Hydrodynamics of fluids near a critical point
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Because many properties of a fluid are highly anomalous near a critical point, experimental situations that
normally are very simple to describe become much more complicated. Thus the specific heat of a sample is
different from bulk values because of large, gravity-induced density gradients. The problems of relaxation
to equilibrium, free convection, Brownian motion of a particle, and the viscous damping of an oscillating
cylinder or a rotating disk are all complicated by the large compressibility, and, in general, the need to

solve the hydrodynamic equations in a nonlinear regime.
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I. INTRODUCTION

A. Critical phenomena

The liquid-vapor critical point of a one-component
fluid is fixed by the conditions (Landau and Lifshitz,
1958)

<@ =(22!2.) -0
8p/r \30" /1 ’

where p is the pressure, p is the density, and T is the
temperature.

Similarly, the critical points of binary mixtures are
characterized by the vanishing of the first two deriva-
tives of the chemical potential u with respect to the con-
centration ¢

(i&) =(82u —o
8¢ /y,p \8C*/, ¢ )

Here u=p,/m, — uy/m,, where W, i, and m,,m, are the

(1.1)

(1.2)
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chemical potentials and masses of the components, re-
spectively.

The infinite increase of the compressibility (1/p)(8p/
8p) ;. [ or the susceptibility (8c/du),, »] as the critical
point is approached leads to a number of peculiarities in
the behavior of a substance near its critical point. The
specific heat at constant pressure c, and heat expansion
coefficient

3= 5(59),

also increase towards the critical point of a fluid, as
follows from Eq. (1.1) and the appropriate thermody-
namic relations.

A sharp increase in the mean square of the fluctua-
tions of the density (or concentration) and of the integral
of the correlation function of these fluctuations g,, al-
ready follows from the well- known thermodynamic re-

lations:
2 ~
31)

(2P
Jzwor (szl

The large increase of the correlations between the
positions of different particles is given by the second
expression in (1.3), and this is closely connected with
the first expression there. In other words, widely
separated particles have to be strongly correlated to
cause great changes of the density.

The correlation radius & which characterlzes the dis-
tances over which correlation is significant increases
sharply close to the critical temperature 7', i.e.,

5!1‘—»7'0 - . V (1.4)

[p(r) -
(1.3)

According to estimates from scattering experiments it
reaches a value of 10"4-10"° cm near the critical point.
Thus the specific nature of the critical region con-
sists in the appearance of a new characteristic distance

£, satisfying

a<« E<L , (1.5)

where a is the average distance between particles, and
L is the characteristic macroscopic length.

As an illuétration of the crucial imporfance of new
characteristic length £ let us find the singular part of
the transport coefficients near the critical point for a
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model of the fluid near the critical point consisting of
spheres with a characteristic radius £. Particles inside
such spheres are strongly correlated and we can assume
that under the influence of external forces they move
together with a mean velocity v and with a mean free
path £. We find the following results:

1. Diffusion coefficient (Arcovito ef al., 1969). When
an external force F is applied the spheres move ac-
cording to Stoke’s law: F~n&v where 7 is the viscosity,
i.e., their mobility is b=(v/F)~1/n¢. Using the Ein-
stein relation for the diffusion coefficient D, D=kzTb
(where kj is the Boltzman constant), we have D~1/né
or Dn~1/&, a result confirmed by accurate theory and
by experiment. .

2. Heat conductivity. Using the usual arguments of
the molecular-kinetic theory we can find the heat flux ¢
passing through unit area per unit time: g~vn(e, - ¢,).
Here #n is the total number of spheres and €, — €, is the
difference in their energies on two sides of a selected
area, arising from the temperature difference T, - T,
~EVT: € -€,~VC,EVT, where V is the total volume of
the spheres, so that nV' ~1. Thus ¢~vC,§VT. To find v
we can use the estimate for the diffusion coefficient
given above: v~&/t,~£D/E~1/n8. Finally we have
for the heat conductivity A~¢q/VT ~vC,£~C,(n&)"*. This
result is supported by more rigorous theory and also
by experiment.

Apart from the above-mentioned “strong” singulari-
ties of thermodynamic values at the critical point,
“weak” singularities have also been found recently. An
example is the singularity of the specific heat at con-
stant volume Cy, which causes the adiabatic velocity of
sound to approach zero towards the critical point
(Bagatskii et al., 1962).

At the same time relaxation processes slow down as a
result of the increase of the correlation radius and the
decrease of the sound velocities. There are correspon-
ding anomalies in the behavior of binary mixtures near
the critical point, as a consequence of (1.2).

We see therefore that fluids near their critical points
are fascinating physical systems: they are highly com-
pressible and slowly fluctuating inhomogeneous media
with long-range correlations.

Considerable advances have been made in the theoreti-
cal explanation of the asymptotic dependences of thermo-
dynamic values on the proximity of the critical point and
in the establishment of equations of state. All these
problems are beyond the scope of our article and we re-
fer the reader to comprehensive reviews (Wilson and
Kogut, 1974). Significant success has also been achieved
in the study of the behavior of kinetic coefficients near
the critical points of one-component fluids and binary
mixtures (Swinney and Henry, 1973; Halperin et al.,
1974; Siggia et al., 1976).

In addition to the microscopic approach there is an al-
ternative way of describing critical phenomena, namely
the hydrodynamic description, which is made possible by
the existence of the characteristic macroscopic length
(1.4). Thisreview discusses some problems of critical be -
havior within the framework of hydrodynamic, theory. We
should point out, however, that we do not attempt a compre -
hensive experimental or even theoretical survey of hydro -

Rev. Mod. Phys., Vol. 50, No. 1, Part |, January 1978

dynamics of critical phenomena.

It is interesting that the first systematic theory of or-
der —disorder phenomena (including the critical points),
Landau’s mean field approximation, is a hydrodynamic
theory (Landau, 1937; Landau and Lifshitz, 1958).

According to this theory the free energy per unit
volume F can be expanded into a power series in a so-
called order parameter 7(») responsible for the phase
transition:

Fr)=F,+A[n@®)P+Bn@)]*+e-. (1.8)

The equilibrium value of 77 is determined from the con-
dition 8F/8m=0. The macroscopic approach in (1.6)
means that the discrete atomic structure is neglected and
any infinitesimal element of volume is always supposed
to be large enough to contain a large number of atoms.
Accordingly the “point” » in (1.6) signifies the existence
of some hydrodynamic scale 7, large compared with the
average distance between atoms “a” but small compared
with the characteristic distance L of the problem under
consideration:

X Vpya < L. (1.7)

Of course, in such theories it is assumed that all phy-
sical results, in particular the thermodynamic param-
eters A, B, and all functions of them, do not depend on
the choice of 7.

In the framework of the renormalization group theory
(Wilson and Kogut, 1974) not only the average values of
n(7) but also fluctuations with wavelengths x <7, 4 are
taken into account. One of the results of this theory is
the dependence of A and B on 7,4 in contradiction with
the essence of Landau’s theory. Actually it has been
found that the mean field theory is of zero order in the
expansion parameter € =d —4, where d is the dimension-
ality of space.

Qualitatively all restrictions of Landau’s theory were
clear from the beginning. Apart from the often noticed
impropriety of using a power series in (1.6) near the
singularity points, the original hydrodynamics approach
also breaks down near the critical point. Far from T,
all microscopic distances (average distance between par -
ticles, range of force, and correlation radius) are of
the same order of magnitude. But near T, according
to (1.4) £ =, Then the application of the hydrodynamic
theory is problematic when £ 2 7,4, and wrong when
E= L. .

Thus a demand arose for a renewed consideration of
the typical hydrodynamic problems for fluids near their
critical points. Only those problems will be prominent
in our considerations which have a close connection with
existing experiments or which may lead to new experi-
ments for studying the critical behavior of fluids.

Let us discuss first whether the usual hydrodynamic
theory can be applied to the critical fluid.

B. Hydrodynamic theory

The hydrodynamic approach is based on the following
four components:

1. Macroscopic approach.

2. Conservation laws for five thermodynamic variables
characterizing the local-equilibrium state of the pure
fluid (Landau and Lifshitz, 1963)
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dp(r, t) dv,(r,t) 9P, de(r, t)
-0; - ; =_ P
@ % T a %, © P at Va=PuDu
where

1 /ov v
Pu-y (52 50):

e is the energy density, P,, the flux of momentum, and
q the flux of heat.

3. Equation of state, i.e., the connection between hy-
drodynamic local variables p(7,t), v(r,t), and €(r, ¢).

4. Connection between P;, and ¢, and the driving for-
ces which are functions of p, v, €.

Let us discuss these components in a little more de-
tail.

In the case of a dilute system (gas) we have, in in-
creasing magnitudes, the three time scales shown in Fig.
1. Each region has its corresponding description. In
solids the situation is reversed: the “mean free time”
Tn is much less than the “collision time” 7_,;,. In the
intermediate liquid region they are of the same order of
magnitude. At the same time, the ratio of the charac-
teristic potential and kinetic energies is much smaller or
larger than unity for the gas and solid, respectively,
but is of the order of unity for liquids. The absence of
a small parameter is the well-known difficulty in the de-
velopment of the theory of liquids.

As a basis for description of small departures from
equilibrium, the difference between the slow macroscop-
ic characteristic times and the fast decay time of the
correlation functions of dynamic variables can be used.
Up to 1967 it was thought that such an approximation was
good enough. Recent results derived first in computer
simulation for hard spheres and disks (Alder and Wain-
wright, 1967) and then by different methods (Ernst et al.,
1971; Kawasaki, 1970b, 1971; Dorfman and Cohen, 1972;
Keyes and Oppenheim, 1973a) have shown that the auto-
correlation functions for, say, velocity have a power
rather than an exponential decay:

o(Ow(0)~1/1/2,

where d is the dimensionality of space.! These results
narrow the difference between macroscopic and micro-
scopic characteristic times and prevent the application
of the hydrodynamic equations to phenomena that vary on
a long enough time scale. The difficulties increase near
the critical points where the above-mentioned growth of
characteristic distances is accompanied by a corre-
sponding decrease of characteristic times.

The conservation laws are exact, but additional com-
plications appear when we pass to the problem of an

(1.9)

1n the two-dimensional case, v (£)v (0) ~1/¢t, i.e., the integral
over the correlation function which represents the kinetic co-
efficient has a logarithmic singularity. Thus the usual hydro-
dynamics does not exist in two dimensions. Keyes and Oppen-
he1m (1973a) developed a bilinear hydrodynamics, i.e., they
“found equations for the different correlation functions. In par-
ticular, they calculated the w-% dependent self-diffusion and
Brownian diffusion coefficients (Keyes and Oppenheim, 1973b;
Keyes, 1975). One of their results is that, for the case of
three dimensions, spatial dispersion (& = 0) leads to an expon-
ential decay of the velocity correlation function and the ‘tail”
(1.9) disappears.
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FIG. 1. Time scales for different processes in gases; 7.,
is the characteristic time of collisions between particles, 7,
is a mean free time. Each region has its corresponding de-
scription (microscopic, kinetic, and hydrodynamic).

equation of state for the fluctuations described, accord-
ing to Onsager’s assumption, by the hydrodynamic equa-
tions. :

Generally speaking the fluctuations are independent or
are only correlated, i.e., there is not a unique relation
between them. However, we indicated above that two
scales of distances exist—the macroscopic correlation
radius of the order parameter (1.4) and the microscopic
characteristic distance for all other variables. Similar-
ly it is natural to assume that two characteristic time
scales exist: a time for dissipation of some characteris-
tic parameter which tends to infinity upon approaching
the critical point, and a time for the establishment of
equilibrium in the remaining variables, whose fluctua-
tions donotpossess anomalies at the critical point. Such
an “adiabatic approximation” means that for a given non-
equilibrium (fluctuation) distribution of the order param-
eter the remaining thermodynamical variables assume
definite values. This assumption is analogous to the as-
sumption of incomplete equilibrium used in the theory of
so-called thermodynamic fluctuations of the quantity x
(Landau and Lifshitz, 1959). The relaxation time for es-
tablishing incomplete equilibrium corresponding to a
specified value of x is assumed to be much less than the
relaxation time for the quantity x itself. One is able to
formulate an equation of state in the sense of a nonlocal
and nonsynchronous relation between the change of the
pressure (chemical potential) and the distribution of the
densities (concentration) (Gitterman and Kontorovich,
1964; Gitterman and Gorodetskii, 1969):

pr, 1) —Po=fQ(’V—-1”,t—t')p(1", t)d >y’ dt

(3’;) T(r, 1), (1.10)
wir, t) - uo=fK('r -t =) el t)d v at
op o
+ <3T>MT(V, t)+<8p>mp(r, £).  (1.11)

The case of weak spatial dispersion and the absence of
temporal dispersion corresponds to the well-known Orn-
stein-Zernike form of the kernels @ and K

Qlr—r")= Q(r)=3(a+akr?.

It is interesting that in the immediate vicinity of T,
where the mean-field theory is unusable, we get, accord-
ing to modern scaling theory, @ (k)=3%(a+ ak*"), where
N<<1 and a=(8p/9p), has a different dependence on (T
—T,). In other words, the influence of all nonlinear
terms in p(#’, #’) which should appear in (1.10) amounts
to a linear relation between p and p without changing the
form of dispersion law (1.12), taking n=0.

$adb(r —v') +3aV,.; (1.12)
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To complete the system of hydrodynamic equations
(1.8), (1.10), and (1.11), it is necessary to add the ex-
plicit form of the momentum and heat fluxes, P;, and q.
The first terms of the series in powers of the gradients
of the thermodyhamical variables for the pure substance
usually have the following form (Landau and Lifshitz,
1963):

Pu=pr,1)8;, - 20(Dyy, - 3Da403,)+ EDaa by »

q=-AVT(r,1t), (1.13)

where 1, ¢, and X are the coefficients of shear and bulk
viscosity and the thermal conductivity respectively,
while D,, is determined by (1.8).

In general, near the critical point we have to general-
ize Eqs. (1.13) by taking into account the possible spatial
and temporal dispersion of the medium, similar to
(1.10)-(1.11). For example, the second equation in (1.13)
transforms into the following form:

q(r, t):f'h(fr—r’, L= )T, A dt . (1.14)

When some characteristic length of the problem under -
consideration is of the order of £, a spatial dispersion
appears. For example, the character of the particle
motion as manifested in the diffusion constant is differ-
ent for motion over distances comparable to £ and over
distances much larger than £. This nonlocal behavior
of the coefficient of Brownian diffusion was found experi-
mentally by Lyons et al. (1974).

In some special cases of processes with comparatively
slow relaxation (chemical reactions, energy transfer
to internal degrees of freedom, etc.) frequency-depen-
dent transport coefficients have been used for a long
time [see, for example, the dependence of the bulk vis-
cosity on the frequency of the form ¢=¢,(1 - iwT)™* (Lan-
dau and Lifshitz, 1963)]. Let us notice also the w -k
generalization of ordinary hydrodynamics by Kadanoff
and Martin (1963) and others, when, for example, in the
hydrodynamic formula for the correlation function g,,
= (—iw + DE?)™! they considered the self-diffusion coef-
ficient as a function of w and k, D =D(w, k) and then tried
to find such dependence in a self-consistent way. Thus
the equation for the correlation function has the follow-
ing form in a K -space:

t
—gt—gpp(k,mﬁ arD(k, T,k T) =0 . (1.15)

The non-Markovian behavior in Eqgs. (1.14), (1.15) leads
to very special hydrodynamic equations near the critical
point.

The four aspects of the hydrodynamic approach, re-
ferred to above, concern the need to take into account
the nonlinearity of the hydrodynamic equations and the
effect of compressibility. In most cases, not too close
to the critical point it is enough to consider only linear
terms in hydrodynamic equations, but sometimes the
nonlinearity is crucially important. An example of this
latter situation is the pure hydrodynamic method of find-
ing the relation between the singular part of the kinetic
coefficients (if any) and the singularities of the thermo-
dynamic quantities in the critical points (Gitterman and
Gorodetskii, 1969).
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The idea of obtaining the fluctuation contribution in the
kinetic coefficients is as follows. The distribution of the
fluctuations over the volume occupied by the fluid is
homogeneous when external differences of velocity and
temperature are absent. Therefore there are no fluxes
of energy and momentum associated with the fluctuations.
In the presence of an external field the distribution of
fluctuations changes in space, and energy and momentum
fluxes appear. Clearly we have to use nonlinear hydro-
dynamic equations, because in the linear approximation
there is no coupling between the external gradients and
thermal fluctuations.

The method described above leads to the same results
as all other methods: mode—mode coupling theory (Kad -
anoff and Swift, 1968; Swift, 1968; Kawasaki, 1970a)
dynamic scaling theory (Halperin et al., 1974; Siggia et.
al., 1976), etc. The defect of this method consists in the
assumption that the hydrodynamic description of the sin-
gular parts of the kinetic coefficients is valid in the cri-
tical region, while the advantages are in being able to
perform all further calculation in the framework of hy-
drodynamics without any additional assumptions, unlike
the other methods.

As regards compressibility, the inclusion of this ef-
fect is important as a rule near the critical point. It is
worth pointing out that sometimes it is necessary to in-
clude the compressibility even far from the critical point
where the fluid is practically incompressible. Thus for
a Brownian particle with mass m and velocity v moving
in a fluid, the theorem of equipartition of energy mv?/
2=%pT/2 is true only for a compressible fluid. For an
incompressible fluid there is the effect of entrainment
of the fluid and (m +M)v?/2=kzT/2, where M is the “in-
duced mass” of the fluid (Zwanzig and Bixon, 1975).

C. Outline

Let us give here more detailed information on the con-
tents of the subsequent sections.

We shall start (Sec. II) from hydrostatics (v =0 in the
hydrodynamic equations). Two problems of crucial im-
portance in all experiments near the critical points will
be discussed, namely, the establishment of equilibrium
and the influence of inhomogeneities on all measure-
ments near the critical points.

It has been known for many years that extremely long
times are needed to attain equilibrium states of fluids
near the critical point. Experimentalists were obliged
to wait hours or, sometimes, even days to get reprodu-
cible experimental data. Many incorrect results were
obtained in experiments with samples which did not at-
tain the equilibrium state. What were they waiting for?

We shall consider in Sec. II.A the establishment of
equilibrium on the molecular level without convective
motion. One finds both from theoretical considerations
and from comparison with experiment that it is the at-
tainment of thermal equilibrium which is the longest
part of the whole process. Let us mention here a few
qualitative results following from the nonlinearity of the
heat conductivity equation. All thermal disturbances dis-
sipate as a kind of thermal wave, i.e., they have a finite
velocity of propagation in the sample, in contradistinc-
tion to the usual diffusionlike solution of linear heat con-
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duction equations. The small temperature differences
persist for the longest time, and this time characterizes
the slowing down of processes in the establishment of
equilibrium as a whole near the critical point.

In Sec. IL.B the influence of gravity on the thermody-
namic properties of substances is discussed. This ef-
fect can be illustrated by the following well-known prob-
lem. Let us consider a column of ideal gas of height H
in the presence of gravity. The specific heat, defined as
the derivative with respect to temperature of the sum of
the internal and the potential energy, is close to the
specific heat at constant volume Cy for H<RT/mg or to
the specific heat at constant pressure C, for H >RT/mg.
Here m is the molecule mass, R is the gas constant, and
g is the acceleration due to gravity. In this example,
gravity effects become significant only for large H.

However, near the critical point because of the steep
rise of compressibility (1.1) even a small change in
pressure (due to the pressure of the upper layers on the
lower) may bring about changes in densities of more than
10% in a vessel only 1 cm high. The hydrostatic effect
thus exerts a considerable influence on all the measured
properties of a one-component fluid near the critical
point. Such an effect is also important in binary mix-
tures where, due to (1.2), gravity causes a variation of
concentration with height (Gitterman and Voronel, 1965).

In Sec. II.B we shall discuss the relation between the
specific heat C, of the “ideal” system (with constant den-
sity) and the real system described by C, which is an
average over the sample. It turns out that for all known
forms of equations of state C, > Cy, while the experimen-
tal results show Cy, < Cy, in some temperature interval.
This contradiction, if it exists, can be useful in choosing
the appropriate equation of state near the critical point.

In Sec. III three popular hydrodynamic problems are
discussed, namely the sphere motion, cylinder oscilla-
tion, and disk rotation in a compressible viscous fluid.
All these problems can be exploited to suggest new ex-
perimental methods near the critical point.

The force acting on a sphere moving in a fluid is very
closely connected with the diffusion coefficient in Brown-
ian motion (Sec. III.A). The latter is the motion of a
large heavy particle through a dense solvent of small
light molecules. It is interesting to mention that the re-
sults of the usual theory of Brownian motion are still
valid when the difference between the radius of Brownian
particle R and the size of solvent molecules is small
(Edwards, 1970; Keyes and Oppenheim, 1973b, 1975).
This not so clear question becomes even more difficult
near the critical point where the new characteristic pa-
rameter £ appears. In the vicinity of the critical point
£ increases [see Egs. (1.4)] and various relations be-
tween £ and R are possible. We shall discuss both ¢<R
and £>R. For £<R the asymptotic Einstein—Stokes rela-
tion between coefficient of Brownian diffusion D and vis-
cosity 7 is still valid for a compressible fluid in the li-
near approximation. Nonlinear corrections may change
this result as the critical point is approached. Further-
more, for £¢2 R, D should decrease more slowly than 1/
1 (Keyes, 1975). On the other hand,. for £>R another
source of stochasticity, different from the Langevin one
appears (Gitterman et al., 1970,1978). The motion of
the Brownian particle is governed by thermal density
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fluctuations with characteristic size £. The particle
moves for some time inside a given fluctuation. After
the decay of this fluctuation the particle is captured by
another fluctuation and so on. The stochasticity of such
Brownian motion is provided by the finite lifetime of

the fluctuations and the randomness of their decay. For
this “trapping” mechanism a sharp decrease of D towards
the critical point was found.

The transversal oscillation of an infinite cylinder in a
compressible viscous fluid will be discussed in Sec.
III.B. For an incompressible fluid a similar problem
was solved by Stokes 120 years ago. However, the first
measurements near the critical point in the mixture an-
iline-cyclohexane (Ballaro et al., 1971) showed the in-
sufficiency of the Stokes approximation for the resistive
force acting on the oscillating cylinder. The viscosity
values calculated with the help of the Stokes formula
coincide with independent calibration measurements in
the region not too close to the critical point T, (T - T,)/
T,z 10™, but there is a clear discrepancy very close to
the critical point, 10°< (T - T,)/T,=10"%. Apart from
the well-known Mach’s number, another dimensionless
small parameter can be formed, namely (£7+ £)/cpR
<1, where n and ¢ are the shear and bulk viscosities,
and R is the cylinder radius. The last inequality can be
violated near the critical point, and the compressibility
corrections to this parameter may be more important
than corrections to Mach’s number. The calculations de-
scribed in Sec. III.B can be applied to the vibrating-wire
viscometer (Tough et al., 1964), which has some advan-
tages for viscosity measurements near the critical point
compared with other direct methods (capillary, falling
sphere, rotating cylinder, oscillating disk). The latter
methods have a series of defects associated with the in-
crease of compressibility, hydrostatic effect, ease of
phase separation due to the decrease of surface energy,
and difficulties with thermal insulation. Furthermore,
the vibrating-wire method has smaller hydrodynamic
corrections (like end effects) than other methods.

The consideration of the third typical hydrodynamic
problem, the rotation of an infinite flat disk in a com-
pressible fluid, will be given in Sec. III.C. Tsechanskaya
(1956) studied experimentally the dissolution of a disk
of terephtatic acid rotating in a water—three-ethylamine
mixture near the critical point. She found a sharp de-

.crease in the convective diffusion coefficient as the cri-

tical point was approached. The theoretical approach to
this problem consists of taking into account the finite
depth of the fluid layer and the compressibility of a fluid
and then finding the diffusion flow. It turns out that the
finiteness of the layer is more important than the com-
pressibility. A correction to the'frictional force is
found for an arbitrary relation between the height of the
layer and the thickness of the boundary layer (n/pw)*/?
where w is frequency of the disk rotation.

Both homogeneous and inhomogeneous states can be
realized depending on whether the experiment is per-
formed immediately after the heating of the fluid or
after the establishment of the hydrostatic effect. We
shall give formulas for both cases.

In Sec. IV the theory of the onset of free convection and
the distinguishing features of internal and surface gravity
wave propagation near the critical point will be given.
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Convective motion in a fluid heated from below is stim-
ulated by its thermal expansion, while density variations
due to hydrostatic pressure and dissipative processes
taking place in a fluid in motion tend to return the fluid
to its initial state. )

Usually one analyzes the effect of only one of these
two factors on the conditions for the onset of convection,
leading to one of two criteria, that of Rayleigh or of
Schwarzchild. When compressijbility is taken into ac-
count, but the dissipative processes are neglected, one
obtains for the onset of convection the Schwarzchild cri-
terion:

ey -8

> (— ﬂ) no convection
dz

< <—~——> convection
dz
(1.16)

where (VT),, is known as the adiabatic temperature gra-
dient.

When compressibility is neglected but dissipative pro-
cesses are taken into account, we are led to the Rayleigh
criterion:

%p
g (?f) LT -To)

VK

<Y, no convection 1.17)

>Y, convection.

Here T, - T, is the temperature difference across the
layer of liquid of height I, and all other parameters in
the left-hand side of (1.16) and (1.17) have their usual
meaning. The critical Rayleigh number 7, depends on
the boundary conditions.

Close to the critical point of pure fluids the compres-
sibility increases sharply [see Eq. (1.1)] and the trans-
port coefficients also increase. Consequently it is es-
sential to consider both compressibility and dissipation
in establishing criteria for the onset of convection (see
Sec. IV.A) (Gitterman and Steinberg, 1970a, b).

The appearance of a nonstationary (oscillatory) instab-
ility in addition to the stationary, Bénard effect (which,
as a matter of fact, is called free convection), is a sig-
nificant distinction between compressible and incompres-
sible fluids (Sec. IV.C) (Steinberg, 1971b).

It has been shown (Pellew and Southwell, 1940) that for
an incompressible fluid only the stationary convective in-
stability appears. However, the equations of convection
for compressible fluids may also have complex eigen-
values, i.e., oscillatory convective instability is pos-
sible. It turned out that oscillatory convection may take
place only in the immediate vicinity of the critical point.
The density-relaxation mechanism, related to the bulk
viscosity, is the new factor responsible for the new type
of instability.

In Sec. IV.D the propagation of internal and surface
gravity waves in a critical fluid will be d1scussed (Git-
terman and Steinberg, 1972).

Internal gravity waves can be propagated as distur-
bances of an inhomogeneous fluid in mechanical equili-
brium. The propagation of internal waves is closely
related to stationary and oscillatory convective instabil-
ities. Usually one considers internal waves in a fluid
stratified by the gravity rather than by temperature
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fluids. There have been no investigations of the connec-
tion between internal waves and convective instability.
In the compressible fluid both these phenomena are de-
scribed by the same equations, as seen in Sec. IV.D.

The eigenvalues of these equations depend on the
boundary conditions. When one of the boundaries or both
are free, a new type of wave appears, namely, surface
(or Rayleigh) waves. Such waves, as well as the gravity
waves, propagating on the boundary surface between
two compressible fluids, have some anomalies towards
the critical point.

Finally, in Sec. V some conclusions will be given.

Il. HYDROSTATICS
A. Thermal relaxation

The establishment of equilibrium in a fluid at rest near
the critical point is an interesting and yet not fully un-
derstood problem.

It is natural to expect that equilibrium is established
in two steps: first there is a relatively rapid smoothing
of mechanical perturbations on a hydrodynamic level
(lasting on the order of a minute) and then there is the
slower process of establishment of total equilibrium on
the molecular level (lasting hours and more) (Lorenzen,
1953; Palmer, 1954; Chaskin et al., 1967; Dahl and
Moldover, 1972; Brown and Meyer, 1973).

We consider here only the establishment of thermal
equilibrium on the molecular level, given the equilibri-
um distribution of density (Gitterman and Steinberg,
1972a). The isothermal process by which the density
reaches its equilibrium is a comparatively rapid one—
theoretical considerations and comparison with experi-
ment yield characteristic times of between 1 and 10 min
for typical systems (Berestov and Malyshenko, 1970).

We shall show below that, in order to obtain reliable
experimental data, one should eliminate temperature
inhomogeneities induced by the inhomogeneity of the ex-
ternal temperature field, the different speeds of heat
transfer from two phases in two-phase system, etc.

In cases where these temperature differences are un-
avoidable, for example, in steady-state measurements
of thermal conductivity, one should wait long enough
for an equilibrium distribution to be established. If this
condition is not fulfilled, then by taking measurements
during the establishment of the final temperature dis-
tribution, one may find thermal conductivities which dif-
fer from experiment to experiment.

The heat conduction equation governing the establish-
ment of thermal equilibriumin a single-phase region has
the usual form

aT a2

Pcp—é—;: o2% (2.1)

where A is the conductivity, 7 the time, and z the verti-
cal coordinate.

Equation (2.1) contains, as usual, the specific heat at
constant pressure, since if one has a vertical density
inhomogeneity, an equilibrium pressure is established
at a given level more rapidly than the equilibrium den-
sity, by a factor equal to the ratio of the sound velocity
to the velocity of a fluid element.

Near the critical point the establishment of thermal
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equilibrium depends on the density distribution, itself
dependent on the temperature distribution. This means
that the nonlinearity of Eq. (2.1) plays an essential role.

The dependence of the density p and specific heat C, on
height and temperature® are determined by the simultan-
eous solution of the two equations of hydrostatics, name-
ly the Euler equation dp = —pgdz, and the equation of
state near the critical point, p =p(p, T).

Eliminating p from these two equations, one finds p
=p(T, z). C, is found from thermodynamic relations.
The resultant p and C, are then substituted into Eq. (2.1).
This means that the density distribution p(z, T) at any
instant of time 7 is being thermodynamically adjusted
as the temperature changes slowly, so that we can study
the p(z, T) dépendence for an arbitrary temperature dis-
tribution T'(z, 7).

The asymptotic form of the equation of state for the
temperature close to the critical one can be written in
the form

3P1>
= Bp®-! s
<apl t o1

where the dimensionless parameters ¢= (T - T,)/T,, p,
=(p-p,)/p,, and p,=(p —p,)/p, characterize the distance
from the critical point, and § is the critical index equal
to approximately 4.5, according to scaling theory and
experiment.

Restrictions on the validity of (2.2) in certain situations
is discussed by Gitterman and Malyshenko (1967) and
Chalyi and Alechin (1970). These authors also derive
the density distribution corresponding to Eq. (2.2):

p,=[(6/B)|h+c(t-a)|]"/®sgnlh+c(t-a)],

(2.2)

(2.3)

where the dimensionless height k= (gp,/p;)z is reckoned
upward from the level p, =0, ¢t=a, and c=(8p,/8t),.

From the well-known thermodynamic relation C,~ (ap/
9p)™! we obtain: C,=Cy(Bpl!)"'. Using these formulas
together with (2.2) and (2.3) one can rewrite Eq. (2.1) as

o¢ ,-_ §—-1/68 82¢
%9 =mg i (2.4)

where ¢ = (5/B)[h+c(t - a)] and m = (AB/p,C3)(gp,/p.)-

If the critical level is inside the sample, then Eq. (2.4)
is a degenerate quasilinear equation of the parabolic
type. Such equations arise in certain other physical
problems, e.g., in the study of radiative heat transfer,
in the theory of electronic thermal conductivity in a plas-
ma, and in filtration theory. For an infinite system this
equation has a homogeneous solution of the thermal-wave
type with a finite propagation velocity for the distur-
bances irrespective of the value of 6§ (Zel’dovich and
Kompaneets, 1950). The thermal-wave solution of the
nonlinear equation is quite different from solutions of
linear equations. For linear heat transfer processes,
changes in temperature on the boundary elicit an instan-
taneous response in the temperature of each part of the
system. On the contrary, for processes which are
governed by Eq. (2.4) heat is propagated with a finite

’For simplicity we neglect here the change of heat conductivity
coefficient compared with that of C, [see, however, Egs. (4.18)
and (4.19) belowl].
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velocity, i.e., any fluid element will have a delayed re-
sponse to changes in the boundary temperature.

We are interested in the solution of the boundary-value
problem with given temperature disturbance AT of a fluid
layer of thickness I:

T=0 at7=0, T=AT atz=0, T=0 atz=1. (2.5)

. The characteristic times of establishment of equili-
brium 7, have been calculated numerically. The results
are as follows: '

A
T,~(10-200)hours at TT;

[

~(10"5-10"") cm™. (2.6)

As the characteristic time 7, in (2.6) we adopt the time
at which the deviation from the actual steady-state dis-
tribution does not exceed 10™*°K.

These estimates of 7, are in accordance with those ob-
tained for the establishment of equilibrium in calorimet-
ric experiments (Chaskin et al., 1967) and with the re-
laxation times obtained from the width of the central
component of the Rayleigh-scattering spectrum evaluat-
ed at k~1/1.

A further general property of the nonlinear equation
(2.4) is that the relaxation time 7, depends on the bound-
ary conditions, in particular on the initial temperature
difference AT. From the numerical calculation one finds
To~(AT)/%. This means that the small temperature in-
homogeneities persist the longest and lead to relaxation
times of the order of hours or more.

In some experiments the corresponding times were
found to be relatively short (of the order of minutes).

In these cases either there were actually no tempera-
ture differences or, more usually, the sensitivity of the
method used to determine whether equilibrium had been
established was not adequate. Evidence in favor of this
explanation comes from the observation of short times
for the establishment of equilibrium in the work of
Bykov et al. (1971). However, their special devices (a
stirrer and an isothermal cup) which eliminated large
temperature differences, also eliminated these short
times. Subsequently an extremely sensitive method, in-
volving thermograms, detected longer times due to the
persistent small temperature differences in the fluid.

Another example of the effect of temperature differ-
ences on the properties of a fluid near the critical point
can be found in the experiment of Blagoi et al. (1970),
although this work was done on the mixture CH,~CF,
and not a pure fluid. They found inhomogeneities in the
concentration along the height of the sample. However,
after further investigation it became clear that the con-
centration inhomogeneities were actually a consequence,
of small temperature differences of the order 10-2 deg/
cm. In later work by the same authors (Blagoi et al.,
1971) the concentration differences indeed disappeared
when special measures were taken to avoid temperature
differences (so that AT/I<5x 10~* deg/cm). Meanwhile
some investigators had referred to the results given in
the first work, but took no notice of the later results.

This example demonstrates the need for eliminating
temperature inhomogeneities to obtain reproducible data
near T, or, failing that, of waiting long enough for
equilibrium distribution to be established.

To complete our consideration of the relaxation time
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problem let us discuss the measurements of thermal
relaxation times near the critical point of *He (Dahl and
Moldover, 1972; Brown and Meyer, 1972) which still
have no explanation. These experiments found a strong
dependence of 7,, the relaxation time for given tempera-
ture difference, on the regions of the phase diagram. It
turned out that 7, is very short (less than 3 sec) every-
where in the one-phase part of the phase diagram and,
in general, large (100-1000 sec) in the two-phase re-
gion near the critical point. It is noteworthy that 7, is
large below the coexistence temperature near the gas
branch of the coexistence curve and small in the sym-
metric part of the phase diagram below the liquid
branch of coexistence curve. A physically clear but
probably not easily solvable problem in connection with
thermal relaxation is the following: can one find the
law of meniscus motion when the temperature changes
from T, to T, and the initial and final densities are
known from the Maxwell area rule? Is the increase of
T, connected with the small velocities of the meniscus
or with its pendulumlike oscillations near the final
state, or with something else ?

B. Specific heat of inhomogeneous systems

The hydrostatic effect is one of the most important
factors governing the outcome of measurements near
the critical point. In fact, the critical point of the fluid
is an isolated point on the p -7 phase diagram. This
means that due to gravity, the critical conditions are
realized at a temperature equal to the critical tempera-
ture only on the one level of the sample where the den-
sity has its critical value. Measurements carried out
over a finite-height sample will average over different
densities. At T'=T, the density differences are over
10% for a vessel of height 1 cm, i.e., they are very im-
portant for all measurement near the critical point.

As our understanding of critical phenomena increases
we describe them by new, more realistic equations of
state. Comprehensive theories of the hydrostatic effect
and its influence on measurements of all thermodynamic
quantities have been developed for each form of the
equation of state. The simplest example was given
above in Egs. (2.2), (2.3).

Baehr (1954) presented a theory based on the van der
Waals equation of state. The considerations of Gitter-
man and Malyshenko (1967) and Berestov ef al. (1969)
were based on van der Waals’ equation modified to
allow for a divergent specific heat at constant volume.
Numerical calculations of the hydrostatic effect were
performed by Schmidt (1971) using the Vincentini- Mis-
soni et al. (1969) empirical equation of state and by
Hohenberg and Barmatz (1972) based on the parametric
equation of state (Schofield et al., 1969).

We refer the reader to the original articles for details
and will be content to present only one example, con-
cerning the behavior of C, with and without gravity above
the critical point of a pure fluid, i.e., for T'>T,.

Let the mean density in the vessel be equal to the cri-
tical density g—)=pc. Then the specific heat of the in-
homogeneous system is obtained by averaging over the
height % of the vessel the quantity (for details see Bere-
stov et al., 1969):
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2.7

Cv,infcv(T»P)*(sS(T’p)) ) < 89(T,h)>h )

ap aT

The averaging of the first term in (2.7) leads to a de-
crease in the value of the specific heat as compared to
the “ideal” system (when p=p, in the whole fluid) and it
is, in particular, the cause of the finiteness of the spe-
cific heat at T=T.

As we move away, but not too far, from T=T_, the in-
homogeneity in the density decreases, i.e., the avera-
ging of the second term in (2.7), a term which is absent
in the “ideal” case, makes a positive contribution to the
measurable specific heat. Far from the critical point
compressibility is small; therefore there is no differ-
ence between “ideal” (without gravity) and real systems.
Thus, for the intermediate temperature region, we can-
not, generally speaking, say beforehand whether the
homogeneous or the inhomogeneous system will have the
higher specific heat.

The explicit form of the second term on the right-hand
side of Eq. (2.7) depends on the form of the equation of
state near the critical point. Using the above-men-
tioned equations of state it was found (Berestov ef al.,
1973) that in a fairly wide temperature interval near the
critical point the specific heat in the gravitational field
(Ev)g is larger than the “ideal” specific heat (Fig. 2):

(Cy)>(Cy), ., — theory . (2.8)

On the other hand, the experiments on ethane (Bere-
stov et al., 1973), argon (Chashkin ef al., 1967), and
helium (Moldover, 1969) lead to a dependence opposite
to that of (2.8), i.e., the presence of gravity always
leads to a decrease in the specific heat (Fig. 2). The
same conclusion is borne out by the experiments of Ed-
wards et al. (1968) on xenon, if one chooses the critical
temperature correctly (Berestov et al., 1973).

The “ideality” of the system can apparently be a-
chieved experimentally by decreasing the height of the
vessel (Edwards et al., 1968) or by introducing a stir-
ring system (Chashkin et al., 1967). Of course doing the
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FIG. 2. The specific heat of a liquid near the critical point.
The continuous curve corresponds to the experimental values
of the “ideal” specific heat (C,),=, of ethane and the points
represent the specific heat of ethane in the gravitational field.
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experiment in outer space would achieve the same goal.

It is possible that further measurements of the spe-
cific heats of inhomogeneous and homogeneous fluids
will turn out to be fundamentally important for estab-
lishing the equation of state of a fluid near the critical
point.

1. SOME TYPICAL HYDRODYNAMIC PROBLEMS
A. Motion of a sphere in a compressible fluid:
Brownian motion

Let us start from a well-known hydrodyﬁamic prob-
lem, the resistive force acting on a sphere moving in a
fluid. This problem is closely connected with the
Brownian motion of a tagged body in the fluid in the fol-
lowing manner.

According to the basic assumption of the theory of
Brownian motion, the force acting on the Brownian par-
ticle can be divided into a systematic part (friction n)
and a random part. Thus the Langevin equation for the
motion of a Brownian particle of mass M is®

M% +0% = f random (3.1)
or in Fourier components
x,=a(w)f,; a(w)=]~Mo? —iwn(w)]-* . (3.2)

Here we introduced the generalized susceptibility
a(w), connected via the fluctuation-dissipation theorem
with fluctuations of the quantity x. Thus it is easily
shown (Leontovich, 1965; Gitterman and Gerzenstein,
1966) for the mean square displacement of the Brownian
particle that

a(w)

Zk—?T —— (1 ~coswr)dw .
i w

X37)=[x(t) = x(t+7)]%=

-0

(3.3)

Since a(w) is analytic, the integral (3.3) can be calcu-
lated as a contour integral.

The pole of the integrand in (3.3) at w=0 determines
the asymptotic behavior and we then obtain the well-
known Stokes—Einstein relation connecting the diffusion
coefficient D, the mobility of Brownian particle b, and
its radius R:

X*(1)=2D7; D=bkyT; b=(67Rn)"" . (3.4)

The poles of the function a(w) in Eq. (3.3) determine
the characteristic times of nonstationary processes,
which, in principle, can be found experimentally. Thus
the problem of Brownian motion reduces to determining
the function a(w) or according to (3.2), the function
1n(w). For a macroscopic particle this reduces to a
hydrodynamic problem of small-amplitude oscillations
of a sphere about a fixed point in a compressible
viscous fluid.

To solve the latter problem let us rewrite the system
of hydrodynamic equations (1.8), (1.10), (1.12), and

3The influence of the long-time behavior of funiom o0 Eq. (3.1),
which is similar to (1.9), was considered recently by Michaels
and Oppenheim (1975).
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(1.13):

v
Po 57 +p(vV)v= = Vp - aVV3p+ V3 +(T§’ +§> vV divy

Pa_ﬁ; +p, dive +div(pv) =0; Vp=c2Vp . (3.5)

For simplicity we omit here the equation of heat con-
duction. We consider its influence only, in the choice of
the corresponding square of the sound velocity ¢? in
(3.5): either isothermal c®=c% or adiabatic ¢ =c2, de-
pending on the range of frequencies under consideration.
In the case of asymptotic behavior (w=0) we must use
cp. In the correct terms [ with characteristic frequency
w,=c%p,/(£M+¢&), see Eq. (3.9) below] the isothermal
velocity ¢, appears when the dissipative terms are
large (Lukin ef al., 1968), namely when

pics ¢ R?

K> —5
'577+Cv

(3.6)
and ¢ =c,, when the inequality opposite to (3.6) is satis-
fied.

The boundary conditions for Eqgs. (3.5) are of the form

(3.7

The second boundary condition in (3.7) means that the
fluid adheres perfectly to the surface of the sphere. Be-
sides this “stick” limit, one can consider also the “slip”
case, when the normal and tangential behavior of the
fluid are specified separately (Zwanzig and Bixon, 1970).
This leads to a change in the numerical factor in (3.4)
from 6 to 4. The two nonlinear terms and the Ornstein—
Zernicke fluctuation term are underlined in the system
of Egs. (3.5). To start with let us neglect these terms.
Then the linear problem of the oscillation of the sphere
in a compressible fluid can be solved (Gitterman and
Gerzenstein, 1966; Zwanzig and Bixon, 1970; Chow and
Hermans, 1973), and the function n(w) in (3.2) has the
following form:

vlr—>eo =0; v]r:RzUEUwe-iwt *

(L= )1 —x+3x%)+2(1—x)(1 = 1y —15?)

n(w) =27k (21 -2+ 1A -y+27)
(3.8)
where
w\l/2 sz 1/2 iczp
=7 — . =7 [ ——— . = —50 .
i) o) e
N P .
wl__poRz’B —77+3 (3.9)

Neglect of compressibility (y =0) reduces Eq. (3.8) to
the well-known Boussinesq approximation for an incom-
pressible fluid. It turns out (Zwanzig and Bixon, 1970;
Widom, 1971) that it suffices to take into account the w
dependence of the mobility b(w) in the Boussinesq ap-
proximation [instead of the constant value b = (67Rn)"*]
in order to obtain from the hydrodynamic equations
(3.5) the power rather than the exponential decay of the
velocity correlation function (1.9).

On the other hand, the inclusion of the compressibility
is crucially important for the initial rather than the as-
ymptotic behavior of the velocity correlation function
(see end of Sec.ILB above).
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Let us return to our problem of Brownian motion near
the critical point. In experiments on Brownian motion it
is in principle possible to measure both the asymptotic
slope of the straight line X 3(7) vs 7 for 7 —« [see Eq.
(3.4)] and the characteristic times of the nonstationary
processes.

We see from Eq. (3.9) that two new characteristic
hydrodynamic frequencies appear: w,=- iczpo/(% n+£)
and w, =— in/p, R*. Whereas w, is determined only by
the properties of the fluid, especially by T - T_, the
characteristic frequency w, depends strongly on the size
R of the Brownian particle. However, for R sufficiently
small w, is very high, and the correction to the asymp-
totic behavior of Brownian motion is determined com-
pletely by w,, i.e., by the properties of the fluid, and
does not depend on the size and shape of the Brownian
particle.

Then instead of the usual characteristic time [ see Eq.
(3.1)] 7~M/n which is of the order of 10~° sec for R
=10"% cm, we get

1

4
- _3N+tE 105 _10-6 T~
T, Tl Zp (10 10~ °) sec at

TC

c

=10-4-10° .

(3.10)

The characteristic time 7,~1/ |w, | is rather small for
the usual sizes of Brownian particles*: R< vBn /poc
~(10"%=10"%) cm.

The force of resistance acting on the Brownian par-
ticle for w—0 depends on which of the conditions w
> |w,| or w< |w,| holds.

Under normal conditions, i.e., for displacements of a
Brownian particle during times larger than 7, (3.10), the
resistive force has the Stokes value (3.4). Displace-
ments during times smaller than 7, correspond to y
~i(Bw/w 1 /2=3"2x in Eq. (3.8), i.e.,

- - kBT
M(w) =6TRM e Or D= CrRn, (3.11)
where
__8n+6¢
Nets =7 11n+ 6¢ . (312)

Accordingly, Eq. (3.4) is changed by replacing 1 by
Tezs, Where 1217../n>0.7.

Thus, within the framework of linear hydrodynamics,
Brownian motion has no striking anomalies near the
critical point. These conclusions are based on the as-
sumption that there is no strong frequency dependence of
the shear and bulk viscosities, at least for oscillation
periods of the order of the displacement times of the
Brownian particle which are of interest to us. Other-
wise, new poles can appear in the integrand of Eq. (3.3).

4Apart from Brownian motion, other methods can also be
utilized for studying characteristic times near the critical
point, for example measurement of the spectrum of modulation
of light or sound passing through the critical fluid, or mea-
surement of the cross-susceptibility of a suspension of non-
spherical conducting particles. These more direct methods
give values of the characteristic times averaged over the sam-
ple, whereas the Brownian motion has a local character and
therefore can be used also to study inhomogeneities near criti-
cal points.
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We turn now to the influence of nonlinear and fluctua-
tion effects on Brownian motion near the critical point.
These effects are described by the underlined terms in
Eqgs. (3.5).

The magnitude of the convective nonlinear term
p(vV)v in the Navier—Stokes equation relative to nV3
is determined by the dimensionless Reynolds number
P(V)v/nV? ~ pvR /M, where v=(kyT/m)'/2. The Reyn-
olds number is small for all usual sizes of Brownian
particles. The first correction term to the Stokes for-
mula (3.4) may be taken into account in the well-known
Oseen approximation.

The nonlinear term div(pv) in the continuity equation
in (3.5) was taken into account as a perturbation by
Lukin et al. (1968) with the ratio «w2/«w? [ see Eq. (3.9)]
as the small parameter. The inclusion of nonlinearity
means physically that one considers the interference be-
tween the given motion of the particle (sphere oscilla-
tion in a compressible fluid) and its Brownian motion.
It was found that nonlinearity leads to a decrease in
mobility of the Brownian particle near the critical point:

b= {GWnR [1 +—FkpTe f(ﬂﬂ}l S A1)~02 . (3.13)
2mc % pR? g ’ - :

The second term on the right-hand side of (3.13) is
important only for small R (R~10~° ¢m) and very close
to the critical point [ (7'~ T,)/T,~10-5-10"°%]. For par-
ticles of given size R, Eq. (3.13) indicates proximity to
the critical point when the decrease in mobility becomes
important. However, Eq. (3.13) itself becomes inappli-
cable when the correction term becomes comparable to
the Stokes term.

The system of Eqs. (3.5) also contains the Ornstein-
Zernike fluctuation term, aVV2p, which we have so far
neglected. This term describes weak spatial dispersion
[ see Eq. (1.12)]; its effect on the mobility of the
Brownian particle was studied by Kozlov ef al. (1968).

The fluctuation term increases the order of the system
of hydrodynamic equations. Therefore one needs addi-
tional boundary conditions. In the work of Kozlov ef al.
(1968) such-a condition was chosen in the form of the
connection between the pressure and density on the sur-
face of the particle

ps(R)=es(R)pg(R) , (3.14)

where pg(R), pg(R), and C4(R) are the pressure, the
density, and the compressibility on the particle surface,
respectively. The fluid layer adjoining the surface of
the particle is subject to surface forces. Therefore the
conditions here are different from the critical ones,

and Cg(R) is of the order of the compressibility far
from the critical point.

The calculation was done by perturbation theory in the
small parameter w?/w? [ see Eq. (3.9)], and only terms
involving the highest power of the bulk viscosity were
taken into account. For the mobility of the Brownian
particle Kozlov et al. found

-1
kyT 4n+3€§}} oyt

TpRa 190+ 12 (3.15)

b= {67171R [1 +v

As may be seen from Eq. (3.15), the correction to the
mobility of the Brownian particle remains finite at the
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critical point, as expected in an Ornstein-Zernike treat-
ment.

All the results derived above for the one-component
fluid carry over to binary mixtures by the substitution
of

(@u/9¢)y r
(1/p0)(8p/8¢)%

for the sound velocity.

Brownian motion near the critical points of binary
mixtures was studied by Keyes (1975) using bilinear
hydrodynamics (Keyes and Oppenheim, 1973a, b; 1975).
He found for the coefficient of diffusion in Brownian
motion:

kT [ dR

=37 ET0) X*(kR);
x*(kR) =3 S0(ER) '(;’jgl cos(kR) (3.16)

The cutoff function x*(kR) in (3.16) [x(y)=1 at y =0 and
x(v)~0 at y = 7] is the Fourier transform of the three-
dimensional step function 6(» — 7,;). The origin of this
function is the finite radius of the Brownian particle,
whose density is given by n(r,#)=(27R%)*6[ » — r,(#)] .

To find D from Eq. (3.16) we have to know the spatial
dispersion of the viscosity n=n(k) [ cf. Eq. (1.14)]. This
function was found by Kawasaki and Lo (1972)

n(k) =n(T)[1-FkE)] ,

where 1(7T) is the thermodynamic viscosity, £ is the
correlation radius of the concentration fluctuations and
F(y) is the function tabulated by Kawasaki and Lo (1972),
where F(0)=0; F(10)=0.15; F(50)=0.29, etc.

Substituting (3.17) in (3.16) one finds that the magni-
tude of the integral is determined by the relative value
of the correlation radius £ and the size of the Brownian
particle R. Far from the critical point R> £ and Eq.
(3.16) reduces to within an accuracy of 2 (Keyes and
Oppenheim, 1973a), to the Stokes~Einstein result (3.4).

Only in the immediate vicinity of the critical point,
where R <£ does the function F in (3.17) become impor-
tant and the coefficient of the Brownian motion (3.16)
start to decrease more slowly than 1/7.

In summary, Brownian diffusion slows down near the
critical point. According to linear theory (3.4) the dif-
fusion coefficient is proportional to 1/1. As the critical
point is approached the nonlinear corrections to this re-
sult become important and lead to a faster decrease of
the coefficient of the Brownian diffusion [ see Eq. (3.13)].
The asymptotic (7 —~ Tc) behavior is then described in
terms of a renormalized viscosity coefficient [ see Egs.
(3.15) and (3.11)].

On the other hand, the inclusion of the spatial disper-
sion of the viscosity (3.17) leads to a slower decrease of
D than 1/n. This fact is important when the viscosity
anomaly is obtained from Brownian motion experiments.

All the results mentioned above, apart from (3.16) and
(3.17), are based on the Langevin equation (3.1). How-
ever, as the critical point is approached the correlation
radius £ increases and, in general, attains the size R of
the Brownian particle. Naturally, in such a situation the
usual conception of stochasticity does not work, because

(3.17)
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it is based on the assumption that the sphere must be
large compared to the size of the fluid particles.

Nevertheless, another source of stochasticity can be
found in this case (Gitterman, Likht, and Steinberg,
1970, 1978).

Let us assume that when R < £ the fluctuations carry
the Brownian particle away and it moves some time to-
gether with the fluctuation. After the decay of the given
fluctuation, which is a stochastic process, the Brownian
particle moves independently in the medium with some
friction till its capture by another fluctuation.

The simplest description of this process is the follow-
ing. The Brownian particle executes two kinds of
motion:

(3.18)
(3.19)

Mx =— B, x free motion ,
Mx=B(W - %) motion with fluctuation .

Here B=67nR and B, =671, R are the friction coeffi-
cients for the Brownian particle moving in the medium
and inside the fluctuation, respectively, and Wis the
velocity of the fluctuations.

The usual case R>> £ corresponds to considering only
Eq. (3.18) with the random momentum p,=MU, possessed
by the particle at £=£,. Einstein’s relation (3.4) is ob-
tained by averaging the solution of (3.18) over the initial
conditions (UZ=k,T/M).

When R < £ the particle moves primarily with the fluc-
tuation [ Eq. (3.19)] and one may neglect the motion be-
tween captures, i.e., Eq. (3.18) may be ignored al-
together. Assuming the Maxwell distribution for the
velocity of fluctuation one finds (Gitterman, Likht, and
Steinberg, 1970)

D~kgTT,/12M,, , (3.20)
where M,, is the “mass” of the fluctuation and 7, its
lifetime.

The same result can be found by the microscopic ap-
proach (Gitterman et al., 1978).

Thus we get formulas for the coefficient of Brownian
diffusion D which are very differentfrom those discussed
above. Equation (3.20) contains a strong dependence on
the proximity to the critical point determined by M,, ~ &,
as well as by 7; which is perhaps proportional to &.
Finally

D~E-2~[(T-T,)/T)]*> (3.21)
Here we used £~ [(T-T,)/T,]" ", where v=1% is the
critical index for &§. Thus, for R<%, i.e., for a Brow-
nian particle of sufficiently small size, and in the im-
mediate vicinity of the critical point, one gets a sharp
decrease of the coefficient of the Brownian diffusion as

compared to the usual 1/7 dependence.

Let us consider here a few experimental data con-
cerning Brownian motion near the critical points of
binary mixtures. There are three sets of data avail-
able: microphotography experiments on phenol—water
(Baltsevich ef al., 1966) and on methanol—-cyclohexane
mixture (Martynets and Matizen, 1970), and autocorre-
lation spectroscopy measurements on the mixture nitro-
ethane—isooctane (Lyons ef al., 1973, 1974).

Teflon microspheres of radius 3 X 10~° cm were used
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as the Brownian particles by Lyons ef al. (1974). These
. experiments were performed down to (T'-T,)/T,=3

X 1072, The reduction of the coefficient of Brownian dif-
fusion D by 30% found in this experiment was connected
with the parallel increase of viscosity 1 [ see Eq. (3.4)].

This correlation between changes in D and 7 was not
found in other experiments where the coefficient of
Brownian motion decreased by half (Martynets and Mati-
zen, 1970) or even by a factor of 4 (Baltsevich et al.,
1967).

In the work of Martynets and Matizen (1970) glass-dust
particles of radius 2 X10"® cm were used in a mixture at
temperatures T satisfying (T - T,)/T,= 3 x10"2. Under
such conditions the correlation radius does not exceed
10% of the radius of the Brownian particles, and the
mechanism of “trapping” of the particles by fluctuations
[ see Eqgs. (3.18)-(3.20)] cannot yet appear (Lyons et al.,
1973). . )

On the other hand, in the experiments of Baltsevich
et al. (1967) “accidental dust particles” of possibly
smaller sizes were used. Estimates (Gitterman, Likht,
and Steinberg, 1970) show that the “trapping” mecha-
nism might possibly offer an explanation of their experi-
ment.

B. Cylinder oscillation (Stoke’s problem)

Finding the viscosity coefficients of a fluid by mea-
suring the damping of the transverse oscillation of a
wire in this fluid was a method suggested by Tough et
al. (1964); subsequently it was applied to measurements
near the critical point of binary mixtures by Ballaro et
al. (1971) and to the superfluid transition by Bruschi et
al. (1975).

The displacement from equilibrium of the cylindrical
wire element y(x,?), (0<sx <l) is described by the follow-
ing equation:
82y
9x 2

8%y 3y
Mogzat gy =

T +F . (3.22)

Here m, is the mass per unit length, T is the tension

K
e <1 (1 + 2(2}')(1 - ezlne)
1 2 T
e > 1 —-y(1+1:-E)+2-

V2

and q, is the damping of oscillations in air. The func-
tion F determines the reaction of the fluid on the wire
and can be written in the form

9 92
F —wk'—j—)— Y

TPRZ Y3 EYA (3.23)

Here R is the radius of the wire, p is the density of fluid
w is the frequency of oscillation.

The problem is to connect theoretically the coefficients
k and k’, which characterize the induced mass and vis-
cosity of the fluid, respectively, with the experimental-
ly measured frequency and the friction coefficient of the
oscillating wire.

The model description of this problem is the oscilla-
tion of an infinite cylinder, when the displacement is
perpendicular to the cylinder axis. For an incompres-
sible liquid this problem was solved by Stokes 120 years
ago. He used linear hydrodynamic equations, which
means that (Landau and Lifshitz, 1963)

v \1/2
<G) <R; I<R,

i.e., the oscillation amplitude ! and the depth of the
boundary layer (v/w)'/2 are smaller than the radius of
the cylinder R.

But near the critical point one has to take into account
compressibility. The solution of the problem of the os-
cillation of a cylinder in a compressible liquid, in the
linear approximation (3.24) (Gitterman, 1975), is simi-
lar to that of the problem of the motion of a sphere, used
above in the analysis of Brownian motion. The results
of the calculations are given in Fig. 3. The physical
meaning of the parameters € and 7 is as follows. It is
well known that compressibility can be neglected when
Mach’s number is small:

>

(3.24)

wR

e=2 2% . (3.25)
C C

However, this condition is insufficient in cases when
dissipative processes are important. Then another di-

K'

2 62
2V2y(1 - €“2ne) - —

ly@+r-

J'Z' €

2) 41
€

€ € E. € 22y (1 - == )
\!:< 1 (1+2ﬁ y) (1 +§-T2,n 1:) - 5 21 T
€ 1 r——
- > 1 - 2 T T 1 T T
\I: pyr-S @+ x 7Y<1+4fz:s)+Ji'g

FIG. 3. The results of the calculation of the coefficients K and K’ connected with the induced mass and viscosity of fluid which

moves because of cylinder oscillations.
@R _gnre v\
€= 'T—pRc ;y_(w>/R
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mensionless parameter can be formed, and the possi- disk surface. /
bility of neglecting the compressibility is conditional on Measurements of j can be useful for finding the diffu-
the fulfillment not only of condition (3.25) but also of sion coefficient near critical points, and such an experi-

(3.26) ment has been carried out by Tsekhanskaya (1956).

T=(2n+¢)/cpR<1 .
(3 n+2)/cp In the critical region one is forced to consider Kar-

Near the critical point of pure fluids the volume vis- man’s problem for compressible fluid. In addition, be-
cosity can increase sharply, and in general condition cause of the hydrostatic effect the liquid density in-
(3.26) can be violated, although inequality (3.25) remains  creases with fluid depth, so it is necessary to consider
in force. a fluid of finite depth.

The problem for the finite-thickness layer cannot be
C. Disk rotation (Karman's problem) solved exactly, and it is necessary to introduce the cor-

responding small parameter. I the depth of the layer
H is more than the thickness of the boundary layer (v/
w)*/2, such a parameter is (v/w)*/2/H. The solution is
found as a series expansion for the boundary layer and
for the rest of the fluid. The final solution is obtained
by matching the expansions for the velocities and their
derivatives at z =(v/w)*/2. As a result we found correc-
tions to Karman’s solutions which are proportional to
(v/w)*/2/H (Gitterman, unpublished).

~In order to take into account the compressibility of
the liquid we have to substitute into the hydrodynamic
equations the density depending on the vertical coordi-

The problem of the motion of an incompressible fluid
caused by uniform rotation of an infinite flat disk with
frequency w was solved by Karman 55 years ago. It is
possible to neglect boundary effects for a disk of finite
radius R only if R is larger than the only length which
may be formed from the fluid parameters, namely the
thickness of the boundary layer, (v/w)'/2 where v is the
dynamic viscosity. On the other hand, Karman con-
sidered only laminar flow which corresponds to a Reyn-
olds number Re = wR?/v less than the critical one Re,,,
which is of the order 10°, Thus R may satisfy

VW/w < R<(Rey ) /2Vv/w . (3.27) nate z:
These inequalities can be rewritten as a limit on the p =—§+p0(z)+ p,(2) , (3.29)
rotation frequency of a disk of given radius, where p,(z) is the density variation in the stationary
v/R?< w< Re.,v/R?, i.e.for R=1 cm: fluid (hydrostatic effect) (see Sec. II.B) and p,(2) is an
-2 -1 3 -1 additional density variation due to the fluid motion.
107" sec™ < w< 107 sec™” . (3.28) In the Karman problem the dimensionless hydrody-
Using the velocity profile in the fluid it is possible to namic equations do not contain free parameters. In our
find the moment M of the frictional forces acting on a case of compressible liquid in a finite layer we found two
disk or the drag coefficient C,, =M /1pw?RE. dimensionless parameters in the hydrodynamic equa-
If the disk is made from soluble material its rotation tions: (8p/8p) ,wv and w*/2v1/2/g,
leads to convective diffusion of its material. The con- Let us give here the results for two limiting cases:
vective diffusion problem has been studied by Levich P,<<p, and p,>> p,. Both these cases can be realized in
(1962), who subdivided it into hydrodynamic and diffu- experiments near the critical point. The first one

sion parts. First the velocity profile was found and then (py<<p,) corresponds to an experiment which is carried
the concentration distribution was determined, using the out right after the heating of the fluid, while the hydro-

given velocity profile. Such a simplification is justified static effect is not yet established. The second case
owing to the usually low solubility of the disk material, (p, > p,) is satisfied when the experiment starts after the
i.e., the concentrations are small even for a saturated establishment of the hydrostatic effect and when the fre-
solution. The solubility can be characterized by the quency of disk rotation is not too high (w <400 sec™?).
diffusion flow on the disk surface: j =—D(8¢c/8z),_, The changes in the drag coefficients compared to the
where z is the vertical coordinate reckoned from the Karman case are -
]
c [ wv<ap) ] [ w(10-7) ]
&P oM x| 14— (— R 1+——————7— 3.30
po pl (CM)Karman 4 3p T (T_ Tc) Tc ’ ( )
~14 4x10"5
12\ " T WG T - T))/T
o ~1+(55), (%) o
>0 —HM— 1+ — = 3.31
Po>> Py (Ci)xarman 8p /p f\w ( )
~1+10"2¢1/6
[
In Egs. (3.30) and (3.31) the frequency w is expressed averaged over the boundary layer thickness (v/w)!/2,

in (sec)"! and the two cases in (3.31) correspond to tem- The correction to the diffusion flux j,~D?/3t/2/ 176
perature regions near T, and in the immediate vicinity of = for the Karman problem is found as a series expansion
T,, respectively. The derivative (8p/8p), in (3.31) is in the parameter (v/w)'/2/H and in the above-mentioned
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two parameters characterizing the compressibility.

For thin layers H < (v/w)'/? we found a diffusion flow
which turned out to be proportional to different powers of
v and w and also depended on the depth of the fluid layer:
j NDzlswzlsHlls/yl/q

Comparing the influence of the finite height of the fluid
layer and the influence of the compressibility on the hy-
drodynamics and the diffusion, one can see that the form-
er factor is more important than the latter one.

IV. FREE CONVECTION, INTERNAL AND SURFACE
GRAVITY WAVES

A. Onset of convection in compressible fluids

It is convenient to rewrite the system of hydrodynamic
equations for compressible viscous and heat-conducting
fluid by adding to the Navier—Stokes equation the gravity
term:

9v _Vp . v > .
at+(vV)v——T+gn+vVv+(§+£dev,

v,
ax, ’

(4.1)

9 9
57 +div(pv) =0; pT[g + (vV)S} =AV2T + €],

where » is a unit vector in the vertical direction (z axis).

We consider a layer of fluid at height /; the tempera-
tures of the bottom and top are kept at 7, and T,, re-
spectively.

Let us write the various thermodynamic parameters
in (4.1) in the form

P=p+py+p’; p=po+p’y; T=T+Ty+T"' (4.2)

where p and T are the average density and temperature,
and p,, Ty, and p, relate to the distribution of these
along the height, prior to the onset of convection, in the
presence of gravity and the imposed temperature dif-
ference:

Vpo=(p+po)g; VT,=~An;

9p, _ ap — 9p
where A =(T, - T,)/1.

Finally, the presence of convection [v+0 in (4.1)]
leads to small variations of pressure p’, temperature

T'’, and density p’, which are related by the equation of
state

r=_ (3 r, (2P ’. 8= 1 (EB
p’==(p+po)BT +(ap)Tp ’ B__Ii+p0 aT), :
(4.4)

Substituting (4.2)—(4.4) in Eqs. (4.1) we obtain the
equations of convection. Since in the following only the
onset of convection will be considered, we shall lin-
earize these equations with respect to small p’, T, and
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p’. We then obtain®:

v vp! L.pm L. gT'n <V ) .
2= +VV3y - =2 L +( 5 +&)Vdive ,
8t P+ 0q (P+p,)l  T,-T, 3 §
L, oT’ L, 9’ . (L -L)n
e R e ——eee 4.
T,-T, of ~ (pep)ilg of W+ (49
aT’ (8T 8p' . .
57 _<3P->s o7 =k VET'+ A(1 - a)on ,
where
=_____>\_.___. L =€2_T1<a_ﬁ_)) .
(P+p)C, » ™ P+py \3T 1/,
- E_e . = _ILZ_ 92,) = _.__._(VT)ad
L2_1g<ap T’a—Ll(l_Cp = (4.6)

and (VT),4 in (4.6) was defined in Eq. (1.16).

The system of Eq. (4.5) differs from the corresponding
equations for an incompressible fluid by the presence of
two dimensionless parameters. These are L,, which is
responsible for compressibility, and 'L,, which is usual-
ly retained only in the “buoyancy force” term in the
first of Eqs. (4.5).

Since according to Eq. (4.3) p,=p,(2), the coefficients
in the system of Eqgs. (4.5) are, in general, functions
of the coordinates. However, it follows from Eq. (4.6)
that

(4.7

i.e., for (L, — L,)<1 (and arbitrary L,) one can consider
the coefficients in the system of Eqs. (4.5) as constants.
Thereby we take into account only the first corrections
with respect to L, — L, to the equations of free convec-
tion in an incompressible fluid. It is seen from Egs.
(4.6) and (1.1) that such an approximation becomes in-
correct in the immediate vicinity of the critical point.
We shall come back to this case later.

The solutions of (4.5) for (L, - L,)< 1 depend on time
as e” '@*, If among acceptable values of w there is at
least one such that Imw>0, the fluid will become mech-
anically unstable, with the instability occurring at Imw
=0. It was shown by Pellew and Southwell (1940) that
in the case of an incompressible fluid w is imaginary,
hence the condition Imw =0 reduces to w=0. This proof
does not hold for the compressible fluid, and thus not
only a stationary but also an oscillatory instability
(Rew#0) can appear. The onset of oscillatory instability
(“overstability”) in a compressible fluid has been dis-
cussed in the astrophysical context (see the review arti-
cle by Spiegel, 1972).

We shall come back later to oscillatory instability.
Let us discuss now the onset of stationary convection.
To do this, we need to omit all derivatives with respect
to time from the system of Eqgs. (4.5).

Eliminating pressure and horizontal velocity compo-
nents from Eqs. (4.5) and assuming (by virtue of the in-
finite extent of the system in the horizontal direction)
that dependence on horizontal coordinates is of the form

P=p+p,~p[ 1+ (L, - L,)z/1] ,

5Jeffreys (1930) took compressibility into consideration in the
equation for thermal conductivity, while Spiegel and Veronis
(1960), Unno et al . (1960), Spiegel (1965), and Vickers (1971)
analyzed these equations for a perfect gas.
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e'® where k is the two-dimensional wave vector in the xy plane, we obtain for the amplitude of vertical velocity

v(z) and temperature 7T’(z) the following equations:

3

4
{Z4D2+13L1Da% +12L2(L1—L2)[D+ k2<l—§/ + lﬂ}v:ﬁ%l— KT’

A dz
T'=—(1-a)Z v: D=—_ _p2
D (l-a)=wv; D T —k

(4.8)

The boundary conditions for Egs. (4.8) depend on whether the fluid layer is bounded by solid or free surfaces, i.e.,

z=x1/2

dv 1 dp
vl“*‘/Z:O;(EZ Ty dz v>

l —-O. iz.v__*. 1 —_—
Ule=z1/275\ 752 P+p,dz dz

dp, dv)

z2=x1/2

dv 1

where the coordinate origin is halfway in the layer
(Unno et al., 1960; Spiegel, 1965; Vickers, 1971).

When the compressibility is small [cf. Eq. (4.7)] we
come back to the boundary conditions for an incompres-
sible fluid (Landau and Lifshitz, 1963):

dv R
Vlsesi/2=0; T “/2=0; T’|,..;/»=0 solid surfaces
2=
d?v :
0],.11/2=0; o “/2=0; T’|,..,/2=0 free surfaces
2=
dv a3y
v, _ =0; — =0; 5 =0
lz-:tllz ' dz £e-2/2 ) dz? z=l/2=0; T fesi/2
the bottom surface
is solid and the
top is free (4.9b)

Equations (4.8) contain both criteria for the onset of
convection, that of Schwarzchild (1.16) and that of Ray-
leigh (1.17). In fact, if compressibility is taken into ac-
count only in the heat conduction equation, while vis-
cosity and thermal conductivity are neglected alto-
gether, the condition VS =0, or in accordance with (4.5)
(for w=0) @ =1 will represent exactly the Schwarzschild
criterion (1.16).

To obtain the second limiting case, that of the Ray-
leigh criterion (1.17), it is necessary to neglect com-
pressibility in Eqs. (4.5), i.e., to put L,=0, and of all
the terms containing L, to keep only the “buoyancy
force.” Then Eqgs. (4.8) take the usual form for an in-
compressible fluid:

D?*v =(Bg/v)R*T'; DT'=~(A/k)v . (4.10)

From Egs. (4.10) one can obtain a sixth-order equation
with the Rayleigh number R =BgAl*/vk as its eigenvalue,
and kI as parameter. The function R =R(%l) is defined by
the boundary conditions (4.9b), and its minimum value
represents the Rayleigh criterion (1.17). The values of
v in Eq. (1.17) are 657.511, 1707.726, and 1100.657 for
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o Do) o (Zy. L deudv)
U{Z=H/2_0’<E+T)+podzv z=_”2—0’ dz?'+f)+po dz dz

=0; T’[““,z:O solid surfaces

=0; T’l““/z:O free surfaces

=0 the bottom surface
is solid and the
top is free

=0; T/

z=1/2

z=x1/2

(4.92)

the boundary conditions, (4.9b), respectively.®

In the case of a compressible fluid the system of Eqgs.
(4.8) is very cumbersome. The minimum eigenvalue is
the characteristic temperature difference (T, - T},), de-
termining the onset of convection, and it now depends not
only on the parameter %I, but also on L,, L,, as well as
on the ratios of specific heats C,/C, and viscosity £/v
(for simplicity we shall assume that £=v). This not only
makes an analytical solution impossible, but also pre-
sents considerable difficulties in a numerical treatment.

Because of this, a variational method (Jeffreys and
Jeffreys, 1956) was used for obtaining an approximate
solution of the problem of onset of free convection in a
compressible fluid. Referring the reader for details to
the original papers (Gitterman, and Steinberg, 1970a,b),
we shall present here only the final result.

The dimensionless temperature difference (Rayleigh
number) determining the onset of free convection is
equal to

14+ (1/1) + (1/1,)2(1, /1,
1+ (/L) 0,0

where three lengths constructed from the parameters of
the problem are introduced, namely,

- 2(2P G, ]”“. J_nve (% ]“?
ll—[yowc/g (55>T (1_?) ; ZZ_[I—Cv/CP ),

. —[ YoVK ]1/4
* Lg*(p/op)r ’

R=v, (4.11).

(4.12)

The magnitudes of the numbers y, and ¥, depend on the
boundary conditions and change slightly with different

SWe note that for a superfluid solution the hydrodynamic equa-
tions are of still higher order. The number vy, for the free sur-
faces turns out to be the same as in a regular fluid, while for
solid surfaces vy, proves to be approximately 7500. Thus the
superfluid solution is much more stable with respect to the on-
set of free convection than the regular fluid.
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choice of trial functions of the variational method. For
solid surfaces using the simplified boundary conditions
(4.9p): v,=1707.8 and y, =70.5.

Thus, comparison between the layer height  and pa-
rameters [,, ,, and [, enables one to get a criterion for
the onset of convection from Eq. (4.11).

The numerical estimates for a “typical” fluid away
from the critical point

[(8p/8p) ,~10"1° sec?/cm?;
v~k ~10"%cm®/sec; 1-C,/C,~10"?]
give
1,10 cm; I,~2 cm; I,~10°° cm .

It was found that for all the usually occurring layer
heights the criterion for the onset of convective insta-
bility is the sum of the Schwarzchild and Rayleigh cri-
teria with corrections depending on /. These two cri-
teria are, obviously, limiting cases with respect to the
parameter (I/1,)*: if 7*>1? the height of the fluid layer
is “large” and the Schwarzschild criterion is valid,
while if 7*<< 7{ the height is “small” and it is necessary
to use the Rayleigh criterion. .

All the above is true for any compressible, viscous,
and heat-conducting liquid. However, as the critical
point is approached both the criterion for the onset of
convection and the magnitude of parameter [/, are
changed. As the critical point is approached, Cv/C,,—’O
and [, —1,. Hence one can rewrite the criterion (4.11) as

AN Yo z(ap 1t
R‘Yo(z) MY /) el %>TEE

(4.13)

+ Yo
1+y,vk(@p/8p) /12

The Rayleigh number R contains the factors C, and g
which increase towards the critical point. Therefore it
seems convenient to rewrite Eq. (4.13), using the corre-
sponding critical parameters as the scale for the im-
posed temperature difference A= (T, - T,)/I:

Ap, 1
b=Pe -2 N
gchc c{

Y oVK
* gzl“(ap/ap)r[ 1 +71VK(ap/ap)T/l ‘]
(4.14)

where the dimensionless quantity ¢=7,/P,(8p/8T), has
no anomaly at the critical point.

The Schwarzschild criterion (1.6) in dimensionless
variables has the form b=1/c, i.e., it is satisfied at
T=T,. The second term on the right-hand side of Eq.
(4.14) determines the corrections to the Schwarzschild
criterion and decreases towards the critical point.

The approach towards the critical point changes the
magnitude of the characteristic parameter 7, (4.12)
which divides the Schwarzschild and Rayleigh cases.
Because of the increase in (Bp/ap)T and C, the value of
I, decreases and equals approximately 0.1-0.01 cm at
(T-T,)/T,=(10"2-10"%). Such values of I,, in general,
coincide with the distances between planes ! in experi-
ments measuring thermal conductivity close to the criti-
cal point. At l~/ it is wrong to use the Rayleigh cri-
terion for an incompressible fluid to estimate the ab-
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sence of convection in the experiment, as is sometimes
done.

Free convection may distort results of measurements
of different physical quantities, such as the specific
heat. In fact, there is always some temperature dif-
ference inside a calorimeter. Let this difference be
greater than the adiabatic temperature gradient con-
tained in the Schwarzschild criterion (1.16). For exam-
ple, for water (VT),q=4 X 10"* deg/cm. Then as the
critical point is approached the temperature difference
in the fluid will become, according to Eq. (4.14), the
source of convective instability, which of course will
distort the experimental results.

Now it is possible to trace the variation in stability of
the liquid layer heated from below through the entire
temperature range right up to the critical point (Fig. 4).
At temperatures far from critical, the parameters of the
fluid determining [,, 1,, and I, are weakly dependent on
temperature, and accordingly [ (7, - T,)/I], is almost
constant in a wide temperature interval (see the left
part of the graphs in Fig. 4).

The limiting value of [ (T, — T3,)/I], in the immediate
vicinity of the critical point is also known (see right
half of Fig. 4). Here, according to (4.14) the Schwarzs-
child criterion is valid. In the immediate vicinity of the
critical point, CU/CP<< 1, and it ceases to depend on
proximity to the critical point.

The transition from one limiting value to another, in
other words, the change in stability of the fluid as the
average temperature approaches the critical value, de-
pends on the height of the fluid layer. For <, the ap-
proach to the critical point corresponds to a loss of
stability, i.e., convection starts at the smaller tempera-
ture differences. For [>1, the stability increases.

lg b
15
_1=10%cm |
121072 ¢m l_o:
=107 em
5<
l=lcm _
AN
1=33cm___ | N 2 N3 4 N8 6 ~Z -Igt
=5 cm__-|;”
A=5 em -7
1=10cm__.7})
7
12102¢m ,’
_5’_

FIG. 4. Dimensionless critical temperature difference b= (I';
—Ty). P/l gp,T, determining the onset of convection as a func-
tion of the proximity to the critical point ¢ = (T —T,)/T, for
different heights of the fluid layer.
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B. Convection in a stratified fluid

Until now it was assumed that the density distribution
with height is determined only by the generalized baro-
metric formula (4.3) containing also the temperature
difference. However, as discussed in Sec. II.B, the in-
homogeneity of the fluid increases sharply close to the
critical point. Therefore, the dependence p,(z) must be
taken into account in calculating the criteria for the on-
set of free convection.

In analogy to Sec. II.B, the function relating density
and height is found by the simultaneous solution of the
Euler equation dp = —(p+p,) gdz, the thermal conductivity
equation, and the equation of state. Equation (2.2) can be
used as an asymptotic equation of state for temperatures
close to the critical one. The common solution of these
three equations has the following form:

- 9 1/6
B_‘Z&zé.ﬂ%(a—?—)p(A-Aad)lz—zJ} sgn(z —z,)
(4.15)

where z, is the level at which p=p,.

In the immediate vicinity of the critical point, Eq.
(4.15) should be substituted in Eqs. (4.5), and then by ap-
plying the variational method the characteristic temper-
ature difference can be found.

Let us start from simple considerations leading to
qualitatively correct results. Let us allow for compres-
sibility only in the heat conduction equation. Then the
temperature difference changes from AtoA(l-—a)=4
- A, [see (4.6)] and the solution becomes the same as
for an incompressible fluid, with A =(T, - T,)/I in the
Rayleigh criterion (1.17) replaced by A —A4,;:

gBIMA — A, )/ /vk=7,. (4.186)

Without considering the hydrostatic effect we immedi-
ately get from (4.16) accurate to within the correction
term v, vk(8p/8p)/1? the result (4.14) obtained previously.

However, close to the critical point the hydrostatic
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effect causes a substantial change in the conditions re-
quired for convection to start. In fact, a kind of self-
consistency occurs here: the characteristic tempera-
ture difference, determining the start of convection, de-
pends on the density distribution (4.15), which in turn is
associated with the temperature difference. This is evi-
denced by the fact that A —A,, enters criterion (4.16)
both directly and through the other factors (8, x, A), which
also depend on the density and hence, according to (4.15)
ond -A,,.

We obtain for the coefficients in Eq. (4.5):

) -
P+po\8T/, P+ Po o) ¢’

A A(E+p0)(3T/aP)§/?_P_> .
DCP T \Bp T’i

c

; 1/2 9 1/2
xzxo<-ii°—> <—£) yUR VY,
Oc 81) T

For X in (4.17) we use the Singularity given by dynami-
cal scaling (Siggia et al., 1976).

Substituting (2.2), (4.15), and (4.17) in (4.16), one may
solve the resulting equation for A. The dependence on
the vertical coordinate z appearing in this procedure is
eliminated by using a suitable trial function in a varia-
tional calculation (Steinberg, 1971a). The only effect of
all this is a numerical change v, —~v4.”

The hydrostatic effect has only this slight effect on the
onset of free convection because, according to (4.15),
the variation of density with height is small when the im-
posed temperature difference is close to the adiabatic tem -
perature gradient. In other words, the change of the
density with height due to temperature variation is al-
most completely compensated by the influence of the
pressure variation on the density (Khait, 1969).

Finally one obtains for the dimensionless characteris-
tic temperature difference b=A4p,/gp, T, determining the
onset of convection in the immediate vicinity of the cri-
tical point (with p# p,):

K=

(4.17)

» Tc 26/ (6-3) ap 45/(5-3)g(ﬁ+3)/(5-3) )
b= L 1 ‘ Pc oT v l(saos)/(a-a) . 5
=< |7 P Vhg vy 2] B=BI BT (63Y 53 (6=177 (6-5) . (4.18)
\

If in the temperature region under consideration the
regular part of heat conductivity is larger than the sin-
gular one, i.e., we may put A =X, =const, (Sengers and
Keyes, 1971), then in a similar way we obtain

p (Tc 6/ (6-2) —a—p—>2&/(6-2?g2/(6-2)
b= l 1+ N pg 8T lz(ﬁu)/(b-z)
c pc(YékoVWﬂW .

(4.19)

Comparing (4.18) and (4.19) with (4.14), we find that
the asymptotic estimate as the critical point is ap-
proached (the Schwarzchild criterion, Fig. 4) turns out
to be true only at I - 0. This result is physically reason-
able, because due to the hydrostatic effect the critical
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conditions are realized only in a layer of zero thick-
ness. Hence the inhomogeneity of the fluid causes an
increase in stability with respect to the onset of convec-
tion.

"Such a result is correct when the level with the critical den-
sity is located outside the fluid layer, i.e., p #p,. The case
p =p. is more complicated (Steinberg, 1971a). Apart from
changes in the criteria for the onset of convection, -the very
structure of the resulting convective motion will change. Two
Bénard cells, one above the other, appear in the two-phase
system. This conclusion about ‘two-flow” convection was ob-
tained from the analysis of singularities of the exact eigenfun-
ction of the convection equation including the hydrostatic effect.
The possibility of a ‘“two-flow” convection in a two-phase fluid
was also noted by Busse and Schubert (1971). It would be in-
teresting to check this result experimentally.



FIG. 5. Critical temperature difference

(7).

determining the onset of convection as a function of the height
of the fluid layer .

The greater the height of the fluid layer [ the earlier
the hydrostatic effect becomes apparent. For example,
for 1=10"% cm Eq. (4.15) and hence the criterion (4.18)
or (4.19) becomes valid at (T - T,)/T,= 10"

In summary, in the critical region, but not too close
to the critical point, the criteria for the onset of convec-
tion are determined by Eq. (4.11) (Fig. 4). In the vi-
cinity of the critical point criterion (4.14) is valid, which
in turn, still nearer T, goes over to the limit values
(4.18) or (4.19), depending on the behavior of X.

In the vicinity of the critical point the characteristic
temperature difference determining the onset of convec-
tion is a nonmonotonic function of the height of the fluid
layer I. Thus when the critical temperature is inside
the layer and p# p,, then as I decreases [(T, - T,)/1],
increases from its initial adiabatic value as I"* [see Eq.
(4.14)]. Then, passing through the maximum [at [
=(107'-10) cm] the temperature difference increases at
I? [Eq. (4.19)] or I'" [Eq. (4.18)] at 6=4.5, and finally
it returns to the Schwarzchild criterion b=1/¢ (Fig. 5).

C. Oscillatory instability

There are many systems showing oscillatory convec-

tive instability. The appearance of an oscillatory branch
in the instability spectrum is caused by a new relaxation
mechanism additional to the temperature relaxation.
For instance, this additional mechanism for a binary
mixture is the relaxation of the concentration. For a
layer of fluid in a transverse magnetic field, it is the
relaxation of the magnetic moment, and so on.

In each of these cases the oscillatory instability starts
only at a definite value of the parameter characterizing
the additional relaxation mechanism. The corresponding
parameters in the above examples are the dimensionless
concentration difference and the critical magnetic mo-
ment (Hartman number).

In a compressible fluid a further oscillatory instability
may occur caused by the density relaxation mechanism.
This distinguishes it from the incompressible case,
where only stationary instability is possible (Pellew and
Southwell, 1940).

Let us consider the case when compressibility is im-
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portant, i.e., when L,=1g(8p/8p)z>1 [see Eq. (4.6)].
This inequality holds if the fluid layer is deep

> 2) }
! [g<8f) T
or near the critical point where compressibility (1.1)
tends to infinity. We shall see below that additional con-
ditions have to be fulfilled in order that oscillatory instabil -
ity may occur, and that these conditions are met only near
the critical point.

Let us now direct our attention to the system of Eq.
(4.5). Analogously to our procedure in Sec. IV.B, we
eliminate the pressure and the horizontal components
of the velocity from (4.5) and assume a dependence e¢**”
in the horizontal coordinates, where %k is a two-dimen-
sional wave vector in the horizontal x—y plane. Then we
get a system of two equations for the amplitudes of the
vertical velocity v,(z, ¢) and temperature T(z, ¢). We
seek the solution of these equations in the form: v,(z, ¢)
=f,(2)¥,(t) and T'(z,t)=1,(2)9,(). Multiplying each of
these two equations by f,(z) and f,(z), integrating over z
from —1/2 to 1/2, and assuming a ¢ dependence of e*“f,
we get a system of two linear algebraic equations.

From the consistency condition we obtain the charac-
teristic equation for w:

(4.20)

0! +S,w +S,w*+S, w+S,=0. (4.21) -

The formulas for the coefficients S,, S;, S,, and S; are
very cumbersome (Steinberg, 1971b) and are not dis-
cussed here. The stability conditions thus can be found
from the analysis of the roots of Eq. (4.21).

The roots of the polynomial with real coefficients
(4.21) occur in conjugate pairs. Therefore the onset of
the oscillatory instability is characterized by the con-
ditions Rew=0, Imw=+w,. On the other hand, one can
write the conditions for the existence of a pair of purely
imaginary roots in the form of certain relations between
the coefficients S,, S,, S,, and S, in (4.21).

The derived expression is extremely complicated in
the general case. Therefore we introduce here the con-
ditions for oscillatory instability for the case of free
surfaces using the simplified boundary conditions (4.9b).
The qualitative results are probably independent of the
boundary conditions, only the numbers are expected to
change. In fact, analysis shows (Vickers, 1971) that the
Rayleigh numbers determining the onset of convection
in a perfect gas are changed significantly on passing
from boundary conditions (4.9b) to (4.9a).

It was found that apart from L,>1 oscillatory instab-
ility requires the following conditions to be satisfied:

3
LN} ~%~1>1. (4.22)

v

These conditions are not generally met for an ordinary
fluid, so there is no oscillatory convective instability
there. But they are satisfied in a fluid near the critical
point, as seen from the discussion in Sec. LA.

It turns out that the characteristic dimensionless tem-
perature difference determining the onset of oscillatory
instability b,=Ap,/gp,T, and the frequency for the neu-
tral oscillations are equal to



Moshe Gitterman: Hydrodynamics of fluids near a critical point

ol—

-lgt
FIG. 6. Dimensionless temperature difference determining the
onset of stationary (bg) and oscillatory (b,) convective insta-
bility as a function of proximity to the critical point at I =101
cm.
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KkC,

For typical values of critical parameters (p, =50 atm,
p.=0.5g/cm?®) we get w,~10%/] Hz, i.e., for anl of 0.1 to
1 cm we get w, of 10* to 10° Hz (acoustic frequencies).
The physical reason for this instability is that there are
vertical oscillations related to the sharp increase of the
compressibility. Periodic density changes, in response
to pressure change, result in a periodic variation in the
buoyancy force when the thermal diffusivity is small.

Comparing now (4.23) with (4.11), (4.14), and (4.18)
[or (4.19)] we see that near the critical point one reaches
first the oscillatory convective instability. The quantity
(T, -T,),, which gives the criterion for oscillatory in-
stability, increases towards the Schwarzschild criterion
as the critical point is approached, while for stationary
instability it tends to that limit from above (Fig. 6).

It would be interesting to check experimentally the ap-
pearance of these two types on instability in the immed-
iate vicinity of the critical point when, with the increase
of temperature difference, oscillatory convective in-
stability develops first, and stationary convection ap-
pears only afterwards.

The onset of stationary as well as oscillatory instabil-
ity near the critical point of binary mixtures has been
obtained by Steinberg (1971c).

Unfortunately, almost all experiments concerning free
convection and heat transfer near the critical point are
performed in an engineering context. Substances in
supercritical states are used in modern steam plants,
as coolants for some nuclear reactors, etc. Therefore
the subjects of these investigations are turbulent flow,
the empirical connection between Reynolds and Nusselt
numbers, and so on (Hall, 1971), and not the investigation
of critical behavior.
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D. Internal and surface gravity waves

Internal gravity waves (IGW) are bulk oscillations of
the fluid propagating in mechanical equilibrium (i.e., in
the absence of convection). The restoring force acting
on a fluid element is proportional to the sum of contri-
butions from the compressibility and heat expansion for
the fluid heated from above, or to the difference of these
effects for the fluid heated from below. In the latter case
the temperature difference must be smaller than the
characteristic temperature difference determining the
onset of convection.

The IGW are described by the same system of Eqgs.
(4.5) as convection. Therefore, we obtain the same
eigenvalue problem

f(VT, w,k)=0 (4.24)

with boundary conditions (4.9). In Eq. (4.24) w and % are
the frequency and wave vector of the disturbance.

We have seen in Secs. IV.A-IV.C that with an extra
condition on w(w=0 for stationary and Imw =0 for oscil-
latory convection) Eq. (4.24) gives a number of eigenva -
lues after minimization with respect to 2. These are the
characteristic temperature differences, and the small-
est of them determines the onset of convection.

For the IGW, onthe other hand, Eq. (4.24) servesasthe
dispersion equation for a given temperature difference
VT. IGW occur above a characteristic frequency in
(4.24).

Let us start from the simplest case, that of propaga-
tion of disturbances in a layer of an incompressible,
viscous and heat conductive fluid. Here the change of
the density is connected only with temperature changes.
It has been found (Gitterman and Steinberg, 1972b) that
IGW exist only if the temperature difference for heating
from above is not too small, namely when the absolute
value of the dimensionless temperature difference ex-
ceeds

1-P\?
RIGW:657.5PT<—2ITTZ'—> ,

(4.25)
where P, =v/k is the Prandtl number.

The result (4.25) was derived for the case of free
surfaces. The criterion for the onset of convec-
tive instability in the fluid heated from below for the
free surfaces is R ,, = 657.5.

Thus for —Rigy <R <R, the fluid is still mechanical-
ly stable (no convection) and IGW do not exist.

Let us consider now the vicinity of the critical point,
where oscillatory as well as stationary convection ap-
pears. It is interesting to examine the relationship be-
tween conditions for the existence of IGW and for both
types of convection.

Unfortunately, the fourth-order dispersion equation
in w (4.21) thus obtained is very cumbersome even for
the simplest case of free boundaries. Since dissipation
has an insignificant effect on the condition for the exis-
tence of IGW, we shall examine the phenomena in an
ideal compressible fluid.

IGW in an ideal compressible fluid are described by
the following system of equations (Gitterman and Stein-
berg, 1972b):
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—=—-—V, —S'n n,
¢ Po P+, C, Ocsp
4.26
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Here c%=(8p/8p)s is the square of the adiabatic velo-
city of sound, T is the average temperature of the fluid,
and S’ and p’ are the deviations entropy and pressure
from equilibrium values produced by the disturbance.

It is usually assumed in the theory of IGW that the
equilibrium gradients of entropy VS, = (dS,/dz)n and den-
sity Vp, = (dp,/dz)n are vertical and constant. Their de-
pendence on the vertical coordinate z is due to the gra-
vitational field and the given temperature difference
VT,=-An, so that

a5, _

o= A o+ Bg . (4.27)

The dispersion relation for the system of Equations

(4.26) has the form
w? w? g 1 dp }
2= _p? _-9 _ & o -2
= (1) (L) (& g i)+
(4.28)

where & is the two-dimensional wave vector in the hori-
zontal plane, and x is determined from the equation for

the eigenvalues for the particular cases. Thus, in the
case of solid surfaces (4.9a),
Xl=nm; n=0,1,2,... . (4.29)

The expression for the limiting frequency w, of the
IGW in Eq. (4.28) has the form

»_ gPT dS,
wWg = C, dz (4.30)

This shows that the criterion for the existence of IGW
is given by dS,/dz =0, or, on account of (4.27), by the
limiting temperature difference

oT
A, gpo< >

b (4.31)

which coincides with the Schwarzchild criterion (1.16).
As we showed in Sec. IV.B, the criterion for station-
ary convective instability also tends to the Schwarzchild

condition. as the critical point is approached, i.e., it
coincides with the criterion for IGW. Sufficiently close
to the critical point we also have oscillatory convection.
Hence, as the imposed temperature difference increases
we have a transition from IGW to oscillatory convection
and then to stationary convection.

Equation (4.29) holds for solid surfaces. In the case
of a solid lower boundary and a free upper boundary
the equation for the eigenvalues will have the
form:

8Note that for the nondissipative .system we used the adiabatic
compressibility. Therefore the criterion for the existence of
IGW is determined by the gradient of entropy and not of density
(Landau and Lifshitz, 1963).

Rev. Mod. Phys., Vol. 50, No. 1, Part |, January 1978

Hydrodynamics of fluids near a critical point

_ 2 2 w? dpo)}-l
tgxl = xlw ‘;g'k l<1 Y e on dz (4.32)
This relation gives in the dispersion equation (4.28),
along with the IGW and waves of an acoustic type, a sur-

face wave. The latter wave corresponds to the single
imaginary root of Eq. (4.32) with a dispersion law w?*
=gkth(kl). One may analogously examine the surface
wave propagating along the interface between two com-
pressible fluids of densities p, and p, (Gitterman and
Steinberg, 1972b). In this case the dispersion relation,
containing acoustic, internal, and surface waves, is de-
termined by the simultaneous solution of Eq. (4.28) for
the upper and lower media and the following boundary
condition at the interface:
k2

g .
(Dl ) Re (4-33)

X1P1+ X2P2 =

The presence of surface waves has been demonstrated
by the experiments of Makarevich (1967), who observed
the propagation of surface waves along the liquid-vapor
interface of SF, in a horizontal test tube 20 cm long and
1 cm in diameter. Towards the critical point both the
depth of penetration of the wave into the fluids and the
velocity of propagation of the wave were seen to de-
crease.

These experimental results are in agreement with Eq.
(4.3). In fact, for a given excitation frequency w the
densities p, and p, of coexisting liquid and vapor are
brought closer together as the critical point is ap-
proached. According to Eq. (4.36), the wave vector &
thus increases, and hence the penetration depth 1/2 de-
creases; the wave narrows the interface. This was ob-
served in experiment.

The observation of IGW and surface waves is likely to
serve as a new method for detecting the critical param-
eters and indices of fluids.

On the other hand, they may also distort some experi-
ments near the critical point. For example, in measure-
ments of the thermal conductivity of fluids, thermal
waves going vertically from a hot plane to a cold one can
serve as a source for IGW propagating in the horizontal
direction. The IGW will carry off some of the energy
supplied to the boundary of a fluid and may lead to er-
rors in the measurement of thermal conductivity. Al-
though the amplitude of IGW is small, their characteris-
tic frequency [cf. Eq. (4.30)] increases towards the cri-
tical point, so the energy carried off may be appreci-
able. It was found (Gitterman and Steinberg, 1970) that
the error AX in the thermal conductivity associated with
excitation of an IGW is detected experimentally as a
false maximum in the thermal conductivity: AX/A ~¢[(T
-T)/T,J®/®7 where €< 1 and y~+% is the compressi-
bility critical index.

V. CONCLUSIONS

The principal aim of this review has been twofold.
First, we wished to emphasize the characteristic prop-
erties and possible applications of the hydrodynamics
of fluids near a critical point. Secondly, we hoped to at-
tract the attention of experimentalists to possible new
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methods in the experimental study of critical properties
of substances.®

One can see from the above discussions that the hydro-
dynamics of critical fluids is very specific; it is neither
ordinary hydrodynamics (compressibility is important)
nor gasdynamics (the equation of state is not ideal).

The system of hydrodynamic equations has coefficients
increasing sharply towards the critical point, which
leads to all the above-mentioned peculiar effects.

An interesting analogy to the behavior of critical fluids
is the pretransitional phenomenon near points of hydro-
dynamic instability (transition from mechanical equili-
brium to convective instability, transition from laminar
to turbulent flow, etc.). One experimental verification of
this analogy is a sharp increase in the linewidth of laser
light scattered from Brownian particles suspended in a
Poseuille laminar flow near the instability point (Gold-
stein and Hagen, 1967). Hydrodynamic instabilities take
place for some value of R, of a characteristic param-
eter, for example, the Rayleigh number (1.17) inthe case
of convective instability. The difference R — R, is anal-
ogous to T — T,. Thermal fluctuations increase near R,
the kinetic coefficients have some anomalies, and so on,
showing a strong resemblance to a critical fluid. Let us
note that the diffusion coefficient of Brownian motion
diverges sharply [as (R - R,)"*/?] near a point of convec-
tive instability (Lekkerkerker and Boon, 1976). It is not
clear why this theoretical result disagrees with calcula-

“tions of the diffusion coefficient near the critical point
(see Sec. IIL.A).

It is hoped that the above methods of investigating cri-
tical fluids may also be useful for studying hydrodynamic
instabilities. On the other hand, experimental and theo-
retical study of the latter phenomena will help us to un-
derstand the breakdown of the validity of the approxima-

9There is also a wide field of application for the critical
phenomena. As an example, let us mention the separation of
mixtures, in particular isotopic mixtures. Appearance of a
concentration gradient of components along the vessel height
(hydrostatic effect—see Sec. II.B) represents a separation ef-
fect. Separating the fractions and then varying temperature
and pressure in such a way as to remain on the critical curve,
we can make the process of separation repetitive and continu-
ous. Thus we can approach the critical point of the pure com-
ponent along the critical liquid-vapor curve, i.e., we can
separate the mixture completely.

In spite of the fact that a large amount of time is required in
order to attain an equilibrium concentration distribution near
the critical point, the basic part of this distribution is estab-
lished relatively rapidly (see Sec. II.A). This initial stage
proves to be sufficient for the effective separation of the mix-
ture.

The small temperature gradient directed opposite to the
gravity field could magnify the separation effect. Another way
to increase the efficiency of separation is the centrifuging.
Near the critical point there will be practically no diffusion
which would impede the separation.

The concentration differences along the vessel height, say
for isotopes, could be larger than the width of the two-phase
region inside the coexistence curve. All this evidence indicates
the advantages of the proposed method of the separation com-
pared with other methods. The estimates of the efficiency of
separation of He’—He? mixture is overly optimistic (Gitterman
and Voronel, 1965). The method should be particularly effec-
tive in the separation of heavy isotopes.
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tions usually made in hydrodynamics.

In addition to the above-discussed methods of studying
a critical fluid, we can mention another area of useful-
ness of hydrodynamics, namely the investigation of
chemical reactions in fluids whose thermodynamic pa-
rameters are close to their critical values (Gitterman
and Steinberg, 1975). Krichevski et al. (1961) found a
slowing down of the rate of recombination of small num-
bers of iodine atoms into molecules in a solution of CO,
near its critical point, and of chlorine atoms into ordin-
ary molecular chlorine in a solution of CCl, near its cri-
tical point. These phenomena are probably conveniently
considered as the hydrodynamic problem of the mobility
of a foreign atom surrounded by solvent molecules (Leon-
tovich, 1965).
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