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A current algebra formulation of the radiative corrections in gauge theories, with special applications to
the analysis of the universality of the weak interactions, is developed in the framework of quantum
chromodynamics. For definiteness, we work in the SU(2)&(U(1) model with four quark flavors, but the
methods are quite general and can be applied to other theories. The explicit cancellation of ultraviolet
divergences for arbitrary semileptonic processes is achieved relying solely on the Ward identities and
general considerations, both in the 8' and Higgs sectors. The finite parts of order GFa are then
evaluated in the case of the superallowed Fermi transitions, including small effects proportional to
g s '(v'), which are induced by the strong interactions in the asymptotic domain. We consider here both
the simplest version of the Weinberg —Salam model in which the Higgs scalars transform as a single
isospinor, as well as the case of general symmetry breaking. Except for the small effects proportional to
g s '(v'), the results are identical to the answers previously found on the basis of heuristic arguments. The
phenomenological verification of Cabibbo universality on the basis of these corrections and the
superallowed Fermi transitions has been discussed before and found to be in very good agreement with
present experimental evidence. The analogous calculation for the transition rate of pion P decay is given.
Theoretical alternatives to quantum chromodynamics as a framework for the evaluation of the radiative
corrections are briefly discussed. The appendixes contain a generalization of an important result in the
theory of radiative corrections due to L. S. Brown, G. Preparata, and W. I. Weisberger, an analysis of
the hadronic contributions to the W and $ propagators, mathematical methods for evaluating the

g s (K ) corrections, and discussions of quark mass renormalization and the absence of operator "seagulls"
in the hadronic correlation functions. Some of the methods discussed in this paper can also be applied to
the study of radiative corrections of order GFcx to other processes affected by the strong interactions.
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l. INTRODUCTION

One of the most interesting theoretical advances in
the last several year's has been the development of uni-
fied models of weak, electromagnetic, and strong inter-
actions on the basis of non-Abelian gauge theories. ' Al-
though these models are renormalizable, their applica-
tion in the study of higher-order corrections to weak in-
teractions has been hampered in many cases of physical
interest by the complications stemming from the strong
interactions.

In this paper a current algebra formulation is devel-
oped which, in principle, may be used as a framework
to study the radiative corrections to arbitrary semi-
leptonic processes. In fact, a current algebra formula-
tion is probably our only hope of controlling the effects
of the strong interactions in a clear and logical manner.
Some of the main ideas and techniques of this approach
have already beenoutlinedby Siriin (1974a) and applied
to a discussion of the cancellation of divergences in
semileptonic processes. In another paper (Sirlin,
1974b) the strategy for evaluation of many of the finite
parts has been described, albeit rather briefly. Some
further applications have been presented by Sirlin
(1974c) s

For reviews see, for example, Abers and Lee (1973), Beg
and Sirlin (1974), Weinberg (1974), and Taylor (1976).

A current algebra analysis with some similarities to the
work of Sirlin (1974a) has been discussed in an interesting paper
by T. Hagiwara {1974a) in the framework of the SO(3) model.
There are, however, some important technical differences be-
tw'een this paper and the papers of Sirlin (1974a, 1974b, 1975),
particularly in the treatment of the corrections to the external
hadronic legs.
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574 A. Sirlin: Current algebra radiative corrections in gauge theories

The current algebra formulation is applied in this pa-
per to a detailed analysis of the problem of universality
of the weak interactions. As is well known, in order to
verify the principle of universality it is crucial to cal-
culate the corrections of order u to the ratio of decay
probabilities of superallowed Fermi P transitions and
muon decay. Since the advent of renormalizable gauge
theories, this problem has received renewed attention,
and the corrections have been studied in the framework
of simple hadronic extensions of the SU(2)~ &U(1) model.
In fact, the corrections turn out to be quite large and of
the sign and magnitude presently required to verify the
universality of the weak interactions in the sense of
Cabibbo (Sirlin, 1974b, 1974c, 1975; Angerson, 1974;
Boos, 1974; Wilkinson, I975a, b; Wilkinson and Alburg-
er, 1976; Hardyand Towner, 1975; Ramanet aL, 1975).'
However, the original calculations of Sirlin (1974c) and
Angerson (1974)4 were heuristic in nature and did not
take explicitly into account the effects of the strong in-
teractions. It is one of the aims of the present work to
analyze these effects in greater detail in the framework
of the current algebra approach in order to develop a
more complete and satisfactory picture of the radiative
corrections.

In order to carry out the analysis of the finite parts of
the corrections, we shall make certain assumptions,
which we now proceed to enumerate, regarding the gen-
eral properties of the underlying theory:

(i) We shall assume that the generators of the weak and
strong gauge groups commute and that, accordingly, the
conservation of the weak currents is broken only by
quark mass terms.

(ii) We shall hypothesize that the strong interactions
are described by a SU(3)' a.symptotically free gauge
theory (Politzer, 1974, and references cited therein)
mediated by non-Abelian gluons [SU(3)' stands for SU(3)
of color].

(iii) We shall accept the idea that the onset of the as-
ymptotic behavior occurs early with respect to the mass
scale of the intermediate bosons. That is, we shall as-
sume that g2~(a')/(4w') is already small at Euclidean
momenta ~ characterized by z' «m2~, where g~(a') is
the effective coupling constant of the strong interactions
and rn~ stands for the generic mass of the intermediate
bosons.

(iv) We are interested in the corrections of order G~o.
rather than G~o.'(I2/m2~), where m is a generic quark

A calculation of the radiative corrections to p and P decays
in the SO(3) gauge model has been given by T.Hagiwara (1974b,
1974c). Because of the existence of several mixing angles, e-p
and Cabibbo universalities are not natural in this model.

In his significant paper, Angerson (1974) treated the correc-
tions in the one-quartet quark model without color degrees of
freedom and considered separately the cases of zero and finite
Cabibbo angle. His calculations for 8= 0 coincide with the cor-
responding result in Sirlin (1974c), while in the case 8 & 0 his
answers contain small additional terms proportional to sin28.
However, the addition'al terms in Angerson's 1974 paper are
spurious (private communication from W. Angerson), so that
the two calculations actually agree. Sirlin (1974c, 1975) fur-
ther treated three-quartet quark models which incorporate
the color degree of freedom.

5For a recent review see Marciano and Pagels (1978).

mg. ss or the mass that sets the scale in the short-dis-
tance expansions. Thus terms of order G~u(nx'/m~)
will be regarded as being of order G~ and mill be sys-
tematically neglected (Weinberg, 1973a). In particular
this applies to the finite contributions arising from ex-
changes of virtual Higgs scalars, as their couplings to
quarks and leptons will be considered to be of order
gm/m ~.

(v) For definiteness we shall carry out our analysis
in the familiar SU(2)~ &&U(1) &&SU(3)' theory, assuming
the minimal scheme in which the quarks transform ac-
cording to the fundamental representation of SU(4)
&SU(3)'.

Assumptions (i) and (ii), together with the concepts of
color confinement, still to be understood on a funda-
mental and dynamical basis, constitute the basic pre-
mises of quantum chromodynamics. ' The set of as-
sumptions (i)-(iv) is identical to that used by Weinberg
(1973b) in his analysis of the radiative corrections of
O(n) to strong interaction amplitudes Th. is set of as-
sumptions constitutes a sufficient framework for our
analysis. It is by no means clear to us that it is a neces-
sary condition. As we shall see, the crucial factor re-
garding short-distance behavior that enters into our an-
alysis is the assumption that the coefficients of the lead-
ing terms in the short-distance expansions of products
of current operators (and such leading terms in our case
involve also currents) are not affected significantly by
the strong interactions. As high-energy physics has
failed to uncover the existence of strong interactions at
high momentum transfers (i.e., at short distances), it is
not inconceivable that any theoretical development able
to describe this situation may ultimately serve to justify
the analysis of the radiative corrections. Finally, as-
sumption (v) is motivated by the dual desiderata of sim-
plicity and definiteness. We believe, however, that both
the current algebra approach discussed in this paper and
the main qualitative results of our analysis are applic-
able to other gauge models provided the ~S=O and yves'
amplitudes involve only two parameters, g and the
Cabibbo angle 0, and that otherwise the theories con-
form with properties (i) to (iv).

The results that emerge from the analysis of the pres-
ent paper are indeed very simple and can be described
as follows. The radiative corrections to pion P decay
(n' -mo+e'+ v) and the superallowed Fermi transitions
naturally divide into two parts: the photonic corrections,
as computed in the local V-A theory with an additional
convergence factor and an effective cutoff set equal to
m~, and nonphotonic corrections. Aside from universal
corrections to the TP propagator and from small effects
of O[g~(w')] induced by the strong interactions in the as-
ymptotic domain, the nonphotonic corrections of order
Gzn [in contradistinction to those of order G~o!(m /m~~)]
turn out to be independent of the dynamics of the strong
interactions. Moreover, many but not all of these con-
tributions are universal and cancel when we consider the
ratio of decay probabilities of P and muon decays. In
discussing these nonphotonic contributions we disting-
uish two situations: (a) the case of arbitrary symmetry
breaking in which the number of Higgs scalars and their
representation content is left arbitrary and (b) the sim-
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plest version of the theory in which the Higgs scalars
are assumed to belong to a single isospinor representa-
tion. As is well known, in the latter case the masses
m~ and m~ of the intermediate bosons are determined
as functions of the weak interaction angle g~, while in
the general case m~ and 8~ are independent parameters.
Although the photonic corrections involve the contribu-
tions of both soft and hard photons, they can be analyzed
with the aid of the powerful current algebra theorems
discussed by many authors before the advent of the gauge
theories. ' We recall that to zeroth order in the lepton
momenta, and with the exception of a small asymptotic
contribution, the photonic corrections arising from the
vector current are also independent of the dynamics of
the strong interactions (Abers et aL, 1968; Dicus and
Norton, 1970; Sirlin, 1967a, 1968a, 1969) and turn out
to be very large in the SU(2) &U(l) (Sirlin, 1974b, 1974c,
1975). The photonic corrections involving the axial-vec-
tor current can be separated into an "asymptotic contri-
bution" proportional to In(mm~/m') (m here represents
roughly the onset of the asymptotic behavior) and a non-
asymptotic piece which is finite as rn~-~. As we shall
show, the coefficient of the asymptotic piece depends on
the average charge Q of the u and d quarks but is other-
wise independent of the dynamics of the strong interac-
tions. The nonasymptotic piece is model dependent, but
rough estimates indicate that it is small in comparison
with the large logarithms from the other contributions. 7

When the photonic and nonphotonic contributions are
combined, the final answer that emerges in the case of
general symmetry breaking is that, aside from the small
asymptotic effects of O(g2~(g')), the radiative corrections
are given by the same expression as in the local V-A.
theory, with the cutoff replaced by m~ plus an additional
contribution which depends on In(mz/m~), gv, and Q,
and which is, moreover, positive definite provided that
Q ~ —2. As explained in Sirlin (1975), this result plus
the fact that m~ =37.3 GeV/sing~ in the SU(2)~ &U(l)
gauge theory, forces the radiative corrections to be
quite large. . In the simplest version of the theory the re-
sult simplifies further and, except for the small contri-
butions of O(g 2~(g')), the final answer becomes identical
to that obtained before the advent of the gauge theories,
with the cutoff replaced by m~.

In summary, the conclusion of our analysis is that the
strong interactions have remarkably little effect on the
radiative corrections to the Fermi P decay transitions.
Phenomenologically this is a welcome situation, as the
early estimates give rise to very simple answers which
are in good agreement with experiment. Theoretically,
however, the results are perhaps surprising. For ex-
ample, it is well known that asymptotically free theories
do not in general lead to the same estimates of the coef-
ficients in the short-distance expansions as free field
theories, but characteristically give rise to correction
factors involving powers of logarithms (Politzer, 1974).

See, for example, Bjorken, 1966; Abers et al'. , 1968; Dicus
and Norton, 1970; Sirlin, 1967a, 1968a, 1969; Preparata and
Weisberger, 1968; Beg et al. , 1972; and papers cited therein.

See Abers et al. , 1968; Dicus and Norton, 1970; Sirlin,
1968a, 1969; and Sec. VII.B of the present paper.

Such logarithmic corrections arise because the relevant
operators in the short-distance expansion have in gener-
al anomalous dimensions, and these approach zero as
~-~ only too slowly. As we shall see, the absence of
such correction factors in the P-decay case can be
traced to the following: (a.) the significant terms in the
short-distance expansions involve only currents on both
sides of the equation, and (b) in the underlying theory of
strong interactions these are conserved or partially con-
served currents and have, therefore, no anomalous di-
mensions.

The plan of the paper is the following: In Sec. II we
review some basic properties of the underlying theory
w'hich are very important in the analysis of the radiative
corrections. In Sec. III we discuss the corrections to
the P-decay amplitude involving the Fourier transforms
of products of three hadronic currents. We refer to
these contributions as three-current correlation func-
tions. Making use of the appropriate Ward identities we
show how the three-current correlation functions can be
reduced to expressions involving one- and two-current
correlation functions plus some special contributions in-
volving derivatives with respect to the momentum trans-
fer, which we refer to as residual three-current cor-
relation functions. Section IV is devoted to the evaluation
of the relevant tw'o-current correlation functions, includ-
ing vertex and box diagrams and the asymptotic effects
of O(g2~(~')). In Sec. V we consider the contribution of
the residual three-current correlation functions in con-
junction with the order e counterterms of the theory,
and show that their combined effect does not affect the
radiative corrections of order G~n. We also discuss
briefly the corrections to the TV propagator. In Sec. VI
we demonstrate explicitly the cancellation of ultraviolet
divergences associated with the Higgs sector to all or-
ders in the strong interactions. ' For simplicity we con-
sider here the simplest version of the SU(2) &&U(1) model.
In Sec. VII we use the current algebra formulation to
compare g and P decays, which is necessary for the dis-
cussion of universality, and calculate the rate for pion
P decay. Section VIII contains some observations re
garding the applicability of the present approach to other
theories and other semileptonic processes. Appendix A
provides a missing argument in the derivation of an im-
portant result in the theory of radiative corrections due
to Brown (1969) and Preparata and Weisberger (1968)
and, using CP invaiiance, generalizes the discussion to
parity-nonconserving perturbations. Appendix B dis-
cusses the absence of operator seagulls in the hadronic
correlation functions. Appendix C develops mathemati-
cal methods for the evaluation of the small effects of or-
der g~(z'), while Appendix D discusses the quark mass
renormalization. Finally, Appendix E studies the di-
vergent parts of the hadronic corrections to the Wand &j&

propagators and describes their cancellation.
Throughout the paper we concentrate our analysis on

the most difficult parts of the calculation, namely the
contributions of those diagrams which are affected by
the strong interactions.

The corresponding cancellations associated with the inter-
mediate boson sector are discussed in Secs. IV and V.
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II. GENERAL PROPERTIES

It mill become apparent in the course of the discussion
that, subject to our assumptions, the physically inter-
esting corrections of order stem from the virtual in-
terchanges of the photon, the Wand the Z vector mesons.
We begin our analysis, therefore, by writing down the
relevant part of the Lagrangian density in the SU(4)
&&SU(3)' model with fractionally charged quarks (Beg and
Sir lin, 1974):

=-eA J"—
int p y ( W~Z~ + h.c.) —(g'+g" )'~'Z„Js" + ~ ~ ~,

(2 1)

where ~ ~ ~ refer to the leptonic and Higgs scalar terms,
and W~ is the field which creates a 5 ' vector meson. e

The hadronic currents J", J~, and J~z are given by

& =qy" QP,

"a C y,

jz ——2+"a C,P —sin29~gy" QP,

(2.2)

(2.3)

(2.4)

(q+ I)l ~

(2.5)

I 0

S

I 0
I

L ~~~
I
I
I 0
I
I

(2.6)

where g~ is the weak interaction angle, c =—cos0, s =—sint9

(9 is the Cabibbo angle), q is the charge of the d (or s)
quark, I is the two by two unit matrix, and a —= (1 —y, )/2
In Eqs. (2.2)-(2.4), p —=p, [o'= c, u, d, s, and i = 1, 2, 3
are the SU(4) and SU(3)' degrees of freedom, re-
spectively]; the matrices Q, C, and C, act on the SU(4)
indices, and a summation over the color indices is im-
plicit. Thus in the fractionally charged model under
consideration J,"„J~, and J~z are color singlets. "

The strong interactions are taken into account to all
orders by working in a representation in which the quark
and vector gluons satisfy the strong interaction field
equations. In particular, the quark fields obey the equa-
tion

(iy" s„—gsy" T"S„—m)q =0, (2.7)

where S„" stand for the strongly interacting vector fields,
T" are the SU(3)' matrices corresponding to the P repre
sentation [i.e., the triplet representation], and m is the
quark mass matrix which may be taken to be real and

In the presentpaper the current J~zcarries AQ= —1 and is the
Hermitian adjoint of the current denoted by the same symbol in
Sirlin, 1974a, 1974b, and 1975, e is the proton charge, and we
otherwise follow the notational conventions of Bjorken and
Drell, Relativistic Quantum E'ields (1965).

In the integer charge model of I'ati and Salam (1974) Je& con-
tains a color octet part. In this model J~z obtains an additional
contribution which cancels the octet color part of —sin20/p"Qg
in Eq. (2.4). Regarding this class of theories see remarks in
Sec. VIII.

[J~(x), J~s(x')]~ „.o =cos'H~J'o~(x)5(x- x'),
[J (x), Jy(x')]„o „.o =a" (x)6(x —x'),
[Z~(x), Z,'&(x')]„o „,o = —J,"(x)5(x-x')+S.T. ,

gu(x) =—~ra C,y=2[sin'e~g" +J~x],

(2.8)

(2.9)

(2.10)

(2.11)

where S.T. represents a c-number "Schwinger term. "
There are no operator Schwinger terms because the cur-
rents are invariant under local SU(3)', and in the under-
lying theory there are no hadronic gauge-invariant op-
erators with dimensions ~2."

Ii is also convenient to emphasize two important prop-
erties of the theory: (a) to zeroth order in g the conser-
vation of the weak currents is broken only by the mass
terms of the Lagrangian, so that their divergences are
linear combinations of scalars and pseudoscalar densi-
ties and (b) these scalar and pseudoscalar densities are
local operators in the sense that their equal-time com-
mutators with the fourth components of the weak and
electromagnetic currents are given by local operators
with 6 function coefficients. There are no operator
anomalies in these commutators for the reasons given
after Eq. (2.11).

Finally, we recall that in quantum chromodynamics the
vacuum state is characterized by a phase parameter 8
(Marciano and Pagels, 1978). As the strong interactions
are P and T preserving, we assume implicitly thai the
physical vacuum corresponds to 6I =0.

I I I. THREE-CUR R ENT COR RE LATION FUNCTIONS

In this section we discuss the contributions io the de-
cay amplitude associated with the diagrams of Fig. 1.
For simplicity we shall restrict ourselves to the case
in which the initial and final hadrons are spinless, as
this is the case in the most important applications,
namely in pion P decay and the superallowed Fermi
transitions. Some important aspects of the formulation
for spin 2 particles are discussed in Appendix A. For
definiteness we discuss in this paper the case of a posi-
tron emitter.

It is particularly convenient to carry out the calcula-
tions in the t'Hooft-Feynman gauge in which the propa-
gator of a vector meson of mass m and momentum p~~

takes the simple form ig„„/(p» —m») In-this .gauge the
sum of the amplitudes depicted in Figs. 1(a) and 1(b) can
be expressed as

~ 2

3)I(,) =
2 & p'~&" (0)lp&', , (a„y„a-~,), (3.1)

Furthermore, as emphasized by Beg (1975), there are no
coefficient anomalies in the once integrated algebra of current
components because the currents are partially conserved and
the strong interactions are asymptotically free.

diagonal. As pointed out by Weinberg (1973b), rn involves
masses unrenormalized with respect to the strong inter-
actions. They are proportional to a divergent constant
which renders finite the hadronic matrix elements of
mass terms bilinear in the quark fields.

The weak and electromagnetic currents satisfy the
equal-time commutation relations of the associated cur-
rent algebra. We quote the commutation relations rele-
vant to our analysis
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e'

Z, y, N&

(g'+a")
(6mh)(z) --

2(2 )4

d4u
k2 -m2z

d4g e""

x& pl T[~:(z)~.,(0)]lp&
(a) (b)

FIQ. 1. Zeroth-order amplitude and diagrams involving corre-
lationfunctions of three hadronic currents. The latter include a,
subtraction of mass insertions on the external hadronic lines
(see Sec. IH). Figure l(b), for example, represents three dif-
ferent diagrams involving the exchange of Z, y, or W, respec-
tively.

&P'I &"(o)IP&
' = —:[E,(q')I'" +E.(q')q" ],

where

(3.3)

P=P+P'. (3.4)

If we .now write

E,(q )=E', '(q )+g 6E'; '(q ) (f =1, 2; a =Z, y, W),

( )

where F'," are the form factors to zeroth order in +,
i.e., in the absence of the perturbation, and 6E&')(q')
(a =Z, y, W) are the order o, corrections to the form
factors arising from the virtual emission and absorption
ofZ, y, orW, wehave

'[6E,( )
P"-+ 6E„,q" ]= lim ir", , (q, p, p '), (3.6)

7P (Z +Z )
(z) =

2(2)()

d4 e jk'x

u&~ (Z»~ (3.7)

where -B~&» subtracts the pole terms at (p'+ q)' = m'„,
and ( p —q)' = mzh of the first term in Eq. (3.7):

B~&z) =--,' [E,"'(q')(2p'" + q")+E,"'(q')q" ]
p +q —mh

h)(z) (™h~)(z)
( P —Q'P —SZ kz

" -'[El"(q')(2p- q)" +E'."(q ')q" ]. (3.8)

In Eqs. (3.7) and (3.8), m„and mh, stand for the masses
of the initial and final hadrons to zeroth order in n (but
to all orders in the strong interactions), p' = m'„, p"

2= m„, and

where & p'lg~&'(0)lp&' includes the order a radiative cor-
rections associated with the emission and absorption of
virtual y, Z, and W along the hadronic line, p and p' are
the momenta of the initial. and final hadrons, and

(3.2)

is the momentum transfer to the leptons. On general
grounds of covariance we have

(3.9)
with an analogous expression for (6m'h, )&». Clearly,
(6mzh), z) and (6m2h, )&» are the contributions to the mass
shifts of the initial and final hadrons arising from vir-
tual Z boson exchange. It is important to note that, be-
cause the pole terms have been subtracted, the limiting
expression of Eq. (3.6) is well defined. Observe also
that in Eqs. (3.7) and (3.8), which are explicitly of order
n, p, and p' are constrained to the zeroth-order mass-
shells, while in Eq. (3.3), which contains both zeroth-
and first-order effects, they lie on the corrected mass
shells.

In the case of particular interest in which the current
is conserved to zeroth order in a, and p and p' refer to
members of the same isospin multiplet, we have the
simplifications: F')(q') =0 and m„= mhi. Furthermore,
for pion P decay and the superallowed Fermi transitions
in which the initial and final hadrons belong to an I = j.
multiplet, E,'o'(0) = Wcosg. As is well known, in order
to give a well defined meaning to expressions associated
with individual Feynman diagrams, it is necessary to
regularize the corresponding integrals with a method
consistent with the Ward identities of the theory. An ap-
propriate method is dimensional regularization. There-
fore we shall implicitly assume in this paper that expres-
sions associated with individual Feynman diagrams,
such as Eq. (3.7), are regularized by dimensional con-
tinuation. "

Expressions analogous to Eqs. (3.6)-(3.8) hold for the
corrections associated with the virtual emission and ab-
sorption of y or 8, with obvious modifications. For
brevity we shall refer to all the contributions involving
the Fourier transforms of three hadronic currents as
three- current correlation functions.

On-mass-shell perturbation formulae such as Eqs.
(3.6)-(3.8) have been used very often in the past in con.-
nection with the analysis of the photonic corrections to
matrix elements of the weak interaction currents. Argu-
ments justifying such expressions theoretically were out-
lined by G. Preparata and W. I. Weisberger (1968; see
Appendix A of their paper), and a detailed derivation in
the case of parity-conserving perturbations was given
by I . S. Brown (1969) in his basic work on first-order
corrections to strong interaction amplitudes. In Appen-
dix A we study some aspects of the derivation of the ra-
diative correction formula analogous to Eqs. (3.6)-(3.8)
in the more complicated case in which the initial and
final hadrons have spin —,'. we provide a missing argu-
ment in the analysis and, assuming t 6' i.nvariance of the
perturbing interaction, we generalize the result to the
case of parity nonconservation. At the end of the Ap-
pendix we discuss briefly the simpler case in which the
initial and final hadrons are spinless.

In order to reduce Eqs. (3.6)-(3.8) to a more tractable
expression involving two-current correlation functions
we contract T",» with q to derive the Ward identity

See, for example, Taylor (1976) and Bardeen (1972) and
papers cited therein.

r
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(Z) ( g) Ze+(Z)

, [v( z)(q+ k) + v(z)( p —p
' —k) ],

d4u
u2-m2

(3.10)

~(g +8'
z&

=
2(2z)

d4 ~kg 'y

x& P'I T[a Jw(y) Ji~(x)

xJ„(0)]lp&, (3.11)

.„&((:)=-, ', , f~'«" &o'I T[*4(x)o.,(o)) lo&,

(3.12)

where we have used Eq. (2.8) and the relation
(g'+g")cos'8w=g'. Differentiating Eq. (3.10) with re-
spect to q„and then setting q&

= q„

a
T(z& I = q T(z) +(z)

Bq~ B q~

v"„,(q) = d4a B
o z v(z)(q+k)~ —mZ BaP

(3.14)

,'[6F„.,S—"+6+;...q" ]=limiT"„,(q, P, P') (a=y, W),

(3.15)

]
(g )i &=& '7n — T(a ) — D(a)

Bg~ BQ'~

The last term in Eq. (3.13) involves, as desired, a
two-current correlation function [see Eqs. (3.12) and
(3.14)]. On the other hand, the first two terms on the
right-hand side of Eq. (3.13) involve derivatives with re-
spect to the momentum transfer of three-current corre-
lation functions. Throughout this paper, contributions
of this type will be referred to as residual three-current
corre1ation functions. Finally the third term in Eq.
(3.13) is a mass insertion contribution which is best dis-
cussed together with s/sq„D(z&, as their poles at q= q
cancel.

For the contributions associated with the virtua1. ex-
changes of y and W in Fig. 1(b) we find, repeating the
steps leading from Eq. (3.6) to Eq. (3.13), the following
expressions:

(q„B(z)) + V("z)(q)
B Q'~ J

(3.13)
(q B(.&)

+ v"(.)(q)B gp
(3.16)

where where

4
T[('„&

——, d ye"' d xe' "&p'IT[Jw(y) Jz(x) J»( )]lp) —B~&z&, (3.1V)

a, »--' '" d've"' fd'xe" &o Io'[o„4('o")o„"'(x)o»(o)lip&, (3.18)

d4u
V~(„)(q)=, v(~)(q+k), (3.19)

vt»(o) ', ",",' f ~='x~"' &o Io'[o'(~)o»*(o)')lo&, (3.20)

2 4
TI', = ~, +, d' ye"' d'xe"*&p'IT[Jg (y)(Jw (x) Jwx(0)+h-c. )lip) —B(w&17 B1w

(3.21)

2
2

D„,= '(', f, , f a y" o' e"'*&&''(T[o„o„(o)(~„"(x)o„,(o)+o.~.)&lo),

d'y B
V(w)(q) kz z s "(w)(q+

PPS gf

a(,(()=—
4 o, fo xs" &[o'.[o,'o'(x)o„*,(o)llo).

(3.22)

(3.23)

(3.24)

In deriving Eqs. (3.15)-(3.24) we used Eqs. (2.9) and
(2.10) and the relation e' =g' sin'8w. The quantities
B(",&(a =y, W) in Eqs. (3.1V) and (3.21) subtract the pole
terms in analogy with Eqs. (3.7) and (3.8).

It is to be understood that in Eq. (3.21) contributions
of the form

&oIT[J"(y) J"( )]lo&&P'I J (o)IP& ~

&0l T[J "(y)J'"(o')]Io&&p'I J,( )lp),

&0IT[J ~(x) J „(0)+h.c ]l»&p'IJ" (y)lp&
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(&) + (2)'U(w) =0 (w) +'U(w)

(~) d k
(» 4 2 }4 ( z 2) +)j, kz 2 sk T(z)k(

„) ig' sin' L9 d4k
4(2&))' (q'-m2 ) " k'-m~ sk„

where

Lp =u„ypCg V, ,

~&*'&(&)=f&'x'" *()'l rt&,'(x)4(0)']~~)»,

T(~ )(k) = d'xe'" "(p
'

i T[J ~ (x) Z ~(0)] i p) .

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

In writing down Eqs. (3.25)-(3.32) we used translational
invariance and Eq. (3.2) to simplify the final expressions.
Observe that the two terms in the W contribution [Eqs.
(3.27)-(3.29)] arise because we have expressed Jz~ in
Eq. (3.24) in terms of Jz and Jz according to Eq. (2.11).
As we shall see later, in order to separate out the tradi-
tional photonic corrections it is also very convenient to
decompose the photon propagator in Eq. (3.17) as follows:

1 1 m' 1
k2 k2 ~2 ~2 k2 k2

w

Accordingly we write
P — 0 +(y ) (y&) (y+)

'U(y) ='U(y))+'U(y() ~

(3.33)

(3.34)

(3.35)

where, for instance,
to 'U(y) ar1sing from
(3.33), respectively.
a massive photon, .

"
less photon" with an
(mz~ —k').

Q( y Q) and Q ( y () are the con tribution s
the first and second terms of Eq.
We may think of (y, ) as involving

while ~(y ) corresponds to a "mass-
additional convergence factor m~/

See the discussion at the end of this section and in Appendix

have been subtracted from the T product. In fact, the
first two terms represent corrections to the ~ propaga-
tor, discussed in See. V and Appendix E, rather than
Fig. 1, while the third term is a nonconnected amplitude.
Terms of the latter class are also to be subtracted from
Eqs. (3.7}, (3.9), (3.11), (3.17), (3.18), and (3.22). With
these subtractions understood, the Ward identities are
not affected by the c-number Schwinger terms, and the
T products introduced in this section are covariant. "

The contributions of the two-current correlation func-
tions V]t, &(a=Z, y, W) to the amplitude of Fig. 1 are par-
ticularly important for later discussion. Denoting these
contributions by 'U(,

&
and using Eqs. (3.1)-(3.5) we find

Zg 1 d k
4(2)))' (

' —m') " (k' —m') sk

(3.25)

gg Sln gw d'k
'0(„)= 4(2 ), (, ,

)
I.„, T, „)&,(k), (3.26)

The COntributiOnS 'U«), 'U, y, ), ((w)), and ~~&2w)) aSSOCi-
ated with the two-current correlation functions are dis-
cussed in Sec. IV in conjunction with the diagrams of
Fig. 2. Finally the contributions of the residual three-
current correlation functions are studied in Sec. V in
combination with tadpole diagrams and the order n
counterterms of the theory represented schematically in
Fig. 3.

It is instructive at this stage to observe that in the
cases of greatest interest, namely pion P decay and the
superallowed Fermi transitions, the unperturbed current
is the AS =AC=0,

~ ~Q
~

=1 vector current, which is con-
served to zeroth order in o (we regard isospin breaking
due to the quark mass matrix as being of order o.), and
the momentum transfer q" is very small. In fact, q"
=O(o. ). Inspection of Eq. (3.8) with the simplifications
E2o) = 0 and m„= m„appropriate to these applications,
shows that the third term in Eq. (3.13) is proportional to
q. The same is obviously true of the contributions of
B(z& and B(» in Eq. (3.16). As T", (a=Z, y, W) are free
from singularities at q =q by construction, the first
terms on the right-hand side of Eqs. (3.13) and (3.16) are
also 0(())). Furthermore the effective photonic operator
J

&
(x)J&z(0) is diagonal in charm, strangeness, and par-

ity; therefore in the expression for D( ) in Eq. (3.18)
s J~(y) can only contribute to the Fermi amplitude
through the divergence of the AS=0 vector current,
which vanishes to zeroth order in o. Thus D(„)=0 to the
order of our calculation, and we find T~& &, 0

——V", &(0)—,
which is a well known result (Bjorken, 1966; Abers
eg gE. , 1968; Dicus and Norton, 1970; Sirlin, 1967a,
1968a, 1969; Preparata and Weisberger, 1968; Beg
et a$. , 1972; Brown, 1969). In such a case, the photonic
corrections associated with Fig. 1 reduce to 'U, », given
in Eq. (3.26). On the other hand, it is important to note
that the effective operators jz~(x) Zz„(0) and J~t (x) J~z(0)
+h.c. are not diagonal and therefore D(» in Eq. (3.11)
and D(» in Eq. (3.22) can contribute to the Fermi ampli-
tude through the nonconserved pieces of J w.

Aside from the three-current correlation functions
discussed in this section, there are other three-point
correlation functions affected by the strong interactions:
namely, those involving Higgs scalars. This is illus-
trated in Figs. 4 and 5 in the case of the simplest version
of the Salam-Weinberg model. Note that the diagrams
of Figs. 1 through 4 represent radiative corrections to
the vertex Wh'h while Fig. 5 represents the correspond-
ing corrections to the vertex pk'k (k and k' denote here
the initial and final hadrons, and p is the unphysical
Higgs scalar associated with W). The corrections in-
volving virtual exchanges of Higgs scalars are studied in
Sec. VI. Physically, they are less interesting than the
contributions associated with current correlation func-
tions because, subject to the assumptions of our paper,
their finite contributions are of order G~ rather than
G~e and can be safely neglected.

It is worth emphasizing that the absence of operator
"seagull" terms in the time-ordered products of hadronic
operators considered in this paper follows from the same
considerations as the absence of operator Schwinger
terms, namely the fact that there are no gauge-invariant
hadronic operators with dimensions ~2. (See Sec. II.)
(Note that in the asymptotically free theory these dimen-
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580 A. Sirlin: Current algebra radiative corrections in gauge theories

sional considerations are well defined, as the anomalous
dimensions vanish in the "zero distance" limit. ) There
are, in general, c-number seagull terms but, for the
amplitudes considered in this section, they are elimin-'
ated by the subtractions indicated on page 579. The ab-
sence of seagull terms in the present context is dis-
cussed in greater detail in Appendix B, where the situa-
tion is contrasted with the well known case of the radia-
tive corrections of order e to the vacuum matrix ele-
ment of the neutral hadronic axial-vector current.

Finally, it is interesting to observe that the analysis
of this section is based on the Ward identities rather
than the equal-time commutators of the current algebra.

IV. TWO-CUR R ENT COR RE LATION FUNCTIONS

In this section we study the various contributions
arising from the hadronic two-current correlation func-
tions, including small effects of O[g2~(&&~) j induced by the
strong interactions in the asymptotic domain. We follow
the general approach presented, rather schematically,
'ln Sirlin (1974a and 1974b).

In Sec. IV.A we combine 'U«, , U, z„, and 'U, ~&, dis-
cussed in Sec. III, with the diagrams of Fig. 2. We show
that their divergent contributions reduce to a universal
renormalization of the weak coupling constant g and,
using the properties of the underlying theory of strong
interactions, we evaluate their finite parts. In Sec. IV.B
we discuss briefly the separation of the photonic correc-
tions. We show that U, &, introduced in Sec. III, com-
bines with the photon exchange diagram in Fig. 6(a) and
part of the electron field renormalization, to give rise
to the photonie corrections to the Fermi amplitude as
computed in the local V-A theory with an effective cutoff
equal to m~. We briefly recall some of the main fea-
tures of the photonic corrections and point out that in the
present context the coefficient of the asymptotic part of
the model-dependent contribution induced by the axial-
vector current can be rigorously determined. Finally
in Sec. IV.C we study the Z exchange diagrams of Figs.
6(a), (b). Here we distinguish two different situations:
(a) the case of the simplest version of the Salam-Wein-
berg model, and (b) the case of arbitrary symmetry
breaking.

A. Two-current correlation functions associated with the
vertex 5'h'h

In this section we study the contributions to the vertex
g h'h involving two-current correlation functions. '4

eT

% W

FIG. 2. Diagrams involving
two-current correlation func-
tions that contribute to the
vertex M'h (h, h' are the ini-
tial and final hadrons).

These are the diagrams of Fig. 2 and 'U„&(a =Z, y, W)
discussed in Sec. III. The amplitude for the Z exchange
diagram in Fig. 2 is given in the t'Hooft-Feynman
gauge by

2(2»)4 q2 —m~ (k' —m2~)[(k —q)' —m2~]

x I' k p(k, 9)T,"g)(k), (4.1)

To proceed further we need an estimate of the asymptot-
ic behavior of the two-current correlation function
T&~g&(k) for large k. The leading behavior for large k is
determined by the operator of lowest dimensionality in
the short-distance expansion of T[J~(x)J~~(0)] (Wilson,
1969). As this time-ordered product carries one u»t of
electric charge, it is easy to see that the operator of lowest
dimensionality must be bilinear in the quark fields. To
any finite order of perturbation theory in a renormaliz-
able theory of strong interactions the asymptotic behav-
ior is determined, modulo powers of logarithms, by di-
mensional analysis in the scale-invariant limit. In an
asymptotically free theory the discussion of the asymp-
totic behavior rests on a more secure basis, as the re-
normalization group approach allows one to draw con-
clusions independent of perturbation theory. The gen-
eral qualitative result is, however, the same: modulo
powers of logarithms the asymptotic behavior is deter-
mined by dimensional analysis in the scale-invariant
limit. An elementary consideration shows then that, up
to powers of logarithms, T&g&(k) behaves as k ' for large
k. Inspection of Eqs. (4.1) and (4.2) tells us that the k
integration diverges logarithmically. This implies that
all contributions proportional to the momentum transfer
q in Eq. (4.1) are finite and, in fact, of 0(G2z) rather
thanO(G~o. '). Thus we can safely set q=0 in Eq. (4.1).
Furthermore, we can use the Ward identities to study
the contractions of the two-current correlation function
in Eq. (4.1) with k„and k~." In this way we obtain

where L" and the tensor T &~g&(k) are defined in Eqs.
(3.30) and (3.31) and

I'„gp(k, V) =(2k- e)&a~& +(2O- k)xZ&» —(k+C)»a& ~

(4.2)

zg 1 d k
2(2v)4 2 Q (k2 2 )(k2 2

)
2k&& T&z&x(k) + l 2 cos ~lv( p I J&&p (0)lit&)

—i d xe "p' TB~Jgx J~p 0 p

+~ d4 8- gk. x p» T g 0 ~ ~a (4.3)

~4See discussion on page 578.
~ This follows also from the requirement that the operator be

color gauge invariant.

6The connection of some of the Ward identities associated
with current algebra and the Slavnov —Taylor identities has been
discussed by de Witt (1974).
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where we have used Eq. (2.8) and the analogous expres-
sion for [J'z(x), Jw~(x')] at xo =x'0. We now observe that
in the underlying theory of strong interactions Jz and J ~
are partially conserved currents (i.e., their conserva-
tion is broken only by quark mass terms) and therefore
their divergences are bilinear in the quark fields. Di-
mensional analysis tells us then that the correlation
functions involving B„Jz and a,gw in Eq. (4.3) behave
asymptotically as k ' modulo powers of logarithms and
that, therefore, their contributions are 0(G2z) rather than
O(G~n). Thus, to the order of our calculation, we may
retain the first two terms of Eq. (4.3).

A similar analysis leads to the following expression
for the y-exchange diagram in Fig. 2

i@4 Sin29~
2(2&y)4

1 LP—tPZ ~

x . . . 2PT, ,„y+2z p' g „P p

(4 4)
where T&~zp&(k) is defined in Eq. (3.32). Performing a
partial integration in Eqs. (3.25)-(3.2S) (the surface .

terms vanish on account of the regularization method)
and combining judiciously the contributions of 'U«„'V&y„
'U(~), (z), and 'L( ) we find

(y) zg Lp
&z) &w& &z& (2 )4 ( 2,m2 )

2
4 1X—

2 + -m~ a'-mz

xT|~ )~&k&+1&,)I, (4.5)

(2) sg s&n g~L~
&y»+ &w&+ &y& (2p)4(q2 m2 )

d'au~
(k'-m') k2-m'

xT' )„(k&+ It~1,)I, (4 6)

where

(4.7)

4

~(.) ~&k'I&" N&lk& f k.&k.u2 a2-m2 (.4.8)

In these expressions we have systematically neglected
terms of O(G2~). Inspection of Eqs. (4.5) and (4.6) in con-
junction with the asymptotic estimates previously de-
scribed reveals a rather striking result: the contribu-
tions of the two-current correlation functions have com-
bined to give a finite answert The terms involving I~&»

and I~&» are divergent; however they are exactly propor-
tional to the zeroth-order amplitude, and the coefficient
of proportionality is universal, i.e., it is independent of
the strong interactions and the nature of the initial and
final particles h. and h'. They can therefore be absorbed
in a universal renormalization of the weak coupling con-
stant (Sirlin, ISV4a). In fact, it has been explicitly veri-
fied by Marciano and Sirlin (1975) that I~&» and I~&2& coin-

cide with the corresponding divergent contributions to
the renormalization of g encountered in purely leptonic
calculations.

We now turn our attention to the evaluation of the finite
contributions involving the two-current correlation func-
tions in Eqs. (4.5) and (4.6). We first note that the only
contributions in these expressions which are of O[G~&y]
rather thanO[G2z] are those arising from the terms in
the two-current correlation functions which vanish as k-~ no faster than 1/k. These are precisely the leading
terms in the short-distance expansion of the time-
ordered products of the two currents and involve opera-
tors of dimension three. In fact, the next-to-leading
terms are proportional to operators of dimension four;
their contribution to the I"ourier transforms behave for
large k as (1/k ) modulo powers of logarithms, and it
can be readily ascertained that they lead to terms of
O[G~] rather thanO[G~n]. On the other hand, the opera-
tors of lowest dimensionality must (i) be bilinear in the
quark fields, (ii) be color singlets, (iii) carry one nega-
tive unit of charge, (iv) transform as I orentz vectors
and axial vectors because otherwise their contributions
to Eqs. (4.5) and (4.6) would vanish after the x and k in-
tegrations are performed, and (v) have the appropriate
quantum numbers to have nonvanishing matrix elements
between the initial and final hadrons. Thus the leading
operators in the short-distance expansion are currents
and we can therefore write for large k:"

u~
T,", (k) =, C (-k', g,„,m„, &7)(p'lo „"(0)~p) +

(4.9)

where nz„and g» are the renormalized quark mass ma-
trix and strong interaction coupling constant, cr is the
renormalization point, the dots represent operators that
either do not contribute to Eq. (4.5) or contribute to or-
der G~z, and the N summation is over all currents 0„"(0)
which satisfy properties (i) through (v) listed above. "
As we shall perform a Wick rotation later on, it is suf-
ficient to study the asymptotic behavior of the coefficient
functions C~ for large Euclidean k . In this regard it is
very important to observe that the operators on both
sides of Eq. (4.9) are conserved or partially conserved
currents and, therefore, have no anomalous dimensions.
This is a very welcome fact because it means that in the
underlying asymptotically free theory, the two-current
correlation functions approach the free field behavior as
~' =—-k -~ without the logarithmic corrections associ-
ated with anomalous dimensions. In particular, in the

~Setting k~ = M" where k is a fixed four-vector, the limit of
large k means the limit of large A, . In the expansion of Eq.
(4.9) k2 is assumed to be large, of OP.2). [See Sec. VII. F of
Wilson (1969).]

'8In the particular case of the corrections to the Fermi am-
plitude, the 0~& must be color singlet vector currents with &Q
= —1 and AS= AC=0. Moreover, because in the assumed SU(4)
&&SU(3) theory only one such current can be constructed (from
the u and d quarks), the N summation reduces really to a sin-
gle term, namely the AQ = —1, AS = 4C = 0 vector current of
the weak interactions. It is convenient to use, however, the
notation of Eqs. (4.9)-(4.12) as our arguments may then be
applied to more general amplitudes.
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582 A. SirIin: Current algebra radiative corrections in gauge theories

deep Euclidean region the quark mass terms can be
neglected and the dimensionless Wilson coefficients C~
tend to the limit

C„(~',g, „, , o) -C„(p.', g, (~'), o) (4.10)

Q C~(0)O~(0) =2i cos'8~ 2J ~(0) . (4.11)

Equation (4.11) can also be obtained using the Bjorken-
Johnson —Low limit (Bjorken, 1966; Johnson and Low,
1966) with canonical evaluation of commutators, a pro-
cedure which is of course valid in the free field theory
case. Thus all the C~(0) vanish except the one corres-
ponding to O~= J~. Calling A, » the first term between
curly brackets in Eq. (4.5) and taking into account Eq.
(4.9) we obtain

where g~(g ) is the effective strong interaction coupling
constant and p is a,fixed momentum. ' In an asymptot-
ically free theory, as ~-~, g~ -0 and C„(g~)—C„(0)
=C&„,. An elementary free field theory calculation shows
that in the scale-invariant limit as g~ -0

It is important to observe that the contributions of
Eqs. (4.13) and (4.15) are independent of the quark
charges q introduced in Eq. (2.5). In fact, examination
of the arguments leading to these results shows that all
of these contributions are universal multiples of the
zeroth-order amplitude, independent of the nature of the
initial and final hadrons. As we shall see later, analo-
gous contributions arise in muon decay. Thus in study-
ing the ratio of decay probabilities of two different weak
processes, we find that such contributions cancel and
have no physical consequences, a state of affairs which
was anticipated by more heuristic reasoning in Sirlin
(1974b, 1974c, 1975). On the other hand, it is interest-
ing to study the error made by setting g~ =0 in the cal-
culations of the finite parts, as contributions depending
on g28 are clearly nonuniversal. As explained in Appen-
dix C, if we keep terms of this order and assume that
the color group is SU(3)', in the region g' ) 3f' the inte-
grands of Eqs. (4.13) and (4.15) must be multiplied by a
factor 1 —g~(g')/(4v'). We recall that in the SU(3)' the-
ory

A" = — dg(1)- 8 K2+m2 K2+m2
Z

xQ C (g,g,~, o)(p' ~0"(0)lp)+

x

mdiv

0

1 1
+ ~~ g + Pj's Z-

where

a=m2/m2 .

I~ 2 &p tJ:(0)J»,
L

(4.13)

(4.14)

Calling A~&» the first term between curly brackets in
Eq. (4.6), a similar analysis leads to

7r2 OO

A~(, )
= m (2p(J ~(0))p) dv'

0 /(' + B1~,

2

(4.15)

(4.12)

where we have performed a Wick rotation. At this stage
we invoke our assumption that the onset of the asymptot-
ic behavior occurs at M' «m~. We note that the domain
of integration g 2 «M' gives contributions of higher order
in G„. In the region g' )M' we set g~ =0 and, recalling
Eqs. (4.10) and (4.11), find

2

&~(x) =
4

cos'&~& p'I J~(0)lp)

A s(~ ) gg~ 2 g2 g2 ~ 1

4+ 4p f 169 ln (4.16)

3|I' cot28 12+ t(I+A)/(1 —A)]lnR$ (4.17)

the m
mentum at which g~~ =g~(p. ') is defined. Equation (4.16)
i»pproximateiy valid provided that g' (~ )/(4y) .
f1clentiy small. We take ~2 O(~2) 2 A

—2
(

a slowly varying function of z, we may estimate its ef-
fect by replacing g~(z')/(4m') with g ~(K')/(4m'), where
K is a constant of O(m~). Setting f =4 appropriate to
SU(4), K = m~ =63 GeV (which is the value of m~ in the
simplest version of the Weinberg-Salam model for
sin29~=0. 35), and using the values of g and p indicated
by Altarelli et al. (1976), we obtain g2~(m2~)/(4m')
=0.0425. Instead, if we apply the parametrization sug-
gested by Barnett et aL (1976), g2~(m2~)/(4P) =0.0496.
Thus we expect the g~ contributions to A",» and A~&» to
be approximately on the order of —5% relative to the re-
sults of Eqs. (4.13) and (4.15). In Appendix C we shcnv
how the effect of the terms of order g~(g') in the radia-
tive corrections integrals can be calculated in a precise
manner. ' It is worthwhile to point out that the g~ cor-
rections to A &» and A. &» are very small in most appli-
cations. In fact, inserting Eqs. (4.13) and (4.15) into
Eqs. (4.5) and (4.6), we see that to zeroth order in g~ the
universal contributions of A",» and A ",» to the amplitude
are given by

where we have again neglected terms of higher order in
G~.

CP

&n 4n
(4.18)

In Weinberg's approach to the renormalization group equa-
tions tsee Politzer (1974), Weinberg (1973b), and papers cited
therein] one may write CN(K gg~ m~ G) =Cz(p, gz(K ),mq(K),
o), where m&(K) is the effective quark mass matrix. In asymp-
totically free theories, for large K, mz(K) (1/K) modulo powers
of logarithms, so that asymptoticaQy m z can be neglected and
we obtain Eq. (4.10}. Note that g~(K ) is really a function of
K /p, , as shown explicitly in Eq. (4.16).

respectively, where is the zeroth-order amplitude.
Note that unless sin't9~ «1 and or A is very different
from 1, ggA and ggA, are quite small. For instance,A( y) A(2)

In particular, the g& correction to A~~&~ is —0.0436 relative
to the uncorrected integral of Eq. (4.13), rather than the naive
estimate of —0.0425" given above.
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in the simplest version of the model with sin' g~ =0.35,
they give rise to corrections of -3&&10 ' and 1.2 &10 '
to the transition probability, respectively. Clearly the
g2s corrections, being -4.4% of the universal contribu-
tions, are extremely small in this ease.

Thus far we have discussed all the two-current corre-
lation functions associated with the vertex Wh'h except
the amplitude '0&&,) introduced in Eq. (3.34). The latter
will be discussed in Sec. IV.B in conjunction with the
other photonic corrections.

1x u„y&, a
~ ~

y~v, , (4.19)

where l is the four-momentum of the outgoing positron,
and the tensor T &z~)(k) is defined in Eq. (3.32). Using the
asymptotic estimates we see that Eq. (4.19) is ultravio-
let convergent. Neglecting the small q dependence in the
W propagator, the factor in square brackets becomes
m~/(m~ —k ), the familiar Feynman cutoff function. It
is then clear that Eq. (4.19) is the same as the photon
exchange corrections calculated in the local theory with
an effective Feynman cutoff equal to m~. It is important
to note that if we specialize the discussion to the correc-
tions to.the Fermi amplitude in the limit q-0, an anal-
ogous statement is true for the contribution of 'U, y, &. In
fact, in Sec. III we pointed out that in this case the photon
exchange corrections associated with Fig. 1 reduce to

V&„) (with q set equal to zero). Our statement follows
then from the observation that ~, y&&

is obtained from
z& y& by means of the replacement

1 1 PR gf

k k ~)&, —k

We now consider the photonic corrections gg(y) asso-
ciated with the field renormalization of,the outgoing
charged lepton. We again decompose the photon propa-
gator according to Eq. (3.33) and write

SPr(y) 3g (yp) + 3g(y~) (4.20)

where 3g&y,'& and /gay'& are the contributions arising
from the first and second terms of Eq. (3.33). ' Equa-
tion (4.20) is, of course, the analog of Eq. (3.35). To
complete the separation of the photonic corrections we
must include the inner bremsstrahlung diagrams. As
the only additional diagram involves the emission of a
real photon by the intermediate boson (or intermediate
P), and the corresponding contributions are of higher
order in G~, the bremsstrahlung diagrams are the same
as in the local theory.

If we restrict our attention to the corrections to the
Fermi amplitude and neglect terms of O(q), it is by now

2&/A)&) is a universal contribution analogous to 9 &~&) and it
is best discussed in conjunction with the W and Z contributions
to the veR" vertex.

B. Photonic corrections

The contribution of the photon box diagram in Fig. 6(a)
is given by

2 2 ( 2

d k — 7~i"k2~2 (2&))4
" ks ~s (k

A" (0)= Jd'xe"*(&'(7'[z„'(xlAg(o)(l() . (4.22)

The subscript (A; y) reminds us that Eq. (4.21) repre-
' sents the photonic corrections induced by the axial-vec-

tor current. Because the integral involves only one mas-
sive propagator, all the terms in the short-distance ex-
pansion of the time-ordered product contribute to order
G~&r. On the other hand, inspection of Eq. (4.21) shows
that only the leading term behaves as k ' for large k
and can, therefore, contribute to order Q„alnm~. As it
involves again partially conserved currents with no
anomalous dimensions, we can calculate the correspond-
ing corrections in a way similar to that explained in See.
IV.A 24 We write

A~)'(k) = "&' s, ",Qd (-k', g „,m„, o)
N

«p'l&f(0)le)+ '', (4.23)

In the calculations in the local theory it is customary to ne-
glect terms of order G&n/A2 where A is the. cutoff. In the pre-
sent context such terms are finite contributions of 0(Gzo. /nz z2)
= 0(Gz2) which are also negligible in the approach of the present
paper ~

3There is, however, a very small correction of Ofg& ] which
is discussed at the end of Appendix C.

24See also the discussion in Sec. V. B of Abers et al. , (1968).

ObViOuS that the COntributiOnS Of 'U, „+3gb&o", + gg',
&

tO

the transition probability, combined with the inner
bremsstrahlung diagrams, lead to the same results as
the calculation of the photonic corrections in the local
theory, with the understanding that the cutoff that ap-
pears in such calculations is not a regulator parameter
but is to be identified with m~."

The current. algebra analysis of the photonic correc-
tions to the Fermi amplitude in the local V-A theory has
been carried out in Considerable detail in the literature
(Abers et al. , 1968; Dicus and Norton, 1970; Sirlin,
1967a, 1968a, 1969; Beg et a/. , 1972). We recall that
to zeroth order in the lepton momenta the photonic cor-
rections arising from the vector current are independent
of the dynamics of the strong interactions. " As the cut-
off is replaced by m~, which is ~37.3 GeV in the SU(2)
XU(1) gauge model, these corrections are indeed very
large. On thy other hand, the contributions induced by
the axial-vector current are model dependent. We will
show now that in an asymptotically free theory the coef-
ficient of the asymptotic part of the latter corrections,
i.e. , the part proportional to lnm~, depends on the aver-
age charge Q of the u and d quarks but otherwise 'is inde-
pendent of dynamical details. To this end we recall that
these corrections arise from the lb, gl = 1, aS =, zC =0
axial-vector current A~~. Replacing Z~~ by -A~~ cos8/2
and setting l = q = m, = 0, Eq. (4.19) becomes

b g e eos8 dk k ~p
4(2 )

' '-~'~ k (~ k)" '"'
(4.21)

where we have neglected all the terms which cannot con-
tribute to the Fermi amplitude in the limit q-0 and
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Q d (g = 0)O (0) =-2tb&V (0), (4.24)

where

where the O&~ are appropriate vector currents and the
dots indicate terms which do not contribute to the Fermi
amplitude to order G~o Inm~. In Eq (.4.23) we have in-
troduced the hadronic mass M to avoid the infrared di-
vergence in Eq. (4.21). We now insert Eq. (4.23) into
(4.21) and perform a Wick rotation. As M' «m~~ it is
easy to see that the region g2 ~M' does not contribute
to order G~n lnm~, "while in region & ~ M' we can set
g~ =0. Thus, if we limit ourselves to calculating the
terms of order G~alnm~, we can work in the free field
theory limit. An elementary calculation shows that in
the scale-invariant limit as gz -0, the sum in Eq. (4.23)
becomes

x T&g&(k) u, yea
e

X y& (2 Sill 9&&
—

&& )Vo, (4.27)

where T&~g&(k) is defined in Eq. (3.31). We have already
seen in Sec. IV.A that T&~z&'&(k) -k ' for large k. Thus Eq.
(4.27) is convergent and, because it involves two mas-
sive denominators, the contributions proportional to the
lepton momenta and massare O[Gzz]. Setting E=q=m, =0
and using the familiar relation

C. Z-exchange box diagrams

The amplitude for the Z-exchange box diagram of Fig.
6(a) is given by

~bo i(g +g )g' d4k
4(2n)4 [k'-m', ][(k- q)'-m']

=(2q+1)/2 (4.26)
OL

Yp/ Yg gp Yg gpss g &Yp p x 7 Y5 (4.28)

is the average charge of the u and d quarks and V~(0) is
the ~S=~C =0 vector current. Inserting Eqs. (4.23) and
(4.24) into Eq. (4.21) we finally obtain:

OO 2

$g(~ y) s g cosI9L& V~p3Q g 2 2y 2 +
16m ng w+

Eq. (4;27) reduces to
2 + /2)

ggbox g g g (2 sin 9 —1)4(2n. )' W

d'k T~z&', (k )
k'[k'-m', ] [k' —m' j

6Qln w +. ~ ~ (4.26) u„[key~ —g ~&g k+zyz +i@ z&„k y ]a v, .

where the dots represent the nonasymptotic corrections
of order G~n induced by the axial-vector current. Equa-
tion (4.26) is, of course, a familiar result, first obtained
in the framework of the local V-A theory (Abers et aL,
1968). As expected, the cutoff of the local theory calcu-
lation has been replaced by m~. For a discussion of the
nonasymptotic part of these corrections we refer the
reader to Abers et al. (1968), Dicus and Norton (1970),
Sirlin (1968a, 1969), and to Sec. VII. B of the
present paper. If it is of order (o'/27&) as indicated by
the estimates of these papers and by the fact that no
large logarithms are present, its contribution is indeed
much smaller than the very large model-independent
corrections arising from the vector current. In obtain-
ing Eq. (4.26) we have set gz =0. As shown in Appendix
C, if we keep terms of order g~ and assume that the
color group is SU(3)', the integrand of Eq. (4.26) must
be multiplied by a factor 1 —g z(&&')/(4&&'). Because Eq.
(4.26) involves only one massive denominator and is
sensitive to the lower as well as the higher domain of
integration, in order to calculate the contribution of
gz(&&') it is necessary to carry out a detailed study.
Choosing for simplicity M =», [see Eq. (4.16)], this is
done in Appendix C. It is worthwhile to note that the cor-
rections to Eq. (4.26) induced by g z contain a term of the
form in[in(m2~/», ')]. Using the parametrization of
Altarelli et al. (1976) with m~=63 GeV and M=&&, =1
GeV, we find that the g~ contributions are approximately
of order -7.6%%u~ relative to the result of Eq. (4.26). For
t&& =+ and the sa.me values of m~ and M, Eq. (4.26) leads
to a 4.8 &10 correction to the transition probability.
Therefore the g ~ induced corrections to the lifetime are
of order -3.6&&10 4, which is indeed very small.

Note, however, that this region does contribute to order
G+n because Eq. (4.21) involves only one massive denominator.

bo» i(g +g )g C S(O26) tz&&
&z & 4(2&&)

d4k
k'[k'- m', ][k' -m' ]

x [-» cos'&~& p'I J~.&o)ip&

—k„T&~z&~ +is, p,„k'T"']. (4.30)

An identical analysis for the Z-exchange box diagram of
Fig. 6(b) leads to

box l(g +g )g &&

z &

=
4(2&&)~

d4u
k'[k' -m', ] [k' -m', ]

x [ 2i c os' t& —
& p '

IJ „(0)I p&

a Xp I

p (g)X Xp ap (&) (4.31)

Thus, calling 3tI&bzx& the sum of Eqs. (4.30) and (4.31), we
have

(4.29)

The contractions of the tensor T&~z&'&(k) with k~ and k~ can
be evaluated using the associated Ward identities: one
obtains terms proportional to &

p'
( J~ (p) and &

p'
( J~~ (p)

arising from the equal-time commutators and terms in-
volving the Fourier transforms of T[s&,Jz(x) J~z(0) j and
T[Jz(x)S~J~~(0)]. B.y an argument identical to that ex-
plained after Eq. (4.3) one shows that the latter contribu-
tions are O[Gzz], and we finally obtain
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IIbox z(g +g )g P
z&

=
2(2z)4

d4u
kz[kz —mz][k —m~]

cosz8~[ 2icos 8~(p ~ J~~(0)~p) k~T&~z&~)

2 Xp 4z sin g~6) p ~p O' T(z) j (4.32)

As implied by our discussion, terms of O[G2~] have been
neglected in Eqs. (4.30)-(4.32). To evaluate the contri-
butions involving the tensor T&~z&'& in Eq. (4.32) we follow
an analysis similar to that explained in Sec. IV.A. Not-
ing that the integral in Eq. (4.32) involves two massive
denominators and remembering T~~~, -k ' for large k,
we see that only the leading terms in the short-distance
expansion of the time-ordered product of the two cur-
rents contribute to order G~e. These leading terms are
again controlled by partially conserved currents with no
anomalous dimensions. We insert the corresponding ex-
pressions into Eq. (4.32), note that the domain of inte-
gration z' ~M contributes only to O[G~], and set gz =0
in the region g' ~ M'. Thus, insofar as we restrict our-
selves to corrections of O[G~o'j and neglect the small
effects induced by g2~ in the "asymptotic domain" z'
~ Mz, we can evaluate T&~z&'&(k) in the scale-invariant limit
of the free field theory. An elementary calculation shows
that in this case

—2i sin'8 Qe~" ], (4.33)

where Q is defined in Eq. (4.26). Inserting this expres-
sion into Eq. (4.32) we obtain

~~2( 2+ l2 2
3|Ibox — g E g LP(Prig (0)iP)

2(2&T)' PP

dK
X ((c'+ m ~)(g'+ mrs z)

x [(2+ —,') cos48~+3Qsin48~] . (4.34)

The contributions 2 cos48~ and (—,') cos 8~ arise, respec-
tively, from the first and second terms between curly
brackets in Eq. (4.32), a distinction that will be useful
later, while 3Q sin~8~ has its origins in the third term.
Performing the integration and recalling that g +g'
=e~/(sin8~cos8~)z, we see that Eq. (4.34) becomes

3R("z) =
4 9g

~
lnR 2+ 2 co 6I~+3 tan I9~

(4.35)

where $g is the zeroth-order amplitude, and A is de-
fined in Eq. (4.14). It is clear that the terms proportion-
al to coP0~ are universal, i.e., independent of the nature
of the initial and final particles represented by p and p'
in Figs. 6(a), (b). In particular they are the same in P
and muon decays and therefore cancel in the ratio of de-
cay probabilities, a result which was anticipated in pa-
pers by Sirlin (1974b, 1974c, 1975). On the other hand,
the last term in Eq. (4.35), previously derived in Sirlin

(1975), clearly distinguishes between the leptonic decays
(for which Q should be replaced by --,', as this is the
average charge of v„and g which are the leptonic
counterparts of the u and d quarks) and the semileptonic
decays where Q is determined by the quark charges 2' In
the simplest version of the SU(2) &&U(1) theory, in which
the Higgs scalars transform according to a single iso-
spinor representation of the weak group, there exists a
relation between the vector meson masses and g~

M~ = wvz cosa~ . (4.36)

V. RESIDUAL THREE-CURRENT CORRELATIONS
AND OTHER CORRECTIONS

In Sec. V.A we study the residual three-current cor-
relation functions, introduced in Sec. III, in conjunc-

26As emphasized in Sirlin (1974c and 1975), in theories in
which J~ is not a color singlet, Q includes an average over the
three quartets. For instance, in the Pati —Salam model (Pati
and Salam, 1974), the quarks have integer charges'but Q has
the same value as in the conventional model with q=1/3.

In that case the nonuniversal part reduces to a simpler
expression, namely, 3Q(o.'/2»)%01n(mz/m~), a result
already obtained in Sirlin (1974c).

So far we have set g~ =0. In order to discuss the g~
corrections we recall that the contribution proportional
to 2cos48~ in Eq. (4.34) has its origin in the first term
between curly brackets in Eq. (4.32), which was derived
from the Ward identity associated with the time-time
and- time- space commutators. Thus it is not affected by
strong interaction corrections and leads without approxi-
mations to the 2cotz8~ term in Eq. (4.35). On the other
hand, the contributions proportional to ( —,) cos48~ and
3Q sin48~ in Eq. (4.34) can be traced to the terms involv-
ing the tensor T&~g& in Eq. (4.32). As shown in Appendix
C, if terms of order g2~ are retained, the corresponding
integrand is multiplied by 1 —gzz(zz)/(4»'). The value of
the corrections induced by g~ depends on m2~ and mz.
A precise method by which to evaluate them is given in
Appendix C. In the case of the simplest version of the
Salam-Weinberg model with sin'9~ =0.35, they amount
to a -4.3% correction relative to the contributions of the
second and third terms in the square bracket of Eq.
(4.35). For Q=~~ the latter give a correction of 1.1&&10 3

to the lifetime so that the g2~ effect amounts only to -4.8
&&10 ', which is again very small.

In summary, if we add all the corrections of order g~
induced by the strong interactions in the asymptotic
domain, including the small photonic contribution dis-
cussed at the end of Appendix C, we find that in the
simplest version of the theory with sin 8~ =0.35 and Q
= 6, they amount to a correction of -4.3&10 to the
transition probability, which is negligible for most
physical applications. For other values of the param-
eters and different choices of the number of'flavors, the

g~ corrections can be gleaned from the detailed expres-
sions given in Appendix C. There are, of course, cor-
rections of 0(g~~) and higher, but the smallness of the
O(gzz) terms is a strong indication that they can be safely
neglected.
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tion with the tadpole diagrams and order n counterterms
of the theory. Our discussion here follows closely the
approach of the Appendix of Sirlin (1975), in which the
analogous problem was discussed in the framework of
the free field theory. In Sec. V.B we discuss briefly the
corrections associated with the W-meson propagator.

A. Residual three-cur'rent correlation functions

We note that the asymptotic behavior for large k of the
residual three-current correlation functions of Eqs.
(3.13) and (3.16) is controlled by two classes of singular-
ities": (a) those arising from y-x-0, and (b) those
originating from x-0 for finite y ~0. In analyzing the
first type of singularity, we recall that in the asymptot-
ically free theory the leading asymptotic behavior is de-
termined by dimensional analysis modulo powers of
logarithms. As the time-ordered products in the rele-
vant three-point functions carry one unit of charge, the
operator of lowest dimensionality in the short-distance
expansion of the three operators must be bilinear in the
quark fields. " Observing that the a/ay„derivatives in
Eqs. (3.13) and (3.16) introduce a factor y" in the inte-
grand and recalling that both the currents and 8 J ~ are
bilinear in the quark fields, we learn from dimensional
analysis that singularities of type (a) lead to coefficient
functions that vanish at infinity no slower than k mod-
ulo powers of logarithms. " This implies that the cor-
responding corrections are finite and, in fact, of O[G~]
rather than O[G~o.'].

The singularities of type (b) can be obtained from the
short-distance expansion as g -0 of bilinear products of
operators such as T[j'~s(x) J„s(0)]. The only terms in
this expansion which contribute to O[G~o.'] are those
whose Fourier transforms vanish as k-~ no faster than
k . Therefore the relevant operators in the expansion
must (i) have dimensions (4 (ii) be color singlets and
gluon gauge invariant (iii) be even under 86' (we neglect
the small 66' violations in the weak interactions), "and
(iv) transform as Lorentz scalars or pseudoscalars, as
otherwise their contribution to T~&„and D&,

&
(a =Z, y, W)

in Sec. III would vanish after the ~ and k integrations are
carried out. Thus they are the same as occur in the
analysis of the corrections of O[n] to strong interaction
matrix elements. As shown by Weinberg (1973b), there
are three classes of operators which at first hand satisfy
the required properties and may appear in the short-dis-
tance expansions": (1) gA'"P+h. c., (2) gA'"'y" (i 8„
—gsT"S„)p+h.c., and (3) G~,G"'", where S„" is defined
after Eq. (2.7)

The role played by these two classes of singularities can be
illustrated by a generalization of the Bjorken —Johnson —Low
limit to three-current correlation functions. See, for example,
the expansions of Eqs. (8) and (16) in Sirlin (1968b).

See also Footnote 15.
A similar conclusion was reached by Preparata and Weis-

berger (1968) in their study of photonic corrections in the
framework of the Abelian gluon theory.

See the discussion in Appendix A.
3 Gperators of the form i„g'X ~3 +$)+ h.c. can be expressed

as a combination of operators of class (2), while e»~~G~q~ G&p~

is odd under 8(P.

GA g gA g gA g gBSc (5.1)
and the matrices X'"' and K "' act on the SU(4) indices
of the spinor field and may contain the Dirac matrices 1
and y'. When the short-distance expansions of the bi-
linear products of operators such as T[J ~s(x) j„s(0)]are
inserted into T~&„and D&„, the residual three-current
correlation functions of Eqs. (3.13) and (3.16) are seen
to be of the form

~ ~ ~
n

q=q
(5 2)

y(X .+ ~ ~
CX fg (5.3)

The vectors b„are given by expressions analogous to Eq.
(3.8), except that the time-ordered product in Eq. (3.9) is re-
placed by the relevant terms in the short-distance expansion.

33It is interesting to observe that the perturbative correction
induced on the weak vertex by 02 involves an amplitude

J d ye'~ ~(p'
I T*[Z((y)02(0)) Ip ) where T* differs from the usu-

al T product by a term proportional to 6 (y), which is easy to
verify in perturbation. theory by considering single insertions
of J'~z and 02 and an arbitrary number of gluon insertions on a
quark line. The additional term is related to the fact that 02
contains a derivative interaction, and leads to a contribution
independent of q. En the case of Eq. (5.2) [and similarly (5.3)]
it is immaterial whether we use the T or T* products as the
4 (y) contributions cancel when the differentiations with respect
to q„are carried out.

where O„(0) (n=1, 2, 3) denotes collectively the three
classes of operators listed above; c„are divergent con-
stants; the dots indicate terms that contribute to O[G~];
ahd b„, which has its origins in the vector B&,&

of Sec.
III," subtracts the pole terms at (p'+ q)' = m'„and
(p —q)'=m'„of the first term of Eq. (5.2). As we shall
see later, the divergent parts of these expressions are
cancelled by the order a counterterms of the theory. We
note that when we use equation of motion of the P field
given in Eq. (2.7), the contributions of 0, to Eqs. (5.2)
and (5.3) can be reduced effectively to those of mass op-
erators of type 0, ."

The operator 0, = G„G" conserves parity, strange-
ness, and charm. Because of this fact, for n=3 the first
terms of Eq. (5.3) can only contribute to the Fermi am-
plitude when B„J~(y) is the divergence of the AS=AC =0,
ID@I=1 vector current, which vanishes to zeroth order
in a. Recalling the discussion at the end of Sec. III, it
is clear that the contributions of Eq. (5.2) and the second
term of Eq. (5.3) are of O(q). Thus, to first order in a
and zeroth order in the momentum transfer, the opera-
tors of class (3) do not contribute to the Fermi ampli-
tude.

In summary, the only operators that can, in principle,
contribute effectively to the Fermi amplitude in Eqs.
(5.2) and (5.3) are of type 0„(i.e., mass operators)
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e+

(a)

e+

(c)

FIG. 3. Insertions of order & counterterms, tadpole terms, and
tadpole counterterms in the hadronic line.

At this stage we consider the insertions on the ha-
dronic line of the tadpole and order e counterterms of
the theory, depicted in Fig. 3. As shown by Weinberg
(1973b), their contributions also involve effectively op-
erators of classes (1) and (3). Thus the corrections to
the weak vertex arising from tadpole diagrams and order
n counterterms are of the form

5T" = P 5c„lim d ye"'(p'~ T[J ~(y)O„(0)]~ P) —b„
rt= 1,3 q~ q

(5.4)

where the 5c„are divergent constants. Contracting Eq.
(5.4) with q„we derive a Ward identity; differentiating
with respect to q„and then setting q = q, we can write
5T" as the sum of two terms which, except for the con-
stants 5c„, are identical to Eqs. (5.2) and (5.3).'4 The
term 5c,O, in Eq. (5.4) represents the contribution of the
quark mass counterterm /5m' as well as the tadpoles
and tadpole counterterms. In fact, the latter contribu-
tions are effectively given by "mass operators" of type
(1). In the SU(2) &&U(1) models discussed in this paper
there are no zeroth-order natural relations involving the
quark masses and/or mixing angles. As a consequence,
5m is an arbitrary matrix acting on the flavor degrees
of freedom and involving the Dirac operators 1 and y„
except for the restriction that it commutes with the elec-
tric charge operator Q. The simplest procedure is then
to adjust 5c„O„to cancel the weak corrections of order a
to strong interactions amplitudes (see Appendix D). As
the corrections to weak amplitudes exhibited in Eqs.
(5.2) and (5.3) involve exactly the same constants c„and
operators O„, they will also be canceled automatically
by the Gc„O„contributions. On the other hand, in theories
with zeroth-order natural relations between the quark
masses and/or mixing angles, 5m is not a.rbitrary and
one must follow the procedure outlined in Appendix D.

There is still another source of isospin violation that
we must discuss in connection with the quark mass ma-
trix. We note that in the SU(2) &&U(1) models under con-

See the analogous discussion in Preparata and Weisberger
(1968).

3~In these theories the fact that isospin breaking of "nonelec-
tromagnetic origin" transforms as an isotriplet emerges nat-
urally. What is not natural is the magnitude of isospin breaking
which, in principle, may be arbitrary.

sideration, the mass matrix m introduced in Eq. (2.7)
involves four independent renormalized parameters,
namely the quark masses. In particular, isospin sym-
metry which corresponds to the limit m„= m„, (or per-
haps, m„=m~=0) is not a natural symmetry in these
models. " To study the corrections to isospin symmetry
associated with the fact that m„c m„, it is convenient to
write m= m»~+Am, where m»~ is a diagonal matrix
that conserves isospin exactly and Qrn contains the sym-
metry-breaking part. One then regards -gm, „,„p as the
"zeroth-order mass matrix" and the operator -Jam p is
included in the perturbing interaction. As is well known,
the operator -game plays an important role in the un-
derstanding of isomultiplet mass differences and is
formally regarded as being 0(n). Note, however, that
this operator is diagonal and therefore preserves
strangeness, charm, and parity. But we have seen
above, when we discussed 0„ that operators with such
properties cannot induce first-order corrections to the
conserved vector current vertex at zero momentum
transfer. In fact, the result that mass terms diagonal
in parity, strangeness, and charm do not renormalize
the matrix ej.ements of the vector current to first order
in the limit of zero momentum transfer is the well known
result of the nonrenormalization theorem (Behrends and
Sirlin, .1960; Ademollo and Gatto, 1964).

The discussion of this section, based on the analysis
of short-distance singularities, is clearly applicable to
the residual three-current correlation functions involv-
ing massive vector-meson propagators. Thus, in the
case of the photonic corrections, it is applicable to the
residual amplitudes involving T" (y&), defined in Eq.
(3.34). For the contributions involving T (y&), which
contain all the low-frequency components, the short-
distance expansions are not particularly helpful. Two
observations are relevant: (i) the factor m~/(m~ —k')
in Eq. (3.33) insures the ultraviolet convergence of
T (y&), and (ii) by the argument given in Sec. III, in the
case of the corrections to the Fermi amplitude the re-
sidual corrections associated with T" (y&) [as well as
those involving T" (y&)] are of O(G~&q).

Vfe conclude that when the residual three-current cor-
relation functions are combined with the order e coun-
terterms and tadpole diagrams, they can only contribute
to O(G~) provided that terms of O(G~o. q) are ignored. '~

Thus for our purposes they are completely negligible.

B. Corrections to 0' propagator

A s the corrections to the W propagator in the t'8 ooft-
Feynman gauge have been studied in considerable detail
in the literature (Appelquist et al. , 1972, 1973; Ross,
1973), they will be discussed only briefly here. On gen-
eral grounds, the polarization tensor associated with the
W propagator (see Fig. 7) is of the form

II„,(q) =A(q') g„„+B(q')q„q, . (5 5)

In the superallowed Fermi transitions q is actually of 0(o.).
Thus the neglected terms may be regarded as being of 0(Gzn2).

In the renormalizable gauges, the divergent parts of
Eq. (5.5), as well as those of the propagator of the scalar
p associated with W and of the mixed W —@ propagator,
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588 A. Sirlin: Current algebra radiative corrections in gauge theories

are cancelled by the appropriate renormalization coun-
terterms of the unbroken theory. In particular, the di-
vergences in Eq. {5.5) can be removed by performing
the mass and field renormalization of the W meson, with
the mass subtraction carried out at q' = m~ so that the
renormalized A~(q') satisfies R, Az(m2~) =0. Once this
is done it is clear that the contributions of B„(q')q& q„
and of the propagators involving j) are O[G'„J. (Further
they are proportional to extremely small factors such
as Gzn(m, rh„/m~) in g decay and even smaller in P de-
cay). When A„(q')g„, is inserted in the diagram of
Fig. 7(a), it is "sandwiched" between two massive prop-
agators of 0[m~ ]. It can still give contributions of
O[G„o] because A~(q') will in general contain terms
proportional to m~ an(3 mz arising from diagrams in-
volving the massive particles Z, W, @', etc. . . or from
subtraction terms. The important thing to realize
(Ross, 1973) is that

t 2

[. mw
(5.6)

The second term in Eq. (5.6) gives a contribution of
O[G2~]. The first does contribute toO[G„a], but if we
again neglect the small q dependence of the W propa-
gators, its contribution is the same for a1.1 semileptonic
and leptonic processes. Thus it is a universal factor
without physical consequences. It should be clear that
these considerations hold in the presence of the strong
interactions. The hadronic contributions to the W prop-
agator involve the polarization tensor of the J~ current
fd'ye*"«

I T*[~~(v)~~ (0) ]I 0&, whose ren»m»ization
requires two subtractions. Our previous remarks are
still valid, as the hadronic contributions A„(0) are uni-
versal and the terms of O(q'/m2~) are negligible. Al-
though the hadronic contributions to the W propagator
are not important for the problem of Cabibbo universal-
ity, they can also be computed under the assumptions
of this paper. (A. Sirlin, unpublished). A detailed dis-
cussion of the cancellation of divergences in the ha-
dronic contributions to the (WW), (W, P), and (QQ)
propagators, valid to all orders in the strong inter-
actions, is given in Appendix E.

A. Corrections to the vertex M/h'h and box diagrams

In the simplest version in which the Higgs scalars
transform as a single isospinor of the SU(2)~ &U(1)
group, the hadronic interactions of the Higgs scalars are

Vl. CANCELLATION OF DIVERGENCES IN THE
HI GGS SECTOR

In this section we discuss the cancellation of divergen-
ces in the Higgs sector. For definiteness, we work in
the framework of the simplest version of the Weinberg-
Salam model. However, the methods are general and
can be applied to other theories. In Sec. VI.A we study
the contributions of the Higgs scalars to the vertex
R"h'6 and the box diagrams, . while in Sec. VI.B we ana-
lyze the corrections to the vertex ph'h. Once the can-
cellation of divergences has been demonstrated, the
finite parts of the corrections associated with Higgs ex-
changes can be neglected. In fact, subject to the as-
sumptions of this paper, they only contribute to O[G~].

e+ p

L

e p
4, 4,

'IN W

e+

described by"

g s,.„, = —(g/2m~)[@', S, +(gS, + v2 (@ S+h.c.)], (6.1)

where

Si =pm

S =28&J" = 2i[Q—, /mod],

S= —
q J~ = —[Q~, P

(6.2)

(6 3)

(6.4)

the commutators being evaluated at equal times. In Eqs.
(6.1)—(6.4), @, is the physical Higgs scalar with po and

P are the unphysical counterparts associated with Z and
W (y is the field which creates a @' meson), m' is the
bare mass matrix of the quarks, and Qz and Q~ are the
charges associated with j~z and J~. We now write

m'=m- 6m, (6.5)

where 5m are the order a mass counterterms discussed
in Sec. V and Appendix D and m is the diagonal mass
matrix of Eq. (2.7). To lowest order in n we may neg-
lect 5m and obtain

S~ = Pm/,

i pm CH—,p,
S= PI'P,

(6.6)

(6.7)

(6.8)

(6.9)

s(m, a, -m, a ) c(m, a —m„a, ) '

c(m, a —m, a, ) s(m, a —m„a, )
(6.10)

where a, = (I +y, )/2 and otherwise we use the notation of
Sec. II.

We now follow the methods developed in Secs. III and
IV. Consider, for example, the p-eXchange diagram of
Fig. 4(a). Its contribution to the decay amplitude is given
by expressions analogous to Eqs. (3.1) to (3.6) with T~&»

replaced by

37For a discussion of the most general gauge-invariant Yu-
kawa couplings in the standard model and their connection to the
bare mass matrix mo, see Marciano and Sirlin (1975).

(c) (d)
FIG. 4. Diagrams involving Higgs scalars which contribute to
the vertex 1%'A; in the simplest version of the Salam —Weinberg
model, . The symbol @0& represents the physical Higgs scalar,
while P and $02 stand for the charged and neutral unphysical

components�.
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2 4
T"

ql)
= —

4 (2 & f ( f d &e' ' " f d xe' '*(O'IT tz" (»)(s (x)s(0)+h L ~ )&I)'& (6.11)

[t'&((X), S (S')],,0,0= —,'[S&(X)—fS2(X)]5 (y —y')

[&'(y), S,(y')], o= o =-S(y)6'(y —y'),
P' (y), S,(y')], , „o = iS(y)5'(y —y') .

(6.12)

(6.13)

(6.14)

Calling 'V(» (k = (i&, @o„(t&20) the contributions to the decay
amplitude of the two-point correlation functions in the
Ward identities, we find

'U =
2 4 Lzg 1 d'k

16m' (2«) (q' —m' ) " k —m' sk

x(R, —iR, )(k+ q),

(6.15)

where we used the fact that in the O'Hooft-Feynman gauge
the propagator of P is i(k' —m2~) '. Contracting T" with
q„we derive a Ward identity, and differentiating with
respect to q„we obtain expressions analogous to Eqs.
(3.13) and (3.16). In Sec. V we have seen that the diver-
gences of the first three terms on the right-hand side of
Eqs. (3.13) and (3.16) are cancelled by the order «
counterterms and tadpole diagrams. Exactly the same
will happen in the case of the corrections of Fig. 4(a)."
Thus, in order to discuss the cancellation of the diver-
gences, it is sufficient to retain the two-point correlation
functions analogous to V&,

&
(a =Z, y, W) in Eqs. (3.13)

and (3.16). The relevant equal-time commutators for
deriving the Ward identities are

+g I L16m' (2n)' (q' —rn' )

d4k
R, (k),

(6.16)

('& f d "e"'() 'IT(Sg(x)S(O&] I)» (i =1,2). (6.18)

Equations (6.15)-(6.18) are the counterpart of Eqs.
(3.25)-(3.32). We have again simplified the final expres-
sions by using Eq. (3.2) and translational invariance.
Applying the asymptotic estimates we see that the 'U, »
(b = (II&, g„P,) are logarithmically divergent. Next we
consider the contributions of Fig. 4(b)

-ig' 1 d4k(2k —q)"
8m'(2«) q —m~ ~ (k —m~)(k2-m )

(6.19)
-g' 1 d'k(2k —q)"

8m&2(, (27&) q2 —m' " (k' —m )(k —m )

(6.20)

Performing a partial integration in Eqs. (6.15)-(6.17),
neglecting finite terms of O(q), and adding the contribu-
tions of Eqs. (6.19) and (6.20), we find

4 I 4
'U o

&(&'2& 16m2 (2&T)4 (q2 m2 ) &) k2 m2 sk P

(6.17)

where m@ is the mass of the physical Higgs scalar, and

4

16m (2&&) ( m )

d k2k" 2 2 2 Ayk S 2 2
—

2 2 R2k (6.21)

Thus the two-point correlation functions contributing to
the Wk'h vertex have combined to give a finite answer t

We note that the additional diagrams of Figs. 4(c)-(d)
are individually convergent. The reason for this appar-
ently miraculous cancellation can be understood by
means of the following argument. A divergent contribu-
tion to the vertex TVh'5 arising from the Higgs scalars
would be proportional to the quark masses. As we have
already applied the order n mass counterterms [see dis-
cussion after Eq. (6.11)], the only way of canceling such
divergences would be to absorb them in the definition of
the weak coupling g. However, this is not possible be-
cause gauge invariance forces the renormalization of g
to be the same as in the leptonic vertices of 8', where
the quark masses cannot be relevant.

As shovTn ln Marciano aIld Slrlin (1975)~ lIl order to cancel
the divergences of Fig. 4(a) the mass counterterms must include
off-diagonal terms proportional to em /m&2 where m is a gener-
ic quark mass.

As we mentioned before, subject to the assumptions of
this paper, the finite corrections associated with the
Higgs scalars are of O[G2~] and therefore negligible.
This includes the box diagrams involving Higgs scalars
which are depicted in Fig. 8.

e+ e+

/
Z, y, Ng

e+

Vf

P
{c)

P
(g)

{e)

e
(h)

e+

{k)

FIG. 5. Diagrams contributing to the pbbs'h verte~ in the simplest
version of the Salam —Weinberg model.
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~ ~

e+ P e+ e+

y', Z

(a) (b)

N
/

0 0

(a}

/
/

v. z.4', 4',
(b)

FIG. 6. Box didiagrams involving the exchange of p and Z be-
tween hadrons and leptons.

B. Corrections to the vertex Qh'h

To simplify the analysis we assume in this section
that @', has been defined to have exactly zero vacuum ex-
pectation value, so that tadpole contributions such as
Figs. 5(i), (j) can be disregarded (Taylor, 1976).

We first discuss the counterterms of order g' associ-
ated with the vertex @h'h. Referring back to Eq. (6.1)
we note that in this equation g and bwa e arequa t
ties. Imagining that these constants are written as g
and mw, performing the shifts g'=g- 5g, rn' =m~w
—5m~, remembering Eqs. (6.4) and (6.5), and including
the field renormalization of (p, we see that up to terms
of order g' the interaction of (p with the quarks can be
expressed as

(6.22)

g 5mw 5g Z@- 1
+

2 4'

[Q~, /5m'] (((& (6.23)

where and rng w are now renormalized constants. The
term (Z —1)/2,— ~„~ ~rises because in order to cancel the di-
vergent parts in the corrections to the ~ and pro a-
gators &see Fi . 7,'g & ig 7g we may choose to rescale the ~ and

o e an propa-

6 fields d, and this rescaling induces a corr t th

Pg@ vertex. Alternatively, we may choose not to re-
scale the fields, in which case the contribution (Zz —1)/2
arises through the combined effect of the un'renormalized
diagrams of Fig. 7 (for details, see Appendix E) N t

o that m our approach we do not absorb ~Z~ in a cou-
p ing constant renormalization because duse g an new are al-
ready renormalized constants.

We now turn our attention to the three-point correla-
tion amplitudes depicted in Fig. 5(b). The Z-exchange

(c)

FIG. 8. Box diagrams involving Higgs scalars.

contribution to Fig. 5(b) is given by
2

lim D
1

xm D(z& —p(z)]» m u a v1IIl (D —
(

z 2 )W

(6.24)
where D(» is defined in Eq. (3.11) and

p, z) =-d(q') (p, ,-). ~ (5ml)(z)
h

—(nm'„, ),z), , d(q')
P —g —Vl hr

subtracts the pole terms of D at = T
s

«& a q = q. To be precise,
d(q ) is the on-mass-shell matrix element of is d'~ be-
ween the initial and final hadrons evaluated at q'

(6.25)

d(q' ) = ,' [F',"'(q' )—(m'„-m ', ) + F''"(q') q' ]

in the notation of Sec. III. Using the W d de ar i entity of
Eq. (3.10) and recalling Eqs. (3.8), (6.25), and (6.26)
we find

~ ~ $ ~ $ ~

(6.26)

Z
lcm D, z&

—p«, ] = —F( '(q') [5 m „, ,
—5 m'„, , ] + q T",

d k
y2 2 (z)(q

Z
(6.27)

where T, hm2 and v«)(k) are defined in Eqs. (3.7)
(3.9') and 3.12& .12', . The first term on the right-hand side

~ ~

of E . &627q. & . ~ arises because the "pole terms" B
don' t

ms q «) an

p«, cancel exactly but leave a finite remainder
wh)ch xs, as expected, free from the pole singularity at

Next wewe consider the associated corrections to the ver-
tex of ia J" indui » in uced by the order n counterterms [Fig.
5(h)]. These are given by

P

Pl

w~ e

e'

e+
P

2
6$g' ' = lim

1
(5„) —

2 z lm 5D(z) —5P(z)] z z m u Q v
w q~g —Vl

(6.28)
where

5D(z) =g «.(z)~ II
d'x~"'& p'IT[a, ~~(y)o„(0)]lp&,

(6.29)

p(z) =Q (z) (q ) (p
—)z

h

FIG. 7. Hadronic contributions to (8'W'), (8'~
agators.

( ~), and (@Q)prop-
+g 5c.. .& p'lO. (0)lp'& -', , d( ).(p- q)'-m'„,

(6.30)
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In Eqs. (6.29) and (6.30) 5c„«&O„are the counterterms of class (1) and (3) (see Sec. &.A) associated with virtual
Z exchange. After applying the appropriate %ard identities we find

~ 0
lim (5D(z) —5p(z&) =&f 5T( )(q) —iQ «(z&( p'I Xm(0), O„(0)tip&+ '2' (&(")g 5«:. z&f{plO. (0)lp& —(t'IO.{0)IP'&I

9 n

(6.31)where 5T«&(()() is the contribution from virtual Z exchange to 5T" defined in Eq. (5.4). As 0, commutes at
equal times with Q~, only the term 5c, &»O, =(T)5m&z&P survives in the second term on the right-hand side of Eq.
(6.31) [5m&z& is the quark mass counterterm associated with virtual Z exchange].

Combining Eqs. (6.27) and (6.31), we have

im ( &z&
—

P&z& + 5D&z& —5P&z&) = qa(T&z& + 5 &z&)

—2, , v~ q+k —i p' ~ 0, 0 5yn(z) 0 P
d4k

k-m,
+ '~* (q*)Irm*„,(,)

—t'~'„1,)+Q ~e.l,)((»l&.(»)l)) — (»l O &)I ')) I). (6.32)

It is clear that for the y- and TV-exchange contributions
to Fig. 5(b) and the associated corrections induced by the
order ~ counterterms we obtain expressions analogous
to (6.24), (6.28), and (6.32) with the subscripts Z re-
placed by y and 8', respectively.

At this stage, it is convenient to isolate the divergent
parts of Eq. (6.32) and the analogous expressions for y
and TV exchanges. As implied by %einberg's analysis
(1973a, 1973b), the order o. counterterms cancel the
divergences of order e in the mass shifts 6m'„, «, and

5m„«&, so that the expression between curly brackets
on the right-hand side of Eq. (6.32) is finite. Next we
prove that although the first and second terms on the
right-hand side of Eq. (6.32) are divergent

4

&I„(T&,
&

+ 5T&,&)
—2 +, &&,(q+ k) = finite .

a= Z,y, W a

(6.33)
To prove this theorem we recall from the analysis of
Sec. V that the order a counterterms cancel the ultra-
violet divergences of the first three terms on the right-
hand side of Eqs. (3.13) and (3.16). This implies that the
divergent parts in T&,

&

+ 5T&,
&

are given by V&,&(q) defined
in Eqs. (3.14), (3.19), and (3.23). Thus, in proving Eq.
(6.33), it is sufficient to replace T&,&

+5T(,
&

by. V&.&(q).
Remembering Eqs. (3.12), (3.20), and (3.24), it: is con-
venient to cast the integrals in the form

d'k
2 —,— &&~(q+k)

k

ig sin'|&)&,
t

d k d4 &(»+4)'2& x

(2(()'

() 'lr z'(—)z„(-—) I(»

d'k
2 2 2 V~ g+k-m

(6.35)

d xe—ig d k g f(k+q/2)-x

2(2&()'

(6.36)

Expanding the exponentials e""~' in Eqs. (6.34)—(6.36)
in powers of q ~ x/2, it is easy to see that the terms lin-
ear in q ~ x/2 cancel the divergent parts of the corres-
ponding q V&„ in Eq. (6.33) while the terms of second
and higher order are convergent. All that remains a.re
the terms of zeroth order in q x/2. When we sum the
Z, y, and g contributions, these combine to give

d'k2, , vzq+k'-m',
Zg

(2&()4
xd kT(z&~ k+ —

„z zk -m -m,

ig' d4k
d4 4(A+q/2) ~

(2v)' kz —m',

. 2 4 x 9'
+

(2 )4
sin 9~ d kT(y&~ k+

2

(6.37)

(6.34)

39To simplify the notation we suppress a subscript a (a = Z, TV,

p. . .) in the mass operators 0&.

where T~&z('& and T,"z~& are defined in Eqs. (3.31) and (3.32).
As these tensors behave asymptotically as -1/k, we see
that Eq. (6.37) is convergent. Thus the expressions on
the left-hand side of Eq. (6.33) do indeed combine to give
a finite answer! Referring back to Eq. (6.32) and the
corresponding y and TV contributions, we conclude that
the only divergent parts are the terms involving the
equal-time commutators with Q~
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Q lim f D(, )
—P(,)

+ 5D(,)
—&P(,) j

a

where the super script "div" means 'diver gent part" and
a=Z, y, W. Next we observe that when Eq. (6.38) is in-
serted in Eqs. (6.24), (6.28), and the analogous ampli-
tudes associated with y and 8' exchanges, it is exactly
canceled by the contribution to the decay amplitude from
the g' counterterm -g/(W2ma, ) Q, & z ~[@~,P 5m~, &g] Pt in
Eq. (6.23)! In summary, we have shown that the diver-
gent parts of Fig. 5(b) indeed cancel when combined
with the contributions of the order a counterterms and
the order g' counterterm given above.

It is worth noting that our strategy in treating the dia-
grams of Fig. 5(b) has been to relate them to those of
Fig. 1(b) by means of the Ward identities and then use
our knowledge of the latter and new detailed arguments
to show explicitly the cancellation of divergences.

A completely analogous argument, which need not be
repeated here, shows that the divergences associated
with Fig. 5(d) cancel when combined with the correspond-
ing order e and order g' counterterms.

Finally we consider the amplitudes of Figs. 5(c), (e),
(f), (g). We observe that diagrams 5(c), (e) are conver-
gent. Using the appropriate Ward identities we find for
the divergent parts of Figs. 5(f), (g)

4

(p'i8(0)ip), ', u, a, v,2m' —PP2
II

x sin'g~ — (2 sin g~ —1) + a
2fa' . , (1 —tan'g~)
4

(6.39)

where n is the parameter in the dimensional regulariza-
tion. In the simplest version of the Salam-Weinberg
model which we have adopted in this section, the expres-
sion between square brackets in Eq. (6.39) simplifies to
( —,') x[1+I/(2A)] where A is defined in Eq. (4.14). Equa-
tion (6.39) is canceled by the contribution of the g'
counterterm proportional to 8@" in Eq. (6.23), repre-
sented schematically in Fig. 5(k). Adjusting the param-
eters we obtain

(6.40)

It is interesting to note that although the divergent parts
of 5m~, 5g, and (Z&- 1) depend on dynamical details of
the strong interactions on account of the hadronic con-
tributions to the W and P self-energies, the combination
on the left-hand side of Eq. (6.40) does not. This can be
understood from an analysis of these self-energies (see
Appendix E). Equation (6.40) coincides exactly with the
results of an unpublished calculation by Marciano (pri-
vate communication), in which the renormalization of
the vertex udge' (u and d stand for the u and d quarks)
was studied in the quark model, neglecting the effects
of the strong interactions.

Thus we have shown how all the ultraviolet divergences. -

cancel in the renormalizaiion of the Ph'h vertex. As the
current algebra formulation can also be applied to pro-

cesses involving spin & hadrons, these results, in con-
junction with our discussion of the renormalization of
the 8'k'h vertex and the TV and y propagators, complete
the proof of cancellation of divergences of order e in
arbitrary semileptonic decays mediated by W and P, to
all orders in the strong interactions.

Vll. COMPARISON WITH NIUON DECAY AND
CALCULATION OF RATE OF PION P DECAY

In Sec. VII.A we compare the decay rates for the
superallowed Fermi transitions and p decay, including
the radiative corrections of order a, and briefly discuss
the verification of the universality of the weak interac-
tions in the sense of Cabibbo. In Sec. VII.B we use these
results to calculate the rate of pion P decay.

A. Comparison with muon decay
In order to verify the universality of the weak interac-

tions it is crucial to study the corrections of order o. to
the muon lifetime. Except for the universal hadronic
contributions to the TV propagator, these corrections are
not affected by the strong interactions and can therefore
be studied with the usual perturbative analysis based on
individual Feynman graphs. However, as we are inter-
ested in comparing P and g decays, it is very econon-
mical and convenient to discuss also p, decay in the
framework of the current algebra approach. We must
consider anew the diagrams of Figs. 1-8 with the under-
standing that p,

' and &„ take the place of the initial and
final hadrons of the semileptonic process.

Let us first discuss the diagrams of Fig. 1. The pho-
tonic corrections contribute only to the field renormal-
ization of the muon. In discussing this term it is conven-
ient to use the decomposition of Eq. (3.33). The contri-
bution of the second term of Eq. (3.33) combines with the
analogous contribution in the electron field renormaliza-
tion and the y-exchange graph of Fig. 6(a) to give the
photonic corrections of the local V-A, theory, except that
there is an additional convergence factor m~/(m ~ —k').
As is well known, the photonic corrections to p, decay
are convergent in the local V-A theory (Kinoshita and
Sirlin, 1959; Herman and Sirlin, 1962; and references
cited therein). The additional convergence factor only
generates additional terms of order G~n(m'„/m~)
= O[Ga~] which are, therefore, completely negligible.
Thus these photonic corrections, when combined with
the inner bremsstrahlung diagrams, reduce effectively
to the traditional photonic corrections of the local V-A
theory. The contributions of the "massive photon" prop-
agator [first term of Eq. (3.33)] to Fig. 1 is best treated
in conjunction with the virtual exchanges of the heavy
bosons, TV and Z. These corrections are described by
quantities T"„& analogous to T&,&

(a=Z, y&, W) introduced
in Eqs. (3.7), (3.17), (3.21), and (3.34).4a In muon decay
it is not necessary to subtract the pole terms 8"(a) be-
cause this is automatically accomplished by the inser-

In this section, amplitudes with a tilde are the analogs for
p decay of the corresponding expressions defined in Sec. III
They can be obtained by replacing hadronic currents and states
by leptontc currents and

~ p, & and
~ v~ & in an obvious way.

Rev. Mod. Phys. , Vol. 50, No. 3, July 1978



A. Sirlin: Current algebra radiative corrections in gauge theories 5S3

k+q-q

k+q-q
where A. , I3, and C are independent of P. Summing the
contributions of Figs. 9(c), (d) we obtain

v„&+ 2 (6, +/+6. )+
2 (A. +4+82)r,B C 1

(a) (b)

-K -&q-K

k-K

(c)
FIG. 9. Insertions associated with the three-current correla-
tion functions in p decay.

2vp Z (p K)2+,g I 4 vp,
2 + mp

where g (p, +~) = fd4k/(k' —m2a) + I/(p, +l( —p —m„) ~,
while Fig. 9(d) is given by the same expression with
Z (p, +w) replaced by Z (p, ). Only the first two terms
in the Taylor expansion of Z (P) in powers of P are di-
vergent. An elementary consideration shows then that
the terms of second and higher order in P are sup-
pressed by a factor (1/m2~). Thus, to the order of our
approximation, we may write: Z (P) =A+flf+CPy,

tions on the external legs of the mass counterterms,
which in the absence of strong interaction complications
are conventionally adjusted to cancel the q = q singular-
ities. By using the Ward identities associated with the
algebra of the leptonic currents we can derive for T~&„

(g=Z, y&, W) expressions similar to Eqs. (3.13) and
(3.16). We shall now show that the residual three-cur-
rent correlation functions analogous to the two first
terms in Eq. (3.13), when combined with the mass coun-
terterms and tadpole diagrams, lead in the case of muon
decay to corrections of O[G2z]. Consider, for example,
the graphs involving virtual Z exchange. There are. two
types of diagrams contributing to T~«) and D«). those
in which the leptonic Z currents l~~ enclose the vertex of
the l~~ current or its divergence [see Figs. 9(a), (b)] and
those in which the Z currents are attached to the p.

' or
v„external legs, on either side of the g vertices. [Fig.
9(c), (d) illustrates the case in which the two currents
are attached to the p.

' external leg. ] The contribution to
Fig. 9(a) associated with virtual Z exchange is proportional
to V„jd~k/(k2 —maa) + I/(P, —P —,f-m„) + I/(P, —k) *v„,
where the * represents the appropriate vertices of the Z
and W currents (or the divergence of l~~). As these ver-
tices are momentum independent, the above integral is
logarithmically divergent. However, when the differ-
entiation with respect to q„ is carried out as indicated in
the first two terms of Eqs. (3.13), the integral becomes
convergent and, in fact, of O(1/ma~) so that its contribu-
tion to the decay amplitude is indeed of O[Gz].

In discussing the contributions of Figs. 9(c), (d) it is
convenient to set q =q- g as indicated in the diagrams.
Fig. 9(c) is proportional to

The insertion of tadpole diagrams and mass counter-
terms subtracts v„g (p, ) v„/(v„v„) = @+Am„ from the
expression between square brackets (we use v„p2 =v„m„)
so that, after mass renormalization. , the sum of the am-
plitudes of Figs. 9(c), (d) becomes v„[(R/2)g+ (C/2)(P, + g
+m&)y, ] 1/(P, + g —m„) *v„=v„(B—Cy, )/2 *v,whichis the
familiar field renormalization of the muon. ' The im-
portant thing to note is that this expression is indepen-
dent of g so that it gives a vanishing contribution when
the derivatives with respect to q or, equivalently,
are applied. Thus we conclude that the residual three-
current correlation functions involving heavy boson
propagators, when combined with tadpole diagrams and
mass counterterms, give finite contributions of O[Gz] to
g decay in complete analogy with the case of the super-
allowed Fermi transitions.

In summary, the only terms from T&",
&

(a =Z, y&, W)
which contribute to order Q~o. are the two-current cor-
relation functions V~&„. These lead to contributions
+(Q) U ( yp) +(Q/) U (+) to the decay amplitude analogous
to the expressions we encountered in Sec. III. These
terms can be studied following the discussion of Sec.
IV.A. We first combine them with the contributions %L«)
and & ) arising from the diagrams in g decay analo-
gous to Fig. 2. As Eqs. (4.5) and (4.6) were derived us-
ing solely Ward identities, and as the time-time and
time-space algebra of the leptonic currents is isomor-
phic to that of the hadronic currents, it is clear that
Eqs. (4.5) and (4.6) are also valid for p. decay provided
we replace all amplitudes by their "tilde counterparts. "
In particular, this demonstrates explicitly the universal-
ity of the divergent part in the renormalization of the
weak couphng constant g. It is also easy to see that to
order G~a the finite parts of the corrections will be
given by expressions A."&» and A "(» analogous to Eqs.
(4.13) and (4.15). A quick way to understand this result
is to remember that the expressions of Eqs. (4.13) and
(4.15) were obtained effectively in the limit of the free
field theory. As these contributions can be evaluated
using the Bjorken-Johnson- Low limit (Bjorken, 1966;
Johnson and Low, 1966) with canonical evaluation of
commutators, the result follows again from the paral-
lelism between the canonical hadronic and leptonic time-
time and space-space commutators relevant to the de-
rivation of these equations. As a consequence A~&» and

and their tilde counterparts lead to corrections pro-
portional to the zeroth-order amplitudes in P and p de-
cays, respectively, with identical coefficients. Thus
these contributions are universal arid cancel in the ratio
of the decay probabilities, a result anticipated in a paper
by Sirlin (1974c) on the basis of heuristic reasoning. On
the other hand, the contributions proportional to g2~(g2)
studied in Sec. IV are obviously induced by the strong
interactions and do not have a counterpart in p, decay.
However, as we pointed out, they are indeed very small.

See, for example, Bailin (1973) and Bollini et al. (1973).
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As explained in Sec. IV.C, the Z-exchange box dia-
grams corresponding to Figs. 6(a) and 6(b) are given by
Eq. (4.35), with Q replaced by the average charge ——, of
the v„and p. fields. We recall that the first term on the
right-hand side of Eq. (4.35) is a universal contribution,
so only the term proportional to Q is significant in the
discussion of universality. Finally, we note that the cor-
rections to the W propagator (Sec. V. B) and to the We v,
vertex can be disregarded as they obviously contribute
equally to the two processes to order G~e.

In summary, the contributions which affect the ratio
of decay probabilities of the superallowed Fermi transi-

tions and muon decay fall into the following categories:
(i) photonic corrections as calculated in the local V-A
theory with a cutoff given by m~; (ii) Z-exchange graphs
which distinguish between the two processes because of
the different values of Q; (iii) small effects induced by
the strong interactions in the asymptotic domain; and
(iv) corrections of O[Gz) which we neglect.

Taking into account these results, we are now in a
position to write down explicitly the expression for the
p. -decay probability as well as the spectrum for the
superallowed Fermi transitions including the correc-
tions of order a

1 6p mp 8m,'
192m

2
X

3 Pgg p CY

5 m' 2n- 4

-+ tan 8 — lnR+A
2 w R ] (7.1)

tow mw A'
Pd P, =P 4' p, 1+ 3ln +g E, F. +6@In +2C+3@tan'Ow — lnA'+6 —+ ~ (7.2)

(7.3)

where the dots represent finite and universal contribu-
tions which do not affect the ratio of decay probabilities
and terms of order o/m2~, which we neglect. In Eq.
(V.1), the term —,'(m'„/m2~) describes the effect induced
by the vector-meson propagator to zeroth order in ~.
The term (n/2m)(25/4 —v') is the photonic correction of
the local V-A. theory (Kinoshita and Sirlin, 1959; Ber
man and Sirlin, 1962). The last term arises from the Z-
meson interchanges analogous to Fig. 6. In Eqs. (7.2)
and (7.3) E' is the end-point energy of the decay, E, P„
and m, are the energy, three-momentum, and mass of
the electron, m~ is the proton mass, g(E, E'„) is the
function defined in Eq. (20b) of Sirlin (1967b), E(Z, E) is
the Fermi Coulomb function, R is defined in Eq. (4.14),
and M, is the vector matrix element (M„=02 for an iso-
triplet transition). The first two terms in the square
bracket of Eq. (7.2): 3 ln(m~/m~)+ g(E, E„)are the uni-
versal photonic contributions arising from the vector
current in the local V-A theory, with an effective cutoff
A =mw, while the third and fourth terms represent the
asymptotic and nonasymptotic photonic corrections in-
duced by the axial-vector current (for a discussion of the
photonic corrections see Sees. IV.B and VII.B and refer-
ences cited therein). 4' The fifth term in Eq. (7.2) arises
from the Z-exchange graphs of Fig. 6, while 8—are the

3o. 2 RG„=G„1— tan'gw lnA +
Bm

(7.4)

where the dots represent one-half of the universal con-
tributions in Eqs. (V.l) and (7.2). Neglecting terms of
order e and nm'„/m2~

very small effects proportional to g~(c') which are in-
duced by the strong interactions in the asymptotic do-
main. They are discussed in Sec. IV and in Appendix C.
The constant G„ in Eqs. (7.1) and (7.3) can be written as
G„/v2 =g'/8m~~, where g and m~ are now renormalized
coupling constants. For our purposes the exact definition
of g is not important provided'that the renormalization
factors are universal, i.e., provided that g, and there-
fore 6'„, is defined in an identical manner in the two pro-
cesses in terms of the bare constant go. It is worth-
while, however, to note that a straightforward and
gauge-invariant procedure is to absorb in the definition
of g the (n —4) ' pole terms arising from Eqs. (4.V) and
(4.8) and from the field renormalization of W. The fin-
ite terms that remain in these contributions after sub-
traction of the pole terms are universal in character
and can be included in the ~ ~ ~ contributions.

It is convenient at this stage to express Eqs. (V.l) and
(7.2) in terms of a new coupling constant

The contribution of g(E, E~) to the total decay probability of
140 and the choice of the constants C and M are given in Abers
et al. (1968), Dicus and Norton (1970), and Sirlin (1974c). We
recall that the function g{E,E~) contains a term 3 lnfm&/(2E )]
so that the sum of the first two terms in Eq. (7.2} is independent
of m& and its order of magnitude is, very roughly, 3 ln[m w/
(2E )&-

x 1+—— 2+ 4 —&
3 mp
5 m

(V.5)
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I

=Pod p 1+ 3ln ~ +g(E, E )+6QIn ~ +2Ce 2m mp
foal

+— larvae (1+2@)+8,—I,3 R lnB.
2 R —1

where P is obtained from Po by the replacement of G„
by G„. Equation (7.5) has now the traditional form of
the radiative corrections in the local V-A theory (Kino-
shita and Sirlin, 1959; Berman and Sirlin, 1962) and
may be regarded as a definition of G„ in terms of the ex-
perimental muon lifetime. In terms of the same con-
stant, the spectrum for the superallowed Fermi transi-
tions is given by Eq. (7.6) provided terms of order (o./
m2~) are neglected. In the simplest version of the Wein-
berg-Salam model in which the Higgs scalars transform
as a single isospinor, [A/(R —1)] tan'g~ =-1 and Eq.
(V.6) reduces to

~d'p =~'d'p 1+ 3 ln +g(E, E~)e e

f, (0) sing = 0.220 a 0.002 (7.8)

derived from K,+, decays if, in fact, the second-order
SU(3) breaking corrections to f, (0) —1 are reasonably
small. It is also close to the value

sing = 0.232 a 0.003 (7.9)

obtained from the analysis of hyperon decays in the
SU(3) limit (Roos, 1974). For a given G„, the radiative
corrections in Eqs. (7.5) and (7.6) decrease the rate of
muon decay by 0.42%%uo and increase the rate of '~O decay
by 3.3 to 3.&%%uq for the range of rnz values mentioned

4 The parameter p in Sirlin (1974c) equals 2Q in the notation
of the present paper.

+6Qln( *)+2c+8—

I
. (v. v)

Except for the very small contribution 8—induced by the
strong interactions in the asymptotic domain, Eqs. (7.5),
(7.6), and (7.7) coincide exactly with the results pre-
viously derived in Sirlin (1974c, 1975) on the basis of
more heuristic reasoning. It is interesting to note that
Eq. (4.36) and therefore Eq. (V.V) are still valid if the
Higgs scalars belong to several isospinor representa-
tions.

The detailed verification of Cabibbo universality on the
basis of Eqs. (7.6) and (7.7) (with 8~ set equal to zero)
has been discussed in (Sirlin, 1974b, c; 1975; Roos, 1974;
Wilkinson, 1975a, b; Wilkinson and Alburger, 1976;
Hardy and Towner, 1975; Raman et al. , 1975). Because
of its smallness (see end of Sec. IV.C) the inclusion of
6—clearly has practically no effect on the main conclu-
sions of these studies. As an example, in Sirlin (1974c)
an analysis has been made on the basis of Eq. (7.7) with
Q= ~6,

~' which corresponds to the standard SU(3)' model
with fractionally charged quarks (q==,'). Using as input
the ft value for '40 decay, which is the lowest Z accur-
ately measured transition, values for sing in the range
0.222 ~ sing & 0.231 for 74.6 GeV & m~ ~ 200 GeV were
obtained. This range compares very mell with the value
of

B. Calculation of rate of rrP decay

As we mentioned in Sec. III, to zeroth order in n and
q' the form factors for nP decay have the values E,' (00)

=vg cosg, E,'0'(0) =0. Thus the zeroth-order amphtude
is given by

3)IO= i "—cosev2 (p+p')„u„y" (1 —y, ) v, . (7.10)

We note that, according to the observations after Eq.
(3.9), p and p' are the physical ~' and mo four-momenta
and lie therefore on the corrected mass shells. Follow-
ing the approach of Kallen (1964) in calculating the un-
corrected decay rate and including the effect of the ra-
diative corrections we find

(7.11)

1 G~ cosg (7.12)

9ef(e, a)=41 —~ (1 — —4e'

15 ~ 1+41—e 3
+

2
e ln ~ —

7 ( ), (7.13)

where m+ and mo are the masses of m' and m, & = m+

-mo, e = m', /a', and 5 represents the effect of the radi-
ative corrections. In Eq. (7.13) we have included the
leading correction in an expansion in powers of a2/
(m+ + m ) . In the simplest version of the SU(2) &U(1)
model, which we consider in this calculation, the radia-
tive corrections are given by Eq. (7.V). The contribution
g(E' ) of g(E, E ) to the integrated rate can be found from
the tables of Wilkinson and Macefield (1977).'4 Using the

44In Wilkinson and Macefield (1970) (G./2')g(Em) is called-
6~(p, S"0). Inmany cases agood approximation for g(E~) can be
obtained from the expression

g(E~) = 3ln + ——mp 81 4n'

m

which is an asymptotic formula for large E~.

above. The role of the corrections in the verification of
universality can be cast in a more dramatic way by not-
ing that, in their absence, the value of sing derived from' 0 and p decay would be sing =0.12, in sharp disagree-
ment with the AS= 1 results.

Compar'isons involving all the accurately measured
superallowed Fermi transitions have been made by Wilk-
inson (19V5a, b), Wilkinson and Alburger (1976), Hardy
and Towner (1975), and Raman et al. (1975). In particu-
lar, in Wilkinson (1975a, b), the analysis of universality
has been used to derive information about quark charges.

In the case of general symmetry breaking, the radia-
tive corrections are given by Eq. (7.6), which depends
now on two independent parameters, g~ and R. In Sirlin
(1975) this expression was applied to the case sin'g~ =6,
which is the value suggested by a unified SU(5) theory of
weak, electromagnetic, and strong interactions (Georgi
et al. , 1974). It was noted that for the range 0.01 ~R
~100, the value of sing derived from '40 and p, decay
still lies in the range 0.22 ~ sing &0.23 in satisfactory
agreement with the AS=1 data.
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I /z 0
= (0.391 *0.003) sec ' (7.14)

1/z = (0.403 ~ 0.003) sec ', (V.15)

where the error has been obtained by adding the uncer-
tainties associated with cos'g and 6' in Eq. (7.12). The
first source of error involves mainly the theoretical
problem of determining corrections. due to first- and
second-order SU(3) breaking in hyperon and K,', decays,
respectively. The considerable success of the Cabibbo
approach suggests that SU(3) is a good approximate sym-
metry when applied to the relevant matrix elements of
the ~S =0 and ~9=1 currents. In this context, it is
worth noting that (6 cos'g)/(cos'g) = —tan'g(6 sin'g)/sin'g,
so that the relative error in eos'p is approximately one-
twentieth of the relative error in sin'g. Thus, in the ap-
plications of universality, the uncertainties associated
with our imprecise knowledge of SU(3) breaking are
greatly diminished. The second class of errors men-
tioned above ean be reduced by improving the experi-
mental determination of m, —vzo.

Regarding the radiative corrections themselves, once
the parameters of the gauge model have been chosen,
the most important source of uncertainty appears to be
our imprecise knowledge of the constant 2C in Eqs.
(7.6) and (7.7), at least for zzP decay and the low-Z nu-
clei. In fact, as was the case before the advent of the
gauge theories (Abers et al. , 1968; Dicus and Norton,
19VO; Sirlin, 1968a, 1969), it is this nonasymp-

~A. Sirlin (unpublished).

experimental value A = rn —m„=4.6043 +0.0037 MeV, we
find E = 4.5293 + 0.003V MeV and (oz/2zz) g(E ) = 1.05
x10 '. In the case of zzP decay it is possible to obtain a
rough estimate of the constant 2C on the basis of vector
dominance and steinberg sum rule arguments. ' One
considers the diagrams n+ —p+ + cu —g +A,'+ w —p + 5 '
+y and ~+ —p +A.,'- ~ + ~+A.,+- m +@+5"with the S"
and y interacting with the leptons. The resulting cor-
rections to the decay rate turn out to be a few times
10 4, which is the same order of magnitude as 8—.As
these effects are considerably smaller than the other
terms and the uncertainties introduced by the experi-
mental error in Q, we neglect them. Setting @=6, M
= nz~, = 1300 MeV (Wilkinson, 1975a, b; Wilkinson and
Alburger, 1976) and m~ = V8.2 GeV, which corresponds
to sin'g~= 0.35, we obtain from Eq (V. V. ) 5= 3.1x10 '. Thus,
in this model, the radiative corrections increase the
rate of nP decay by approximately F/&.

In order to calculate I/zo, we shall take sing =0.226
+0.009. The center value is an average of the values of
sing extracted from K,', and hyperon decays in the SU(3)
limit and the error range comprises both data, tsee Eqs.
(7.8) and (7.9)]. Furthermore the center value is very
close to the result obtained from Eq. (7.8) if one uses
the Langacker-Pagels estimate of f, (0) —1 (Pagels,
1975). From here we obtain cos'g=0. 949+0.004. The
constant G„ is determined by comparing Eq. (7.5) with
the experimental Zz lifetime: G„=(1.4328+0.0001)x10 4'

erg cm3 = (1.0268 +0.0001)x(10 '/m2~) (Wilkinson, 1975a,
b; Wilkinson and Alburger, 1976). Inserting the values
of G„, cos2g, a, and 5 in Eqs. (7.11) and (7.12) we find

totic photonic contribution induced by the axial-vector
current, the only contribution of order a which is not
fully controlled in the analysis of universality. Fortun-
a.tely, the discussions of Abers et al. (1968) and Sirlin
(1974c), as well as the vector-dominance estimate men-
tioned in this section, suggest that this contribution is
much smaIler than the large corrections represented by
the other terms of Eqs. (7.6) and (7.7).

Vl I I. R EMAR KS

We have seen that in the underlying theory on which
we based our considerations, the strong interactions
have remarkably small effect on the radiative correc-
tions to nP decay and the superallowed Fermi transitions.
In these studies the fact-that the weak currents are par-
tially conserved plays a very important role. In the
evaluation of some of the finite parts we have used ex-
tensively the asymptotic freedom of the underlying theory
and the assumption that the quasifree asymptotic behavior
sets in early in comparison with the mass scale of the
vector mesons. There are, however, some interesting
gauge theories in which the strong interactions are not
asymptotically free, . such as, for example, that of Pati
and Salam (1974). Our approach can, in principle, be
applied to such theories but then one needs some special
assumptions, related to approximate scaling, to justify
our analysis of the finite parts in the two-current cor-
relation functions. Thus, for example, one could as-
sume that the renormalization group of the underlying
theory has a fixed point at which gz(a )/(4n' ) is small
and, again, that the quasifree asymptotic behavior sets
in early. It should also be noted that in many of the non-
asymptotically free models there are complicated mix-
ings between the vector mesons of the weak arid strong
groups which, in general, depend on phenomenological
angles. These particular complications must, of course,
be handled in detail. However, it seems very likely that
for wide ranges of these mixing angles and other param-
eters, the main features of the radiative corrections in
these models are similar to those encountered in the
present considerations.

Another interesting question is the possible application
to other semi1eptonic processes. The theoretical frame-
work of this paper is rather general and can, in princi-
ple, serve as basis for such discussions. Thus, for ex-
ample, the explicit demonstration of the cancellation of
divergences carried out in this work applies to arbitrary
semileptonie decays. On the other hand, in the treat-
ment of the finite parts associated with the traditional
photonic corrections, we used extensively peculiar
properties of the superallowed Fermi transitions and ~P
decay, namely the fact that the momentum transfer is
very small, being of 0(o.), and that aS=AC =0 vector
current is conserved to zeroth order in a. In a general
process these simplifying characteristics are no longer
extant and one must develop approximate methods to
treat thephotonic corrections. A similar problem arises
when one considers the corrections induced in the matrix
elements of the weak currents by the quark mass term
~m discussed in Sec. V. Because of the nonrenormal-
ization theorem (Behrends and Sirlin, 1960; Ademollo
and Gatto, 1964), which was established many years ago
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to answer precisely this question, the mass shifts do
not alter the zero-momentum-transfer matrix element
of the conserved vector current. In a general process,
however, these renormalization effects will, in general,
introduce nonvanishing corrections of order a. It seems
clear, however, that the methods developed in this paper
can be widely applied to study the radiative corrections
of order G~ to amplitudes not affected by photonic cor-
rections or mass shifts, in arbitrary semileptonic pro-
cesses. As an example, it is interesting to note that the
current algebra formulation may be used to derive cer-
tain constraints imposed on a class of gauge theories by
the absence of contributions of order G~e in neutral AS
=1 processes such as K~ - p. '+p (Hagiwara, 197V)."

In special circumstances, strong results on correc-
tions to semileptonic processes may be obtained by other
considerations. For instance, using gauge invariance
and elementary considerations of analyticity, it has been
possible to show that the coefficient of the logarithmic
lepton mass singularity in the fractional corrections to
the total decay rate A(n -I+ v, ) (where I =e or g) is not
affected by the strong interactions (Marciano and Sirlin,
1976). This theorem has interesting implications for the
prediction of R(m-e+ v, )/R(w - p, + v„) and the verifica-
tion of e —p, universality.

Finally, we should like to emphasize the importance
of a detailed experimental analysis of pion P decay (v'- m'

+e'+ v) (Depommier et aL, 1968). Although measure-
ments of the decay rate at the level of precision neces-
sary to detect the effect of the radiative corrections
seems difficult, the fact remains that this decay is one
of the most elementary and fundamental processes of the
weak interactions and should, in principle, be measured
accurately.

ACKNOWLEDGIVIENTS

I am grateful to the Brookhaven National Laboratory,
where part of this paper was written, for the warm hospital-
ity extended to me during the month of August, 19VV; Iwish
to thank M. A. Beg, J. Bernstein, R. Brandt, R. J.Crewther,
C. A. Dominguez, R. P. Feynman, R. J.Finkelstein, H.
Fritzsch, M. Gell-Mann, T. Hagiwara, T. D. Lee, J. Lowen-
stein, D. Minkowski, I. Muzinich, A. Pais, J.C. Pati,
and M. Veltman for very stimulating conversations, and
W. Angerson, L. S. Brown, W. J. Marciano and D. H.
Wilkinson for useful and clarifying private communica-
tions.

I also wish to express my indebtedness to Benjamin W.
Lee, whose papers and lectures have been a constant
source of stimulus and inspiration to two generations of
physicists.

APPENDIX A: GENERALIZATION OF THE
ANALYSIS OF BROWN, PREPARATA, AND
WEISBERGER

As it was mentioned in Sec. III, the theoretical justifi-
cation of the on-mass-shell perturbation formulae which
served as the starting point of our discussion- of the

These constraints were first discussed in Glashow and Wein-
berg (1977).

three-point correlation functions Isee, for example, Eqs.
(3.6)-(3.8)J, is to be found in the work of G. Preparata
and W. I. Weisberger (1968) and, in greater detail, in
the basic paper of Lowell S. Brown (1969). In this appen-
dix, we focus on the more complicated case in which the
external particles are spin —, systems, provide a missing
argument in Lowell Brown's discussion, and generalize
the analysis to parity- nonconserving perturbations.

In our discussion we neglect possible 66'-violating in-
teractions. In order to justify this approximation in the
study of the three-current correlation functions, the fol-
lowing observations are relevant: (i) in the standard
model with two left-handed quark doublets, four right-
handed quark singlets, and one Higgs doublet, gP is
automatically conserved (Kobayashi and Maskawa, 1973;
Harari, 1976). (ii) If there is more than one Higgs doub-
let, 66' may be violated in the Higgs sector (Weinberg,
1976). However, subject to our assumptions, the virtual
exchange Of Higgs mesons can only contribute to the ra-
diative corrections toO(G~) which we regard as negligi-
ble. (iii) In models with right-handed doublets or more
than four flavors, 66' may be violated in the interactions
of the vector mesons (Kobayashi and Maskawa, 1973;
Harari, 1976). Although in such models the smallness
of the 8+ odd amplitude is not explained naturally, the
phenomenological analysis of 8+ violation implies that
it is suppressed by a factor e of O(10 '), so that its con-
tribution to the matrix elements of Fig. 1(b) is expected
to be of O(10 'G~a), Furthermore, if the interaction of
g with the usual bQ=1, AS=~C =bC'=0 current (C'
stands for any additional additive quantum number be-
yond S and C) is invariant under g, then the form factors
induced by odd q perturbations contain a v/2 phase dif-
ference with the lowest-order form factors, so that there
is no interference to order @~a in the decay rate. 7 Thus
we conclude that the neglect of the 86' odd amplitudes in
the study of the three-current correlation functions is an
excellent approximation.

Returning to the discussion of the on-mass-shell per-
turbation formulae, we recall that Lowell Brown's meth-
od consists of the following steps. First one derives the
perturbation formulae for the amplitudes of the weak
currents, using canonical off-mass- shell perturbation
theory, and considers the appropriate limits dictated by
the reduction formulae. The second step is to verify
that the on-mass-shell formulae epitomized by Eqs.
(3.6)-(3.8), or their generalization to spin ~ external
systems, lead to the same answer. In order to do this
it is necessary to consider in detail the insertions of the
perturbation in the external legs and verify that they give
rise to the field renormalizations of the external parti-
cles with the correct coefficients and to the alteration of
the proper vertex of the weak current from the zeroth
order to the perturbed mass shells as dictated by the
reduction formulae.

Consider, for example, the perturbation associated

~This statement is rigorously true if one neglects the final-
state Couloxnb interaction or if one adopts the approximation
that this interaction end the radiative corrections of order o.'
factorize [see, for example, Dicus and Norton (1970)]. On gen-
eral grounds, there may be interference effects of O(~ C~Zo,'),
which are clearly negligible.
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with virtual emission and absorption of S'" along the
hadronic line. The on-mass- shell perturbation formula
analogous to Eq. (3.6) contains, before taking the limit
q —p —p', and performing the indicated subtractions, an
amplitude proportional to

~ 2

4(2lr) f 2* —m J„

x& p'i T[&"(y)(J'(~)&.' (0)+h.c.)]lp&

where the subscripts k, y, and x indicate the appropriate
integrations, p" = m», and P5= m'„(m„and m„, are the
masses of the initial and final hadrons to zeroth order in
()(). For our discussion, it is useful at this stage to

separate out the contributions to the above amplitude
which involve diagonal insertions of the perturbation in
the external spinor line of momentum p'

C(5) =-iuf(P') g (p', p —q)Sp(p —(2')I "(p —(l, p)u, (p),

(Al )

where u& and u& are the initial and final spinors, I" is
the proper vertex of J~, S~ is the propagator of the final
spinor particle to all orders in the strong interactions
and Z, up to a factor, is the proper vertex of the per-
turbation�.

2'()» )z()», ,(»)2„'(2)=, e' ' f e'e '"e 'e '"(o(2'[4,„i(s"(e)e» ( ())e)»c) 4 e] o().
1

)r» —miv e g V

(A2)

Here (J) is the fieM of the final spinor and p, and p, are
arbitrary momenta not constrained to the mass-shell.
In Eqs. (Al) and (A2) we have not considered off-diagonal
insertions in which the perturbations mix different spi-
nors in the external line, as these contributions are not
singular in the limit q-p —p . Because of this fact, such
off-diagonal contributions will give obviously the same
results as in the canonical perturbation theory and pose
no problem. On the other hand, the diagonal insertions
of Eq. (Al) are more delicate because the propagator S~
is singular in the limit q-p —p . For later use it is
convenient to write

C5I~) =-iu~(p') Z (p', p'+ «)S~(p'+ «)r" (p'+ «, p)u, (p),

where we have set

a2 ( P5, p) ) —E( a(( p), P5 ),
1 (i=1, 2, 4, 6)

—1 (i=3, 5, 7, 8)

(A 8)

where no summation over i is implied on the right-hand
side of Eq. (A8). Equations (A8) are very important in
comparing the results of the on-mass-shell perturbation
formulae and the canonical off-mass-shell formulation.
For example, in the latter approach what is relevant is
the vertex Z (p„p, ) (that is, p, =p, with p, generally
off-shell), so that the form factors a5, a4, a„a7, and a5
obviously do not contribute. Vfe must verify that the
same is true for the on-shell perturbation formula in the
limit q-p —p' or, equivalently, g-0. To check this we
need to prove that these form factors give vanishing con-
tributions to Eq. (A3) as «-0. Writing the strong inter-
action propagator as iS~(p'—+ «) = (lI('+)t —m„, ) ' —DR(p'
+)t') where 3)I is not singular as «-0, we must show that

9'= p —p (A4) lim u~(p') f-a5(p', p'+«))t+a, (p', p'+«)[p', )t]+a5(p', p'+«)
K~O

Note that p and p' are on-shell moment@ while p'+It. , p,
and p, are in general off-shell. Qn general grounds of
covariance

&(p. , p, )=a. +W(p'. +A)+a.(A. p) +a[I' p'-j

+ a57 5 + a5( 85 + J 2 ) Y5 + a.(P'5 —Pl ) Y5 + a5 [1 5.P'2 )Y5,

66 Z" (x)(6(P) ' =-Z,', (-x, «, ),
it is easy to derive the relation

(A6)

Z (P„P ) = Cy, z '(-P„P.) y,C ', - (A 7)

where C is the usual charge conjugation matrix, T
m'cans transpose, and p, (i =1,2) are the four vectors ob-
tained from p, by changing the sign of the space compon-
ents. Inserting Eq. (A5) into Eq. (AV) we derive the re-
lations

(A5)

where the a, (i = 1, 2. . . 8) are invariant function of p,',
(p, —p, ) and p', . Using the transformation law under
8(P

x y, —a, (p', p'+«)«y5+a, (p', p'+«)[8', «]y5)

x, -JR($'+g) =0. (A&)
1

Equations (A8) imply that a((P5, p, ) (i=3, 5, 7, 8) are pro-
portional to odd powers of p, —p2 or, upon setting p, =p',
p, =p'+«, that a, (p', p'+«) (i =3, 5, 7, 8) are proportional
to odd powers of (p'+«)5 —m'„, . These factors cancel the
singular part of the propagator, and the vanishing of the
contributions of a„a„and a, then follows immediately
because they involve additional cofactors proportional to

To show the vanishing of the a, contribution we note
that JR(Jt('+g) does not contribute because a, vanishes as
g-0, we rationalize the singular part of the spinor prop-
agator, and we anticommute with y, so that the g, term
becomes -Iim„, u~(p')gy, a, (p', p'+ «)[(p'+ «)' —m'». ] '.
This expression vanishes for the same reasons applied
to a5, a, and a . Because a4(P5, p, ) is even under P5—p„we need a special argument to show the vanishing
of its contribution. Again 3|I(p'+g) is irrelevant because
the cofactor of a~ is proportional to g. To treat the con-
tribution of the singular part of the propagator we ob-
serve that after some elementary algebra it can be cast
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6C, , =6 „, ,(p') ~, ~ )
g"(q), (A 11)

from Eq. (A3), where g "(q) is the on-shell vertex of the
current J~ to zeroth order in u, evaluated at momentum
transfer q". By following the discussion of Lowell Brown
one sees that, after subtracting this term and taking the lim-
it & -0, the contributions of a, and a to Eq. (A3) contain
the correct field renormalization of the externa1 legs
and the proper adjustment of the form factors from the
zeroth order to the corrected mass shells. . For phys-
ical applications, it is important to note that in this ap-
proach the Eeroth-order contribution is given by

Ao = -'u~( p') (f&(e') ~" +f2(~')o" 'q. +f:(V')V"

+[gl(e')r" +~'(O')o" q. +g:e"]~.&u;(p),

where p and p' are the four-momenta constrained to the
corrected mass shells, q" =(p —p')", and the form fac-

(A12)

into the form -lim„o a4( p', p'+z)u~(p') (-g+ z'(2m„.
+ g)/[tP+2p' a] f which obviously vanishes provided the
limit is taken with some care. ' We conclude that as z
-0, only the form factors a„a, and z6 contribute, the
same as in the canonical off-shell perturbation calcula-
tion. We note that the contribution of a6 is not singular
as g -0: in fact,
lim a, ( p', p'+ g)u~(p')(p" + p'+ g)y, J, , -3g($'+ tt')
K~O P + g —PPZ~r

=-a,(p', p')u~(p')y, [1+2m„,K(p')] (A10)

which coincides with the answer provided by the canonical
off- shell approach.

The contributions of a, and a are more de)icate be-
cause they are singular in the limit &-0. They require
the subtraction of a term

tors f ', and g, (i = 1, 2, 3) are the zeroth-order form fac-
tors of the vector and axial-vector parts of J~ evaluated
at the zeroth-order mass shells. Equation (A12) is the
counterpart of Eq. (3.3) when only the zeroth-order form
factors I'P' are included, while Eq. (A11) (up to a -&
factor) is analogous to the second term in Eq. (S.S).

The discussion when the external hadrons are spin-0-
objects is simpler because in that case the diagonal.
perturbation insertion analogous to Z(p„p, ) cannot have
pseudoscalar components, as it is impossible to con-
struct such quantities out of two momenta. Thus, for
spin-0 external hadrons one can use directly the analysis
of Brown (1969).

The discussion in this appendix complements Brown
(1969) in two aspects when the external particles are
spinors: for parity-conserving perturbations we provide
an argument for the cancellation of the contribution of
the a~ form factor to Eq. (AS) which is important in
establishing the validity of the method and, using 65'
invariance, we extend the on-mass-shell approach to
parity-nonconserving interactions.

APPENDIX B: ABSENCE OF OPERATOR SEAGULL
TERMS IN THE HADRONIC CORRELATION
FUNCT IONS

We consider, for example, the amplitude T~&, in Eq.
(3.17), which represents the photonic corrections of or-
der ~ to the vertex of the weak current J~. Qn general
grounds such amplitude involves the matrix element
(p'~ T*[J~~(y) J„(x)J„(0)]~p) where the T* product may
differ from the ordinary T product by terms proportion-
al to 64(y —x), 54(y), 64(x), 64(y —x)6~(x), and derivatives
thereof. That is,

T*[J"(y) J (x)J (o)] =T[J"(y) J'( ) J, (o)]+T*[0," ( )~'(y- x)J, (o)]+T*[0"'(0)~'(3)J„( )]
+T*[0," (0)64(x)J&(y)]+0,""6'(y- x)6'(x)+ ~ ~ ~,

(Bl)

where the ~ ~ ~ represent possible terms involving deriva-
tives of 6 functions. Note that Eq. (3.17) is explicitly of
order ~. Thus to the order of our calculation all the op-
erators in Eq. (Bl) are to be considered to zeroth order
in e or g. Dimensional analysis tell us thatO„O„and
03 must be of dime ns ion 2, 04 of dim en sion 1, whi le the
operators represented by the dots can at most have di-
mension 1. However, in the underlying theory, the
"color gauge-invariant" hadronic operators have dimen-
sions ~3. Thus operator seagull terms are not possible
in Eq. (Bl). As we mentioned in Sec. III, a c-number
contribution to 0, would correspond to a nonconnected
amplitude and is subtracted. As there are no nontrivial
seagulls and Schminger terms, one expects on general
grounds that the Ward identities we extensively used are
free from anomalies. This can also be seen in a differ-
ent way: anomalies in the Ward identities involving
three operators usually arise because the equal-time
commutator of two of the operators involves a limit e

It is sufficient, for example, to write v=(~ vrhere i is a
fixed four-vector such that p't7; & 0 and then take the limit (—0.

- 0 and there is a contribution in which the third opera-
tor is "pinched" between the original two (Jackiw and
Johnson, 1969). Whether or not an anomaly may possi-
bly arise depends on whether this pinching contribution
vanishes as e-0. This in turn depends on how the pro-
duct of the three operators scales at short distances. In
our case, the product of the three currents for y -x- ~
cannot be more singular than e 6 because it must be pro-
portional to an operator of dimension 3. As the equal-
time commutators in the Ward identities associated with
T"„, involve a seven-dimensional integration
[J e r J d xe(r t, for exnntpte], the whole pinching con-
tribution scales as e and therefore vanishes as e -0.

It is interesting to contrast this situation mith the mell
known case of the amplitude e'(0~ T*[j,"(y)J&~(x)J&(0)]~0).
Here the dimensionality of the product of the three cur-
rents is 9 and a c-number seagull proportional to a 6
function times the derivative of another one is possible,
because me consider a vacuum-to-vacuum amplitude. In
fact, detailed study (Sackiw and Johnson, 1969) shows
that such seagulls exist in perturbation theory and that,
moreover, at least one of the Ward identities is anom-
alous. Note also that the analysis of the hadronic con-
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tributions to the (WW), (Wy), and (PP) propagators in-
volves T* products as c-number seagulls give nonvan-
ishing contributions to vacuum expectation values.

APPENDIX C: EVALUATlON OF THE CORRECTlONS
OF ORDER g S (&cz }

In this appendix we discuss the corrections of order
g~ induced by the strong interactions in the evaluation of
the finite parts. It is important to note that all the con-
tributions derived by application of the Ward identities
associated with the time-time and time-space algebra,
without recourse to short-distance expansions, are com-
pletely unaffected by the strong interactions. These in-
clude most of the large photonic corrections associated
with the vector current, which constitute by far the dom-
inant contribution, and the term proportional to 2 cot 9~
in Eq. (4.35). On the other hand, the finite contributions
evaluated with the aid of the short-distance expansions
are expected to be affected by small corrections induced
by the strong interactions. These are the terms involv-
ing the tensors T(z&'&, T(('&, and A(('& in Eqs. (4.5), (4.6),
(4.21), and (4.32) and a small contribution to the photonic
corrections discussed at the end of this appendix. In
fact, although in the case of P decay these terms are not
altered by the logarithmic factors associated with anom-
alous dimensions, the coefficient functions in the expan-
sions do depend on gs(&(,'). We recall that if the quarks
transform according to the fundamental representation
of the color group SU(n)', then in the asymptotically free
theory the effective strong interaction coupling constant
is given approximately for K ~ p. by

2. 2 2 2 2 1gs( ) gsR 1~ gs» [11 2f] ln
4m 4n 48m

(C 1)

where g«, p, and f are defined after Eq (4.16).. We
take». = O(M') «m~ whereM is the mass scale discussed
in Sec. IV. Inthe case n= 3, we recover Eq. (4.16). As
g2s(»2) approaches zero slowly, it is interesting to in-
quire about the magnitude of the O[gs] corrections. As
shown by Beg (1975) in a similar case, the terms of
O[gs] in the coefficient functions may be gleaned from
the work of Adler and Wu-ki Tung on the perturbation
theory contributions to the Bjorken-Johnson-Low limit,
which was carried out in the Abelian model (Adler and
Tung, 1969; Adler, 1970). In fact, to this order the
only complication arising from the non-Abelian nature
of the strong interactions is an additional factor ( —,')g'g'
where the ~' are the matrices corresponding to the fun-
damental representation of SU(n)' and the summation is
over the n2 —1 generators of the group. Thus we obtain
the coefficient of the g~ corrections by multiplying the
Abelian result by the eigenvalue of the quadratic Casimir
operator for the fundamental representation of SU(n)',
~amely (n' —1)/(2n). The corrections associated with
Eq. (4.21) and the last term in Eq. (4.32) involve the
components of T"~ which are antisymmetric in the
Lorentz indexes. For these components one finds in the
Abelian case a correction factor 1 —3g2»/16»'. The
corrections of Eqs. (4.5), (4.6), and the second term in
Eq (4.32) invo. lve the components of T ~ which are sym-
metric in the Lorentz indexes. The g» contributions
in this case are somewhat different (Adler and Tung,

gg K

We now discuss a method to evaluate the relevant inte-
grations when g2s(»')/(4&T') is inserted. We parametrize
Eq. (4.16) or the more general expression of Eq. (C1) as

g', (»') c,
4n' 1+c, In(«'/p')

and consider first
OO 1

AJ&(ml, ) = — d&(.
'

(&(.'+m2~)' 1+c,ln(y'/g') '

(C3)

which represents the correction to the integral in Eq.
(4.15) induced by ass. As Eq. (C2) is only valid for &'
~ p2 we have introduced a lower cutoff in the integral
which, for simplicity, is assumed to be equal to }L(,2.
(Choice of a different cutoff M' «m2~ will simply give
rise to differences of O[Gs] which are negligible). In-
troducing a new variable z = In(&2/p2), b j, can be cast
in the form

ez v
CoAJ Z-V 2 dZ ~&n~, (e '+1)' 1+c z

where

v = ln(m2~/p. ') .

(C4)

(C 5)

Equation (C4) is very similar to integrals that appear
frequently in statistical mechanics. ~ For large v one
can study these integrals by a variant of a method due to
Sommerfeld (1928). As in that case the first factor in
Eq. (C4) is sharply peaked at z = v, the idea is to expand
the relatively slowly va.rying function c~/(1+c,z) in a
Taylor series about z = v. Using the identity

c,'(v-z)' c,(v-z) "
1 + ciz ( 1 + ci v ) 1 + c& v 1 + c&z

one readily obtains

&&x —
1 «+& I«(v)+»

1 c(&(—cy) (1)
m~ 0 1+c,v

where I,(v) and the remainder 61(»" are given by

(C6)

I«(v) = (, )2 y dy,

C ez v
61(l& &. (v z)» 0

1+c,v 0 (e* "+1) 1+c,z

(C8)

(C9)

Using the fact that I«(v) =I«(~) + O(e ") and e " = ».'/m ~

See, for example, Sec. 11.1 in Huang (1963).

1969; Adler, 1970). However, when the Lorentz indices
are contracted to form T,»~ and T~z,z the same correc-
tion factor emerges. Therefore, if we wish to retain
terms of O[gss], the integrands in Eqs. (4.13), (4.15),
(4.26), and the second and third terms between square
brackets in Eq. (4.34) must be multiplied by

(
3@*,(~*& (n' —1&

)167}2 2n

For SU(3)' the correction factor reduces to
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one finds

f,(~) = O(p, '/m2~) (k odd),

Io(v) = 1+ O(p. '/m2~),

I~(v) =2k!g(k)(l ——,""")+O(g'/m ~2) (k even g0),

(C10)

(C 11)

&0.64/0 (in fact, we see that -0.0439m~2 &zJ,
& -0.0436m~2).

We now study
OO

ii2 (~g +K )K 1+C~ln(K /g )
(C 15)

(CI2)

where g(k) =—g, , 1/I" is the Riemann's zeta function.
An alternative representation for (R~" is obtained by di-
viding the integration in Eq. (C9) in two domains: z &v
and z &v. Introducing y =z —v and noting that e'(1+e') '
is an even function we find

yE 0 3
I+c,v, (1+e")' y I+c,(& —y)

~C , „), ln(1+c,z)dz.
pN~ g (1+e (C 16)

Integrating Eq. (C6) between v and z, inserting the re-
sult in Eq. (C16), and carrying out the z integration we
obtain

which represents the g s correction to the integral in Eq.
(4.26) (for simplicity we have set M =iu2). Introducing
again the variable z and performing a partial integration

e )» cody
il+e'i 1+c,(i +y)I

(C13)

I~(v) ln(1+ c,v)
1

(C1V)

Equations (C9) and (C13) show that »" is manifestly
positive for even ¹'In this case a crude upper bound
for 6l»" can be obtained by replacing [1+c,(~ —y)] ' with
1 and [1+c,(v+y) j ' with [1+c,v j ' in the first and sec-
ond integrands, respectively, and extending the domain
of integration in the first term to y =~. In this way we
obtain the useful upper bound for N ~ 2'~'

S'„"&co ' 1+ ¹!&X

The most practical way of evaluating AJ, for large v is
to retain just a few terms in the sum of Eq. (CV), neglect
the terms in which k is odd [as these are of O(p, '/m2~)],
and set an upper bound by applying Eq. (C14). For in-
stance, using the values g =1 GeV, g2~(g')/(4m) = —,

'

[given in Altarelli ef al. (19V6)]., m~ =63 GeV (which
corresponds to the simplest version of the Salam-Vlein-
berg model with sin29~ =0.35), setting n =3, f =4 in Eq.
(Cl), and % =4 in Eq. (CV) so that we retain only the
terms k = 0 and A, =2 in the sum, we obtain AJ
=-0.0436m~2. This represents a correction of -4.36P/o

to the integral of Eq. (4.15) (which equals m~'). It is
close to the naive estimate of -4.25% given in Sec. IV.A,
which corresponds to retaining only the A; =0 term in
Eq. (CV). Using Eq. (C14) and recalling that Q4'" &0 we
learn that the relative error in the evaluation of AJ, is

Equation (C.7) is, of course, exact. If we let N ~, it gen-
erates an asymptotic series. ,If terms of 0(e ") are neglected
we can stop the integration in the second term of Eq. (C13) at
y=v. In this approximation, Eq. (C13) shows that (Rz &0 also
for odd N. At first hand this seems paradoxical because aQ the
even k terms in the series between curly brackets in Eq. (C7)
are also positive and grow in magnitude for sufficiently large k,
so that the remainder cannot be positive for all ¹ What actual-
ly happens is that, for sufficiently large N, terms of 0(p /m+)
cannot be neglected and the sign of SN~~~ for odd N is no longer
fixed.

For odd N, a slightly better upper bound is obtained by ne-
glecting the second integral in Kq. (C13). For N ~ 3 this reduces
to Eq. (C14) with f1+ (1+catv) ] 1. For N=l, the last two fac-
tors in Eq. (C14) are replaced by ln2. See, however, the pre-
vious footnote regarding the odd N case.

where the remainder S~" is given by

es- u U

(C18)

Equation (C18) shows that S»"& is positive for odd ¹ In
that case an upper limit can be derived by an argument
similar to that used for (R~'. We divide the integration
into two regions: z &v where we set (1+c,t) '-1 and z
&v where we replace (1+c, t) ' by (I+c,v) ', finally we
extend the first region of integration to z =-~. This
leads to the following upper bound for N ~ 1"

(C19)

Using the same parameters as in the previous case and
setting N = 3 [so that we retain only the logarithmic and
A, =2 terms in Eq. (C1V)] we obtain bZ, =-0.628(1/m2~),
while the uncorrected integral in Eq. (4.26) equals
8.286(1/m2~). Thus the g2~ contribution in this case
amounts to a —V. 58%%ug correction. This relatively large
value is related to the fact that &J, involves only one
massive denominator and is therefore more sensitive
than AJ, to the lower domain of integration. Using Eq.
(C19) and recalling that 6I,"' &0, we find that the relative
error in our evaluation of b J~ is smaller than 0.13%%uo.

Next we turn our attention to

AJ — dx' C0
(»'+ m~)(w'+ m z) 1+c, In(~'/p, ')

(C20)

which represents the g2~ corrections to the integral in-
volving the second and third terms between square
brackets in Eq. (4.34). Equation (C20) may be expressed
in terms of AJ2:

2For even N we may obtain a slightly better upper bound by
neglecting the z & v domain in. Eq. (C18). This leads to Eq. (C19)
with [1+(1+viv) ] 1. For S.~ ~~ with even N, observations
analogous to (Rz ~ with odd N are applicable (see footnote 50).
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m ~g(m ) —m zJ(m )
~Z ~W

(C21)

X
C0

1+c, In(g '/g') (C22)

which represents the &s correction to the integral ~n

Eq. (4.13), can be expressed as

~Z =(m'+m')zZ, —m'aZ, (m') —m'zv, (m'). (C23)

If we evaluate the right-hand side of Eq. (C23) using the
same parameters as before, we obtain an answer with a
large relative error. [The reason is that Eq. (G23) in-
volves in this application the subtraction of nearly equal
quantities. ] However, the precision is sufficient to
establish that the g2~ correction is smaller in absolute
value than 7%%uo of the uncorrected integral of Eq. (4.13).
The latter contributes in this case a particularly small
correction of -3 &10 to the transition probability, so

- that the above upper bound is sufficient to show that AJ4
is completely negligible.

Finally, we discuss a very small contribution of O(g ~)
which arises in the study of the photonic amplitude ~& „.
According to Eqs. (3.26), (3.33), and (3.35),

'Eg

4(2m)4

where T&~~~& is defined in Eq. (3.32).
Performing a partial integration, we find that two con-

tributions 'UI' ~ (j = 1, 2) arise, proportional to [m~/
(~;—u2)] [2u&/u'] and [mg/u2] [2—u" /(m' 0')']. A—s
shown in Abers et al. (1968), in the limit of zero lepton
momentum 'V&&'

&
cancels against part of the photon box

exchange diagram and need not be evaluated explicitly.
other hando~ ~~

~
is given by

i 4 sin'I9
CU (2)' g 1V

2(2m)' (q' —m2~)

m2

We now observe that the integral in Eq. (G25) is the
same that occurs in the first term of Eq. (4.6), that is,
the integral A",» evaluated in Eq. (4.15) and in the pres-
ent appendix. In fact,

(C26)

where m~~ch J, represents the 0(g2~) corrections dis-

As an illustration, if we evaluate ~J2(m~) and AJ2(m~)
by setting %=5 in Eq. (C17) and use the values of m~
and m corresponding to sin2L9~ =0.35, we find AJ,
=-0.0184(m~-m2~) ' with an error S0.7%%u~. The uncor-
rected integral in Eq. (4.34) equals 0.4308(m~ —rn~) '.
Thus the g2~ contribution amounts to a -4.3%%up correction.
This effect is easy to understand since in the above mod-
el m~ = 78 GeV is not too different from m~ and we ex-
pect a result close to that found for AJ, .

At this stage we note that the integral

az =-(rn -m )
2 2 2 K dK

4 Z W (~2+ ~2 )2(~2+ ~)2 )2

cussed at the beginning of this appendix. The relative
correction —n/(8n) was correctly included in Abers
et al. (1968), where it was obtained heuristically by dif-
ferentiation of an ad hoe cutoff function. On the other
hand, theO(g2~) term -(o/8v)m2~aJ, represents a new,
albeit very small, contribution.

APPENDIX 0: QUARK MASS RENORMALIZATION

In this Appendix we discuss briefly the quark mass
renormalization with respect to the weak and electro-
magnetic corrections.

In the "primed" representation in which the SU(2)
doublets are expressed in terms of unmixed quark
states, the bare mass term in the effective Lagrangian
density is of the form -P'mo P'+h. c. where mo is, in
general, a nondiagonal, non-Hermitian matrix acting on

the flavor indices, which commutes with the electric
charge operator Q and contains the Dirac matrices 1 and

y5. The matrix mo is generated by spontaneous symme-
try breaking from the most general gauge-invariant cou-
plings of the quarks to the Higgs scalars. If the coupling
constants of such Yukawa interactions are not restricted
to being real or if more than one Higgs multiplet devel-
ops vacuum expectation values, mo will in general be
also complex. Furthermore, in many cases of interest
such as the minimal SU(2) &U(1) models with two doub-
lets of left-handed quarks and four right-handed singlets,
rn,' is an arbitrary matrix, safe for the requirement that
it commutes with Q. As mentioned in Sec. V, this is re-
lated to the fact that in these models there are no natural
zeroth-order relations among the particle masses and/
or mixing angles. The arbitrariness of mo is easily
verified. In the four-quark model a charge-preserving
m,' involves at most eight complex parameters. On the
other hand, as the left- and right-handed quarks trans-
form under the gauge group as doublets and singlets,
respectively, the Higgs mesons which participate in the
Yukawa couplings must necessarily be doublets. It is
then sufficient to note that the Yukawa interactions of a
single doublet involve eight independent coupling con-
stants's (in general complex) which, after spontaneous
symmetry breaking, contribute to mo.

To generate the mass counterterms we write mo =m'
—Sn'where m' is regarded as the "renormalized" mass
matrix'4 and Sn' represents the mass counterterms of order
cy. We may now diagonalize m' by applying independent uni-
tary transformations to the left- and right-handed quark
fields g~ „=U~ „g~ ~ (Weinberg, 1973b). In the un-
primed frame the mass terms in the Lagrangian become
—PmP+P6~+h. c., where m is now real, diagonal, and
free from y, matrices. By choosing judiciously the
phases of the quark fields, the charged and neutral cur-
rents of the four-quark model can be written, in the un-
primed frame, in the form given in Sec. II (Kobayashi
and Maskawa, 1973; Harari, 1976). Aside from the
quark charges, they involved only two parameters, g

and g~.

~3see, for example, Marciano and Sirlin (1975).
54Recall that m' is proportional to a divergent constant nec-

essary for "strong" mass renormalization Isee steinberg
(1973b) and Sec. Dj.
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Since in our case the original matrix mo is arbitrary,
so also is 6m. In order to discuss the choice of 6m, it
is useful to make the following digression; Vfe recall
that thy corrections of order n to strong interaction
amplitudes can be classified as photonic and weak con-
tributions. A convenient way to carry out the separation
is to decompose the photon propagator according to Eq.
(3.33). The contribution of the second term contains all
the low-frequency components, and moreover the factor
m~/(m~ —/P) assures its ultraviolet convergence. It is
then useful to think of this as the photonic contribution,
while the corrections from the first term of Eq. (3.33)
may be combined with the corrections arising from the
virtual. exchanges of the massive particles of the theory
[W, Z, P, etc. . .]. We shall refer to these latter con-
tributions as "weak corrections. " As implied by the
analysis of Weinberg (1973b), the divergent parts as
well as the finite parts of order m in the weak correc-
tions involve the matrix elements of operators of class
(1) and (3) discussed in Sec. V. This is not true of the
finite parts of order o(/m~, but in the present context the
latter are regarded as negligible. The simplest pro-
cedure is then to adjust the counterterms Cc„O„, and
therefore the arbitrary mass matrix 5m, to cancel the

eak corrections of order a to strong interaction ampli-
tudes, both finite and divergent, as well as the diver-
gent parts of 0(o/m~}. That this subtraction can be
done in a gauge-invariant manner follows from the fol-
lowing observations: (i) the sum of all corrections of
order o. to physical strong interaction amplitudes (in-
cluding tadpole diagrams) must be gauge invariant and
(ii) the only contributions of order o. to such amplitudes
that we have not subtracted are the photonic corrections
which are separately gauge invariant. " As the correc-
tions to weak amplitudes exhibited in Eqs. (5.2) and (5.3)
involve exactly the same constants c„and operators 0„
as the weak corrections of order e to strong interaction
amplitudes, they will be also canceled automatically by
the 5c„o„contributions. Note that these cancellations
are possible because c„O„are independent of the nature
of the hadronic states in the amplitude (although they do
depend on properties of the underlying theory such as
quark masses). With this choice of counterterms, the
effective quark mass matrix to order a can be identified
with the matrix I introduced in Eq. (2.7), which is real
and diagonal, and the unprimed quark frame may be re-
garded as the physical frame. We recall that, in the
models under consideration, the matrix m involve four
arbitrary renormalized parameters m„(o.' = u, d, s, c).
As pointed out in Sec. V, in order to study corrections
to isospin symmetry, which is violated by the difference
m„-m„, it is convenient to split m into symmetry-pre-
serving and symmetry-breaking parts.

In theories with zeroth-order natural relations between
the quark masses and/or mixing angles, 5m is not ar-
bitrary and Qg, O, cannot be adjusted to cancel the weak
corrections of order a. In this case there are finite

~~Ah. ternative and physic ally equivalent procedures, in which
the counterterms are adjusted to cancel only the divergent parts
of the weak corrections to the quark mass matrix, have been
discussed in the Appendix of Sirlin (1975) in connection with
simple SU(2) &&U(l) models.

2

ii„(e*)=i J d'xe"'*(0[T [e(x)8 (0)[)0&,

where S is given in Eq. (6.8). Writing
I

(II„)„.= A„(q ')g„„+B„(q')q„q.,
contracting (II„)„„with q", q", and q" q", and using Eqs.
(6.4) and (6.12) we obtain the Ward identities

Ca«')~w =Ch{q'}~w=&a(q')+Bh(q') q',
2 2

11.(q') =-[A.(q'}+B~(q'}q'I 2 +
4

(E6)

(E I)

where S,(0) is defined in Eq. (6.2).
We recall that B„(q2) and A„(q') require one and two

subtractions, respectively. In fact, their divergent
parts. are of the form

X" (q') =(5m') ' +(Z" —1)""(q'-m')
B„'"(q') = —(Z)( —1) '" .

(Ee)

{E9)
The structure of Eqs. (E8) and {E9)follows from the ob-
servation that the divergent parts of (E5) can be re

weak contributions of order o. to strong interaction am-
plitudes which can be described as arising from a cor-
rection 5m ~ to the quark mass matrix. If the effective
quark mass matrix m+5m ~ is diagonal, the unprimed
quark frame can be identified with the physical frame.
Otherwise, in order to transform to the physical frame,
it is necessary to diagonalize as+5m ~ by means of suit-
able unitary transformations. Such transformations may,
in principle, induce effects of order e on the weak inter-
action currents which must be included as part of the ra-
diative corrections to the weak vertices.

APPENDIX E: DIVERGENT PARTS OF THE
HAD RON IC CONTRIBUTIONS TO (I)I['W), (I)I['P), AND

((t)P) P ROPAGATORS
In this appendix we discuss the hadronic contributions

to the (WW}, (W(t)}, and (pQ} propagators in the simplest
version of the Vfeinberg-Salam model, show how the di-
vergent parts are canceled or absorbed in the definition
of the renormalized constants, and prove directly that
the divergent part of (5m~/m~ —5g/g+ [Z~ —1]/2) does not
depend on the dynamical details of the strong interac-
tions, a result that was obtained indirectly in Sec. VI.B
[see Eq. (6.40)]. Call i(II„}„„, iC„(—q')q, iC„-(q' )q„,.
and iII„(—q 2) the hadronic contributions to the unrenor-
malized (WW}, (W@}, ((t)W}, and (PP) self-energies

2

(ri„)""= —(( ) Jd'xe" *(ale'"[e"(x)Z„"(0))ID),

(E1)

C (() e=ee "fSxe" (OIT''I&(x)'*&'"(0)l(O),
W

(E2)
2

iC„(q-)q" = d xe" "(0~ T*(J~(x)S"(0)]~0),m
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moved, in principle, by W mass and field renormaliza-
tion counterterms.

We shall now consider the effects of the various coun-
terterms on the self-energies. For simplicity, we shall
choose not to rescale the unrenormalized W and @ fields
so that, except for the gauge-fixing term to be discussed
later, we shall not be concerned with field renormaliza-
tion counterterms. The g mass renormalization cancels
the first term on the right-hand side of Eq. (E8) (we
implicitly assume that tadpole counterterms have been
adjusted to cancel the tadpole graphs). " Thus, after
mass renormalization, the only divergent part of A„(q')
is (Z~ —1) "(q' —m ~). When this expression is inserted
in the diagram of Fig. 7(a), its contribution is a multiple
of the zeroth-order amplitude and (Z~ —1) " is absorbed,
in the usual manner, as part of the renormalization of
the go's at the two ends of the 5 line. There are also
countertel ms associated with the mixed self-energies.
These arise as follows: in the bare Lagrangian there is
a term of the form ig AO, /2(W„B" Q —W„B"p), where

gA /o2=m'„ is the unrenormalized W mass. In the
O'H ooft-F eynman gauge, the gauge- fixing term is

(W@) and (PP) self-energies and the relevant counter-
terms. When all. these contributions are inserted in dia-
grams 7(a)-(d) they lead to the following amplitude

3R„''=i — P' 8 P b'av, m,

X ah q2 Ch q2 6mWh
W

2

II„(q') — g, (o fs, jo} (E 10)

where the three terms between curly brackets represent
contributions from the (WW), (WP), and (PP) diagrams,
respectively. Using the Ward identities (E6}and (E V) to
eliminate C„(q') and II„(q2), Eq. (Elo) can be cast in the
form

2
3}I„'~' =i (p')S)p) (u, a, v,), , m.

2 g —PB
W

q'-m')
A, „q + q —m B„q2

Z Z@ Zw Zg

[A, (q*) —(am*„)„t
IfB

W

(E 11)

where mw is the renormalized g mass. The renormal-
ization constants Z~ and Z@ appear because W and p
represent here unrenormalized fields. (Recall that the
gauge-fixing term does not involve counterterms when
expressed in terms of the renormalized fields (Taylor,
1976). These vZ~ and vZ& factors generate counter-
terms to the (WW), (WQ), (@W), and (QQ) self-energies.
However, an elementary calculation shows that to the
order of our calculation their contributions to the dia-
grams of Figs. 7(a)-(d) cancel among themselves. Thus,
for our purposes, we can ignore these counterterms and

imagine that vZ~ and WZ~ in the gauge-fixing term have
been replaced by unity. After a partial integration the
mixed contributions in the gauge-fixing term are given
by im~(W„-B "&j& —W B"Q). When this is combined with
the term im~~(W„B "@~—

W~tB "p) in the bare Lagrangian
there remains a counterterm ihm~[W-„B "@t—W~B "@].
The effect of this counterterm is simply to replace C(q')
-C(q') —5m~ in the mixed (WP) and (@W} self-energies.
There is also in the Lagrangian a counterterm of the
form 6(~ @( '+2m~~go/go}. The hadronic part B„of the
renormalization constant can be adjusted so that the
term linear in &g cancels the hadronic contribution to the
tadpole. Then 6„ is determined and 5„~ @~

' gives a con-
tribution to the (p@) self-energy which exactly cancels
the zero-momentum-transfer correction represented by
the second term on the right-hand side of Eq. (EV). In
other words, we may ignore the tadpole graphs if at the
same time we disregard the 6 counterterms and the
zero-momentum-'transfer part of the (@Q) self-energy. '

We have already seen how the divergences in A„(q')
are canceled or absorbed in the definition of the renor-
malized constant g. We now consider the contributions
of the B„(q') term in Eq. (E5) in conjunction with the

~ See Sec. VI. B.
See also the discussion in Taylor (1976) Sec. 14.6.

Recalling Eqs. (E8) and (E9) we see that the divergent
part of zph@' is given by

~ 2

(II„"&)""=- 'g
& p (S)p& (u. ~, &.)

5m' i

dlV

(Za, )
yPg W J

This can be written as

(3}I„'~') ' =3}I,'~'(Z" —1)
'

(E12)

(E13)

(Z 1} (Z —1)W ~2 ~ d~2

(E 15)

The second relation in Eq. (E15) follows from (EV), (E8),
and (E9). Equation (E13) is equivalent to a counterterm
of the form

(Zh 1}div

in the Ph'h vertex and an equivalent expression in the
Pev, vertex The coun. terterm

g(Z~ - 1)-""

may be included in 6Z PgP of Eq. (6.23). Recalling that
the only contribution to 6g which is affected by the dyna-
mical details of the strong interactions arises from the
hadronic corrections to the 8' propagator and calling
this part 6g h, we have

2

gg(@)= P' 5 P 2 2 2 u g+v, E14
2 ~w

is the zeroth-order amplitude of Fig. 5(a} and

Rev. IVlod. Phys. , Vol. 50, No. 3, July 1978



A. Sirlin: Current algebra radiative corrections in gauge theories 605

1 ~h ] div

Making use of Eq. (E15) we see that

g~ h g+h ~h y
dlv

g 2

Thus, although the counterterms

(E 16)

and (Zq —1)/2

in Eq. (6.23).
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