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This review covers experimental results and theoretical ideas on the properties of superconducting weak
links, i.e., weak electrical contacts between superconducting electrodes which exhibit direct (non-tunnel-
type) conductivity. When the dimensions of such weak links are sufficiently small, the Josephson effect is
observed in them, in other words, a single-valued and 27 -periodic relationship exists between the
supercurrent I and the phase difference o of the electrodes. With increasing dimensions, this relationship
has a tendency to deviate gradually from the Josephson behavior. This deviation varies, depending on
whether the weak link material is a superconductor or a normal metal. The various known types of weak
links are described, and special mention is made. of those weak links which are most suitable for physical
investigations and have various practical applications. The data on the nonstationary (ac) processes in weak
links, when the phase difference varies with time, are analyzed. In conclusion the existing concepts about
the processes in weak links are briefly summarized and the most urgent outstanding problems are .

outlined.
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i. INTRODUCTION

In the modern superconductivity literature, the term
‘weak link” means the conducting junction between bulk
superconducting specimens (“electrodes”), the critical
current through which is much less than that in the
electrodes. The term “weak link” is specifically used
to distinguish weakly linked superconducting structures,
i.e., those with direct (non-tunnel-type) conductivity,
from the well known tunnel junctions.?

A. Reasons for interest in weak links

In recent years, weak links have been attracting in~
creasing attention (about one hundred publications per

LThe processes taking place in superconducting tunnel junc-
tions, including the Josephson effect, are described in mono-
graphs by Kulik and Yanson (1970) and Solymar (1972), and in
several reviews, for example, by Josephson (1964; 1965),
Clarke (1970), and Waldram (1976).
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year) largely for the following reasons. It was found,
firstly, that the Josephson effect—one of the most in-
teresting macroscopic quantum phenomena—is clearly
exhibited in weak links of sufficiently small dimensions,
i.e., when the spacing between the superconducting elec-
trodes and the weak link cross section is small. More-
over, it is small-size weak links, i.e., Josephson junc-
tions with non-tunnel-type conductivity, that have the
most suitable parameters for the various applications
of the Josephson effect,? their main advantage over tunnel
junctions being low capacitance.

Secondly, in longer weak links (at a larger electrode
spacing) the weak link inevitably becomes either a
‘asual” superconductor if its material exhibits super-
conductivity at a given temperature, or a “usual” normal
conductor if the material is normal® at a given tem-
perature. Therefore, a study of weak links makes it
possible to examine the way in which the Josephson ef-
fect turns into ordinary superconductivity, and thereby
gives a deeper insight into the nature of macroscopic
quantum effects in superconductors.

A third circumstance is also important. To date,
linear (both stationary and nonstationary) electrodynamic
processes, as well as nonlinear stationary processes in
superconductors, are well understood, at least in prin-
ciple. Nonetheless, in the field of nonlinear nonstation-
ary phenomena studies have only just begun. Although
several fundamental theories have been suggested for
these processes, many experimental phenomena are
still far from being clear. Weak links are appealing in
the study of these phenomena since simple geometry
may be realized in them, which enables one to analyze
theoretical problems of reduced space dimensionality
under relatively simple boundary conditions.

B. Objective and structure of the review.

The main objective of our review is to briefly outline
the present status of investigations into the physical
processes in superconducting weak links. On account
of the specific features of the problem, attention has
been centered on the relationship between the proper-
ties of weak links and their geometrical dimensions.
Although the review is confined almost exclusively to
physical problems, the reader will undoubtedly find
that the author, like others working in this field, con-
tinually has in view the utilization of weak links for ap-
plications of the Josephson effect.

The main emphasis in the review is on the general
physical picture of phenomena rather than on a mere
enumeration of experiments or subtle details of various
theories. Details regarding the technology of fabrication
of various weak links have been omitted, but references
to original works are given in the appropriate places.

2These applications are discussed in the recent reviews by
Gubankov and Likharev (1976) and Nad’ (1975)—microwave
receivers; Giffard et al. (1976), Clarke (1977), and Simmonds
(1977)—SQUID magnetometers ; Anacker (1969), Keyes (1969;
1975), and Zappe (1977)—computer elements. The theory of
processes in circuits and systems with Josephson junctions is
described by Likharev and Ulrich (1978).

3In the theory of superconductivity any material lacking
superconducting properties is called “normal.”
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Some readers may feel that the review is more theo-
retical than experimental. But the author would like to
assert that only relatively simple mathematical tools
have been employed throughout. A knowledge thereof
is essential for any experimentalist working in such a
field as weak superconductivity, where a large number
of new unexpected phenomena have been and probably
will be discovered and where really good rather than
“satisfactory” agreement between theory and experi-
ment is the rule. The review presupposes, on the part
of the reader, a knowledge of the basic principles of
superconductivity, as laid down, say, in the monograph
by De Gennes (1966), or in the excellent textbook by
Tinkham (1975).

The review proper begins with Sec. II, which outlines
the main types of junctions where the Josephson effect
is observed—tunnel junctions and weak links. The spe-
cific properties of tunnel junctions are reviewed, and
their advantages and disadvantages from the viewpoint
of applications. Then a qualitative analysis is made of
how the various types of weak links differ from tunnel
junctions and from one another.

Section III is devoted to the most explored class of
processes in superconducting weak links—-stationary
(dc) effects in which a constant current /, less than the
critical current /,, flows through the junction. Under
these conditions, there is no voltage across the junction,
nor does any normal current flow through it. Even with-
in the framework of these processes, it is possible to
follow the transition from the Josephson effect to ordi-
nary superconductivity as the length of the weak link
increases. For this purpose, a simple model of weak
links, the “One-Dimensional Structure with Electrodes
in Equilibrium” (ODSEE) model, is introduced and wide-
ly used in further discussion.

In Sec. IV we consider in more detail the specific fea-
tures of various real types of weak links paying par-
ticular attention to the extent to which weak links corres-
pond to the ODSEE model. The applications of weak links
in various devices based on the Josephson effect are
briefly touched upon here. This analysis shows that
essentially the same types of weak links are best suited
both for physical investigations and for applications.

The next sections (Sec. V and VI) are devoted to the
less widely studied nonstationary (ac) processes. Sec-
tion V is concerned with situations that are the simplest
from an experimental standpoint, where a constant cur-
rent greater than the critical one flows through the weak
link. Section VI deals with some effects which are more
complicated for experimental investigation but often-
times more useful for understanding the physical nature
of the processes.

All the foregoing pertains to weak links interconnect-
ing two electrodes. In recent years, weakly linked sys-
tems consisting of several electrodes have been inves-
tigated intensively. Examples of such systems are a
single weak link that simultaneously connects more than
two electrodes, or a system of several weak links con-
nected in series or in parallel or in any other complex
manner. Radically new phenomena are likely to occur
in such weak link systems. These are analyzed in Sec.
VII, which also deals with distributed (“wide”) Joseph-
son junctions, junctions which may be regarded as a
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parallel connection of a large number of lumped weak
links; the importance of these weak link systems for
practical applications is discussed at the end of the
section.

In conclusion, Sec. VIII outlines the present status of
our knowledge of superconducting weak links and suggests
the most urgent problems for further investigation.

I1. JOSEPHSON EFFECT AND WEAK LINKS
A. Josephson effect
1. General description

The Josephson effect is one of the macroscopic quan-
tum phenomena of superconductivity. In it the current
through a weak contact between two relatively bulky
superconducting electrodes may contain a component
I (supercurrent), which is dependent not on the voltage
V across the electrodes but on the phase difference

@ =Xy — X1, (1)

where X, and X, are the phases of the order parameter,
A, in the electrodes

A =18, lexp(Z X12) - (2)

In the simplest (“classical”) case, the relationship /4(¢)
is sinusoidal

Ig=Icsing, (3)

where I, is called the supercurrent amplitude or the
critical current. )

The phase ¢ is related to the voltage across the elec-
trodes V by the following expression

do _2e
& T 4)

There is a significant difference between Egs. (3) and
(4) which qualitatively describe the Josephson effect.
Equation (3) is an approximate one, and various kinds
of deviations of supercurrent from this dependence may
be observed in a superconducting weak link of any type.
Moreover, the constant /. involved in Eq. (3) is es-
sentially dependent on the geometry and material of
the weak link, the electrode material, temperature, and
other factors.

In contrast, Eq. (4) is derived solely from the main
principles of quantum mechanics and contains only
fundamental constants. That this relation holds to a
high degree of accuracy has been experimentally demon-
strated (see, for instance, Clarke, 1968; Dan Bracken
and Hamilton, 1972; Macfarlane, 1973). This does not
mean, certainly, that Eq. (4) is universally applicable.
If V is defined as an electrochemical potential difference
measured by an ordinary voltmeter, then certain cor-
rections, say, due to rotation of the superconductors
(Zimmerman and Mercereau, 1965) have to be intro-
duced into Eq. (4). Besides, Eq. (4) is violated when the
equilibrium stationary state of the electrodes is dis-
turbed by the flow of a normal current component; this
flow may occur in the neighborhood of a normal speci-
men (Reiger ef al., 1971) or due to heat flow (Ginzburg,
1944; Zavaritskii, 1974; Aronov and Gal’perin, 1974.
See also Aronov and Spivak, 1975; Volkov and Zaitzev,
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1976; Zaitzev, 1976). We shall disregard these effects
and assume Eq. (4) to be exact, which is the case in
most experiments on weak links. Thus our task is re-
duced to establishing a relationship between the current
flowing through the weak link and the function ¢(?).

2. dc and ac effects

All the electrodynamic phenomena taking place at the
Josephson contacts are generally divided into stationary
(de) and nonstationary (ac) effects, depending on whether
the variables, including the phase difference ¢, change
with time or not.

If the phase ¢ remains constant (dc effects), as di-
rectly follows from Eq. (4), the voltage across the junc-
tion is zero. At the same time, a nonzero supercurrent
(3) can flow through the junction. In the dc case, this
current must be constant in time and less than the criti-
cal current

V=0, ¢(t)=const, I=I4¢p), |[I|<I. (5)

Among the nonstationary (ac) effects occurring when
the phase changes with time, the most important are
Josephson oscillations which inevitably take place if
the voltage V at the contact has a dc component V. As
follows from Eq. (4), in this case the phase ¢ contains
a component that increases linearly with time at a rate

_dy 20y o _wy 2y

wegr T F Vo= ar =7, (6)

The supercurrent, therefore, oscillates in time at a
frequency wy directly proportional to V. The propor-
tionality factor (f,/V =~500MHz/ 1 V) is rather high;
consequently, Josephson junctions are highly sensitive
to the electromagnetic field.

In ac processes, not only the supercurrent /g but
other current components can flow through the Josephson
junction. Moreover, the supercurrent may depend not
only on the instantaneous value of the phase difference,
but also on the preceding variations of ¢. Therefore
the ac effects are always far more complicated than the
dc effects. Thus we shall begin our discussion with the
dc case.

3. Tunnel junctions and weak links

In the history of prediction and discovery, as well as
at the initial stages (from 1962 to 1967 or so) of Joseph-
son effect research, a prominent role was played by
tunnel junctions in which two superconducting electrodes
are separated by a thin insulating layer [Fig. 1(a)].
Finite conductivity is exhibited in such structures only
due to tunneling of electrons through the potential bar-
rier created by an insulator. A finite supercurrent may
flow in them owing to the correlated tunneling of the
electrons forming a pair. These are the tunnel junctions
for which the Josephson effect was theoretically pre-
dicted (Josephson, 1962) and its main consequences were
observed experimentally: the flow of supercurrent with-
out any voltage drop (Anderson and Rowell, 1963) and the
specific magnetic field dependence of the supercurrent
(Rowell, 1963). Josephson oscillations were detected
both indirectly (Shapiro, 1963; Giaever, 1965) and di-
rectly (Yanson ef al., 1965) with the help of the same
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FIG. 1. Different types of structures where the Josephson ef-
fect can take place. (a) tunnel junction, i.e., S-I-S sandwich.
All others are different weak links, i.e., structures with di-
rect (non-tunnel-type) conductivity; (b)-sandwich; (c)-prox-
imity effect bridge; (d)-ion-implanted bridge; (e)-Dayem -
bridge; (f)-variable-thickness bridge; (&)-point contact; (h)-
blob~type junction. The conducting regions of the two last
types of weak links are shown schematically in the circle on
the bottom. S stands for superconductor, - S’ for the supercon-
ductor with reduced critical parameters, N for normal metal
or alloy, SE for semiconductor (usually highly doped), I stands
for insulator. Thin-film structures are shown without the sub-
strate.

structures.

The outstanding role of tunnel junctions has greatly
affected further research in the field. Some workers
were led to believe that this effect could take place only
in tunnel junctions, although the Josephson effect was
observed in structures with non-tunnel conductivity as
early as 1964 (Anderson and Dayem, 1964; Lambe ef al.
1964), and by 1966 all the main processes associated
with this effect had already been detected in these struc-
tures (weak links) (Zimmerman and Silver, 1964;
1966a,b; Grimes ef al., 1966; Dayem and Grimes,
1966). Overestimation of the significance of tunnel junc-
tions has led to deplorable consequences. Firstly, con-
siderable attention has been given to complex and spe-
cific processes in tunnel structures which are of minor
theoretical and practical importance. Secondly, after
the main effects had been experimentally observed and
a fairly satisfactory theory of the Josephson effect had
been developed (Werthamer, 1966; Larkin and Ovchin-
nikov, 1966), some investigators got the wrong im-
pression that “everything is quite clear concerning the
Josephson effect,” and some prominent workers were
thus unfortunately misled to abandon further research
in the field.*

b

“This is reflected in the literature too. Let alone the early
surveys, in the existing monographs (Kulik and Yanson, 1970;
Solymar, 1972) and even in some recent reviews on the Joseph-
son effect, attention is focused on tunnel junctions.
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Therefore, although the use of weak links for practical
purposes was begun in 1966—67, the physics of weak
links has only become a subject of intensive study since
1974. So far these investigations have produced more
questions than answers, and the most significant pro-
gress achieved to date is, probably, the recognition of
the fact that the Josephson effect is up to now far from
being a clearly understood phenomenon, and that tunnel
junctions are merely a particular case of Josephson
junctions.

This review is devoted to weak links with non-tunnel
conductivity; and yet we shall begin with a brief survey
of the well known properties of tunnel junctions. This is
done, first, for the sake of comparison and, second,
because there are cases where the properties of weak
links are similar to those of tunnel junctions.

B. Tunnel junctions

1. Basic equations

In most cases the properties of tunnel junctions are
adequately described by the existing theory,5 which is
based on two facts:

(i) The thickness of the energy barrier (insulating
layer) is of the order of 107 ¢m, and is negligibly small
compared to all other characteristic lengths in the
superconductor, in particular, the mean free path of
electrons £. This means that the barrier may be and is
described integrally, without introducing the coordinate
dependences of any superconductivity parameters (e.g.,
A) inside the barrier.

(ii) The barrier transparency factor T is in most
cases so small that the critical current through the junc-
tion (usually of order 1 —10%4/cm?) is far less than the
critical current of the electrodes (10°—10°A /cm?). This
makes it possible to calculate the characteristics of the
junctions using perturbation theory with respect to the
small parameter T <1, i.e., to disregard disturbances
in the electrodes’ state caused by tunnel current.

These facts greatly simplify theoretical analysis; as
a result of which as far back as 1963 a complete theory
was formulated for the dc case (V =0) (Ambegaokar and
Baratoff, 1963), and in 1966 a theory for arbitrary V(¢)
was completed (Werthamer, 1966; Larkin and Ovchin-
nikov, 1966). A discussion of the theory can be found
in the monograph by Kulik and Yanson (1970) or in the
report by Poulsen (1973); here we shall quote the main
results only.

Consider a junction of such small area that the phase
difference and the voltage across the junction are inde-
pendent of the coordinates in the plane of the barrier,
and are interrelated by Eq. (4). Let the voltage. contain
components at a frequency w and its harmonics, and
possibly a frequency of the Josephson oscillations w,
[Eq. (6)]. In this case exp(i ¢/2) can be expressed in the
fo\rm of a Fourier series

exp(i ¢/2) = Z Aexpli(wy/2 +nw)t]. 1)

5An exception is the problem of the sign of the “interference”
and the “fourth” components of the curre;nt (see Sec. V).
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FIG. 2. The amplitudes of supercurrent (I,) and normal elec-
tron (quasiparticle) current (I;), which are used in tunnel theory
[Eq. (8)], for different temperatures T. T, is the critical temp-
erature of the electrodes, which are taken to be identical. A(T)
is the order parameter modulus in the electrodes. Ry is the
normal junction resistance. Real parts of amplitudes are even,
and imaginary parts are odd functions of the argument.

In this case the current through the junction is of the
form (Poulsen, 1973):

I(t) =Im{exp(i (,0/2)2 AXexp| - i(wy /2 +nw)t | I(wy +2nw)
+A, expliwy /2 +nw)t | I(w, +2nw)},

(8)

where I, and /, are complex functions which describe the
currents of Cooper pairs and unpaired electrons, re-
spectively.® These functions are shown in Fig. 2 for the
case where the electrodes are made of the same ma-
terial. Some curves for electrodes with different criti-
cal temperatures T, are plotted in the paper of Harris
(1974).

6As the properties of the unpaired electrons in a supercon-
ductor differ slightly from their properties in normal metals,
they are generally referred to as “electron-like quasiparti~-
cles, ”” “electron-like excitations, ”” and others. For the sake of
simplicity, however, we shall use the term “electrons” every-
where, bearing in mind the distinction mentioned above.
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2. Basic properties of tunnel junctions

For the dc (zero-voltage) case, we have to change
wyl—¢ in Egs. (7) and (8); thus we get

=1, sing, Io =Rel,(0), (9)

which shows that the /4(¢) relationship is always sinu-
soidal for tunnel junctions. The critical current is given
by Rel,(0) which, for identical electrodes, is

T AT A(T
IC:VC/B:N’ VC:Z ( )t th(BT)‘ ’

(10)

where A(T) is the equilibrium value of the energy gap,
i.e., the modulus of 4 in electrodes, and R, is the re-
sistance of the junction in a normal state. An important
result is that the product I.Ry, which is called the
characteristic voltage of the junction V., does not de-
pend on any parameters of the barrier, and is deter-
mined solely by the operating (7) and critical (7.) tem-
peratures through the well known function A(7)
=ksTof(T/Tc). We recall here that in the microscopic
theory (Bardeen ef al., 1957) the quantity A(7) is almost
constant at low temperatures

A(T) = A(0) {1 _<ZZ?S)T>exp[—- —%Q%—] }, at 7=0.67.,
(11)

A0) = (/Y kpTc, v =1.78,
and falls off rapidly as T— T,

ANT) = ot RET (T = T), at To—T=0.17T,,

'72;(3)
£(3) ~1.202.

(12)

Therefore the critical temperature determines the maxi-
mum possible value for the junction voltage (7 - 0)

max(ch)—-—A(O)— kBTC, max(Vn)[uV] 2407 [K].
(13)

Near T, the characteristic voltage is a linear function
of temperature with a universal slope

2m3ky
7:4(3)e

T A2

Ve=7% ekyT

=a(Tc-T), a=

vV
~635——. (14
5. (14)
If the junction voltage is nonzero, then other com-
ponents also contribute to the current. For example, for

constant V =V, Eq. (8) directly yields

I=Rel,(wy)sinwyt +Im(wy)coswyt +ImI(wy), (15)

which shows that the current through the junction is the

sum of the oscillating Josephson supercurrent with an

amplitude /,(w,) and a constant normal current Im/(wy).
It is obvious from Fig. 2 that at low voltages [eV

< 2A(T)] the amplitude of the current oscillations is

practically constant and equal to the critical current.

At a frequency wy, =4A/7%, i.e., at a voltage

V=24(T)/e, (16)

the amplitude has a weak (logarithmic) singularity (Rie-
del, 1964), and the electron current has a step of finite
height. This behavior results fromthe following process:
an electron pair from one electrode breaks and one of
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the electrons passes to another electrode, absorbing an
electrostatic energy eV. Equation (16) follows precisely
from the condition that this energy should be equal to the
pair binding energy 2A.

At higher voltages, the electron current Im/, tends to
assume its value in a normal junction, while the ampli-
tude of the supercurrent oscillations falls off approxi-
mately as w,"!. If the contact junction voltage changes
with time, a fourth component Re/, also contributes to
the current.

A large number of phenomena occurring at tunnel
junctions may be described by Egs. (7) and (8) if the
real geometry of the junction, its capacitance, possible
phase variations in its plane, and several other factors
are taken into account. These effects do not fall within
the scope of our review since most of them do not take
place in weak links.

3. Capacitance and current density

As regards the use of tunnel junctions as Josephson
elements in various applications, an analysis of the
dynamics of devices based on such elements shows the
following. Almost all tunnel junctions prepared by exist-
ing techniques have parameters which are quite suitable
for practical applications with the important exception
of the large intrinsic capacitance of the junction C, a
parasitic factor for almost all applications (see, for
example, the analysis of Likharev and Ulrich, 1978).

As follows from circuit analysis, the criterion for the
negligibly small influence of the capacitance on junction
processes is the smallness (compared with unity) of the
following dimensionless parameter’

B=w,RyC=(2e/)I.R%C, (1M

where w. is the characteristic frequency of the junction,

which is related to its characteristic voltage V. by the

Josephson relation (4)
2e 2e

we=—Ve=

7 T (18)

— IRy .

It is clear from Eq. (17) that 8 is independent of the
junction area S, and that 5 shows whether or not the
capacitance shunts the conductance at frequencies ~wg.

In a typical Josephson junction the density of the criti-
cal current is ~10%4/cm?, and the critical temperature
of the electrodes is about 10 K, while the electrical
thickness of the insulating layer t/¢ is ~1A. Hence the
following estimates of the parameters

C/S=¢/anl~107°F/cm?, V=2 X 1073V, wo =6 X 102572,

(19)
RyS=Ve/ic~2x107°Qx cm?, g ~109> 1.

Thus, in a typical tunnel junction, the capacitance ef-
fectively shunts the tunnel conductance. This situation
has an adverse effect not only on microwave devices
based on the Josephson effect, but also on such applica-
tions as magnetometry or computer devices, because
the I- V curve, under the effect of capacitance (see, for

"For applications at very high frequencies (w >>wg) 8 should
be small as compared to wg/w<<1.
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example, Likharev and Ulrich, 1978), becomes hys-
teretic.

From Eq. (17) it is clear that 8 can be reduced in two
different ways: either by increasing the current density
jc (decreasing Rjy) or by increasing the electrical thick-
ness of the barrier {/¢, the current density being kept
the same. Each of these ways gives rise to its own
difficulties in the technology of fabrication of tunnel
junctions.

Since the publication of Giaver’s classic papers (1960),
tunnel junctions are usually prepared between two thin
superconducting films as follows: first the lower film
is evaporated, then it is oxidized to form an insulating
layer, and finally the upper superconducting layer is
deposited. Even relatively small current densities
(~10%A /em?) are attained with an oxide layer as thin as
10°-204 at which, it is, indeed, a problem to provide
layer uniformity and stability with respect to diffusion.
In recent years considerable progress has been made
in the technology of fabrication of stable oxide layers,
using glow discharge oxidation and suitable electrode
materials (Schroen, 1968; Greiner, 1971, 1974; Lahiri,
1976). However, only in a few cases has a current den-
sity of ~10%A /em? been obtained (see, for instance,
Broom et al., 1975), B being still as large as several
tens.®

Another method is to increase the thickness of the
potential barrier, keeping the current density atthe same
level (or even increasing it) by using a semiconductor
interlayer which provides a lower energy barrier height
(see the review by Cardinne ef al., 1974, and the papers
by Barone et al., 1974; Barone and Russo, 1974; Sim-
monds, 1974). Recently, junctions having a current
density ~10%4/cm? and $~1 have been successfully pre-
pared, using silicon single-crystal membranes ~1000
A thick as an interlayer (Huang and Van Duzer, 1974,
1975; Schyfter et al., 1977). It should, however, be
noted that this rather impressive result was obtained
with the help of a semiconductor highly doped with boron
to a concentration of ~10?° em~3, and hence practically
degenerate. The conductivity of such material is of
metallic type even at helium temperature. Thus these
junctions, which will be discussed in detail below, are
one of the types of weak links, namely, S—~N-S sand-
wiches.

As a result of the above-mentioned difficulties in
manufacturing tunnel junctions with low capacitance,
Josephson weak links,’i.e., structures with direct (non-
tunnel-type) conductivity, are now used for most appli-
cations. The most important exception is in digital de-
vice applications (see Footnote 2 for references) where
some important development programs are based on the
use of tunnel junctions. However, large junction ca-
pacitances create some hard problems here as well.
The personal point of view of the author is that the
real advantage of tunnel junctions in this field is the
somewhat more advanced technology of their fabrication,
and that the situation can change with time.

8Recently a report has been published (Niemeyer and Kose,
1976) on the successful production of junctions with jo ~2
X 105 A/cm? and B~ 1. Nonetheless, so far it is not quite
clear whether those junctions possess tunnel-type conductivity.
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C. Weak links
1. Main types of weak links

The current in weak links, unlike that in tunnel junc-
tions, flows along a conducting, either normal or super-
conducting, material. The relative weakness of the
link, in other words, the low value of its critical cur-
rent, is attained differently in different structures whose
main types are shown in Fig. 1(b)—(h).

If a layer of normal metal, usually 0.1 to 10 um
thick, is interposed between two superconductors, we
obtain an “S-N-S sandwich” junction [Fig. 1(b)]. A finite
supercurrent can flow through such a junction due to the
well known proximity effect (see, for example, De

. Gennes, 1966). The effect lies in the fact that if a nor-

mal metal and a superconducting metal are brought into
proper electric contact, some Cooper pairs will pene-
trate into the normal metal from the superconductor.
Thus in the normal metal there arises a nonzero order
parameter A, which exponentially decreases within the
metal over a distance of the order of “normal coherence
length” or “decay length” £,. On the other hand, the
values of A in the superconductor over distances of the
order of coherence length £ from the boundary will be-
come less than the equilibrium value. Hence, if the
thickness of the normal interlayer is not very large, the
order parameter will be different from zero throughout
the normal metal, and a finite supercurrent may flow
through the interlayer. '

As a normal interlayer we may use either a “true
normal” metal which does not suffer superconducting
transition at any temperature (hereafter denoted ~), or
a superconductor having a critical temperature 0< T
< T (denoted by N’). Moreover, a sandwich material
may also be superconducting (7. > 7), in which case the
weakness of the link is to be provided by keeping its
critical current small compared to that of the electrode
material S. In this case the junction is called the
S-S’-S sandwich.

A situation closely resembling the sandwich phenom-
enon can be created in proximity effect bridges® [Fig.
1(c)] or in ion-implanted bridges [Fig. 1(d)]. In both
cases a section of low critical current, usually of about
a few microns long, is madeinanarrow strip of super-
conducting film (about 1084 thick). In the first case this
section is formed by the proximity effect with a normal
metal underlayer, and in the second case by the im-
plantation of ions into this region (or, in some rare
cases, into the main bulk of the film, i.e., into the elec-
trodes). In practice, the only distinction between these
structures and sandwiches is that their cross section can
be made much smaller because one of the dimensions
is formed by thin-film evaporation.

An entirely different method of forming weak links is
realized in a constant-thickness bridge'® [Fig. 1(e)] or
in a variable-thickness bridge [Fig. 1(f)]. Low critical
current results here fromthe fact that the width (in the
first case) or the width and the thickness (in the second
case) of the “span” are far less than those of the elec-
trodes (“banks”). The typical thickness of the bank film

9These are sometimes termed “Notarys—Mercereau bridges”.
ry
10These are generally known as “Dayem bridges.”



108

is again 103;’-)\, while the thickness of the span may be
several hundred angstroms. The span length is kept as
low as possible, say, a few tenths of a micron.

Of course, both of these methods of producing weak
links may be used in combination. For instance, in the
bridges with current concentration [Fig. 1(e), (f)], the
span and the electrodes may be made of different ma-
terials (N, N’, or S’). From a practical viewpoint this
is more natural in the more sophisticated variable-
thickness bridges, because incorporation of a second
material would greatly complicate fabrication of Dayem
bridges.

The geometry of weak links is more complicated in
the two other types of Josephson junctions, i.e., in
point contacts [Fig. 1(g)] and in blob-type junctions'!
[Fig. 1(h)]. In the first case the electrical contact is
created by weak touching of the two superconducting
electrodes, and in the second case by forming a pellet
of solder (superconducting at low temperatures) over a
length of a superconducting wire. ‘

When the pressure between the electrodes in a point
contact increases or when the metal in a blob-type junc-
tion solidifies, the oxide layer, which inevitably coats
the electrodes, is usually interrupted at many places,
thereby forming several metallic shorts between elec-
trodes (Fig. 1, sketch in circle). The typical cross-
section area (107*% to 107! ¢cm™2) of such shorts is gen-
erally of the order of the square of the thickness of the
oxide layer (~107% ¢m), and is much less than the area
of mechanical contact between the electrodes. Thus the
link weakness in this case is also attained due to the
strong current concentration.?

Such weak links, especially point contacts, have found
wide application due to the simplicity of their fabrica-
tion. A significant disadvantage of these structures as
subjects for physical research is their poorly defined
geometry. Their demerit in practical applications is
their irreproducibility.

2. Length and effective length

Any weak link, in fact, is a partition between two
superconducting electrodes. It is natural, therefore,
that its basic geometrical dimension is its length L. By
length we mean the electrode spacing, in other words,
the dimension of the weak link in the direction of current
flow. In sandwiches, forinstance, thislength[Fig. 1(a),
(b)]is merely the thickness of an interlayer, while in
ion-implanted bridges (Fig. 1d) this is the length of a
section with changed properties.

However, it is an effective length L = L rather than
the geometric length that plays a significant role in the
processes under discussion. By effective length is
meant that length within which the nonlinear effects in a
weak link are localized. The point is that nonlinear
electrodynamic processes almost inevitably extend some-
how or other into the adjacent sections of the electrodes,
if only because of the proximity effect: variations in the

Ugometimes they are referred to as Clarke blobs.

12When the resistance of point contact is fairly high (R 5
=102Q) the tunnel current through the oxide layer may be quite
significant.
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order parameter in weak links caused by the nonlinear
effects lead to changes in |A[ in the banks. Of course,
the degree of involvement of the electrodes in these non-
linear processes depends strongly on the type of weak
link. The lower the conductivity of the material and the
greater the current concentration in a weak link, the
lesser is the degree of involvement (and consequently,
the closer the L., is to L) (for details, see Sec. IV).
Lack of distinct localization of the nonlinear effects
in some structures is a serious drawback from the view-
point of both physical research and practical applica-
tions. From the first standpoint, these effects introduce
a noticeable amount of indeterminacy into the geometry
of weak links, i.e., they complicate theoretical analysis
and interpretation of experimental results. From the
second standpoint, extension of the nonlinear effects to
the banks prevents realization of weak links whose ef-
fective length is less than the coherence length, and, as
we shall demonstrate below, the Josephson effect is ob-
served precisely in structures with L. ; < §. For this
reason, in studying the relationship between the proper-
ties of weak links and their length, we shall focus our
attention mainly on those weak links for which L =L
and only in Sec. IV shall we briefly discuss the conse-
quences of the absence of distinct localization of non-
linear effects.

3. Classification of weak links

A reasonable classification of weak links is based on
a comparison of the effective length L with the char-
acteristic lengths of the material forming the weak link,
the coherence length £ and the mean free path £ being
most important among them.! .

Junctions with L.y < § will be called “skovt” to dis-
tinguish them from ‘““long” weak links for which L.y = &.
We shall demonstrate that it is in short weak links
where the “ideal” Josephson effect (see Sec. III for defi-
nition of the term) is observed, and an increase in this
effective length causes considerable deviation from the
ideality. For this reason we shall center our attention
on the case L.y < é&.

Even in short weak links, however, the processes
may differ depending on the mean free path £. From
experimental and practical viewpoints, the bridge-type
weak links [Fig. 1 (¢)—(f)] with exactly known geometry,
sufficient normal resistance (say, Ry =0.1Q), and the
possibility of reproducible fabrication are of particular
importance. As a rule, the mean free path £ in bridges
is limited by diffuse scattering on the film surface to a
length on the order of a few hundred angstroms, which
is far less than L.y (from one tenth of a micron to a few
microns). We shall mainly consider such “dirty” struc-
tures for which

L < Ly, (20)

13A third important length for superconductors, the magnetic
field penetration depth A, which determines the force of current
self-limitation (Meissner effect), is not so significant for weak:
links, and is, generally, compared only with the width of the
structure W, i.e., with the characteristic size of the cross
section.
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although at the end of Sec. III we shall briefly touch upon
“clean” structures with a large mean free path £ = L .

The terms “dirty” and “clean” for weak links are not
to be confused with the well known dirty and clean limits
in the general theory of superconductivity, where they
are used to denote the relation between values of ¢ and
the BCS coherence length &,.

11l. STATIONARY (DC) EFFECTS

First we shall examine stationary phenomena in weak
links where the phase difference ¢ ofthe order parameter
in the electrodes is constant in time. In this case a con-
stant supercurrent /g less than /. flows through the weak
link, and there is no electric field or normal electron
current, these electrons being in equilibrium. The
stationary theory of superconductivity may be applied,
and a relationship between the supercurrent /5 and the
phase difference ¢ has been found for many important
cases.

A. Aslamazov-Larkin theory

The basic principles of how the Josephson effect takes
place in weak links with strong current concentration
have been explained by Aslamazov and Larkin (1969), re-
ferred to below as AL. We shall, therefore, examine
their theory in greater detail, although it is directly
applicable only under rather stringent assumptions with
regard to the geometry and the material of weak links.

1. Ginsburg-Landau equations

Let the temperature T be sufficiently close to the
electrode critical temperature T,. Then the modulus
of the order parameter at every point in the structure
is relatively small (|A|<<kyzT.), so that the simple and
convenient Ginsburg—Landau (GL) equations (1950) may
be applied (see also De Gennes, 1966; Tinkham, 1975).
These equations may be expressed as

iz(v—i%i—A)zAﬂ:tl——%,;—]A:O, (21a)
)
js = CIm{aX(V - %Z—iA) al, (21b)

where A is the vector potential, and the coherence length
is given by the following expression in the dirty limit

(£ <&y

ah D

-1/2
T, - T
Bh(To—1)" T

&(T) = (1) :0.852(501)1/2<

(22)

where D=vpf /3 is the diffusion coefficient, and &, is the
size of the Cooper pair

7 vp

£ = 7 vp
° kpTc *

= 7400 =0.180

(23)

A, stands for some characteristic value of IAI, which for
T< T, is equal to the equilibrium value (12). For T

> T (GL equations hold true for this case as well) we
may again use Eq. (12) for 4, taking the modulus of

(Tc = T); here also we take the minus sign before unity
in Eq. (21a). The coefficient C; in the dirty limit is
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proportional to normal conductivity oy

__ ¢ _w oy
I BmerAL 4 ekyT

oy=2e2N(0)D, (24)
where N (0) is the density of states on the Fermi sur-
face.

Equation (21) follows from the microscopic theory of
superconductivity under the following restrictions in
addition to the requirement that |A| be small (Gor’kov,
1959; see also, De Gennes, 1966).

(i) The order parameter varies slowly over the range
of the self-consistency radius, equal approximately to
(£,2)'? in the dirty limit.

(ii) The current density varies slowly over the range
of the radius of int.eg/ral coupling between the field and
the current; it is of the order of £ in the dirty limit.

We shall use GL equations to describe a weak link of
characteristic size L. inside which both A and jg
undergo significant changes in the general case, and

therefore, the condition of the dirty weak link.
£ Ly (25)

should necessarily be satisfied.

2. Linearization of the equation for A

Aslamazov and Larkin considered a case in which,
although condition (25) holds, nevertheless the length of
the weak link is sufficiently small both compared with §

Leff < é( T) 2 (26)
and compared with magnetic field penetration depth
Ly <MT). (27)

By virtue of Eq. (26), we can discard all terms except
the first (“gradient”) term in Eq. (21a). Indeed, the sum
of all the discarded terms is not greater than A, while
the gradient term is of the order of A(¢/L)?. Inequality

(27) shows that the influence of self-shielding, which is

responsible for the nonuniform distribution of current
over the cross section, is insignificant in the weak link.
Formally, this inequality makes it possible to neglect
the contribution made by the weak link current to the
vector potential A which in principle has to be deter-
mined from the Maxwell equation. The remaining part
(A,) is associated with the remote field sources (¥ > L),
and it can be represented in the form of a gradient of
some scalar function.!* Since A is always chosen up to
the gradient of an arbitrary function, we may take the
gauge to be

A=A,=0. (28)

This means that the magnetic field influence is ac-
counted for by the order parameter phase, which is in
this case gauge invariant, i.e., a uniquely defined quan-
tity. It is precisely under this gauge that we examined
the Josephson effect in Sec. II.

14The only exception is the case where the external magnetic
fields are strong: B~ ¢y/L%: , where ¢o =ch/2e is the mag-
netic flux quantum. But, by virtue of Eq. (26), these fields
are far stronger than the field Hg, = ¢,/27£% which suppresses
the superconductivity in the electrodes.
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Hence, under the constraints (26) and (27), Eq. (21a)
is reduced to a simple linear Laplace equation

v2A=0, (29)

which makes it possible to solve the problem for an

arbitrary weak link geometry. It has to be solved under
the following boundary conditions. The order parameter
inside the electrodes should tend to the following values

A,exp(ix,) for electrode 1,
A= (30)
A,exp(ix,) for electrode 2.

The current through the surface o with the outer space
(vacuum or an insulator) should be zero. Hence, by
virtue of (21b), we obtain the condition

oA/on|,=0, (31)

where n is normal to the surface.

3. Josephson effect as the interference of wave functions

Aslamazov and Larkin pointed out that the (unique) so-
lution of the problem may be expressed as

A= Aexp(ix,) f+ A,exp(ix,)(1 - 1), (32)

where f(r) is a real function of the coordinates satisfy-
ing the following boundary-value problem

v2f=0,af/on|, =0,

1 for electrode 1,
F= (33)

0 for electrode 2.

Indeed, by substituting Eq. (32) into Eqgs. (29)—(31), we
find that this solution satisfies both the equation and the
boundary conditions. For the time being, supposing that
the function f is known, and after substituting Eq. (32)
into Eq. (21b), since A =0, we obtain

is()=Cyvf(r)a,A,sing. (34)

According to (33), the function f does not depend on g;
the current at each point of the weak link is, therefore,
proportional to sing. Consequently the total current is
also proportional to sing. Thus we have already arrived
at an important result: if the conditions of the AL theory
are satisfied, then the Josephson effect occurs in weak
links, i.e., the supercurrent and the phase are governed
by Eq. (3).

Now we return to Eq. (32), which gives the distribu-
tion of the order parameter in the bulk of the weak link.
It shows that inside the weak link (f#0, 1) the order
parameter is a linear superposition of two terms, each
of which is proportional to A at one of the electrodes and
to the coordinate factor. The latter gradually diminishes
as we recede from the electrode into the depths of the
weak link. Thus inside the weak link there occurs sim-
ple interference of two wave functions whose sources
are the condensates of Cooper pairs in the superconduct-
ing electrodes. Such interference gives rise to current
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[Eq. (34)] sinusoidally dependent on the phase difference
of the sources; consequently, it is the direct cause of
the Josephson effect. So, the AL theory not only demon-
strates the existence of the Josephson effect in weak
links, but also gives one a clear picture of its physical
origin.

4. Magnitude of the critical current

It is impossible to find an analytical expression for
the function ffor an arbitrarily shaped weak link. To
find the critical current I, (and the characteristic vol-
tage V;), however, there is no need to determine f. To
demonstrate this statement, we shall find the current
flowing through the same contact in a normal state (for
example, at 7> 7). From the obvious relationships
jy=0yE and div jy =0, and the definition of the scalar
potential (E =- Vu), again we arrive at the Laplace

equation.
vZu=0 (35)

with the boundary conditions

4, for electrode 1,
u= v (36)

u, for electrode 2,

8}1/8”[020, My = My = V.

For this problem we can easily express the unique
solution as follows

I-L:“uf'*'“'z(l—f)') (37

where the function f(r) is the same as in the case of Eq.
(32). On calculating the current, we find that

ju=0yE==0,Viu=0,VVF(r). (38)

By comparing Egs. (34) and (38) we find that both in
the normal and in the superconducting states the current
is distributed identically over the bulk of the structure
(j e Vf). The total currents /g and I, therefore, are in
the same relation as their densities

Is js  C,;AA,sing
2 =22 = JZl2 7 39
Iy Jju oyV (39)

But the total current in the normal state is evidently
equal to V/Ry, and thus from Eq. (39) we have

PR
C

4
ooRy (40)

Ig=1I:sing,
For the real case of the dirty limit (¢ < £,) with the help
of Eq. (24) we obtain an especially simple expression’®

Ve=IcRy=(n/4)A,A,/ekpT. (41)

For electrodes made of identical material (4, =4,
= A), on comparing Eqs. (41) and (14) we find that as
T - T, the characteristic voltages V. for small-size
weak links and tunnel junctions are identical, hence the
derivative a=|dV,/dT| is again equal to 635 uV/K

15The factor of 4 in the denominator was missing in the orig-
inal AL paper. )
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[Eq. (19)].

In deriving Eq. (41) it should be noted that nowhere
were the weak link and the electrodes assumed to be of
the same material. Hence the characteristic voltage V.
at the “ideal” Josephson effect is not dependent on the
material of the weak link. The material only affects the
normal resistance R, of the contact and consequently
the critical current, which is inversely proportional to
the resistance.

B. Arbitrary temperatures

The fact that the expressions for Ig(¢) and V; in
small-size weak links are the same as the correspond-
ing expressions for tunnel junctions when 7' = T, suggests
that the dc Josephson effect may also take place in an
identical manner at arbitrary temperatures in these two
types of structures. Kulik and Omelyanchuk (1975) in
an article hereafter referred to as K0-1, -have, how-
ever, demonstrated the contrary.

1. General properties of the current-phase relationship

Here we may mention that the phase dependence of the
supercurrent has certain general properties which do not
depend on the geometry of weak links or the equations
that describe them.

Firstly, a change of 27 in the phase x of the order pa-

rameter in any of the electrodes does not change the
physical state of the system, since

A(r, t) = |aletX = |ajetx+2m) (42)
Therefore the function /5(¢) is always 27 periodic
Is(¢+2m) =15(p). (43)

Secondly, supercurrent may flow only when there is a
gradient of the order parameter phase. Therefore there
are no currents across the weak links in the two situa-
tions depicted in Fig. 3 (b) and (c). In the first case,
the phase shift is zero, while in the second case it is 7.
As a result, the curve I4(¢) intersects the horizontal
axis at ¢ =mn:

Ig(mn)=0. (44)
S
ImA A .
2 / FIG. 3. The representation of
process in a weak link on the
1A, A S, (a) phase plane of the order par-
) ReA ameter A (a). Each point on
the plane shows a value of A
ImA in the definite point of the weak
A ¥ =0 link, and finite points of tra-
A, 'S jectory correspond to the states
%y (b) of the electrodes. Two pos~
(o} ReA sible types of phase trajec-
tories corresponding to ab-
ImA sence of supercurrent through
iA, p=1 weak link are shown below:
ls= (B) ¢=0+27n; (c) ¢=7 +27n.
X2 %, (c)
o ReA
A,
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FIG. 4. Possible Ig(¢) relationships in weak links (schemati-
cally). Function Ig(¢) is always odd, and its plot passes
through the points [Ig=0, ¢ =nr]. This function can be either
single-valued (2), or multivalued (b). In the first case the
parameter I = Io(dlg /dqo):,}z,r of the kinetic inductance is less
than unity, and in the second case ! is greater than unity.

Moreover, in the superconductor the opposite currents
are equivalent;®® therefore, the function /((¢) is sym-
metrical with respect to the origin

Is(=@)==1I5(9p).

Typical examples of [¢(¢) functions are schematically
shown in Fig. 4. In order to plot the whole curve it suf-
fices to determine only one of its segments, say, the
segment joining the points ¢ =0 and ¢ =m, Ig=0.

It is convenient to characterize the relationship /5(¢)
in terms of two constants, namely, the critical current

(45)

Ic =max[I ()], (46)
and a dimensionless parameter
drg\ !
l=1 <———s—> +1 417
c\do o=1 ’ (47)

whose geometrical meaning is evident from Fig. 4. For
a sinusoidal 7g(¢),Z=0; in the case where the curve is
inclined towards the right, / increases and becomes more
than unity if the function /() becomes multivalued
[Fig. 4(b)].

The quantity Z has a simple physical meaning. A func-
tion I5(¢) of the type shown in Fig. 4(b) may roughly be
described by the expressions

2e

nc? (48)

¢ =g+ Is£s), Is=Ising,.
By virtue of the Josephson relation (4), Eq. (48) shows
that a weak link may be represented in the form of series
connection of a “classical” Josephson junction (i.e., :
junction with /g sin¢g) and a nonlinear inductance £([g).
Inductance £ is due not to the magnetic field of the cur-
rent /g (which is eliminated as we have taken A=0), but
to the kinetic energy of the superconducting condensate.

16strictly speaking, only in the absence of a strong (see foot-
note 14) magnetic field produced by the current.
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It is quite evident that this ‘“kinetic” inductance (Sass
and Stewart, 1968; Meservey and Tedrow, 1969; Lik-
harev, 1971a) should be particularly great in a very long
weak link (£ L). Substituting Eq. (48) into Eq. (47),

we get

2e

=7

I.£(0). (49)
Therefore £ has the meaning of kinetic inductance for a
small current, normalized in the manner usual for
Josephson junctions (see, for example, Likharev and

Ulrich, 1978).

2. Usadel equations

Calculations of the stationary properties of weak links
at arbitrary temperatures have become possible pri-
marily because of some previous success in the general
theory of superconductivity. Eilenberger (1968) has
shown that the highly complicated general equations of
stationary superconductivity (Gor’kov, 1958, 1959; see
also Abricosov ef al., 1962) may be expressed in a
fairly simple form. Usadel (1970) reduced the Eilen-
berger equations for the dirty limit (£ < &) to even
simpler equations for the complex functions F which
only depend on the point (r) and the “Matsubara fre-
quency ”

Hw=1kyT(2n+1). (50)

The Usadel equations for F may be expressed in a
very simple form if another variable G=(1 - FF¥)L/2 ig
used

2e

A>F—FVG]=2ﬁ'1AG.
Ic

(51)

. 2e .
sz—D(V—Z-ﬁ‘?A)[G<V—Z

All the measurable quantities are derived from the
functions F by summing up with respect to w, i.e., with
respect to the integer n (Eq. 50). In particular, the ex-
pressions for the order parameter A(r) and the density
js(r) of the supercurrent are of the form

In(Tc/T) = AIn(To/T) =21k T P [(A/F w) - F], (52)

js=0y(2TksT/€) D Im [F*(V-—i;ﬁ-A)F]. (53)
&6 /i C

From these expressions it is clear that the use of the
Usadel equations is only slightly more complicated (in-
volves one more additional summation) than the use of
GL equations (21). Thus, for example, for a uniform
specimen with no current (V=A =0), from (51) we get

A=|al, F=a/[(hw)?+ a2 /2, (54)

and the self-consistency equation for A(52) takes the
form: '

(55)

—1nLe
]“—ln T

1 1
2k T u;,[% T oy s 272
Its solution gives the well known function A(7) and the
asymptotes (11) and (12), in particular.

For T =T, Eqgs. (50) and (53) may be transformed into
GL equations (21). In so doing, we must recall that |F|

-0, |A|—~0, and G=1— FF*/2 as T~ T.. The space
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scale of A variations has become relatively large:
V~i Y T)<<(AD/w)"1/2, and therefore the gradient term
in (51) is small. Hence from Eq. (51) we get

- 2
A nD ( .2eA>A+

o 2D __ AlaP
Tw ~ T AWy \ " e

W . (56)

After substituting this expression into Eqgs. (52) and (53)
and summing up with respect to w:
2
-2 _ T _v-s_ _15(3)
2 (5™ = iy 2, o) = G

w>0

(57)

we obtain GL equations (21) with parameters £(7) and
C; corresponding to the dirty limit.

3. Kulik-Omelyanchuk (KO- ) theory

If a weak link is sufficiently small, the gradient term
alone can be retained in Eq. (51), as was assumed in the
AL theory with GL equations. Kulik and Omelyanchuk
(1975) have thus simplified it for the case of one-dimen-
sional geometry [ F = F(x) ], but we shall find the solution
for the arbitrary shape of aweaklink., Letusintroduce
(following M. Yu. Kupriyanov) the function ¢(#, w) in such
away that

F=¢p[(Fw?+dpp*|12, G=Rw[(Fw)? +pp*]172, (58)
Equating the gradient term in (51) to zero means in
terms of ¢

V(G*V¢)=0. (59)

According to Egs. (54) and (58), the value of ¢ in the
electrodes is equal to A. Therefore the boundary con-
ditions for ¢ are the same as for A in the AL theory
[Eqgs. (30) and (31)].

" Now we find by direct substitution that for A, =4,=A
the solution of our problem is

¢ =exp[(x, +x2)/2]{Acos2£ +ibtan

(60)

’

X [(1 - 2f)arctan&né¢/—2)}}

62 = A2c082(¢/2) +( w)?,

where fis the same as in the AL theory [Eq. (33)]. After
calculating the current density j s by Eq. (53), and then
comparing it with the current density in the normal state
(38), we obtain the expression for the current

_2mkg T S 2Acos(¢/2)
e 2 5

w>0

arctan

Lo ()Ry Asiné<p/2) .

(61)

For T - T, this function is reduced to Eq. (40) of the
AL theory, i.e., Ig(p) is a sinusoidal function, while V,
depends linearly on (7 — 7) (14). But at lower tem-
peratures the function is somewhat distorted (Fig. 5).

In particular, the derivative (dIg/dy), tends logarith-
mically to infinity as T— 0. The characteristic voltage
in the KO — 1 theory depends on temperature as shown
in Fig. 6, and attains its maximum as 7= 0

max (e V;] =2.07A(0), max V [u V] =316 T¢[K], (62)
T T

which is 32% greater than the maximum value of V. for
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FIG. 5. Ig(¢) relationship for a short dirty weak link (I <<L
<< (l &)%) according to the KO-1 theory at various tempera-
tures. Because of the 2m-periodicity of the g (@) functionitis
shown only on the [0, 7] segment. Temperature dependence of
critical current is shown in Fig. 6, and I (I') is shown in Fig.
9(b) by the line labeled L /¢ y=0.

tunnel junctions [Eq. (13)].

The fact that even the simplest dc properties of small-
size weak links differ from those of tunnel junctions
clearly shows the significant distinction between these
two structures. If the mean free path of electrons ¢
is much shorter than the effective weak link length L .,
as is assumed in the KO - 1 theory, then electrons are
strongly scattered inside a weak link and are sensitive
to the “field” (A) distribution inside the weak link. As
a result, a self-consistent distribution of the order pa-
rameter!” A is established inside the link. In the case
of tunnel structures, however, scattering of the elec-
trons inside the insulating layer is small, and it is
impossible to introduce local values of the order pa-
rameter inside the layer. This is the difference in the
conductivity mechanism that is responsible for the spe-
cific behavior of supercurrent at lower temperatures.

C. Effect of finite length

Now we shall examine the effects of increased length
of the weak link, assuming that its cross section as be-
fore is negligibly small. For such an analysis we have
to use a particular weak link model.

1. One-dimensional structure with electrodes in
equilibrium (ODSEE) model

The simplest and the most natural model for the weak
link is the “One-Dimensional Structure with Electrodes
in Equilibrium” (ODSEE) model in which the following
two conditions are assumed to be valid:

(i) The cross section S of a weak link is small (<< A?)
and constant in the direction of current flow throughout

17n the KO-1 theory the order parameter is equal to
A7) =Aexpl i (y +x,)/21{ cos % +ill=2F (r)]sin;—" 1,

only if the critical temperature T'; of the weak link material
is not very close to zero: T&/To= &4 /L2,
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FIG. 6. Temperature dependences of critical current for dif-
ferent small weak links. (AB) tunnel theory (Ambegaokar and
Baratoff, 1963); (KO-1) dirty case (I <<L << ¢) (Kulik and
Omelyanchuk, 1975); (KO-2) clean case (L <<, ¢) (Kulik and
Omelyanchuk, 1977).

the length L of the structure. As a result, all the vari-
ables may be taken to be constants along the cross sec-
tion, i.e., they are functions of the coordinate x in the
current direction alone

f=f(x), at 0< x<L. (63)

(ii) Nonlinear processes are localized over the length
L, i.e., the modulus of the order parameter at the
boundary of the weak link is equal to its equilibrium val-
ue in the electrodes (“banks”)

[a(0) |=a,, [a(L)|=4,. (64)

In other words, the effective link length L. is equal to
its geometrical length L.

The first of these conditions, as can be seen from
Fig. 1, is satisfied in all weak links except for Dayem
bridges [Fig. 1(e)] and for structures with random geo-
metry, say, point contacts and blob-type junctions.

As regards the second condition, we may note that it
is a rather more stringent one. It is easier to satisfy
this condition in structures with strong current concen-
tration, say, in variable-thickness bridges [Fig. 1(f)].
In Sec. VI we shall show that for any material of the
bridge and banks (electrodes) this condition holds true
if the span film thickness is sufficiently small. In con-
trast, for the second condition to hold true in structures
without current concentration [Fig. 1(b)~(d)], certain
significant conditions must be satisfied with regard to
the link and electrode materials. Roughly speaking, it
is necessary that the normal conductivity o, of the link
material be small comparéd to the normal conductivity
of the electrodes (see Sec. VI. A). Therefore results
derived within the framework of the ODSEE model have
limited application for structures without strong current
concentration. .

The ODSEE model has, in fact, been applied in many
theoretical works without specifically mentioning the

‘conditions under which the model holds valid. This has

led to a number of errors in the interpretation of experi-
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mental data, although the quantitative results obtained
with the help of this model are valid, of course, for any
weak link if L., is substituted for L.

2. Temperatures close to the critical temperature

- We shall begin with a case for which the GL equations
(21) are applicable (Likharev and Yakobson, 1975a).
This naturally restricts us to a region in which the criti-
cal temperatures of both the weak link material (7¢) and
the electrode material (7;) are close to the physical
temperature and, consequently, to each other

(Te=T), |Té =TI<T. (65)

The sign of (T4 — T) indicates whether the bridge ma-
terial is superconducting (S’, T4 > T), or normal

(~V', Té <T). GL equations are applicable in both cases,
and for the ODSEE model they can be simplified as fol-
lows

Y +g(x1=[p]?) =0,
J=Im@yx),

(66a)
(66b)

where ¢ is the order parameter normalized with respect
to its characteristic value A; in the weak link, x is nor-
malized to &(7) (22), and the current is normalized to
1,A"%. Here I, is just the critical current which the weak
link would have had at L =¢ if the “classical” Josephson
effect had taken place at this length (i.e., ifthe AL theory
were valid) :

Cp,S A2 L

grong” 0 v Tos oD

=T & L
0T 4 kyTeRy &

In [,A™? units the depairing current (Ginzburg, 1958;
see also De Gennes, 1966) is equal to 2/3v3 ~0.385.
The parameter A is defined by the expression

A?=(To=T)/|T¢ = T] (68)

and, according to Eq. (12), it represents the ratio of the
equilibrium value of |A| at the electrodes to its charac-
teristic value (4,) in weak link material. If the ma-
terials are the same, then A =1, Using this notation,
the boundary conditions [Eq. (64)] can be written as fol-
lows (for A, =4, =4)

W(0) =Aexp(ix,), ¥(L/E)=Aexp(ix,) . (69)

The solution of Eq. (66) may be expressed in terms of
special functions (Mamaladze and Cheishvili, 1966;
Baratoff et al., 1970; Christiansen et al., 1971), but
only by recourse to numerical methods may we deter-
mine the constants contained in these functions. It is
therefore more convenient (especially for 7.>T) to
solve these equations numerically, using the analytical
expression available for the first integral. We shall cite
the main results obtained from the work of Likharev
and Yakobson (1975a).

If the weak link length L is sufficiently small

LKE, E/A,

the solution of Eq. (66) is close to solution (32) derived
in the AL model. Since the function f(r) for this geo-
metry is (1 —x/L), the AL solution takes the form

(70)

PaL =A[(1 = x/L)exp(ix,) +(x/L)exp(ix,)]. (71)
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FIG. 7. Critical current (a) and parameter I (b) as a function
of weak link length in the framework of the ODSEE model, as
obtained from GL equations (Likharev and Yakobson, 1975a),
Solid lines correspond to S-N’~S structures (7T > 72), and
dashed lines to S-S’=S structures (I'<7¢). Parameter A is
determined by Eq. (68) and is equal to unity if the materials
of the electrodes and weak link are the same. Thin line shows
1., following from the AL theory.

Assuming Eq. (70), it is easy to find the first approxi-
mations in L for ¢ and then for the current |signs are to
be taken according to Eq. (21a)]

i 1<[>2 1<AI>2 . 1([ 2 .
Ig=1, {[1 :l:—6 ——5 - 10 ——f sm¢—-———30 —--g) sin2¢ .
(72)

This equation clearly shows that the corrections for Eq.
(40), which describes the “classical” Josephson effect,
are small even when L is of the order of & or £/A. Since
the normal resistance of a weak link Ry is proportional
to its length L, the characteristic voltage V. in the reg-
ion defined by Eq. (70) is approximately constant and is
equal to Eq. (14). A further increase in the link length
will give rise to effects radically different in S-N'-S
and S-S’-S structures. The variations in the critical
current I, and in the factor ¢ with changing length are
shown in Fig. 7 by solid lines (7> 7¢) and dashed lines
(T<T¢), respectively.

For T> T/ (S-N'-S structure) an increase in L above
a few £ entails a drop in the critical current, the function
Is(@) remaining almost sinusoidal (¢ =0). For L>§
from Eq. (66) we readily obtain the following analytical
expression

Is=18[1+(1+A2/2)*/2]"2exp(— L/£)sing . (73)

This drop results from the fact that in the proximity ef-
fect the order parameter in a normal substance de-
creases exponentially with the distance from its inter-
face with the superconductor. Exponential decrease in
the critical current as L/&—~= is typical of S-N-S struc-
tures (see De Gennes, 1966; Aslamazov ef al., 1968;
Clarke, 1969), but the exact value of the factor before
the exponent depends significantly on the boundary con-
ditions.

If 7<7T4, we are dealing with a weak link of the
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FIG. 8. The deformation of the Ig(¢) relationship as the S-§'-S
weak link length increases. This deformation shows the trans-
ition from the ‘“ideal’” Josephson effect to the depairing effect
(a). It happens at the length L =L ,, when the I¢(¢) relation-
ship becomes multivalent. L is of the order of the coherence
length of weak link material £(7') for any A; L ~ 3.49 &£(T) at

A =1, After Likharev et al., 1974; Likharev and Yakobson,
1975a.

S§-S’-S type. For this structure, with increasing weak
link length the critical current at first diminishes, then
when L = 10§ it tends to a constant value. Here radical
changes take place in the shape of the Ig(¢) function, as
shown in Fig. 8. The parameter of kinetic inductance £
grows with increasing length L, and for a critical length
L. it becomes greater than unity, i.e., the function
I5(p) becomes multivalued [see Fig. 4(b)].

For long lengths (L <« £), the shape of this function is
similar to that of a cubic parabola

o [
Jo=—0 - 4
™Az {(L/z) @/ml (74)
and the critical current is almost constant
L=o2_1A- (75)
3y :

This means that here we are dealing with the well known
depairing effect due to diminution in the equilibrium
number of Cooper pairs (i.e., |A[?), with the current
growth taking place uniformly throughout the entire
length of the weak link.!®* The unstable reverse branch
of the I4(¢) function joining the point /5= I, to the point
I5=0, ¢ =7 corresponds to the sharp drop of |A| in the

18Note that the Josephson supercurrent in weak links may be
much greater than the depairing current (Fig. 7).
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middle of the weak link, i.e., to the nucleation of the
“phase-slip center” of a length ~£(7). In long weak links
with small cross-section inhomogeneities the location

of this center will be determined primarily by the nar-
rowest part of the structure.

In this way, with an increase in the length of a super-
conducting weak link (superconducting ‘filament” or
“channel”), the Josephson effect becomes the depairing
effect. It is the length L =L., where /5(¢) becomes
multivalued, that may be assumed as the cutoff point of
the transformation. In the succeeding pages we shall
show that this critical length is, indeed, highly signifi-
cant for the processes taking place in the weak link. Its
dependence on the parameter A is shown in Fig. 8(b),
from which it is clear that L. is always of the order of
several coherence lengths of the weak link material.

Before we proceed further, we shall make one im-
portant remark. If the temperature tends to the critical
temperature of the weak link, then, according to Eq.
(22), &— for any length /£~ 0, and as may be imagined
from Fig. 7(a), the “classical” Josephson effect should
be observed. However, when T =T/, A tends to infinity
as (T4 - T)"*/2 [Eq. (68)], and it can easily be verified
that the critical current does not exhibit any singularity.
This corresponds to the fact that, for 7'=T/¢, it is the
condition L < £/A that limits the validity of the AL
theory. From Eqgs. (22) and (68), it is obvious that £/A
is the coherence length of the weak link material formal-
ly taken at a temperature equal to T —(Tc— T4).

3. S-N-S structure at arbitrary temperatures

Likharev (1976) has evaluated the effect of the length
on the function /4(¢) at arbitrary temperatures for a
particularly important case where the weak link is made
of “ideal” normal material, having a eritical tempera-
ture T/ =0 (S-N-S structure). According to Eq. (50) here
|a|=0 for O<x<L, so we are dealing with gapless
superconductivity (De Gennes, 1966). The right-hand
side of the Usadel equation (51) vanishes, making it
possible to find analytically the first integral of this
equation, and to solve the problem numerically within
the framework of the ODSEE model in a relatively sim-
ple manner.

Figure 9 shows the results of such a calculation. The
link length has been normalized with respect to the co-
herence length of the weak link material that naturally
follows from Eq. (51)

D \'/? av. )
£ = (377 ”0-5“(2”&1) ’ (76)

taken again at a temperature equal to the critical tem-
perature of the banks.

The plots for L/&y, =0 show the results of the KO -1
theory. From Fig. 9(a), it is evident that this theory
is satisfactory for lengths'® L= &,(7:). When the bridge
length is increased, the critical current decreases—ex-
ponentially at T'=T.

19But not for L.y < £4(T), as was stated in the original KO-1
paper.
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FIG. 9. Temperature dependences of critical current (a) and
kinetic inductance parameter ! (b) for an S-N-S structure, with
zero critical temperature for the weak link material (75 =0).
Plots are calculated from Usadel equations [(51) and (53)] within
the framework of the ODSEE model. &y (T¢) is the decay length
of weak link material, if taken at the critical temperature of
the electrodes. After Likharev, 1976.

_aA? 8 £n .
IsBy = FokyT 2 7%2n + 1) sinn L, S0¥>
L
0, =(2n+1)*/2

AZ

-—-77 é—kﬁ(L/ﬁN)exp(— L/EN)Sin(p5 at L/gN-‘)O b4

IsRy

and more slowly at 7T-0

IcRy < L%, at £y(Tc) <K L<<EN(T). (78)

As is obvious from Fig. 9(b), the function I5(¢) is
always single-valued (¢ <1) and is significantly nonsinu-
soidal only at very low temperatures.

4. Dependence of /g (%) on length-discussion

Let us use the term “ideal Josephson effect” for the
case where the I5(¢) relationship is single-valued and
V. is comparable with its value in the tunnel junction
(10). As we could see, in “dirty” weak links the “ideal”
Josephson effect is conserved up to a certain character-
istic length of the weak link. With the help of the cal-
culations carried out for T{~T and T, =0, the condition
for such an “ideal” effect may be formulated generally
as follows

where ¢ is the coherence length of the weak link mater-
ial. This relationship shows that this material merely
fulfills certain “transport” functions, thereby aiding the

(79)
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transfer of the wave functions of the superconducting
condensate of the electrodes deep inside the weak link
where their interference—Josephson effect—occurs.
The parameter ¢ characterizing these transport proper-
ties is affected by velocity on the Fermi surface v, of
the material alone, under a fixed £. v is almost the
same for the majority of the known conducting metals,
both superconductors and normal materials.

Therefore, for the Josephson effect to be observed in
a certain weak link, the link material need not neces-
sarily possess any special “superconducting” properties
in the sense of having a finite critical temperature T(.
Superconducting properties should be exhibited only by
the electrode material, because |A| at the boundaries of
the weak link is proportional to T,, and an increase in
this parameter entails an increase in V.

D. Clean structures

Now we shall briefly examine the properties of “clean”
weak links in which the mean free path of electrons £ is
greater than or comparable with the length I of the weak
link. Such a relationship is more often encountered in
microshorts of point contacts than in bridge-type struc-
tures, i.e., in those cases where the exact shape of the
weak link is unknown. We shall, therefore, start our
discussion with the most important case of a sufficient-
ly small weak link (L <&, &,) of arbitrary shape. Re-
cently Kulik and Omelyanchuk (1977) advanced a theory,
referred to as KO-2, to describe the Josephson effect
in such structures.

1. Eilenberger equations

The GL equations or the Usadel equations can no
longer be used here, and thus we need to employ more
general Eilenberger equations (1968). These equations
have been derived for complex functions f and g, each
of which depends not only on the point (r) and the
Matsubara frequency w, but also on the spatial direc-
tion which is formally represented by a vector v,.
These functions are interrelated by the equality

flrrg?=1,
where, for the sake of convenience, a new function % is
introduced, defined by the following expression

(80)

e, ve, w)=f*x, —vp, ). (81)

"The Eilenberger equation for f looks quite simple

[Zw +vF‘(v -1 %%)A]f =2 tag+ T g () - F(g)),

(82)

where the order parameter A depends only on r, the
angular brackets stand for averaging over all the direc-
tions of the vector v,, and 7=£/v, is the time of the
electron mean free path. For the system of equations
to be closed, Eqs. (80)—(82) have to be supplemented
with a self-consistency equation for A(r)

Aln -TTL:anETZ (h% _<f>> (83)
w>0

and an equation for the supercurrent (in principle, joint-
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ly with the Maxwell equations)

js = —i2eN(0)21%,T D (v, g). (84)

w>0

The system of Eqs. (80)-(84) is valid for any relation-
ship between 55 and £. In the “dirty limit,” f, g, and A
vary only at distances~ £ ~ (2£,)/2 >4, and in addition
are almost isotropic. In this situation the Eilenberger
equations are satisfied by a solution of the following
type:

S Ve @)=, 0) Vs (7 -0 gE AR W), (65)

in which the second term is small. Direct substitution
of Eq. (85) into Egs. (80)-(84) gives the Usadel equations
(51)—-(53).

For a uniform superconductor carrying no current
(v=A=0), at any ratio between £ and £,, we obtain
Eqgs. (54) and (55) for F and A, respectively, which give
the usual results of the BCS theory.

2. Weak links of small dimensions

In this case we may examine two regions separately:
parts of the electrodes of size »~£,4, surrounding the
weak link, and a region of size » ~ Lesr around the weak
link. As will be shown below, in the electrodes the
quantities A, (f), and {(g) may be taken to be constant

and equal to their equilibrium values
(FY={f**=(a/E) explix, 5), (8 =Hw/E, 6)
A =4y ;explix, »), E*=(Hw) +a?,

as they vary only over distances~ Lor. So Eq. (82) for
f and the equations for 7' and g derived from Egs.
(80)~(82) form a linear system (just as in Sec. II. A and
B, we assume that L. < and therefore A =0)

QCrw+AT™Yg)+hvd/as)f —Ag=0,
REw+HETHg) —nvgd/0s)fT —Ag*=0,
A*f —AfT — (nvp8/3s)g=0,

28 =2A +HTHS),

(87)

where s is the coordinate along the “trajectory,” i.e., a
line in the direction of v,. The solution to this system
is easily found

f=2 Fce, g=2 gee, (88)

where for ¥ we have three values:
K=Koytky, ko=0,k,=(E+R77Y/2)/Fvg. (89)

This solution describes the relaxation of f and g
towards their equilibrium values [Eq. (86)] at distances
~min(£,,4) > Lok . Along a trajectory, f, and g, are
constants, but these constants vary on different trajec-
tories. Forthetrajectorieswhichdo not passthroughthe
weak link (Fig. 10) we may take f and g to be constants,
i.e., onlythetermswith x =0 aretobe included inthe sum
[Eq. (88)]. Then itfollows directly from Eqs. (87)that on
thesetrajectories f and g are equal to their equilibrium
values [Eq. (86)].

Rev. Mod. Phys., Vol. 51, No. 1, January 1979

4

(a)

L ot

I (P)Ry
(a1

FIG. 10. The KO-2 theory for clean small weak links (Ls
<<l,¢)). (a)Two types of electron trajectories in the weak

link region: (1) “incoming” part of through trajectory; (2)
“outgoing” part of this trajectory; (3) and (4) nonthrough tra-
jectories. (b) Current-phase relationship for different temper-
atures. Temperature dependence of critical current is shown
in Fig. 6.

Along those trajectories passing through the weak link,
f and g cannot be constant, since for y, # x, the values of
f in the electrodes are different. Since f and g are
finite as s— 1o, therefore for the “outgoing” part of a
through trajectory we have '

fo=<f> +f—aexp("Kls)’ go=<g>+éoexp(—’(ls)’ (90)

and for the “incoming” part of this trajectory

fi= " +fiexp(+h;s) , g, =(g) +Z, exp(+k;s) . (91)

What remains now is to find f and g. For this purpose
first we have to substitute Eqs. (90) and (91) into Egs.
(87), and thus derive a relationship between f and g:

o= 28+ TN f) .
0=8 iw-nT g —hvpK, ’

for f, and g; the sign of the term containing k, has to be
reversed. Then, we consider a region of size ~Legy. In
this region the main term in Eq. (82) is the gradient
one, because it alone is of the order of v,/ L.k, while
the remaining terms are~uv./&, or v./g(f,g~1). Thus
we obtain a simple equation:

v Vf=0, (93)

(92)

which shows that f (and consequently g) remains con-
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stant on a trajectory at a distance of the order of L.
Hence in Eqs. (90) and (91) the values of f and g in the
weak link region (s=0) may be regarded as being the
same, both on the incoming and on theoutgoing parts
of the trajectory. This gives

(+Fe=V* +Fis 8,=8: - (94)
From Eqgs. (92) and (94) we get, taking x,=—x,=~¢/2

z=isin £ a®
£S5 BTE coslg/2) +i fiw sin(p/2)]
Now substituting this value into Eq. (84), and using

the expression for the resistance of a structure in the
normal state (Omelyanchuk et al., 1977),

Ry'=e*0, N (0)S, (96)

(95)

we finally obtain the result

A cos(p/2) o7)

A .
=12 tanh
IRy . sin(gp/2) tan o yT R

which does not depend on the ratio between £ and &,.

It now only remains for us to verify the validity of our
initial assumption that (/) and (g) are constants in the
region » > L. . For averaging we have to take for f and
g the equilibrium values [Eq. (86)] on nonthrough
trajectories, and perturbed values [Egs. (90) and (91)]
on the through trajectories. The number of the latter
trajectories in the region under consideration is
small, as a weak link is “observed” within the small
solid angle Q(»)<<4n. The values of (f) and (g) (and
consequently the value of A, too) therefore differ from
the equilibrium values only by a quantity of the order
of Q/4m <« 1. Thus (f), (g), and A vary greatly only in
the immediate neighborhood of a weak link (» ~ L)
where Q~ 27.

3. Discussion

Figure 10(b) shows the phase dependence of the
supercurrent, defined by Eq. (97), while the KO-2 curve
in Fig. 6 shows the dependence V(7). The I4(¢) rela-
tionship is sinusoidal for T~ T, and V. is again defined
by Eq. (14), but at lower temperatures the results are
quite different from those predicted by the tunnel theory
or the KO-1 theory either. For T =0, the current-
phase relationship is highly nonsinusoidal, and suffers
jumps at ¢ =w+27n, while V is twice the value given
by the tunnel theory

max[eV,]=7A(0), max[v, |[uV]~480T [K]. (98)
T T

Such a marked discrepancy shows an essential dis-
tinction in the physics of the processes in these three
types of Josephson structures. In order to discover the
causes of this discrepancy, we shall analyze the struc-
ture of the Eilenberger functions f for these three
cases. For “clean” weak links, f has just been calcu-
lated and is expressed by Egs. (86) and (90). For
“dirty” links the form of f~ F is given by Eqgs. (58) and
(60). Therefore it remains to describe the tunnel junc-
tion in the same terms.

This is easily done by adding a small perturbation due
to tunneling from the other electrode to the equilibrium
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functions of each electrode [Eq. (86)]
f1.=(a/ Eyexp (ixy,2) +T,(a%w/E *) explix; ,) , (99)

where the probability T, of electron tunneling depends
on the direction of momentum p,. Substituting Eq. (99)
into the definition of g [Eq. (80)], we obtain

g=(w/E)+iT,(a*/E ?) sing , (100)

and by virtue of the relationship between T, and R,

Ry =jyS/V =(2eN(0)/V) |(v,T, sign(v,))|S, (101)

we arrive at the result derived by Ambegaokar and
Baratoff [Eqs. (9), and (10)]. Equation (99) shows that
the results of the tunnel theory are only valid when a
clean “mixture” (i.e., interference) of states induced by
neighboring electrodes exists at all distances (~4, £,)
significant in the superconductivity theory. This will be
so, of course, not only for the case of tunnel junctions.

For instance, as demonstrated by Zorin and Likharev
(1978a), if two electrodes are separated by a thin opa-
que barrier with a large number of minute ports
(ppLest /7 << 1), the wave functions of such a structure
in toto coincide with the functions of a tunnel junction.
For this type of weak link, therefore, all the results
predicted in the tunnel theory are applicable (nonethe-
less, the relative capacitance of these structures may,
as in other types of weak links, be much less than that
of tunnel junctions: gs1).

For “dirty” weak links the functions f are almost iso-
tropic (Usadel approximation), but they change con-
siderably in space at distances L. greater thanf. This
is precisely the cause of the difference in the results
obtained within the framework of the KO-1 and tunnel
theories. Finally, the functions f for a “clean” weak
link change strongly both in the coordinate space (at
distances~£, £,> Loy ) and in the momentum space (a
significant difference between transparent and non-
transparent trajectories). A still more essential dis-
tinction between the results of KO-2 and tunnel theories
is associated with this.

Thus there is a noticeable difference in the stationary
properties of weak links, even among those which are
short compared to £(T).

4. Pure one-dimensional structures

Of course, how “clean” weak links behave when their
length is increased is a question of considerable in-
terest. So far, this feature has only been studied for
one-dimensional S — N - § structures, i.e., in the case
where a weak link material has zero critical tempera-
ture. Moreover, in these calculations, it was assumed
that the condition

L> min[&,, (£,1)?], (102)

is satisfied, and was thus possible to disregard the
proximity effect throughout a major part of the struc-
ture, and to assume that (Kulik, 1969b)

A=0,0<sx<L. (103)

In such a model the Ig(¢) relationships for T =0 (Ishii,
1970, 1972) and for T #0 (Svidzinskii et al., 1971, 1973;
Bardeen and Johnson, 1972; see also the introduction to
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the paper by Bezuglyi el al., 1975) have been calculated
for &=, The influence of a finite mean free path (4~ 1)
has been treated by Kulik and Mitzai (1975).2°

Here we shall not examine the results reported in
these papers. The reason is that the equations derived by
Kulik and Mitzai (1975)cannot be convertedat! < &, L into
the resultsfollowing from the Usadel equations, [into Eq.
(78), in particular], which hold true in this case. The
author of this review feels that in the analysis of clean
S — N - S structures some error has probably crept into
the determination of boundary conditions. Fortunately,
there is a method by which we can clarify this situation:
that is to make an analysis of such §~N — S structures
using the Eilenberger equations, where the boundary
conditions are quite clear, rather than the complex
formalism of the above papers.

E. /(@) relationship and Josephson effect

So far in the preceding pages we have assumed that the
cross section of a weak link is so small that the current
self-shielding (i.e., actually the Meissner effect) may be
disregarded. This condition may be formulated in the
form of a constraint on the maximum transverse di-
mension of the weak link cross section, i.e., the

W << Xegr (104)

where A denotes some characteristic size of the self-
shielding region (magnetic field penetration). As we
shall see in Sec. VII, it depends substantially on boththe
density of the critical current in the weak link, and the
geometry of the structure, and is usually much larger
than L. But, even for very small widths (W~ ¢), the
uniform flow of the condensate, i.e., the uniform dis-
tribution of variables over the weak link cross section,
may prove to be unstable with respect to the formation
of vortex lines carrying one or several magnetic flux
quanta (Abricosov, 1957; see also De Gennes, 1966).

1. Abricosov vortices

In a superconducting specimen of sizes far greater
than ¢ and A, every Abricosov vortex is an axial sym-
metric formation. The order parameter is zero on the
vortex axis and tends to its equilibrium value at a
distance of ~£ from the axis, thereby forming a normal
“core” of the vortex. A persistent ring supercurrent
flows around the core at distances of about A. The
magnetic field of total flux ¢, (or n¢,) directed along
the vortex axis is screened by this current from the
remaining portion of the superconductor. The electro-
magnetic region of the vortex readily suffers deforma-
tion, and this is just what happens when the vortices
are of high density in a strong magnetic field or when
the vortices penetrate to a specimen of small size
().

The vortices may penetrate into a supérconducting
specimen only from the side of the boundary with vacuum

®The specific influence of an external magnetic field on such
structures (at I =«) has been considered by Antsygina et al.
(1975). Bezuglyi et al. (1975) have examined such structures
with low transparency of the S-N boundary.

Rev. Mod. Phys., Vol. 51, No. 1, January 1979

119

(insulator),?! under the influence of either an external
magnetic field or a current flowing through the speci-
men itself. These two cases differ essentially in the be-
havior of the vortices after penetration into the speci-
man. In both cases a Lorentz force of linear density
fzi)ég-[nxj] (105)
acts on the core of each vortex, where n is the direction
of the vortex axis. A contribution to the current density
j is made by all the currents on the vortex axis, in-
cluding the circulating currents of other vortices.

If the vortices are generated under the action of an
external magnetic field, the force [Eq. (105)] is di-
rected from all the boundaries towards the center of the -
specimen, and a steady distribution of the vortices
(static mixed state) is established in the specimen. On
the other hand, if the vortices are created by the current
in the specimen itself, the Lorentz force pushes the
vortices in a direction normal to the current, i.e., a-
long the cross section, and tends to establish a con-
tinuous flow of additional vortices across the conductor
(dynamic mixed state), the dc voltage drop in this case
being nonzero.

An analysis of conditions for vortex formation in
samples of constant cross section, thin film strips for
example (Likharev, 1971a,b), and considerable body of
experimental data show that even when W << A ¢, the
critical current /,, for vortex penetration may be small
(much lower than the depairing current). Moreover,

I., may essentially depend on small-scale (~¢) inhomo-
geneities at the point where the vortex penetrates into
the specimen, a fact which makes 7, almost irrepro-
ducible in experiments.

It is, therefore, quite likely that the calculations of
critical currents /. in weak links may prove to be in-
adequate, because the vortex motion across the weak
links can start at much lower currents. Fortunately,
this does not occur in the most interesting case of very
'short weak links: the reason is that Abricosov vortices
simply cannot exist in such stvucturves.

2. Abricosov vortices in weak links

Following Likharev (1975b), we consider a solitary
vortex which has penetrated into a weak link, within the
framework of the ODSEE model in which a weak link is
regarded as a span between two unperturbed bulk elec-
trodes. Since the energy of a vortex is proportional to

' its length, its axis is always normal to the maximum

size of the cross section, say for example, to the plane
of the thin film bridge. In addition, the vortex experi-
ences strong repulstion from the bulk superconducting
banks (Likharev, 1971d). Therefore its axis is located
in the middle between the electrodes (Fig. 11).

We shall carry out an analysis within the framework
of the GL equations (21), anditisnow necessary to as-
sume that A and j; may depend both on x and y (Fig. 11).

% Another possible process is the formation of a pair of
antipolar vortices at the internal points of the specimen under
the influence of current. This process is energetically less
advantageous.
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Representing A in Cartesian form as
A=R(xy)+I(x,y), (106)

from Eq. (21a) we obtain the following equations for real
R and |

E2VER + [+1 - (R®+1%)/A%]R =0,
2RI +[£1 - (R2+1%)/A%]1=0.

(107a)
(107b)

As a rule, these equations do not easily yield to solu-
tion, but the ODSEE model offers a means of making a
complete analysis, as the boundary conditions for A
are very simple [Eq. (64)]. Since the phases in the elec-
trodes can only change at distances~ A .4 (see Sec. VII),
under the condition (104), they are constant for each
electrode. Moreover, as y is always determined up to
a constant, take y, =0; hence on the first bank (x =0)
we have

RO,y)=a, I(0,9)=0.

When we pass round the vortex by angle 7, the phase of
the order parameter likewise should change by 7, there-
fore the phase at the second bank is 7, and

R(L,y)=-a, I(L,y)=0.

In order to derive the boundary conditions on the lateral
sides of the weak link, let us first consider the case
where W> L. Thus; far from the vortex center (which
we take as the origin of the transverse coordinate y) A
should tend to a uniform solution

(108)

(109)

(110a)
(110b)

R(x, im):Rfoo(x) >
I(x, ) =1,.(x),

which is just the same as the one we derived earlier
(Sec. IV.C). Now we shall analyze the solutions of the
problem [Egs. (107)—(110)].

3. “Explosion” of core

If the function /4(¢) is multivalued (/> 1), several (at
least, three) values of Iy and consequently the same
number of uniform solutions A(x) (Fig. 4) correspond to
the value ¢ =7, which we now require. The current on
the two different sides of the vortex flows in opposite
directions and therefore the solutions giving different
signs to Ig(p) have to be taken as y— 1. As is clear
from Fig. 3, a nonzero value of / corresponds to a
nonzero current:

I ,=-I_,+0, at[>1. (111)
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In this case the solution of the system of equations (107)
describes the core of an Abricosov vortex of a shape
close to that of an ordinary axial-symmetric vortex,

the only difference being that the current distribution
around the core is distorted by the banks (Fig. 11).
These distortions may be treated as the positive mirror
images of the vortex at the banks (Likharev, 1971d).
The core suffers slight distortion on decreasing L, be-
coming somewhat flattened along the x direction as it is
stretched out in the y direction.

The situation is radically different when L is less than
L,(I<1). The one-dimensional problem for this case
has only one solution with ¢ =7, which, according to
Fig. 4(c), has I; =0; consequently y =const and

I (112)

o =1_,=0, at I<1,
Thus the differential equation for 7(107b) has zero bound-
ary conditions [Eqs. (108)-(110), (112)] at all boundaries

and only a trivial solution in the whole domain

I(x,9)=0, Alx,y)=8,,(x)=R,.(x), (113)

which gives rise to a zero current density in the whole
bulk of the weak link

js(x,y)=0- (114)

Thus, when 7<1, the vortex core ceases to exist. The
numerical solution of the system (107) shows that
noticeable deformation of the core (expansion along the
y axis) begins only for values of L several percent
higher than L;; consequently, the vortex core literally
suffers an “explosion” when the link length becomes .
equal to the critical length.

Where does the vortex disappear to at the time of ex-
plosion? To answer this question we have to consider a
weak link of sufficient width (W= X ) so that an electro-
magnetic region of the vortex may be embedded inside
the link. If an Abricosov vortexexists in a weaklink, the
circulating current [say, (jg),(L/2,y)] builds up when
0s y< L, and then gradually decays in the region LSy
< Aeff. After the explosion of the core, the current will
grow at distances 0 y< Ay, and with a further in-
crease in y will diminish at distances of the same
order. This structure is the well known Josephson vor-
tex with only one characteristic dimension a4 > L (see,
for example, Kulik and Yanson, 1970). Thus, after core’
explosion, the vortex remains where it was, but its
nature suffers transformation, i.e., an Abricosov vortex
is transformed into a Josephson vortex.

In the course of penetration and motion of the Joseph-
son vortices, the currents in the weak link vary only
at great distances (~)er); hence they do not disrupt the
uniformity of current in weak links of small cross sec-
tion (W~ £). Thus all the calculations made previously
are applicable to these narrow structures as well.

The fact that there are no solutions of Eq. (107) de-
scribing Abricosov vortices is in no way connected with
the particular form of these equations. Therefore, even
if the equations differ from the GL ones (for example,
Usadel equations are valid), the conclusions remain the
same: if in a weak link the dependence of the super-
current density on the phase difference is single-valued,
two-dimensional structures of the Abricosov vortex type
may not exist in them. For example, in § -~ N —S-type
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weak links, aswe have already seen, /;(¢)isalwaysa
single-valued function, and consequently Abricosov
vortices cannot under any circumstance exist in such a
weak link for any length of the structure.

4. Critical length versus link width

In the preceding section we analyzed a case where
the link width W, i.e., the maximum size of the weak link
cross section, is much greater than L~ £(T"). Itis
worthwhile examining the way in which the critical
length (below which Abricosov vortices are forbidden) of
a weak link changes with decreasing width. Such calcu-
lations have been carried out for a rectangular weak
link O<x <L, -W/2 <y<W/2) by Kupriyanov et al.
(1975).

In these calculations the last of the boundary condi-
tions (110) has to be replaced by more general ones

)3 (x zﬂ) o 2L (x i_vz> o
ay b 2 ) 8y b 2 b
which follow from the condition of absence of current
flow through the lateral edges of the weak link. Here it
is impossible to find an analytical expression for the
critical length, and Eqgs. (107) were solved numerically.
The results are shown in Fig. 12 by a solid line for the
case where A =1, i.e., the weak link and the electrodes
are made of the same material T, =T,. However, the
vertical asymptote

W—W,~4.41£(T), as L/t =,

(115)

(116)

does not depend on T{. The effective critical length
increases with the decreasing width W, and reaches the
asymptote (116), so that Abricosov vortices cannot exist
in the center of a strip less than W, in width at any
length.

4.44
30 T — T
10
I ONE— V  VORTEX
r DEPAIRING MOTION
L L
&M | L=L¢
——————————— e -—349
3 ] g
JOSEPHSON EFFECT
] 1 [ B B SN 1
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’ w/ &M

FIG. 12. Variety of possible sizes of dirty weak links (is cor-
rect qualitatively at 7'~ T'c =T(). Solid line separates the re-
gion of large sizes, where Abricosov vortex appearance is
possible, from the region of small lengths and/or small widths,
where dc state is destroyed only due to one-dimensional insta-
bilities, with all variables changing only along weak link length
(x—axis). Dashed line corresponds to L = L o and separates the
range of small length, where the Josephson effect with single-
valued /g(¢) relationship takes place. After Likharev, 1971d;
Kupriyanov et al., 1975.
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It should be emphasized that the results calculated for
finite widths are somewhat uncertain. In the calcula-
tions a vortex was assumed to exist in a static position
at the center of the weak link. Such a position, however,
on account of the attraction toward the lateral edges, is
unstable, and a vortex may be sustained in the center

- only with the help of an external magnetic field applied

parallel to the vortex field. If W > L, the fields neces-
sary for this purpose prove to be rather weak (<Hg,),
and there is no need to introduce any corrections into
the calculations. For W~ L~ £, the field should be quite
strong, so that the asymptote (116) does not define a
strict lower limit to W, for any condition. When B

~ H,,, in particular, the lower boundary shifts left-
wards to values ~3£(T).

In contrast, when vortex motion occurs under the ac-
tion of the current passing through the weak link alone,
the boundary may move from the position shown to the
right only. In fact, as follows from our previous analy-
sis, if W<W, the vortex core spreads out along the y
axis normal to the current direction, thereby forming a
one-dimensional structure A =A(x). WhenWzW,,
Abricosov vortices may penetrate only under very large
currents which move at high speeds. The finite relaxa-
tion time of the order parameters (see Secs. IV and V)
likewise enhances the tendency for the vortices to
“spread out” in the direction of the flux flow, i.e., along
the y axis. Therefore, in the absence of a strong ex-
ternal magnetic field, disruption of the stationary state
at W<W_ may be thought of as taking place in a one-di-
mensional way, and consequently, the theory developed
above for I4(p) under this assumption is valid.

5. Limits of Josephson effect

We now have all the information needed to answer the
question, to what length may the Josephson effect be
supposed to take place in a superconducting weak link?
Conflicting opinions have been expressed regarding this
question, partly due to vagueness in defining the
Josephson effect.

In pai‘ticular, the current step pattern on 7-V curves
of a weak link under microwave irradiation has often
been taken as evidence of this effect. These steps ap-
pear at voltages V=V,  related to the frequency w of
microwaves by an expression

m Fwe

Vm,n: n ze

(m,n are integers), (117)

which is a generalization of the Josephson law [Eq. (6)].
These steps are the consequence of the expression for
the “classical” Josephson effect (for details, see Sec.
VI). However, they may also appear in weak links of
very large dimensions (L,W>>£,)). Indeed, suppose
that a large number of Abricosov vortices move si-
multaneously in a large structure. In the absence of
inhomogeneities, they will tend to form an ordered
spatial structure. say, move in w lines with identical
frequency in each line. Upon application of an external
microwave field, penetration of the vortices into the
specimen may be locked in by the nth harmonic of
frequency w. Thus nw/27 vortices per second will pass
along each line. Since the intersection of the specimen
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by one flux quantum, according to the induction law,
generates a voltage pulse across the electrodes

ch
Cdet:(bO:—i‘e—, (118)
and the voltage in lines is summable, we find that the
mean voltage at a weak link is indeed given by the ex-
pression (117):

(119)

Coherent motion of the vortices and current steps at
voltages (117) have actually been observed in supercon-
ducting films as long as a few millimeters (Fiory, 1971)
and in variable-thickness bridges of dimensions much
greater than ¢ (Gubankov ef al., 1973). Moreover, in
such large structures it is also possible to record ac
voltage at frequencies given by Eq. (117) (Martinoli
et al., 1976). These experiments clearly demonstrate
that coherence effects in superconductivity are of a
common nature.

Nonetheless, it should be stressed that even small
inhomogeneities of the sample will lead to the pinning
of Abricosov vortices (see, for example, Campbell and
Evetts, 1972; Shmidt and Mkrtchyan, 1974) and to
differences in the velocities of the vortices in different
lines, and hence to the vanishing of coherent effects. In
addition, such large structures do not possess the
single-valued I;(¢) function generally used in applica-
tions of the Josephson effect. An even more significant
argument from an experimental viewpoint is that all
structures admitting the appearance of small instabil -
ities (~£) are almost irreproducible because unavoid-
able inhomogeneities determine substantially the forma-
tion of these instabilities.

It is therefore reasonable to believe that the “ideal”
Josephson effect takes place only when the function I4(p)
is single-valued, and when, consequently, the develop-
ment of instabilities is impossible. For weak links
made of superconducting materials, this condition is
satisfied at lengths L less than the critical length L.
found above, i.e., below the dotted line in Fig. 12, which
shows the different regions for different behaviors of
weak links. In the region characterized by large lengths
and short widths the stationary state is disrupted by the
depairing effect and by the formation of a “phase slip
center” or centers at the weakest point(s) (see, for ex-
ample, Skocpol et al., 1974b,c). In the region char-
acterized by large lengths and large widths the station-
ary state is disrupted due to the penetration of Abrico-
sov vortices; their motion has been treated by Likharev
(1971d), Schmid and Hauger (1973), Larkin and
Ovchinnikov (1973), and Aslamazov and Larkin (1975).

Despite interest in these nonstationary processes, we
shall mainly consider the nonstationary processes in
relatively short links for which I4(p) is a single-valued
function, i.e., in which almost the “ideal” Josephson
effect takes place. Before dwelling on this topic, how-
ever, we have to outline the experimental situation in
the area of stationary effects. It requires an analysis
of various types of weak links and their agreement with
the theoretical models used above.
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IV. TYPES OF WEAK LINKS

In this section we shall briefly outline the basic types
of weak links and evaluate their suitability for pure
physical purposes (comparison with theory) and for the
main applications of the Josephson effect. Most of the
theoretical results for weak links have been derived
within the framework of the ODSEE model (see Sec.
II1.C), in which simple boundary conditions [Eq. (64)]
are assumed. In the first instance, we shall, therefore,
examine the processes in the electrodes that might lead
to deviations from these conditions in real weak links.

A. Nonlinear processes in the electrodes

We shall discuss only the processes which give rise to
a deviation of |A| at the weak link—electrode interface
from the equilibrium value, i.e., the nonlinear pro-
cesses. Such linear processes as linear changes of the
phase x in the electrodes under the action of current
through a weak link (jg « Vy) are consistent with the
ODSEE model provided the condition (104) is valid, be-
cause noticeable changes in y along the weak link-bank
interface may take place only over Aes .

1. Proximity effect

Even in the absence of any current through a weak link,
the proximity effect is observed at its interface with the
electrodes: the values of |A| on either side of the inter-
face tend to each other, i.e., deviate from their equilib-
rium values. These variations extend into the depths of
the weak link and the electrodes to distances of the or-
der of the coherence lengths of these materials. When
a supercurrent I; comparable to I, flows through a weak
link, it changes |a| in the weak link appreciably. Thus,
if the proximity effect is significant, then |a| at the
interface will suffer significant changes, leading to con-
siderable deviations from the ODSEE model. Con-
sequently, this effect cannot be avoided even if the weak
link and the electrodes are made of the same material.

2. Suppression of superconductivity by a current

The critical current of short weak links, in which the
Josephson effect takes place, may be rather large. For
example, it is obvious from Fig. 7, that with diminishing
link length the current can notably exceed the depairing
current of the weak link material. This current, on
entering the electrodes, can likewise produce the de-
pairing effect accompanied by suppression of the order
parameter. Therefore, for the ODSEE model to be
valid [condition (64)] it is necessary that the current in
the electrodes be, for some reason (say, change of
material or cross section), much less than the depairing
current.

3. Consequences of nonlinear effects in the banks

If at least one of the aforementioned effects occurs
in the banks, then the ODSEE model is no longer appli-
cable, and the situation, in principle, has to be reex-
amined. It is, however, obvious that if nonlinear ef-
fects extend into the electrodes a distance §, then the
weak link will behave qualitatively in the same manner
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as in the ODSEE model, but with a different effective
length

Legr~L+25. (120)

We shall now consider some particular types of weak-
ly linked structures, using the high or low current con-
centration in the weak link as the criterion in classi-
fying them.

B. Structures without current concentration

The largest deviations from the ODSEE model may be
observed in structures with no current concentration,
where the electrodes have the same cross section as the
weak link [Fig.1(a)-(d)].

1. Specific features of structures without current
concentration

Both the above-mentioned nonlinear effects are strong-

ly exhibited in these structures. Consider, for example,
the case of a dirty structure ((<<¢,) of length ~£’
(primes show weak link parameters) at a temperature
not very close to the critical temperature. As follows
from Eq. (53), the density of the depairing current of
the electrodes (F~1,v~¢~1) is of the order

. oxA
Jap™ et ’ (121)
and the Josephson current of a weak link is of the order
(v~L7Y
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eL ek’ ( )
Hence, in order that there may be no depairing effect at
the banks, the following condition

9% o 9%

&’ 3
should be satisfied. As for the proximity effect, we
shall take into account the fact that the functions F and
the quantities ¢, VF should be continuous on the plane of
the boundary of two materials. This guarantees the
continuity of the current and is in agreement with the
boundary conditions of Zaitsev (1966). The deviation of
F in the electrodes from the equilibrium value is of the
order of {£VF, and is, therefore, much less than that in
the weak link, if

(123)

| VF'| > &| VF|, (124)

" which againresults in the condition (123) for the ratio of
the parameters of the materials.
Since

oy/ £ < N(O) (w02 (125)

‘'we find that condition (64) of the ODSEE model holds
true in “one-dimensional” weak links (with no current
concentration) only for the interlayer made either of
dirty material (smallf) or of low concentration of con-
duction electrons » [in the free electron (gas) model
NOWY? < nt/2m,)].

If, however, o,/¢ is of the same order in the elec-
trodes as in the weak link, then the effective length of
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the weak link (120) is of the order of (L +2¢) i.e., it can-
not be made less than ¢ by diminishing 1. From Figs.

7 and 8, it is evident that in such weak links it is im-
possible to provide the “ideal” Josephson effect with al-
most sinusoidal Ig (@) relationship and large Vo. This

is confirmed by the calculations carried out for the pro-
cesses taking place in such structures (De Gennes, 1966;
Galaiko et al., 1969; Baratoff ¢t al., 1970; Blackburn
et al., 1972, 1975; Volkov, 1974).

Here we should mention yet another situation com-
plicating the use of structures without current concen-
tration for comparison with theory. We know that the
basic dc characteristics of a weak link are the tempera-
ture dependence of the critical current /,(T') and the
phase dependence of the supercurrent /4(p), the latter
carrying more information. One difficulty in the mea-
surement of the /g ((p) relationship in one dimensional
structures is that even in the absence of nonlinear ef-
fects the phase y grows linearly into the electrode depth
(j,=const, ax/6x=const). If, in addition, the current
is close to the critical depairing current, then a 27 in-
crease in the phase takes place even at small distances
~£ (~107% cm). Therefore the “three-dimensional” elec-
trodes, across which the phase difference ¢=y, -y, is
measured by one method or another (Fulton and Dynes,
1970; Jackel et al., 1974, 1976a; Waldram and Lumley,
1975; Meservey and Tedrow, 1975; Rifkin and Deaver,
1976), have to be connected to the “one-dimensional”
electrodes at a distance of ~£, and this does, strictly
speaking, have some influence on the processes occur-
ring in a weak link.

We shall now take up some specific one-dimensional
structures.

2. Sandwiches

Sandwiches are, as a rule, fabricated by sequential
evaporation of the various layers, on a substrate. The
interlayer thickness, depending on the materials used,
varies from 107% to 107® cm. Experiments have been
carried out mainly with sandwiches containing a rela-
tively dirty normal metal interlayer (Clarke, 1969,
1971; Bolton and Douglas, 1971; Sheperd, 1972); simi-
lar structures were investigated by Bondarenko et al.
(1970a). The value of o,/¢ in these studies was of the
same order in a normal metal and in the electrodes,
hence the boundary conditions were noticeably different
from those of the ODSEE model. In experiments with
interlayers much thicker than ¢/, it may, however, be
possible to measure &’ and its temperature dependence,
as in this case the proportionality between /, and
exp(—L/&’) [see Eqgs. (73) and (77)] does not depend on
the boundary conditions. It would, moreover, be worth-
while to study the function I, (T) for relatively clean
sandwiches (~ L, ¢,) and to compare them with the the-
oretical calculations (see Sec. III.D).

From the point of view of device applications it should
be noted that sandwiches are rather unsatisfactory, as
they have very low V(~10~7 v or even less) and Ry.
For instance, in small-size sandwiches with an area of
10x 10 microns and a normal metal interlayer thickness
of 0.1 ym, the normal resistance is of the order of
107%Q (for ¢4*~ 107°Q c¢m). Such values of V, and R



124

are too low for any application of the Josephson effect
(see Likharev and Ulrich, 1978).

Thus sandwiches with an “ordinary” metal interlayer
are of rather limited interest. In contrast, the “ideal”
Josephson effect can be realized by using a poorly con-
ducting interlayer (low of/&’). This is just the situation
that probably takes place in S — SE — Stype junctions witha
doped silicon interlayer (Huang and Van Duzer, 1974,
1975; Schyfter et al., 1977; Hu ef al., 1978). Inusing
semiconductors, the situation does, however, become
complicated due to the Schottky barriers appearing at the
interlayer-electrode interfaces. Under these conditions
the tunneling process at the interface interferes with the
direct conductivity inside the semiconductor. Animpor-
tant problem today in weak superconductivity is that of
working out further experiments and developing a com-
prehensive theory, atleast, for the dc processesinthese
structures.

From the practical viewpoint, S — SE — S type sand-
wiches not only provide a means of raising V., to the
maximum possible values, but also of increasing con-
siderably the normal resistance of structures, while
keeping the capacitance negligibly small. Sandwiches
with V, =1 mV and R, of about 0.5Q at an area ~50 pm?
have already been fabricated (Schyfter et al., 1977).
Such structures are quite suitable for most of the
microwave devices, especially those which use arrays
of such junctions (see Sec. VII). Moreover, these
sandwiches are quite promising for utilization in Joseph-
son cryotrons.

3. Proximity effect bridges

Proximity effect microbridges do not, in their physi-
cal processes, differ from S-S’ -S or § - N’ - S-type
sandwiches (depending on the extent to which the critical
temperature of the span is suppressed by the proximity
effect). Their advantage over sandwiches is their small
cross section and, consequently, their relatively high
resistance R, (which may reach 107% to 107 Q), which
simplify both the measurements and the practical ap-
plications of these microbridges. A definite drawback
is the need to provide the smallest possible dimension
(L~ &) not in thickness, but in plane of the structure.
However, even when this dimension is relatively large
(of the order of one micron), the condition [ < £/(T) can
be satisfied in a narrow range near the critical temper-
ature of the link material T¢.

These structures may have a single-valued I5(¢), but
their vV, as it follows, say, from Fig. 7, is low

Ve~ (V) max €XP[—L/E (T )< (Vo) s - (126)

In the early realizations of proximity effect micro-
bridges, where their structures were almost one-di-
mensional [Fig 1(c)], values of V, were in the range of
a few nanovolts (Notarys and Mercereau, 1971; Kirsch-
man, 1971), i.e., about 10° times less than the maxi-
mum possible values which are of the order of a few
millivolts [Eq. (62)]. Later, these bridges had to be
modified: the entire film was placed over a normal
metal film, the span superconductivity being weakened
by the decreasing thickness, which stimulated the sup-
pression of |A| due to the proximity effect (Mercereau,
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1974; Kirschman et al., 1975). Current concentration
occurs in such structures, the suppression of |A| at

the banks is reduced (see below), and V. increases.
However, due to lack of a very great difference between
the thicknesses of the span and the banks, the char-
acteristic values of vV, even in such modified bridges do
not exceed tens of microvolts.

The smallness of V, and R, restricts the applications
of proximity effect microbridges to ac SQUIDs (Kirsch-
man et al., 1975; Falco and Parker, 1975); dc SQUIDs
based on these bridges feature rather poor characteris-
tics (Decker and Mercereau, 1973).

4. lon-implanted microbridges

Recently several papers have been published dealing
with a new method of preparation of one-dimensional
weak links by implantation of ions into superconducting
films. Implantation may be carried out in the span
(Arrington and Deaver, 1975; Kirschman et al., 1977;
Rachford et al., 1977; Boone et al., 1977) if it di-
minishes the film critical parameters, or in the banks
(E. Harris, 1975; Harris and Laibowitz, 1977) in the
opposite case. The physical properties of these micro-
bridges [Fig. 1(d)] are close to the one-dimensional
structures already discussed and they can have a rather
limited application in physics or engineering.

One work (Harris and Laibowitz, 1977) is worthy of
special mention: the banks were subjected to irradia-
tion and thus their critical temperature was increased.
As 2and (£~ £,0%? diminished at banks in this process,
the effective length L .5 was close to the physical value.
Therefore, for moderate current densities, the boundary
conditions for A were close to those of the ODSEE mod-
el, allowing verification of the theory discussed in Sec.
III on the effect of length on the critical current of weak
links at T~ T~ T¢.

C. Dayem bridges

The only example of structures with weak current con-
centration is the constant-thickness bridge [the Dayem
pridge, Fig. 1(e)]in whichthe concentration occurs in
only one direction, i.e., along the film width.

1. Specific features of the processes in Dayem bridges

The concentration of current even in one direction im-
proves the correspondence of the weak link to the ODSEE
model. However, in Dayem bridges the weak link and
the banks are made of the same material (o,,,/g =const).
Hence the banks are easily involved in nonlinear pro-
cesses. Indeed, current-induced suppression of |A} has
the greatest influence in that region where the current
density J is comparable with the maximum one (Jmax).
The length of this region, as is evident from Fig. 13

L'effmmax(L)W)) (127)

is always greater than the bridge geometrical length L.
Moreover, even if L is less than &, the simple AL
and KO-1 theories are not applicable to Dayem bridges
because, as can easily be verified, the function f di-
verges (rather weakly, as Iny) on receding from the
bridge into banks. Therefore any theory of the AL type
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FIG. 13. Current concentration in Dayem bridges at various
relationships of their length L and width W. Figure shows
that current density falls off at the lengths L. ~ max [L, W].

has to be reconstructed to be valid for Dayem bridges.
This work has been carried out by Volkov (1973), who
assumed the bridge to be bounded within hyperbolas
with centers separated by a distance 2a << &. The same
result has been shown to hold valid for any shape
(Likharev and Yakobson, 1975a), if the bridge bound-
aries at small distances (» < £) tend to lines emerging
from one point. :

The Volkov theory gives the following expression for
the critical current

I.=V./Ry(£),

where V., as in the AL theory, is expressed by Eq.
(14), but R, (&) is the normal resistance of the bridge
part inside a circle of radius ¢

Ru(g)k‘/ 2Rnln(§/Leff ) ’ RCJ: (O'Nd)_‘l ’

where Ry is the normal (residual) resistance of the
film per square. Even in the vicinity of T, the func-
tion I(T) is evidently different from linear (see also
Klapwijk et al., 1977b).

For Dayem bridges the I5(¢) relationship, just as in
the case of one-dimensional structures, is somewhat
uncertain, as it is not clear between which points the
phase difference ¢ has to be taken. Since even at dis-
tances of » > ¢ inside the banks the current decreases
slowly (jg «<» ), the phase continues to grow (cclny).
Suppose that we are measuring the phase difference be-
tween bulk superconducting electrodes connected to the
banks at » > £ (in this case they do not affect the pro-
cesses occurring in the bridge). Then, as follows from
Eqgs. (21b) and (24), for d< 2x,dLeg s A°

(128)

(129)

2
16ex n %

= 130
¢=Is “Zpg (130)

+const (7).
£

On comparing Eq. (130) with Eq. (48), we see that the
electrodes make a contribution [, to the effective kine-
tic inductance proportional to Iny. In the dirty limit,
using Eq. (24) and Eqs. (128) and (129), we obtain

1
Ip~ - In(r/Leg)>1. (131)
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Even the minimum value of this contribution (when »~ &)
is of the order of unity.

Thus the dependences (¢ ;) measured for Dayem
bridges should be multivalued even when L. <£, as
was observed in the experiments (Jackel et al., 1975, -
1976a).

2. Large and small bridges

The aforementioned results apply, in fact, to small-
size bridges. Historically, starting with the pioneering
work of Anderson and Dayem (1964),2% for a few years
research was concentrated on bridges of relatively large
size?® (L,W~1 -2 pm) which, for the material used
(Sn, In), satisfied the relation L. < £ only in a narrow
temperature range close to T.. Since this range was of
the order of the phase transition width, the supercon-
ducting parameters of the film in this range were es-
sentially inhomogeneous, and a comparison with the
theory was impossible. At other temperatures, the
bridge dimensions were noticeably greater than £, and
the uniform flow of the condensate was disrupted by
penetration of Abricosov vortices (see Sec. III.E, and
Fig. 12).

It is doubtful whether such large Dayem bridges could
ever prove useful in any physical research or applica-
tion, maybe with the exception of SQUIDs with relatively
low sensitivity (see below).- However, it is still more
unfortunate that in the last few years considerable ef-
fort has been expended in fabricating constant-thickness
bridges from such hard superconductors as Nb, Nb,Sn,
NbN, and others (Janoko et al., 1971, 1973, 1975;
Laibowitz et al., 1975; Fujita et al., 1975; Holdeman
and Peters, 1975, 1976; Golovashkin et al., 1976,

1978; Wu and Falco, 1977; Balla et al., 1977; Rachford
et al., 1977).These films have extremely low coherence
length (~ a few hundred angstroms or even less), and
therefore remain “large” even if the bridge dimensions
are as small as 0.1 -0.2 yum.

The main hurdle in microbridge fabrication in the

_early seventies was the formation of their sizes, usually

by superposition of masks during film evaporation.?*
Therefore, quite a significant advancement at that time
was the “double scratch” technique (Gregers-Hansen
et al., 1971, 1972) by which microbridges from soft
materials (Sn,In, Al) of sizes of about 0.2 to 0.5 um
could be prepared without complex special equipment.
Such sizes are quite sufficient for L e to be less than
¢ in a noticeable temperature range close to T, and
consequently most of the phenomena associated with the
Josephson effect can be observed (Gregers-Hansen
et al., 1971, 1972a,b; Gregers-Hansen and Levinsen,
1971; Jahn and Kao, 1973; Chiao et al., 1974; Pedersen
et al., 1977).

Further progress in microbridge fabrication technol-
ogy has been made in utilizing such methods as electron

22AImost at the same time these bridges began to be studied
by other groups (Parks and Mochel ,1964; Lambe et al., 1964).

23A review of early work on Dayem bridges may be found in
an article by Likharev (1971d).

240nly a recent communication (Dmitriev et al., 1976) reports
the preparation of submicron-size bridges by this method.
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lithography (Laibowitz, 1973; Laibowitz et al., 1974,
1975; Auracher and Van Duzer, 1974; McCarthy and
Stanko, 1974; Jillie et al., 1975, 1976, 1977). These
methods make possible high reproducibility in fabri-
cating film structures with microbridges of submicron
dimension.

3. Application of Dayem bridges

The main shortcoming of Dayem bridges from the ap-
plication viewpoint is their low resistance R, which is
of the same order as the resistance per square Ry [Eq.
(129)] and does not usually exceed a few tenths of an
ohm.?® It is not possible to increase Ry by decreasing
the film thickness d or by raising R with impurities,
because £ would decrease and the coherence length
£ o 012 would become less than L.s. Low resistance
also causes strong heating effects (see Sec. V) and this
further restricts the operating range of Dayem bridges
close to T.

Moreover, the large value of ] deteriorates para-
meters of the Dayem bridge as elements of those Joseph-
son effect devices where the weak link is connected to
the superconducting ring. For such devices, it is gen-
erally necessary that their main parameter I; be

2e .

ZE:ZR+Z; lR=—£RIcy

= (132)

where £, is the ring inductance, to be less or slightly
more than unity (for references see Footnote 2). A
value of Iy > 1 leads to a loss of sensitivity proportional
to Iy in ac SQUIDs, and proportional to I5 ™! in dc SQUIDs.
If [>1, then Iy can never be made less than unity for any
inductance £,. This is why ac SQUIDs (Goodkind and
Stolfa, 1970; Murata et al., 1976) and dc SQUIDs
(Richter and Albrecht, 1973; Albrecht, 1976; Carelli
and Modena, 1976; Kravchenko et al., 1976; Lobanov
et al., 1976) utilizing Dayem bridges did not have very
high sensitivity and had a narrow operating temperature
range.

Likewise, as [>1, the Dayem bridges are not suitable
for use as quantron-type computer elements (Dynes
et al., 1973; Anacker and Zappe, 1973; Likharev,
1974a, 1977a,b; Likharev et al., 1976; Hurrell, 1977).
Finally, diffraction-type cryotrons cannot be based on
these bridges either (see Sec. VII), as their width can-
not be much greater than the effective length [Eq. (127)].
In all probability, Dayem bridges can prove useful only
in several microwave devices if their microwave impe -
dance is increased by connecting several bridges in
series (see Sec. VI).

D. Structures with strong current concentration

In these structures both the weak link cross-section
dimensions are much less than those of the electrodes,
and therefore the current concentration now takes place
in two dimensions. For example, in variable-thickness

%The only exception is a work (Froome and Beck, 1976) in
which Dayem bridges were reported to have Ry of the order of
a few ohms. It is not clear whether the condition L, effsg was
satisfied in these experiments.
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bridges [Fig. 1(f)] the current is concentrated along both
the thickness and the width of the film. In addition to
these bridges, random microshorts in point contacts
[Fig. 1(g)], blob-type junctions [Fig. 1(h)], and similar
other structures belong to the class of high current con-
centration structures.

1. Special features of strong current concentration
structures

The ODSEE model can easily be realized in these
structures (Likharev, 1971d). Indeed, consider the
proximity effect near the weak link—bank interface. The
volume segment V' of the link contained in a distance
~¢/ from this interface is considerably less than the
corresponding volume segment V of the bank at a dis-
tance ~¢ from the interface. Therefore a deviation in
|a| from the equilibrium value at the bank would cause a
much greater increase in the free energy AF «V than
that created by the same deviation of |A] in a weak link:
AF’V’. Although the order parameter in these struc-
tures is suppressed in the banks to depths ~¢ from the
weak link, the amplitude of these changes is negligibly
small. Hence the value of |A| at the boundaries re-
mains close to the equilibrium values in the electrodes,
and this happens irrespective of the materials of the
links and banks.?®

Similarly, the second possible nonlinear effect also
decreases, namely, suppression of |A| in the electrodes
due to the current flow through the weak link. For ex-
ample, in a variable-thickness bridge the current, on
entering the banks from the span, rapidly diverges
throughout the thickness and width. The current density
is, therefore, high (of the same order as the depairing
current) only at distances of the order of bridge film
thickness d’ from the interface, and the bridge effective
length L. is almost the same as its geometrical length
L. A detailed analysis (Likharev and Yakobson, 1975¢c)
shows that the main condition [Eq. (64)] of the ODSEE
model can be satisfied with any materials by decreasing
the weak link cross section.

Structures with a current concentration in two dimen-
sions have one more advantage in that the phase dif-
ference at the weak link can easily be measured. In
fact, as the current in the banks diverges in two direc-
tions, its density decreases as »~2 with increasing dis-
tance from the weak link, and consequently the phase
drop at the banks is finite

o, ocf jsdr =const(r) +Cr=t, (133)

Moreover, it is easy to show that with the decreasing
weak link cross section this phase drop decreases (for
instance, in variable-thickness bridges it is of the
order of d’/L) and is usually very small. Therefore
the phase difference between two remote points on the
electrodes is almost exactly equal to the phase dif-
ference ¢ between the boundaries of the weak link and

28with the exception, of course, of the unlikely case where
the normal conductivity of the bank material is much less than
that of the weak link material.
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electrodes, which is the subject of calculation in the
ODSEE model.

2. Point contacts and similar structures

Point contacts [see the review by Zimmerman (1972),
and also paper by Gubankov et al. (1972)] are usually
fabricated by lightly pressing a sharp needle point (the
radius of the tip being no greater than a few tenths of a
micron) onto the planar surface of another electrode;
they can, however, be formed by several other methods
(see, for example, Bondarenko et al., 1970a; Yanson,
1975). Numerous conducting microshorts are, as a
rule, developed between electrodes in the oxide layer at
the contact surface. The shape and exact dimensions of
these shorts do not readily yield to investigation. By
studying the magnetic field dependence of the critical
current, we can only infer that the cross-section areas
of these microshorts are much less than the area of
mechanical contact between the electrodes.

Microshorts are responsible for the mechanical in-
stability and total irreproducibility of the point con-
tacts. While the first drawback can, to some extent, be
eliminated using special mechanical adjusting systems
(see, for example, Contaldo, 1967; Zimmerman et al.,
1970; Nad’, 1971; Buhrman et al., 1971; King, 1971; -
Edrich et al., 1974; Kulikov et al., 1974; Soerensen,
1974; Antyukh and Nad’, 1975; Macfarlane, 1976;
Neumaier, 1976; Cross and Blaney, 1977), the second
shortcoming is insuperable, hindering both theoretical
investigations and practical applications of point con-
tacts.

Therefore, from the viewpoint of physical research,
point contacts are only useful in verifying those theories
where the geometrical structure of the weak link is un-
important. It would be very worthwhile to verify ex-
perimentally the KO-1 and KO-2 theories in particular,
and the applicability of the tunnel theory to systems of
very small microshorts (see Sec. II.C). So far such in-
vestigations have not been carried out, and only some
evidence is available that I¢(¢) functions can be single
valued in point contacts (Jackel et al 1974, 1976a;
Rifkin and Deaver, 1976).

As regards the device applications, we may note that
point contacts with the desired electrical characteris-
tics can usually be prepared using repeated formation
with mechanical adjusting or weak electrical discharges.
The characteristic voltage V., in particular, can be
made to attain the maximum possible theoretical value
(i.e., ~3 mV at 7~10 K and T < T,/2), while the normal
resistance can be varied from ~10% to 1072, the func-
tion /5(p) being almost sinusoidal. As a result of these
convenient properties and ease of fabrication, point con-
tacts find extensive application in all types of Josephson
effect devices, with the exception of computers, where
reproducibility is essential.

Recent advances in thin-film weak link fabrication
technology, however, leave no doubt that point contacts
will gradually be superseded in all fields of device ap-
plications by reproducible types of weak links. This
situation is equally true of similar structures like blob-
type junctions (Clarke, 1966; Manikopoulos and Han-
nam, 1973), microshorts in oxide films (Bondarenko

Rev. Mod. Phys., Vol. 51, No. 1, January 1979

et al., 1970a, 1976; Yanson, 1975; Lum and Van Duzer,
1975), and similar junctions, their only distinction from
point contacts being still greater intrinsic capacitance,
which complicates their applications.

3. Variable-thickness bridges

These bridges (Likharev, 1971d) are practically the
only reproducible structures in which the ODSEE model
is valid, i.e., the only means of avoiding nonlinear ef-
fects at the banks, for any length of the structure and
for any (including identical) materials of weak link and
electrodes. Even the first experiments with variable-
thickness bridges (Gubankov et al., 1973) confirmed the
main conclusion of the theory that nonlinear effects are
localized at the span film.?” The relatively small-size
tin bridges prepared in the same group (Gubankov et al.,
1975, 1976, 1977) exhibited satisfactory Josephson pro-
perties at T close to 7.

Similar bridges were fabricated almost at the same
time by another research group (Klapwijk and Veenstra,
1974; Klapwijk and Mooij, 1975; Klapwijk et al., 1977)
with a view to reducing energy dissipation (and, con-
sequently, self-heating) by diminishing the span film
thickness d’. Indeed, for fixed V and planar sizes,
self-heating decreases proportionally to d’. As a re-
sult, even at temperatures far from the critical tem-
perature, multivaluedness in the I-V curves can be
avoided.

In Sec. III we have already pomted out that normal
metals can function as weak links just as well as super-
conducting metals if they have similar values of v,. On
the other hand, we have a wider choice of normal metals
(Au, Ag, Cu, Al, and others) having high values of
vp (~10% cm/s) than the choice of such superconductors
(Sn, In). For both these classes of metals, ¢ at temper-
atures far from the critical one is ~0.1 — 0.2 pm for the
real mean free paths (£~d’~107° cm), so that bridges
with an L measuring a few tenths of a micron exhibit the
“ideal” Josephson effect. Besides, the normal metals
listed above have sufficiently high melting points so as
to safeguard against accidental burnouts. These argu-
ments (Likharev, 1976) stimulated others (Komarovskikh
et al., 1975) to fabricate S — N — S-type bridges with
niobium banks and a gold span. The resistance of such
bridges was relatively high (~0.4 for a width of ~10
uwm) and self-heating was low even at temperatures far
below T, where V. was quite high (~400 yV).

Some other groups, as well, have recently reported
success in preparing “genuine” variable-thickness
bridges. Octavio et al. (1977a,b) succeeded in fabri-
cating tin microbridges in which self-heating noticeably
suppressed the Josephson effect only at voltages as
large as ~3 mV. Boone et al. (1977) and Wang et al.
(1977) have prepared microbridges with a tin and nio-
bium span, while Yeh and Buhrman (1977) used lead.
Sandell et al. (1977) used electron lithography to make
indium variable-thickness bridges.

Some other structures closely resemble variable-

27In these experiments the bridges were of large dimensions
(L , W>> £) and their resistive state was associated with Abrico~
sov vortex motion.
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thickness bridges in their properties. For instance, the
properties of proximity bridges after the above-men-
tioned modifications (Mercereau, 1974), which some-
what weaken the nonlinear effects at the banks, become
more similar to those of the ODSEE model. The

S — N — S-type structures studied by Romanagan et al.
(1975) and Gilabert et al. (1975) are also similar to
variable-thickness bridges. However, owing to their
large L, the Josephson effect was observed in them only
at temperatures very close to 7., so that the V.’s of
these bridges were rather low.

S — N - S-type microbridges with Bi spans are de-
scribed by Ohta et al. (1974). As a result of the low
conductivity of bismuth and its moderate £, the ODSEE
model should be valid for such structures, despite the
relatively thick bridge span. Their merit from the point
of view of device application is their high resistance R,.

Furthermore, in bridges prepared by the “double
scratch” method (see Sec. IV.C), if the first scratch (on
the substrate) is quite shallow, the span thickness too
becomes less than the bank thickness. Thus the pro-
perties of such bridges are close (though not identical)
to those calculated in the ODSEE model. In particular,
measurements have shown that for these bridges the I ()
relation is quite often single-valued (Jackel et al., 1976a).

Finally, inanefforttoreducethe cross section of struc-
tureswitha semiconductor interlayer, Schyfter et al.
(19'77) and also Kandyba et al. (19'78) fabricated “coplanar”
structures, whichare, inreality, S— N—Sbridgesin
which a doped surface layer of the semiconductor substrate
serves asthe span. These structures have one serious
drawback inthat one of the planar dimensions (L) has to be
kept rather small (~0.1 wm), because the coherence
length of the doped semiconductor is several timesless
thanthat of normal metalslisted above. Their indisputable
merit is relatively high normal resistance.

Naturally, variable-thickness bridges and similar
structures are quite convenient in physical research in-
to the processes occurring in weak links, especially the
little studied nonstationary. (ac) processes (see below).
Such investigations have already been started; for in-
stance, the basic principles of the theory of dc pro-
cesses in weak links have been experimentally verified
(Gubankov et al. 1976), and the first results with re-
gard to ac processes have been published (Gubankov
et al., 1977; Octavio et al., 1977b).

As regards applications, it is generally felt that vari-
able-thickness bridges, given a proper choice of ma-
terials for the span and the banks, may meet almost all
the practical requirements. Therefore, with advances
in production technology (variable-thickness bridges are
more complicated to produce than any other type of
bridges) these weak links could certainly be incorpora-
ted into many of the Josephson effect devices. A serious
competitor to them is, in all probability, the class of
small-area sandwiches with an interlayer made of doped
semiconductor or any other normal material of relative-
ly high normal resistance.

E. Controllable weak links

Once fabricated, the weak links considered in the pre-
vious pages should last indefinitely. Other types of
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weak links have been fabricated (or only conceived)
which may exist only under continuous external influence.

Volkov (1971) theoretically examined a weak link be-
tween two sections of superconducting film separated by
a region whose superconductivity is suppressed by in-
cident electromagnetic waves, say, light. It was be-
lieved that suppreséion is effected by the nonzero mean
square of the electrodynamic field.

After it was found (Testardi, 1971) that light pulses
have a strong effect on superconductivity, it became
evident that this effect takes place primarily due to
photon breaking of the Cooper pairs, and the consequent
establishment of nonequilibrium (higher) concentration
of normal electrons and phonons [see reviews by Lang-
enberg (1975) and by Chang and Scalapino (1977)].
Therefore another approach for weak links created by
local irradiation of light was proposed (Wong et «l.,
1976, 1977). The authors believe that these structures
are a particular kind of controllable weak link (CLINK)
in which |A| is suppressed owing to the increased con-
centration of quasiparticles: normal electrons and
phonons. In the same paper other methods of fabri-
cating CLINKs were examined, in particular, by injec-
tion of quasiparticles through an additional tunnel junc-
tion. The first experiments (see also Gilabert et al.,
1977) have shown that the processes in the system are
far more complicated than what follows from an analy-
sis based on simple phenomenological equations for the
quasiparticle distribution proposed by Rothwarf and
Taylor (1967).

Dolan and Lukens (1977) reported production of weak
links by the action of a magnetic field on a short section
of thin film strip. Outside parts were shielded from the
field action with the help of another superconducting film.

Bevza et al. (1976) produced a weak link in a narrow
strip, using suppression of |A| by a current flowing in
a transversal strip. The whole structure was in the
form of a cross. Suppression was probably effected by
quasiparticles generated in the “control” strip, which
is the first to attain its normal state.

It must be admitted that the structures created by
means of external actions can be of use in studying the
physics of these actions, say, of excitation and relaxa-
tion of the quasiparticles (see Secs. V, VI). Nonethe-
less, according to our classification, all these struc-
tures fall into the class of one-dimensional ones, i.e.,
do not have any noticeable current concentration at the
weak link. Therefore, the banks are extensively invol-
ved in nonlinear processes, which gives rise to diffi-
culties in their theoretical description.

V. JOSEPHSON OSCILLATIONS AND /-V CURVE

The ac processes in weak links are not as well under-
stood as the dc processes, mainly due to the lack of
appropriate microscopic theories. Thus we are com-
pelled to describe these processes on the basis of equa-
tions derived strictly for some particular cases, or on
a phenomenological basis. We shall begin our discus-
sion with those processes that take place in the following
simple experiment: a weak link is connected in series
to a circuit with dc current 7=T.

So long as the current through the weak link is less
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than the critical one, it is transported by the supercon-
ducting condensate (Ig), the phase ¢ is constant in time,
and the voltage between the electrodes is zero. If the
current exceeds the critical one, it cannot be transpor-
ted by only the condensate; consequently, at least a
part should be transported by normal electrons. But
this “normal” current gives rise to a nonzero potential
difference vV with V#0. Hence the phase difference ¢
begins to change with the frequency w, [Eq. (6)].

In such an ac process, in the majority of weak links,
the supercurrent /5 is a periodic function of the phase;
thus the supercurrent oscillations occur in the element
with this Josephson frequency, and probably with its
harmonics, too. The manner in which this process
(Josephson oscillations) occurs, and the consequent
appearance of the current-voltage curves (I - V curves),
depends not only on the physics of conduction through
the weak link, but also on the capacitance of the struc-
ture.

A. Influence of intrinsic capacitance

1. Impedance relationship

Josephson oscillations in real experiments have ex-
tremely high frequencies. Indeed, the typical voltage
across a weak link is given by a factor vV, =I,R, which,
as we have seen in Sec. III, may be of the order of
kgT/e. In ordinary cases where T is of the order of
several kelvin, we have (V()max~107% V and the fre-
quency w, determined from Eq. (6) is about 102 s~!. Of
course, V and w, may be far less; nevertheless, the
arguments given below are equally applicable even to
wy~10% - 10° s™1,

At such high frequencies, the external electrodynami-
cal system has a very large impedance Z, as compared
to that of the weak link. Indeed, |Z,| is usually on the
order of the wave resistance of free space 47/c~ 3779Q.
This is significantly greater than the intrinsic impe-
dance of the weak link |Z| s R,. Therefore the electric
charge carried by the oscillating supercurrent cannot
pass through an external circuit, and consequently at
each moment the supercurrent should be compensated
either by the normal current /, or by the displacement
current /,=C dV/dt, where C is the capacitance between
the electrodes. )

The relation |Z,| > |Z|, which holds true for the vast
majority of weak links not switched into special low-
ohmic electrodynamic structures, precisely explains
why an experiment with a constant current rather than
constant voltage across the weak link is the simplest.

If we attempt to set a constant voltage with the help of a
source having low dc internal resistance (R, << |Z|), the
impedance relationship at the Josephson frequencies
will, nevertheless, be the other way round, and it is
again the current, but not the voltage, that will be con-
stant in time. The dc resistance R, only determines the
slope of the “load line” ¥ =E —R,T in the [T, V] plane,
but not the shape of the I -V curves.

2. Capacitance, Josephson oscillations and /-V curve

We now consider the conditions under which not only
the current, but also the voltage V across the weak link
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may be constant in time. The effective impedance of
the normal current I, is on the order of normal resis-
tance R,, while the impedance due to the displacement
current is (iwC)~!. Therefore, if the condition

wCR, >1 (134)

is satisfied at the frequency of the ac process, the ac
component of the voltage is totally shunted by the capac-
itance of the structure, hence V(¢)~ V. In other words,
under the condition (134) the oscillating supercurrent is
fﬁlly compensated by the displacement current. There-
fore the normal current I, and the voltage are constants.
Substituting the characteristic frequency of the Joseph-
son oscillations [Eq. (18)] into Eq. (134), we obtain the
condition 8> 1 [Eq. (17)] (Stewart, 1968; McCumber,
1968). If it is satisfied, then for any.voltage across the
contacts, the voltage may be regarded constant in time,
and phase ¢ varies according to the simple linear rela-
tionship

@ =wyt+const, w,=(2e/7)V. (135)

In contrast, if the capacitance of the structure is
small (8« 1), then a significant ac voltage at the
Josephson oscillation frequency and its harmonics is
present across the junction. In this case the displace-
ment current may be neglected in the analysis.

The influence of weak link capacitance on the ac
electrodynamics is reflected in the shape of weak link
I1-V curves. The effect of capacitance is illustrated in
the following example. Let the relation I =1, sing be
true for a transient process. If the capacitance is
large, the phase will change by the linear rule (135),
and therefore there will be no constant component in
the supercurrent

Ts =I,sin(w,¢+const) =0, (136)

i.e., the supercurrent will not contribute to 7 when V
#0, If, however, <1, the phase will change at I = I,
in a sharply nonlinear manner, the greater part of the
period being close to 7/2+27n. Therefore the contribu-
tion of supercurrent in thel — V curve is highly signifi-
cant

Ty~ 1, sin(m/2)=1, . (137)

3. Capacitance of weakly linked superconductors

While for the tunnel junctions the capacitance is usual-
1y quite high (83> 1), for the majority of weak links it
is negligibly small '

B<1. (138)

The displacement current in metals is comparable
with the conduction current only at very high frequen-
cies, namely, of the order of the plasma frequency
w, or the inverse scattering time v/, both being
~10 ~ 10 s~ (see, for example, Ziman, 1972). There-
fore in structures where the entire space between
superconducting electrodes is completely filled with
metal (say, in S—N—S or S-S’ — S-type sandwiches),
the value of g is ~wy/w, < 1. ’

In strong current concentration structures, Ry is
proportional to the area of the weak link alone, while C
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is proportional to a much greater area of the elec-
trodes; therefore g8 becomes somewhatgreater. In most
cases, however, g remains much less than unity, the
exception being the blob-type junctions [Fig. 1(h)] and
some specially fabricated point contacts [Fig. 1(g)], for
which the ratio of the electrode area to the area of
conducting regions is as large as 10*-105,

Thus, for the majority of weak links, the displacement
current is negligibly small. This is the reason for the
great practical interest in weak links, since capacitance
has a parasitic action on the useful characteristics of
Josephson junctions. But, on the other hand, this
creates some difficulties in studying the processes in
weak links, since even in simple experiments the
voltage cannot be assumed to be constant in time, and
the phase varies according to a more complicated rela-
tion than the linear dependence of Eq. (135).

B. General pattern of /-V curve

Although some details of the experimentally observed
I -V curves are as yet obscure, still their general pat-
tern is more or less clear. We shall illustrate this
with special reference to a case in which weak links
may be described by tunnel theory [Eqs. (7) and (8)].

1. /-V curves in tunnel theory

In order to determine the /-V curve of a structure
with negligibly small capacitance within the framework
of the tunnel theory, we have to find the frequency w,
and coefficients A, for which the current I [Eq. (8)] is
constant and equal to a given value. Here in Egs. (7)
and (8) we may take w =wy because the voltage and phase
oscillate oniy with the Josephson frequency and its har-
monics.

Such a procedure has been carried out by McDonald
et al. (1976) for the case T =0, and by Zorin and Lik-
harev (1977) for an arbitrary temperature. Their cal-
culated results are shown in Fig. 14 by solid lines. For
the sake of comparison, the dashed lines in the same
figure show the ImI,(2eV/%) curves, which according to
Eq. (15) represent the I-V curve of a tunnel junction
with high capacitance. We shall discuss the origin of
the I-V curves of weak links (8« 1, solid lines).

In the low-voltage range ( V<« V) the mean current
almost equals the critical level, due, as already men-
tioned, to the specific nature of the phase motion in this
region. During the greater part of the Josephson oscil-
lation period, the phase is close to 7/2. Therefore the
mean supercurrent is close to I;(137). Once in each
period the phase jumps by 27, during which a voltage
pulse of area ¢,/c [Eq. (118)] is generated at the weak
link. This quick process, during which the current is
transported primarily by normal electrons, lasts for a
time of the order of

T; =(we)~t =/ 2eV, (139)
and therefore the amplitude of the voltage pulse is
Vmax iod ¢0/CT]‘ = I/C‘ . (140)

As a consequence of these pulses, the weak link voltage
spectrum is quite rich and contains about V;/V>> 1 har-
monics of the Josephson frequency.
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FIG. 14. I-V curves of Josephson junctions within the frame-
work of tunnel theory for negligibly small capacitance (8 <<1,
solid lines) and large capacitance (B >>1, dashed lines) at vari-
ous temperatures. I—-V curves of weak links (8 <<1) show
singularities at voltages V =24/(2n +1)e. Arrows show the
approximate hysteresis occurring at the I-V curve for 7/7
=0.8 when Riedel singularity is slightly smoothed.

In the high-voltage range, in contrast, the current is
mainly transported by normal electrons, i.e., by the
phase-independent component ImI,. Hence the voltage
is almost constant in time

V~IR,. (141)

‘The phase changes almost by the linear relationship
(135), supercurrent oscillates according to the same
rule (15), and therefore its contribution to 7 is small.
Thus, as I =, the I-V curve tends to the line (141)
corresponding to normal resistance. This behavior,
common to any type of weak link, may be regarded as
‘“destruction of the superconductivity ” only in a very
narrow sense of the term. For example, in the tunnel
theory, the supercurrent does have quite a finite amp-
litude despite the fact that g =0, and can have a notice-
able influence on other effects, for instance, the emis-
sion of microwave radiation at frequency w,. There-
fore those parts of the I-V curve where V# 0 are pre-
ferably called “resistive” rather than “normal’’

In the intermediate-voltage range (V~ V.) the current
transport mechanism gradually changes from that of a
supercurrent to that of a normal current. Figure 14
shows that in the case of the tunnel theory, certain peaks
at voltages

V,=2A(T)/(2n +1)e, (142)

the so-called “odd subharmonics of the gap,” are super-
imposed on this gradual transition. They appear as a
result of the fact that for each such voltage, the argu-
ment of one of the terms in Eq. (8) is of the value 4A(T) /7,
at which the real parts of this component have a singul-
arity (Fig. 2). Physically, this means that electron tun-
neling with absorption of the quantum of the nth oscilla-
tion harmonic is possible at the voltage of Eq. (142).

2. Current relaxation time

Using the tunnel theory as an illustration, we have de-
monstrated that the current is periodically redistributed
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between the normal and the superfluid components in the
process of Josephson oscillations in weak links. In this
theory redistribution occurs in a time of the order of

T; [Eq. (139)], which, according to the expression for

Vs [Eqs. (10)—(14)], is ~%/A when T— 0, and ~ 7k, T/A?
when T'—= T,. This is why we may regard the constant
we =771 as the characteristic frequency of the Joseph-
son junction.

As follows from the microscopic theory of supercon-
ductivity (Mattis and Bardeen, 1958), 7; is the charac-
teristic time of linear processes in any superconducting
specimen. It is reasonable to call 7; the current relaxa-
tion time because it describes the result of the following
simple experiment. Suppose that, starting from the mo-
ment £ =0, a constant current is made to flow in a long
(L > &), thin (S« A?%) superconductor. At the initial mo-
ment this current will be transported by normal elec-
trons. Then in a time 7; the superconducting condensate
will be accelerated to an equilibrium velocity at which
the whole current will be carried solely by the conden-
sate and, consequently, the electrical field will vanish.

From Egs. (7) and (8) it follows that 7, is the only
characteristic time in tunnel theory. Hence even in such
a nonlinear effect as the Josephson effect, it is possible
to have only one relaxation process, namely, relaxation
of the current. Therefore, order parameter relaxation
times or nonequilibrium excitation relaxation times,
which have a significant bearing on the dynamics of
other nonstationary effects in superconductors, do not
appear in tunnel theory. This is because the electrodes
are constantly in a state of equilibrium.

As a result, the Josephson effect in tunnel junctions
is at present the only one of the nonlinear effects in
superconductors for which a complete microscopic theory
of nonstationary processes exists. Unfortunately, this
theory is not adequate to describe weak links of finite
dimensions (Lpp/Z = 1),

3. Resistively shunted junction (RSJ) model

When the temperature is close to the critical tempera-
ture, the characteristic voltage [Eq. (14)] in the tunnel
theory becomes much less than the gap voltage 2A/e.

Thus, in the low-voltage range
V<2a/e, (143)

the equations of the tunnel theory can be highly simpli-
fied. Indeed, as is obvious from Fig. 2, in this range
we may take
Rel,~I;, ImI,~ V/Ry, |Rel|, |ImI,| «I¢ (144)
and, retaining only two main terms in Eq. (8), we get
I=I,sing +V/Ry, do/dt=(2e/R)V. (145)

This equation is known as the Resistively Shunted Junc-
tion (RSJ) model.

In this model the time dependence of the phase satis-
fies a simple first-order differential equation.

wgt do/dt +sing =1(¢)/I; . (146)

Consequently it is relatively easy to analyze qualitatively
many processes in the Josephson junction and in cir-
cuits with these junctions. Such an analysis canbefound,
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for example, in the review of Vystavkin et al. (1974),
and in the monograph of Likharev and Ulrich (1977).

For the simple process of Josephson oscillations (I=T
=const) we easily obtain the following expressions (As-
lamazov et al., 1968; McCumber, 1968; Stewart, 1968;
Aslamazov and Larkin, 1969)

V=V[(T/1c)2=1]"220, atT =1, (147)
(V/Ve)?

Vi) = Ve (I/1;) - coswyt *

(148)
Equation (147) shows that the I-V curve in the RSJ model
has hyperbolic resistive branches, while Eq. (148) gives
a quantitative description of those features of the Joseph-
son oscillations which we discussed qualitatively in the
previous pages.

The RSJ model is really significant, in that it gives a
correct description of not only a very restricted class
of weak links, which obey the tunnel theory, but also of
almost any weak link at temperatures close enough to
the critical one.

4. RSJ model in weak links

In the same paper in which they advance a theory to
explain the de Josephson effect in small weak links,
Aslamazov and Larkin (1969) suggest that the ac pro-
cesses occurring in weak links might be described by
the RSJ model [Eq. (145)]. The logic of their argument

~ runs approximately as follows:

The equation for the order parameter (21a) in anonsta-
tionary case should contain some terms which depend

. on the time evolution of the order parameter. But if the

weak link length tends to zero for a constant speed (~ wg)
of A change, the magnitude of time-dependent terms
should remain the same, while the gradient term grows
as L~2, Therefore, when L— 0, the time-dependent
terms may be neglected, and thus the Laplace equation
(31), which leads to the solution (34), may be used as
before.

In the equation for the current (21b), we have to take
the normal current j, into account when V+0. An analy-
sis of the linear nonstationary processes in superconduc-
tors (Mattis and Bardeen, 1958) shows that, for moder-
ate frequencies (7#w << 2A), we can use the same expres-
sion for the supercurrent as in the stationary case, but
with the addition of the normal current

in) =Y 0E,e'“, when E(t)=) E,e'“*. (149)
w w
I T— T, for all frequencies ¢(w) tends to oy, the con-
ductivity of a material in its normal state. Hence we

have
iy=oyE, when T—T,. (150)

It is therefore natural to assume that for such nonlin-

ear processes as the Josephson effect, we may also use

Eq. (150), adding the current j, to the supercurrent jg
[Eq. (21b)]. Thus, after repeating all the calculations
of the AL theory, we arrive at Eq. (145), i.e., at the
RSJ model. Nonetheless, it may be noted that the exact
conditions for the applicability of this model are far
from being clear.
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5. Main deviations from the RSJ model

Experiments with a variety of weak links of sufficiently
small dimensions (L, W s £) have shown that near the
critical temperature the I-V curves are indeed close to
the pattern predicted by the RSJmodel, provided account
is taken of the influence of intrinsic and external fluc-
tuations which are significant when 7'— 7. This influ-~
ence is large if the critical current of a weak link is
less than or comparable to the characteristic amplitudes
of external (usually relatively low-frequency) interfer-
ences I, and of the intrinsic thermal noise of the junc-
tion I, (see, for example, Likharev and Ulrich, 1977).
I, depends on temperature only

L, =2ekyT/H, I,[pAl=0.0427(K], (151)

while I, depends on the experimental setup, and may be
as high as 10-30 pA. By appropriate filtering, it can,
however, be kept below I,.

Fluctuations smooth out the I-V curves as shown in
Fig. 15. Therefore, as I(T) increases, at first an
“embryo” with a characteristic size [, = max [Ifh ,If,] is
formed on the I-V straight line of a normal junction, its
amplitude increasing as IZ. With a further increase in
the current (Ic = I;), the I-V curve becomes nearly hy-
perbolic [Eq. (147)], with only the angles of transition
from the superconducting region to the resistive bran-
ches being smoothed out. In well designed setups, where
I;; < Iy, the influence of fluctuations is hardly noticeable
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FIG. 15. Smoothing of I-V curve (a) by the intrinsic thermal
noise and (b) by low-frequency external interferences. I—-V
curves are taken according the RSJ model, intrinsic noise is
considered as white (6-correlated), and external fluctuations
are expected to have normal (Gauss) distribution (after
Stratonovich, 1967 ; Ambegaokar and Halperin, 1969; Kanter
and Vernon, 1970).
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FIG. 16. I—-V curve of a short weak link according to the RSJ
model (1) and experimental I -V curves showing (2, 3) the ex-
cess current effect; (2, 3) “bump” and (3) hysteresis at lower
temperatures (3) (schematically).

at critical currents of more than tens of uA.

Nevertheless, the I-V curves of small weak links?®
are more or less close to the hyperbolic form only in a
narrow region near 7, (Fig. 16). At lower temperatures,
at least three peculiarities not consistent with the RSJ
model appear on the I-V curves (see, for example,
Clarke and Lindelof, 1976; Gubankov et al., 1977; Klap-
wijk et al., 1977Tb):

(i) As the current increases, the voltage tends to a
straight line

V=Ry(T -1,)=IRy -V, ,

(152)

which is shifted up the I axis by an “excess current” I
relative to the normal I-V curve, or in other words, by
an amount V, . down the V axis. The excess current is
usually of the order of I, (Pankove, 1966).

(ii) As soon as the current ] exceeds I, the voltage

grows relatively slowly in the first stages with a slope

R, =dV /dI «R,, (158)

and thereafter, when the current attains a specific value
IZ the voltage begins to increase rapidly, so that the dif-
ferential resistance R, sharply increases and then pro-
ceeds almost as in the RSJ model. This behavior is
usually referred to as a “bump” on the I-V curve.

(iii) When the temperature falls to a certain value, the
differential resistance at points above the bump becomes
infinite, and a further reduction in T gives rise to a
negative slope region on the /-V curves. If the internal
resistance of the current source is high (R,> R,,), it re-
sults in the hysteresis observed on the V(I) dependence
(Fig. 16).

At present, at least one theoretical explanation has
been found for each of these phenomena within the frame-
work of the models, which are allgeneralizations of the
RSJ model. Let us start discussion of the models.?®

*8Here and in the succeeding pages we shall discuss only the
best investigated case of dirty weak links (I <<L), of which all
the bridges are a particular case. In relatively pure struc-
tures, in addition to the peculiarities listed below, some small
singularities are observed on I-V curves at voltages V, =24/
ne; see, for example, Puma and Deaver, 1971; Gregers-Han-
sen et al., 1973. They were also discussed by Werthamer
(1966), and by Hasselberg et al. (1974).

BThe I-V curves of wide weak links (W=A.y) have peculiar-
ities of their own; see Sec. VII.
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C. Description by time-dependent Ginzburg-Landau
(TDGL.) equations

1. TDGL approximation

The main difficulty in the microscopic theory of non-
linear nonstationary effects in superconductors (Gor’kov
and Eliashberg, 1968) lies in the fact that the gap in the
electron energy spectrum changes with the variations
in |A|, together with the position of square-root sing-
ularity in the density of the electron states (Bardeen
et al., 1957). But in some cases this singularity does
not exist, although the order parameter is finite in mag-
nitude. This happens, for instance, in strong magnetic
fields or in superconductors with a high concentration
of paramagnetic impurities (see, for example, De Gen-
nes, 1966).

Gor’kov and Eliashberg (1968b) have shown that the
microscopic theory for this case allows for a simple
way of generalizing GL equations [Egs. (21)] in a non-
stationary case.®*® These Time-Dependent Ginzburg-Lan-
dau (TDGL) equations differ from the stationary equa-
tions (21) in that their right-hand sides contain new

terms
2 .2e
<at +ig u)A s (154a)
18A
0N<—Vp.-cat>. (154b)

Here 1 and A are the scalar and vector potentials of
the electromagnetic field; hence Eq. (154b) gives the
normal current oy, E.

Let a uniform specimen (V =0), free of current (1 =A
=0), existin a state with A =0 at T< T,. From Eq. (21a),
after adding (154a), itfollows that the initial stage of
the A variation will be described by the equation

Ta (BAk/Bt) =A. (155)

Hence it is obvious that the constant 7, has the meaning
of a characteristic time of the order parameter modulus
relaxation. For the case examined by Gor’kov and Eli-
ashberg (1968b) the time constants 7, and 7; are related
by the equation

77 =12.

However, the TDGL equations have repeatedly been
examined for their feasibility for the usual (“gap”) su-
perconductors (Maki, 1963; Schmid, 1966; Abrahams
and Tsuneto, 1966). In such a phenomenological general-
ization of GL equations, the ratio between 7, and 7; re-
mains close to Eq. (156). Indeed, substituting the ex-
pression for £ in the dirty limit into (21a), and rewriting
it in the form of a stationary diffusion equation (for the
sake of simplicity, we shall take A =0)

- 2
8ka(Z‘;:Z T) [il_li.; ]A=0.

o

(156)

DV3A + (157)

If we assume that Eq. (157) can be generalized as an or-
dinary diffusion equation by the mere addition of aA /at,

%Recently the validity of this generalization has been demon-
strated experimentally (Amato and McLean, 1976).
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then we obtain the first TDGL equation with

T, = /8y (T = T) . (158)

Now using Eqs. (14) and (18) for wc =73 at T= T, we
find

Ty =(7%/14£(3))71;= 5.79 7, (159)

which differs from Eq. (156) only by a factor of about 2.
Of course, extreme caution should be taken in using this
value, as the TDGL generalization is not justified in the
case of gap superconductors.®!

2. Boundary effects and TDGL equations

The TDGL equations not only provide a simple means
of describing the relaxation of |A| in time, but also give
a simple description of a radically different, but equally
fundamental process, that is, of the flow of current nor-
mal to the interface between normal and superconduc-
ting phases (Reiger et al., 1971; Yu and Mercereau,
1972; Volkov, 1974). Similar effects occur during the
motion of Abricosov vortices (Kupriyanov and Likharev,
1972).

We shall rewrite these equations for a one-dimensional
geometry A =A(x), again considering the case of small
cross sections and low fields, where we may take A =0,

8A 2e A
TA<—8;— +1,7 )A =£? A(i 1- AZ ) ’ (160a)
i=G Im(A —A) ~ oyl (160b)

After expressing A in the form |A| exp(ix), and separa-
ting the real and imaginary parts in (160a), we find that
the latter give only the natural equality 8j/ax =0. After
differentiating (160b) with respect to x, we obtain a sys-
tem of equations equivalent to (160)

2 9%1A|

lal? ax\®
Py w+ ,:1:1— Az~ <g ax) :IIAI, (161a)
7oax 9
(e 5 vu)dlabyad =g Tk

The first equation describes relaxation of |A| to the sta-
tionary value |A|(x) in time, while the second gives the
time and space variations of u, i.e., of the electrical
field. ’

Let, for instance, the distribution A (x) be established
at the interface between a normal and a superconducting
phase in the absence of current. The order parameter
changes, according to Eq. (161a), at a distance ~ £ from
0 in the N phase to A, in the S phase (Fig. 17). Now if a
weak current is induced to flow through the S-N inter-
face[see the experiments of Pippardet? al. (1971), Yuand
Mercereau (1972,1975), Hardinget al. (1974)], £0x/ox in
(161a) willbe small, the distribution A (x) will not change,
and Eq. (161b) will have a solution

p=upl).

This shows that the superconducting condensate has

BIAI
Y

(161b)

ax/9t =— (2e /), = const,

HThe TDGL type of equation may possibly hold true in S=N-S
structures, as there is no gap in the excitation spectrum of a
material with A=0.
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FIG. 17. Modulus |A| of order parameter, electric field po-
tential p, normal current and supercurrent vs distance from
normal—superconductor interface (schematically).

the same potential u,, related to the order parameter
phase by the Josephson equation (4), over the entire
region with A # 0 (even in those places where the elec-
trical field E = — V. exists). Asregards u, itdefines the
potential of normal electrons, and its evolution in space
is given by Eq. (161b)
2
I (- ) 07/8Y, L=t /) (162)

This equation describes the change of y from a con-
stant value (1 =p,) inside the region S to a linear in-
crease (5./9x =—j/oy) inside the region N (Fig. 17).
This change, and consequently the conversion of super-
current into a normal current, takes place over a length
Eue

uThus the TDGL equations contain two characteristic
length constants (¢ and &,) which describe the scale of
space variations in the modulus of the order parameter
A and normal electrical current j,, respectively. When
Egs. (156) or (159) are valid, £, is somewhat less than &.

3. Applications of TDGL equations

It is relatively easy to analyze the nonlinear ac pro-
cesses occurring in superconductors with the help of
TDGL equations. They have, therefore, been applied to
many specific processes, suchas the penetration of a
strong microwave field into a bulk superconductor (Gor’-
kov and Eliashberg, 1968c), the action of a microwave
field on thin films of infinite (Kulik, 1969a) and of finite
(Likharev, 1971c) dimensions, the motion of Abricosov
vortices under the action of dc current (Schmid, 1966;
Gor’kov and Kopnin, 1971; Kupriyanov and Likharev,
1972; Danilov et al., 1974) and microwave fields (Kup-
riyanov and Likharev, 1975), fluctuations at 7> T,
(Schmid, 1969) and T'< T, (Kulik, 1970), and processes in
superconducting thinfilaments when I'> I, (Fink, 1973;
Fink and Poulsen, 1974, 1975; Likharev, 1974; Kramer
and Baratoff, 1977). These equations have also been used
in analyzing the processes inweak links (Reiger et al.,
1972; Volkov, 1974; Likharev and Yakobson, 1974,
1975b, ¢; Volkov and Kasatkin, 1974; Jensen and Lin-
delof, 1976; Kramer and Baratoff, 1977).
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Setting aside the last group of papers for the time
being, we find that a comparison of the results derived
from the TDGL equations with the experimental data on
gap superconductors shows (Kupriyanov and Likharev,
1976) that this approximation does not hold true for all
the above processes. This is quite evident, especially,
in the experiments on the measurement of the uniform
relaxation time of the order parameter. Thus, for thin
film strips of tin (Peters and Meissner, 1973; Andrat-
skii ef al., 1976), it was found that 7, is ~107%° s for
T=0.9 T, and the temperature dependence of 7, is close
to (Tz — T)*/2. This is not consistent with Eqs. (156) and
(159), which give 7,~ 107" =10"*3g and 7, o (T — T)"1L.

A noticeable discrepancy is also observed for the pro-
cesses in long filaments when I'> I, for which the ex-
periments (Scopol ef al., 1974b; Meyer and Tidecks,
1976; Klapwijk et al., 1977) give somewhatgreater length
for the penetration of normal current into superconduc-
tors than the length derived from Eq. (162). Essentially,
a value of 7, cannot be chosen so as to obtain agreement
with the two groups of experiments, because in the first
group 7, has to be greater than 7;, whereas in the second
group it is vice versa. (The discrepancy canbe explained
only by taking into account the nonequilibrium distribu-
tions of quasiparticles—see Sec. V.D.)

In a large group of experiments (mainly on the motion
of Abricosov vortices) however, the TDGL equations
give results in satisfactory agreement with experiment,
provided TA/’]}-"' 10. In these experiments A changes at
distances ~ £(T), i.e., approximately as in weak links of
length L~ ¢, This gives grounds for believing that the
TDGL equations may, at least qualitatively, give a cor-
rect description of some of the effects in weak links if
we take 7,~107;.

4. Processes in weak links

Several essential errors were committed in the paper
(Reiger et al., 1972) in which the TDGL approximation
was first applied to an analysis of ac processes in weak
links.*? They were subsequently detected and eliminated
by Likharev and Yakobson (1975b, c).

For weak links of sufficiently small length [L < £(T)],
according to the results derived in Sec. III, we may ne-
glect the term A& 1 —[A[2/A2) in Eq. (160a) as compared
to the gradient term ~ (¢/L)?A and to the relaxation term
~ (10A/8t). The characteristic value of 8/8¢ is ~ 73!,
where 7; is a parameter of the electrode material, or

~7;*A%, if we mean 7; of the weak link material. From

%The fundamental error is that 7, has been taken as zero in
all numerical calculations. It can easily be shown that in this
case the system (160) is reduced to a phase equation similar
to that given by the RSJ model.

I=Ig(p)+V/Ry,

where I 5(¢) is the de current-phase relation. It follows, in
particular, from this equation that an excess current only exists
in weak links for which Ig(¢) is multivalent, which is in obvi-
ous contradiction to experiment. The validity of this model for
not very large currents inferred by Jackel et al. (1976a) is,

in all probability, a consequence of the rather limited amount

of experimental data used in the analysis.
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Eq. (160a) it then follows that the TDGL equations for
short links have a dimensionless parameter

T (LN

Y_Tj (5) A%
which characterizes the influence of the finite relaxation
time of the order parameter. According to the estimate
of TA/T, made above, y can be taken as small for short
structures, i.e., y— 0 if L/t~ 0. In this case the sys-
tem of equations (160) under the boundary conditions of
the ODSEE model [Eq. (64)] makes possible a complete
analytical solution.

First, let us consider a region near the critical cur-
rent: T=zI,. Since y— 0, the relaxation terms make
only a small correction to the AL theory. According to
these equations, A is given by Eq. (71), and u is the
same as in the normal state

(163)

}J.=/J.1—%p.2, V=i, = Hs- (164)
After substituting the solution into the left-hand side of
(160a), we obtain the correction A to this solution. Now
by substituting the total solution (A, +A) in (160b), and
then integrating it with respect to length (0sx< L), we
obtain an expression for the current

: |4 Y .
I=Icsing + o~ [1 +15 (e1—cos<p)], if y/15« 1, (165)

‘N

where I, has the same value as in the dc effect.

Now consider the region f» I, in which the normal
current is much greater than the supercurrent, allow-
ing us to use Eq. (164) as a first approximation for .

In this case the solution of the TDGL equation for A may
be written as

Alx,t)=A [\I'<;C_o> exp(y,) +lI,(Lx-—x

) exp(ixz)J , (166)

where the function ¥ describes the decay of the electrode
wave function inside the weak link and satisfies the equa-
tion

d*v(u)

I ¥(0) =1,

+ tu¥ (u) =0, W(L/x,) =0. (167)
Here x, is the characteristic length which depends on V,

i.e., on the position of the bias point on the I~V curve

_ I _[LAN?
s/L=nte, ey L =<§To> Wy s (168)

After finding the solution of Eq. (167) in terms of Airy
functions (see, for example, Abramowitz and Stegun,
1965), then substituting (166) in Eq. (160b), and integra-
ting with respect to x, we obtain an expression for the
current, which may be written as follows (Jensen and
Lindelof, 1976)

I=I,(n) sing +1,(7) cosg +(V ~A V) /Ry .

The dependences of I,,I,, and AV on 7, i.e., on the po-
sition of the bias point, are shown in Fig. 18.

We note here that Eqs. (165) and (169) agree in the in-
termediate range 1<« I/Io «<v~!; therefore together they
give a complete solution which is valid for any current
through the weak link. ‘

(169) -
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FIG. 18. (a) Frequency dependence of I, I,, and AV from
Eq. (169), and (b) |¥| distribution over the length of a weak
link at different currents in TDGL approximation. Quantities
1,  , give the amplitudes of Josephson supercurrent and fall as
nhexp(— b 7t) at 7n—, Deviation of V from the normal value
(AV) is close to V' (y/15) =V, (/15) when 7<5, and is almost
constant (AV =~ Vier) at 7220, describing the “excess current”
effect: Iex =AV/ Ry=~0.75I,. Function ¥ enters in to Eq. (166)
and ‘shows the decrease of the electrode wave function in the
weak link, At 9=0 y=1-x/L, and ¥ tends to the universal
function of x/x, (Fig. 19) when n—«=. After Likharev and
Yacobson, 1975b,c; Jensen and Lindelof, 1976.

5. Discussion

Equation (165) shows that the I-V curve of ashortweak
link is nearly hyperbolic (as predicted in the RSJ mo-
del). Its asymptote, however, differs from the normal
I-V curve by AV (Fig. 18). For small currents this
gives only a slight decrease in the effective resistance
of the weak link

By=Rer _y _ 1 7a (LAY
Ry 15 15 74 5A0>

For large current AV tends to the constant
=2eVe/Ry, €=0.375, V, [uV]=475(T; —T)K].
(17)

(170)

AV~ V,
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FIG. 19. Spacedependences of < A, I, and I near the weak
link—bank boundary at the large currents (¥, <<L ; n>>1) ac-
cording to the ODSEE~TDGL model. Normal current I is
equal to zero in the bank, so Iy and Ig have jumps at the boun-
dary. Variables A and u are continuous. After Likharev and
Yacobson, 1975b, c.

Consequently the I-V curve tends to the straight line
(152) with an excess current I =V, . /Ry= 0.751; which
does not depend on 7, and other parameters of the weak
link material (7¢, &), and on L as well.

The reason for the nonzero values of I, within the
framework of the TDGL equations is that with increasing
current, the distribution of |A| over the link length be-
gins to deviate from that derived in the AL theory [Eq.
(71)], where ¥ =1 —x/L (see Fig. 18b). When the length
%4, Which characterizes the level of current-caused sup-
pression of the order parameter, becomes less than L,
the function ¥ begins to decay from 1 at the banks to
zero just over this range. Thus the electrode wave func-
tions overlap range decreases and the Josephson effect,
characterized by the supercurrent amplitude 7,
=(I2+I%)'2, is suppressed.

For large currents (n>> 1), the wave functions decay
so rapidly that they are hardly overlapped at all. There-
fore the weak link is wholly in a normal state, except
that |A| is different from zero in regions of length x,
near the banks, where the superconductivity is supported
by the proximity effect between the weak link and the
banks (Fig. 19). In these regions, part of the current
is transported by the superfluid component, hence the
total voltage drop V across the weak link is less than
the normal one by V.. Thus the “excess current” ef-
fect® is a natural phenomenon in the TDGL model, and
it is described by Eq. (171), which does not depend on
Tp. The latter fact suggests that the result is not very
critical to changes in the model.

Other effects, such as bumps and hysteresis on the
I-V curves, do not appear for short weak links in this
model. The following procedure was adopted by Jensen
and Lindelof (1975) and Clark and Lindelof (1976): the
equation for the phase ¢(¢) derived from Eq. (169) was
solved for all currents. A bump resembling the experi-
mentally observed one appears on the I-V curves if
y>1,

It should, however, be borne in mind that Eq. (169) is
only valid when either y« 1, or y~1 andT>»>1I,. fy=1,

330ur analysis has shown that this should be called a ‘“voltage
deficiency” effect..
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FIG. 20. I-V curve of short (L < &) weak link, calculated
numerically from Egs. (160) for various v [Eq. (163)]. Dashed
lines show results of Jensen and Lindelof (1976) obtained from
Eq. (169), which is really applicable only if y <<1 and/or T >>I_.
Figure shows that TDGL equations in fact do not describe the
“pbumps” on I-V curves. Small hysteresis appears on J-V
curves at very large .

and 7 ~1,, the system of equations (160) has to be sol-
ved numerically (Likharev and Yakobson, 1975b, c; .
Kramer and Baratoff, 1977). Suchnumerical results are
shown in Fig. 20 by solid lines. It is obvious that there
is no bump on the I-V curves, and the only new situa-
tion is the appearance of slight hysteresis on the I-V
curve near the critical current. Such a “relaxation”
mechanism (Likharev, 1974b; Likharev and Yakobson,
1975b; Song, 1976) can hardly explain the experimen-
tally observed hysteresis, since a very large TA/13 has
to be introduced.

It is also easy to demonstrate that potential variations
inside the weak links (Yu and Mercereau, 1976) can be
explained within the framework of the TDGL equations.

D. Nonequilibrium quasiparticles
1. Nonequilibrium excitations

In the TDGL approximation no account is taken of pos-
sible deviations from the equilibrium concentration
and the energy distribution of the two most important
types of quasiparticle excitations in superconductors,
namely, normal electrons and phonons.3* These de-
viations, however, can be quite high in weak links, as
nonequilibrium electrons are intensively generated when
the order parameter suffers periodic variations. On
relaxing in energy, these electrons transfer this energy
in the form of phonons to the crystal lattice. Therefore
the concentration and distribution of quasiparticles may
differ markedly from their equilibrium values.

On the other hand, the quasiparticle distribution has
considerable influence on the order parameter. For ex-
ample, the suppression of A as T'— T is due to the in-

34The influence of photons is only significant at the external
irradiation, because the probability of photon generation in the
bulk of the superconductor itself is extremely low (Fife and
Gygax, 1972). ‘
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creasing number of quasiparticles with increasing temp-
erature. Therefore even a small deviation in this num-
ber from the equilibrium value will have a significant
influence on |A|, especially when T= Tg.

Today, we know how the excitation and relaxation of
nonequilibrium excitations occur in spatially uniform
specimens carrying no current: see, for example, com-
prehensive reviews by Langenberg (1975) and by Chang
and Scalapino (1977). The generation and relaxation of
quasiparticles under strong gradients of A have, how-
ever, as yet been little studied, because the condensate
and quasiparticles form here a rather complicated cou-
pled system. At present, therefore, we can only give a
qualitative description of these processes.

We shall begin with the important case in which the
deviations of the phonon subsystem from equilibrium
may be disregarded, and consequently only the distribu-
tion of normal electrons is out of equilibrium.

2. Nonequilibrium electrons

A general picture of the relaxation of a superconductor
to its stationary state from an initial nonequilibrium
state has been examined in several papers (Galaiko,
1971; Eliashberg, 1971; Larkin and Ovchinnikov, 1973;
Aronov and Gurevich, 1974; Kulik, 1976). Qualitatively,
it can be explained as follows: anorderedcondensate of
the Cooper pairs and a particular density of states of
normal electrons is formed in a time interval ﬁ/IAI
~10"'2g. As is known (Bardeen et al., 1957), this den-
sity is

. N(0)e/(€2 = |al®)*2, at e>|Al,
N(e) ={ (1172)

0, ate<|al,

where € is the energy measured from the Fermi level.
These states are populated by electrons with the equil-
ibrium density

n(e) =[exple/ky T) +1]* (173)

in a much larger time interval, which is of the order of
the energetic relaxation time in the normal state 7.. The
frequent (in times of ~ I /v~10"'* - 10™s) collisions of
electrons with impurities do not contribute to this re-
laxation, as they are elastic and do not change the en-
ergy of electrons. Therefore 7, is of the order of the
electron—phonon collisions time. The density of phonons
at temperatures far below the Debye temperature T,
~10%K is rather low (o< T3) '

Te ~_1_ Z’Z. 2 L
T kyT (T) R (174)
Calculations (Kaplan ef al., 1976) give 7, of the order of
10~° to 10~ °sfor a majority of superconductors, and
7.~ 107° sfor aluminum (7p=1.19 K) and zinc (7= 0.87K).
On the other hand, this equilibrium value of |A| itself
depends on the distribution of the normal electrons n(e)
by virtue of the self-consistency equation

~ ®8TD A |f (e)de
lalav@ 1 i

fle)=1-2n(e),
(175)

where A is an electron—phonon coupling parameter.
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Therefore the equilibrium values of f(e) and |al| are es-
tablished simultaneously in the time ~ 7, [near T, in a
time ~ 7. (ky Tc/A)], i.e., in~10"°sfor a typical case.

If for some reason |A| varies with a frequency greater
than 77!, then some stationary electron distribution is.
established in the specimen, which in general differs
from the equilibrium distribution. Its influence on the
order parameter may be accounted for as follows.

Let the temperature be close to the critical value,
i.e., we are dealing with a region where the GL equa-
tions (21) are applicable. The term in square brackets
appears in (21a) from Eq. (175) after substitution of the
stationary distribution, f(e)=¢e/2kzT, from Eq. (173),
and taking into account the smallness of |A|. Making the
same calculations for an arbitrary f (e) and taking as
before IAI «< kg T, we find that Eq. (21a) is satisfied if
Ty in (12) is replaced by a new effective critical temp-
erature

, - [ € de
kBTc“kBTC {1+ J;Al [f(G) _ZkBT] (62—,|A|2)1/2}.
(176)

Equation (176) shows that if f (¢) is greater than its
value in equilibrium (i.e., the electron density n(e) is
less than its equilibrium value), 7§ may increase, i.e.,
enhancement of superconductivity occurs. The value of
T¢ is especially sensitive to changes of f (¢) in the re-
gion e= IAI, and therefore even a simple redistribution
of electrons towards higher energies, with the total con-
centration conserved, can raise 7§.

3. Current enhancement of superconductivity

Aslamazov and Larkin (1976) advanced a theory which
provides an explanation of the bumps on the I-V curves
of weak links. They considered a one-dimensional geo-
metry identical with the ODSEE model for the case of
small lengths (L« £). The critical current in this case
is given by the AL theory [Eq. (41)]. I the current ex-
ceeds the critical value, the frequency of the Josephson
oscillations rapidly exceeds 77!, and a stationary non-
equilibrium distribution f (¢) is established in the speci-
men. After calculating this distribution with the help of
equations derived earlier (Larkin and Ovchinnikov, 1975),
Aslamazov and Larkin obtained the following expression

(A/2ka T)X[1 = (1 —€/A)¥%], ate<aA,

€/2k,T, @)

f(€)={

atA<exkyT,

where A is the equilibrium value of |A| at the banks

[Eq. (12)]. The deviation of f (¢) from its equilibrium
value occurs only for e<A, because high-energy elec-
trons may easily diffuse from weak links into the banks
in a time ~vL2/D «.T,. For low-energy electrons there
are no free states in the banks [Eq. (172)], and they are
reflected back into the weak link from those points where
|al is equal to their energy e (Andreev, 1964).

Since f (¢) appears to be greater than the equilibrium
value, superconductivity is enhanced, i.e., the ampli-
tude of the supercurrent-in ac Josephson effects be-
comes greater than the critical current I,. Therefore
the Josephson oscillations take place just as in the RSJ
model with increased critical current I and the I-V
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curves are close to hyperbolic everywhere, except in a
small region when V = 0, where the average current ]
sharply falls from I¢ to Io. This corresponds to the
usual “bump” on the I-V curve. ’

In order to find I, we have to substitute Eq. (177) into
Eq. (176), and thusfind the new value of the critical current
from Eq. (21) for the new effective value of T¢. For T
very close to 7,, there appears to be a region of lengths
EX (Tp — T/Tg)Y*« L «< £ where I, is independent of the
length, and is given by the expression

1= 0.12C,;S(8/7%D)/?A*2~ 0.2 I.[L /£(T)]

<[T/(Ty = T)]*4> 1, . (178)

In this region |A| is.almost constant over the whole
length of the weak link, and tends to A only at the bounda-
ries with the banks.

Another explanation of the bump on the I-V curve was
given by Deaver et al., (1976a,b). They assumed that
an increase in the number of quasiparticles with a de-
crease in Aatthe phase shifts ¢~ 7 is responsible for the
bump (see the discussion in Sec. VI.A). One more ap-
proach to nonequilibrium in weak links was discussed
by Golub (1976).

4. Balance of holes and electrons

Quasiparticle excitations, which we have so far called
electrons, change their properties depending on whether
their momentum p is more or less than the Fermi mo-
mentum p,. When p>p,, a quasiparticle resembles an
ordinary conduction electron: it has a negative charge
(—e) and differs from an electron only in that its dis-
persion at p 2 p, is different '

e =[alz +02(p = pp)?]V2,

which is just the cause of the anomalous density of
states[Eq. (172)]. ¥ p<pp, a quasiparticle behaves like
a hole, i.e., like a particle with a positive charge (+e)
and with the same dispersion law [Eq. (179)].

As a result of the different signs of the charge, the
elastic conversion of an electron into a hole (or vice
versa) is impossible, because in this process an addi-
tional Cooper pair with an energy corresponding to the
Fermi level should appear (or disappear). If, there-
fore, an imbalance exists between the electrons and
holes in a superconductor, it relaxes to zero in a time
of the order of 7o~ 7, [more exactly, 7o~ 7.(kzT/|Al)
when T~ T, (Kaplan et al., 1976)].

The nonzero space charge of a superconductor has
been shown to be directly connected with imbalance in
the number of the electrons and holes (Tinkham and
Clarke, 1972; Clarke, 1972; Tinkham, 1972). But, by
virtue of the Maxwell equation, a space charge must
appear on any interface between superconducting and
normal phases crossed by a current. Since E=0 in the
superconducting phase and E =j/aN in the normal phase,
a space charge appears at the interface with a total
density

(179)

j pdx =j/Am, . (180)

Thus, an imbalance between the electron and the hole
components always arises at the S — N interface when
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the current flows through this boundary. Since, during
the relaxation time 7,, electrons and holes diffuse from
the boundary to a distance

Eem (D)2 = (0p 179 /3) 2 o (T, = T) ™4, at T~ T,

(181)

the electrical field and the normal current should pene-
trate into the superconductor to a depth of the same or-
der. The magnitude of £, derived from Eq. (181) is much
greater (several units or tens of microns) than that pre-
dicted by the TDGL theory [Eq. (162)]. The resilts ob-
tained in experiments with long specimens (Skocpol

et al., 1974b,c; Meyer and Tidecks, 1976; Yu and Mer-
cereau, 1975; Klapwijk ef al., 1976b) are generally in
satisfactory agreement with Eq. (181), although it is not
easy to detect the weak temperature dependence of T at
T~ Tg.

There can be no doubt that slow relaxation of the nor-
mal current in time and space should have some kind of
influence on the ac processes in weak links, on the
“excess current” effect in particular, thereby giving
rise to deviations from the TDGL result [Eq. (171)]. But
the excess currents recorded in the experiments are
quite well described by Eq. (171) [see, for example,
Gubankov et al. (1977)]. The Andreev reflection of elec-
trons at the S —N interface (Andreev, 1964) seems to
have a rather strong influence on this effect, resulting
in partial changes in the electrical field at distances
~t« &.. In other words, just as in the case of the TDGL
model, part of the electrical charge [Eq. (180)] is loca-
lized in a layer of thickness ~ £(T"). (See also the works
Artemenko and Volkov, 1976, 1977; Schmid and Schon,
1975; Artemenko ef al., 1978.)

5. Self-heating

Scattering of the nonequilibrium electrons by the pho-
nons leads to an increase in phonon concentration. Al-"
though the nonequilibrium spectrum of these phonons can
differ markedly from the equilibrium one, qualitatively
these phonons have the same effect as would be produced
by a simple increase in their concentration, i.e., as the
heating of the crystal lattice., Without giving an exact
description of the thermal effects, which differ depend-
ing upon the weak link form and substrate properties,
etc., we shall demonstrate that even a simple account
of these effects (Gubankov et al., 1972) gives rise to a
negative slope region on the I-V curve of the weak link.

Let us suppose that dissipation of energy P in a weak
link leads to a proportional increase in the temperature
of the system3®

AT=T' —T=xkP=kIV, (182)

where T is the temperature of the cryostat (surrounding
medium). The temperature increase leads to a drop in
the critical current. Let T be close to Ty; then Eq. (14)
holds valid; hence

Ve(T") = Ve(T) — a (T’ = T) =V (T) =T V/I, (183)

%BFor L < &, only the temperature of those bank regions which
border on the weak link is essential,
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FIG. 21. I-V curves according to the RSJ model with finite
self-heating [Eq. (184)]. Parameter is the relation of the crit-
ical current I, to the thermal current I,=|dVy/dT | dT/

dP)™, which is larger, thermoconductivity is better. After
Gubankov et al., 1972.

where the larger the constant I = (ak)™!, the better the
heat transfer from the weak link. Substituting Eq. (183)
into Eq. (147) derived in the RSJ model, we obtain a
relationship for the resistive part on the I-V curve for
a nonisothermic case

(Ve =TV/I;)?, at T'<T,
C

723,3-?2:{ (184)

0, at7T'> T,

which is shown in Fig. 21.

This figure shows that any nonzero value of k gives
rise to a region of negative slope on the I-V curve due
to the diminished critical current of the junction owing
to heating in resistive state (V#0). We know that the
initial portion of the resistive part can really be
smoothed out as a result of the dc current enhancement of
superconductivity. Consequently, a negative slope re-
gion appears only for finite x (Fig. 16).

From Fig. 21 it is also evident that the thermal ef-
fects are enhanced with the increasing I, i.e., with de-
creasing temperature of the cryostat. This is in com-
plete agreement with experiment. The dependence of the
self-heating effect on geometry is not so pronounced.
Although the dependence of o = Ich/dTlon the link di-
mensions, as a rule, is not very great, nonetheless it
may be quite significant in some cases; therefore the
specific calculation varies for different cases (Iwanishin
and Smith, 1972; Nad’ and Polyanskii, 1973; Fulton and
Dunkleberger, 1974; Skocpol et al., 1974a,b; Kaminaga,
1975; Desmons, Martin, and Thomas, 1975; Jahn and
Kao, 1976; Tinkham et al., 1977; Decker and Palmer,
1977).

Outwardly, the changes in the I-V curves caused by
the self-heating effect resemble those induced under the
influence of finite capacitance of the structure (McCum-
ber, 1968; Stewart, 1968): for 8 [Eq. (17)] greater than
unity, a negative slope region appears on I-V curves.
Its depth increases with the growing 8, i.e., with the
growth of the critical current (for fixed Ry and C). Such
a close similarity between the two phenomena has re-
sulted in the fallacious opinion that the negative slope
regions on I—V’curves, usually observed as hysteresis
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if the current source (Re >> RN) is used, originate from
the capacitance of the structure. Although even the sim-
plest estimates give B« 1 for weak links, this opinion
has persisted long after the publication of the first paper
in which the thermal nature of hysteresis was proved
(Gubankov ef al., 1972). In all probability, the unending
stream of publications in which the influence of heat on
I-V curves of weak links is rediscovered, is an illus-
tration of poor communication even in this narrow
branch of physics.

In structures without current concentration or with
weak current concentration a specific type of heating
may take place in the electrodes, i.e., field-induced
heating of electrons even without lattice heating (Asla-
mazov and Larkin, 1976). This effect is also observed
in long superconducting films (Shklovskii, 1975; Volot-
skaya et al., 1976). Qualitatively it leads to the same
results as the “true” heating described above.

VI. OTHER NONSTATIONARY PROCESSES

From the preceding section it is evident that we are
still in need of a complete theory of the nonstationary
processes occurring in weak links, that would adequately
explain the phenomena observed in real structures. The
difficulty encountered in verifying the theoretical hypo-
theses experimentally is that the I-V curves of weak
links are not the best touchstone for them.

On the one hand, certain special features of I-V
curves (say, bumps) may be described by various theories.
On the other hand, in the total voltage range from frac-
tions of a microvolt (typical of the fluctuation bend on
I-V curves) to several tens of millivolts (where the Jo-
sephson effect is still frequently observed), the fre-
quency of the processes (wy) changes by a factor of
10%~10%. Therefore it is hard to believe that a theory
that describes the processes satisfactorily for a fixed
V, could give an exact description of the I-V curve as
a whole.

Use of other nonstationary phenomena, even if more
complicated in experimentation, seems promising in
comparing theories with experiments. In this section
we shall discuss some of the possible experiments.

A. High-frequency impedance
1. Impedance in a superconducting state

Let a bias point be located on the superconducting part
of the I-V curve, i.e., let the constant current through
the weak link be less than the critical current: T<Ig,
and the ac current of frequency w and amplitude I, be
superimposed on it. The current I, will cause the phase
to deviate from its constant value @, corresponding to
the current T, the amplitude of these deviations being
small for small I,. Finite-frequency oscillations in ¢,
by virtue of the Josephson relation (4), will give rise
to voltage oscillations with an amplitude

V,=i(tw/2e)p,. (185)
proportional to I, when I,~ 0
Vo=Z(w)I,, Z(w)=iltw/2e)p,/I,. (186)

The complex quantity Z is the total ac resistance (im-
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pedance) of a weak link. Frequently it is more conven-
ient to use the inverse of impedance, i.e., the total con-
ductance (admittance)

Y(w)=Z Hw) =-iQRe/fBw)I,/¢,-

In order to estimate impedance, we shall first deter-
mine it at low and high frequencies. I w<« w¢, then Ig
and ¢ are related by the dc Is(p) relationship, hence

(187)

_2e dis
nc? do
(188)

Iw/(pwzdls/d(,u'gp:'&, Z(w) =z(w/02)£(¢)’ }G—l

We find that the impedance is inductive. For example,
for short weak links with a sinusoidal Ig(¢), we have

£-t=85'cosp, Lc=c*Ry/we, (189)
therefore the impedance is much less than R,
Z =iRy(w/wc) cos™ @ . (190)

On the other hand, the main current component at very
high frequencies is the normal current, and

Z =Ry, at w> we,A/R. (191)

Thus the impedance grows with increasing frequency,
and it is therefore easiest to measure it at microwave
frequencies, where w is of the order of ws. A typical
experiment here is measurement of the reflection co-
efficient from the resonator or stub containing a weak
link in a microwave guide (see, for example, Vystavkin
et al., 1973).

The impedance can also be measured at relatively low
frequencies (units or tens of megahertz) by inserting a
weak link into a superconducting ring of low inductance
(Ig<1), i.e., with the help of a quantum interferometer
(SQUID) operating in a nonhysteretic mode (see, for ex-
ample, Hansma, 1975; Danilov and Likharev, 1975).
One merit here is that in this method any value of @ can
steadily be set up if I +/5< 1, not only values in the range
gl <7/2 as in the absence of the ring.

2. G, cos ¢term
In the RSJ model we have

I,=Isco8p ¢,+V,/Ry, (192)
hence, with the help of (185), we get
ReY(w) =Ry, ImY(w)=- (2elc/fiw)cosp. (193)

This expression shows that with increasing w, the tran-
sition from the asymptote of Eq. (190) to the asymptote
of Eq. (191) occurs gradually. We may note that in the
RSJ model the losses in the weak link (Re Y) do not de-
pend on @ In the experiments, however, Re Y always
increases as ¢ approaches 7.

The dependence of ReY on ¢ appears in the tunnel
theory [Eqgs. (7) and (8)]. Indeed, taking ¢ as

@ =9 +¢,explwt) +c.c.,

we express exp(i¢/2) contained in Eq. (7) in the first
approximation of ¢, as

exp(ip/2) =exp(Eg/2)[1 +i(p,/2) explwt) +c.c.].
(194)
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Hence we obtain an expression for the coefficients A
Ag=1, A, =*¢,/2; A,=0, atln|>1. (195)

Substituting these coefficients into Eq. (8), and retaining
as before only the first terms with respect to |4,,| <A,
we get

I=I;sing +Y(w)V, expliwt) +c.c., (196)

where the admittance Y(w) has the following components
(R. Harris, 1975)

Re Y:ﬁi{lmlq(w) +cosp ImI,(w)},
w (197)

Im Y=;%{Relu (w) — cos@[ReI,(w) +Re,(0)]}.

Since ReI,,(O) is simply the critical current, from Eq.
(187) we get for low frequencies (w<«< A (T)/e)

Go=d[ImI,(2eV/%)]/dV ,
G,=d[ImI,(2eV /#)] /dV .
(198)

We can see that the basic distinction from the RSJ
model is that Re Y becomes a function of cos@y. Equa-
tion (198) and Fig. 2, however, show that G,> 0 and the
losses (Re Y) diminish as ¢—r in the tunnel theory, a
fact which is in contradiction to the experiments both
with tunnel junctions (Pedersen ef al., 1972) and with
weak links (Vincent and Deaver, 1974; Nisenoff and Wolf,
1975; Callegari et al., 1976; Rifkin and Deaver, 1976;
Rifkin et al., 1976). The discrepancy between theory
and experiment was discussed by Poulsen (1973), Lang-
enberg (1974), and Harris (1974). Recently it was found
(Zorin and Likharev, 1978b) that the observed negative
sign of G, can be explained if the finite width of the Rie-
del peak is taken into account in tunnel theory.

The sign of the fourth term in Eq. (197) also seems
unsatisfactory. Indeed, we see from Fig. 2, that at
high frequencies

ReY=G,+G, cosp,
ImY =~ (2el; /fiw) cos,

(199)

hence Im Y is positive for any . This means that the
equivalent circuit of the Josephson junction at high fre-
quencies consists of a normal resistance R, in parallel
with a negative inductance

L= —Lé(l — cos@)/2.

Rel (w)= Rel(w) +Rel,(0)=I;, at w>>A/R,

(200)

Consequently, the stationary state of the junction for
any (i.e., for any T) is unstable to high-frequency per-
turbations, a result which at present seems unphysical.
However, because of the complex type of Rel, frequency
dependence, the problem needs some further analysis.

In conclusion, we may note that Eqs. (15) and (198)
tempt one to modify the RSJ model as follows:

I=I;sing +(Gy+G, cos)V/Ry. (201)

Expressions with a structure similar to Egs. (15) and (198)
really follow from Eq. (201). But even within the frame-
work of these particular effects, Eq. (201) is contradic-
tory in the sense that G, , has different values in two
effects. It is, moreover, meaningless to assert that

the approximation (201) is valid in more complicated
cases, say for instance during strong oscillations of . .



K. K. Likharev: Superconducting weak links 141

V), which take place on the resistive part of the I-V
curve. .

3. Other theories

The expressionfor current [Eq. (165)] which directly fol-
lows from the TDGL equations may also be used for
finding the impedance. For low frequencies it gives
Eq. (198), where we now have to take

Gy,=R3', G,=-(y/15)R}' <R;'. (202)

Thus, in this theory, in agreement with the experiments,
we have G, <0 and the ratio G,/G, just equal to the cor-
rection to normal resistance [Eq. (170)]. In particular,
as T—~T; and A=A, (i.e., A=1), G, should vary as (T
-T) . .

Volkov and Kasatkin (1974) obtained the same sign as
for the Vcosgp term in analyzing, with the help of the
same equations, the proximity effect bridges where the
banks are to a considerable extent involved in the non-
linear processes.

Proceeding from the microscopic theory, Mitsai (1976)
calculated the admittance of a short weak link which had
the same geometry as the ODSEE model. For the most
interesting case 7w < A <EkgT he derived the following
expressions

TA 5A —
=R i ——
ReY =R} [(1 —8k3T> + 85T cosw] ,

(203)

ImY =- (2elc/ﬁw)[% (7 —2sin@) cot % + cos@] ,

at |3 <7.

Note that the function in square brackets in the expres-
sion for ImY is less than or equal to zero for any @ .

As a result the stationary state ¢ =¢ is unstable to high-
frequency perturbations for the same reason which we
have discussed above. The Mitsai theory, in contradic-
tion to experiment, also gives a positive sign to the
cos® term in ReV.

Remarkably, the Mitsai theory of nonlinear nonsta-
tionary processes has been derived on the basis of the
Green’s function formulation of the superconductivity
theory. None of the other results deduced in this way
has as yet been confirmed by experiment.?® Probably
the wrong signs of two current amplitudes are due to the
difficulties involved in analytical continuation procedure
in a nonstationary case (Chang and Scalapino, 1977).
Therefore this fact deserves the utmost attention.

Deaver et al. (1974, 1976a,b) have advanced a pheno-
menological model in which increased losses when ¢
~ T are attributed to decrease of |A| under these phase
values in a noticeable part of the bulk of the weak link.
They believe that this situation should lead to the in-
creased density » of the normal electrons, and conse-
quently, to increased active conductivity Re Y. Nonethe-
less, we may note that when T =T, this effect should
hardly be noticeable, as the variation of |A| does not

3¢For instance, the results obtained for the viscous motion of
Abricosov vortices (Gor’kov and Kopnin, 1973) are in apparent
contradiction to experiment (see Danilov et al., 1975).
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Recently (Soerensen et al.,’ 1977) the first attempt has
been made to measure Y.as a function of the tempera-
ture near T.. Such experiments with weak links of a
geometry corresponding to the ODSEE model (for in-
stance, with variable-thickness bridges) could give a
better idea of the adequacy of the various existing theo-
ries.

4. Impedance in resistive state

It has been demonstrated (Vystavkin et al., 1972; see
also Vystavkin et al., 1974; Likharev and Ulrich, 1978)
that if the bias point is located on the resistive part of
the I-V curve (V #0), for a low-capacitance Josephson
junction, we obtain quite an unusual dependence of the
impedance on the bias voltage V, i.e., on the frequency
of the Josephson oscillations w,;. In the RSJ model
without fluctuations, in particular, it was found that
impedance

Re Z((-U) =RN[F(CUV/(.OC) + 1]

X[we/(W+wy) +Wo/(w—wy)],w,#w,
Im Z(w) == Ry TF(w,/w)w b(w — w,), . (805)

Fx)=[(1+x3)"2_x] /2,

has a resonance-type singularity at w=w,. The real
part of Z is negative in the range of frequencies w sligh-
tly greater than w, (Fig. 22)

ReZ <0, at w3 <w?<w, (w3 +w3 )12, (206)

If account is taken of even small fluctuations, then the
singularity in Z at w=w, vanishes (Likharev and Semen-
ov, 1973; Likharev and Kuzmin, 1977)

(W= wy) = (W= wy) +i7, (207)

where vy is the half-width of the Josephson oscillation
line. This gives only a small reduction in the frequency
range where ReZ <0 (Fig. 22).

This “anomalous” impedance results from the compli-
cated nature of the interaction between the signal and the
Josephson oscillations (see Likharev and Ulrich, 1978,
for details). This effect was first observed in 1972 in
point contacts (Vystavkin et al., 1973) and since then
has been a topic for repeated investigations in point con-
tacts as well as in weak links of well-defined geometry,
such as variable-thickness bridges (Gubankov et al.,
1977), Dayem bridges (Pedersen et al., 1977), and prox-
imity effect bridges (Franson and Mercereau, 1976).
The results of the experiments are in qualitative agree-
ment with Eq. (205) of the RSJ model. With decreasing
temperature, however, the resonance at w=w, is not-
iceably less than the theoretical value. Unfortunately,
so far the impedance at V #0 has not been calculated by
means of any other theory.
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FIG. 22. Weak link impedance at the resistive branch of the
I-V curve as a function of the Josephson frequency w; for dif-
ferent frequencies w of signal, as calculated from the RSJ
model. Singularity in impedance occurs at w =wy; dashed lines
show smoothing of the singularity by small fluctuations. After
Vystavkin et al., 1972; Likharev and Semenov, 1973.

B. /, (w) function and current steps on /-V curves

The shape of nonstationary equations should, of
course, vary for the different types of weak links. But
for large voltages they should all give an expression of
a form similar to Eq. (15)

I=I(V)+1, sin(w,t+9), w,=(2e/m)V, (208)
describing the Josephson oscillations with an amplitude
I,(wy,). Clearly, great interest lies in the measurement
of the I ,(w) dependence. This, in principle, may be car-
ried out by measuring the impedance at frequencies ~w,
or by direct measurement of the Josephson oscillations
at the frequency w,. But technically all these measure-
ments involve difficulties, especially at frequencies wg,
which may be as high as 10*'-10'2s™ or even greater.

Therefore, of considerable interest for I ,(w) deter-
mination are the straight parts (“current steps”) on
I-V curves, first predicted by Josephson in his pioneer-
ing paper (1962). These current steps appear at the vol-
tages V,, , [Eq. (117)] on the junction when it is irradi-
ated by external microwaves of frequency w. The mag-
nitude of these steps varies with signal power, i.e., with
the amplitude A of the microwave current through the
weak link. At the same time, the superconducting re-
-gion changes as well, and it is convenient to regard it
as the “zero current step” ( =0). The step heights can
easily be measured in experiments, and may serve as a
way of measuring the /,(w) dependence.
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1. High-frequency approximation

If the voltage V, , is sufficiently high (>¥), the main
contribution to the current is made by the normal com-
ponent

V=IR y=(I+Acoswt)Ry; (209)
hence we obtain a simple formula for the phase
¢=(2e/n) det=wvt+asinwt+s, 9=const, (210)

a=2eAR ,/liw,

which now has to be substituted in the eﬁ(pression for the
supercurrent. For example, if the supercurrent ampli-
tude I, does not depend on the frequency in the range,
which is the case, say, in the RSJ model, then we di-
rectly obtain:

Ig=I,8in@=1, Y J,(a)sn(w,t+5+mwt), (211)
where J,, is the Bessel function of the first kind. Equa-
tion (211) shows that I is only nonzero when w, =mw,
i.e., there are no subharmonic steps (z #1) in this app-
roximation, while the harmonic steps oscillate with A
according to the “Bessel law’®":

Al =21, |J (a)|, V,=m(Ew/2e). (212)

It is known that the maximum value of J, decays very
slowly with increasing m, for m >1 only as ~0.67Tm™/3
(see, for example, Abramowitz and Stegun, 1965).
Therefore even steps with very high numbers up to ~10°
can readily be observed in experiments (McDonald ef al.,
1971; Ainitdinov et al., 1976; Octavio et al., 1977a).

It is now important to notice the following. The fact
that noticeable steps are observed at voltages V, does
not necessarily mean that the Josephson effect has to
take place in the junction at this voltage, i.e., that
I,(mw) should be finite. To prove this, consider the
time dependence of the phase [Eq. (210)], taking wy,
=mw and the value a =m, at which the size of the mth
step is maximum (Fig. 23). During a part of the period
T =27n/w the phase grows rapidly, hence the voltage
across the weak link is rather high

de/dt=2mw, V=2V, (213)

and during the other part ¢ is almost constant, hence
the voltage is almost zero. The contribution to the av-
erage supercurrent is made in just these slow phase va-
riation periods, and this contribution depends on the
phase shift 9, which shows the position of the bias point
on the current step. During the fast phase change, the
supercurrent oscillates almost sinusoidally, and there
is, therefore, no contribution to fs-

Even if I ,(mw) is zero, i.e., there is no supercurrent
flow during rapid phase variations, nevertheless, from
Fig. 23, it is evident that the contribution to the mean
current is nonzero providing I, #0 at frequencies of the
order of w (i.e., the rate at which the phase changes on

3Tstrictly speaking, Ig= 0 alsolin avoltage range of width
~AI,, Ry near each step, wherethe/—-V curve becomes hyper-
bolic in shape (Volkov and Nad’, 1970; Likharev and Kuzmin,
(1977).
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FIG. 23. Time dependence of phase difference ¢ when the bias
point is located at the mth current step [Eq. (210)]. The figure
shows that the main contribution to average supercurrent Ig
occurs during the slow change of ¢, when only frequencies ~w
(but not mw>>w) are present in its spectrum.

the flat portion of its time evolution). Thus, for m >1,
we have Al <] ,(w'),w’ ~w<<mw.

This fact, first noticed by Borovitskii and Malinovskii
(1975) for the case of tunnel theory, shows that the high
steps (for instance, of the order of units or tens of mill-
ivolts) observed with a relatively low-frequency source
(say, X-band oscillator) show nonzero amplitude of the
supercurrent only at frequencies ~10'° Hz, but not at
~10'2 Hz. On the other hand, the first step (s =1) at the
same voltage induced by a very-high-frequency source is
proportional to the amplitude of the Josephson current .
at this frequency: I,«J,(w). Therefore, measurement
of the first step may serve as a good way of measuring
the I ,(w) dependence, say, to observe the smoothed
Riedel singularity in relatively clean weak links at w,
~4A/7% (Thome and Couder, 1975; Kofoed and Saermark,
1975; see also Vernet and Adde, 1976). In contrast, the
observation of high-order steps from relatively low-fre-
quency sources is merely an indication of the absence of
heating in weak links (Octavio ef ¢l., 1977a). Such heat-
ing, being an inertial effect with a time constant 7> w™,
totally suppresses superconducting phenomena, including
current steps.

2. Theoretical /, (w) dependences

As yet the frequency dependence of the supercurrent
amplitude has only been calculated within the framework
of two theories. In the tunnel theory it is expressed by
Eq. (15) and formulas for the coefficients I ,I, (see, for
example, Poulsen, 1973) -

I, at w,<2a/x,

I,=1 (wy)] = (214)
' 28 A 4ROy g, 20/7
eRy nwy A

For w,=4A/e, the amplitude I, has a weak “gap” sing-
ularity (Fig. 2). At frequencies behind the gap the amp-
litude slowly decreases with increasing w, (slightly slow-
er than w'V‘). Any other theory probably will cause a
faster drop inJ,.

In the TDGL model, as follows from Eq. (169), the
amplitude I, =( +13)*/?, as Fig. 18 shows, decreases
exponentially for n greater than 10-20

1,~3cn'/* exp[-(V2/3)7'/?]. (215)
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Within the framework of this theory, the decrease in7J,
starts approximately where the I-V curve becomes a
straight line of the excess current. This result still has
to be verified experimentally.

3. Low frequencies

Measurements of current step heights as functions of
microwave power not only provide a means of determin-
ing the dispersion of supercurrent amplitude, but also
give an indirect method of verifying the sinusoidal shape
of the chs(go) relationship. Experimentally, this may
be a much easier way than direct measurement of this
relationship.

Indeed, for not-too-high frequencies (w=(w,),,,) the
dispersion of I ;¢ may be disregarded. Therefore, ifJg
=], sing we may use the RSJ model [Eq. (145)] to deter-
mine the height of the steps. Such calculations have been
made by several workers and their results are well
known (see, for example, Fack and Kose, 1971; Lik-
harev and Semenov, 1971; Russer, 1972; Vystavkin
et al., 1974). In this model only the harmonic steps
(n=1) are nonzero; their sizes and positions on the
current axis depend on two dimensionless variables:
current amplitude A and reduced frequency w/wc. These
dependences are not very suitable for comparison with
experiment, and therefore the curves shown in Fig. 24
(Likharev and Semenov, 1971) are used frequently.

The solid lines show the functions «,(w/w,) defined by
the equation

k,=(P&/PEN/2_1,

where ank) is the value of power P of the microwave sig-
nal (xA?), at which the height of the mth current step has
its kth zero. The experimental values of k, are to be
plotted along the Y axis (Fig. 24) and then the correspond-
ing values of w/wc are to be found. If, within the limits
of experimental error, all the values of k, give one val-
ue of reduced frequency, then the experimental weak
link is consistent with the RSJ model. Such a “k criter-
ion” is convenient in that, firstly, there is no need for
the use of absolute values of the power [Eq. (216)], and
secondly the procedure is stable to slight smoothing of

(216)
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FIG. 24. Magnitudes «,, [Eq. (216)] (solid lines) and maximum
size of the first current step (dashed line) vs frequency w of
external microwave signal, reduced to the characteristic fre-
quency w¢ of the weak link [Eq. (18)]. Results are based on the
RSJ model (Likharev and Semenov, 1971; Fack and Kose, 1971).
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current step edges by the fluctuations. Sometimes it is
also convenient to use the maximum size of the first cur-
rent step height which is shown by a dashed line in Fig.
24 (Fack and Kose, 1971).

It should be noted that even a slight deviation of I ((¢)
from its sinusoidal shape gives rise to noticeable changes
in the magnitude of the steps; in particular, the step
heights do not disappear periodically when P changes
(Vystavkin et gl., 1974), and subharmonic steps appear
(Libbig and Luther, 1974).

4. Other methods for /, measurements

Several other methods are also available for measur-
ing the frequency dependence of the supercurrent ampli-
tude, among which the self-detection methods deserve
special mention. For example, in the RSJ model [Eq.
(147)] even for relatively high V> V. the mean current
is not equal to the normal current, and the difference is

(217)

This results from the fact that even when 7> Ve, the
law of change of phase ¢(¢) is slightly different from the
linear law [Eq. (135)] for the reasons mentioned in Sec.
V.A. We can say that] is a consequence of self-detec-
tion of the Josephson oscillations by the weak link itself
(see, for example, Likharev and Ulrich, 1978, for de-
tails).

On connecting a weak link to an external circuit with
an impedance Z, (reduced to the junction), comparable
to Ry, the self-detection effect is weakened and thus
T is decreased. Extending the results obtained in the
RSJ model (Likharev and Semenov, 1972; Volkov, 1972)
for an arbitrary IA(w) dependence, we find

AT=T-V/Ry~I%/2VRy.

2,
INE —IA(_“_’——L)ReY", Y,=Rjy+2Z}, at V>V,

(218)
2y

Thus I, can be measured by varying Z, in a controlled
manner. Such experiments have been described by Ganz
and Mercereau (1975).

As Z,/Ry~0, we haveT ¢~ 0; this result is valid for
any arbitrary V. Consequently, by shunting the weak
link heavily at all frequencies, the I-V curve can be
made to coincide with the “quasiparticle current” curve
I,(V) for 7+0. Such an experiment was recently per-
formed by Chiao and Levinsen (1977). However, they
did not succeed in obtaining the relation |Z,|<R,, due,
probably, to the noticeable contribution of kinetic induc-
tance of bridge banks to Z,. More recently, Yeh and
Buhrman (1977) obtained somewhat lower values of
| Ze l N*

The function IA(w) may also be determined from the
mixing between the frequencies of two external signals
at the Josephson junction (Grimes and Shapiro, 1968;
McDonald et al., 1974), or between an external frequen-
cy and the Josephson oscillations’ frequency (Zimmer -
man, 1970; Vernet and Adde, 1976). The more conven-
ient of these two experiments —mixing between two close
external frequencies w; and @, with measuring of a low
frequency difference component w_= w, ~ w,—can unfor-
tunately again give information only about IA(w_), for the
same reasons as mentioned above for the high current
steps. The same can also be said of mixing with fre-
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quency multiplication (see, for example, McDonald
et al., 1972): w_=mw,; — wy, Where the output signal is
also proportional to I,(w.), but not to I,(w,).

C. Microwave enhancement of superconductivity

According to the RSJ model, the critical current is al-
ways less in the presence of an external microwave ir-
radiation than without it. It was found (Wyatt et al.,
1966; Dayem and Wiegand, 1967), however, that in some
weak links at temperatures close to 7, the critical cur-
rent increases somewhat at first, with the increasing
power, and begins to decrease thereafter. Later this
“enhancement of the superconductivity by microwaves”
was repeatedly verified experimentally. Owing to the
recent publication of a review (Klapwijk e ql., 1977a),
we shall outline this topic only briefly.

1. Main experimental results

Critical current shows an increase only in a specific
frequency range, i.e., the effect has lower (Dayem and
Wiegand, 1967) and upper (Latyshev and Nad’, 1974)
frequency limits. Theselimits shift upward as the temp-
erature decreases, although the behavior far from Te
has not been investigated in detail.

Essentially, critical temperature does not rise as the
critical current increases.®® The insignificant increase
in T,, observed in some experiments, does not usually
exceed the width of the S-N phase transition, and con-
sequently may easily be attributed to the proximity ef-
fect between regions with different T.

Microwave-induced enhancement shows a strong de-
pendence on the size of the specimen. This effect is
rarely observed in point contacts (Dmitriev ef ql., 1973;
Fjordbdge el al., 1976), i.e., in structures containing
microshorts, or in small bridges (submicron dimen-
sions) where the “ideal” Josephson effect exists. On
the contrary, in bridges of the dimensions of one or sev-
eral microns, where the Josephson effect is weakly ex-
hibited, enhancement of superconductivity is distinctly
pronounced. A further increase in the specimen dimen-
sions, say, the length of the film strip, almost inhibits
the effect. In those rare instances where it has been ob-
served on long specimens (Shepard, 1971; Latyshev and
Nad’, 1976) this effect probably takes place at minute
inhomogeneities of either a geometrical or a physical
nature.

This effect seems not to be dependent upon whether the
current is concentrated in one direction or in two. In
any case, it was observed both in Dayem bridges [cur-
rent concentration only along the width, Fig. 1(e)], and
in variable-thickness bridges [current concentration
along the width and thickness, Fig. 1(f)].

2. Theoretical interpretations

Microwave enhancement of superconductivity has been
treated differently in phenomenological terms (see, for
example, Hunt and Mercereau, 1967; Shepard, 1971;

The only exception is the recent experiment (Klapwijk and
Mooij, 1976) with Al bridges. So far these results have not
been confirmed by others.
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Notarys et al., 1973; Lindelof, 1976). None of these in-
terpretations, however, is based on modern concepts

of the physics of superconductors and is able to give a
proper explanation to the whole body of experimental
data.

At present, most of the workers in this field are in-
clined towards the hypothesis proposed by Eliashberg
(1970), who attributed this effect to the fact that micro-
wave oscillations cause a redistribution of normal elec-
trons in the energy scale, the maximum of this distri-
bution shifting from |A | to higher €. By virtue of Eq.
(175), such a redistribution should lead to a weakening
of |a| suppression by normal electrons, i.e., to an in-
crease in |A| at T= T,. Accordingly, all critical pa-
rameters of the superconducting state, including the
critical current, should increase.

Although several works have been published with re-
gard to Eliashberg’s idea (Ivlev, 1970; Ivlev and Eliash-
berg, 1971; Ivlev et al., 1973; Schmid, 1977), this theo-
ry still cannot explain all the experimentally observed
facts, especially the dependence of microwave enhance-
ment on the dimensions of the weak link. This can,
probably, be done with the help of the ideas developed by
Aslamazov and Larkin (1976) for the dc current enhance-
ment of superconductivity. Indeed, an ac current of fre-
quency w= ‘r;‘ flowing through a weak link should affect
the distribution of normal excitations approximately as
the Josephson oscillations do. Consequently, the criti-
cal current should raise approximately tof, the height
of the bump on the I-V curve. Such an equality of super-
conductivity enhancement by dc and ac (microwave) cur-
rents has actually been observed in experiment (Guban-
kov et al., 19717). :

Recently Aslamazov and Larkin (1978) advanced a
theory where the discussion runs along these lines.

D. Fluctuations

The nonstationary properties of weak links also have
an influence upon the fluctuations taking place in them.
In analyzing fluctuations, a clear distinction should be
made between real (measurable) fluctuations of a partic-
ular quantity (say, voltage) and the intensity of the fluc-
tuation sources, which may conveniently be represented
as a “fluctuating current” J, source connected in paral-
lel to the weak link. In fact, the current fluctuations I,
interact with the supercurrent in a rather complex way,
especially in the presence of the ac Josephson effect.
Therefore the observed dependences of the real fluctua-
tions on the parameters may be quite complicated. Con-
versely, I, is directly associated with the physics of con-
ductivity of the structure.

1. The nature of sources

The most important result of all the theories of fluc-
tuations in the Josephson effect is that the only intrinsic
source of fluctuations is the normal current rather than
the supercurrent of the junction.®® The reason is that the

3%The only exception is the recent publication by Landa and
Tarankova (1977). The author of this review is not convinced
of the correctness of the results reported therein.
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superconducting condensate is an ordered set of electron
pairs, which cannot fluctuate independently. The collec-
tive fluctuations of the condensate as a whole under the
usual conditions are negligibly small. Indeed, the order
parameter can noticeably vary only at distances of the
order of the coherence length. Therefore, in a bulk
specimen, for example, the probability of a large fluc-
tuation is of the order

p~exp(—|A|ne/ kyT),

and since |A|~k,T and n£®> 1, is negligibly small.

The intensity of fluctuation sources in a superconduct-
ing weak link differs from the intensity in the normal
state only to the extent that the normal (but not the total)
conductivity of the structure differs. When this differ-
ence is not essential (say, within the framework of the
RSJ model), the intensity of the sources is simply the
same as in the normal state.

In the literature we sometimes come across wrong
statements that the Stephen theory (1969) shows that the
supercurrent also contributes to the source of fluctua-
tions. Actually, the Stephen equations, valid only for a
particular case, are obtained when only the normal con-
ductivity of the junction and the equilibrium fluctuations
of a resonator connected to the junction are taken as the
fluctuation sources (see Likharev and Kuzmin, 1977, for
details).

2. Equilibrium fluctuations

The fluctuation-dissipation theorem (see, for example,
Stratonovich, 1962) holds true as long as the process oc-
curring in the weak link is an equilibrium one. This
theorem gives a simple relationship between the active
conductivity ReY of the two-terminal circuit with the
spectral density S,(w) of the fluctuating current 1,
source

Sfw)=(2/7) ReY{w)#w/2) coth(fw/ 2k, T).

In particular, at low frequencies (4w =< k,7) we obtain
the Nyquist formula

S{w)=ReV(w)2k,T/. (219)

For example, in the RSJ model, the value of Y is the
same as in a normal structure and

Sfw)=2k,T/1R,,. (220)

3. Shot noise

As was shown by Larkin and Ovchinnikov (1967), when
the voltage across a tunnel junction is greater than
~kpT/ e (about 360 uV at T=4.2 K), the noise level is
greater than that predicted by the fluctuation-dissipa-
tion theorem. For example, if the voltage across the
junction is constant, Eq. (220) takes the form (for de-
tails see also Dahm et gl., 1969).

5,0)=(eV/nR,) coth(eV/2k,T). (221)

On increasing the factor eV/k,T to a value slightly
greater than unity, coth may be taken to be unity, and
thus the noise is not dependent on temperature.. There-
fore we obtain the well known formula
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S[(0)=el/m, (222)

for the shot noise of a diode.

The physical meaning of the noise change at eV~£k,T
lies in the following: normal electrons, responsible for
the noise and usually having random energy of thermal
motion 2, T, begin to be “overheated” in passage from
one electrode to another due to the absorption of elec-
trostatic energy e¢V. Such a change should take place
not only in tunnel contacts, but also in any case where
the length £, over which an electron transfers the en-
ergy eV gained in a field to lattice phonons, is much
greater than the length of the weak link L. According
to the facts mentioned in the previous section, we ob-
tain the condition

L= (o7 /32,

which is generally satisfied in weak links of small or
moderate lengths. So the transition from thermal noise
to shot noise should take place in such weak links under
voltage increase.

4. 1/f noise

Besides the noise sources described above, which have
a wide frequency spectrum, low-frequency noise of the
1/f type ( flicker noise) also arises in weak links. This
noise can be of a diverse nature, and has a spectral den-
sity proportional to approximately »"*,¢~1. The noise
may be characterized by the cutoff frequency w, ; at which
the spectral density becomes equal to that of thermal
noise.

Flicker noise is especially strong in point contacts
(Kurdyumov, 1976), in which the cutoff frequency may
be as high as hundreds of kilohertz. In all other types
of weak links this noise is much less; for example, the
cutoff frequency in the proximity effect bridges was
found to be less than 20 Hz (Decker and Mercereau,
1975).

Recently it was found that some fluctuations of the 1/f
type might appear even in an equilibrium case, where
they are originated by the fundamental temperature
fluctuation T (Clarke and Voss, 1974). Thus, for “zero-
dimensional” objects (particles) with a total heat capa-
city C, and connected with the thermal bath via the total
heat conductivity G, the general equations of statistical
physics show that :

(T%=k,T%C,- (223)
The spectral density of these fluctuations is constant up
to a frequency of the order of the inverse thermal time
constant 7= C,/G, and then falls as ©"*/2. For larger
specimens the frequency dependence is more complicat-
ed; in particular, it may be proportional to ™ over a
wide frequency range (Clarke and Voss, 1974; Voss and
Clarke, 1976).

5. Fluctuation measurement

It is reasonable to measure the intensity of fluctuation
sources in a weak link only in those experiments which
provide the best controlled conditions for the transform-
ation of S, to the measured variable. Some examples of
these conditions are the following (for details see Chap.
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6 in Likharev and Ulrich, 1978),

(i) If the bias point is located far along the resistive
branch of the I-V curve (V> Vc), then V=IR, and the
spectral density of low-frequency voltage fluctuations
is simply connected with the density of I

S,(0)=S,(0)RE, (224)

Essentially, no such relationship exists for an arbitrary
V, even if the differential resistance R, at the bias point
is taken instead of R, (see, for example, Likharev and
Semenov, 1972).

(ii) If the fluctuation intensity is not very high, instead
of S,,, we can measure the half-width of the Josephson
oscillations line, which is simply connected with S,
(Larkin and Ovchinnikov, 1967)

Aw =(7/2)(2e/7)*S,(0).

The half-width Aw may be measured either directly (by
microwave emission of the weak link at the frequency
wy) or indirectly by means of the width of the current
step “embryo” formed on the I-V curve by the action of
a weak, external, monochromatic signal of frequency

w- This embryo is of the following form (see, for ex-
ample, Likharev and Ulrich, 1978)

AT e(V=V )/ [(V-V )2+(aV)?], aV=(1/2e)Aw,
(226)

(225)

V,= (7/2e)w.

Measurements of Ay (or AV) suffer from one draw-
back: all the fluctuations (including the low-frequency
external interferences and flicker noise) whose spectra
are located on the frequency axis between zero and ~Aw,
make a contribution to these quantities. Therefore the
influence of undesirable fluctuations has to be effectively
controlled in the experiments.

VIil. MORE COMPLICATED WEAKLY LINKED
STRUCTURES

In terms of circuit theory all the types of weak links
considered in Sec. IV are simple two-terminal devices,
i.e., they have two electrodes, which serve as termin-
als. Inthe last few years more complicated weakly
linked structures have been acquiring increasing im-
portance. We shall deal with these structures in this
section. They can be formed either as single weak links
of a complicated geometry, or by several ordinary weak
links (two-terminal structures) connected in a compli-
cated manner.

A. Multiterminal weak links

The multiterminal structure considered by Likharev
(1975) is an example of the first type of structure. It
contains a few superconducting electrodes connected by
a common weak link. The possible realization of a three-
electrode structure (“Josephson triode”) is shown in
Fig. 25(a), where a spot of thin film connects three su-
perconducting electrodes made of a bulk superconduct-
ing film.

In order to analyze the processes occurring in a mul-
titerminal structure we shall assume that the conditions
of the AL theory are satisfied. In particular, all the di-
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FIG. 25. Possible realization of Josephson triode, i.e., a weak
link connecting three superconducting electrodes (a), and its
equivalent circuit (b). Crosses denote usual Josephson junc-
tions, which are really superimposed in the space. These im-
aginary junctions can have different values of I, and Ry, but
their characteristic voltages Vi, = I Ry are equal if the mater-
ial of all electrodes is the same.

mensions of the structure are supposed to be less than

& [if the weak link dimensions are great, then the cur-
rents from different terminals are simply added (Prans
and Meissner, 1974)]. The solution to the Laplace equa-
tions for the order parameter A(r,#) Eq. (29)] and the
electrical field potential u(r,#) [Eq. (35)] may now be
written in the form

A= }; A, fpexplix,), w= Xk:fkuk, fo=f{r),  (227)

where f, is a particular solution to the Laplace equation
for a given geometry of the structure, which is equal
to unity inside the kth electrode and to zero in other elec-
trodes. Variables A,,x(#), and u,(¢) are values of the
modulus and phase of the order parameter and scalar
potential inside the kth electrode.

Substituting Eq. (227) into the GL equation for current
(21b), we easily find the current in the xth electrode in
the general case

I"= Z [(‘lc)k.nSin(pk,n+ Vk.n/(RN)k.n] ’
k (228)

Pron=Xa— Xpr Vi,n™ M= s

where the constants I, and R, are interrelated by the

condition

(Ic)k,n(RN)k,n= Ve

Equation (228) is a generalization of the RSJ model [Eq.
(145)] for the case of several electrodes. It shows that
the equivalent circuit of a multiterminal structure con-
sists of “ordinary” (two-terminal) Josephson junctions
interconnecting each pair of electrodes. For example,
three such imaginary “junctions” represent the triode
[Fig. 25(b)]. The critical currents and normal re-
sistances of these junctions depend on the geometry of
the structure, but products vV, [Eq. (229)] are expressed

(229)
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by the usual formula (40), and therefore depend on the
product A,a only. If all the electrodes are made from
the same material, the quantities A, and V, are the
same for all two-terminal junctions.

From Fig. 25(b) it is evident that the Josephson triode
properties are close to the properties of three separate
junctions inserted into a superconducting ring. The elec-
trodynamical properties of the triode have been analyzed
by Likharev (1975a), and it has been proven that, given
a proper choice of parameters, a triode can be utilized
particularly for microwave mixing, using the Josephson
oscillations from one of the two-terminal junctions as
the local oscillator signal.

B. Connections of weak links

Some interesting new processes may also take place
in those structures where the usual (two-terminal)
weak links are interconnected in a system by means of
superconducting electrodes. The properties of the two
simplest types of connections, series and parallel ones
(Fig. 26), appear to be radically different.

1. Series connection

In series connections (Palmer and Mercereau, 1974,
1975, 1977, Jillie et al., 1975; Feldman et gl., 1975;
Dupart and Baixeras, 1977) the processes occurring in
weak links are independent in the first approximation
(Likharev, 1973). In fact, in Sec. V.A we have seen that
the processes in the weak link only affect the phase shift
and voltage drop on it, but have hardly any influence
on the time dependence of the current through it. Since
current is the only common variable for the elements
connected in series, the contacts hardly interact at
all. Of course, in real situations, there is always some
weak interaction due to one mechanism or another, dis-
cussed below.

First, owing to the finite magnitude of impedance Z,
of the external system, Josephson oscillations give rise
to an ac current, although a very weak one, at the
Josephson frequency w,. This current will have a syn-
chronizing action on the other weak links in the system.

(b)

FIG. 26. Series (a), parallel (B), and one of the possible com-
plex connections (c) of weak links. In the last case (Lukens,
1976) weak links are connected in series for the microwave
signal (current I ), but in parallel for dc bias (current I), so
that de voltages | V| are equal at all junctions. Cross denotes
a single element (weak link).
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Therefore, mutual locking of the oscillations may take
place if the link parameters are close in value, i.e., if
the frequencies w, are almost the same for the same
dc bias current.

Second, if the distance between the weak links is com-
parable to the coherence length of the electrodes &, there
may be a finite interaction through the variation in the
modulus of the order parameter at the banks. We have
already seen that the greater the deviation of the weak
links from the ODSEE model, the greater these varia-
tions will be. In other words, the variations are least
in the variable-thickness bridges and greatest in one-
dimensional structures with weak links and electrodes
made from almost identical materials. This coupling
mechanism has been theoretically analyzed in the liter-
ature (Blackburn et gl., 1972, 1975; Howard and Kao,
1975; Kovalenko, 1976; Way et ql., 1978).

Third, the generation of excess electron-like quasi-
particles with an intensity varying with the Josephson
frequency w, takes place in weak links during the ac
Josephson effect. These normal electrons, on penetrat-
ing into the banks, may diffuse to distances ~¢  [Eq.
(181)] which may be of the order of several microns (in
aluminum tens or even hundreds of microns). If another
weak link is located within this distance, the normal
electrons will act upon it at a frequency w,. This mech-
anism has indeed been detected experimentally by Jillie
et al. (1977a,b), but no detailed theoretical description is
is yet developed.

Finally, for very low capacitances C between the con-
nected electrodes: e¢/C= V., one more specific coup-
ling mechanism is also possible. In this case the pass-
age of even one electron through one of the weak links
changes the potential of the “middle” electrode (connect-
ed between two weak links) by a value ¢/C comparable
to V.. Therefore the conventionaldescription of weak
links (at least for those with a relatively large mean
free path £) is not valid, and the discrete nature of the
current carriers has to be taken into consideration in
the theory. Intuitively, it is evident that this will give
a specific “electrostatic” mechanism of interaction be-
tween neighboring weak links. Although there are some
communications describing such effects (Zeller and Gia-
ver, 1969; Kulik and Shekhter, 1975, 1976), neither the
exact boundaries, nor the main consequences of such
interaction are as yet clear.

It should be pointed out that it may be rather difficult
to separate the various synchronization mechanisms in
the experiment. ’

2. Parallel connection

Unlike the case of series connection, weak links con-
nected in parallel (two superconducting electrodes con-
nected by several junctions) always interact between
each other. Indeed, there can be no voltage drop across
the sections of superconducting electrodes separating the
junctions. Therefore the mean voltage V, and conse-
quently the Josephson oscillation frequency w, [Eq. (6)],
is the same at all the weak links connected in parallel.

A similar strong interaction is observed in the station-
ary state too; it is responsible for a number of specific
properties described in detail in the existing literature
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on the Josephson effect. Use of weak links in this case
does not give rise to any new effects, and therefore we
recommend that the reader consult some of the avail-
able publications (see Footnote 1).

3. Use of parallel and series connections

Parallel connections of Josephson junctions are used
in de SQUIDs (Clarke, 1977), and may also be used in
cryotron-type (Zappe, 1975) and quantron-type (Fulton
et al., 1973; Likharev, 1977b) digital circuits. More-
over, distributed (wide) weak links (see below) can also
be represented as a parallel connection of a large numb-
er of junctions.

Series connections of weak links into arrays seem to
be highly promising for increasing the resistivity in
microwave applications of the Josephson effect. The
first experiments with such circuits (Feldman ef al.,
1975; Chiao and Parrish, 1976), however, have shown
that the inevitable variation of the parameters of the
weak links in the array leads to noticeable differences
in the values of dc voltage across them, and consequent-
ly to differences in the Josephson oscillation frequencies.
It is, at the same time, highly desirable to fix a definite
bias point V in most microwave devices. In this situation
combined parallel-and-series connections can be used.
An example of such a connection suggested by Lukens
(1976) is shown in Fig. 26(c). In this circuit the ac cur-
rent flows along a wide central line through all the ele-
ments in series. At the same time, thin lines of high
inductance (to avoid shunting of the ac current) connect
all the élements in parallel with respect to the dc bias;
therefore V across them is the same even in the case of
wide scattering of the parameters.

Some other weak link systems have also been studied
(Mooij et al., 1974; Tsang and Wang, 1974; Lindelof
et al., 1977), their utility for device applications being
more doubtful. Moreover, a considerable number of
papers have been published dealing with granular super-
conductors which may be looked upon as a complicated
connection between chaotically located weak links with
random parameters. Perhaps a separate paper is need-
ed to review all these works. Today, regular weak link
systems seem to be more promising both for physical
research and for device applications.

C. Distributed structures

In the preceding pages we considered relatively nar-
row (W~ £ <)) weak links in which the current is uni-
formly distributed throughout the cross section. If the
link width W becomes large, the phase difference ¢ and
the current density J may depend on the transverse co-
ordinate y. This dependence can be caused by an exter-
nal magnetic field, and if the width W is greater than
some characteristic size 1., it can also be caused by
the magnetic field of the current flowing through the
weak link. In the case where the relation between J,
and ¢ is sinusoidal, a special term, the Josephson
penetration depth X ;, is used for 2.

Such dependences [J(y)] are well understood for tun-
nel junctions (see, for example, Ferrell and Prange,
1963; Owen and Scalapino, 1967; Kulik and Yanson,
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1970), and our aim here is only to show that they can
have some specific features in weak links.

1. Local and nonlocal self-limitation

Self-limitation, that is variation of ¢ along the width
of the structure under the influence of the current flow-
ing through it, is conveniently described in the following
way (Lapir et al., 1975). An elementary current
J(r’)dr’ flowing through a particular region of a weak
link penetrates into the banks, and thus creates a gradi-
ent d(vy) of the order parameter phase inside the bank.
If the nonlinear processes are localized in the weak link
itself, i.e., condition (64) of the ODSEE model is ap-
plicable, the electrodynamics of the banks is linear, and
therefore d(Vy(r)) «cJ(r’)dr’. Summing up the contribu-
tions of all regions of the weak link to the phase gradient,
we obtain

X(r)=xo(0)+ [ Klx,x)d(x)ar, (230)
where the integral is taken along the weak link width,
and is the phase distribution in the absence of the curr-
ent through the link, for instance, under the effect of
external magnetic fields or currents along the banks.
K(r,r’) is a kernel, which depends on the geometry and
the material of the banks.

After subtracting Eq. (230) written for the points on op-
posite sides of the weak link, and taking into considera-
tion'that ¢(y)=x, —X;, We obtain the self-consistency
equation:

w

¢(y)=<ﬂo(y)+f Ky, yJ(y")dy’, (231)

V]
where the kernel K is simply the sum of the kernels
K, , for the banks taken at x=x'=0.

In sandwich-type structures [Fig. 1(a),(b)]*° the cur-
rent penetrates into the banks only at distances of the
order of penetration depth x, which is usually much less
than x ;. Therefore at distances », from the source the
current flows parallel to the interlayer, and thus, by vir-
tue of Eqs. (21b) and (24), creates a constant phase gra-
dient:

Vo=21/chdo)Lad, ¢o=mch/e, (232)

along the y coordinate. Here £, stands for the induct-
ance per square of the system consisting of two super-
conducting films, in which the currents flow in opposite
directions along adjacent surfaces

(233)

where, for the case under consideration, ¢.=L+2X,
and L is the thickness of the interlayer.
From Eqs. (232) and (233) it follows that in sandwich-
type structures we may take that
Ky, y)=(4n*ty/ cpo) |y =y (234)

Substituting this kernel in the self-consistency equation

Lo=4mte,

OFor the sake of simplicity, we consider a long sandwich
with one of its dimensions (W’) much less than the other (W),
so that it can be regarded as a structure distributed in one
dimension (along W) with a linear current density J=j W’.

Rev. Mod. Phys., Vol. 51, No. 1, January 1979

149

(231), and then differentiating twice with respect to y,
we arrive at the usual result that the distribution of the
phase over the width of the junction obeys the differential
equation ’

97 9® .
RS O (2352)
A= (cpo/ 8t jc ) /2. (235b)

Here we can say that self-limitation is a local effect
in which the current at a given point affects the phase
changes only at the same point. However, Eq. (231)
shows that this is not so in the general case, where
self-limitation is described by an integral equation,
i.e., is a nonlocal effect.

2. Variable-thickness bridge over ground plane

Consider the system shown in Fig. 27 (Lapir et al.,
1975) as an example of a structure with nonlocal self-
limitation. In this system a variable-thickness bridge
connecting two banks made of relatively thick (d= 2))
film is located above a superconducting ground plane,
say, above a thick film (dgpz ngp). The spacing ¢ be-
tween banks and ground plane, just like x and d, is
small compared to the planar dimensions of the sys-
tems, say the bridge width W. These systems are in-
teresting not only for their unusual electrodynamics,
but also for their application as Josephson cryotrons.

In this case, to find the kernel K in Eq. (231), note
that Eq. (23) is also valid for the bank—ground plane
gap, if f=¢+x+2,, is the effective spacing between the
bank and the ground plane. In the dc state the current
in the banks is conserved (divx'yJ= 0); therefore the
phase x satisfies the Laplace equation

(236a)

which has to be solved under the boundary condition fol-
lowing from (232)

V2 X=0,

k23

on (236Db)

c cho "

where C is the contour of the bank boundaries, and z is

BRIDGE

-

BANKI BANK2
(b) w’f (d)

C— 3
{ GROUND PLANE }

FIG. 27. Variable-thickness bridge over the superconducting

ground plane: (a) view from above and (b) from the side, and

also particular shapes of one of the banks (c), (d). Views

from above (a,c,d) do not show the ground plane, sizes of

which are much greater than the sizes of the banks.

w (c)

NN
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a normal to this contour. Solving Eq. (236) by the usual
potential method, we arrive at Eq. (231) in which the
kernels K, , satisfy the equations

Vi, Ki2=0, K.~ (2meJo) In|r x|, atr-r.
(237)
Here ), is a constant
Jor No[um]=1.31/J [A/em] ity [um],
(238)

Xo= Ccoo/167%¢

eff

which determines the characteristic scale of the self-
limitation effect.** For the real values of the parameters
(t,;=0.3 um,J,~1-10 A/cm)y, is in the range of units
or tens of microns, i.e., much greater than the typical
values of W and L (tenths of a micron).

The kernels K, , essentially depend on the shape of the
banks. If the bank planar dimensions are much greater
than A, the kernels are simple.

Ky 2= (2modg) " Infr — x|, (239)

In this case the current from the bridge penetrates the
bank-ground plane gap at large distances of the order of
2o and the self-limitation effect is essentially nonlocal,
i.e., Eq. (231) cannot be reduced to a differential equa-
tion of the type (235a). In this case various electrody-
namical characteristics of wide (W>>2,) bridges (for
example, field distribution across the width of struc-
tures, dependence of critical current on external mag-
netic field, shape and characteristics of Josephson vor-
tices) are somewhat different from the characteristics
of Josephson sandwich-type structures. A detailed anal-
ysis of these characteristics is given in papers by Lapir
et al. (1975) and Kupriyanov et al. (1976a).%2

But if the penetration of the current into the depths
of the bank—ground plane gap is limited by the shape of
the bank, the effective size becomes less than A,. For
example, for the bank shape shown in Fig. 27(c), apply-
ing conformal transformation of a semi-infinite strip
to half-plane, from Eq. (237) we find that

Ky =(2mrodp) " In . (240)

. omly —y9)
smh—%w;l—

If the bank “depth” W’ decreases and becomes less than
Xo, the kernel K, [Eq. (240)] assumes the shape of Eq.
(234) at the distances x;, which we are interested in.
Therefore, here Eq. (231) is again reduced to the dif-
ferential equation (235a) where we now have

(241)

Thus, if at least one of the banks is sufficiently narrow,
the self-limitation effect once again becomes local and
the expression for the characteristic size ) ; merely co-
incides with the expression for sandwich-type junctions
(235b). The “depth” W’ of the narrow bank now serves

Xy= (AW 2= (oW 81t J )12 << o

Y4 For variable-thickness bridges without a ground plane,
simple estimates give A;=(coy/ 1672J C)'%, i.e., about one mi~
cron at Jo =1 A/cm.

42Nonstationary effects under nonlocal self-limitation, in
particular, the shape of the I-V curves of wide weak links
(Kupriyanov et al., 1976a) likewise differ from those given by
the local equation (235) (Clarke, 1971).
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as the second planar dimension of the tunnel junction,
and the effective gap between the bank and the ground
plane functions as the effective thickness of the sand-
wich 7.

3. Applications of distributed weak links

It has been seen that the electrodynamical properties
of variable-thickness bridges over the ground plane with
at least one narrow bank are almost analogous to the
properties of wide Josephson sandwich-type structures
(for example, . tunnel junctions), but have a negligibly
small intrinsic capacitance and, therefore, single-
valued I-V characteristics Hence variable-thickness
bridges can easily be used as Josephson cryotrons (or
“Josephson gates”), particularly diffraction-type cryo-
trons.

A cryotron (see, for instance, Bremer, 1962) is a
four-terminal superconducting device, through which
two currents can pass, usually without direct (galvanic)
contact with each other: gate current I, and control
current] . Switching on the control current sharply de-
creases the critical value (1,) ., of the gate current,
resulting in decrease of gate currentJ,. Figure 28 shows
the simplest (“in-line””) Josephson cryotron (Matisoo,
1967) and the distributions of the gate current (,) and
the control current () density in it. These figures show
that the equivalent circuit of such a cryotron is a distri-
buted Josephson junction fed by the currents I,and],
as shown in Fig. 28(d). To find the main characteristics
of the cryotron (control characteristics), i.e., the depen-
dence of the critical value of the current I, on the control
current

(I me=F(I,), (242)
we have to solve Eq. (235a) with 8%¢,/8y*=0 under the
following boundary conditions (see, for example, Kulik
and Yanson, 1970)

\, 2o P (C) R

I(w)
s J g =2
dy y=0 I, dy y=W

y Iy=2x,d.
I,

(243)

Here J(0) and J(L) are the currents fed to the junction
edges. From Fig. 28(d), it is evident that for an in-line
cryotron

(244)

This problem has been analyzed both numerically (see,
for example, Basavaiah and Broom, 1975), and analy-
tically within the limits W<, (Jaklevic et al., 1964)
and W> 2, (Kupriyanov et al., 1976b). Figure 28(e)
shows the shape of the control characteristics for the
case W>,, where it is described by the equalities

10)=1,, I(L)=I,+1,,

(B +1)*/2, at >0
g= (Ig)max/IJ”

h=1/1,.

g=-n+{1, at -1<z<0 (245)

_(hz _ 1)1/2,

In actual wide junctions (W=~4-10x,), the curve lies

slightly lower, and small oscillations exist at its edges,

the curve (245) being the envelope of the oscillations.
From the above it follows that a structure based on

at n<-1
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FIG. 28. In-line Josephson cryotron with sandwich-type junc-
tion: (a) view from above; (b) distributions of gate current;
(c) distribution of control current; (d) equivalent circuit; (e)
control characteristics for the case W>>A;; and (f) possible
realization of the cryotron with variable~-thickness bridge.

a variable-thickness bridge will have the same control
characteristics if the currents are fed into the bridge
as shown in Fig. 28(f) (superconducting ground plane not
shown). It is clear that the gate current I, is fed pre-
cisely as shown in Fig. 28(d). In order to verify the val-
idity of the circuit shown in Fig. 28(d) for the control
current, we have to take account of the fact that1_ ex-
cites an equal countercurrent along the upper surface
of the bank, which should return to the lower surface
of the wide bank through the bridge.

As is clear from Fig. 28(e), the effective gain of an
inline cryotron

G=IA(I:)max /Ncl (246)

for relatively largé logical signals |Al|~I, is small:
G= 1. Kupriyanov et ql. (1976) have found that the gain
G can be significantly increased by feeding the current
in the middle of the Josephson junction. For example,
for structures with an equivalent circuit shown

in Fig. 29(a), the control characteristics are of the
form [Fig. 29(b)]

={4, at |n|<1,
2[|n|+ (B =1)*/2]2, at |n|>1.

The gain G of such a cryotron may be as high as 3 or 4,

(247)
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FIG. 29. Cryotron with gate current fed into two internal
points: (a) equivalent circuit; (b) control characteristics;

(c) realization of the cryotron with sandwich-type junction and
(d) variable-thickness bridge (Kupriyanov et al., 1976b; Lik-
harev and Ulrich, 1978).

and this level is quite sufficient for most of the simple
cryotron-based circuits (Bremer, 1962). Current fed
into the internal points can easily be realized both with
sandwich-type structures [Fig. 29(c)] and with variable-
thickness bridges [Fig. 29(d)].

Interference cryotrons (Zappe, 1975, 1977) can easily
be built up with microbridges too. These circuits do not
have such good control characteristic as the cryotrons
shown in Fig. 29, but may be somewhat simpler in fab-
rication. In particular, structures with W~ L, for in-
stance, Dayem bridges, can be used in these cryotrons.

VIIl. CONCLUSIONS

Superconducting weak links—weak conducting connec-
tions between superconducting electrodes—-are unique
in their variety of electrodynamic phenomena. Inten-
sive research in the past few years has explained many
of these phenomena, but also brought to the fore many
new questions. Below we attempt to list those phenomena
that are clearly understood now, and those unresolved
problems which are, in the author’s opinion, key ques-
tions today.

A. Basic results

1. Stationary processes

(1) The Josephson effect occurs in all weak links of
sufficiently small length, namely, in those having an ef-

430f course, we can also use other types of wide (W >>Lg )

bridges as well, say, one-dimensional structures where the
nonlinear effects do not extend to the banks [Fig. 1(C), (D)1,
provided the critical current of such structures is small. But
in this case the parameter V; that determines the amplitude of
the cryotron output signal is small.
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fective length L less than the coherence length of the
weak link material (but not of the electrode materiall).
By the Josephson effect we mean that the dependence of
supercurrerit]S flowing through a weak link on the phase
difference ¢ of the electrodes is single-valued and 27-
periodic (Fig. 4). Thus the Josephson effect is not di-
rectly associated with superconducting tunneling: tun-
nel junctions are just one of the systems that exhibit
the Josephson effect (Fig. 1).

(2) Only in some rare and very special cases does
the Josephson effect take place in weak links in the same
manner as in tunnel junctions. In most real weak links,
even in a dc state, the function] ¢ (¢) differs both in
shape and in amplitude (the critical current) from the
function in tunnel junctions. The functionf s(¢) is sub-
stanstantially dependent, also, on the ratio of the ef-
fective length L. to the mean free path £ of electrons
in a weak link (Fig. 6).

(3) For small weak links (L ., < £) it is unimportant
whether the link material at a given temperature is su-
perconducting or normal, and the main characterizing
parameter of the weak link Ve =I-R, does not depend on
the link material (but only on the electrode material).
However, if the effective length of the weak link L . is
increased to several coherence lengths of the link ma-
terial, the function I 4(¢) begins to be dependent of the
parameters of the link material. If the weak link is
made of a normal material, the Josephson effect is lim-
ited by an exponential drop in the supercurrent as the
length increases (Fig. 7). If the link material is super-
conducting, then at approximately the same lengths, the
dependence ] ¢(¢) becomes multivalued (Figs. 7 and 8).

(4) The uniform flow of the superconducting conden-
sate in weak links with a multivalent function J ¢(¢)

[Fig. 4(b), 8(a)] may be violated even if their dimen-
sions are relatively small (L, W~ £), due to the onset
of Abricosov vortices (if w> Wc) or the formation of
phase-slip centers (if W<W,) (see Fig. 12). Both these
effects are highly sensitive to the small space inhomo-
geneities which are responsible for the strong irrepro-
ducibility of the phenomena. They are impossible if the
Is(cp) relationship is single-valued, and thus the struc -
ture is stable with respect to small space inhomogenei-
ties. Therefore the situation where the function 7 (¢)
ceases to be single-valued may reasonably be taken to
be the limit of the “ideal” Josephson effect. For dirty
weak links (£ << L) made from superconducting mater-
ial, this limit lies within several coherence lengths of
the link material.

(5) Different types of weak links (Fig. 1) mainly vary
in the degree of involvement of the electrodes in the non-
linear processes occurring in the weak link. In the lim-
it when this involvement is negligible, the simple model
[One-Dimensional Structure with Electrodes in Equili-
brium (ODSEE)] is applicable in which the values of the
order parameter modulus at the weak link—electrode in-
terfaces are taken to be equal to the equilibrium values
inside the electrodes. In those types of weak links where
geometric current concentration does not occur [con-
stant cross-section, Fig. 1(d)], the ODSEE model can
be made applicable if the parameter oN/g of the link ma-
terial is much less than that of the bank material. For
structures with strong current concentration the ODSEE
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model can be made valid practically for any material

of the weak link and electrodes. Such behavior is only
exhibited by variable-thickness bridges [Fig. 1(f)] among
the structures with controllable geometry.

(6) The higher the V, and R, the better the applica-
tion properties of the weak links for utilization in most
Josephsoneffectdevices. The values of V, are maximal
if L= &, a condition which is easier to obtain in struc-
tures approximately obeying the ODSEE model. At pres-
ent, the most promising seem to be the sandwich-type
structures with an interlayer made of low-conduction ma-
terial, and variable-thickness bridges, which both are
superior to tunnel junctions because of low intrinsic cap-
acitance.

(7) When the cross section (i.e., width) is increased,
the bridge-type weak links may exhibit self-limitation
effects which differ from those in sandwich-type struc-
tures, for example, in tunnel junctions. In particular,
the effect of the current on the phase changes along the
structure width may be essentially nonlocal. Nonethe-
less, variable-thickness bridges can be utilized in the
design of magnetic-field-controlled structures (Joseph-
son cryotrons), just as can tunnel junctions.

2. Nonstationary processes

(1) In analyzing the nonstationary (ac) processes, one
should bear in mind that the intrinsic capacitance of
weak links is relatively small, since the capacitance of
Josephson structures may have somewhat greater in-
fluence on their observed properties than the physics of
their conductivity. '

(2) The basic ac properties of short weak links [with
single-valued I ((¢)] may be interpreted even on the basis
of very simple models, for example, the RSJ model in
which the supercurrent and normal current are supposed
to be superimposed in a simple linear manner. Among
the main effects which this model fails to explain are
enhancement of superconductivity by ac and dc currents,
and the existence of “excess” current and of the upper
frequency limit for the Josephson effect. The last two of
these effects can easily be interpreted withinthe frame-
work, of simple TDGL equations, which are strictly suit-
able only for gapless superconductors. Enhancement of
superconductivity is most likely to be associated with the
decrease in the suppression of the order parameter by
electron-like excitations of energies e~|A |

(3) In general, the nonstationary effects are highly com-
plicated as a result of nonequilibrium distributions of
quasiparticles (normal electrons and phonons) and of
their consequent back response to the ac processes.

(4) For comparing theories of nonstationary process-
es with reality, it is frequently not simple experiments
(say, observation of I-V curve of an autonomous weak
link) but more complicated ones (usually with micro-
wave irradiation from an external source) that are most
convenient. For instance, a study of the real and imag-
inary parts of the high-frequency conductivity of a weak
link as functions of the dc bias point in the superconduct-
ing region of the I-V curve and of temperature seems to
be quite useful because the corresponding theoretical
problems admit linearization with respect to variables.
In contrast, such well known methods as observation of
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current steps on I-V curves with high serial numbers
under microwave radiation can give only a limited
amount of information. :

(5) The weak links which satisfy the ODSEE model are
remarkably useful for the comparison mentioned above.
Since it is desirable to use structures with an arbitrary
relation between the parameters of the weak link and the
electrodes, variable-thickness bridges seem to be par-
ticularly promising. :

B. Unsolved problems
1. dc processes

(1) Is it possible to derive the familiar theoretical
results for clean (£ > &), thick (L > &,), S-N-S-type
sandwiches from the Eilenberger equations? How does
the transition to the “dirty” limit occur in these struc-
tures with decreasing mean free path?

(2) How does the finite critical temperature of the link
material affect the critical current I and the Ig(¢) re-
lationship at arbitrary temperatures (dirty limit, OD-
SEE model)?

(3) Is it experimentally possible to prepare weak links
which completely obey the tunnel theéory? Are the mi-
croshort dimensions L <7 /pp unrealizable? What are
the superconducting properties of one such micro-
short?

(4) What are the optimum parameters of the material
of the interlayer and its thickness in a sandwich-type
weak link, so that V, would be maximum while I4(¢) is
single-valued? How does the presence of the Schottky
barriers in semiconductors affect these results ?

2. ac processes

(1) Is the discrepancy in the signs of the same two
terms between experiment and the Mitsai theory indi-
cative of certain fundamental inconsistencies in the
Green’s function formulation of the theory of nonstation-
ary superconductivity ?

(2) What is the physical pattern of the distribution of
normal electrons in a weak link during Josephson oscil-
lations? What are the corresponding changes in the
density of excitations? Can electrons with energy
€< |A| exist in a weak link when the usual relation
w, T, > 1iis satisfied?

(3) What is the distribution (at arbitrary temperatures)
of an electric field when a weak current flows through
the interface between the normal and superconducting
phase? What is the effect of the current density on this
distribution? How does this pattern affect the simple
expression for the excess current of weak links obtained
in the TDGL approximation?

(4) Why does the weak link length have such a consid-
erable influence on superconductivity enhancement by
microwaves? What is the relationship between this ef-
fect and the dc-induced enhancement?

(5) What is the high-frequency limit for the Josephson
effect, i.e., the characteristic frequency from which
the function I, (w,) falls off, if one takes into account
nonequilibrium excitations? How does the weak link
length affect this limit?
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(6) All the listed questions relate to the usual model
of weak links (ODSEE model, for I < L). But how do
the nonstationary processes occur in clean weak links,
if only of small dimensions (LK [, £,)?

C. Concluding remarks

One can easily notice that while the unsolved problems
in the dc field are rather particular in nature [although
question (4) is quite essential for device applications],
in the field of ac effects there are more questions than
answers. This is due to the lack of an adequate theory
to explain the nonstationary processes in superconduc-
tors and due to the complexity of the processes them-
selves, which depend to a greater extent on the various
specific properties of weak links than do the stationary
ones. In the first place, this results from the fact that
excitation of the nonequilibrium electrons and phonons
plays a decisive role in nonstationary processes; their
subsequent diffusion, energy relaxation, and interaction
are greatly affected by the properties of materials and
the shape of both the weak link itself and the banks, and
frequently by the properties of surrounding objects,
e.g., of the substrate and cryogenic gas or liquid (helium)
in contact with it.

It should be pointed out that the questions about the
nonstationary behavior of weak links which still remain
obscure have no direct immediate practical importance.
Without even answering them, we are able to say to what
extent a specific type of weak link is suitable for a par-
ticular device based on the Josephson effect. However,
elucidating these problems may be very important for
the development of the theory of nonlinear nonstationary
processes in superconductors and, consequently, for
their possible applications in future. The geometry of
weak links (especially those obeying the ODSEE model)
is remarkably useful for developing this theory. The
recent advent of an appreciable number of theoretical
studies and the development of such convenient struc-
tures for physical investigations as variable-thickness
bridges gives us every hope that progress in this field
is forthcoming.
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