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The present state of the theory of volume effects in a polymer chain is reviewed. The theory of coils (i.e.,
chains with predominately repulsive volume interaction of monomers) and the analogy between the
excluded -volume problem and the theory of second-order phase transitions are briefly described. The
theory of globules, formed by attractive interaction of monomers or by external attractive fields, is
considered in greater detail. The coil-globule transition under various conditions is analyzed. A theory is
constructed for the simplest model of the polymer chain—the model of “interacting beads on a flexible
string.” The connection of this model with more realistic ones is discussed. This review is based on the
approach proposed by I. M. Lifshitz in 1968. While attention is focused on the physical aspects of the

problems, some questions concerning biological applications are discussed in the conclusion.
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I. INTRODUCTION
A. Scope and aim of the work

Polymer physics is one of the youngest fields of the
physics of condensed matter. It began to develop in the
1930’s under the influence of chemical and biological ap-
plications. Soon it was realized that a large number of
problems in polymer physics can be formulated directly
for the individual polymer chain, which is considered
simultaneously as a molecule and as a macroscopic sys-
tem (macromolecule). Research into the nature of the
chain flexibility and the methods of the physics of one-
dimensional systems (one-dimensional Ising model) led
to a great number of impressive advances, from the ex-
planation of rubber elasticity to the creation of the theo-
ry of helix-coil transitions in proteins and nucleic acids.

An exhaustive review of the methods and results of this
stage of the theory can be found in the well-known books
by Flory (1953), Volkenshtein (1959), Birshtein and
Ptitzyn (1964), and Flory (1969).

It is hard to consider as accidental the fact that, in the
next stage of the theory, difficulties appear which are
similar to those occurring in other fields of physics—
because these problems are related to each other. We
refer here to the problem of interactions which are not
weak and which can not be considered in the framework
of perturbation theory. In the polymer context this is the
problem of accounting for interactions of segments far
apart along the chain, which approach each other due to
the chain flexibility. These so-called volume interac-
tions determine the three-dimensional spatial organiza-
tion of a polymer chain and are responsible for a large
number of various phenomena. The best-known and
most shining example of this kind is the phenomenon of
enzyme catalysis.

In this article we attempt to develop the simplest theo-
ry of the spatial structure of a polymer chain with vol-
ume interaction. We do not discuss the applicability of
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this theory to any specific polymer; our efforts are con-
centrated on analyzing its basic features. Assuming
that our readers will be primarily physicists, we use
physical terminology and apparatus and discuss only the
physical aspects of the problems.' No earlier special
knowledge of polymer physics or chemistry is expected;
the next sections of the introduction present the neces-
sary information briefly.

B. The polymer chain as a statistical system
1. Linear memory

Linear polymer molecules are extremely long chains
formed from low-molecular-weight monomer units, as
a result of a chemical reaction. The molecular weights
of polymer chains can reach ~107-10° (in the case of
DNA, for example), while the molecular weight of
monomers is usually ~10%, Clearly such a large system
can be described in several respects as a statistical-
thermodynamical one.

It must be noted that in the majority of cases the pri-
mary (chemical) structure of a polymer chain can be
considered as fixed—in these cases there is no destruc-
tion of the chain. (For example, in the living cell the

~ synthesis of the protein is separated from its biological

functioning). This means that the equilibrium state of a
polymer chain is in fact a state of partial equilibrium
with a fixed linear memory. In other words, each seg-
ment of the chain has a definite number in the sequence
of monomers in the chain, and this sequence is fixed.

The general method of describing partial equilibrium
states is to select regions in the phase space and to at-
tribute suitable weights to them. In this case the role of
weights is played by the conditional probabilities
g;(a;, a,,,) of finding the (j+1)th link in the state a,, ,,
provided the jth one is in the state @,. The matrices
g;(a; and a,,, are the matrix indices) give a complete
phenomenological description of the primary structure
of the chain, i.e., of the linear memory.

Thus the Gibbs distribution for the chain has the form:

o(') =exp (—F—:TE(—D-> ﬁ[ &;-

Here I" is a point in the configurational space of the
chain, E(T") is the energy of the configuration (besides
the energy of longitudinal bonds, already taken into ac-
count by the correlations g), F is the free energy of the
system, and N is the number of links.

(1.1)

2. Flexibility and volume interactions

Thermal motion in macromolecules at the usual tem-
peratures produces small deformations of valent bonds
and angles and causes rotamerization, i.e., rotation
around the single ¢ bonds. It is clear that for long mo-
lecules such fluctuations will lead to significant changes
in the mutual spatial arrangement of atoms which are
far from each other along the chain. If the temperatures
are not too high the long wave variations are dominant;
thus the chain can be interpreted as an elastic filament
(the so-called persistent model). It is easy to show that
in this model the mean value of cosine of the angle 4 be-
tween the two parts of the chain, separated along the
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chain by a sufficiently large distance 1, is
(cos(l)y ~exp(-1/]). (1.2)

The so-called persistent length [ is an important char-
acteristic of the chain stiffness. Its meaning is as fol-
lows: the part of the chain shorter than [ can be inter-
preted as a practically rigid rod, while the different [
segments can rotate practically independently for each
other. In this sense the flexibility of extremely long
chains can be considered.

It is important to bear in mind that the basic mechan-
ism of chain flexibility is rotation around the single o
bonds of the main chain. This enables one to formulate
the rotational-isomeric approximation (Volkenshtein,
1959), which allows one to undertake effective calcula-
tions for specifi¢ chains.

From Eq. (1.2) it is clear that a long polymer chain
never takes a rectilinear conformation. The irregular
occasional bending produces the conformation of an en-
tangled coil. .

Obviously, monomers which are distant from each
other along the chain can approach and touch each other
in space. In this case the forces of volume interaction
are acting between these monomers. These forces dif-
fer essentially from the interactions between adjacent
segments. It is the energy of volume interactions that
appears as E(T') in Eq. (1.1).

Interactions between monomers which are distant from
each other along the chain (covalent or hydrogen bonds,
vanderWaals or multipole forces, etc.) are essentially
the same as those acting between the atoms of a real
gas. These interactions include the strong repulsion on
the scale 7»,,, of atomic distances which makes it impos-
sible for two monomers to occupy the same place in
space, i.e., the so-called excluded volume effect, and
the weaker attraction on the larger distance scale 7,,,.

In order to establish relations which will increase our
fund of knowledge about the real gases we shall often
consider as a suitable representation of a given volume
interaction, the thermodynamic functions of the system
of monomers which are not adjacent im*the chain, but
which interact with the forces of volume interaction. We
shall call this system the gas of separate monomers.

3. Formulation of the “’beads on a string’’ .model

The general analysis of the distribution (1.1) is very
complex. In order to analyze its main specific features
it is useful to simplify considerably the set of variables
characterizing the state of a link. More precisely, we
shall consider the model of a chain in which each link
can be represented as a material point, i.e., its state is
completely defined if its position in space is given. An
illustrative sample of such a system is an elastic flexi-
ble string on which beads are strung (Fig. 1).

The correlations in this model are represented by a
single function, which describes the elastic properties
of the chain and which depends in the simplest case only
on the spatial distance between the adjacent beads

&; Eg(Ile); Vi =Xj1 —Xj . (1.3)
Here g(y) is a probability, so
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FIG. 1. The “beads on a string” model.

fg(y)dsy =1. (1.4)
The important characteristic of the function g(y) is the
mean square spatial distance a? between the adjacent
monomers (for convenience we shall use + of this value):

1
a®= 3 fyzg(y)dsy. , (1.5

As an example of the function g(y) we shall sometimes
use the function

80 =gy exp(=y*/4a”). (1.6)
Such a correlation function for adjacent monomers can
be used in the case when the beads are connected by a
long flexible immaterial string. The copolymer con-
sisting of flexible pieces of the chain with rare strongly
interacting groups is the simplest realization of the
“beads” model.

In a large number of problems (see Secs. II.D and V.B)"
some part of the chain can be considered as a material
point and thus the real polymer chain can be represented
as an effective chain of beads. In other cases (see Sec.
VI.B) such a representation is incorrect.

In this article we shall consider basically the bead
model. This model is implied everywhere if the opposite
is not explicitly indicated.

C. Macroscopic states of a polymer chain
1. Definition of coil and globule

It is well known that the functioning of biopolymers and
primarily of proteins in a living cell is determined by a
unique spatial ternary structure formed by volume inter-
action (Volkenshtein, 1975). This structure is called the
protein globule. It is also well known that when the pro-
tein is heated its denaturation occurs, the globular
spatial structure being destroyed and the biochemical
activity' ceasing. In this case one says that the globule
is transformed into the coil.

Similar phenomena can be observed in simple nonbio-
logical polymers.

In order to develop the theory we must give a more
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precise definition to the terms “coil”” and “globule.” In
the literature in the majority of cases (Volkenshtein,
1975) the globule is defined as a dense three-dimension-
al structure from which almost all solvent molecules are
ousted by the monomers of the chain.

Proceeding from analogy with the proteins, in which
the main property of a globule is its function, we shall
adopt another definition (Lifshitz, 1968). We shall call
a globule the state of a macromolecule in which it has a
definite thermodynamically reliable spatial structure.
In other words, the density fluctuations in a 'globule are
less than the density itself, or the range of density cor-
relations is finite when N -,

In contrast, a coil is the state of a macromolecule
without any spatial structure. The coil pulsates macro-
scopically, the density fluctuations in it are of the same
order as the density itself, and the radius of correlation
is of the same order as the dimensions of the coil, i.e.,
it tends to infinity when N -,

2. Coil-globule transition. The terminology

Thus, according to our definition, the globule and the
coil have different fluctuation regimes. From the point
of view of statistical physics it is natural to call such
significantly different states the phases, and the transi-
tion between them the phase transition.

However, it will be recalled that phase states and the
phase transitions between them are strictly defined in
statistical physics only in the limit N~«~. At the same
time, the real polymer chains have a great but not infin-
ite (and even very small in comparison with usual ap-
plications of thermodynamics) number of monomers. In
this case it is sometimes impossible to relate a given
finite chain to a particular phase state. This means that
there is a finite transition width AT separating the re-
gions which can be confidently related to different
phases (i.e., the regions within which one of the phases
gives an overwhelming contribution to the partition func-
tion). ;

In order to classify the transitions occurring at finite
N we shall employ terminology which has been used for
a long time in biophysics (which often deals with finite
systems). Namely, the conformational transition is

called a phase transition if its width A7 tends to zero as .

N —~; the phase transition is called a first-order phase
transition if in the transition region there exist two free
energy minima and, correspondingly, two states in the
space of macro variables; each of these two states is
thermodynamically stable on one side of the transition
region and metastable on the other side; the phase
transition is called a second-order phase transition if
in the transition region there exists only one minimum
in the space of macrovariables, i.e., if there are no
metastable states on the other side of the transition re-
gion. This terminology is reasonable from the physical
point of view and from the point of view of the treatment
of experimental data. -

If in the system there exists, in addition to N, another
large parameter N, then it is sometimes useful to con-
sider the intermediate asymptotics 1 <N <<N. The
transitions in this case are classified as above.

The theory of polymeric coils has achieved consider-
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able successes in the past few years. An extensive lit-
erature is devoted to this subject, in particular, the re-
views by Berry and Casassa (1970), Freed (1972), and
McKenzie (1976), and the book by Yamakawa (1971).
That is why in our review only Sec. II deals with the
polymeric coils. This section does not pretend to com-
pleteness, the choice of problems under consideration
depending only on the authors’ tastes; for a more
thorough introduction to the theory of coils, the reader
is referred to the above-mentioned works. The sub-
sequent chapters of this review deal with different ques-
tions of the theory of globules and the coil-globule phase
transition. The basic approach to this theory was pro-
posed by Lifshitz (1968) and was developed in some sub-
sequent works. ’

Throughout this review we shall consider, as a rule,
the isolated homopolymer chain surrounded by solvent.
An understanding of processes occurring in the isolated
chain is necessary for the consideration of the more gen-
eral case of the solution of chains. Furthermore, it is
the consideration of an isolated chain that is important,
as a rule, for biological applications.

We underline once more that the list of references to
this work does not pretend to completeness.

Il. BRIEF DESCRIPTION OF THE THEORY OF
A POLYMERIC COIL

A. Chain without volume interactions (ideal coil)

1. Gaussian distribution

Let us consider first the simplest model of the poly-
mer chain which takes into account the bonding of mono-
mers in the chain but does not take into account the vol-
ume interactions,® and let us show that such a polymer
takes the coil conformation.

In the absence of volume interactions the bending of a
polymer chain in space can be described as a Markovian
process: the position of each monomer depends only on
the positions of some nearest neighbors along the chain.
The problem of determining the properties of such a
chain is analogous to the problem of describing Brownian
motion. The distance from the end of the chain plays the
role of the time; the persistent length plays the role of
the diffusion coefficient. It is clear from this analogy
that the mean square end-to-end distance (R2) is pro-
portional to the length of the chain and the distribution
function for this distance is Gaussian.

For example, for the model which is described by Eq.
(1.6) it can be shown that

(R?)=6Na?. (2.1)

The inequality R ~ (R%)Y? « L = Na means that the bending
chain is highly entangled. If the first monomer of this
chain is fixed at the origin, the distribution function of
the Kth monomer (when K >1) is ’

pX)= (47K a?)"¥? exp(-x2 /4K a?) (2.2)

For a chain with fixed center of mass (rather than fixed

1A situation close to this model is realized at the 6 point (see
below).
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position of the first monomer) a similar result has been
shown to be correct (Yeh and Isihara, 1969) with some-
what more complex dependence on K [K in (2.2) must be
replaced in this case by N/3-K(N-K)/N].

2. Density and density fluctuations

In order to characterize the spatial organization of a
coil the density distribution of the monomers is usually
used. If the microscopic density is

N
n(x)= ; 6(x—x,), (2.3)
=1

then the average density is

nolm gz, = (ra®) Nt [ [ as,as, exp(— b %?’r) /s¥2] s, - 5,192
(1] (] 1 17 OS2

One may see from (2.6) that the range of density corre-
lations, i.e., the characteristic radius of the correla-
tion function ~

(nylx;) - nx, )

(e ) )

is of order £ ~1(x ~(R®)Y2), i.e., of the same order as
the dimensions of the system. The correlation radius
tends to infinity when N —«~. Thus the ideal chain is in
the coil state (Lifshitz, 1968).

The described model of a Gaussian coil is the simplest
and historically the first model of the spatial organiza-
tion of a polymeric coil.

B. Flory’s 0 temperature. Universality of coil behavior
at7>6

1. 6 temperature, good and poor sclvents

If the possibility of collisions or interactions between
distant parts of the chain is taken into account, then the
problem of mathematical-description of a polymer be-
comes essentially non-Marcovian. The properties of the
system depend significantly on the character of these
interactions.

The fundamental concept in the theory of polymer
chains with volume interactions is the concept of the 0
temperature. According to Flory (1949), at this temper-
ature the attraction and the repulsion of the distant parts
of the chain compensate each other completely, and as a
result the chain takes the conformation of the Gaussian
coil. When T >0 the repulsion between the monomers is
dominant (the so-called region of good solvent), when
T <6 attraction plays the most important role (the region
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. . )
) =(nylm)= 3 (00x =%, = 3 pylx) (2.4)
Changing the sum to an integral, we find
n(x)=(4ra®) ¥2N"V? f1 ds-s™Vexp(-£/s),  (2.5)

(]

where £ =x2/(R?) . In the region 1/N <«<{ <1 this dens-
ity decreases as 1/¢, i.e., the characteristic length con-
nected with the density distribution £ is ~1.

In order to characterize the density fluctuations it is
necessary to find the correlation function. Analogously
to Eq. (2.5) it is easy to show that

(2.6)

of poor solvent).? It is clear that in the repulsion region
T >0 (in the good solvent) the chain is in the conforma-
tion of a coil of dimensions greater than (2.1) and has
significant density fluctuations.

2. Role of binary collisions

By means of simple estimations it is easy to under-
stand the reason for almost complete compensation of
volume interactions at the definite temperature 7 =6.
Let us imagine the polymeric coil as a cloud of mono-
mers located in the volume ~R® ~( R%)¥2 = ¢°N*/2, The
monomer density in this volume is n ~N/R® = 1/a*N'/2
[compare with Eq. (2.5)]. Correspondingly, the average
number of simultaneously occurring binary collisions is
of order ~Nnv < (v/a®)NY2, where v~#%, is the cube of
the characteristic radius of volume interaction, i.e., a
value of the same order as the excluded volume. Anal-
ogously, the average number of ternary collisions is
SN - (nv)2 ~v2/a®, of four-body collisions SN * (nv)® ~v3/
@NY2, etc. Thus the number of simultaneously occurr-
ing collisions of third and higher order is <1, and they
cannot significantly affect the chain conformation. The

2In real cases the chain is surrounded by the solvent. In this
case besides the interactions between the monomers there exist
also interactions between the monomers and the molecules of
solvent and interactions between the molecules of solvent. The
net effect appears to be the balance of all these kinds of inter-
action. This may lead to decrease of repulsion with increase of
temperature. Solvents with a low critical mixing temperature
T >0 correspond to poor solvents (attraction) and those with
T < 6 to good ones (repulsion). More complex situations with
several 6 points are also possible. In this paper we shall con-
sider, for simplicity, only solvents with one upper critical
mixing temperature and, correspondingly, with one 6point.
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conformation is determined by the binary collisions and
so it depends only on the second virial coefficient B(T).

From this point of view the § temperatue is the point
of inversion of the second virial coefficient (the Boyle
point) B(8)=0. At this point the contribution from binary
collisions vanishes; the contribution from higher-order
collisions is always small; thus at the 6§ point the chain
conformation is close to the Gaussian coil.

3. Collisions of the parts of the chain

The following question may arise concerning the above
estimations: is the picture of a cloud of monomers inde-
pendently distributed in the region ~R3 the correct rep-
resentation of a polymeric coil? The fact that the mono-
mers are tied together determines in this picture only
the value of (R?), but does not affect the characteristics
of the collisions. At the same time, the collisions in the
polymeric coil are not merely between monomers, but
rather between parts of the chain; thus the fact that the
monomers are tied together must affect the character-
istics of the collisions: these characteristics must be
renormalized due to the increase in probability of addi-
tional collisions near the two colliding monomers. The
method and the results of this renormalization have been
analyzed by Khokhlov (1977). It turned out that the poly-
meric coil may be qualitatively represented as a cloud
of “quasimonomers” with the renormalized character-
istics of interaction (in the framework of the mean-field
approximation). In particular, for the characterization
of the polymeric coil it is important to know not the val-
ue of B itself, but the renormalized value B*—the ef-
fective second virial coefficient of the interaction be-
tween parts of the chain.® In the future, when we refer
to monomer interaction we shall imply such a renormal-
ization. :

4. Expansion factor of a polymer chain at 7> 0

The repulsive interaction in the region 7 >9 leads to
an increase of the coil dimensions (R?), i.e., the so-
called expansion factor of a coil

a? =(R?) /A R?), (2.7)

is more than unity when T >6 (in ( R?), the index zero in-
dicates the absence of volume interaction). The value of
a? is one of the main characteristics of the coil.

From the above it is clear that a® depends only on B
among all the characteristics of volume interaction; in
addition to this @2 depends on the linear structure of the
chain, i.e., on ¢ and N. Thus the problem consists in the
calculation of the function

a?=a?(N,B,ad®)=a%(N, B/a®). (2.8)

This equation follows from the dimensionality argu-
ments.

To solve similar problems, we need to know the prob-
ability distribution of the end-to-end distance P ,(R).
This distribution coincides, apart from the numerical

3B* in contrast td B represents the collective property of all
the monomers of the chain.
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coefficient, with the partition function of a chain whose
ends are fixed at a distance R one from another, i.e.,
with the Green’s function
(1 N) (2.9)
P,(R)=constz . 2.9
¥ 0/R

The first attempts to calculate these functions were
made in the framework of perturbation theory (Zimm,
1946; Teramoto, 1951a, b, c; Fixman, 1955). In this
method the distribution function of a chain (2.9) [see also
Eq. (1.1)] is written in the form

Z( ! ll.v):fé(xl)G(XN—R)H 8 H (1+f;)dT
0IR i N

1=<i<j=

=f6(x1)6(x,,—R‘)Ij-Ig,{1+ 2.

1=i<j=N

+ Zfijsz'*‘"’}dr' s

(2.10)

where f;;=exp(-V,;/T) -1 is a Mayer function. The pth
order of the perturbation theory corresponds to the
terms in (2.10) involving p Mayer functions, i.e., to the
consideration of p simultaneously occurring binary col-
lisions.

In addition the following supposition is introduced

fi;==Bo(x; - x,). (2.11)

This supposition means that we neglect the renormaliza-
tion of the coefficient B (Khokhlov, 1977). Thus if (2.11)
is supposed, the renormalization is to be made in the
final result.

It is easy to understand from the above consideration
of the number of binary collisions in a coil that as a re-
sult of a perturbation procedure we shall get an expan-
sion in powers of the parameter

Z=BN"?/a®. (2.12)
In particular, for the expansion factor we have
a?=a%(Z)=14K,Z +K,Z% ++++ , (2.13)

where K are the numerical coefficients. The coefficient
K,, for instance, is equal to (8/3)7%/2,

A complete review of the perturbation theory method
has been given by Yamakawa (1971), so we shall not
comment on it further here,

The result (2.13) shows that the expansion factor is a
universal function of one real variable Z. But Eq. (2.13)
is not practical for the calculation of this function be-
cause, as was shown recently by Edwards (1975) and
Oono (1975), this expansion has a radius of convergence
practically equal to zero in the most important limiting
cases. Calculation of the function @?(Z) is possible only
by means of somewhat more refined methods, which are
described in Sec. C.

5. Universality of the laws of a polymeric coil

The results described above may be summarized as
follows. First of all, the expansion factor of a poly-
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meric coil and other conformational properties do not
depend on the details of volume interaction potential,

but depend only on one integral characteristic—on the
second virial coefficient B. Furthermore, the expansion
factor depends on a single combination Z of the volume
interaction (B) parameter and the parameters of the
linear structure g and N. These facts mean that all the
different chains in the region of good solvent 7 >0 show
universal behavior: the conformational characteristics
of a coil are the universal functions of one parameter.

C. Excluded volume problem and its connection with
the problem of the second-order phase transition

1. Early approaches to the excluded volume problem

Let us consider the behavior of a long polymer chain
in a good solvent. In this solvent B ~v and Z ~uNY2/a®
>1. Thus in this region it is necessary to know the as-
ymptotic form of a?(Z) at Z >1. The problem of deter-
mining this asymptotic form is known as the excluded
volume problem or as the problem of self-avoiding
walks.

A great deal of work has been done on this problem.
The most important advances have been made by Flory
(1949), Edwards (1965), and de Gennes (1972).

The basic concept of Flory’s method is the image of
the polymeric coil as a cloud of monomers, distributed
in the volume ~(a*(R?),)¥2. The difference between the
free energies of the polymeric coil expanded with the
factor a and of the ideal coil is assumed to include two
parts:

AF(a)=AFq(a)+AF,; (@)

where AF (@) is the free energy of elastic deformation
of an ideal polymer coil which has been expanded uni-
formly by the factor «, and AFnix(a) is the free energy
of mixing of the monomers with the molecules of the
solvent in the volume of the coil. Once this difference is
known, the equilibrium value of @ can be found by mini-
mizing AF(«a) with respect to a:

3AF(a)/sa=0, (2.14)

Here AF (@) can be easily calculated because the cor-
responding problem is Markovian. AF.;(a) depends on
the monomer interaction; if we take into account only '
binary interactions of monomers with the second virial
coefficient B, then Eq. (2.14) will take the form

f-af=C,Z, (2.15)

where C, is the numerical coefficient. Thus, when Z
>1,

a?(Z)=constz?/5, (2.16)

For a more detailed derivation of (2.15) see the book by
Flory (1953). :

Flory’s method was based on some physically incor-
rect assumptions; thus in subsequent years it was sub-
jected to significant criticism (see, for example, des
Cloizeaux, 1970, 1976). But the asymptotic form (2.16)
itself is now considered to be very close to the correct
one.

Rev. Mod. Phys., Vol. 50, No. 3, July 1978

689

Edwards (1965) applied consistently the mean-field
method to the excluded volume problem. His calculation
confirmed the result (2.16). A detailed exposition of
Edwards’ approach has been given by Freed (1972), and
an elementary derivation of his results can be found in
the review by de Gennes (1969).

2. Analogy with the problem of the second-order
phase transition

However, it is clear that the self-consistent field
method is not exact because the polymeric coil is a high-
ly fluctuating system. The situation is somewhat analo-
gous to that occurring in the theory of second-order
phase transitions, for example in magnetic systems—
the fluctuations near the transition point become so great
that Landau’s self-consistent field theory becomes inap-
plicable. To describe such highly fluctuating systems a
formalism based on the renormalization group method
has been developed in-the past few years [see the re-
views by Wilson and Kogut (1974) and by Fisher (1974].
This formalism has also been shown to be useful for
polymeric coils (de Gennes, 1972).

The analogy between the behavior of a polymer and
that of a magnet near a second-order phase transition
is based on the one hand on the universality of the coil
behavior and on the other hand on the universality of

- magnetic properties in the vicinity of the second-order

phase transition. In both cases the universality is in
fact due to the dominant role of the interaction between
long wavelength flucutations.

This analogy is not purely qualitative. In the next sec-
tion we shall show that the correlation function of a mag-
net is equal to the generating function Z(}|§) if the num-
ber of components of an elementary spin in the magnet
is formally equated with zero.

3. Relation between the correlation function of a magnet
and the probability distribution of the end-to-end
distance of a polymer

In the literature there exist many different methods of
deriving this relation (de Gennes, 1972; Emery, 1975;
Daoud et al., 1976; Bowers and McKerrell, 1973; des
Cloizeaux, 1975). Here we shall briefly describe one of
them. )

It is well known (Wilson and Kogut, 1974) that the cen-
tral point of the theory of second-order phase transitions
is the analysis of fluctuations of the field ¢ with the
Landau Hamiltonian

H=H0 +Hint ’

Ho=fd"x{% Z:l ¢3+% 2 (%%)2}
H, =% d"x[; @],

where a=(T - T,)/T, is the relative deviation from the
transition temperature, d is the dimensionality of space,
n is the number of independent components of the order

(2.17)
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parameter. In order to calculate the correlation func-
tion

G;R)=(p,(x)p,(x +R)) = 6,,JR)

it is necessary to perform a Fourier transformation
which reduces H, to the sum of Hamiltonians of indepen-
dent oscillators. Then one must expand exp(H,) and use
the Wick theorem when each term is averaged. It is
easy to find that the input and output lines of the dia-
grams obtained in such a way have the same polarization
index; this is already shown in Eq. (2.18) by the & func-
tion §,;;. But the diagrams having close loops, which are
connected with other parts of the diagram only by inter-
action lines, contain the summation over the polariza-
tions of loops, i.e., simply the factor » (because nothing
depends on the polarization index of a loop). Thus if we
formally allow » to be zero we can obtain the diagram
expansion without close loops.

This expansion differs from the perturbation theory
expansion of the Green’s function of a polymer chain
[see Eq. (2.10)] only by the absence of the condition of
constant chain length connecting the points 0 and R. This
length must be fixed by means of a special chemical po-
tential, thus

(2.18)

IR 0= e *¥Z,R), (2.19)
N
where we have denoted for the sake of brevity Z (/%)
=Z y(R). The point of the phase transition corresponds
to =0, i.e., to an infinitely long chain N—«, The field
values 8 and y correspond to the polymer values a and B.
The fundamental result (2.19) was obtained by de
Gennes (1972). It allows us to characterize the function
Z y(R). .
It is well known that the Green’s function J has scale-
invariant properties near the transition point, i.e., it
behaves as

JR)=|R| " (R/E),

s (2.20)
where £ is the radius of correlation, v and n are the
critical exponents and, f is some universal function. It
is easy to find from (2.19) and (2.20) the analogous ex-
pression for Z ,(R):

(2.21)

—arz-my-1 1 R
Zy®)=NVCEETDI h(aN,,>,

where % is the new universal function asymptotically
equal to :

const.e™ x>1
n(x)=

const. x™%*2M y <1’ (2.22)
In the general theory of second-order phase transitions
the critical exponents are calculated as functions of d
and n (Brezin et al., 1973); for the real polymers we
must take d=3,2=0. The exponent v in this case ap-
pears to be very close to & (de Gennes, 1972); the Fish-
er exponent i is always small i < 0.05.

From (2.21) one can find any characteristic of a coil in -

the region of universality 7 >6. In particular, the mean
square end-to-end distance appears to be (R®) ~N%,v
~0.6; this is very close to (2.16).
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4. The function o® (Z) at Z ~-1. Analogy between
the 6 point and the tricritical point

The coefficient B(T') near the 4 point can be written as
(2.23)

where v is of the same order as the cube of the radius of
interaction. Correspondingly, Z=7NY2p/a®, and it is
clear that near the 6 point we need to know the function
a?(z) at intermediate Z ~1.

The literature contains a great number of attempts to
describe the form of the function a2(Z) at Z~1.2 A re-
view of the majority of them has been written by Yama-
kawa (1971). All these derivations are based on some
arbitrary and generally incorrect assumptions and so
they do not allow us to describe the behavior of real
polymers. .

A pragmatic approach to this problem was formulated
by Domb and Barrett (1976). They proposed to tabulate
the universal function @?(Z) for some simple model, for
example, for self-avoiding walks on the cubic lattice
with the energy of the nearest-neighbor attraction € [in
this system 6 point corresponds to €/7 ~0.275 (Mc-
Crackin, Mazur, and Guttman, 1973)]. Then for any
other polymer the function o?(Z) will be known and the
problem will consist only in establishing the relation be-
tween Z and the experimentally given variables 7 and N.

When 7 <1, Z is of order Z ~NY2y7/a®, i.e., the value
of Z is uniquely determined by N and 7 apart from the
factor v/a® which is different for different polymers.
Thus, for any polymer chain near the 6 point, the graphs
a?(T) at N=const [or @?(N) at T =const] differ one from
another only by the scale of the 7 axis (or N axis). This
scale is determined by the value v/a®.

As a result, in order to describe completely the di-
mensions of a polymer chain at 7 <1, one must know
in addition to the tabulated function a@2(Z2) only' one num-
ber v/a® for each real polymer. This number is a con-
stant for a given polymer-solvent system.

When one moves away from the 6 point (7 ~1) the lin-
ear dependence (2.23) is broken down in an individual
way for each polymer-solvent system. Thus, to give a
complete description of the expansion of a specific poly-
mer chain in a wide temperature range it is necessary to
know the function B(7T') and not only one number v/a®.
The form of this function can be restored using data on
the coil dimensions—after the determination of the uni-
versal function a2(Z) from real or computer experi-
ments at 7 <1,

As to analogy with the zero-component magnet, the 9
point of a polymer system is similar to the tricritical
point (de Gennes, 1975).

It will be recalled that the tricritical point is the point
at which the line of second-order phase transition con-
verts into a line of first-order phase transitions. The
tricritical point corresponds to the change from the
strongly fluctuating behavior which characterizes sec-
ond-order phase transitions to the thermodynamically
stable behavior which characterizes first-order phase

B=v[(T - 6)/0]=vT7,

4Flory’s formula (2.15) is historically the first among these
attempts.
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transitions. Near this point there exists a tricritical re-
gion with its own special behavior.

In our case there is an analogous 9 region, corres-
ponding to Z «<1. In this region the behavior of the sys-
tem differs qualitatively from that in the good solvent
region; the asymptotic laws at Z <1 are different from
those at Z >1. At Z ~1 the crossover occurs.

It is well known (Fisher, 1974) that a new variable be-
comes relevant near the tricritical point. In our case,
as is clear from the above, the second virial coefficient
B plays the role of this new variable.

In the three-dimensional case the tricritical exponents, .

describing the behavior of magnetic systems in the tri-
critical region, coincide with those calculated by means
of the self-consistent Landau field theory (Fisher,
1974)., That is why a polymer chain in the 6 region is
correctly described by self-consistent critical expon-
ents. On the other hand there are logarithmic correc-
tions to the self-consistent behavior in the tricritical
region of magnetic systems. These corrections exist al-
so for a polymer in the 6 region. They have been cal-
culated by Stephen (1975). Physically they account for
the ternary collisions.

D. Connection between the models of a polymer chain
in the universality region 7 > 0

In this section we shall show how to reformulate the
results obtained earlier for the “interacting beads on a
flexible string” polymer model to take account of a more
realistic “persistent model.”

The persistent model is characterized by two param-
eters, the width d andthe persistent length [~a; the bead
model is characterized by the parameters v and a. The
unperturbed dimensions in both models are determined
by the parameter a. Volume effects in the bead model
depend on the parameter v/a®>. The question arises,
what parameter is qualitatively analogous to v/a® for the
persistent model?

From the definition of the persistent length it is clear
that pieces of the chain having length ~a collide and in-
teract almost as rigid cylinders [when one divides the
chain into links ~@, renormalization does not change
qualitatively their interactions (Khokhlov, 1977)]. The
second virial coefficient in the gas of cylinders of diam-
eter d and length qa is of order da®. Correspondingly
near the 4 point

B~da®t,Z ~NY?2B/a® ~N"21d/a ~TNY2/M , (2.24)
where the ratio M =qa/d is the persistent length in units
of d. M>1 corresponds to stiff chains, M ~1—to flex-
ible ones (see also Birshtein, Skvortzov, and Sariban,
1975). :

From (2.24) it is seen that in the universality region
(T >0) all qualitative results for the persistent model
can be obtained from the analogous results for the bead
model by means of the substitution

v

z- . (2.25)

S
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I1l. EQUATIONS FOR THE DESCRIPTION OF THE
GLOBULAR STATE OF A POLYMER CHAIN

A. General scheme of the derivation

In this section we shall describe briefly the main steps
in deriving equations for globules (Lifshitz, 1968). De-
tailed derivation is given in the subsequent sections.

1. Entropy of a state with a given density distribution

The density distribution in a globular state is a well-
defined thermodynamic quantity. This allows us to de-
scribe the macrostate of the system by the density dis-
tribution z(x), smoothed over the volume w. On the one
hand, the smoothing volume must contain a large num-
ber of monomers, and, on the other hand, the mean
density (s (x)) must not vary significantly within w. The
smoothing procedure in this case does not differ from
the usual one. Since the number of monomers in each
smoothing volume is large (zw>1), the assignment of
the smoothed density fixes only a relatively small num-
ber of variables in the configurational space. Thus; a
large volume in the configurational state corresponds to
the macrostate with fixed n(x). The logarithm of this
volume is the configurational entropy of the macrostate,®

s{n)}=1n [ o(np(x) - n@]] gar, (3.1)

where n{x) is the exact microscopic density (2.3).

Our first problem will be the calculation of the function
S{n} (Sec. III.B). The method of calculation is based on
the fact that the generating function of the statistical
weight exp(S{n}) is the partition function of the chain
without volume interactions.in an external field ¢(x)

z{p}= fe#p[—z’%(x’l] Ij]f g;,dT

= f exp[— ——f-(pﬁc-)%glfi—ﬁ] exp[S{n}]Dn. (3.2)

Here f + + +®On denotes functional integration over the
smoothed density 7n(x). The last equation follows from
the fact that exp[ S] is, as usual, the Jacobian of the
transition from the integration over the configurational
space to the integration over the smoothed macrovari-
ables. It is natural that, in order for the density n(x) to
correspond to the globular state, the external field must
be attractive.

Thus, in order to calculate S{x}, it suffices to solve
the problem of the ideal polymer chain in an external
attractive potential field. The solution of this problem
will not only prepare us for subsequent consideration of
the self-consistent situation, but can also in some cases
be of physical interest in itself (see Sec. VI).

5Tt will be recalled that the bead model is always implied un-
less some other model is explicitly indicated.
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2. Accounting for volume interactions

In the presence of volume interactions the free energy
of a macrostate with a given smoothed density is equal
to

F{n(x)}=—Tlnfexp{— E(;‘)}G(nr(x)—n(x))z g,ar,
) 7

(3.3)

where E(I') is the energy of monomer interaction in the
microconfiguration I [see (1.1)].
The quantity '
E{n(x)}= F{n}+TS{n} (3.4)
describes the contribution of volume interactions to the
free energy of the system and will play the role of the
internal energy in our description (although this quantity
is not equal to the internal energy as defined in the usual
way). The calculation of E{n} is performed in Sec. III.C.
In some limiting cases this function can be expressed
through the thermodynamic characteristics of the gas of
separated monomers (for the definition see Sec. I.B.2).
Knowing ${zn} and E{n} allows us to calculate F{n}, i.e.,
the free energy of the chain in a state with fixed »(x).

3. Equilibrium density

The free energy of a chain in equilibrium is

F=—T1nfexp|:— _F_i;z_}_] Dn.

(3.5)

In the globular state the density is a weakly fluctuat-
ing, well-defined thermodynamic quantity. The mathe-
matical expression of this physical fact is the existence
of the saddle point n.q in the functional integral (3.5).
Thus, for a globule

F=minF{n}=Fne}; (3.6)
i.e., to determine the equilibrium density distribution
we must minimize the function F{n}. The minimization
procedure will be performed in Sec. II.C. This will al-
low us to get a closed system of equations for determin-
ing the equilibrium density in a globule, i.e., for de-
scribing the homopolymer globule structure.

The fact that the steepest descent method is used in the
derivation of the equations means, as usual, that the
‘corresponding theory is self-consistent. Thus, for poly-
meric globules, in contrast to polymeric coils (see Sec.
I1), the self-consistent field theory appears to be applic-
able on the whole. Nevertheless, in the external regions
of the globule, where the density is low and density fluc-
tuations are significant, the picture may differ in some
way from the self-consistent one. But even in this case
the self-consistent consideration is a step towards the
construction of a more exact theory. In the future we

shall not, as a rule, overstep the limits of the self-con-
sistent equations. The applicability of these equations
is discussed in greater detail in Appendix B.
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B. Ideal polymer chain in an attractive external field

1. Method of describing a globule formed by an external
field

As has already been noted, in the absence of volume
interactions the bending of a polymer chain has the
character of a Markovian process and it can therefore
be described analogously to the description of Brownian
motion. The key function in the approach to such a prob-
lem is the Green’s function; in our case the role of a
Green’s function is played by the partition function of the
chain with fixed end points [compare with Eqgs. (2.9) and
(2.10)]

z(l ’N) =f I"I [g/ exp(— ﬁ"—‘%’—)ﬂ 5(x, - 7)6(xy— £)dT .

n'g

(3.7)

In order to derive an equation analogous to the diffu-
sion equation for which (3.7) plays the role of the Green’s
function, we must pass from a chain with N links to a
chain with (N+1) links. This will give us a recurrence
relation of the form

Z(l N+1) =exp(—-£7(,§-)>fg(§—§’)2 llN
1
(3.8)

£ nig
Below in order to write the analogous formulas we
shall use the designation g for the integral operator

ase’.

§¢=/g(x—x’)zp(x’)d3x’. (3.9)

Equation (3.8) plays the role of the diffusion equation.
It is natural to search for its Green’s function (3.7) in
the form of a bilinear expansion

Z( ! IN) = k‘ A Y Y (8) vr (), (3.10)

n'g

¥, and A, being the eigenfunctions and the corresponding
eigenvalues of the equation

Zv=Aexple/T]Y . (3.11)

If the largest eigenvalue of this equation belongs to a
discrete spectrum and is separated by a finite interval
from the next eigenvalue, then the corresponding term
dominates in (3.10). Using the symmetry of the expres-
sion Z(3|¥) in £ and n we easily obtain

1N
Z< l )=A”¢(n)¢(£),
n'E

where A and ¢ are the largest eigenvalue and the corres-
ponding eigenfunction of Eq. (3.11).

From (3.12) it follows that in a discrete spectrum the
free energy of the system (more exactly, the change in
the free energy with respect to the free energy level of
the ideal coil) is equal to

(3.12)

F{p}=-TN1nA{p} =Nr{p}; A =exp(-1/T). (3.13)
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We see that confining ourselves to the first term in the
bilinear expansion, is equivalent to considering only
terms linear with respect to N in the free energy.

It should be noted that the discrete spectrum of Eq.
(3.11) appears only if the external field ¢ is attractive
and if the corresponding potential well ¢ /T is deep
enough. When the temperature is increased, the depth
of the well decreases, and at some temperature T, the
discrete level disappears. Physically this corresponds
to the fact that the potential well at T >T_ cannot hold the
chain. The phenomena near T, will be considered in
Sec. VI.

2. Density and density correlations

Let us now find the expression for the monomer dens-
ity n(x), and let us show that, if Eq. (3.11) has a discrete
spectrum, the chain takes on a globular conformation.

It is seen from (3.12) that the function y(x) is propor-
tional to the probability density of finding the end link of
the chain at x.° At the same time, the density n(x) in a
given field is proportional to the probability of finding
the Mth link at point x (where M satisfies the conditions
M>1,N-M>1, so the Mth link is remote from the
chain ends), because it is these links that give the main
contribution to » if N>>1. Let us introduce the function

1| M|N
2(olxle)
nixlg
the partition function of the chain with three fixed points.
Expressing this function through the partition functions

of the chains (1, M) and (M, N), and applying to them the
result (3.12) we find

n(x)=9p*(x)exp(ex)/T). (3.14)

Here we chose to normalize the function y, in order that

coefficient in (3.14) be equal to unity, taking into account

: jn(x)dax =N. (3.15)

The result (3.14) can be obtained vﬁth equal success by
calculating the variational derivative

T 6Z O F [
X)=— = =N .
n(x) Z 6p(x)  6p(x) dp(x)

The advantage of this method is that it allows the gener-

alization of the density correlator to

(3.16)

2 2
<nr(x1)nr(xz->=L Yz
Z bp(x,)0p(x,)
2 O oM r? *r
8¢, 0@, 8180,

(3.17)

It will be recalled that (n.(x)) =n(x). So the density cor-
relator is equal to

8The fact that the function Z in (3.12) splits into a product of
factors means that the chain end points are statistically inde-
pendent in a state with a discrete spectrum.
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(ndx np(x , ) = (ndx, ) (nplx,) _

_T __®M0p,0¢,
(np(x, ) (ndx, ) TN

(01/8¢,) (B0/8¢,)

1
N - (3.18)
It is seen that the density correlation tends to zero as
N -, Hence the presence of a discrete spectrum act-
ually corresponds to a globular state with thermodyna-
mically reliable spatial structure.

3. Configurational entropy

Let us now calculate the configurational entropy S{n}
for a chain in a state with a given density distribution
n(x). For this purpose let us consider the field ¢(x), in
which n(x) is just the equilibrium density. We shall as-
sume that the density n(x) corresponds to a field ¢(x) for
which the greatest eigenvalue of Eq. (3.11) belongs to a
discrete spectrum. This means that the density #(x)
fluctuates weakly and consequently the integral (3.5) has
a saddle point at equilibrium (i.e., just at the given)
density n(x), thus

Flo}=-Tnz{g}= [ ¢xmx)d*x- T{n} (3.19)
[compare with (3.6)]. From the expression for F{yp}
(3.13) we find

s= [ "’—(x%?-—’in(x)d-”‘x. (3.20)

Now we must express the entropy directly in terms of
the density n(x). This can be easily done by eliminating

As a result we get
(Lifshitz, 1968) ‘

S{n}=fn(x)1n-‘i—¢ dsx, (3.21)
where §(x) is related to n(x) by
An(x) =p(X) gy (3.22)

The number A here is generally arbitrary and deter-
mines the normalization of the y function.

As expected, the expression for the entropy is non-
local; the nonlocality enters through the operator g, i.e.,
it is determined by the linear memory.

4. Analysis of the expression for the entropy

In order to illustrate Eq. (3.21) it is useful to consider
two limiting cases: .

(1) First let all the monomers be located in a small
volume of dimensions R «a. In this case gy
gg(O)fzp(x)dsx and thus we have from (3.21) and (3.22)

o
Sz—fnln;daxwLNlng(O)-x-Nlneﬂ .

The interpretation of this result is simple. Since within
a small volume the bonds do not restrict the motion of
monomers, the entropy of the system differs from the
entropy of Boltzmann gas (the first item) by the addi-
tional items which correspond in the partition function
to the factor [g(0)]¥ -N!. This factor originates from
the return of the chain N-times to one place and the
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FIG. 2. Possible forms for the density versus distance from the
center of a globule. (a) Uniformly varying density. (b) Density
distribution with smoothed boundary. (c) Density distribution
with microstructure.

presence of a fixed order in which the particles are
strung on the chain.

(2) Let us consider now the opposite limiting case R
>q. In the case of a smoothly varying function y, taking
into account the spherical symmetry of g and conditions
(1.4)-(1.5), we get

20= [ g +yvy+ L GVI2+ - iy = px) +aay

i.e., the substitution g—1+a2A can be made. After this
it is easy to find

%—azf [Vn1/2]2d3x.

Three variants are possible: uniform density varia-
tion along the system [Fig. 2(a)]; constant density in the
interior of the system and rapid by varying density in a
surface layer of width 7 [Fig. 2(b)]; microstructure with
the characteristic length I [Fig. 2(c)]. In these cases we
obtain, respectively, (a) S~-Na?/R?; (b) S~-Na?/IR;
(c) S~=Na?3/12.

For the system with ideal coil dimensions, R ~a - NV2
and S~1 in case (a). This means that there is no coil
structure with significant entropy advantages. It is for
this reason that the coil pulsates macroscopically.

C. Self-consistent theory of a globule with volume
interaction

1. Equation for the equilibrium density

As has already been noted in Sec. III.A, the self-con-
sistent equations for determing the equilibrium density
n(x) in a polymeric globule formed by volume interac-
tions are the minimization equations for the function
F{n}=E{n}- TS{n}. In the process of minimization, how-
ever, one must take into account the additional condition
(3.15). Hence the equation which determines the mini-
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mum of F{n} will have the form 6F/én =X, where A is
the indefinite Lagrange multiplier.
The variational derivative of the entropy (3.21) can be
explicitly calculated taking into account (3.22)
88 | 8Y
on =In v
Thus the Euler equation for the minimization of the
function F{n} takes on the form

N OF
soensemn {22 1]

where the normalizing constant A is chosen to be equal to

A =exp(-1/T) (3.25)

(3.23)

(3.24)

[compare with Eq. (3.13)].

Comparing (3.24) with (3.11) we see that 6E/6n plays
the role of the self-consistent field. In the presence of
an external field and in the absence of volume interaction
Eq. (3.24) transforms directly into (3.11) because in this
case

E= f P@mR)d3x; OE/on=p(x).

Thus our next problem is the calculation of E{n}

fe'E(F)/TG(n_ 7Lr) Z g\,dr
J

E{n}=-T In (3.26)

Jon—n) 2 g,ar
- i

2. Method of accounting for the volume interactions
(Lifshitz, 1968)

It will be recalled that the forces of volume interaction
include strong repulsion (impenetrable core) over small
distances 7, ~9¥2 and attraction over larger distances
7 ar >7 ep. In 2all cases, clearly 7ip <a, i.e., v<a®. We
shall consider first the case 7, ~vY3 <d®, i.e., v<ad®
(to be compared with Sec. II).

In this case, if we assume for the sake of simplicity”
that na®>1, then we can choose the smoothing volume
w satisfying the condtion w <<qg®. For such smoothing the
nuclei g can be considered as constant in (3.26) in com-
parison with the rapidly varying factor exp(—E(T')/ T), i.e.,

fe'E(I")/Tﬁ(n__ np)dl’
E{n} = E {n}=~T1n

(3.27)
JSon—npar

One may see that the functional E{x} can be expressed
through the simple thermodynamic function of the gas of
separate monomers with the same interaction E(I") but
without the linear memory.

It is convenieént to introduce the following notation. Let
f(n, T) be the free energy per unit volume of the equiv-
alent system of separate monomers at temperature 7'
and with density n; let u(n, T)=8f/8n be the chemical
potential of this system; and let p(n, T)=nu — f be the
pressure. Let us introduce the analogous values for the

"A more detailed analysis shows (see Appendix B) that Eq.
(3.27) for E{n} is always valid if v «<a?, irrespective of the con-
dition na®>1.
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ideal gas: f,,=Tnlnn/e; u,,=Tlnn; p,,=nT, and,
finally, let us write:

f*(n9 T)zf—fid; /*‘L*(n’ T)=M—N-,~,i=8f*/5n;

(3.28)
X, T)=p=pyy=nu*~f*.
In this notation (3.27) takes the form
E{n}=f f*(nx)d3x (3.29)
and, consequently,
SE/6n=pu*(n(x)). (3.30)

Thus for short-range forces (v <a3) Eq. (3.24) takes the
form

gy=Apexpiu*(n)/T}. (3.31)

The density = is related to y by means of (3.22). From
(3.31) and (3.22) we get

n=yf exp{p*(n)/T} .

From (3.32) one can see why it is convenient to choose
the normalization of the ¢ function in the form (3.25): in
this case the connection between the equilibrium values
of n» and y appears to be the local one. A typical plot
¢(n) is shown in Fig. 3.

Equations (3.31) and (3.32) together with the normaliz-
ing condition (3.15) form a complete system of two equa-
tions and one auxiliary condition for the determination
of two unknown functions » and y and one unknown num-
ber A.

The equilibrium free energy of a globule (3.6) can be
written in the form

(3.32)

F=f{f*(n)—Tnln(ézb/«#}dsx:—-TNlnA—fp*dsx.

(3.33)

It will be recalled that F corresponds to the globule free
energy with respect to the free energy level of an ideal
coil.

Sometimes it is useful to write Eqs. (3.31) and (3.32)
in the form:

gy=Nexp{uln, T)/2T} (3.34)
n=pexp{u(n,T)/2T}. (3.35)

It is equally simple to generalize the obtained equa-
tions to the case in which, alone with the short range

~1/v

FIG. 3. Typical plot of the relation between ¥ and », resulting
from Eq. (3.32). The quantity » (x) is the polymer density at
point X, while ¥ (x) is proportional to the probability of finding
the end link of the chain at x.
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forces (v <a®) there exist also long-range -forces within
whose radius of interaction a large number of particles
are situated. In this case the exact expression for the
energy of the interaction with the potential U(x - x’) can
be obtained directly through the smoothed density

U= % fnr(x)‘u(x - Xn(xNd3xd %’
= % fn(x)‘u(x— xn(x")d3xd*x’ .

Let us reserve, for simplicity, the notation E(I") for
the short-range part of the energy; then we must have in
(3.27) the energy E(f)+U. But within the limits of the
integration U =U{xn} is constant, so exp(U/T) can be car-
ried out of the integral. Thus in the presence of long-
range forces we get once more Eqs. (3.31) and (3.32)
with the substitution .

p*(n) = u*(n)+Un,

where U is the operator with the nucleus U(x—x’). In
this case we must add to the free energy (3.33) the term
%U{n}

Unfortunately, for the most important real case v ~a®
the function E{n} cannot be found in simple form. The
only information obtainable in this case is by extrapola-
tion of the results obtained from the Eqs. (3.31) and
(3.32), which are valid in the case v <a®. The error
made during this extrapolation is of order unity; thus
the equations give for the case v ~a® the correct orders
of magnitude. In addition to this, it is natural to assume
that no qualitatively new features in the solution can ap-
pear during this extrapolation. Hence, considering be-
low the solutions of Eqs. (3.31) and (3.32), we shall as-
sume that these equations are quantitatively correct for
the case v <a® (to within v/4®) and only qualitatively cor-
rect for the case v ~a® (see also Appendix B).

D. Explicit consideration of the influence of solvent
(Lifshitz and Grosberg, 1975)

As can be seen from the above, the spatial structure
of a globule is determined by the volume interaction of
monomers. Under some assumptions the role of this
interaction can be described by means of the function
w(n, T). The solvent has an influence on the character
‘of volume interactions between monomers, thus u(n,T)
is an effective value, including the indirect interaction
of monomers through the solvent. In order to determine
the influence of such solvent parameters as pressure @,
acidity pH, etc. on the globule, it is necessary to ob-
tain the explicit expressions for the effective thermody-
namic values.

First of all it should be noted that the configurational
entropy of the chain does not depend on the presence or
absence of a solvent and is determined by Eqs. (3.21)
and (3.22).

Let us introduce in addition to the monomer density
distribution n(x) the density distribution of the solvent
molecules #,(x) and let us consider as known the thermo-
dynamic functions of the solution of monomers without
linear memory: the free energy per unit volume
fn,n,, T), the chemical potential of monomers
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wn,ng, T)=08f/3n, the chemical potential of the molecu-
les of solvent u (n, n,, T)=8f/6n,, and the pressure
P, ng, T)=np +ngu ;— f.

If we assume once more that the characteristic radius
of interaction is much less than q, then the change E in
the energy due to the volume interaction

E({n}, {n ) =TS+ F{n},{n,}, Vv, T)

can be calculated by means of the same method as in the
previous section. The result has the form

(3.36)

E({n},{ns})=f {f(ng,m, T) = TnIn(n/D}d%x.  (3.37)
v

We shall assume that the whole volume of the system
V is much larger than the volume of the globule, so that
the monomer density on the periphery is equal to zero;
the density of the pure solvent far from the chain will be
denoted by 7,.. Since most of the pure solvent surround-
ing the chain has no influence on its state, it is expedi-
ent to exclude the volume of the system V and the num-
ber of solvent molecules N, from the thermodynamic
functions.

First of all, minimizing the free energy with respect
to n,(x) at constant N, we obtain the standard condition
of the constancy of the chemical potential of the solvent

p(n(x), n,(x), T) = u (0, n,,, T)=p (®, T, (3.38)
® =p(0,n,., T), (3.39)

which reflects the fact that the solvent density at each
point is determined by the monomer density: n,(x)
=7, (n(x),®, T). ’

Now we must pass from the free energy to the thermo-
dynamic Gibbs potential F+® V. In order to express the
volume in terms of other variables, we shall write it in
the form

V= —-3—+f

where the integration can be performed over all space
and not only over the volume V. "

The quantity v(n) = (n,., — 7,)/n,.n, expressed according
to (3.38) as a function of », is the volume per monomer
of the ousted solvent. At high densities the solvent does
not penetrate between the monomers (n, < n,.) and v(n)
=1/n; at low densities v(n) becomes equal to the effec-
tive volume of the monomer v, (see below for the exact
formula)

n,—n { 1 n,~0
n

Ben= 18 45 (3.40)

—S 5% —py(n)=

S0

. (3.41)
v, n—=0

It is clear that v(n) depends parametrically on the ex-
ternal pressure and the temperature.

With the help of Eqs. (3.36) and (3.40) we find the
Gibbs potential of the solvent with the globule F+®V .

Since the entropy of the chain is determined with re-
spect to the entropy level of an ideal coil, it is natural
to determine the energy term (3.37) similarly. In order
to do this one must subtract the Gibbs potential for the
solvent with an ideal coil from the Gibbs potential for the
solvent in the case of a globule. Since linear memory
does not affect the monomer-solvent interaction, one ob-
tains for the Gibbs potential of solvent with coil
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Nou(®, T)+Nx(®,T), (3.42)

where x is the coefficient of the term linear in # in the
expansion, with respect to n, of the integrand in (3.37).

Differentiating (3.42) with respect to @, it is easy to
find the volume which is occupied by the solvent in the
case of the coil. Comparing the result with (3.40) and
(3.41), we find that

v, =0x/86 . (3.43)

When we substract the Gibbs potential of the solvent
with the coil from the Gibbs potential of the solvent with
the globule we automatically pass from the variable N
to the variable u, due to the term N,u,. Taking into ac-
count all the above, we obtain the following expression
for the thermodynamic potential of a solvent with a
globule:

¢(T,G’,{n})=f{f(n,ﬁs’T)—7ﬁL O, nee TI+@ K - x)
- Tnln—-—}dax T_[nln ww d’x

+® fn[v(n)— vold3x, (3.44)
where the integration is to taken over all space.

The equation for the monomer density distribution can
now be derived by minimizing the thermodynamic poten-
tial (3.44) with the constant number of monomers N
=f nd3x; as a result we obtain the equation

go=Aexp{u./T}

[compare with Eq. (3.34)], where the effective chemical
potential is determined by the relation

IJ’eff (7’1) =M(n, ﬁsy T)— X((P; T) °

Here the solvent density is supposed to be expressed in
terms of the monomer density according to (3.38). We
should remember that exclusion of n, by means of (3.38)
can lead to a complex nonmonotonic dependence of

Uetr () on the temperature. It is well known, that in the
case n—0 we have

(3.45)

(3.46)

p=Thhn+ny. (3.47)

Equations (3.44) and (3.45) give for the equilibrium val-

ue of the thermodynamic potential
®=—TNInA — f(p- nT - ®)d’x (3.48)
This is the natural generalization of Eq. (3.33).

Thus the description of a polymer globule when we take
into account the influence of the solvent differs from its
description in the absence of the solvent only by the re-
definition (3.46). Hereafter we shall assume that this
renormalization is made and we shall omit the sign eff
from p g (n).

E. Some analogous problems in polymer physics

The Eqgs. (3.31) and (3.32) were derived in order to
construct a self-consistent theory of polymeric globules.
Analogous equations are used in some other problems of
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polymer physics. Here we shall discuss some examples
of this kind.

It is natural that when systems with linear memory are
described, equations with operator £ appear. However,
most work in this field replaces g with the approxima-
tion 2—1+a%A. This is equivalent to substituting for
the 3N-dimensional integral (3.7) the functional Wiener
integral (Freed, 1972). Equation (3.31), for example,
in this case takes the form

a?ag- (AelW /T _ 1)y -0, (3.49)

i.e., becomes a second-order differential equation.

In a great number of cases (in the absence of a dis-
crete spectrum, for example) we cannot confine our-
selves only to calculating the contribution from the
greatest eigenvalue to the partition function (3.10). Con-
sidering N in (3.8) as a continuous variable it is easy to
find in this case the equation for the Green’s function Z
(which is analogous to the nonstationary diffusion equa-
tion)

0Z/oN+Z=e ¥ T 57, (3.50)

Here the external field ¢(x) is replaced by the self-con-
sistent field p*(n(x)). Under the same assumptions ds in
(3.49) we obtain

8Z /0N =g H*¥M/T g27A7 _ (1~ g W)/ Tz (3.51)

The second equation, which expresses » in terms of
Z and which is necessary in order that the system of
equations be closed, is obtained in each specific case in
a different way.

Equations of the type (3.49)-(3.51) are often encount-
ered in the polymer physics literature. Here we give
some examples.

Equation (3.49) (with the replacement p* — @) is well
known in the theory of ideal coil adsorption (see Sec. VI).

' If the density in the system is low and u*/T =2nB<1,
then Eq. (3.51) takes the form

8Z/8N=a%AZ~- 2nBZ . (3.52)

This equation was derived by Edwards (1965) in order to
obtain a self-consistent solution of the excluded volume
problem. Here B~v is the second virial coefficient of
monomer interaction in a good solvent.

Problems similar to those in the globule theory appear
in the theory of boundary interfaces in inhomogeneous
polymer materials and in the theory of interfaces be-
tween phases in phase-separated polymer solutions. Re-
cent significant advances in the theory of such inhomo-
geneous polymer systems are due mainly to the work of
Helfand and his collaborators (Helfand, 1975a,b,c,d,
1976; Helfand and Tagami, 1972, Helfand and Sapse,
1975, 1976; Helfand and Wasserman, 1976; Weber and
Helfand, 1976). In these works equations quite similar
to (3.51) appear. In order to derive the closing equation
for the system of equations, considerations analogous to
that given before Eq. (3.14) are used. Due to the split-
ting of correlations (for the polymer in bulk and in the
concentrated phase of the solution) the main equation in
these cases becomes an ordinary second-order differ-
ential equation, and the closing equation algebraic.

It should be noted that in the expression for the self-
consistent field in Helfand’s work there exist along with
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the local term p*(n) nonlocal terms proportional to Az.
These terms are due to the nonlocality of monomer in-
teractions. This nonlocality actually always exists and
must be compared with nonlocality due to bonding of
monomers in the chain, which is expressed by the pres-
ence of the operator g in the main equations. A com-
parison of the two types of nonlocality made in Appendix
B shows that nonlocality due to monomer interactions is
less than that due to bonding of monomers by a factor
(v/a®)2. Thus, as explained in Sec. III.C, such nonlocal
terms do not appear in our equations.

The substitution g—1+a?A is valid only for smooth
enough density profiles. Hence, for sharp boundary in-
terfaces (at temperatures significantly less than the
critical one) it is necessary to solve an integral (and not
a differential) equation [of the same type as (3.31)]. An-
other alternative approach was proposed by Helfand
(19'75¢). His method consists in introducing the lattice
model for a given system. In the lattice interpretation
the integral is replaced by the sum and the integral
equation amounts to the system of a great number of
algebraic equations. These algebraic equations can be
solved numerically. The shortcomings of this method
are the well-known internal imperfections of the lattice
model, and the main advantage is the fact that both types
of nonlocality mentioned above are taken into account.

IV. SPATIAL STRUCTURE OF A GLOBULE

In this section we shall discuss the solutions of Egs.
(3.31)—-(3.32) far from the points of conformational
transitions. The problems connected with conformation-
al transitions are discussed in the next section.

A. Large globule: The volume approximation
(Lifshitz, 1968)

1. Character of the density distribution

First of all we shall consider the case of the so-called
large globule, i.e., the globule whose dimensions R, are
much more than a(R, >a). For this condition to be ful-
filled,  the polymer chain must be long enough.

It is clear that the equilibrium structure of a globule
includes the dense core, going out from which the dens-
ity decreases and tends to zero at infinity. The density
can a priovi either decrease smoothly at distances ~R,
[Fig. 2(a)], or remain practically constant within the
globule, decreasing sharply on its boundary [the char-
acteristic length of this decrease is I <R, Fig. 2(b)].

It will be recalled that in both cases

S{n}~N©, 4.1)
where qisequalto § or %, i.e., isalwayslessthan unity
(see Sec.III.B). Atthe same time the function E{xn} defined
by (3.29) is proportional to N. Thus for long enough
chains the free energy is equal in a first approximation
to

F{n}=E{n}- Ts{n}zE{n}= f F*(n)d3x. (4.2)

In view of the local character of the function (4.2) and
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the absence of derivatives in it, its minimum under the
condition (3.15) corresponds to a step function of the
type shown in Fig. 2(b). The smoothing of this function
occurs owing to the entropy terms neglected in Eq. (4.2).

Hence the density profile of a large globule is a
smoothed step function [Fig. 2(b)].

2. Volume approximation

In order to describe roughly the structure of a large
globule one can introduce the volume approximation, in
which the density profile is considered as an abrupt
“step.” This approximation neglects entropic surface
terms. The density n, in the globule corresponds in this
approximation to the minimum of Eq. (4.2), i.e., to the
minimum of

F{n}= Vo f*(ny) = (N/ny) f*(n,), 4.3)

where V, is the volume of the globule. As a result of
minimization we get

p*(ny) =0. (4.{1)

The condition (4.4) determines the density in the core of
a large globule. The free energy of this globule can be
determined from (3.33):

F==NTInA =Nu*(n,). (4.5)

The last equality follows from (3.31), if we assume in
(3.31) gy =¢ (we can assume this because of the constant
density in the core of the globule). The condition (4.4)
can be written in the form

0= p*ng) = *(ng) = mois*(np) = [ [¥(n) = (o) ).
o

(4.6)

The graphic interpretation of this condition is the coin-
cidence of the shaded areas in Fig. 4. The free energy
per monomer corresponds to the segment cutoff by the
horizontal secant on the p* axis.

If one takes into account the external pressure @ in
the solvent, the condition (4.4) takes on the form

png)=n, T+ @ . (4.7)

F/N

FIG. 4. Graphic determination of the density n, in the core of a
globule and of the free energy of a large globule in the volume
approximation.
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B. Large globule: The surface terms (Lifshitz and
Grosberg, 1973)

1. Formulation of the problem

If the entropy term in the free energy is not neglected,
then the problem of determining the density profile near
the boundary of the globule arises. In other words, we
should like to know how the “step” is smoothed.® The
answer to this question depends on the termperature: is
T>T,or T<T,, where T . is the critical temperature
of the phase separation in the gas of separate monom-
ers?®

If T>T ., then all the values of density from zero to
n, can be realized in the gas of separate monomers and
the density profile has the form shown in Fig. 2(b). If
T <T, then there is an interval of densities corres-
ponding to the absolutely unstable states of the gas of
separate monomers. It is natural to expect that the den-
sity in the globule never takes values in this interval,
i.e., the globule is a sort of two-phase system with a
sharp boundary between the core and the “fringe” (Fig.
5).

In the case T <T . there must be some additional con-
ditions on the boundary for the equations to be closed.
One of these conditions can be obtained from (3.34):
from the definition of the operator g it follows that the
function gy must be continuous, hence [see Eq. (3.34)]
the chemical potential u(n, T) must also be a continuous
function: '

puln)=pmn.). (4.8)

It can be shown that the second boundary condition is
continuity of the local pressure (see Appendix A):

pn,)=pn.). (4.9)

The conditions (4.8) and (4.9) are the same as in the
gas of separate monomers. Hence the boundary densi-
ties », and x. in the globule are the same as the densi-
ties of the coexisting phases in the gas of separate
monomers. Thus », and n#. can be considered as the
known functions of temperature in the globule.

Let us pass now to the quantitative determination of the
surface structure. Using Eqs. (3.33) and (4.5) it can be
shown that the free energy of a globule is equal to

F=Nu*n, T) - [ p*(max. (4.10)
Since in the core of the globule p* =0, the last term in
(4.10) is proportional to the surface area of the globule.
This is a sort of entropic surface tension due to the lin-
ear memory. Denoting the corresponding surface tension
coefficient by o(7T) we can write

81t is meaningful to determine the macroscopic density pro-
file of the globule surface only when the width of the surface !
is much larger than the interatomic distance, v1/3, But it turns
out (see below), that far from the § point [ ~a. Hence analysis
of the surface structure makes sense in this case only when
» <a3. At the same time, when T is close to 6 it turns out that
I>>a (see Sec. V). Hence, in this region, analysis of the sur-
face structure is valid even when v ~a?.

%t should be noted that for the usual interactions T <6.
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FIG. 5. Density distribution in the two-phase globule.

F=Nu *(n,, T)+4nR20(T). (4.11)

When there exists in addition a discontinuity in the density
at the surface (Fig. 5) we must add to this expression a
term corresponding to the ordinary surface tension:
4nR%0,. Since conditions (4.8) and (4.9) are the same as
in a system without linear memory, o, equals the sur-
face tension in this system.

It should be noted also that the problem of determining
the density profile in the case R, >>a is essentially one-
dimensional. Introducing the coordinate x along the
radius (x=0, when R=R,), we obtain the following ex-
pression for the surface tension

o(T)=—[+m p*(n(x), T)dx. (4.12)

The problem of determining the surface structure can
be formulated as follows: starting from Egs. (3.31) and
(3.32) determine the one-dimensional density profiles
n(x) and ¢(x) and the surface tension o. Let us consider
the main steps in the solution of this problem as pre-
sented by Lifshitz (1968) (at 7>7T ) and by Lifshitz and
Grosberg (1973) (at T <T,,).

It should be noted beforehand that the problem under
consideration is equivalent to the problem of determin-
ing the interphase surface structure in the phase-sep-
arated polymer solution. Thus the obtained results can
also be applied to this last problem (see also Sec. IV.E).

2. Thecase T>T,

Here it is convenient to use the local relation between
n and ¢ (3.35) and introduce the parametrically defined
function v(y)

v=exp(u(n, T)/2T); (4.13)

The approximate plot of this function at 7 >7_ is shown
is Fig. 6. )

Using the function v(y) we can write Eq. (3.34) in the
outwardly simple form:

gd=Av(y). (4.14)

When T >T it is natural to expect that the density in
the large globule changes smoothly. Thus we can replace
the operator g by 1+a®a. The obtained differential
equation

n=yv.

a®(d®y/ax®) =Av(p) -y (4.15)
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FIG. 6. Typical plot v() at 6 >T >T .. The value of ¥, in the
core of the globule is determined by the equality of the shaded
areas.

is easily integrated and the result has the form
P(x) Y -1/2
x=—af I:Zf {Au(zp)—w}dzp] dy.
¥ (0) (

In order to interpret this result we note that the form-
ulas u*(n,) = —T'InA and p*(n,) =0 can be written in the
form: Av, =y, and fo% (Av(y) = 9)dyp=0. Hence their
graphic interpretation in Fig. 6 is the equality of the
shaded areas.

It is easy to show that (4.16) actually leads to a simple
density profile of the type shown in Fig. 2(b). In partic-
ular, when x -+~ we obtain the simple exponential as-
ymptotic forms

(4.16)

(%)) ;s o = const. exp[F6, (x/a) | + P(xe0) .

P(+0)=0;9(—0) =3, .
0, =(A=1)"2; g_= (A <%<%)%~ 1)1/2.

The result (4.16) allows us also to write the simple
closed expression for the surface tension coefficient

o= aT jo-wo<2 '[w v()dy - vy )/(2. %:"/;wv(zp)dzp— ¢2>1/2 .

(4.18)

Equation (4.18) expresses o explicitly through the ther-
modynamic functions of the equivalent system of separ-
ate monomers, i.e., gives the dependence o(7). A
simple estimate shows that o ~aT/v = (a®/v) - T/a?.

(4.17)

3. Thecase T < Tcr

Now let us consider the case 7' <T, when the density
profile has the bound shown in Fig. 5. In this case the
chemical potential in the gas of separate monomers be-
comes the nonmonotonic function of n (Fig. 7), and as a
result the plot of function v(y) takes the form shown in
Fig. 8.
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FIG. 7. Typical plot of u(z) at T<T,. The equilibrium densi-
ties of the coexisting phases n. and z. are determined by the
equality of the shaded areas (Maxwell’s rule).

The values of density », and n. can be determined
from the well-known Maxwell’s rule (see Fig. 7). It is
easy to show that in Fig. 8 we have a rule analogous to
Maxwell’s: the equilibrium values of , and y. can be
determined from the equality of the horizontally and
vertically shaded areas.

The presence of a surface bounding the system can be
taken into account in Eq. (4.15) by introducing the cor-
responding source term (Lifshitz and Grosberg, 1973).
However, when the temperature is lowered the situation
becomes more complex: according to the volume ap-
proximation the value of y, in the core of the globule is
determined, as usual, by the equality of the obliquely

i 4
v, A

FIG. 8. Typical plot v()) at T<T,. The equilibrium boundary
values of ¢, and y. are determined by the equality of the verti-
ccally and horizontally shaded areas. The value of ¥, in the core
of the globule is determined by the equality of obliquely shaded
areas.
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FIG. 9. The oscillating profile of ¥ at low temperatures.

shaded areas (Fig. 8), and it is seen that at low temper-
atures the point (¢, Vo) is situated on the decreasing
brach of the function v(y). In this case the singular point
of Eq. (4.15), which corresponds to x—~—«, becomes the
focus and not the saddle. This corresponds to the oscil-
lating regime of the approach of y(x) to P(—=)=y,. In
this situation the approximation g—1+a2A is not valid
and a more exact approximation is required—at least to
account for the fourth derivative. The numerical solu-
tion of the integral equation for the simplest cases con-
firms the presence of the oscillating regime (Fig. 9).
The physical reason for the oscillations is clear already
from Fig. 2: in a region in which the density of mono-
mers approaches the highest possible density, the prob-
ability of finding a given specific monomer (and, in par-
ticular, the end monomer) decreases.

C. Small globule (Lifshitz and Grosberg, 1973)

In this section we shall consider the situation, on the
face of it very exotic, of a chain in which the effective
range of ¥V is so small (or a is so large), that not only
is v < &%, but in addition

% < Fll_ <1 ' (4.19)
or N<<N~a3/v. Such a chain can at T <T, form a so-
called small globule. The core of this globule occupies
the volume V, <a® and is separated from the “fringe”
by a sharp boundary (Fig. 10).

'n+\
, r

R

FIG. 10. Density distribution in the small globule.
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The consideration of this situation is useful for two
reasons. First, effects connected with the polymeric
nature of the chain become more apparent in a small
globule and are the main ones (and not the secondary or
surface effects as in the large globule). Second, the
mathematical description of small globules is relatively
simple. Owing to these facts it is sometimes useful
when considering a specific effect to analyze it first for
the small globule; this often appears to be enough for a
qualitative understanding of the general situation. Ex-
amples of analyses of this kind can be found in Lifshitz
and Grosberg (1973), Grosberg and Liberol (1976),
Grosberg (1976a), and Lifshitz, Grosberg, and Khokhlov
(1976a). Here we shall consider a method of solving
Eqgs. (3.31) and (3.32) for the case of the small globule.

Since the characteristic length of the density variation
is a, in the zeroth approximation the density in the core
of the small globule may be considered to be constant
and equal to its boundary value n.. This is also the case
for the ¥ function.

Let us denote by y,,(x) the function which is equal to
$(x) outside the core and to , within the core. Thus
Pou(X) is a continuous function. In addition to this the
interactions in the “fringe” will be neglected for sim-
plicity [v(y)=¢ when <y, ]. Then Eq. (4.14) can be
written in the form

Bt Vold- = ,) g(x) = A oo (X) (4.20)
(the index zero corresponds to the zeroth approxima-
tion). This linear integral equation with the nucleus
g(x~x’) can be easily solved with the help of the Fourier
transformation. The result has the form

_V(l/’-—%) -ikx 3 4.21
Youl®) = f e ——L—g a%. (4.21)

(2n)? N

In order to determine the constants A, and V, it is nec-
essary to use the normalization condition (3.15) and the
equality ¥ou(0)=9,. Simple calculations give

NQ(AY) =n,d®,
=NP(Ao)/ (n. =n,),

(4.22)
(4.23)

where the following definitions are introduced

O J s g

Q) =J,P

Now let us find the free energy of the small globule in
this approximation. Since outside the core p* =0 and in-
side it p*(n.)=p(n.)= Tn- =T(n, - n.), we have accord-
ing to (3.33)

Fy=NT(P(A,)— InA,). (4.24)

The functions P(A ) and @(A) are determined by the
form of the linear memory g(x). (For the Gaussian nu-
cleus they are given in Fig. 11.) One may say that if the
function #,(T) is given, (4.22) determines A,(T) and then
(4.24) determines F,(T). This is illustrated in Fig. 11.
For the mutual arrangement of the plots in Fig. 11 it is
essential that

PA) dQ

QM) aa T dA (P(A)~InA).

(4.25)
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FIG. 11. Graphic representation of results for the small glob-

. ule.

Due to this equality the maxima of functions Q(A) and
P(A)~-1nA occur at the same value of A.

Let us return to the result (4.21). Expanding it in pow-
ers of 1/A, we find

You=2_ —"—————V Uer ) 4 () (4.26)
o) = f glx, = 0)glx, ~ ) - gk~ -1 )d%, Ay
(4.27)

Here p,(x) is the distribution function of the end point of
a chain with » monomers and with the beginning fixed at
the origin. Since y , is the distribution function of the
end point of the chain with N monomers, it is clear that
the coefficient at p,, in (4.26) determines the probability
of the existence in the fringe of the “tail” of m mono-
mers. With the help of the equality n.,=y%, one can find
the probabilities of formation of the “loop” of # mono-
mers,

The solution can be made exact by accounting for the
next terms of the expansion in powers of the parameter
R,/a << 1. It turns out that the density distribution in the
core follows approximately g(x), in particular, the
signs of the values An(x)|,-, and Ag(x)|,-, coincide. How-
ever, even when n(x) is monotonic, ¥(x) can be a non-
monotonic function. This function can make one or sev-
eral oscillations in the core (Grosberg and Liberol,
1976). It will be recalled that a similar phenomenon is
possible in the large globule.
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1t is clear that the zeroth approximation with respect
to R,/a corresponds to complete neglect of the influence
of linear memory within the core of the globule. Thus
we need the further approximations to determine the sit-
uation in such cases as, for example, the interaction of
a small globule with the hard macroparticle (Grosberg
and Liberol, 1976; Grosberg, 1976a).

D. Polymeric globule formed by saturating bonds

In the case of a globule of intermediate dimensions
Vo ~a® general methods do not exist, and one must solve
the general system of nonlinear integral equations
(3.31)-(3.32) in each specific case. As a rule, only a
numerical solution is possible. However, for one spe-
cial interaction an analytical solution was found
(Lifshitz, Grosberg, and Khokhlov, 1976b). This is the
case of a globule formed by strong mutually saturating
bonds widely spaced along the chain between the mono-
mers, in the case when the excluded volume of mono-
mers is small.

In this case the gas of separate monomers is a mix-
ture of monatonic and diatomic ideal gases and its ther-
modynamic functions [in particular, u*(n, T)] can be
calculated exactly. As a result Eqs. (3.31), (3.32), and
(3.15) take the form

g +v®)=Av, (4.28)
n=(1/2K)(0%+v*), (4.29)
J’(172+17")d3£=[3; B=2NK/d®, (4.30)

where 7 =v(2K)2, £=x/a, and K is the monomer bonding
constant [K ~exp(-U/T), where U is the energy of a
bond]. The system of Eqs. (4.28) and (4.30) contains
only one parameter 8. The simplest solution can be
found in the case 8 —«, when U is large everywhere in
the region of the particles, and, thus, v can be neg-
lected in comparison with v® and U2 can be neglected in
comparison with 7%, The obtained simplified system of
equations has for a Gaussian nucleus a solution in the
form of a Gaussian function. The calculation gives for
the density profile

N (22 25"
no= (35) ewe(-52e) (.31
and for the free energy
. ( 2 \2
F=3NT [1—1n Ev?) 3]. (4.32)

Let us consider now the region of applicability of the
obtained results.

In fact these equations were obtained, firstly, by neg-
lecting the excluded volume of monomers—thus requir-
ing that #(0)v ~Nv/10a® «<1—and, secondly, by neglecting
U with respect to v® in the region where the majority of
monomers is located. The later condition means that the
number of monomers outside the radius R, where Kn(R)
~1, must be negligible. Numerical analysis shows that
this condition is fulfilled when B8 >>1000., Thus the region
of applicability of the used approximation is

2« Ll < 2K
10 N 1000 °
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In the described limit the width of the density profile
does not depend on the temperature and on the length of
the chain. The numerical solution of the system (4.28)-
(4.30) at 8 <1000 shows the slow dependence of » on T
and N (Lifshitz, Grosberg, and Khokhlov, 1976b).

E. Spatial structure of some other polymer systems

In Sec. III.E some situations in polymeric systems,
which are described by equations analogous to (3.31) and
(3.32), were mentioned. The description of globular
structures formed by external fields will be considered
in Sec. VI; the excluded volume problem was considered
in Sec. II; here we shall describe briefly the results, ob-
tained by Helfand and co-workers, for the spatial struc-
ture of inhomogeneous polymer systems.

In several works (Helfand and Tagami, 1972; Helfand
and Sapse, 1975; Helfand, 1975b) the structure of the
boundary between weakly immiscible polymer materials
in bulk was considered. As has already been noted,
from the mathematical point of view this problem
amounts to an ordinary differential equation of the sec-
ond order. For the specific solution a special, but real-
istic, form of the potential u*(n,, ngz) was chosen (n,
and n, are the densities of the immiscible polymer com-
ponents). An exact analytical solution was obtained in the
case of low compressibility of polymer materials; the
general case was considered numerically.

If we characterize the mixability of polymer materials
by the Flory parameter x [the energy (in units of T) nec-
essary to exchange the positions of monomers A and B,
if initally these monomers were situated in pure sub-
stances consisting only of A and B] then at small y the
width of the surface layer is ~x~Y2 and the surface ten-
sion is ~x¥2 (Helfand and Tagami, 1972; Helfand and
Sapse, 1975).

The interphase boundary in phase-separated polymer
solutions was considered by Helfand (1976), Helfand and
Sapse (1976), and Weber and Helfand (1976). The re-
sults and the method [in the work by Helfand and Sapse
(1976)] do not differ significantly from those described
in Sec. III.B.2. In the future it will be important to cal-
culate in more detail the structure of the interphase
boundary surface near the critical point of precipitation
of the solution, bearing in mind that the self-consistent
theory is longer valid near this point.

One more important example of the application of
equations of the same type is the block-copolymer theory
(Helfand, 1975c; Helfand and Wasserman, 1976). Hel-
fand and Wasserman have considered block copolymers
of the type A-A-...-A-B-B-...-B in bulk. If the mono-
mers A and B are immiscible, they will tend toward
phase separation, but the presence of the valent chem-
ical bond between A and B will prevent this. As a re-
sult, a microdomain structure is formed. If the number
of monomers types A and B are approximately equal,
then lamellar structure becomes the most advantageous
(Fig. 12). The theory developed by Helfand (1975c) and
Helfand and Wasserman (1976) allows us to determine
the period of such a structure and the form of the dens-
ity profile.

In this case an equation of the type (3.51) is solved
with periodic boundary conditions: the values of Z, =n,
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FIG. 12. Schematic image of the lamellar structure of a block-
copolymer in bulk.

etc. are considered to vary in some direction periodical-
ly with the period d. From equations with this sort of
boundary conditions the free energy F(d) is found. Then
F(d) is minimized with respect to d in order to deter-
mine the equilibrium value of 4.

We shall not go more deeply into this interesting prob-
lem because, from our point of view, the construction of
the theory is far from being completed. The reader who
is interested in specific calculations and the first re-
sults can find them in the cited references.

V. THEORY OF THE COIL-GLOBULE TRANSITION

A. Formulation of the problem

The problem of describing the transition of a polymer
chain from the globular state to the coil arose historic-
ally in connection with the problem of the denaturation
of a protein globule (Volkenshtein, 1975). It will be re-
called that protein denaturation occurs as a sharp co-
operative transition with a pronounced heat effect (Joly,
1965). As a result of denaturation the highly specific
spatial structure of a protein globule is completely de-
stroyed, this being manifested in the disappearence of
enzymeactivity. The questionarises as to what extent the
cooperativity of the protein denaturation may be ex-
plained on the basis of the coil-globule transition in a
homopolymer, This formulation of the problem attracted
attention to coil-globule transitions, and a large number
of works is devoted to their analysis.

It will be recalled (Sec. I.C) that, according to the ac-
cepted definition, the coil and the globule are different
macroscopic phases and the coil—-globule transition is a
phase transition (when N —w), If N is finite, this tran-
sition is a more or less sharp cooperative transition
with the width AT and it can be classified according to
Sec. I.C.

Let us describe the main premises of coil-globule
transition theory. In the previous section we considered
for some limiting cases the structure of a globule, and
we calculated its free energy F with respect to the free
energy level of an ideal coil. Thus, for these cases, we
can find directly the transition point from the condition
F=0°

The width of the transition can be obtained from the

WEven if at the transition point the coil is not ideal, but is the
coil with excluded volume, this condition is conserved, because
F~NT, and the difference between the free energies of any two
coils is always much less than NT.
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following considerations. According to the formulated
theory, the globular state corresponds to the splitting
of correlations in (3.7). It is easy to see that the valid-
ity condition for (3.12) has the form F~NT >7T. Thus,
in the region F< T, it is necessary to take into account
the influence of the next eigenfunctions. These eigen-
functions change the fluctuation regime: so the width of
the region where F < T is just the width of the transition
AT:

F(T)=0; F(T,—AT)~T <NT. (5.1)

B. Coil-globule transition in the long chain (R, >> a)
(Lifshitz, Grosberg, and Khokhlov, 1976b)

1. Volume approximation

Let us consider first the volume approximation. In
this case, according to (4.5), F=Nu*(n,, T) and thus the
transition temperature can be determined from
w*(ny, T,)=0. The most realistic form of the function
w*(n, T) is shown in Fig. 4 (an alternative plot is shown
in Fig. 15 and will be considered in Sec. D). Graphically
the transition temperature can be determined from the
condition of coincidence of the horizontal secant with the
x axis. From Fig. 4 it is clear that as T - T, the density
in the globule tends to zero: #,-0. This allows us to
use for the thermodynamic functions g* and p* the virial
expansion

w*=2nTB(T)+3n2TC(T),

p*=n2TB(T)+2nTC(T). (5.2)

Owing to this fact the universal description of the transi-
tion in terms of the second and third virial coefficients
of monomer interaction B and C becomes possible.

Starting from (5.2) it is easy to obtain explicit formu-
las for the volume approximation. The density in the
core of the globule is equal to

no==B/2C (p*(n,)=0), (5.3)
and the free energy of a globule

F=-NTB?/4C, (5.4)
and, according to (4.5),

A=1+B?/4cC. (5.5)

The globule radius R, =(3N/47n,)* can be found from
(5.3). .

It is seen that F=0 at B=0. Thus in the volume ap-
proximation the temperature of the coil-globule transi-
tion T, coincides with the ¢ temperature. Near the 6

point Band C can be expressed in the form:*
B(T)=b(T - 6)/6=—bT,
5.6
C(T)= C>0. (5.6)

Thus it is seen that F~-72, i.e., in the volume approxi-
mation the coil-globule transition is a second-order
phase transition.

U1t should be noted that in this section 7 differs in sign from
that used in Sec. 11.
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2. Consideration of surface terms

However, the above consideration does not take into
account the surface effects, which are essential near the
transition point. Actually, when 7 -6 we have, accord-
ing to (5.5), A =1, i.e., according to (4.17), the width
of the surface layer ~a/(A — 1)V2 increases. From (4.18)
it can be found that in this case

0=aB*T/8C¥2. (5.7)
Thus we obtain for the total free energy (4.11)
_ T b2 . <l¢_ 2/3
F=-N ic {1— - , (5.8)
3/2 . ~1/4
7=1- %a = (18n)V2 “—b—-z%z— . (5.9)

The point 7, is the point of the coil-globule transition,
because F(T,)=0. We note that just at 7, the values of
the globule radius R, and of the width of the surface lay-
er ~a/(A — 1)V2 are of the same order of magnitude; this
means that at this point the negative volume part of the
free energy and the postive surface part are equal to
each other. When N -« the point of the transition tends
to 8 point.

Let us determine the width of the transition from (5.1).
It is easy to find

1/2 c¥/4

C
AT ~(6-T,) P ~6 ZONVE

(5.10)

In the case C2 «4® we have AT <0~ T,, thus the tran-
sition occurs at the point T, and the transition region is
separated from the § point. In the case CY2~g® the
transition occurs in the region including the 6 point.

If v is the characteristic volume of a monomer, then
for ordinary interactions b ~v; C ~v?; i.e., CY2/a® ~v/d®.
It was shown in Sec. II that the parameter v/¢® plays an
important role in the coil structure. Now we see that it
‘determines also the picture of the coil-globule transi-
tion. Equations (5.9) and (5.10) can be written in terms
of v and &

T,~(a®/Nv)2; AT ~6(v/a*N)2.

We saw in Sec. II that in the region of universality
(T >0) all the results for the persistent model can be ob-
tained from the results for the “bead” model by means
of the substitution v/a®~1/M. Since, in addition to this,
for the persistent model we have C¥2/a®~M ~3/21n2u
(Onsager, 1949), then in the description of the coil-
globule transition we may also use this substitution for
qualitative purposes. Thus, in order to obtain corres-
ponding results for the persistent model, the substitu-
tion v/a®-1/M [see Eq. (2.25)] is to be made in all the
formulas of this chapter. In particular, the case v/d®
<1 corresponds to stiff chains and the case v ~a® to
flexible ones.

The character of the transition, as is clear from Eq.
(5.8), is unusual. In the region 1>7 >7, we have F
~-Const.NT2 and the behavior of the system is typical
for the second-order phase transition: the density (5.3)
decreases gradually and the globule broadens (R, in-
creases). But within the small region near the transition
point 7 - 7, <7, the behavior of the system changes: in
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this region? F~(T,— T)a®/C¥27,. Such a dependence on
(T,.— T) is typical for a first-order phase transition, but
in this case the transition is close to seecond-order,

since the coefficient at (T,— T) is proportional to NV/2

and not to N, i.e., the heat of the transition per monomer

AQ (m 1/2 as/zb ~ /a:a 1/2
N =(5) o S o (55) 610
tends to zero as N -,

The density in a globule at the transition point is

108 /2 4 & 1/2

"@'3(2c3721v> "7 (NZ) ’
i.e., because of dependence on N the density in a globule
at the transition point falls to a value of the same order
as the coil density. On the other hand, the parameter
of volume binary interaction in the coil at the transition
point is of order Z =NY2B/a® ~C"%q"¥2 ~(v/a®)V2. Con-
sequently, in the case under consideration, v <a® (see
Footnote 12), the coil at the transition point can be con-
sidered as Gaussian and its density n, ~1/a®NY2, The
relative change in density during the transition is

- 3\ 3/2
ne=ne _(@\"*
e v

(5.12)

(5.13)

Thus the density at the transition point even when N ~«
increases only a finite number of times; the number of
additionally formed contacts is relatively small (in com-
parison with the quantities ~N). When the temperature
is further lowered, the globule density increases grad-
ually, tending to the maximum probable density »~1/v
(at this density all the solvent molecules are displaced
from the globule).

If v ~g®, then from (5.12) and from the extrapolation of
the transition characteristics obtained earlier for the
case v <d®, it follows that in this case in the region
around the 6 point of width AT ~9 -N"V2 g gradual transi-
tion from the globular to the coil state occurs. It is nat-
ural to identify this transition with the second-order
phase transition.

For the sake of comparison the approximate tempera-
ture dependence of the-average density in the globule is
shown in Fig. 13 for the two cases v <a® and v ~a®. The
difference between the plots in Fig. 13 is due to the fact

‘that when v <<@® there exist in the transition region two

minima in the configurational space with “pumping” of
the distribution function of the system from one mini-
mum to another during the transition. At the same time,
when v ~a® there exists only one minimum, continuously
moving during the transition from the coil to the globular
region.

Let us sum up the results of the consideration of the
coil-globule phase transition in a long polymer chain.

(a) The case v <a® (stiff chains). Somewhat below the
6 point [see Eq. (5.9)] there occurs a sharp first-order
phase transition with the jump in density (5.13) and width

2such a formula for the free energy makes sense in this re-
gion only if | F |> T; if this is not the case the equations for
globules are not applicable (see Sec. V.A). Thus this formula
has a region of validity only if a®> C!/2 or v <a3. This will be
implied unless otherwise indicated.
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FIG. 13. The temperature dependence of the average density

in a globule in the coil-globule transition region (a) v <a? (b)
3

v~a’,

(5.10). However, this transition has some features [for
example, the heat of the transition (5.11)], which make
it similar to a second-order phase transition.

(b) The case v ~a® (flexible chains). A gradual second-
order phase transition occurs over the width of the en-
tire region.

Even in the case v <<a¢®, when there exists a significant
jump in density, the heat of the transition is small.
Hence this transition can be observed by means of the
viscosimetric and light scattering methods more easily
than by means of calorimetric methods.

In conclusion we note that the theory we developed is
quite analogous to the classical van der Waals theory of
surface tension at the critical point.

C. Conditions for the existence of globules in the solution

The main difficulty in experimentally observing the
coil-globule transition in homopolymer solutions is the
precipitation of the solution below the 6 point. The pre-
cipitation leads to a gain in free energy due to the de-
crease in surface area contact between the globular
phase and the pure solvent ~oR2. However, in this case
there is a loss in the free energy of the relative motion
of globules ~T'In(n,/c), where c is the average concen-
tration of monomers (since N/n, is the volume of a glo-
bule, and N/c is the volume per globule in the solution,
ny/c is the volume fraction of globules in the solution).
Thus the solution does not precipitate if [see Eqs. (5.7)
and (5.3)]

In & z~N2/3(23— 1/374/3
T v :

In particular, for the globule to remain in solution at the
transition point, it is necessary [see Eq. (5.9)] that

cvz  \Vz P
tme( S n)"| = e -

(5.14)

(5.15)
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We see that the sharper the transition (or the larger
the parameter v/a®) the more dilute the solution must be
in order to avoid precipitation at the transition point.
Thus the main difficulty in experimental observation of
the described transition is the weakness of effects from
very dilute solutions.

If one replaces the sign = in (5.14) by ~, one will ob-
tain the equation for the precipitation curve at small
concentrations, when chains exist in the solution in glob-
ular conformation. It was supposed by Daoud and Jan-
nink (19'76) that this curve is described (when v ~a®) by
the scaling relation

TNY2 = f(cNY?), (5.16)

Our result (5.14) is in accord with (5.10), and thus it
gives explicitly the asymptotic form of the function f in

(5.16) at the small values of the argument (i.e., at ¢
<cg)
F(x)~|Inx|¥4 at x<1. (5.17)

D. Some other possible types of phase transitions in
a globular macromolecule

(1) The function p*(n) can have several extrema at low
temperatures. These extrema can be connected, in par-
ticular, with the existence of different phases in the gas
of separate monomers.

In the presence of additional extrema Eq. (4.4), which
determines the density #, in the globule, can have sev-
eral solutions. These solutions correspond to globules
with different densities in their cores and with different
free energies N p*(n{?) and Nu*(n{®). If owing to a
change in temperature the difference of these free ener-
gies changes sign, then a first-order globule-globule
phase transition occurs in which the core is rearranged.
Graphically the transition point corresponds to the situ-
ation shown in Fig. 14.

(2) The situation when the plot u*(») has the form shown
in Fig. 15 is unlikely, but generally possible. In this
case a coil-globule transition occurs, as may be seen
from the figure, at T,>0; the density in the globule re-

FIG. 14. Plot of p*(n) at the transition temperature between
two globule states of density z{!’ and z{®’. Areal is equal to

Area II; Area III is equal to Area IV.



706

7 |

z|m

FIG. 15. An example of the dependence p*(n), at which the
coil-globule transition is a first-order phase transition.

mains finite at the transition point even in the volume ap-
proximation. The transition itself is a first-order phase
transition. Possibly this transition could be used as a
model of the cooperative coil-globule transition in pro-
teins. -

(3) At sufficiently low temperatures, when the bound
of density is formed at the surface of the globule, an-
other type of phase transition is possible. The thermo-
dynamic minimum could correspond not to a density dis-
tribution of the type shown in Fig. 5, but to the density
distribution shown in Fig. 16. This is a first-order
transition from a globule with fringe to a globule without
fringe; it was considered by Lifshitz and Grosberg
(1973).

(4) For a small globule (see Sec. IV.C) the temperature
and the order of the coil-globule transition can also be
found directly from the formulas of Sec. IV.C. Since in
the small globule there exists a parameter o®/v larger
than N, the coil-globule transition in such a globule oc-
curs in another way than that described above for the
case of an extremely long chain; here we must search
for intermediate asymptotic forms for the thermodyna-
mic values.

From (4.24) it follows that the coil-globule transition
occurs in this case at P(A,)=1nA, (see also Fig. 11).

No
n

1
!
R

FIG. 16. Typical density distribution in a globule without fringe.

Rev. Mod. Phys., Vol. 50, No. 3, July 1978

I. M. Lifshitz, A. Yu. Grosberg, A. R. Khokhlov: Statistical physics of polymer chains

Near the transition temperature we find with the help of
Eqs. (4.22)-(4.24)

on, n.-—mn,

F=Vo(T~T)Te 57 =
c +

Hence the transition is the usual first-order phase
transition with a jump in density. The width (5.1) of this
transition is ~1/N. It occurs below the critical tempera-
ture in the gas of separate monomers and, consequently,
significantly below the 6 point. When a small globule is
formed, the density in the globule becomes at once equal
to the value #n., which correspond to a significant dis-
placement of the solvent.

(5) If a polymer chain is stiff enough and if the attrac-
tive forces between the pieces of the chain are suffi-
ciently strong, then orientational ordering, i.e., a tran-
sition to the liquid-crystalline state, becomes possible.
The connection between the temperature of this transi-
tion and the other characteristic temperatures of the
system is not yet known.

E. Comparison with the results of other approaches,
real and computer experiments

As has already been noted, there exists a great num-
ber of works devoted to determining coil-globule transi-
tion characteristics.

1. Theoretical approaches

The first attempt known to these authors to costruct a
theory of the coil-globule transition was made by
Ptitsyn and Eisner (1965). The theory was developed
further by Eisner (1969). An analogous approach to this
problem was formulated recently by de Gennes (1975).
These works, in essence, modify Flory’s method for the
calculation of the expansion factor of a polymer chain a2
(see Sec. II). If in the expression for the free energy of
mixing F i not only the binary interaction, but also the
three-body interaction of monomers is included, then
Flory’s equation (2.15) takes the form

o® - P = c(y/a®)=c,Z, (5.18)

where y=C/a® and c, is the numerical coefficient.
Analysis of this equation shows that at small enough y
the dependence ®(Z) is not single-valued for some Z. At
larger y the dependence a(Z) is always single-valued
(see Fig. 17). This suggests (de Gennes, 1975) that
when y (or v/a®) is lowered a fairly sharp conformation-
al transition can occur below the 6 point, the sharpness

FIG. 17. The plot a(z) at (1) y <1; (2) y~1.
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of the transition increasing with the decrease of y. This
conclusion agrees with our considerations above. How-
ever, one cannot obtain more detailed information con-
cerning the character of the transition on the basis of
this approach.

Oono (1976) proved strictly that at any temperature
T <6 R? is always ~N?/% at N ~c, where R is the mean
square end-to-end distance. Saito and Inoue (1974)
showed that T,~6 at N~«. These conclusions can also
be obtained from our theory. k

Massih and Moore (1975) considered the exactly solv-
able lattice model of the self-interacting polymer chain,
which is represented by walks on the lattice of the
“Bethe cactus” type. It was shown that a second-order
phase transition exists at some temperature for this
model. However, this model describes a polymer chain
not in the usual three-dimensional space, but rather in
the space of infinite number of dimensions (Nagle,

1974); thus the obtained result bears no relation to the
usual coil-globule transition.

An attempt to construct a theory of the coil-globule
transition was made recently by Moore (1977). His ap-
proach is essentially analogous to that of Lifshitz,
Grosberg, and Khokhlov (1976b) (Sec. V.B of this paper).
However, the author, correctly noting from the begin-
ning that the phase transition itself can occur only at
infinite N, then refuses to consider and classify the con-
formational transitions occurring at finite N. Such an
approach in application to polymers, in which the num-
ber of monomers is usually not great (10*-10°), does not
seem to be convenient; for such a system our termin-
ology (Sec. I.C) is physically more reasonable. In appli-
cation to the problem of the coil-globule transition
Moore’s approach led to the incorrect conclusion that
the coil-globule transition always (even at v <a®) occurs
as a second-order phase transition.!®

2. Computer experiments

Let us pass now to the results obtained in the computer
experiments. As a rule, in these experiments the chain
is simulated by random self-avoiding walks on some
spatial lattice, the attractive interaction energy being
attributed to each two links of the chain separated by
only one edge of the lattice.

The most complete analysis of the coil-globule transi-
tion in computer experiment was made in a series of
articles Cron et al., 1967; Elyashevich and Skvortzov,
1971; Birshtein, Elyashevich, and Morgenshtern, 1974,
These articles differ from others in determing the in-
fluence of chain stiffness upon the characteriestics of
the transition. The main conclusion of these works is
the statement that the coil—globule transition occurs in
stiff chains as a sharp first-order phase transition, and
in flexible chains as a smoother transition which is not

131t should be noted that Moore’s article (1977) also contains
criticism of articles by Lifshitz (1968) and by Lifshitz and Gros-
berg (1973). This criticism is groundless for the same reason.
The transitions at finite N, considered by Lifshitz (1968) and
Lifshitz and Grosberg (1973), were classified as phase transi-
tions in the sense indicated in the introduction.
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of the first-order. These facts agree with our theoret-
ical considerations.

Domb (1974), basing his analysis on computer data,
assumed that the coil—globule transition is always a
first-order phase transition, occurring at some critical
temperature 7,<6 (when N —«). Apparently this con-
clusion is due to the incorrect extrapolation of computer
data.

The conclusion that at some temperature T, which is
significantly lower than 8, there exists a first-order
phase transition was obtained by Finsy, Janssens, and
Bellemans (1975) for the model chain on a cubic lattice.
If after a more detailed analysis this conclusion should
be confirmed, this will mean the existence for such a
chain of the globule-globule transition desecribed in Sec.
V.D.

3. Experiments with real polymers

As to real experiments concerning the observation of
the coil-globule transition, the main difficulty here, as
has already mentioned, is in working with small concen-
trations of polymer in the solution. Polydispersity,
presence of defects, branching of the chain, etc. also
distort the picture; thus the polymers must be well-pre-
pared. Studies of the conformations of such “pure”
polymer chains below the § point were initiated very re-
cently (Mazur and McIntyre, 1975; Slagowski, Tsai, and
McIntyre, 1976) onthe well-known system of polystyrene
in cyclohexane. In a note by Slagowski, Tsai, and
Mclntyre (1976) it is reported that when the temperature
is lowered 1.5 degrees below the 6 point the value of a?
for the polymer chain (N =4.5+10°%) decreases 3 times.
Further advances in the region below the 6 point must
allow us to observe the whole region of the coil-globule
transition for a given polymer-solvent system.

In the literature there exist many reports on various
conformational transitions in the vicinity of the 9 point
(for example, Eskin and Nesterov, 1965; Eskin and
Serduk, 1969; Cuniberti and Bianchi, 1974; Mashimo
et al., 1975). Sometimes these transitions are called
coil-globule transitions. However, for a coil—globule
transition to occur, the intermolecular interaction must
be weaker than the intramolecular one. In the indicated

Cc

FIG. 18. The simplest phase diagram of a polymer solution.
The shaded region corresponds to the region where isolated
globules exist in the solution.
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works this is not always the case [for example, in the
articles by Eskin and Nesterov (1965), Eskin and Serduk
(1969]. The question whether in these works the coil-
globule transition (and not some other transition) was
actually observed, clearly requires additional experi-
mental analysis.

The construction of a theory of the coil—-globule transi-
tion completes the theory of globules, in the sense that
this theory establishes the region of existence of homo-
polymer globules in the solution [see Eqs. (5.9) and
(5.14)]. A phase diagram for polymer solutions with
average monomer concentration ¢ at variable tempera-
tures T is given in Fig. 18. The shaded area corres-
ponds to the region where globules exist in the solution.

VI. GLOBULAR STRUCTURES FORMED BY
EXTERNAL FIELDS

A. Physical meaning of an effective attractive field

The equations which describe the structure of a chain
without volume interaction in an external attractive
field were obtained earlier [see (8.11) and (3.14)] in or-
der to construct a general self-consistent theory of poly-
meric globules. However, in some cases, the problem
of the behavior of a polymer chain in the external field has
its own physical meaning. In these cases the attractive
field is not necessarily a real physical field (electric,
ete.); it may be some effective thermodynamic charac-
teristic which reflects the spatial inhomogeneity of the
solvent, the presence of the interphase surface, or
macroparticles in the solvent, etc. The field ¢ is, in
essence, determined by Eq. (3.7).

As it has already been noted in Sec. II, the spatial
structure of a polymer chain in the presence of an ex-
ternal field depends essentially on whether the relevant
equation [Eq. (3.11) in the absence of volume interac-
tions, or Eq. (3.31) with the replacement of u*(x) by
w*(n)+¢ in the general case] has a discrete spectrum.
Let T, be the temperature at which the first discrete
level splits off from the continuous spectrum. Then at
T >T, the chain is not held by an attractive field,™ i.e.,
field has no influence on its spatial structure. If T<T,,
then the chain is basically situated near the well (the
chain is “captured” by the well) and forms a globule [see
the definition of a globule and Eq. (3.18)]. It is natural
to call 7, the temperature of capture. The capture of a
polymer chain by the potential well, occurring when the
temperature is lowered from 7'>T, to T <T,, and the
globular structure of the system after the capture (at
T<T,) were considered by Lifshitz (1968) for the chain
without volume interaction and by Lifshitz, Grosberg,
and Khokhlov (1976a) for the coil with excluded volume.

The most important physical case in which the poly-
mer chain interacts with the potential well is the adsorp-
tion of the chain on the attracting surface. This phe-
nomenon has been considered in a large number of
theoretical works (see below).

141 the future we shall use the term “potential well” or simply
“well” instead of the term ‘“‘attractive field.”
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B. Polymer chain without volume interactions in a
potential well

1. Capture of a polymer by the well

Let us consider the solution of Eq. (3.11) at tempera-
tures slightly below T [T =(T,-T)/T,<1]. As we ap-
proach T, we expect (this will be confirmed by the final
result) that the globule will broaden until it becomes
wider than the well. In this case the approximation
£-1+a?A must be valid. This gives outside the well,
where ¢=0, ;

~ const x 1/2
lplx—bw- x eXp< a (A 1) .

From (6.1) it is clear that the critical temperature cor-
responds to A =1 [in agreement with Eq. (3.31)]. Thus
at the critical temperature

(6.1)

P ——COE‘St (6.2)
Let us write Eq. (3.11) in the form
(§-1p=(A-1)pexple/T)+¢{exple/T) - 1} (6.3)

and let us take into account in this.equation that A-1
«<1, 71

(8- 1y~ plexple/T,)- 1}=¢exp(<p/Tc){(A— 1) I‘f’ T} .

(6.4)

Since the function ¢,=¢ |-, is the solution of the homo-
geneous equation with the same left-hand side, the
existence of a solution for (6.4) depends on the orthogon-
ality of the right-hand side and on ¢, having the appro-
priate weight:!®

(A—1)f<p<pc explo/T,)d3x=— TL fwcexp((p/Tc)gad“x.

(6.5)

The integral in the left-hand side diverges when 7

—~0(A = 1) at great distances due to the broadening of the
globule. The character of this divergence can be found
from (6.1) and (6.2). As a result we get from (6.5)

A=1+3AT2, (6.6)
After this from (3.13) we find
F=-3T,NAT?, (6.7)

i.e., the capture has the character of a second-order
phase transition—it occurs continuously, without a heat
of transition, with the change in specific heat (NA) and
with gradual broadening of the system from the dimen-
sions of the well to the coil dimensions.'®

15The weighting factor exp (¢/T) appears as a result of sym-
metrization when (3.11) is put into explicitly Hermitian form.

18The above consideration is valid only if Eq. (3.11) is valid,
i.e., if thelargesteigenvalue gives an overwhelming contribution
to the partition function. Thus it is necessary (see Sec. V) that
|F|>T, i.e., [see Eq. (6.7)] T>N"1/2,
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2. Globular structure of the ideal chain captured by
the well

To analyze the globular structure of a chain captured
by the well amounts to solving the linear equation (3.11)
parallel with (3.14) and (3.15). If the characteristic di-
mension of the well R is much more than a, then the ap-
proximation - 1+4a2A is valid and (3.11) can be written
in the form

Azp—-aipz— [exp((P;,A)— 1]=0,

where exp(—=A/T)=A. If in addition to this A - ¢ <T in
the region of space where the majority of monomers is
located, i.e., if the level is situated near the bottom of
the well, then (6.8) becomes the Schrédinger equation
with the potential ¢ /T

(6.8)

A-9 -0 6.9
AP+ pEz $=0. (6.9)
The result (6.9) gives us a clear indication of the distri-
bution of ¥(x) in a given field.

For example, we can consider an infinitely deep
spherical well of radius R. In this case
sin(nx/R) na\?
~ o =(— . 6.10
»(x) R <R)T ( )
(Within the well ¢ =0 and A < T, i.e., Eq. (6.9) is appli-
cable.) The pressure on the walls of the potential well

is
8F _ ax _ N 2 [ma\? NT
b=y TNy =T 3<R>T« 72

The fact that the pressure is significantly smaller than
the pressure in the gas of separate monomers is the di-
rect and trivial consequence of the linear memory.
Roughly speaking, the longitudinal bonds take the main
part of the pressure upon themselves.

A further manifestation of linear memory can be found
if the distribution of pressure on the surface of a non-
spherical well is considered (Grosberg, 1972). In this
situation it turns out that the pressure is lowered in the
remote narrow regions of the well and especially in the
corner points (~(a/R)*).

If the potential ¢ has a boundary surface (for example

.in the case of the spherical well of finite depth), then it
is necessary to formulate the boundary condtions on this
surface. Since the function gy must be continuous and
must have a continuous derivative on every boundary,
it follows from (3.11) that the function

Ing+¢@/T

must also be continuous and must have a continuous de-
rivative.

Taking into account this boundary condition a complete
solution can be obtained for a large (R >a) spherical
well of finite depth ¢,. The results are: the temperature
.of capture is

T.=¢o(2R/1a)?,

the coefficient A [see Eq. (6.7); the change in the
specific heat per monomer] is

(6.11)

(6.12)

(6.13)
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A= -L;ﬁl [(%) - 7} 0.12¢,/T,, (6.14)

c

the pressure on the walls of the potential well (at small
T) is

3/m\* 1
p=boT [(’Z) - ’E‘] ~0.09p 1

where p,, is the pressure (6.11) on the walls of an infin-
itely deep well of the same radius.

It should also be noted that in the appendix to Lifshitz,
Grosberg, and Khokhlov (1976a) the capture temperature
T. was calculated as a function of the radius and the
depth for a spherical well and for a well in the form of
a round disk near the impenetrable surface (the latter
well is used in the theory of polymer adsorption).

3. Adsorption

In the literature the subject of the most extensive stu-
dies is the case of a potential well of special form, in
which the monomers feel the attraction only in the thin
layer near the impenetrable surface. This form of the
potential well is used for the description of polymer ad-
sorption on attractive surfaces.

For this well all the above results are valid. In par-
ticular there exists a temperature T, such that at 7 >7T,
the chain is not adsorbed by the well and remains in the
solution, and at 7' <T, the adsorption (capture) occurs
and there is an overwhelming probability (at large N)
that the chain is situated near the surface. The transi-
tion at T=T, is a second-order phase transition.

The width of the adsorbed layer can be estimated from
the one-dimensional analog of (6.1). This gives, taking
into account (6.6)

D~ ~8
(A - 1)1;2 T°

Thus D does not depend on N. The asymptotic form for
the density profile outside the well has the form

( )1/2
7] 0= | ,o0= const. exp <— — Tx)

etc. All these results were obtained long ago by means
of somewhat different methods [see the references in
de Gennes (1969, 1976)]. An approach analogous to that
described above was developed for this specific case in
a review by de Gennes (1972) and also in a recent paper
by Wiegel (1977); in this last work the adsorption of a
model polyelectrolyte without volume interactions is con-
sidered. (The introduction of electrostatic forces leads
in this case only to the change of the form of potential
well, but, as was noted above, the main results do not
depend on the form of the well).

We should like to stress that the adsorption of the
chain occurs as a second-order phase transition only if
the attraction to the surface can be represented by a
potential field. Skvortzov et al. (1976) considered the
adsorption of macromolecules with nonalternating dipole
moments on the charged surface. In this case the inter-
action of the polymer with the surface cannot be de~
scribed in the form of a potential field and the adsorp-
tion occurs as a first-order phase transition
(Skvortzov et al., 1976).
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Not taken into account by the above formalism (by the
“bead” model) are the important effects connected with
the influence of chain stiffness on adsorption. A sub-
stitution of the type (2.26), which allows us to study the
equivalent bead model instead of the persistent model in
the region 7" >4 and the coil-globule transition region, is
no longer valid, because there is a characteristic di-
mension (the width of the well), which is comparable
with the persistent length a. As a result a piece of a
polymer chain of length ~a can not be considered as a
whole, i.e., as an equivalent “bead.”

A detailed study of the influence of chain stiffness on
adsorption was undertaken by Skvortzov, Birshtein, and
Julina (1976) and by Skrovtzov and Birshtein (1976) by
means of Monte Carlo computer simulation of a polymer
chain on the cubic lattice. It turned out that when chain
stiffness increases, the phase transition becomes sharp-
er (remaining a second-order phase transition) and the
temperature 7T, increases. Analogous results can be
obtained by means of analytical methods (see, for ex-
ample, Hoeve, DiMarzio, and Peyser, 1965; Murakami,
1976).

C. Polymer chain with volume interaction in a potential
well

1. Capture of a polymer by the well

Let us consider now the capture of a polymeric coil
with excluded volume. We shall show that a volume in-
teraction of this type has no influence on the transition
temperature 7, and on the type of transition: these fea-
tures remain the same as for the chain without excluded

-volume in a given field ¢. In essence this follows from
the fact that for the ideal chain a second-order phase
transition occurs. When the transition temperature is
approached, the monomer density decreases and, thus,
the perturbation due to volume interaction decreases
also.

First of all it should be noted that when the external
and the self-consistent fields are both present, the basic
equations have the form

Zv=Ayexp {—“—f—Tif} (6.15)

n=zp2exp{ﬁ—f—$-£} . (6.16)
The free energy can be obtained, as usual, from Eq.
(3.33).

Near the capture temperature the presence of excluded
volume can be taken into account in the framework of
perturbation theory (the condition of validity of the per-
turbation theory will be formulated below). When the
transition point is approached, the monomer density be-
comes low and u*/T =2rnB< 1. Substituting this into Eqgs.
(6.15) and (6.16) and employing the usual perturbation’
theory, we find for the free energy

F=Fy+Fy; F1=TBI ni(x)d3x, (6.17)
where the index zero indicates the corresponding char-
acteristics of the ideal chain in the same field.
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It will be recalled [see Eqs. (6.7) and (6.14)] that in
the large well

Fy~=N@oT?. (6.18)

E stimating the integral in (6.17) [with the help of Eqs.
(6.1), (6.6), and (6.16)] we find

F, ~N@,T%(NBR /a*). (6.19)

Thus the perturbation theory is valid up to the transition
point (7 =0) if

NBR/a* «<1. (6.20)

If condition (6.20) is fulfilled, it can be seen from (6.19)
that the type and the temperature of the transition are
not altered when the excluded volume is introduced (but
the jump in the specific heat is altered).

Although the condition (6.20) is very rigid and is never
fulfilled for real polymers, the above conclusions (con-
cerning the independence of T, and the type of transition
of v) are valid in the general case, because the problem
under consideration does not contain any characteristic
scale of B.

2. Globular structure of the chain captured by the well

It is natural that the structure of a chain captured by
the well depends essentially on the excluded volume. A
complete analysis of this structure can be performed in
the hypothetical limiting case of a “small well”—the
well whose dimensions R <a. As it often turns out, the
study of this limiting case clears up the situation in the
general case: the main qualitative features of the solu-
tion are valid for wells of arbitrary dimensions (see
Lifshitz, Grosberg, and Khokhlov, 1976a).

It turns out that the free energy near 7T, is equal to

I 1

F__—ZE&LT N a+J%(1)/327% (6.21)
where ¢, is the depth of the well, J, (1) is a numerical
constant which depends on the form of the operator g
[see Eq. (4.24)], a=Nv/V is the characteristic dimen-
sionless parameter of the problem, and V is the volume
of the well. In accordance with the above consideration
the temperature and the type of transition are not al-
tered but the change in specific heat is altered when the
excluded volume is varied. The behavior of the system
differs qualitatively in the cases @¢<1 and a>1, [It
should be noted, however, that J%(1)/327%~1072,]

When @ <1 Eq. (6.21) gives F~N. It is easy to estab-
lish also that the number of links within the well N, ~N.
The relative fluctuations of monomer density are, as in
the usual thermodynamic system of N particles, ~N"Vz,

If @ >1, then only a small fraction of the monomers
can be located in the well. It turns out that in this case
N,.~V/v<N and F ~V /v (the free energy does not in-
crease with the increase of N). It can be shown, more-
over (Lifshitz, Grosberg, and Khokhlov, 1976a), that
the relative density fluctuations are of order ~(V/v) V2.
Although these fluctuations are small, they are much
larger than the usual thermodynamic fluctuations, which
are ~N"Y2, Thus at @ > 1 the polymer chain captured by
the well is a sort of thermodynamic system in which the
role of number of particles is played by V/v and notby N.
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3. Adsorption

The results obtained above the wells of arbitrary di-
mensions can be applied also to a thin well located near
the surface, a model which is used for the description of
polymer adsorption. In this section we shall discuss
some other approaches to the problem of adsorption of
chains with volume interaction.

The majority of studies dealing with this problem are
made with the help of a computer. In these studies the
self-avoiding walks on several spatial lattices in the
vicinity of the impenetrable surface and the attractive
layer near this surface are simulated (see, for example,
Lax, 1974, 1975), and the phase transition (at infinite
N) is predicted at some temperature T',. In the works
by Lax (1974, 1975) it is shown that the temperatures
T, for random walks and self-avoiding walks coincide
and that the transition itself has the features of a sec-
ond-order phase transition.

As to theoretical approaches to this problem, the re-
cent work by de Gennes must be mentioned. His Journal
de Physique article (1976) contains not only a review and
simple derivation of the self-consistent adsorption theo-
ry of the Flory type, but also a qualitative consideration
of the scaling theory. [Scaling effects are to be taken
into account due to fluctuations which develop in the ad-
sorption layer in the case of “weak adsorptions”— see
de Gennes (1976)].

In the above we have been mainly concerned with the
adsorption of a coil with excluded volume. For bio-
logical applications it is interesting also to consider the
adsorption of a polymer globule. This was done by
Grosberg (1976b, 1977). In these articles an adsorption
diagram with the variables T, ¢,, where ¢, is the depth
of the well, was constructed and various transitions in
this system were described.

VIil. CONCLUSION

Since “living matter is the most interesting subject of
investigation for the living matter which is able to in-
vestigate” (Blumenfeld, 1973), we should like to make a
few remarks here about natural biological globular
molecules.

The most widespread examples of biological globules
are the globular proteins—enzymes, immunoglobulines,
etc. The dense conformation in these systems is due to
the volume interactions of the links surrounded by the
solvent (water).

Another interesting example of a biological globule is
the double-helix molecule of DNA or RNA located in the
head of the phage (Watson, 1965). In this system com-
pression is made by the external field (the pressure of
the walls of the head) and the volume interaction is
basically repulsion. It should be noted that in our term-
inology this globule is neigher small nor large, because
the persistent length of the double helix (~500 A) coin-
cides in order of magnitude with the dimensions of the
head of the phage.

The main feature of biopolymers is the heterogeneity
of their primary structure. Protein molecules have
unique primary structures and show extremely high
specificity in their biochemical activity. However at the
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present time it is unclear whether the thermodynamic
properties of proteins under arbitrary conditions are
sensitive to the details of the primary structure. (In the
case of DNA the primary structure, apparently, does not
play any role in the spatial structure, because the com-
plementary pairs are situated in the interior of the
double helix).

It is well known, for example, that the helix-coil
transition has some features which do not depend on the
correlation characteristics of the primary structure
(Vedenov, Dykhne, Frank-Kamenetzkii, 1971), and some
features which depend essentially on this structure
(Lifshitz, 1973). Apparently the situation may be quite
analogous for protein denaturation. It is natural to ex-
pect that the concepts developed in this work reflect
qualitatively those protein properties which are not
sensitive to the primary structure.

One example of this kind is the following: It is well
known that in the usual conditions the hydrophobic mono-
mers are located in the interior of the globule and the
hydrophilic monomers are situated on its surface. Due
to this fact the solution of protein globules does not pre-
cipitate. But according to the results of Sec. V, when
the denatureation point is approached the globule must
broaden, so the hydrophobic monomers must come out
to the surface. This may lead to the precipitation of the
solution of proteins. Similar effects in proteins are
actually often observed (Joly, 1965).

Thus it is very important to determine the degree of
influence of the primary structure on the thermodynamic
properties of a globule.

It should be noted that if we analyze this problem with
the proteins in mind, then only rather short chains are
of interest. This is clear already from the experimental -
ly observed property of self-organization in proteins,
(i.e., the ability to form the “correct” ternary structure
without the help of any external kinetic mechanism).'”

Actually, it is evident that for self-organization to be
safe and rapid, it must occur simultaneously in the dif-
ferent parts of the chain and, consequently, it must lead
to a structure without knots. (Polymer chains with
knotted conformations were studied by Vologodskii ef al.,
1974). On the other hand elementary defects, for ex-
ample the replacement of the neighbor particles, cannot
exist in the globule, because the majority of these de-
fects are connected with topological violations of the
globule structure. Thus if the activation energy of such
a defect is U,, the requirement that the globule be stable
with respect to these local defects is

TInN <U, (7.1)

(for more detail see Lifshitz and Grosberg, 1973). Of
course, Eq. (7.1) is not the strongest condition. But al-
ready this condition explains why the finiteness of the

"1t should be noted that the concept of “ternary structure’ for
biopolymers does not refer simply to the density distribution.
This concept includes also the topological state of the chain.
Self-organization of the ternary structure means that the equi-
librium globule should have a definite topological structure
(with “topological entropy” equal to zero), enabling one to call
this structure crystal-like. These questions were discussed in
detail by Lifshitz and Grosberg (1973).
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chain must play an important role in the properties of
proteins.

In conclusion we can say that the model theory devel-
oped in this article describes with qualitative accuracy
the homopolymer chain in fairly simple situations and
can, apparently, be used as a basis for further, more
realistic approximations. As to biopolymers, this the-
ory can stimulate the formulation of interesting prob-
lems.

APPENDIX A: LOCAL BOUNDARY CONDITIONS
IN THE GLOBULE

Taking into account Egs. (3.21), (3.22), and (3.25) we
can write the function F{n}— AN in the form
Fln}- W= [{f () +Tn~ 200~ 2TnIngy}a*c. (A1)
Let usy vary the globule boundary, changing the volume
of the core by 6v. It is the last term in Eq. (A.1) that
requires the greatest amount of calculation. Even if the
variation of ¢ is located near the boundary, the variation
.of n is spread over a distance ~a due to the equality
An=ygy. This fact somewhat lengthens the calculations,
but does not make them more complex. The result has
the form
6(F—W)=f [f= = 2TnIng p]d®x=0 (A.2)
Sv
where the square brackets denote the jump in the value
on the boundary. From (3.34) and (A.2) it follows that

[f=nu]==[p]=0; pn.)=px,). (A.3)

The local pressure must be continuous. It will be re-
called that this result is valid only if v <a® to within
v/ad.

APPENDIX B: LIMITS OF APPLICABILITY OF
EQUATIONS (3.31) AND (3.32)

During the derivation of Eqgs. (3.31) and (3.32) two im-
portant assumptions were made: (a) the steepest de-
scent method (or the self-consistent field method) was
used; (b) the functional E{n} was written in the form
(3.27). Let us consider each of these two assumptions.

(1) How far the self-consistent field theory may be ap-
plied to concentrated polymer solutions has been recent-
ly clarified (des Cloizeaux, 1975) with the help of the
analogy between the magnet and the polymer (see Sec.
II) and also with the help of the analogy between the 6
point and the tricritical point (see Sec. II). As a result .
Daoud and Jannink (1976) attempted to determine the
boundaries of the so-called tricritical region in which
the self-consistent theory is applicable. It is essential
for us that in the region of concentrated solutions at 7T
<@ the self-consistent theory is valid, if

cv>(v/a®)?T (B1)

[see the work by Daoud and Jannink (1976); in this work
it is assumed that v ~a®, but the results can be easily
reformulated for the general situation].

Now we note that each region of a globule can be con-
sidered in the local sense as a concentrated polymer sol-
ution. According to the results of Sec. 3 cv ~7 in the
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globule. Comparing this with Eq. (B1) we find that if
v <a®, Eq. (B1) is fulfilled and thus the self-consistent
approximation is valid. If v ~a® then the density in glo-
bule lies just in the crossover region; thus the self-
consistent theory gives only the order of magnitude.

(2) The functional E{n} was written in the form (3.27)
under the condition v <<a® and nae® >1. Let us show that
the fulfillment of the second condition is not obligatory.

Let v <a?, but na®~1. Then nv <1, i.e., the density
in the globule is low. Let us write the variational deriv-
ative 6E{n}/6n in the form

OE{n}/on=2B*n+3C*n%+++++ LEAnB*++++)

+ (terms with higher derivatives). (B2)

Here B* and C* are for the present arbitrary and are
not to be taken as the second and the third virial coef-
ficients of monomer interaction.

It is natural to identify the value of £ with the smallest
possible smoothing radius. Since the smoothed density
must be the thermodynamical value, ¢ can be estimated
from the condition that within the radius ¢ the number
of monomers which belong to neighboring and remote
parts of the chain are of the same order; within a smal-
ler radius the neighboring monomers would prevail and
the density would fluctuate strongly. Let K and K’ be the
number of monomers within the radius & belonging, re-
spectively, to the remote and neighboring parts of the
chain. We have £ ~a(K')2; nt® ~K;n~7/v. Hence K ~K'
when & ~v/Ta?.

It was shown by Khokhlov (1977, see also Sec. II) that
B* is the renormalized second virial coefficient and that
it differs from the true second virial coefficient B by the
value ~v/a®B. Thus, in the zeroth approximation with
respect to v/a® we must take B* in Eq. (5.20) to be equal
to B. Analogously, it can be shown that C*=C in the
zeroth approximation, etc. Collecting the terms in Eq.
(B2) which do not include derivatives, we shall obtain in
this approximation the function u*(x).

It remains for us to prove that one may neglect terms
including the derivatives (at v <<a®). The most important
among these, the terms for small » and smooth density
profile, are written explicityly as one term in (B2).
After expanding the exponential function in the right-hand
side of Eq. (3.31) we shall have from this term an ex-
pression of the form £pA(rB). This term is to be com-
pared with the term with the analogous derivative in the
left-hand side of the equation a®?Ay. Assuming that A
~1/R?, we see that £2pA(nB)/a?Ad ~(v/a®)? <1 for v
<«<a®, which is what we set out to prove.

It can be concluded that Eqgs. (3.31) and (3.32) are
quantitatively correct descriptions of the globule struc-
ture at v <d® (to within v/a®). At v ~a® these equations
may be used for qualitative purposes.
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