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Three problems in hypothetical unified theories of electromagnetic, weak, and strong interactions are
discussed here; First, the problem of embedding color in any simple gauge group is solved, and a
complete classification of theories where the fermion color is restricted to 1', 3', and 3' of SU; is given.
Generalizations are also indicated. Second, an unbroken U, generated by electric charge is embedded into
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future directions of research are indicated.
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iThe Goldstone theorem is discussed in Goldstone (19/1);

Nambu and Jona-Lasinio (1961); and Goldstone, Salam, and
Weinberg (1962). For the Higgs mechanism, see Higgs (1964a,
b); Englert and Brout (1964); and Guralnik, Hagen, and Kibble
(1964).

INTRODUCT ION

Quantum field theory with local gauge invariance ap-
pears to provide the appropriate framework for a dynam-
ical theory of all elementary particle interactions. It
is well known that electromagnetic interactions were the
first to be described this way: the local phase invariance
of the Lagrangian allows the construction of a renormal-
izable quantum field theory that agrees impressively
well with experiment. Local phase invariance was gen-
eralized to non-Abelian gauge groups by Yang and Mills
(1954) and Shaw (1955). [Also see Utiyama (1956), Gell-
Mann and Glashow (1961), and Kibble (1961).] Although
Yang-Mills theories were immediately seen to be math-
ematically beautiful and physically suggestive, it was
not clear how to construct a sensible model in which the
vector bosons (other than the photon) acquire masses
without destroying its (then hoped for) renormalizability.
Then it was discovered by Higgs (1964a, b) and others
that the spontaneous breaking of a local symmetry does
not imply a zero-mass Goldstone boson as it does in

conventional theories. ' When the quadratic part of the
Lagrangian is rediagonalized by a.gauge transformation,
the degree of freedom that was expected to be the Gold-
stone boson becomes the longitudinal-spin degree of
freedom of a massive vector boson. Later t'Hooft (1971)
provided the crucial proof that spontaneously broken
Yang-Mills theories are indeed renormalizable.

By extending the local gauge invariance beyond the U,
of electrodynamics, it became possible to construct
sensible models of weak and electromagnetic interac-
tions in which the weak bosons acquire large masses (of
order 100 GeV) through the Higgs mechanism (Weinberg,
1967; Salam, 1968). The experimental existence of the
weak charged and neutral currents along with the elec-
tromagnetic current implies a local symmetry group at
least as large as SU, && U, (Glasbow, 1959). The basic
strategy of using Yang-Mills- Lagrangians to unify elec-
tromagnetic and weak interactions is very attractive.
However, the SU, & U, theory is somewhat awkward.
Besides the tmo gauge coupl. ings of the two simple fac-
tors of the gauge group, there are choices of particle
fields, their representations, and other arbitrary pa-
rameters in the SU, && U, invariant Lagrangian. It also
ignores the strong interactions. Nevertheless, this
model has provided a framework for organizing huge
quantities of experimental data.

The formulation of a Yang-Mills theory of the strong
interactions is greatly simplified once the fundamental
role of quarks and gluons is recognized. The proposal
subscribed to in this paper is that of quantum chromo-
dynamics (QCD)', tbe strong-interaction gauge group
is called the color group. The gauged color symmetry
must be a.t least as large as SUa. (The choice of SUa

QCD was originally introduced by Nambu (1966) in a version
based on the unconfined, integrally charged quarks of Han'and
Nambu (1965}. Fractionally charged quarks were usually as-
signed parastatistics, as described by Greenberg (1964). Later
it was shown by Fritzsch and Gell-Mann (1971) and Bardeen,
Fritzsch, and Gell-Mann (1972) that the concept of color, with
isolated particles assumed to be restricted to color singlets,
had the same effect as parastatistics, with isolated particles
assumed to be restricted to bosons and fermions. For early
discussions of @CD with confined color see Fritzsch and Gell-
Mann (1972); Fritzsch, Gell-Mann, and Leutwyler (1973); and
-Weinberg (1973a,b). Meanwhile, the asymptotic freedom of
@CD was being pointed out by Politzer (1973) and by Gross and
Wilczek (1973).
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solves the statistics problem of the baryonic ground
state, gives the correct m decay rate with fractionally
charged quarks, and yields rough agreement with the
hadron-muon ratio A in e e annihilation. ) In QCD the
SU,' is unbroken, the theory is asymptotically free, and
color is conjectured to be confined. (Color confinement
may in fact be only approximate, but it is conceptually
simplest for us to assume here that only color singlet
states are observed in Nature. )

We neglect the effects of gravity in this paper, al-
though there are some brief comments on supersymme-
try and supergravity near the end of this section.

Any hypothetical unified Yang-Mills theory of electro-
magnetic, weak, and strong interactions must have a
local symmetry group G at least as large as G" x SU,':

G~G~x SU", ,

where G" 2SU, x U, includes the low-mass bosons of the
weak interactions and the photon. We assume that the
photon couples to one of the G currents and, of course,
that the corresponding U, is unbroken. In the minimal
scheme SU', x U, x SU„ there are three independent
coupling constants and much arbitrariness in assigning
fermions and other particles to representations of G.
From a theoretical viewpoint, this looseness in the
formulation of the theory would seem to be an unaccept-
able price to pay, for example, for economizing on the
number of vector bosons. The simpl. est proposal for
improving on this situation is to enlarge G so that there
is only one gauge coupling constant (Georgi and
Glashow, 1974; Fritzsch and Minkowski, 1975) and so
that all the elementary fermions (quarks and leptons)
are contained in a few irreducible representations of G.
In the last of these references, the author s examined
many of the cases treated here, but our discussion is
somewhat more systematic.

It is assumed in this paper that G is a. Lie group (and
not, for example, a graded Lie group), that G contains
SU, x U, SU,', and that there is only one independent
gauge coupling. Thus G must be simple, or semisimple
in the form G x G (G simple) where some global reflec-
tion symmetry constrains the (unrenormalized) gauge
coupling constants to the two simple factors to be equal.
The requirement that G be simple fixes many parame-
ters and relationships that need to be determined ex-
perimentally in the SU, x U, x SU,' model, but it also im-
plies new interactions of Nature that have not been ob-
sel ved.

For the moment we assume the full gauge group G is
simple, and leave until later the generalization to G x G
theories. The flavor group G ', which is generated by
the currents that couple to the color singlet bosons,
must include G: G" ~ G . Thus G has a maximal sub-
group decomposition of the form,

G~G x SU3.

One purpose of this paper is to list the embeddings of
SU,' in G and to classify the structure of G". Vfe note
here that if G ' is larger than SU, x U„ then the new
generators are coupled to bosons that mediate inter-
actions not yet observed. The supplementary flavor
bosons are either of high mass or else not coupled sig-
nificantly to transitions between light, familiar parti-

cles. Other new bosons implied by this kind of unifica-
tion can include diotons, which are color octets that
also carry flavor; leptoquarks, which change quarks into
leptons; and diquarks, which change quarks into anti-
quarks. Clearly an unstable proton is often predicted in
this. kind of unified theory. Much of our paper is devoted
to that problem.

The fields appearing in the Lagrangian are assigned
to representations of G. Tbe spin 1/2 fermion repre-
sentation f must include leptons (1'), quarks (3'), and
antiquarks (3'): at present experiment does not suggest
the existence of new fermions transforming as higher
SU,' representations. Theoretically there is no objection
to having fermions in more complicated color repre-
sentations; indeed such fermions are commonplace in
supersymmetric theories. Nevertheless, it is usually
the case that some set of fermions (which might have
spin 3/2, for example) belong to a representation con-
taining only I', O' and O'. In this article, we usually
make the more limiting assumption that the spin 1/2
fermion colors are actually restricted to I', O' and O '.
The problem of finding all embeddings of SU,' in any
simple G larger than SU, x U, x SU,', with the proviso that
there exists at least one nontrivial representation con-
taining at most 1', O' and O', is solved in Sec. II. We
also discuss the structure of G" and find all other re-
presentations of G satisfying the same color restriction.
These results will now be reviewed in detail; Sec. II may
be regarded as a mathematical appendix.

The embedding procedure is greatly simplified by a
theorem that is proved in the Appendix: if for a given
embedding of SU,' in G, the color content of any non-
trivial representation f is restricted to 1', O', and O',
then the "fund@mental" representation of G must also
contain at most, I', O', and O'. By the fundamental
representation we mean the defining representations of
the classical groups and the lowest-dimensional non-
trivial representations of the exceptional groups. Of
course, the color restriction on f and the fundamental
representation can be loosened to incl. ude 6', 6', 8',
etc. , if desired, but this is not done here. The embed-
ding is then identified by constructing the adjoint repre-
sentation, which is always easily obtained from the
fundamental one. Since the embedding is of the form
G~ G ' x SU', the color singlet part of the adjoint repre-
sentation then identifies the flavor group, and the re-
maining bosons are also listed. We construct all other
irreducible representations of G with the color restric-
tion and put the fermions into these representations or
direct sums of them.

The structure of G" faDs into one of four categories.
We summarize the results of Sec. II in terms of those
categor ies.

Class I: G~'=G, x G, x U„where G, is a nontrivial
simple factor that transforms only the color singlets,
and G, is another nontrivia1. simple factor that trans-
forms only' the color triplets (and antitriplets) of the
fundamental representation. s The U, distinguishes 1'
from 3' and (or) 3'. This embedding occurs only if G is
a classical group, i.e., if G is SU„(unitary), SO„

We often discuss SO4= SU2 &&SU2 as if it were a simple (sub)
gI'oup.
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(orthogonal), or Sp,„(symplectic). Only the fundamental
representation of G satisfies the color restriction: n of
SU„; n of SO„(also called the vector representation v);
or the 2n of Sp,„. Thus the color singlets of the funda-
mental representation may be identified with the leptons,
and the color triplets with quarks. (See Cases 1, 4, and
6 in Sec. II.) Since the quarks and leptons have com-
muting flavor groups, .the observed universality of
leptonic and quark electromagnetic and weak charges
must come from the symmetry-breaking mechanism.
The n of SO„and the 2n of Sp,„are self-conjugate repre-
sentations, and therefore contain equal numbers of 3'
and 3'. In this embedding the n of SU„, which is com-
plex, contains 1' and 3' only.

Class II: G"=G, & G, &&G„& U, && V,. This is possible
only for G=SU„, with fermions assigned to the n, where
n contains 3' q-type quarks, and 3'F-typ'e antiquarks.
The two V,'s distinguish among 1', 3', and O'. This
embedding is quite similar to Class I, but it contains
some additional interest because there is a temptation
to enlarge the color group to SU, && SU, . (See Sec. II,
Case 3.)

Class III. Gf'=G,
s

+ U„where G„r transforms the
color singlet piece of the fundamental representation,
but the fermions are in a different representation such
that the same simple' factor G„, transforms both
quarks and leptons. There are two cases:

If G =SU„, then the fermions may be assigned to the
irreducible representations constructed from (n && n
&&. . . x n)„, where ( )„means to antisymmetrize the
Kronecker product. Except for (n"~')„, n even, these
representations are all complex. (See Case 2 in Sec. II.)

If G=SO, f may be a spinor representation. There is
one self-conjugate spinor for SO,„,, of dimension 2".
SO~„has two inequivalent self-conjugate spinors, each
of dimension 2'" ', and the two spinors of SO4„„are
complex and conjugate to one another. Each has dimen-
sion 2'". (See Case 5.)

In this cia.ss the universality of the weak charges is
natural since there is only one non-Abelian factor in
G". However, the relation between quark and lepton
electric charges has to come from the symmetry break-
1ng.

Class IV: G" = G, , This embedding, which contains

no Uy factor that distinguishes 1' from 3', is possible
only for the exceptional groups. Three of the five ex-
ceptional groups satisfy our assumptions, and in each
case, only the fundamental representation satisfies the
color restriction. We enumerate the results. (See
Cases 7, 8, and 9.) For E~, where G" =SU„ the funda-
mental representation is the 26, which is self-conju-
gate. The flavor group for E, is SU, x SU, and the
fermions are assigned to the 27, which is complex. For
E„G"=SU,and the fermions are assigned to the 56,
which is self-conjugate.

The restrictiveness of the exceptional groups, both in
number and in internal structure, makes them quite
attractive for model building. The universality of the
quark and leptonic weak and electromagnetic charges is
a consequence of the group structure, as is the I/3
integral charge structure of the quarks if the leptons
have charges +1 and 0 only. The SU3 is naturally em-
bedded in these groups (Gunaydin and Gursey, 1973;
Gu rsey, 1976) .

The results of our classification are summarized in
Table I. There are no other embeddings of SU,' in any
simple G for which there is at least one representation
satisfying the 1', 3', 3' color restriction.

The classification of the fermion representations is
not complete until we analyze their helicity structure.
Fermions of a given chirality are transformed among
themselves under G, which we continue to assume to be
s iDlple .

We first study the case where a scalar fermion number
is defined, so that fermions and antifermions are ini-
tially distinguished. Suppose the lef t-handed fermions
are assigned to f~ of G and the right-handed fermions to
f„of G. Then all left-handed states are in f~+f„, and
all right-handed states are in f~+ f~. If the quark-gluon
couplings are to conserve parity, there must be a dis-
crete symmetry that relates the quarks in f~ to those in

f~, and also relates any antiquarks that may be in f~ to
those in f~. This same discrete symmetry will relate
the leptons in fz and f~, if we ignore the possibility of
adding G singlets to either f~ or f„. Consequently, f~
and f~ are either equivalent or else related by group
conjugation. Theories in which f~ is equivalent to f~are
called vectorlike (Georgi and Glashow, 1973). If fz is

TABLE I. Embedding of SU3 in G, representations with 1,3,3 only of color. The brBcket
in case 5 means integer part.

Case

SU„x SU„x U~n& n3

SU„„3x Ug (nk)

0irnensional ity

ng+ 3n3

3. SU„x SU„xSU„xU& x Ui"1 "3 "3
SQ„x SU„x U~n3

n = ng+ 3n3+ 3n3

n=ng+ 6n3

5. SQ„„6x Ug

9.

$p2„, x SU„x U&"3
SU3-

SU3 x SU3

SU,

27

n =ng+ 3n3

26
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equivalent to f~, we call the theory flavor chiral. ~

We now examine the case where a scalar fermion num-
ber cannot be defined- f~ contains all the left-handed
fermions and antifermions of the theory, and f~ contains
all the right-handed ones. Parity conservation in the
quark-gluon couplings then implies that the quarks in f~
and f~ are related by a discrete symmetry. As before
the theory is either vectorlike or flavor chiral. In the
latter case (fzequivalent to f~), there exists a pseudo-
scalar quantum number that initially distinguishes f~
and f~.

Further limitations on f„given f~ follow from the re-
normalizability of the theory. The theory must not have
divergences due to Adler (1969), Bell and Jackiw (1969)
triangle anomalies. The fermion representation falls
into one of three categories (Georgi and Glashow, 1973).

(1) If fz is a self-conjugate representation, there will
never be any problem with triangle anomalies. Such
theories are always vectorlike.

(2) If fz is a complex representation but G is not a
unitary group, there is again no problem with triangle
anomalies. These theories a.re based on G=E, (f=27)
or SO~„„(f= spinor), ' and may be vectorlike or flavor
chiral.

(3) The complex representations of SU„(n~ 3) are un-
safe, but may be used in a vectorlike theory, or in a
nonvectorlike theory if there is an accidental cancella-
tion of right- and left-handed anomalies separately. (In
the latter case f~ is equivalent to f~, where f~ is re-
ducible. ) When the cancellation does take place, f~
often appears as the branching of a safe representation
of a larger group. For example, the anomalies from
the 5 and 10 of SU, cancel, where the decomposition of
the spinor of SQyo into SU, representations is given as
1+ 5+ 10 (Georgi, 1975). (The singlet does not contribute
to the anomaly. ) Such accidental cancellation is some-
what artificial and we do not consider examples of it.

The results of this classification of the chiral struc-
ture of the fermion representations are summarized in
Table II. Except for gauge groups permitting a flavor
chiral theory, it is most natural to assume a vectorlike
theory.

In Sec. III, which we also treat as a mathematical ap-
pendix to this introduction, we have studied the possible
embeddings of the U, generated by the electric charge
operator in G". Quarks are assumed to have charges in
the sequence (. . . 5/3, 2/3, -1/3, —4/3, . . . ), and
leptons to have integral charges. (This is a fairly weak
assumption for Class 1V embeddings. ) The results are
organized around the above classification of the struc-
ture of Gf'.

In the Class I embeddings (Gf'= G, x G x U, ), there is

The name "flavor chiral" is appropriate for E6 and SOjo,
where the flavor groups are SU3 &SU3 and SU2 &&SU2, respective-
ly, and for the simplest flavor chiral assignment the factors
act chirally on the quarks. For SO&4, SOfsy . , this name is
less appropriate. Of course, when a scalar fermion number
cannot be defined, the word vectorlike is not really appropriate
either, since even in the absence of ferrnion masses such
theories cannot be described using Dirac spinors with ordinary
vector coupling.

~The proof that Ee is safe is carried out in Giirsey, Hamond,
and Sikivie (1975).

TABLE II. Classification of chiral fermion representations.

Type of representation (vectorlike)
f~ fg

{flavor chiral)

Real
Complex safe
Complex unsafe ~

Possible
Possible
Possible

Identical to vectorlike
Possible
Usually not possible

~ Safe and unsafe from anomalies.

6S. Meshkov has nicknamed these bosons "Intermediate Vec-
tor Baseballs. "

great freedom in defining the electric charge operator
Q. The only constraint arises from the tracelessness of
all G" generators: the sum of all fermion charges must
be zero. There is no restriction on Q when the fermion
representation is self-conjugate under antiparticle con-
jugation. Results for Class II embeddings are similar.

In Class III embeddings (G" = G...x U, ) the quarks and
leptons transform under the same simple subgroup' of
G", but the extra U, distinguishes 1' from O'. Neverthe-
less, the quark charges, assumed to be in the —1/3+
integer sequence, determine the lepton charges. Usu-
ally the sum of the quark charges does not vanish. A
general parametrization of the charge operator is given
in Sec. III.

In Class IV embeddings (G" = G...), the sum of the
quark charges is zero and the quark charges determine
the lepton charges. Possible charge assignments are
easily listed.

We turn now to the question of proton decay, which can
often occur in unified theories since quarks and leptons
both appear in the same irreducible representations of
G, and there must be bosons and possibly other fields
that mediate quark-lepton transitions. In some models
the leptoquarks also couple quarks to antiquarks that are
assigned to the fermion multiplet, permitting the proton
to decay to meson plus lepton in second order even in
the absence of symmetry violation. After the local sym-
metry G is broken to U, x SU', the proton will certainly
decay unless there remains a conservation law that
prohibits it. Thus, if the proton is stable, there must
be a, conserved quantum number A (A is a generalized
atomic mass number) that agrees with the usual defini-
tion for ordinary matter, and such that the lowest-mass
state with A. =1 is the proton. The problem of defining
A. in a Yang-Mills theory of quarks and leptons based on
a simple G is detailed in Sec. Q7. The notation used
there is that of a vectorlike theory, but we show in the
examples at the end of this section that the extension to
flavor chiral theories is trivial. Again we provide a
full discussion here, and treat Sec. IV as a mathematical
appendix.

The experimental bound on the decay rate of the proton
into a muon is v '&10~o/year (Reines and Crouch,
1974), and the half-life of the proton is at least as long
as 2x 10'8 years (Gurr et a/. , 1967). Many theorists
have simply accepted the instability of the proton in
lowest order and supposed that the responsible bosons
have such high effective masses (order of the Planck
mass, 1.22 x 10" GeV) that the amplitude is reduced to
an experimentally acceptable value. ' This may not be a
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problem in principle, since the mass scale associated
with a universal strength for the weak and strong inter-
actions may be on the order of 10"-102O GeV (Georgi,
Quinn, and Weinberg, 1974), which is not so different
from the boson effective masses needed to reduce the
rate of proton decay sufficiently even when it occurs in
lowest order. Qf course there may exist a mechanism
that prevents these boson masses from being arbitrar-
ily large compared to those of the weak intermediate
bosons (Gildener, 1976). We should discuss briefly
suggestions that have been made for ways in which each
of these mass scales might be reduced. We first dis-
cuss the mechanisms of proton decay and how its rate
might be retarded. We then turn to the question con-
cerning the unification mass scale.

In a theory with proton decay, there is no atomic mass
number (or baryon number) A that is exactly conserved.
The case we have just mentioned, in which the proton
decay proceeds in the lowest order of pertubation theory
and the responsible bosons must have gigantic masses,
is typically one in which there is no gauged quantum
number X that changes in proton decay and there is also
no exactly conserved fermion number. The leptoquarks
are also antidiquarks, and the decay proceeds directly
in second order ing'. If there is an exactly conserved
fermion number, but still no gauged quantum number
that is changed by proton decay, then the decay can be
put off to a somewhat higher order of perturbation
theory, but quite large boson masses are still needed.
A typical example of this situation is provided by the
group E6, with the fermions put into 27 and 27 and with
fermion number conserved; the decay amplitude is then
of order g4 rather thang'.

Sufficiently slow proton decay without very large spin .
1 boson masses is somewhat less difficult to achieve if
we do have a generator X of the group G that must be
broken (by an explicit Higgs mechanism or a hypothet-
ical dynamical Higgs mechanism) in order for the decay
to take place. Let us first consider the case in which
fermion number is exactly conserved. In our discussion
below of exact proton stability, we suppose that the
Higgs violation, which gives a mass to the spin 1 boson
gauging X, also breaks fermion number but preserves
a linear combination, which is then A. . Here we imagine
that the Higgs violation leaves fermion number alone;
A can be defined in the same way but is no longer con-
served. If we look at models with explicit Higgs bosons
p that accomplish this violation, we can assign them to
various reducible representations of G or else to a large
irreducible one, in which some component has a non-
zero vacuum expected value that gives a mass to the
spin 1 boson gauging X and at the same time induces,
through virtual spin 1 bosons, an unrenormalizable
effective coupling, with a finite calculable coefficient,
that causes proton decay. Typically the parameters of
the Higgs potential. in @ space can be adjusted to make
this decay very slow. (When renormalizable effective
couplings are induced, then the coefficients are, in
principle, arbitrary, and can only be estimated if we
assume that a cutoff imitates whatever mechanism will
eliminate the infinities in an improved theory ).

Pati and Salam (1973, 1974) have discussed this kind
of slow violation of A. conservation, although their

theory differs from the ones we consider in that their G
is not simple and their quarks are not confined and not
fractionally charged. We can, however, as an example,
replace their theory of four quark fIavors and four
lepton flavors by one in which the gauge group G is SU„
and the spin 1/2 fermions are put into 16 and 16, with
conservation of fermions. The necessary Higgs viola-
tion to produce a slow proton decay can then be accom-
plished by &f& fields in various reducible representations
of G or else by p's in an irreducible (299, 200-dimen-
sional! ) representation. The p component with nonzero
expected value in the vacuum can then couple to three
gauge bosons that convert three quarks into three lep-
tons, ultimately inducing proton decay.

We have seen that the treatment of slow proton decay
with a conserved fermion number resembles the dis-
cussion below of.proton stability in which A is defined
as a linear combination of fermion number and X. We
now consider the final case of retarded proton decay,
where there is no fermion number but there is a gener-
ator X that would prohibit the decay if it were exactly
conserved, which it is not. That case resembles the
treatment below of proton stability when there is no
fermion number and X coincides with A in the spin 1/2
sector of the theory. Here, instead of taking a con-
served linear combination of X and some quantity that
is nonzero outside the spin 1/2 sector, we just allow X
to equal A and to be nonconserved. Again the dynamical
or explicit Higgs bosons p can be put into suitable
representations of G that allow them to give a mass to
the spin- I boson gauging X and to induce the proton de-
cay.

Although the coupling constants vary logarithmically
with mass, the mass scale where the ratios of the
electromagnetic and strong coupling constants become
nearly equal to unity (that is, unification takes place)
need not be anywhere near as large as the Planck mass.
We give a brief review of the dependence of the unifica-
tion mass on the theory. Let us first suppose that the
symmetry violation occurs in only two stages, from G
to SU2 && U, & SU,', and then to U, && SU, . The U.nification
mass may be computed from the renormalization group
equations. Georgi, Quinn, and Weinberg (1975) have
found that it is sensitive to the electric charge and weak
isospin assignments made in the theory; in some ex-
amples it may be as low as -10' GeV, but in others it is
much larger than the Planck mass.

Particularly low unification masses can be achieved
when the symmetry breakdown is a multistage process.
This possibility has been considered by Fritzsch and
Minkowski (1975), although their examples have the
defect of violating quark-lepton universality in the early
stages of the symmetry breakdown. We avoid that dif-
ficulty in the following example. Suppose that in the
first stage G breaks to G~&&G~, where the index of the
adjoint representation of G~ is much larger than that of
G~. (The index is the Casimir operator of the group for
a given representation times the dimensionality of the
representation divided by the number of generators. The
coefficient occurring in the renormalization group
equations is 11/3 times the index of the adjoint minus
4/3 times the sum of the indices of all Dirac fermion
representations. ) 6~ contains at least the minimal
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flavor group SU, x U, and G~ contains SU,'. The coupling
constants for these factors G~ and G~ will vary a.t dif-
ferent rates as the renormalization mass further de-
creases, with the growth of the coupling of G„acceler-
ated over that of SU,' alone. In due course G~ breaks to
SU,', but only after the coupling of G~ has increased to
a value much larger than the coupling for G~. Thus, in
a 2n-lepton, 2n-quark model based on G=SU,„, the
first stage of symmetry violation could break SU,„ into
G~ = SU„x SU, x U, and G„=SU,„. At some smaller
mass, the SU', „could break to SU, x SU„. At GeV ener-
gies, the two SU„groups could be inconspicuous, cou-
pling light to heavy quarks and light to heavy leptons,
leaving SU, x U, x SU,'.

If the theory does contain mass scales of order of the
Planck mass, then the unification procedure followed
here, which omits gravitational processes, would be
incomplete. It is sometimes suggested that it might be
necessary to consider processes that appear to violate
baryon number, such as the hypothetical radiation of
all the energy of a small black hole by the Hawking
(1975) effect. If quantum gravitation really permits
such a process, then some kind of instability of the
proton might be implied, but the whole matter is poorly
understood. A more direct unification of Yang-Mills
theory with Einsteinian gravitation is afforded by theo-
ries of extended supergravity, as discussed below.

Although there is no clear need for requiring an ab-
solutely stable proton, one could try to impose exact
proton stability and examine the consequences, pleasant
or unpleasant. We do this here, ignoring the possi-
bility that some kind of topological quantum number not
apparent in the Lagrangian provides an atomic mass
number. We examine the situations of dynamical sym-
metry breaking in some detail, and of explicit Higgs
breaking briefly.

How may we obtain a conserved quantity A in a, unified
gauge theory? Suppose the Lagrangian contains only
spin 1/2 and spin 1 fields, and the symmetry breakdown
is dynamical. Then a single self-conjugate irreducible
representation for the fermions precludes proton stabili-
ty, since a conserved group generator X, if it survived
the dynamical symmetry breakdown, would be associated
with a massless vector boson and could not be used for
A. Electric charge and color conservation are not
enough to guarantee proton stability and we have already
assumed there will be no accidental conservation laws.
A pair of conjugate representations allows an ungauged
conserved quantity Z to be defined. (For complex rep-
resentations, this doubling is required by CPT. ) The
quantity Z cannot be A since the quarks and leptons
would all have the same value of A. However we can
have A conservation with Z and X (a local symmetry
generator associated with a vect'or current) both broken
and with some linear combination conserved. The boson
becomes massive, and quarks and leptons can be dis-
tinguished. Since we do not explicitly calculate A from
the broken theory, our choice of the local genera. tor X
presumes the appropriate symmetry-breaking patterns.
If we had considered a reducible fermion representation
with more complicated content, it would also be feasible
to have, for example, exact lepton conservation. We do
not analyze this possibility here. In any event, we as-

sume that the eigenvalue spectrum of A corresponds to
a sensible atomic mass number.

The ordinary quarks must have A = 1/3 so that the
known baryons, which are composed of three of those
quarks, all have A = 1. Similarly the known leptons must
haveA =o. ThenA will be the usual baryon number for
known matter. Unified theories also often predict other
quarks and leptons. It is natural to require that their A
values'are constrained so color singlet states have inte-
gral values of A. Otherwise, we would need to accept
the more drastic prediction of observable fractional A,
including new stable particles corresponding to the low-
est mass state for each allowed fractional value. Con-
sequently, the A value of a new quark falls in the se-
quence, 1/3 plus integer, and new leptons have integral
A. We call qua. rks with A =. . . , —5/3, .-2/3, 4/3, 7/3,
weird quarks, and leptons withA =+I, +2, . . . weird lep-
tons. These weird fermions should be heavy enough to
have escaped being observed; but otherwise pose no
problems other than la.ck of economy. Weird baryons
would contain at least one weird quark, and have inte-
gralA, not equal to one. Weird mesons are qq states
with A a nonzero integer.

The exchange of bospns carrying color and flavor
would be needed in the mechanism for producing a single
weird particle. The color singlet bosons and the octet of
gluons all ca.rry A =0, but some of the bosons carry 1/3
integral values of A. Two ordinary quarks could ex-
change such a boson, transforming one quark into a lep-
ton with A =0 and the other quark into a weird antiquark
with A =2/3, which could then combine with an ordinary
quark to form a weird meson withA =1. If the boson
masses are sufficiently large, this process would be
suppressed. However, at sufficiently high energies pair
production of weird particles would occur.

Weird particle decay does involve the exchange of a
boson carrying A = 1/3 and would be extremely slow if
its mass were large. As examples, a weird meson with
A. = 1 composed of a qua. rk with A = 1/3 and a weird anti-
quark with A =2/3 would have a lepton-baryon decay
mode, and a weird baryon withA =0, composed of two
quarks with A = 1/3 and a weird quark with A. = —2/3,
might decay into three ordina. ry leptons, or into an or-
dinary meson and a lepton. We will be more specific in
the exa,mples.

With dynamical symmetry breaking there is only one
case where proton stability does not imply weird parti-
cles: G =SU„and the fermions in the n. But A conser-
vation may be imposed in any other gauge theory, as
long as f is large enough to include weird fermions. (In
this regard I, and E, are flavor poor, if the fermigns
are assigned to only a few irreducible representations. )
Table III lists the A values that are implied by a simple
choice of the local generator, as discussed in Sec.IV.

The situation of explicit Higgsism, although perhaps
unattractive for nonsupersymmetric theories, does pro-
vide other solutions for the spectrum of A. Suppose the
scalar and pseudoscalar fi,elds imply new ungauged sym-
metries of the Lagrangian. As before A can be con-
structed by taking the linear combination of a broken lo-
cal and global generator that is conserved. For sim-
plicity we restrict our attention to fermions in a, single
irreducible self-conjugate representation of G, so that
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TABLE IH. Some examples of proton stabilization, with fermions doubled, and Majorana
mass breaking. The general solutions are given in Sec. IV; these simple examples provide
the most economical A. spectra.

Representation {Equation) U& for X

SU„ (2.4) Explicit U~ —Nq

SUN

SO„

SP 2' 2n

56

(2.11)

(2.17)

(2.22)
(2.24)
(2.25)

(2.26)

(2.36)

Explicit U~

Flavor raid
(SQ2~g D SUf1 X U f )
plus explicit U~

Explicit U~

Flavor raid
{Sp,„aSU„xU, )1
plus explicit Ug

Flavor raid
SU, a SU, x U,

TNq —
3 N„+ Ng

—N + TN„+NJ.i 4

—N ——N„+ Ng

—Nq+ TN„+ N&

the global generator Z is zero for the fermions. Then
the local generator alone is A for the fermions.

The phenomenology of weird particle production and
decay is similar to before, except that the exchange of
scalar particles that carry both flavor and color should
be included. Weird particles can be completely avoided
in the n of SO„and the 2n of SP,„, but otherwise some
weirdness is also needed in this symmetry-breaking
scheme. Again, the details are worked out in Sec.IV.

The embedding of SU,', electromagnetic U„and the lo-
cal U, for stabilizing the proton are all easily extended
to G & G theories Color can be embedded in G && G in
essentially two ways.

SU3 may be explicitly contained in just one G factor,
and the two 6 factors are transformed into one another
by some abstract reflection principle. The SU4 && SU4
model of Pati a.nd Sala.m (1974) is an example. The fer-
mion representations are of the form, (r„r,). If the
second G factor contains SU'„ then r, must be one of the
representations in Table I, and there is no restriction
on r, . Such models are similar in spirit to the ones al-
ready discussed, so we do not consider them further.

The other possibility, to be considered in more detail,
is that SU', is generated by the sum of generators of SU,
subgroups of each G factor. 'The color content of a G && G
representation (r„r,) then contains the color represen-
tations in r, x r,. The restriction that (r„r,) have at
most 1', 3', and 3' then implies that r, or r, must be an
SU3 singlet. This in turn imposes the requirement that
r, be a G singlet and r, be one of the representations in
Table I, or vice versa. The only possible fermion rep-
resentations are then linear combinations of (1, r, ) and
(r„1).

We first consider the chiral structure of the fermion
representation for the case where the reflection symme-
try between the two G factors is not parity. If f~ has the
form (r„r,), then fs transforms as (r„r,) or (r„r,).
We simply obtain the vectorlike and flavor chiral theo-
ries, respectively, already summarized in Table II. In
this case there is an SU, x SU, of vector currents and
there is the temptation of enlarging SU3 to SU, & SU3.
Although this way of enlarging the color group differs

from Case 3 in Sec.II, that discussion is still relevant.
Otherwise, these G &G theories are similar to the G-
simple theories already discussed.

Finally, we may suppose that parity is the reflection
symmetry between the G factors, although this possibil-
ity raises several questions. If f~ is (r„r2), fR must be
(r„r,) or (r„r,): the first case is chiral, and the sec-
ond case is conjugate chiral. Both r, and r, must be safe
representations of G for the triangle anomalies to be ab-
sent, but safety through an accidental cancellation is a
possibility as above. For simplicity we still ignore
Class II theories in this connection.

The strong gauge group in these G && G theories is a
chiral SU, && SU, . There are several objections to con-
sidering such theories. First, the chiral quark-gluon
theory by itself has anomalous divergences, which are
cut off only at a very large energy by the unified theory.
As always, we assume that the unbroken SV,' is generat-
ed by the sum of the corresponding SU, generators. The
axial symmetries, generated by the differences, must
be broken, and we may characterize the violation by a
kind of effective mass-squared mz for the axial gluons
inside the hadrons. This parameter m~2 must be at least
several (GeV)' in order to avoid quark-quark spin-spin
forces of the wrong sign and other unsuitable forces
among quarks and antiquarks. When flavor radiative
corrections are put, in, there may also be parity-violat-
ing amplitudes of order n„„„a,~ m~' that require mz
to be even larger. For all these reasons, we shall not
pay any more attention to chiral G && G theories.

The enumeration of possible charge assignments for
G && G theories is identical to that for the G-simple theo-
ries, since r, or r, must be a G singlet. . The electric
charge operator is simply the sum of generators of two
corresponding U, 's from the G~' subgroups of each G
factor. The same argument holds for extracting X for
stabilizing the proton. Thus we restrict our considera-
tions to simple gauge groups, while recognizing that the
results are valid for G & G theories.

Although some of the theories included in our classifi-
cation are quite attractive, we find none so appealing
that it should blind us to promising lines of development
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that have been excluded here. We consider briefly two
of the more popular directions of research: (1) enlarg-
ing the global symmetry structure of the Lagrangian;
{2) enlarging the loca.l symmetry structure .In both
cases, the Lie group symmetry of the Lagrangian is ex-
tended to a "graded" or "super" symmetry. The super-
symmetry operators, which are adjoined to the Lie al-
gebra, satisfy anticommutation relations with one anoth-
er, and commutation relations with the members of the
Lie algebra. They transform bosons into fermions, so
that irreducible supermultiplets must contain both.

We firs t cons ide r o rdinary global supe rsymme try
(Golfa. nd k Likhtman, 1971; Wess a.nd Zumino, 1974) in
direct product with a. Yang-Mills internal symmetry (Sa-
lam and Strathdee, 1975; Ferrara and Zumino, 1974).
The adjoint representation of gauge bosons is then ac-.
companied by an adjoint representation of Majorana spin
1/2 fermions, which must include 8'. Once color octet
fermions are- required, it is not so natural to demand
that the fundamental representation of G be restricted to
I', 3', and 3' only. However, in any new embeddings,
the flavor singlet set of generators would be larger than
one or two 8's; thus there would be many new possibili-
ties for the color group, and there would also be a fur-
ther proliferation of fermions with new color represen-
tations. We conclude, therefore, that a globally super-
symmetric theory with internal symmetry treated by
means of a direct product would probably involve only
embeddings treated in this article; the principal change
would be to include a set of spin 1/2 Majorana fermions
belonging to the adjoint representation, which is fully
treated here for the description of the spin 1 bosons.

If the only supermultiplet considered is the one with
spin 1 and spin 1/2 belonging to the adjoint representa-
tion of G, then the symmetry breakdown must be dynam-
ical. However, it is not so ugly to introduce a super-
multiplet of matter fields consisting of Majorana fermi-
ons, scalars, and pseudoscalars transforming as some
representation of G, which could well be the adjoint and/
or one of the representations discussed here for the spin
1/2 fermions. In that case, the Lagrangian is available
for inspection, and in reality it is hard to break both the
supersymmetry degeneracies and the internal symmetry
degeneracies simultaneously as needed (Fayet and

'

Iliopoulos, 1974). If these schemes do work, there will
be a Goldstone fermion, which is not the neutrino since
it decouples in the zero frequency limit (Freedman and
de Wit, 1975; Bardeen, 1975).

The direct product is not the only way to combine "in-
ternal" symmetry with supersymmetry. We can have N-
fold extended supersymmetry (Salam and Strathdee,
1974) in which there are N supersymmetry operators be-
longing to the vector representation of the "internal"
group SQ~ or SU~. The supermultiplets then contain
particles with more and more different spin values as
N increases. If the group is made large enough to be the
gauge group G of a unified Yang-Mills theory, then one
is led to spins of 3/2 and higher and severe difficulties
are then encountered in a theory with purely global ex-
tended supersymmetry.

We may consider, however, a case in which% is not
very large and we do not attempt to gauge the SO„or SU„
symmetry of extended supersymmetry by means of a

Yang-Mills theory. Bather, we consider a direct prod-
uct of extended supersymmetry and a Yang-Mills sym-
metry group G. Let us take the largest value of N that
allows us to avoid spin 3/2 pa, rticles in the supermulti-
plet containing the Yang-Mills fields, namely N =4 (Fay-
et, 1976; Brink, Schwarz, and Scherk, 1977); One then
has a set of vector particles in theadjoint representation
of G, as well as four sets of Majorana spin 1/2 particles
and three sets each of scalar and pseudoscalar particles,
also in the adjoint representation. For such a case, as
for the direct product of G with ordinary supersymme-
try, our embeddings may well be sufficient and the ad-
joint representation, described in our work for the spin
1 bosons, can be used also for the spin 1/2 fermions a.nd
the spin 0 bosons, in the requisite number of copies.
The renormalization group for this type of theory has the
fascinating property that the leading g4 term in the Gell-
Mann-Low function P(g') vanishes (Ferrara, 1976). It
has been remarked (Abbott et al. , 1977; Curtright, 1977)
that as a consequence the leading term in the anomalous
divergence of the supercurrent {ignoring supergravity)
also va.nishes. Very recently (Jones, 1977, and Poggio
and Pendleton, 1977) calculations of g(g') have been ex-
tended to order g' using the method of Jones (1975) a.nd
it has been shown that the scale covariance g(g') =0 per-
sists to that order, a fascinating result of unknown sig-

nificancee.

We shall return to this class of theories below, mere-
ly remarking here that they have a global SU4=SO6 sym-
metry, and if such theories are to be useful, then we
must learn how that symmetry can be spontaneously vio-
lated without contradicting experience.

Now let us discuss the treatment of gravitation in su-
persymmetry theory. The graviton must belong to a su-
permultiplet and one is immediately led to local super-
symmetry or supergravity (Freedman, van Nieuwenhui-
zen, and Ferra, ra, 1976; Deser and Zumino, 1976) in
which the graviton, which gauges the Poincare group, is
accompanied by one or more spin 3/2 particles that
gauge supersymmetry or extended supersymmetry.
(These massless spin 3/2 particles may eat the Gold-
stone fermions and become massive. ) Plain N= 1 super-
gravity has just a single spin 3/2 particle forming a su-
permultiplet with the graviton and is compatible with the
introduction of direct-product internal symmetry as de-
scribed above, with spin 1 and spin 1/2 particles in the
adjoint representation of some group G and possibly spin
1/2, scalar, and pseudoscalar particles in some repre-
sentation of G. However, such a theory is not renormal-
izable. (In any event, the applicability of our work would
be the same as discussed above for the use of global su-
persymmetry. )

he most interesting type of theory so far proposed is
probably extended supergravity (with 2 ~N ~ 8), espe
cially the version with N =8, in which a single spin 2
graviton is accompanied by an SO, octet of spin 3/2 par-
ticles, a set of spin 1 particles belonging to the 28-di-
mensional adjoint representation of SO„a set of Major-
ana spin 1/2 particles belonging to the 56 of SO~, and
scalar and pseudoscalar multiplets in two 35-dimension-
al representations of SO,.

The coupling involving Newton's constant is presum. -
ably supplemented by a dimensionless coupling that in-
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eludes Yang-Mills behavior of the spin 1 bosons, which
would thus gauge the group SO,. The dimensionless cou-
pling induces a cosmological term in Einstein's gravita-
tional equation that is much too large; that is a difficulty
unless some spontaneous violation of symmetry permits
the cosmological term to be canceled almost completely.
But the major problem with SO, supergravity is that SO,
is too small a group to include color SU, times a suffi-
ciently large flavor group as a subgroup.

One may speculate about a future unified field theory
of all interactions and all elementary particles that
would resemble SO, supergravity but involve sacrificing
some principle now held sacred, so that the notion of ex-
tended supergravity could be generalized. In such a hy-
pothetical theory, an internal symmetry group G larger
than SO, would be gauged by spin 1 bosons, and both the
spin 3/2 and spin 1/2 fermions would be assigned to rep-
resentations of G. It is then very natural to suppose that
the spin 3/2 fermions would belong to some basic repre-
sentation of G and would include only color singlets,
triplets, and antitriplets. In that case our embeddings
of SU,' in G would be exhaustive and the representations
that we study in this article for assignment to spin 1/2
fermions would be precisely relevant for the spin 3/2
fermions. (The spin 1/2 particles would presumably be
assigned to more complicated representations. ) The
possibility that our review might be used in this way is
an exciting one, although highly speculative, and has en-
couraged us to prepare it for publication after some
years of delay.

Another fascinating possibility for a unified theory in-
volves the direct product of N =4 extended supersymme-
try with a gauged internal-symmetry group G, as de-
scribed above in the global case. We introduce local N
=4 supersymmetry; the graviton then belongs to a su-
permultiplet along with four spin 3/2 particles, six vec-
tor particles, four Majora. na spin 1/2 particles, a sca.-
lar, and a pseudoscalar. This supermultiplet is coupled
to itself with Newton's constant. The generalized Yang-
Mills "matter field" discussed above is then introduced,
containing one vector particle, four Majorana spin 1/2
particles, three scalars, and three pseudoscalars for
each component of the adjoint representation of G. This
"matter field" is then coupled to the gravity supermulti-
plet by Newton's constant and to itself by a dimension. -
less charge. The resulting theory is then no doubt unre-
normalizable (like the N = 1 supergravity theory with add-
ed matter multiplets mentioned earlier). However, a
theory like the one we are discussing, at least for G
=SU„ for any n, can be obtained as an approximation, for
energies small compared to the Planck mass, to the re-
markable ten-dimensional string theory of Scherk and
Schwarz (1974, 1975), in which six dimensions a.re "com-
pactified" into a tiny ball so as to be physically insignifi-
cant at any reasonable energy, leaving effectively a four-
dimensional theory. [For the original theory in 10 actual
dimensions, see Ramond (1971) and Neveu and Schwarz
(1971).] All elementary particles lie on Regge trajec-
tories with a slope n' of the order of Newton's constant
for the closed strings (giving the gravitational supermul-
tiplet) and a slope 2o.' for the open strings (giving the
particles of the matter field). The string version of the
theory has been shown (Gliozzi et a/. , 1977) to be free of

ghosts and tachyons and may well be renormalizable. It
does not have the difficulty of introducing a cosmological
term into Einstein's gravitational equation, nor does it
have to make use of an internal group G that is too small.
Given G, our embeddings are probably the relevant ones,
and we must utilize the adjoint representation, listed
here for the spin 1 bosons, also for the spin 1/2 Major-
ana fermions (four times) and for the scalar and pseudo-
scalar bosons (three times each).

We conclude this introduction with some examples of
unified models. Our main purpose is to illustrate the
color embeddings, charge assignments, and the defini-
tion of an atomic mass number; the detailed phenomeno-
logy of many models is available in the literature and not
reviewed here. There are five examples corresponding
to Cases 1, 4, 2, 5, and 9, respectively (see Table I).
In our examples we examine in some more detail the im-
plications of the possible requirement that the proton be
absolutely stable. Although we assume the gauge group
is broken down to U', & SU'„we look only at the details
of the symmetry breaking needed for proton stabiliza-
tion. We should emphasize that Secs.II and III also apply
to proton unstable theories, and models like the one
based on E, should not be discarded simply because the
proton stable version must be fairly complicated. Much
that we say here is summarized in Tables IV-VIII.

As a first example, we briefly discuss the familiar SU„
models, where the flavor group is identified in Eq.((2.7),
the vector bosons are listed in Eq. (2.6), and the n, lep-
tons and n, quarks are assigned to n, with n =n, + Sn, in
Eq. (2.4). The antifermions are assigned to n, and the
Lagrangian has an additional global symmetry generated
by fermion number. Since the n is a complex represen-
tation of SU„, this theory must be vectorlike to avoid tri-
angle anomalies; see, for example, Fritzsch, Gell-
Mann, and Minkowski, 1975; Kingsley, Treiman, Wil-
czek, and Zee, 1975; de Bujula, Georgi, and Glashow,
1975; and Pakvasa, Simmons, and Tuan, 1975.

It is commonly assumed that quarks and leptons occur
in SU, doublets with the stindard charge assignment.
Then for each lepton doublet with charges 0 and -1,
there must be a quark doublet with charges 2/3 and -1/3
for the sum of the fermion charges to be zero. This
version of the SU„model has a purely vectorial weak
neutral current. Of course many other SU, (and even
charge) assignments are possible and may agree better
with experiment.

Most of the physical Content of this theory is bound up
in the symmetry breakdown; not even the universality of
the weak and electromagnetic couplings of quarks and
leptons is present in the unbroken Lagrangian, since dif-
ferent sets of flavor bosons couple to quarks and to lep-
tons. (See Table IV. ) The proton is stable in the unbrok-
en theory because of the conservation of the explicit U,
in G~' and of fermion number. But the explicit U, must
be broken to avoid an unwanted massless boson. If we
assume that the broken theory conserves only electric
charge, fermion number and color, then the process
qqq -ill is allowed.

There is no reason a priori that the symmetry violatioo
should not break fermion number. For example, a Ma-
jorana neutral lepton mass term breaks both fermion
number and the explicit U, in G~', but does not break the
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TABLE IV. Boson-fermion couplings in SU„models with fer-
mions in n. The table lists the vector bosons in the unbroken
theory that provide the a b+ boson transition, a and b are
fermions. See Eqs. (2.4} and (2.6). The A values for the pro-
ton-stabilizing symmetry breaking discussed in the text are
also given.

(n~, 1,1~)
A=0

(1,n3, 3 )
A =1/3

E

(n„1,1')

A=0

(ng —1,1, 1 )

+ (1,1,1 )
A=0

(n, , n, , 5')

q
(1 n3 3e}

A =1/3
{ng,n3 3e)

A =1/3
(1 n3 1 1C)+ {1 1 1c)

+ (1,1, Sc)+ (1,n3 —1,Sc)
A=O

linear combination of the generators, A =N, /3, which
implies that A is conserved. The leptoquarks, assigned
to (n„n„3') of Eq. (2.6), then carry A =1/3. The sym-
metry-breaking terms needed for qqq- ill must all van-
ish in this case, since they would carry nonzero values
of A. . This specific class of SU„models is summarized
in Table IV.

Our second example involves several choices. We as-
sign the fermions to the n of SO„, which is a self-conju-
gate representation, and the theory is vectorlike. Sup-
pose that all fermions are assigned to a single n, Eq.
(2.17), that there is no additional global U„and that the
explicit local U, is broken. As long as electric charge
and color are the only conserved quantities, the 3' bo-
son-mass eigenstates will be mixtures of the (n„n„3')
and [1,~n, (n~+l), 3'j bosons in Eq (2.18).. Then the lep-
toquark is also an antidiquark, and its exchange can, in
general, cause the transition qqq- qql, so that the pro-

ton is unstable in second order.
If we want to stabilize the proton, we must decide

whether to obtain the global, from some other sector
of the theory or to double the fermion representation,
thereby providing a fermion number. In the former case
it is possible to obtain a scheme with no weird particles;
see the discussion around Eq. (4.28). In the latter, the
generator of the relevant local U, must have a nonzero
value for leptons, which requires going beyond the expli-
cit U, . For simplicity we limit this example to n even
and extract a second U, from SO„,~SU„, x U, where n'
=n, /2. We refer to the procedure of taking part of the U,
from a non-Abelian factor of 6" as a "flavor raid. " The
local U„generated by the sum of this U, generator and
the explicit U, generator, will be broken together with
fermion number [see Eq. (4.12) and the discussion be-
neath]. The most economical scheme as far as weird-
ness is concerned has leptons with A =0 and j., and
quarks with A =1/3 and -2/3. The A. values of the vector
bosons are easily worked out from Eqs. (2.17)and(2. 18),
as is the phenomenology of weird decays. {The latter is
similar to some examples worked out below. ) This
scheme is summarized in Table V.

As a third example, let us look at a Class III SU„mod-
el (Case 2). For this example, we give a simple discus-
sion of the phenomenology of weird fermions. The sum-
mary of this model for arbitrary n is contained in Table
QI, but for definiteness we analyze a vectorlike SU,
model where the fermions are assigned to the 56 =(8')„,
which is complex. The flavor group is SU5 ~ U, , Eq.
(2.10), and the Lagrangian possesses a global U, sym-
metry, which is generated by fermion number. The SU,
xSU', decomposition, Eq. (2.11), of the 56 of fermions is

56=(X6, 1)+(10 3')+(5 3')+(1 I.')

while the vector bosons are assigned to the adjoint 63,
Eq (2.9)

63=(24 1')+(1,1')+(1 8')+(5 3')+(5 3')

TABLE V. Boson —fermion couplings in the K)2„model. Representations are decomposed under SO2„~ SU„.x U& xSU„x U~ x SU3,Fl3
yg =~ + 3yg3. The local generator used in defining A is a linear combination of the two U~ s explicit in this decomposition.

2

(n', 1, 1')
A=O

(1,n3, 3')
A = 1/3

y'

(1,n, , 3~)
A =2/3

L
(n', 1, l~)

A= I

E

(n' 1 1c)
A=0

(n ' 1, 1, 1')+ 2 (1, 1, 1 )
A=O

(n' n 3')
S/3

{n',n3, 3')
2/3

t-,'n (n 1),1, 1']
A= —1

(1,n3, 3')

'r
(1,n„3 )

L
(n', 1 1c)

(n', n, , 3 )

A =1/3

(n ~n3, 3 )

A=2/3

[-,'n (n

(1 n3 1 1c)+ (1 1 1c)

+ {1,1 8')
A=O

t1, —,'n, (n, +1),3~~

+ P. , —,'n, (n,
A =-1/3

(n', 53, 3')

[1,g n3 {6.3+ 1), 3']
+ f1,—,'n, (n, 1),6~j
A = 1/3

{1,n3 1, 1~)

+ (1,1, 1 )+ (1, 1, 8~)
A=O

{n ~n3~3 )

(n', n3, 3')

(n n3 3c)

{ns2

+ 2{1,1, 1')
A=O
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TABLE VI. Boson —fermion couplings in Class III SU„models. The A assignments are made assuming that X generates the ex-
plicit U~ in Eq. (2. 10).

l
{(n',)~, 1c)

A=O
((n ') 3c)

A'=2/3

L
{(n0-3)

A=1

l
[(ng)~, 1']
A=0

(n& 1 1c)+ (1 1c)
A=0 1/3

None None

[(nk ~ ) 3c]
A= 1/3

{ng, 3c)
A= 1/3

(n2~ 1 1c)+ (1 1c)+ (1 Sc)
A=O

(n~ Sc)
1/3

None

r
[(nk 2) 3c]
A='2/3"

L
[(n ')
A=1

None

None

(~g, 3')
A= 1/3

None

{n~ —1, 1 )+ (1, 1')+ (1,8')
A. = 0

(ng, 3c)
A= 1/3

(ng, Sc)
1/3

(1, 1 )
A=0

There are 25 flavor bosons, including the photon, and
three known weak bosons. The other bosons, which
transform as (5, 3') and (5, 3'), mediate transitions be-
tween r in (10, 1') and q in (10,3'), between q and 7 in

(5, 3'), and between F and the singlet "I." lepton. (See
Table VI. )

The electric charge assignments are easily cataloged
from Eqs. (3.3} and (3.4). It is rather natural to choose
the standard charges since it is the only assignment in
which the charge spread of the l's and q's is less than 4,
the lepton charges are less than 3, and there is more
than one neutral lepton. Then six I leptons have Q =-1
and the remaining four have Q =0; four of the q quarks
have Q =2/3, and six have Q =-1/3; four r quarks have
Q =2/3 and the other one has Q =-1/3; and the L lepton
has Q = —1. Note that the L and l leptons cannot be mixed
by symmetry breaking, since they have no charges in
common.

If there is an Fq meson less massive than the proton,
then the proton may decay in second order into this me-
son plus a lepton. If the L is light enough, the proton
can decay into three leptons, llL. But if the light quarks
are all of q-type, and the light leptons are of l-type,
then it is perhaps natural to suppose that the (Fq) mesons
and also L leptons would be heavier than the proton. In
this case, the proton is guaranteed to be stable until the
explicit U, of Eq. (2.10}is broken. Moreover, if fermion
number is not finally broken, the proton decay to three
light leptons does not violate the remaining conservation
laws, although this process could be very slow.

The proton can, of course, be stabilized by breaking
fermion number together with a U, in G~'. The simplest
solution uses the explicit U„. the general solution is
given in Eqs. (4.11) and (4.12). We avoid making a fla-
vor raid in this example, so that the l leptons then have
A =0; the q quarks have A =1/3, the x quarks have A
= —2/3; and the L lepton has A= l. [See Eqs. (4.7)-
(4.10).t The model, A assignments, and boson couplings
are summarized in Table VI.

.In order to effect transitions from weird to ordinary
fermions, a boson carrying A must be involved. The bo-
sons in the (5, 3') carry A =1/3, those in the (5, 3') carry

A =-1/3, and the remaining bosons have A =0. The
(5, 3') bosons mediate the transition x-Eqq in second or-
der. Thus a weird baryon with A =0 composed of xqq
could decay into a lepton and two mesons. Similarly a
weird meson with A. =1 composed of Fq would decay into
a baryon and a lepton. The only second-order transi-
tions from L into other fermions are L —yyq and
L -Fql, so the L decay may be a two-step process. L's
produced in pairs in e'e- annihilation could be nearly
stable.

Our fourth example is again a model with a Class III
embedding, but the theory may be either vectorlike or
flavor chiral. We assign the fermions to the spinor re-
presentation of SO~4 with color embedded as SO,4 & SO8

x SU 3 Models of this kind have been studied by
Fritzsch and Minkowski, 1975. The SO,4 spinor is com-
plex and 64-dimensional, and in the vectorlike model the
quark and lepton content is given by Eq. (2.24)

64 (8 Ic)+ (8 3c)+ (8~ 1c)+ (8s 3c)

where 8 and 8' are the two real inequivalent spinor re-
presentations of SO, . The antifermions are, of course,
assigned to the 64. Thus all the left-handed spin 1/2
states are classified by 64+64, as are the right-handed
states in the vectorlike model.

Among the solutions for the electric charge assign-
ments given in Eq. (3.5)—(3.8), there are two interesting
ones: the standard charge assignment is recovered with

n, =1 and n n,2=n~=0. Half of the leptons have Q=-1,
and the other half have Q =0; half the quarks have

Q =2/3, the other half have Q =-1/3. For the solution,
n, =n, = n3 = 1 and n, = 0, the leptons in (8', 1'}have the
charges (2, 1, 1, 1,0, 0, 0, -1), which are minus the
charges of the leptons in (8, 1'}. The quarks in (8, 3')
have charges (5/3, 2/3, 2/3, 2/3, -1/3, -1/3, -1/3, -4/3),
and the antiquarks in (8', 3') have minus those charges.
The bosons are listed in Eq. (2.18) with n, =1 and n, = 8:

91 = (28 1')+ (1 1')+ (1,8')+ (8„3')+(8„,3')
+(1 3')+(1 3')

w'here 8„ is the vector representation of SO, . From Eqs.
(2.15) and (2.16), we see that the (8„,3') and (8„,3') bo-
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TABLE VD. Boson —fermion couplings in SO„model where fermions are assigned to the
spinor representation. The local generator used in defining A generates the explicit U~ in
Eq. (2.20) or Eq. (2.23). A is the adjoint representation of SO„6, the (n —6)(n —7)/2.

E

(&, 1 )
A=O

q
(g 3c)

A= 1/3 A =2/3
(4, 1')
A=1

E

(g 1')
A=0

(A, 1')+ (1, 1')
A=0

(n —6, 3')
1/3

(1,3')
2/3

None

q
(& 3')
A =1/3

(n 6, 3 )
A= 1/3

(»)+(»)+(1 8)
A=0

(n —6, 3')
1/3

(1,3')
2/3

L
(k, 1')
A=1

(1,3')
A=2/3

None

(n 6, 3)
A=1/3

(1,3c)
A=2/3

(A, 1 )+ (1, 1 )+ (1,8 )
A=O

(n —6, 3')
A= 1/3

(n 6, 3)
1/3

(A 1c)+, (1 1c)
A=0

sons provide the transitions, l q, q —z, and z—L,
where L are leptons assigned to (8, 1'), q to (8, 3'), l to
(8', 1'), and F to (8', 3'). Those bosons act as the (5, 3')
and (5, 3') bosons do in the SU, example. There is a dif-
ference however, because the SO„example has (1,3')
and (1,3') bosons in addition, and those connect L —q
and l ~i.

The proton is rather naturally unstable in this scheme
because both I and l lepton multiplets may have neutral
members, and, for example, an (8„,1') breaking term
would mix the neutral l and I members, and the 3 "light"
lepton decay mode would be opened.

In the most economical construction of A. so far as
weirdness. is concerned (see Case 5 of Sec. IV), the bro-
ken local generator generates the explicit U, . Then the
weird L leptons have A. =1 and the weird x quarks have
A. =-2/3. This possibility precludes L-I mixing, and a
(8„,1') breaking term must be absent. The color triplet
bosons again carry fractional values of A(A =el/3, +2/3), .

but the decay processes for the weird particles are simi-
lar to those of the SU, model. The model is summarized
in Table VII.

The flavor chiral theory places the left-handed fer-
mions in the 64 and the right-handed fermions in the 64,
where both of these multiplets have fermion number + 1.
Thus all the left-handed spin 1/2 states are classified
by 64+ 64, and all the right-handed spin 1/2 states are
in 64 +64. (The U, symmetry connecting 64 and 64
is generated by a pseudoscalar charge, and cannot be
used to construct A). If q~ are assigned to the
(8, 3'), then qs must be assigned to the (8', 3') in the
64 in order for q~ and q~ to have the same charge,
color, and baryon number. At this point, the analysis
of proton stability becomes identical to the vectorlike
case, where q~ and qz both transform as (8, 3'). How-
ever, one expects the analysis of the full symmetry
breakdown of vectorlike and flavor chiral theories to dif-
fer in many details.

As our final example, we look at an E7 model. The ex-
ceptional group models without fermion number predict
proton decay in second order, even before the symme-

tries are violated by the process (qqq) —(qql). For a
proton-stable E, model, we double the fermion repre-
sentation. There is no natural local U, . Instead the U,
must be raided from G" =SU, . Of course such a flavor
raid may be made in nonexceptional group models, but
here it is mandatory. As discussed in Sec. IV, we take
the U, from SU6D SU5 x U~, and obtain a rj.ch spectrum
of weird particles, Eq. (4.20). This scheme has six A
=1/3 quarks, of which one Q =-1/3 quark is separated
from the other three with that charge. (See Table VIII. )
The phenomenology is expected to be quite similar to
that of the proton unstable theory (Gursey and Sikivie,
1976, 1977; Hamond, 1976, 1977) based on a single 56 of
fermions. We note the similarities of this model and
the SU, model where the fermions are assigned to the
28, and the embedding is SU, ~SU, && U, &SU,'. The 56 of
E7 branches to 28 + 28 of SU, ~ The results are summar-
ized in Table VII.

GwG" x SU'

The generators of G" include, of course, the weak

(2.1)

II. EMBEDDING SUsc IN SIMPLE LIE GROUPS

The object in this section is to solve the mathematical
problem that arose in the introduction: given a simple
Lie group G larger than SU„ find all embeddings of SU3
(identified physically as the color group SU; of the
strong interactions) for which at least one representa-
tion of G contains at most color singlets, triplets, and
antitriplets. Then, for each embedding, find all other
representations (if there are any) that satisfy the same
color restriction. In this article we assign the fermions
to such representations, but we recognize that the em-
beddings may be useful for theories in which the fer-
mions are assigned to other representations.

For any embedding of SU, in G, the color content of the
generators of G is specified, and we may therefore iden-
tify the flavor subgroup Gf', which is generated by all
the color singlet generators of G. The subgroup decom-
position is
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TABLE VIII. Boson —fermion couplings in the EY model, fermions in the 56. The SU6x SU3 decompositions of the fermions and
bosons are contained in the boxes. %e assume X used in stabilizing the proton generates the U~ in SU6 D SU5 x U~. Thus the sub-
division of eigenstates of A corresponds to the SU5 x SU3 decomposition of the 56 and 133.

E

(10 1')
A=o

(2O, 1')
L

(10,1c)
A=1

(5, 3c)
A =1/S

(6, 3 )
S

(1 sc)
A=4/3

y'

(5, 5C)

A=2/3

(6, 3c)
0

(1,3')
A = 1/3

l
(10, 1c)
A. = 0

(24, 1')+ (1,1')
A=0

(5 1c)
A. = —1

(10,5')
1/S

None
A = —4/3

(5 3c)
2/s

(1o 3')
A= 1/S

(20 1')
L

(10,1 )
A=1

(5 1')
A=1

(35 1c)

(24 1c)+ (1 1c)
A=0

(5 5')
A=2/s

(15 5')

(10,5 )
A = —1/s

(1O 3')
A=1/S

(I5 s')

None

{6,3C)

(5, 3')

A= 1/3

(10 3)
A =1/3

(5 3')

2/3

(~5 sc)

(24, 1c)+ (1, 1c) (5, 1')
+(1,8 )
A=0 A= —1

(35, 1')+ (1,8')

(10 3)
1/s

(5 s')

A=2/3

{15 5')
S

(1 s)
A =4/s

None (1o, 3')
A. = 1/3

(5, 1c)
A=. 1

(1,1 )+ (1,8')
A=O

(5, 3c)
A= a/3

None

y'

(5 5c)

A=2/s

(5, 3c)

A=2/3

(1o,5')

1/S

(1o,s')

A =1/3

(5 3c)

2/s

{24,1')+ (1, 1 )
+ (1 8c)

A=0

(5, 1 )

(6, 5c)

(1 5')
1/S

(10,3 )
1/S

(15,5')

None (5, s')
2/3

(15,s')

None (5, 1 )
A= —1

{35,1')+ (1,8 )

(1,1 )+ (1,8 )
A=0

charges and the exactly conserved electric charge Q.
We are also assuming that the color charges, the gener-
ators of SU;, are exactly conserved. (Occasionally, we
shall toy with the idea of enlarging the exactly conserved

, Yang-Mills group of the strong interactions to the direct
product of SU, and another group, the whole being a sub-
group of G.)

The restriction on the color content of the fermion re-
presentation permits a very simple embedding proce-
dure. We prove in the Appendix the crucial theorem:
if any representation f of G decomposed according to Eq.
(2.1) contains at most 1', 3', and 3', then the fundamen-
tal representation also contains at most 1', 3', and 3'.
(The fundamental representations of the simple Lie
groups are: n of SU„; n of SO„; 2n of Sp,„; V of G, ; 26
of E~; 2V of E,; 56 of E,; and 248 of E,.) Thus w'e may
study the embedding in terms of the fundamenta, l repre-
sentation n, vshich is not necessarily the fermion repre-
sentation, wi&:h a G" xSU3 decomposition of the form

n = (n„1') + (n „3')+ (n s, 3'), (2.2)

where n„n, and n-, are representations of G".
The generators of G belong to the adjoint representa-

tion Adj(G), and its color content is easily obtained from
that of the fundamental representation. Vfith the G"
xSU; embedding, Adj(G) has the form

Adj(G}=(Adj(G"), 1'}+(1,8')+cross terms, (2.3)

where the cross terms correspond to the generators of
G that mix flavor and color, except in one case for SU„,.
With n, and n& both different from zero, Adj(G) includes

two (]., 8 )'s, which generate an SU, xSU, subgroup of
SU„. The sum of the corresponding generators generates
SU,'. There is then a temptation to enla, rge the color
group to SU, x SU„although doing so is optional. This
situation is discussed under Case 3 below. We identify
G" by explicit examination. It is then straightforward to
determine the other representations of G that satisfy our
color restrictions.

The whole procedure can be generalized by considering
embeddings G& G" x SU,' with progressively more and
more relaxed color restrictions on the fundamental re-
presentations and on the others to be used for the fer-
mions.

We carry out this procedure for all simple groups in
this section. The results are summarized in Table I,
where the group, embeddings, and representations are
tabulated. The derivation of these results occupies the
remainder of this section. We have also included a
short review of each of the Lie algebras. For a more
complete review, see, for example, Dynkin (1957), Wy-
bourne (1974), or Gilmore (1974); the tables of Patera
and Sankoff (1973}contain useful group theoretic results.

A. Unitary groups

The special unitary group SU„ is generated by an alge-
bra (called A.„,in the mathematics literature) of rank
n- 1 and order n'- 1. The geometrical interpretation
of SU„ is that it leaves invariant the scalar products of
vectors in an n-dimensional complex vector space. Its
representations are in general complex. The n —1 re-
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presentations obtained by taking totally antisymmetric
k-fold products (n~)„are irreducible and of dimension
(~), a binomial coefficient. The conjugate representation
of (n~)~ is equivalent to (n" ")~. All other representations
are obtained from partially symmetrized products of n
with itself. The adjoint representation n —1 is con-
tained in the product n x n= (n' —1) + 1.

Case 1:
Because n is complex, the simplest form of Eq. (2.2)

n=(n„1, 1')+(1,n„3'), (2.4)

where n =n, +3n„and n, and n, are integers greater than
1. The notation in Eq. (2.4) reflects the fact that this
will be a Class I embedding,

t""=Q,x Q, x U, , (2.6)

as defined in the Introduction. Since this is a special ex-
ample of Eq. (2.2) with n;=0, it will not yield the only
embedding. However, as we shall see, the general case
has new features that should be discussed separately.
The adjoint representation of SU„provides the list of the
generators needed to identify the embedding

n' —1 =(n~ —1, 1, 1')+(1,n,' —1, 1')+(1,1, 1')+(1,1, 8')

+ (n„n „3')+ (K„n„3')+ (1,n,'- 1,8') . (2.6)

Note that Eq. (2.6) includes no flavor cross terms that
are color singlets, so that G" of Eq. (2.1) is indeed
given by

= SU„~ x SU„3 x Ui . (2.7)

which implies the Class III embedding,

6 =SU„~x U, . (2.10)

Equation (2.8) by itself is not an interesting candidate
for the fermions. However, our color restriction is
satisfied for the representations of dimension (~), ob-'

tained by antisymmetrizing n k times,

(,") = [(,')„,1'] + [(n,'-')„,3'1 + [(,'-')„,3']
(2.11)

+ [(nil w) 1c]

The U, distinguishes 1' and 3' in the fundamental repre-
sentation.

For n, &1, only the n of SU„satisfies the restriction
that no more than 1', 3', and 3' occur in the fermion re-
presentation; the leptons are assigned to (n„1,1') and
the quarks to (1,n„3') of Eq. (2.4). The assignment
must be vectorlike in order to avoid divergences from-
triangle anomalies.

Case 2:
We may ignore the trivial case n, =1 in Eq. (2.4) for

which all leptons have the same electric charge, but an
interesting special case occurs for n, =1 and n, &1. Then
n becomes

n = (n„1')+ (1,3'),
with n, =n —3. The adjoint representation is

n'- 1=(n,' 1, 1')+(-1,1')+ (1,8')+(n„3')+(n„3'),
(2.9)

The last term is omitted for k =2. If n is even and k
=n/2, (n~)„ is self-conjugate. [For example, the 20 of
SU, is (6')~, which is equivalent to (6')~.] Otherwise,
each of these representations is complex and unsafe
from triangle anomaly divergences. There are no other
representations of SU„ that satisfy our color restriction.

Case 3:
If both n, and n , of-Eq. (2.2) are nonzero, the adjoint

contains two color octets and the most natural embedding
is not really of the form Eq. (2.1) since the two 8's are
generators of separate SU, 's. The embedding should be
written initially as

SU„a (SU„, x SU„, x SU„-, x U, x U, ) x SU', x SU', , (2.12)

where the flavor group has the structure of a Class rr
embedding

(2, 13)

Only the fundamental representation satisfies the color
restrictions. The n contains n, leptons, n, q quarks and
n; 7 antiquarks, with n=n, +3n, +3n;. Since n of SU„,is
unsafe from triangle anomalies, the fermion assignment
must be vectorlike; both SU, and SU, are generated by
vector currents. Consequently there is a temptation to
enlarge the color group.

So that both q and r quarks be confined, the conven-
tional color generators must be sums of the correspond-
ing SU, and SU,' generators. The eight SU,' generators
are conserved, but there are two distinct possibilities
for the remaining eight SU, x SU,' generators: either
they are all broken, or they are all conserved. If only
SU', is conserved we obtain the usual strong interaction
gauge group: the q and & quarks would be confined by
the same set of gluons, and the hadron spectrum would
include qqx and qx states. If the unbroken strong gauge
group were the full SU, x SU„ then the q and r quarks
would be bound together Qy different sets of gluons.
Consequently qP states, which transform as (3, 3) of col-
or, would be confined; similar considerations apply to
the qq& states. The qqq and qq hadrons would be quite
distinct from the r&& and &F' ones. Bosons of the unified
theory transforming as (3, 3) and (3, 3) of color would
couple q to x.

B. Orthogonal groups

The special orthogonal group SO is the group of
transformations that leaves invariant the scalar products
of vectors in an m-dimensional real-vector space. The
defining or vector representation is denoted by v or m,
and is self-conjugate. The adjoint representation is ob-
tained irreducibly from (mx m)~, and has dimension
~m(~ —1). The spinor spaces associated with the alge-
bras differ for m even and m odd.

For an odd-dimensional defining space, the algebra
(called B„)of the group SO,„„has rank n and order
n(2n+1). There is a single real spinor representation o'

of dimension 2", and it cannot be obtained from Kroneck-
er products of v with itself. However, o' is determined
up to phases by v, as can be seen from the decomposi-
tion of the direct product
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OX o= (2.14)

where (v~)~ are all irreducible SO, , representations.
Note that. both the vector and adjoint representations ap-
pear in o'x o'. The assignment of fermions to cr obeys
our color restriction only for n3 1 and so n3 1 and ns
&1 will be considered as separate cases.

In an even number of dimensions, the algebra (called
D„) of the group SO2„has rank n and order n(2n —1).
There are two inequivalent spinors, o' and o', each of di-
mension 2" '. The Kronecker products of o' and o' are

o x o' = (v" ')~+ (v" ')~~. . .
™~ ( tl 2) (vtt 4) (2.16)

where o' is a representation of dimension ~('„"), and a
formula similar to Eq. (2.16) holds for o' && O'. .For n
even, both o' and o' are self-conjugate, the vector ap-
pears in o'& o', and the adjoint in o'x o (and o' & (r') Fo. r
n odd, o' =o is the conjugate of o, which is complex, and
o'x o contains the adjoint representation.

We should mention the equivalence of the algebras of
SO, and SU„of SO, and SP4, and also of SU„SO„and
Sp .
Case 4:

The fundamental representation of SQ„ is the vector
representation n, where n may be even or odd. Since n
is self-conjugate, 3' and 3' must appear symmetrically,
and Eq. (2.2) must be of the form

n = (n„1,1') y (1,n„3') + (1,n„3'), (2.17)

where n =n, ~6n, and (n„ 1) is a self-conjugate represen-
tation of G". Here we consider n, a.nd n, greater than 1;
as our notation indicates, this is a Class I embedding.
G" is identified from the adjoint representation

(n && n) „=[2 n, (n, —1), 1, 1'] + (1,n,' —1, 1') + (1, 1, 1')

+ (1, 1, 8') + (n„n„3')+ (n„n„3')

only I', 3', 3, the color content of o x o' cannot go beyond
1 3, 3, 6, 6, 8 . However, the color content of o'x o'

for the embedding can be computed directly from Eqs.
(2.14) and (2.1V). Specifically, if n, &1, (v')~ contains a
15', so 0' can satisfy the color restriction only if n, =I
in Eq. (2.1V). Since the factor SU„, disappears for n, =l,
the flavor group is

G"=SQ,„,X U, . (2.2O)

The decomposition of the SO, , spinor into SO2 y 2j
X SO~~ representations is particularly simple

o =(5, p)+(5, p'), (2.2i)

and we have a Class III embedding.
The SQ~, x SO, decompositions of the SQ,„spinors are

o=(4, 4)+(4', 4),
o' = (5'4)+ (5, 4),

and the G"x SU', decompositions are

o'=(4, 1 ).+(4, 3')+(4', 1')+(4', 3'),
o'=(0' 1')+(4' 3')+(4, 1')+(4, 3'),

(2.24)

(2.26)

where $ is the SO~, ,& spinor, and p and p' are the two
SO„spinors. We set j =3, so that p and p' a,re the 4 and
4 of SO, = SU4. When SU4 is broken down to U, x SU'„4
decomposes into 1'+3' and the decomposition of o' is

o =(4, 1')+(4, 3')+(5, 1')+(4, 3'). (2.22)

The proof that the color restriction on o' requires n, =1
works also for the spinors of SO,„. For n odd, 0' is com-
plex and o" =:o', so that neither o'x o' nor o x o' can have
color representations- of dimension greater than 8.
Equations (2.15) and (2.16) then imply that n, =1 in Eq.
(2.1V). The same argument applies if n is even, although
o' and a' are then self-conjugate spinors and only o'x o'

needs to satisfy the color restriction. The flavor group
is then

(2.23)

+ [1,~ n, (n, ~ 1), 3'] + [1,—,
'

n, (n, + 1), 3']

+[1,2n. (n, —1), 6']+ [1,—,'n, (n, —1),6'],
and the flavor group is

(2.18) where g and $' a,re SO,„,spinors. As before, the U, of
Eq. (2.23) appears in the decomposition SU~ a SU,' x U, .

'There are no other representations of SO that satisfy
the color restriction, since o', o' g,nd v each contain both

and 3
G" = SO„,x SU„,x U, . (2.i9)

The explicit U, in Eq. (2.19) counts 3"s minus 3"s in Eq.
(2.17), and has zero eigenvalue for the color singlet part
of n. There are no other representations of SO„(n,. &1)
that satisfy our color restriction.

Case 5:
Although the structure of the spinor representations of

SO differs for m even and odd, the characterization of
their color content is similar enough to treat them to-
gether. Recall that we embed SU', through the fundamen-
tal representation, Eq. (2.17). The requirement that the
spinor representation contain I, 3', and 3' only implies
the same for m, as proved in the Appendix. We first
show that n, =i in Eq. (2.17), so G"=SO, && U„' we then
give the SO, x SU,' decomposition of the spinors.

first consider SQ, , Since the spinor of SO~, has

C. Symplectic groups

The symplectic algebra (called C„) generates the group
Sp,„of transformations that leave invariant a skew-sym-
metric quadratic form in a real 2n-dimensional vector
space. It is of rank n and of order n(2n+1). All of its
representations are self-conjugate and may be obtained
from Kronecker products of the 2n-dimensional defining
representation with itself. The adjoint is the symmetric
product of 2@with itself. The products (2n ), are irre-
ducible, while (2n )~ is a sum of two irreducible repre-
sentations, one of dimension ('„")—(~",) and the other of
dimension (~2",). Since 2n is real, 3' and 3' must appear
symmetrical. ly.

Case 8:
The most general form of 2n consistent with Eq. (2.2)

ls
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+ (1, n, —1, 8'),
which implies the Class I embedding,

(2.27)

(2.28)

2n = (2n„1, 1') + (1,n„s') + (1, n„3'), (2.26)
/

where n =n, +3n, . Because both 3 and 3' appear in 2n,
all higher representations have at least 8' and are ex-
cluded for fermions by our color restriction. The ad-
joint representation is

n(2n+ 1) = [n, (2n, + 1), 1, 1']+ (1,n' —1, 1') + (1, 1, 1')

+ (1, 1, 8') + (2n„n„3') + (2n„n„s')

+ [1,~ n, (n, ~ 1),6']+ [1, ~ n, (n, ~ 1),8']

+ [1, ~ n, (n, —1), 3'] + [1, 2 n, (n, —1), 3']

p4..

7 x 7 = V~+ 14„+1,+ 2V,
7 x 14= 7+ 27+ 64
14 x 14= 14~+ 77~+ 1s+ 2 s+ 77s
26 x 26 = 1~+ 52~+ 273~+ 26s+ 324s
26 x 52=26+ 273+ 1053'-
52 x 52 = 52&+ 1274&+ 1s+ 2 s+ 1053s
27 x 27 = 351~+ 27s+ 351s
27 x 27 = 1+78+ 650
27 x 78 = 27+ 351'+ 1728
78 x 78 = 78~+ 2925m+ 1s+ 650s+ 2430'
56 x 56 = 1~+ 1539~+ 133'+ 46 s
56 x 133=56+ 912+ 6480
133x 133= 133~+ 8645~+ 1s+ 1539s+ 7371s
248 x 248 = 248&+ 30380'+ 1s+ 3875'+ 27000'

TABLE IX. Decomposition of products of fundamental and ad-
joint representations of G2, E4, E6, EY, and Es.

For n, = I this embedding is formally of Class III, but
physically trivial since the 2n only obeys the color re-
s triction.

of the adjoint representation is

52 = (8, 1') + (1, 8') + (6, 3') + (6, 3') . (2.31)

Case 7:
F4 has rank 4 and 52 generators. SU', is embedded by

F4& SU3 x SU', , (2.29)

so that G '=SU, . Only the smallest nontrivial represen-
tation satisfies the color restrictions. Like all other
representations of F4, it is self-conjugate:

D. Exceptional groups

Besides the four infinite sequences of simple classical
Lie groups, there are five exceptional groups, which do
not have the simple geometrical interpretations reviewed
above. Instead each is the invariance group of the multi-
plication table of certain matrices with elements that be-
long to the nonassociative octonion algebra. It is diffi-
cult to build Lie algebras from underlying nonassociative
systems, and so their number is limited. These groups
have some apparent advantages for particle physics.
Quark-lepton universality is assured since the flavor
group, which is in Class IV, contains no U, factor to
distinguish color triplets from singlets. Also, there is
a natural SU'„which is the subgroup of the automor-
phism group G2 of the underlying octonion algebra that
leaves one of its elements invariant. (Of course SU',
might be a different subgroup of G, and we consider that
possibility also. )

Two of the exceptional groups fal1. outside our assump-
tions. G, has rank 2, and SU, alone is a maximal sub-
group; thus G ' is trivial, lacking even a U, for electro-
magne tis m. Ea has rank 8 and 248 generators. It is the
only Lie group for which the smallest representation is
the adjoint; there are no representations satisfying our
color restriction.

We have listed for reference the Kronecker products of
the fundamental and adjoint representations of the excep-
tional groups in Table IX.

27 = (3, 3, 1') + (1, 3, 3') + (3, 1, 3') (2.32)

under the maximal subgroup decomposition

E, v (SU, x SU, ) x SU', . (2.33)

Either of the other SU, 's could be identified as color,
and the results of this paper would be unchanged. The
adj oint representation is

78 = (8, 1, 1') + (1, 8, 1') + (1, 1, 8')

+ (3, 3, 3') ~ (3, 3, 3') .
(2.s4)

The 27 and 27 are the only representations with 1', 3',
and 3' only.

Case 9:
E, has rank 7 and 133 generators. The color can be

embedded by

E, w SU, x SU', . (2.»)
Only the 56 satisfies the color restrictions: its SU, x SU',
decomposition is

56 = (20, 1') ~(6, 3')+(E, 3') .
The decomposition of the adjoint representation is

(2.s6)

133 = (35, 1') + (1, 8') y (15, 3') + (15, 3') . (2.37)

It is also possible that the SU', is embedded in the SU,
subgroup of E,. This could happen in two ways: (1) If
SU, ~ SU', x SU3x U„ then the 56 decomposes to 27+27
+1+1 of E,. Only the 56 satisfies our color restric-
tions; (2) If SU, ~ SU;x SU„ then no E, representation
satisfies our color restrictions, which is proven in the
Appendix.

Case 8:
E, has rank 6 and 78 generators. Its fundamental rep-

resentation is complex, and decomposes as

26 = (8, 1') + (3, 3') + (3, 3') . (2.30)

If the other SU, were the color group, there would be no
E4 representations satisfying our color constraint. (This
is proved in the Appendix. ) The SU, x SU, decomposition

III ~ THE ELECTRIC CHARGE OPERATOR

The vector bosons responsible for mediating the elec-
tromagnetic (and weak) interactions are coupled to gen-
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Q =+I, +PI, +yIo, (3.1)

where I, generates a U, in G„ I, generates a U, in G„
and lo generates the explicit U, . We shall simply enu-
merate all the constraints on the eigenvalues of Q.

Case 1:
There is only one constraint on the charges of the fer-

mions in the n of SU„: the sum of all quark charges (of
all colors) is minus the sum of lepton charges, which is .

proportional to y in Eq. (3.1). For the standard charge
assignment, this constraint becomes the number of Q
=-1 leptons, which equals the number of Q =2/3 quarks
minus the number of Q =-1/3 quarks; in this special
case, the number of quark flavors is equal to the number
of lepton flavors.

Cases 4 and 8:
The vector representations n of SO„and 2n of Sp,„are

self-conjugate. If a single n of SQ„, say, contains both
fermions and their antiparticles, then there is complete
freedom in defining the fermion charges. It is also pos-
sible that n [Eqs. (2.1V) or (2.26)] contains quarks and
antiquarks (p and F) such that p and ~are not equivalent.
CPT invariance then requires another fermion represen-
tation n containing the q and &. I, counts the number of
q's minus the number of r's. The constraints on the
charges are: the sum of the charges in (n, 1, 1') of nis
zero, and the sum of q charges is proportional to y and
is equal to the sum of & charges.

Class ll: G"=G, xG, xG„-xU, x U, (Case 3).
The only constraint on the electric charges is that the

sum over all fermion charges in n must be zero, as in
Case I of Class I.

erators of the flavor group G", the electric charge Q
generates a U, subgroup of G" . The quarks have frac-
tional electric charges in the sequence (. . .5/3, 2/3,
-1/3, -4/3, . . .) and the leptons have integral charges
(. . ., 1, 0, -1, . . .). ln this section we construct all possi-
ble charge operators consistent with these restrictions.
The "standard charge assignment, "where the quark
charges a.re restricted to 2/3 and —1/3 and the lepton
charges to 0 and -I, is always possible, although the
number of fermions of each charge depends on G~', but
of course other charge assignments are also possible.
We proceed by constructing the charge operator for each
of the four classes of G" identified in the Introduction.
The charge operator in Class I and II theories is only
slightly constrained; little discussion is needed. The .

restrictions for exceptional groups are so tight that pos-
sible charge assignments may be listed. Only Class III
theories require any effort.

C[ass t: G"=G, x G, x U, (Cases 1, 4, and 6 of Table I
and Sec. IE).

Since the quarks and leptons are transformed by differ-
ent factors of G, the observed universality of their
weak and electromagnetic charges must result from the
mechanism that breaks down G to SU,'&U, . This is re-
flected in the freedom in defining Q, which may be writ-
ten in the general form

Class I II: G" =G, x U, (Cases 2 and 5).

The generators of G„, act both on quarks and leptons,
and the U, distinguishes 1' from O'. Thus the quark
charges determine the lepton charges, although quarks
and leptons sometimes belong to different representa-
tions of G, , so the patterns need not be identical. The
most general form of Q is

Q =+I+PI, , (3.2)

where &I generates a U, in G~„and I, generates the ex-
plicit U, factor. The value of P is determined largely by
the fractional nature of the quark charges, and the inte-
ger spacing of the charge values is controlled by ~.

Case 2:

(3k —n)x = (M+ 3s —1)k. (3.4)

[The parameter P of Eq. (3.2) is determined in terms of
x and a.iso in terms of s, thus giving rise to Eq. (3.4).]

Let us examine some examples of Eqs. (3.3) acd (3.4).
If we require that (5R"] contain two values only, then
there are two possibilities for {m ]'

(a) (m }=(1,0, . . ., 0]. lf(Q [(n)~, 1']] contains
charges Q =0 and Q =1(antileptons), then r =s =0, and
the standard charge assignment is recovered. The par-
ticles are as follows:

[(n,)~, 7'].antileptons, (» ',) with Q =1 and ("» ) with Q =0;
[(n )a, 3] quarks,

(„" 4) with Q =2/3 and (»::) with Q= -1/3;
[(n, )~, 3'] antiquarks,

T

(„"',) with Q = 1/3 and (~',) with Q =-2/3;
[(n", ')~, 1'] leptons, (» 4) with Q=0 and (»,) with Q=-l.

(b) The standard charge assignment may also be ob-

The charge operator for Class III SU„ theories is a lin-
ear combination of an SU„, generator (n, =n —3) and the
generator Io of the explicit U;. When acting on n in Eq.
(2.8), Io has eigenvalue 1/n, for (n„1') and —1/3 for
(1, 3'). The eigenvalues of the SU„, generator may be pa-
rametrized by a set of n, integers, (9R'].=—(~.]
=fm„m„. . ., m„,], because of the integral spacing of the
electric charges. We define M =Z"'-,m-, and the eigen-
values of this generator are then m —(1/n, )M when a.ct-
ing on (n„1') and are 0 for (1, 3'). There is no loss of
generality if we require 0 &M +ply.

The fermions are assigned to (n )„, Eq. (2 ~ 11)~ Thus it
is helpful to define {9R ] as the set of ("»&) integers ob-
tained by summing 0 different ~'s in all different ways.
If we denote the charges in [(n,")~, 1'] by Q [(n,)~, 1'],
etc. , then the electric charges of the fermions may be
parametrized as

Q [(n",)„,1']=SR" +~, +=1, . . ., ("»&),

Q [(n, ')~, 3'] =3R '+' —1/3, =1, ~ (»-', )
( )

Q [(n", ')„,3'] =SR' '+2s r —2/3—, +=1, . . ., (g", ',),
Q [(n", ')„,1']=OR '+3s —2r-1, +=1, . . ., (P,),

where & and s must be integers, and must also satisfy
the constraint
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tained in a different way from (m j=(0, 1, . . ., 1j but on-
ly for n even and k =n/2

Larger spreads of electric charge are always possible,
although Eq. (3.4) helps to limit the number of cases. As
an interesting example, consider {m j=(1, 1, 0, 0, . . ., 0j,
with the requirement that the charges Q [(n,)~, 1'] have
the values 1, 0, —1. Then x = —1 and & = 1/3[(n/A') —4],
which implies that. n =4&, '7&, 10&, etc. For the case n =8
and k =2, there is a quark singlet with Q = —1/3. This
charge assignment for the 28 of SU, is related to the
standa, rd one for the 56 of E, (see Case 9 below); the SU,
decomposition of the 56 of &, is 28+28.

Case 5:

SR=(—,'(m +n + ~ ~ ~ +n )j. (3.5)

Equation (3.5) is the solution of Eq. (2.14) or Eqs. (2.15)
and (2.16). It is most easily derived from the Clifford
algebra structure of the SO„, spinors, but it may also be
constructed using the SU x U, decomposition of the SO„,
spinors. For n odd there is only one spinor of dimension
2, and the eigenvalues are just the set SR. Vfhen n is
even there are two SO„, spinors, each of dimension 2
one has eigenvalues in the subset of SR with an even num-
ber of minus signs, which we call SR; and the other has
eigenvalues in the subset of SR with an odd number of mi-
nus signs, SR . gee also define

(3.6)

All elements of 3R are integer (or half integer) if N is.
The sum of the elements of SR, is zero, since &I is
traceless in any representation. If ~ and n are even,
then the set SR~ is identical to the set. -SR„and for n
even and m odd, SR is identical to -SR .

'The explicit U, is obtained from the decomposition SO6
=SU4~ U, x SU3 Finding the eigenvalues of the generator
of the U, is a simple application of the SO„, results that
we jus t obtained. The 6 of SO, b reaks into 3 + 3 of SU3,
and the eigenvalues of the generator of the U, are
(1,1,1,-1,-1,-1j. The eigenva, lues of the 4 of SO„
computed from Eq. (3.5), are then ~(3, -1,-1,-1j.
adjust P in Eq. (3.2) so that quarks and leptons occur in
the appropriate charge sequences. In the case that ~ in
Eq. (3.6) is integral, the sets of electric charges for the
fermions in the SO„spinor representations, Eqs. (2.22)
or (2.24) and (2.25),are

The charge operator of a Class III SO„ theory is a lin-
ear combination of an SO„, generator and the generator
of the explicit U, in Eq. (2.20) or (2.23). (We treat even
and odd n together. ) The eigenvalues of the SO„, gener-
ator depend on m —= [(n —6)/2] parameters, which may be
chosen to be integers because of the spacing of the elec-
t.ric charges. The eigenvalues of this generator acting on
the (n —6, 1') are ~„~„.. ., m, (0), where n„. . ., n

are non-negative integers and the extra zero eigenvalue
is present if n is odd. 'The eigenvalues of this generator
when acting on the spinor representation(s) are then giv-
en by the set SR, where

Q ((, 1')=3R. +3~+1,
Q„(g, 3') =3R,. I 1/3,
Q ($', 1') =SR —3k —1,
Q (4', 3') =3R +~+I/3,

(3.7)

where the 3&+1 is the average charge of the (g, 1') lep-
tons, etc. , and & is an integer. For n odd, SR, =SR =SR
in Eq. (3.7). The half-integer N case is obtained by re-
placing k by k —1/2 in Eq. (3.7) so that

Q ($, 1') =SR, ~3k —1/2,

Q (g, 3') =5R. —&+1/6,

Q.(4', 1') =3R .—3&+ I/2,
Q.($', 3') =5R. +I 1/6.

(3.8)

In both cases, the average lepton charge in (g, 1') [or
($', 1')] is minus three times the average. quark charge
in (g, 3') [or ($', 3')], and the spread in the charges is
2N.

The standard charge assignment is recovered for =0
in Eq. (3.8), and (n~j=gn„. . . n j=(1,0, . . . , 0j Then
half the leptons have Q =0 and the other half have Q = —1;
half the quarks have Q =2/3 a,nd the other half have Q
= —1/3. In all these four cases of charge and color,
there is the same even number of particles. 'This cor-
responds to &I being the generator of the U, in the em-
bedding SO~ 6 D SQ„8 X SQ2 —SO„8 X U~.
models with the average lepton charge of —1/2 and a
spread of 2 units of charge. There are three cases if a
spread of three units of charge is desired with average
lepton cha. rge -1/2. These correspond to: (a) $& j=
(3, 0, . . . , Oj, which has charged currents with b.Q = 3 on-
ly; (b) (n j=(2, 2, 0, . .. , 0j; and (c) (n j=
(1,1,1, 0, . . . , Oj. As a final example, if the average
lepton charge is 1, then the smallest charge spread is
2, and the only interesting case is fn j=$1,1,0, .. . , Oj.
Then leptons have charges 0, 1, and 2; and quarks have
charges 2/3, -1/3, and —4/3, as can be seen from Eq.
(3.7).

Case 7:
The flavor group for I'4 is SU„and the fermions are

assigned to the 26, Eq. (2.30). The eigenvalues of the
electric charge operator when acting on the 3 can be pa-
rametrized by (n, —1/3, n, —1/3, -n, -n, + 2/3), where
n, and n, are integers. The leptons in (8, 1') have charg-
es (+(n, —n, ), +(2n, ~n, 1), +(2n, +n,——1), 0, 0j. The
standard charge assignment, which in this case has Q
=+1 leptons, is recovered with n, =n, =O.

Class IV: G"=6„, (Cases 7, 8, and 9)

In the exceptional groups, G" acts both on quarks and
leptons as a simple flavor group. There are no V, fac-
tars that distinguish color. The sum of the quark cha. rg-
es vanishes. Quark-lepton universality is imposed at
the level of the gauge group, and the quarks and leptons
transform as different representations of G", which are-
related in such a way that 1/3 integral charge assign-
ments for quarks imply integral charge assignments for
leptons.
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Case 8:
The generator of the U, (—SU, ~ SU„which is G" for

E„must possess eigenvalues (n, —1/3, n, —1/3, -n, -n,
+ 2/3) in the (1, 3) representation, and (m, —1/3, m,
—1/3, —m, —m, +2/3) in the (3, 1) representation. Then
the eigenvalues of Q for the (3, 3, 1') of Eq. (2.32) are

PÃI njmI n2???2']9m2n2PÃ]+ny+yz21n?yvl2
—n, +l, m, +n, +n, —1, —m, —m, —n, +1, n, +n2 —m, —mg.
The standard charge assignment, which is the only one
that looks interesting, is recovered with n, =n, = m, = m,
=0.

Case 9:
The generator of an arbitrary Q, ~SU, is specified by

five parameters. The quarks are in a 6 of SU„and the
charge eigenvalues are n, —1/3, i =1, . . . , 6 with%
=Z;, n,.=2. The charges in the (20, 1') are then the set
SK3 19 whe re SR, is the set of al 1 different threefold
sums of n;. Only if {n j ={1,1, 0, 0, 0, 0) do we recover
the standard charge assignment. A charge -4/3 quark
occurs in the model with {n )={1,1, 1, 0, 0, -1$.

IV. BARYON NUMBER CONSERVATION

In unified theories, where both quarks (3') and leptons
(1') are assigned to the same irreducible representation
of G, there exist vector bosons (leptoquarks) that trans-
form 1.eptons into quarks. This opens the way for proton
decay unless there exists a conserved quantum number
A for which the proton is the lowest mass state withA
= 1. As emphasized in the Introduction, exact proton
stabilization is not required, since there are many ways
to increase the proton lifetime beyond the experimental
limit. Still, a stable proton does not contradict the
data, and it is of interest to examine its implications
for the unified theories discussed here.

Empirically, conservation of A does not have a long-
range force associated with it. Thus, even though A is
an additive quantum number like Q, it cannot be a
generator of a local U, . It is therefore necessary for
the Lagrangian to possess more symmetry than the local
gauge group G. An additional global U, symmetry alone
is not adequate either, since its generator can merely
count representations of G, and cannot distinguish be-
tween quarks and leptons contained in one representa-
tion. It can help to put off proton decay to higher order,
but it cannot make the proton absolutely stable. How-
ever, if this global U, and some local U, are both broken
in such a way that a linear combination of the genera-
tors is conserved, the vector boson acquires a mass
(leaving no physical Goldstone boson) and tbe unbroken
linear combination gives an exact conservation law.
The emphasis on U, 's reflects the fact that A is an ad-
ditive quantum number. The Lagrangian should possess
at least a global U, symmetry in addition to G. (A pos-
sible exception is the generation of conserved topologi-
cal quantum numbers, but no examples with a short-
range force in three spatial dimensions have yet been
given. ) As a matter of notation, let X be the-generator
of the local Q, and Z be the generator of the global U, .
In carrying out this study we have neglected possible
breaking of Z caused by tunneling effects in the vacuum

(instantons). Even in theories where there is violation,
the proton decay due to this mechanism is very slow
( t'Hooft, 1976).

We now discuss ways of obtaining Z. If the Lagrangian
contains only an adjoint representation of vector bosons
and one self-conjugate irreducible representation of
fermions, there are no global symmetries. Extra
multiplets must be added before the Lagrangian acquires
an additional global U, symmetry. There are two
possibilities:

(1) The Lagrangian acquires an extra phase invariance
if the fermion representation is doubled; this global
symmetry is generated by fermion number. The fer-
mions (Z&=+1) are in f (some of the fermions may be
antiquarks or antileptons), and their antiparticles (Z&
=-1) are in f. Of course doubling f is necessary if f is
a complex representation of SU„, SO,„, or E,. In the
first set of solutions for A, derived later in this sec-
tion, we assume thai Z is fermion number. The sim-
plest prototype is a dynamically broken theory with
spin 1 and spin 1/2 fields only. The bosons carry Z=0,
and the fermions belong to an irreducible f with Z=1,
and the antifermions to f with Z= -1. Fermion number
and X are broken by a Majorana lepton mass term,
which has the form fl+ ll. For simplicity we do not con-
sider Lagrangians with additional global symmetry,
arising, say, from additional fields in the Lagrangian or
from f being reducible. This generalization, which is
straightforward, can provide both a conserved baryon
number and lepton number, if desired. We then seek
an appropriate X so that

(4.1)

is a suitable atomic mass number. We find that only for
Cases 1 and 3 (see Table I) is it possible for all leptons
to have A=0 and all quarks to have A= 1/3; other cases
always predict weird particles. Simple examples are
listed in Table III.

(2) The global U, is a symmetry outside the fermion
sector so that Z for the fermions is zero. The proto-
type theory here is one in which all fermions are as-
signed to a single irreducible self-conjugate f, and ex-
plicit Higgs fields have nonzero values of Z. If Z and X
are broken there with their sum conserved, some of the
spin zero fields will acquire nonzero A (the vacuum ex-
pectation of these fields must vanish), the zero-mass
boson is made heavy, and the atomic mass number in
the fermion sector is simply

(4.2)

Again for simplicity we allow just one global U„so the
fermions are assigned to self-conjugate representations.
(Cases 1, 3, and 8 are absent. ) It is possible to formu-
late SO„and SP,„ theories of Class I with a stable pro-
ton, but no weird fermions; otherwise weird fermions
are required.

Whether the symmetry breaking in an actual theory
follows the pattern prescribed here will depend on the
specific Lagrangian. Some models might not provide a
suitable atomic mass number even though the possibil-
ity appears in our classification. However, there is
often a wide choice of X's that are satisfactory.
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Since X is violated it must be a generator of G". In
theories bRsed OQ the elRsslcRl groups~ G contains RQ

explicit U, subgroup, and usually its generator is a
suitable X. (The one exception is f = n of SO„with fer-
mion doubling. ) It is also possible to extract part of X
from the non-Abelian subgroups of G"; we call this
procedure a flavor raid. At present, flavor raids for
classical groups appear somewhat academic, but we
indicate how they may be systematically pursued. For
the exceptional groups, X must result from a flavor
raid since there is no explicit U, factor. Just as in
Sec. III, we must construct the eigenvalues of a genera-
tor of U, ~G", and many of the techniques needed there
will again be useful.

A. Doubled f, IVlajorana mass breaking

Case 1:

We use this case to set our notation. Let the fermions
be in the n of SU„, so that

Z= —N)+N -N„+N~. (4.9)

With the Majorana mass and the known leptons in (1, 1'),
we obtain

A ——N ——N„+Ni. (4.10)

A. [(n",)„, 1']=3|I"„+~,
A [(n', ')„, 3'] = Slt ' '+ s + 1/3, (4.11)

Equation (4.10) implies, for example, the existence of
heavy I. leptons that decay into ordinary baryons, and
three-weird-quark (3&) states with A = -2 that could
decay into an antideuteron plus a light lepton. These
weird particles must be sufficiently massive to avoid
conf lie t with experiment.

The most general A assignment is obtained from a
flavor raid on SU„S. The calculation and solution of the
spectrum of A. is almost identical to the one for the
electric charge in Case 2 of Sec. III. Following the
notation defined there, we obtain the solution,

f = (1, 1')+ (q, 3') . (4.3)

Comparing this with Eq. (2.4), we see that 1= (n„1) and
q= (1, n ) are representations of G". The global U, is
generated by the fermion number operator

A. [(n" ) 3']=9K '+2s —@+2/3
A [(n~~~)„, 1']=OR" '+3s —2@+1,

where x and s are integers satisfying-

(3u - n)~= (M+ 3s+1)u- nZ, (4.12)

x=N, —(n, /3n, )N, . (4.5)

The Majorana mass term, which breaks both X and Z,
has the schematic form /I+/l so that A cannot contain

Thus & is proportional to Z -X, and after proper
normalization

(4.6)

which is readily identified with baryon number, since
all leptons have A. =O, and the proton, which is the low-
est-mass 3-quark state, has &=1. Lepton number is
violated because of the Majorana lepton mass, but this
can be avoided in more complicated examples. Any
other X, which would be obtained from a flavor raid,
would have to distinguish different types of quarks and
(or) leptons, and therefore would necessarily imply
weird particles. The elaboration of these cases is
straightforward, but not very instructive.

Case 2:
The k-times antisymmetrized n of SU„of Eq. (2.11)

may be written

f= (1, 1')+ (q, 3') + (r, 3') + (L, 1') . (4 7)

In the simplest scheme X generates the explicit Uy of
Eq. (2.10), and may be normalized to

X'= Z — —N —-N„+N~n 1 2
(4.8)

where the fermion number operator Z is

(4.4)

where N, means number of q's minus number of anti-
9's. There are n, + n, —1 local U, 's in SU x SU & U
and the only restriction is that X not be the electric
charge operator. However, the only choice of X that
does not imply. weird fermions is the generator of the
explicit U, in Eq (2.7):

and Z is the fermion number, which must be nonzero.
Cataloging A. assignments is similar to cataloging elec-
tric charge assignments, and is easily carried out for
specific cases.

Case 3:
We write the fermion representation of SU„ in Case 3

RS

f = (1, 1') + (q, 3') + (r, 3'), (4.13)

(4.14)& = —' (N, +N) .

The choice of X is made from linear combinations of
the generators of the two explicit U, 's in such a way as
to eliminate weird particles. X can be broken by a
Majorana mass only if n, &n3. The situation is similar
if the two SU, 's are both conserved and confining (i.e.,
the color group is enlarged to SU3 && SU~3').

Case 4:
Let us label the vector representation of SO„, Eq.

(2.1V), as

f=(1, 1')+ (q, 3')+ (r, 3'), (4.15)

where r and q each belong to the n, representation of
SU„. The explicit U, in Eq. (2.19) does not count 1's,"3
and cannot be broken by a Majorana mass. If the break-
ing of this U, were to appear elsewhere in the theory,
then it would be possible to obtain A. = ~(N, +N„), but in
this set of models, part of X must come from a flavor
raid on SO„; for example, decompose SO„~SU„,x U,
for n, =2n'. Then n, of SO„decomposes into n'+n'
of SU„. and the + generator distinguishes two kinds of

where the generators of the unbroken SU, are the sums
of those of the two SU, 's of Eq. (2.12). Then with Z
=N, +N, -N„and X=-(n, -n, )N, + {2n,+n, )N, +(n, +2~)N„,
we flQd
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leptons, which we call L and L. There is then a linear
combination of this generator and the explicit U, gener-
ator such that

(4.16)

For the case n, = 2n'+ 1, there are 2 types of weird
leptons. Of course more complicated flavor raids are
possible, but enumerating them is probably academic.

Case 5:
The spinor representations of SO„ take the form, Eqs.

(2.22) or (2.24) and (2.25)

f=(L, 1')+(q, 3')+(r, 3')+(l, 1), (4.17)

where 1 and r transform as the g spinor of So„„and q
and L as the $' spinor. (We recall that E and g' are
equivalent for n odd and conjugates of each other when
n is twice an even number. } The explicit U, 's in Eqs.
(2.20) and (2.23) are generated by

X=N~- -N +Ng —-N, (4.18)

A (g, 1') =SR, +r+1,
A ((, 3') =3R, +s+1/3,
A (4' 1')=3R +(3s —r)/2,
A„(g', 3 ') = 3R + 2/3+ (r+ s)/2,

(4.20)

where x and s must both be even integers or odd inte-
gers, and the fermion number

Z = (r+ 3s)/4+ 1/2 (4.21)

must be nonzero. The half-integer N solution is obtained
by replacing r by r —1/2 and s by s —1/2 everywhere in
Eqs. (4.20) and (4.21).

Case 8:
The analysis of the vector representation of Sp,„ is

identical to Case 4, except that n, cannot be odd.

and combining Eq. (4.18) with Z=N~+N, —N„—N„we
f1Ild

(4.19)

A flavor raid requires computing the eigenvalue
spectrum of an arbitrary U, in SO„„aswe already have
for the electric charge assignments in Case 5 of Sec. IQ.
Following the notation established there the general
solution for N integer is

Case 8:
The 27 of E, is complex. A general parametrization is

A„(1,3, 3') =n. —k+(M-2N)/3,

A„(3,1, 3 ) = —m„—k —(N- 2M)/3,
A (3, 3, 1') =m, —nq —k, i j =1,2, 3,

(4.22)

where n, m, and k are integers, N=e, +n, +n„, M =m,
+ m 2 + m3 and fermion number Z is

Z =(M-N)/3- k. (4.23)

Case 9:
The E, doubled .66 of fermions, Eq. (2.36), has 12

quarks; X must generate a Uy (:SU6 As in Case 9 of
Section III, we parametrize the U, in terms of six inte-
gers n. Then there are two solutions

A„(6,3') = n + k + 1/3,
A„(6, 3') =-n„+k+2/3, (4.24)

A (20, 1') =3R +k,
where k is any integer, N=gn =1, and QR, is the set of
20 threefold sums of n . The other solution is

A (6, 3') =n + k —2/3,

A„(6,3') = n+ k-+ 2/3,

A„(20, 1 ) =K +k —2,
(4.25)

where k, which is fermion number, is a nonzero integer
and N =4. Thus we see that X cannot generate the U, in
SU, ~ SU3 & SU3 x U„and that the SU, ~ SU, & SU,- & U, the-
ory has only two nonweird quarks. The solution with the
least number of weird fermions is Eq. (4.24) with (n )
=(1,0, 0, 0, 0, 0) and k=O. This corresponds to X gener-
ating the U, in SU, & SU, x U, . There are then five non-
weird q quarks and one weird s quark in the (6, 3'), and
five weird r antiquarks and one nonweird a' in the (6, 3 ).
Half the leptons are weird. A is given by

The sums M and N are restricted to:
(1) M=O, N =1 or M=1, N =0;, and
(2) M =N=2 and keO.

The richest arrangement has six leptons with A. =0 and
four quarks with A =1/3 (three from one triplet). This
is the solution with n, =n, =n3 =0, so that X generates a
U, in just one of the SU, factors. Other solutions with at
least one nonweird lepton have at most three quarks with
A =1/3.

Case 7: A =N, +N, /3+ N./3+ 4N. /3 —2N„/3 . (4.26)

X must generate a U, in G„,for exceptional gauge
groups. For any choice of this U„ the proton stable E~
theory that satisfies the restrictions we have made is
flavor poor. The Q, generator X is a flavor SU, gener-
ator, which is easily parametrized in a general way
consistent with the constraints on A. The 26, which is
double, has integer fermion number so that all the
leptons in (8, 1') have integer A. Although this model
has six quarks and eight leptons, it is straightforward
to prove that if one (or more) lepton has A = 0, then at
least five of the six quarks are weird. Thus this E~
model can only have one quark flavor.

This is the only example (without introducing more fer-
mion representations) of a proton-preserving exceptional
gauge theory with enough flavors for good phenomena-
logy.

8. Single f, doubling and breaking elsewhere

In this set of solutions we assign all the fermions to a
single irreducible self-conjugate representation of G,
such as can be found in Cases 2, 4, 5, 6, 7, and 9 of
Table I. (We continue to follow the numbering system of
Sec. II.} The global symmetry operator Z has zero ei-
genvalue for the fermion representation, and Z and X are
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broken in some other sector of the theory such as the
scalar-pseudoscalar sector, so A. =X for the fermions.
The problem is reduced to studying local U, 's that are
not generated by electric charge.

this paper was cheerfully and excellently done by Marian
Martinez. We also wish to thank the CERN Theory Divi-
sion Secretariat for kindly assisting us in preparing the
final draft.

~=M+3s+1 . (4.27)

No further constraints arise from particle conjugation
in f. A simple example is obtained with(n )
=(1,0, . . . , 0), M =1. The existence of leptons with A =0
imposes r = s = -1. Here X is the generator of the U, in
the embedding SU„3~SU„4 && U, .
Cases 4 and 6:

The discussions of the self-conjugate vector represen-
tations of SO„and SP,„are identical. The generator of
the explicit U„Eqs. (2.19) and (2.28), simply counts the
number of 3"s minus the number of 3"s. Therefore

A =N, /3 . (4.28)

When it is not possible to break this U, in another sector
of the theory, then a flavor raid is necessary and im-
plies weird particles.

Case 5:
The generator of the natural U, counts both 1' and 3'

in the spinor representations of SO„, so it must be com-
bined with an SO„, generator to obtain some A =0 lep-
tons. (Only the SO,„„,all n, and SO,„, n even, spinors
are self-conjugate. ) Fermion number is zero, so x= —2
-3s from Eg. (4.21), which automatically satisfies the
antiparticle conjugation constraints. A simple example
of this general solution, given by (n )=(1,0, . . . , 0], cor-
responds to X gerierating the U, in SO„,~ SO„,& U„.
There are equal numbers of leptons with A =0 and A =1,
and quarks with A = 1/3 and A =-2/3.

Case 7:
There are only three quark flavors in the particle-

antiparticle self-conjugate 26 of I4, and X must gener-
ate a U, in the flavor SU, . Consequently there can be
at most two nonweird quarks.

Case 9:
There are six quarks and ten leptons in the 56 of E7.

There is only one solution with more than three non-
weird leptons or more than three nonweird quarks: X
generates the U, in SU, ~ SU, x SU, && U, . Then there are
four quarks with A = 1/3 and six leptons with A = 0.
ACKNOWLEDGMENTS

We wish to thank many friends and colleagues at LASL,
Aspen Center for Physics, and Caltech for stimulating
conversations, especially G. Stephenson, T. Goldmaix,
and R. Roskies, We gratefully acknowledge the hospital-
ity of the Aspen Center for Physics, where some of the
work was performed. The typing of several drafts of

Case 2:.
The self-conjugate SU„representation (2k")~, Eq. (2.11)

with n =2k, need not be doubled, but a flavor raid is
needed if there are to be any A =0 leptons. Equation
(4.11) is the general solution for A, and for this case,
Eq. (4.12) is modified to read

APPENDIX

We state and prove here the theorem that justifies the
embedding procedure followed in Sec. II. Consider any
embedding of SU,' in a simple Lie group G for which there
is at least one representation f with color content re-
stricted to 1', 3', and 3'. Then the fundamental repre-
sentation of G must also be limited to 1', 3', and 3'. In
other words, the condition that the fermion representa-
tion contains color singlets, triplets, and possibly anti-
triplets imPlies Eq. (2.2) for the fundamental representa-
tion. The fundamental representations of the simple Lie
groups are: n of SU„; n of SO„; 2n of SP,„; 7 of G, ; 26
of E„27of E,; 56 of E,; and 248 of E,.

The proof for the classical groups merely requires
finding the color content of the group generators, which
is explicitly displayed by the adjoint representation.
Let c be a set of generators forming an irreducible re-
presentation of SU,'. Since each group generator must
transform f within the representation, it is necessary
that c acting on any SU,' representation in f contain at
least one of the color representations in f. If f has only
color singlets, triplets, and antitriplets, then c 0&1',
e x 3', o~ c x 3' must contain a 1', 3', ox 3'. This is
true only if c is 1', 3', 3', 6', 6', or 8'. Thus f can
satisfy the color restriction only if each of the color re-
presentations in the adjoint G has dimension less than or
equal to 8. The proof is completed by constructing the
adjoint representation, which must satisfy this condition,
from the fundamental representation.

Suppose the n of SU„violates our color restriction, so
that it contains a set of operators d transforming as
some higher representation (dimension greater than 3)
of SU 3 The ad joint rep res entation of SU„ is n & n —1, so
it includes generators transforming under SU,' as the re-
presentations in d & d, which always contains a 27'. The
theorem then follows for SU„. The proof is similar for
the orthogonal and symplectic groups. If the n (vector
representation) of SU„contains a set d as defined above,
then the adjoint representation, constructed from'
(nx n)~, must include sets of generators that transform
as the representations in (dx d)~ under SU;. The theo-
rem follows since (d xd)~ always has at least one repre-
sentation of dimension greater than 8. The adjoint re-
presentation of Sp,„ is constructed from (2nx 2n)„and
includes color operators in (dx d), . As before, d must
be empty if (2n x 2n), is to have no sets of generators
that transform under SU,' as a representation of dimen-
sion greater than 8.

There exist embeddings of SU,' in the exceptional
groups where the fundamental representation is not re-
stricted to 1', 3', and 3', but where the adjoint contains
no color representations of dimension greater than 8.
The previous proof must then be supplemented with some
information about the commutation relations of the group
generators. We consider each exceptional group individ-'
ually.

Three cases are trivial. Since the '? of G, is self-con-
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jugate, it must decompose to 1'+ 3'+ O'. The decompo-
sition of E, into SU, && SU, x SU, is essentially symme-
trical, and any SU, may be color, as is clear from Eqs.
(2.32) and (2.34). E, is hopeless since the fundamental
representation is the adjoint, which must have an 8'.

We might use the other SU, of Eq. (2.29) as the color
subgroup of E4. The adjoint representation is then

52 = (1,8') + (8, 1') +(3, 6')+ (3, 6')

as can be seen from Eg. (2.31). A color octet does ap-
pear in the fundamental representation, Eq. (2.30), for
this embedding, so we must prove thai no higher repre-
sentations satisfy our color restrictions. Consider the
action of the generators transforming as (3, 6') on the
supposed higher representation of the form, (y, 1')
+(x, 3')+(x, 3'), x and y being any representations of the
flavor SU, . Since these generators annihilate the pieces
transforming as (y, 1') and (X, 3'), they must not annihil-
ate (x, 3'). However, we prove that they do. The genera-
tors in (3, 6') must annihilate (x, 3'). All the commuta-
tion relations among these generators yield generators in
(3, 6'). Therefore the (3, 6') generators must also anni-
hilate (x, 3') and the representation cannot be of the sup-
posed form. This completes the theorem for I4.

Suppose SU,' is embedded in the SU, subgroup of E7,
Eq. (2.35). If the color is identified with one of the SU, 's
in SU, ~SU, x SU, &&U„ then the fundamental 56 of E7,
under the decomposition of E,~ E, x U„ is 56 = 27+ 27
+ 1+1. This has no higher color representations. The
other possibility is to obtain the SU,' from SU, & SU,
x SU,'. Here, higher color representations do occur in
the 56, since the 20 of SU, decomposes as (2, 8')+ (4, 1').
Again, we must prove that no other E, representation
satisfies the color restrictions. Under SU, ~ SU, && SU3,
the only SU, representations restricted to 1', 3', 3' are
1, 6, and 6; the SU, && SU, content of the supposed higher
representation must be (y, 1)+(x,6)+(x, 6). The gener-
ators of E, include a set (3, 15), which annihilates (y, 1)
and (x, 6), since 15 x 6 does not have 1, 6, or 6. More-
over the set of generators formed by the cummutators
in (3, 15) with itself also falls into the (3, 15) class, so
that (3, 15) also annihilates (x, 6). Thus there is no faith-
ful representation of the supposed type.
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