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A review is presented of the various theoretical methods that have thus far been developed for the study of
states introduced by impurities and other point defects in semiconductors. The main body of the paper is
prefaced with brief sections on the role of impurities and defects in semiconductors and on the general
aspects of experimental techniques, as an appropriate setting for the theoretical discourse. Theoretical
methods, including those of the effective-mass type, and a wide range of methods appropriate to deep
levels are then presented. Applications of these methods'are discussed critically. Finally, the relative
merits of the various approaches are compared and the prospects for future work are assessed.
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I. INTRODUCTION

Solids are usually classified in terms of their electri-
cal properties as conductors, insulators, and semicon-
ductors. Conductors and insulators have intrinsic prop-
erties which make them very useful in applications.
Semiconductors, on the other hand, would have very
little practical use if it were not for the wide range of
properties which can be attained via the incorporation
of impurities. The role of impurities in semiconductors
was recognized soon-after the advent of quantum mech-
anics (see, for example, Wilson, 1932), but progress
was very slow for about a decade. Then the urgent needs
during world War II for efficient devices ushered in the
era of semiconductors. Building on experience gained
during the long secretive years of the war, Bardeen,
Brattain, and Shockley (1948, 1949) invented the transis-
tor. Since then, semiconductor technology has mush-
roomed, and has given us high-speed computers, junc-
tion lasers, light-emitting diodes, and the myriad of
appliances and devices which proudly bear the insignia
"solid state. " It is fair to say that little of all this would
have been possible if it were not for the effects pro-
duced by impurities when they are judiciously intro-
duced in semiconductors.

The subject of impurities is, therefore, a vast one and
no single monograph can cover all their important as-
pects. There exist many books devoted entirely to im-
purities and other defects (see bibliography) as well as
a number of review papers focusing on particular as-
pects of the problem (Kohn, 1957; Dea.n, 1968, 1973;
Williams, 1968; Queisser, 1974; Bassani, ladonisi,
and Preziosi, 1974; Hoitsin, 1974; Grimmeiss, 1977;
Miller, Lang, and Kimerling, 1977).

The main purpose of this paper is to provide a com-
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prehensive account of theoretical methods and techniques
that have thus far been used to describe the electronic
structure and properties of impurities and defects in
semiconductors. Instead of plunging directly into the-
ory, however, a number of background sections are in-
cluded to set the subject in perspective. Thus we begin
with a section, on basic concepts and a classification of
impurities and defects, designed to facilitate subsequent
discussion. In the next section, we trace the historical
de velopment of the theo retical understanding of the en-
ergy levels introduced by impurities, and give elemen-
tary descriptions of these levels. Finally, before we
embark on our main subject of theoretical methods, we
supply a brief section on the role of impurities in de-
vices and a section on experimental techniques that are
used to measure the positions of the energy levels in-
troduced by impurities and defects.

Five sections and one appendix follow on theoretical
methods. We begin with a section that gives a rigorous
description of the quantum-mechanical problem and
presents general results. We then devote two sections
to effective-mass theory and its extensions, one section
to other general techniques which are perturbative in
nature, and one section to nonperturbative methods. We
do not, by any means, exhaust. the subject, especially
the applications of effective-mass theory. For example,
we do not discuss excitons or bound excitons, impurity
bands, the analysis of ENDOR data, nor do we describe
the changes of impurity states caused by external
stresses or fields. For the other methods, which gen-
erally apply to deep levels, we try to be as comprehen-
sive as possible, since most of them are still at the
stage of infancy. In the last section we provide a com-
parative critique of methods and assess the prospects
for future work.

II. BASIC CONCEPTS AND CLASSIFICATION OF
DEFECTS AND IIVIPURITIES

A perfect crystal consists of a three-dimensional ar-
ray of atoms arranged on a periodic lattice. The intro-
duction of imperfections in such a crystal disrupts this
periodic structure and alters the properties of the ma-
terial in significant ways. Because of the variety of im-
perfections that can be present in a crystal and the va-
riety of ways in which they affect the properties of the
host material, we begin by discussing ways of classi-
fying imperfections. Terminology will thus be intro-
duced which will facilitate subsequent discussion.

At first, we distinguish between lattice defects and
foreign atoms, or impurities. Lattice defects can be
point defects, which correspond to misplaced atoms,
line defects, which correspond to misplaced lines of
atoms and are known as dislocations, and p/ana& de-
fects, which correspond to misplaced planes of atoms
and are known as stacking faults. This review will not
address the properties of either line or planar defects.

There are basically two lattice point defects (Fig. 1):
the vacancy, i.e., a vacant atomic site, and the self-
interstitial, i.e., an extra atom occupying an interstitial
site. In compound semiconductors, such as those of
type AB, a third possibility exists, namely an antisite

(c)

(e)

FIG. 1. Schematic illustration of various lattice defects: (a)
perfect crystal, (b) ideal vacancy, (c) reconstructed vacancy,
{d) self-interstitial, (e) simple interstitialcy, (f) extended inter-
stitial.

defect, which corresponds to an A atom occupying a B
site or vice versa. These elementary point defects may
form complexes among themselves and with impurities
(see below).

Single impurities may be classified in a variety of '

ways. The simplest way is to classify them in terms of
their physical location in the lattice. An impurity atom
may replace one of the host atoms, in which case it is
known as a substitutional impurity. Alternatively, it
may occupy an interstitial site, in which case it may be
either a simple interstitial, or what is known as an in-
terstitialcy. The distinguishing criterion is whether
the interstitial atom leaves the bonding of the host atoms
undisturbed or if it disrupts the local bonding and forms
a bridge between two host atoms (Fig. 1). A special
case is a "split interstitial, " in which a host atom is
replaced by two atoms, symmetrically displaced with
respect to the original site.

Finally, lattice point defects and impurities may form
complexes. The simplest complexes are pairs, such as
two impurity atoms at neighboring sites, a vacancy and
an impurity atom at neighboring sites, and a divacancy.
More extended complexes become more difficult to char-
acterize, but some forms have been given special names.
One example is that of an extended interstitial (Seeger and
Chick, 1969; Pan Vechten, 19VV; see Fig. 1), in which
case bonding is disrupted seriously in an extended re-
gion with the net result that the region contains an
excess atom (an impurity atom may or may not be pres-
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ent). Other examples are the swirl defect in silicon (de
Kock, 1973), which got its name from the way these de-
fects are distributed on the surface of a wafer, and the
dark-line defect in GaAs-GaAlAs heterostructure lasers
(Petroff and Hartmann, 1973). The practice of giving
special names to individual defects is more common in
the case of defects in ionic crystals, which are known
generically as color centers (Fowler, 1968).

Since most of our review will be on point defects, we
now return to single impurities for further classifica-
tion. Substitutional impurities may be classified accord-
ing to their position in the periodic table of the elements
relative to that of the host atom. Let Z be the atomic
number and 4Z =-Zimyuxitx -Z„„,. Also let z be the
chemical valence and 4z = z,m, „,«„-z„„~.Atoms from
the same column of the periodic table as the host atom
(Ag =0) are known as isovalent impurities, because they
have the same number of valence electrons as the host
atoms. (Sometimes isova lent impurities are referred
to as isoelectronic, which is an unfortunate practice.
Isoelectronic is usually used to signify equal numbers of
all electrons. For example, the crystals Ge and GaAs
are isoelectronic since they have the same total number
of electrons per unit cell. Ge and GaP are not isoelec-
tronic even though they have the same number of valence
electrons per unit cell. ) From among nonisovalent im-
purities (4z 00), substitutional impurities from a col-
umn of the periodic table to the right of the column of
the host atom (b, z &0) are in general referred to as
donors, because they have more valence electrons than
the host atoms (the relative number of core electrons
between host and impurity atom does not enter these
considerations). On the other hand, substitutional im-
purities from columns of the periodic table to the 1eft
of the column of the host atom (hz &0) are in general
known as acceptoxs, because they must accept electrons
from host atoms in order to fulfill local bonding require-
ments. Donors and acceptors may be single, double,
etc. , depending on whether ~b, z

~

is one, two, etc. , re-
spectively (Fig. 2).

Position in the periodic table of the elements relative
to the host provides an additional way of classifying im-
purities. Impurities from the same row of the periodic
table as the host atom (~ &Z

~
=1, 2, or 3) are referred

to as isocoxic because the impurity core is isoelec-
tronic with the core of the host atom.

Before we examine other methods of classifying im-

purities, it is worth noting that the terms "donor" and
"acceptor-" introduced above, though widely used, are
rather ambiguous. For example, confusion may arise
in compound semiconductors where the same impurity
would be referred to as a donor or acceptor depending
on which host atom it replaces. Furthermore, even in
homopolar semiconductors, many atoms have been found
to behave either as donors or acceptors depending on
the circumstances, and have been referred to as am-
photeric. A more precise and useful definition of the
terms "donor" and "acceptor" will be given below. It
will turn out that the definition given above is a special
case of the more general and unambiguous .one.

In order to arrive at the more general definition, we
first need to turn to the electronic structure of perfect
crystals and to the modifications it undergoes in the
presence of impurities. We do not intend here to give
an introduction to the band theory of solids. What is
needed for the present purposes is the fact that the en-
ergy levels for electrons in a perfect crystal form a
series of bands, separated by gaps. The various ma-
terials may be classified by the way these bands are
occupied by electrons at 0 K. First, all ma-
terials have the core bands (corresponding to the atomic
core levels), which have negligible width, and are oc-
cupied by electrons. In metals, the core bands are fol-
lowed by a set of contiguous bands which are not com-
pletely occupied. In insulators and semiconductor s, on the
other hand, the core bands are followed by the valence bands,
which are occupied in their entirety at 0 K; the valence
bands are followed by a gap (the fundamental energy gap),
which in turn is followed by the conduction bands which
are empty at 0 K.

The wave functions of all states in a perfect crystal
extend over the whole crystal and have the same prob-
ability amplitude in every unit cell. Periodicity does
not allow the existence of localized states, namely
states whose wave functions decay with distance outside
a finite set of unit cells. When, however, an impurity
or other defect is introduced, periodicity is broken and
localized states are allowed. In most cases localized
states appear in the fundamental gap. These are the
states that have dramatic effects on the properties of
semiconductors and are the main subject of this review.

An important consequence of the presence of these lo-
calized states in the otherwise forbidden energy gap is
that the impurity can exist in various charge states de-
pending on whether the localized states are occupied or-
not. This fact leads to a precise and unambiguous def-
inition for the terms "donor" and "acceptor" (Shockley,
1950): Positively charged states-of an impurity are de
fined as donor states, and negatively charged states are
defined as acceptor states. Neutral states bear no other
distinctive name. Notice that this definition allows for
the possibility that a given impurity can have only one or
more donor states, in which case it can unambiguously
be referred to as a donor impurity, as defined earlier
in terms of 4z. Similarly, a given impurity can have

FIG. 2. Simple classification of impurities according to their
position in the periodic table of the elements. Note that for
interstitial imPurities Jmppzlty A ~ zlmppzlty

From now on, the term "impurity" will be assumed to refer
to both chemical impurities and lattice defects, such as vacan-
cies and interstitials, unless an explicit distinction is made.
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only one or more acceptor states, Whereby it can un-
ambiguously be referred to as an acceptor impurity. In
fact, however, any impurity might in principle have both
donor and acceptor states and many are observed to be-
have so. They are, therefore, referred to as ampho-
teric. Finally, note that according to the definition of
donor and acceptor states given above, one can define
donor and acceptor states for isovalent impurities as
well, which, according to the definition of hz (Fig. 2)
would not be classified as either of the two.

We turn now to the concept of transitions from one
charge state to another, caused by interaction with a
perturbing field. Consideration of these transitions pro-
vides definitions for the energies that characterize donor
and acceptor states. First we consider the ionization of
a neutral impurity which is best described by a reaction
of the form

acceptors are defined in terms of reactions such as
(2.1) and (2.2). For example, the reaction

X -X"+e-, S,"' (2.4)

X -X ~e', E„-E,. (2.5)

This is not an ionization reaction. It is rather a deion-
ization reaction since a charged impurity becomes neu-
tral. In this particular instance, the deionization oc-
curs by emitting a hole to the valence bands, a process
that physically corresponds to capturing an electron
from the valence bands. Deionization can, of course,
also occur via the capture of an electron from the con-
duction bands in the reaction

defines the second ionization energy (second energy lev-
el) for a double donor (Fig. 3). Notice, however, that
another reaction may be defined for X', namely

X X'+8, EI, (2.1) X +e-- X (2.6)

for a donor, and

X +8 (2.2)

0- e++e, E„. (2.3)

The ratio of El and E„ is often used to denote a level
as seal/ow (Ez«E~) or deep (El'~ E, ). These desfgna-
tions turn out to be useful in discussing the role of im-
purities in semiconductors since shallow and deep im-
purities affect the properties of the material in distinct-
ly different ways (see Sec. IV).

Ionization energies for double or triple donors and

Ec

for an acceptor (Van Vechten and Thurmond, 1976).
Here X is used to denote the neutral impurity, X and
X are used to denote charged states of the impurity,
and EI, the ionization energy, is the energy needed for
the reaction to take place. The donor ionization reaction
(2.1) corresponds to an emission of an electron e to the
conduction bands. The acceptor ionization reaction cor-
responds to an emission of a hole e' to the valence
bands, or, equivalently, the capture of an electron from
the valence bands. The energy EI in both cases defines
what may be called a donor or acceptor leuc/, respec-
tively. These levels are conventionally marked on an
energy level diagram as shown in Fig. 3. In the context
of reactions (2.1) and (2.2) and Fig. 3, it should be men-
tioned that the forbidden band gap E„ofa semiconductor
is properly defined by the reaction (Van Vechten and
Thurmond, 1976)

The distinction between (2.5) and (2.6) is rather unique
to impurities in semiconductors where there can be two
sources of electrons, in contrast to the case of free
atoms.

Many other reactions can be written down. For ex-
ample, one can have:

X +e X++ E~ —EI cv' (2.7)

which can be obtained by subtracting (2.3) from (2.4).
Reactions (2.6) and (2.7) simply state that a given im-
purity state may act both as an electron and a hole trap.

At T =0 K, the energy needed for or released by each
of the above reactions is a change in the enthalPy H of
the system. At finite temperatures, the reaction energy
is a change in the Qibbs free energy I'"' and is related to
the change in enthalpy by

6Q = AH+T 4S. (2.S)

Finally, we conclude this section by stating the nota-
tion that will be used throughout this paper. For homo-
polar semiconductors, such as Si and Ge, we will em-
ploy the notation Si:P to denote a substitutional phospho-
rus impurity. A subscript i on the impurity atom will
be used to denote an interstitial impurity. For example,
Si:I i; denotes a lithium interstitial in Si. For the vacan-
cy, the symbol V will be used in the form Si:V. Since
vanadium is not a common impurity in semiconductors,
this notation should not cause confusion. In compound
semiconductors, the notation for interstitial impurities
remains the same. For substitutional impurities and
vacancies, however, a subscript is added to the impurity
atom to denote the site of substitution. For example,
GaP, Np stands for a nitrogen impurity at a phosphorus
site. Finally, in all cases superscripts on the impurity
atom symbol can be used to denote charge states. For
example, ZnSe:Vs, ' stands for the positively charged
state of a Se vacancy in ZnSe.

(a) (c)

III. ELEIVIENTARY THEORIES: HISTORICAL
PERSPECTIVES

FIG. 3. Typical energy levels in the band gap of a semicon-
ductor: (a) single donor, (b) double donor, (c) single acceptor,
(d) double acceptor.

In this section we will discuss some elementary mod-
els for understanding the energy levels introduced by
impurities in semiconductors and engage in a bit of -nos-
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talgia by tracing the historical development of the sub-
ject.

Some of the properties of semiconductors were known
long before the advent of quantum mechanics. For ex-
ample, rectification of alternating current at a contact
between a metal and a semiconductor was first. reported
in 1874 (Braun). It was not, however, until the 1930's
that semiconductor rectifiers became competitive with
vacuum-tube diodes, when interest in higher and higher
frequencies for radio waves was growing. This mas the
time when the application of quantum mechanics to the
understanding of solids had just begun, and experiment
and theory proceeded in parallel in a very fruitful way.

Understanding of the properties of solids in terms of
quantum mechanics began with the work of Sommerfeld
(1928) and of Bloch (1928). Bloch explained how the va-
lence electrons in metals can behave as if they were
free despite the immense attractive fields in the vicinity
of the atomic nuclei. He showed that in a perfect lattice,
conductivity would be infinite if it were not for the ther-
mal motion of nuclei and for the presence of impurities,
and calculated correctly the temperature dependence of
metallic conductivity (Bloch, 1930). At about the same
time, it was shown that. the energy levels of electrons
in a periodic potential break up into allowed and forbid-
den bands (Peierls, 1930; Morse, 1930; Brillouin,
1930; Kronig and Penney, 1931). Following these devel-
opments, Wilson (1931) proposed the now well-known
energy-band picture of semiconductors and insulators
(full valence bands followed by an energy gap, followed
by empty conduction bands) and explained the basic dif-
ference between metallic and semiconducting conduc-
tivity as a function of temperature. At about the same
time, experimental evidence became available that the
observed conductivity of semiconductors was entirely
due to the presence of impurities (Gudden, 1931). Im-
mediately, Wilson (1932) proposed a qualitative expla. -
nation in terms of the energy levels introduced by im-
purity atoms in the otherwise forbidden energy gaps of
semiconductors. Wilson's 1932 paper is thus the first
quantum-mechanical theory of impurity states in semi-

conductorss.

Wilson s model is an extreme tight-binding model, but
presents a useful qualitative picture. The solid is as-
sumed to be a collection of atoms on a periodic lattice
and the energy bands are viewed as broadened atomic
energy levels. An impurity atom, which has a different
set of energy levels, could thus happen to have its
highest occupied level lie within the energy gap between
the full valence bands and the empty conduction bands,
which are not affected by the presence of the impurity.
The impurity electron can then be thermally excited into
the empty bands where it will conduct.

Wilson's picture of a donor impurity is usually valid
only in a qualitative way. The tight-binding picture can
be a basis for quantitative calculations for deep levels,
as we shall see in Secs. IX and X. Nevertheless, the
tight-binding picture is not the proper framework for
quantitative understanding of the shallom levels which
are the ones that dominate conduction in semiconduc-
tors. As we shall soon see, the so-called effective-
mass or hydrogenic model is more appropriate for this
purpose.

During the 1930's, a limited amount of theoretical
work was done to understand the behavior of impurities
in semiconductors. Wannier in 1937 described the mo-
tion of an electron near the bottom of the conduction
band and of a hole near the top of the valence bands in
terms of efjective masses and showed that during op-
tical absorption the continuum of interband transitions
would be preceded by discrete lines due to the formation
of excitons, on account of the Coulomb interaction be-
tween the electron and the hole. The calculation of the
exciton levels was shown to be isomorphic to the hydro-
gen atom, except that the effective rydberg is now re-
duced by the value of the effective mass and by the di-
electric constant which screens the Coulomb force be-
tween electrons and holes. Exciton binding energies are
thus a few meV, compared with 13.6 eV, the binding en-
ergy of the electron in the hydrogen atom.

Wannier did not discuss impurities, however. The
first description of what came to be known as the ef-
fective-mass or hydrogenie theory for impurities is
given by Mott and Gurney in their classic 1940 book
E/ectxonic Process in Ionic Crystals. Mott and Gurney's
discussion of semiconductors is rather interesting in
that it shows the state of the art at the time. The basic
aspects of donor and acceptor- impurities were de-
scribed, but the terminology was not yet in use. 'The
only type of donor impurities Mott and Gurney de-
scribed, however, were interstitials (both host atoms
and foreign atoms) and E-center-type defects (negative-
ion vacancies in ionic crystals). The latter, though be-
having as donors in principle, were not known to con-
tribute to conductivity. Perhaps even more fascinating
is the fact that though hole conductivity was understood,
it was termed abnormal, and the only acceptor-type im-
purity discussed was the positive-ion vacancy. It should
be noted that the only semiconductors that had been in-
vestigated extensively by then were oxides such as
Cu, O, ZnO, U,O, etc. , which are today known to be quite
hard to work with, compared with silicon, germanium,
etc. It was known at the time that most oxides could
show either "normal" or "abnormal" conductivity, i.e.,
in today's terminology, could be made either n-type or
P-type

Much of the terminology and understanding of the be-
havior of semiconductors containing impurities was de-
veloped during the secretive years of World War II and
allotment of credit becomes a very difficult task. It
seems, however, that the first estimate of the binding
energy of donors in a semiconductor, namely Si, in
terms of the hydrogenic model, and the explanation of
relevant data was done by Beth (1942).' By the end of
the war, donor and acceptor states in semiconductors
were well understood, and this understanding was a
contributing factor to the invention of the transistor
(Bardeen and Brattain, 1948, 1949). In the late 1940's
and early 1950's, many investigators carried out rig-

2I found a copy of this war-time report some years ago at the
Engineering Library of the University of Illinois. It bears the
word "CONFIDENTIAL" in big red letters on every page. Don-
ors are referred to as donators, which is the German word for
the concept.
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orous derivations of the effective-mass equations for
realistic band structures and accurate numerical cal-
culations. Some of the landmark papers were by Slater
(1949), James (1949), Kittel and Mitchell (1954), Lut-
tinger and Kohn (1955), Kohn and Luttinger (1955), and,
finally, the classic review article of Kohn (1957), which
is probably still one of the most widely referenced
papers in semiconductor physics.

We shall now see what the elementary aspects of the
effective-mass or hydrogenic model are. Rigorous de-
rivations of these results will be discussed in subse-
quent sections. Let us start with the well-known band
picture for the electronic energy levels in a pure and
perfect crystalline semiconductor. We have the valence
bands, which at 0 K are completely full, an energy gap,
and the conduction bands, which are completely empty.
Let us then introduce an extra electron in this crystal.
At 0 K, this electron mill occupy the lowest energy state
available to it,, which by definition is the bottom of the
conduction band. In the language of band theory, the
wave functions of band states are characterized by a
propagation vector (wave vector) k. For simple bands,
the energies of the states near the bottom of the bands
are given by the simple formula

E(k) =E,+ e'k'/2m. *, (3.1)

where E, is the energy at the band minimum (it may be
taken to be the zero of the energy scale), and m,* is
known as the effee tive mas s. This result should be
compared with the corresponding result for an electron
in free space. In that case, the mave functions are also
characterized by a wave vector k and the corresponding
energies are given by

E(k) = k'k'/2mo, (3.2)

where ~, is the mass of a free electron. This explains
the terminology for the constant m,* in Eq. (3.1). The
effective mass embodies in an average way the effect
of the crystal potential so that the dynamical behavior
of an extra electron in the conduction bands under the
influence of external forces is the same as that of a free
electron with a mass m*.

Let us now go back to the perfect and pure material
and replace one of the host atoms by an atom from the
column of the periodic table next to the column of the
host atom. The impurity atom then has one extra va-
lence electron. Let us assume for a moment that some-
how we held onto that extra electron and did not let it
enter the crystal. The crystal, then, has the same
number of valence electrons as it had before, so that
it still has completely full valence bands and completely
empty conduction bands. The only significant change
is that although all host atoms are on the average neu-
tral, the impurity atom is by necessity positively charged.
It therefore sets up a Coulomb field in addition to
all the other crystal fields that existed before the intro-
duction of the impurity. Since the positive charge is in
a dielectric medium, the Coulomb potential is not given
by U(w) =e/x but by U(w) =e/ax, where e is the dielectric
constant of the material. Let us then introduce the ex-
tra electron in the crystal, so the whole sample is once
more neutral. According to the above discussion, we
can then view it as a free electron with mass m,*, which '

is now acted upon by the Coulombic field e/cx. The sit-
uation is therefore isomorphic to the hydrogen atom ex-
cept that now the "proton" has a charge equal to e/» and
the electron has a mass ~,*. Since the hydrogen atom
has bound states below the ionization continuum mhose
energies are given by

E' '=-e'm, /2a'n', (3.3)

where n = 1, 2, 3, . . .~, we conclude immediately that
bound states for the electron are introduced below the
conduction-band edge at energies given by

E =E —e4m*/28'c'n' (3.4)

or

E„=E.—E&"'(m,*/e 2), (3.5)

E„=E„+E„"'(m„*/e'), (3.7)

where again m„ is in units of mo. Numerical estimates
for the binding energies of holes are similar to those
described above for electrons bound to donor impurities.

The hydrogenic model, whose rigorous foundations
will be discussed in Sec. VII, is a valid description of
those impurities which introduce approximately Cou-
lombic potentials in the crystal, such as nonisovalent
chemical impurities. Its quantitative success varies
from excellent to poor, depending on the complexity of
the energy bands and the values of m+ and e. It does
best when the relevant band extremum is of the simple
form (3.1) or (3.6) and for single donors and single ac-
ceptors. The hydrogenic model can be extended to de-
scribe double donors and double acceptors by using a
screened Coulomb potential of two charges, whereby
the energy levels are simply four times deeper. In gen-
eral, the excited states come out reasonably mell, but
binding energies calculated from such formulas for dou-
ble donors and acceptors are smaller than experimental
values by a factor larger than two and as much as ten or

where m,* is in units of m„a.nd where again n
=1,2, 3, . . .~. Since typical values of c are of order 10,
and values of m+ range from about 0.03m, to about mo,
Eq. (3.5) shows that the ionization energy of the donor
energy level (equal to E,) ranges from 10 4 to 10 2 Ry or
from about 50 to about 130 me&. Compared with band
gaps of order le& or more, such hydrogenic levels are
clearly shallow.

The qualitative picture for acceptors is analogous to
that for donors. One first considers removing an elec-
tron from the otherwise perfect and pure crystal where-
by a hole is introduced in the otherwise full valence
bands. The dynamics of the hole near the top of the va-
lence bands are again describable in terms of an expres-
sion simila, r to (3.1) but now with a minus sign, i.e.,

E(k) = E„—il' k'/2m f, (3.6)

where now E, is the top of the valence bands, and m~~ is
the effective mass of the hole. When an impurity with
fewer valence electrons than the host is introduced, a
negatively charged center is created, setting up a
screened Coulomb potential to which positively charged
holes are attracted. Hydrogenic energy levels are
therefore once more introduced in the band gap, this
time above the top of the valence bands, given by
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more. Effective-mass theory, however, which is the
rigorous version of the above qualitative theory, re-
mains valid for many potentials which are not Coulombic
in the immediate vicinity of the impurity, and gives good
quantitative results for many shallow as well as some
moderately deep levels. The theory will be discussed
in detail in Sec. VIII. . For most deep-level impurities
and defects, however, effective-mass theory is inade-
quate and other techniques have been developed. These
theories will be discussed in Secs. IX and X.

IV. THE ROLE OF IMPURITIES IN

SEM ICQNDUCTORS

Before we go on to examine experimental and theoret-
ical methods that are used to determine the electronic
energy levels and other properties of impurities in
semiconductors, we wish to discuss briefly the role that.
impurities play in the various applications of semicon-
ductors.

The role a given impurity can play in a semiconductor
depends strongly on the kind of localized energy levels
it introduces in the otherwise forbidden band gap, on the
concentration with which it can be incorporated in a
sample, and on the nature of other impurities present
in the sample. By far the most important role of shal-
low donors and acceptors is to control conductivity.
At r oom temper ature, almost all such impur itic s are
ionized and contribute to the conductivity because their
ionization energies are comparable to k~T (ka= Boltz-
mann's constant). They also contribute to resis-
tivity as scattering centers, but this effect is sec-
ondary. Most shallow donors and acceptors can be in-
corporated in semiconductors in arbitrary concentra-
tions up to about one part per thousand (i.e., about 10"
cm '). The range of conductivities that can be attained
at room temperature is, therefore, enormous, namely
about twelve orders of magnitude, from about 10 '
(ohm cm) ' to about 10' (ohm cm) '. This should be
compared with metals, all of which have conductivities
of order 10' (ohm cm) '. In good insulators, conductivity
can be as low a,s 10" (ohm cm) '. Furthermore, con-
ductivity ln most semiconductors can be dominated by
either electrons (n-type) or holes (P-type).

What really makes semiconductors useful, however,
is the fact that concentrations of shallow donor and ac-
ceptor impurities can be made nonuniform in carefully
chosen and controlled mays. By judicious choices of-
such inhomogeneities, the densities and currents of
electrons and holes, both in the absence and in the pres-
ence of applied electrostatic potentials, can be exploited
to produce a variety of effects that can be used in de-
vices. The simplest example of an inhomogeneous semi-
conductor is a p-n junction, which consists of a region
doped with acceptors (i.e.,p-type) adjacent to a region
doped with donors (i.e., n-type). This arrangement is
such that it allows the flow of current only in one of the
two directions perpendicular to the interface and the
device acts as a rectifier of alternating current. When
some other conditions are also met, a p-n junction may
act as an emitter of radiation, either as a laser or as
a light-emitting diode (LED). The transistor has three
consecutive regions, p-n-p or n-p-n, and it acts as an

amplifier of signals. Other devices, such as modula-
tors, detectors, photocells, etc. , consist of similar or
more complicated structures forme, d with n- and p-type
regions of various donor and acceptor concentrations.
The physics of these devices is beyond the scope of this
paper and will not be discussed.

Deep-level impurities, on the other hand, play an en-
tirely different role. In general, they can be incorpo-
rated in a crystal in smaller concentrations, usually of
order 10"-10"cm ' in the case of Si, or as high as 10'
cm ' in some compounds. They usually cori.tribute neg-
ligibly to the concentration of current carriers. Instead,
their function in most cases is to act as a catalyst for
the recombination of electrons and holes. They accom-
plish this by providing a level somewhere in the middle
of the band gap. Since for an electron and a hole to re-
combine (i.e., for an electron in the conduction bands
to drop into an empty state in the valence bands), an
amount of energy equal to the band gap must be dissi-
pated, recombination is made more likely if that energy
can be dissipated in smaller fractions. In fact the most
efficient recombination centers are those deep-level
impurities whose ionization energy is of order half the
band gap and which at the same time have a series of
hydrogenic excited states near one or the other of the
band edges. The electron (or the hole) can then cascade
through these excited states by losing energy to the lat-
tice in small quantities at a time, i.e., by emitting pho-
nons whose energies are equal to separations between
excited states, thus making the recombination cross
section larger.

In view of their function as recombination centers, the
most important role of deep-level impurities is to con-
trol the lifetime of carriers. {.1early, then, if the de-
vice calls for long carrier lifetimes, deep impurities
must. be avoided. An example of this case is a photocell
which is used for the conversion of solar energy into
electrical energy. When sunlight strikes the cell, it
generates electron-hole pairs by exciting electrons from
the valence bands into the conduction bands. It is im-
portant that the lifetime of the carriers be long so that
they can be drifted to their respective electrodes for
collection without substantial loss. Another example is
a junction laser where the presence of deep-level re---
combination centers would limit the efficiency. On the
other hand, when the device calls for short carrier life-
times, deep-level impurities must be judiciously incor-
porated in the device. An example of such a case is a
photocell which is used as a fast switch. When light
strikes the cell, it generates electron-hole pairs which
produce conductivity (the process is called photocon-
duction). For a fast switch, conduction of current must
last only for a very short period of time, so efficient
recombination centers are necessary to destroy the car-
riers quickly.

The above discussion of shallow versus deep impuri-
ties referred to nonisovalent impurities. Isovalent im-
purities belong to a class of their own. They also have
useful applications, in particular in the manufacture of
LED's. In order to produce LED's of a given color, a
material must be found whose band gap is equal to an
energy corresponding to the desired wavelength of ra-
diation. Moreover, the gap must be direct f'conduction-
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band minimum and valence-band maximum at the same
k vector) for efficient radiative recombination. The
material must also be suitable for the fabrication of a
p-n junction. If a material is found which satisfies all
the required criteria but has an indirect gap, the s itu-
ation can be rectified if an isovalent impurity introduces
a level near one of the band edges. As we shall see in
Sec. IX, such a level has a wave function which can be
constructed as a linear combination of band wave func-
tions from large regions of k space. In particular, if
the localized wave function contains substantial contri-
butions from the region of k space where the other band
has its extremum, recombination between the localized
level and the other band becomes very efficient. Light
is thus obtained at a wavelength corresponding to an en-
ergy slightly less than the band gap. The isovalent im-
purity thus "converts" the band gap from indirect to di-
rect and produces efficient radiative recombination.
The most notable example of such a situation is nitrogen
in GaAs„P, „alloys, which is widely used for red and
green diodes. The same end of "converting" the band
gap from indirect to direct is sometimes accomplished
by introducing donor-acceptor pairs in a judicious way.
An example of this is GaP doped with Zn and 0 which,
depending on the Zn-0 separation, produces light of
different colors.

Finally, most lattice defect. s, such as those introduced
when a sample is irradiated, cause nothing but trouble.
Those of an extended nature are particularly bad in that
they usually make devices inoperable. The best-known
such defect is the dark-line defect which is the primary
source of degradation of GaAs-Qa, „Al„As double hete-
rostructure lasers(Kishino et al , 1976, a.nd references
therein).

V. EXPERlMENTAL METHODS

Before we embark on a detailed description of the the-
oretical methods that have thus far been used to study
the electronic structure and properties of impurities
and defects in semiconductors, we turn to a brief survey
of experimental methods. The most fundamental prop-
erties that can be measured are, of course, the posi-
tions of the energy levels and the wave functions of the
states introduced by the impurity or defect in the other-
wise forbidden energy gap of the semiconductor. The
positions of localized energy levels are usually obtained
experimentally by detecting transitions of electrons
from the localized level of interest to other localized
levels or to one of the band continua, - or, conversely
from~one of the band continua to the localized level.
Transitions may correspond to excitation, namely when
electrons go to states of higher energy by absorbing en-
ergy, or to de-excitation, when electrons go to states
of lower energy by releasing energy. The form in which
the energy is supplied or released provides a convenient
means to classify experiments.

finite temperatures, however, the lattice vibrates and
thus stores energy which we sense as heat. In quantum-
mechanical language, lattice vibrations correspond to
phonons, which may interact with electrons and be an-
nihilated, imparting their energy and momentum to elec-
trons. Alternatively, the vibrating lattice emits black-
body radiation in the form of light quanta (photons) which
electrons may absorb. In the case of donor states,
electrons may make transitions from a localized level
to the conduction bands (electron emission) while some
others drop back into empty localized levels (electron
capture). At a given temperature, a steady state occurs
and one can measure the density of excess carriers
n(T). Usually n(T) is measured indi'rectly by measuring
either the conductivity o (T) or the Hall coefficient
RH (T), both of which are simple functions of n(T). In the
simplest case, n(T) obeys the activation formula

n(T) =A(T) exp( E„-/ks T),
where E~ is referred to as the thermal activation ener-
gy, and corresponds to the ionization energy defined in
Sec. II. In the case of acceptor states, electrons make
transitions from the valence bands into the localized le-
vel (hole emission) and vice versa (hole capture) and
similar results follow. In general, one has both donors
and acceptors and a more complicated analysis is re-
quired.

Conductivity and Hall-effect measurements were the
first methods used to study semiconductors and in fact
led to the conclusions that impurities dominated their
electrical behavior (Wilson, 1932, and references
therein). They have been particularly useful for shallow
donors and acceptors. For deep levels, however, one
has to work with high-resistivity materials (low concen-
tration of shallow dopants) so that effects due to the deep
levels themselves can be detected. In general, how-
ever, one may not be able to reduce the shallow-dopant
concentration to values that are substantially lower than
the available concentrations of deep levels, which makes
the experiments very hard. In recent years, junction
techniques have been developed which eliminate the need
of high-resistivity materials. Such a technique was
first reported by Williams (1966), but the foundations
of a large family of junction techniques were laid in in-
dependent work by Sah and his co-workers' (Sah,
Forbes, Rosier, and Tasch, 1976; Sah, Chan, Fu, and
Walker, 1972; for a review, see Sah, 176, 1977a,
1977b). These techniques study deep-level impurities
situated in the transition region of a p-n junction (Fig.
4) where the Fermi level lies somewhere in the middle
of the gap and the shallow donor impurities are all ion-
ized. By applying a reverse bias, the electrons are
swept away, thus perfectly simulating a high-resistivity
material. Electrons from the deep levels are then ther-
mally excited to the conduction bands. One then has a
choice of measuring the so-caQed dark current, or the
change in the capacitance of the P-n junction caused by

A. Thermal experiments

At T =O'K, all electrons occupy the lowest one-electron
energy levels available to them and no transitions are
possible in the absence of external perturbations. At

As an interesting historical note (Sah, 1976), the junction
method evolved from a homework problem assigned by Sah to
students in an undergraduate solid-state electronics course in
the spring of 1965.
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FIG. 4. Schematic representation of a Pn junction with no ex-
ternal field. Ez is the Fermi level.

the depopulation of the deep levels. Once again, one
ends up with an emission rate from which one can ex-
tract a thermal activation energy. In contrast to experi-
ments done on bulk high-resistivity samples, measure-
ments in P-n junctions are carried out in the presence
of high electrostatic fields whose effect on the emission
rates is not thoroughly understood (see recent review
by Grimmeiss, 1977). Junction techniques, on the other
hand, provide high versatility and there exist numerous
variatioris, depending on how initial conditions are es-
tablished, what one actually mea. sures, etc. (Sah, et
al. , 1970; Grimmeiss, 1977). Recently, junction
techniques which allow one to detect energy-level posi-
tions as peaks in a continuous spectrum have been shown
to be pai ticularly efficient fsuch techniques have been
referred. to as deep level transient spectroscopy (DLTS).

. See Lang, 1974; Miller et a/. , 1977; Grimmeiss, 1977.)
We will not delve here into the subject of classifying
the various junction techniques and comparing their
technical advantages and disadvantages.

B. Optical experiments

Optical -experiments differ from thermal experiments
in that the energy supplied by the excitation or released
by de-excitation is in the form of radiation. Transitions
are now caused by an external photon field, instead of
the phonon field. Optical experiments provide additional
flexibility since photons, unlike phonons, can be supplied
in a well-controlled manner, with frequencies and in-
tensities of one's choice.

By analogy with thermal conductivity measurements,
one can perform a photoconductivity experiment, in
which carriers are excited from localized states into
the band by absorbing light. By scanning through a con-
tinuum of light frequencies one measures the resulting
conductivity, which should be zero for frequencies
smaller than the separation between the localized level
and the band edge. The earliest such measurements
were by Burstein and co-workers (1951,1953). The
process of extracting an accurate threshold, however,
which corresponds to the true ionization energy defined
in Sec. II, is not quite straightforward because photo-
conductivity becomes nonzero in a somewhat gradual
Manner. Secondary processes, such as two-step photo-
thermal ionization [a process in which electrons are
optically excited to an excited state and then are ther-
mally excited to the band edge (Lifshitz and Nad, 1965;

Kogan and Sedunov, 1967)], may smea. r out the threshold
in a hopeless manner.

Accurate optical measurements are usually made for
shallow impurities by directly measuring the absoxPtion
coefficient as a function of photon frequency, a process
which is not possible in thermal experiments. Sharp
peaks are then obtained at frequencies corresponding
to energy separations between the ground state and ex-
cited hydrogenic states. A typical spectrum is shown
in Fig. 5. Since the positions of the excited states are
well known from effective-mass theory (see Sec. VII for
more details), band edges can be located very accurate-
ly. The method has proved extremely accurate for do-
nors and acceptors in Si and Ge (Burstein, Picus,
Henvis, and Wallis, 1956; Aggarwal and Hamdas, 1965;
Jones and Fisher, 1965; Fisher and Ramda. s, 1965),
including some relatively deep ones (Ho and Ra.mdas,
1972; Kleiner and Krag, 1970). Similar measurements
in compound semiconductors become complicated by the
presence of many phonon sidebands arising from stron-
ger coupling to the lattice in partially ionic materials
(Ahlburn and Ramdas, 1968, 1969; Onton, 1969; Onton
and Taylor, 1970; Carter, Dean, Skolnik, and Strad-
ling, 1977).

Detailed information in compound semiconductors has
been obtained mostly from photoluminescence measure-
ments, which are the opposite of photoabsorption. In
such experiments, electrons drop into lower-energy
states and the energy is released in the form of photons,
which are detected. Direct luminescence arising from
a band-to-localized-level transition is not a very effi-
cient technique in indirect-gap materials (Haynes and
Westphal, 1956). A number of intriguing developments
in the 1960's, however, made luminescence a very pow-
erful technique. First, the so-called pair spectra were
observed (Hopfield, Thomas, and Gershenzon, 1963),
which correspond to an electron bound to a donor drop-
ping into the bound state of an acceptor. One could thus
extract accurate sums of acceptor and donor binding en-
ergies. An important breakthrough came in 1967 (Dean,
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FIG. 5. The infrared-absorption spectrum of phosphorus-doped
Si, as measured by Aggarwal and Hamdas (1956).
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Cuthbert, Thomas, and Lynch) with the observation of
two-electron partially- radiative transitions. In these
experiments, an exciton bound to a donor recombines
but the released energy is only partially released as a
photon. 'The rest of the energy is picked up by a donor
electron which goes into an excited state or the conduc-
tion band. The excited states reached by this type of
experiment have even parity, unlike those reached by
infrared absorption, which have odd parity. They can
be used to obtain accurate donor binding energies. Ac-
curate acceptor binding energies are then obtained from
the pair spectra (Dean, Cuthbert, Thomas, and Lynch,
1967; Dean, 1968). Another example of luminescence is
that reported by Dean and Henry (1968) in which they ob-
served a transition from an excited state of the oxygen
donor in GaP to the ground state of the same impurity
atom.

More recently, with the advent of tunable dye lasers,
a variation of luminescence spectroscopy has become
very powerful. The method is called luminescence ex-
citation sPectxoscoPy (Street and Senske, 1976; Cohen
and Sturge, 1977). It differs from conventional lumines-
cence spectroscopy in the way the crystal is excited.
Instead of exciting carriers by band gap irradiation,
this technique uses a tunable dye laser whereby selected
states can be excited at wi. ll and then allowed to decay
radiatively. In this way, one can measure the lumines-
cence intensity as a function of the excitation energy.
Cohen and Sturge (1977) used this technique and were
able to detect excited states of excitons bound to pairs
of isovalent nitrogen impurities in Gap. Street and
Senske (1976) showed that the method is unique in giving
detailed information about binding energies and excited
states of acceptors in a direct way. The method is ba-
sically the same as the luminescence of pair spectra,
described earlier. Instead of looking at all the pair
lines in the luminescence spectrum, however, one se-
lects a particular line and measures its intensity as a
function of the excitation energy supplied by a dye laser.
In this manner, the measured intensity has a peak when-
ever the excitation energy of the dye laser coincides
with the energy separation, between the donor ground
state and one of the excited states of the acceptor. The
complete acceptor spectrum is thus obtained without
needing the band gap, the donor binding, or the donor-
acceptor interaction energy. Furthermore, because
transitions occur from one center to another, dipole se-
lection rules, do not operate and both s-like and P-like
excited states can be detected. This feature is unique
to this method. In contrast, infrared absorption reaches
only P-like excited states, while "two-electron" lumines-
cence (discussed above) and Haman spectroscopy (see
below) reach only s-like excited states.

Baman spectroscopy makes use of inelastic light scat-
tering, and thus corresponds to a combination of ab-
sorption and luminescence measurements. Light of a
given energy is absorbed and light of a. different energy
is emitted. The difference is taken up or supplied by
one or more excitations in the solid, depending on
whether the energy of the emitted photon is smaller or
larger than the energy of the absorbed photon. The
shift, therefore, measures the energy of the excitation,
which can be either a phonon or an electronic excitation

I

or both. The technique can therefore be used to study
the excited states and ionization energies of impurities.
Unlike photoabsorption, however, Baman spectra reach
excited states with the same parity as the ground state.
The reason is that quantum mechanically Raman scat-
tering is a hvo-step process. The first step is the ab-
sorption of the incoming photon with the system going
into a, virtual state of opposite parity. The second step
is the emission of the outgoing photon with the system
reaching a state of the same parity as the initial
(ground) state. The technique was first successfully ap-
plied to electronic states in semiconductors by Henry,
Hopfield, and Luther (1966), who studied the Zn and Mg
acceptors in GaP, and has been used later by many
others.

The techniques described above work well for shallow
levels and on occasion for deep levels as well. For the
latter, however, junction techniques are more widely
used. As we mentioned earlier in the context of thermal
experiments, there exist an immense variation of junc-
tion techniques depending on initial conditions and what
one actually measures. The use of optical excitation or
luminescence adds vast new flexibility. Apart from
technical details, however, in all cases one ends up ex-
tracting optical emission or capture cross sections for
either electrons or holes, which are proportional to the
absorption coefficients that one might measure by direct
light absorption in a bulk sample, except for the com-
plication added by the high electric fields. In general,
however, excited states are not observed, and the
threshold for transitions to the bands is not easily de-
te rmined.

C. What experiments really measure

The experimental techniques we discussed thus far
detect transitions of electrons from one state to another,
at some finite temperature. The transitions are induced
either optically or thermally. Usually, one would like
to be able to analyze such data and extract quantities
that may also be obtainable from theoretical calcula-
tions. In particular, one would like to be able to con-
struct an energy-level diagram at T = 0 &.

'The first complication arises from the fact that optical
and thermal experiments do not measure the same tran-
sition. The difference was well understood quite early
(deBoer and van Gell, 1935; Mott a.nd Gurney, 1940): In
an optical experiment, when an electron absorbs a pho-
ton and makes a transition to another state, the sur-
rounding ions do not move in the process (Franck-Con-
don principle). The process is usually illustrated in
terms of a configuration-coordinate diagram as in Fig.
6(a). Optical transitions are "vertical, " leaving the lat-
tice configuration unchanged. Once the transition oc-
curs, the system is likely to relax to a new minimum-
energy lattice configuration, before recombination oc-
curs. As Fig. 6(a) illustrates, the energy of the emitted
photon (CD) is then smaller than that of the absorbed
photon (AB). Thermal experiments, on the other hand,
do not mea. 'sure either AB or CD. In such experiments,
one detects the number of electrons in the upper level
after equilibrium is reached at each temperature. The
thermal activation energy corresponds to the energy dif-
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P IG. 6. Configuration-coordinate diagrams. (a) An optical
transition corresponds to one of the arrows marked AB. The
various arrows correspond to phonon sidebands. After the in-
itial excitation, the electron may relax to the energy C so that
the luminescence energy CB may be smaller than the absorp-
tion energy AB (Franck-Condon shift). (b) Two optical experi-
ments would yield the two energies AC and DE which do not
add up to the band gap AB.

ference AC, which is therefore always smaller than or
equal to the optical threshold AB.

Another complication is due to the fact that it is pos-
sible during an optical experiment to create or destroy
phonons (see, e.g. , the various AB vertical lines in Fig.
6a). At low temperatures a discrete spectrum may ap-
pear for each electronic transition, known as a pkonon
sideband, whereas at high temperatures one simply has
thermal broadening which can be discussed in classical
terms. In all cases, the truly demanding task is to ex-
tract a threshold which corresponds to an electronic
transition, for comparison with theoretical calculations.

In the case of shallow impurities in Si and Qe, low-
temperature (liquid-helium) experiments have given
clean, sharp absorption spectra which have been inter-
preted unambiguously. In the case of shallow impurities
in the compound semiconductors, where electron-lattice
interaction is stronger due to their partially ionic char-
acter, phonon sidebands complicate the spectra consid-
erably, but the huge variety of experiments that have
been possible have allowed the unambiguous extraction
of energy levels. [For a compilation of unambiguously
identified levels in Si, Qe, and some compounds, see
the recent book by Watts, 1977.]

Deep levels are another matter. , however. Most ex-
periments are done inP-n junctions or Schottky bar-
riers where high electric fields are present, and usually
at temperatures between 100 and 400'K. Observed cross
sections are therefore considerably broadened, and the
extraction of energy levels in an unambiguous way is
hindered. The procedure may also be complicated fur-
ther by lattice relaxation being different for different

charge states, which would cause the valence-to-trap
and trap-to-conduction thresholds riot to add up to the
total band gap [Mott and Gurney, 1940; Kukimoto,
Henry, and Merritt, 1973; Henry and Lang, 1977; see
Fig. 6(b)]. A similar effect may be caused if one of the
two thresholds does not correspond to transitions from
or to the respective band extremum (White et a/. , 1977).

The theory of the temperature dependence of energy
levels and cross sections is rather primitive and not
ripe for review. An elementary model has recently been
proposed by Van Vechten and Thurmond (1976), in terms
of which they analyzed available data and were led to
new assignments for the observed centers in Au- and
Co-doped Si (see below). On the other hand, theories of
multiphonon processes have in general been available
(Huang and Rhys, 1950; Lax, 1952; Gummel and Lax,
1955; Kubo and Toyozawa, 1955; Kovarskii, 1962;
Kovarskii and Sinyavskii, 1962), but the use of such
theories to analyze cross section line shapes is not a
straightforward task. Valiant efforts have recently been
made by Henry and Lang (1977) and by Samuelson and
Monema, r (1977) to include th'e effect of the lattice on
bound-to-free and free-to-bound transitions and to in-
terpret data on deep levels.

For deep levels, an even more serious problem is that
of actually identifying the impurity or defect center one
measures. Particular attention to this problem is paid
by experimentalists in the analysis of data on radiation-
induced defects (see, e.g. , the review by Corbett, 1964),
where it is the central issue. For chemical impurities,
however, which are diffused in the sample in a con-
trolled manner, the problem is often given only mini-
mal consideration. Any measured levels in the gap are
often associated with the particular impurity that was
diffused in. No problems arise with impurities which
can be incorporated at high concentrations and introduce
shallow donor or acceptor levels. The risk is high,
however, for impurities that can be incorporated only
at intermediate concentrations of order 10"-10"cm ',
as is generally the case with deep-level impurities. The
risk has been highlighted by a series of experiments by
Sah and coworkers (Yau and Sah, 1974, and references
therein; Sah and Wang, 1975) who heat-treated a p'n
junction at 1200 C for several hours and then cooled it
to room temperature and found that, the process intro-
duces two deep donor levels probably associated with
the same center. The concentration of this center was
determined to be 10"-10"cm '1 Since impurities are
often diffused in at high temperatures, the task of iden-
tifying measured levels with the impurity that was dif-
fused in is highly demanding.

Carrying the line of thought one step further, even if
enough experiments are carried out to ensure that a
particular measured level is in fact associated with a
certain chemical impurity, the task still remains to
identify whether the center is a simple substitutional
impurity, an interstitial, a vacancy-impurity complex,
or a complex involving the ever-present shallow dopant
of the p-n junction. A recent example of this problem
is the analysis carried out by Fagelstrom and Qrim-
meiss (1977) on the published data on GaP:Cu. Cross
sections published by several authors showed distur-
bingly different thresholds. A careful analysis, how-
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ever, revealed that the different curves correspond to
samples with a different shallow-donor dopant. Some
experiments were repeated and it was confirmed that
GaP:Cu reproducibly gives a cross section with a
threshold that depends on the shallow-donor dopant. One
might be tempted to conclude that the center is a Cu-
shallow-donor complex, but, clearly, more experimen-
tal work is needed. For example, cross sections mea-
sured on uniaxially stressed samples or electron-spin-
resona. nce (ESR) data may provide clues to the symme-
try of the center.

Another case that raises similar questions is that of
Si:Au. The data available in the literature are not in
very good a.greement with one another (see tables in the
recent review by Grimmeiss, 1977). More recently,
Lang (1977) performed similar measurements on a Au-
doped Si sample but found dramatically different be-
havior. In particular he found a different threshold and
much stronger temperature dependence than found by
Engstrom and Grimmeiss {1975). In an effort to resolve
the discrepancy, Lang and Grimmeiss exchanged sam-
ples and repeated measurements. They reproduced each
other's data, establishing that the centers in the two
samples are not the same. Interestingly, Van Vechten
and Thurmond (1976) have already argued on theoretical
grounds that the Au center in Si is not simple substitu-
tional, as has been invariably assumed, but Au-vacan-
cy complex.

The very recent developments described above dem-
onstrate that a meticulous re-examination of what is
known and accepted about deep-level centers in semi-
conductors is in order. New experiments will have to
be done and more theories will have to be developed to
help the process.

VI. THE QUANTUM-MECHANICAL PROBLEM:
GENERAL PROPERTIES OF ELECTRONIC STATES

In this section we will give a general description of
the electronic states in semiconductors containing a
single isolated impurity. The remainder of the paper
will be concerned with calculational techniques. 'The
treatment in this section in the most part will apply to
any defect of a localized nature; it will not apply to line
or plane defects, as discussed in Sec. II. We begin by
giving a summary of known results for the perfect crys-
tal in order to establish terminology and set up the
framework for the description of the imperfect crystal.

the behavior of each electron in the presence of fields
arising from both the nuclei and the other electrons.
The most widely used form of the effective one-electron
potential is that obtained by making the so-called local
density approximation to exchange and correlation ef-
fects. This class of potentials includes both those used
in the Ão.' method (Slater, 1951, 1972) and those based
on the use of the homogeneous electron gas to estimate
exchange and correlation effects (Hohenb'erg and Kohn,
1964; Kohn and Sham, 1965; Hedin and Lundquist,
1971). The choice of effective one-electron potentials,
while basic to all electronic-structure calculations, is
neither specific to nor different in the study of impurity
states; we shall therefore not discuss this issue fur-
ther. Individual potentials, used in the applications of
various methods for impurity states, will be discussed
in the appropriate contexts.

The one-electron Hamiltonian can be written as

H =T+V (6.1)

The solutions are characterized by the wave vectors,
which is a consequence of the periodicity of V . One
could allow k to take any value in the three-dimensional
k spa. ce, in which case the index n in (6.2) would not be
necessary (this representation is known as the ex-
tended-zone representation). However, since k space
is also periodic, it is possible to describe all states
in terms of a k that lies within a primitive unit cell of
k space, the Brillouin zone. The index n then becomes
necessary to enumerate the various solutions at the
same k (this representation is known as the reduced-
zone representa. tion).

The eigenvalues E „ form the well-known bands of al-
lowed energies, which are separated by energy gaps.
The energies E„~ are usually plotted as a function of k
along directions of high symmetry. For illustration
purposes, the energy bands of Si are shown in Fig. 7.
Near a band extremum at k„E~ can be expanded in
terms of k-k, and the leading term is of order (k —k,)'.
In the case of a single band, the expansion may be writ-
ten in the form

where T = $'V'/2mo is the kinetic energy (mo is the
mass of a, free electron), and V' is the one-electron
potential, which has the full symmetry of the lattice.
(Superscripts 0 will be used throughout to denote per-
fect-crystal quantities. ) The corresponding eigenvalue
problem is

(6.2)

A. Electron states in perfect crystals
E„',=Z„'„+(n'/2)(k -k, ) m-'(k k,),

where m ' is the tensor

(6.3)

A semiconductor is in principle described by a "many-
body" Hamiltonian X, which describes the correlated
motion of all the electrons and the nuclei in the sample.
A convenient way to proceed, which is adequate for the
purposes of this paper, is to make use of the Born-
Oppenheimer approximation (see, e.g. , caiman, 1964,
p. 169), whereby the nuclear motion can be separated
from the electronic motion. One is then left with a
"many-body" Hamiltonian for the electrons. From this
Hamiltonian, one can deduce an effective one-electron
Hamiltonian H which describes in an approximate way

m '=(1/g') V~. (V„E„'~)~„~. (6.4)
' In cubic materials at ko=o, symmetry requires that the

tensor m ' be diagonal with m„„' = m ' = m ' =I+ ',
whereby (6.3) becomes

E„'„=E„'.: (g'/2m*} u2, (6 5)

and rn* is referred to as the effective mass. More com-
plicated expressions obtain for extrema at k points with
lower symmetry or at extrema of degenerate bands.
These cases will be dealt with when needed, in Sec. VII.
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about their corresponding site R&, except for some
weak oscillations that persist at large distances from
R&, which are necessary for the orthogonality expressed
by (6.12).

Another quantity that is useful in the description of
electronic states in crystals is the Green's function.
It is defined formally, as an operator for energies E
with an infinitesimal imaginary part by

OP

-4

G (E) =1/(E —I/ ),
so that

G'0'. , = [Ii(E-E.', )] 4, .
It can be expressed as a function of r and r'

)])og (r ) )j)O &r' )
GD(E. r rI) P &nk &n k

@0

(6.13)

(6.14)

(6.iS)

Its matrix in the Bloch representation is diagonal, i.e.,

—l2

X K

(P„, , iG'i g„„)= 5„,„5,„//(E E„„),—
whereas in the Wannier representation it is

(w„./, ~G ~so„/) =5„,„N 'gn y ny n" E —EO

(6.16)

(6.17)

FIG. 7. The energy bands of silicon, calculated by using the
empirical pseudopotential method and the potential form factors
of Cohen and Bergstresser (1966).

The wave functions P„„ in (6.2) are known as Bloch
functions, after Bloch (1928) who demonstrated that they
can be written in the form

Any property of the system may be expressed in terms
of the wave functions or in terms of the Green's func-
tion. Quite often it is a tradeoff between calculational;
simplicity and physical clarity. For our purposes, a
useful property of the Creen's function is that the imag-
inary part of its trace, which is independent of repre-
sentation, may be identified with the density of states
D(E)

y„'„(r)= e'"'u~(r),
where u„~(r) is a periodic function, i.e. ,

(6.6) D'(E) = —Im Tr G'(E) . (6.18)

u„'„(r+R;)=u„',(r), (6.7)

where R& is any lattice vector. The Bloch functions,
therefore, extend over the whole crystal and have the
sa, ine amplitude

~
g„(r) ~' in every unit celL

In terms of the Bloch functions one may define another
set of functions, the Wannier functions (Wannier, 1937)

1 Ilim . = P —w wi5(cu),
47 +2'g

and the conventional definition of Do(E),

(6.19)

This expression can be directly obtained from Eq. (6.16)
by allowing E to have an infinitesimal imaginary part
and using the Dirac result (Merzbacher, 1967, p. 490),

ggo(r R ) ~"1/2Q e-ik.R/ y0 (r) (6.8) D (E) = +6(E —E„~). (6.20)

(1jK)g e'~'&a& R/' (6.9)

where N is the total number of lattice sites. By multi-
plying (6.6) by e'"'R~, summing, over k and using the
theorem (Reitz, 1955)

In the Wannier representation, (6.18) becomes

D'(E) = —gim(~'„.
~

G'~u „',)
gg

I

since (w„; ~G'~zo„/) is independent of j.
(6.21)

one immediately obtains

y' (r) =~ '/' pe~" /u'(r —'R, )

Both sets of functions are orthonormal, namely

&&: ~ I &.'.&
= 6'A ~

and'

(6.10)

(6.11)

B. Electron states in imperfect crystals

As in the case of the perfect crystal, it is adequate
for our purposes to describe the imperfect crystal in
the one-electron approximation. (Many-body effects
will be discussed in Sec. X.) The corresponding Ham-
iltonian B may be written as

(zv /.
~ „,) =6 „6/, /. (6.12) H =T+V, (6.22)

In contrast to the Bloch functions, which extend over
the whole crystal, the Wannier functions are localized

where T is again the kinetic energy a.s in (6.1), and V is
the new one-electron potential. (As a matter of conven-
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tion in notation, all quantities with superscript zero will
refer to quantities in the perfect crystal. The corre-
sponding quantity in the imperfect crystal will be denoted
without a superscript. Quantities which have the same
expression in both crystals, e.g. , the kinetic energy T,
will have no superscript. ) V may be written as

V=V +U, (6.23)

where U represents the change or perturbation intro-
duced by the impurity, and will therefore be referred
to as the imPurity Potential. In view of (6.1) and (6.23),
H may also be written as

H=H +U. (6.24)

The eigenvalue problem for the imperfect crystal is

HP„=E„P„, (6.25)

and our task here is to describe the nature of its solu-
tions.

We observe immediately that two types of solutions
may exist: (a) those with energy E, within the allowed
energy bands of the perfect crystal; and (b) those with
energy &„within the forbidden band gaps.

1. States within the band gaps

The first question is one of existence, and we distin-
guish two cases, namely impurity potentials which ex-
tend over an effectively finite range, and impurity po-
tentials which decay a,s c/r, where c is a constant.

In the first case, states may or may not exist within
a given gap, depending on the strength of the impurity
potential and the nature of the energy bands. If they do
exist, their wave functions decay exponentially far from
the impurity or defect, and they are therefore referred
to as bound states. . In order to see that gap states must
be bound, we note that the wave function g„ far from the
impurity must be expressible as a linear combination
of all the eigenfunctions of H' at the ener gy E,. However,
H has no propagating solutions in the gaps; instead,
the only solutions correspond to imaginary k's, so that
they either decay or grow exponentially. The latter so-
lutions are physically ruled out, thus requiring that P„
for a gap state is localized.

The case of an impurity potential with a Coulombic
c/r tail is more complicated in that its effect remains
non-negligible all the way to infinity. An elegant proof
may be given, however, (see Mott and Gurney, 1940)
that if c &0 (potential attractive to electrons) an infinite
number of bound states exists in the gap below the up-
per-band edge. Alternatively, if c & 0 (potential attrac-
tive to holes), an infinite number of bound states exists
in the gap above the lower-band edge. In either case,
the states closest to the band edge are hydrogenic in nat-
ure and may be assigned an integral quantum number n.
As n —~, the orbit of the bound state tends to infinity
so that bound and propagating states merge in a contin-
uous way at the band edge.

Formally, the bound-state solutions of (6.25) may be
written down by first rewriting (6.25) as

g„=Go(E,) Ug„. (6.27)

Note that G'(E„) is a well-defined real function for all
real energies E„ in the gaps and (6.27) is simply an inte-
gral equation for p, (r). By expressing the operators Go

and U in any representation, such as the Wannier repre-
sentation, (6.27) becomes a set of linear algebraic equa-
tions for the expansion coefficients of g„ in that repre-
sentation, whereby the bound-state energies are the
zeroes of the determinant of 1 —G U. Since the deter-
minant of an operator is independent of representation,
any basis set can be used to represent the operators 6
and U. We conclude that the criterion for the existence
of bound states in the gap is that the determinant of
1 —O'U as a function of energy must go through zero.
Most of the remainder of this paper will be devoted to
methods of determining bound-state energies and wave
functions for a variety of impurity potentials.

g„=g„~ +G (E„)Ug„, (6.26)

where go& is a Bloch function corresponding to the en-
ergy EQ& =E„. Here Go(E„) is understood to mean &~~~ G

(E„+i@)
The states g„described by (6.28) are clearly scatter-

ing solutions, as they asymptotically approach one of
the unperturbed solutions go&. In fact, Eq. (6.28) is the
solid-state analog of the Lippman-Sehwinger equation of
scattering theory. An elaborate theory exists for these
states (Koster, 1954; Lifshitz and Kaganov, 1959; Cal-
laway, 1964; Preziosi, 1971; Garcia-Moliner, 1971;
see also Bassani, Iadonisi, and Preziosi, 1974) con-
structed along the lines of formal scattering theory for
free electrons. Thus one defines scattering amplitudes,
scattering cross sections, and phase shifts by complete
analogy with free-electron results, except that the alge-
bra and the details are considerably more complicated.
We will not review that literature, but, instead, refer
the interested reader to the original literature cited
above. Many applications of scattering theory are ac-
tually done in the effective-mass approximation, when
one can use all the results of free-electron scattering
theory. The theory yieldS scattering cross sections
for impurities and hence lifetimes of carriers caused
by impurity scattering and mobilities (Conwell and
Weisskopf, 1950; Brooks, 1951, 1955).

We turn to another aspect of the problem which is im-
portant to the overall purposes of this paper, namely
the changes in the distribution of states, i.e. , density of
states, caused by the impurity potential. For this pur-
pose we define the Green's function G(E) for the imper-
fect crystal, by analogy to (6.13):

(6.29)

2. States within the energy bands

Within the region of the energy bands of the perfect
crystal, a state with energy E, is degenerate with an
energy Eo ~, whereby the most general solution of (6.26)
is no longer (6.27), but

(E„H')g„=Ug„, —

and then using the definition (6.13). ~e get

(6.26) Again, E is viewed as a complex variable, and for ap-
plications, its small imaginary part will be let go to
zero in an appropriate way. The new density of states
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is given by

D(E) = —(I/~) Im Tr G(E) .

By using the fact that d G '/dE =1, one can write

G(E) = —(d/dE) ln G(E) .

(6.30)

(e.sl)
The trace in Eq. (6.30) can then be evaluated in a repre-
sentation which diagonalizes G (any representation would
give the same result since Tr is an invariant) to get

D(E) =—Im —ln det G(E),d.
dE (6.32)

where, again, the determinant detG(E), as an invariant,
may be evaluated in any representation. An identical
expression holds for D'(E) in terms of Go(E).

Now, by using (6.24) and (6.13) in (6.29) one gets Dy-
son's equation for G, namely

G =G'+G tJG,

which can be solved formally to give

G = (1 —G U) ' G ' .
Using this in (6.32), we get

D(E) =D (E)+AD(E),

(e.ss)

(e.s4)

where b, D, the change in the density of states, is given
by

(6.35)

AD E dE =O. (e.se)

(See Garcia-Moliner, 1971.) It is known as Levinson's
theorem and expresses the conservation of states. It
means that for every state appearing in a band gap, a
state must be missing in the bands. Therefore, if we
have a total of N~ bound states in gaps, (6.36) becomes

f b.D(E)dE =
b ds

(6.3 7)

We note that the operator 1 —O'U enters once more, and
find it convenient to denote it by Q.

An important theorem, which is a consequence of the
analytic properties of Q, is that

5(E) = —tan '(ImdetQ/Bedet Q),

whereby (6.35) becomes

( )
1 de(E)

dE

(6.38)

(6.39)

Therefore an extra state is introduced or removed in
every energy interval in which 5(E) changes by m. The
position of the resonance or antiresonance is usually
defined to be the center of such an interval, whereby
resonances and antiresonances are located at positions
where e(E) =m(n/2), with m =1, 3, 5. . . . According to
this result, and using (6.38), resonances and antireson-
ances occur when BedetQ=O. Note that this condition
is identical with the one defining bound states in the
gaps. The only difference is that in the gap ImdetQ=O,
whereby AD(E) is a 6 function at the energy of the
bound state. For resonances and antiresonances, this
is not so, and it is therefore interesting to determine
the form of Im det Q [i.e., the form of LD(E)] in those
regions of energy. In order to do that, we let Eo be the
value where RedetQ =0. We then expand detQ(E) about
E„ letting E be a complex variable and seeking the
value E =E„+ir where det Q(E) =0. This result is (Cal-
laway, 1967)

E = Eo -II '/(R ' +I ' )= Eo
—II'/R '

r =2IR'/(R" +I")= 2I/R',
(6.40)

(6.41)

where we have used I = Imdet Q, R = Redet Q, and the
primes denote derivatives with respect to energy. The
approximate forms are for ~'»I'. If we now expand
6(E) about Eo, we get for AD(E)

I' 1
2~ (E -E,)'+r'/4

which is the mell-known Lorentzian form. Note that it
is the sign of I that determines whether we have a re-
sonance or an antiresonance.

(6.42)

defect. b,D(E), therefore, represents a change in the
local density of states in the vicinity of the impurity or
def ect.

An interesting connection with free-electron scattering
theory may be made by noting that if z is the complex
number a +i&, then Im In@ =tan '(b/a). We therefore
define the phase shift (Callaway, 1967) 5(E) by

where the integral is now only over the regions of the
energy bands.

In many cases, the function AD(E) is negligible over
most of the energy axis within the bands and is appre-
ciable only over restricted regions of energy. When the
integral over such a region is a negative integer, com-
pensating for one or more of the bound states in the gaps,
such a region of energy is called an antiresonarice. Al-
ternatively, when the integral is a positive integer, the
region is called a resonance. Hesonances, just like
bound states, must be compensated by antiresonances,
in order to satisfy (6.36). As far as charge is concerned,
the wave functions g~ in a resonance region are such
that they build up a charge equal to the integral of b.D(E)
in the vicinity of the impurity or defect. Similarly, the
wave functions P~ in an antiresonance region correspond
to a depletion of charge in the vicinity of the impurity or

VII. HYDROGENIC EFFECTIVE-IVIASS THEORY

A. General results

Effective-mass theory (EMT) consists of a set of ap-
proximations which, in the case of bound states, allow
the transformation of the eigenvalue problem (6.25) into
an equivalent eigenvalue problem of the form

II„,S', (~) =E„E„(~),
where II,« is given by

(7.1)

(7.2)

As we will see, the form of T,«depends on the nature of
the energy bands of the host crystal. By comparing (7.2)
with (6.22) and (6.23), we see immediately that T„, ab-
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III' =Eve. (7.3)

One can then proceed by expanding g„ in terms of either
the Bloch functions $0& of the host crystal, or the cor-
responding Wannier functions u)o„(r —8,.), or the set of
functions )j}„&(r)e + "oi', where ko is some judiciously
chosen point in the Brillouin zone. Detailed derivations
for each such choice may be found in the original liter-
ature (Koster and Slater, 1954a; Luttinger and Kahn,
1955; Kittel and Mitchell, 1954; Kohn, 1957). We will
follow here a simple derivation in order to identify the
major approximations of the theory.

Let us then expand g„ in terms of the Bloch functions
of the perfect crystal

g„(r) =g F„„)j'„„(r) . (7.4)

The expansion is exact as long as the sum is over all
the bands, including the core bands. By substituting
(7.4) in (7;3), making use of (6.2), multiplying on the
left by foe),e, integrating over all space using (6.11), and
interchanging primed and unprimed symbols, one gets

E gF „+Q g„glUly„g)F. ), EuF„)*.
n'V'

(7.5)

This is an exact result. It may be viewed as a set of
coupled linear algebraic equations for the coefficients
E„&, or, by converting the sum over k in the Brillouin
zone into an integral, as a set of coupled integral equa-
tions for F„(k).

Equation (7.5) may be developed further by using (6.6)
for the Bloch functions, and expanding the product
uo~ *(r)uo

& (r) in terms of plane waves. Since we are deal-
ing with a periodic function, only the reciprocal lattice
vectors K~ contribute to the expansion so that

u „'„*(r)u'„.„.(r) =+C""'(K~)e'"&'. (7.6)

sorbs the effect of the periodic potential V .
The starting point for the derivation of (7.1) is the one-

electron eigenvalue problem for the imperfect crystal,
namely

of the host crystal and the impurity potential must be
made. We will consider for the time being only bound
states in the fundamental energy gap of a semiconductor.
To date, the only practically useful forms of the EMT
are those that retain either only conduction bands or
only valence bands in the expansion (7.4). More speci-
fically, one usually retains only one band, unless more
than one band is degenerate at the relevant band edge,
in which case all the degenerate bands are retained.
This approximation, of course, limits the range of ap-
plicability of the resulting equations to particular forms
of the impurity potential. The theory was originally de-
veloped for the hydrogenic potential

U(r) = U~(r) = —e'/sr (7.11)

for which the approximation can be justified in most
materials. We therefore turn to the derivation of the
effective-mass equations for several specific cases,
having in mind the potential (7.11). We shall refer to
this theory as the hydrogenic effective-mass theory
(HEMT). Other potentials will be considered in Sec. VIII.

E'„F„+ C„„.Ku U -k' —K~ F„.=EEi (7.12)

At this stage, one anticipates solutions for which Ez is
localized about k =0 so that

lk-k'1«K, . (7.13)

This assumption immediately leads to the following
approximations:

(i) The K~e 0 terms in (7.12) are dropped, since

lU„(k-k' —K,)l«lU„(k-k')l,
a result which follows immediately from (7.13) and the
fact that the Fourier transform of U~ is

(7.14)

B. Simple bands

The simplest case to describe is that of a single band
with a nondegenerate extremum at k =0. Dropping the
index n altogether, Eq. (7.10) becomes

The matrix element in (7.5) then becomes U~(q) = 4v e'/&-q'. (7.15)

(7.7)

(7.6)

Note also that

Cee (Ke} =fd ee„e(r)e.„e.(r)e (7.9)

Equation (7.5) can now be written as

E „gE„), +Q Q C f,"~e (Kp) U(k -k' —Kq) F„e),e =EF„),
n'X'

(7.10)

which is still exact.
In order to proceed further, approximations must be

made and specific assumptions about the energy bands

(g „k l Ul )j}„e~e)=Q C ~"~r (Kp) U(k —k' —Kp),

where we have defined U(q) to be the Fourier transform
of U(r)

(ii) C„„,(0) may be approximated by

C„„,=C„„(0)=1. (7.16)

E„' =E,'+ I'u2/2m~, (7.17)

The second part of (7.16) is exact and follows from (7.9)
and (6.11).

(iii) Sums over k and k', which should be over the first
Brillouin zone, may be converted into integrals over all
of k space. We note in passing that when the sums over
k and k' are extended over all k space, the approximation
(i) above no longer corresponds to dropping the K~c0
terms in (7.12), but to retaining them, with all the con-
stants C„„,(K) taken to be unity. The distinction should
of course be immaterial if (7.14) is well satisfied. It
would be relevant, however, if one were to seek cor-
rections to approximation (i).

(iv) Eo is expanded about k =0 to order O'. In cubic
materials, symmetry requires that a nondegenerate
band at k=0 be isotropic, whereby
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8't 4 Sokrates T. Pantelides: Electronic structure of point defects in semiconductors

where m* is the effective mass.
With the above approximations, (7.12) becomes

tion theory, we obtain for the correction to the one-band
energy

(8'k'/2m+)F(k) ~ d'k U(k —k')F (k') =EsE(k), (7.18) 1(g I U I Q„',„,) I

'
n'k' nk n'k'

(7.28)

5'(r) = f d'knot) e'"' (v. 19)

where we have written F(k) in place of F„and Es =E
—Eo. This equation is immediately recognized as iso-
morphic to a Schrodinger equation in momentum space
for a particle of mass m* in the presence of the poten-
tial U. It can therefore be transformed to real space by
deflnlng

whereby we see immediately that the sign of the correc-
tion depends only on whether the band is above or below
the primary band (bands from above push the level
down, bands from below push the level up) and the ma, g-
nitude of the correction is inversely proportional to the
band separation. In order to estimate (7.28), we use
(7.4) and (7.7) and we immediately realize thatwe . have
two kinds of terms to consider. The first is for k'-k.
For such terms

The result is c,","', (0) = c„"„"'(o) = o, (7.29)
[ e'V'/2m* U(r)]F(r)=E, F(r). (7.20)

For the potential UH(r), Eq. (7.20) is then isomorphic
to the equation of the hydrogen atom and the solutions
are therefore given by (3.8). The corresponding "wave
functions" 5'(r) are the hydrogenic wave functions. In
particular, the "Es" ground state is given by

U„(K) —(a/a*)'Z

where &~ is the hydrogenic ground state, we get

(7.30)

the second result following from (7.9) and (6.11). This
is an important result since it shows that "direct" in-
terband coupling is via the Kpc0 terms. By estimating

F(r) &-&/2 a~-&/2 e-v /a* (v.21) ~z/z —(a/a *)'(z„/z, ), (v. 31)

where a*, the effective Bohr radius is

a+ =h'e/m*e'=a, e(m, /m+), (7.22)

where a, is the Bohr radius of the hydrogen atom. We
note that F(k) for the ground state is given by

5'(k) =87r' 'a" ' ' /[k' +1 /a~']' (7.23)

tt(r) =F(r) uoo (r) =F (r)&00 (r) . (v.24)

The validity of the approximations can now be tested
ex Post facto. In pa. rticular, (7.14) is satisfied if

so that it extends appreciably in k space to approximate-
ly k 1/a*. We a.iso note that the complete wave function
p(r) is now given approximately by (Kohn, 1957)

where &~ is an average interband separation. Thus if
only k'-k terms are important, the one-band approxi-
mation is well justified if EH is a fraction of the band
gap, no other bands are close by an energy of order
EH, and a*& a. As we shall see later on, in many cases
of interest, these requirements are well satisfied.

Terms with k' Ck in (7.28) may, however, spoil this.
For such terms, (7.29) may not be sa.tisfied. For par-
ticular k' values, C~, (0) may be considerably different
from zero whereby such "indirect" interband coupling is
via the Kp =O term of the potential which is not negligi-
ble. Such effects are not easy to estimate and must be
addressed for individual materials.

C. Band with several equivalent extrema
7.25Kp» k'.

Since K~'s are of order 2n/a, (7.25) is satisfied if

(2va +)'» a'

and the error is of order (a/2va*)'. A similar result is
obtained for the other approximations since all of them
are consistently good to order k'. ~e conclude that the
approximations are best for a*» a, but (7.26) suggests
that the approximations are also reasonable for values
of a* of the same order of magnitude as a. Finally, by
using (7.22), (7.26) may be written as

where Ik" is assumed localized about the ith extremum
and the constants are determined from symmetry con-
siderations. Substituting (7.32) in (7.10) we get

The next case we consider is a band with several, say
I, equivalent extrema along some crystallographic di-
rections, away from k = O. One can then start with
(7.12), but F„can no longer be assumed localized at a
given extremum. Instead, one writes

F„= Qo. ;F„"', (7.32)

2va(m, /m+)» a/a, . (7.27)

Since mos t lattice constants are of order 1Oa, this re-
sult suggests that the EMT is valid for a hydrogenic po-
tential if the ratio of the dielectric constant to the effec-
tive mass is larger than about two. Note, however, that
the above statements refer to the validity of the EMT for
a hydrogenic potential in a given crystal. They do not
refer to the validity of the hydrogenic potential in de-
scribing real impurities in real crystals. This is a sep-
arate issue, which will be discussed later.

We are now in a position to discuss the approximations
of retaining only one band. By second-order perturba-

E~ Qo'; F„~"~ Q Q Cq„. (Kp) U(k —k' —Kp) Q o.; 5'„"'
k' P

=z Q~,.F,&*'. (v. ss)

Note that now there will be so-called intravalley terms
for k and k' near the same extremum (valley) and inter-
valley terms for k and k' near differ'ent extrema. In
early applica. tions of the theory, using Us(r), intervalley
terms were neglected on the grounds that Ik" at differ-
ent-valleys do not overlap substantially. The result then
is a hydrogenic equation of the form (7.18) or (7.20),
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except that the kinetic energy is now anisotropic. The
anisotropy arises from the fact that each extremum is
at k+0. If the extrema are along a crystallographic
direction, which may be defined to be the & axis, then
&~o is expanded in the form

E', + (g ~/2)((a„'+ A. ,')/m ~ + 0;/m ~j, (7.34)

where ~~ and ~~ are the transverse and longitudinal
effective masses, respectively. The resultant one- val-
ley EME is then

&2 92 1
+ +, F'r)

2 m( Bx By m( Bz

(7.36)

where

yU(r)F'(r) =EF'(r). (V.35)

Solutions of this equation can only be obtained varia-
tionally and we shall discuss them in the next subsec-
tion. Considerations concerning the validity of this ap-
proximation are similar to the simple band case except
that 0 for each I"~ must now be small compared with the
intervalley separation, not the typical K's.

The total wave function is now given to first order in
k by

(7.38) (Bassani, Iadonisi, and Preziosi, 1969, 1974;
Altarelli. and Iadonisi, 1971).

(D(—i&) + U(r)IjF(r) =E F(r), (7.40)

where D(k) is a ma. trix containing terms up to k' whose
size is equal to the number of bands retained in the "de-
generate" set. I is the unit matrix of the same order
and I" is a column vector. ~hen diagonalized by itself,
D(k) yields the energy bands a.t each k in the vicinity of
k =0 (Kane, 1956). The coefficients of the various
terms in D(k) are parameters similar to effective mass-
es and can be expressed in terms of the second deriv-
atives of the energy bands in particular directions. In
this approximation, the impurity wave function is given
by

E. Bands with a degenerate extremum

In this case, several bands are degenerate or nearly
degenerate near the absolute extremum and all of them
mus t be retained. The derivation of the effective-mass
equations is more complicated and the reader is re-
ferred to the excellent original treatments by Kittel and
Mitchell (1954) and Luttinger and Kohn (1955). The basic
approximations are, however, the same, namely, that
coupling with other bands is neglected and all K~NO
terms are also dropped. The resultant effective-mass
equations are of the form

F'(r) = dan ex&a-~;). rFg(k) (7.37) P(r) = Q F (r) u', (r), (7.41)

This many-valley form of P(r) is required by symmetry
(Kohn, 1957) even though intervalley coupling is ne-
glected in the EME.

Many-valley effective-mass equations (MV EME) were
first derived by Twose (reported by Fritzsche, 1962).
The assumption that went into that derivation is that the
same approximations used for the intravalley terms can
also be used for the intervalley terms even though k —k'
is no longer small compared with K~. 'This assumption
will be scrutinized in Sec. VIII. The MV EME is gi.ven
by

p n, e'"~"(T,.(—iV) ~U —EIF'(r) =0, (7.38)

where T;(k) stands for the expression (7.34) with the z
axis being in the direction of the ith extremum. Note
that if intervalley terms a,re omitted, (7.38) reduces to
(7.35). Note further that Eq. (V.38) contains only one
unknown function, say F'(r), since the others can be re-
lated to it by symmetry operations.

where now C, and C, are not determinable from symme-
try. The result is two coupled equations of the form

D. Band with inequivalent extrema

The case of a band with more than one set of equiv-
alent- extrema so that members of one set are not equiv-
alent with members of another set can be handled in a
similar way. Let us assume two such sets for simplic-
ity, whereby one ean write, instead of (7.32)

L L2
F„=C, . n;F,~ yC QP, F~o', (7.39)

where F (r) are the components of the vector F(r), and
&o (r) are the Bloch functions at k=0 of the M degenerate
or nearly degenerate bands. The structure of (7.40) and
(7.41) will be discussed at length later on in specific ap-
plications. Note, however, that (7.40) reduces to (7.20)
when M = 1 (only one band).

F. "Two-band" models

'The term "two-band" effective-mass theory has often
been used to refer to formalisms that retain both va-
lence and conduction bands for a level in the fundamental
gap (Keldysh, 1963; Glodeanu, 1969a). We distinguish
two cases:

(a) If the valence-band maximum and the conduction-
band minimum are at the same k point, we saw already
that the impurity potential cannot couple the two sets of
bands as long as only the K~ =0 term is retained in the
expansion of Eq. (7.7). A "two-band" effective-mass
equation can, however, be obtained by cons t ructing a
k ~ p matrix for the two or more bands one may wish to
include. The procedure would be identical with that used
to obta. in the a.eceptor effective-mass equation (Kittel
and Mitchell, 1954; Luttinger and Kohn, 1955), which
is in fact a three-band (without spin) or six-band (with
spin) equation. An "eight-ba, nd" k.p mat'rix has been
given by Kane (1957) for the top valence bands and low-
est conduction band of InSb, which would yield an "eight-
band" effective-mass equation of a form similar to
(7.40). Keldysh's "two-band" equations correspond to
a model 2 && 2 k - p matrix, which he used to study the
analytical structure of "two-band" solutions.

(b) If the valence-band maximum is not at the same k
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816 Sokrates T. Pantelides: Electronic structure of point defects in semiconductors

point as the conduction band minimum, the impurity po-
tential may couple these bands via the K~ =0 term even
if the two bands are not assumed coupled via a k ~ p ma-
trix. No work along these lines has been pursued.

G. Applications to real materials-successes and failures

Soon after the derivation of the rigorous effective-
mass equations for realistic band configurations, it
became apparent that the method, in conjunction with
3, hydrogenic potential, provided an excellent frame-
work for the quantitative description of the excited states
of shallow donors and acceptors. It also became appar-
ent that in most cases the method failed to produce sat-
isfactory ground-state energies (i.e., binding energies)
and was totally inadequate for the description of deep
donors and acceptors. For this reason, work on excited
states over the last twenty years has concentrated al-
most exclusively on obtaining more accurate solutions
of the hydrogenic EME's and on classifying the excited
states in more useful ways. On the other hand, work
on understanding the failure of the HEMT to produce
accurate binding energies, and on procedures to improve
the situation, has been along many different directions.
For this reason, we first concentrate on reviewing the
literature on excited states. In doing this, we will at
the same time review and evaluate the various tech-
niques that have thus far been introduced in solving the
EME's.

1 ~ Excited states

a. Oonors

Silicon and Germanium: Both these materials have a
conduction band with several equivalent minima. Si has
six minima, along the (100) directions at about 0.65(2n/a).
The effective masses corresponding to Eq. (7.34) are

mi~ =0 9163

m+ =0.1905 m (7.42)

5'(r) =exp[ a(x'~y') —bz']'~' (7.44)

for the minimum j along the & direction. More detailed
calculations were done by Faulkner (1969) who expanded
F~(r) in terms of spherical harmonics and Laguerre
polynomials. Faulkner obtained a complete set of so-
lutions for an arbitrary ratio y =m,*/m( in units of the
effective Bydberg defined by e4m,*/2h'& and the effective
Bohr radius defined by h'E/m, *e'. Pesults for individ-
ual semiconductors are then obtained by specifying p
for the material and converting the effective Rydbergs
into absolute units. For comparison with experiment,
the results are best displayed as energy differences be-
tween the various states, because that is what is di-
rectly extracted from experiment. Table I shows that

for Si (Hensel, Hasegawa and Nakayama, 1965), and

m*, = 1.588 m, ,
(7.43)

m~+ = 0.08152 mo,

for Ge (Levinger and Frankl, 1961). The one-valley
EME is then precisely of the form (7.35). The symme-
try is no longer spherical, as in the hydrogen atom
problem, but only cylindrical. Nevertheless, the solu-
tions may be conveniently labeled. by the hydrogenic no-
tation (1s, 2s, etc. ), except that now the notation indicates
the hydrogenic solution into which the actual solution
would reduce in the limit m(/m, * 1. The only compli-
cation is that states with different azimuthal quantum
number m are split by the nonspherical terms in the
Hamiltonian. The m value is then indicated by a super-
script on the hydrogenic notation. For example, 2p,
2P' stand for 2P with m = 0 and m =+ 1, respectively.

Energy-level calculations were first done by Kohn and
Luttinger (1955) who employed a trial function of the
form

TABLE I. Spacings of selected excited states of shallow donors in Si and Ge as calculated by
Faulkner (1969) compared with experimental~ values. All energies are in meV.

States Theory Bi Li s' S'/4

Si

2P' -2P'
3po 2p+
4po 2p+
3p -2P+
4po 2p +

4po 2
4p -2p
5p' —2p'

5.11
0.92
3.07
3.28
4.07
4.17
4.21
4.97

5.06
0.93
3.11
3.27

4.21
4.21
4.95

5.12
0.86
2.6
3.25

4.3
4.3
4.9

5.06
0.95

3.34

4.33
4.33

4.94
0.93
2.61
3.31

4.34
4.35
5.26

5.13
0.88

3.28
~ ~ ~

4.19
4.19
4.93

5.2
0.7

0 ~ ~

5.15
1.08

3.45

4.35

2P -2P
2p + 3p0
3P+-2p '

3.02
0.83
0.69

3.03
0.83
0.69

3.02
0.83
0.70

3.02
0.84
0.69

3.02
0.88
0.66

3.08
0.84
0.67

3.04

~Experimental values from Aggarwal and Ramdas (1965) for Si:P, As, Sb, Bi; from Reuszer
and Fisher (1964) for Ge:P, As, Sb, Bi; from Aggarwal, Fisher, Mourzine and Ramdas (1965)
for Si:Li; and Ge:Li&,. and from Krag and Zeiger (1962) for Si:S.
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TABLE II. Theoretical and experimental binding energies
in meV of shallow donors in GaAs.

0.0

O. I

I

(IOO)

HEMT
Si
Ge
S
Se

5 72
5.81'
6.08"
6.10b
5.89 b

0.2)
0.5

IX
tLI

04

Using m'k=0. 0665 from Fetterman et al. (1971).
"Summers, Dingle, and Hill (1970).

0.5
I I I

0 0.05 O. IO 0.15 0.20 0 0.05 0.10 O.I5 0.20
k (2'/a) k {2m./a)

0 0.05 0.10 0.15 0.20
k (2m/a)

for Si and Ge excellent agreement with experiment was
obtained for all the P-like states detected in infrared
abs orp tion expe riments.

III-V and II-VI Compounds: From among the III-V and
II-VI compounds, GaAs, InP, InAs, InSb, CdTe, and
CdSe have the conduction-band minimum at &. Effec-
tive masses are in general very small, -of order 0.1m„
whereas dielectric constants are of order 10. Binding
energies are therefore of order 10 meV and effective
Bohr radii are of order 100ap. The hydrogenic model is
then at its best. All approximations are satisfied with
high accuracy. Systematic experimental studies are not
available, however. "She most reliable data for m,* and
for donor binding energies are for GaAs (Table Il).

GaP, one of the most thoroughly studied III-V com-
pounds, and AlSb have conduction bands which are sim-
ilar to that of Si. In GaP the minima were thought to be
at the X points, but it has recently been established that
they are actually at a very small distance from X along
the (001) axes, similar to the situation in Si (Dean and
Herbert, 1976). Effective masses have not been accu-
rately determined by cyclotron resonance as in Si and
Ge. Attempts have in fact been made to extract ~,* and
m,* from analysis of the infrared spectra of donors in
terms of the HEMT (Onton, 1969; Carter, Dean, Skol-
nick, and Stradling, 1977).

Finally, GaSb is a very intriguing case. The absolute
minimum of the conduction band is at &, but the minima
at L a,re believed to be only about 80 meV higher (Vul
et al. , 1970) with substantially higher effective masses.
Simila, rly the 2C minima, are only about 300 meV (Vul et
al. , 1970). Such a configuration allows for the possibil-
ity that the level in the gap has strong contributions
from more than one species of minima and would be de-
scribed by a wave function of the form (7.38). Shallow
donors in this material and their association with dif-
ferent minima have been discussed by Kosicki and Paul
(1966), Kosicki et al. (1969) and by Vul et al. (1970).
These associations were vividly demonstrated by apply-
ing pressure, which alters the relative energy positions
of the various minima, and studying the resistivity at
room temperature. No theoretical calculations are
available, however, for this intriguing material. A the-
oretical study of the effect of pressure on inequivalent
minima and effective-mass binding energies has been
carried out for GaAs by Altarelli and ladonisi (1972).

b. Acceptors

All diamond-type and zinc-blende-type semiconductors
have similar valence bands in the vicinity of the band

FIG. 8. The energy bands of Si near the top of the valence
bands, plotted along three symmetry directions to demonstrate
the large anisotropy. Note the spin-orbit splitting which is
0.044 eV at k =0. Such plots were first given by Kane {1956)-

p'
D(p) =(r, +4r, )

2
'2 (P2f2 P212 p2f2)
Q' [(P.P,HI, I,'f.(P,P d If,V .fP.P.Hl. f.)],

(7.45)

where Jab}= (ah+ha)/2, y„y„and y, are "inverse effec-
tive-mass constants, " and I is the angular momentum
operator corresponding to spin 1. In the case of infinite
spin-orbit interaction, D is given by

5 p2
D(P)=(r, +

2 y, )
2Rl

Q

(p„'~„'+p,'~„'+p', ~,')Rl p

' HP.P,)f«.&,)I+V,P.)I«,~g.JP.P„]«.J„3],

(7.46)

gap. The bands are degenerate, anisotropic, and spin-
orbit split (Fig. 8). The maximum is fourfold degenerate
(I, symmetry) and slightly below it is the split-off band,
with its maximum of I", symmetry. 'The EME is there-
fore of the form (7.39) where D(—iV) is a 6 x 6 matrix.
'The form of this matrix was first derived by Dressel-
haus, Kip, and Kittel (1955) who also determined the
"effective-mass" constants that appear in it. The cor-
responding EME was derived simultaneously by Kittel
and Mitchell (1954) and by Luttinger and Kohn (1955).
These early expressions for the matrix D are rather com-
plicated and may be found in the original literature. So-
lutions of the corresponding EME were rather cumber-
some to obtain (Kohn and Schechter, 1955; Schechter,
1962; Mendelson and James, 4964; Suzuki, Okazaki,
and Hasegawa. , 1964; Mendelson and Schultz, 1969). The
basic difficulty lay in constructing appropriate trial
functions for states of each allowed symmetry, a pro-
cedure analogous to the construction of cubic harmonics,
and then in evaluating the multitude of integrals. The
resulting classification of excited states was also rather
awkward since the analogies with the hydrogenic spec-
trum were limited.

A more compact expression for the matrix D was ob-
tained by Luttinger (1956), in terms of standard angular
momentum matrices in the two limits of zero and in-
finite spin-orbit interactions. He found that symmetry
allows only three independent parameters to enter the
construction of the most general matrix. In the case of
zero spin-orbit interaction, the matrix D is given by
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818 Sokrates T. Pantelides: Electronic structure of point defects in semiconductors

where 4 is the angular momentum operator for spin
3/2. These forms of the matrix D, however, did not
make the problem of solving the acceptor EME any eas-
ier.

More recently, Lipari and Baldereschi (1970; see also
Baldereschi and Lipari, 1973), rewrote these forms in
alternative ways, which turned out to also be more use-
ful. They first observed that D(P) may be written in a
very compact form in terms of the following second-
rank Cartesian tensors:

P]„-3p,.p~ —6;q p

I,, = —(I,.I„ I„I,.) 5,„1,3

(V.4Va)

(v.4vb)

3J (» ———(J;J» +J»J;) —5,.» J', (7.47c)

where the indices i, 0 = 1,2, 3, mean x, y, and &, respec-
tively. For example, in the limit of infinite spin-orbit
coupling, D(P) becomes

D(p) =
2m (7.48)

D(f)= ~—.P'- -~—.l (P'" J'")98'

6([P(2) && J(») ] 4) + v'70 [P(2) && J(2) ] (4)
982 4 0

[P (2) x J(») ] (4)], (7.49)

where the definition of the "scalar" and ' vector" pro-
ducts of the spherical tensors may be found in the paper
by Baldereschi and Lipari (1973). A similar expression
is obtained for the case of zero spin-orbit coupling.
The new constants P and & are related to the y's by

p =(6y, +4y, )/5y, , (V. 50a)

where &,~ is the Kronecker delta and repeated indices
are summed over (Einstein convention). Form (7.47) is
indeed more compact than (7.45), but would not be more
useful if one had to go back to (V.45) for actual calcu-
lations. The substantial contribut. ion of Lipari a,nd
Baldereschi was in noting that the tensors &,~. I,„, and
J,~, which are Cartesian tensors of rank two, may be
reduced to spherical tensors. In general, the reduc-
tion would yield spherical tensors of rank 0, 1, and 2,
but ihe fact. that the traces of the tensors P;~, I,„and
~;„are zero eliminates the zero-rank spherical. ten-
sor. Similarly, the fact that the three tensors are
symmetric (in the sense T;„=T„,) eliminates all spher-
ical tensors of order 1. The net result is that each of
the threeCartesiantensors T,» (where T stands for P,
I, or J) is reducible into spherical tensors of rank
two, which are denoted by T',", with q= 2, —1, 0, 1, 2.
In view of (7.48), one must then obtain products be-
tween the &,' ' and theI"' or &,"'. Such products
are in general spherical tensors of rank 0, 1, 2, 3, and
4, but for the problem at hand only a tensor of rank 0
(i.e. , the scalar product) and three different compo-
nents of a tensor of rank 4 contribute. Having done all
this, one may conveniently express D()I)) in units of the ef-
fective Rydberg (e'm, /2h'e'y, ) as follows:

(7.50b)

The form (7.49) appears rather forbidding but contains a
major simplification. Whereas in the Luttinger forms
(7.45) and (7.46) only the P' term had full spherical sym-
metry, in the new form (7.49) an additional term [the
second term ] with full spherical symmetry is
isolated. It turns out that in most semiconductors p i's
substantially larger than & so that the cubic term [last
term in (7.49)] may be either ignored or included by
perturbation theory, at least for excited states (Bald-
ereschi and Lipari, 1973).

As a first step, neglecting the cubic term in (7.49) al-
lows a systematic classification of all states in terms of
their total angular momentum, in complete analogy to
atomic spectroscopy [the second term in (7.49) plays the
role of a spin-orbit interaction term]. For example
the ground state would have total angular momentum E
= 2 (the spherical analog of I', cubic symmetry), where

(7.51)

Since J= ~, L could take any integral value beginning
with 0, except that parity conservation requires that
only even L values contribute. The total wave function
would thus be of the form

C(S,(,) = Q f~(r) I,J = —,E,
2

(7.52a)

Similarly one can construct the excited p-like states

C(P,),)= Q f~(r) I,J= —,E= —,E,3

and

4(P,),) = Q f~(r) I, J= —,E= —,E,3 3
L

(V. 52c)

(7.52(i)

where now only odd I values contribute. In (7.52), the
fz(r) are undetermined radial functions. Having written
the solutions in the form (7.52), the matrix elements of
the cubic part of Hamiltonian (V.49) are directly evalu-
ated using the reduced matrix element (or double-bar-
matrix-element) techniques (Edmonds, 1960). The net
result is a set of coupled differential equations for the
fL, (r) which are then solved variationally. In their
original application, Lipari and Baldereschi employed
I = 0 and 2 for s-1.ike states and L = 1 and 3 for p-like
states, as was done in previous applications. Another
nice feature of the new approach is the fact that within
the infinite spin-orbit limit and the spherical approxi-
mation, one can use the effective Rydberg as the unit of
energy and obtain complete solutions as a function of p;
which is analogous to the results of Faulkner (1969) for
donor states. %hen the cubic term is included by per-
turbation theory (Baldereschi and Lipari, 1974), only
states of angular momentum & split into a ~, and a I',
state.

More recently, Baldereschi and Lipari (1976) (also
Lipari and Baldereschi, 1978) included the cubic term
of the Hamiltonian (7.49), the spin-orbit split-off band
which introduces the extra term —',(» —J 8)b. in the Ham-
iltonian (where b. is the spin-orbit splitting at I') and I,

e(J', ~,)= g f (r) L,
, Z= —,E= —,S', ), '

2 2
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FIG. 9. The latest theoretical values for the excited states of
acceptors in Si and Ge, calculated by Baldereschi and Lipari.
(1978). The experimental values are from Skolnick &t +&.

(1974) and from Hailer and Hansen (1974).

2. Ground states

As we noted already, the HEMT does not always do
very well for ground-state energies. The most notable
failure was Si: For donors, the HEMT binding energy
obtained by Kittel and Mitchell (1954) and by Kohn and
Luttinger (1955) was 29 meV. The more accurate cal-
culation of Faulkner (1969) raised this to 31.2 meV.
The experimental values, on the other hand, are 45.5,
53.7, and 42. 5 meV for substitutional P, As, and Sb,
respectively (Aggarwal and Ramdas, 1965). Numbers
close tothesewereknown back in the mid-50's, where-

values up to L =7 for convergence. Results have been
reported for Si and Ge and are shown in Fig. 9. The
agreement with the experimental data is indeed very im-
pressive and demonstrates once more how powerful the
EMT can be for excited states, if the calculations are
done accurately.

The situation in the compound semiconductors is
somewhat more uncertain, largely because the effective-
mass constants y„y„and y, (or y, , p, and 5) are not
known accurately from experiments. Values commonly
used are those estimated by Lawaetz (1964). Recently,
it has proved advantageous to reverse the procedure and

try to fit the data on excited states by varying y„y„and
y, and thus extracting the crystal parameters from the
measurements (Street and Senske, 1976). This should
be listed as one of the triumphs of the EMT, though
caution must be exercised in view' of possible slight
variations among various acceptors and the possible
nonuniqueness of numerical fits. A similar feat was
accomplished earlier by Faulkner (1969), who deduced
from the donor excited states that the appropriate di-
electric constants for Si and Ge should be 11.4 and
15.36~ respectively, instead of the usual 12 and 16. In
fact, it turns out that Faulkner's values are the correct
dielectric constants at the low temperatures at which
the impurity spectra are measured (Cardona, Paul, and
Brooks, 1959).

by it became immediately clear that the HEMT was not
adequate. The situation became worse in 1964 when
Aggarwal discovered that the ground state of the donors
-was actually split into three levels (a singl. et, with
lowest energy, a doublet, and a triplet), instead of being
sixfold degenerate, as predicted by the one-valley
HEMT. (Theory had predicted, e.g. , Kohn, 1957, that
terms beyond the one-valley EMT could cause a split-
ting, but no quantitative estimates were possible. ) A

similar situation existed for acceptors. Early calcula-
tions (Kohn and Schechter, 1955; Schechter, 1962) pro-
duced a binding energy of about 31 meV. Later this
number was improved to 35.2 meV by Suzuki, Okazaki,
and Haseqawa (1964) and to 37.1 by Mendelson and
Schultz. (1969). It turns out that the most accurate
hydzzgenic binding energy for acceptors in Si is about
44 meV (Baldereschi and Lipari, 1976; Bernholc and
Pantelides, 1977), which is a far cry from most of the ex-
perimental values of about 45, 68, V1, and 151 meV fox 8,
Al, Ga, and In, respectively. Finally, the HEMT fails
even more blatantly for deep impurities. For example,
if the hydrogenic potential of two charges was used to
describe binding of one electron to the double S donor in
Si, the binding energy would be about 4 x 31= 124 meV,
which compares disastrously with the experimental-
value of 613 meV (Kl.einer and Krag, 1970).

The situation in Ge is not so bad. Experimental values
ra.nge from 11 to 13 meV for both donors and acceptors
and theoretical values could easily come close to them
(Kohn and Schechter1, 955; Schechter, 1962; Mendelson
and James, 1964; Suzuki, Okazaki, and Hasegawa,
1964; Faulkner, 1969; Baldereschi and Lipari, 1974).
The ground state of donors, however, was also found to
be split intoa singlet and a triplet instead of being four-
fold degenerate, as predicted by the HEMT.

The situation in the compound semiconductors varies
from material to material. Compound semiconductors,
however, have problems that are unique to them and we
defer their discussion to the next section. Our main
task now is to examine the procedures that have been in-
troduced to improve and go beyond the HEMT in Si and
Ge, which are the two materials that have been studied
the most (Sec. VII, H below and Sec. VIII). Before we do
that, however, we briefly discuss the hydrogenic model
for resonant states and for impurity pairs.

3. Resonant states

According to the HEMT, bound states appear below or
a.bove the extremum of every band. Inmany cases one is
only interested in those states that happen to lie within
the fundamental band gap. Hydrogenic states do appear,
however, above or below other band extrema and lie
within the band continuum. They are therefore quasi-
bound in the sense that they are degenerate with propa-
gating Bloch states. They are called resonant states and
have been observed in many materials, e.g., in acceptors
in Si, associated with the spin-orbit split-off band
(Zwerdling, Button, Lax, and Roth, 1960; Onton,
Fisher, and Ramdas, 1967), and in the case of donors in
GaP, associated with a higher conduction band at X
(Onton, 1971). Extensive theoretical studies of the ana-
lytical structure of such states have been carried out by
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Bassani and co-workers (see, e.g., Bassani et al. , 1974;
Altarelli and Iadonisi, 1971).

E, = E,„—ED —E~+ 8+ e'/eR, (7.53)

where E,„ is the minimum valence-to-conduction band
gap, E~ is the donor binding energy, E„ is the acceptor
binding energy, and R is the pair separation distance.
J is given by

e2J=

x E~(r)F„(r')d'rd'r' . (7.54)

Here r~ and rD are the acceptor and donor positions, re-
spectively; E„and I"~ are the acceptor and donor ground-
state effective-mass envelope functions, respectively.
The above expression is val. id to first order in perturba-
tion theory. Second-order, or Van der Waals interac-
tions, have also been estimated (Hoogenstraaten, 1958),
but in general they are rather sma. ll. Equation (7.53) has
been extremely useful in analyzing the luminescence
spectra obtained when electrons and holes annihilate, as
we saw in Sec. V. Other interesting aspects of the im-
purity-pair problem may be found in the review papers
by Williams (1968) and by Dean (1973).

H. Corrections to the hydrogenic effective-mass theory:
Chemical shifts and central-cell corrections

In the years following the derivation of the EME's for
donors and acceptors in Si and Ge (Kittel and Mitchell,
1954; Luttinger and Kohn, 1955), many attempts have been
made to go beyond the hydrogenic effective-mass model
and account for the large discrepancies between the
hydrogenic binding energy E~ and the observed value

This quantity, namely

AE= Eo —E~, (7.55)

came to be known as the chemical shift, since the parti-
cular chemical nature of the impurity was thought to be
responsible for its presence. Since the chemical details
of the impurity would contribute to the total impurity po-
tential only inside the so-called "central-cell" region,
the outstanding problem was often referred to as the cal-
culation of central-cell corrections to the EMT. In this
vein, a number of authors (Reiss, 1956, Kaus, 1958;

4. Impurity pairs

The HEMT has also been generalized to study the bind-
ing of electrons and/or holes to pairs of impurities,
separated by a distance R. Pioneering work was done
by Williams (1960), and later by Shaffer and Williams
(1964, 1970) and by Kaczmareck (1966). A comprehen-
sive review of the subject has been given by Williams
(1968) and by Dean (1973). The extension of the HEMT
to pairs is straightforward and follows the Heitler-
London treatment of the hydrogen molecule. In the case
of an electron and a hole bound to a donor-acceptor pair,
the exchange integral is missing because the two par-
ticles are distinguishable. The experimentally interest-
ing quantity is the electron-hole annihilation energy
which is given by (Williams, 1968).

Muller, 1964, 1965; Breitenecker, Sexi, and Thirring,
1964) defined a cavity radius r, and replaced U„(r) in-
side the cavity by a function-reflecting reduced dielec-
tric screening. Csavinszky (1963, 1965) also used the
concept of a cavity radius and inside the cavity he in-
cluded the difference between the potentials of the im-
purity and host atoms in addition to U„, as a correction.
Weinreich (1959), Shinohara (1961), and Morgan (1970)
estimated a corr ection due to the strain field ar ising
from the misfit of an impurity at a substitutional site.
Appel (1964) and Sham (1966) included more
subtle effects such'as s shifts, mass-velocity relativis-
tic corrections, and exchange-correlation corrections.
Schechter. (1969) evaluated corrections arising from
the spatial variation of Us(r) and other forms of
potentials. Jaros (1969,1971) used an impurity
potential calculated from model potentials (Animalu and
Heine, 1965) and a, iso introduced a position-dependent
effective mass. Haug (1970) used U„(r) multiplied by
an effective charge Z,«41 obtained from Slater's (1930)
rules for free-atom wave functions. Finally, Phillips
(1970) focused on understanding the chemical shifts AE
directly by making use of his dielectric theory of elec-
tronegativity plus other corrections, using a number of
adjustable parameters.

The above-cited papers were able to account for the
observed discrepancies in whole or in part. Stoneham
(1975) has compiled a table of their results and has re-
marked that in several cases the underlying theory is .

disputable. We do not find it very useful to analyze the
conceptual inadequacies present in some of the papers
cited, except to note one important shortcoming: In
the case of donors, all the above papers ignored inter-
valley coupling and worked entirely within the one-valley
effective-mass theory, which results in an n-fold (n= 6
for Si, 4 for Ge) degenerate ground state. Experimen-
ts.lly, however, it was established in. 1964 (Aggarwal,
1964; Aggarwal and Ramdas, 1965) that the ground state
of donors in Si is split into a singlet of A., symmetry, a
doublet of E symmetry, and a triplet of T, symmetry.
The A, level is well separated from the other two and
is the true ground state, whereas the E and T, levels have
energies near the one-valley effective-mass value for
the sixfold degenerate state. In the case of donors in
Ge, the fourfold degenerate state splits into a singlet (A, )
and a triplet (T,) (Reuszer and Fisher, 1964). These
experimental results proved unequivocally that what had
been referred to as "chemical shift" must arise almost
entirely from intervalley mixing, which causes the split.
Nevertheless, a number of papers, cited above, con-
tinued to appear till about 1970, seeking to explain the
observed binding energies or chemical shifts without
including intervalley coupling, but by invoking a variety
of other mechanisms. The first theoretical demon-
stration of the importance of intervalley coupling was
given by Morita and Nara (1966). These authors used
thehydrogenic one-valley EME outside a sphere of rad-
ius xo. Inside the sphere, they used screened differ-
ences of atomic potentials (see Sec. VIII), and integrated
numerically, using the correct linear combinations of
Bloch functions for the A„ the T„and the E states,
thus automatically including intervalley coupling. Their
results were in good agreement with experiment for the
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shallow donors in Si (see Sec. VIII for further discussion
of the Morita-Nara work).

The first effective-mass-type calculation that demon-
strated the importance of intervalley mixing was by
Baldereschi (1970), who noticed that the intervalley ma-
trix element of Uz(x) should not be divided by the static
dielectric constant &, which corresponds to q= 0, but by
the appropriate values &(q), q being the intervalley sepa-
ration. This reduction in screening increases the inter-
val. ley matrix elements. The splitting arises because
the coefficients , . appearing in the total wave function
(7.36) are different for states of different symmetries
(Kohn, 1957). (Only in a one-valley calculation do the
values of the coefficients && become irrelevant and a
sixfold degeneracy occurs. ) Baldereschi (1970) esti-
mated the splittings by perturbation theory and obtained
numbers of the same order of magnitude as experiment
[4E(T, —E) = 10.6 meV, compared with 11.85, 9.94, and
21.15 for P, As, and Sb, respectively, and dE(E —T,)
= 1.1 meV, compared with 1.35, 2.50, and 1.42 for the
same impurities. For Ge, the estimated singlet-triplet
splitting was 0.6 meV, compared with 2.83, 4.23, and
0.32 for the same impurities]. Baldereschi's calcula-
tion demonstrated that the bulk of the "chemical shift, "
as measured from the one-valley EME value, is in fact
not chemical at all, but simply due to intervalley coupl-
ing, caused by species-independent reduction of screen-
ing. The variation of the observed binding energies
with chemical species, however, was still outside that
picture, and Baldereschi's conclusion was that the new
chemical shifts, defined from the new value for ihe A
level, could be understood by techniques such as those
introduced by Phillips (1970), once the free parameters
are properly readjusted. At about the same time, Ning
and Sah (1970, 1971a) independently demonstrated the
importance of intervalley coupling by using a phenomen-
olog ical two-parameter impurity potential.

Following these works, Pantelides and Sah (1972,
1974) and Pantelides (1973, 1974, 1975) pointed out a
fundamental conceptual difficulty with the traditional
approach of seeking corrections to the hydrogenic or
modif ied-hydrogenic effective-mass binding energies.
Stated simply, the difficulty is that the hydrogenic po-
tential U„(w) does not in general represent a meaningful
contribution to the total impurity potential U(w) in the
central cell region. Therefore corrections to U~ can-
not always be identified and calculated unless one first
calculates U(w) [which asymptotically becomes equal to
Uz(r) at large r] and then subtracts U„(x) in order to
obta. in the "corrections. " It is worth noting that in the
original papers (Kittel and Mitchell, 1954; Kohn and
I uttinger, 1955; Kohn, 1957) the hydrogenic potential
Uz(R) was not used because it was thought to be a,good
approximation to the actual impurity potential in all
space, but because itwas thought that the wave func-
tion would be so spread out that the central. cell region
would not contribute appreciably to the binding energy.
In such a case, the details of the impurity potential in
the central cell would simply not matter. Such thinking,
however, anticipates binding energies which are the
same for all shallow donors or acceptors in a given
material. Experimental data that reveal. the contrary
should suggest that the details of the impurity potential

do in fact matter, so that accurate impurity potentials
would have to be calculated.

The one case for which U„(x) is in fact a, meaningful
approximation to U(r), in the sense that it can be
systematically improved, is the case of substitutional
impurities from the same row in the periodic table of
the elements as the host, which have been referred to
as i soconc impurities (Pantelides and Sah, 1974) be-
cause. they have the same number of core electrons as
the host T. he significance of this property will become
more transparent in the discussion in Sec. VIII. For the
time being, let us illustrate how one can arrive at U~(r)
as an approximation to the impurity potential for iso-
coric impurities by using Si:P as an example. Since P
differs from Si by only one extra nuclear proton and one
extra electron (the donor electron), we can rigorously
construct the impurity potential for Si:P by placing a
proton (positive point charge) on a Si nucleus, thus con-
verting it into a P nucleus, and calculating the resultant
change in the crystal potential. Clearly, U~(x) results
if the response of the crystal to the point charge is cal-
culated in the most elementary, q-independent approxi-
mation of static screening. [Carrying out the screening
in terms of e(q), instead of simply the constant e used
in U„(w), is therefore an improvement toward the goal
of constructing U(x) for isocoric impurities. This point
of view will be discussed further in Sec. VIII.] An ident-
ical picture holds for the isocoric acceptor Si:Al, except
now thepoint charge is negative (to "neutralize" one of
Si's protons in order to "convert" it into Al). In con-
trast, the concept of a point charge for nonisocoric im-
purities is no help. True, at values of & larger than a
central-cell "radius, " (As') —( Si') looks like a positive
charge which must be screened, etc. , but inside the
central cell the situation is much more complicated
and U(x) -+19elx! (See Sec. VIII for further discussion
of these potentials. )

We conclude that the concepts of chemical shifts and
central-cell corrections are i11 defined, except for
isocoric impurities, and are therefore inappropriate
as a tool to describe the systematics of classes of im-
purities (such as all the shallow donors or all the
shallow acceptors in a given material, etc.). They have
in fact held up progress by drawing undue attention. %'e
further conclude that the first step in going beyond the
HEMT must be to construct accurate impurity potent-
ials, which reflect the chemical nature of both the host
atom and the foreign atom. This step was not taken for
a long time largely because it was thought thai realistic
impurity potential. s would be too "viol.ent" for the ef-
fective-mass approximations tobevalid. In fact, in two
instances for which realistic impurity potentials were
constructed (Csavinszky, 1963, 1965; Morita and Nara,
1966) no attempt was made to use them directly in
EME's. However, recent work by Pantelides and Sah
(1972, 1974), demonstrated that realistic impurity po-
tentials can in fact be used in EME's, as long as one
deals appropriately with the orthogonality requirements
imposed on the localized wave function by the core
orbitals of the foreign atom. In that context, a natural
distinction between isocoi ic and nonisocoric impurities
is made and the equations are shown to be adequate for
shallow as well as moderately deep levels. We refer
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to the procedure as generalized effective-mass theory
(GEMT) and discuss it at length in the next section.

Vill. GENERALIZED EFFECTIVE-MASS THEORY

U(r) = U, (r)+ U, (r),
where

U, (r) = v, (r) -u.o(r)

(8.6)

(8.7a)

In contrast to the approaches discussed in the pre-
vious section whose motivation was to obtain correc-
tions to the hydrogenic effective-mass theory and thus
calculate "chemical shifts, " in this section we discuss
the alternative procedure whereby realistic impurity
potentials are constructed and used directly with ef-
fective-mass equations to predict binding energies for
individual impurities. We refer to this procedure as the
generalized effective-mass theory (GEMT). The task
ahead of us, therefore, consists of describing various
forms of impurity potentials, checking the validity of
the EMA for such potentials, and discussing the results
obtained thus far.

A. Isoeoric impurities: "True" potentials and
point-charge models

By definition, the impurity potentia. l U(x) is given by

(8. 1)

[cf. Eq. (6.23)], where V and V are the one-electron
potentials for the imperfect and perfect crystal, re-
spectively. The latter potentials depend on the eigen-
functions of their respective eigenvalue problems (6.25)
and (6.2). As a good approximation, however, one
may take the core solutions in the crystals to be Q-
independent linear combinations of the atomic core wave
functions (k independence implies flat, zero-width
bands), whereby the one electron potential may be
written as

for substitutional impurities and

U, (r) = v, (r) (8.7b)

for interstitial impurities. Note that the impurity is
assumed to be at the origin (j = 0) and the j label has
been dropped on v„.. In (8.6), U, (r) is given for both
substitutional and interstitial impurities by

U. (r) = V. (r) V.'(r) . (8.8)

U (r) =P g U (k+K )e*'"'K~' '. (8.9)

where the sum over k is restricted to the first Brillouin
zone. The total impurity potential U(r) is then given by

In the case of substitutional impurities, the potential
U~(x), which we refer to as the "bare" impurity poten-
tial, is the change that occurs from the replacement of
a host ion with an impurity ion, where by ion we mean
the nucleus plus the core electrons. In the case of
interstitial impurities, U, is just the potential of the
impurity ion. U, represents the effect of the redistri-
bution that the valence electrons undergo in response to
the introduction of U~ . If U~ is suff ic iently weak, U,
may be calculated by linear response theory. The
degree of weakness required for linear response theory
cannot be stated in simple terms, but one can safely say
that the theory breaks down when the bare perturbation
potential introduces new bound states. When valid, the
rigorous result of l.inear response theory is as follows
(Adler, 1962; Wiser, 1963): First define the Fourier
transform of U, (r) by

(8.2)V= g v, (r —R, )+V, ,

where z., (r) is similar to the potential of an atom
stripped of all its valence electrons, and V,' is the part
of the potential arising from the valence electrons in
the crystal. Similar J.y,

U(r)= g g U(k+K, )e""

where

U(k+K~) = Q &~'„(k)U, (k+K ~). ,

(8.10)

(8.11)

V= P v„.(r —R, )+ V, , (8.3)

@082 e2 0 I
g,'(r) = — + d'r' (,(

+ p, [p'(r)]

where Z' is the nuclear charge,

p'(~) = P 4.,*(r)g, (r)

(8.4)

(8-5)

w ith t ranging over the core wave functions of the atom,
and p,„, is the local-density functional for exchange and
correlation (Kohn and Sham, 1965). Similar express-
ions hold for v, &

in terms of the corresponding quant-
ities without superscript O. If the approximation is
made that v„.(r —R, ) = vo (r —R,. ) for j other than the
impurity site, we immediately obtain

where now the core potential depends on the site j and is
appropriately labeled. Using the general form of the
local approximation to exchange and correlation, we
have

whereby (8.11) becomes

U(q) = U&(q)/a(q), (8.13)

where q extends over all of reciprocal space. [Nara

where c~~&, (k) is the inverse of the dielectric tensor
e», (k).

Impurity potentials were first constructed in the spirit
of the above derivation by Csavinszky (1963, 1965). He
used the Thomas-Fermi statistical theory (Gombas,
1956) to calculate atomic potentials, but the difference
potential for substitutional impurities was viewed as a
correction to UH(x) within a cavity, to be treated by
perturbation theory, an assumption which cannot be
properly justified. Later, Morita and Nara (1966) and
Nara and Morita (1967) constructed impurity potentials
for shallow donors in Si according to Eqs. (8.6) and
(8.7) and included U, in terms of linear response
theory by dropping the off-diagonal, so-called Umklapp
elements of e», (k), i.e. , writing

~„,(k) = ~(k+ K, ) &„. , (8.12)
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FIG. 10. Bare impurity potentials for donors in Si as calcu-
lated by Pantelides and Sah (1972, 1974). The quantities
plotted, namely Z~ (r) and p& (q), are defined by U& (&) = && (&)/&
and U& (q) =4vre p(q)/q . Note that nonisocoric impurites have
strong potentials for small &, which correspond to large q
values.

(1965) estimated the effect of Umklapp terms to be of
order 10%.] The use of (8.13), however, is properly
justified only for Si:P, for which U~(x) does not bind ad-
ditional core electrons (see further discussion of this
point below). Morita. and Nara did not use these poten-
tials in effective-mass-type equations. As discussed in
Sec. VII, they used them within a cavity of radius &„
integrated them numerically, and matched effective-
mass wave functions a,t the boundary.

More recently Pantelides and Sah (1972, 1974a) cal-
culated bare impurity potentials for group-V donors and
group VI double -donors, using Eqs. (8.6) and (8.7), for
possible use in effective-mass equations. The results,
shown in Fig. 10, demonstrated explicitly that with the
possible exception of Si:P and Si:S all other potentials
have strong high Fourier components and would definitely
violate the analog of (7.14). The reason is actually very
simple. Si:P and Si:S are the only substitutional donors for
which impurity and host have the same number of core
electrons [hence the term isocoric (Pantelides and Sah,
1974a)]. In all other cases, extra core electrons are
present in the crystal and U(x) is strong enough to ac-
count for their binding. U(x) being strong in the core
means that the U(k+K) are very large, and they defi-
nitely violate the main EMT criterion, Eq. (7.14). By
the same token, U, for these impurities cannot be cal-
culated by linear response theory.

Figure 10 also reveals that the bare impurity potential
U, for isocoric impurities is very nearly equal to that
of one or two point charges for single and double donors,
respectively. It is further clear that the same thing
would be true for all isocoric impurities. The origins

U~, (q) = -4we'/c(q)q'. (8.14)

'This definition may be viewed as a generalization of the
corrections to UH introduced by Muller (1964, 1965),
Breitenecker, Sexi, and Thirring (1964), and Baldere-
schi (1970). It is stressed, however, that U~, (x) is a
meaningful potential only for isoco&k. impurities and
represents an approximation that views the core wave
functions of the isocoric impurity as identical with those
of the host atom.

Vfe turn now to t:he use of the above potentials in
EME's. It might be argued that the use of c(q) is out-
side the realm of validity of the EM'T. This is in fact
not necessarily true. If we go back to (7.12), we recall
that one requires that

~

U(k —k' ~K,)
~

«
~

U(k —k') ~, (8.15)

whereby (7.12) becomes

Z„'S„+g C, (0) U(k k')S„, =E.~, , (8.16)

where k and k' are allowed to extend over all k space.
The next approximation is C~, (0) =C„„(0)= 1; but if we
write U(k —k') as

of the potentials for isocoric impurities may be viewed
as follows: As we saw at the end of Sec. VII, one can
"create" a P impurity in Si by simply adding a proton
(point cha, rge) to a Si nucleus and supplying an extra
electron (the donor electron). The total impurity po-
tential U(x) would then be the bare Coulomb potential,
i.e. , -e'/w, plus whatever response it generates in the
crystal. As we saw in Sec. VII, U~(x) represents the
most elementary approximation of linear response the-
ory in that it views the extra charge as embedded in a
macroscopic dielectric medium. In order to understand
the calculated potentials for Si:P and Si:S, we go back
to the ba, re Coulomb potential -e'/x and seek the re-
sponse in a microscopic picture. The electronic re-
sponse may be divided into that of the core electrons and
.that of the valence electroris. Clearly, the core elec-
trons are drawn closer to the nucleus and provide some
"screening. " Hence the net bare potentials for Si:P and
Si:S are ~cake& than the bare point charge or two point
charges respectively, just as Fig. 10 shows them to be.
Note that for acceptors, where one or two negative
charges are added to the nucleus (to effectively "remove"
one or two protons), the core electrons would move out
and thus again aveaken the net negative charge(s). Fi-
nally, the response of the valence electrons can be in-
cluded to a good approximation by linear response the-
ory, either using the full dielectric tensor as in Eq.
(8.11), or, more approximately, the ". diagonal" func-
tion c(q), as in Eqs. (8.12) and (8.13). Note that one could
also include lattice relaxation, say in terms of a strain
field, as a response of the nuclei to the introduction of the
point charge (Morgan, 1970).

The above discussion reveals the convenience of de-
fining an &(q)-screened Coulomb potential, which Pante-
lides and Sah (1972, 1974) referred to as the point-charge
model, U~„ in contradistinction from the hydrogenic
model U~. U&, is defined by (8.13) with U~ being a bare
Coulomb potentia, l, so that
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U(k —k') = U„(k —k')/~(k —k'), (8.17)

we observe that, since it is U(k —k') that appears in
(8.16), and k and k' are kept intact, it makes a more
internally consistent theory to use e(k —k') in full, as
in (8.17), instead of replacing it by e(0), even if k-k'.

At the same time, we would also like to point out that
it would be outside the realm of the EMT to go beyond
the "diagonal" dielectric function &(q) and attempt to use
the full tensor e»(k). This statement can be verified by
using (8.11) in (7.12) to get

E„E'~+Q Q C„„,(K~) Q &~~, (k —k') U~(k —k' ~ K~, ) 5'~,
k' p pt

E„F—. (8.18)

Clearly, if the P+P' terms are viewed as important,
rionzero Kp vectors would have to be retained, which is
beyond the EMT.

We have so far shown that the use of e(k —k') is not in
principle outside the realm of the EMT. On the other
hand it does make the requirement (8.15) somewhat less
satisfied Th.e choice is therefoxe between a less accu
rate impurity potential that satisfies subsequent approx
imations seell, and a move accurate impurity potential
which satisfies subsequent approximations not so well.
Numerical calculations thus far suggest that the second

choice is the better one. Before we discuss numerical
results, however, we turn to the choice of U~(k —k') for
use in EME's. The equations show that as long as (8.15)
is satisfied and the nonzero Kp can be dropped, it should
not matter what the particular form of U~(k —k') is. In
fact, Fig. 10 shows that the full impurity potentials for
isocoric impurities satisfy (8.15) even better than the
point- charge potential.

Numerical calculations for the point-charge model
have thus far been carried out for donors in Si (Pante-
lides and Sah, 1972, 1974a), for acceptors in Si and Ge
(Baldereschi and Lipari, 1976; Bernholc and Pantelides,
1977) and for acceptors in zinc-blende-type compound
semiconductors (Bernholc and Pantelides, 1977; Lipari
and Baldereschi, 1978). A variety of dielectric functions
were used, as calculated by several authors using pseudo-
potential band structures (see discussion in Bernholc and
Pantelides, 1977). For the full isocoric potentials calcula-
tions, have been carried out only for donors in Si (Pantelides
and Sah, 1972, 1974a). All the results for Si and Ge are
shown in Table III. Compound semiconductors will be
discussed separately at the end of this section. Si:S is
the only case where both one-electron Bnd two-electron
calculations have been carried out and the two ionization
energies are denoted by S' and S+, the superscript de-
noting the charge state before removal of the electron.

TABLE III. Binding energies in meV of isocoric impurities in Si and Ge using a vari. ety of
approximations. See text. The ranges given for the P.C. model correspond to different choices
o«(e)-

P.C. model "True" Pseudo Model Expt.

S i:Donors

Sg'P
Si:S+
Si:S

48.8
1085.3 ~,

489.0

42 4
659.3
297.1 ~

44 3a
709.8 ~

334 4

44.8 ~

874.0 4

406.5'
613 6d
314 0

Si:Acceptors

Si:Al

Sj. :Mg

70.5-130
48.8-54.4"
1409-2351"

70.0
70.0 ~

0 0 ~ 1

G e:Acceptors

Ge:Ga
Ge:Ga
Ge:Zn

Ge:Cu

10 7h
99~

72.4—76.9"
1152-1442"

~ ~ ~

10 6h
O ~ ~

54.3"
246"

11.3'
11.3'

95 k

95 k

530 '
~Pante]. ides and Sah (1974a).
"Pantelides (1974).
~Aggarwal and Ramdas (1965), corrected by Faulkner (1969).
dKrag, Kleiner, Zeiger, and Fischler (1966).
Rosier and Sah (1971);corrected by allowing 12 meV for excited states.

~Baldereschi and Lipari (1976); Lipari and Baldereschi (1978).
&Onton, Fisher, and Ramdas (1967), corrected by Baldereschi and Lipari (1976).
"Bernholc and Pantelides, 1977.
'No data are available for the isocoric Si:Mg as a substitutional acceptor. For comparison, the
model value of Si:Be is 486 meV compared with an experimental value of 420 meV. The re-
spective quantities for Si:Zn are 428 and 620 meV.
~ Jones and Fisher, 1965; corrected by Baldereschi and Lipari (1976).
"Quoted by MiInes (1973).
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The heading "true" indicates the potentials described
above (Fig. 10). The other headings will be discussed
later.

The results for Si:P and Si:S demonstrated for the
first time that "true" impurity potentials can in fact be
used successfully in EME's, but only for isocoric im-
purities. At the same time, they demonstrated that deeP
isocoric impurities can also be treated along the same
lines. Having the periodic table of the elements in mind,
one could say that the EMT with "true" potentials has
been shown to do well for impurities in a given xo~,
whereas the hydrogenic EMT is known to do well for
impurities in a given column. Qualitatively, this result
can be understood as follows. As we have seen, the im-
purity wave function for the ground state is given by a
nodeless envelope function E(w) times the Bloch functions
at the extremum (extrema) of the band of interest. Take
Si:donors, for example. The conduction-band Bloch
functions have a 3s/3P/3d-like character over every Si
atom. %hen multiplied by a nodeless envelope, they re-
tain that character, which is appropriate for isocoric
impurities, both shallow and deep, but totally inappro-
priate for nonisocoric impurities, whether shallow or
deep. They are inappropriate in the sense that they are
not orthogonal to the new core orbitals, so that if the
"true" potentials were to be used in EME's in a vari-
ational calculation, the ground state would tend to "col-
lapse" into some core state (orthogonality catastrophe).
(This limitation of "true" potentials was suspected by
Csavinszky, 1963, but no remedy was offered. See sub-
section C below for further discussion. ) Core states
are, of course, not describable by the EMT. This ar-
gument shows that, with true potentials, a many-band
expansion in the vicinity of the impurity would be inev-
itable for nonisocoric impurities, even the shallow ones,
such as Si:As or the shallower Si:Li,- but a one-band
solution map be adequate for the deep isocoric impuri-
ties. The question that remains to be addressed is how
valid ihe one-band EME is for deep levels. Vfe post-
pone this issue for the moment and discuss further the
first two columns of Table III.

First we note that point-charge and "true" potential do
about equally well for Si:P, though the "true" potential
has a smaller binding energy, in agreement with Fig.
10. Similarly, the "true" potential for Si:S gives a
smaller binding energy than the two-point-charge model,
but in this case the difference is substantial, since the
value 1085.3 is unacceptably large (the level is almost
in the valence bands and the approximations definitely
break down). The results of acceptors in Si point in the
same direction. The point-charge model for the single
isocoric acceptor is seen to do very well for particular
choices of a(q). Lipari and Baldereschi's (1978) values
are more accurate because more L values (up to I, =6)
were included in the trial wave function, as compared
with that of Bernholc and Pantelides. (The spread in the
values for the acceptor point-charge model correspond
to uncertainties in e(q), which are actually present in all
the theoretical values in Table III.) Once more, the two-
point-charge model fails completely for the double ac-
ceptor. No "true" potential calculation is available, but
the model-potential results of Bernholc and Pantelides
(to be described later on; see Table III under "Model" )

show that a more realistic potential would again improve
the situation. The results for Ge are very similar, but
now the point-charge model seems to do very well for
both single and double acceptors, while better potentials
would be needed for triple acceptors.

The calculcations of Baldereschi and Lipari (1976)
(also Lipari and Baldereschi, 1978) have produced
another interesting result: A state of I", sym-
metry having strong s-like contribution from the split-
off band and d-like contributions from the top valence
bands was found at 24 meV below the ground state. The
energy separation agrees very well with a Raman line
observed in B-doped Si at 23.4 meV (Wright and Moora-
dian, 1968). The degeneracy and symmetry of the I';
state are consistent with Raman selection rules. The
puzzle, however, is that no such state is observed in
Si:Al, which is the isocoric system for which a point-
charge calculation applies. Si:B has a I", ground state
at 45.6 meV, compared with Si:Al's 70.0 meV, and the
corresponding 1+, states might be expected to lie at com-
parably different energies. A similar Raman line has
been observed for some acceptors in GaAs and GaP
(Manchon and Dean, 1970; Chase, Hayes, and Ryan,
1977), but no theoretical calcula. iions have been re-
ported.

Finally, we turn to examine the validity and accuracy of
the calculations. We have already seen that the use of e (q)
with either a point-charge model or an isocoric "true"
impurity potential is not necessarily outside the EMT
and that, qualitatively, a one-band calculation for isocoric
impurities contains all the essential features of the so-
lution. The question is one of accuracy determined by
the neglect of U(q+K) as compared with U(q). Since the
extent of q, is roughly I/(x), where (x) is the mean radius
of the envelope function E(x), the approximation is jus-
tified for the point-charge model if

e (I /(x)) a
&(2v/a)

'
2v(~)

This ratio is of order unity when (r) is about 5 a.u. , in-
dicating large uncertainties, but it is gratifying to see
that R is smaller for "true" potentials than for point-
charge potentials, and that (t') values don't get much less
than 10 a.u. due to the Pauli exclusion principle. This is
illustrated in Fig. 11 where a parametric model poten-
tial was used and (r) is plotted against binding energy
(from Bernholc and Pantelides, 1977). The above argu-
ment holds for acceptors and for the intravalley terms
of donors. For the intervalley terms, the relevant q is
not I/(x), but the intervalley separation. In that ca,se,
for some K's, the corresponding R is actually larger
than 1. On the face of it, the approximations would be
unacceptable. In fact, Shindo and Nara (1976), Resta
(1977), and Altarelli, Hsu, and Sabatini (1977) have re-
cently demonstrated that the K&40 terms are substantial
and cannot be dropped, if the intervalley kinetic energy
matrix elements are assumed negligible (these papers
are discussed further in Sec. VIII, E below). On the oth-
er hand, Twose's many-valley equations, which were
used in the numerical results discussed above, include
both kinetic- and potential-energy intervalley matrix
elements to order k', as is done for intravalley terms.
An attempt to assess the validity of this approximation
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bands, which for midgap levels tend to cancel, since,
as we have seen in Sec. VII, bands from above
push down and bands from below tend to push up.
As a result, the position of the energy level may be
determined rather well, but the wave function is poor.
For example, the need for many-band wave functions,
even for shallow levels, was demonstrated by Ivey and
Mieher (1975) in their analysis of ENDOR data. It is
hoped that future research will shed more light on the
cancellations and other approximations, such as the iso-
tropic-mass approximation for donors, which result in
the good agreement with experiment reflected in Table
III and in the pseudopotential calculations for nonisocoric
impurities which we describe next.
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FIG. 11. The average radius of the impurity wave function as
a function of the binding energy, as calculated by Bernholc and
Pantelides (1977).

was made by Pantelides and Sah (1974). It was shown
that higher-order terms of kinetic and potential energies
are of opposite sign and tend to cancel. 'The more re-
cent calculations cited above show that these cancella-
tions involve large terms. The numerical results thus
far —those shown in Table III and also results to be dis-
cussed in the next two subsections on nonisocoric im-
purities —show that the cancellations of higher-order
terms are quite effective for Si:donors, perhaps due to
a combination of the particular nature of the Si band
structure and the other approximations used in the cal-
culations (spherically averaged effective-mass and sim-
ple hydrogenic trial functions). Folland (1977) has cal-
culated higher-order intervalley terms and found a
strong cancellation to occur. (3ther cancellations are
also known to occur, contributing to the adequacy of the
EME's. For example, as discussed in Sec. &II contri-
butions from the higher conduction bands cancel contri-
butions from the valence bands. Numerical work byJraso(197'4) has shown that individual terms are in fact
large, but the cancellations are quite effective. ~e are
certainly dealing with regions where the validity of the
EME's cannot be demonstrated rigorously, so that fur-
ther probing of the relevant approximations is neces-
sary.

In the end, our conclusions are that EME's seem to
work well even when simple estimates suggest that the
approximations are no longer valid. It is perhaps for-
tuitous and rather dangerous that terms that are left
out are individually large, but tend to cancel each
other. Such terms include contributions from other

B. Nonisocoric impurities: Pseudopotentials

As we saw earlier in this section, the difficulty for
nonisocoric impurities arises. because of the presence
of extra (or fewer) core levels. These difficulties were
recognized early (see, e.g. , Kohn, 1957), but no tech-
niques were available to deal with them. Csavinszky
(1963,1965) in fact recognized that "true" potentials
cannot be used in a variational calculation in EME's.
Procedures for handling variational collapses to core
states had already been developed [orthogonalized plane
waves (OPW), Herring, 1940; pseudopotential theory,
Phillips and Kleinman, 1959; Bassani and belli, 1961;
Cohen and Heine, 1961; Austin, Heine, and Sham,
1962], but it was not clear how to handle the orthogonal-
ization part when a. difference of two atomic potentials
is involved. The first attempt to accomplish this task
was by Morita and Nara (1966), whose approach is com-
parable to the OPW (Herring, 194O) method in that the
"true" potential is retained but the variational function
is properly orthogonalized. In the impurity problem, the
"plane-wave" part is the smooth Bloch function @„'(r)
from a pseudopotential band-structure calculation.
Morita and Nara then make the ansatz definition

(8.19)

where g, are host core wave functions and g„, are im-
purity core wave functions, and expand the impurity
wave function in terms of the qV&. Equation (8.19) is
motivated by the OPW expression

(8.20)

where lk& is a plane wave. Morita and Nara's objective
was to write down a wave function which by construction
is orthogonal to the Q„,. It can immediately be demon-
strated, however, by evaluating (&pig„,&, that @Ie is not
orthogonal to the rP„, , not even approximately so. It is
unclear why Morita and Nara's calculation did not col-
lapse to core levels. An expression similar to (8.19),
but differing in an important aspect, was first obtained
by Pantelides and Sah (1974b) and will be derived and
discussed shortly.

An alternative approach to handle orthogonality col-
lapses is via the rigorous pseudopotential theory, as de-
veloped in papers cited above. The first formulation of
the impurity problem in a pseudopotential scheme was
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given by Glodeanu (1965a). He mixed "true" and "pseu-
do" quantities by expanding pseudo-wave-functions in
terms of true Bloch functions. A variety of cases were
studied formally in a series of papers (1965, 1968,
1969a, 1969b), but no pseudopotentials were acutally cal-
culated. In particular, Glodeanu's work after several
reformulations did not show how substitutional impuri-
ties should be handled, i.e. , which set of core states
ought to appear where.

Another attempt to deal with the problem was made by
Yi-Hsiang and Yu-Ping (1966). They introduced the
rather unwieldy concept of orthogonalized Bloch func-
tions, i.e. ,

ct'
(8.21)

(8.22)

may be. divided into two groups, the "core" states g, and
the remaining states g„. One then defines a pseudo-
Hamiltonian H~ by

These functions are in fact orthogonal to the g„, and
would thus help avert an orthogonality catastrophe, but
they are not necessarily suitable for the expansion of
the impurity wave function for an EMT-type theory.
Note that the g'„have a number of nodes already, so that
the resulting nodal structure of ~& could be detrimental.
It was not demonstrated that effective-mass-type equa-
tions could be derived in an internally consistent devel-
oprnent, and no calculations were pursued.

The impurity problem was formulated in terms of
pseudopotential theory independently by Hermanson and
Phillips (1967). In their identification of the perturba-
tion potential in the pseudorepresentation, however, they
separated out as the unperturbed Hamiltonian a quantity
which was not the perfect-crystal pseudo-Hamiltonian
and did not have periodicity. The impurity pseudo-po-
tential ended up depending only on the imperfect-crystal
core wave functions. They were aware of the problem,
but suggested that the symmetry-breaking terms would
be negligible. As we shall soon demonstrate, -however,
these "symmetry-breaking" terms must be included in
the perturbation potential for an internally consistent
theory and are in fact not negligible. Hermanson and
Phillips applied their theory to determine central-cell
corrections to the hydrogenic. potential for rare-gas
sOllds.

In a later formulation, Ning and Sah (1971) introduced
a mixed representation (expanding pseudofunctions in
terms of true Bloch functions), arriving at an impurity
pseudopotential identical to that of Hermanson and Phil-
lips (1967), i.e. , containing only the impurity core wave
functions. No calculations using the form of the pseudo-
potential were pursued.

The above difficulties were resolved by a formulation
of the impurity problem in the pseudopotential repre-
sentation given by Pantelides (1973) and by Pantelides
and Sah (1974b). The starting point is the general theo-
ry of pseudopotentials, as given by Cohen and Heine
(1961) and Austin, Heine, and Sham (1962), which applies
to any system described by a Hamiltonian H whose
eigenstates g„, obtained from

(8.23)

where the I', are arbitrary functions. It is then shown
(Austin, Heine, and Sham, 1962) that

and

Pp@„=E„P„ (8.24)

(8.25)

We will discuss convenient choices of I', later on.
The application to the impurity problem is then

straightforward, as follows. Apply the above transfor-
mation to the perfect-crystal Hamiltonian (6.1). Ac-
cording to Eqs. (8.23)-(8.25), the resulting pseudo-
eigenvalue problem is

(8.26)

where

(8.27)

Now apply the transformation separately to the imper-
fect-crystal Hamiltonian (6.22). Again according to
Eqs. (8.23)-(8.25), the result is

(8.28)

where

(8.29)

Note that by dealing with the two crystals separately no
ambiguity is present and the two sets of core states g,',
(all the core orbitals in the perfect crystal) and P„, (all
the core orbitals in the imperfect crystal) cannot be
confused. Now the task is to identify the terms in (8.28)
which are to be separated out as a perturbation to the
pseudo-Hamiltonian (8.26). The result is also unambi-
guous. We get for the impurity pseudopotential

(8.30)

This is the most general form of the impurity pseudo-
potential. Notice that if E','t =~„,= 0, everything reduces
to the "true" quantities, including U~, which beeornes
V —V' = U. The pseudopotential transformation, there-
fore, will not help unless a judicious choice of the func-
tions +„and P'„, is made. Since we wish to derive ef-
fective-mass-type equations, U~ must not bind any core
states, which turned out to be the effective criterion for
the validity of the EMT. This requirement might be ac-
complished if neither of the two terms in square brack-
ets in (8.30) binds core states. Austin, Heine, and Sham
(1962) have demonstrated that the choice (E, l

=-($,
1
V

for the general system (8.23) accomplishes maximum
cancellation and the smoothest pseudofunctions. This
choice is therefore best for developing an EME from
(8.28). We therefore have, from (8.30)
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(8.31)

where

(8.32)

Now, for the development of a pseudo-EMT, the proce-
dure is again straightforward and unambiguous. We ex-
pand

O'. = Qf g4'g (8.33)

and proceed in a manner analogous to that used in Sec.
VII, except now everything is "pseudo" (see Pantelides
and Sah, 1974b). The result is the same EME's as be-
fore with U~ also appearing as before. Note that it is
not correct that one can simply have an EME with a
"true" potential, a pseudopotential, or something else
that one may wish to construct. Recall that we found
that when "true" qualities are used, the EME is valid
enly for isocoric impurities. Now, when pseudoquanti-
ties are used, the EME noway be valid for nonisocoric
impurities depending on the choice of the +,. The
choice (8.32) is the best candidate. It has the important
property that it reduces to the "true" EME for isocoxic
impurities for which U~ = 0 since g,', = g„, (this state-
ment has been verified in ca.lculations; see below).

Before we develop U~ for calculations, let us first
turn to the form of the wave functions arising from this
theory, when a one-band approximation is made in
(3.38). Note that the one-band approximation is for the
smooth pseudofunction P„, not the true function g„which
is given by (8.29). Substituting (8.35) in (8.29) and drop-
ping the sum over bands e, we get

Up= Up~+ Up, ,

where

(8.36)

U = I:v, —v,]+ g lg, &&&, Iv, —P lg„,&&&„,lv,

ties, both (8.31) and (8.35) reduce to the "true" counter-
parts.

Another interesting observation i.s that the expansion
(8.35) for g, appears to implicitly be a many-band ex-
pansion. First the main band contributes via the ~.
Then the host's core bands contribute via the g, . Fi-
nally, the g„, may correspond to higher conduction
bands of the host, as in the case of, say, Si:Sb, where
the 4s, 4P, and 4d core states of Sb belong to the same
subspace as some of the conduction bands of Si. In oth-
er words, the pseudopotential formalism implicitly
makes use of whatever core states are needed to con-
struct an appropriate "true" trial function, so that a
one-band expansion for the smooth pseudofunction
should be adequate. Along the same vein, in the pseudo-
equations, it is the "pseudoelectron, " described by P„
which has a kinetic energy given by the effective-mass
expression 8'h'/2m* and a potential energy U+ U„. For
the "true electron, " described by P„, Ua is kinetic ener-
gy in disguise, so its net kinetic energy is actually
h'k'/2m*+ Ua. As we shall see, U~ is nonzero only in
the impurity cell so that the true electron ends up hav-
ing an effective-mass kinetic energy outside the impur-
ity cell, but "something else" inside. For isocoric im-
purities, U~ =0 everywhere, and there is no distinction
between pseudoelectron and true electron.

For calculational purposes (8.32) is developed further
by writing V and V' as in Eqs. (8.2) and (8.3). The net
result is

g„=Pf„@„-P&4., l@&&4.&
t

(8.34)
(8.37a)

Clearly, g„ is implicitly expanded in terms of the func-
tions in square brackets which are orthogonal to the
g„,, whereby an orthogonality catastrophe is averted.
The Pq are the smooth pseudo-Bloch functions, however,
not the oscillatory Bloch functions used in an ad hoc
fashion by earlier formulations. The functions in
square brackets are the ones that Morita and Nara
(1966) would have to use in their forma, lism in order to
accomplish the desired result. Notice that here (8.34)
is not postulated but is derived from a natural and sys-
tematic application of pseudopotential theory.

An alternative and physically transparent form of
(8.34) can be obtained by using (8.27) for P„&. We get

0„=Q fj, A;+ Q & 0'~14'.a& 4.~
—Q

(8.35)

This is the formula that accomplishes reoxthogonaliza-
tion of the gz. When compared with that postulated by
Morita and Nara, Eq. (8.19), we note that the important
difference is the first term in the square brackets of
(8.40), which is a true Bloch function, not a pseudo-
Bloch function. When (8.35) is compared with (8.31) and
(8.32) we note that Ua is a result of the need for reor-
thogonalization of the g&, whereby both sets of core or-
bitals appear in a natural setting. For isocoric impuri-

for substitutional impurities, and

U = v —P lg &&&, lv,
pl

(8.37b)

for interstitial impurities. Expression (8.37a, ) may be
compared with the Hermanson-Phillips result which has
g„, in both terms in the second square brackets. The
discrepancy, a term equal to

P lg, ,&&&, Iv —g lg, ,&&p„,lv, , (8.38)

was "absorbed" in the unperturbed Hamiltonian. The
term indeed breaks the symmetry and is not negligible
for nonisocoric impurities, where the whole issue is the
fact that the g„, are drastically different from the g;,.

Numerical calculations have been carried out thus far
for single and double donors in Si, both substitutional
and interstitial, using the same multivalley EME's dis-
cussed earlier (Pantelides and Sah, 1974b). Figure 12
illustrates the cancellations occuring in the pseudopo-
tential representation. The results for binding energies
of nonisocoric impurities are given in Table IV. The
range of energies over which good numerical results
are obtained is quite large, from the shallowest single
interstitial Li to the intermediate double interstitial Mg
and the deeper double substitutional group-VI elements.
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FIG. 12. The "true" and "pseudo" impurity potential for Si:As
demonstrating the cancellation in both real and reciprocal
space.

numbers. Their physical significance is rather inter-
esting in that they reflect a tiny change in kinetic ener-
gy arising from the fact that the Bloch function must
modify its nodal structure slightly in response to the
tightening of the core orbitals.

Pseudopotential calculations for ylang/lose donors in Si
have also been reported by Schechter (1973, 1975). In
the first paper, linear screening was used to screen the
"true" potentials. The impropriety of this procedure
was pointed out by Pantelides and Sah (1974b), and
Schechter repeated his calculations in the second paper.
The results changed considerably and are similar to
those shown in Table 4. Schechter also used-his wave
functions to analyze EN~R data.

TABLE IV. Binding energies in meV for nonisocoric donors in
Si using rigorous pseudopotential and the Appapillai-Heine mo-
del potentials. Theoretical values are from Pantelides and
Sah (1974b) and Pantelides (1974a, 1975).

Impurity P seudo Model Experiment

A. Interstitial

Li
Na
Be+
Be'
Mg+

33.8
34.6

385.6
146.5
259.0
98.0

33.1
32.4

239.6
103.6
190.2
81.3

31.0

~ ~ ~

256.5 '
107.5

B. Substitutional

N
As
Sb
Se+
Seo
Te+
Te'

335.9
52.5
53.1
31 7

921.3
358.4
246.0
71.9

27.0
no binding

'40.7
36.3

559.0
265.3
256.2
111.7

(45.0) '
53 7
42.7'

~Aggarwal, Fisher, Mourzine, and Ramdas (1965).
"Ho and Ramdas, 1972.

Zorin, Parlor an Tetel'baum, 196S; tentative assignment by
Pantelides and Sah (1974b).

Aggarwal and Raxndas, 1965.

The failure for Si:Sb and Si:Te is probably due to their
large size and an additional correction has been invest-
igated by Pantelides and Sah (1974b) due to the contrac-
tion of their core orbitals in the Si lattice. A rather in-
teresting case is the prediction that Si:N is deep and
can bind a second electron, which is indirectly con-
firmed by the fact that GaP:Op, for which the impurity
pseudopotential is almost identical with that of Si:N, is
known to behave in the same way. The predicted binding
energy of Si:N compared with those of Si:P, As, Sb,
scales nicely with that of GaP:Op compared with those
of GaP: S, Se, Te (Pantelides, 1974b).

The pseudopotential is also found to produce small
corrections to the "true" potential bindirig energies of
isocoric donors. (See Table III) They are somewhat
less reliable because they are differences of two large

C. Model impurity potentials

A model potential is generally. defined as any potential
that gives the same eigenvalue spectrum as the true po-
tential, over a certain energy range. Useful model po-
tentials are defined so as to have no core states, their
lowest-energy state coinciding with the first valence
state of the atom, molecule, or solid. Such model po-
tentials are often referred to as empirical pseudopoten-
tials because they are usually parametric forms, with
the parameters fit to measured quantities. One disad-
vantage of model potentials is that they often have to be
energy-dependent. This requirement arises from the
fact that it is not possible to construct a model potential
that reproduces the entire energy eigenvalue spectrum.
Thus a given model potential is valid over a certain en-
ergy range.

Model potentials actually preceded pseudopotentials
(see discussion by Heine and Abarenkov, 1964 and Aba-
renkov and Heine, 1965), but they became popular short-
ly after the advent of pseudopotentials, since the theory
of the latter provided more fundamental justification for
their usd. A particular form, introduced by Heine and
Abarenkov (1964), proved to be quite useful and exten-
sive tables of atomic model potentials are available
(Animalu, 1965; Appapillai and Heine, 1972). The
Heine-Abarenkov model potential for an ion of charge
z is defined by

V (~) =g A,P„~&A
= —Z/'Y~ X)R~ (8.39)

where R~ is a radius of order 1 A, P, are angular mo-
mentum projection operators, and A. , are energy con-
stants. Thus, for each / value, V~(r) is a square well
with a Coulombic tail (Fig. 13).

Heine-Abarenkov model potentials were first used for
the impurity problem by Jaros (1969) for shallow donors
in Si. He used the one-valley EME, however, and good
agreement with experiment was obtained by introducing
a position-dependent effective mass which. starts out
with the free-electron mass at ~= 0 and asymptotically
becomes m*. It can be seen from Eq. (6.22), however,
that the free-. electron mass cannot be used with the per-
turbation potential. Instead, if used in the central cell,
one must use the total potential in that region (Pante-
lides, 1974a).

Model potentials somewhat akin to the Heine-Abaren-
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V& (r)
triple donor s and acceptor s in Ge will be de-
scribed adequately by the EMT. The III-7 and
II-VI compounds are another story, however, and
we turn to those for some rather disappointing
conclusions.

FIG. 13. The Abarenkov-Heine-model potential for atoms and
ions. See text for the symbols.

kov form were subsequently used by Ning and Sah (1973)
for donors in Si. These authors introduced a single pa-
rametrized model potential for the impurity potentials
and fitted its two parameters to the A, and T, states of
each impurity. The study confirmed the applicability of
the many-valley EME for Si and showed that a plausible
potential could be found to reproduce the deep Si:S lev-
els (approximately double the model potential obtained
for Si:P). Predictions were thus made for the double
Si:Se and Si:Te donors by doubling the model poten-
tials of Si:As and Si:Sb, respectively. The wave func-
tions obtained for Si:P, As, and Sb were used to analyze
ENDR experimental data and to calculate optical ab-
sorption cross sections.

Heine-Abarenkov model potentials for shallow and
deep donors in Si were employed by Pantelides (1974a)
for the purpose of comparing with the results obtained
previously in terms of "true" impurity potentials and
rigorous pseudopotentials. The results, using model
potentials from Appapillai and Heine (1972), are also
shown in Table IV. The most outstanding disagreement
is for Si:N, for which the model potential gives much
weaker binding than the first-principles pseudopotentials.

More recently, model potentials were employed by
Bernholc and Pantelides (1977) in a study of acceptors
in Si and Ge. Detailed agreement with experiment was
not very good, perhaps due to insufficiently flexible
trial functions (only E=O and l=2 spherical harmonics
were used, whereas the work of Baldereschi and Lipari,
1976, on point-charge potentials showed that higher /

values are important). One important result of that
work is that for double acceptors in Si and for triple ac-
ceptors in Ge where the point-charge potential was
found to give extremely deep levels, model potentials
result in levels in the range of the observed values.

Model potentials have the advantage that they are sim-
pler to work with and may be the ones that will eventu-
ally give a successful effective-mass theoretic descrip-
tion for most impurities, except for first-row elements.
(Transition-metal impurities and lattice defects are,
however, outside the EMT. ) Model potentials must be
constructed very accurately and then the EME's must
be solved accurately as well. When this is accom-
plished, this author believes. that, with the possible ex-
ception of the heavier elements, single and double
acceptors in Si and single, double, -and perhaps

(8.40)

where H' is the electronic Hamiltonian of the perfect
crystal; H» is the lattice Hamiltonian which is most
conveniently written in second-quantized form as

H&„=P h~,ata, , (8.41)

where w, are the phonon frequencies, and a~ and a, are
the phonon creation and annihilation operators, respec-
tively (see Kittel, 1963). Finally, P,~ represents the
electron-phonon interactions, and is given by

P,.=g [ , Vea'~'+ V,*a,e '~'j, (8.42)

where V, represents the strength of electron-phonon
coupling. V, was first evaluated by Frolich (1937, 1962)
by requiring that the electron-phonon coupling reduce
the interaction between two well separated electrons
from e'/e„r to e'/e, r Here e„ is t.he high frequency-
or optical dielectric constant of the solid, which corre-
sponds to screening by electrons only (it is measured

D. Compound semiconductors

In the case of compound semiconductors, two new fac-
tors severely complicate the problem. The first com-
plication arises because the compound semiconductors
consist of alternately postively and negatively charged
ions, which respond to the introduction of foreign char-
ges differently from the neutral atoms of the homopolar
semiconductors, such as Si and Ge. In order to under-
stand the complication we first consider an electron in
the conduction bands of a perfect polar crystal. The
electron constantly interacts with the lattice, which even
at T=0 K has the "zero-point motion. " In polar crys-
tals, this interaction is qualitatively different and much
stronger than in homopolar materials because moving
charged ions set up long-range Coulomb fields. The
true stationary states in the crystal are the quasiparti-
cles known as polarons, which consist of an electron and
a cloud of virtual longitudinal optical (LO) phonons. The
electrons and the phonons are constantly exchanging en-
ergy and momentum among themselves, while maintain-
ing a constant energy and constant momentum for the
polaron. The problem of binding carriers to impurity
potentials may thus be viewed as a problem of binding
polarons. Unlike ordinary electrons in homopolar
semiconductors, however, polarons are dynamic entities
in that, speaking in pictorial terms, they may "shed"
part or all of the phonon cloud when they get bound. The
quantum-mechanical description of this process is very
complicated and can be carried out only in certain lim-
iting cases (Schultz, 1962; Platzman, 1962; Bajaj, 1972;
Larsen, 1972). Since virtually no applications have been
carried out for real impurities in real semiconductors
we will only give a brief account of the subject.

The Hamiltonian for a polaron is
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with fields whose frequency is much larger than phonon
frequencies, at which phonons cannot respond); e~ is the
static dielectric constant, which includes full screening
by both electrons and lattice (it is measured with sta-
tic, zero-frequency fields, at which phonons do re-
spond). The electronic Hamiltonian H i s treated in an
effective-mass approximation and the result is

S = Q exp[-(at+ a,) V, /rV(u].

The result is

H=H + 8'» —(e /e, ~) +H",

where

(8.48)

(8.49)

V, = —(ih(u, /q)(S/2m*(u, )' '(4nn/0)' '. (8.43) H"=~ [Va e'"+ V*ate '&']
c c (8.50)

The dimensionless coupling constant n, introduced by
FrOlich, is defined by

(8.44)

In the above equations, m~ is the effective mass for the
carrier (the theory has not been extended to treat other
than simple, nondegenerate parabolic band extrema) and
Q is the volume of the crystal. Solutions of H„,~ may be
obtained by treating V,~ as a perturbation. In the case
of dispersionless phonons, one gets a constant shift of
the carrier energy of -&5u and a change of m* into
m*/[1 —n/6].

We now turn to the problem of binding an electron to
an impurity in an ionic or polar solid. The only case
that has been studied is that of a point-charge impurity.
In the absence of electron-phonon interactions, the im-
purity potential is assumed to be hydrogenic, screened
by & . Including electron-phononintera, ctions and point-
charge-phonon interactions, the total Hamiltonian is

=H +H,„(e/e„~)+—H',

where H' is now

(8.45)

H'=P [Va (e'"—1)+ V,*at(e '"' —1)]. (8.46)

H=S HS, (8.47)

where

V, is assumed the same as in the perfect crystal.
Clearly, a number of limiting cases emerge (Schultz,

1962), depending on the values of n and the phonon fre-
quencies w. We wish here to concentrate on a given
material, for which n and co are fixed. We note imme-
diately that, for small x, H' becomes negligible, be-
cause e'q'= e 'q'= 1, so that the lattice can be neg-
lected entirely. Physically, what happens is that the
electron is very close to the point charge, in effect neu-
tralizing it, so that the lattice does not respond at all.
Accordingly, for very tightly bound states, coupling to
the lattice can be neglected. It has often been said that
—e'/e„y can then be used (as opposed to —e'/e, x), but,
in actuality, one must do much better. For a point
charge, one must include the q dependence (or, equiva-
lently, x dependence) of e„. For real impurities, a good
potential is necessary. More importantly, for H' to be
negligible, the radius of the bound state must be of the
order of the interatomic spacing, in which case effec-
tive-mass theory breaks down.

The other limit, naturally, is that of very large orbits
for the bound states. In that case, H' cannot be neglect-
ed. The usual procedure is to first make the canonical
transformation

The effect of this transformation is to eliminate the
point-charge —lattice interaction in H' and replace

e'—/e„r by —e'/e y. After the canonical transformation,
it becomes appropriate to first leave out the impurity
potential and solve the free polaron problem. Subse-
quently, the perturbation -e'/e, x is introduced and the
polaron is bound to it in a hydrogenic orbit. Clearly,
however, this limit is valid when orbits are very large
so that a free polaron does not change its character ap-
preciably when it gets bound. This is the limit that is
usually used in describing shallow donors and acceptors
in polar semiconductors. All lattice effects are simply
lumped into c, and the experimental values of m*, which
is the polaron mass. The approximation works well
when m* is of order 0.1m, and e, is large (&10) so that
binding energies are of order 10 meV and orbits are
&100 a.u. Examples are donors in GaAs, InSb, etc.

An improved solution of Eq. (8.49) can be obtained by
treating H" as the perturbation and treating the rest of
the Hamiltonian first. The unperturbed solution is
again hydrogenic, but m* is the bare effective electron
mass (as opposed to the polaron effective mass). In-
clusion of H" by perturbation theory involves rather te-
dious algebra and additional approximations. In the
simplest of the calculations, valid for o. &=1, first done
by Platzman (1962) and then improved by Sak (1971),
one gets for the binding energy

Ee = (1+6+ 4nE, /k&u)E—„ (8.51)

where E~ is the hydrogenic binding energy with bare ef-
fective mass. This expression is an expansion in pow-
ers of E'e/'" and is, therefore, valid for Eoe &'~. We see
that the first correction, n/6, simply amounts to re-
placing the bare effective mass by the polaron effective
mass. The next cor'rection, nE'8/24K~, is a true im-
provement over the simpler approximation discussed
earlier, in which all lattice effects were lumped in
and m*. Similar expansions have been obtained for the
degenerate 2s and 2P hydrogenic levels (Sak, 1971) and
the result is a splitting analogous to the Lamb shift
caused by the photon field in the free hydrogen atom.

Alternative approximations in evaluating H" by per-
turbation theory have been made by Stoneham (1970) and
by Bajaj (1970, 1971). Engineer and Tzoar (1972) eval-
uated the correction numerically, without needing to
impose E~ =&co. All these calculations, however, are
for a simple parabolic band and for a potential of the
form -e'/e„~. In fact as the binding energy begins to
approach k~, central-cell effects begin to become im-
portant and a more accurate impurity potential is need-
ed. Recently, Bernholc and Pantelides (1977) calculated
binding energies for a point-charge acceptor impurity
in compound semiconductors using the full 6&6 k.p ma, —
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trix and e„(q), which amounts to neglecting lattice
screening. Their use of the effective-mass parameters
of Lawaetz (1971), which are bare with respect to pho-
nons, makes the calculation internaQy consistent. How-
ever, the resulting orbits are fairly large (making the
EMT valid), so that the effect of electron-phonon inter-
action cannot be neglected. Bernholc and Pantelides
(1977) also carried out the calculations using e,(q), ob-
tained by scaling e„(q) so that e,(0) =g,. The calculation
corresponds to a potential that has the proper asymp--
totic forms but only one of many possible interpolated
forms at intermediate x values. The proper calculation
would have to treat lattice rearrangement in a self-con-
sistent way, as recently done for an exciton in a polar
semiconductor with simple parabolic bands by Pollmann
and Battner (1975). The conclusion, therefore, is that
so far there have not been any calculations which prop-
erly take into account electron-phonon interactions for
impurities in real semiconductors, except for the trivi-
al cases where a hydrogenic calculation with e, and the
polaron mass m* is adequate.

Even if polaron effects could be included accurately,
however, impurities in polar semiconductors have
another major difficulty associated with them (Pante-
lides, 1975a; Bernholc and Pantelides, 1977). This dif-
ficulty is best illustrated by looking at the two isocoric
single acceptors in GaP, namely GaP: Zn„-, and
GaP: Sip. The point-charge model should describe both
of them well. However, the two acceptors have sub-
stantially different binding energies, namely 64 meV
(Dean, Faulkner, Kimura, and Ilegems, 1971) and 204
meV (Dean, Frosch, and Henry, 1968), respectively.
The difference between cation single acceptors and an-
ion single acceptors are even more pronounced in II-VI
compounds, such as CdS. These. differences have been
attributed by Phillips (1973) to electronegativity differ-
ences. More recently, Pantelides (1975) and Bernholc
and Pantelides (1977) pointed out two factors that con-
tribute to these differences in the context of a quantum-
mechanical calculation. One is the site dependence of
screening which is neglected when c(q) is used. Phys-
ically, the site dependence arises because the electrons
are distributed nonuniformly, the majority being around
anions. Point charges, positive or negative, would thus
be screened more effectively on anions. (Bernholc and
Pantelides, 1977, made an inappropriate distinction be-
tween the screening of positive and negative charges ).
Site-dependent screening, therefore, would tend to push
point-charge binding energies in the wrong direction.
The second factor, which must then overcome the site-
dependent screening and yield the observed anion-cation
difference, is the need for evaluating the matrix ele-
(gl Ulg) by going beyond the effective-mass approxima-
tion. Recall that g is expanded in terms of Bloch func-
tions, and the latter are expanded in terms of plane
waves of the reciprocal lattice vectors K. ICf. Eqs.
(7.4) —(7.7)] By retaining only K = 0, site dependence
is lost. If more K vectors are retained, then the two
sites are going to be differentiated. In particular, for
acceptors, Bloch functions at the top of the valence
bands have larger amplitudes around anions, whereby
(glUlg) and the resulting binding energy is larger for
anion-site acceptors than for cation-site acceptors.

Clearly, such calculations are outside the EMT, as
developed thus far.

(y'
I Ul(') =(u *8"'IUIu„e'"")

in contrast to the usual

(8.52)

(8.53)

In the language used by Altarelli et al. (1977), (8.52)
corresponds to including the Umklapp (K~cO) terms in
the expansion of u~k (r)u~, (r), instead of just the K~ = 0

iterm.
At first glance, the use of (8.52) instead of (8.53) for

intervalley terms appears to be a definite improvement.
A closer examination, however, reveals that it may not
necessarily be so. First note that if Umklapp terms are
included in the intervalley terms, they must also be in-
cluded in the intravalley terms as well, in order to
maintain internal consistency. This requirement; how-
ever, can lead to trouble: Intravalley terms (Luttinger
and Kohn, 1955; Kittel and Mitchell, 1954)are systemati-
cally calculated to order 0' within k p theory, which
corresponds to dropping Umk]. app terms in the potential
matrix elements. Both the original papers cited above
pointed out that one cannot carry some terms to higher
order than others, whereby inclusion of Umklapp terms
in the potential matrix elements may necessitate going
beyond the k approximation in the kinetic energy. Fur-
thermore, in order to keep all terms of the same order,
interband matrix elements must also be included.

Numerical results obtained with the point-charge
model by Baldereschi (1970), Pantelides and Sah
(1974a), and by Altarelli et al. (1977) are shown in Ta-
ble V. Though substantially different approximations
were used, the results are comparable. It turns out
that the choice of dielectric function alone can introduce
large uncertainties (see, e.g. , Bernholc and Pantelides,
1977; also Lipari and Baldereschi, 1978).

TABLE V. Binding energies of the split ground states for don-
ors in Si and Ge from three different calculations using the
point-charge model and from experiment for the respective
isocol ic donors.

Silicon Germanium

Ag
Baldereschi (1970) 40.5
Pantelides and Sah (1974a} 48.8
Altarelli et al. (1977) 47.5
Experiment (Si:P.Ge.As) 45 5

T2
29.9
31.1
31.4
33 9 a

E
28.8
30.4
30.6
32.6 ~

Ag
10.1

12.5
14.0 b

T2
9.5

9.7
9.8'

'Aggarwal and Ramdas (1965).
"Reuszer and Fisher (1964).

E. Recent developments

In recent papers, Shindo and Nara (1976) and Altarel-
li, Hsu, and Sabatini (1977) offer an alternative form of
many-valley effective-mass equations. They suggest
that (a) intravalley terms should remain as in the tra, -
ditional EME's discussed earlier; (b) intervalley kinetic
energy terms should be neglected as small; and (c) in-
tervalley potential-energy terms should be evaluated by
approximating
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D, , (—iV) + U(r)M, ,(r),
where D, , (k) was defined in Sec. VII, and M„.(r) is

M, , (r) = M,*,(r) u, ,(r) .

(8.55)

(8.56)

Here u, ,(r) and u, ,(r) are the six Bloch functions at the
top of the valence bands at k=0 which contain spinors
explicitly.

Test calculations must be carried out before the va-
lidity and usefulness of these generalized equations be-
come clear. In the meantime we may remark that Um-
klapp terms have another unpleasant consequence. Re-
call that in their absence one simply had to choose an
impurity pseudopotential, without needing the corre-
sponding Bloch functions. Now, however, Bloch func-
tions are needed, and they must correspond to the same
choice for intenzaE consistency. For example, if Heine-
Abarenkov-model potentials are used for the impurity-
and host-atom potentials, the Bloch functions should
come from a band structure that made use of the same
host-atom model potential. This requirement is very
stringent. In particular, it makes the point-charge
model somewhat meaningless, because different sets of
pseudo-Bloch functions (corresponding to the many pos-
sible choices of crystal pseudopotentials) may result in
different binding energies. Finally, on the positive
side, Umklapp terms are the very ones that were iden-
tified by Bernholc and Pantelides (1977) (see also dis-
cussion in Sec. VIII.D above) as being responsible for
the strong site dependence of acceptor binding energies
of acceptors in compound semiconductors. Their pro-
per inclusion in EME's would, therefore, have substan-
tial import.

The role of theUmklapp terms, therefore, still re-
mains. to be investigated further. First one must check
whether interband matrix elements are in fact negli-
gible. If they a.re not, many-band formulations would
become necessary. If they are, one should next check
the need for including k' and higher-order terms in the
kinetic energy matrix elements. If all goes well, one
may then proceed to include Umklapp terms. Contrary
to what Shindo and Nara (1976) and Altarelli et al. (1977)
have done, however, the present author believes that
Umklapp terms should be included in both intervalley
and intravalley terms. One can then quickly deduce that
the necessary modification of Twose's MV EME's is to
first drop the intervalley kinetic energy and replace

U(r) - tr(r)u~+ (r)g, (r) (8.54)

for both i=j (intravalley) and i cj (intervalley). For ac-
ceptors, the modification would be more troublesome.
Whereas in the conventional 6&&6 EMT matrix Hamil-
tonian the impurity potential appears only on the diago-
nal, inclusion of Umklapp terms would introduce the po-
tential in the off-diagonal elements as well. The new
Hamiltonian (Pantelides, 1978) would be

all these methods, the total crystal potential is written
as in Eq. (6.23), namely

V=V +U, (9.1)

whereby the eigenvalue problem to be solved is given by

(e'+ U)q, =z„y, . (9 2)

Identical equations may be written down, whether the
above quantities are viewed as "true, " pseudo, or mod-
el, in the sense discussed at length in the previous sec-
tion. The term perturbative in the section title is not
meant to imply that the methods are based on a power
series in the perturbation U, but rather that they are
designed to calculate directly the changes produced by
the perturbation.

In this section, we describe the mathematical founda-
tions of various perturbative methods and discuss ap-
plications to real systems that have been reported thus
far deferring a critical comparison of all the methods
to Sec. XI, after we have introduced and discussed the
nonperturbative methods of Sec. X.

A. Secular-matrix methods

These methods are most conveniently described in the
conventional Hamiltonian(wave-function representation
in which one seeks to determine the eigenenergies E,
and eigenfunctions g„by expanding g, in terms of a com-
plete set of functions yz in the form

4m= Z Fz'px ~ (9.3)

Q [Pg g+ Ug, q —E,Sq zjEq =0 (9.5)

in obvious notation. The energies E, are then the solu-
tions of the generalized eigenvalue problem (9.5). If the
basis set is orthonormal so that Sz, &, =5), ,~, the energies
E, are simply the eigenvalues of the secular matrix
Hy g y + Uy y The size of this matrix is equal to the
number of functions y~ one needs to include in the ex-
pansion (9.3).

1. The Bloch representation

The most natural choice for the yz is the set of Bloch
functions g„'k, which are eigenfunctions of H' and are
orthonor mal. Thus

S.(r) =E F.kl k(r) (9.6)

Upon substitution in (9.2), multiplication on the left by
y„*, and integration, one gets the following set of cou-
pled linear algebraic equations

Z [&v~ I&'leg&+&vg l&leg& -&.&v~ le~&IF~ =o

(9-4)
or

IX. GENERAL PERTURBATIVE IVIETHODS

In this section, we discuss methods which, like effec-
tive-mass theory, build on, or start from, a knowledge
of the electronic structure of the perfect host solid. In

nk

and the set of equations (9.4) becomes

&„'kF.'k~2 &4.'kl &lk.' k&F. k =& F.k ~

n' k'

The secular matrix to be diagonalized is

(9.7)
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(9.8) B. Determinantal methods

The size of this matrix is equal to the number of k
points in the Brillouin zone times the number of bands
one includes in the expansion (9.6). Note that a single
diagonalization would yield a quasicontinuum of band
states plus any bound states in the gaps. In a practical
implementation of this method, the necessarily finite
sampling of the Brillouin zone makes the method least
appropriate for states for which +„k varies rapidly with
k, such as diffuse, weakly bound, effective-mass-like
impurity levels.

2. The Wannier representation

These methods follow along the same lines as the sec-
ular-matrix methods described above, but are especial-
ly designed for cases in which the range of the pertur-
bing potential is significantly shorter than the range of
the bound-state wave function. In order to exploit this
distinction one then needs a set of basis functions yz
which are appropriately localized.

1. The Koster-Slater method in the Wannier
representation

The starting point is the set of equations (9.7) in the
Bloch representation which are first rewritten as

Another possible choice for the y& are the Wannier
functions iso(r -R,) of the perfect crystal. We write re ~ ~0 E rlk

n'p' '
nk v

(9.16)

g„(r) =gF„,iv'„(r —R;) .
n j

(9 9) The unit oper ator in the Wannier r epr esentation

~-&/2 ~@ -ik.&j
nk ~ nje (9.10)

1/Pi ~Q elk e j
nj nk

k

The set of equations resulting from (9.9) is

(9.11)

QI E„(R,—R,')6„„.. +&so„,. IUIiv„. '&]F„.,'=EF„, , (9.12)

where

The coefficients are written as I „j in order to explicitly
indicate their relationship to the F„„of(9.6): since the

PJ, and the ui„~,. are related by (6.9), we immediately ob-
tain

1 = Q Iiv„;& &u „',.
I

(9.17)

(representing closure or completeness for the set of
functions) is then inserted on both sides of U. Vsing the
result

& q
0

I
~ 0

) ~-1/2 e —i k . Pi.
multiplying (9.16) by e' ' i, summing over k and using
(9.11), one gets (Koster and Slater, 1954)

(9.18)

sk. (~,; -mj'')
—

& „;.„IUI „;,,&F„, =o,
E~k-Ev

(9.19)

where we immediately recognize the Green's function in
the Wannier representation, Eq. (6.17), so that (9.19)
may be written as

(R R } ~-1+ED ik. (Pg -Ri')

k

(9.13)
F„i—Q G„„;,' (E„)U„„g»;F„;=O

~/ jl jt
(9.2O)

The size of the secular matrix is equal to the number
of sites times the number of bands one includes in the
expansion (9.9). The number of sites is in turn dictated
by the range of the bound-state wave function.

in obvious notation. Since the secular matrix in this
form depends nonlinearly on E, , the solutions are not
found by diagonalization, but by seeking the zeros of
the determinant e(E) defined by

3. Other localized-function representations

One clearly could use any set of localized functions
&f&„&r —R,), in particular the same functions that one
might employ in an LCAQ-type energy-'band calculation
for the host crystal. Thus

4. (r) = gF~P (r —R;), (9.14)

and the corresponding set of equations is

I@~;&]F~, =O, (9.15)

where presumably one knows the matrix elements
& p„j IHOI p, &,& from the band-structure calculation.
Again, the size of the secular determinant is equal to
the number of functions that must be included in (9.14)
for an accurate expansion of g„(r).

~(E) = det II6„„.5„'—g G„o„„„(E)U„„,,„,, II .
ji I

(9.21)

The most important feature of this transformation is the
size of the matrix. Notice that in the set of equations
(9.12) the size of the secular matrix was determined by
the number of bands and the number of sites over which
the gvave function g„extends, as required by the expan-
sion (9.9). Now, in (9.21), the size of the matrix is de-
termined by the number of bands and the number of
sites over which the pegtmbation Potentia/ U extends,
which may be substantially smaller. The simplest mod-
el, which Koster and Slater (1954) first solved, is the
famous one-band/one-site model for which all U„„.. .,-
but one are taken to be zero. The matrix in (9.21) is
then 1 x I and the problem is trivial. The resultant
wave function, however, extends over many lattice
sites, so that a much larger effort would be required
with (9.12). We will have occasion to discuss this sim-
ple model in the context of isoelectronic traps later on
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in this section. Other applications will be discussed in
subsection D below.

I= g le.;& & &., I, (9.22)

in (9.16), and follow the same steps. Instead, Koster
and Slater (1954a) chose to define the Bloch sums

x. ()=~"g""' y.( -It, ) (9.23)

2. The Koster-Slater method in other localized
representations

Koster and Slater (1954a) suggested that instead of Wan-
nier functions, which may require considerable effort to
construct, one could employ any arbitrary complete ortho-
normal set of localized orbitals P„(r -Rz). It would then be
natur al to make use of the closure relation

The forms (9.29) and (9.31) are equivalent. Note that
(9.29) needs the inverse of H„(k) —E, whereas (9.31)
needs to first diagonalize H „,(k) and obtain the eigen-
values E„„and eigenvectors g„.

U(r) = U, (r)U, (r) . (9.32)

The original suggestion of Bassani et al (196.9) was U,
= U, =U'~'. The method works, however, for an arbitrary
product, giving U(r) as in (9.32) (Jaros and Brand,
1976). One then introduces a complete orthonormal set
of functions g (r) at the impurity site so that

3. The Bassani-ladonisi-Preziosi-Jaros (HIP J) method

This method is similar in spirit to the Koster-Slater-
type methods discussed above. One starts with (9.16),
but first splits U(r) into a product of two functions

and expand g„(r) in terms of these

u„(r) =
Q +.~ x.~(r ) . (9.24)

1= glgd&g. l. (9.33)

By inserting (9.33) between U, and U, and proceeding
with steps analogous to the ones employed before, (9.16)
becomes

The corresponding set of secular equations is then
(assuming the f„z are orthonorma]. ) &g. lU. I4.«& &4.« IU. Ig. &,0 o 0 (9.34)

Z ~H'..(k)5««+&x.«IUlx~. &~E~'=E.F.«
fx. 'k '

where we have used

&x.«tH'Ix. ~ & =H.~(k)6«« .

(9.25)

(9.26)

and the corresponding determinant is

&~m
nk nk

(9.35)

Equation (9.25) can then be transformed to a form simi-
lar to (9.16) by defining Aee. (k, E„) to be the inverse of
H (k) —E., 6 „.The result is

+~k+ &n8 k~ ~~ Xek U Xn k +~ k -O. (9.27)

It is at this point that Koster and Slater (1954) use (9.22),
define I,. by analogy with the I „z, and obtain an equa-
tion which is analogous to Eq. (9.19), namely

4. Green's-function derivation of the Koster-Slater and
8 IPJ equations

The form of (9.19), which may be written in terms of
the Green's function 6'as in (9.20), suggests that the
same results may be obtained directly in terms of a
Green's-function formalism. The basic equations were
given in Sec. VI, where we saw that the wave function

P, for a localized state in the gap obeys Eq. (6.27),
namely

4«. (R) -Rg )g (k E )
fx'7' 8&

Q(E)P. =0, (9.36)

x &0 e, IUIy. ., &E.; =0. (9.28)

The corresponding determinant is

b (E) =det ll 5~„5q).—Qpe'" ~ R& "&)A e(k, E)Ue,

(9.29)

Clearly, however, another form is possible (Bernholc
and Pantelides, 1978). As noted earlier, (9.22) may be
used directly in (S.16) in place of (9.17), so that (9.28) is
replaced by

+~-1 n.t nk nk Hs

n'f' al nk +ok Ev

and the corresponding determinant is

E) =detll5„.5, —gP& Aay lkntc&& AJ& I@et& U, „,, ll .
er

(9.31)

where Q is the operator 1-G (E)U. If g, is expanded as
in (9.3) in terms of any complete set of functions p„,
(9.36) becomes a set of algebraic equations,

QQ~«(E)E~ =o.
V

(9.37)

These equations have a solution if the determinant

b, (E) =detllQ~„. (E)ll (9.38)

~(E) = detll 1 —G'(E)Ull =0. (9.39)

In the Wannier representation L(E) becomes precisely
(S.21). In the p ~ representation, 6(E) becomes (Bern-
holc and Pantelides, 1978)

E(E) =detll5„, 5~&. —PG ~~, (E)U~, (9.40)

becomes equal to zero. Notice that the determinant of
an operator is invariant, i.e. , it has the same value no
matter what basis functions y~ are used. One can there-
fore write
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where

Go (~) ~&4 'l0.'k) (4.'~I%sr)
nRjl ~ p ~o

nk nk

(9.41a)

Note that (9.40) is identical to (9.31). It is also identical
to 9.29 with G Sj, given by the alternative form

G 0 (E) P+ik. (Rg R-~ )~ (y g) (9.41b)

C. General remarks

The methods described above are strictly computa-
tional in nature, except when applied to simple models
(see, e.g. , Koster and Slater, 1954b; Bassani et al. ,
1969). In general, the problem is twofold: First, given
a band structure and an impurity potential one must
choose one of the representations discussed above, set
up the appropriate matrix, and determine the eigenener-
gies, either by diagonalizing a secular matrix or by
seeking the zeros of the corresponding determinant.
For accuracy, one must demonstrate that convergence
has been achieved in the number of basis functions used,
the number of bands, the number of k points in the
Brillouin zone or whatever else may apply. The second
aspect of the problem is the construction of impurity
potentials. Ideally self consistency sh-ould be achieved,
which means that V should be constructed from the
charge density arising from all the P, , U should be de-
termined from (9.1), and the cycle should be repeated
until the resultant g, 's are the same as those used to
generate V. In case self-consistency is not attempted,
the impurity potential may be constructed in a fashion
similar to that described in Sec. VIII, but integral con-
sistency needs to be maintained. This means that one
may work in a "true", pseudo, or model representation
of the Hamiltonian, but both impurity potential and
Bloch functions must be in the same representation. In
other words, if one uses the "true" impurity potential,
one must use the "true" Bloch functions; if one uses a
pseudopotential for the impurity potential, one must use
the pseudo-Bloch functions that correspond to that par-
ticular choice of pseudopotential. Otherwise, the equa-
tions derived above are not valid. This requirement
appears to be self-evident, but as we shall see, it has
often been violated in applications to real systems with-
out exploring its consequences.

By formulating the problem directly in a Green's-func-
tion formalism, one does obtain some advantages, how-
ever. (Callaway, 1964; Callaway and Hughes, 1967;
Callaway, 1971). In particular, one now has a. formal-
ism which can deal with states in the band continuum,
as we saw in Sec. 7I.

The BIPJ form of the secular determinant, Eq. (9.35),
can be derived from the general Green's-function for-
malism as well, as shown by Bernholc and Pantelides
(1978). One starts with the general results that bound
states are given by the zeros of detttl —Go(E)UII.
Writing U as in (9.32) and multiplying on the left by U2,
we see that bound states also correspond to zeros of
det jj 1 —U, C Uy ll When this last determinant is expres-
sed in the representation defined by the complete set of
functions ~gg and G' is expressed as in (6.15), the ex-
pression (9.35) follows.

D. Applications

The methods described above have been used in quan-
titative calculations for a variety of systems. %e will
proceed by examining applications of one method at a
time, more or less in chronological order, except that
we collect all applications to isovalent impurities in a
separate subsection. The purpose here is to review the
merrits of each specific application. As stated earlier,
we defer a review of the relative merits of methods to
Sec. XI.

1. Determinantal method in the Wannier representation

Calculations using the determinantal method in the
Wannier representation were reported for the neutral
unrelaxed vacancy and the neutral unrelaxed divacancy
in Si by Callaway and Hughes (1967a, b) and by Calla, —

way (1971). Calculations for the self-interstitial in Si
were reported later by Singhal (1971, 1972). Applica-
tions of the same method for isovalent impurities have
been carried out by Faulkner (1968) and by Baldereschi
and Hopfield (1972}. The latter will be discussed under
a separate heading later on.

Callaway and Hughes (1967) and Singhal (1971, 1972)
used the same basic approximations. The band struc- .

ture was calculated in the empirical pseudopotential
scheme (see, e.g. , Cohen and Heine, 1970}using the
empirical form factors of Brust (1964), but only a limit-
ed number of plane waves. The defect potential was con-
structed as follows: First, an empirical pseudopotential
for a Si atom was constructed by interpolating the form
&actors V (K) that enter the band structure and obtaining
e"(k) in all of k space. The vacancy potential was then
taken to be the negative of an atomic Si pseudopotential,
the divacancy potential was taken to be the negative of
two such atomic pseudopotentials located at neighboring
sites, and the self-interstitial potential was taken to be
an atomic pseudopotential located at the chosen inter-
stitial site. Thus constructed, the defect pseudopoten-
tial is of course not self-consistent (i.e. , the redistribu-
tion of the electronic charge caused by the introduction
of the defect is neglected) and ignores lattice relaxation
(i.e. , the movement of the nuclei in the vicinity of the
defect). On the other hand, the defect potential is in
tengally consistent in the sense described above.

Given the defect potential and the band structure, the
determinant (9.21) had to be set up and its zeros had to
be found. This process is extremely laborious. A
tedious symmetry analysis had to be carried out to
make the task feasible. The construction of matrix ele-
ments of the defect potential was particularly time con-
suming, since it involved double sums over the Brillouin
zones. These difficulties took their toll by limiting the
computation to include only a small number of bands
and sites.

For the vacancy in Si, Callaway and Hughes (1967a)
found no bound state in the gap, even with the
maximum number of bands and sites they could in-
clude. For this reason, they introduced a scaling fac-
tor A. for the defect potential and presented results for
various values of A.. They also presented results for a
variety of combinations of bands and sites. We wish to
review these results by addressing two distinct ques-
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TABLE VI. Results of convergence of the Callaway-Hughes
calculation for the vacancy in Si with X=1.20. Energies are
measured froxn the top of the valence bands in eV. NBS stands
for No Bound State.

Number of bands 2-site bound state 3-site bound state

0.86
0.43
NBS
0.06
0.32
0.12

0.36
NBS
NBS
0.26
0.07

tions. The fir st is one of convergence: For a given po-
tential, i.e. , for a given value of A, how well does the
calculation converge? We choose A. =1.20 as a typical
value, for which many combinations of bands and sites
were used. Collecting information from various tables
given by Callaway and Hughes (1976), we supply the re-
sults in Table VI. The Table shows thatthe results
are not convergent. Clearly, adding the sixthband in both
cases makes adramatic change. Similarly, adding the
extra site produces a change of 40% in the bound-state
energy. Similar results were obtained for other A.

values.
The second question we wish to address is the over-

all achievement of the work by Callaway-Hughes-Singhal.
As far as the determination of bound states associated
with the defects, no conclusive answer was obtained.
Callaway (1971) extracted a value of the formation ener-
gy from a study of the phase shifts in the valence bands,
which yields approximate changes of total energies, but
th0 accuracy of the results is also uncertain due to the
lack of convergence. Similarly, Singhal calculated the
total energy for the interstitial at various locations and
concluded that the bond-centered site is likely to be pre-
ferred, in agreement with Watkins' suggestion (see
Watkins, Messmer, Weigel, Peak, and Corbett, 1971),
but the conclusion was not firm. Nonetheless, the cal-
culations by Callaway and co-workers represent the
first major step in the application of Koster-Slater
methods to real systems. The troublesome and costly
aspect of these calculations was the construction of the
Wannier functions. In. the years following the original
work no further applications have been reported, in-
dicating lack of promise in the method. As we saw,
however, in Sec. IX. B. 2, the Koster-Slater method
does not require the use of Wannier functions. The use
of LCAO basis sets appears to be a more promising
technique (see' below).

2. Determinantal method in LCAO representations

The last idea, namely the use of some other localized
basis set instead of Wannier functions, was first ex-
ploited by Lannoo and Lenglart (1969), who used a set
of s and-P atomic orbitals on each atom, performed an
LCAO energy-band calculation by treating the Hamil-
tonian matrix elements (only first-neighbor interactions)
as parameters to be fit to known energy bands, and then
looked at the determinant (9.40), taking p (r —R&) to be

G'„„(E)= dE' D, (E')/(E —E'), (9.42)

where B~ is the partial density of states of P symmetry
at the central atom. The integral is over the entire
energy axis. For levels in the gap, it is clear from
(9.42) that the valence bands contribute to Go»oo(E)
with a positive sign, while the conduction bands con-
tribute with a negative sign. The zero of t"pro is there-
fore obtained where the two contributions cancel exact-
ly. This observation implies that both valence and con-
duction bands play an equally important role in deter-
mining the position of the bound state. This conclusion,
of course, pertains only to this particular model. A
many-site calculation may in fact result in a weaker
role for the conduction bands, as found by Callaway and
Hughes (1967).

the same set of s and P orbitals. The ideal vacancy is
then approximated by removing an atom and leaving
everything else unchanged. In the determinantal method
this can be accomplished by either removing all the in-
teractions of the central atom with its neighbors of vari-
ous orders, or, equivalently, setting the diagonal Ham-
iltonian matrix element of the central atom at a very
large energy, so that all the other atoms do not "see"
it. (See also Bernholc and Pantelides, 1978). Using
symmetry, the net result is that states of T, symmetry
are the zeros of Go»»(E) and states of A, symmetry are
the zeros of Go, oo(E). The results of the calculation for
diamond are qualitatively interesting but quantitatively
unreliable, due to the crudeness of the band structure
employed. The calculation yields two bound states in
the gap which are nearly degenerate in energy: one of
A, symmetry and one of T, symmetry with a total of four
electrons available for them. As we will see in the next
section, more realistic calculations obtain the A, state
within the valence bands as a resonance' and the T, in the
gap with only two electrons in it. The wave function
obtained by Lannoo and Lenglart is approximately 70%
localized on the first shell of neighbors, which compares
well with the localization extracted by Watkins (1972)
from EPH data of the vacancy in Si.

More recently, calculations similar to those of Lannoo
and Lenglart have been performed for the vacancy in Si,
Ge, and GaAs by Bernholc and Pantelides (1978). The
band-structure parametrization was that of Pandey and
Phillips (1976), which reproduces empirical-pseudopo-
tential valence bands very accurately and does reason-
ably well for the lowest conduction band, but not so sat-
isfactorily for higher conduction bands. This paramet-
rization (first- and second-neighbor interactions) was
found to be very good for surface states. The qualitative
results for the single vacancy are again as found by
others using different methods (see next section), name-
ly a T2 level in the gap and resonances and antiresonan-
ces within the bands. Quantitatively, the results can
only be compared with other model calculations and we
postpone this until other calculations are described.
One particular qualitative result, however, is especial-
ly interesting (Bernholc and Pantelides, 1978). As we
saw above, the T, level in the gap is determined by the
zeros of Go»00(E). With slight manipulation, this func-
tion may be written as
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3. BIPJ method

Another series of applications using the methods de-
scribed earlier in this section has been carried out by
Jaros and co-workers .Initially, Jaros (1973), Jaros
and Ross (1973), and Ross and Jaros (1973, 1974) at-
tempted to set up and diagonalize the secular matrix in
the Bloch representation, i.e. , Eq. (9.7). Symmetry was
used to great benefit, but the number of k points that
could be included was still too small to ensure conver-
gent results. The authors carried out calculations in a
number of systems, the earliest one being acceptors in
Si (Jaros and Ross, 1973), and later on GaP:Op, GaP:Np,
and ZnTe:Op. Soon, however, the technique was aban-
doned for its inability to produce convergent results and
the Bassani-iadonisi-Preziosi (1969) method was adopt-
ed, with the functions g taken to be products of associa-
ted Laguerre polynomials and spherical harmonics.
Applications have been carried out for GaP:Op (Jaros,
1975), the vacancy in GaP, GaAs, and InSb, and the
divacancy and vacancy-oxygen complex in GaAs (Jaros
and Brand, 1976).

In all their calculations, Jaros and co-workers em-
ployed empirical-pseudopotential band structures simi-
lar to the one used by Callaway and Hughes (1967a,b).
The more recent calculations, which make use of the
Bassani-Iadonisi-Preziosi method, are convergent with
respect to the number of k points in the Brillouin zone
and the number of bands. Gn the other hand, no tests
have been carried out for convergence of the angular
part of the intermediate functions g .

We now turn to examine the choices of impurity poten-
tials arid review the results. The method of construct-
ing the impurity or defect potential has not been discus-
sed in depth in the published papers. In particular, the
question of internal consistency, as described above,
has not been addressed, and from what we can infer,
the impurity/defect pseudopotentials used in the calcu-
lations thus far appear to violate this requirement. We
are unable to assess the consequences of this choice of
potentials. More specifically, the oxygen potential,
which has been used in a series of papers, including the
most recent work, was obtained in 1S73 by extrapolating
unpublished tables of model potentials by Animalu (1956)
using a value for the effective Fermi level determined
by Jones arid Lettington in unpublished work by fitting
experimental data on GaN. Jaros and Ross (1973) were
aware of the uncertainties involved and stated their
"hope that it is a good estimate. " This situation is
rather discomforting, especially since oxygen, like
other first-row elements lacking P core states, is
known to be a troublesome case for pseudopotentials
(see, e.g. , Cohen and Heine, 1970). In a recent study
of oxygen, Chelikowsky and Schliiter (1977) were able to
construct an accurate pseudopotential, but nonlocality
was found to be essential. This latter potential may
provide a better basis for calculations of oxygen im-
purities in the future.

Finally we turn to the actual results and accomplish-
ments of Jaros and co-workers. One series of calcula-
tions was on GaP:Op. The latest calculation on this
system gave a binding energy for the extra electron at
the oxygen site of 1 eV, in very good agreement with the

experimental value of 0.9 eV. This result may be view-
ed as indication that the oxygen pseudopotential used in
the calculation is adequately accurate. On the other
hand, it may be argued that the agreement with experi-
ment may be masking other issues that may be impor-
tant for such a pathological system as GaP:Op. (The
system is pathological because the other group VI ele-
ments, i.e. , S, Se and Te are shallow donors in Gap
with binding energies of order 100 meV. Oxygen, on the
other hand, has a binding energy nine times larger and
is capable of binding a second electron; see below. )
One question is whether the eigenvalue may be identified
as the ionization energy in the sense of Koopmans'
theorem. For example, GaP:Op is very likely to intro-
duce a bound state below the bottom of the valence band
corresponding to the 0 2s state) just like Si:S has been
found to do (see Sec. X.C.2). When the bound electron
is removed' to the conduction bands, the rearrangement
of charge may cause this level to move and produce a
correction to the ionization energy. This particular
question of electronic relaxation is perhaps more rele-
vant for the two-electron state of GaP:Op for which a
dramatic lattice relaxation has been suggested to ac-
company binding (Henry and Lang, 1977). Jaros has
included lattice relaxation by moving the nearest neigh-
bors a certain distance and calculating the additional
perturbation potential. He was thus able to reproduce
the experimentally observed optical cross section with
a threshold at 1.4 eV. These results were not presented
as conclusive, however. In particular, the threshold is
actually fitted, in accordance with a particular inter-
pretation of the data (Henry and Lang, 1977), and there-
fore it cannot rule out the alternative interpretation of
the data by Grimmeiss, Ledebo, Ovren, and Morgan
(1974) and by Morgan (1975). Furthermore, as experi-
ments with higher resolution become available, the
accepted picture may change dramatically. For exam-
ple, recent data, by Samuelson and Monemar (1977) sug-
gest an ionization threshold for the second electron of
about 1 eV. Moreover, Morgan (1978) is now proposing
an alternative interpretation of old data on this system.
No attempt will be made to resolve the "GaP:Op contro-
versy" here. It appears that as more data are becom-
ing available the situation will become clearer. Theo-
retical calculations, such as those of Jaros, definitely
contribute positively to the process by establishing
quantitative guidelines. It is hoped that more accurate
impurity pseudopotentials will be employed in the future
so that firmer quantitative predictions can help the in-
terpretation of the data more directly.

The more recentworkof Jaros (Jaros, 1975; Jaros and
Brand, 1976) has beenonthe vacancy, divacancy, andva-
cancy-oxygen complex in a number of III-V compounds.
These pioneer ing calculations ar e the first quantitative
workon such systems. Jaros and Brand (1976) gave avery
cautious assessment of the assumptions they made,
pointing out the main limitations, such as lack of self-
consistency in both the electron distribution and the lat-
tice relaxation. They presented calculations of the
bound states by scaling the defect potential in the man-
ner of Callaway and Hughes (1967) and demonstrated
that for a small number of bands (nonconvergent solu-
tions) the bound-state energies are very sensitive to the
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scaling factor X, as also found by Callaway and Hughes.
For fully convergent solutions, however, the dependence
on scaling was found to be quite small, suggesting that
self-consistency may not be very important. Jaros and
Brand were therefore able to conclude that the Ga va-
cancy in GaAs introduces a triplet T, level in the gap
near the top of the valence bands. The As vacancy, on
the other hand, introduces a triplet T2 level which is
resonant with conduction states somewhat above the con-
duction band edge. (The uncertainty in this level is lar-
ger because the formalism is valid only in the regions
outside the bands. ) The V~, level is, however, much
simpler to interpret: Since in the neutral state of the
vacancy the level would contain one electron, the cen-
ter would be expected to behave as a donor. The VG, 7,
level, however, would contain three electrons in the
neutral state, so that electron-electron interactions are
likely to change its position in the gap. Jaros and
Brand suggest that the calculated level may correspond
to a VG,

' state, but the assignment would be inconsis-
tent with a neutral potential, unless one argues that the
Coulomb tail would not affect the calculation substantial
ly. Jaros and Brand then calculated the energy levels
of the V~, system treating the two bound electrons in the
Hartree approximation. For the one-electron V'„', sys-
tem, they also performed the calculation by including a
trigonal Jahn- Teller distortion, which splits the triplet
into a doublet that goes up in energy and a singlet
(singly occupied) that goes down in energy toward the
valence bands. Similar results were obtained for anion
and cation vacancies, respectively, in other III-V com-
pounds. The tentative final conclusion was that cation
vacancies are likely to be single acceptors and the anion
vacancies are likely to be single donors, in agreement
with intuitive predictions (Bube, 1960). Similar calcula-
tions were performed for the VG, —0 complex where it
is found that the extra electron supplied by 0 fills up the
hole in the valence bands created by the Ga vacancy and
the complex in its neutral state does not behave like an ac-
ceptor. Calculations on the divacancy (Vo, —VA, ) led
only to very uncertain and rather speculative results.

Overall, Jaros and co-workers have made a very valu-
able contribution to the field of deep-level impurities
and defects by demonstrating that calculations of this
magnitude can be practical. They have persevered in their
intent to carry the calculations to convergence and have
contributed valuable guidelines for the interpretation of
exper iments.

E. Applicatioos to isovalent impurities

Isovalent impurities (also called isoelectronic impuri-
ties) were first identified independently by Aten, Haan-
stra, and deVries (1965) and by Thomas, Hopfield, and
Frosch (1965). At first, isovalent impurities were ob-
served to bind excitons (electron-hole pairs), but Thom-
as, Hopfield, and Lynch (1966) proposed that binding
may be viewed as a two-step process: The neutral im-
purity first binds one of the two particles (either the
electron or the hole) and becomes charged. The result-
ant Coulomb field then binds the second particle in an
effective-mass fashion. The electronegativity of the im-
purity atom was thought to be the factor determining

(so„'; iU ~w„',') = U, b„„b„o.b, , 6;o

Eq. (9.21) becomes

1+Uog o =0,1

(9.43)

(9.44)

which can be solved num erically for a given band struc-
ture and a given /Jo to yield the bound-state energy. The
dependence of binding on Uo becomes clearer if one uses
the identity

1 1 1
6 —F 6 6 E —.E

whereby (9.44) becomes

(9.45)

(9.46)

where

1 ~ 1
(9.47)

Equation (9.49) reveals that for a potential that is at-
tractive to electrons (U, & 0), a bound state belozo the
band edge exists if

IU. I &«). (9.48)

An identical condition holds for potentials that are at-
tractive to holes (Uo&0) for bound states above the band
edge.

Faulkner proceeded to evaluate (E) using a simple ef-
fective-mass expansion. for the conduction of GaP and
then treated TJ, as a parameter. The model was found
to be inadequate for the description of binding energies:
if Uo was fit to give the binding energy for one electron
bound to a single nitrogen, the resulting binding energy
of an electron bound to a pair of nitrogens did not agree
with experiment. Furthermore, the model was incap-
able of producing any excited states. The usefulness of
the model was in providing a qualitative understanding
of the absorption processes that go on near the inter-
band absorption threshold of GaP when N is present
(see Faulkner, 1968).

Faulkner (1968) proceeded to carry out a quantitative
calculation of bound states by using the Koster-Slater
determinantal method and going beyond the one-band/
one-site approximation. The calculation was similar in

whether an electron or a hole or no particle at all
could be initially trapped by the neutral impurity. This
picture was in agreement with observations: GaP:Np
was observed to bind an electron with about 19 me&,
whereas GaP:Bi, was observed to bind a hole with about
38 meV (Dean, Cuthbert, and Lynch, 1969). There is a
vast literature on experimental work on isoelectronic
traps, especially on nitrogen and pairs of nitrogens in a
variety of phosphide and arsenide alloys. Reviewing
this literature is beyond the scope of this article. We
will instead focus only on bona fide attempts to develop
a theoretical description of binding by isoelectronic
traps.

The first theoretical model proposed to describe bind-
ing by isovalent impurities was the Koster-Slater one-
bandjone-site model mentioned earlier (Faulkner, 1968).
By taking the potential matrix elements to be of the form
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spirit to that of Callaway and Hughes (1967) for the va-
cancy in Si described earlier. Faulkner performed his
calculations by retaining only two bands. No conver-
gence studies were carried out. The impurity
pseudopotential used by Faulkner was the difference be-
tween atomic pseudopotentials similar to those describ-
ed in Sec. VIII, Eq. (8.37). Since the energy-band struc-
ture for the host crystal was obtained from an empirical-
pseudopotential calculation, Faulkner 's irnpur ity poten-
tial does not satisfy the requirement of internal consis-
tency described earlier. The numerical calculations re-
sulted in a bound state about 1 eV below the conduction
band edge, two orders of magnitude larger than the ob-
served value of 0.01 eV. A scaling factor A. was then in-
troduced, in the manner of Callaway and Hughes (1967)
and the bound state recalculated for various values of
X. The binding energy was found to be extremely sensi-
tive to the value of A. (X =0.501 gave 0.008 eV, the ob-
served value, whereas X =0.504 gave 0.013 eV). Using
X =0.501, which reproduces the experimental value for
the single nitrogen, calculations for a pair of nitrogens
were carried out. The results did not agree in detail
with experiment, but the range of energies and the aver-
age spacings are of the correct order of magnitude.

More recently, the problem of binding by isovalent
impurities was investigated by Baldereschi and Hopfield
(1972) (see also Balderesehi, 1973). These authors as-
sumed that the Koster-Slater one-band/one-site model
can provide reliable information on binding of holes if
generalized to a three-band jone-site model for the top
three valence bands of tetrahedral semiconductors. In-
stead of Wannier functions for each of the three bands,
Baldereschi and Hopfield defined three linear combina-
tions which transform like x, y, and z. This transform-
ation enabled them to obtain a criterion for binding
which is formally identical with (9.49). Now, however,
Uo is the matrix element of U with any of three "sym-
metrized" Wannier functions, and (E) is the threefold
degenerate eigenvalue of the matrix M„, given
by

(9.49)

where &„„,(k) is the Hamiltonian matrix in the new
"symmetrized" Wannier representation. (These equa-
tions assume the zero of energy at the top of the
valence bands. )

Baldereschi and Hopfield focused their attention on
constructing impurity potentials U for isovalent impuri-
ties, calculating the matrix element Vo and comparing it
with (K) to determine whether a bound state exists or
not. The impurity potent'ials were calculated in the
Heine-Abarenkov model-potential representation as de-
scribed in Sec. VIII. These potentials were then screen-
ed by the Penn (1962) form of the dielectric function
e(q). Local screening effects, which are beyond linear
response theory, were included by scaling the Fermi
momentum, Fermi energy, and plasma frequency that
enter the Penn formula according to the local density in
the impurity cell. An additional term was included in
the impurity potential arising from lattice relaxation
around the impurity. This latter contribution was cal-

culated in terms of a simple model making use of bond
lengthsobservedincompounds of the impurity atom
(which corresponds to "maximum" relaxation) and sub-
tracting corresponding crystal potentials. The actual
lattice relaxation was estimated by a simple spring
model and the potential for this particular configuration
was obtained by interpolating between the zero-relaxa-
tion and maximum-relaxation potentials. Finally, a
spin-orbit correction was added to the impurity poten-
tial, as suggested by Allen (1971).

The calculations showed that screening reduces the
potential matrix element Uo subs'cantially, thus confirm-
ing a speculation by Faulkner (1968) on the origins of
the very large binding energy he obtained with an un-
screened pseudopotential. (Baldereschi and Hopfield
did not study GaP:Np, however; they limited their
study to states near the valence bands. ) On the other
hand, lattice relaxation was found to increase Uo and
hence binding. In the end, Baldereschi and Hopfield
were able to predict which isovalent impurities can
bind a hole and which cannot. An attempt to calculate
actual binding energies was not successful, however.
The resultant binding energies were more than an order
of magnitude larger than the observed values. Such a
result suggests that the prediction that a given impurity
does binda holeis very safe despite the approximations,
the most serious of which is the use of a one-site per-
turbation in the Koster-S1. ater equations. Perhaps the
most important result of the work is the quantitative
demonstration of the fact that screening, local screen-
ing, and lattice relaxation play a very important role in
the determ ination of binding by isovalent impur i-
ties.

The one-band/one-site Koster-Slater model has been
used extensively to analyze and interpret data on isoval-
ent N in GaAs P, alloys by Holonyak and co-workers
(e.g. , Scifres et al. , 1971, 1972). Newer data, on these
systems have been r ecently interpreted independently
by Kleinman (1977) and by Hsu, Dow, Wolford, and
Streetman (1977). In both cases, the one-band jone-site
model was found inadequate and longer-range potentials
were assumed, with the potential matrix elements fitted
to experimental data. The model of Wolford et al. cor-
responds to a one-band /two-shell Koster-Slater model,
whereas Kleinman attributed his long-range potential to
strain fields extending uniformly over a range of
25 A.

Finally, studies of isovalent impurities have been
carried out by Jaros and co-workers, using the tech-
niques which we discussed earlier in this section (Jaros
and Ross, 1973; Ross and Jaros, 1974; Jaros and
Ross, 1974). These studies were carried out in the or-
iginal Bloch representation which was not brought to
convergence (Jaros, 1974). The quantitative results are
therefore unreliable. The conclusion that the binding
energies are very sensitive to the strength of the poten-
tial agrees with the work of Faulkner (1968) and Balder-
esehi and Hopfield (1972). Recalling Jaros's later con-
clusion (Jaros and Brandt, 1976) that only when full con-
vergence with respect to the number of bands is achieved
does the sensitivity go away, we may conclude that no
numerically convergent calculations for isovalent im-
purities have thus far been reported.
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X. NONPERTURBATIVE METHODS {CLUSTER
METHODS}

In this section we will discuss methods which do not
separate V into V + U as in Eq. (9.1) but instead work
directly with V. In other words, we will be discussing
methods which attempt to solve directly the eigenvalue
problem

Hkv =I.-h'&'&2~a+ Vj 0 =&v4v. (10.1)

All these methods have one common feature: they treat
the crystal as a finite cluste~ of atoms. They differ in
whether they use small clusters or very large clusters.
In the case of small clusters, they are additionally dis-
tinguished by the type of boundary conditions which are
imposed at the surfaces. Cluster calculations have been
carried out using a variety of one-electron Hamiltonians
and the merits of the techniques seem to depend strongly
on the choice of Hamiltonian and the method of solution
of (10.1), once the cluster has been defined. We have
therefore organized the discussion in this section ac-
cording to the type of Hamiltonian that was employed in
the various calculations. We will first discuss the "de-
fect molecule" model which is a rather unique case. We
will then discuss the various methods that have been
used to deal with (10.1) when the Hamiltonian is defined
in terms of its matrix elements, which in turn are de-
fined in terms of empiri, cal parameters, and, finally,
we turn to a discussion of methods in which the potential
V is constructed from first principles and (10.1) is
solved self-consistently. As we did in Sec. IX, we defer
a critical comparison of the various methods to Sec. XI.

A. Defect-molecule model

This approach is interesting for historical perspective
rather than for its usefulness today. The method was
first introduced for the vacancy in diamond by Coulson
and Kearsley (1957), and a similar calculation for the
vacancy and self-interstitial in diamond was reported
later by Yamaguchi (1962, 1963). The model was ex-
tended later by Coulson and Larkins (1969,1971) for the
divacancy and by Friedel, Lannoo, and Leman, who
used it to study Jahn- Teller relaxations around the va-
cancy in diamond.

The central assumption of the model is that the wave
function of the vacancy electrons may be constructed
from th'e four "dangling" sp' hybrid orbitals on the four
neighboring carbon atoms, and that this wave function
does not interact with the band states in the crystal. A
related assumption is that the potential which the va-
cancy electrons see is just what arises from the four
nearest-neighbor carbon atoms. One then constructs
this potential from atomic potentials and, using appro-
priate linear combinations of atomic wave functions,
one carries out a "many-body" configuration-interac-
tion calculation for the vacancy electrons. Observed ab-
sorption can then be attributed to transitions between
these localized states. The main limitation of the model,
in addition to the rather drastic approximations, is that
it cannot position the localized levels with respect to the
crystal band edges.

From a conceptual point of view, it is perhaps impor-

tant to distinguish the defect-molecule model from con-
ventional calculations on clusters of four atoms (cluster
calculations will be discussed at length later on in this
section). Note that though the potential of a total of four
atoms is taken into account, the wave function of the
bound states is expanded only in terms of the four dang-
ling hybrids, not all sixteen hybxids that exist on the
four atoms. In other words only the bound states for the
vacancy electrons are sought, while all other states are
viewed to be unperturbed. In this way, the question of
what to do with the surface bonds does not arise. The
price one. pays is that the bound states cannot be related
to the energy band edges.

In subsequent work on the vacancy in diamond, some
of which was mentioned in Sec. IX and some of which
will be reviewed below (see especially Watkins and Mes-
smer, 1974) it became clear that the defect-molecule
assumption of a wave function which is completely loca-
lized on the nearest neighbors is not justified, and also
causes the many-electron multiplet splitting to be too
large. The results of this model will therefore not be
discussed in further detail. We have mentioned it here
because for more than ten years it served as the only
guide to understanding a vast amount of data on vacan-
cies and other radiation-induced defects.

hP~ =e~g„~ (10.2)

We then introduce a set of atomic orbitals p„, where y,

runs over all atomic orbitals on each atom and over all
atoms, and expand

e„,@„. (10.3)

The eigenvalues c, are then solutions of the secular eq-
uations

Q (hp q
—e„Sp q) Cp~ = 0,

I

(10.4)

where

h„=&y, Ihl y,&, (10.5)

(10.6)

The set of equations (10.4) is just a generalized eigen-
value problem and can be solved by standard techniques
once h. & z and S& z are known. Note that the size of the
matrix is equal to the number of orbitals p& so that for
a direct solution of (10.4) the number of orbitals is lim-
ited by present computer capacity and accuracy to about
300. If only s and p (p„,p, p, ) orbitals are imposed, the

B. Semiempirical LCAO methods

In semiempirical methods one does not calculate the
potential V explicitly. Instead, a basis set for g, is cho-
sen and the matrix elements of II are determined empir-
ically, i.e., either evaluated using a well tested pre-
scription or directly fit to experiment. For the defect
problem, the most suitable basis set is a set of atomic-
like orbitals. Let us therefore define a general problem
for an arbitrary collection of atoms described by a Ham-
iltonian A. We seek solutions of the eigenvalue problem
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limit of cluster size is about 75 atoms, unless symmetry
is taken advantage of.

1. Extended Huckel theory (EHT)

Extended Huckel theory (EHT) is a method that has its
roots in organic chemistry (see, e.g. , Hoffmann, 1963).
It can be defined for an arbitrary collection of atoms by
the equations given above and the following set of rules:

(i) Bestrict the set of atomic orbitals @& to the valence
orbitals of each atom and choose them to be Slater-type
atomic orbitals, i.e., the appropriate spherical har-
monic multiplied by a radial function of the form

f (~) ~~n xe cr- (10.7)

Here n is the principal quantum number of the orbital,
g is an exponent, chosen, for example, according to
Slater's rules (Slater, 1930), and N is a normalization
constant. Having chosen the p» the overlap matrix S& z
is then evaluated directly.

(ii) Evaluate Jg& ~ in terms of the prescription

(10.8)

where

K for p. g A,

1 for p. =A.

(10.9)

(10.10)

where n, is the degeneracy of the v'" eigenvalue, is a
good measure of the total energy of the system. Note
that the sum in (10.10) is only over the occupied states.
a. The valid/ ty of the EHT

The central assumption of the EH T is that the Hamiltonian
matrix elements g~ may be approximated by (10.8). The
approximation was originally suggested by Mulliken (1949)
as plausible, and a number of workers subsequently attemp-
ted to derive conditions under which the matrix elements of
the one-electron Hartree-Fock operator ean in fact be ap-
proximated by an expression of the form (10.8) (Boer, New-
ton, and Lipscomb, 1964; Newton, Boer, and Lipscomb,
1966; Blyholder and Coulson, 1968; Gilbert, 1970). All
these workers showed that under no circumstances can
the rigorous Hartree-Fock matrix elements be reduced
to a form that is proportional to the overlap matrix ele-
ments (The mo. st serious problem is the kinetic energy. )
The only "justification" of EHT is that it avows more
often than it does not, and detailed studies have shown
thai its success is due to fortuitous cancellations of er-
rors (see, e.g. , Boer et al. , 1964).

Expanded Huckel Theory (EHT), as a prescription for
p„&, has another rather unsettling property, pointed out
by Coulson (1972): The prescription is not invariant

Here K is a constant, 1&%&2, usually taken to be 1.75
in applications to organic molecules (Hoffmann, 1963).
I& is the p.~b orbital ionization potential from experimen-
tal data (see, e.g. , Pople and Segal, 1965).

A separate assumption, but one that is usually made
along with the assumptions stated above, is that the sum
of eigenvalues

with respect to the choice of origin for the energy unless
& =1, a choice which has not been found to be useful.
The usual choice of K is 1.5 or 1.75.

Finally, the prescription for the total energy, Eq.
(10.10), can in fact be viewed as an approximation, but
most studies (see, e.g. , references quoted above) show
that the other terms in the correct expression for the
total energy are not necessarily negligible. Including
the additional terms, however. , would be entirely out-
side the spirit of EHT, and they have always been left
out.

The above discussion suggests that applying the EHT
to solids would be a dangerous path. Nevertheless, the
method has provided very valuable information for an
assortment of molecular problems in the absence of
practical schemes for accurate calculations. From this
point of view, the use of the EHT for studies of defects
in solids is totally justified, as long as one proceeds
with caution and carries out intermediate tests. As we
shall see, the EHT has in fact provided very useful in-
formation for defects in covalent solids.
b. The limi tati ons of EHT

Turning our attention to solids, it is worthwhile to
identify at the outset the quantities which can and cannot
be calculated within the EHT. For the purposes of this
discussion let us assume that the eigenvalue problem
(10.4) can be solved for either a perfect solid or a solid
containing a defect. Clearly one then gets the one-elec-
tron energies c, and the corresponding wave functions

By filling these levels according to the Pauli exclu-
sion principle, one can then determine the Fermi level
and the total energy as defined by (10.10). The calcula-
tion of the total energy can then be repeated for various
atomic configurations and one can obtain elastic con-
stants and lattice relaxation around a defect, trace the
path for the diffusion of atoms or vacancies, and deter-
mine preferred positions for interstitial impurities and
self-interstitials. On the negative side, EHT can study
only a neutral center as it contains no prescription for
altering the gg&z when electrons or holes are added or
removed from a center. For this same reason, EHT
cannot provide excitation energies between localized
states or between a localized state and a band state, ex-
cept when the excitation corresponds to removing an
electron from a singly occupied localized state to an
empty state or putting one electron in an otherwise em-
pty bound state. We will see an example of this later on.

Another limits, tion of the EHT is that it is not a mell
defined prescription in the case of compounds. The
atoms in such crystals are not neutral and the effective
charge on the ions is an ill defined quantity making the
choice of the I„ in (10.4) somewhat ambiguous, espe-
cially because of the Madelung energies that alter the
I„from their free-ion values. Nonetheless, one could
supplant additional prescriptions to take care of these
difficulties. Work on defects has, however, thus far
been mainly on diamond and Si and we will therefore not
address the question of ionic solids.
c. The EH T for soild-state systems

The EHT prescriptions, as taken from molecular
theory and described above, can be used directly to des=
cribe perfect periodic crystals. For this purpose, one
makes use of Bloch's theorem according to which the
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coefficients C&„ in (10.3) may be written as

Ct v =cave fh R- (10.11)

where p, which in (10.3) is a composite index running
over RtoxDS Rnd orbltals hRS been broken into Rn index
j, labeling lattice sites, Rnd an index n, labeling orbi-
tals in the primitive unit cell. The index p is now a
composite band index and wave vector k. The size of
the resultant secular matrix at each wave vector k be-
comes equal to the number of orbiials in the unit cell.
For diamond-type crystals inclusion of only the s and p
valence orbitals on the two atoms per unit cell yields
8&&8 secular matrix at each k point, which in turn yields
8 bands.

A calculation of the energy bands of diamond using an
s -p basis set and the EHT prescription for matrix ele-
ments has been performed by Messmer (1971), who
found that the valence bands are reproduced very mell,
as compared with more sophisticated calculations, but
the conduction bands are less satisfactory. A dramatic
improvement of ihe conduction bands was accomplished,
however, by a slight modification of K in (10.9) and one
of the Stater exponents. The modified EHT parameters
mere also found to give elastic constants which agree
very well with experimental values (Watkins and Mess-
mer, 1973). Somewhat similar results were obtained
by Lee and McGill (1973) for Si, who actually fit the
EHT parameters to available energy bands: Good va-
lence bands mere obtained, but the conduction bands
mere unsatisfactory. One might think that the unsatis-
factory conduction bands for Si may be due to the ab-
sence of d orbitals in the basis set, but the inadequacy
can actually be traced to the EHT prescription (10.8),
since recent work by Chadi (1977) has shown that excel-
lent valence and conduction bands can be obtained for
Si and Ge with an s -p basis set, si,milar to that used by
EHT, but using the empirical pseudopotential of Cohen
and Bergstresser (1966) in terms of which to calculate
the Hamiltonian matrix elements.

The above results for perfect crystals show that the
EHT (or modified EHT) is likely to produce meaningful
results in imperfect crystals as mell, at least in dia-
mond. The solution of the EHT secular equations for
crystals containing defects is, however, no easy task.
Periodicity is broken and Bloch's theorem does not
hold any more, so that one is faced with a very large
secular matrix. In Rll the applications of the EHT to
the problem, therefore, additional approximations have
been made, which, to a certain extent, mask the abso-
lute success or failure of the EHT.

Three different approximations have thus far been used
to deal with the crystal containing a defect. The first
two simulate the real crystal with a small cluster of
atoms, i.e., 30 to V0 atoms. In the one case ihe sur-
face atoms are left free, mhile in the other the so-called
dangling bonds are saturated mith hydrogens. The third
approximation is similar to the other tmo in that one
again starts miih a small cluster of atoms, but the clus-
ter is judiciously chosen so that periodic boundary con-
ditions can be imposed. The cluster may thus be viewed
as a "molecular unit cell" (Messmer and Watkins, 1972)
of an infinite crystal mith a periodic array of defects.
The single defect is thus replaced with an array or "sup-

erlaitice" of defects in the hope that the interdefect dis-
tance can be made large enough to eliminate defect-de-
fect interactions.

The first application of the EHT to defects in solids
was by Walter and Birman (1967). Extensive applica-
tions were later (1970-1973)carried out by Messmer
and Watkins and co workers (see detailed references
below) and by Larkins (1971) in terms of free and H-
saturated clusters. By 1973, Watkins and Messmer
(1973) concluded that the superlattice approach is by far
superior, but only limited studies have been carried
out using this method. The superiority of the super-
lattice method was demonstrated independently and at
about the same time by Lee and McGill (1973), who
carried out an EHT calculation for the divacancy in Si.

The superiority of the superlattice approach (or mo-
lecular-unit-cell-approach) over free or H-saturated
clusters can be seen very quickly by comparing the cor-
responding results for the perfect crystal: Free or H-
saturated clusters give a band gap which converges ex-
tremely slowly with cluster size, whereas a superlat-
tice calculation immediately reproduces the infinite-
crystal band gap obtained by a band-structure calcula-
tion (Fig. 14). The latter follows from the fact that the
superlattice calculation is in fact a band-structure cal-
culation, albeit with a larger-than-normal unit cell. On

the other hand, it should also be noted that once an im-
purity or defect is introduced, a superlattice calculation
does not necessarily reproduce the perfect-crystal band
gRP.

Another disadvantage of free clusters is that they yield
a substantial number of surface states, some of mhich
may lie within the forbidden gap or near the band edges,
thus making the identification of true bulk states a dif-
ficult task. The surface states also present a problem

+30-

-10-—

1 5 17 29 35 47 71

I IG. 14. The energy levels of clusters of various sizes simu-
lating crystalline diamond as calculated by Watkins and Mess-
mer (1973). Tbe cluster with 71 atoms corresponds to includ-
ing six shells of neighbors of the central atom. The result for
the "infinite" cluster comes from a band-structure calculation
using identical parameters.
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in the calculation of the total energy because for a neu-
tral cluster they should be half-filled. One way to get
around this difficulty is to saturate the surface bonds
with hydrogens (Larkins, 1971) or simply fill up all the
states within the valence-band region, including the un-
identifiable "surface" states, whereby one ends up with
a, heavily negatively-charged cluster (Messmer and Wat-
kins, 1970; 1973). The hydrogen saturation may sound
better, but it should be noted that the "surface" states
are not removed, but only shifted in energy.

Another demonstration of the superiority of the super-
lattice method over free and &-saturated clusters can be
made by comparing the results one expects from a calcul-
ation for a defect at the center of a cluster. Let us first
take the case of a set of EHT parameters which, when
used in a small free cluster, yield "surface" states in the
middle of the band gap. These states ought to be localized
near the "surfaces" and decay withinthe "bulk, " though
the smallness of the cluster probably makes the dis-
tinction somewhat ambiguous. Now, suppose a defect
at the center of the cluster introduces a bound state also
within the band gap. Clearly, for small clusters, the de-
fect state will interact with surface states rather strongly,
Note that the separation between the "centers" of these
two types of "localized" states is &, the average "radius"
of the cluster. If we now use the same EHT parameters and
carry out a superlattice calculation with the same clus-
ter size, there will be no surface states and the gap will
be "clean." When a defect is introduced with a bound
state in the gap, there will no longer be interactions
with surfaces. Instead, there will be interactions be-
tween defects on the superlattice. These interactions
are, however, ~@a&e&, because neighboring defects are
now separated by 2R. Finally, whereas defect-surface
interactions in free clusters introduce shifts in the lo-
calized energy levels, which are hard to deal with, de-
fect-defect interactions in superlattices introduce dis-
Pexsion. The dispersion may be fitted to a tight-binding
expression from which an approximate position for the
level may be extracted (see, e.g. , Louie et a/. , 1976,
and the discussion of that work in Cl below).
d. . Applications to defects In covalent solids

We turn now to a discussion of particular applications
of the EHT to defects. We first examine the ability of
the EHT to predict the positions of energy levels asso-
ciated with defects. The task is complicated by the fact
that no reliable experimental values are available for
any of the systems for which calculations have been done.
Furthermore, no calculations have been reported which
have either converged with cluster size (in the case of
free clusters), or have reduced the dispersion to accep-
table limits, say less than O.l eV (in the case of super-
lattice calculations). In fact, the results available thus
far on the vacancy in diamond can be used as an illus-
tration of the difficulties involved in extracting useful
information about energy levels from small-cluster cal-
culations. Let us start with free clusters. Messmer
and Watkins (1973) noticed tha, t. the position of the level
in the gap may be quoted either relative to the topmost
valence level of the same cluster, or relative to the top
of the valence bands of the band-structure calculation.
Clearly, in the limit of a very large cluster the two
numbers ought to approach the same unique value. Fig-
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FIG. 15. The convergence of (a) the vacancy level and {b) the
substitutional nitrogen level in diamond, from results reported
by Messmer and %atkins (1973). The solid circles correspond
to the levels being measured from the top of the valence bands
of a band-structure calculation, whereas the open circles
correspond to the levels being measured from the highest val-
ence level of the respective cluster. Two different 70-atom
clusters were used for the vacancy. The vertical line in the
vacancy figure indicates the dispersion obtained from a 64-
atom repeated-cluster calculation.

ure 15 shows the two values, as calculated by Messmer
and Watkins (1973) for clusters of various sizes. Also
shown in the figure is the range of dispersion-obtained
by Watkins and Messmer (1973) with the superlattice
method using their original EHT parameters. When
the improved EHT parameters of Messmer (1971) are
used (Messmer and Watkins, 1972), the top of the de-
fect "band" is lowered to about 0.4V eV, a rather small
change.

The case of nitrogen in diamond is even more reveal-
ing. Messmer and Watkins (1973) did a similar study
of the bound state as a function of cluster size and ob-
tained similar results, but the situation is actually more
disturbing. The 35-atom undistorted cluster yields a
bound state at about 1.5 eV below the cluster's conduc-
tion band. If one were to measure it from the conduc-
tion-band edge of the infinite crystal, the level would
not be bound! (See Fig. 14). Now, the same cluster,
after a Jahn- Teller trigonal distortion is introduced,
yields a bound state which is 2.2 eV above the cluster's
valence-band edge. Since one could follow the level
being lowered in energy as the distortion is increased,
one might want to continue measuring it from the con-
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duction band edge. The final result would be 7.3 eP
below the cluster's conduction-band edge, which, if
measured from the infinite-crystal conduction-band
edge, would be quoted as deep into the valence bands.
Superlattice calculations have also been performed for
C:N. The dispersion was found to be negligible (Wat-
kins and Messmer, 1973), but the resulting energy
level was not reported.

All in all, the "disappointing conclusion, " in the words
of Watkins and Messmer (1973), is that even larger
clusters are needed, preferably with periodic boundary
conditions, for a meaningful determination of bound-
state energies. Again in the words of Watkins and Mess-
mer (1973), this conclusion "should serve as a dramatic
warning that results on a small cluster should be inter-
preted cautiously, at least for a strongly covalent ma-
terial such as the elemental semiconductors. " A simi-
lar conclusion was reached by Larkins (1971) who ob-
served that a Q5-atom cluster for the vacancy in Si pro-
duces a level in the gap, in apparent agreement with ex-
periment, but a 41-atom cluster does not f Perhaps an
even more disappointing conclusion is that even a super-
lattice (or repeated cluster) approach does not neces-
sarily remove this difficulty. As we observed earlier,
when the cluster contains an impurity or defect, a super-
lattice calculation does not necessarily reproduce the
perfect-crystal band gap and the resulting bound state
is broadened i.nto a band.

Despite the inability of the cluster-EHT calculations to
produce accurate energies for the localized states, the
results have been extremely valuable from other points
of view. For one, they demonstrated, perhaps in a
painful way, that the wave functions of vacancies and
other deep defects are not as localized as originally ex-
pected (e.g. , Coulson and Kearsley, 1957; Yamaguchi,
1962). Furthermore, the overall picture of the wave
function obtained by Messmer and Watkins (1972) from
superlattice calculations is probably substantially cor-
rect, namely that a good part of it (perhaps 50$c) is lo-
calized on the nearest neighbors, whereas the rest de-
cays very slowly with a more-or-less constant ampli-
tude. The correctness of this picture is substantiated
by the fact that virtually identical wave functions were
obtained at I' and X of the small Brillouin zone of the
superlattice (Watkins and Messmer, 197)). A similar
picture for the wave function was also obtained by in-
dependent calculations, discussed in the previous sec-
tion (Lannoo and Lenglart, 1969; Bernholc and Pante-
lides, 1978).

The calculations of Messmer and Watkins (1973) re-
vealed another intriguing result about the wave func-
tion of the vacancy, which appears quite convincing. It
was found that the molecular-orbital coefficients C& ~
for the p functions on a given near-neighbor atom are
not equal. In particular, for the wave function of the
T, state that transforms like z, the coefficient of p, is
found to be larger than those of p„and p, . This result
means that the "dangling hybrids" that would be ex-
pected to point toward the position of the missing atom
are not pure sp' hybrids, as one might expect for an
unreconstructed ideal vacancy. This "tilt" of the wave
function was determined to be larger than + 5.4 for all
cluster sizes and was believed to be real. No experi-

TABLE VII. Wave-function coefficients ~C~ ~
determined by

EHT cluster calculations by Messmer and &atkins (1973) for
the nitrogen and nearby carbon atoms, and comparison with
experiment.

Orbital, 35 atoms 47 atoms 71 atoms Expt.

N(0, 0, 0)

C(1, 1, 1)

C(1, 1, 1)

2s
2p
2s
2p
2s
2p

0.004
0.174
0.029
0.834

&0.001
0.003

0.004
0.363
0.022
0.765

&0.001
0.010

0.004
0.224
0.017
0.738

&0.001
0.003

0.060
0.23
0.066
0.73

mental results are available for diamond, but EPR mea-
surements for the vacancy in Si had already revealed
such a tilt of+7.2' (Watkins, 1963), in support of the
theoretical results. The calculations also demonstra-
ted that the origin of the tilt need not be due to Jahn-
Teller distortions. Additional calculations (Messmer
and Watkins, 1973) demonstrated that the tilt is in fact
caused by interactions with nearby valence-band states
and concluded that the tilt is a measure of the proximity
of the localized level from the valence bands. Experi-
ment again supports this conclusion, since other va-
cancy-related defects with levels farther from the band
edge display negligible tilt (see references in Messmer
and Watkins, 1973).

The wave function for nitrogen in diamond (Messmer
and Watkins, 1973) turned out to be very good and to
vary little with cluster size. In this case, there exist
detailed ENDOR data which actually measure the mole-
cular-orbital coefficients C„~ of (10.4) (Watkins and
Corbett, 1961). The agreement between theory and ex-
periment is truly remarkable (Table VII). Similarly good
agreement was obtained by comparing electric quad-
ruple interaction parameters, also extracted from EPR
and ENDOR data.

Finally, we turn to applications of the EHT which make
use of the total-energy expression (10.10) to predict
lattice relaxation, distortions and related quantities.
Almost all such work has been on 35-atom free clusters
for various defects in diamond. An indication of the
validity of the procedure is provided by the fact that el-
astic constants, when calculated the same way, agreed
well with experimental values (Messmer and Watkins,
1973). The approach was first used to study lattice dis-
tortion for substitutional nitrogen. As we mentioned al-
ready, it was determined that when a trigonal Jahn- Tel-
ler distortion is imposed, the bound state in the gap is
lowered rather dramatically. This particular. distortion
is in agreement with EPR data. As we saw already, the
wave function of the distorted configuration agrees well
with ENDOR data.

Similar work was done for the vacancy in diamond by
Messmer and Watkins (1973) and by Yip (1974) for the
vacancy in Si and Ge. Symmetric lattice relaxation was
determined to correspond to 13% outward relaxation of
the nearest neighbors, but the Jahn- Teller distortion
could not be unambiguously determined as tetragonal or
trigonal. Estimates of the migration energy of the va-
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cancy were also obtained by eomparirig the total energy
of the vacancy at (000), the vacancy at (111), and an
intermediate configuration consisting of vacancies at
both (000) and (111) and an atom halfway between the
two sites, i.e., at (~, —,', —,'). No experimental values
were available for comparison, but comparison with
other theoretical estimates indicated a probable over-
estimate of the migration energy.

An interesting study along the same lines was carried
out by Weigel, Peak, Corbett, Watkins, and Messmer
(1973) for the self-interstitial in diamond. The goal was
to determine the stable configuration. The conclusion

- was that neither the tetrahedral nor the hexagonal inter-
stitial sites were the preferred locations, contrary to
previous assumptions (Yamaguchi, 1963; Benneman,
1965; Singhal, 1971). The preferred configuration was
instead found to be an intexstitialcy. Two such config-
urations were found to be likely, i.e. , a split-(100) in-
terstitial (i.e. , two atoms sharing a, substitutional site
with the pair being in the 100 direction), or a bond-
centered interstitial. The study also determined a mi-
gration path, which turned out to be quite insensitive
to the choice of EHT parameters (the standard ones or
the improved ones, obtained by Messmer, 1971, to fit
the band structure better). The study was extended to
describe charged interstitials, but the results are much
less reliable for reasons discussed earlier. The pre-
dicted differences in preferred interstitial locations be-
tween the various charge states, did, however, suggest
that low-temperature athermal migration of the inter-
stitial would be possible by simply capturing carriers,
a mechanism suggested earlier by Bourgoin (Bourgoin
and Corbett, 1972).
e. A modifIed EHT for charged centers'

We just saw that Weigel ef, al. (1973) attempted to
study charged interstitials in diamond by simply adding
extra electrons to partially occupied states. They re-
cognized the crudeness of the approximation in view of
the fact that the new self-consistent potential of the
charged center should produce substantially different
energy levels. A similar approximation was also used
by Yip (1974) in his study of charged vacancies in Si and
Ge. Some time earlier, however, Shimizu and Minami
(1971) used what may be referred to as modified EHT to
study the positively charged state of Si:S. These authors
added a new term to the off-diagonals. & ~ of the form
—S& ze2/e(R)R, where R is defined by B ' =(Qz '+Q, . ')/2.
Here B, , B&. are the atomic positions for g„and p~, res-
pectively; e(R) is a position-dependent dielectric func-
tion like the one that appears in the definition of the
point-charge model in the EMT (Sec. VIII). Shimizu and
Minami made use of symmetry and, by focusing
only on states of A, symmetry, they were able to treat
a cluster of 274 Si atoms. The result was an A. , level
0.57 eV below the edge of the cluster conduction band.
The agreement with experiment (0.61 eV) is very good.
On the other hand, the cluster band gap is about 3 eV,
which is closer to the direct gap at F instead of the min-
imum indirect gap, whereby the determination of the
energy level is ambiguous. The new prescription for
charged states is, however, acceptable in the overall
EHT framework. It has not been tested adequately thus
far.

f. A new "Renorma!Izatfon-group" techn/ que
Chui, Weigel, and Corbett (1977) have recently re-

ported calculations using a new technique to solve the
EHT equations for even larger clusters. The idea is to
start with a small cluster, solve the EHT secular equa-
tions directly, then double the cluster and expand the
new wave functions in terms of only selected eiI, enfunc
tions of the original cluster. The "special" eigenfunc-
tions may be chosen, for example, f'rom the vicinity of
the bandgap. The procedure may be repeated several
times to treat larger and larger clusters with decreas-
ing accuracy. The technique obtains its name from the
renormalization-group theory developed by Wilson (1975)
for calculations of cooperative phenomena. No results
have been published in the literature yet.

2. Other semiempirica I methods: Large-cluster
techniques

In recent years it has been popular to parametrize the
energy bands of tetrahedral semiconductors in a rather
direct way in terms of an LCAO calculation. Only s and

p orbitals are used and only first or first and second
nearest-neighbor interactions are included (Pandey and
Phillips, 1974, 1976; Chadi and Cohen, 1975; Parite-
lides and Harrison, 1975). The same secular equations
as in the EHT band-structure calculation must be sol-
ved, butthe matrix elements h& & are strictly treated as
parameters. The overlap matrix S& ~ is usually treated
as diagonal (orthogonal basis set). The resulting para-
meters depend somewhat on whose energy bands one
fits and which points in the Brillouin zone are fitted.

Once the Hamiltonian matrix elements are known, one
can then use them to treat vacancies and'self-intersti-
tials by making an approximation very similar to that
made by the EHT, i.e., that the Hamiltonian matrix ele-
ments in the perturbed crystal are the same as those of
the perfect crystal. The only difference is that either
an atom is missing (vacancy), or an extra atom is pre-
sent (self-interstitial). We have already seen use of
such an approxima, tion by Lannoo and Lenglart (1969)
and Bernholc, and Pantelides (1978), who studied va-
cancies using a Green's-function perturbative approach
(Sec. IX). The nonperturbative approaches we wish to
review here are essentially cluster calculations and,
except for one case, they are also techniques that can
hand handle very large clusters (more than 2, 000 atoms).
The one exception is the recent work of Lowther (1977),
who used an LCAO parametrization and studied vacan-
cies in terms of 17-, 35-, and 47-atom clusters. Low-
ther, however, seems to have been totally unaware of
the vast literature on small clusters using the EHT,
and none of the problems we explored earlier in this
section were addressed. His 35-atom clusters appear
to reproduce the infinite-crystal band gaps rather well,
with no surface states localized in the gaps. This last
fact raises serious questions about the validity of these
calculations, since Pandey and Phillips (1974, 1976)
have shown that an accurate tight-binding calculation in
fact produces surface states in the g3p, in agreement
with self-consistent surface-state calculations (Appel-
baum and Hamann, 1974). Lowther also extracts several
"vacancy levels" within the gap and within the valence
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D(E) = ——Im+G. , (E)
1 (10.12)

where

G„„(E)=&y„lGI@„).

Equation (10.12) enables one to define a local density of
states D„(E) by

(10.13)

bands but does not state how the identification was ac-
complished.

We turn now to the two techniques that have been used
thus far to deal with very large clusters. Both of them
are based on a Green's- function formalism, but, unlike
the Koster-Slater approach, they calculate the new
Green's function directly. They make use of Eq. (6.18)
for the density of states, which in an LCAO basis set of
functions @„becomes

and self-interstitial in Si. They first use a "perfect"
cluster of 2545 Si atoms and a parametrized s-p Hamil-
tonian. The cluster is found to reproduce the bulk den-
sity of states of Si well (it takes that many atoms, not
35 or 71, to get convergence with cluster size!). The
central atom is then removed and the local density of
states at a nearest neighbor is calculated. A broadened
5 function is detected in the gap for states of T, sym-
metry and another such function is detected within the
valence bands for states of A. , symmetry. A s™ar
calculation was done for the self-interstitial.

Another method that has been introduced to calculate
G»(E) for large clusters is the effective-Green's-func-
tion method of Joannopoulos and Mele (1976). In this
method, one defines a broadened Green's function by

G(E) =(2"') '~' -G(E') exp[-(E —E')'/2o']dE'.

D~(E) = ——1m G~~(E)
1 (10.14)

It is then shown that

(10.18)

D, (E) =Q I &@„Iq.) I'6(E —E.), (10.15)

where g, are the eigenfunctions and E,'s are the. eigen-
energies of the system. Note that these equations are
true for an arbitrary system and D„(E) is a weighted or
projected density of states. Clearly, if one is inter-
ested in finding the localized states in the vicinity of a
defect, it would be adequate to determine D„(E) with P&
being a basis function on either the impurity atom itself
or a nearby atom (in the case of the vacancy). Within
the band gap of a semiconductor containing an impurity,
D„(E) would consist of one or more 6 functions, but in
an approximate calculation, the 5 functions would in fact
turn out to be broadened 5 functions.

A number of general techniques have been developed
to calculate D&(E) for an arbitrary collection of atoms
by directly calculating G»(E) instead of calculating the
eigenvalues E„(see, e.g. , an interesting overview in
Haydock, Heine, and Kelly, 1972). One'such method is
the recursion or continued fraction method which ends
up expressing G»(E) for a particular p. as

which can be immediately shown to be also given by [see,
e.g. , the way Eq. (6.20) was derived]

D„(E)= —(I/n) Im G„„(E)
represents a broadened density of states. G&„ is found
to satisfy the equation

(10.19)

v2 .. - "™G"'' 'm'""' '
(10.20)

which reveals that D& can be obtained by integrating
(10.20) row by row. The advantage is that only a few
rows of the otherwise large matrices must be specified.
Joannopoulos and Mele used this technique to calculate
the states around a vacancy in Ge using a parametrized
tight-binding Hamiltonian .and simply modeling the va-
cancy by the removal of an atom. Their Hamiltonian
included only nearest-neighbor interactions so that the
result was a degenerate T, and A, level in the gap, as
previously found by Lannoo and Langlert (1969).

C. Self-consistent methods

In this subsection we describe methods which attempt
to construct the potential V of the perturbed crystal and
solve the eigenvalue problem (10.1) numerically in a
self -consistent w ay.

G (E)=E-a, —b,g, (E)

with

(10.16)

t. The self-consistent pseudopotential method

a„(E)= 1 (10.17)

The coefficients a„and b„are given by somewhat com-
plicated recursion formulas. Clearly (10.16) with (10.17)
is an expansion of G»(E) as a continued fraction. The
details of the method may be found in the papers of Hay-
dock, Heine, and Kelly (1972, 1975) and are not of par-
ticular interest to our discussion. This and similar
techniques were designed to treat spatially disordered
systems such as amorphous semiconductors; they do

not exploit in any way the translational symmetry of the
unperturbed crystal.

The continued-fraction method has been used by Kauf-
fer, I?echeur, and Gerl (1976, 19VV) to study the vacancy

In the self-consistent pseudopotential scheme (Appel-
baum and Hamann, 1974; Cohen, Schluter, Chelikowsky,
and Louie, 1975), the pseudopotentials of the ionic cores
are taken to be fixed model potentials, determined to
fit free-atom properties, while the valence charge den-
sity is determined self-consistently. The pseudo-Bloch
functions are usually expanded in plane waves. The me-
thod has been very successful in describing bulk band
structures and surface states (Schluter, Chelikowsky,
Louie, and Cohen, 1975a, 1975b).

The method has been used to study the vacancy in Si
by Louie, Schluter, Chelikowsky, and Cohen (1976).
They employed the "supercell" method which we have
already described in conjunction with the EHT. In this
method, the calculation is performed on a periodic
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array of vacancies in an otherwise perfect Si crystal.
The problem then becomes one of standard band theory.
The only complication is the large unit cell that must be
employed. As a result, Louie et al. were able to per-
form the calculation only at high symmetry points where
the size of the secular matrix could be reduced substan-
tially.

The results were similar to those of Messmer and
Watkins (1972). Dispersion of 1.2 eV was obtained for
the vacancy level in the band gap. By using a tight-bind-
ing expression for the dispersion, the "average" posi-
tion of the vacancy level in the gap was determined to be
at about 0.5 from the conduction band edge. A strong
dispersionless resonance at —8.2 eV from the top of the
valence bands was also found. An interesting result of
the self-consistent calculation is that the perturbation
potential, as determined self-consistently, is rather
similar to the total pseudopotential of a Si atom, which
had been previously used by Callaway and Hughes (1967).
Contrary to the Callaway-Hughes results, however, Louie
et al. found a bound state deep in the gap, perhaps due
to the fact that convergence had been attained.

Louie et al. (1976) also carried out self-consistent cal-
culations for two different models of reconstruction (or
Jahn-Teller distortion) of the single neutral vacancy in
Si. As we saw previously, reconstruction comes about
because the level in the gap (which in the limit of no
dispersion would be a T2 triplet) is only partially oc-
cupied, i.e., it contains only two electrons out of a pos-
sible six. Both models chosen for the study corresponded
to a uniaxial distortion along the cubic t100] axis in
agreement with observations (Watkins, 1965). The first
model (Rec I) corresponded to a, net relaxation of the
nearby atoms toward the vacancy; the second model
(Rec II) corresponded to a net relaxation of the nearby
atoms array from the vacancy. The actual amount of
displacement was estimated from previous theoretical
work by Swaiin (1961). The results of the calculations
are interesting though not quantitatively conclusive. In
both models the resonance in the valence bands does
not move, but the triplet in the gap splits into a singlet
and a doublet, as one would expect; the singlet goes
down in energy and is fully occupied, whereas the doub-
let goes up and is completely empty. Thus both models
provide Jahn- Teller stabilization and one cannot deter-
mine which type of reconstruction would be actually
preferred. One might choose Rec I for which the singlet
is at lower energies, but the large dispersions obtained
in both cases would not warrant the conclusion. In fact,
Louie et al. favor Rec II, because the atoms in this case
move toward the bulk, an effect known to occur at free
surfaces (Appelbaum and Hamann, 1974; Phillips, 1974).

The qualitative results of the reconstructed vacancies
are rather interesting Rnd instructive. In Bec I, the
dispersion of the bound states is increased. This in-
crease is traced to the fact that the movement of the
nearby atom toward the vacant site weakens the back
bonds, so that some charge is transferred to the se-
cond-neighbor bonds, thus making the bound-state
wave function more spread out. On the contrary, in
Rec II, the back bonds are strengthened and dispersion
is decreased.

The above theoretical results may be compared with

experiments which determine the charge state of the
VRCRncy Rs R function of the posltlon of the Fel ml level
in the gap. The energy level calculated by Louie et al.
(1976), therefore, corresponds to the lowest possible
position of the Fermi level for a crystal containing
neutral vacancies. Unfortunately, experiments moni-
toring the Fermi level and the charge state of the va-
cancy in Si are not very precise. According to Watkins
(1965), the neutral-vacancy Fermi level is about 50 meV
above the valence band, whereas according to Naber,
Mallon and Leadon (1973) the same level is at 440 meV
above the valence band edge. More recently, Kimerling
(1977) tentatively identified the level at 110 meV. It
appears, therefore, that theory and experiment agree
that the level is somewhere in the lower half of the gap,
but neither can pin it down more precisely.

A more important observation is that the calculated
energy separation between the T, level in the gap and
the top of the valence band does not correspond to any
optical excitation energy. The reason for this is that
the T, level contains two electrons so that if one electron
is removed optically (or another electron added) the
position of the level would move substantially. A sim-
ilar observation applies to the semiempirical results
discussed earlier. The situation is analogous to the
ionization of a He atom or the ionization of a Si:S double
donor. For the purpose of calculating excitation ener-
gies one must calculate both the initial- and final-state
charge configuration and subtract total energies. In
lieu of total energies, one might monitor the chan-
ges produced by the movement of both the bound states
in the gap and the resonance Rnd antiresonance states
in the valence bands. Such calculations have not been
performed thus far.

2. The Xn-scattered-wave method

This method is a particular technique of solving the
general eigenvalue problem (10.2) for a small collection
of atoms. The potential is constructed self-consistently
for the entire system, including the atomic cores (i.e. ,
no pseudopotential approximation), using Slater's ZCn

exchange. However, one important approximation is
introduced: Spheres are drawn centered about each
atom: the potential is then spherically averaged in each
sphere and volume averaged to a constant in the inter-
stitial. region. The potential is also spherically aver-
aged in a large sphere surrounding the atomic spheres.
The eigenvalue problem is then solved by scattering
methods (Slater and Johnson, 1972; Johnson and Smith,
1972). Excitation energies are calculated by the trans-
ition-state method of Slater (1972), i.e. , the self-con-
sistent solution is carried out with half of an electron in
the initial state and half of an electron in the final state
(or half of an electron missing for an ionization energy).

The method has had considerable success in treating
the one-electron spectra of molecules and mixed suc-
cess in determining internuclear separations by minim-
izing total energies. It has also been applied to a wide
variety of solids by performing calculations on sma11
clusters. These calculations have been used to interpret
optical absorption spectra, x-ray emission spectra,
photoemission spectra, etc. , noting that these excita-
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tions are local in nature. The surfaces of the clusters
are usually saturated either with hydrogens or by placing
a charged sphere around the cluster to simulate the
Madelung potentialarising from the rest of the crystal in
an ionic solid. The method has met with success in
most cases but the results have not always been cor-
roborated with studies of the effect of cluster size. We
saw earlier in this section that the results are very
sensitive to the cluster size and it is hard to see why a;

self-consistent calculation would eliminate the problem
of surface states and surface-defect interactions. In
fact one might expect self-consistency to make things
worse since the self-consistent potential is appropriate
to the cluster per se, viewed as a molecule, whereas in
a semiempirical calculation the potential is not adjusted
at the surfaces (see discussion by Messmer and Wat-
kins, 1973). An example illustrating the potential pit-
falls in simulating solids by small clusters is provided
by the ~n scattered-wave (~u-SW) calculation by Tos-
sel, Vaughn, and Johnson (1971), who were able to in-
terpret all the observed spectra of SiO, in terms of an
SiO~ cluster. Similar results were obtained by an ap-
proximate Hartree-Fock calculation by Yip and Fowler
(1974) for the same cluster, but slightly larger clus-
ters were found to produce substantially different re-
sults.

The application of the X~-SW method to deep defect
levels in covalent solids was anticipated by Johnson,
Norman, and Connolly (1972) who took note of the re-
sults of Messmer and Watkins (1973) and concluded that
large clusters would in fact be necessary, perhaps with
per iodic boundary cond it ions, in which case the method
reduces to the KKR energy-band-structure formalism
(Korringa, 1946; Kohn and Rostoker19, 54). The first
actual application of the method to defects in a tetrahe-
dral semiconductor was by Cartling, Boos, and
Wahlgren (1974) who used the technique to study im-
purities in Si. In that work, and subsequent work by
Cartling (1975), a cluster of only five Si atoms saturated
with hydrogen atoms was employed. The cluster ap-
pears to be very small for convergent results, but
Cartling makes a good case that the simulation is
reasonable, es.pecially since a transition-state calcula-
tion of the band gap yields 0.95 eV, in good agreement
with the observed value of 1.1 eV for the indirect
gap.

Cartling did calculations on Si:S, which is a deep
donor, Si:Zn, which is a deep acceptor, and Si:Fe,
which is a transition-metal impurity. The choices are
very good since these systems may be viewed as typical
and the least pathological. Perhaps the most interesting
result of the calculation is that Si:S is found to introduce
an additional A, bound state belozo the bottom of the
valence band, a conclusion which is very likely to sur-
vive the tests of higher accuracy and larger clusters.
The bound state is a result of the very strong perturba-
tion of the sulfur atom and has not been observed ex-
perimentally. If is also present in the results of Shimi-
zu and Minami (1971) who used a modified EHT (see
discussion earlier in this section) to describe the S'
center. As expected, the bound state is even deeper
in the &' center ( 23 eV below the valence-band toP in
Shimizu and Minami's calculation) than in the So center

(-16 eV below the valence-band top in Cartling's calcu-
lation).

Cartling's results for the bound states in the funda-
mental gap are in reasonable agreement with experi-
ment, but the uncertainty is somewhat large. Consider,
for example, Si:S. In the perfect cluster, the bottom
of the conduction band is an &, state. In the cluster
containing sulfur, however, &, is lowered in energy to
become the bound state and the bottom of the conduction
band is a T,. Cartling defines the impurity electron
ionization energy to be the &,—&, transition-state ex-
citation energy, but thedefinition cannot be totally
justified, since treating T, as the lowest conduction-
band state yields a transition-state band gap of 1.23
eV, i.e. , 25Vo larger than the perfect-cluster band gap.
One would conclude that the conduction band edge is ill
defined in the cluster containing a donor impurity, or
alternatively, interpret the results as inherently un-
certain by 25/o. Clearly, these results call for calcula-
tions on larger clusters, which may remove this un-
certainty.

Another particularly interesting application of the ~n-
SW method has been reported by Watkins and Messmer
(1974) who used the technique to study the vacancy in
diamond, The objective of the work was to study the
many-electron multiplet structure as a function of
cluster size. The study demonstrated that as the cluster
size is increased, the bound-state wave function be-
comes more delocalized (in agreement with previous
work by the same authors) and as a result the multiplet
structure is reduced dramatically. This conclusion
settled the controversy concerning the importance of
many-electron effects which were found to be large in
the defect-molecule model, but were left out in cluster
calculations using the EHT. It also established the in-
adequacy of the defect-molecule model to produce a
reliable description of the electronic structure of de-
fects.

A more recent application of the ~p-SW method to
impurit'ies in Si has been reported by Hemstreet (1977).
Hemstreet usedclusterssimilar to those used by Cart-
ling, . but he did not carry out transition-state calcula-
tions in order to determine excitation energies. As in
Cartling's work, no tests were carried out to check the
convergence of the results with cluster size. Hem-
street studied the elements of the first transition series
(Cr through Zn) as substitutional impurities in Si, and
found that there is a variety of trends as one goes
through the series. Comparison with experiment, ap-
parently good, was not conclusive, largely due to the
uncertainties in the interpretation of data. The cal-
culations predicted for each impurity whether it would
be a donor or an acceptor, and therefore provided use-
ful guidelines for reinterpretation of experiments.

3. The cushioned-cluster LCAO method

Recently, self-consistent calculations on clusters have
also been reported by Menzel, Mednick, Lin, and
Frank1in (1975), Chancy and Lin (1976), and by Chancy
(1976). The distinguishing feature of these calculations
is that these authors use the Hamiltonian of an infinite
crystal but expand the wave functions in terms of
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atomiclike orbitals on a small. cluster of. atoms. In
order to avoid a variational collapse into the core orbit-
als of the surrounding atoms, core orbitals are placed on
a "cushion" consisting of a few additionalshells of atoms.
Menzel et al . (1975) argue thatbyusingthe Hamiltonian of
an infinite crystal "no physical surface is present" and
surface states are eliminated. This assertion is, how-
ever, implausible, because surface states are intro-
duced by the truncation of the Hamiltonian matrix,

hich in turn can be caused by the truncation of either
the basis set or the Hamiltonian operator itself. For
example, in the semiempirica, l cluster calculations we
discussed earlier, one implicitly assumes an infinite-
crystal Hamiltonian, since the matrix elements of the
last few shells of atoms are taken to be identical with
those in the bulk, but surface states exist nevertheless.
Alternatively, the use of a truncated Hamiltonian, as
in Cartling's self-consistent calculations, makes the
Hamiltonian matrix elements near the surface different
from those in the bulk, which simply shifts the surface
states to different energies. .It is not clear to the
present author why the calculations of Lin and co-
workers do not give surface states. It- is more likely
that surface states do in fact exist, but their energies
are within the energy bands. Because of the smallness
of the clusters, the surface states may not be easily
identifiable as such. This question may be rather aca-
demic, however, if the bound states of a defect at the
center of such clusters converge uniformly with cluster
size. Applications have so far been reported for the F
center in LiF (Chancy and Lin, 1976; Chancy, 1976).
Convergence with cluster size wa. s very good. A de-
tailed discussion of the results is beyond the scope of
the present paper. Applications to defects in semi-
conductors have not been reported.

XI. COIVlPARATIVE CR ITIQUE OF THEORETICAL
METHODS-CONCLUSIONS

We are now in a position to attempt a comparative
critique of theoretical methods and to assess future
prospects. For shalloze levels, particularly for excited
states, effective-mass theory, described in Sec. VII, is
undisputably the only method that has provided detailed
and accurate quantitative results. For ground-state en-
ergies, generalizations of effective-mass theory with
realistic impurity potentials, described in Sec. VIII,
seem to provide good results for a variety of shallow
and moderately deep levels. The new developments in-
volving Umklapp terms, discussed in Sec.VII.E, are
likely to provide impetus for new work, which may lead
to ways to obtain binding energies in the compound
semiconductors, including their site dependence. How-
ever, sooner or later, effective -mass -type theor ies
break down, and will never be able to handle accurately
those level. s whose wave functions must be built from
la,rge regions of k space and from many bands. We may
list, for example, levels associated with vacancies,
self-interstitials, transition-metal impurities, and
complexes such as divacancies, vacancy-impurity
pairs, etc. Attention must then inevitably focus on other
methods, which are more powerful and, almost by
necessity, more involved.

In order to compare the relative merits of the various
methods we discussed in Secs. IX and X, which are
especially designed to describe deep levels, we pose the
following question: Given a one -electron Hamiltonian
for a crystal containing an isolated impurity or defect,
which is the best technique to use in order to obtain ac-
curate energy levels and additional information (such as
transition energies, ivave functions, etc.) needed to
make contact uith experiment'?

In Secs. IX and X we discussed the various methods in
an order that was convenient for reviewing the available
l.iterature. Now we wish to look back and compare their
merits in a critical way. The first choice that one must
make is the basis set in which to expand the bound-state
wave functions. There are two fundamentally distinct
options. One can use (a) a set of propagating states;
or (b) a set of localized states.

a. Propaga/ tng basis func/t ons One can expand the
bound-state wave function in terms of Bl.och functions
and end up with a secular matrix (see Sec. IV.A) whose
size is determined by the number of bands and-the
number of k points used in the expansion. This method
is a brute-force method and one runs out of computer
capacity before convergence with respect to k points
and bands can be reached. It was attempted by Jaros
and co-workers and was abandoned soon thereafter in
favor of determinantal techniques that employ localized
basis functions.

Plane waves are another setof propagating states that
can be used to expand the bound-state wave functions.
At first 'sight, in the absence of periodicity, one might
think that the number of plane waves needed (in a con
tinuous k space) would be prohibitive. In fact, the self-
consistent pseudopotential superlattice calculation for
Si:V by Louie et al. (see Sec. X), is equivalent to a
plane-wave expansion with a particular, but arbitrary,
grid of k points. This grid is entirely determined by the
choice of superlattice and the resultant dispersion in the
bound state means that a sl.ightly displaced grid of k
points produces a different bound-state energy. There
is in fact a one-to-'one correspondence between the
plane-wave expansion and the Bloch-function expansion,
and it appears unl. ikely that either can be brought to ac-
ceptable convergence (elimination of dispersion) in the
foreseeable future.

Another way of solving the same problem in terms of
free-particle states is the ~n-SW method which employs
scattering theory. The method is limited to small clus-
ters and studies of convergence with respect to cluster
size have not been extensive. An inherent limitation of
the method, common to al.l small-cluster methods, is
its inability to unambiguously relate the results to con-
ventional band structures. One of the strengths of the
method is that electrostatic self-consistency permits the
description of the charge transfer associated with the
charged impurities. On the other hand, its use of the
muffin-tin approximation raises questions about its
applicabil. ity to covalent systems. Though the method
has produced useful information, it does not appea, r to
have the promise of Green's-function techniques em-
ploying a basis of localized functions (see below).

b. Loca)ized basis func/tons There is no doublt that,
for deep-level impurities and defects, localized func-



Sokrates T. Pantelides: Electronic structure of point defects in semiconductors 851

tions are a more natural choice for expanding bound-
state wave functions. There exist, of course, several
sets of localized functions one can choose from, such as
Wannier functions, true atomic orbitals, atomiclike
orbitals, Slater-type orbitals, Gaussians, etc. Assum-
ing a choice has been made, the question that remains is
one of technique, and two options are available: (1)The
first option is to construct and diagonalize the secular
matrix H, ,. (In this case, it would only be a minor de-
tail whether one wants to exploit the fact that &,z

= &;&'
+U,.~). The important consideration is that the size of
the matrix is governed by the range of the bound sta-te
wave function. (2) The second option is to break H up
into &'+ U and convert the secular matrix into a deter-
minantal equation in the Koster Slat-er manner (Sec.
IX.B), or equivalently, set up the Lippmann-Schwinger
Green's function equation in the chosen localized rep-
resentation. In this formulation, the size of the deter-
minant is governed by the range af the perturbation
potential. For neutral potentials, which are usually
localized over a few atoms, the determinantal or
Green's-function formulation is undoubtedly the most
promising technique.

A rather dramatic illustra. tion of this promise is pro-
vided by a comparison of various LCAO-parametrized
calculations of the vacancy in a covalent semiconduc-
tor. The work of Messmer and W'atkins demonstrated
that clusters of 70 some atoms are not adequate (secular
matrix -300x 300). The work of Kauffer et al. demon-
strated that a cluster of over 2400 atoms (corresponding
to a matrix-10000 x 10000) is needed for convergent re-
sults when the method of Haydock et al. (1972, 1975) is
used. A similar result was obtained independently by
Joannopouios and Mele (1976). In the determinantal
method, however, the vacancy problem reduces to a
1 x 1 matrix (!). This simple problem was in fact solved
in 1969 by Lenglar t and Lannoo, but it seems that its
significance was not widely appreciated. Very recently,
Bernholc and Pantelides (1978) reproduced the results
of Kauffer et a/. with the Koster —Slater 1 x 1 matrix.
The methods of Kauffer et al. , of Joannopoulos and
Mele, and of Bernholc and Pantelides in fact accomplish
the same thing, namely the calculation of a single den-
sity-of-states curve (read Green's function). The dif-
ference is that in the methods of Kauffer et al. and of
Joannopoulos and Mele one must calculate a Green's
function for the crystal containing the vacancy, and
therefore ends up using the rather cumbersome and ap-
proximate methods introduced originally for amorphous
materials, whereas in the Koster-Slater-type method
used by Bernholc and Pantelides, one must calculate
a Green's function of the perfect crystal, which can
be calculated by summing over the Brillouin zone, a
simpl. e and highly accurate procedure. In addition,
the method used by Bernholc and Pantelides yields di-
rectly the change in the density of states (including all
resonances and antiresonances) introduced by the
defect, whereas in the other two methods the changes
must be obtained by subtracting two rather similar
quantities, which increases the inherent uncertainty.
The superiority of the method can be traced to the fact
that it exploits both the short range of the defect poten-
tial and the translational symmetry of the host crystal,

whereas the other two methods exploit neither.
What about the use of the determinantal Koster-Slater

Green's function method in more realistic calculations,
using some sort of first-principles potential, instead
of an LCAO parametrization~ Such Green's function
techniques have already been used successfully for
chemisorption studies (Lang and Williams, 1976).
Callaway and co-workers pioneered the application of
the method to defects in semiconductors but their use
of Wannier functions rendered the method cumbersome.
A morepromisingdevelopment is the use of LCAO-type
basis sets, drawing on the vast experience present in
the literature for LCAO-type basis sets for band struc-
ture calculations. The latter procedure is the subject
of a forthcoming paper by Bernholc, Pantelides, and
Lipari (1978). It builds on the Green's function machinery
developed by Callaway and others. The calculation of
bound-state energies, resonances, antiresonances,
phase shifts, formation energies, etc. , becomes feas-
ible.

What about the Bassani-Iadonisi —Preziosi method,
modified slightly and used extensively by Jaros and co-
workers (BIPJ method)? Both the BIPJ method and the
standard Koster —Slater Green's function method re-
quire an integration over the Brillouin zone of the host
material. In the BIPJ method this integration must be
carried out anew for each impurity potential. U, where-
as in the Koster —Slater method the zone integration
depends only on the host and therefore has to be done
only once for each host material. Since the zone in-
tegration is the most time consuming part of such cal-
culations, this distinction is important.

The superiority of the determinantal Koster —Slater
Green's-function method discussed above is limited to
neutral potentials, which are nonzero only in a finite
volume surrounding the point defect. When the impurity
or defect potential. has a Coulombic tail, the size of
the determinant will be determined by the range of the
wave function, as in the other methods. Jaros, how-
ever, has found that the Coulombic tail canbe truncated
without serious implications, making the determinantal
method competitive.

The overall conclusion is that the most promising
technique for deep-level defects and impurities in
semiconductors is the Green's-function determinantal
method. Its foundations were laid in 1954 by Koster
and Slater. General and powerful forma. l results
appeared in the 1960's. Pioneering calculations were
performed by Callaway and co-workers. ' Let us look
to the future for new applications which will set us on
our way to better understanding the deep states intro-
duced by defects and impurities in semiconductors.
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APPENDIX: PHOTOIONIZATION CROSS SECTIONS

where & is the fine-structure constant (e'/kc 1/137), n
is the refractive index of the material, 5, is the applied
field and 5,« is the effective field at the impurity site,
& is the photon energy, &; and E& are the initial- and
final-state energies, respectively, and g, and Pz are the
the initial- and final-state wave functions, respectively.
For the calculation of cross sections one therefore
needs to know initial- and final-state energies and wave
functions, as well as $,~~. The latter is very hard to
calculate, and the ratio g,« /b, has generally been
treated as an adjustable parameter for absolute values
of o. [It clearly does not affect the shape of o'(&). j

The simplest calculations have been carried out in
the effective-mass approximation (EMA). Fromthedis-
cussion of Secs. III and VI, the choices are obvious.
For donors, the initial state g,. is a hydrogenic wave
function: the final-state energies are given by the k.p
expansion to order 0', which, in the simplest case, is
O'A,'/2m*. The only unresolved question is the fina, l-
state wave function. One possibility is to take con-
tinuum solutions of the free hydrogen atom (Whittaker
functions). The problem is then entirely isomorphic to
the photoinionization of the free hydrogen atom, but
the resulting characteristic cross section, which peaks
at threshold, does not agree very well with experiment
(Burstein, Picus, Henvis, and Wallis, 1965) (Fig. A1).
Alternatively, one can take P& to be Bloch functions and
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I'IG. A1. The infrared absorption spectrum of Si:B (Burstein
et al. , 1956) and the hydrogenic model showing the peak at
threshold.

In this appendix, me give a brief review of theoretical
work on photoionization cross sections. As we saw in
Sec. V, the latter are measured by optically exciting
electrons from localized levels into the conduction bands
(electron emission) or from the valence bands into local-
ized levels (hole emission). Either process is described
by Fermi's golden rule (Schiff, 1955). We have

calculate the momentum matrix element in the k ~ p ap-
proximation (Kane, 1956; Kohn, 1957). This calculation
gives a cross section which peaks at 1.43 E~ above
threshold, where &~ is the hydrogenic binding energy.
The experimental curves for the shallow acceptors in
Si (Burnstein et al . , 1956), however, show that the peak
ranges from less than 1.43&I to about 2&I, where El
is the obsexved ionization energy. These shifts of the
peak may also be termed chemical shifts, in analogy
with the shifts of binding energies from the hydrogenic
value.

A number of attempts have been made to go beyond the
simple hydrogenic models. Lucovsky (1965) proposed
that the impurity potential for deep levels may be better
simulated by a & function instead of a-Coulombic po-
tential, as had been done in the theory of the photo-
dissociation of deuterons. The bound-state wave func-
tion is then e "/r, compared with the hydrogenic
wave function which is e ". In the case of a simple
parabolic band, a is then given by (rn*EI) ' in atomic
units. This expression is identical with that for n in a
hydrogenic model, in which case &I is just &~. The re-
sulting cross section is rather similar to the hydrogenic
one, but now the peak is at 2EI, in very good agreement
with the experimental data for the relatively deep Si-In
(Lucovsky, 1965).

A somewhat more elaborate calculation was carried
out by Bebb and Chapman (1967) using the quantum-
defect model, which is well known from the theory of
atomic spectra. In this model, the bound-state wave
function is taken to be the solution of the hydrogenic
problem at the 0&seemed ionization energy. Such a wave
function is not an eigenstate and therefore diverges at
the origin, but without causing any harm. For final-
state wave functions Bebb and Chapman used hydro-
genic continuum solutions scaled according to the
quantum-defect prescription. The quantum-defect
parameter v, which is usually obtained by fitting the
excited-states spectrum to an expression of the form
1/(v+n)', could not be unambiguously determined, and
was thus treated as an adjustable parameter for each of
the shallow acceptors in Si. Good agreement with
experiment was obtained. A more detailed study of the
quantum-defect model was subsequently carried out by
Bebb (1969), but no other applications have been re-
ported, perhaps due to the complicated nature of the cal-
culations.

The fact that many deep-level cross sections did not
fit very well either the hydrogenic -or &-function pattern
led to a variety of alternatives to the above simple
models. Grimmeiss and Ledebo (1975) assumed that the
bound electron is described by the real. mass m, , in-
stead of the band mass, in determining the wave-func-
tion exponent for the Lucovsky model, and found that
they could fit their data on GaAs:0 rather well. The use
of mo for the bound state, however alters the concept-
ual basis of the model in a dramatic way. While the
original Lucovsky model simulated the perturbation po-
tential by a ~ function and used effective-mass theory,
the Grimmeiss-Ledebo assumption corresponds to
simulating the potential of an impurity atom by a ~ func-
tion and neglecting the result of the crystal entirely.
Thus, whereas the Lucovsky models stretches the limits
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of the EMT with a ~-function potential perturbation,
the Grimmeiss —Ledebo model is an extreme-tight-
binding model. .

Grimmeiss and Ledebo (1975) could not obtain satis-
factory fits to data on deep acceptors in Si and attributed
the difficulty to the inadequacy of the parabolic-band ap-
proximation for the final states. They kept the &-func-
tion-potential wave function and attempted to extract an
average isotropic but nonparabolic ' effective band" that
reproduces experimental. data on Si:Au. The 'effective
band" was moderately successful for other deep accep-
tors. The recent controversy on the experimental data
on Si:Au (see Sec. V), and the possibility that "Si:Au"
is actually a. complex, as well as the unresolved temper-
ature effects, raise a number of questions about the fit.
From a theoretical point of view, the concept of an
"effective band" is somewhat unsettling and has limited
usefulness.

A rather intriguing calculation has recently been re-
ported by Hynne, Cox, McGuire, and Blakemore (1976).
These authors assumed a parabolic band of the form
h'k'/2m* for the final-state energies and plane waves
for the final-state wave functions, and were able to in-
vert the formula for o(E) and obta, in g&(r) expl. icitly as
an integral of o(E). The method is limited by the
requir-ement that the band edge be parabolic and that
the cross section must be known over a sufficient range
of energies for the integral to be meaningful. Rynne et
al. (1976) reported results for some acceptors in SL
Smooth, monotonically decreasing wave functions were
extracted for Si:In, and for acceptors in Ge, including
the relatively deep Ge:Hg. Si:B, which as the shallowest
acceptor in Si might be thought to be the most hydro-
genic of all, was found to behave strangely: its wave
function was found to have a second maximum. An ex-
plana, tion for this peculiar effect has been given by the
present author (Pantelides, 1976), who pointed out that
the weakest of the assumptions made by Rynne et al. is
that the valence bands of Si may be simulated by a para-
bolic band of the form h'k'/2m*. A test of this hypoth-
esis was carried out by computing the density of states
near the valence band top in terms of the full 6 && 6 k ~ p
matrix discussed in Secs. VII and VIII (Pantelides and
Bernholc, 1977). The resulting density of states was
then compared with the corresponding density of states
of a parabolic band, which has a simple (m*)'~'E'~'
dependence. As Fig. A2 demonstrates, the binding en-
ergies of aceeptors in Ge correspond to regions which
are well simulated by a parabolic band. Thi:s is not true
for acceptors in Si, where nonparabolic effects are
strong, largely due to the presence of the split-off band
at only 44 meV below the top. The parabolic approxi-
mation is seen to be better justified for the deeper Si:In
for which one could in fact set the spin-orbit splitting
equal to zero, but fails completely for Si:B.

More recently, Pantelides and Bernholc (1977) under-
tooka systematic study of cross sectionsinSi. The basic
idea was to recognize that from among the three quant-
ities that enter the calculation of o, namely $&, g, , and
~&, the final-state energies ~& are the only ones that
can be calculated very accurately with available band-
theoretic techniques. The final-state energies were
therefore obtained from diagonalizing the full 6 && 6 ~ p
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FIG. A2. The density of states near the top of the valence
bands for (a) Ge (b) Si, from Pantelides (1976). See discussion
in text.

matrix discussed earlier, instead of simulating them
with a single parabola. The final-state wave functions tP&

should in principle be products of some form of a Whit-
taker function times Bloeh functions, but were approxi-
mated by pure Bloch functions. Similarly, the bound-
state wave functions were approximated by linear com-
binations of Bloch functions, which made the calcula-
tion of transition matrix elements possible in terms of
k p theory. The Bloch-function coefficients were de-
termined in part by symmetry, but their radial part in
k space was taken to be a simple analytical expression,
whose Fourier transform could be viewed as an envelope
function with an adjustable radius. Good fits were ob-
tained for a number of shallow and deep acceptors. For
the first time, transitions to the split-off band were
included and found to be important.

It is apparent from the above discussion that no def-
initive calculation of cross sections exists to date. The
basic problem is that no accurate wave functions are
available to make a direct prediction. One usually is
forced to extract a wave function from the data. Such
wave functions are usually of a simple form and only
convey some average information, such as an average
radius. As more accurate bound-state calculations are
performed one may expect more accurate cross-section
calculations will be feasible. As we sa.w in Sec. IX,
Jaros has calculated some cross sections for deep
levels, using his numerical wave functions, but tem-
perature broadening still remains a problem which will
have to be investigated further in the future. The ef-
fect of electron-lattice interactions on the photoioniza-
tion cross sections has recently been studied at length
for the particular case of GaP:0 by Monemar and Sam-
muelson (1976) and by Henry and Lang (1977).
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~oie added in proof: Since the completion of this re-
view paper, fully self-consistent solutions for the single
vacancy in Si have been reported independently by
Bernholc, Pantelides, and Lipari and by Baraff and
Schluter (Bull. American Physical Society, March 1978).
Papers by both groups have been submitted to Phys.
Rev. Lett., and will also be presented at the 14th Inter-
national Conference on the Physics of Semiconductors
in Edinburgh, Scotland, Sept. 1978. Both calculations
make use of the Koster-Slater Green's function for-
malism and an LCAO basis set. Another (non-self-
consistent) study of Si:V using a reformulation of the
BIPJ method (so that it corresponds to a. very large
cluster) has been reported by U. Lindefelt (J. Phys. C,
in press).
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