Feynman rules for lattice gauge theory*
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We use functional techniques to give a simple derivation of Wilson’s Feynman rules for strongly coupled
gauge theory formulated on a lattice. Coupling sources to the various degrees of freedom, we obtain a
compact formal expression for the Green’s functions of the theory. The theory is rewritten in terms of
creation and annihilation operators for quarks and “string bits” in a new space called “string space.” This
formulation emphasizes the close analogy with a lattice version of the string model. We also give a
systematic diagrammatic procedure to evaluate all group integrations arising in the strong coupling

expansion.
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I. INTRODUCTION

Confinement is a conjectured property of a theory of
quarks interacting with non-Abelian gauge fields (Polit-
zer, 1974). I quarks are indeed confined, i.e., if free
quarks do not exist, then we have a promising candidate
for a theory of strong-interaction dynamics. This is all
the more exciting in that it raises the possibility that all
interactions realized in nature may be based on gauge
theories.

Unfortunately little hard evidence exists for confine-
ment in the strong-interaction gauge theory. Perturba-
tion theory, historically the standard tool for studying
interacting fields, has thus far failed to expose any
clear indications of quark trapping (Appelquist et al.,
1976; Yao, 1976). Renormalization group arguments in-
dicate that for low momenta, Green’s functions in non-
Abelian gauge theory will reflect a large effective cou-
pling constant (Politzer, 1974). This in turn suggests
that conventional perturbation theory may not be a relia-
ble tool for investigating widely separated quarks. Fur-
thermore, recently discovered nonperturbative classical
solutions to gauge theories in Euclidian space suggests
a much richer structure than that revealed by perturba-
tion theory (Belavin et al., 1975).

Thus there is a strong motivation for alternatives to
the conventional perturbative approach. One problem
immediately encountered upon leaving perturbation theo-
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ry is how to handle the ultraviolet divergences occurring
in a continuum field theory. Most renormalization tech-
niques are based on the conventional Feynman diagram
expansion. Any scheme avoiding perturbation theory
must deal with these divergences so that the theory can
be defined. This is the main reason for formulating a
field theory on a lattice; it provides an ultraviolet cut-
off that is independent of perturbation theory and yields
a well defined theory. Indeed, as renormalizable theo-
ries are believed not to depend on the method of ultra-
violet regularization, one can consider a lattice as just
another cutoff procedure.

Believing that exact local gauge invariance is central
to the question of confinement, Wilson formulated gauge
theory on a lattice in a careful manner that keeps this
symmetry (Wilson, 1974, 1975; Kadanoff, 1977). This
provides a mathematically well defined theory in which
one can search for approximation schemes alternative
to conventional perturbation theory. When the coupling
constant in this theory is made large while the lattice
spacing is held fixed, an expansion in inverse coupling
This strong coupling expansion shows confine-
ment because the gauge fields form themselves into
strings with a finite energy per unit length. This results
in an effective linear potential between widely separated
quarks.

The strong coupling expansion is in terms of the bare
gauge coupling defined with a cutoff in momentum space
at the inverse lattice spacing. For an asymptotically
free non-Abelian gauge theory, renormalization group
arguments suggest that the bare coupling should go to
zero as the cutoff is removed. Thus Wilson’s expansion
parameter is expected to become large in the continuum
limit. One hopes that the confining nature of the theory
will survive this limit, but conceivably one might en-
counter some nonanalyticity such as a phase transition
to a theory with rather different properties, perhaps
with unconfined quarks. To prove that such a transition
does not occur for non-Abelian theories in four-dimen-
sional space-time remains the major problem of lattice
gauge theory.

Ordinary quantum electrodynamics in Wilson’s for-
malism has the undesirable feature of confining electrons.
The conjecture is that just such a phase transition to an
unconfined phase does occur in the continuum limit of
this theory. Mean field theory arguments (Balian et al.,
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1974, 1975) suggests that in enough space-time dimen-
tions this type of transition will occur in both Abelian
and non-Abelian theories. Migdal (Migdal, 1975;
Kadanoff, 1976) has given approximate arguments that
suggest four dimensions represent a critical case where
the transition only occurs for the Abelian theory.

The strong coupling expansion of Wilson takes the form
of a set of diagrammatic rules for calculating Green’s
functions of gauge-invariant operators. In this paper
we rederive these rules in a functional notation. We
couple all relevant degrees of freedom to external
sources and obtain the diagrams of the theory by differ-
entiation with respect to these sources. In addition, we
show how all group integrations arising in the diagrams
can be evaluated by further diagrammatic manipulations.
Having derived the rules, we work out certain classes
of diagrams that emphasize the equivalence of this mod-
el to a lattice version of the string model.

In Sec.II of this paper we review Wilson’s locally
gauge-invariant lattice theory. In Sec.III we introduce
sources coupled to the degrees of freedom of the theory.
We introduce the concept of “string space” in which ‘
these sources are annihilation operators for quarks and
“string bits.” Green’s functions of Wilson’s theory are
expressed as matrix elements in this ‘new space. In
Sec.IV we develop a graphical algorithm for evaluating
the group integrals occurring in the strong coupling ex-
pansion. Section V gives a listing of the complete set
of Feynman rules. In Sec.VI we evaluate diagrams with
topological structures emphasizing the analogy with the
string model. We give a few concluding remarks in
Sec.VII.

il. THEORY

In this section we review the form of the lattice gauge
theory to be used in later sections. The wave function
of a particle interacting with a gauge field undergoes a
path-dependent internal-symmetry rotation as the parti-
cle travels through space (Mandelstam, 1962; Yang,
1974). In Wilson’s theory this concept of a nonintegrable
group rotation provides the basic dynamical degrees of
freedom for the gauge field. On a hypercubical space-
time lattice a path is approximated by a series of
straight line segments connecting nearest neighbor sites.
Associated with each nearest neighbor pair of sites 14,5}
is a group rotation matrix U‘i“f, where @ and 8 are the
internal-symmetry matrix indices. Following a path in
reverse direction gives the inverse rotation so we re-
quire

U;“B = (U;j)“ﬂ .

(2.1)
The rotation associated with a particular path is the ma-
trix product of the U, along the path.

The fermion degrees of freedom are described by a
spinor field ¥§ defined on each lattice site z. Here « is
the group index associated with the local gauge symme-
try. We have suppressed both a four-valued spinor in-
dex and any additional indices describing ordinary un-
confined quantum numbers such as isospin, strangeness,
and charm.

We consider the gauge group SU(3) because this gives
a simple construction of baryons out of three quarks.
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This SU(3) represents a hidden symmetry under which
all physical particles will be singlets, and must not be
confused with the approximate SU(3) giving rise to the
multiplet structure of observed hadrons. Under a global
internal-symmetry rotation g*?, the Fermi field trans-
forms as

¥y~ g*tyt,
where a sum over the index 8 is understood. The U,
are all elements of SU(3); i.e., they are three-by-three
unitary matrices of determinant one.

We treat fermions on the lattice with Wilson’s projec-
tion operator technique. This is one of several methods
of avoiding low-energy fermion states with momenta of
the order of the inverse lattice spacing (Chodos and
Healy, 1977; Drell et al., 1976; Susskind, 1977). The
theory is formulated in Euclidian space with the under-
standing that physical Green’s functions are obtained by
an-analytical continuation to Minkowski space. The re-
lation between this approach and a Hamiltonian version
(Kogut and Susskind, 1975; Banks, et al.,-1977) has
been discussed (Creutz, 1977; Luscher, 1977; Wilson,
1977b). We let a denote the nearest neighbor separation
between sites on our four-dimensional hypercubical lat-
tice. The action

(2.2) -

A —
S=—a* Z 'E';i l/);(l —'Yue‘:j)uuzl)j
ij .

+a4; J‘ (%—m) zpf
1

82 }: P TrWU,; U, U, Uy
ikl

(2.3)

defines the theory. Here we have suppressed internal
symmetry indices,

1 if ¢ and j are nearest neighbors
= { (2.4)

0 otherwise,

¢';; is a unit vector pointing from site ¢ to site j, v, rep-
resents Euclidian Dirac matrices satisfying

[7u AR 25,

Yo =V (2.5)
a Euclidian sum over p is understood in v, €%, & and m
are the bare gauge coupling and quark mass matrix, and

1 if 4%l run around a “plaquette,” an

elementary square of side a

P = (2.6)

0 otherwise.

The usual classical continuum gauge theory action fol-
lows from Eq. (2.3) by taking @ to zero with
= eiae‘:IAu 5

U (2.7)

i
where A, is a matrix representation of the vector poten-
tial for the gauge field. This limit is extensively dis-
cussed in Refs. 3 and 4.

The quantum theory is formulated in terms of Green’s
functions defined by the path integral
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C@y -9, -..9, U

..U
1 Ry kmlm)

-2 f[dll)dU]e'Szpil S P A2

m’m ’
(2.8)

where
Z= J.[dzde]e's , 2.9)

We write the ¥’s and z_p_’s in a standard ordering that will
be useful later in determining the overall sign of a
strong coupling diagram. Because of baryon number
conservation we need consider only Green’s functions
with an equal number of ¥’s and ¥’s.

In this integral the Fermi fields are considered as an-
ticommuting objects and are integrated over in a stan-
dard manner that will be made precise in the next sec-
tion. The integration over the U, is done with the Haar
measure over the group. For compact groups this mea-
sure has the properties
Jaere)= [aeres)= [dereen= [agre™,  (.10)
where g, is an arbitrary group element, The measure
is normalized such that

fdg=1.

The action in Eq. (2.3) is invariant under local gauge
transformation. Given an arbitrary group element g,
for each site 7, the substitution

(2.11)

Zpg”gﬂl)
by~ 8,U,,87

leaves the action unchanged. In terms of the Green’s
functions this means

GWyev ¥y e U)=Glgh;... 0,8 ... .8Upgt...).
(2.13)
As this is true for arbitrary £ the Green’s functions
only depend on local gauge singlet combinations of the

fields.
The theory has been defined without any reference to

(2.12)

a gauge choice. In a previous publication (Creutz, 1977) ;

we defined gauge fixing for the lattice theory and showed
that Green’s functions for gauge-invariant operators
were unaffected by working in a particular gauge. The
strong coupling rules are simpler if we do not select a
gauge; therefore, in this paper we retain Eq. (2.8) which
effectively integrates over all gauges.

As the lattice spacing a represents an ultraviolet cut-
off, we ultimately desire to take it to zero. In the clas-
sical theory this limit can be taken with g and m held
fixed; however, in the quantum theory it becomes nec-
essary to allow these other parameters to vary with a.
This point is familiar from renormalization theory for
the conventional Féynman perturbation series where
the bare coupling constant and masses are given a cutoff
dependence such that physically measurable quantities
remain finite as the cutoff is removed. Similarly, to
take a to zero in the lattice theory, one should hold fixed
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not g and m but rather a set of physical observables
such as particle masses and physical couplings. This
set should be large enough to determine g and m for any
given value of a. In this way g and m will in general ac-
quire dependence on the cutoff.

A hypothetical chirally symmetric world with mass-
less pseudoscalar mesons and massive baryons may fol-
low in the continuum limit if m is set identically to zero.
This interesting theory depends on a single parameter
£ and thus only one observable need be fixed. This ob-
servable must be dimensional in order to set a mass
scale; so we might as well choose it to be the nucleon
mass. Thus follows the remarkable conclusion that
when energies are measured in units of the nucleon
mass, this theory has no remaining parameters. In
particular the pseudoscalar meson coupling to the bayons
must be uniquely determined in this chiral limit. The
trading of a dimensionless coupling constant for a mass
scale when the ultraviolet cutoff is removed is called
“dimensional transmutation” (Coleman and Weinberg,
1973).

Conventional perturbative analysis of non-Abelian
gauge theory shows that, if g for some finite cutoff is
small enough that low-order perturbation theory in g
applies, then g must go to zero as the cutoff is removed.
This vanishing of the bare coupling in the continuum
limit is called asymptotic freedom and has the physical
consequence of a small effective quark-gluon coupling
at short distances (Politzer, 1974). It is generally as-
sumed that this is what occurs in the continuum limit of
the strong-interaction gauge theory; however, it is con-
ceivable that g never becomes small enough for conven-
tional perturbation theory in g to apply but rather goes
to some finite limit. In this case the theory would have
qualitatively different phases corresponding to different
directions from which g approaches its limiting value
(Kadanoff, 1977). A major remaining problem is to
show the absence of this multiple-phase alternative to
the aesthetic picture of a single phase exhibiting both
confinement and asymptotic freedom.

In what follows we derive an expansion in (1/g2) at a
fixed lattice spacing. If as a— 0, g also vanishes, then
these rules are not in themselves phenomenologically
useful in the continuum limijt. Their value, rather, lies
in the demonstration of confinement in one (hopefully the
only) phase of the theory.

iti. SOURCES

The strong coupling diagrammatic expansion is most
easily derived and compactly formulated through the in-
troduction of external sources coupled to the degrees of
freedom of the theory. In this approach, Green’s func-
tions are obtained by differentiating with respect to the
various sources. Corresponding to the degrees of free-
dom U$f, ¥ ¢, and §% we introduce sources B, cg, and
d{ respectively. In the lattice theory the usual differen-
tial notation becomes rather cumbersome, so we shall
use an equivalent operator formalism. We consider the
sources as destruction operators in a new Hilbert space.
We impose standard creation and destruction operator
commutation relations
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[Bi17 B =04,0550;0,;, (3.1a)
[e2, ()], =[a2, @9'],=5,:5,,, \ (3.1b)
[Bgf, B =0, (3.1¢)
[ce,c8 ], =lag, a8, =[c¢,df], =0, (3.1d)
[Bgf, cr1=1Bgf, () =[B3f,ar]=[Bg}, @)']=0 (3.1e)

Note that the fermion sources ¢ and d are given anticom-
mutation relations. In Eq. (3.1b) a unit matrix in spinor
and other suppressed indices is understood.

Because of the forthcoming analogy with the string
model, we call the new space in which these operators
act “string space.” The operator (B"‘B T creates a
“string bit” pointing from site ¢ to 31tej with indices @
and B associated with its ends. Speaking somewhat
loosely, we will say that (c¢)" creates an antiquark with
index « at site 4, while (d§)' creates a quark. Of course
one should not confuse these “quark” states in string
space with states in the physical Hilbert space of the
Minkowski world. We use curving bras and kets to dis-
tinguish states [zp) in this new space from states ];b) in
the physical Hilbert space. The general state in string
space consists of quarks, antiquarks, and strings
created by the operators ¢', d*, and Bt acting on the
“empty” state |0) which satisfies

c2|0)=a5|0)=B270)=0,

(0]oy=1. (3.2)
In a conventional continuum field theory, these operators
could be regarded as creation and destruction operators
for the ends of lines in a Feynman diagram (Creutz,
1975).

Coupling the sources to their respective fields, we de-
fine the generating state

(w|=0| f[dzde]exp

-S+3° (esvg +9gd?)

+ 3 Ay BFUSF 2 (3.3)

iy

Here sums over repeated symmetry indices are under-
stood and, as usual, spinor indices are suppressed.
The utility of the generating state lies in the formula

CW,, -3 85, -

11)11 Rylytt” Ukmlm)

=7(W|d§1 cdicl .. el Bl ... B] , [0),

ikl

zZ=(w|0). (3.4)

Note that the order of Fermion operators is reversed in
the right-hand side of this equation. Equation (3.4)
means that functions of 9, z_p_, and U occurring in Green’s
functions can be replaced with functions of ¢, d¥, and
B' in matrix elements between the states (W| and |0)
in string space. '

Perturbation theory formulated in string space begins
by breaking S into two parts

S(Zfb’ $9 U)=SO(¢7 $’ U)'f'sf(zl’, _275, U) . (3.5)
We then write
W] =W, | exp{-Si(ct,dt, B}, (3.6)
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where
(W,| = (0] f [ayaU]exp{-S,+ Z ey, +9d,)
+ ZA BUSEY, (3.7)

iy

and S; is just S; with the order of all Fermi fields re-
versed. If the integrals defining (Wof can be done, then
a power series expansion of the exponential in Eq. (3.6)
reduces the evaluation of a Green’s function into an ex-
ercise in manipulation of creation and destruction oper-
ators.

Wilson’s strong couplmg expansion follows by con-
sidering

So=a* 7, (§_m> Y,
p=—at Z

ind

P Tr (U U 5, UnUy) .
o 5 '

L1~ Va5,

(3.8)

With this S,, the ¥ integral is easily done by completing
the square

J[dzp exp %—a Zd) (——m> ¢¢+Z czl),+z[)d);

=Nexp ; Zci(4a3 ~ma*)™d, 2 . (3.9)
i
This equation may be regarded as a definition of the in-
tegral over the anticommuting Fermi fields, in which
case the irrelevant normalization factor N can be defined
to be one. We devote the next section to a discussion of
the group integral dU in Eq. (3.7). For now we just de-
fine

,Beeues=11 pes,,,8,)
{i,4)

(3.10)

f[dU]exp S 4,
197

where H“'“ denotes a product over all nearest-neighbor
pairs and

D(B,,B,)= [dgexplByie™ +B3f ()"}, (3.11)

Putting all this together, we obtain the expression for
the generating state

Il ow,,s,)

{, 41

X exp 3—“4 Z ‘—ldf(l Yp.el;j)Bijc g

(W] =(0]exp z Zci(4a3_ma4)"d,$

X exp %8g2 > Py Tr(B; B}, B} B"i)% (3.12)

ijri

The four terms in this expression have a simple inter-
pretation in string space. The first term destroys
quark—antiquark pairs at a single site, the second term
destroys sets of string bits associated with each near-
est-neighbor pair of sites, the third term creates a
quark-antiquark pair separated by one lattice spacing
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and connected by a string bit pointing to the antiquark,
and the last term creates elementary squares of string
bits. This creation and destruction of quarks and string
bits provides the basis of the diagrammatic rules to |
follow.

IV. GROUP INTEGRALS
In Eq. (3.11) we are left with the integral

D(Bij,Bn) = J‘dgexp{B?fga8+37;8(g-l)aa} . (3.11)
This integral is a generating function for integrals of
polynomials of group matrices through the relation

fdgg“lﬂl e goBn(g )0, | (g™) 7 mOm
= 0|D(B,,, BB ... BB .

x (B}t |0). (4.1)
Although we have not obtained a simple closed form for
D(B,,,B,,), we will derive a straightforward diagram-
matic algorithm for evaluating expressions of the form
of Eq. (4.1) with the group SU(3).

We begin by noting that the inverse of an SU(3) matrix
is given by its cofactors

1
~1)aB _ = ¢BY6gapoyyp b0
(™) =3 €*PogTeg®, (4.2)

where repeated indices are summed, and €*#7 is totally
antisymmetric with €!23=1, This allows us to eliminate
B, from D(B,,, B,;) with the formula

1 }
(0|D(B,,,B,)=(0|D(B,,)exp 5 €70 B{(BY7)' (BY)"

(4.3)

where

D(B,)= [dgexp(Bsfg™®). (4.4)
To do this integral, observe that the invariance of the
group integration measure implies

D(B”)=D(g0‘Bing1) ’

where g, and g, are arbitrary elements of SU(3). In Ap;
pendix A we prove that Eq. (4.5) implies that D(B,,) can
only depend on the determinant of B;,. We expand D(B,,)

in powers of |B,,|=1/6€% 'e“”B“"fBé;Bg‘; ,

(4.5)

D(B,)=Za,|B,|". (4.6)

a gdﬁ = x°.—>———-——0€(
i j

-1.@B B a

b (g l) = X O———————® X

i
QBY 7. B : Y B
A e
a a
FIG. 1. Graphical representations of g‘i“f, (g;})“s, and €%,
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X oo X = |/2

FIG. 2. Graphical representation of Eq. (4.2).

Since |g| =1 for g inSU(3), we have
©|pB,,)|Bt,|=0|D®B,,). (4.7)
In Appendix B we prove the relation
O] |By,|"|BY,| =nte+ 1) +2)(0] | B|™.

Combining this with Eqs. (4.6) and (4.7), we obtain

(4.8)

DBY= o [Bul" (4.9)
Wl e+ D m+2)! T

With Eq. (4.3) this gives the result

2
O1D®B,,B,) =01 3 oo praear 1Bl

X exp

1

EE““e“"B?‘f(B{f)*(B?}’)' .
(4.10)

The integral in Eq. (4.3) now becomes

fdgg"‘lﬂl .. .gmnﬁn(g-l)rlbl ... (g'l)"mﬁm

2

TG paar ClBul 1L &

k=1

m
XII % Eﬁku.kvke'ykpkuk(B‘:jkpk)T(Bl;];Vk)T‘0) , (4.11)

k=1

where p =1/3( + 2m) and must be an integer or the inte-
gral vanishes.

The manipulation of the B’s and B*’s necessary to

evaluate Eq. (4.11) can be done graphically. For each
g°® draw a directed line segment from site ¢ to site j as
sketched in Fig. 1(a). The index « is associated with the
7 end of the line, and B with the j end of the line. For
each (g7!)*# draw a directed line segment from j to ¢ as
in Fig. 1(b). Let the tensor €*® be denoted by a three-
point vertex as in Fig. 1(c). With these conventions,
Eq. (4.2) becomes Fig. 2. Using this result, any set of
lines can be reduced to a set of lines oriented in one
direction only. Such a set is then evaluated using Eq.
(4.9) by grouping the lines into sets of three in all possi-
ble ways and combining the indices with € symbols as
shown in Fig. 3. -For 3p lines there will be (3p)!/6%p!
terms in this expansion. .

In evaluating these integrals, products of € symbols

Y o ()

+ PERMUTATIONS
FIG. 3. Graphical evaluation of an integral of 3p factors of g4;.
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= - >

< = e
— --

FIG. 4. Graphical representation of Eq. (4.14).

will occur. These can be simplified with the identities

50‘875507:641568;)—6@685’ (4.12)
€BroBY =25 (4.13)
€oBrcabr_g (4.14)

These identities are shown graphically in Fig. 4. The
Kronecker delta symbols are represented by a nondi-
rected line connecting two indices.

In the strong coupling diagrams for Wilson’s theory,
the indices of the U’s may be contracted in various
ways. Several trivial identities which are useful in the
graphical analysis are

UUt=1 (4.15)
illustrated in Fig. 5(a),

€Bryes By = €00% (4.16)
illustrated in Fig. 5(b), and

€xBryBoyYe = (Ut)Bxehoe (4.17)

L

X

FIG. 5. Graphical representation of Eqs. (4.15)~(4.17).
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X X X X
= L
=1/2 =1/12 =1/3
X X X r—)(—I

FIG. 6. Graphical representation of Eq. (4.18).

illustrated in Fig. 5(c). These identities are valid re-
gardless of other lines present between the same sites.
To illustrate these rules, we work out the relation

[avvesriys=1e,,0

3 %o Oar (4.18)

in Fig. 6. In Figs. 7 and 8 we give the graphical repre-
sentation of the integrals

f av U“‘SUVEU"":lee"‘”é“” (4.19)
and

- - 1
de U“B(U 1)57‘UW(U l)vu = 2_4(3 60‘7 6pu 656 500 +3 Go‘ u 57:: GBV 55 4

-6,,0 6,0,,—06,0 0,.0).

ay pu  Pv 60 ap “yp BE

(4.20)

We will use these integrals in particular diagrams in the
following sections.

V. STRONG COUPLING RULES

Equation (3.12) forms the basis of the graphical strong
coupling expansion \

(Wl =(0lexp %Z c,(4a3—ma“)'1di$ x [1 D(B,;,B;)
i

{i,i}

A
X exp% -a ; Egds(l - Yne‘z"j)BLC;é

1
X expq+ o—3 Z P”ler(BLB;'kBLBL)% - (312
8g2 ijrl

Expanding the last two exponentials in power series gen-
erates the strong coupling rules. Consider some par-
ticular Green’s function

Gy Vi, Fy Ui - Ui

1
= Wld ...dc} .. .ciB,. . B, |0 (3.9)

The graphical rules for calculating this quantity can be
read off from the above two equations:

X X

I s

X

FIG. 7. Graphical representation of Eq. (4.19).
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)
HH =l/24(3 +3 =
. n,m ol
u*u 1,
]l_'l nxn )

FIG. 8. Graphical representation of Eq. (4.20).

(1) Draw a set of string bits, quarks, and antiquarks
as created by the B', d', and c¢' in Eq. (3 4).

(2) Using the third factor in Eq. (3.12), create string
bits connecting quark—antiquark pairs to produce a con-
figuration where every site has an equal number of
quarks and antiquarks. With several types of quarks,
each species must balance separately. Every quark—
string—antiquark combination generated by this. rule
gives a factor of (a*/2)(1 - v,e%) to the amplitude. The
spinor indices on these gamma matrices will be con-
tracted in rule (4).

(3) Use the last factor or “plaquette term” in Eq. (3.12)
to create elementary squares of string bits, thus gen-
erating a configuration where every nearest neighbor
pair of sites {i,j} has the number of string bits from i to
7 minus the number from j to ¢ equal to a multiple of 3.
Each plaquette created gives a factor 1/2g2. A set of n
identical plaquettes gives a factor 1/%!.

(4) The first term in Eq. (3.12) now serves to connect
the quarks and antiquarks at each site. In the process
it connects string bit indices as well as spinor and any.
further indices specifying quark species. Each such
“quark connection” gives a factor of (4a® - ma*)™ to the
amplitude. The quark connections in a diagram will
break up into sets corresponding to separate “quark
lines” representing the path a particular quark travels
through the diagram.

(5) At this point we have a “strong coupling diagram.”
Now the group integrals are done by eliminating all
string bits with the rules of the last section.

(6) Some factors of minus one arise from the Dirac

Q
X X x\OQ

Q X X x
R

FIG. 9. The quark-antiquark pairs created by the Green’s func-
tion in Eq. (5.1).

Rev. Mod. Phys., Vol. 50, No. 3, July 1978

567

nature of the quarks. Each quark line forming an inter-
nal closed loop gives a factor (-~1). With G in the stand-
ard form of Eq. (2.8), if each zp, is connected by a quark
line to J there are no more factors otherwise multi-
ply by mmus one to the number of transpositions neces-
sary to put the ¥’s in the reverse order of the ¥’s that
they are connected to. This corresponds to the rule for
ordinary Feynman diagrams of giving an extra minus
sign for each interchange of external fermion lines.

(7) Sum over all distinct strong coupling diagrams,

i.e., all different ways of carrying out steps 2 through 4.

(8) Divide by Z, the sum of all vacuum fluctuation dia~
grams.

We now give an example to illustrate these rules. As
the rules automatically pick out locally gauge-invariant
combinations of the fields, we only consider Green’s
functions of such combinations. Taking a single quark
species, we study

G@vs0:9,759;) , (5.1)
where 7;=7%,7,7,¥;. This is the two-point function for the
composite pseudoscalar field P,7;¥,. Rule (1) instructs
us to place quark-antiquark pairs at site 7 and site j as
in Fig. 9. In this figure we let the vertical direction
represent x, and the horizontal direction represent x,.
In Fig. 10 we show one way of applying rule (2), thus
adding quark-string—antiquark combinations so as to
have all quarks paired with antiquarks. One dressing of
the diagram with plaquettes by rule (3) is shown in Fig.
11. Making the quark connections with rule (4) gives
Fig. 12. Finally rule (5) is carried out by repeatedly
using the relations of Figs. 5(a) and 6 to give Fig 13.
Combining the factors coming from the various rules,
we obtain the contribution of this diagram £ to the amp-
litude

Gp=- (a3)8<2; 2)3(4a3—ma“)'1°<%> 2TrI‘ , (5.2)

where I is the product of the Dirac prolectlon operators
around the diagram

Q Q
Q X &—p—=O X &—>——8 X
® Q Q Q Q

FIG. 10. A possible set of quark-string-antiquark combinations
pairing all quarks with antiquarks.
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FIG. 11. Dressing the diagram with plaquettes.

TrI' = 215Tr{)/5(1 + 7)1+ 7)) (1 +9,) L+ 7751 = ¥ (1 = 7))}

(5.3)

'™

The overall minus sign in Eq. (5.2) is obtained by anti-
commuting the Dirac fields into the standard ordering of
Eq. (3.4) and then applying rule (6). Note that Eq. (5.2)
can be put in the form

1 1 P14
GD=—3mTr(r)<m) (@) y (5.4)

where P is the total quark line length in units of the lat-
tice spacing, a and A is the area of the surface covered
by plaquettes in units of a®*. This form provides the ba-
sis for the string analogy discussed in the next section.
With several species of quark such that m is a matrix,
the term (4 — ma)™F becomes a matrix product around
the loop. .

VI. STRING ANALOGY

Equation (5.4) generalizes to all diagrams with the
same topology as the diagram in Fig. 9, i.e., diagrams
with a single surface of plaquettes bounded by a quark

FIG. 12. Making quark connections.
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L

FIG. 13. Evaluating the group integrals.

= (1/3)°

line. This shows the striking connection between Wil-
son’s theory and an oriented string model where the ac-
tion associated with a particular world sheet swept out
by a string contains a term proportional to its area. In
two-dimensional space-time the connection of the string
model with continuum non-Abelian gauge theory has been
made precise (Bars, 1976). In the strong coupling limit
the effective tension T in the string can be read off from
Eq. (5.4),
7=1 10g(622) (6.1)
p g “). .
The string analogy provides a useful topological clas-
sification of diagrams. For example, another topologi-
cal class of diagrams contributing to the pseudoscalar
two-point function of Eq. (5.1) is illustrated in Fig. 14.
In this diagram the world sheet built up of plaquettes has
a hole rimmed with a quark loop. The result for such a
diagram is

1 3

A= Tr(T'z)Tr(I)) <21_f17n—¢;—> ’ (é) A’

Co=t*3 (4a®
(6.2)

where I'; is the product of the Dirac matrices around
the external loop, and I'; is the similar product around
the internal loop. Here P is the total quark line length
in units of a, including the internal quark loop. The
factor of % in front of this expression forms the basis
of the 1/» topological expansion (t’Hooft, 1974). This
factor, however, can be partially canceled when sever-
al species of quark contribute to the internal loop.

With SU(3) as the gauge group baryons can be con-
structed of three quarks. To study them consider the
two-point function for a composite baryon field

G(Eaﬂr¢?,awa,b¢g,c€qu ip;_“dz‘r)r;,eag.f). (6.3)
Here the indices a....f denote previously suppressed
spinor and quark indices. One topological class of
graphs contributing to this Green’s function is represen-
ted in Fig. 15. This diagram has three sheets of plaq-
uettes intersecting in a line. With the help of Figs. 5(c)

FIG. 14. A topological class of strong coupling diagrams.
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FIG. 15. A class of strong coupling diagrams contributing to
baryon structure. -

and 4 this diagram has the value

1 1 P
Gp=+6 (4a® - ma")r“’r"er"f (4 - ma>

where the I'’s are products of the Dirac projection ma-
trices along their respective quark lines. As before, P
is the length of the quark lines, and A is the total area
of the surface covered by plaquettes, both in lattice un-
its. Note the absence of any term directly dependent on
the length of the line where the three sheets of plaquettes
meet. Equation (6.4) also applies to “banana” diagrams
as in Fig. 16. We see that in Wilson’s model the “y”
configuration of Fig. 15 and the “delta” configuration of
Fig. 16 contribute to the structure of baryons; in gen-
eral the proton is a resonant mixture of these configur-
ations as well as more complicated ones.

Up to now we have only considered graphs with non-
overlapping sheets of plaquettes. To complete the string
analogy we need to discuss how overlapping strings in-
teract. As a first step consider the topological config-
uration in Fig. 17. Here two sheets with quark edges in-
tersect in a line. Along this line lie four string bits as
in the left-hand side of Fig. 8. At first sight the right-
hand side of Fig. 8 would seem to imply that the inter-
secting sheets would become irretrievably connected.
Miraculously these interactions all cancel each other.
Using the rule of Fig. 6 to reduce all string bits away
from the intersection, one will find at the end of the
intersection line that the string bits are connected in
pairs as in Fig. 5(a). But the rule of Fig. 5(a) is valid

1 A
(?) . (6.4)
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FIG. 16. Another diagram relevant for baryons.

independently of any additional string bits between the
sites. Repeated use of this rule then completely reduces
the intersection and thus we obtain the right-hand side
of Fig. 17. Thus one sheet of the diagram can be eval-
uated without being affected by the other.

Now consider two surfaces intersecting as in Fig. 18
where the intersection is not terminated by a quark line.
Doing the group integrals away from the intersection
line again leaves an integral of a product of U’s along
the intersection line as shown in Fig. 19. This remain-
ing integral is evaluated using Fig. 8 on one link and then
using Fig. 5(a) to reduce the others. This procedure
gives a factor of two to the amplitude. This factor is
just that needed to give the factorization indicated in
Fig. 20.

When the world sheets of two strings intersect in an
orthogonal manner, no net interaction occurs and the
diagram factorizes. However, this noninteraction of
strings breaks down when the sheets are not orthogonal,
i.e., when their plaquettes share fundamental lattice
squares. Straightforward application of the rule in Fig.
8 permits evaluation of diagrams which are superposi-
tions of simple single-sheet diagrams. For parallel or
antiparallel orientation of the superposed sheets, when-
ever several adjacent lattice squares are shared the re-
sulting diagram is not simply the product of the super-
posed parts. In terms of the string analogy, this means
there is a short-range string-string interaction. Thus
strings can interact both through the quarks at their ends
and by overlapping. A more intuitive interpretation of
the latter interaction would be desireable. In particular
how does one include such an interaction in a classical
continuum string model?

FIG. 17. A possible intersection of world sheets for two strings and its factorization.
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FIG. 18. An intersection without ends.

Vil. CONCLUDING REMARKS

We have rederived Wilson’s strong coupling rules for
gauge theories formulated on a lattice. The main virtue-
of these rules is that they explicitly demonstrate the

quark-confining nature of strongly coupled lattice gauge ‘

theory. Indeed the lattice theories remain the main mo-
tivation for believing that gauge theories can confine
with a linear potential between quarks.

Confinement in the lattice theory follows because the
theory is equivalent to a lattice version of the string
model. This is a remarkable result in that the classi-
cal gauge and string theories appear to be totally unre-
lated. Working backwards, this equivalence may pro-
vide new insight into how to regulate divergences in the
continuum string model.

Unfortunately, we feel that the rules are somewhat
limited as a phenomenological tool, primarily because
as the lattice spacing is made small the expansion para-
meter, the inverse bare coupling constant, becomes
large. Nevertheless, some calculations of the mass
spectrum have been made by going to the infinite g2 1i-
mit and treating the lattice spacing as a parameter rep-
resenting the distance at which confinement forces be-
come important (Wilson, 1977a). In this limit all the
valence quarks of a hadron move together from site to
site. The theory is not exactly solvable in this limit be-
cause hadrons can still interact by exchanging other ha-
drons. Wilson argues that neglect of these exchange
processes is justified for large ma. In this simple limit
the excitations of the theory consist of gauge singlet
combinations of quarks moving from site to site togeth-
er. Using this approximation and treating the lattice
spacing and quark masses as adjustable parameters,
Wilson was able to obtain approximate agreement with
the observed hadronic spectrum.

FIG. 19. A set of group integrals arising in evaluating the dia-
gram in Fig. (18).
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=Dx£+@x&

FIG. 20. Factorization of the diagram in Fig. (18).

APPENDIX A

Theovem : Let D(B) be an analytic function of an z by »
matrix B. If D(B) satisfies

D(B)=D(g,Bg,)

for arbitrary g, and g, in SU(), then D(B) is a function
only of the determinant of B.
Proof: Because of the analyticity we can assume B to

(A1)

be real. Consider the element g of SU(z) defined by
Gy =g, = _Bnl
nl 1n‘(|Bn|z+|BM|2)1/2 ’
B

11
Eu=8m= (B, 12+ B, |21/

g:,=0,; for G,7)e{(1,1), (m,n), (1,n), @, 1)}. (A2)
This satisfies
(Bg),,=0. (A3)

Repeating this process one can construct a g in SU(2)
such that

(Bg)”=0 for i>j (A4)

i.e., B can be put in triangular form by multiplying by
an element of SU@).

Assuming that B has been brought to triangular form,
consider another element of SU(z)

g“’:Gijeiﬁ(Gik-b“)’ (AS)

where 2 and ! will label two different rows of B. Taking
this times B gives

(gB)“=B”e‘a‘5ik'5u’ (A6)

i.e., the ith and jth rows of B pick up a phase. Since
D(B) is analytic we can expand it in a power series in
the elements of B. Since replacing B by (A6) cannot
change the value of D, each nonvanishing term in this
expansion must contain an equal number of factors from
rows k and I. The arbitrariness of 2 and ! implies that
all rows must have equal representation. A similar ar-
gument shows that all columns must also have equal
representation. This coupled with the triangular nature
of B implies that each term in the expansion of D(B)
must be a power of the product of the diagonal elements
of B, i.e., the determinant of B. This proves the theo-
rem.

The analyticity of D(B) is essential; for a counterex-
ample with nonanalytic D(B) consider

D)= {1if BeSUQ)
0 otherwise

Clearly the determinant of B does not determine if B is
in SU@) or not.
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APPENDIX B

Here we prove Eq. (4.8), which in more conventional
differential notation reads

Iaul IB”]"=n(n+1)(n+2)|B”l"'1, (B1)
where
8,,=9/8By;. (B2)
Note that
1
|B| =% €156€ 1mnB 11 B jmBien » (B3)
1
2] =§€uk€xmnanazmam (B4)
1 -
aulBI =5 €ikz€jmanthn=B.f}|B] ’ (B5)
al:‘akllB| =€ 14m€ j1nBmn 5 (B6)
la||B|=6. (B7)

Counting the various ways the factors of 8,; can act on
the factor of By, in |B|", we obtain

|o||B|"=6n|B|™ +nte - 1)6e - 2)| B|™*| B™|B])]|
‘ 1 _
+3n( - 1)_IB " zg €€ imnBh |B "fkp‘manpq .
(B8)
Using

€172 jap =204 (B9)

and some algebra we obtain Eq. (B1).
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