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The rich nonlinear phenomena that occur in plasmas are reviewed in a systematic way. The foundations of
turbulence theory (both weak and strong) and-experiments performed in the past decade to verify such
theories are presented. The aim is to emphasize those experiments that demonstrate clearly the validity

(or failure) of' some of the theories. In particular, we discuss experiments that demonstrate the validity
and/or limits of weak turbulence theory, strong turbulence theory, parametric instabilities, echoes,
trapping of particles in large-amplitude waves, and electrostatic ion acoustic shocks. We present
concluding remarks in each section regarding the present status of each of these phenomenon.
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I ~ INTRODUCTION

By its very nature, plasma is a highly nonlinear di-
electric medium. When permeated by an external mag-
netic field, it can support a multitude of electrostatic and
electromagnetic waves, in the form of either thermal
fluctuations or suprathermal turbulence. The latter may
be generated by a variety of instabilities, which are usu-
ally present in a hot plasma, or may be induced by ex-
ternally injected beams or microwave power. The waves
(or fluctuations) may strongly interact and scatter each
other. In addition, the turbulent fluctuations may strong-
ly interact with charged particles and trap, accelerate,
heat, or diffuse them. This is particularly true in hot
plasmas where collisions are rare. Thus the macro-
scopic properties of hot plasmas will depend on colli-
sionless, turbulent processes. By such processes nature
attempts to establish thermodynamic equilibrium. In or-
der for us to understand or predict the outcome of such
processes, the underlying fundamental nonlinear mech-
anisms must be understood. This constitutes one of the
central problems of modern plasma physics.

During the past decade, a significant growth in the field
of nonlinear plasma physics has taken place. While ini-
tially most of the work done was theoretical, more re-
cently experimentaI. tests of these theories became avail-
able. In many cases the experimental tests led to im-
provements and/or modifications of the existing theories.
In the present paper we wish to review some of these ex-
periments and briefly outline the underlying theories.
While a number of excellent books are already available
on nonlinear plasma theory (Kadomtsev, 1965; Sagdeev
and Galeev, 1969; Tsytovich, 1970,1972; Davidson,
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1972), there is as yet no comprehensive review of exper-
imental nonlinear plasma physics. There are, however,
some review articles on specific topics (Gentle, 1972;
Porkolab, 1976). For the sake of completeness we shall
try to incorporate these topics into the present article.
The list of references given is representative, but not
exhaustive. We also note that only experiments that can
be explained by theory will be discussed in this paper
(although some other experiments are listed as refer-
enc es).

Let us now discuss some of the fundamental properties
of turbulence theories. We may define two parameters
that are of importance (Drummond and Ross, 1973):

(i) e, = W/nT defines the ratio of wave energy to thermal
energy fwhere W= (&2~+B2~)/8m plus particle kinetic ener-
gy; n is the particle density, and T is the temperature
measured in units of energy].

(ii) &, = & /&„,is the ratio of the autocorrelation time
of the waves to the interaction time of waves and parti-
cles. We may then characterize turbulence as weak or
strong, depending upon the values of ~, and &,. In partic-
ular, weak turbulence is defined as the state where ~,
«1, &2 «1. The first of these conditions requires that
the wave energy be smaller than the thermal energy.
The second condition requires that the turbulence be
characterized by the presence of a broad spectrum of
small-amplitude waves which can be identified with the
eigenmodes of the linear equations, and which produce
relatively small deviations of the particles from their
unperturbed orbits. Assuming the random-phase approx-
imation (i.e. , the "golden rule" ), a perturbation theory
has been developed to describe this state. All other re-
gimes are characterized as strong turbulence and/or
strongly nonlinear waves; for example, if ~, & 1, we have'
large-amplitude turbulent fluctuations and if &, ~ 1, we
are dealing with a large-amplitude single wave. Parti-
cles may be trapped in the troughs of the waves, and the
state cannot be described by a perturbation expansion. In
addition, the large-amplitude wave may decay into other
waves, and on a longer time scale may thus produce a
broad spectrum. Weak-turbulence theory is well devel-
oped (up to fourth order in the electric field amplitudes),
but its validity depends upon very stringent conditions,
and hence only a few very careful and delicate experi-
ments are able to satisfy them. In general, it is easier
to produce strong turbulence experimentally. Strong tur-
bulence may be defined a.s a "stochastic collection of
nonlinear eigenmodes. " However, in the absence of rig-
orous theories, it is not easy to know what physical
quantities one should measure in such an experiment. It
is hoped that theories of strong turbulence and experi-
mental measurements will be developed together. In any
case, it is likely that different ways of producing turbu-
lence will require different theoretical approaches for a
full explanation. It is also likely (or at least hoped) that
computer simulation will aid considerably in a complete
understanding of strong turbulence.

Let us now examine in more detail ~„the ratio of the
autocorrelation time v' = [M(co/0)] ' and the interaction
time 7'„~.- The autocorrelation time is the duration dur-
ing which a particle feels a force exerted by the waves
with wave number k +&k. On the other hand, we may de-

fine 7„,= min(r„,7~), where &„=(m/e@)' '/k=(m/
(ekE„))'~'is the trapping time, and r~=(k'D) '~' is the
diffusion time. Thus we see that the trapping time is the
period of oscillation of a particle with velocity v= ~/k, in
the trough of a wave of frequency co and wave number k.
If ~ «~~„aparticle is unable to decide whether it is
trapped or not. So, instead, it undergoes a random walk
in velocity space, diffusing with a characteristic time
scale &~,. As we shall see later D~ & W, and so &D
~ &'„,'/&~ ', or v'~'/&'„'~ v'„/vD. Thus the condition r
« ~„means &„«TD,so that the diffusion must be slow
compared with the loss of wave correlation.

We note that in some experiments, such as in a beam-
plasma system, large-amplitude waves exist for several

times, and then we may have to talk about "coherent
turbulence. " Also, in the case of parametric instabili-
ties due to a long-wavelength pump wave with a small
wave number, rt, is long, and we may have &, &1 while
+, —1. Again, we expect strong turbulence due to an ini-
tially coherent pump wave. On the other hand, if 4, «1
(small-amplitude pump wave) we can deal with the sys-
tem by perturbation techniques. Thus there are addition-
al cases one has to consider when at least one large-am-
plitude wave is present in the system. Such single,
large-amplitude waves may also modify the plasma
equilibrium itself by the ponderomotive force: this may
lead to filamentation and/or soliton formation. This
again requires a different theoretical treatment. Thus
we wee that the "turbulent" state of plasma may contain
both coherent large-amplitude waves and random-phase
turbulence. Furthermore, particles will interact with
this system of waves in various ways. Our aim here is
to present experimental data demonstrating the existence
of some of these phenomena under actual laboratory con-
ditions. Clearly, a complete understanding of plasma
turbulence will require much more work, both theoreti-
cally and experimentally, than has been done up until
now. Let us now outline some of the topics which we
shall discuss in this paper.

First, in Sec. II we shall discuss weak-turbulence the-
ory and some relevant experiments. In particular, we
shall cover quasilinear effects, mode-mode coupling,
and nonlinear Landau damping. In Sec. DI we cover plas-
ma wave echoes. In Sec. IV we discuss parametric in-
stabilities and solitons. In Sec. V we present attempts at
improving weak-turbulence theory by "renormalization, "
namely, orbit diffusion and the concept of "clumps. " In
Sec. VI we present results concerning large-amplitude
waves and trapping, and in Sec. VII we discuss some ex-
periments on ion acoustic shocks. We have deliberately
avoided or discuss only briefly experiments that (in our
opinion) are not yet well understood in terms of quanti-
tative comparison with theories (e.g. , nonlinear drift
waves, turbulent resistivity experiments, nonlinear
tearing modes, magnetic reconnection, etc.).

II. WEAK-TURBULENCE THEORY AND
EXPER IMENTS

A. Foundations of weak-turbulence theory

The first comprehensive theory of plasma turbulence,
what we today call "weak-turbulence theory, "was devel-
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oped more than a decade ago (Vedenov et al. , 1962;
Drummond and Pines, 1962; Aamodt and Drummond,
1964, 1965; Dikasov et al. , 1965; Aamodt and Sloan,
1967; Ross, 1969; Nishikawa, 19VO; Dum and Ott, 19V1).
Only recently have experimental tests of these theories
become available (Cano et a/. , 1967; Ellis and Porkolab,
1968; Porkolab and Chang, 1969; Chang and Porkolab,
19VO(a), 1970(b); Gentle and Malein, 1971; Gentle and
Roberson, 1971; Roberson et a/. , 1971; Franklin et al. ,
1971; Chang and Porkolab, 1972). Weak-turbulence the-
ory assumes a set of random waves making wave pack-
ets, each satisfying a linear dispersion relation, weakly
interacting among themselves and with background parti-
cles. It consists of the following identifiable processes:

A. Quasilinear theory
B. Resonant mode-mode coupling
C. Nonresonant mode —mode coupling (or nonlinear

Landau damping)
D. Four -wave scattering.

c)
P

OR

k'

k
II

Note that in the random-phase approximation process (A)
contains terms up to j

E~' in the electric field ampli-
tudes, processes (B) and (C) contain terms of the order
of ~&~, and process (D) contains terms of order ~&~'.
When we consider coherent waves, it turns out that pro-
cess (B) changes considerably; in particular, for coher-
ent waves it becomes of order ~E~', whereas process (C)
remains of order ~&~' (where in each case we assume
proper normalization to the thermal energy). Physical-
ly, process (A) takes into account the linear stage of the
instability, including modification of the background
equilibrium distribution function, due to the presence of
the fluctuations. Process (B) considers transformation
and scattering of wave packets among themselves, while
process (C) takes into account nonlinear scattering of
waves and particles. Higher-order effects, such as fre-
quency shifts, are taken into account by process (D).
Some of these processes are illustrated in Fig. 1 in
terms of the Feynman diagrams. We must emphasize
that in all of these calculations, in the integrations over
velocity space, unperturbed particle orbits are used.
Only in more modern theories, which we discuss in the
next section, are orbit perturbations included.

Let us now outline how the foregoing processes are
calculated in weak-turbulence theories. This can be done
by a rigorous multiple time scale expansion (Davidson,
1968,1969,1972) or a WEB-type solution (Aamodt and
Drummond, 1964; Aamodt, 1965). We shall start from
the Vlasov equation and Poisson's equation, and assume
electrostatic perturbations only

FIG. 1. Feynman diagrams of (a) resonant mode-mode cou-
pling, (b) nonlinear wave-particle (Compton) scattering, (c)
scattering from a shielded (dressed) particle.

f(x, t) =g(x, t) + g f„exp[i(k x —&u t) ]
k80

(2.4)

B. Quasilinear theory

Substituting Eqs. (2.3) and (2.4) into (2.1) and (2.2), we
get

efI
eg ~ ~ -k' 8+

k'

SfI
kg~ ~ ~ k k'e~k+~

k/o

(2. 5)

(2.6)

ikEI=4m Q q dVfI, (2.7)

where in the last expression we separated the k= 0 term.
In the following we shall ignore the external magnetic
field, and assume one-dimensional perturbations only.
The techniques outlined below can easily be extended to
more complicated systems where the magnetic field
plays an important role (Aamodt, 1965; Rosenbluth et
a/. , 1969; Porkolab and Chang, 1972; Johnston, 1976).

&f &f q,. (v x B) sf q, sf—+V —+ —— —+ ' E' —=0
C

v K=4m + q,. Jd uf(v), '

(2.1)

(2.2)

where in Eq. (2.6) the k= 0 term has been separated out
again. Substituting Eq. (2.6) into (2.5) gives us to order

the quasilinear diffusion equation

&(x, t) = Q &„exp[i(kx —(ut)], (2.3)

where & is the external magnetic field, f is the particle
distribution function, q& is the charge of particles of spe-
cies j, and m,. is the particle mass. I.et us now expand
terms in a Fourier series l+k'l

k'

(2.8)

(2.9)

is the diffusion coefficient. Treating the singularity by
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the usual. techn;ques, i.e. , 9&$9t = 2y, e,. (2.11c)
Pbm», + . = —sr 5(w„—kv),~ —tv+i ~ (u —kvk k

(2.10)

D~ =8m' dk» p &(~ —kv), (2.11a)

and one that is associated with nonresonant particles
(i.e. , "sloshing" energy)

where P designates the principle part, and & designates
the Dirac delta function. We can split Eq. (2.9) into two
parts, namely one that corresponds to resonant parti-
cles

These equations describe the diffusion of the resonant
particles in the background distribution function due to
the presence of the waves.

C. Mode-mode coupling

Let us now continue with our calculation of the higher-
order wave scattering terms. In the WKB sense (Aam-
odt, 1965) we shall consider g(v, f) stationary on this
time scale. Expanding f»(v, w) and E»(w) by a perturba-
tion series, and using the electrostatic assumption

D pf~ 87T CQ (2.11b)

where e»= ~E» ~'/8m is the wave energy. Inthe usual case
Eq. (2.11a) is used in conjunction with Eq. (2.8) and the
WEB equation

F- =- V@ =-ik@
k k & (2.12)

where Q „=p»* and m»= —w»* (i.e. , the reality conditions),
we obtain an iterative solution of Eqs. (2.6) and (2.7):

Fi rst-order solution:

e (&u, k) @~"'(t) = 0. (2.13)

Second-order solution:

e(&u, k) 2t)»" '(t)

8 8 8

(2.14)

Third-order solution:

e(~, 2)2,"'G)=- g P 2. ,' d'u (j k

DO 8g
dv'G»(7')(k —k') G„,(7') k'9, „[@»"»'4&;+ 0» »4g']-

di"
OO 8d7-«G (r)(k —k') G,(~')(k'- k")» . 9v(7)»'

8 8gx G, (r")2" 2, „)4' ~ 2. 2, .). (2.15)

G, (7.) = exp[ik(x' —x) + ~7],

where

(2.16)

X =X —V7, (2.17)

Here e(&u, k) is the linearized quasilinear dispersion re-
lation, namely,

t((d ))k= 1+g Et' p dv
jP m 'o

(2.18)

Here G„(7')is the propagation operator (Green's function),
which in the weak-turbulence approximation is given by
unperturbed orbits, i.e. ,

where again the u = kv singularity is to be treated accord-
ing to Eq. (2.10). In Eq. (2.14) there are two types of
terms: namely, those associated with resonant mode-
mode coupling [i.e. , e~(a, k) =0] and those due to non-
resonant wave —wave scattering [i.e. , e(~, k) o0]. The
latter are al.so called "virtual" waves, and more recent-
ly the name "quasimodes" has also been applied in con-
nection with parametric instabilities. In obtaining a
wave kinetic equation valid up to fourth order on @», we
substitute the appropriate expressions for virtual waves,
P&) and @»+»), from Eq. (2.14) into Eq. (2.15). Then as-
suming a resonant wave at (u, k) on the left-hand side,
we expand the dielectric function e(&u, k). Using the
WEB result, y@= 9@/9t (Aamodt, 1965), we obtain the
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following equation:

Be((u, k) s&t& (f) se(~, k)

+1m[+'...e. Ie. I'+&...-. @.l 0 ~ I-'+S. , ;@-» f@.-. I'I (2.19)

where the term proportional to Q» „,», represents reso-
nant mode-mode coupling, and the terms proportional to
P, B,S represent nonlinear Landau damping.

are satisfied. One can al.so show that the following sym-
metry relations are satisfied

D. Resonant mode-mode coupling

kt k yk' krak yk' ky ky k

Vk kg kit V yI k yet V ktt
~

kt

(2.24a)

Let us first discuss the mode-mode coupling term
Q»», &. To obtain a wave kinetic equation we have to
distinguish between fixed phase waves and incoherent
waves, and we shall treat them separately.

1. Fixed phase waves

For fixed phase waves the following equations govern
three-wave coupling:

From the foregoing relationships a number of conserva-
tion laws can be deduced. In particular, the sum of wave
energy 8' and momentum P is conserved in the scatter-
ing process

(2.25)

iS (dAJdt) = V, „,, A,,A,-,
iS» (dA» «t) = V», », »-A8-»-

iS»„(dA~,/dt) = V»». »-A»A „,,
where we have defined

A»(t) = @»(t)[(k»/sv)
I
Sc/S(u I]'~'

(2.20a)

(2.20b)

(2.20c)

(2.21a)

where

~»s»N»& I »
= s»kN» &

(2.26)

and where N»= IA„I' is the occupation number density.
Let us now consider the stability of the three-wave

system. This can be studied by rewriting Eqs. (2.20a)-
(2.20c) in the following form:

s»= sign(sc»/s~»). (2.2lb)

V k, k'. k"

The definition of the matrix element Vk „,&, follows from
a calculation of Q in Eq. (2.19), and in an unmagnetized
plasma it is given by

d A„/dt'= —IV „,»„I'(ss», IA ., f'+s s,. fA .
f )A»,

(2.27a)

v», »', „I'(s,s„lA"I' s»a». , fA.» f )A». ,

(2.27b)

d A /dt = —
I V„.

„„ I (s„s„„IA,
I

—s a, IA„I
)A„.
(2.27c)

s k, ef,./evxk, — '".+'ev (d, —k,v+i&

where

k' 8~ k" 8& k". . ' Bg „'»
SENT 8(dk 8W 8(dk SENT BCOk

Here we assumed that the selection rules

A (d = —(dk+ 40k, + (dk» = 0
~

&k= —k+ kk+k
"=0,

(2.22)

(2.23)

It is easy to show from Eqs. (2.27) that if at least one
(but not all) of the waves is negative energy (i.e. , s &0)
explosive instability results. This means that for non-
trivial initial conditions, all amplitudes Ak, A&, Ak„grow
without bound (i.e. , to infinite level) within a finite time.
Sometimes this is also called the "nonlinear instability. "
We note that such an instability may occur even if lin-
early the system (i.e. , each individual wave) is stable.
On the other hand, if all waves are either positive en-
ergy or negative energy, nonlinear stability results.
However, if at least one of the waves is considerably
larger than the other two waves (i.e. , a "pump" wave),
initially a decay instability may result: namely, the
other two waves will grow exponentially in time until
pump depletion occurs. This is a complete analog of
parametric instabilities discussed in more detail in a
separate section. However, here the pump wave is an
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electrostatic wave with a finite ko. For example, if in
Eq. (2.27) at t=o

amount of algebra (Rosenbluth et al. , 1S69), the follow-
ing kinetic equation is obtained

0& lA„,l'« lA„f',

0& IA,„l« lA, l,
d, N—»=4'»Z IV», », »- l'6» ..»-6(~» —"» —~»-)

x [N,N „—N»N»-S»S„, N»N— ».S»S» ]+2y»N„ (2.32)

and a»= mG) (&u»„m».,), then near t ~0, Eqs. (2.27) reduce
to

1 d IA,, )

k

(2.28a)

(2.29)

as in the case of resonant parametric decay instability.
On a larger time scale, as A. &,A~ grow and become

comparable to A», a more exact solution of Eq. (2.27) is
needed. This can be best obtained by introducing the
relative phases of the waves in Eqs. (2.20a)-(2.20c).
The solutions are obtained in terms of elliptic integrals
(Sagdeev and Galeev, 1969) which predict a cylical ex-
change of wave energies among the three waves ~ The
characteristic period of pump depletion is given by

1 AG(0)
2V». »', »" ~'Ao ~

(2.30a)

so that within a numerical factor t, ~y '. Similarly, if a
negative energy wave exists in the system, the "explo-
sion" time is

(2.28b)
~2 df2

which shows exponential growth (initially) of lA», f',
lA„„l', clearly, lA» l' acts as a pump wave. Note that

the growth rate is

where 2yp'» is due to quasilinear growth. Equation
(2.32) may be repeated for N„,and N», by rotating in-
dices. We note that the terms NP7»„and N jU'» on the
right-hand side are due to spontaneous emission, and
for an unstable system may be neglected. Unfortunately,
in three dimensions an exact solution of Eq. (2.32) does
not exist. We note, however, the work of Vedenov and
Rudakov (1965) and Davidson and Goldman (1968), who
attempted an approximate three-dimensional solution of
the interaction of two electron plasma waves in art ion
wave background, which reduced to a diffusion equation.
On the other hand, in one dimension Davidson (1972)
presents a solution which predicts that if all three waves
are positive energy waves the system is nonlinearly
stable. Again, similarly to fixed phase waves, if one
packet is considerably larger than the others it tends to
decay with a characteristic time scale 7 ~ lV»», »., l

',
while the other waves grow so that a new equilibrium
state is achieved. However, oscillating solutions, as in
the case of fixed phase waves, do not exist. Similarly
to fixed phase waves, if one of the wave packets is nega-
tive energy, nonlinear ("explosive" ) instability results.
The explosion time is r GG

l V»», »„l
(unlike fixed phase

waves). In general, for wave packets the same conser-
vation relations and symmetry relations hold as for
fixed phase waves.

E. Nonlinear Landau damping

iA, IV, , „„

2. Random-phase waves

(2.30b) The kinetic equations governing nonlinear Landau
damping are obtained from the last three terms (P, R, S)
of Eq. (2.19). In particular, by multiplying Eq. (2.1S)
by P», and averaging over phases we obtain the follow-
ing kinetic equations

To obtain a wave kinetic equation for random-phase
waves, we multiply Eq. (2.19) on the left-hand side by
p»*, and apply the random-phase approximation. This is
equivalent to saying that in an ensemble of systems the
only difference among wave packets is in the, phases,
that an average over those phases yields a nonzero value
only to products of the form

(2.31)

and that

dN»/dt = 2y»N»+ Q S»L», »,NP»~,
'

pter

(2.33a)

dN»-«' = 2y»~»-- ~S' I-».»~P'» .
P

(2.33b)

uP ee(~', k'), sg-I, «. =Q ) v z5(d~' 2— O'U) ",, ', O' —L, ~,

For an unmagnetized plasma we have the following ex-
pression for the matrix element

In particular, lk@» l' measures the spectral density of
the mean energy of the electric field in the wave packet

where

2V„,... 2e, k "(kk-)
~

e(~', k') m, (~ —kv)(cu" —k "v)H '

(2.34a)

(2.34b)

where A.~ and N~ have been defined earlier. Using time-
dependent perturbation theory, after a considerable

and where V~ ~„&and H have been defined earlier in Eq.
(2.22). Note that by assumption ~ekv, &u" wk "v, and the
selection rules are
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(u —(u" —(k —k")v =0,

~'= co —u", k'=k —k".

(2.35a)-

(2.35b)

This result was obtained in this formby Sloan and Drum-

mond (1970). We note that exactly the same kinetic equa-
tions are obtained for fixed phase waves (Porkolab and
Chang, 1972). Assuming two narrow packets, Eqs.
(2.33a) and (2.33b) can be solved for y»=y» and the re-
sult is

exp (2y»t —Z [1 —exp(2y, t)])
N„(t)= 1+[S»,. N»( 0) /(N»„(0)+S»-N»(0) )](exp [-L(1 —exp(2y„))]—1) (2.36)

where

~ =(L,,„./2y, )(N,-(0).S,.N„(o))

It is easy to see that for one negative energy wave (i.e. ,
S».,= —1) and one positive energy wave (i.e. , S„=1) and
L» & 0 explosive instability results at time

1 2y»1n(N&. (0}/'N, (0))
2y L„-(N (0)—N„(0)) (2.37)

Note that in the limit y~=y, =0,

ln(N "(0)/N(0))
L ., (N "(0)—N(0))

It can be shown that energy and momentum are conserv-
ed only if the particles are included in the system; this

is a consequence of Eq. (2.35).
Let us now discuss Eq. (2.34) in more detail. As we

see, there are two terms in Eq. (2.34b): the first term
represents scattering of a wave from the screened po-
tential of a charged particle [the shielding term is pro-
portional to a(&u', k') '], and the second term corresponds
to four-wave scatter from a bare particle (or Compton
scattering). These terms tend to cancel, except for
short-wavelength waves [i.e. , terms often cancel to
0(k'X2D), and the first surviving term is of 0(k4&'D); Aam-
odt and Drummond, 1966; Sloan and Drummond, .1970;
Drummond and Sloan, 1971; Ott and Dum, 1971].

Another case when the terms do not cancel is in a mag-
netic field, where the waves propagate almost perpen-
dicularly to the magnetic field and have short wave-
lengths, of order k»r, =1, where r, =v, /0 is the Larmor
radius of particles. For such a case the matrix element
is given by Rosenbluth et al. (1969) and Porkolab and
Chang (1972) as follows:

4m~4EQ
' ~" ~

I e&/s ~ ~
a~/s~" IM,n, "~" (2.38a)

where

L(
J',(x)J', (x ")J, (x")J, (x")

dv, [((u -sA)'- Q'] [((u -pQ)'-0']L g~

))g z ( ')z. (*")&.( ) d„')(& ( ')&.- ( )&*(*)))"'av, ((u —sn)' n' -o
'

&v, ((d —P&}'-&'

dv» J„(x')~8~

(2.38b)

Here j represents particle species, l, m, s,p represent integers, J's are the ordinary Bessel functions, M is the
particle mass, n, is the density, x =k»v»/0, and ~, is the angular plasma frequency. Chang and Porkolab (1970) have
verified Eq. (2.38b) experimentally.

Finally, we note that the effect of nonlinear Landau damping upon the distribution function is similar to Landau
damping, namely diffusion. In general, the total diffusion is the sum of quasilinear diffusion, as given by
Eqs. (2.8) and (2.11b), and nonlinear diffusion. For example, for an unmagnetized plasma in one dimension,
the nonlinear Landau damping diffusion coefficient D»D can be written as follows:

~ 8~/aevi i 8~/s~ "Ik~k" Mn ((d —kv)' k "eM (2.39)

where all the symbols have been defined earlier.
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FIG. 2. Electron distribution function with a "gentle bump" on
the tail. The solid line is the initial distribution, and the dashed
line is the final state.

F. Experiments on quasilinear effects

I
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The first quantitative test of quasilinear theory was
carried out by Roberson et al. , (1971) and Arunasalam
et al. (1971). These authors studied the saturation of an
unstable spectrum of electron plasma waves excited by a
"gentle bump" on the tail of the electron distribution
function. Such a distribution function, which is shown in
Fig. 2, was used in the theoretical papers of Drummond
and Pines (1962) and Vedenov et al. , (1962) to study the
growth and eventual saturation of electron plasma waves
in a low-density beam-plasma system (n, «n, ) Acco. rd-
ing to the theory of Landau (1946), electron plasma
waves with phase velocities coinciding with the positive
slope of the beam part grow until their amplitude is suf-
ficiently large to cause appreciable diffusion, thereby
reducing the slope (and hence the growth rate, which is
proportional to Bg/Bv). The wave growth and diffusion

FIG. 4. Electron distribution function after the beam has tra-
versed the plasma column. Only the beam electrons are collect-
ed. (After Roberson et al. , 1,971.)

continue until Bg/Bv =0 (dashed curve). Although the
growth rate becomes zero, ' the diffusion coefficient re-
mains large because the electric fields are still present.
Experimentally, the beam is injected into a plasma col.-
umn from one end, and the instability grows spatially
(rather than in time) along the Length of the column. As
the beam particles diffuse, the growth rate is reduced
until saturation occurs. In Fig. 3 we show the results of
Roberson et al. (1971). As the beam current (density) is
increased, saturation occurs in increasingly shorter dis-
tances. In Fig. 4 the tail of the associated electron dis-

66

f

80 l20 l60
eSTAMCF FaoM SZAM lMVECTNM t olNT (cm)

FIQ. 3. Total wave energy as a function of distance from the point of beam injection for different beam currents, yg =1.3
&&10 cm", T =15 eV, V=500 V. (After Roberson et al. , 1971.)
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tribution is shown, demonstrating the flattening of the
"gentle bump" as the beam density (current) is increased
so that saturation occurs within the l.ength of the mach-
ine. Both the absolute magnitude of the saturated wave
energy and the shape of the spectrum 8'(~) were found
to agree with theoretical predictions.

In the experiments of Arunasalam et al. (1971) a rela-
tively monoenergetic beam was injected at one end of a
linear device; thus, initially, quasilinear theory would
not hol.d. However, after the instability develops, the
beam energy should spread, and according to the theory
of Shapiro (1963) the beam spread should be sufficiently
large for the quasilinear theory to hold. Arunasalam
et al. (1971) used elegant microwave scattering techniq-
ues to detect the spectrum of unstable waves along the
plasma column. Assuming the Shapiro theory to hold,
the authors found good agreement with quasilinear theo-
ry, including the angular spread of wave vectors. Un-
fortunately, in this experiment the electron beam distri-
bution function was not measured. However, the authors
invoked the results of Kharchenko et al. (1962), who ob-
served flattening of an injected monoenergetic beam in
similar experiments. Hence it is reasonable to assume
that similar effects shouLd have occurred in the experi-
ments of Arunasalam et al. (1971).

olab (1968), Porkolab and Chang (1969), Chang and Pork-
olab (1970), Hai and Wong (1970), Franklin et al. (1971),
and Mix et al. (1972). In some of these experiments only
the frequency selection rules were verified. The first
experiment to show wave-vector selection rules was that
of Porkolab and Chang (1969), while the first experiment
in which not only all the sel.ection rules, but also the
matrix elements were measured quantitatively was that
of Chang and Porkolab (1970a). These authors studied a
backscatter type of decay of electron Bernstein waves,
and in Figs. 5 and 6 we show the decay spectrum and in-
terferometer traces of the waves detected in these ex-
periments. From the figures we see that both the fre-
quency and the wave-vector selection rules (Eq. 2.23)
for resonant mode-mode coupling are satisfied. The
nonlinear matrix elements were also determined, and

CK

G. Experiments on mode-mode coupling

Some of the first experiments on resonant mode-mode
coupling were done by Cano et al. (1967), Ellis and Pork-
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FIG. 5. (a) Typical decay spectrum; f&= 335 MHz, f2=420 MHz,
f0= 758 MHz. The pump signal (fo) is greatly attenuated by a
filter. co, (cyclotron frequency). (b) Dispersion relation and
decay modes. Each set of three identical symbols represents a
pair of decay modes like that indicated by the arrows. There
are seven pairs of decay modes shown in the figure. (After
Chang and Porkolab, 1970.)

FIG. 6. (a) Interferometer traces of the finite-amplitude wave
(758 MHz greatly attenuated by a filter) and perturbed waves
(335 and 420 MHz) during decay. @0{758)=19.0 cm ~; p&{420)
=20.6 cm; k&(335) =39.8 crn . The transmitter is the T probe
at g = 0. (b) Spatial variation of the perturbed-wave amplitudes
as predicted by theory. Helative amplitudes in (a) and (b) are
normalized for convenient display. (After Chang and Porkolab,
1970.)
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ru„/2 sr 0 80 MHg. FIG. 8. Amplitude of the harmonic wave as a function of the
amplitude of the fundamental. The solid circles are from ex-
periment. The straight line is at 45 to the axis, as is demand-
ed by second-order perturbation theory [see Eq. (22)]. The
parameter [etc/&Ye]m~ refers to the peak amplitude of the har-
monic wave (see, for example, Fig. 7). (After Mix et al. ,
1972.)

H. Experiments on nonlinear Landau damping

2 3
DiSTANCE z (cm)

FIG. 7. Chart-recorder traces showing the spatial behavior of
the fundamental wave [diagram (a)] and of the corresponding
second harmonic wave [diagram (c)]. The peak amplitude of the
second harmonic wave is - 0.05 of the peak amplitude of the
fundamental. Diagram (b) illustrates the exponential damping
of the fundamental wave. The damping distance normalized to
the wavelength g/A)z has in this instance a value equal to 3.2.
(After Mix et a)., 1972-)

were found to agree with theory within experimental er-
ror.

In Figs. 7 and S we show the results of Mix et al.
(1972), who studied harmonic generation of an ion acous-
tic wave propagating along a magnetized plasma column.
In particular, harmonic generation can be regarded as
forward scattering of a wave with itself, so that the
selection rules become k{2cu) =2k(~). We see from Fig.
7, that this is well satisfied, and Fig. 8 shows thai
E(2u) ~E'(u), which is again as expected for a second-
order scattering of a wave with itself. These authors
also found good agreement with theory for the coupling
coefficient (matrix element) as long as E(2~) «E(~). At
large pump levels a saturation in the level of nonlinearly
generated waves is observed in both of the foregoing ex-
periments, which indicates pump depletion and/or a
breakdown of weak-turbulence theory.

There have been a number of experiments which veri-
fied the strong interaction between the beat of two waves
and resonant particles, i.e. , nonline3r Landau damping
and/or growth (Chang and Porkolab, 1970,1972; Gentle
and Malein, 1971; fkezi and Kiwamoto, 1971). While
Chang and Porkolab studied the resonance between two
electron cyclotron harmonic waves (Bernstein waves)
and the electron gyro frequency or its harmonics, Gen-
tl.e and Malein studied the resonance between two elec-
tron plasma waves and electrons, and Ikezi and Kiwa-
moto studied the nonlinear ion Landau damping of two
ion acoustic waves. In Figs. 9-11 we show the results
of Chang and Porkolab, which demonstrate (a) decay in-
stability associated with nonlinear cyclotron damping so
that &u, —cu, =nQ„n= 1,2 {Fig. 9); (b) amplification of a
test wave with frequency , in the presence of a pump
wave with frequency ~, so that &u, —~, =nA, (Fig. 10);
(c) amplification rate of the test wave which gave good
agreement with Eq. (2.38b), the matrix element (Fig.
11). Note also the sudden breakdown of theory at high
pump levels. In Fig. 12 we show the matrix elements
for nonlinear Landau damping obtained by Gentle and
Malein for electron plasma waves; al.so shown are the
theoretical estimates. These authors found particularly
strong interaction when A ~/ch. k =v„,as expected from
theory. Note the good agreement between theory and ex-
periment. In Fig. 13 we show from the experiments of
Ikezi and Kiwamoto that a test wave with frequency ~,
is damped in the presence of a pump wave with frequen-
cy w, if w, «u„and grows if u, ) tu, (assuming & ~/&k
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FIG. g. (a) Spectra for three distinct cases of nonresonant de-
cay. The finite-amplitude wave signal (hollowed symbols) is
greatly attenuated by filtering. (b) Location of spectra (1), (2),
and (3) on the linear dispersion diagram, with k„=0. (In the
experiment, k, ~/k, & 0.04; thus these curves are a good approxi-
mation. ) (After Chang and Porkolab, 1970, 1972.)

=v„.), as predicted by theory [see Eqs. (2.23a) and
(2.23b) j.

While the foregoing experiments were carried out us-
ing coherent waves, Matthieussent and Oiivain (1975)
studied nonlinear Landau damping using a broadband
spectrum of bounded electron plasma waves which they
injected into a linear device by a probe. They found that
while there was clear evidence of broadening of the spec-
trum toward lower frequencies as the level of the extern-
ally injected spectrum was increased, there was also
evidence of heating of the whole distribution of electrons
rather than onl. y those electrons which resonate with the
group velocity of the wave packet. Thus it was concluded
that, in addition to nonlinear Landau damping, resonance
broadening (which we discuss in the next section) may
have played an important role. Indeed, the conditions
for the occurrence of such a phenomenon were satisfied
(i.e. , tor the tiuctuations the autocorreiation length was
of the order of the trapping length).

I I

0 I 2
RAOtAL, POSIT tON fC:mj

I

2
ro0

FIG. 10. (a) Interferometer traces showing the amplification of
an externally excited test wave for case (2) of Fig. 2. ' The
arrows indicate the locations of the wave sources. (b) Test
wave amplitude (normalized to 1 at g = 0) as a function of dis-
tance, with the finite-amplitude wave power as a parameter.
The arrows indicate the locations of the transmitting probes.
(After Chang and Porkolab, 1970,1972.)
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FIG. 13. (a) Interferometer output C as a function of fre-
Ng

quency m&. No wave m2 is excited in the top trace. The wave
u2 is excited on the bottom trace and has a frequency 0.7 MHz.
~&,/27t. = 1.2 MHZ. (b) Interferometer traces showing nonlin-
ear growth and damping of v;ave-u~/27t = 0.9 MHz. Top trace,
no wave cu2. Middle trace, with wave A@2/2m =1.0 MHz. Bot-
tom trace, with wave +2/2m= 0.8 MHz. co&,/2m= 1.3 MHz. (Af-
ter Ikezi and Kiwamoto, 1971.)
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In summary, the predictions of weak-turbulence theory

have been verified experimentally to a limited extent.
While quasilinear theory has been verified in one or two
instances for a broad wave packet, mode coupling theo-
ric s have been ver ified mostly for coherent waves.
Thus, while the calculated mode coupling matrix ele=
ments agree with experimental measurements using fixed
phase waves, the assumptions of the random-phase ap-
proximation in mode coupling still remain to be tested
experimentally.

I I I. ECHO ES

A. Theory ot collisionless iechoes

.005 .CN Q3
441

M~„{mtn 'me ')

FIG. 12. Matrix elements 3f 2 for nonlinear Landau damping.
Observed values are plotted against theoretical predictions for
several waves. The dashed lines are experimental error bars.
(After Gentle and Malein, 1971.)

Landau's treatment of the dampling of plasma waves
shows that macroscopic quantities, such as the electric
field and the charge density, are damped exponentially,
but that perturbations in the elec tron phase-space dis-
tribution f(x, v, t) oscillate indefinitely (Landau, 1946).
Since the electron density is given by the integral of
f(x, v, t), one may think of the damping as arising from
the phase mixing of various parts of the distribution
function. However, as we shall see in this section, the
direction of the phase evolution of the perturbed dis-
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tribution function can be reversed by the application of a
second electric field at a later time (in pulsed experi-
ments) or a different location (in spatial propagation ex-
periments). This results in the subsequent reappearance
of a macroscopic field, i.e. , an echo. The echo occurs
several Landau damping periods after the application of
the second pulse, or at a different location from the sec-
ond pulse in the case of spatial echo (Gould et a/. , 1967;
O' Neil and Gould, 1968).

Let us now see how echoes are formed. When an elec-
tric field of spatial dependence exp( ik„x)is excited in
the plasma, it Landau damps away; however, it modu-
lates the distribution function and leaves a perturbation
of the form f,(v) exp(-ik, x+ik,vt). For a time t suffi-
ciently long there is no electric field associated with this
perturbation, since an integral over velocity will phase
mix to zero. Now let us consider an experimental situa-
tion where after a time & a wave of spatial dependence
exp(ikp) is excited, and then damps away with its own
linear damping rate. At the same time it will modulate
the unperturbed part of the distribution, leaving a first-
order term of the form f,(v) exp[ikp —ik,v(t —7)], but it
also will modulate the perturbation due to the first wave;
the result is a second-order term of the form f, (v)f,(v)
exp[i(k, —,k)x +ik,vr —i(k, -k, )vt] Thus .we see thatat a
time t*, where

t+ =(k,r/k, —k,), (3.1)

t + = 2k,~/(2k, —k, ) . (3.2)

For example, when 4, =k„the echo occurs at time t*
Higher-order echoes may also form at times t~

=7'nk, /k „,where k „=(nk,—mk, ).

the coefficient of e in the exponential will vanish, and at
this time an integral of this nonlinear term over veloci-
ties will not phase mix to zero. Hence, at time t* a net
electric field will reappear in the plasma. Further. -
more, if & is long compared to a eollisionless damping
period and k,/(k, —k, ) is of order unity, then this third
electric field will appear long after the first two waves
have damped away, i.e., it will be an echo. Of course,
higher-order echoes may also be possible. For ex-
ample, a third-order echo is produced when the velocity
space perturbation from the first pulse is modulated by
the second spatial harmonic of the electric field from the
second pulse. The echo will then occur at a time (O' Neil
and Gould, 1968)

a + =d((u, nQ)—/((u, —(o, —pQ), (3.4)

where the velocity-dependent term in the exponential will
vanish. Here v, is the particle velocity along the mag-
netic field line, l, n, P are integers, and d is the relative
location of the two initial excitations (Porkolab and Sin-
nis, 1968; Porkolab, 1969). Thus additional shifts of
echo position (time) due to the finite cyclotron motion
are expected.

While the foregoing picture is based on a free stream-
ing type of ballistic picture, more rigorous kinetic theo-
ry descriptions liave also been obtained (O' Neil and
Gould, 1968). This analysis is similar to second-order
resonant mode-mode coupling theory, except that wave-
particle interactions are also retained. These wave-
particle interactions are different, however, from non-
linear Landau damping; the interaction is associated
with the poles corresponding to the ballistic terms,
which are usually discarded in weak-turbulence (mode-
mode coupling) theories. Nevertheless, the kinetic theo-
ry allows one to include collective phenomena, such as
Landau damping of the individual waves, and thus the
theory can also predict the shape of the echo. For ex-
ample, for two external pulses of the form

It is also possible to have spatial echoes, and these
are easier to observe experimentally than the temporal
ones (O' Neil and Gould, 1968). If an electric field of
frequency (d, is excited continuously at a particular loca-
tion x, in the plasma, and if an electric field of frequen-
cy &o, & &u, is excited continuously at a distance (x, +l),
then a second-order spatial echo of frequency (~, —~,)
is produced at a location

l+ =l(u, /((o, —(o,),
where l* = (x —x,) is the relative distance from the point
where the first field was excited. This result follows
from an integral over v of the second-order perturbation
f,(k„v,)f,(k„v)e xp[iu, t + ice, (d/v~) —i(u, (a/v, )], where tu,
= (d —CO~.

In a magnetic field the situation is more complicated if
the perturbation has a finite value of k~. In that case the
free streaming perturbations will also depend on &, the
cyclotron frequency. For example, for two perturba-
tions of the form f',"(k,v,)e xp[-leo, t+i(&u, —lQ)z/v, ] and

f,"'(k, v,)e xp[iur, t —i(&o, -nQ)(a —d)/v, ] an echo is pro-
duced due to the beat when the integral over v, does
not vanish, namely at a location

@„~= 4, cos(k,x)6(&u~t) + 4, eos(kg)6[a~(t —r)]
kinetic theory predicts the following expression for the echo O' Neil and Gould, I968:

(3.6)

-ik,k,k, e 4,4, " sf, (t —r) exp[-ik, v(t r) +ik vr)]
4 m k', „Bva(k„-ik,v)&(k„-ik,v)E(-k„ik,v)

(3.6)

Here 4„4,are the exte rnally applied potentials, and
c(kz, ikjv) are the dielectric functions associated with the
two pulses and the echo. Thus, . if we let t —& =&(k,/k, ),
the exponential nearly vanishes, and we get an echo.
Note that since 0, =0, —k„this condition is the same as

t*=rk,/k, which we obtained earlier. In Fig. 14 we ex-
hibit from the work of O' Neil and Gould (1968) a numer-
ical representation of Eq. (3.6). Note that the echo is
asymmetric, that is, the rise and fall time of the echo
are different. We also note that, in general, the n, mth
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FIG. 14. Approximate varia-
tion of the principal Fourier
coefficients of the self-consis-
tent field for the case k3 ——k~
=—2 k2. Upper line: response to
the first pulse. Middle line:
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et al. , 1967.) 4 (t)

y(k~)(+- &)

y(ki) (+-v')
~C

hah. .
]I(ggvTT

It pr' r

echo amplitude varies as C, cc 4",4, . Asymptotic forms
of Eq. (3.6) can be found in the original papers of O' Neil
and Gould.

Additional studies of echoes have been carried out by
Kamimura (1970), who obtained a Langmuir wave echo
from the pulsing of two cyclotron waves, and Sitenko et
al. (1970), who obtained ion a.coustic echoes from pulsing
two Langmuir waves.

B. Collisionat effects

It was noted by 0 Neil and Gould (1968), Su and Ober-
man (1968), O' Neil (1968), and Hinton and Oberma. n
(1968) that echoes may be pa, rticularly sensitive to Cou-
lomb collisions and microturbulence. 'This can be seen
by the following physical picture. The effective collision
frequency acting upon the echo perturbation exp(ikvt) due
to 90 collision is

(3.9)

where &go, =v~, /vgo, is the mea. n free path for 90' colli-
sions, and Xv =v„/ar„is the Debye length.

One may argue that in a turbulent plasma a turbulent
diffusion coefficient would produce a similar Loss of
"particle memory" in a time

7' = (6v)'/D, (3.10a)

where 6v is the change in velocity due to scattering by
the turbulent fluctua, tions. Using the relation 6v = I/kv,
we get from Eq. (3.10a)

k2D7' = 1 (3.10b)

or

(since usually (u~» v„,). Similarly, by replacing t-I/v„
we find that a spatial echo, is washed out in a distance

82
v, f~ = v,v~, exp(ikvt) = &~o,((d&t) (3.7) (3.10c)

where we used kv„=u, (v„is the thermal velocity,
and ~„is the electron plasma frequency). Therefore
the effective damping is exp(-&,«t), and for echo for-
mation we want

as the time within which an echo would be destroyed.
Thus we see that both Coulomb collisions and microtur-
bulence are very effective in damping echo formation.
According to O' Neil (1968), for spatial echoes the damp-
ing factor varies as

or

(3.8a) ~ I' exp[-D(v )—' l'kgco'] (3.11)

t ( (p ~2)-1/3 (3.8b)

or the echo will be washed out. Thus the echo is washed
out in a time short compared with a 90 collision time

where D(v, ) is the diffusion coefficient evaluated at the
phase velocity of the echo. Because of the above, it is
hoped that echoes may be particularly useful as a diag-
nostic tool to study microturbulence in plasmas.
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~ex~ = ~90.(~sr)'
~ (s. i2)

where ~ is the "bounce frequency" of the trapped par-
ticles. Thus, by increasing the pulse separation time so
that

C. Trapped particle echoes

Echoes may be associated with trapped particles, and
such trapped particle echoes have been studied both
theoretically (Liu and Wong, 1970) and experimentally
(~ong and Taylor, 1969; Chatelier, 1974). For exam-
ple, consider particles trapped in a magnetic well or in
a potential well. First apply a pulse at t=0, and as a re-
sult some of the particles will be accelerated. Then ap-
ply a second pulse at time t =w; some of the previously
accelerated particles return in phase, and are "marked"
again by the new pulse. These particles then keep re-
grouping at times t =27'(l and in genera, l at nr). Again,
if turbulence or collisions are present, the phase is
washed out according to the relationship

IX

Cl
lK

I

A.
I

lK
L4

LLj
X
lg
4J

4J
I
K f~ ~ l40 MHz

RECIEVER GAIN INCREASEO 20 db

I20 OHg

1g I30 MHZ

w&(v„.~,') '~',

we cause the echo to be washed out.

D. Experimental results
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Let us now consider the experimental evidence for the
formation of echoes. The first experimental observation
of electron plasma wave echoes was by Malmberg et al.
(1968). The geometry of their experimental setup is
shown in Fig. 15, and the results are shown in Figs. 16,
17, and 18. In Fig. 16 we show interferometer forces of
two electron plasma waves launched by wire antennas in
a low-density, low-temperature plasma (n = 10' cm ', T,
= 9 eV) with frequencies f, , =120, 130 MHz; the echo is
produced at f, =140 MHz. This a third-order spatial
echo, namely, f, =2f, f, The v—ari.ation of echo posi-
tion with frequency and transmitter separation is shown
in Fig. 17. In the experiments the plasma is confined by
a 300 0 magnetic field so that (d„«„and the plasma-
waves can be considered one dimensional. Note the lin-
ear va, riation of l~/f, as predicted by theory for a fixed
set of frequencies. There is some discrepancy between
theory and experiment at the position E =O. However,
the authors claim that this is not important since the
finite intercept is within the damping length of the waves.
Wee also note that second-order echo formation using
electron plasma waves is, in general, difficult since the
resonant mode coupling conditions for such waves cannot

FIG. 16. Third-order echo. The transmitter probes are at 0
and 40 cm. Upper curve, receiver tuned to f~, second curve,
receiver tuned to f2,. third curve, receiver tuned to f3 and gain
increased 20 dB. (After Malmberg et a/, 1968.)

be satisfied. Finally, in Fig. 18 we show variation of the
echo wave power as the primary wave amplitude are var-
ied. Note the power dependence 4,'~C pC y

which is as:.
expected for a third-order echo.
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FIG. 15. Schematic drawing of transmitter-receiver arrange-
ment for spatial echoes. (After O' Neil and Gould, 1968.)

FIG. 17. Echo position vs transmitter separation. The slope
of the curves is theory. The numbers on the curves are fq,
f2, and f3 in MHz. (After Malmberg et al. , 1968.)
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FIG. 18. Echo power vs primary wave amplitudes. Absolute
power levels are approximate. (After Malmberg et a$. , 1968.)

More detailed studies of echo shapes were performed
by Goforth and Gentle (1971, 1972). These authors car-
ried out a perturbation calculation of the Vlasov equation
to third order, and found satisfactory agreement with the
echo shape. For large incident wave amplitudes satura-
tion sets in, and the power law dependence given in the
foregoing paragraph breaks down. This is a consequence
of the fact that perturbation theory itself breaks down.
This saturation phenomenon was studied theoretically by
Coste and Peyraud (1969) and experimentally by Guille-
mot et al. (1971). These authors found that ballistic ech-
oes may also occur, even when self-consistent fields do
not correspond to one of the frequencies used in the ex-
periment. We may call this nonresonant echo formation.
Further studies of such echoes were also carried out by
Ripin et al. (1970, 1972, 1973), who studied echo phen-
omena in a drifting plasma.

X |hOX

Ho~ plate

1

Ce beam

I Plasma

Ring modu+tor~ ohd Filter

Synchroholij

detector

FIG. 20. (a) Recorder output demonstrating the excitation of
the echo (amplitude and phase) for three typical sets of fre-
quencies f~ and f2. The frequency of the echo (f2-f~) is 100
kc/sec. Curves a, b, and c are for exciting frequency f& of 80,
120, and 140 kc/sec, respectively. The curves for different
sets of frequencies are displaced for display purposes. (b)
Relation between the position where the amplitude of the echo
is maximum, and the frequencies f~ and f2. The solid line in-
dicates the relation em~= lf&/(f2-f &). The frequencies of the
echoes are given in the figure. (After Ikezi and Takahashi,
1968.)

nor

Position signaI cf

receiving grid
= X-g recorder

Experimental setup of Ikezi and Takahashi (1968) for
ion wave echo generation.

Ion wave echoes have been observed experimentally by
Ikezi et al. (1968, 1969) and Baker et al (1968). These.
experiments were done in Q-machine plasmas, where
T, = T,. The experimental setup of Ikezi et al. (1968) is
shown in Fig. 19. Two grids are used to launch the pri-
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FIG. 21. A plot of the distance of the echo maximum from the
first grid for different values of m2/u3. The slope of the solid
line is given by u2/u3. The points indicated by diamonds were
obtained from the X'-band microwave system. All other points
were obtained with the biased grid. N=2 &&10 cm; T; =T,
= 0.2 eV. Squares, ~~/2m= 35 kHz; m2/2m= 50 kHz. Diamonds,
Q) f/2 )t = 70 kHz; (d2/2m= 100 kHz. C ros ses, ct) &/2m= 40 kHz;
co2/2~= 70 kHz. Circles, m&/2~=40 kHz; u2/2~= 95 kHz. Tri-
angles, (d~/2m= 70 kHz; +2/2m= 160 kHz. (After Baker et al. ,
1968.)

mary waves, and a third, movable grid is used to detect
the echoes. In Fig. 20 we present their experimental re-
sults, showing echoes associated with various primary
wave frequencies. The variation of echo position with
transmitting grid separation is also shown in the same
figure. We see that an approximately straight-line re-
lationship is obtained as predicted by Eq. (3.3).

Similar results have been obtained by Baker et al.
(1968); their experimental results are shown in Fig. 21.
These results are similar to those of Ikezi et al. except
that a more pronounced intercept at the origin is visible.

Echoes modified by electron cyclotron harmonic phen-
omena were studied by Porkolab and Sinnis (1968). The
geometry was similar, except that T-shaped transmit-
ting probes were used to launch the primary waves. Such
problems allow perturbation with finite k, to be excited;
in addition, in these experiments typically „&, . In
Fig. 22 we show the echo wave amplitude as a function of
magnetic field, as well as interferometer outputs of echo
shapes. Note the strong dependence of the echo ampli-
tude upon the magnetic field (i.e, , cyclotron frequency).
In Fig. 23 we show the variation of echo position (a*) as
a function of transmitter separation (d) for several fre-
quencies. The n and P integers in the figures are those
corresponding to Eq. (3.4), and the indicated values give
the best fit to the experimental results. Note thai had

FIG. 22. (a) Echo power as a function of cyclotron frequency
f . (b) Interferometer output of echo power as a function of re-
ceiver position. For both (a) and (b), (fg,f2,f'3) = (391,700, 309)
MHz; transmitters at zq 2= 0, 30 cm. (After Porkolab and Sin-
nis, 1968.)

we assumed n =P =0, no agreement would be possible.
These results clearly indicate the importance of cyclo-
tron harmonic phenomena in the present experiments.

The effect of turbulence and/or Coulomb collisions up-
on echo formation was studied experimentally by Jensen.
et al. (1969), Wong and Baker (1969), Moeller (1975), and
Guillemot (1971). In Fig. 24 we show the results of Jen-
sen et al. , who studied the variation of echo amplitude
as a function of transmitter separation l. %e recall that
theory predicts p, ~l'exp(-xl'), which seems to be in
reasonable agreement with the present results. These
authors attribute the damping to the presence of back-
ground turbulence in the plasma. It should be noted,
however, that due to the limited range of the experimen-
tal parameters (i.e. , the variation with l) the l' exp(-l')
dependence cannot be proven conclusively (i.e., another
power law may also fit the present data). These authors
also estimated the magnitude of the diffusion coefficient
from the background turbulence, and again, within ex-
perimental error, reasonable agreement was found with
quasilinear theory. A more detailed study by Moeller
(1975) on the damping of echoes by Coulomb collisions
shows that the experimental data can be fitted with an
exponential power of n =2 to 4. Similar discrepancies
were also found by Porkolab and Sinnis (1969).

In the case of ion wave echoes, Wong and Baker (1969)
studied the effects of ion-ion Coulomb collisions upon
the echo amplitude. The theory was also treated by
these authors, and predicts a variation of echo ampli~
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tudes as follows:

exp -Q.' (3.14) 4, 40

2 (c~)
50

where X„&„and&, are the wavelengths of the primary
waves (1, 2) and the echo (3), X, is the mean free path
for collisions, and E is the transmitter separation. In
Fig. 25 we present their results, which show relatively
good agreement between experiment and theory. Again
we should emphasize that since the range of parameters
on the horizontal axis varies only within a factor of
three, some other power law dependence cannot be ex-
cluded. Nevertheless, we must conclude that these ex-
periments give strong support to the idea that the Fok-
ker-Planck collision term is operative in damping ech-
oes.

Trapped particle echoes in the anharmonic potential
well of a probe were first studied by Wong and Taylor
(1968) in a small-scale laboratory experiment. As a.n
application of similar concepts, we should mention the
experiments of Chatelier et al. (1974), who also used
echoes to study trapped particle phenomena. In partic-
ular, these authors applied compressional magnetic
pulses with frequencies near the ion bounce frequency in

10 ~x)O~
g3 (cv3)

3x )O~

FIG. 24. Logarithm of Az/12 vs 13; Azis the amplitude of the
echo and 1 the distance between transmitter and receiver.
(After Jensen et aE. , 1969.)
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FIG. 23. g* vs d. The numbers in braces are (f&,f»f3,f ).
Solid lines show best fit to experimental data, giving g ~/d = g.
Theoretical lines, according to Eq. (4), show agreement to
within 170 or better by assuming that (n,p) = (2, 1), (3, 1), (3, 2)
for the lines with g =2.30, 2.00, 1.54, respectively. (After
Porkolab and Sinnis, 1968.)

I.O 2.0
(~,x,~~, ) „)'"(&i),)"'

FIG. 25. Echo maximum ln[{nz/no)()j. ~/1)I vs the collisional
parameter ()I,P.PX2X~&) ~ {1/kq) ~5 for ion wave echoes in ce-
sium and potassium plasmas. The solid line is the theoretical
curve. (After Mong and Baker, 1969.)
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a mirror machine. The two pulses induced a variation
of the parallel energy, and a temporal echo appeared.
By varying the pulse separation, Chatelier et al. were
able to observe the amplitude variation of the echo, and
from these measurements to deduce an estimate of the
diffusion rate of the magnetic moment of the particles.
These measurements were found to be consistent with
the Coulomb collision rate. Such experiments prove the
feasibility of using echoes to study trapped particle phe-
nomena and diffusion in controlled thermonuclear fusion
devices.

In conclusion, we should mention a class of echoes that
have to do with collisional effects and weak nonlineari-
ties, which were studied extensively before the colli-
sionless plasma wave echoes. These echoes depend on
the cyclotron motion of charged particles, and have been
reviewed by Gould (1969). An extensive list of referen-
ces can also be found, in his paper, and thus we shall not
discuss them here.

IV. STRONG El ECTRIC FIELDS: PARAMETRIC
INSTAS I L IT I ES AND SOL ITONS

A. Parametric instabilities
1

Under the influence of high-frequency long-wavelength
electromagnetic fields various modes of oscillation in the
plasma may become coupled, and may grow exponential-
ly in time or space before saturating at large amplitudes.
For example, in the absence of a magnetic field, elec-
tron plasma waves and ion acoustic waves may couple in
such a manner (DuBois et al. 1965; Silin, 1965; Jackson,
1967; Nishikawa, 1968).

If the incident electromagnetic wave ("pump wave") has
a relatively long wavelength as compared with the wave-
lengths of the decay waves, then it is possible that en-
ergy is transferred to the particles via collective effects;
namely, the energy transferred to the short-wavelength
decay waves from the pump wave is absorbed by parti-
cles more efficiently than the energy transferred to par-
ticles directly from the weakly damped pump wave. Thus
the net effect of this process is an "anomalous" absorp-
tion of the incident electromagnetic wave. This process
is somewhat similar to turbulent heating, and it is ex-
pected to be of importance in hot plasmas where colli-
sional absorption of electromagnetic energy is rather
inefficient (Kaw and Dawson, 1969). Thus parametric
instabilities (which, however, require a finite thresh-
old of pump power for excitation) may form a channel
for efficient transfer of electromagnetic energy into hot
plasmas. Because of its practical importance to both
laser fusion and rf heating of magnetically confined plas-
mas, this phenomenon has been the subject of extensive
investigation both theoretically and experimentally. In
this section we shall outline the fundamental aspects of
this problem and give a number of illustrations.

We note that in Sec. II we studied coupling among dif-
ferent electrostatic waves of comparable wave numbers.
These processes, which form the foundations of weak-
turbulence theory, may be called more appropriately
mode-mode (or wave-wave) coupling. Instabilities due
to these processes, which have been called decay insta-

B. Physical mechanisms of parametric instabilities

In the presence of an rf electric field different species
of particles (i.e., ions, electrons) are displaced rela-
tive to each other due to their different masses, thus
causing momentary charge separation (Kruer and Daw-
son, 1972; Nishikawa, 1968). For example, in the ab-
sence of a magnetic field in a singly charged electron-
ion plasma for rf pump frequencies &u, = u„(where &u„
is the electron plasma frequency) the electrons make
relatively large excur sions in the electric field Ep cos pt,
x.e.,

Ax = (eE,/m uP, ) osc~,t, (4.1)

whereas the ions remain nearly stationary due to their
large mass. If there are low-frequency ion fluctuations
in the background with frequency z, ~ m„(where m, is
the ion plasma frequency), these may beat with the os-
cillating electrons to form additional oscillations in the
charge at the frequency (cu, +su, ), i.e. ,

eE
Az = '&x=iAm. ' cosset t.

ex tB QP 0
0

(4.2)

The selection rules associated with this process are
(see Fig. 26)

~,(k,) = ~,(k, )+ &u, (k,),k, =k, +k, (4.3)

which is the usual resonant mode-mode coupling pro-
cess, demonstrating energy and momentum conserva-
tion (Davidson, 1972). For parametric instabilities we

bilities, are akin to parametric instabilities as long as
one of the waves is coherent in phase and large in amp-
litude as compared with other waves (Galeev and Sag-
deev, 1973). In fact, decay instabilities were studied
prior to the so-called "parametric" instabilities (Gal-
eev and Sagdeev, 1973). Thus the naming of these pro-
cesses is somewhat arbitrary, and indeed they have of-
ten been used interchangeably in the literature. How-
ever, in mode-mode coupling we often discuss scatter-
ing of waves of the same type; hence coupling is due to
the nonlinearity of the Vlasov equation, and is associat-
ed with the presence of finite k, . Qther parametric in-
stabilities exist even if k, =0, especially when high-fre-
quency electron modes and low-frequency ion modes are
coupled. In this case the instability is driven by the rel-
ative electron-ion motion under the influence of ihe ex-
ternal electric field. Furthermore, instabilities may
be driven by the relative ion-ion motion in a multi-ion
species plasma, especially if ~ =A„,Q,, In the pres-
ent paper we shall use the term "parametric instabil-
ities" mainly to describe wave coupling phenomena in
which the pump wave number can be ignored as compared
with the wave number of the decay waves. Thus the
pump can be either an electromagnetic wave or a long-
wavelength electrostatic wave. An exception to this
terminology is the case of the various electromagnetic
decay instabilities in which at least two electromagnetic
waves are involved in the decay process. We shall men-
tion these only briefly in the theoretical section, and
nnly one experimental example will be given.

Rev. Mod. Phys. , Vol. 50, No. 4, October 1978



764 M. Porkolab, R. P. H. Chang: Nonlinear wave effects in laboratory plasmas

4J

CL

a~)i
CK

i~u o
0

llJ cL

Qlpeldg lgO Ql P

Bv 1 8 2 1 8 eEv„*=——v') =——
8x 2 8x " 2 8x I ~0

and using uP, = uP„=4wne'/rn we obtain

Q2
yznzv„" =IV„

O', Tn,. k'(P+ &P)
S

i i
(4.6)

and where nz,. is the ion mass, the simple harmonic os-
cillator equation for ions becomes

Thus, considering that ion acoustic waves are driven by
electron pressure, namely u, = ~, where

~'n,- W;, ikey, EO+ v + co Ã ~ = — cos(dot,
Bt ' rn

(4.7)

FIG. 26. Typical frequency spectrum for the parametric decay
instability. Also shown are the corresponding scattering dia-
grams .

take u, = 0, and thus k, = —k, (so that I&, I

=
I
&, I

=-&).

Combining Eq. (4.2) with a simple harmonic oscillator
equation which describes electron plasma waves, we
obtain

8'n. 8n, , 82(6n, ) ikn, eEO. (4.4)

where ~, = ~,~ is the resonance frequency of electron
plasma waves in the absence of the pump field, and y,
= v, /2 is their linear damping rate. In the absence of a
magnetic field

QP = (d +3kek pe te

is the Bohm-Gross dispersion relation [where cu„
= (4wne'/m)'~' is the electron plasma frequency, n„,
= (T,/m)' ' is the electron thermal speed, and T, is
measured in units of energyj. We also assume that the
displacement given by Eq. (4.1) is small as compared
with a typical wavelength (i.e. , k, ). This, plus the fact
that only co, is near a resonant frequency, justifies ig-
noring coupling to other harmonics (the case of strong
coupling has been discussed by Silin, 1965).

Consider now the reverse of this process, namely the
beating of the electron plasma wave with the rf pump
field. This beat produces a ponderomotive force which
exerts additional pressure on electrons at low frequen-
cies:

QQ
V&p = V' —=~ —cos~ t =- eE &n cos~ t.

8m 4m ex
(4.5)

Here we have made use of Poisson's equation. Note that
the ponderomotive force is equivalent to the v ~ V„vterm,
SlQCe

4~.e ( 0
E2

N &(d 64KÃ T (4.8)

and that well above threshold the growth rate y is ob-
tained from Eq. (4.8) by replacing y,y, =y . We note the
following: (a) A minimum threshold exists, since there
are linear losses present initially which the pump wave
has to overcome; (b) In order to obtain Eq. (4.8) we
assumed ~,&y, so we could ignore the upper sideband
(&u, + ~,) (or anti-Stokes line).

C. The purely growing mode

Nishikawa (1972) showed that in the limit &u, -0, at
k wO another instability may also occur, which is called
the "purely growing mode" or the "oscillating two-
stream" instability. In particular, by Fourier-analyz-
ing Eqs. (4.4) and (4.7), and retaining both sidebands
u, ~

= (~0+ cu, ), for Re~, =0 we obtain the following thres-
hold:

y E2

COO 32 FJLOT
(4.9)

For weakly dampled modes (T, »T,),Z, /u&, «1, and.
the threshold for the purely growing mode is higher
than that of the decay instability. We note that if we in-
clude a finite ko, the purely growing mode assumes fin-
ite real frequencies. An alternate way to derive the
purely growing mode will be indicated in the next sec-
tion, where we show that it is the linearized limit of
the so-called nonlinear Schrodinger equation which pre-
dicts solitons.

D. Parametric decay in a magnetized plasma

In the presence of a magnetic field the situation be-
comes much more complicated than that shown above.
For example, if we assume a dc magnetic field in the

where we included Eq. (4.5) for 6p, and where v, /2 =y,
is the linear damping rate of ion acoustic waves. Thus
we see that Eqs. (4.4) and (4.7) represent the coupled
oscillator equations for short-wavelength ion and elec-
tron waves in the presence of the long-wavelength rf
pump wave. Solving Eqs. (4.4) and (4.7) by Fourier tran-
sformation, we find that if the selection rules [Eq. (4.3)]
are obeyed, then both electron and ion waves grow ex-
ponentially in time above the threshold field
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z direction, and an external electric field of the form

Eo(x, f) = (E,~+Eo~) costs, t, (4.10) (4.13)

e Ep cos Apt&x=—I Crap —0 (4.11a)

0 e Ep„sinupt
'ffg COp —0

p

(4.11b)

e Ep cos 40pt&z=—
p

(4.11c)

electrons are displaced relative to ions according to the
relations.

which shows the effects of parallel drift, perpendicular
polarization drift, and ExB drift. Equation (4.12) pre-
dicts three types of instabilities: (i) the resonant decay
instability, (ii) the oscillating two-stream instability,
(iii) decay into quasimodes.

The resonant decay instability is characterized by res-
onant modes at both the low-frequency response and at
the lower sideband. Assuming weakly damped waves,
Eq. (4.12) can be expanded about the low- and high-fre-
quency normal modes ~, and ~„respectively, and we
obtain for the growth rate y,

where 0=eB/mc is the electron cyclotron frequency.
Since the oscillating particles may couple with waves
with wave vectors k (so that the driving term of the in-
stability is k 4x), we see that waves which propagate
parallel to the magnetic field are driven by the k&z
term, whereas waves propagating mainly perpendicular-
ly to the magnetic field are driven by the term k~ ~.
A unified treatment of the problem of parametric coupl-
ing of waves in a magnetic field has been undertaken by
Aliev et al. (1966), Amano and Okamoto (1969), and
Porkolab (1972, 1974). These authors used the Vlasov
equation, which can be solved after transformation to
the oscillating frame of reference. The resulting dis-
persion relation is rather complicated. However, in
the weak coupling limit it can be written in the following
form:

(y+y )(y+y )
i x t( l)xa( 1) 1 2

4 8(d 9& (4.14)

where we neglected the upper sideband. Here py p2 are
the linear damping rates, and

Rem,.(&u~, k&) = 0

defines the normal modes ~,.(k&),j = 1,2. We note that
these normal modes satisfy the selection rules [Eq.
(4.3)]. The threshold is obtained from Eq. (4.14) by set-
ting y=o.

The purely growing mode is obtained by assuming ~,
= 0, ts ((u„k)=0, in which case the growth rate near
threshold is (Porkolab, 1974)

4k'X2v ] 8&+(&u,)/Bu, i (1+T,./'T, )
(4.15)

2 1 1~(~) + —x;(~)[x,(~)] +t ((d —COO) 6 (CO+ COO)
(4.12) so that y~EO (since p, ~E,). For large electric fields

(i.e., for y»k„v„., y»kc, ), we obta, in

where we assumed a(~ —~,) «1, y.
' «1. Here

c(cu+j~o) =1+x,(~+j~,)+ x,(&u+j~, )

~2/3~2/3

(4~ass((u2, k)/B(u ()' '(1+ T,/Te)' ' (4.16)

is the linear dielectric function, j=0, +1, and X,.(X,) is
the linear ion (electron) susceptibility. These suscepti-
bilities can be written quite generally in terms of the
complete hot plasma dielectric tensor in a magnetic
field, including collisions. The coupling coefficient p. is
given by the expression

so that y~E', ', where ~2= ~p.
Decay into quasimodes is obtained by assuming a res-

onant mode at the lower sideband [so that as(u —cu, )
=as(~, ) = 0] and a nonresonant mode at the low-frequen-
cy response so that Es(cu) oO]. The growth rate is (Por-
kolab, 1974, 1977)

u' [Cx,(~) &+ x, (~))x.,(~)+(Ix,(~) i'+ x, (~))x„(~)]
4 isa/Bcu, ([e(~) [' (4.17)

where
~

e(&u) ~' = a„'(~)+ a g~), etc. Depending upon which
term is the largest, the growth rate is & ~Epp ( ~l or
y~EO/X &, , &z. A simplified form of Eq. (4.17) is obtained
by noting that typically IX,„~»1, (X,s ~

»1. We note
that Eq. (4.17) predicts particularly strong instabilities
when the wave-particle resonance conditions

(~o- ~2)/kii =v~, ~

((u, —cu, )/k„=nA/k„=v„,
are satisfied. These are similar conditions to nonlinear
Landau damping, which we discussed earlier. Since kp
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ko = —k„k2= 2ko, (4.18)

where k, is the wave vector of the ion wave. This type
of instability may also occur in the absence of a magnet-
ic field, and in laser fusion schemes it could be danger-
ous and undesirable. In particular, if a large fraction
of the incident power were reflected from the outer lay-
ers of the expanding plasma, it would reduce efficiency
and/or damage optics (Forslund et a/. , 1973; Eidman
and Sigel, 1974).

There are other types of decay processes which may

= 0 in the present treatment, the growth rates are ob-
tained more easily than in the nonlinear Landau damping
calculations.

There are also processes in which two electromagnet-
ic waves couple. For example, the decay of a whistler
wave into another whistler wave and an ion acoustic wave
is an example of so-called Brillouin scattering, in which
an incident electromagnetic wave decays into another
electromagnetic wave and an ion acoustic wave (Fors-
lund et a/. , 1972; Porkolab et a/. , 1972). In this case
the coupling mechanism is the j x 8 force, i.e. , particles
oscillating in the electric field of one of the waves pro-
duce a current j, which then couples with the magnetic
field component B of the second electromagnetic wave.
The j x B force then gives a contribution to electron
pressure which may drive electrostatic ion waves un-
stable. This process is of the backscattered type, name-
ly,

kpj

Ep

k
kp

k0

OC
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I
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QJ
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be of importance in laser fusion. A schematic of some
processes of interest is shown in Fig. 27. In particular,
noteworthy processes include Raman scattering (EM
-EM+ K.P.), decay into two electron plasma waves
(EM —E.P. + E.P.), Compton (induced) scattering (EM

DISTANCE —X

FIG. 27. "Theoretician's model" of inhomogeneous plasma with
linearly varying density gradient. Also shown are locations of
instabilities of possible importance in laser fusion schemes,
including some momentum diagrams. OTSE designates the pure-
ly growing mode, (ee) designates the cop -—2~~ instability, and
(SBS), (SRS), and (SCS) designate stimulated Brillouin, Raman,
and Compton scatter, respectively.

TABLE I. Typical thresholds in magnetized plasma.

Pump wave Decay wave Thres hold

Extraordinary mode
(if ignore tunneling)
(&iBo)~ ~o= "UH
(cu, «Q )

Extraordinary mode
(if ignore tunneling)
(Ei Bo); p UH
{cu,«Q )

Lower-hybrid
Upper-hybrid

Iori acoustic
Upper-hybrid

~pe Yi Y2 @0i/2

(2~g~f) ~i~2 8 (&npT8) /

'Yi'Y2 &p
cui~2 8(7/. npT )

Ordinary mode
((dp) (d )

Electron plasma wave
(Trivelpiec e—Gould)

Ion acoustic
Electron plasma

Ion acoustic
(ion cyclotron)

Electron plasma

(
Vi+2 '" &p

8(7rnoT )'/2

~op, pic coy, . '/'
(,Cu2 Q2

PB e 8(~n T )«2

Whistler wave
(dp( Q~ & M

Ion acoustic
Electron plasma

(d p (Q —co ) Yi'Y2 sin 8(d Q

8 (7rnpT, )'/'

Lower-hybrid wave
(resonance cone,
whistler wave)
k„/k & 3(m.fm,-)'~2

Magneto sonic wave
(coo

——Q])

Low er-hybrid
Ion quasimode

Lower-hybrid
Purely growing mode

Ion cyclotron
Drift wave

2~2 cu2 Q2 8 (7rnpT )i/2

2cv2 ~2 Q,' 8 (7rnpT, )'/'

2( ~Q )f/2~ kcSP
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et al. , 1975). All of these processes may introduce
new, possibly higher threshoMs of instability than in a
uniform plasma. The essential feature of these effects
is that often the instabilities become convective (forward
scattering) and the matching of the selection rul. es [Eq.
(4.3)] is destroyed in a distance short compared with ef-
fective growth lengths. Alternatively, finite lengths or
nonuniform pumps limit the region of spatial growth.
However, for backward scattering (v, v, &0) absolute in-
stability may occur if

Iv,v, 1 y~ ~y (4.19)

jFiXEO i ONL+
~ci

p 8 — 7ri2

r

tV A

(FAST MHD)

where L is the length of the system, vy v2 are the group
velocities of the two decay waves, y„y,are their damp-
ing rates, and y is the homogeneous, uniform plasma
gr'owth rate (see, for example, Pesme et al. , 1973).

The effects of density gradients can be obtained follow-
ing the procedure outlined by Rosenbluth 1972. Assum-
ing a %KB-type phase variation and defining

K(X) = &K=k, —k, —k,
FIG. 28. A schematic of possible choices for pump waves and
decay waves in a magnetized plasma. 0 designates the angle of
propagation with the magnetic field.

—EM+ particles), and filamentational and modulational
instabilities (where EM designates the electromagnetic
wave, and E.P. designates longitudinal electron plasma
waves). Thresholds and growth rates for these process-
es have been given in the literature (see, for example,
DuBois, 1974; Drake ef, al. , 1974; Manheimer and Ott,
1974). These instabilities have been reviewed recently
(DuBois, 1974; Liu et al. , 1976).

In Fig. 28 we show schematically different modes in a
magnetized plasma which may be used as pump waves
and/or decay waves. For example, the extraordinary
mode may decay into Bernstein waves and ion cyclotron
waves or electron quasimodes. The ordinary wave and
the whistler wave may decay into electron plasma waves '

and ion acoustic waves. Lower-hybrid waves may decay
into other lower-hybrid waves and quasimodes. Ion cy-
clotron waves may decay into other ion cyclotron waves
and drift waves. Alfven waves may decay into kinetic
Alfven waves and ion quasimodes (Hasegawa and Chen,
1975). In Table I we present various combinations of
these modes which may form triplets of decay waves
which have been considered and/or observed in past ex-'
periments. Several of these decay processes are expec-
ted to be of importance in rf heating of fusion plasmas
(Porkolab, 1977).

E. Corivective effects due to inhomogeneities

In recent years considerable effort has been spent on
taking into account the inhomogeneities of density, tem-
perature, finite interaction region, and nonuniform
pumps, i.e. , finite extent (Kroll, 1965; Porkolab and
Chang, 1970; Barker and Crawford, 1970; Perkins and
Flick, 1970; Rosenbluth et a/. , 1972; Pesme et al. ,
1973; Liu et a/. , 1974; DuBois et a/. , 1974; Forslund

(where we assumed a one-dimensional propagation so
that all k's depend on x only), the equations describing
the spatial variation of the two coupled modes can be
written in the following form (Rosenbluth, 1972).

'p, = '
p

' Ic()d),v~„ 0
(4.20a)

dE, y, y&,*'+ —*Z, = ' exp -i lC(x)Ch),dx v,
„ 0

(4.20b)

where E„Z,are the electric field amplitudes of the de-
cay waves, and the other quantities have been defined
earlier. Assuming a linear variation of the mismatch
with distance, namely K(x) =K'x, Eqs. (4.20a) and
(4.20b) can be combined in the following form

d2~ rf2 1df y—+ ——+ 0, tti=0,dx, 4 2dx vv (4.20c)

where f = y/v, „—y„/v,„—lK(x), and g ~E, . Integrating
Eq. (4.20) by WKB techniques, the total spatial amplifi-
cation of wave intensity obtained between the turning
points x, =2yo/K'(v, „v,„)'~'is given by

I=Io e"p(2"y'o/ IK' lv,„v,„), (4.21)

where linear damping has been ignored. 'Thus the effec-
tive threshold may be defined as the pump power for
which the initial background noise is amplified by a fac-
tor of 2m', namely,

v„v„~ (4.22)

ip (~&)" (4.23)

For example, for decay into weakly damped ion acoustic
waves an electron plasma waves one finds for the thres-
hold
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where v, =eE,/(m&uo) is the "quiver" velocity, and H
=(V„n/n) . The minimum value is obtained for the lar-
gest value of 0 just before strong Landau damping sets
in at the sideband, namely k&~=1/4. For strongly
damped ion waves (T, =T,.) Perkins and Flick (1971)
obtained the threshold

(4.24)

Again the minimum threshold obtains at k~D = —,'.
If the group velocities of the decay waves are in the

opposite dire. ction, and if K'=0 but K"NO, then absolute
instability may result (Rosenbluth, 1973). On the other
hand, if finite size effects are included, for vy V2(0,
the convective instability may become an absolute insta-
bility at the threshold given by Eq. (4.22) even if K'cO
(DuBois et al. , 1974). According to Nicholson and Kauf-
man (1974) and Spatchek et al. , (1975), if background
turbulence is present absolute instability ma, y result
even in an inhomogeneous plasma. Finally, we note that
the effect of a broad rf pump may reduce the growth
rates considerably (Valeo and Oberman, 1973; Thomson
1975; Obenschain et a/. , 1976).

F. Nonlinear saturation

So far we have considered only linearized perturba-
tion-type solutions. An important question is the non-
linear limit of these instabilities. There have been sev-
eral attempts to describe the nonlinear saturated state
as being due to induced scattering and cascading of the
sideband into further lower-frequency waves (Pustovalov
et a/. 1970, 1971; DuBois and Qoldman, 1972; paleo et
a/. , 1972; Fejer and duo, 1972; DuBois et a/. , 1973;
Chen and Hasegawa, 1975:, Rogister, 1975; Berger et
al. , 1976) or as due to other mechanisms including
broadening (Dupree, 1966; Bezzerides and Weinstock,
1972), pump depletion, and quasilinear effects (i.e.,
heating).

One may define a nonlinear conductivity associated
with the decay instabilities as follows (DuBois, 1974)

'E~ Q ~ co
if ~,»k, V, ;

if u &&k~V';,

where V2=T, /m, , co, is the sideband frequency, 0, is the
ion cyclotron frequency, and ~ ~ is the ion plasma fre-
quency. This level should be compared with that pre
dieted by cascading (Rogister, 1975)

However, for large values of E, the total energy goes as
Eo (instead of E4O) so that o'~L approaches a constant val-
ue, independent of E,.

While the linear theory of parametric instabilities is
now well understood (except in strongly inhomogeneous
plasmas), with a few possible exceptions the nonlinear
state is still not well understood. In addition, there are
very few experimental results to verify the theories.
Here computer simulation has been of considerable help
and guidance (Kruer et a/. , 1972; DeGroot et a/. , 1973;
Thomson et al. , 1974; Forslund et al. , 1975). However,
how realistic these computer "experiments" are is still
not known.

There have also. been extensions of these nonlinear
theories to some uses in magnetized plasmas. For ex-
ample, the saturation of the lower-hybrid decay instabil-
ity by cascading has been proposed (Hasegawa and Chen,
1975; Berger et a/. , 1976). These theories predict fur-
ther cascading of the sideband into either longer-wave-
length modes or shorter-wavelength modes, depending
upon the pump field structure. When cascading produces
sideband modes sufficiently close to the lower-hybrid
frequency, strong damping and hence saturation of the
whole spectrum results.

An alternate saturation mechanism may be orbit diffu-
sion (Porkolab, 1977). In this case when v,« ~Q„
straight-line ion orbit motion results, and perpendicular
ion Landau damping sets in. For example, for lower-
hybrid waves the condition of strong orbit diffusion is
given by (Porkolab, 1977)

~e«
o~~Eo -=4"'Eo

7r

(4.25)

co Eoa 'E'-" 16.+T ~ (4.26)

where p is a numerical coefficient of the order of unity.

where the left-hand side is the effective pump energy de-
pletion rate, and the right-hand side is the rate of
growth of the energy of the excited electrostatic wave
(the negative contribution due to damping is subtracted).
Note that by the above equation one could also define an
effective "nonlinear resistivity, " "v,«". In order to
calculate the nonlinear conductivity, one has to have a
theory for the saturated spectrum. This has been done
in. only a few special cases as mentioned above. For ex-
ample, in the case of T, =T;, the nonlinear conductivity
just above threshold was calculated by DuBois et al.
(1974) as

where /'I = cE/B is the E && B drift velocity and c,
=(T,/~;)'~' is the acoustic speed. Since typically
((u, /&m) = 4, ///c, = 1, short-wavelength decay waves
(k&~ & 0.2) may saturate by orbit diffusion and convective
damping due to finite pump widths, whereas Iong-wave-
length decay modes would stabilize by cascading,

In general, much more work remai. ns to be done con-
cerning the saturation of parametric instabilities. Sim-
ilarly, quasilinear theories predicting the type of heat-
ing produced by the instabilities is also lacking in most
cases. In the steady state this ean only be done once a
saturated spectrum is calculated.

G. Soliton formation and density cavities

Let us now consider another type of nonlinear solution,
namely soliton formation. This may be relevant to the
nonlinear state of the purely growing mode (Zakharov,
1972; Karpman, 1971; Morales et a/. , 1974; Valeo et
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V„P,.= ne V„@-, (4.28)

where we ignore ion inertia. Requiring quasineutrality,
i.e., requiring that ne ni, and since Pe neTe& Pi ni it
we may eliminate @ from Eqs. (4.27) and (4.28) and ob-
tain

(4.29)

where the bar represents the time average, and ( ) rep-
resents the spatial average. Equation (4.29) describes
modifications in the equilibrium density due to the high-
frequency field.

Let us now consider the high-frequency response at
the electron plasma frequency (&u, = &u„), which is de-
scribed by the simple harmonic oscillator motion

eg2 + ek + e gg
(4.30)

where we use the left-hand side of Eq. (4.4) and Pois-
son's equation, namely Eo=n, at high frequencies. Then,
recognizing that &o,'~ = ~,', (I + 3k'X~2) and that ar,', ccn(x), we
may perform a WEB-type expansion of E, that is, as-
sume E =Ee(t, x) exp(-iu, t) (where EH is a slowly vary-
ing function of x and t). From Eqs. (4.29) and (4.30) and
from the resonance condition &o2O = a,'„(x=0) we obta, in

3~', &'E~ ~, I &~I
at 2(o, ex' 2~, 16mnT,

(4.31)

where e'„=T,/m„and where the last term of Eq. (4.31)
contains the cubic nonlinearity. This is the so-called
nonlinear SchrMinger equation. It is easy to show that
in the linearized limit Eq. (4.31) predicts the purely
growing mode. The, computer solution of this equation
in the nonlinear limit has been discussed recently in
some detail (Morales, 1974). If we include ion inertia,
a similar equation is obtained in the moving frame of
reference, except that the nonlinea'r term [the last term
in Eq. (4.31)] is divided by the term (1 —e'/c,'), where
c, is the speed of sound and e is the group velocity of

al. , 1974; Hasegawa, 1975). In particular, due to the
ponderomotive force, strong local electric fields may
deplete the density, hence trapping the electric field.
As the field grows, more density is removed and a cavi-
ty is produced which then traps the fields further, etc. ,
until a collapse of the field may occur in two- and three-
dimensional cases. Since locally strong fields may be
produced, we may expect strong particle acceleration
and energetic particle tail formation.

As shown by the above autho. rs, the equation describ-
ing this nonlinear state is the nonlinear Schrodinger
equation. It can be obtained as follows: Ignoring the
magnetic field, and assuming u, =~„,the low-frequen-
cy (m=0) time-averaged response of electrons in the
presence of the external electric field is described by
Eq. (4.5). That is, we balance the pressure by the pon-
deromotive force,

p. + &.(IE I'/8m) =nev, Q,
'

(4.27)

ignoring electron inertia and including an ambipolar po-
tential P. Although only electrons respond to the pon-
deromotive force, ions respond to the ampipolar poten-
tial (trying to a.chieve charge neutra, lity)

the high-frequency wave (this is valid only a.s long as v

Pc,). The solution of this equation in higher dimensions
is still under investigation. In particular, this equation
may be unstable to transverse perturbations (Schmidt,
1975).

More recently work on solitons has been concentrating
on modes occurring in magnetized plasmas. For ex-
ample, Kaufman and Stenfla (1975) and Porkolab and
Goldman (1976) tested the regime of the upper-hybrid
frequency; Morales and I ee (1975), Schmidt (1975),
Kaw et al. (1976), and Sen (1977) treated the lower-hy-
brid frequency; Petviashvili (1976) treated the second
harmonic of the electron cyclotron frequency; and Mik-
hailovskii et al (197.6) treated the Alfven wave regime.
In these cases density depletion may take place due ei-
ther to particle motion along the magnetic field or to
drift motion across the magnetic field from Larmor or-
bit effects. Thus steepening of the electric fields could
occur under suitable conditions.

H. Experimental observations

1. Early experiments

Early experimental research concerning parametric
instabilities includes the work of Stern and Tzoar
(1966), Hiroe and Ikegami (1967), Chang and Porkolab
(1970, 1972), Stenzel and +long (1973), and Franklin et
al. (1971). In some of these experiments the decay spec-
trum as well as wave number selection rules (Chang and
Porkolab, 1970, 1972) were measured and compared
with the theoretically predicted threshold fields. In Fig.
29 we show the experimental results of Chang et al.
(1972), which demonstrate the selection rules [Eq. (4.3)].
At approximately the same time, Gekker and Sizukhin
(1969), and Batanov et al (1971) att. empted to demon-
strate anomalous absorption due to parametric instabil-
ities by injecting plasma into a waveguide from one end
and measuring the transmission (or reflection) coeffi-
cient of microwave power sent from the other end. The
measurements indicated strong reduction in the reflec-
tion coefficient above some threshold. Although energet-
ic particles were also detected in some of these experi-
ments, no measurements were made to detect the pres-
ence of parametric instabilities. Eubank (1971) attempt-
ed to improve on this situation by shini. ng microwave
power onto a plasma column in both the ordinary and the
extraordinary modes of propagation. He had a probe in
the plasma which detected ion acoustic oscillations up to
the ion plasma frequency, as well as grided probes (en-
ergy analyzers) which showed plasma heating. However,
the threshold measurements and/or anomalous absorp-
tion measurements remained less than clear, since, due
to the low rise time of the microwave pulses (millisec-
onds), strong ionization occurred near the open-ended
waveguide.

There was also a series of experiments performed in
Q (quiescent) machines by Dreicer et al (1971), and .Chu
and Hendel (1972). In these experiments the plasma was
placed in a high-Q rf cavity, and by measuring the Q of
the cavity it was possible to observe an increase in the
dissipation above some critical threshold input power
level. In Fig. 3o we exhibit the results of Chu and Hen-
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(a)

FIG. 29. Decay spectrum show-
ing energy (frequency) conser-
vation of: (a) low-frequency ion
acoustic wave; (b) high-fre-
quency cyclotron harmonic
(Bernstein) waves, when
pumped by Eo -LE in the shaded
regions of the dispersion curves
of cyclotron harmonic waves.
(c) The dispersion relation for
the Bernstein waves. The mo-
mentum conservation is veri-
fied from the interferometer
traces of the waves: (d) ion
acoustic wave; (e) lower side-
band (Bernstein wave); (f) upper
sideband (Bernstein wave).
(After Chang, Porkolab, and
Grek, 1972.)

(b)
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del (1972), which show the increase of plasma rf resis-
tivity (1/Q), increase of effective plasma heating (7'/To
determined from conductivity measurements), and
growth of the noise spectrum (picked up by a probe from
within the cavity}. Figure 31 indicates in the same ex-
periments a break in the absorption curve when the in-
put power was above threshold for parametric instabili-
ty. In particular, it appeared that in the unstable re-
g me P „ct-E and hence it was concluded that e,« ~E0,
in agreement with the nonlinear theories of paleo et al.
(1972) and DuBois et al. (1974). However, in the more
recent experiments of Flick (1975), the input power was
extended to higher levels, and the P,~~E' law was not
observed. In particular, even near threshold, Flick
found a faster variation of P», with E than the fourth
power, and a slower variation. well above threshold. In
addition, the cascading process assumed in the theories
of DuBois et al. (1974}and Valeo et al. (1972), was not
observed in the experiment. Flick (1975) proposed that
pump depletion and random-phase effects may be the
relevant processes to explain his experiments.

We must also include here the results of high-power
radar modification experiments in the ionosphere (Ut-
laut and Cohen, 1971; Wong and Taylor, 1971; Carlson
et al. , 1972!) These experiments also showed that para-

metric instabilities are operative and are responsible
for some of the observed plasma heating in the ionos-

pheree.

Let us now consider some of the more recent experi-
ments in which parametric instabilities and the result-
ing plasma heating were studied in more detail than pre-
viously. We shall discuss these experiments in order of
decreasing frequencies.

2. Upper-hybrid frequency

In the regime of the upper-hybrid frequency recent
measurements on parametric decay have been performed
in both linear geometry (Grek and Porkolab, 1973; Por-
kolab et a/. , 1976) and toroidal devices (Okabayashi et
a/. 1973). These experiments include the regimes &,
«d and X,» d (where X, is the free-space wavelengt oth of
the electromagnetic wave, and d is the characteristic .

plasma size). Wavelength measurements of the decay
waves have shown decay into upper-hybrid waves (Bern-
stein waves) and lower-hybrid and/or ion acoustic waves.
M asurements of thresholds, growth rates, pump deple-

dtion, and anomalous resistivity have been performe
(Grek and Porkolab, 1973), in which significant electron
heating was associated with the -presence of the decay in-
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ing. Significant heating was observed only above thresh-
old for decay instability. A similar phenomenon has
been observed in the Princeton L-3 device (Porkolab et
a/. , 1976) and the Princeton FM-1 toroidal device (Oka-

stability. An effective anomalous resistivity of a factor
of ten to twenty times larger than classical resistivity
has been measured (Grek, 1973). In Figs. 32 and 33 we
show some of these experimentalresults on plasma heat-
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FIG. 31. Results of the power
absorption measurements in
the experiments of Chu and
Hendel (1972).
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FIG. 32. (a) Amplitudes of Bernstein waves which couple with
lower-hybrid waves: (d~= co~, coo (the pump frequency) is var-
ied. (b) Amplitudes of Bernstein waves which couple with ion
acoustic waves. (c) Fractional increase of the main-body elec-
tron temperature as obtained from a swept Langmuir. probe;
P0 ——30 W. (After Grek and Porkolab, 1973.)

.5 p.sec

l.5

bayashi et a/. , 1973). The results from the latter are
shown in Figs. 34 and 35, again demonstrating that sig-
nificant ion and electron heating occurs only above
threshold for parametric instabilities. In this toroidal
experiment, in the presence of parametric instabilities,
no significant deterioration of confinement was observed.
In particular, because of the short wavelengths excited
(kp'„=1) and decay well within the body of the plasma
column, we do not expect much enhanced loss due to this
instability.

3. Electron plasma frequency

Experiments showing yarametri. c instabilities and
plasma heating just above the electron plasma frequency
have been performed recently by Dreicer et al. (1973),
Mizuno and DeGroot (1975), and Porkolab et al. (1976).
Dreicer's experiments were performed in a cavity ge-
ometry as discussed previously. Mizuno and DeGroot
(1975) made their measurements in a waveguide using an
externally made plasma. In both of these experiments
the resulting hot electron tail (suprathermal electrons)
was measured. It was found that 1% to 10/q of the par-

I l

-100 -200
u (voLTs)

-300

ticles ended up in the tail, depending on power and ge-
ometry (with Dreicer's experiments measuring the low-
er percentage). Maximum electron energies of up to two
orders of magnitude above thermal energy were detected
for input powers up to three orders of magnitude above
threshold.

In the experiments of Porkolab et al. (1976) a geometry
was employed similar to that of Eubank (see Fig. 36),
but the pulse rise time was decreased to 50 nsec, and
the pulse duration was reduced to at most 10 psec so
that ionization problems could be avoided. An attempt
was made to verify the inhomogeneous threshold theory
discussed earlier. However, it was found that while. for

FIG. 33. (a) Electron energy distribution [E'0(p)j for different
powers (P) 5ps after the start of the heating pulse. co+a =1,
uJco„=1.5. (b) Energy distribution for different times (t) after
the start of the heating pulse; Po ——25 W. (After Grek and
Porkolab, 1973.)
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electric fields due to refraction, the local electric field
was estimated to be near the uniform threshold theory
(within an order of magnitude). In Fig. 3'l we show a
typical low-frequency decay spectrum (which was identi-
fied by interferometry as ion acoustic waves) and in Fig.
38 measurements of the heating rates of the main-body
electron temperature are shown. The heating results of
Fig. 38 indicate an anomalous heating of a factor of
twenty faster than classical collisional absorption. The
production of energetic tails was also observed, with a
few percent of the particles occupying the tail, and with
maximum energies up to a factor of fifty above the mean
bulk energy. In Fig. 39 we show a distribution function
for input powers two orders of magnitude above thresh-
old. In addition, production of energetic ions was also
observed (a few percent with maximum energies up to
70 ey).

4. Trivelpiece-Gould modes

Because of possible applications to heat-controlled fu-
sion devices, a large number of experiments have been
performed in this regime, i.e., co„«m &m „Q,(Por-
kolab et a/. , 1973, 1974; Hendel and Flick, 1973; Flick,
1975; Chu et al. , 1973; Bernabei et a/. , 1973, 1974; and
Edgley et al. , 1975). In this regime decay into other
Trivelpiece-Gould modes [magnetized electron plasma.
waves (Trivelpiece and Gould, 1959)] and low-frequency
ion acoustic waves, or ion cyclotron waves, or ion
quasimodes occurs. We should also include here experi-
ments using whistler waves (Porkolab et al. , 1972). In
these experiments both energetic electron and ion tails
have been observed at high input powers and short pulse
durations (Porkolab et al. , 1975) as well as main-body
ion heating at longer times (Hendel et al. , 1973; Chu et
al. , 1973; Bernabei et al. , 1973, 1974). It is believed
that the energetic ion tails are due to acceleration by the
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FIG. 38. (a) Temperature ob-
tained from a Langmuir probe
as a function of time and input
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expanding parametrically heated energetic electrons, as
well as due to the turbulent ion acoustic fields. In the
work of Bernabei et al. , (1973, 1974), main-body ion
heating was also observed for pump frequencies , = 3„
«u „even though initially T,o» T;o. Simultaneously a
strong parametric decay spectrum in the ion cyclotron

regime was observed. Chu et al. (1973) in a Q machine
operated in the regime ~pi ~ ~o+ ~pe~ Te Tf, observed
parametric decay in the ion cyclotron regime and detect-
ed concomitant main-body ion heating. In all of these
cases significant heating eras observed only above
threshold for parametric excitation.
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FIG. 39. Energy analyzer measurements of the parallel elec-
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FIG. 40. (a) Interferometer traces of ion quasimodes propagat-
ed at different frequencies. (b) Dispersion curve of the ion
quasimode (circles and dots) and the ion acoustic mode (tri-
angles); solid curves, theory. (c) Typical ion quasimode os-
cillation amplitudes after switching on the rf pump field. (d)
Growth rates as a function of the E &&X drift velocity VD, vs the-

acoustic speed Vz. Solid curve, theory. (After Chang and
Porkolab, 1974.)
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FIG. 45. Space-time represen-
tation. of ion bursts (shaded)
driven by the ponderomotive
force. Density cavities are cre-
ated as a result of ion expul-
sion. The polarization of ion
trajectories is represented by
the cone with a half-width of
40 with respect to the z axis.
(After Mong and Stenzel, 1975.)
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that trapped electric fields are localized in the density
cavities. Furthermore, in the experiments of Ikezi et
a/. it. was observed that the coupled nonlinear electron
plasma wave and the nonlinear ion acoustic wave prop-
'agated in the form of periodic wave trains with approx-
imately the ion acoustic velocity. Nishikawa et al. (1974)
have developed a theory to deal with this special case.
These processes may be of importance in situations
where very strong rf fields are generated in the plasma.
More recent work along these lines has been done near
the lower-hybrid frequency and for whistler waves by
Stenzel (1975, 1976), but these results were questioned
recently by Sugai et al. (1977).

J. Summary and conclusions

In the presence of sufficiently strong high-frequency
electric fields the plasma is subject to parametric in-
stabilities. In this section we have attempted to sum-
marize the important developments in the theory of pa-
rametric instabilities, and to give a considerable amount
of experimental evidence for their existence. Although
the first theoretical predictions of such instabilities in
plasmas were made ten years ago, much of our present
day understanding of this phenomenon has been obtained
in the past five years. The explosive growth of this field
has to do with possible applications to laser-pellet fusion
and rf heating of magnetically confined fusion plasmas
(and, for a brief period, ionospheric modification exper-
iments). While there is now good theoretical and experi-
mental understanding of linear theory in uniform or
weakly inhomogeneous plasmas, our understanding of
this phenomenon in strongly inhomogeneous plasmas is
rather poor. Also, while there has been much progress
in developing nonlinear theories, only a narrow regime
(T, =T;, B=0, Eo close to threshold) are such theories
capable of predicting the saturated state and the asso-
ciated anomalous absorption. Even in this case, detailed
experimental verification is lacking or agreement be-
tween theory and experiment is not satisfactory. The
distribution of absorbed energy between the main body
and/or a suprathermal tail is not well known. To the
present date, most of the experimental information

available has been obtained in small-scale microwave
experiments, or in computer simulations. Whether such
experimental and/or theoretical results can be extrapo-
lated to the highly complex geometries of laser-pellet
interaction and/or hot, magnetically confined fusion
plasmas, remains to be seen.

In the case of magnetically confined plasmas, to date
there have been only a few relevant experiments in fu-
sion (toroidal) plasmas. ln these experiments the cru-
cial questions are the heating efficiency and the effects
of the excited turbulence upon plasma confinement. Fur-
ther experimental results are expected in the coming
years, which will hopefully answer some of these ques-
tions.

V. STRONG-TURBULENCE THEORIES

A. Resonance broadening

The first attempts to improve, weak-turbulence theory
were proposed by Dupree (1966, 1967): he suggested re-
summing some of the terms left out of weak-turbulence
theories in order to obtain a more accurate theory. Both
Dupree and Weinstock (1968, 1969) showed that the net
result of such an approach was an improved Green's
function which took into account orbit perturbation due to
the waves. Later these results were criticized by Rud-.
okov and Tsytovich (1970) and Galeev (1969), who asser-
ted that Dupree's results were not self-consistent since
the particle distribution function also had to be modified
by the turbulent floctuations; in particular, Dupree's
theory did not reproduce the results of weak-turbulence
theories in the appropriate limits. Further attempts to
improve these theories were made by Benford and
Thomson (1972) and Choi and Horton (1974, 1975), who
attempted to re-sum al.l the singular terms in the per-
turbation expansion, thus obtaining a "renormalized"
turbulence theory. However, they could not solve the
general equations either. Nevertheless, in principle an
improved theory mas set up. More recently Fisch and
Hers (1975) obtained similar results.

In essence the problem arises from the fact that when
wave-particle resonances of the form
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co, —u, —ur, . . .—(k, —k, —ks. . .) 'v=0 (5.1)

coincide to all orders, the perturbation expansion used
in weak-turbulance theories breaks down. Thus, in any
improved theory, these singularities must be removed;
hence the name "renormalization" analogy with quantum
field theory.

I et us briefly outline the approach taken by some of
these autho'rs. First, linear theory is represented by a
linear dielectric function which can be written in a one-
dimensional form as follows:

c(k, ~)
00 ~4O Bg= 1 — kk dv dv' dt'ei"'G, (k, t, v; t', v')

QO kO MP

(5 2)

where 7'= t —t', and the Green's function is given by

+ ~ ~ ~

FIG. 46. Feynman diagrams for the propagator (Gg '.

The iteration may now be continued by substituting Eq.
(5.4) into the last term of Eq. (5.6), transferring selec-
ted terms containing f„to the left-hand side, and so on,
to all orders. Now we take the ensemble average and
call the left-hand side (Gk) 'fk. Using diagrams, we can
represent (Gk) ' by the propagator diagram Fig. 46,
where the wavy lines represent waves, the solid lines
are the particle propagators G(k), and the dots repre-
sent the velocity operator (6/sv). This sum is the solu-
tion to the integro-differential equation

g, (s, t, v; s', t', v') = 6(v —v')6(z —s' —vv);

g, (k, t, v; t', v') = 6(v —v')exp(-ikvr);

g, (k, co, v; v') = 6(v —v')i/((u —kv).

(5.3a)

(5.3b)

(5.3c)

(G(k)) =Go(k)+G, (k) g IEk. kI 6
(G(k' —k)) 6 (G(k))

kook
-

V Bv

(5.7)

f.=G.(k)Ek +G.(k) Z Ek-k
k~k

(5 4)

Let us now operate upon Eq. (5.4) with G, '(k), and then
iterate once

Go'(»fk Ek 6
=+ Z Ek-' G.(k')Ek 6

sfk"
+ Q Ek-k, 6 Go(k')Ek, kBv Bv

kP gkP ~

(5.5)

The second term gives resonant mode-mode coupling,
which we shall ignore here (since it does not have singu-
lar terms). In the third term we had two contributions
in the previous section to nonlinear wave-particle reso-
nance

k" =k' —k or k" =k.
I et us now transfer the k" =k term to the left-hand side,
so we have

+M k-k~ 6 0(k ) k~
V kP~k V Bv

+Z E~k Go(k')Ek k ~
Bv Bv

(5.6)

[Equation (5.3c) is a. Fourier-Laplace transform of (5.3a).
This Green's function introduced the numerous resonant
denominators we saw earl. ier in our section on weak-tur-
bulence theory. It is clear that the unperturbed particle
orbits used in Eq. (5.3a) are not satisfactory. There-
fore, let us assume that we use a more accurate orbit,
i.e. , replace g, with G, where

G =(G)+6G,

and replace G, by (G), assuming 5G «(G). Then let us
write the perturbation series in a schematic form, omit-
ting constants such as (q/m), etc. (Drummond and Ross,
1973)

which is known as Dyson s equation in quantum field the-
ory. An approximation to Eq. (5.7) is

(G(k)& =G.(k)+G.(» ~ IE'-.I', G.(», «(»&.
kPgk

"
V . V

So far only Eq. (5.8) has been solved with the assumption
that the spectrum of unstable waves is flat over a range
of phase velocities &(co/k). The result is a diffusion
equation for fk, with a resulting Green's function which
predicts resonance broadening, " namely

1 ~(G (k)) = 6(v —v')exp —ikv& — k'Dv'—
3

(5.9)

where for resonant particles

(5.10)

Here r„=[k&((u/k)j is the autocorrelation time dis-
cussed in the introduction. From Eq. (5.9) it is clear
that wave-particle resonances such as Eq. (5.1) will be
washed out within the diffusion time

k'Dv~v =1, or r =(k'D) 't'
which we discussed briefly in' the introduction. Note that
since we have removed some of the terms from the prev-
ious kinetic equations, no longer do we have the symme-
try of the matrix elements obtained in the previous chap-
ter. Also, the conservation laws do not hold any more.
Thus a fully consistent, mass-conserving operator per-
turbation theory will require simultaneous renormaliza-
tion of both plasmon and particle propagators.

The foregoing theories have been applied to the ion
acoustic instability by Capone and Davidson (1973, 1974),
Sleeper et al. (1973), a.nd Choi and Horton (1974,. 1975).
The theories have al.so been extended to include waves
which propagate nearly perpendicularly to a magnetic
field (such as the modified two-stream instability and
Bernstein waves) by Galeev (1969), Lominadze (1972),
Dum and Sudan (1969), and Dum and Dupree (1970). We
should also mention here the work of Okuda et al. (1973,
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1974), who attempted to observe the effects of diffusion
by computer simulation experiments. Indeed, Okuda
et al. (1973, 1974) found some discrepancies with some
of these theories, pointing to the importance of a com-
pletely renormalized theory. In addition, the recent
work of Dum (1975) shows that the most important effect
of turbulence is not necessarily resonance broadening.
Rather, the difficult problem of integration of the velo-
city-dependent diffusion coefficient must be faced in each
specific case under consideration, and the final result
may well be different from an automatic application of
resonance broadening results [e.e., Eq. (5.9)].

f=f.+f'"+f+f, (5.11)

where f, is the average distribution function, f~" is the
phase-coherent response to the electric field, f de-
scribes the clumps, and f contains other effects which
will be ignored here. The main question concerns the
clump self- correlation function (f (1)f (2)). The brackets
() denote an ensemble average, and 1 stands for x„v,.
If the phase-space volume of a clump is sufficiently
small, then all the particles which consititute the clump
will tend to move together. Such clumps will behave like
a single large discrete particle (ma. croparticle). It is
expected that many plasma processes which depend upon
particle discreteness, such as radiation, absorption,
conductivity, diff usion, etc. can be greatly enhanced b y
the presence of clumps. In the collisional case, the self-

B. Clumps and two-dimensional vortices

The most recerit theories attempt to open new ways to
treat plasma turbulence, and thus improve upon reso-
nance broadening theories. The pioneering work along
these lines was ca.rried out by Dupree (1970, 1972, 1975),
who proposed that in the turbulent phase ballistic

clumps" of plasma may be formed which may then scat-
ter each other like dressed test particles. For example,
for the particular case of excitation of the ion acoustic
instability by an electron drift, saturation may occur
due to the friction force exerted by the clumps (or mac-
ropa. rticles).

Following Dupree (1972), let us briefly outline the fun-
damental ideas behind clump formation. The distribution
function can be written as a sum of four parts

correlation function for di screte particles is

(ff) =n '6(v )6(x )fo(v, ), (5.12)

(f (1)f(2)) = 6~'6(x ) 6(v )D(sf, /Bv)', (5.13)

where the constant in front was obtained by Dupree
(1972). Comparing Eqs. (5.12) and (5.13), the ratio of
clump to particle mass (i.e. , the number of particles in
a clump) is

(5.14)

Clumps may move along ballistic orbits and interact
with each other and the turbulent fields. If the clump
produces a potential without shielding

dv, (ff)»„, (5.15)

then the shielded potential will be

whe re n is the average density, and x = xy x2 v: vy v, .
Here the delta functions tell us that the particles have
zero spatial extent and that all parts move at the same
speed. Let us now estimate (ff) as follows. Let us as-
sume that the turbulent spectrum has an average wave
number k and a. spectral width &k = k, and v, = (kDv&) '

where the trapping width is given by Dupree (1966)
as &v, = (D/3k)'~' and v, = (k&vt) ' (D is the velocity dif-
fusion coefficient discussed earlier). Now (f(1)f(2)) will
be zero unless x ~k ', since scattering will tear aclump
of size x =k ' apart in a, time (k'D/3) '~', smaller
clumps will last longer. Therefore the clump lifetime
T„is of order T,. Similarly, v ~ (km~)"'= &v„orvelo-
city dispersion will destroy the clump.

In steady- state turbulence clumps will be continuously
created as long as (sf, /&v) 40 in the resonant velocity
region. Clump formation occurs because the average
gradients in velocity space are converted into spatial
fluctuations (or clumps) by the phase-space mixing pro-
duced by the turbulent electric field. During a clump
lifetime f, is mixed over a distance (D&„)'~'= &v„and
thus the amplitude of a fluctuation of f about the mean is
f = &v, (&f,/&v) . Combining this result with the limits on
x and v, we obtain the clump function

ex
S

a

+

P.

FIG. 47. Computer simulation of clump formation: phase-space density. Velocity is plotted vertically and distance horizontally.
Every tenth particle is shown. {a) u~t=0. 4, (b) m~t=20, (c) e&t= j.50.
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(5.16)

where e(k, ~) is the plasma (nonlinear) dielectric con-
stant. Since &P')~ „depends on &@')~ through D (v), Eq.
(5.16) is the equation for &@')»

„

for steady-state turbu-
lence. Thus the state described by Eq. (5.16) contains
clumps as a major constituent (in addition to waves and
particles). In the spectrum clump motion will produce
ballistic singularities with +=kgb, which may show up
strongly in experimental spectra. So far the only de-
tailed verification of these theories is in a computer ex-
periment by Dupree et al. (1975). In Fig. 47 we show the
results of the computer simulation. Figure 47(c) shows
granulation even at a time t = 1.50 u&' after the initial.
perturbation is applied; by this time the plasma should
have relaxed to the thermal equilibrium. In particular,
the authors find &6N)' for v = v,

„

to be ten times &N) at
cu~t = 150. This is invoked as evidence that particles are
not randomly distributed within small cells but tend to
occur in clumps.

We should also note the work done by Taylor and
McNamara (1971), Dupree (1974), and Joyce et al. (1974)
along the lines of developing two-dimensional plasma
turbulence in a magnetized plasma. In these cases guid-
ing center motion of the plasma is used to obtain correl-
ation functions and vortex motion. Due to lack of exper-
imental data, we shall not discuss these novel ideas here
any further.

C. Experimental results

Because of great difficulties in obtaining meaningful
experimental data, detailed verification of strong-turbu-
lence theories is naturally lacking. Some information on
resonance broadening was deduced from the damping of
plasma wave echoes. In particular, the experiments of
Jensen et al. (1969), which we discussed earlier in con-
nection with echoes, gave evidence of diffusion of parti-
cle orbits due to the presence of turbulence. Further
evidence of resonance broadening and its saturating ef-
fect upon instabilities (or its reduction of their growth
rates) was obtairied recently by Correll et al. (1975),
Slusher et al. (1976), Benford and Correll (1977), and
Hershcovitch (1977). In the experiments of Slusher et al.
(1976) the saturation of the current-driven ion acoustic
instability was studied. It was concluded that saturation
was not inconsistent with resonance broadening and
La'ndau damping on the tail of an impurity particle dis-
tribution. However, conclusive proof of resonance
broadening could not be given in this experiment.

A more recent experiment on resonance broadening
is that performed by Benford and Carrell (1977). These
authors studied stabilization of the electrostatic ion cy-
clotron instability with frequency ~ = Q~, by injecting ex-
ternal noise into the plasma'with frequencies 0 ~ &co ~ 0&..
The instability level just above threshold was monitored
as the noise level was raised. The noise level was typ-
ically large, i.e., e$/T, & 1. The authors found that sta-
bilization occurs for y, =k~D„, where y, is the linear
growth rate of the instability, and D„is the diffusion co-
efficient due to the noise. This relation implies
(vv —m/k»)/v«~k~2D„~Q, where vv is the electron drift
velocity, and $ is the rms noise level (potential). The

0.8-
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authors found agreement with this law experimentally,
and this is shown in Fig. 48. We note that a similar law
would also apply in the case of stabilization by mode-
mode coupling, which cannot easily be ruled out in this
experiment. However, mode coupling theories are not
expected to apply at such large fluctuation levels.

In the experiments of Hershocovitch the stabilization of
the (Q,/2) instability was studied (Maxim and Trivel-
piece, 1965; Murkami and I.idsky, 1970). In these ex-
periments the instability was excited by injecting two
counter-streaming electron beams along a magnetic
field. Turbulence was injected into the chamber by rf
antennae. Probes were used to monitor the level of in-
stability and an energy analyzer was used to measure
the time evolution of the energy distribution of the beam.
According to theory, as saturation

k~O„+k~D ) ——y~, (5.17)

where y& is the linear growth rate, D„andD, are the
diffusion rates due to the externally injected turbulence
and to the instability, respectively. Herschcovitch ob-
tained the following expression for Eq. (5.17)

(5.18)

whe re C, and C, are the coupling coefficients between the
antennae and the plasma, and &', R' are resonance func-
tions, respectively. When D„»D&, the R's become in-
dependent of D's, and Eq. (5.18) reduces to

I
I'

I
I'~ext + @inst

a b
(5.19)

which is the equation of an ellipse, with y~ as a varying
parameter (since y ~Is ', where Is is the beam current).
Thus, in contrast to the results of Benford and Correll,
Hershocovitch found D,„~~~P ~'. In Fig. 49 we show the
experimental results, demonstrating good agreement
with Eq. (5.19). In addition, it was verified that when
sufficiently strong turbulence was injected into the cham-
ber so that stabilization with the external noise alone

0 l & t I

0 0-I 0.2 0.3 0.4 0.5 0 6 0.7 0-8 ' 0.9 I.O

RMS NOISE SiGNAL, $ (VOLTS)

FIG. 48. Dependence of critical electron drift velocity on the
amount of external noise potential. (After Benford and Correll,
1977.)
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FIG. 49. Saturated instability amplitude vs injected turbulence
for three values of the beam current. Scales are relative rms
amplitudes of the fluctuating potentials. (After Hershcovitch,
1977.)

70—

6.0

could be achieved (i.e., when k~D„=y~), no changes in the
beam distribution occurred (i.e. , quasilinear changes
could be ignored. ) The discrepancy between the results
of Benford and Correll, and those of Hershcovitch is not
clear. In particular, neither set of results is applicable
to the importantregime in which D, due to the instability
dominates. Thus we must await further experimental
work concerning self-produced resonance broadening.

At this time it is appropriate to mention the ea.rly ex-
periments of Porkolab and Kino (1968), who first attemp-
ted to study diffusion due to low-frequency noise in a po-
tassium plasma. The diffusion coefficient was obtained
by measuring changes in the density profile as the level
of turbulence was varied. These authors found D ~ @/B,
which is similar to Bohm diffusion (Bohm, 1949) and also
similar to the results of Benford and Correll (1977). A
typical result is shown in Fig. 50. Again, e$/T, » 1, so
that a comparison with the previous theory is not easily
justified. Perhaps strong-trubulence theories will be
necessary to explain these experiments.

Experimental evidence for "clump" formation is still
lacking. We expect that if such objects exist, they
should have occurred in some of the foregoing experi-
ments. However, it is not clear how one verifies exper-
imentally the existence of such clusters of particles.
Perhaps computer simulation is the only means of ob-
taining a detailed observation of clumps.

Finally, we should mention some of the large-scale
experiments where strong trubulence, generated by
strong electric fields, was used to heat the plasma (Mah
et- aE. ', 1970; Wharton et al. , 1971; Hamberger et al. ,
1971; Zavoisky et al , 1972; Bengs. ton et a/. , 1975). In

2.0

1.0 2.0 5.0 4.Q
MAGNETIC FIELD — B ( k 6)

5.0

FIG. 50. (a) Diffusion coefficient vs broadband injected noise
level. 30cfF100 KHz, A=3 KG, ~S ~

~D. (b) Diffusion co-
efficient vs magnetic field, V~, =2 V and constant.

these experiments eP/T, & 1 also, so that strong-turbu-
lence theories will be needed to interpret the results.
Thus it is clear that much more work is needed to under-
stand the turbulent state in plasma.

VI. LARGE-AMPLITUDE ELECTRON PLASMA
WAVES AND SIDE8AND INSTABILITIES

A. Historical background

The study of large-amplitude electron plasma (I AEP)
waves and the associated sideband instabilities is a good
example of a problem in which plasma theorists and ex-
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perimentalists worked closely to unravel the underlying
physics. The theories of Al'tshul' and Karpman (1965)
and O' Neil (1965) led to the experimental observation by
Malmberg and Wharton (1967) of the nonlinear amplitude
oscillation of LAEP waves. During the course of their
experimental investigation Wharton, Malmberg, and
O' Neil (1968) discovered the sideband instability asso-
ciated with the presence of a LAEP wave. They verified
that the frequency separation between the sideband peak
and the I AEP wave was proportional to the bounce fre-
quency, ms =ko(eg, /m)'~', where P, and k, are the
large-amplitude electric potential and wave number, re-
spectively. Subsequent experiments (Franklin et al. ,
1972) showed that the sideband waves satisfied the linear
dispersion relation, and that their frequencies were pre-
dicted by the formula ~ = kv, + w~, which is just the
bounce frequency Doppler shifted by the main-wave
phase velocity u, = coo/k, . Furthermore, it was shown
that a test wave at the sideband frequency was amplified
and that the growth rate was proportional to P,'~'. Sim-
ilar results were also reported for large-amplitude ion
acoustic waves (Ikezi et al. , 1972). To explain these ex-
perimental results, two classes of theories were pro-
posed: (1) the parametric sideband theories and (2) the
quasilinear sideband theories. 'The mechanism for the
former theory was originally proposed by Kruer et aE. ,
(1969). It involves a parametric interaction between the
LAEP wave and the trapped electrons acting as Doppler-
shifted harmonic oscillators. This simple model was
further pursued formally by using the Vlasov equation
(e.g. , Goldman, 1970; Mima and Nishikawa, 1971; Gold-
man and Berk, 1971; Wong, 1972). These theories a.ll
predicted the existence of a series of sidebands about the
LAEP wave, and also predicted that the growth rate of
the instability y varies as P,' ' or @„depending on the
shape of the potential well chosen. On the other hand,
the quasilinear theories assume that the electron dis-
tribution is modified by the LAEP wave, and thus the
growth rates of the unstable waves are a function of the
slope of the distorted portion of the distribution function.
In this section we shall briefly review the theory of
O' Neil, the original experiments of Malmberg et aE. ,
the parametric instability model of Kruer, Dawson, and
Sudan, and the experiments which purport to support the
quasilinear theory. We shall also summarize some re-
cent experiments on sideband instabilities which were
explained by the detrapping of the electrons in the
troughs of the large-amplitude mave.

B. Theoretical model of O' Neil

The collisionless damping of an electron plasma wave
was first calculated by Landau (1946) using the linearized
Vlasov equation and Poisson's equation. The solution
was obtained by solving an initial value problem for the
dynamics of the electrons, and the ions were treated as
neutralizing background. For an electron plasma, Lan-
dau's formula for the damping decrement is

where ~/k is the wave phase velocity, and f, is the un-
perturbed equilibrium distribution. This formula tells

iaaf. )

esonant glori

FIG. 51. The division of the electron distribution into a main
part and a resonant part. (After O' Neil, 1965.)

dT nm I'dx "
(u ' 8f (6.1)

mhere n is the electron density, X is the wavelength, and
f is the electron distribution in the wave frame. The x
integration just gives the spatial average off . In order
for this calculation to be applicable for time greater than
t =7, the exact Vlasov equation iri the resonant region
mas solved. In the wave frame, the solution of the Vlas-
ov equation (which expresses the incompressible flow in
phase space) can be written as

f (x, v, f ) '=f [x,(x, u, t), u, (x, u, t), 0],
where f(xo, uo, 0) is the initial distribution, and (xo, vo) is
the point from which (x, v) evolved. The evolution of this
point is governed by the equation of motion

us that if there are more electrons moving slower than
there are moving faster than the wave phase velocity,
the wave mill be damped. However, this linearization
procedure is only valid for a time t, which is short
enough that the wave does not have a chance to trap the
electrons, i.e. , t«r = (m/e@)'~'/k, where k is the wave
number, and P is the wave amplitude. The question as
to what happens to the wave for t ~ 7 was first tackled by
Al'tshul' and Karpman (1965), and independently by T.
0 Neil (1965). We shall here briefly describe the ap-
proach taken by O' Neil (1965); Al'tshul' and Karpman
have obtained a similar result by a different method,

Following Dawson's physical model (1961) for describ-
ing the linear Landau damping mechanism, O' Neil divid-
ed the electron distribution into a main part and a reso-
nant part (see Fig. 51). The main part of the distribution
supports the oscillatory motion of the plasma wave and
the resonant part of the distribution damps the wave. To
get the damping coefficient, 0 Neil first calculated the
rate of increase of the kinetic energy, T, of the resonant
electrons. Then by invoking the conservation of energy,
he set the rate of increase of the kinetic energy equal to
the rate of decrease of wave energy, E'/8m. From this
equality the damping coefficient of the wave was obtained
immediately. O' Neil considered a plasma wave with a
constant amplitude of the form

E(x, t) =E sin(kx —(ut) .
In a coordinate system which moves with the wave, the
electric field can be written as E sin(kx) and the rate of
increase of kinetic energy density can be written as
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mX = -eE sin(kx), (6.2)

with initial conditions (x, v) =(x„v,). This equation can
be solved in terms of elliptic functions. The first inte-
gral of the equation is just the expression for conversa-
tion of energy, i.e.,

(mx2/2) —(eZ/k) cos(kx) =tv . (6.3)

When we use the transformations kx —= 2$ and v2=2eE'/
(kzv+eE), Eq. (6.3) becomes $2= (1/K2v'2)[1 —/c2sin'($)].
By going through the calculation outlined above, O' Neil
obtained a nonlinear growth rate

where

64 'd 2n1r2 sin[rrnt/~Ex]
1r 11'E2(1+q 2")(1 +q '")

(2n y 1)1r2m sin[(2n + l)1rt/2Er]
E2(1 q2~1)(1 q 2~1) (6.4)

q =—exp(wE'/E), E =E(z, n /—2),
E' —=E[(1—Ic2)'~2 n'/2]

and I"' is the elliptic integral of the first kind. The first
term of this equation represents the untrapped electrons
(see Fig. 52), and the second term represents the
trapped electrons. On the nonlinear time scale, the
trapped electrons make complete cycles with a period of
order 7'. These electrons carry along the density from
their original position and thus cause a cyclic variation
in the density at any one point. It is this variation in
density that causes the oscillatory behavior. of the second
term. On the other hand, the untrapped electrons all are
going over the hill and valley, producing the oscillatory
behavior of the first term. Thus this calculation pre-
dicts that in the limit of small damping, (y~/uz «1) and
when the wave electric field is large (and almost con-
stant in time) some electrons oscillate in the trough of
the wave. ~hen the trapped electrons oscillate in reso-
nance, their kinetic energy causes an oscillation in wave
amplitude on a time scale which is longer than the wave
period.

An extension of O'Neil's theory was carried out by 3u-
gihara and Kamimura (1972). They computed the self-
consistent equilibrium solutions to the initial-value
problem, which effectively cover the range 0& q =y~/&us
&, and in the limit q- o the result of O' Neil was re-
covered. Their solutions show that: (a, ) for q ~ 3 the
wave damps at a constant rate y~, (b) for q & O. VV the
damping rate decreases monotonically with time from
its initial value y~, and (c) for q &0.77, the wave ampli-
tude, after several oscillations, becomes constant with
time, and its actual value depends on the precise value
of g.

Related large-amplitude wave theories and computer
simulations have also been studied by Knorr (1961),
Armstrong (1967), Gary (1967), Dawson and Shanny
(1968), Bailey and Denairt (1970), Niirenberg (1971),
and Morales and O' Neil (1972).

C. Early experimental observations

he first experimental observation of amplitude oscil-
lations associated with a large-amplitude plasma wave
was carried out by Malmberg and Wharton (1967). Their
experiment dealt with the spatial damping and oscillation
of LAEP waves. From elementary physical arguments
one can show that the spatial problem and the temporal
problem are related if one scales time & by the w'ave
phase velocity (i.e., L =r(u/k) and the damping rate y~ by
the group velocity (i.e., =y~ /&co/&k). [These arguments
were later confirmed by Lee and Schmidt (1970) in a de-
tailed calculation. ] The experiments were carried out
in a magnetically confined hydrogen plasma column,
which was 2m long and was bounded by a conductor at a
radius of 5.2 cm. The plasma was collisionless in the
sense of the theory (i.e. , all electron collisional lengths
were longer than the machine). When an rf voltage was
applied to a probe inserted in the plasma, an electron
plasma wave corresponding to the lowest radial eigen-
mode was excited (waves corresponding to higher eigen-
modes were also excited, but they were damped heavily).
The excited electron plasma wave was picked up with
another probe which moved axially along the machine.
Figure 53 shows a plot of the wa, ve amplitude versus po-
sition for various transmitter voltages. At low voltages,
the usual Landau damping was observed. As the wave
amplitude was increased (curve c), the experimenters
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FIG. 52. The phase trajectories of the resonant electrons.
(After O' Neil, 1965.)

FIG. 53. Wave amplitude vs position. Transmitter voltage 0.9,
2.85, and 9 V, for Curves A, B, and C, respectively. (After
Malmberg et aE. , 1967.)
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observed that the wave no longer damped exponentially;
rather the oscillations expected from the large-ampli-
tude theory were observed. Malmberg and Wharton have
also determined that the wave number (associated with
the amplitude oscilla. tion) increased as, the square root
of the wave electric field. To show that the spatial os-
cillations in resonant electron kinetic energy were 180
out of phase with the spatial oscillations of the wave am-
plitude, Wharton, Malmberg, and O' Neil (1968) used an
electrostatic electron energy analyzer to detect the in-
crease in the electron current associated with the pres-
ence of a large-amplitude electron plasma wave. Fig-
ure 54 shows a plot of the spatial variation of the en-
hanced current from electrons that have gained energy
from the damping of the wave. In the same experiment,
they also observed (using frequency analysis of the re-
ceived probe signal) the broadening of the LAEP wave
and its associated sidebands. The amplitude of the low-
er sideband is plotted versus distance in Fig. 54. Note
that the oscillations in sideband amplitude correspond to
those of the main wave, and that there is a sharp growth
up to 60 cm. The frequency separation (&u) of the side-
band from the main wave was measured to be a linear
function of the square root of the wave potential,
i.e., Aced ~ Q,'I'. These measurements demonstrated that
the frequency separation of the sideband from the main
wave was the oscillation frequency of the electrons in the
trough of the wave (Geo = &us).

These early experimental results led to considerable
theoretical work on the stability of plasma supporting a
large-amplitude monochromatic wave, all of which in-
cluded the effect of resonant trapping of electrons in the
potential well of the electrostatic wave. However, theo-
ries specifically applied to the sideband instability differ
in the physical mechanism assumed responsible for
growth. There are two classes of theoretical approaches
to the problem, the so-called "parametric" sideband
theories and the "quasilinear" sideband theories.

D. Parametric sideband theories

The physical mechanism behind the parametric side-
band theories is as follows. The presence of a large-

amplitude (traveling) electron plasma wave in a plasma
sets up a spatially periodic potential for the electrons
(similar to the periodic potential for the case of a solid
[see, for example, Kittel (1976)] in the wave frame. The
trapping of electrons in the wave trough produces a
bounce frequency resonance. The coupling of the LAEP
wave with the bounce resonance frequency produces up-
per and lower sidebands about the traveling wave fre-
quency. The relative amplitudes of the sidebands depend
on the details of each theoretical calculation. Since all
the sidebands are coupled through the bounce resonance,
they have equal temporal growth rates. However, the
scaling of the growth rate with wave amplitude differs
from one theory to the next. Wong (1972), using a sinu-
soidal wave potential and a general distribution of
trapped electrons, found that the growth rate varies as .
the square root of the wave potential. On the other hand,
Mima and Nishikawa (1971) found linear dependence on
the potential, most likely from the assumption of a para-
bolic potential well which does not allow differential or-
bital periods for the trapped electrons. These authors
also found higher-order resonances which are analogous
to the energy levels of a harmonic oscillator, i.e.,

~ —kv~ =+(2N+1)'~'~s, (6.6)

where e~ is the phase velocity and%=0, 1, 2, 3, . . . .
We shall now briefly outline the early physical model

proposed by Kruer, Dawson, and Sudan (1969) to explain
the first Sideband instability experiment performed by
Wharton, Malmberg, and O' Neil (1968). [For a more
general and rigorous derivation of the trapped particle
instability, we refer the reader to the work of Goldman
(1970),j In their model, they assume that a significant
number of electrons are trapped in the troughs of the
wave due to its large amplitude. These electrons move
with the wave at the mean velocity equal to its phase ve-
locity. The oscillation frequencies for a large number
of the trapped electrons near or at the bottom of the
wave troughs are equal. With these assumptions, the
perturbed equation of motion for such a simple oscillator
is
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where v~ is the phase velocity of the LAEP wave, x„
-x„p—v~t is the position of the oscillator relative to the
nth trough, and E(k, &u) is the Fourier amplitude of the
perturbing field. Now Fourier-analyzing in time the dis-
placement of the oscillator g„(t)=x„(t)—x„,—v~t gives
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Fourier-analyzing and summing over all such oscilla-
tors, we have

p„(k,(o) =Re Q Ã„e~""«(„((o—kv~), (6.9)
n

/

where $„is the Fourier-analyzed perturbation position
evaluated at m —kv» and N„is the number of trapped
particles in the nth wave trough. Treating the back-
ground plasma as a continuous medium with dielectric
function e~(k, u&), from Poisson's equation we have

To obtain the dispersion relation, Kruer, Dawson, and
Sudan demand that the electric field produced by the per-
turbed motion of the oscillators be consistent with the
field pertubing the oscillators. 'The perturbed charge
density of an oscillator is

FIG. 56. Growth rate and frequency separation as functions of
the bounce frequency. (After Kruer et al ., 3.969.)

where

QP& I
0' —(de E~(k, &d)

+ 6~(k —2k„I'd —2(d, )
(6.12)

plasma frequency of the trapped particles, and = w
—kv~. Equation (6.11) is a set of coupled equation; the
zeroes of the determinant of the coefficients of & give us
the stability properties of the system. We can simplify
this set of equations by noting that the plasma does not
support waves of frequency which are greatly different
from the plasma frequency ~. For =u~, the two dom-
inant waves are E(k, cu) and E(k —2k„~—2I'do), which
lead to the dispersion relation

ik&~ (k, &e)E(k, &o) = 4w p(k, &o) . (6.10)

Now substituting Eqs. (6.7) and (6.9) into Eq. (6.10) we
obtain

(6.11)
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FIG. 55. Growth rate and frequency as functions of wave num-
ber. (After Kruer et al. , 1969.)

where k, is the large-amplitude wave number, z is the

a~(k, co) =1- —3k'vt (6.13)

is the dielectric function of the background plasma and
v, is the plasma electron thermal velocity. A numerical
analysis (for the experimental parameters used by Whar-
ton et al. ) of Eq. (6.12) shows that an instability appears
near ~p and kp. The growth rate and the corresponding
frequency as a function of k is shown in Fig. 55. We note
that the growth rate forms a double-humped curve about
kp suggesting the uns table upper and lower s idebands ob-
served in the experiment. The upper curve of Fig. 56
shows the growth rate as a function of the bounce fre-
quency. These growth rates are in reasonably good
agreement with the observation of Wharton et a/. For
example, in the experiment for w~ =0.07&op and v~
= 0.26v~, the sidebands grew by a factor of 10 in a time
of roughly 225 co~', giving y = 5 & 10 ' ~~, which compares
mell with the theoretical value of y =8 && 10 'm~. The
lower curve in Fig. 56 gives the frequency separation of
the sidebands from a LAEP wave. This frequency sepa-
ration is reasonably linear with the square root of the
LAEP wave amplitude, in agreement with the experi-
ment. The absolute value of 6(d is off from the experi-
ment by about a factor of 2.

Thus we see that the simple parametric model of Kru-
er et al. explains qualitatively the experiments of Whar-
ton et al. Using computer simulations, a fur'ther inves-
tigation of this instability was carried out by Kruer and
Dawson (1970) and Denavit and Kruer (1971). Their re-
sults also agreed qualitatively with the experiments and
the simple parametric model presented here.
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E. Quasilinear sideband theories

In the theories of O' Neil (1965) and Sugihara and Ka-
mimura, (1972), the interchange of energy between a sin-
gle large-amplitude wave and the trapped electrons was
considered. However, in the "quasilinear" sideband
theories Bud'ko et al. (1972) and Brinca (1972) consid-
ered the further possibility of particle energy being put
into other modes. This was done by considering either
the direct relationship between wave and particle ener-
gies, or by using the linear Landau formula for the
growth (damping} rate in conjunction with the distorted
resonant velocity distribution. Using the approximation

f(v }=f(vo} + Bf/Bv
I ~(v - vo}, »inca (»72) foun«hat

modes at velocities near the edge of the trapping region
experienced a large growth in one positive half-cycle of
oscillation, after which the sideband would be estab-
lished. Bud'ko et aE. extended the Taylor expansion to
include the ergodic (stationary) contribution due to B fo/
Bv' (in addition to the oscillatory effect coming from the
second term), which eventually dominates the growth
above threshold. Their theory predicts that only a lower
sideband &u~ = cu, —usv~/v~ (where v~ and v~ are the group
and phase velocities of the LAEP wave) will be generated
when the condition (u, (us/ko'v2r & 2 is satisfied. The growth
rate of this sideband scales as P

F. Recent experimental studies

In the light of these theories, further experiments have
been carried out by various authors to check different
aspects of the theoretical predictions. We shall briefly
discuss some of the important experimental contribu-
tions from Franklin et al. (1972), Van Hoven and Jahns
(1973, 1975}, and DeNeff (1974).

In an attempt to study in detail the transition from' lin-
ear Landau damping to the oscillatory behavior of an
electron plasma wave, Franklin et al. (1972) carried out
in a series of experiments in a collisionless, thermally
ionized plasma. Their experimental setup was similar
to- that of Malmberg et al. The results showed qualita-
tively good agreement with the theory of Sugihara and
Kamimura (1972). Figure 57 shows a comparison be-
tween the experimental and the theoretical growth curves
for various values of q =y~/sos. For q c0.04 Franklin et
+l. reported the detection of sidebands above the back-
ground noise level. In a second series of experiments
these authors studied the sideband instability in some
detail. They demonstrated that the sideband frequency
obeys the relationship u —km~ =+a~. Franklin et al.
pointed out that for the case of Malmberg's experiment
when &~ +&~„then &~= ~~. These authors also showed
that the growth rate y is proportional to &j&'~2. From
these results, they concluded that the amplification
mechanism is a parametric coupling between the side-
band frequencies and the oscillations of electrons.
trapped in the LAEP wave.

On the contrary, Van Hoven and Jahns (1975) found
from their experiments that the sideband growth rate
varies linearly as the wave potential (i.e. , y ~ &f&o"). Us-
ing an external signal at the sideband frequency, they
launched a small-amplitude test wave in the presence of
a LAEP wave to study the behavior of the sideband mode.

«lo
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FIG. 57. Experimental data and theoretical curves showing
relative spatial amplitude variations for different initial am-
plitudes. k0=3.64 cm, k;=0.09 cm . (After Franklin et al. ,
1972.)

What they observed was the following: (a) the test was
damped faster than the linear Landau damping rate, in
accord with the quasilinear theory of Brinca (1972). (b)
the instability growth of the test wave depended on the
initial amplitude of the LAEP wave and could persist af-
ter the LAEP wave field had decayed by tens of decibles.
This implied that the driving force of the instability re-
sided in the particles. This picture was also supported
by measurements of the electron distribution function,
which showed the establishment of the unstable distribu-
tion required by theory. .

To further understand the behavior of the test wave
DeNeef (1974) studied its behavior in the presence of a
LAEP wave. He regarded the test wave as a modulation
of the LAEP wave. This is true only if Bur(=u& &ao) is
small enough so that each trapped elect:ron "sees" an es-
sentially monochromatic wave during the transit time of
the electron through the experiment. Thus, if &u&
2wvo/L (where L is the length of the experimental re-
gion), the wave evolves in time as a sequence of almost
monochromatic, large-amplitude waves in space, each
of which differs slightly in amplitude and phase from its
predecessor. From this point of view, the nonlinear dy-
namics are implicitly contained in the evolution of a
monochromatic, large-amplitude wave, and it is not
necessary to solve for the trapped electron orbits in or-
der to determine the behavior of the test wave. Using
this approach DeNeff has shown that the amplitude oscil-
lations of the spontaneously unstable lower sideband
agree well with the modulational calculation when the
sideband frequencies lie within the range &u -4mv~/L &.:

Thus his experiments showed that the origin of
the oscillating growth rate of the sideband may be ex-
plained by a slow modulation of the LAEP wave.

More recently Bussac et al. (1974) have proposed yet
another mechanism for the sideband instability. Accord-
ing to these authors, the stability is attributed to a
beam-type velocity distribution of detrapped electrons
which are produced as a consequence of an initial wave
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FIG. 58; (a) Linear dispersion relation without the main wave
(MW) (open circles), which is split into two branches (closed
circles) in the presence of the MW at 16 MHz. The dashed line
corresponds to the phase velocity of the MW, v~. A solid
straight line shows a beam expected for the two-branch disper-
sion relation. (After Sato et al. , 1976.)

damping. The physical picture given by them is as fol-
lows. Assume an initial Maxwellian plasma where a
monochromatic wave is injected at t =0. During the first
half bounce period, trapped electrons with velocities v

&e~ are accelerated by the wave electric field, whereas
electrons with e &@~ are decelerated. If the damping
rate is small enough compared to the bounce time, the
net energy exchange between wave and particles tends to
be zero. However, if these two scales are comparable,
many of the accelerated particles are not reflected dur-
ing the second half bounce period, and they become a
beam of detrapped pa. ,rticles. On the other hand, reflect-
ed particles lose kinetic energy to the wave, inducing a
new rise in the main-wave amplitude. A lower-amplitude
oscillatory regime takes place-when the slope of the dis-

I a) EXCITING
SIGNAL

II i P
500ns (c)

+X~ l 35cm+
~~S5~

~2~5~
28.5~

FIG. 59. (a) Excitation signal (carrier frequency /2~=14
MHz). Corresponding temporal traces of wavepacket propaga-
tion for (b) p = 0.5 V and (c) ft,„=1.5 V at fixed positions X
(distance from excitation position). Solid straight lines yield
the group velocity v~ of the main wave packet. The vertical
arrows show the starting positions of the traces. (After Sato
et al. , 1977.)

tribution function of the remaining trapped particles is
small enough. Then the main effect of the wave damping
is to give rise to a beam of detrapped particles which,
are responsible for instability. This theoretical model
has been checked by recent experiments of Starke and
Malmberg (1976) a.nd Sato et al. (1976). These authors
studied the behavior of a continuously launched sinusoidal
test wave in the presence of a LAEP wave. A typical
dispersion relation is shown in Fig. 58 [after Sato et al.
(1976)j where we notice the splitting of the dispersion in-
to two branches in the presence of the LAEP wave, in-
dicative of a beam-initiated instability.

To observe the temporal development of the detrapping
of the electrons, Denavit and Sudan (1972) performed a.

series of numerical simulations studies. These authors
found that particles with speeds equal to the group veloc-
ity v~ of the large-amplitude wave packet were trapped in
the potential well. However, those which moved with the
phase velocity v~ such that v~ &e, passed through the
wave packet. The wave amplitude, however, decreased
gradually to zero toward its front even if there was no
appreciable wave damping. Thus there appeared a group
of correlated detrapped particles, in front of the wave
packet which was explained by the authors as the creation
of a new wave packet. This theoretical prediction of
Denavit and Sudan has recently been verified by Sato eI'
al. (1977) in a series of experiments performed in a. Q-
machine (Motley, 1975). The electron plasma wave
packet was generated by an external potential packet of
peak amplitude Q,„,which is shown in Fig. 59(a). In or-
der to avoid strong Landau damping the carrier frequen-
cy co was kept in the ra.nge ~ «u~. Figure 59(b) shows
the spatial evolution of the wave packet in the linear re-
gime. It was found that the wave damps mainly as a re-
sult; of Landau damping. However, for large values of
@,„(R1.2V) we observe the generation of a new wave
packet (NWP) [see Fig. 59(c) and 60(a)]. The peak am-
plitudes of the main wave pa, cket (MWP) and the NWP
a.re plotted as a function of @,„ in Fig. 60(b). From Fig.
61 we see that for a fixed &f&,

„

the amplitude ra.tio of the
NWP to the MWP depends on the frequency. (Landau
damping is stronger at a higher frequency. ) The speed
of the IPgP was found to be in the range of 1.1-1.2v~.
The mechanism for generation of the detrapped electrons
suggests that, if the MWP damps strongly, detrapped
electrons are generated in the region near the excitation
position. Since the correlated detrapped electrons con-
stitute a kind of bounced beam the signal produced by
them should not damp as strongly as the MWP (see Fig.
58).

To see the relationship between the new wave packet
and the sideband instabilities (or test wave amplifica-
tion), Sato et al. noted in their experiments that under
the conditions where the NWP appears, they have also
observed amplitude oscillation of the continuously
launched wave. Thfs amplitude oscillation was shown to
be accompanied by a clear generation of the beam due to
the detrapped electrons. The beam speed was nearly
equal to the speed of the N%P. Thus these authors con-
cluded that the ~P is due to the detrapped electrons.
They also noted that the ~P appeared to originate near
the position where the continuously launched wave had
the first amplitude minimum.
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(o)
5%2=0.75 V

and Hopman (1972), Gentle and Lohr (1973), and Seidl
et al. (1976). We refer interested readers to these pa-
pers.

l.75

00 I

9gw(V)

FIG. 60. Dependence of wave packet (co/2m= 14 MHz) on @~ at
X=40.5 cm. (a) Temporal shapes of wave packet and (b) peak
amplitudes of the main wave packet (MWP) and the new wave
packet (NWP) as a function of g~. The normalized wave ampli-
tude ep/vT~ is roughly estimated to be 0.1 for p =1.0 V by
measuring a test wave dispersion relation in the presence of a
large-amplitude continuously launched wave. (After Sato et al. ,
1977.)

In conclusion it appears that at present no single theo-
ry can explain all aspects of the experimentally observed
behavior of the sideband instability. This may be due to
the different assumptions and models used in the various
theories. Since the physics of the nonlinear evolution of
a beam-generated large-amplitude wave is quite similar
to that of the probe-launched LAEP wave, in this section
we have not discussed experiments on the beam-excited
waves. As the amplitude of the beam-generated waves
grows, it tends to trap the beam particles, causing the
instability to saturate. Some recent experiments on
large-amplitude waves generated by beams have been
carried out by Gentle and Roberson (1971), pan Wakeren

Bv Bv 8 rf&
M —+v —= —8 —,

~x ex

in, s(n, v)
Bt ex

Q2 @, = 4ire (n, —n, exp(e @/T,),ex (7.1)

where M, v, n„and n, are the ion mass, velocity, and
ion and electron densities, respectively. Now if we as-
sume quasineutrality [i.e., n, =n, =no exp(e &P/T, )] f. or
motions with a characteristic length much greater than
the Debye length, then Eq. (7.1) can be reduced to

Vll. ION ACOUSTIC SHOCKS AND SOLITONS

In this section we shall briefly review the physics of
ion acoustic shocks and solitons, and the laboratory ex-
perimental observations of these phenomena. For a
more extensive study of plasma shocks in general we re-
fer the readers to the review papers and texts by Sag-
deev (1966), Chu and Gross (1969), and Tidman and
Krall (1971).

One of the most important results of nonlinear effects
in plasma oscillations is to cause steepening of the lead-
ing edge of the wave. Unlike the case of ordinary gas dy-
namics, where dissipative effects are important for
short-wavelength waves, in plasma dynamics it is often
found that dispersion effects arising as a consequence of
the departure from charge neutrality become significant
as the steepness of the wave front increases. The dif-
ference between these two mechanisms is reflected in the
mathematical structure of the original. equations. Dissi-
pative effects (viscosity, thermal conductivity, etc. ) in-
troduce irreversibility and increase the order of the de-
rivatives in the dynamic equations by an odd number.
Dispersion effects, on the other hand, do not affect re-
versibility and increase the order of the derivatives in
the equations by an even number. Let us now consider
a specific simple example of one-dimensional ion acous-
tic wave propagation for the case of T, »T,-. The dy-
namic equations are

en e—+ —(ne) =0.
et Bx

(7.2)

' FIG. 61. Dependence of wave packet (temporal trace) on co/2x
for Pe„=2.25 V at X'=40.5 cm. (After Sato et al. , 1977.)

Equation (7.2) is identical in form to the equations for
isothermal motion (y= 1) in ordinary gas dynamics. It
has been shown (Landau and Lifshitz, 1959) that the
development of a finite-amplitude wave governed by Eq.
(7.2) (which results in a steepening of the wave into a
shock, i.e., a discontinuity in the wave form) is given by
a Riemann sot.ution. Thus, on the basis of the mathe-
matical analogy, one would expect the presence of shock
waves in collisionless plasmas. A set of equations anal-
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ogous to Eq. (7.2), governing the nonlinear behavior of
surface waves which propagate in a heavy fluid in a shal-
low channel, have been studied extensively. It was
shown (using appropriate approximation) that in such a
case the steepening of the wave was balanced by disper-
sion effects (as would be the case in collisionless plas-
mas). Not only were periodic waves found which were
characterized by wavelengths of the order of the chan-
nel depth, it was also shown that "solitary" waves (prop-
agation of isolated humps) could exist in the fluid chan-
nel. From these arialogies, one would expect to observe
both collisionless shock waves and solitons in a colli-
sionless plasma.

To see how this comes about we follow the analysis of
Sagdeev (1966). If we assume in Eq. (7.1) that all the
quantities depend on x and f only in the form of (x —ut),
then Eq. (7.1 ) can be reduced to a single second-order
differential equation for the potential

Igu*(2eg/M) (2.)I
Integrating Eq. (7.3) once, we have

(7.3)

uM, 2e@ T e@——(@')'=4',e — u' — —~ exp + C. (7.4)2 e Rz e T

C = 4', (Mu'+ T,).

Depending on the choice of the integration constant C,
various periodic waves can now be found. A special case
is represented by the value of C given by the condition
P'-0 when $-0, i.e. ,

FIG. 63. A shock structure produced as a result of ion reflec-
tion. (Dashed arrow implies reflection of ions).

sound gT, /M. An upper bound on the amplitude for the
ion waves (beyond which propagation is impossible) is
given by e@ =Mu'/2 or e@,„=13T, which . corres-
ponds to a Mach number M =u/(T, /M)'/' =1.6.

Thus far we see that in the absence of any dissipation
we have a solitary wave, which is represented by a sym-
metric potential barrier. However, there are always
ions which get reflected from a moving potential bar-
rier, causing an asymmetry to arise, and beyond the
barrier there are periodic oscillations. The net result
is a peculiar kind of shock wave which connects two
different plasma states: the unperturbed state (in front
of the shock) and a state with intense ordered oscilla-
tions (behind the front). Figure 63 shows a schematic
of the potential profile for the two regions. To take the

This case corresponds to a solitary wave (see Fig. 62)
which is a symmetric potential hill. The velocity of
propagation u of this wave as a function @ is given by

f =-5p.s8c'

T. [exp(e y,„/'T.) —1]'
2M expIe @ / T, ]—1 —(8 @ /T, )

(7.5)

In the limit of e g,„«T„napproaches the speed of

JII

3 cfA

FIG. 62. A solitary wave propagating with speed u.

dIsto~ce
FIG. 64. Interactions of two solitons. (a) Two solitons propa-
gate in the same direction in the laboratory frame. The figure
is depicted in the wave frame such that the smaller soliton is
initially stationary. Time differences between each adjacent two
curves are 10psec. (b) Two solitons propagating in opposite di-
rections to each other, depicted in the laboratory fraIne.
~a=.2 &&10 cm. (After Ikezi et aE. , 1970.)
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et al. , 1969). In particular Ikezi et a/. have shown (see
Fig. 64) the stability of the interaction of two solitons:
(a) different-amplitude solitons propagating in the same
direction, with one overtaking the other, and (b) two
solitons propagating in opposite directions to each other.
The observations of collisionless electrostatic ion
acoustic shocks were made by Alikhanov et al. (1968)
and by Taylor et af. (1970). In Fig. 65 we show the
shcok propagation (after Taylor ef al. ) for two different
electron temperatures. We also notice the presence of
streaming. ions as predicted by the theory. More re-
cently, studies on ion acoustic shocks and solitons have
been carried out by Stern et af. (1971) and Ikezi et al.
(1973).

In conclusion, we have reviewed very briefly in this
section the propagation of collisionless ion acoustic
solitons and shocks. In particular, we have shown that
the presence of solitons is a consequence of the disper-
sive nature of the plasma and that if one takes into ac-
count ion reflection off the moving potential then a shock
structure will develop.

tons 6 &
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