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I. INTRODUCTION
A proper understanding of many basic phenomena in

both space and astrophysical applications depends
critically on our ability to analyze the highly turbulent,
nonlinear behavior of plasma. If one compares the
plasma medium with the simple incompressible liq-
uid —the old familiar subject of conventional hydrody-
namic turbulence theory —it might appear at first glance
that the plasma turbulence should be much more com-
plicated. This is discouraging, . since not even the hy-
drodynamic turbulence theory can be as yet entirely
constructed from a first principles approach. For ex-
ample, without va, rious ad ho& hypotheses, it is not
known how to systematically truncate the infinite hier-
archy of n-point velocity correlation functions of the
fluid without doing violence to one or more of the im-
portant experimentally measureble effects such as the
inertial range energy spectrum.

The plasma medium seems more complicated than
the simple fluid because the plasma has more collec-
tive degrees of freedom, or modes of oscillation (elec-
tron and ion plasma waves, magneto-hydrodynamic
Alfvdn waves, etc.). Inthe conventional incompressible
fluid, the role of the "elementary excitations" is played
by strongly interacting hydrodynamic vortices, the
superposition of which represents the turbulent motion.
In terms of a Fourier expansion, we would describe
these elementary excitations by wave vectors k, with
corresponding eigenfrequencies co~ = 0. These vortex
and convective cell motions are present in the plasma
as well. However, there are many other plasma modes
characterized by finite eigenfrequencies. It is, in fact,
just this feature which makes plasma turbulence much
more tractable from the point of view of a first prin-
ciples development. The essential simplification de-
rives from the fact that in many cases, where the tur-
bulence is not too strongly excited, the plasma motion

+This written version was edited by J. A. Krommes from text
supplied by Professor Sagdeev. It has been'reviewed and ap-
proved by the author.

can be described as a superposition of real frequency
eigenmodes, with amplitudes changing only slowly in
time. This variation is due to the hierarchy of non-
line"r interactions. It can be considered as slow if
Im&u~«u~, where 1m&a~ represents the growth (or
damping) rate of the mode, due to the nonlinear coupling
between modes. Then, if sufficiently many modes are
excited, the random phase approximation is often in-
voked. The resulting so-called "weak turbulence theo-
ry" (Sagdeev and Galeev, 1969; Kadomtsev, 1965) is
widely accepted as the proper approach when the ampli-
tude of the waves is small enough.

II. WEAK TURBULENCE THEORY

Conceptually, it has pro'@ed very helpful to view these
problems of weakly turbulent waves from a physical
point of view which emphasizes their structural simi-
larity to other familiar problems, e.g. , problems in
quantum mechanics, the solid state, and the kinetic
theory of gases. In other words, we can regard the
collection of randomly phased, turbulent waves as an
ensemble of weakly interacting quasiparticles (waves)
having quasienergies (frequencies) cu„and quasimomen-
ta (wave vectors) k. The evolution of such an ensemble
is governed by kinetic equations for the distribution
functions X, (t) of these quasiparticles. (We can have
different kinetic equations for different types of plasma
waves. ) For present purposes, we can define X„as the
energy density 8„of the collective mode of oscillation,
divided by its natural frequency: X, =— h'» /~„. The kin-
etic equations are derived by an appropriate perturba-
tion expansion of the Vlasov or fluid equations. In such
a procedure, a parameter something like Im cu, /~,
appears, which represents the weak coupling between
modes. The nonlinear mode-mode interaction then
appears as an effective collision integral between the
quasipartic le s.

In some cases, ii is also essential to retain the kinet-
ic description for the (real) particles. Their interaction
with the electric and magnetic fields of the waves X„
can also be described in terms of a collision integral,
now between the particles and the quasipartic]. es. In the
kinetic equation for the particle distribution, this effect
usually takes the form of a Fokker —Planck-type diffu-
sion of electrons or ions in velocity space. Discussion
of the details of these effects —for example, the form-
ulas for the collision integrals, or the appropriate way
to treat resonant denominators —would- take us too far
afield. However, these details are not necessary to an
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understanding of the general structure and advantages of
the weak turbulence theory. We can summarize the
principle features of the derivation as follows:

I. Plasma Model

A. Consists of either
1. Vlasov equations for each species, or

2. a fluid model;

in both cases coupled self-consistently to

B. Maxwell' s equations.

II. Assumptions

A. Small parameter expansion;

B. Random phase approximation (stochasticity of
waves and particles).

Energy Production

( Energy Containing
Sub Range)

Energy Cascade
{Inertia I Sub Range)

FIG. 1. The energy spectrum
bulent fluid.

J L.

Energy Dissipation

( Dissipation
Sub Range)

(w = J dk 8&) of a "typical" tur-

III. Kinetic equations for

A. Particles (if Vlasov description is used)
and

B. Quasipartic le s (wave s).
It is quite obvious that the structure of the wave-wave

collision integrals must depend first of all on the simple
kinematic properties of the elementary interactions.
For example, if the dispersion law ~& = ~~ (k) allows
three-wave collisions

then the collision integral should be quadra. tic:

dk, dk, A(k, k„k,) X~ Z~

If at least four waves are involved in an elementary
interaction, that is,

4P 4)~ + CV2 + (d~ ~

k -k, +k2 +k~,

then we must deal with a C(X} cubic in X.
To illustrate the concept of weak turbulence, I should

like to discuss an example from the hydrodynamics of
incompressible fluids. We shall put aside the vortex
motions of strong turbulence and l.ook instead for an
area where we can apply the approach already developed
for plasma waves. Specifically, let us consider surface
waves on the ocean and ask: How do we find the energy
spectrum for chaotic oscillation of the ocean surface 7
Now the dispersion relation for gravity waves in the
long-wavelength limit is well known: ~' =gk. We expect
that this will lead to a simple scaling for the turbulent
spectrum. In fact, under quite general conditions, one
can imagine the existence of the so-called inertial sub-
range (Fig. 1), the regime in k space where nonlinear
wave-wave interactions transport energy, without dis-
sipation, from small k (long wavelengths) to much
larger k (short wavelengths), where it is finally dissi-
pated. Of course, solution of the wave kinetic equation
provides a straightforward, systematic way of finding

the turbulence spectrum. To simplify things, however,
we shall here develop only the scaling laws, which
follow readily from dimensional arguments. %'e use the
weak turbulence concept of wave-wave interaction; for
gravity waves we need the four-wave process, or a
cubic collision integral:

The inertial range scaling now follows in complete
analogy to the conventional Kolmogoroff scaling (see
Table I).

For the surface waves, we can also write the result
in terms of the frequency spectrum 8 = 8 (&u). Using
8~dk = 8 du, we get 8 -'~ '. This is the form used
more conventionally in oceanography.

Rigorous solution of the weak turbulence kinetic
equation for the gravity waves produces exactly the
same tu dependence as we found above (Zakharov and
Filonenko, 1966). We conclude that, for weak turbu-
lence, the inertial range spectrum can be derived in a
self-consistent fashion. This contrasts with the strong
vortex-type turbulence, for which the scaling was de-
rived by Kolmogoroff only with the help of ad ho& argu-
ments. Of course, even for surface waves, we can also
imagine situations in which the modes would be so
strongly excited that the dimensionless wave ampli-
tudes could be of order one. This should certainly be
regarded as the strong turbulence limit; it corresponds
to the familiar picture of the ocean surface with break-
ing (overturning) waves. The wave breaking represents
an additional mechanism of wave dissipation. To take
crude account of it, one can use the fallowing intuitive
physical arguments. It is reasonable to assume that the
breaking represents a self-regulatory process which
gets rid of excess energy. We might thus expect. that,
in the strong turbulence regime, surface waves would
come to a kind of threshold state v -~/k. With v

-(a~k ')' ' (where the k' gives the proper normalization
of g& in this case, since g~ is the energy per unit area
rather than pe r unit volume), we find

or g~-u '.
This is the so-called "Phillips spectrum. " For an ex-
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TABLE I. Comparative derivation of the inertial range energy spectra for gravity waves
(left side of table) and Kolmogorov turbulence (right side of table).

Gravity wave turbulence Kolmogoroff turbulence

Assume constancy of energy flux in k space (inertial range only)

dk
ck—= const

cN

(J ikey~= W, the total energy per unit area for gravity waves, or per unit volume for
Kolmogor off turbulence. ) Then assuming

where ~k is the characteristic time for energy transfer between adjacent wave numbers. We
have

A(~, k)
k

the mode-coupling equation
which follows from

Euler 's equation

.1
k (qkk)i /2 '

and the fact that, for gravity waves, ~k is
related to the surface density waves:

The mode-coupling coeffici. ent must provide
the proper dimensionality for ~k, hence

w -—P —— (&kk)k k

~ -2k-13/2
k

The factor of 1/k in the brackets arises
since &kdk is a volume density; for the
surface waves the fluctuations are confined
to a layer depth -1/k.

or

together with

V/Vk V 2k,

7.k- (kV)-~

k)i /2

Substituting 7k in &kk/7k= const yields immediately

~ - k-5/2 k-5/3
0

ample where three-wave collisions would be appropriate,
we could consider the very-short-wavelength limit of
surface waves where surface tension becomes impor-
tant. This is the case of the so-called capillary waves,
with dispersion Law &ok -k' '.

There are also various space plasma applications of
the weak turbulence theory. Particularly noteworthy are
the turbulence properties of the solar wind plasma. The
power-law spectra found for the gross solar wind tur-
bulence suggest the existence of an inertial subrange.
Both for acoustic waves and Alfvdn waves, we can ex-
ploit the three-wave interaction estimate i, ' -~~(e,k)
(c~k could be normalized either to nT or to B'/8m).
Then, using the constancy of the energy flux gk 4 7„', we
find s, -k ' ' (Zakharov and Sagdeev, 19"lO). This re-
sult agrees both with radioastronomical data and with
"in situ" measurements.

Of course, determining the wave spectrum in the in-
ertial range represents only part of the problem of
plasma turbulence theory. The next part of the problem
is concerned with the spectrum of the plasma particles,
i.e., with their distribution function. This function
evolves by interaction of the electrons and ions with the
wave spectrum. The simplest kind of interaction,

whose effect is a Fokker-Planck type of diffusion
("quasilinear diffusion"), is due to the Landau (u=k v)
or cyclotron (&u+ cu, =k v) resonances of waves with
particles. There are also interactions involving two
waves and a particle. Essentially, these processes are
equivalent to the induced scattering ru, + u, = (k, +k, ) ~ v.

In the most general weak turbulence situation, all of
the above interactions could be essential. Furthermore,
the completely self-consistent problem should also in-
clude consideration of the spectrum not only in the in-
ertial range, but in all A space, from the pump region
to the damping region. Such a solution would provide the
answer to important questions raised in experimental
and observational plasmas. In many cases, for example,
the transport properties of turbulent plasma are of
paramount importance; these properties are directly
related to the shape and overall magnitude of the turbu-
lent spectrum.

Of course, there are many different types of waves
in Plasma, the turbulent state of which could form the
subject of further study. However, in the remainder of
this lecture I shall consider specifically aspects of only
the two most fundamental modes: ion acoustic waves
(phonons) and electron plasma waves (plasmons). Tur-
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bulence of ion acoustic waves is closely related to the
important problem of anomalous electrical resistivity;
plasmon turbulence introduces the intriguing problems
of cavitons and collapse.

I I I. ANGMALGUS RESISTIVITY

Let me first review in general terms the present
state of understanding of the eleetri:eal resistivity of
turbulent plasma. Experimentally, anomalous resistivi-
ty generally appears when the electric current in the
plasma, exceeds some critical value: j & j, . The onset
of anomaly can be interpreted as the result of some
current-driven instabilities, which lead to an additional
loss of momentum by electrons due to coherent radia-
tion of appropriate waves. Researchers have analyzed
many different instabilities whose participation in
anoma. ious resistivity wa, s suspected. Although I will
speak mostly of the ion acoustic instability, other
familiar instabilities are related to this. For example,
the Buneman instability is essential for problems in-
volving very high relative drift of electrons through ions,

However, this is believed to evolve eventually
into ion acoustic instabi]. ity as the plasma heats. A mag-
netic field cv„= ~„. does not usually change the zero
field modes appreciably, but does bring in new modes.
As an old example, 'the Drummond-Rosenbluth mode
near the ion cyclotron frequency could be mentioned.
It is comparatively slow-growing and is probably ea, sily
saturated by simple quasilinear plateau formation.
This instability is inherent in the currents along Bo. In
contrast to this, we have the so-called modified Bune-
man instability, driven by perpendicular current. This
mode also generalizes to a. kinetic mode with resonant
effects, as well as a. dissipative mode. The latter is
believed to play an important role in ionospheric pheno-
mena, . These instabilities have very small growth rates,
but also low thresholds j, .

While the instabilities cari have different origins, most
of them lead to quite general expressions for their net
effect on anomalous resistivity. This effect can be
found from simple considerations based on the exchange
of momentum and energy between the electrons and
waves. Quite generally, we may determine the electric
conductivity 0 of turbulent plasma in terms of an effec-
tive collision frequency u*:

Pl80' =
Mu~

Specifically, v* is the electron collision frequency de-
scribing momentum loss due to wave generation. Let us
consider the conservation of net momentum of a system
of electrons and waves. The momentum loss per unit
time is

dk ()@
k z

(2 m)3
(lb)

where F is the collective drag force due to wave genera. —

tion and u is the average drift velocity. If the waves
have a spectral energy density s», then e» (k/u») is their
momentum density. Since the drag force is due to wave
emission by electrons, we get

where y~
' is the electron contribution to the imaginary

part of the frequency and z is the unit vector in the di-
rection of the electric current. More rigorously, this
formula, follows from quasilinear theory (Sagdeev and
Galeev, 1969). Thus,

v* =(mnu) ', y»' (S»
dk (), k z

If we understand y&' to be the linear growth rate,
then the whole problem is reduced to determination of
the wa.ve spectrum.

If the resistivity is anomalous, the Joule heating is
also anomalous:

(2)

Such heating, which can be called "turbulent, "generally
heats the various species at different rates. As a rule,
electrons are heated faster than ions. To see why, we
can use the following a,rguments. The power associa. ted
with the friction force is the energy dissipated per
second in the pla, sma:

dk ()@
k u

In the nonlinearly saturated steady state, the momen-
tum of the waves (and therefore their energy as well)
must be absorbed by the ions. The rate of ion heating
is thus

dt
dk (,)

(2 )3 4»'
From Eqs. (2) and (4) we then obtain

d(W + W) 1 dkw» @»k u/&u»

dW; f dk&~~&g

where we used Q =d(W, +W;)/dt. For an order of mag-
nitude estimate, it is sufficient to put

f k u (k) u
k ~ (~)

where (k) and (cu») are a typical wave number and fre-
quency, averaged over the spectrum. Thus we have

AV, k-u
dW;

V+ —4)p|:

where W is the total wave energy, summed over all
wave numbers. Similar estimates are often used when
a quick answer is needed.

This formula has a universal character, a.s it does not
depend on the details of the particular mode responsible
for the turbulence. For a majority of modes, Eq. (5)
indeed leads to a, predominant heating of electrons, since
usually k u/&u» 1. For example, ion acoustic waves are
unstable in this limit.

For ion acoustic turbulence, one can reduce Eq. (2)
to a, more conclusive form. The main contribution to
(2) comes from wave numbers corresponding to the
highest growth rates, so AAD & I. Substituting y„'
= &u»(u/vt, ), we obtain
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From the point of view of a theoretical understanding
of anomalous resistivity, ion acoustic turbulence is
especially promising, since it qualifies as weak turbu-
lence. We can exploit two different limiting cases.
First, in the limit of sufficiently large electric fields
the instability cannot be saturated by quasiline3r ef-
fects, Bnd one must take nonlinear mode-mode coupling
Bnd wave-particle interaction into account. %e can re-
gard the developed ion acoustic turbulence as a gas
of nonlinearly interacting phonons. Due to the disper-
sion law ~»'= k'c', [1+(kA D)'] ' for the phonons, reson-
ant three-wave coupling is absent and the wave-wave
collision integral should be cubic in X~. However, the
induced scattering of phonons on ions [~, —~, =(k, —k, )

v] provides quadratic terms in the wave kinetic equa-
tion and, in fact, dominates the nonlinear effects. Thus
the phonon energy density first increases exponentially
Bt low amplitudes at the linear ion acoustic instability
growth rate. At higher amplitudes, nonlinear satura-
tion should occur due to the quadratic induced scatter-
ing. In a simplified manner, we can represent this
process of growth Bnd saturation by the model nonlinear
equation

growth term. Let us estimate the threshold field, where
[y '

)
-( y

'
~. In order of magnitude, we have

y" —~(u/v. ),
y~'~ - &u(~/kv„)'(6n/n),

where 6n/n is the fraction of ions in the tail of the ion
distribution, the subscript "tl" stands for tail, and the
formula for y comes from the usual ion Landau damp-
ing on the ion tail. To find the tail density, we argue
as inEq. (5) that the relative heating rate (nT, ) /(6nT„)'
-u/c„or

&n/n -(T,/T„) (c,/u) .
Balancing y '~ with y",

We now maximize this rate by arguing that the ion tail
will not be well formed unless T„~T„so that &g ~ &,
for damping. Thus min(T„) —T, from which

(u/v, ) = (m /M)' ~',

or
d~a (e) u/c, = (M/m)'4 (6)

Actually, the quadratic term is a rather complex inte-
gral expression, involving integration over all wave
vectors. However, we can estimate its size by using
dimensional arguments. From the linear stability theo-
ry, y»' = ~» (u/v„). The product As must have the di-
mensions of frequency. If we deal with a normalized
energy density s/nT, , then An|d. One may also expect
that A is proportional to the small ratio T;/T, , since
ion thermal motion is necessary for induced scattering.
More precisely, we can argue as follows. First, we
find the relative phase volume ~co/co of interacting
phonons. Since for induced scattering (d —(d' -k«, we
estimate A&a/~-v„. /c . Next, at each scattering, the
ions absorb only a fraction b,u/~ of the total phonon
energy. Multiplying this by the phase volume of inter-
acting phonons, we find that & should be proportional to
(b.(u/~)' —T, /T, . Thus A. -(T;/T, ) u. Balancing linear
growth with nonlinear induced scattering, we find

W -(T,/Tg)(u/v„)(nT, ) .
Indeed, more accurate weak tuxbg$ence calculations
lead to exactly the same parametric dependence, with a
numerical proportionality factor of O(10 '). This leads
to the formula for anomalous resistivity first derived
by Sagdeev (1967):

v*= 10 '&up,.(T,/T;)(u/c, ) .
More accurate considerations show that the spectral
energy W= J dks» is logarithmically divergent at k-0.
However, the momentum loss (expression for v*) is
convergent, so we should not be too concerned about the
divergence. Also, this divergence disappears in re-
normalized weak turbulence theory (Horton and Choi,
1974).

The above discussion of ion acoustic turbulence is
concerned with electric fields so large that linear ion
Landau damping is not sufficient to balance the electron

To find the threshold electric field, we use Ohm's law

j =a'E, or
E= mv+ /ue. (7)

Using

v*= 10 '(u/c, )'&u„; (8)

(T,/T; -u/c, ), we insert Eqs. (6) and (8) into Eq. (7) to
find that the threshold field Eth, is of order

Z,„,=10 '[(mM-')'4/e] ~„,. c..
In the regime of weak fields E-E,„„the most compli-

cated problem is concerned with the great sensitivity
of the threshold u, to the form of the resonant ion dis-
tribution function —the far tail of the distribution. Even
if the distribution were specified at t =0 (e.g., Max-
wellian), it would soon be completely distorted, because
only the small number of resonant ions would interact
with ihe waves. The main point of difficulty then lies in
learning the evolution of the ion distribution. In this
regard, an31ysis is simplified by invoking self-similar-
ity arguments (Vekshtein and Sagdeev, 1970). One ar-
gues that the long-time behavior of plasma in a regime
of anomalous resistivity should become insensitive to
the initial conditions. This should then lead to establish-
ment of self-similarity in, for example, the shape of
the distribution function. In this case, a fraction
(m/M)' ' of ions are always resonant, obtaining ther-
mal energy -T, and maintaining the threshold u -(Mj
m)' 'c, . The self-similar electron distribution has a
simple universal form f -exp[ -A(t) v') . Numerical
simulation supports the self-similar model for satura-
tion of the ion acoustic instability (Dum et al. , 1974).

In the limit of extremely intense fields, the arguments
based on induced scattering are no longer correct,
since higher-order nonlinearities will become impor-
tant. However, we can give a simple argument which
gives the asymptotic limit of the anomalous resistivity

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979



Roald Z. Sagdeev: Critical problems in plasma astrophysics

I/ ly

m W«nT; m I-n T~

u/'C s

FIG. 2. Schematic drawing of the anomalous collision frequency
p* for ion acoustic turbulence as a function of normalized drift
velocity u/c, .

mons (&u' = ~p E1+3(@AD)']). These waves can be excited
by many means, including electron beams, parametric
pumping, etc. Since the plasmon dispersion law forbids
three-weve interaction, the lowest-order nonlinear ef-
fect is the induced scattering of plasmons on the par-
ticles. This leads to a very interesting effect. The
usual step-by-step hierarchy of nonlinear interactions
would cause at each scattering the loss of both energy
and momentum by the plasmon. Thus, as time in-
creases, ~~ would approach ~~ and & would approach 0.
But as & becomes smaller, so does the possibility of
plasmon absorption by linear Landau damping. Thus
on would predict an accumulation of plasmons at very
small A' in the long-time limit. Furthermore, the en-
ergy deposited in the particles by the induced scattering
process represents only a small fraction of the energy
which accumulates in the plasmons:

&8 & [((u„—~,)/(up] 8,

as E becomes very large. Of course, we still have
lJ* &dpe (W/nT, ). However, the relation T,/T; -u/c, 1s
not generally correct, but correct only for nT; » 8'.
When 8' becomes comparable to nT;, we have more
properly

nT, /(nT, + W) -u/c, .
The maximum spectral energy then obeys nT, /W, „
-u/c„or

This then gives the anomalous collision frequency in the
very high field limit as (Galeev, 19'I 6)

v+„- (up, (c,ju),
which corresponds to constant drag force or to a kind of
runaway regime in the limit of a very high electric field.
The complete predicted behavior of v* is sketched in
Fig. 2.

One of the most crucial outstanding problems in
anomalous resistivity concerns the electron interaction
with the ion acoustic waves. The velocity dependence
-& ' of electrons scattering on phonons reminds us of
the situation with the Lorentz gas, where the electrons
eventually run away. Does this lead to an eventual in-
crease of u'? Of course, this will not happen for cur-
rents L&. But for the currents parallel to a very strong
magnetic field, it is certainly an important problem to
be solved.

To end this part of the discussion, I would conclude
that ion acoustic turbulence can indeed be considered
self-consistently within the framework of weak turbu-
lence theory, although the concrete realization of this
program may represent a quite difficult task.

IV. PLASMON TURBULENCE

Let us now consider some of the very fascinating and
important aspects of turbulence involving the second
fundamental mode of plasma oscillation, electron plas-
ma waves. This turbulence behaves quite differently
from acoustic turbulence. In the present case, the
turbulent state is a gas of nonlinearly interacting plas-

where u„ is the initial plasmon frequency. This fol-
lows immediately from the fact that the total plasmon
"number" is conserved during induced scattering. Thus,
if we have a continuous input of plasmons due to some
instability mechanism, we would at first expect an in-
definitely continued accumulation of plasmons with
4 -0. This reminds us of Bose-Einstein condensation.
However, there is a weak link in the argument, namely
that the weak turbulence criteria will be violated when
the net plasmon energy becomes sufficiently large.
This is a crucial problem, and we conclude that weak
turbulence theory cannot provide a completely self-
consistent description of plasma turbulence. Bather,
we must resort to (or develop! ) the methods of strong
turbulence.

To understand further the breakdown of weak turbu-
lence theory, let us consider the eventual fate of the
plasmon condensate. We imagine a steady input of
energy into the plasmons. Vfhen the plasma medium
fills with sufficiently large-amplitude electron plasma
oscillations, it is clear that the plasmon radiation
pressure —a quantity hitherto neglected —becomes im-
portant. (The radiation pressure is that quantity whose
gradient is the so-called ponderomotive force -n,mV ~ ~

n, e'VQ~-~E» ~'/2mcu~, where V is the electron ve-
locity in plasma oscillations and superbar means an
average over the fast electron plasma oscillation time
scale. ) Consider now a low-amplitude, long-wave-
length density fluctuation. Plasmons will tend to con-
centrate in the regions of density minima in this per-
turbation, since these regions serve as dielectric
cavities for the waves. The increased plasmon concen-
trati. on produces additional radiation pressure, which
in turn expels more plasma from the cavity. It is clear
that we have here the beginning of an instability (Vede-
nov and Hudakov, 1964)—it has come to be called the
modulational instability.

I will now give a very simple, heuristic derivation of
modulational instability by using an analogy based on the
Maxwell-Boltzmann distribution for charged particles
in a potential P (these arguments can be made precise
by using the kinetic equation for plasmons). In such a
potential, the electron distribution function would be
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f(~) —exp [-(1/2 m ~' —ep)/T],
from which we get the electron density by velocity inte-
gr3tion:

n = no exp(eQ/T) .
By analogy, let us consider a distribution function for
plasmons:

X» -%~ exp(-k 2/2 (k')) .
This would be an equilibrium distribution, in the Bb-
sence of any density perturbations. More generally,
there will be a contribution from the density perturba-
tions, which we can find by considering the plasmon
quasiene r gy

= &u» [1+(3/2)(khD)'].

In the presence of a density perturbation &n,

cu = ~» o[1 + (3/2)(kk»)' + (1/2) 5n/n 0],
so by analogy with the particle distribution with poten-
tial g the plasmon distribution should be

'X = N exp(-[(I/2)k +(1/3)k (5n/n )]/(k )] .
Integration over k then gives the total plasmon density

dkX» =ÃO exp -(1/3) 1 ~n

where X, is the equilibrium plasmon density. The fluc-
tuation in plasmon density is then

5X = —(1jS'IN,
( ),

in complete analogy to the electron density perturbation
6n, = n~(eQ/T). Thus the change in plasmon radiation
pressure

I' a
——(1/$)E' „.

.
( )

is negative(!!). Instability will result when

-(k')&~, we know that most of the plasmons are trapped
and coalesce in randomly placed cavities. Naturally,
we expect some sort of saturation of the coalescence
process. To examine this, we look first at the behavior
of individual cavities. We will find that this behavior
depends crucially on the number of spatial dimensions
d. I,et N be the number of plasmons in the cavity. By
action conservation, this number will be constant. Since
the change in ~ is small, we have roughly

If l(t) is the typical cavity dimension, then constancy of
N gives the variation of the radiation pressure as

Qn the other hand, from the plasmon trapping condition
6n(t)/n -k(t)'X~ with k(t) -1/l(t), we have

6n(t) -1/l(t)',
notably independent of dimensionality. Since the expelled
pressure is proportional to Sz(t), it is clear that for d
= 1, a balance will be reached between the plasma and
radiation pressures, the collapse will cease, and we
expect a soliton type of solution. For d = 3, the collapse
will continue; and for d =2, we have a marginal situa-
tion in which if the collapse starts for any reason, it
cannot be stopped by the particle pressure. The collapse
will not continue indefinitely, of course. ~e expect that
when l(t) —&D, strong linear Landau damping will set in
and the plasmons will be suddenly damped (F'ig. 3).

Before saying more about the final stage of collapse,
let us give a simple derivation of the scaling laws for
the collapse and the associated inertial range spectrum

. (Galeev et a/. , 1975). The low-frequency density fluc-
tua. tions will obey (Zakharov, 1972)

so the instability criterion becomes

Po & 3 (k ') A.D(n T) .

Thus, even for a very sma. ll radiation pressure Po/nT
« I, we will get instability when (k')-0. This picture
of the turbulent state is quite different from the weak
turbulence picture. Now, we have plasmons trapped in
random cavities. The dynamics of the cavities (cavi-
tons), in turn, correspond to a purely growing instabili-
ty (Be m =0); the turbulence is no longer weak. We can
estimate the growth rate by including the plasmon radi-
ation pressure in the acoustic dispersion relation '
-k'(5P/StM), which becomes

Landau
'

Damping

For P„~» (kX~)'nT, then

Im u - (P„~/nMXD)' ~ '.
Of vital concern, of course, is the nonlinear behavior

of this instability (Zakharov, 1972). &ery crudely, we
can discuss this behavior as follows. First, when 6n jn

K

FIG. 3. Aspects of plasmon collapse. (a) Evolution of density
and field fluctuations. (b) The spectrum.
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e ~2,~ ~2 E 2

which takes into account the influence of the radiation
pressure (right-hand side) on tne phonons (left-hand
side). From

Ceo =
Ops—+3k X =const

2 n D

or more rigorously from the nonlinear Schrodinger
equation (Zakharov, 1972),

div —+2 M A.
' VV'-E = —~ div

at ~ 2 n, J' (11)

we find Sz-&'. Thus, in the highly unstable limit where
Iz I'» (k&D)'nT, we can write

from which by "cancelling" Ss and &', we estimate

Iz
~

2- (t t)-'-I-"

Fr-om &'- I//'-5n, we also get.

5n-(t, —/) '~'.

(12)

~e can also determine the magnitude of the spectral
energy and the anomalous resistivity. Consider situa-
t;ions in which there is a mell-defined inertial range, with
an electric field source ("pump") E, at small k and an
absorption region at large k. The anomalous collision
frequency will quite generally obey

(13)

I

Finally, we can estimate the inertial range spectrum by
again using the constancy of the energy flux:

dkg„( )
—— const.

Now, dt(k) is the collapse time from /(t)-1/k to /(/+ dt)
-1/(k+dk), which we estimate using Eq. (12). The final
result for the inertial range spectrum is

8 - I/O"'~'

or —,')&D'j, then the source region overlaps with the Lan-
dau damping region and the inertial range disappears
completely. Evidently, the critical pump field is

z a mM '~'k~
(8vnT )~/2

For pump fields exceeding this threshold value, we have
as yet no analytic theory. On the other hand, essentially
all the numerical simulations have been done in this re-
gime of no inertial range (see, for example, Kruer et
a/. , 1970; Thompson et a/. , 1973), since for weaker
fields the run times become prohibitively long. There
have been a few one-dimensional computations per-
formed in the weak field limit (Galeev et a/. , 1976).
However, it is clear that a major outstanding problem is
the satisfactory merging of analytic theory and numeri-
cal experiment for these important regimes of plasmon
turbulence. A summary of what we know so far is
sketched in Figs. 4.

Let me now make a few brief comments about the state
of the plasma during the final stages of collapse. The
sudden absorption of the plasmons as /(t) -&~ will clearly
leave density holes which would effectively generate
short-wavelength phonons. If T»T,. so that these pho-
nons are long-lived, then the ultimate turbulent steady
state would really consist of two interacting states,
each with their own distinct properties. The short-
wavelength phonons would influence the modulational in-
stability and collapse process in at least two wa. ys: (1)
they would scatter plasmons, and (2) they would produce
a new channel for damping, namely the conversion pro-
cess l (plasmon) +s(phonon) -l' (short-wavelength plas-
mon), which would then be immediately absorbed (Galeev
et a/. , 1976).

As an interesting application, it seems necessary to
revise our ideas about the electron-beam-plasma col-
lective interaction (Sudan, 1973; Galeev e/ a/. , 1977).
Up until now, quasilinear theory has been used to pre-
dict the penetration length for the beam; it was found
that l-n~', since the more dense the beam, the stronger
the instability (E'). Now, however, we can use our
knowledge of modulational instability to predict satura-

where n is a numerical coefficient. The power absorbed
will be v+(Z02/8v), while the power entering the inertial
range will be W/r ~, where r ',d=y ~ is the growth
rate for the modulational instability:

Equating the absorbed with the generated power, we find

The anomalous collision frequency then follows by sub-
stitution back into Eq. (13). Of course, we have not
found the numerical factors associated with these scaling
laws.

he above argument breaks down when the turbulence
is too strong. In particular, when W/nT, becomes so
large that (k', d )XD2 - W/nT, —o. '(M/m)(EO/8wnT, )2 be-
comes less than or of the order of k "A~ ' [k' is the cha, r-
acteristic value of k in the damping region k'- (—,

'

Y J~

Inertial Range
Present

O. t 0.2
Y

Inertial Range Absent Eo/S 7r no T

FIG. 4. Anomalous collision frequency p~ as a function of pump
field Eo in the regime of modulational instability. (a) Theoreti-
cal scaling from inertial range arguments (see text). (b) Em-
pirical dependence from numerical simulations (Kruer et al. ,
1970).

Rev. Mod. Phys. , Vol. 51, No. 1, January 1979



Roald Z. Sagdeev: Critical problems in plasma astrophysics

I

I

I

I

I

I

I

I

V
2 3

IO
Vt,

I E2 ~/2

~ NL
l

I

I

I

I

I
"b

I
Ap

I

I

l

I

I I

Ab ly

I

1

I

M3 v''
f

N VP
b

tion (Fig. 5) at E'/16n-(v, /v, )'nT [since v2~-(&u/k~)' so
(v, /v~)'= (k, Xn)']. Thus the penetration length f of the
beam as a function of beam density will look qualitatively
like Fig. 6. (For details, see Galeev et af. , 1977). For
sufficiently strong beams, we see that the penetration
length of the beam is enhanced over the quasilinear re-
sult.

%e should add a few cautions at this point. In spite of
the intensive work which has been done on collapse prob-
lems in recent years, we have as yet no rigorous math-
ematical proof of collapse, although some computersim-
ulations point in this direction. Even the proper equa-
tions to use are in some dispute. For example, very
little is known about the interaction between cavitons.
If this interaction is strong enough, it may prevent col-
lapse completely —indeed, it would no longer make sense
to speak of cavitons as distinct entities. Furthermore,
it may be that other fundamental. effects —for example,
nonlinear frequency shifts —are important in a, proper
description of the cavitons. There are still very fasci-
nating and important questions to be answered.

~hat conclusions can we draw from this very rapid
survey of problems in turbulence theory? - It appears
that the weak turbulence theory can be developed entirely
from first principles. Furthermore, there appear to be
at least a few relevant problems, such as ion acoustic
turbulence, which can be treated self-consistently within
the weak turbulence framework. Our knowledge supports
the concept of scaling and the inertial range for strong
plasma turbulence. However, there is a great need for
a more rigorous theory of strong turbulence. Even more
difficult are problems falling into the gap between weak

FIG 5. S.aturated fluctuation level (E2) for beam- plasma inter-
action as a function of beam density n&.

FIG. 6. Beam penetration length l for beam-plasma interac-
tion as a function of beam density n&. / marks onset of modula-
tion instability.

and strong turbulence, where the random phase approxi-
mation is not valid and we need precise knowledge of
higher-order correlation functions, and so on. It is
clear that much work remains. However, it seems that
we are beginning to isolate the important unifying fea-
tures of the turbulent state, and we can thus be hopeful
of further progress. It is almost superfluous to mention
that, understanding of many astrophysical and laboratory
phenomena, as well as such practical questions as pre-
dicting the confinement properties of magnetic bottles,
are limited by our knowledge of turbulent phenomena.
The qualitative understanding we now possess must be
augmented by much analysis, computation, and experi-
ment to become quantitative.
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