom-
etry is more complicated in the MHD case. For the re-
sistive mode the linear theory has long been known
(Furth et a/. , 1963), while the most general linear sta-
bility analysis for the collisionless case consists as yet
of only speculations. By contrast, th~ nonlinear theory
has been carried much farther in the MHD case, where
2-D models have been developed and extensively studied
(White et al. , 1976). For the 3-D resistive case, we
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