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The current state of nuclear matter calculations is described with special reference to the present

disagreement between the variational and Brueckner —Bethe methods. The system is assumed to consist of
point nucleons with a nonrelativistic Hamiltonian containing the kinetic energy and two-body potentials.

The physical ideas of the variational method, especially of its hypernetted-chain version, and of the

Brueckner —Bethe method are outlined. Practical ways of testing the validity of these methods are

discussed and are illustrated by numerical results taken'from the literature. It is found for central forces
that the hypernetted-chain variational method, if properly used, gives reliable upper bounds to the ground-

state energy. Lowest-order Brueckner —Bethe results lie well above these upper bounds, and it is both

important and feasible to check whether higher-order corrections will bring the Brueckner —Bethe results

into agreement with the variational ones. For realistic nuclear potentials, which have tensor forces,

spin —orbit forces&- etc., the situation is much less clear. An adequate calculation has not yet been done

by either the variational or Brueckner —Bethe method. For the Reid potential, with the presently available

numerical results, the variational calculation predicts a much higher saturation density than the

Brueckner —Bethe calcu1ation. Feasible calculations that will help to resolve this discrepancy are

discussed.
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I. INTRODUCTION

*%ork performed under the auspices of the Department of
Energy.

The simplest model of a nucleus is a collection of
point nucleons that obey the nonrelativistic Schrodinger
equation and interact through a two-body potential that
fits nucleon-nucleon scattering data and the properties
of the deuteron. There are several reasons for studying
this model: (1) It provides a test of proposed nucleon-
nucleon potentials. A potential that fits the scattering
data and deuteron properties but predicts wrong binding
energies and density distributions for heavier nuclei can
be thrown out. (2) If a satisfactory potential can be
found, this will greatly help to unify nuclear physics.
Basic properties of nuclei and nucleon-nucleon scatter-
ing wouM then be understood in terms of the same un-
derlying two-body force. (3) If no satisfactory potential
can be found, the results may give a clue about the im-
portance of interesting effects not included in the model,
e.g. , many-body forces, meson degrees of freedom,
etc.

The first requirement for any two-body potential
(besides fitting the scattering data and deuteron proper-

ties) is that it correctly reproduce the saturation point
of nuclear matter. Nuclear matter is a system of nu-
cleons at uniform density that approximates conditions
in the interior of a heavy nucleus. The energy per par-
ticle is a. function of the density p (or, equivalently, of
the Fermi momentum k~, where p =2k~/3m'), and the
minimum of this curve defines the saturation point. The
empirical saturation point is deduced by extrapolation
from finite nuclei, using either the liquid-drop model
and semiempiricai mass formula (Myers and Swiatecki,
1969'I or Hartree-Fock calculations with phenomeno-
logical forces fitted to finite nuclei (Negele, 1970;
Ca.mpi and Sprung, 1972; Fai and Nemeth, 1973). The
resulting empirical saturation point has an energy per
particle between -1.5 and -17 MeV and a Fermi mo-
mentum k~ in the range 1.29-1.44 fm '. Any assumed
two-body potential implies a curve of energy per par-
ticle versus density for nuclear matter. The saturation
point of this curve must agree with the empirical one if
the potential is to account for the properties of nuclei.
Therefore it is essential to have a method for reliably
calculating, for an assumed potential, the binding ener-
gy of nuclear matter as a function of density. Only if
this calculation can be done accurately does it make
sense to compare the-calculated saturation point with
the empirical one and hence to accept or reject the po-
tential.

In spite of much effort, our ability to make these cal-
culations is still in doubt. Until two years ago it was
generally believed that the Brueckner-Bethe method
(Bethe, 1971; Day, 1967; Sprung, 1972; Kohler, 1975;
Zeukenne et a/. , 1976) was adequate. Earlier work by
the Clark group (Backman et al. , 1972), which showed
a discrepancy between Brueckner-Bethe and variational
results for a central force, had not been followed up.
But two years ago Pandharipande and Wiringa (1976)
found similar results for the potential of Reid (1968),
which wa. s believed to be the best available nucleon-
nucleon potential. They also concluded that the Heid
potential saturates at a density much higher than that
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I I. VAR IATIONAI METHOD

A. Introduction

In the variational method, one chooses a trial many-
body wave function of the form

(2.1)

and attempts to evaluate

., (cia'Hemic)
(eiz~sjc» (2.2)

which is an upper bound for the ground-state energy per
particle. Here, 4 is the noninteracting Fermi-gas wave
function for fermions, and 4 =1 for bosons.

When the two-body potential v(r) is simply a function
of ~, the correlation operator I" is usually chosen to be
multiplication by a product of two-body correlation func-
tions f(r, ,),

A

J f(r, ,). (2.3)
i&j

The function f(r, , ) must go to zero at small r, &
because

the two-body potential is strongly repulsive there. At
large r, ~, f(r, J) is required to appr. oach unity. Several

obtained in Brueckner —Bethe calculations (and also
much higher than the empirical saturation density).
Since then the variational method has been under inten-
sive development, and it has been suggested that the
usual formulation of the Brueekner-Bethe method is
unreliable. The result has been a very healthy re-ex-
amination of the nuclear matter problem. In this paper
I try to give a balanced account of the present situation.
A definitive picture has not yet emerged. But a number
of important facts have been definitely established, and
these suggest calculations that will further clarify the
situation.

In this paper we are concerned with the validity of dif-
ferent methods of calculation, so we always assume
that the nucleons obey the nonrelativistic Schrodinger
equation with a Hamiltonian consisting of kinetic ener-
gies and two-body potentials, i.e. ,

A A

H= T,. + v,.j, (1.1)
i=1 f &j

where A is the number of nucleons. The possible im-
por tanc e of many- body fore es, relativistic effects, etc.
is not considered.

Since variational calculations using the hypernetted-
ehain method have been introduced only recently into
nuclear physics, we describe this method in more detail
than the Brueekner-Bethe method, whose application to
nuclear physics has been reviewed before (Day, 1967;
Bethe, 1971; Sprung, 1972; Kohler, 1975; Seukenne
et al. , 1976). Our aim is to assess the reliability of
different methods of calculation and from the vast liter-
ature we quote those numerical results that are most
relevant for this purpose. The variational method is
discussed in Sec. II, with bosons, fermions with central
forces, and fermions with tensor forces considered in
order of increasing complexity. The Brueckner-Bethe
method is described in Sec. III, and further discussion
and comparison of the methods is given in Sec. IV.

l.O

0.5—

0
0 0.5 I.O

r (frn)
l.5 2.0

FIG. 1. Typical correlation functions f(~) for nuclear matter
with central forces. Curve A is defined by Eg. (2.32) with c
= 0.6 fm, p= 1.5 fm ~, p= 1.346. It has been used by Chakkala-
kal (1976) for the OMY potential of Eqs. (2.45) and (2.46) at
kz ——1.8 fm ~. Curve B is definedby Eq. (2.33) with &=2.0 fm,
A=1.7 fm ~, D= 0.08 fm. It was used by Ceperj. ey (1977) for
the potential v& of Eg. (2.47) at kz ——1.79 fm ~ (p=0.386 fm+).
Curve C is the solution of Eq. (2.34) for potential &2 with kz
=1.8 fm ~ and d=2xo, where xo-—0.84 fm.

such correlation functions are plotted in Fig. 1.
For the nuclear two-body potential, which has tensor

forces, spin-orbit forces, etc. , the correlation opera-
tor (2.3) would also give an upper bound to the energy.
However, this upper bound would presumably be too far
above the exact ground-state energy to be useful. For
example, the expectation value of the tensor force,
which is known to be very important for nuclear binding,
would be exactly zero for the correlation operator
(2.3). Thus for the nuclear force Eq. (2.3) must be gen-
eralized. One possible generalization is (Pandharipande
and Wiringa, 1976)

A

Z=s If,, , (2.4)

where 3 is the symmetrizer for A particles, and f,, is a
quite general two-body operator that builds in, for ex-
ample, tensor correlations. The different f„do not.
commute with each other, and this is why the product
(2.4) must be symmetrized.

In general the correlation operator E must have the
cluster property, i.e. , it must decompose into two com-
muting factors,

(2.5)

when any set of m particles is spatially well separated
from the others. For a given A-body correlation opera-
tor Ii~, Eq. (2.5) defines correlation operators 8'„ for
clusters of 2, 3, . . . , A- 1 particles. By definition, the
one-body correlation operator is unity. Also, we usual-
ly denote the two-body correlation operator by f rather
than E„whi hcis consistent with Eqs. (2.3) and (2.4).
For any correlation operator with the cluster property,
a variety of cluster expansions for E „can be developed
(Clark and Westhaus, 1968). In the Van Kampen cluster.
expansion (Van Kampen, 1961; Clark and Westhaus,
1968; Clark and Ristig, 1973), which is the one usually
used in numerical calculations, the nth order approxi-
mation to E„, is given in terms of correlation operators
I"~ for clusters of 0 =2, 3, . . . , n particles.

The correj. ation operator I should be sufficiently flex-
ible that E„, is close to the ground-state energy but
simple enough that E' „can be accurately evaluated.
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Equation (2.3) is presumably the simplestpossible choice
that goes to zero whenever any pair of particles is close
together, as required by the strong short-range repul-
sion in the potential. But when the f, , do not all com-
mute, simpler choices than Eq. (2.4) can be found, and
this possibility should be kept in mind. One example
{Ristig et al. , 1972) is discussed in Sec. II.D.

In any calculation, the two important questions are as
follows: (1) How accurately can the expectation value
E„, be calculated? (2) How far above the ground-state
energy is the expectation value? If the expectatj. on val-
ue could be calculated exactly for the wave function
(2.3) or (2.4), we could vary the two-body correlation
operator f to minimize the energy. However, the ex-
pectation value can only be calculated approximately,
and any approximation method makes use of the proper-
ties of f. Therefore, when f is varied to minimize the
energy, it is crucial that f be restricted so that the ap-
proximation used to evaluate E„„remains valid.

For example, cluster expansion calculations, which
usually include two- and three-body terms, must be
constrained to keep f within the space of functions for
which the cluster expansion is reasonable (Clark and
Ristig, 1972). In particular, the range of f must be
small enough that correlations among more than three
particles are negligible. More powerful approximation
schemes, such as the hypernetted-chain (HNC) and
Monte Carlo methods, will be valid for a larger class
of f's than will the cluster expansion. But there will be
f's for which these methods also break down. Generally
speaking, in any variational calculation, it is essential
to guard against the use of correlation operators for
which the chosen approximation for calculating E„,
breaks down.

The complexity needed in f depends on the two-body
potential. For a central potential that is independent
of spin and parity, f can be taken to be simp1y a function
-of the distance y between two particles. In this case,
we will see that thy cluster expansion, as well as the
more powerful Monte Carlo and HNC methods, can be
used to evaluate the expectation value with high accur-
acy for potentials Bnd densities appropriate to nuclear
matter. For realistic phenomenological nuclear forces,
which are strongly spin and isospin dependent and have
strong tensor forces, f must contain the tensor operator
and other operators. The HNC and Monte Carlo meth-
ods, as presently formulated, are then not available.
Consequently, the accuracy of the calculated expectation
value is much less certain, especia11y at densities much
higher than the empirical saturation density of nuc1. ear
matter.

In Sec. II.B, we introduce the HNC approximation and
the cluster expansion for the simplest case —a system
of interacting bosons. In Sec. II.C these ideas are ap-
plied to Fermi systems with central forces. The recent
fermion Monte Carlo calculations (Ceperley et al. ,
1977) are also discussed. Section II.D treats the more
difficult case of tensor and state-dependent forces.

netted-chain (HNC) method without the complication of
antisymmetry. We assume the two-body potential to be
a function v(r), and we use the correlation operator
(2.3). Putting 4 =1 in Eq. (2.1) gives the variational
wave function in the form

f(r, ~) .

The two-body distribution function g(r) is defined by

(2.7)

V = —,
'

p g(r)v(r) d'r . (2.8)

To calculate g(r), we use the formula

(2.9)g{r») =f' «-) Il + D(r-) l.
where D(r») is given by an infinite series whose terms
are represented by linked, irreducible diagrams
{van I eeuwen et al. , 1959). The basic quantity in this
expansion is the short-ranged function h(r) defined by

h(r) =f'(r) —1. (2.10)

Note that h(r ) -0 for large r
We illustrate the rules for diagrams by considering

two examples, called C, and Z, that are shown in Figs.
2 and 3, respectively. Their contributions to D(r») are

C,(r„)= p d~2h(r„)h(r»), (2.11)

E(r») = —,
' p' d72dr4h(r»)h(r, 4)h(r24)h(r»)h(r~2) .

(2.12)

The coordinates r, and r2 are represented in the dia-
grams by the external points labeled 1 and 2 and are
not integrated over. The coordinates r3, r4, . . . , repre-
sented by the izte~a$ points 3, 4. . . , awe integrated
over. Each internal point gives a factor p, and each
line joining points i and j gives a factor h(r, &). The
symmetry number —,

' in Eq. (2.12) for E(r») occurs be-
cause interchanging r~ and r4 leaves the integrand un-
changed in (2.12) (van I eeuwen et al. , 1959).

The quantity D(r») is equal to the sum of the contri-
butions from all linked, irreducible diagrams. A
linked diagram is one that consists of a single con-
nected part. An irreducible diagram is one that is not

BL BL

where p is the density and A is the number of particles.
Given that there is a particle at r=0, g(r)d7' is the prob-
ability of finding a particle in volume element d& at a
distance x from the point r =0. One then finds the ex-
pectation value of the potential energy per particle V to
be

B. Sosons

By studying the Bose system, we can understand the
physical ideas of the cluster expansion and of the hyper-

(c,) (c )

O
2

FIG. 2. Chain diagrams for bosons.
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FIG. 3. The simplest boson
diagram that is omitted from
the hypernetted-chain approx-
imation.

3RL

(E)

iL4 Defining C (r» ) by

C(r„)=g C„(r„},
ll= 3

we sum Eqs. (2.14) to get

C(r») = p h(r»)[h(r»)+C(r»)]d&, .

(2.15}

(2.16)

reducible, where a reducible diagram is one that can
be cut at one point (called a point of articulation) into
two disjoint pieces, with one piece containing only in-
ternal points. Figure 4 shows a reducible diagram with
a point of articulation at 3. [But diagram C, of Fig. 2
is irreducible: if it is cut at point 3, each of the re-
sulting pieces contains an external point. ]

Grouping the diagrams according to the number of in-
ternal points is equivalent to applying the Van Kampen
cluster expansion (Van Kampen, 1961; Clark and
Westhaus, 1968; Clark and Ristig, 1973). Putting
D(r») =0 in Eq. (2.9) gives the two-body cluster approx-
imation g(r») =f2(r»). The first correction to this
comes from the three-body term C,(r»). To get an
idea of its size, we put r» —-0 and find from Eq. (2.11)

C,(r„=0)=p ' [f'(r) —1]'d~ . (2.13)

C (r ) = p ~~ h(r, )h(r )dT
~l

C4(r») = p ' h(res)C3(r»)d s,

C„(r„)= p @(r„)C„,(r„)d~, . (2.14)

If this is small compared to 1, then the three-body term
is small compared to the two-body term. We then ex-
pect terms involving four particles to be even smaller,
and so on. Thus if Eq. (2.13) is small compared to 1,
the cluster expansion, in which the diagrams are
grouped according to the number of interacting partic-
les, should work well. This requires that f(r ) differ
appreciably from 1 over a volume small compared to the
volume per particle. A similar condition is necessary
for the validity of presently available versions of the
Brueckner Bet-he expansion (Brandow, 1966; Day,
1967).

However, one can greatly improve on the cluster ex-
pansion because the simple structure of the diagram ex-
pansion allows extensive partial summations. We now
outline the partial summations that lead to the HNC ap-
proximation (van Leeuwen et al. , 1959).

Consider the sequence of chain diagrams shown in
Fig. 2. Their contributions are [note that the subdia-
gram 342 of C», when integrated over r„gives C,(r»)]

L, (r, , }=) (r,,),
L, (r, , ) = expC(r„) —C(r, ., ) —1,
L, (r,.~) =h(r, ~)[expC(r, .~) —1].

(2.17)

(2.18)

(2.19)

The simple link L, has already been used to construct
C. The link L, contains all links made from composite
chain diagrams. For example, Fig. 5 contributes to
L,(r»). Links made from single chains are not included
in L, because single-chain diagrams are generated by
the link I, That is why C(r, ~} is subtracted in (2.18).
But a single chain with a link Q is an acceptable link, as
is any composite chain with a link h. These terms com-
prise the link L,.

For a given f(r), we can solve this linear integral equa-
tion to obtain the sum C(r) of all chain diagrams.

Having C(r), we construct comPosite chain diagrams
by connecting the external points 1 and 2 by two or more
single chains, as in Fig. 5. Note that in Fig. 5, the in-
tegration over r, is completely independent of the inte-
grations over r, and r4. Hence the contribution of Fig.
5, and, indeed, of any composite chain diagram, is.a
product of contributions from single chains. Using this
fact, we find that the sum of ~ll chain diagrams, both
single and composite, is e~ —1. The power series ex-
pansion of this formula gives C as its first term. The
second term C'/2) gives all diagrams with two inde-
pendent, chains, such as the one in Fig. 5. The 1342
chain comes from one factor C and the 152 chain from
the second factor C. The factor 2 is needed for two rea-
sons. First, if the two independent chains have differ-
ent numbers of points, as in Fig. 5, their product oc-
curs in C' with coefficient 2 and the factor —,

' reduces
this to the correct coefficient of 1. Second, if the two
chains have the same number of points, their product
occurs only once in C', but the factor —,

' is again needed
because the symmetry number of the resulting diagram
is —,. Continuing to reason in this way, we see that e
—1 generates all diagrams with one or more independent
chains connecting the external points 1 and 2.

We have now summed all diagrams in which the ex-
ternal points 1 and 2 are connected by any number of
chains, all of whose links are given by h(r, ,). The next
step is to construct chains from more complicated
links, thus obtaining hypengetted chains. The links
L(r,.~) that we now have available are

JIVE BL4

FIG. 4. A reducible boson
diRgr Rm . FIG. 5. A composite chain

dlRgr RD1.
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FIG. 6. A chain diagram made from the three types of link de-
fined by Eqs. (2.17)—(2.19).

The link L(r, , ) used in the next set of chain diagrams
is the sum of L„L„and L,. Recalling lz =f' —1, we
f'lnd

L(r, , ) =f'(r, ~) expC(r, , ) —C(r, ~) —1. (2.20)

((r)=p f I ,(r„)[1(r„)+ ((w ))d~ . (2.21)

After the process has converged, L and C will satisfy
Eqs. (2.20) and (2.21). Our approximation to the sum of
all diagrams D(r») is exp[C(x»)] —1 which, when put
into (2.9), gives

g(~„)=y'(~„) exp[C(r „)]. (2.22)

Solving (2.20) and (2.22) for L and C in terms of f and g,
we substitute the results into (2.21) to get

In[g(r„)/f'(~») ]

= p l~ (gr„)—In[g(r„)/f'(w„)] —l)(g(~„)—1) u, .

(2.23)

This is the HNC equation (van Leeuwen et al. , 1959).
For a given correlation function f(r), it is a non1inear
integral equation for the two-body distribution function
g(~). The solution includes the huge class of diagrams
generated in the way described above. Numerical solu-
tion of the HNC equation is relatively simple
(Pandharipande and Bethe, 1973; Zabolitzky, 1977).

The question arises of whether this particular partial
summation is a sensible one. That it is sensible can be
made plausible as follows. The first diagram omitted
from HNC is diagram E of Fig. 3. Let us compare its

We can now repeat the process of summing chain dia-
grams, except that the basic link in each chain is not
h(r, , ) but L(r, ,). Figure 6 shows a single-chain diagram
made from three of these links. Link 13 is of type L„
namely, h(r»). Link 34 is of type L„and link 42 is of
type L, . The new set of single-chain diagrams is ob-
tained by solving Eq. (2.16) for C, with h replaced by I..
The composite chain diagrams made from the new single
chains are then included by replacing Q by e~ —1. And
putting C into (2.20) gives the links to be used in build-
ing still more complicated chains.

Let us imagine that we continue this process indefin-
itely. The complexity of the diagrams increases very
rapidly. But the computations needed at each stage of
the process are simple: We need'only carry out the
following two steps:

(1) Use C(y, , ) from the preceding stage to get a new
link L(r, , ) from Eq. (2.20).

(2) Use this new link L(r„)to obtain. a new C(r, ~) by
solving the equation

contribution to that of the chain diagram C4 of Fig. 2.
Diagram E has two more bonds than C~, and each bond
gives the short-ranged function h(r, ,). Therefore, when
we integrate over r, and r4, the integrand for diagram
C4 will be appreciable over a much larger region than
the integrand for diagram J . Thus it is plausible that
diagrams with the fewest possible bonds will be the
largest. These are precisely the diagrams that are
summed by the HNC equation.

An instructive numerical example is given by Pand-
haripande and Bethe (1973) for liquid 4He. They con-
sider a case in which the chain contributions
C,(y), C4(r), . . . form a diverging series. In spite of
this, the contribution from diagram E is very small,
and solving the HNC equation gives an accurate result
for g(x). Thus HNC is accurate at much higher densi-
ties than is the cluster expansion.

One can go beyond HNC by evaluating diagram E,
which can then be incorporated as a link in the chains
generated by the HNC procedure (van Leeuwen, 1959).
This gives the HNC/4 approximation (Pandharipande
and Bethe, 1973; Smith, 1976; Zabolitzky, 1977;
1976a), which is the first step beyond HNC of a system-
atic procedure that eventually sums all diagrams. So
HNC is not only an intelligent partial summation, but
also the first step of a systematic approximation
scheme. Numerical evidence for its accuracy will be
given in the next subsection, where fermions are dis-
cussed. For bosons, HNC has long been used to study
liquid He and other monatomic liquids. Pandharipande
and Schmidt (1977) have recently applied the method to
a wide range of interesting Bose systems.

We have seen that the expectatio'n value of the potential
energy can be calculated from g(r), and that we can ap-
proximate g(r) either by the cluster expansion [if Eq.
(2.13) is sufficiently small] or, preferably, by the HNC
method. Let us now turn to the kinetic energy. Its ex-
pectation value (per particle) can be obtained from
either of the formulas

Tp =-h /2M(@i@) (2.24)

T = —5'/4M(„e)e) ' f [ev', e —(v e)*)dr dr

(2.26)

(2.27)

(2.25)

Integration by parts shows that these two expressions
are equal. The first expression gives, upon manipula-
tion, the Pandharipande-Bethe formula (Pandharipande
and Bethe, 1973), and the second gives the Zackson-
Feenberg formula (Jackson and Feenberg, 1961). As they
stand, both formulas are exact. But w'hen one uses a
practical approximation scheme, such as the truncated
cluster expansion or the HNC method, the two formulas
will usually give different results. Far from being a
drawback, this fact is extremely useful because the dif-
ference between the two approximate kinetic energies
gives an idea of the error in the calculation.

Consider first the PB method. Using Eq. (2.6) for 4,
we find that V~4' contains terms such as

Rev. Mod. Phys. , Vol. 50, No. 3, July 1978
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g2(r~* r. r. ) =g(r»)g(r»)g(r») . (2.29)

Having obtained g(r) by solving the HNC equation, one
uses this last formula for g, in order to evaluate Tp~ .
However, if one goes beyond HNC and evaluates g(r) in
the HNC/4 approximation, the superposition approxima-
tion (2.29) for g, no longer hoMs. It is then necessary
to study separately the diagram expansion for g, (Smith,
1976; Zabolitzky, 1977).

We next consider the JF formula (2.25). The terms
from +V2, 4 that require knowledge of g(2r„r„r )2 are
exactly canceled by similar terms from (W,4)2. Hence
only g(r) is needed to evaluate 7» . The final expres-
sions used for computation in the two methods are

k r ~ fT, = —
2 P g(r) d7'

@2 f +2f gf 2

Tsp 4~ P 8& + ' d+ ~

(2.30)

(2.31)

Having formulas for the energy expectation value, we
consider the choice of the correlation function f(r).
This choice depends rather little on whether the parti-
cles are bosons or fermions. The two methods in most
common use are the following: (1) Choose an analytic
form for f that contains parameters and adjust the pa, -
rameters to minimize the energy. (2) Solve the Pand-
haripande differential equation for f (Pandharipande and

Wiringa, 1976; Pandharipande and Bethe, 1973). I et
us consider these two methods in turn.

A two-parameter form used by the Clark group
(Chakkalakal et al. , 1976) for a potential with a hard
core of radius g ls

f(r) =0, r &c

1 e-u~- &)(1+ye "~ "), r:&c. (2.32)

For a given value of p, y is adjusted to satisfy the angle-
average Pauli condition fsee Eq. (2.40)). This condition
is helpful in restricting f(r) to that class of functions
for which the cluster expansion is useful. The value of
p. is then adjusted numerically to minimize the energy.
Equation (2.32) is plotted for typical parameter values

Multiplying term A by 4 and integrating over all parti-
cles except 1 and 2, we find a result involving the two-
body distribution function g(r»), and we have already
seen how to evaluate g(r»). Multiplying term R by 4,
we integrate over all particles except 1, 2, 3 and obtain
a formula containing the three-body distribution func-
tion g, (r„r„r,) defined by

A(A-1)(A —2)/p' Je'dr, dr„
g2( yy 2t 2) =

(+I+)
(2.28)

There is a diagram expansion for g3, and partial sum-
mahons similar to the HNC approximation for g(r) can
be carried out. In this HNC approximation for g„ the
superposition approximation is valid, i.e. , we have

in Fig. 1.
An analytic form used in Monte Carlo calculations

(Ceperley et a/. , 1977) and discussed further in Sec.
II.C is

f(r) =expI —(A/r)e 2"(I —e "~v) j. (2.33)

This is plotted in Fig. 1 for a typical set of parameters
A. , B, D.

Pandharipande's differential equation for f is
(Pandharipande and Wiringa, 1976; Pandharipande and
Bethe, 1973)

[-(k2/m)V2+ v —~]f=0

with the boundary conditions

rf(r) -0 as r-0, f(d) =1, (df/dr)~, =0.

(2.34)

(2.35)
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F10. 7. Typical central potentials. A: "Homework" potential
of Kq. (2.45); B: Potential zz of Eq. (2.47); C: Potential v& of
Eq. (2.48); D: Singlet-even component- of the OMY potential
defined by Eq. (2.49). Note that the energy scale above the
horizontal axis is different from that below the axis.

0.5

Equation (2.34) is used only for r &d, and f(r) is put
equal to 1 for ~ &d. For a chosen value of d, the value
of a is determined by requiring that, when (2.34) is in-
tegrated from r =0 to r = d, one finds df/Cr =0 at r =d.
Then d is a variational parameter that can be varied to
minimize the energy expectation value. Pandharipande
(Pandharipande and Wiringa, 1976; Pandharipande and
Bethe, 1973) has given intuitive arguments for this
choice of f. Figure 1 shows a plot of the solution of Eq.
(2.34) for the potential v2, which is defined by Eq. (2.47)
and plotted in Fig. 7.

As might be expected from the variational principle,
the energy expectation value is rather insensitive to the
choice of f. For example, consider nuclear matter at
k~ =1.8 fm ', interacting through the central potential
v2. In this case, as we will see in. Sec. II.C, the cor-
relation functions B and C of Fig. 1 give practically the
same energy expectation value. However, the error in
the HNC approximation is much smaller for the Pand-
haripande correlation function (curve C) than for curve
B. This is presumably because of the shorter range of
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the Ppndharipande correlation function. Thus the Pand-
haripanxde choice of f is often advantageous, not because
it gives a lower energy, but because it permits a more
accurate evaluation of the energy expectation value.

C. Fermions with central potentials

In this section we consider variational calculations for
fermions interacting through central potentials and give
illustrative numerical results from the literature. Most
of the ideas developed for bosons in the previous sub-
section carry over to the fermion case when proper ac-
count is taken of antisymmetry.

We devote most of our attent:ion to the Fermi hyper-
netted-chain (FHNC) method, which gives accurate re-
sults over a 'wide range of densities. But term-by-term
summation of the cluster expansion is also of great in-
terest. This is because it is applicable to correlation
operators and two-body potentials of arbitrary complex-
ity (Clark and Westhaus, 1968; Clark and Ristig, 1973),
while the FHNC method, in its present state of develop-
merit, is not. A third method for evaluating the energy
expectation value is Monte Carlo integration. Such cal-
culations have long been done for bosons, and they have
now been extended to fermions with central forces
(Ceperley et al. , 1977). For central forces, Monte
Carlo is probably the best method because the associ-
ated error estimates can be made acceptably small and
are more reliable than those of other methods. Thus
the Monte Carlo results provide the best check on the
validity of the other methods. The other methods are of
interest because they have been applied to more realis-
tic nuclear potentials, including tensor forces and other
complications, while the Monte Carlo method has not.
For such potentials, Ristig, Ter Louw, and Clark
(1971; 1972) and Kiirten and Ristig (1977) have calcu-
lated the two- and three-body terms of the cluster ex-
pansion, and others (Pandharipande and Wiringa, 1976;
Wiringa and Pandharipande, 1978; Hosati, I977; Smith,
1977; Owen, 1977) are developing partial summation
methods analogous to FHNC. However, if the Monte
Carlo method could be extended to the full nuclear
force, it would probably be better than any method now
available.

Still another approach is the lowest-order constrained
variational (LOCV) method. The original idea of Pand-
haripande (1971)was to constrain h(r) =f'(r) —1 to be of
such short range that the two-body cluster term alone
would accurately approximate the energy expectation
value. Later, Pandharipande (Pandharipande et al. ,
1975) found the method not sufficiently accurate and has
given it up in favor of FHNC. The I OCV method has re-
cently been further developed by the Daresbury group
(Owen et al. , 1976; 1977), who have applied it to many
systems, includirig nuclear matter with the full Reid
potential (Owen et al. , 1977). They assess the accuracy
of the method, however, not by calculating higher-order
terms, but by comparison with results of other methods
that are supposed to be reliable. The results have re-
cently been criticized on this basis (Kallio and Smith,
1977). So, although the LOCV method may turn out to
be useful, it does not at present add to our knowledge of
which methods are accurate and which are not.

(2.36)

where 4 is a Slater determinant of plane waves with two
neutrons and two protons in each momentum state. Just
as for bosons, the first step in evaluating the energy ex-
pectation value is to calculate the two- and three-body
distribution functions g(r) and g3(r„r2, r3). We then ob-
tain the expectation value of the potential energy per
particle as

(2.37)

just as for bosons. For bosons, two formulas related by
partial integration were available for the kinetic energy.
For fermions, three such formulas are in common use.
This will be discussed more fully later on. Thus we
must calculate g(r) and g,(r„r„r,), and there is a dia-
gram expansion for each of these. The diagrams are
more complicated than in the boson case because of the
Slater determinant 4, which was unity in the boson case.

A clear and systematic derivation of fermion diagrams
has been given by Gaudin, Gillespie, and Ripka. (1971).
Here we simply show heuristically how the diagrams of
the Bose case must be modified. Equation (2.7) for g(r)
contains 4*4, and C and 4* are each a sum of products
of plane waves. Suppose we choose a term from 4 con-
taining the factor exp(ik ~ r, )and a term . from C ~ con-
taining exp(-ik ~ r~), where k is the momentum of some
orbital in the Fermi sea. Then this particular contribu-
tion to 4*C will contain the factor exp(ik r, , ), where
r, , =r, —r&. Summing over values of k in the Fermi sea
gives

(2x) ' f d'), expik x;,. = p(().„r,,),

where

(2.38)

To apply FHNC, we must require that f=f(r) be a
single spherically symmetric function of x with no spin
or isospin dependence. This determines the class of
tw'o-body potentials that can be treated. In most cases,
we will take the potential to be a state-independent func-
tion v(r). However, one can also treat a state-depend-
ent potential consisting of four distinct functions of y,
one for each of the four possible spin-isospin combina-
tions for a pair of particles. The energy expectation
value can be evaluated just as accurately for this case
as for a completely state-independent potential. The
only question is whether, for a state-dejendent poten-
tial, the energy expectation value calculated with a
state-indejendent f is reasonably close to the true
ground-state energy. For the OMY potential, as dis-
cussed below, this seems to be true. The actual nuclear
potential has a more complicated operator structure:
Within a given spin-isospin state the potential is a dif-
ferent function of r for different orbital angular momen-
ta L. In this case, regardless of whether a state-inde-
pendent f gives an adequate wave function, FHNC cannot
be used, without making further approximations, to
evaluate the energy expectation value. Finally, our re-
striction of f to a function of r clearly precludes an ad-
equate treatment of strong tensor or spin-orbit forces.

The variational wave function is
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/(~) =3~ '(sine —xcosx) . (2.39)

The presence of this factor is indicated diagrammatical-
ly by a dashed line connecting points i and j. So in ad-
dition to the dynamical correlation g(y„) =f (x;,) —1,
which is represented by a solid line in the diagrams, we
now have a statistical correlation /(k~r, , ) represented
by a dashed line joining points i and j. The dashed lines
are called exchange lines. The two-body distribution
function g(~) is again given by Eq. (2.9), but a larger
class of diagrams contributes to D(r ) than in the boson
case. The diagrams with no exchange lines are identi-
cal to the boson diagrams, but in addition exchange
lines may now be drawn in any diagram in such a way
that each internal or external point is either (a) un-
touched by exchange lines, or (b) has exactly one in-
coming and one outgoing exchange line. Thus the ex-
change lines always form closed loops. Each internal
point mus& be touched by at least one solid line. Only
irreducible diagrams are to be included (Fantoni and
Rosati, 1974). More precise rules for signs and nu-
merical factors, along with many examples, are given
by Pandharipande and Bethe (1973), Fantoni and Rosati
(1974), and Zabolitzky (1977). As in the boson case,
the Van Kampen cluster expansion is generated by
grouping the diagrams according to the number of in-
ternal points.

The new element in the diagrams is the exchange line
giving the function /(k~x). This function is unity at r =0
and falls to zero with a range of order k~'. However,
the average interparticle distance is also of order k~'.
Thus the range of /(k~~) is always comparable to the in-
terparticle spacing, and it is therefore not the type of
short-range function that is ideal for a cluster expan-
sion. In fact, Brandow (1976) has suggested that anti-
symmetry of the many-body wave function will cause
the cluster expansion to converge too slowly to be use-
ful. His argument is based on an analogy with the
Brueckner-Bethe method and runs as follows.

If P „ is the plane wave of relative motion of two par-
ticles with momenta m and n in the Fermi sea, then in
the Brueckner —Bethe method there occurs a corres-
ponding correlated two-body wave function P „, the first
approximation to which is the Bethe-Goldstone wave
function (see Sec. III.A). The quantity analogous to p„„
in the variational method is fp „. However, , Q „ is de-
fined so that (p»~g „—@ „)=0 if either k or 1 is in the
Fermi sea, while fP „will usually not satisfy this con-
dition. Brandow argues that higher terms in the cluster
expansion will correct this problem, but that making

fP „orthogonal to all momentum states in the Fermi
sea will require cluster terms whose order is compar-
able to the total number of particles. This would imply
that summing the cluster series to any reasonable order
would be inadequate.

When f is simply a function of ~, it is clearly impos-
sible to satisfy Brandow's requirement that
(P»~(f —I)@ „)=0 whenever either k or I is in the
Fermi sea. One can, however, choose f(r) to satisfy

(2.40)

where the bar means an average over m, n &k~.
is called the angle-average Pauli condition, and it has

long been used in numerical calculations (Backman
et a/. , 1972; Chakkalakal et a/. , 1976). Aside from
questions of antisymmetry, this condition is found to be
useful in restricting f(r) to the class of functions for
which the cluster expansion is likely to be useful (Clark
and Ristig, 1972; Chakkalakal 8/ a/. , 1976).

Brandow has formulated his objection in an intuitive
way, and whether or not it is valid is not yet settled.
Brueckner (1976) has outlined a formal scheme that may
be useful in formulating this question more precisely.
His numerical results, however, fail to take proper
account of the factor f2(r) in the two b-ody distribution
function Isee Eq. (2.9) j and are therefore spurious.
Krotscheck (1976) has given arguments that the cluster
expansion should work just as well for fermions as for
bosons. There is a need for a more precise under-
standing of how antisymmetry is treated in the cluster
expansion, so that Brandow's objection can be definitely
either confirmed or refuted.

In any case, one fact that aids convergence of the
cluster expansion is that every internal point in a dia-
gram must be touched by the short-ranged dynamical
correlation function h(x). Another aid to convergence is
the fact that each exchange line typically carries a nu-
merical factor —,. This is because f is spin and isospin
independent, so that a given particle can be exchanged
only with that fraction of the other particles having the
same spin and isospin. For nuclear matter this frac-
tion ls

One can do better than the cluster expansion by using
the boson hypernetted-chain partial summation. Recall
that the class of fermion diagrams with no exchange
lines is identical with the diagrams of the Bose case.
Until recently, most calculations applied HNC to these
Bose diagrams to obtain a first approximation for the
fermion problem. The diagrams with exchange lines
were then treated by the perturbation method of Wu and
Feenberg (1962).

However, Fantoni and Rosati (1975) have recently
shown how to apply the ideas of HNC to the complete set
of fermion diagrams, treating the exchange correlations
on the same footing as the dynamical correlations. This
is a remarkable achievement. The analysis is vastly
more complicated than for bosons and leads to a set of
four coupled nonlinear integral equations, analogous to
the single Eq. (2.23) for bosons. The reader should
consult the paper of Fantoni and Rosati (1975) for the
derivation and the detailed form of these equations. The
reason for expecting the Fermi hypernetted-chain
(FHNC) summation to be a good approximation is the
same as in the Bose case: The diagrams with the most
open structure, such as the chain diagrams, are in-
cluded in the summation, and only the diagrams with
very compact structure, such as the one in Fig. 3, are
left out.

A different version of the FHNC summation has been
devised by Krotscheck (1975; Krotscheck and Ristig,
1975; Krotscheck, 1977) and applied to neutron and nu-
clear matter by Krotscheck and Takahashi (1976a;
1976b). It is especially well suited to calculating the
long-range behavior of g(x), which in turn determines
the low-momentum behavior of the liquid structure func-
tion. Which version of FHNC will eventually prove
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where 4 is the Fermi-gas wave function and 4 is the
variational wave function of Eq. (2.36). The exact value
of T,d is clearly T@, where

T ~
= 0.6h2ka~/2M (2.42)

because 4 is an eigenfunction of T with this eigenvalue.
But T,d can also be evaluated by applying T to 4 and ob-
taining a formula involving the two- and three-body dis-
tribution functions, evaluated with f(r) -f' '(r)
(Zabolitzky, 1976a). Since the function f'~2(r) is very
similar to f(r) in shape and range, the FHNC approxi-
mation can be applied to f'~2 to evaluate T „.The dif-
ference between the FHNC result and the exact result
T @ is a measure of the error in the FHNC procedure.

A third error estimate is obtained by evaluating cor-
rection terms to the FHNC approximation. Just as for
bosons, the FHNC approximation is the first term in a
systematic expansion. Evaluating the second term,
which gives the so-called FHNC/4 approximation, gives
an indication of the error in FHNC. Earlier calcula-
tions of this type for bosons (Pandharipande, 1973) and
fermions (Zabolitzky, 1976a) used the superposition
approximation of Eq. (2.29) for g, (r„,r„r,), which
omits certain terms from the expectation value of the
kinetic energy (Smith, 1976; Zabolitzky, 1977). How-
ever, a complete FHNC/4 calculation has now been
made (Zabolitzky, 1977).

Finally, Monte Carlo integration has recently been
applied to the energy expectation value for fermions
(Ceperley et al. , 19VV). The calculations are done by
sampling the configuration space of a finite number of
particles (typically about 100) in a finite-sized box with

better for energy calculations remains to be seen.
Without attempting to settle this question, we restrict
our attention to the Fantoni-Rosati version for two rea-
sons: (1) The Fantoni-Rosati version works very well
for the energy, and (2) nearly all calculations done so
far have used this version.

We now turn to the crucial question of how accurately
one can calculate energy expectation values in the FHNC
approximation. We first describe several methods of
estimating the error and then illustrate them with nu-
merical calculations.

The first method, suggested by Zabolitzky (1976a),
involves comparing different formulas for the kinetic
energy. We saw in the boson case that by partial inte-
gration one can derive two different formulas for the
kinetic energy. For Fermi systems, there are three
different formulas for the kinetic energy in common

'use. The different formulas are denoted by the initials
of their inventors, CW for Clark and Westhaus (1966),
JF for Jackson and Feenberg (1961), and PB for Pand-
haripande and Bethe (1973). For bosons, the SF form-
ula requires a knowledge only of the two-body distribu-
tion function g(r ), riot of the three-body distribution
function g, . For fermions g, occurs in all three formu-
las for the kinetic energy, although the JF three-body
term is numerically very small. Further discussion of
these formulas is given by Zabolitzky (197V).

Zabolitzky obtains a second error estimate by evaluat-
ing the model kinetic energy T,d, defined by

(2.41)

(2.43)

where p is a plane wave of relative motion of two par-
ticles, and P is the correlated two-body wave function.
The larger the value of g, the more important are the
many-body correlation terms that are omitted in any
practical Brueckner-Bethe calculation. It is intuitively
clear that the counterpart to P in the variational method
is f@. Substituting fP for P in Eq. (2.43), and taking
proper account of antisymmetry, one gets (Chakkalakal
et al. , 1976)

g~ =p ff(r)- 1]2[1—4l'(k~r)]d7', (2.44)

which defines g~. For the cluster expansion to succeed,
one must have g~ «1, but we will see that the FHNC
approximation is accurate for larger values of g~.

The various error estimates are illustrated by the
calculations of Zabolitzky (19VV) for neutron matter us-
ing the "homework potential. " This potential is defined
(with v in MeV and r in fm by

v(r) = 9263.1 exp(-4, 9r)/r (2.45)

and is plotted in Fig. V. Figure 8 shows the neutron
matter results for p =1 fm '. This density is six times
the empirical saturation density of nuclear matter and,
for all cases shown in Fig. 8, we have g~ &1. Hence
this case provides a very stringent test of the FHNC
method.

The Pandharipande correlation function from Eq.
(2.34) is used, and the calculations are done for various
values of d/ro, where ro is defined by

~3 n.~03 p =1. (2.46)
/

For p = 1 fm ' we have rp 0 62 fm. Consider first the
FHNC results, which are shown as crosses. For each
value of d, three crosses are shown, corresponding to
the CW, JF, and PB formulas for the expectation value
of the kinetic energy. The expectation value of the po-
tential energy is calculated in exactly the same way in
all three methods. For sufficiently small values of d,
the three methods give nearly identical results. This
suggests that for such short-range correlation functions
the terms omitted from the FHNC approximation are

periodic boundary conditions. There are two sources of
error. One is the statistical error inherent in any
Monte Carlo calculation, and the other is caused by us-
ing only a finite number of particles. Both errors can
be reliably estimated and made acceptably small, e.g. ,
the uncertainty for nuclear matter is 1-2 MeV per nu-
cleon. The Monte Carlo method works at both low and
high densities and treats antisymmetry without approxi-
mation. C om parison with Monte C arlo results is the
most important check on the FHNC results.

We now want to look at illustrative numerical results.
It is important to demonstrate that the FHNC method is
more widely applicable than low-order truncation of the
cluster expansion. For this purpose we need a criterion
for applicability of low-order truncation of the cluster
expansion. In the Brueckner-Bethe method, this is pro-
vided by the value of the parameter z defined by [see
Sec. III.A and Brandow (1966)]
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FIG. 8. Calculated values of energy per particle for neutron
matter at p=1.0 fm 3 with the "homework" potential of Eq.
(2.45). The results are plotted against the cutoff distance d
used in calculating the correlation function from Eq. (2.34),
Further discussion is given in the text.

negligible, and the FHNC energy expectation value is
very accurate As d./vo is increased from 1.2 to 1.6 two
things happen. First, the differences among the CW,
SF, and PB energies increase, showing that the terms
omitted from FHNC become larger for longer-range
correlation functions. Second, the energy expectation
value moves down, showing that the variational wave
function is improved by using a longer-range correla-
tion function. The difference between the CW and PB
energies is a measure of the uncertainty in any one of
the three FHNC energies. As d increases beyond 1.&p,
this uncertainty rises rapidly, and we cannot tell
whether the exact expectation value goes up or down.
For any particular value of d, we would estimate the
expectation value to be midway between the CW and PB
energies, with an uncertainty of about half the differ-
ence between these two.

The difference between the FHNC approximation to
T d and the exact value T,d

= T& provides our second
error estimate and is plotted as the topmost curve in
Fig. 8. For all values of d, it is roughly half as large
as the difference between the CW and PB energies.
Therefore these two error estimates are consistent with
each other.

The third error estimate is obtained by calculating the
next term in the expansion, i.e., by doing a FHNC/4
calculation. For a given value of d, the three open
circles give the FHNC/4 energies calculated with the
three different treatments of kinetic energy. For the

CW and PB treatments, the change in energy between
FHNC and FHNC/4 is comparable to T,d

—T&. This
confirms the two previous error estimates. In this par-
ticular case, the change between FHNC and FHNC/4 is
much sma'Lier for the SF treatment. However, this is
fortuitous —Zabolitzky gives examples where in FHNC
the PB treatment is more accurate than JF. The FHNC/
4 calculation greatly reduces the spread among the CW,
SF, and PB results. This is consistent with the idea
that this spread is a measure of the terms neglected in
the FHNG approximation.

For d between 2.0 and 2.4yp, the expansion starting
with FHNC and FHNC/4 seems to be converging to an
expectation value in the range 780—820 MeV. We would
like to confirm this by comparing with a Monte Carlo
calculation of known accuracy. The Monte Carlo result
of Ceperley et al. (1977) is 782+2 MeV, which is in the
expected range. Unfortunately the Monte Carlo calcula-
tion used a different form of correlation function and
therefore provides no direct evidence on the correct ex-
pectation value for the Pandharipande choice of f (r ).
However, there is substantial evidence (Campani et al. ,
1976; Fantoni and Rosati, 1976; Zabolitzky, 1977) that
the energy expectation value is not very sensitive to the
precise form of f(r). (This is what one would expect in
a variational method. ) So it is extremely probable that
the exact expectation value for the Pandharipande choice
of f lies in the range spanned by the FHNC/4 results.

We draw two main conclusions from these results.
First, FHNC gives accurate results. Second, two
easily calculated and reliable error estimates are avail-
able in the difference T d

—T@ and the spread in the
CW, SF, and PB energies. For d=2~p, for example,
from the CW and PB treatments of FHNC, we would
estimate the expectation value to be 800 x 40 MeV, and
this is indeed a valid estimate, as shown by the FHNC/4
and Monte Carlo calculations. In most cases, Monte
Carlo and FHNC/4 results will not be available, so it is
a great advantage that we have two reliable and easily
calculated error estimates.

The results of Fig. 8 also illustrate the point that,
when minimizing E„, with respect to f, it is essential
to restrict f to the class of functions for which the ap-
proximation used to evaluate E„, is accurate. For ex-
ample, suppose that only the FHNC results, with the PB
kinetic energy, were available. We should then be led
to the incorrect conclusion that increasing d from 1.6
to 3.0rp substantially reduces E„„.If we had instead
made error estimates, based on the value of T,d

—T@
and the spread among different treatments of kinetic
energy, we would have discovered the rapid rise in un-
certainty of the FHNC results as d becomes larger than
2' Thus these error estimates can save us from draw-
ing wrong conclusions. In fact, without the Monte Carlo
and FHNC/4 results, we could not tell from Fig. 8 what
the optimum value of d is. However, the situation is
much more favorable for central nuclear potentials at
densities only one or two times the empirical saturation
density of nuclear matter. One typically finds that
FHNC remains accurate beyond d=2rp, but that increas-
ing d beyond 2+p does not lower E.„„.

For further evidence of the validity of FHNC, we turn
to the potential v„defined by
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TABLE I. Summary of FHNC and Monte Carlo results for
potential v&. as discussed in the text.

Corr. fn. Ecw Ez,a mod

MC
I (d=2~o

12.4 2.1
8.0 3.4

7.2 + 5.2
5.7 ~ 2.3

5.0
1.7

3.4+ 1.5 20-
O

u2(x) = —10.463e "/x+ 105.4688 ~"/x —3187.8e "/x
lo-

—0.2

+ 9924.3e "/x, (2.47)

where x=0.7x, r is in fm, and v2 is in MeV. This poten-
tial is plotted in Fig. 7. Some of Zabolitzky's (1977)
FHNC results for nuclear matter with this potential are
shown in Table I. The results in the first row are for
p =0.386 fm, and in the second row for p =0.394 fm
(k~ =1.8 fm ). This difference in density is negligible
for the present discussion. The lowest-order approxi-
mation to the Brueckner-Bethe parameter g is 0.27, so
that this is a reasonably difficult case.

The first row is for the correlation function of Eq.
(2.33), which is plotted as curve B in Fig. 1 and has
been used in Monte Carlo calculations (Ceperley et al. ,
1977). We refer to this correlation function as the
Monte Carlo (MC) correlation function. The second row
shows results for the Pandharipande correlation func-
tion with d=2ro, which is plotted as curve C in Fig. 1.
En each case the estimated FHNC energy E„t is taken
to be midway between Ec and Epp with an uncertainty
of &(Ec~ —Ep~ ). This error estimate is seen to be
close to T,d

—T +. For the MC correlation function, the
Monte Carlo result of Ceperley, Chester, and Kalos
(1977) is shown. (This paper quotes a statistical error
of 5.0 MeV. However, Dr. Kalos has informed me that
the correct statistical error is 1.0 MeV. From other
results in the paper, it appears that finite-size effects
raise the total uncertainty in the MC result to 1.5 MeV,
and this uncertainty is shown in Table I.) Comparison
with the Monte Carlo result shows that the FHNC esti-
mate for the expectation value is correct w'ithin the
estimated error. The Pandharipande correlation func-
tion is of shorter range than the Monte Carlo one, and
this leads to a smaller error in the FHNC estimate.
But the energy is not significantly different from that
obtained with the longer-range MC correlation function.
This illustrates the insensitivity of the energy to the
choice of f. For the MC correlation function, the exact
expectation value lies near the lower end of the FHNC
estimate. This behavior is observed in other cases as
well, so that the best estimate for the expectation value,
on the basis of FHNC calculations alone, is usually be-
tween EPB and 2(Ec~ +EpB ) How—ever, the main con-
clusion to be drawn from Table I is that the FHNC esti-
mate of the expectation value, and the associated error
estimate, are both reliable.

Having established the reliability of the FHNC approxi-
mation, we look at additional results for central poten-
tials. Figure 9 shows results for v2, using the Pand-
haripande correlation function with d=2ro (Zabolitzky,
1977; Benhar et al. , 1976). The upper limit of the
FHNC band is given by ~(E'c~+E» ) and the lower limit
by Ep&, in accord with the discussion in the last para-

graph. Also shown is the lowest-order Brueckner-
Bethe calculation (Pandharipande et al. , 1975). It is
seen to lie definitely above the FHNC upper bound. This
discrepancy is typical and will be discussed later.

Vfe note here that the earliest variational calculation
with potential v2 (Pandharipande et al. , 1975) did not in-
clude a full FHNC calculation and gave more binding en-
ergy than the results-shown in Fig. 9. The latter results
should be more accurate because they are obtained from
a complete FHNC calculation and are confirmed by
Monte Carlo results.

A similar plot is shown in Fig. 10 for the potential v„
which is given by

v, (r)=-I0.463e "/x —1650.6e /x+6484. 2e 7"/x,

(2.48)

where x=0.7&, v is in MeV, and x in fm. This potential
is plotted in Fig. 7. The lowest-order approximation to
g is always less than 0.1 for v, ~ and the uncertainty in
the FHNC estimate of the expectation value is only about
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FIG. 10. Same as Fig. 9 for the potential v& of Eq. (2.48).
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FIG. 9. Calculated energy per particle of nuclear matter plot-
ted against Fermi momentum kz for the potential v2 of Eq.
(2.47). The shaded region shows the FHNC result with the er-
ror estimate discussed in the text. The curve labeled BB(2)
gives the lowest-order Brueckner —Bethe result calculated with
a single-particle spectrum given by pure kinetic energy above
the Fermi sea. The error bars extending downward from this
curve have magnitude ~D2 and determine the expected order of
magnitude of higher-order corrections to the Brueckner —Bethe-
result. The lowest-order approximation to the Brueckner-
Bethe parameter K is also plotted, using the right-hand vertical
scale.
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0.1 MeV, too small to be shown on the. graph. Again,
the lowest-order Brueckner —Bethe result lies substan-
tially higher.

The first calculations showing a large discrepancy be-
tween lowest-order Brueckner-Bethe results and the
variational method were done by Hackman, Chakkalakal,
and Clark (1969). They did not use FHNC but calculated
the two- and three-body terms in the cluster expansion
for the expectation value. Since FHNC calculations have
now been done for the same potential, the cluster ex-
pansion can be tested. This is important because the
cluster expansion, calculated through three-body terms,
has been applied to tensor forces: It is clearly of great
interest to know whether it is accurate for the simpler
case of central forces.

The calculations have been done for the OMY (Ohmura,
Morita, and Yamada, 1956) and IY (Iwamoto and
Yamada, 1957) potentials, . and we show results for the
OMY potential. This potential has a hard core of radius
c =0.6 fm. Outside the core, the potential is zero in odd
states, i.e. , spin —isospin states with (S, T) = (0, 0) or
{1,1). For the other two (S, T) combinations, the extra-
eore QMY interaction is given by

v = -397.31 exp[ 2 627—(r —. c)],r & c, (S, T) = (0, 1),
(2.49)

v = -947.02 exp[3 677(r —c. ) 1,r & c, (S, T) = (1, 0),
(2.50)

where v is in MeV and & and c are in fm. The singlet-
even (S, T =0, 1) component is plotted in Fig. 7. Be-
cause of the large core radius w~ is fairly large (0.3
at the saturation density) and provides a demanding
test of the cluster expansion.

We show results obtained with the three-parameter
correlation function (Backman et al. , 1969) used in the
original work (Hackman et al. , 1972). This allows com-
parison with a. FHNC calculation (Campani et al. , 1976)
that used the same correlation function and the SF treat-
ment of kinetic energy. However, the simpler correla-
tion function of Eq. (2.32) has been found to give nearly
the same results (Chakkalakal et al. , 1976). The re-
sults are plotted in Fig. 11, where the FHNC and clus-
ter calculation results are labeled FHNC and CI, re-
spectively. The values of & are taken from the
Brueckner-Bethe calculation (Backman et al. , 1972),
but they are nearly the same as the values of &~. For
all densities up to k~ =1.6 fm, the contribution from
the three-body cluster term is less than 3 MeV, re-
markably small for values of & as large as 0.3. Since &

is about the same as for the potential v2, the accuracy
of the FHNC expectation value can be expected to be
1-3 MeV. It would be desirable to verify this by apply-
ing one or more of the error estimates mentioned above.

The FHNC and cluster calculations agree to within
about 1 MeV. We conclude that the cluster expansion is
very probably accurate to 2-3 MeV for this case. The
lowest order -Brueckner —Bethe calculation (Backman
et a/. , 1972) lies much higher. The success of the
cluster expansion in this case makes it reasonable to
apply the same method to tensor forces. Work has be-
gun in this direction and wi11 be discussed in the next
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FIG. ll. Calculated energy per particle of nuclear matter for
the OMY potential. The curves labeled FHNC and CL are vari-
ational calculations and are described in the text. The Brueck-
ner —Bethe results labeled BB(2) and rc have the same signific-
ance as in Fig. 9.
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v(r) = 5725 exp(-4. 1r)/r, (2.51)

where v is in MeV and x in fm. It was found that the ex-
pectation value in the trial wave function (2.6) is within

subsection.
We have so far considered only the question of how'

accurately the expectation value can be calculated. The
other interesting question is, how close is the expecta-
tion value to the exact ground-state energy'P We now
review the available evidence on this point.

The most direct information comes from the work of
Clark et al. (1975) using the OMY potential. One can
develop a perturbation formalism that starts with the
variational wave function as unperturbed wave function.
Evaluating the perturbation series woul. d eventually gen-
erate the exact 4 and E from the variational 4 and E.
The leading perturbation correction to the energy can
itself be expanded in a cluster series, and Clark et al.
{1975)have evaluated the two bo-dy term in this expan-
sion. For the OMY potential, they find the binding ener-
gy is increased by 4-5 MeV, nearly independent of den-
sity. Part of this correction accounts for the fact that
the QMY potential is state dependent, while the correla-
tion function used is not. Putting. the triplet-even inter-
action equal to the singlet-even interaction in the OMY
potential [the resulting interaction is called the IY po-
tential (Iwamoto and Yamada, 1957)] reduces the per-
turbation correction to 2.0-2.5 MeV. The IY potential.
is still state dependent because it has no attractive force
in odd states, and part of the perturbation correction is
presumably due to this fact. Hence, for state-indepen-
dent potentials such as v, and v„ the expectation value
with the variational wave function of Eq. (2.36) could
well be within 3 MeV of the true ground-state energy.

For Bose systems, precise information is available
on this point because Kalos (1970, 1974) has developed
a Monte Carlo method to calculate the exact ground-
state energy. In this "Green's-funetion Monte Carlo
method" uncertainties due to statistics and finite-size
effects ean be made very small. A system of interact-
ing bosons has been treated in this way (Ceperley et al. ,
1976), using the Yukawa-core potential
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1% of the exact ground-state energy for densities up to
50 times the empirical saturation density of nuclear
matter. Kalos (1977) has made a similar comparison
for the Bose system liquid He, using the Lennard-
Jones potential, which has a strong short-range repul-
sion behaving as r ". Near the saturation density of
liquid 4He he finds the exact ground-state energy to lie
15% below the variational result obtained with the wave
function (2.6). Thus the variational upper bounds with
the usual choice of wave function are very close to the
exact ground-state energies for potentials with Yukawa
cores, and moderately close for potentials with more
singular cores. The estimate of 2 MeV in nuclear mat-
ter, obtained in the preceding paragraph, was for a
potential with an infinitely repulsive core. Hence we
may expect even better accuracy for potentials with
Yukawa- shaped cores.

Further indication that the variational energy is very
close to the exact ground-state energy comes from
evaluating the model energy defined by

(2.52)

cussed in the next subsection). is reasonable.
For state-independent central forces, it is probable

that the energy expectation value obtained with the w'ave
function of Eq. (2.36) is within 2 MeV of the exact
ground- state energy.

The outstanding feature of variational calculations
with central forces is that the error estimates are
highly reliable. This is largely because Monte Carlo
calculations have been done. This situation contrasts
sharply with that of variational calculations with tensor
forces and with that of Brueckner-Bethe calculations
with any potential. In the latter two cases, the best one
can hope for at present is a physically plausible expan-
sion in which the first two or three terms behave well.
Therefore, variational calculations with central forces
can confidently be used as a standard against which
Brueckner-Bethe calculations are to be tested. The
lowest- order Brueckner-Bethe results lie consistently
above the variational upper bounds. So it is of great
interest to see whether higher-order terms in the
Brueckner-Bethe method mill repair this discrepancy.

where 4 is the variational wave function and 4 is the
free Fermi-gas wave function. This was suggested by
Kummel (1976) and has been carried out by Zabolitzky
(1976a) using FHNC to evaluate E,„. If 4 were an
eigenstate of H, then E d would agree with the energy
expectation value E„„.Thus a necessary condition for
4' to accurately approximate the true ground-state wave
function is that E,d be close to E„„.Unfortunately, it
is hard to make this statement quantitatively useful.
For a known difference between E od and E„,, there
seems to exist no quantitative estimate of the difference
between E., and the exact ground-state energy. Also,
even exact agreement between E,d and E„,, although
suggestive, does not prove anything. The agreement
could conceivably be purely accidental.

Nevertheless, the numerical results are remarkable.
For the potentials v, and v2, at all densities up to twice
the empirical density of nuclear matter, E,d agrees
with E,„„ to 1 MeV or better (Zabolitzky, 1976a). These
results use the Pandharipande correlation function with
d=2~0. Since this close agreement holds over a range of
densities for two quite different potentials, it is un-
likely to be accidental. The results are consistent with
E„„being very close to the exact ground-state energy.

Let us summarize the main results of this subsec-
tion. For central forces, the FHNC approximation-for
the energy expectation value is accurate up to densities
at least twice the empirical saturation density of nu-
clear matter. Approximate evaluation of the model
kinetic energy, and the spread among various treat-
ments of the expectation value of the kinetic energy,
provide two reliable and easily calculated error esti-
mates for the FHNC result. Since no calculation is use-
ful without an error estimate, it is important to com-
pute these error estimates in practical calculations.

Term-by-term summation of the cluster expansion
has not been as carefully tested as FHNC. In the one
case studied, the two- and three-body cluster terms
gave an accurate expectation value in spite of a fairly
large value of 0.3 for the expansion parameter Kg. Thus
the extension of this technique to tensor forces (dis-

D. Fermions with realistic forces

In this subsection we consider variational calculations
for interactions with tensor forces and the other com-
plexities present in phenomenological nuclear forces.
In this case the two-body correlation operator f must
be more general than multiplication by a function f(r).
One part of f will consist of multiplication by a function
of r (this will be called the state-independent part), and
the other part mill contain more complicated operators
such as spin, isospin, the tensor operator, etc. (this
will be called the state-dependent or operator part).
Neither the Monte Carlo method nor the FHNC approxi-
mation has yet been formulated for the case when f has
a nonzero operator part. As a result, the reliability of
the calculations is much less certain than for central
forces.

Two approaches have been used so far. The first,
which has been used by the Clark-Ristig group (Ristig
et al. , 1971; 1972; Kurten and Ristig, 1977) is to eval-
uate the two- and three-body terms in the Van Kampen
cluster expansion (Van Kampen, 1961; Clark and West-
haus, 1968; Clark and Ristig, 1973). In the second ap-
proach, which was begun by Pandharipande and Wiringa
(1976; Wiringa and Pandharipande, 1978) and is now
also being pursued by several other groups (Rosati,
1977; Smith, 1977; Owen, 1977), FHNC is applied to
the state-independent part of f. Then, in analogy with
the FHNC method, one tries to identify and sum the
most important terms that involve the operator part of
f. The calculations in both methods are inevitably com-
plicated, and at present there are no firm estimates of
the errors.

The Van Kampen cluster expansion (Van Kampen,
1961) can be worked out order by order for arbitrarily
complicated correlation operators and interactions
(Clark and Westhaus, 1968; Clark and Ristig, 1973).
Ristig, Ter Louw, and Clark (1971, 1972) have given
explicit formulas for the two- and three-body terms,
using the CW treatment of kinetic energy. Numerical
results have been obtained by them and also by Kurten
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508 B. D. Day: Current state of nuclear matter calculations

and Ristig (1977). They both used the Gammel-
Christian-Thaler (1957) potential, which we denote
GCT, and potentials 5200 and 5100 o f G am m el and
Thaler (1960). These potentials all have an infinitely
repulsive core of radius 0.5 fm. The extra-core inter-
action is given by a single Yukawa function that is dif-
ferent for singlet-even, triplet-even, singlet-odd, and
triplet-odd states. In addition, there is a tensor force
in the triplet states. All three potentials are fitted to
low-energy scattering data and to the properties of the
deuteron. Potentials with no spin-orbit force were sel-
ected on purpose in order to study tensor effects without
other complications.

The two-body correlation operator is taken to be
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)
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F, =f(r„)[1 + q(r„') t„], (2.53)

where f and q are spherically symmetric functions of
and t» is independent of ~r»j and contains the ten-

sor operator and a projection operator onto triplet-even
states. The three-body correlation operator is taken to
be

F, =f (r„)f(r„)f(r„)f1+q(r„)t„+q(r„)t„+q(r„)t„j,
(2.54)

which is consistent with the cluster requirement (2.5).
Note that this is simpler than the symmetrized product
of two-body correlation operators.

A cutoff parameter d is used as a variational param-
eter. For a given value of d, f(r) and q(r') are deter-
mined by minimizing the two-body cluster energy, sub-
ject to the conditions that: (i) f(r) and q(r) go smoothly
to 1 and 0, respectively, as r -d, so that f(r) =1 and
q(r) =0 for r &d; (ii) f(r) satisfies the angle-average
Pauli condition (2.40). Once f(r) and q(r) a,re deter-
mined, the two- and three-body cluster terms for the
energy are evaluated. Minimizing their sum then de-
termines d. The resulting values of d for the GCT,
5200, and 5100 potentials are, respectively 2.2, 2.5,
and 2.9 fm, and are nearly independent of density.

The results are shown in Fig. 12. The results for the
5200 potential have been published (Kiirten and Ristig,
1977), and those for the GCT and 5100 potentials were
kindly supplied by Dr. Histig. For none of the potentials
does the variational result saturate below k~ =1.7 fm '.
The calculated saturation properties are correlated
with the strength of the tensor force: The GCT potential
has the weakest tensor force, and the 5100 potential,
which comes closest to saturating, has the strongest
tensor force.

The values of the three-body cluster term and of the
expansion parameter rc~, which now includes tensor
contributions, are plotted for the GCT potential. Both
are similar in size to their values for the OMY central
potential, for which the ct.uster expansion was found to
be accurate. Since tensor correlations are qualitatively
different from central correlations, this does not prove
the accuracy of the calculations, but there is no indica-
tion of anything wrong. A rough estimate of the error
caused by omission of higher-order terms is &~ times
the two-body cluster term. Error bars of this size are
shown in Fig. 12 for the GCT potential.

To pin down the error more accurately, an estimate

-40-
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FIG. 1.2. Calculated energy per particle of nuclear matter,
with interactions containing tensor forces, plotted against Fer-
mi momentum kz. The meanings of the various curves are de-
scribed in the text.
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of the four-body cluster term would be helpful. The
spread among different treatments of the kinetic energy
might also be useful in this regard. The CW treatment
was used to obtain the results in Fig. 12, but the PB
and SF formulas could also be applied, and a compari-
son of the results wouM give an idea of the error.

The results of a two-body Brueckner-Bethe calcula-
tion (Brueckner and Gammel, 1958) are shown for the
GCT potential. Error bars are not shown because the
required values of e are not available. However, if
these values of g are comparable to the corresponding
values of g~, the higher-order terms in the Brueckner-
Bethe calculation could account for the discrepancy with
the variational result.

Let us now turn to the work of Pandharipande and
Wiringa (PW). Instead of calculating successive terms
in the cluster expansion, they attempt to identify the
most important higher-order terms and to sum them
using integral equations, in analogy to the FHNC ap-
proximation for state-independent correlation functions.
This is not an easy task. The analog of the expansion in
irreducible diagrams, which is valid for state-indepen-
dent correlation functions, is immensely more compli-
cated for correlation functions that contain operators.
The method is being actively developed by several
groups (Wiringa and Pandharipande, 1978; Rosati, 1977;
Smith, 1977; Owen, 1977), and we merely give the
basic ideas and describe the present results.

Let us first assume that the two-body potential v has
six components: four independent central components in
the singlet-even (SE), singlet-odd (SO), triplet-even
(TE), and triplet-odd (TO) states, and two independent
tensor components in the TE and TO states. Any such
potential can be written in the form

6

v~2 = v' x~2 0' (2.55)
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where the v' are functions of r», and the Q ',
i=1, 2, . . . , 6 are, respectively, the operators 1,
o, o„'r, ~ r„(o, o, )(r, ~ t, ), S», and v, r,8», where 8»
is the tensor operator. This form of v» neglects two
essential features of actual nuclear forces —the spin-
orbit, or 1.8, interaction and the difference between the
SE interaction in 'So and 'D, waves. These will be con-
sidered later.

The correlation function is written similarly as

f- = g f*(~-)O ~ (2.56)

At r = d, the six functions f '(r) are required to go
smoothly to either unity (for i =1) or zero (for I', t1).
The range d is treated as a variational parameter. The
six independent functions f'(r ) are obtained by solving
the Pandharipande differential equation (2.34) in various
partial waves. The uncoupled 'So and 'I', states provide
the SE and SO correlation functions. In the coupled
'S,—'LI, channel, Eq. (2.34) reduces to two coupled dif-
ferential equations whose solutions give both a central
and a tensor correlation function for TE states. Simi-
larly, the 'I', -'I, channel provides central and tensor
correlation functions for the TO states. This gives six
independent functions of ~, and the six functions f'(r)
are linear combinations of these. It turns out that
j f'(r )~ «1 for all i x1, and this fact is used in the ap-
proximation scheme.

In calculating the expectation value of v», one en-
counters the expression f»v„ f», which comes from

vy2C . This is combined with that part of the kinetic
energy containing V2» f» to get f»[-(5'/M)V2»+v»]f».
For ~» &d, one can use Eq. (2.34) (suitably generalized
to include tensor coupling and with different constants g
in different partial waves) to express this in terms of
products of the constants X and the f'(t»). For r» &d,
we have simply v». In either case, using Eqs. (2.55)
and (2.56) for v» and f», one can write

6

f- [ ~@'&~ ) & 1. + v1. ]f1. = Q V'(&») o '

for appropriate functions V'(r»). In deriving this result,
one uses the following very convenient property of the
six operators O': The product of any two is a linear
combination of the original six operators. This property
would not hold if 1 S were included in the O'. For this
reason the operator 1 S is troublesome. Explicit form-
ulas for the effective potentials V'f(r») are given by
Pandharipande and Wiringa (1976).

The potential energy and most of the kinetic energy
are to be obtained by combining Eq. (2.57) with the pas-
sive f, , (a passive f,, is one for which the pair ij dif-
fers from 12, such as f») and integrating. Since
~f' '

(y)~ «1, the first approximation is to set all pas-
sive f' ' equal to zero and apply FHNC to the passive
f'='. Terms in the kinetic energy not accounted for in
Eq. (2.57) are calculated using FHNC with the PB treat-
ment of kinetic energy. Also, some terms are added to
Eq. (2.57) so that the 1 S interaction and the difference
between 'So and 'D2 interactions are treated correctly
in the two-body cluster term but only approximately in
the higher FHNC terms.

To go beyond this approximation, we must consider
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FIG. 13. Calculated values of the energy per particle of nucle-
ar matter plotted against Fermi momentum for the Heid poten-
tial. Curves PW1 and PW2 are variational calculations by
Pandharipande and Wiringa, described in Sec. II.D. The other
curves are obtained from the Brueckner-Bethe method and are
described in Sec. III.B.

terms with passive f' '. Motivated by the fact that
) f' '

~
«1, PW in their earlier work (Pandharipande and

Wiringa, 1976) included terms up to second order in
passive f' '. This procedure is different from term-
by-term summation of the cluster expansion. The
three-body cluster term contains terms up to fourth
order in passive f' '. Including only terms up to second
order omits part of the three-body term but sums many
terms involving more than three particles. The PW
method also differs from the cluster expansion by in-
cluding a full FHNC calculation for terms of zero order
ln passive f

For d =2&0 [see Eq. (2.46)] PW found that the Reid
potential saturates in this approximation at e =-25 MeV,
A„=1.7 fm ', very far from the empirical saturation
point (e =-16+1 MeV, k~=1.29-1.44 fm '). However,
they also found that increasing d causes the calculated
energy expectation value to decrease rapidly without
limit. This is not entirely unexpected. Even though the
passive f'"' are small compared to 1, their effect must
eventually become large when their range d becomes
sufficiently large. Thus the approximation of evaluating
the energy expectation value to second order in the pas-
sive f ' ' must break down for large enough d.

When the correlation operator is a spherically sym-
metric function of x, the solution to this problem was
found in the preceding subsection to be the summation
of chain diagrams, leading eventually to the FHNC ap-
proximation. In their recent work (Wiringa, 1978), PW
have summed many additional diagrams involving pas-
sive f ' '. As a result, they find the dependence of the
energy on d to be much improved. The calculated ener-
gy expectation value still decreases with d, but much
more slowly than before, and this result is encourag-
ing. For the potential of Reid (1968) at k~ =1.8 fm ',
increasing d from 2.1 to 2.7 fm causes the calculated
expectation value to change from -16.2 to -21.1 MeV
per particle. PW also find somewhat less binding ener-
gy than before. Some of the results (Wiringa and
Pandharipande, 1978) are plotted in Fig. 13 a.s curves
PW1 and PW2. These results are obtained using a
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slightly simplified method in which the calculated ener-
gy does have a minimum in d. [This method neverthe-
less goes far beyond the one used (Pandharipande and
Wiringa, 1976) by PW in their earlier work. J In all
cases shown, the value of d that minimizes the energy
is found to lie in the range 2.3—2.7 fm. The lower
curve PW2 differs from the upper curve PW1 by allow-
ing the correlation operator f used in the two-body clus-
ter term to depend on the relative momentum of the two
interacting particles. The higher-order terms are the
same for the two curves. Although the two curves dif-
fer by several MeV in energy, they agree in predicting
that the Heid potential saturates near kF =1.8 fm ', far
above the empirical range of 1.29-1.44 fm '. Thus,
PW still conclude that the acid potential predicts dis-
astrously wrong saturation properties for nuclear mat-
ter. A comparison of these results with the Brueckner-
Bethe results will be made in Sec. III.

We do not yet have a good quantitative estimate of the
error in the PW evaluation of the energy expectation
value. We expect that, as the density is increased or
as the range d of the correlation function is increased,
a point will be reached where complicated many-body
.correlations that are not included in the calculation will
become important, and the PW approximation will break
down. But at present there is no clear indication of when
this point is reached. A useful error estimate could
also be obtained by calculating the spread among the
kinetic energies obtained using the PB, JF, and CW
methods. This was found to give a reliable error esti-
mate for central forces. The difference T,„—T@,
which also gives a reliable error estimate for central
forces, may be less useful as a test of tensor correla-
tions. In the numerator (4l Tl@') of Eq. (2.41) for T „,
for example, tensor correlations contribute nothing to
the dominant two-body cluster term. Even so, it would
be worthwhile to verify that T,d

—T@ is small as a con-
sistency check.

In summary, both variational approaches for tensor
forces have a reasonable chance for success. Additional
work, possibly along the lines suggested above, is re-
quired in both methods in order to obtain more reliable
error estimates. It would also be interesting to apply
both methods to the same two-body potential and com-
pare the results.

1+ (3.1}

where i is -the free Fermi-gas state, and the operator
P„excites exactly @ parti:cles out of the Fermi sea. If
+ satisfies the Schrodinger equation

H4 =BC, (3.2)

then it follows for a Hamiltonian of the form (1.1) that

I I I. THE BRUECKNE R-BETHE METHOD

A. Description of the method

In this subsection we describe the Brueckner-Bethe
method as presently practiced, and in the following sub-
section we discuss tests of the validity of this method.

In the Brueckner-Bethe method one represents the
many-body ground state 4 in the form

(3.3)

where

(3 4)

Note that only E, appears in the exact formula (3.3) for
the energy.

The energy per particle e is then exactly

e = —', k'k'/2M+ ~ ' Q (y „lulP „),
Pj ~ pf (AF

(3.5)

where p„„is the plane wave of relative motion for two
particles with momenta m and n, and the nuclear mat-
ter two-body wave function P „ is defined by

p „(r„r,) =(4lata„a(r, }a(r,)l+)

=p „(r„r,)+(4 la a„a(r,)a(r, )E,le),
(3.6)

where a creates a nucleon of momentum m, and a(r)
destroys a nucleon at the point r.

The most widely used procedure for obtaining approx-
imate solutions of Eq. (3.2) amounts to expanding the
operator E„and the energy E into formal perturbation
series that are then selectively summed. The first step
is to introduce a single-particle potential

A

U=g U,. (3.7)
&=1

by writing

H =Po+H~,

HO=T+U,

H, =~- U ~

(3 ~ 8)

(3.9)

(3.10)

We assume the system to be translationally invariant so
that U=U(k) is diagonal in momentum space. There is
some evidence that at very high density (k~ ~ 2.2 fm ',
compared to the empirical saturation value kF = 1.36
fm ') a lower energy is obtained using a. wave function
having spatial density oscillations (Calogero and
Palumbo, 1973). We are interested in much lower den-
sities and therefore assume translational invariance.

The perturbation series in powers of H, can be gen-
erated by iterating the equations

z =z. +(c l(H, +a,E,)le),
E=1+(1—lC)(Cl)(E H, } 'H, E, -

where

(3.11)

(3.12)

Ho@ =E04 .

(3.13)

(3.14)

The terms in the perturbation series are conveniently
represented by Goldstone diagrams (Goldstone, 1957).
All unlinked diagrams cancel in the series for E and 5'2,
but E„contains terms represented by unlinked as well
as linked diagrams. If we define S„ to be the linked p»t
of E„, then it can be shown that 8 —=g„~S„ is related to
E by (Coester, 1958)

E = exp(S) . (3.15)

The coupled nonlinear equations for the S„ that follow
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pl pg ivy yg

h ~2
(3.16)

and putting this into Eq. (3.5) gives the hole-line expan-
sion for the energy per particle as

e = +5'k' /2M + Q D, , (3.1V)

where

D„=-,'~ '
m, fg &Q~

The lowest-order (two-hole —line) approximation g"„'
is given by the solution of the Bethe-Goldstone equation

(3.18)

=@ „-(0/e)GP „, (3.19)

where the reaction matrix G is the solution of the equa-
tion

G = v —v(Q/e)G . (3.20)

Here, Q is a projection operator that requires both par-
ticles to be above the Fermi sea, and e is defined by

e(k,k,) =(E(k,}+E(k,) —E(m) —E(n)](k,k2), (3.21)

where (k,k,) is the product of two single-particle plane
waves, and the single-particle energy

E(k) =I k'/2M + U(k) (3.22)

depends on the choice of U. The two-hole-line contri-
bution to the energy is given by

(3.23)D2=2A ' mnGmn,
tn, ff &A~

and is represented by the diagram in Fig. 14. The two-
hole-line approximation to the two-particle excitation
amplitude S2 is

from Eq. (3.2) provide a flexible starting point for dif-
ferent approximation schemes that need not involve for-
mal infinite expansion followed by selective resummation
(Coester, 1969; Kiimmel et al. , 19V8). These equations
have been called the exp(S) equations (Kiimmel et al. ,
19V8).

However, all presently available calculations for nu-
clear matter can be described in the more familiar lan-
guage of sums of classes of Goldstone diagrams (Day,
196V; Bethe, 1971; Sprung, 1972; Kohler, 1975), which
we will use for the following discussion. Vfe first de-
scribe the hole-line expansion with the conventional
single-particle spectrum in: some detail. The other ap-
proximations of present interest can then be described
as modifications of the hole-line expansion.

Let p '"„' be the contribution to the two-body wave func-
tion from diagrams with h independent hole lines, ex-
cept that P '2„' also includes the uncorrelated two-body
wave function @ „. By a hole line is meant any line
labeled by a momentum smaller than k~. The number
of independent hole lines in a diagram is the number of
momenta smaller than k~ that can be independently
specified, after all restrictions due to momentum con-
servation are taken into account (examples will be given
below). Then we can write

FIG. &4. Diagram representing
the two-hole-line contribution
D& in the Brueckner —Bethe
method.

and is represented by the diagram in Fig. 15. Note that
Eqs. (3.23) and (3.24) both depend on the choice of U,
which is discussed below.

Plausibility arguments for the usefulness of the hole-
line expansion are based on the smallness of the param-
eter rc defined by

(3.25)

where the bar indicates an average over states nz, pg in
the Fermi sea, and p is the density. The integral in
Eq. (3.25) can be thought of as a correlation volume,
and if g «1 then this correlation volume is much smal-
ler than the volume per particle. Every additional hole
line in a diagram for either e or g „ involves an inte-
gration over the Fermi sea giving roughly a factor k'„,
which is proportional to p. On dimensional grounds this
factor will be multiplied by a volume, and it is reason-
able to expect this volume to be comparable to the inte-
gral in Eq. (3.25). Thus an additional hole line is ex-
pected to reduce any contribution to J or p „by roughly
a factor z (Brandow, 1966; Day, 1967).

This argument is quite convincing for short- range cor-
relations caused by the strong short-range repulsion in
the nuclear force. For longer-range correlations
(equivalently, for virtual excitations to states just above
the Fermi surface) it may be necessary to depart from
the strict hole —line expansion (Brandow, 1966). How
the hole-line expansion can be modified to take account
of such correlations is discussed in Sec. III.B.

Since z is defined in terms of the exact two-body wave
function, it is independent of the approximation scheme.
Any approximation to p „gives a, corresponding approxi-
mation to &. We denote by ~, the approximation obtained
by using g"„' in Eq. (3.25). Most previous work follows
Brandow (1966) in using the symbol g for our z2. How-
ever, it seems preferable to base a general discussion
on the quantity g, which is independent of any approxi-
mations used, rather than on ~2, which depends on the
choice of the single-particle potential U. If the hole-
line idea leads to a useful approximation, then we will
have &, =~, and both quantities will be small compared
to 1. For the Reid potential, near the empirical satura-
tion density (kz —1.36 fm '), and with the conventional
choice of U (to be discussed below), one finds ~, =0.15.

The leading contributions to the energy per particle
are the kinetic energy of the Fermi sea, given by the
first term in Eq. (3.17), and the two-hole-line contribu-
tion D, given by Eq. (3.23). Typical numerical values

FIG. 15. Diagram represent-
ing the lowest-order contribu-
tion to (ab( S2( mn) .

( ab (8 2 '(mn) =-( ab ((Q/e)G (mn) (3.24}
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and this allows Q, , in Eq. (3.26) to be done by closure
to give

—y,"' ('d7. . (3.28)
r

D,'=-A ' ~n G ~n
l,m, n&kp-

We approximate the integral in (3.28) by its average
over l, m. The sum over l then gives a factor p, and we
find

(d) (e)

LLL
(g)

FIG. 16. Low-order three-hole —line diagrams of the Brueck-
ner-Bethe method.

D,'-=-~, A ' P &mn~a~mn& =-2~,D, . (3.29)
kF

This formula, which is accurate to 2(P/~ —3(P/o, shows
how the size of ~, controls the relative size of D, and
Db

Typical values near the saturation density are K2

=0.15 and D, =-35 MeV, so that D,'=+10 MeV. This
large term will be canceled by the contribution from
diagram 16b if U(m) is chosen properly for m &k~. This
motivates the choice

~, b &kg'
g, m, n &kg

«miG(@/. ) I~» & ~b i(e/e)G I fm&

x(mn~ G ~mn) . (3.26)

We see from Eq. (3.19) that

(e/e)GI fm) =(e/. )Gy,.= @,. (3.27)

are +25 MeV for the kinetic energy and -35 MeV for
F2. Some three-hole-line diagrams are shown in Fig.
16. Each wiggly line represents a matrix element of G.
The dashed line with a cross at the end represents the
single-particle potential U. Upgoing lines represent oc-
cupied states above the Fermi sea, and downgoing lines
represent empty states, or holes, in the Fermi sea.
Each intermediate state between interactions contributes
an energy denominator given by the sum of the particle
energies minus the hole energies. The energy denomin-
ators and G matrices both depend on the choice of U.
Detailed rules for diagram contributions are given by
Day (1967). Diagrams 16a and 16d have four hole lines,
but in each case, because of momentum conservation in
the middle interaction, only three of the hole momenta
are independent. In grouping diagrams according to the
number of hole lines, we count each U interaction as
one hole line. This keeps terms of the same order of
magnitude together. The four- hole- line diagram s have
been enumerated by Day (1969) and by Schucan and
Weidenmiiller (1971).

Figures 16a-16f show all three-hole-line diagrams of
third order in powers of G and U. Figures 16e and 16f
are the first two members of a class of infinitely many
three-hole-line diagrams called three-body cluster dia-
grams. There are four three-body cluster diagrams of
fourth order (one of which is shown in Fig. 16g), eight
of fifth order, etc. These diagrams must be summed by
solving the Bethe-Faddeev three-body equations (Bethe„
IS65; Day, 1967; Rajaraman and Bethe, 1S67;
Dahlblom, 1969). The three-body cluster diagrams to-
gether with diagrams 16a-16d, account for all three-
hole —line diagram s.

The contribution Db of the hole-bubble diagram of
Fig. 16a is

U(m) = g &mn IO lmn), m &k~ (3.30)
kF

which causes diagrams 16a and 16b to exactly cancel.
All higher-order diagrams with bubble insertions in hole
lines are also canceled. The hole-hole contribution D,""
of Fig. 16d is &0.5 MeV in magnitude (Day, 1969) and is
relatively unimportant. For b &@~, one could choose
U(b) so that the particle-bubble diagram 16e is canceled
by diagram 16c. However, diagram 16e is just one dia-
gram of the infinite series that is summed by the Bethe-
Faddeev integral equation to give the three-body cluster
term D3 (Bethe, 1965; Day, 1967; Hajaraman and Bethe,
1967). Diagrams 16f and 16g are other members of this
series. Thus it is the complete three-body cluster con-
tribution D,' that is important rather than diagram 16e
alone. The calculation of Dahlblom (1969) using the Beid
potential gave a very small result for D,', only about
—1 MeV. This motivated the conventional choice U(b) =0
for 5 &k~: it is convenient and was expected to give a
small three- hole-line contribution. More recent cal-
culations, to be described later, give D,'=-4 MeV,
which is acceptably small but not negligible. The choice
of U(b) for b &k„will be discussed more fully later
The single-particle spectrum is plotted in Fig. 17.
Since D, is canceled by Fig. 16b, and D3" is so small,
the only significant contribution to D, is the three-body
cluster term D,'. It is expected to be no larger in mag-
nitude than g,D, , and detailed calculations are consist-
ent with this. Thus the relative size of the three-hole-
line and two-hole-line terms is roughly determined by

We see from Eq. (3.25) that g, is an increasing
function of density, so that the convergence of the hole-
line expansion becomes worse as the density increases.

The four-hole-line diagrams have been enumerated
and partially calculated (Day, 1969). Most of them can
be reliably estimated at the empirical saturation density
to be only a few hundredths of an MeV and hence neglig-
ible. There are five terms larger than 0.2 MeV in mag-
nitude, and their sum was estimated to be --1 MeV at
the empirical density. This contribution is roughly
2D, and is consistent with a, rate of convergence gov-
erned by z, . There is one important uncertainty, how-
ever. In the four-body-. cluster term D4 and in another
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300— bJ~ &&fl

FIG. 18. Two-hole —line con-
tribution to n. The heavy dot
represents the operator a~a

IOO— D,'= -2D, (1-n) . (3.33)

term called Rl by Day (1969), the tensor force was
omitted. Especially in term H1, which we denote D4(BI),
the tensor force must be included before the total four-
hole-line contribution D4 can be accurately known. Note
also that the estimate of -1 MeV for D4 is for k~ =1.36
fm '. At higher densities the magnitude of D„and
hence the uncertainty in any feasible calculation based
on the hole-line expansion, will almost certainly be
larger. For a very rough guess, we may assume that
both z and D2 vary as k~, and that D4 =dD, . Then if
D4 =-1 MeV at k„+ 1.36 fm ', we would have D, =-5
MeV at k~ =1.8 fm '.

We have so far discussed 8 and g, which are defined
independently of any approximations and can be calcu-.
lated if the exact two-body wave function p „ is known.
Another interesting quantity that is independent of the
approximation scheme is the average occupation proba-
bility n of a single-particle state in the Fermi sea, de-
fined by

n=(+ ~a a„~+)/(+ ~@), (3.31)

where 4 is the exact ground-state wave function, and
the bar indicates an average over momenta m &k~. We
will see in Sec. III.B that consideration of n is useful in
testing the validity of the hole-line expansion.

Knowledge of g„„does not completely determine n,
but there is a useful diagram expansion for n (Brandow,
1967, p. 786). It consists of all linked diagrams in
which the operator a~a acts exactly once. In the free
Fermi-gas state we have n =1, and the leading (two-
hole —line) correction to this result is given by the dia-
gram of Fig. I8, whose contribution to n is -g, . Hence

(1 —n), =~, , (3.32)

where (1 —n), is the two-hole —line contribution to
(1 —n). If the approximation scheme is accurate, we
will have (1 —n), = (1 —n), so that g, = 1 —n.

The relation ~, =-1 —n allows us to rewrite Eq. (3.29)
in the form

I

3
k (fm')

FIG. 17. The single-particle spectrum of the Brueckner-Bethe
method. For k& kz the solid curve is pure kinetic energy. The
dashed curve is an example of a spectrum with a smaller gap
at the Fermi surface.

This formula, along with the corresponding diagram
16a, admits the following physical interpretation. The
factor (1 —n) is the probability that a particle is excited
from state m in the Fermi sea to state b above the sea,
as in the lowest interaction of Fig. 16a. While above
the sea, the particle cannot participate in the interaction
Q„„(mn ~G lmn), represented by the middle interaction
in Fig. 16a. The average over states rn &k~ of this lost
interaction is A g„„,~ (mn ~G ~mn), which is precisely
the factor 2D, in Eq. (3. 3). So the hole-bubble diagram
16a accounts for the fact that virtual excitations deplete
the Fermi sea and thus reduce the energy by an amount
proportional to D, . While the particle is above the
Fermi sea, it can of course interact, and these inter-
actions affect the energy through D,', represented by
Figs. 16e, 16f, 16g, . . . . These physical ideas underlie
the so-called dispersion effect, which is discussed in
Sec. IV.

Let us summarize the results of this subsection.
Presently available calculations within the Brueckner-
Bethe method are based on the hole-line expansion. If
the parameter z defined by Eq. (3.25) is small compared
to I, then arguments for the accuracy of the hole-line
expansion can be made. These arguments are convinc-
ing for short-range correlations, but whether they are
valid for longer-range correlations remains to be seen.
Numerical calculations show that the first two terms of
the hole-line expansion behave well. For the Reid po-
tential, near the empirical saturation density, the two-
hole-line contribution is -35 MeV, and the three-hole-
line contribution is only -4 MeV. Pour-hole-line and
higher terms have not been accurately calculated.

It is essential to carefully test the validity of the hole-
line expansion and of any proposed modification of it.
Ways of doing this are discussed in the next subsection.

B. Tests of the Brueckner-Bethe method

In this section we discuss several tests of the validity
of the hole-line expansion. A possible modification of
the hole-line expansion that takes better account of
long-range correlations is also outlined. Finally, for
the Beid potential, which has all the complications re-
quired to fit the two-body scattering data and deuteron
properties, the comparison between available Brueck-
ner —Bethe and variational results is briefly discussed.

Let us first consider the choice of single-particle
spectrum. The conventional choice has U(b) =0 for
b &k~ This produces a discontinuity, or gap, in the
spectrum of about 50 MeV at the Fermi surface (see
Fig. 17). For this reason, the conventional choice of
spectrum has often been criticized (Jeukenne et al. ,
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1 —n= Q(1 —n)„,
h=2

then one can show that

(3.34)

8
(D, +D, + ~ ~ ~ +D„)=(I n)„. - (3.35)

Thus insensitivity of the calculated energy to the spec-
trum is equivalent to convergence of the hole-line ex-
pansion for the quantity (1 —n). This is an additional
reason to require the calculated energy to be insensitive
to small changes in the spectrum. If the hole-line ex-
pansion is working, both sides of (3.35) should tend ra-

1975; Kohler, 1973). Which spectrum is the right one.
. Since the spectrum is introduced only for calculational
convenience, and has no direct physical significance,
there is no unique answer to this question.

However, one requirement on the choice of U is that
the condition g2 «1 remain valid. This is because, if
the hole-line expansion is to be useful, it is necessary
to have both z «1 and g, =g, which implies g, «1. An
example of a spectrum that does not satisfy this condi-
tion is a pure kinetic-energy spectrum, which gives &,
=0.5 for the Reid potential near the empirical saturation
density. The conventional spectrum gives &, =0.15 for
this case, and a spectrum with a smaller gap, similar
to the dashed line in Fig. 17, gives ~, =0.20 (Kohler,
1973). It is of course conceivable that, for the conven-
tional spectrum, g, is small compared to 1 but g is not,
in which case g2 is a bad approximation to g, and the
hole-line expansion will not be useful. If this is the
case, it should be discoverable through the tests dis-
cussed below.

The exact value of the energy or of any other observ-
able quantity is of course independent of the choice of
spectrum. Changing the spectrum redistributes the en-
ergy among the various terms in the expansion but
leaves the final result the same. We can use this fact
to formulate a test of any proposed approximation
scheme. Suppose the combination of a particular spec-
trum and approximation scheme gives an accurate ex-
pansion for the energy. Then a new spectrum that dif-
fers only slightly from the old one will also provide an
accurate energy expansion. In any finite order of ap-
proximation, the old and new spectra will give different
results, but this difference should rapidly become smal-
ler as the calculation is pushed to higher order. We can
test any chosen spectrum and approximation scheme by
checking numerically whether or not this requirement
is satisfied.

A convenient way to make a small change in the spec-
trum is to shift U(b) by a constant A for b &k~, while
keeping U(rn) unchanged for m &kz. The derivative with
respect to 4 of the calculated energy is then a measure
of its sensitivity to ~. According to the above discus-
sion, this derivative should become rapidly smaller as
more terms are included in the expansion for the ener-
gy. This idea was first suggested by Mahaux (1971) as
a test of the hole-line expansion.

In any order of the hole-line expansion, the derivative
with respect to A of the calculated energy is related to
the quantity n defined by Eq (3.31). .If the hole-line ex-
pansion for 1 —pg is

pidly to zero with increasing h. At the two-hole-line
level, since (1 —n), =a„Eq. (3.35) gives

8D2
2 (3.36)

To carry out this test, we must calculate at least one
term beyond the two-hole-line contribution D2. This re-
quires solving the Bethe-Faddeev equations (Rajaraman
and Bethe, 1967; Dahlblom, 1969; Day et al. , 1972;
Grange, 1975) to obtain the three-body cluster term D3.
If these three-body equations can be solved, one can al-
so calculate all the four-hole-line terms except the
four-body cluster D~ (Day, 1969). With central forces,
D4 has been approximately calculated to be -0.1 MeV at
the empirical saturation density (Day, 1969; Lassey
and Sprung, 1971). Similar methods are available to
make an estimate that partially includes the tensor
force (Dahlblom, 1969; Lassey and Sprung, 1971;
Grange, 1975). Assuming, as seems probable, that a
fairly crude approximation will suffice for D~, an ac-
curate method for solving the three-body equations al-
lows one to calculate all the three- and four-hole-line
terms. Thus the ability to solve the three-body equa-
tions allows one to go quite far in testing the hole-line
expansion. I have found that three-body calculations
with the most general nuclear force can be carried out
using the method of Day, Coester, and Goodman (1972).
The Pauli operator is approximated by angle averaging,
and this causes a numerical uncertainty of several
tenths of an MeV in D3 at k~ =1.5 fm'. This error is
small enough that it is feasible to carry out meaningful
tests of the hole-line expansion.

%e now summarize the available numerical results on
the test of the hole-line expansion described above in
connection with Eq. (3.35).

Mahaux (1971) studied the effect of a constant shift in
the spectrum and concluded that the sensitivity of the
calculated energy was greatly reduced by adding the
three-hole-line terms to the lowest-order term. How-
ever, since the derivative BD,'/BA of the three-body
cluster term had not been calculated at that time, the
analysis was incomplete. I have calculated B(D, +D,)/
BA by using a method applied previously to 8-wave po-
tentials (Day et al. , 1972). The calculations have been
done for k~ =1.5 fm ', using the Reid potential, which
is defined for two-body partial waves with j &3. The de-
rivative has been evaluated for the conventional spectrum
in the following way.

The energy through three-hole-line terms is approxi-
mately given by

D2 + z2U~ —z (3.37)

where we have used the approximation (3.29) for the
hole-bubble diagram of Fig. 16a. A similar approxima-
tion gives g, U for Fig. 16b, where U is the average
value of U(rn) for m&0„. The term -g,a comes from
the potential insertion in a particle line, Fig. 16c.
Since we are varying the spectrum above the Fermi sea,
BU„/Bb, =0. Using this along with B/D2aB=g„one eas-
ily finds

~) D~ ~ BD3
( p )aa 8& '+ Ba ' + e~

(3.38)
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B(D +D ) BD BD""
8& BQ 8& (3.39)

For the Reid potential at k~ =1.5 fm ', I have found SD3/
8~ =0.056. This was obtained by calculating D,' for A
= +8.3 MeV and numerically differentiating. A rough
estimate of BD,""/sa gives 0.006. Since g, =0.168 at k~
= 1.5 fm ', Eq. (3.39) gives

We want to evaluate this for a =0. For & = 0, self-con-
sistency of the hole spectrum gives 2D, = U, so that the
coefficient of 8 g, /Ba vanishes, leaving

FIG. 19. Diagram representing
the three-body cluster contri-
bution to (ab~ S2~ mn).

a(D, +D, )/8 6 = 0.056 —0.057+ 0.006 = 0.005. (3.40)

This result is only accurate to 0.01 or 0.02, mainly be-
cause of the approximate treatment of the contributions
from Figs. 16a and 16b. But in any case the result is
much smaller than g, =0.17, so that including the three-
hole-line contribution greatly reduces the sensitivity of
the calculated energy to small changes in the single-
particle spectrum. Thus the hole-line expansion passes
this test.

The numerical results given above were obtained using
the conventional spectrum. Calculations using spectra
different from the conventional one are also of great in-
terest. Spectra resembling the dashed line of Fig. 17
have been used by Kohler (1973) and by Jeukenne,
Lejeune, and Mahaux (1975). If only the two-hole-line
term D, is included, the calculated energy can be ap-
preciably different from that obtained using the conven-
tional spectrum. For example, for the hard-core po-
tential of Reid (1968) at k~ =1.3 fm ', Jeukenne et al.
(1975) find a value of D, that is 3.0 MeV more negative
with their modified spectrum than with the conventional
spectrum.

It would be most helpful if including the three-hole-
line terms were to bring the energies calculated with
these two quite different spectra much closer together.
This is because, if calculations are done to the same or-
der of approximation with both spectra, the uncertainty
iri the calculation will be at least as large as the differ-
ence in the two results, unless convincing arguments
can be made that one choice of spectrum gives a more
accurate approximation scheme than the other. At
present there is no conclusive argument in favor of a
particular choice of spectrum. Probably the best ap-
proach is that of Zabolitzky (1976b). He proposes that
U(b), for b &k~ be chosen so that the lowest-order ap-
proximation (3.24) to the pair excitation amplitude S,
include, as far as possible, the contribution from
higher- order terms.

It is thus very important to calculate the three-hole-
line and higher terms with modified spectra such as the
dashed line of Fig. 17. This requires an accurate cal-
culation of the three-body cluster term D'„which has
not yet been made with a modified spectrum. At pres-
ent the numerical results needed for further investiga-
tion of this point are not available.

We have seen in the preceding subsection that know-
ledge of the pair excitation amplitude (ab~ S, ~mn), de-
fined as the amplitude in the exact ground state for
finding two particles in momentum states a, b above the
Fermi sea with two holes in states m, pg in the sea,
determi'nes the exact ground-state energy. We there-

rn a b n rn n a b

M +

rn a b n'

(a)
rn a n

ll

rn' n a' b a rn b n

(c}

+ + ~ ~ ~

n b'

FIG. 20. Diagrammatic representation of the matrix M, as
described in the text.

fore study the hole-line expansion for S,. The two-body
approximation to S2 is given by Eq. (3.24) and is repre-
sented by the diagram of Fig. 15.

The three-hole-line contribution to S, is obtained by
removing the topmost interaction from each three-hole-
line energy diagram. With the conventional spectrum,
D3 gives the dominant three- hole- line contribution. The
corresponding contribution to 8, is repres'ented by the
diagram in Fig. 19. The block represents an operator,
or matrix, M that takes the two-hole-line contribution
to S, into the three-hole-line contribution to S,. The
diagram expansion for N is shown in Fig. 20. Summing
this series for M requires solving the Bethe —Faddeev
three-body equation (Rajaraman and Bethe, 1967;
Dahlblom, 1969; Day et al. , 1972; Grange, 1975) and
integrating the result over the coordinates of the third
particle.

Once M has been obtained, it may be applied once,
twice, etc. , to S2"' to generate the three-hole-line con-
tribution to S, and a selected sequence of 4, 5, . . . -hole-
line contributions. Each diagram for S, gives a contri-
bution to the energy if a G matrix is added at the top to
de-excite the particles. Applying M once, followed by
a t" matrix, gives the three-body cluster term D,'. Ap-
plying N twice, followed by a Q matrix, gives the four-
hole-line contribution D, (B1). This contribution was
calculated by Day (1969) for central forces but has never
been calculated for nuclear matter with tensor forces
included. It is this four-hole-line term that most ur-
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gently needs investigation. Using the relation

M+M +M + ~ =M (1 —M) ', (3.41)

we see that the entire series of contributions, to either
S, or the eriergy, can be summed by inverting the ma-
trix (1 —M). Modifying the hole —line expansion by doing
-this partial summation has been suggested before
(Liihrmann, 1977; Kiimmei et a/. , 1978) and has been
carried out for light nuclei (Zabolitzky, 1974). This
partial sum is the most likely. place to look for possible
effects of long-range correlations caused by the tensor
force. Repeated application of the matrix M can build
these up if they actually exist. Note that the particle-
bubble and ring vertices are both included in M (Figs.
20b and 20c), so the partial summation includes all
iterations of these. Such terms give important long-
range correlations for Bose systems and for the elec-
tron gas. It seems sensible, therefore, to investigate
their effect in nuclear matter too. We call the resulting
sequence of diagrams the generalized ring diagrams.
IThe diagrams just described include all "forward-
going" ring diagrams. For Bose systems and the elec-
tron gas, "backward-going" ring diagrams also give
important long- range correlations. These are included
in the last term of Eq. (3.43) below].

The most favorable result would be that each term in
Eq. (3.41) is smaller than the preceding term by a fac-
tor g, . This would be consistent with the hole —line ex-
pansion because each term in Eq. (3.41) involves one
more hole line than its predecessor. In particular, the
four-hole —line term D4(B1) would be smaller than the
three-body cluster term D,' by a factor &, . On the other
hand, if the successive terms in Eq. (3.41) do not fall
off rapidly, this would mean the hole-line expansion is
inadequate for these long-range correlations. It would
then be necessary to modify the hole-line expansion by
evaluating (1 —M )

' to obtain the entire sum at once, as
suggested earlier by Liihrmann (1977) and Kiimmei et al.
(1978).

In the latter case, additional modification of the hole-
line expansion is required. The situation can be under-
stood with the aid of the exact equation Iderived from
the results of Coester (1969]

S = —Q/e G + MS2 + S2',

whose solution is

S, =-Q/eG —M(1 —M) 'Q/eG+(1 —M) 'S2.

(3.42)

(3.43)

Here, S' is a functional of S, and of the linked a.mplitudes
S, and S~. Evaluating the second term in Eq. (3.43),
without truncating the series (1 —M) ' =1+M+ ~, sums
the generalized ring diagrams and departs from the
strict classification of terms according to the number of
hole-lines. If this is necessary for the second term in
Eq. (3.43), it will presumably be necessary for the third
term as well. The second term in Eq. (3.43) is ex-
pected to be much more important than the third term.
The leading contribution to the energy from the second
term is the three-body cluster term D,'. The leading
energy contributions from the third term, with the ex-
ception of the unimportant hole-hole term D,"", all in-
volve four hole lines. The work of Day (1969) gives
evidence that the sum of these terms is much smaller

=0, x&d. (3.44)

Recall that voppp contains a strong tensor component.
The cutoff radius d was varied from 0.8 to 1.4 fm '. The
sum of all ring diagrams with four or more hole lines
was found to be roughly half the three-hole-line ring
contribution. But a calculation using the correct matrix
~i remains to be done for nuclear matter. For the light
nucleus ' O the full calculation has been done by
Zabolitzky (1974). The contribution to the energy from
generalized ring diagrams with four or more hole lines,
for "O with the Reid potential, was about 4(P/o of the
three-body cluster contribution. If the same ratio per-
sists in nuclear matter, the generalized rings with four
or more hole lines would contribute about -1.5 MeV at
the empirical saturation density. The generalized ring
contribution may well be larger than this, for two rea-
sons. Fir st, the density of nuc Tear matter is larger
than the average density of '80. Second, there is more
room for the buildup of long-range ring correlations in
nuclear matter than in the rather small nucleus ' O.

Thus published numerical results give some indication
that summing the generalized ring diagrams may be es-
sential. But a proper calculation for nuclear matter re-
mains to be done. The tests of the hole-line expansion
considered above all are internal checks: The hole-
line calculations themselves are used in making the
tests. A completely different, and very valuable, test
would be to compare Brueckner-Bethe results against
results obtained by some other method that is known to
be accurate. For simple central potentials, we have
seen that the Fermi hypernetted-chain (FHNC) calcula-
tions give accurate upper bounds to the energy. So an
excellent test is to compare Brueckner —Bethe and
FHNC results for such potentials.

This comparison was made for several central poten-
tials in Sec. II.C (see Figs. 9-11). Only the two-body
Brueckner-Bethe results, calculated with the conven-
tional spectrum, are available. The Brueckner-Bethe
results lie above the FHNC upper bounds in all cases,
but the exact results must lie slightly below the FHNC
results. So the question arises of whether the higher-
order terms in the hole-line expansion can make up
these differences. The three-body contribution is ex-
pected to be of the order of g,D„and error bars of this
size are shown for the Brueckner-Bethe results in
Figs. 9-11. We see that corrections of this order of
magnitude would be sufficient to make the hole-line re-
sults consistent with the FHNC results. It is e'ssential
that the three- and four-hole-line terms be evaluated to
see whether agreement is obtained. At present we can
only say that the comparison gives no cause for alarm.

than the contribution of about -4 MeV from D,'.
We nom summarize the available numerical evidence

on the convergence of the generalized ring series of
Eq. (3.41). The sum of ring diagrams has been studied
by Dahlblom and Kouki (1971) and by Clement (1973).
Two simplifications were made: The full matrix 18 was
replaced by the ring vertex of Fig. 20c alone, and the
reaction matrix in this vertex was replaced by the trun-
cated one-pion exchange potential given by

v(r) =vopEp 'Y +d
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So far I have calculated the three-hole-line contribu-
tion only for the Reid potential, which is defined in two-
body partial waves with j +3. The three-body cluster
term was calculated using a method applied earlier to
S-wave potentials (Day et al. , 1972). The conventional
spectrum was used, and the results are shown in Fig.
13. The curve labeled BB(2) gives the two-body result.
Adding the three-hole-line contribution Ds+D3" gives
the curve labeled BB(2+3). Since the four-hole-line
calculations are incomplete, we can only guess their
contribution. The dashed line labeled BB(2+3+4) is
obtained by adding one such guess to the three-hole-
line result. In this guess, we assume that D4 and
D~(B1) give -0.2 and -O.V MeV, respectively, at k~
=1.4 fm ', and that both contributions are proportional
to k~. All other four-hole-line terms are estimated
using the formulas of Day (1969). The resulting dashed
curve saturates at k~ =1.54 fm '. However, we have
seen that D~(B1) and the other generalized ring dia-
grams could be several times larger than the above
guess. In that case, the calculated saturation point
might be shifted to the region k~ &1.6 fm '.

Reid (1968) does not give a, potential in two-body
partial waves with j ~ 3. The Brueckner-Bethe results
must be extended to include the effect of a potential that
is consistent with empirical phase shifts in these par-
tial waves. T.hese partial waves have been found to
contribute +0.7 MeV to the two-hole-line term D, at the
empirical saturation density (Sprung et al. , 1970). This
result does not permit an estimate of their contribution
to D, . However, in partial waves with sufficiently large
j, only the long-range component of the two-body poten-
tial, i.e., the one-pion exchange potential (OPEP), is
relevant. Since the spin-isospin average of OPEP is
zero, it is unlikely that partial waves with j ~ 3 will
contribute much to D, .

The comparison of the Brueckner-Bethe and varia-
tional results shown in Fig. 13 is encouraging in one
respect. At any give value of k~ below 1.6 fm ', the
Brueckner-Bethe energy is reasonably close to the
lower of the two variational curves. However, the var-
iational calculation saturates at a much higher density
than the Brueckner-Bethe calculation. As discussed
above, a proper calculation of the generalized ring dia-
grams may also shift the saturation point of the
Brueckner-Bethe result to higher density.

We remark here that the three-hole-line contribution
moves the hole- line result for the Reid potential closer
to the empirical saturation point. This is seen in Fig.
21, where saturation points obtained from two-hole-
line calculations using the conventional spectrum are
shown for a number of two-body potentials that fit nu-
cleon-nucleon scattering data. The two-hole-line sat-
uration points lie on a, narrow band (called the Coester
band) that does not include the empirical saturation
point, which lies inside the open rectangle. The three-
hole-line contribution moves the Reid saturation point
off the band and closer to the empirical region. How-
ever, as we have seen, it is not yet known whether
higher-order contributions will appreciably shift this
saturation point.

In summary, we have suggested three tests for the
validity of the hole-line expansion. First, the sensitiv-
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FIG. 21. Saturation points calculated with the Brueckoer —Bethe
method, including the two-hole —line term with the convention-
al spectrum. Further information is given in Table II. The
arrow shows the shift in the saturation point for the Heid po-
tential when three-hole —line terms are included. The empiric-
al saturation point lies in the open rectangle.

ity of the calculated energy to small changes in the spec-
trum must rapidly decrease as successive terms are
included in the expansion. Second, the sum of general-
ized ring diagrams should converge well. Third, the
hole-line expansion. should be consistent with variation-
al results for simple central potentials, which are known
to be accurate. These tests are, of course, not com-
pletely independent of each other. If the generalized
rings do not converge well, i.e., if the generalized rings
with four or more hole lines give a contribution com-
parable to the three-body cluster term, then the hole-
line expansion would be inaccurate. In that case, the
generalized rings could be summed in closed form, as
suggested earlier (Liihrmann, 197V; Kiimmel et al. ,
1978). With this modification, the sensitivity of the cal-
culated energy to the spectrum, and the agreement of
Brueckner-Bethe results with variational results for
simple potentials, could again be tested to see whether
this modified method is satisfactory.

All these tests can be carried out using numerical
techniques that are presently available. Assuming that
a well-founded approximation scheme emerges, how
accurately can we calculate the energy with the
Brueckner-Bethe method? With our present computa-
tional ability, we cannot expect an uncertainty smaller
than PD2, where D, is the two-body contribution. For
the Reid potential, this gives errors of order 1 MeV at
k~ =1.4 fm ' and 5 MeV at k~ =1.8 fm '. Thus the pres-
ent version of the Brueckner-Bethe method, which re-
lies on g being small, begins to break down at high den-
sities. If it is really true, as the variational calcula-
tions suggest, that the Reid potential gives saturation
only at some very high density near k~ =2.0 fm ', then
a different version of the Brueckner-Bethe method
would be required in order to locate this saturation
point.
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TABLE II. Authors of the nucleon —nucleon potentials and nuclear matter calculations shown
in Fig. 21.

Symbol Authors of potential Nuclear matter calculation by

RSC

HEA

UG1

UG3

BS
TS

Hamada and Johnston~
Bressel, Kerman, and

Rouben'
Reid

Holinde, Erkelenz, and
Alz etta

Ueda and Greeng
Model 1

Ueda and Greeng
Model 3

Bryan and Scott'
DeTourreil and Sprung'

Banerjee and Sprung"
Banerjee and Sprung"

Coester, Pieper, and
Serduke'

Holinde, Erkelenz,
and Alz etta~

Wong and Sawada"

Coester, Pieper, and
Ser duke

Wong and Sawada"
De Tourreil and Sprung'

Hamada, T., and I. D. Johnston, 1962, Nucl. Phys. 34., 382.
"Banerjee, P. K. , and D. W. L. Sprung, 1971, Can. J. Phys. 49, 1871.
'Bressel, C. , A. Kerman, and B. Rouben, 1969, Nucl. Phys. A 124, 624.
Beid (1968).

'Coester, F., S. C. Pieper, and F. J. D. Serduke, 1975, Phys. Rev. C 11, 1.
Holinde, K. , K. Zrkelenz, and R. Alzetta, 1972, Nucl. Phys. A 198, 598.

gUeda, T. , and A. E. S. Green, 1968, Phys. Rev. 174, 1304.
"Wong, C. W. , and T. Sawada, 197 Ann. Phys. (N.Y.) 72, 107.
Bryan, R. , and B. L. Scott, 1969, ys. Rev. 177, 1435.

'DeTourreil, R. , and D. W. L. Sprung, 1973, Nucl. Phys. A 201. 193.

IV. D I SCUSSION
In this section we summarize and discuss the present

,.situation and consider prospects for the future. The
most firmly established results are those of the varia-
tional method for central potentials. Variational calcu-
lations are much easier for central potentials than for
the very complicated nuclear potential. For central
forces, there is little doubt that the FHNC and Monte
Carlo methods give accurate energy expectation values
with reliable error estimates that are usually 2 MeV or
smaller. The two-body Brueckner-Bethe calculations
with the conventional spectrum lie consistently above
these variational upper bounds. This is usually attrib-
uted to the dispersion effect. I et us now discuss this
idea, which I believe is indeed correct.

We first recall the interpretation given in Sec. III.A of
the Brueckner-Bethe hole —bubble diagram (Fig. 16a),
whose contribution to the energy is approximately
-2g, D2. This represents the loss in binding when a par-
ticle in the Fermi sea is excited to a state above the
sea. The factor z, gives the probability of excitation,
and the interaction energy of one particle in the sea with
all the others is 2D, . The conventional choice of spec-
trum takes this effect into account by canceling the hole-
bubble diagram against diagram 16b, which has a, single-
particIe potential insertion in a hole Iine.

What does the particle do when it is above the Fermi
sea? The conventional spectrum puts U(b) =0 for b &k~,
thus assuming that the interaction energy of a particle
above the sea is zero. However, if a particle above the
sea interacts with the others just as effectively as when
it is in the sea, then we would have an additional con-
tribution 2g2D, to the energy. This quantity is called the
dispersion term. How the particle actually interacts
with the others while above the sea is determined by the

Brueckner-Bethe three-body cluster term (possibly
modified by inclusion of the generalized ring contribu-
tions discussed in Sec. III.B). In most cases this three-
body term will be between the extremes of zero and

2g2D~. For example, for the Reid potential at k~ =1.4
fm ', D3 =-4 MeV and 2&2D2 =-10 MeV.

Thus, within the context of the Brueckner —Bethe hole-
line expansion, a two-body calculation is expected to
give too little binding by an amount somewhere between
zero and the dispersion term 2g, g7, . To pin this number
down more accurately requires calculating the three-
body cluster term. Error bars of size &,D2 are shown
on the graphs of most two-body Brueckner-Bethe re-
sults in this paper. One sees in Figs. 9-11 that inclu-
sion of the three-body term may well repair the dis-
crepancies between two-body Brueckner-Bethe results
and the reliable variational upper bounds for central
forces. This mill provide a valuable test of the hole-line
expansion.

The idea that a two-body Brueckner-Bethe calculation
could be in error by roughly &,D, because of the disper-
sion effect is not a new one. It has simply been lost
sight of through a historical accident. Dahlblom's
(1969) approximate calculation of the three-body cluster
term for the Reid potential gave a small result of only
about —1 MeV. Many two-body Brueckner-Bethe cal-
culations were subsequently done on the assumption that
the three-body term is negligible. As shown in Fig. 21,
the resulting saturation points for a wide variety of
potentials lie on a narrow band (the Coester band) in the
energy-density plane that does not include the empirical
saturation point (Day, 1976). However, we ha. ve seen
that more accurate calculations with the Heid potential
give a three-body ~contribution of about -4 MeV. Further-
more, including this contribution moves the calculated
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saturation point for the Reid potential off the Coester
band (see Fig. 21). Thus, at least for the Reid potential,
neglecting the three-body term in the hole-line expan-
sion is not permissible. Similarly, for central poten-
tials, if the results of the hole-line expansion are to be
brought into agreement with the variational results, the
Brueckner-Bethe three-body term will again be ap-
preciable.

Formal comparison of the Brueckner-Bethe hole-line
expansion and the variational cluster expansion gives an
additional reason to expect the Brueckner-Bethe three-
body term to repair the discrepancy. The formal com-
parison is most easily made when the correlation opera-
tor f is chosen so that f@ = g

"', where @ is a plane
wave and P

'2' is the Bethe —Goldstone wave function de-
fined by Eq. (3.19). This of course requires f to be a
more complicated operator than just a function of r.
For this choice of f, Wong (1971) has shown analytical-
ly that the two-body cluster energy of the variational
method lies below the two-body Brueckner-Bethe result
with the conventional spectrum by the dispersion term
2&,D, . This result is valid for two-body potentials of
arbitrary complexity.

Schafer (1972) and Wong (197V) have extended this re-
sult to three-body terms. Suppose that a three-body
correlation function is introduced into the variational
wave function in such a way that the three-body wave
functions in the Brueckner —Bethe and variational cal-
culations are the same. Then Schafer has shown analy-
tically that the energies of the two methods, calculated
through three-body cluster terms, differ only by terms
that, in the hole-line classification, have four hole
lines. Hence it is plausib1. e that including the Brueck-
ner-Bethe three-body term will greatly reduce the dis-
crepancy that now exists between the two-body Brueck-
ner —Bethe results and the variational results.

Having discussed the dispersion effect in the Brueck-
ner —Bethe method, we now summarize the available
methods of testing the reliability of this method. We
must first sum the series of generalized ring diagrams,
as described in Sec. III.B. This tests whether the hole-
line expansion takes proper account of long-range cor-
relations. If the generalized ring series converges well,
this indicates that the hole-line expansion is adequate.
Otherwise, one has to sum this series (this is feasible
with presently available numerical techniques), as has
been suggested earlier (I.iihrmann, 1977; Kiimmel
et a/. , 19V8).

In either case, two further tests can be applied.
First, the Brueckner-Bethe results must agree with the
variational results for central potentials, for which the
variational results are known to be reliable. Second,
the Brueckner-Bethe results must be insensitive to
small changes in the single-particle spectrum. If the
Brueckner-Bethe method passes both these tests, it
will be convincing evidence (but by no means a proof)
that the method is reliable.

No calculation is meaningful without an error esti-
mate, and a reasonable error estimate is the size of the
last term calculated. It is feasible to accurately cal-
culate all the four-hole-line diagrams except the four-
body cluster, for which fairly rough approximations
must be made. Assuming the numerical inaccuracy of

the four-body cluster is small, the error would then be
of the order of 1 MeV at k~ =1.4 fm ' and would rise to
several MeV at k~ =1.8 fm '. To do much better than
this would require a better understanding of the Brueck-
ner-Bethe method than we now have.

Let us now turn from the Brueckner-Bethe method to
the variational methods. For central potentials, the
variational method gives reliable upper bounds that are
probably within 2 MeV of the exact ground-state energy.
For tensor forces, the accuracy of the energy expecta-
tion value is not yet established. Two approaches have
been used for tensor forces: evaluation of the cluster
expansion through three-body terms (Ristig e/ a/. , 1972;
Kiirten and Ristig, 1977) and summation of selected
classes of terms (Pandharipande and Wiringa, 1976;
Wiringa and Pandharipande, 1978; Rosati, 1977; Smith,
197V) in analogy to the FHNC procedure, which is so
successful for central forces.

In the cluster calculations done so far (Kiirten and
Ristig, 1977) the parameter z~ ranges roughly from
0.15 to 0.35 as k„goes from 1.4 to 1.7 fm ', and the
three-body contribution is always less than 4 MeV,
which is surprisingly small. An estimate of the four-
body cluster term would be a valuable error estimate
for these calculations. It would also be very interesting
to have cluster expansion calculations for the Reid
potential in order to compare them with Brueckner-
Bethe results and with the variational results of Pand-
haripande and Wiringa. Pandharipande and Wiringa
have identified and summed certain important classes
of terms, and they along with others (Rosati, 1977;
Smith, 19VV; Owen, 1977) are continuing this program.
How high one can go in density before their approxima-
tion breaks down is not yet clear.

Using different treatments of the kinetic energy,
which was found in Sec. II.C to give reliable error esti-
mates for central forces, would also be useful in ob-
taining error estimates for the variational calculations
with tensor forces. Thus reliable error estimates for
calculated energy expectation values with tensor forces
are not yet available. But the method is being rapidly
developed, and this situation may improve in the future.

The present disagreement between the Brueckner-
Bethe and variational results can be summarized quite
simply. For central forces, two-body Brueckner-
Bethe results lie consistently above the variational re-
suits, which are known to be reliable upper bounds.
Since the discrepancy is comparable to the expected
size of the three-body Brueckner-Bethe term, it is not
alarming. The discrepancy will, of course, become
alarming if higher-order Brueckner-Bethe calculations
do not quantitatively account for it. For the Reid poten-
tial, the Brueckner-Bethe result (including two-,
three-, and four-hole —line terms) is compared with
two recent variational calculations by Pandharipande
and Wiringa in Fig. 13. The latter calculations saturate
at much higher density (kz =1.9 fm~) than the Brueck-
ner-Bethe result of kz a 1.6 fm ' (the empirical value is
kz =1.29-1.44 fm '). In both methods, improvements in
the calculations may change the numerical results. In-
clusion of the generalized ring diagrams may cause the
Brueckner-Bethe result to saturate at higher density.
And inclusion of additional terms may significantly
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change the variational results, with an unknown effect
on the saturation density.

We close with some general remarks about the
Brueckner-Bethe and variational methods. In the
Brueckner-Bethe method, simultaneous correlations
among pz particles can only be taken into account by
solving the n-body Faddeev equations. At present we
can calculate reliably only for n =2 and 3. This allows
us to take account of the long-range correlations repre-
sented by the generalized ring diagrams. But correla-
tions in which four particles are simultaneously close
enough to each other for all repulsive cores to be touch-
ing are taken into account by the four-body cluster
term, which requires solving a four-body equation. If
such correlations are essential for saturation, a
Brueckner-Bethe calculation that solves only two- and

.three-body equations can be valid only at densities be-
low the saturation density. An example of this kind is
liquid 'He, for which the value of &, at saturation is
about 0.5, which is too large for a low-order Brueck-
ner-Bethe calculation to be successful. The two-body
potential between 'He atoms has a Wigner exchange
mixture, i.e., it is the same in all partial waves. For
a pure S-wave potential, on the other hand, we know
that saturation occurs even for a purely attractive force
with no repulsion at all. For a system of bosons inter-
acting through the potential v2 of Eq. (2.47), treated as
a pure S-wave potential, I have calculated the two- and
three-hole-line terms and find that saturation occurs at
sufficiently low density that &, is small, and the
Brueckner-Bethe method can be expected to work. It is
expected to work even better for fermions with the same
S-wave interaction. The exchange mixture of the nu-
clear force is somewhere between the two extremes of a
Wigner force and a pure S-wave force. Boughly speak-
ing, it is the same in all even partial waves and is very
weak in odd partial waves. There is also a tensor
force, whose effect on saturation is not very well under-
stood. .Thus the saturation mechanism involves not only
the short-range repulsion in the two-body potential, but
also its weakness in odd states and the tensor force.
Hence saturation may occur in nuclear matter at a small
enough value of g that the Brueckner —Bethe method is
valid. Only accurate calculations can decide this ques-
tion.

The variational method has the advantage that n-body
correlations can be taken into account without solving
an n-body equation. Instead, one has only to integrate
over the coordinates of n particles. When the correla-
tion operator is simply a product of functions f(x), the
Fermi hypernetted-chain (FHNC) equations allow the
most important many-body correlations to be treated in
a fairly simple way. The FHNC method is therefore
useful at higher densities than the Brueckner-Bethe
method. For example, FHNC can be used for liquid 'He
(Zabolitzky, 1977). However, for nuclear matter the
correlation operator f must contain operators such as
the tensor and spin-orbit operators, and t»s makes the
variational calculations immensely more complicated.
This is in contrast to the Brueckner-Bethe method,
where going from a simple central potential to the most
general nuclear force causes only a moderate increase
in the complexity of the calculations. Many people

(Wiringa and Pandharipande, 1978; Schmidt, 1977;
Rosati, 1977; Owen, 1977) are now developing FHNC-
type summation methods for correlation functions with
operators. The situation is changing rapidly, and it is
not yet clear how far one can go with this approach.

Thus the variational method has the possibility of
working at higher density than the Brueckner-Bethe
method, but taking account of the complicated nature of
the nuclear force is simpler in the Brueckner-Bethe
method. Finally, we should not forget the Monte Carlo
method of evaluating the variational expectation value.
The recent extension of this technique to the case of
fermions with central forces (Ceperley et al. , 1977) is
a most useful and interesting development. The Monte
Carlo method is applicable to both high and low densities
and gives completely reliable error estimates. If it
could be extended to the most general nuclear force,
it would be superior to both the Brueckner-Bethe meth-
od and the FHNC version of the variational method.

In conclusion we remark that, with our present under-
standing of many-body theory, and with presently avail-
able calculational methods, several significant tests can
be made of both the Brueckner-Bethe method and of the
variational method with tensor forces. When these cal-
culations have been done, we will be in a much better
position to judge the validity of both methods.
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