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The stars in the galaxy are not distributed uniformly.
There exist the well-known concentration of visible
stars towards the galactic center and a further concen-

Copyright © 1978 American Physical Society

437



438

FIG. 1. The globular cluster Omega Centauri (NGC 5139),
taken with the 1-m Yale reflector at Cerro Tololo Inter-Ameri-
can Observatory, La Serena, Chile. Date: May 20, 1974; 15-
min exposure on blue sensitive emulsion. From Kitt Peak
National Observatory.

tration of stars towards the galactic plane. There are
also isolated star clusters whose members appear to
have a stronger gravitational attraction to each other
than to other stars in the general galactic field. These
clusters may be divided into three categories: open or
galactic clusters, associations, and globular clusters.
Open clusters are weakly bound groupings of 50-100
stars, irregularly spaced and showing no particular
concentration towards the (ill-defined) cluster center.
They are found only in the galactic plane. Associations
are small open clusters of 10-100 stars which contain
O and B stars, the hottest and brightest main sequence
stars (see Sec. IL.A below). They are found in the gas-
eous spiral arms of the galaxy, where star formation
is occurring. Globular clusters are the most massive
star clusters, consisting of a nearly spherical distribu-
tion of 10*—10° stars well concentrated towards the
cluster center (see Fig. 1). Their brightest members
are red giant stars which have evolved well beyond
the main sequence. Globular clusters are found both in
the galactic halo and in the galactic disk and are typ-
jcally as far from the sun as the galactic center (10
kiloparsecs). [One parsec (abbreviated 1 pe) is ap-
proximately 3.26 light-years =3.09 X 10'® ¢cm.] The
average globular cluster is 50-100 pc in diameter, with
a core radius (at which the stellar surface density has
fallen by a factor of ~2 from its central value) of sever-
al parsecs. In the nearly homogeneous core, the star
density may be 10°-10° stars per cubic parsec.
Historically, globular clusters were used by Harlow
Shapley (1917) to map out the shape of the galaxy.
There were 93 globulars then known; today there is
good evidence (Arp, 1965; Harris, 1976) that the total
number of globular clusters associated with our galaxy
is about 200. Because they are thought to be among
the oldest objects in the galaxy, globular clusters pro-
vide important clues for determining the age and pro-
cess of formation of the galaxy and for verifying current
theories of stellar and dynamical evolution.
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B. Theme and approach

Determining the dynamical behavior of a large N-body
system (N >>10%) such as a globular cluster is a funda-
mental problem of modern theoretical astrophysics.
Although the physical force which determines the inter-
actions in a self-gravitating mass system is well under-
stood —it is simply the inverse square law for gravita-
tional attraction—its long-range character makes the
overall dynamical problem a difficult one to solve.
Fortunately, globular clusters have sufficiently many
stars (~10°) that statistical methods of analysis are ap-
plicable, yet they are sufficiently small that they have
evolved for many relaxation timescales.

Since the pioneering development of the statistical
approach to large N-body theory by Chandrasekhar
(1942) and others, significant progress in dynamical
theory has been achieved only inrecent years, due chief-
ly to the advent of high-speed computers and the devel-
opment of sophisticated numerical techniques. Some of
the numerical calculations, together with other recent
work in dynamical theory, are summarized in The Theo-
vy of Stellav Dynamics, IAU Symposium No. 69 (Hayli,
ed., 1975). A broad summary of the numerical work is
provided in the review paper by Aarseth and Lecar
(1975). A review of many of the analytical methods and
results is given by Haggerty and Severne (1976).

In this paper we apply the results of the detailed num-
erical computations, together with the underlying theo-
ry, to examine the dynamical evolution of globular clu-
sters. Our treatment is pedagogical and nonrigorous;
indeed, we have attempted, wherever possible, to sup-
ply intuitive, analytic arguments and “back of an en-
velope” derivations of mostof the major results. Our
analysis is more or less self-contained, yet it is by no
means a survey of all the literature in the field. The
topics are treated according to our own point of view,
which gives particular (and undue) emphasis to our own
recent work.

We present no systematic review of the observational
features of globular clusters, but, instead, introduce
the relevant observational data as is necessary. An
older but excellent discussion and catalog of cluster
data is given by Arp (1965). A more recent survey of
the observed structure of globular clusters, together
with mass estimates, is given by Peterson and King
(1975) and by Peterson (1976).

Traditionally, it has been the structural symmetry,
long-term stability, and simple interaction law which
have inspired the theoretician to investigate the dynam-
ical behavior of globular clusters. Recently, a new
appeal has been added to these attractions: several (~7)
globular clusters are now identified with powerful x-ray
sources which emit between 10**-10% erg s™ in the x-
ray band from 2-10 keV. The source(s) of this emis-
sion is (are) not known with any certainty, but specula-
tions have ranged from unusually formed binary sys-
tems, in which a normal primary supplies gas to a com-
pact component (as in the “standard” isolated x-ray
sources in the galactic field), to massive black holes
formed from core collapse of the cluster. Regard-
less of the eventual explanation of the globular cluster
X-ray emission—mundane or exotic —the phenomenon
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has stimulated new interest in the dynamical evolution
of globular clusters.

C. Summary

Our paper begins (Sec. II) with a rough sketch of the
different types of stars found in globular clusters and
the methods of determination of the ages of globular
clusters. The fact that globular clusters are as old as
the age of the universe (~ 10! yr) and have evolved for
many relaxation timescales is crucial for the remain-
ing considerations of the paper. We end this section
with a brief discussion of the primordial formation
theory of globular clusters.

Next (Sec. III) we present a brief review of the under-
lying physical concepts and numerical methods encount-
ered in the study of large stellar systems. Although our
treatment is far from complete, it should familiarize
the reader with the formalism, concepts, and calcula-
tional techniques underlying the main body of the paper.

A summary of the remainder of the paper is essen-
tially a chronological symmary of the dynamical life of
a globular cluster. The dynamical evolution of a globu-
lar cluster, as well as the evolution of other large stel-
lar systems, can be conveniently divided into three dis-
tinctepochs. Thefirstepoch (Sec. IV) consists of the initial
stages of collapse from a primordial, bound structuretoa
quasiequilibrium, stellar cluster obeying the virial theo-
rem. I starformation is virtually complete throughout the
bulk of the protocluster prior to the onset of collapse,
the system will undergo dissipationless collapse and
“violent relaxation” which arises from collective oscil-
lations. In the absence of rotation the resulting star
system will be nearly spherical in shape and in one
dynamical time will settle into virial equilibrium. It is
during this initial collapse phase that the cluster devel-
ops an inner, high-density region, with a nearly iso-
tropic, quasi-Maxwellian velocity distribution, and an
outer halo, characterized by an anisotropic (preferen-
tially radial) velocity distribution.

The second epoch (Sec. V) consists of the slow, secu-
lar contraction of the inner regions of the cluster and
the growth of the halo. This phase is driven predomin-
antly by the continual evaporation of high-velocity stars
from the cluster. During this period, the collapsing
inner regions remain nearly isothermal, thereby de-
fining the cluster “core.” Mass segregation occurs
during this phase throughout the cluster: the heavier
stars settle toward the cluster center while the lighter
stars move preferentially outward into the halo, as
two-body gravitational encounters drive the system to
energy equipartition. The evaporation of stars in the
high-velocity tail of the Maxwellian distribution in the
inner regions of the cluster each relaxation time causes
the binding energy per unit mass of the remaining core
stars to increase. This process increases the central
density and velocity dispersion. Stellar evaporation
provides a natural mechanism by which rotating clus-
ters may divest themselves of angular momentum and
become spherical. Shock heating, which occurs when
the cluster passes through the galactic disk every ~108
yr, may increase the evaporation rate of low-mass stars
from the cluster. This quasisteady epochlasts ~15 mean
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relaxation timescales for clusters with essentially one
mass component and occupies 299% of the active life-
time of the cluster. For clusters with a significant dis-
tribution of stellar masses and sufficient mass in heavy
stars, the latter may form an inner core at the cluster
center, evolving initially by “heat” loss and eventually
by self-evaporation as an independent subsystem. In
such a case the heavy stars may terminate their inter-
mediate phase of evolution after ~three mean relaxation
timescales, well before the bulk of the cluster has
undergone significant evolution.

As stellar evaporation proceeds and drives the core
density to large values, physical collisions between
stars may ultimately alter and dominate the subsequent
dynamical evolution. As a result of stellar collisions
and coalescence, massive stars are formed. In multi-
component systems this end-point evolution probably
does not begin until the number of stars in the inner
subsystem is <100-1000 (Sec. VI). At this point the

“effects of binary star formation, two-body tidal dis-

sipation, and large velocity fluctuations associated with
small N systems become important. The small “singu-
larity” formed by the heavy stars may not affect the
dynamical evolution of the bulk of the cluster for many
subsequent relaxation timescales. The subsequent dy-
namical evolution is very uncertain because of the com-
plicating processes mentioned above and because of un-
certainty in the fate of the coalescing massive stars
(which produce supernovae and/or black holes). The
fate of the remaining stars inthe collapsed cluster may
be dominated by either a central, tightly bound binary
or a supermassive black hole. We explore in some
detail the dynamical influence of a massive black hole
at the center of a cluster core. In either case, the
central object acts as an effective energy source which may
ultimately expand the ambient cluster core, leading to
its dissolution in the galactic tidal field. .

Finally (Sec. VII) we consider observational evidence
for the evolution and death of globular clusters. The
recent identification of a number of x-ray sources in the
cores of globular clusters may yield some clues re-
garding the conditions in these dense inner regions. A
statistical analysis of the observed distribution of globu-
lar cluster central relaxationtimes suggests that any
singularities formed at the centers of globular clusters
have little dynamical effect on the cluster during most
of its lifetime and then quickly dissolve the cluster.
Detailed numerical calculations are needed to test this
possibility. In addition, the statistical analysis permits
an estimate of the number of clusters which have al-
ready collapsed, evaporated, and dissolved beyond
recognition.

1l. THE AGE AND FORMATION OF GLOBULAR
CLUSTERS

A. Stellar types and the Hertzsprung-Russell diagram

We will give here an elementary discussion of the
Hertzsprung—-Russell diagram, an essential tool in
understanding the types and ages of stars. A more de-
tailed discussion of stellar structure and evolution can
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be found in many standard texts, e.g., Clayton (1968).
Stellar brightness (energy/area/time) is measured
by the magnitude scale. If a star is observed to have
an apparent brightness b, then its apparent magnitude
is defined as :

m=-2.51logh +c , (2.1)

where ¢ depends on the adopted system of magnitudes
and units used. For a comparison of intrinsic bright-
ness, it is conventional to define the absolute magnitude
of a star, M, as the magnitude the star would have if
viewed from a distance of 10 pc. From the inverse
square law, we may write

M—-m=5-5log7, (2.2)

where 7 is the distance (in parsecs) of the star. If the
detector could respond to the entire radiant spectrum,
the absolute magnitude measured would be the absolute
bolometric magnitude M, .

Although it is difficult to measure a star’s spectrum
in detail, broad-band photometry, using a few filters
of various colors, yields sufficient information to de-
termine the approximate stellar surface temperature.
The blue and visual (yellow) absolute magnitudes of a
star are denoted by B and V, respectively, and their dif-
ference, B -V, is defined as the colov index of the star.
A one-to-one correspondence exists between the color
index of a star and the location of the spectral peak of
its continuum emission, from which a color tempera-
ture may be defined.

An early result of color photometry was the observed
correlation between a star’s color index and the strength
of specific absorption lines. This observation led to a
classification of stars into spectral types. In addition
to other distinctive properties,  each spectral type cor-
responds to a certain range in surface color tempera-
ture. The major spectral types and their temperature
ranges are as follows: Class O, 7>25000 K; Class B,
25000-11000 K; Class A, 11000-7500K; Class F,
7500-6000 K; Class G, 6000-5000 K; Class K, 5000
3500 K; Class M, 3500-2200 K. The sun is a G star.

In the early part of this century the Danish astron-
omer E. Hertzsprung, and slightly later the American as-
tronomer H. N. Russell, made the remarkable discovery
that stars populate only certain portions of the color—
luminosity diagram. This finding is illustrated in Fig.
2. Any graph which measures a quantity related to
luminosity (e.g., luminosity, bolometric magnitude,
visual magnitude, etc.) versus a quantity related to
color (e.g., color index, color temperature, spectral
type, etc.) is called a Hertzsprung-—-Russell diagram,
or simply an H-R diagram.

When a large sample of all observed stars is plotted
in an H-R diagram (Fig. 2), it is found that about =80%
of the stars fall in a narrow diagonal band called the
main sequence. The next largest class of stars, white
dwarfs, represent about 10% of all stars. The pri-
mary significance of the H-R diagram is that it con-
tains data on the evolutionary sequences of stars. From
theoretical calculations of stellar evolution, it is found
that stars move around in the H-R diagram as they
evolve and spend most of their time in the most popula-
ted areas of the diagram. The “track” of an isolated
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FIG. 2. A schematic representation of the heavily populated
areas in the H-R diagram. A high percentage of stars lie near
the main sequence. The next most populous groups are the
white dwarfs and the giants. The subgiant and horizontal
branches are conspicuous in those collections of stars having
large numbers of giants, e.g., globular clusters. From Clayton
(1968).

star is unique, given its initial chemical composition
and mass. Comparison of the evolutionary calculations
with the observed H-R diagram thus provides informa-
tion on the initial parameters of stars, the duration

of time they spend in each evolutionary phase, and their
ages.

From theoretical calculations, the following simpli-
fied interpretation of the H-R diagram emerges: Main
sequence stars are primarily those stars which con-
vert hydrogen into helium in their interiors by nuclear
fusion; this activity constitutes the first and longest
phase of a star’s active life. The main sequence does
not represent an evolutionary track. Rather, the posi-
tion on the main sequence of a newborn star is deter-
mined by its mass and chemical composition. For a
given composition, more massive stars are hotter and
brighter. The lifetime of a star on the main sequence
is a steeply decreasing function of its initial mass ,
corresponding to a steeply increasing dependence of
luminosity on mass. The main sequence lifetime of
a star is (Cox and Giuli, 1969) (where Mo = solar mass)

{1.3 x 10*° yr (m/Mo)™2, m< 10 Mo ,
tms~

1.3X 10%yr(m/Mg)™, m>10Mo . (2.3)

Thus, for example, stars with a mass near that of the
sun remain on the main sequence for ~10 billion years,
while stars of 20-30 solar masses live only a few mill-
ion years on the main sequence.

Typically, 70%-80% of a star’s mass is initially in
the form of hydrogen, 20% —30% is in the form of helium,
and 0.1%-3% is in the form of heavier elements. When
10%—-20% of the hydrogen in the central active nuclear burn-
ing region has been exhausted, nuclear energy generation
ceases in the core but continues in a thin shell which
moves outward toward the stellar surface. The core,
no longer pressure supported, contracts under its self-
gravitation and heats up. The liberated gravitational
energy serves to expand the outer layers of the star
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while maintaining the luminosity. During this phase the
star “evolves off the main sequence” and follows the
subgiant branch of the H-R diagram upwards and to the
right into the red giant region (see Fig. 2). Stars red-
den tremendously during this evolutionary period be-
cause of their increasing surface area (the radius can
increase by a factor of ~1000).

During the relatively rapid approach to the giant
branch ofas1 M e star the central region becomes suf-
ficiently dense so that the electrons become degenerate
(typical core densities and temperatures are 10°-10° g
cm™® and (3-7) X 10" K, respectively). When the degen-
erate core mass reaches about 0.5 solar masses, core
temperatures are sufficiently high to ignite the triple
alpha process, which converts helium into carbon in a
rapid “helium flash.” The released energy lifts the
degeneracy of the electrons, the central region expands,
the envelope contracts, and the star moves rather
abruptly (e.g., ~10°yr for a 0.65 Mo star) to a position
on the hovizontal branch. The horizontal branch is not
entirely an evolutionary track. The position of a star
on the horizontal branch is again determined by the
helium core and hydrogen envelope mass and the chemical
compositionof the precursor star at the upper tip of
the red giant region. The situation is probably compli-
cated by (ill-understood) mass loss processes exper-
ienced by a star during its evolution on the giant branch.
A massive star with m 2 1 My does not become degen-
erate on the subgiant branch and ignites helium non-
explosively.

The subsequent evolution of stars on the horizontal
branch is not entirely understood. A star may evolve
back to the red giant tip of the H-R diagram several
times, where it can ignite other sources of nuclear en-
ergy. Ultimately, stars exhaust their nuclear fuel and
eventually cease to radiate. If the star is sufficiently
massive it may explode as a supernova and/or collapse
to form a black hole. Sufficiently small stellar rem-
nants can contract to form either a white dwarf (m
< 1.4 My, radius R~10° cm), supported against collapse
by electron degeneracy pressure and shown in the lower
left region of the H-R diagram, or a neutron star (m
< 3M,, radius R~ 10° cm), supported by neutron degen-
eracy pressure and nuclear repulsive forces.

B. The ages of globular clusters

The primary method of estimating the ages of globular
clusters involves a comparison of the observed H-R
diagram for a given cluster with theoretical calculations
of stellar evolution tracks for its member stars (see
Iben, 1971 for a review). Stars begin evolving off the
main sequence from the upper left portion of the H-R
diagram, where the heaviest, most luminous stars are
located. The most luminous stars in a globular cluster
which still remain on the main sequence can then be
used to determine the age of the cluster, if it is as-
sumed that all of the cluster stars were formed at about
the same time. For example, Fig. 3 illustrates the
H-R diagram of the globular cluster M92. Note that
no stars with color index bluer (lower) than about 0.4
appear on the main sequence (c¢f. Figs. 2 and 3).

If L,, is the luminosity in solar units (L =4X10%
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FIG. 3. Distribution in the H-R diagram diagram defined by a
selection of stars in the globular M92. Note the interruption of
the main sequence (cf. Fig. 2) at a B—V index of 0.4. From
Iben (1971).

erg s™) of a star which has just “turned off” the main
sequence, and Y and Z are the initial abundances by
weight of helium and all heavier elements (“metals”),
respectively, then the following approximate expression
for the cluster age ¢, in units of 10'° yr may be used
(Iben and Rood, 1970):

logt, =~0.42 - 1.1 logL,, —0.59(Y - 0.3) — 0.14(logZ + 3) .
(2.4)

Equation (2.4) is most reliable in the range 1.2<¢,<1.6,
¥<0.3, —4<logZ < =3, which corresponds to a range of
stellar masses 0.7 <m/Mo=< 0.9 (Iben and Rood, 1970).
The dependence on Z (typically ~10°2-10"* for globular
cluster stars) arises mainly from the important contri-
bution of heavy metals to the opacity. The strong de-
pendence on Y (typically 0.20%-0.30% by mass) arises
mainly from the role of primordial helium in determin-
ing the mean molecular weight of the central regions,
which, in hydrostatic equilibrium, determines the tem-
perature for nuclear burning. Demarque ef al. (1971)
have independently derived an expression for ¢ ¢ from
their numerical calculations, which agrees fairly well
with the functional form of Eq. (2.4) but yields values

of ¢, approximately 20% smaller. Additional uncertaint-
ies in the actual measurements of L,,, Y, and Z will
be discussed below. With a theoretical relationship
such as Eq. (2.4), the age-dating calculations require
five steps: (1) Measurements of the apparent H-R di-
agram and turnoff magnitude m,,; (2) estimates of cor-
rections to both the observed stellar colors and mag-
nitudes due to “interstellar reddening”; (3) measure-
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ment of the distance to the cluster so that L, , may be
determined from m,,; (4) measurement of helium abun-
dance Y; (5) measurement of metal abundance Z. We
will discuss each of these steps in turn.

The main sequence turnoff of a cluster is defined as
the magnitude where B -V is smallest (bluest) at the
knee joining the main sequence and the subgiant bran-
ches. Before plotting a meaningful H-R diagram to
determine the turnoff, however, the frequency-depen-
dent interstellar absorption must be subtracted out for
each individual star (i.e., intervening gas clouds may
obscure portions, but not all, of the cluster). This
“de-reddening” of stellar colors is accomplished by first
identifying the spectral type of a star through its spec-
tral lines and then comparing colors with a nearby
star of the same spectral type for which interstellar
absorption is negligible.

There are two different methods usually used to esti-
mate the distance to a cluster. The first is by com-
parison of the main sequence curve in an apparent-mag-
nitude H-R diagram of the cluster with the main se-
quence curve of a fiducial sample of nearby stars of
known distance and luminosity (cf. Fig. 2). (Distances
to nearby stars and star clusters within~100 pc of Earth
may be determined directly by various trigonometric
and kinematical methods.) The relative vertical dis-
placement of the two main sequences on the H-R di-
agram can be directly converted to a distance to the
globular cluster. The Hyades cluster (~100 stars about~40
pe distant) is often used as afiducial cluster, butother fidu-
cial main sequence curves of field stars mustbe construc-
ted for low-Z stars of the type found in globular clus-
ters (see, e.g., Sandage, 1970). One of the problems
in this method of distance determination is the apparent
faintness of the main sequence stars in the distant glo-
bular clusters. Another is the scarcity of fiducial stars
of low Z.

The second method used to determine distances to
globular clusters is measurement of the apparent mag-
nitude of their RR Lyrae stars. These distinctive stars
are horizontal branch stars which have regular (optical-
1y observed) pulsations every ~% day, due to radial in-
stabilities in their envelopes. From the early theoret-
ical calculations of Baker (1965) and Christy (1966) and
from more recent calculations (e.g., Iben, 1971) it is
found that the intrinsic luminosities of RR Lyrae vari-
ables cover a relatively narrow range ~40-50 L. Thus
RR Lyrae stars serve as reliable standard candles in
distance determinations.

When the distance measurements and turnoff mag-
nitudes are measured, it is found that the average stel-
lar turnoff luminosity in a globular cluster is {(L,,)
~0.45, with an estimated error AL/L~ 0.2 (Sandage,
1970). For Y~ 0.3, Z~ 1072 the turnoff stars are inthe
mass range 0.7<m/Mgs= 0.8 (Iben and Rood, 1970).

The majority of globular cluster stars are too cool
to measure surface helium abundances through spectral
lines. Instead, three indirect methods, which rely
heavily on theoretical calculations, are used to mea-
sure helium abundance. The first method compares
the theoretical lifetime ratios #y5/#z. and observed
number ratios Nyp/Ng;, of horizontal branch (HB) and
red giant (RG) stars. The second method compares the
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observed color and period of the shortest period RR
Lyrae stars with theoretical calculations. A third
method correlates Y with the measurable slope of the
subgiant branch in the H-R diagram (e.g., Faulkner,
1972). Although tHB/tRG depends strongly on Y, it also
depends strongly onthe core mass of the horizontal
branch stars, a quantity sensitive to variations in the
input physics (see e.g., Iben, 1971), such as convection in
HB stars and nuclear cross sections. Such problems as
crowding, background effects, and proper identification
introduce errors in the determination of Nyp/Nge. In
the second method, where there exists a strong theo-
retical dependence on the helium abundance Y of the
color of the shortest period (bluest) RR Lyrae stars
(e.g., Christy, 1966), the total mass of the star enters.
Here mass loss, which is not well understood, can con-
tribute uncertainties. Combining the above methods,
the initial helium abundance is found to be Y~ 0.3+0.1
(Sandage, 1970; Iben, 1971).

Surface metal abundances are determined by spectro-
scopic methods and are assumed to reflect the initial
composition of the star (see discussion below). Methods
discussed by Wallerstein and Helfner (1966) and adopted
in recent studies (e.g., Cantera, 1975) yield values of Z
ranging from 8 X 10™ for M13 to 2 X 10™ for extremely
“metal-poor” clusters like M15 and M92, with factor
of 2 errors quoted. Another method for measuring
metal abundances from the relative strengths of spec-
tral light is the Preston (1959) “AS” method, adopted
by Butler (1975), to name one example.

Globular clusters with measured ages are given in
Table I from Allen (1974), who used results from
Thinert (1971) and Arp and Hartwick (1971). The rms
error in the calculated ages, obtained by substitution
of the above quoted errors for Y, Z, and L,, into Eq.
(2.4) yields at,/t,~ 25%. It is difficult to assess the
precise confidence level of Eq. (2.4) itself (see pre-
vious discussion). Despite the uncertainties, it is
reasonably clear that globular clusters are among the
oldest objects in the universe, which have evolved (1-2)
x 10 yr from the “Big Bang.” The paucity of globular
clusters with reliably determined ages is largely due to
the difficulty of clearly defining the faint main sequence
stars in each cluster. The optical emission from clus-
ters is dominated by the less numerous but very much
brighter (by a factor of ~25) red giant stars.

In addition to the above quantitative age estimates
there are a number of characteristics of globulars
which argue qualitatively for early formation dates.
Globular clusters as a whole have relatively high spat-
ial velocities and do not participate appreciably in the
general galactic rotation. Globular clusters have high

TABLE I. Measured ages of globular clusters.?

Log age in years

9.9 10.0 10.1 10.2
Examples: M71 47 Tuc M92 w Cen
M15 M3
M13 NGC 5466
M5

2From Allen (1974).
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average galactic latitudes ((b)~ 14° Arp, 1965; Allen,
1974) and are relatively depleted in metals compared to
the sun (Zo~2x107%; Allen, 1974). All of these pro-
perties define a class of old objects called Population
II, while the opposite properties characterize a younger
class of objects called Population I.

The distinction between Population I and Population II
is thought to be associated with star and galaxy forma-
tion and with stellar nucleosynthesis. Nuclear burning
and element formation in a star occur in the innermost
regions, where temperatures and densities are highest.
Old “first generation” stars, which formed with the
primordial hydrogen and helium abundances character-
izing the early universe, will have negligible metals in
their outer layers. (It is only the outer layers of a star
which are observable.) In contrast, younger stars can
form out of gas which has been contaminated with the
metal-laden debris from supernova explosions of
earlier generation stars. Thus metal abundance can be
associated with age.

It has been hypothesized that the galaxy was originally
a hot, turbulent gas cloud which collapsed to its pre-
sent disk shape because its thermal energy was dis-
sipated while its angular momentum was conserved.
The dissipation process presumably involved only large
masses of gas; stars, once formed, have little inter-
action with gas or other stars. Consequently, older
stars would exhibit the Population II kinematical pro-
perties previously described. Younger stars, formed
from gas which had already collapsed to the galactic
plane, would orbit predominantly in the plane of the
galaxy. Indeed, recent studies (e.g., Peterson, 1974;
Harris, 1976) indicate that globular clusters have a
nearly isotropic velocity distribution. Partly as a re-
sult of their high-latitude orbits, which sweep out intra-
cluster gas every passage through the galactic disk
(typically every ~10°% yr), little interstellar gas has been
observed in globular clusters (Knapp et al., 1973; Hills
and Klein, 1973).

C. The formation of globular clusters

Because of their great age, the study of the formation
of globular clusters is intimately involved with cosmo-
logy. Most cosmologists invoke some version of the
“gravitational instability” hypothesis to explain the
formation of bound systems. In this process a small
density perturbation in a gas of otherwise uniform den-
sity grows if the perturbation encompasses sufficient
mass that its inward self-gravitational force exceeds
outward internal forces due to thermal gas or radia-
tion pressure. Recent reviews of this problem include
Peebles (1971), Weinberg (1972), and Field (1975).

The maximum mass of a perturbation stable against
gravitational collapse is called the “Jeans mass” (Jeans,
1902) and can be obtained approximately by equating the
gravitational and thermal energies of the perturbation.
Let p,, P, ,p ,7; be the matter density, radiation density,
pressure, and size of the limiting perturbation, re-
spectively. We then have, roughly,

Glpn(L+p, /P51 75 ~ 7y (2.5)

If we now let 7,,, 7, p,, and p,, be the temperatures
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and pressures, respectively, of the matter () and ra-
diation field (¥), we also have the additional relations
p,c*~a Ty~ 3p, and p,~(p,/my) kT,. Herec, a, my,
and % are the velocity of light, radiation constant, hy-
drogen mass, and Boltzmann’s constant, respectively.
At cosmic times sufficiently early so that all hydro-
gen in the wiverse was ionized (T, = 4000 K), the matter
and radiation fields were well coupled thermally, T,
=T ,, and the dominant source of pressure was due to
radiation, p~p,. After the “recombination” epoch of
electrons and protons, radiation and matter decoupled
and only matter pressure was effective in supporting
the matter, p~ p,,. Combining the above expressions
with Eq. (2.5) and defining the Jeans mass M, =(4n/3)
X p,73, one may obtain the following approximate rela-
tions for M, (cf., e.g., Weinberg, 1972):

before recombination (T, =T, = 4000 K)

My;=~9My0 (1+0kT,/my)®; (2.6a)
after recombination (T, ,T,, < 4000 K)
M;=~100Ms0Y ¥T,/T,)*'? . (2.6b)

In Eqgs. (2.6) we have used the (dimensionless) measure

of photon entropy per baryon, o= 4aT;mH/(3pmk). For
much of the history of the universe the radiation has ex-
panded adiabatically (adiabatic index %). This fact plus

baryon conservation ensures the constancy of o, which

has been measured to be roughly ¢~ 108-10° (cosmic 3
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FIG. 4. : Jeans mass as a function of radiation temperature.
Solid line is for 0=0.8 x 108, corresponding to T,,=2.7 K, p,
=3x107% g/cm3. Dashed line is for 0=2.4 x 10°, corresponding
to T,0=2.TK, py= 1073% g/cm®. The drop in Jeans mass at re-
combination is somewhat more gradual than shown here. From
Weinberg (1972).
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K radiation). After recombination, both matter and
radiation followed their separate adiabatic evolution
(the former with adiabatic index -Z—), leading to the rela-
tion (7,,/T,)~ T, /4000 K. Figure 4 shows M, as a func-
tion of T,.

In most cosmological models the universe was only a
tiny fraction (107*-107%) of its present age at the time of
recombination. Because the Jeans mass just after re-
combination is so near the observed mass of globular
clusters, many investigators have argued that growing
condensations at the epoch of recombination should be
associated with the formation of globular clusters.
However, if radiation and matter depart from local
thermal equilibrium with each other before recom-
bination, the resulting dissipation can damp all acoustic
perturbations of mass < 10214, (Silk, 1968; Weinberg,
1971; see Weinberg, 1972 for a review), thus somewhat
obscuring the relevance of the Jeans mass for globular
clusters. Various models of cluster formation disagree
drastically in the details, in any case, and we shall only
briefly mention a few such models below without at-
tempting a critical analysis.

1. Formation of globular clusters before galaxy-.
formation

Impressed by the apparent uniformity of globular
cluster luminosities both throughout our galaxy and in
other galaxies, Peebles and Dicke (1968) proposed that
globular clusters formed as gravitationally bound gas
clouds before the galaxies appeared. The observed near-
ly uniform size and mass of globulars would be a con-
sequence of the strong radiation-drag force acting on
gas just at the time of recombination and formation
(see also Peebles, 1969). Van den Bergh (1975) has
pointed out, however, that globular clusters do seem to
differ systematically in certain traits from one galaxy
to another, which may argue for a postgalaxy formation.

2. Formation of globular clusters during galaxy formation

Models of this type have been discussed first by von
Weizsacker (1955) and in more detail by Eggen et al.
(1962). In such a model a single protogalactic cloud
formed globular clusters and halo field stars by sub-
fragmentation during a brief period (~10° yr) in which
the turbulent gas cooled and collapsed to the plane. The
rapid formation of globular clusters leads to the kine-
matical properties observed (see above) and indicates
a negligible age difference between stars in a given
globular cluster. i

There is a paucity of data for globular clusters out-
side of the galaxy. Harris and Canterna (1977) have
recently presented integrated colors of four globular
clusters in Fornax (a member of the “Local” group of
galaxies) and six in M31 (Andromeda). They conclude
that the Fornax clusters are very metal poor in com-
parison to clusters in our own galaxy, while those in
M31 are metal rich. In the latter case, the distribu-
tion of metal-rich clusters in the halo of M31 contrasts
with that of the galaxy, indicating that the sequence of
cluster formation and metal enrichment of interstellar
gas may not be invariant. Outside the Local group, the
globulars around the giant elliptical galaxy M87 in the

Rev. Mod. Phys., Vol. 50, No. 2, April 1978

Alan P. Lightman and Stuart L. Shapiro:

Dynamical evolution of globular clusters

Virgo cluster represent the only clusters for which re-
liable data exist. The spatial distribution of these
4000 + 1500 globularlike objects has recently been stud-
ied by Harris and Smith (1976), who find that the clus-
ter distribution is considerably flatter in M87 then in
our galaxy. They suggest that the clusters in M87
formed relatively earlier during the collapse phase of
the protogalaxy, before the gas distribution became as
centrally concentrated as it did in our galaxy.

Fall and Rees (1978) has proposed that subclustering on
allmass scales existed at the time of galaxy formation. In
their theory, the mass scale of globular clusters
(~10°-10°M, ) was subsequently singled out for survival in
the competition between tidal disruption (see Sec. V C.) and
evaporation (see Sec. V E. and VII B.).

11l. DYNAMICAL EVOLUTION OF LARGE N-BODY
SYSTEMS: OVERVIEW OF THEORY AND
NUMERICAL METHODS

A. Theory
1. Fundamental principles

The dynamical evolution of any bound, stellar system
is determined by the nature of the mutual gravitational
scatterings or “encounters” between stars in the sys-
tem. For globular clusters and all other star systems
with lavge N, the total number of stars, these encoun-
ters are characterized by several common dynamical
features, including the following: ’

(1) The predominant interaction process between stars
is two-body, small-angle scattering in a 7™ gravita-
tional potential, resulting in small changes in star ve-
locity.

(2) The dynamical time scale £, is significantly short-
er than the relaxation time scale #, throughout the clus-
ter interior.

(3) The rate of formation of tightly bound binary sys-
tems is negligibly small; see Sec. VL.B.

The theoretical basis for the above dynamical pro-
perties, which characterize all sufficiently large N-
body systems, is summarized in the following three
sections. For smaller systems with N < 10° these dy-
namical features no longer apply (see Sec. VI). Follow-
ing a discussion of the main physical principles under-
lying classical N-body theory, we ‘present a brief dis-
cussion of several numerical techniques recently em-
ployed to describe the evolution of large stellar sys-
tems.

2. Close versus distant encounters

The effect of occasional close encounters between
stars, which produce large deflections and significant
velocity changes, is generally much smaller than the
effect of more distant ones in large N-body systems. If
we denote by p, the impact parameter for a 90° deflect-
ion of two stars in hyperbolic orbit about each other,
then

P0= G(m1+ mz)/viel ’ (3'1)

where m, +m, is the total mass of the two stars and v,
is the relative velocity at large separation. At a dis-
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tance p, the kinetic and potential energies of the binary
system are comparable. The timescale ¢, for a “close
encounter” resulting in adeflection of 90° or more is
then

3
1 Urel

T 7G m, rmy)n ’

t.=

3.
RO S /1) (3.2)

rel
where » is the local star density in the cluster and o,
=7pZ is the cross section for a 90° scattering. As is
well known (Spitzer, 1962), use of the above timescale
in a large N-body system gives a scattering mean free
path too large by at least an order of magnitude. The
reason is that ™! potential fields decrease sufficiently
slowly with distance so that the “collision” of two
masses at large impact parameter p > p, results in a
non-negligible scattering. Since the number of such
distant encounters is so large, their cumulative effect
is more important than that of the few close encounters.

For “distant encounters” with p > p,, and m,> m,,
the velocity change suffered in one collision by m, is
|av | =v,,0, where 6 =2p/p<<1 is the deflection angle
of m,, and the differential cross section for this en-
counter is o(0)=~4p2/6* (the Rutherford cross section
in the limit 6 <1). Thus the mean square deflection
resulting from distant encounters per unit time is given
by

zgr (|av |? =nw,, f | av |20(6)ds

=87Tp(2,nvf.el fpmax "12 ’
) p
where the integral has been cut off at some maximum
value to avoid divergence. In a neutral plasma p,_,, is
usually set equal to the Debye shielding distance since
the potential vanishes exponentially for larger distances.
No similar cutoff exists inthe gravitational problem;
hence the integral must be extended over the entire sys-
tem. In a spherical star cluster one typically sets p_ .,
equal to R,, where R, is the radius containing half of
the mass (Spitzer and Hart, 1971a). The resulting log
factor InR, / bpo can be evaluated further by employing the
~ virial theorem for the cluster, which relates the cluster
mean square velocity v to the total gravitational po-
tential energy in the cluster per unit mass £ and to the
total energy E. Assuming that most stars have the same
mass we may write

1 GM l.;(z

2 _ _1 &M w1/
vhe-os g o 5 oSami)

2 R R

(Chandrasekhar, 1942), where 7;; = |r; —r, | is the
separation between the ith and jth star in the cluster and
M is the total mass of the cluster. Setting R equal to

R, gives a useful approximate form of the virial theorem:

(3.3)

(3.4)

(3.5a)
(3.5b)

Then, using the relation for the mean relative velocity,
we have

2
Vrer™

R,/po= 3N .

The timescale for a net 90° deflection via repeated,

2
20,

(3.6)
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small-angle scattering (i.e., when {|Ayp|»/2=y ) is
thus given by .

v? 1 3

A Y. T 8Tp2nv, e In(0.5N) chzmgfzelln(o.szv) ;
(3.7)

hence
t,/t,e = (81n(0.5N))"! (3.8)

Since N ~10° for typical globular clusters, t,/t,,~107%,
and significant deflections are much more likely to be
caused by many weak interactions than by a single, close
collision.

3. Dynamical versus relaxation timescales

The timescale £, computed in Eq. (3.7) for collisions
to produce large changes in an initial velocity distribu-

- tion is essentially a “relaxation time”. for the system.

When v, is set equal to 20Z, t, measures the time re-

quired for a bound, gravitating, N-body system to
reach quasi-Maxwellian equilibrium in its interior. In
discussions of evolving N-body systems it is frequently
convenient to employ the reference: relaxation time de-
fined by Spitzer and his collaborators (Spitzer and Hart,
1971a; Spitzer, 1975), which is the relaxation time at
the mean density for the inner half of the cluster mass
M, with stars assumed to have the rms velocity of the
cluster as a whole. This timescale is given by

po 3 _-0.060M'/2R3/>
™~ 15.4G*n*n 1n(0.4N)  mG*%10g(0.4N)

N 1/2 m -1/2 R 3/2
o 8 —_—_— —_ —h_
5x 10 yr<5>< 104> (M®> 5pc> ,. (3.9)

where m =M/N is the mean stellar mass. The factor of
0.4 appearing in the logarithm is somewhat uncertain,
but provides a reasonable first approximation to most
centrally condensed polytropic stellar systems [Spitzer,
1969; recently Hénon has argued that a careful analysis
of the “nondominant” scattering terms of order 1/InN
with respect to the dominant terms leads to a substan-
tially lower value for the above coefficient, of order
0.15 for equal mass systems (Hénon, 1975)]. Defining
the dynamical time for a stellar system as the time re-
quired for a star moving with the rms velocity to cross
R,, we have

R, 1.58R}/2
L T 1)
le=, = GMI*
R 3/2 M -1/2
~ 6 —h__ —_—
0.8 % 10 yr<5pc) <105M®) . (3.10)
Comparing ¢,, and ¢, we find
ty/t,,=2610g(0.4N)/N (3.11)

(Spitzer and Hart, 1971a). The normalizations indicated
in Eq. (3.10) are appropriate for typical globular clus-
ters. It is clear then that for rich galactic clusters (N
~10%), globular clusters (N ~10°), and elliptical galaxies
(N ~10'), relaxation times significantly exceed dynami-
cal times. Consequently, a typical star orbits the stel-
lar system many times in reaction to the smooth, aver-
age potential field of the cluster before its energy E
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and angular momentum J are changed appreciably.
Therefore, in first approximation, large N-body sys-
tems satisfy Liouville’s theorem, and the phase space
density f=f(E,J) in a cluster will be nearly constant
around each orbit [see (5) below]. For typical globular
and galactic clusters ¢,, is shorter than the cluster age
(see Sec. II), so that these clusters have certainly re-
laxed to Maxwellian equilibrium in their cores. For
elliptical galaxies ¢,, is significantly larger than the age
of the universe, so that core relaxation cannot have been
accomplished by two-body encounters. Instead, “violent
relaxations” (Lynden-Bell, 1967) during the initial col-
lapse of the protogalaxy must be responsible for the ap-
parent equilibrium velocity profiles observed in galaxy
cores (see Sec. IV).

Due to the strong central concentration of most relaxed
stellar systems, the local relaxation time #,(») can be
considerably shorter than ¢,, in the central core and con-
siderably longer in the far halo. For isolated stellar
systems, however, ¢, approaches ¢, only in the outer-
most halo or “fringe” of the cluster; for globular clust-
ers orbiting the galaxy, the outer boundary is established
by tidal effects and at the tidal radius 7,, ¢, is still ap-
preciably shorter than ¢,.

4. Binary star formation

Binary star systems may form, in principle, from
nondissipative three-body stellar encounters and from
dissipative, two-body tidal interactions in the cluster.
The number of tight binaries formed via three-body
encounters is negligibly small (1) in large N systems
(N > 500), as shown by Spitzer and Hart (1971a) and by
Heggie (1975a). The number of binaries formed by two-
body tidal encounters will be much larger (~50 in typical
compact cluster cores), as pointed out by Fabian et al.
(1975) and by Press and Teukolsky (1977), but never
large enough to influence the dynamical evolution of a
large N system. The formation and dynamical role of
binary stars in clusters is discussed in greater detail
in Sec. VL.B.

Py LES)

1

TJ e

Here a quantity (A,K) is the mean increment in K trans-
ferred in an orbital period P(E) as a result of successive
small-angle scatterings.

The quantities (A K) are functions of E and J. They
may be related to the standard (e.g., Chandrasekhar,
1942; Spitzer, 1962) radial and velocity-dependent
“diffusion coefficients,” by integrating the latter over
an orbit of given E and J, e.g.,

(B,d)=2 (AJ}— (3.15)

T
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5. The Fokker-Planck equation and diffusion coefficients

The equation of motion of particle ¢ may be written in
the form (cf. Spitzer, 1975)

av,

FT -Vo(r, t)+F,@),

(3.12)
where ¢ is some smoothed-out average potential and
F,(t) is the force (per unit mass) on particle i resulting
from discrete, irregular two-body encounters with
other stars. The various approximation schemes for
solution of Eq. (3.12) involve different frameworks for
evaluating F,. Employing the Boltzmann equation (e.g.,
Huang, 1963) for the evolution of the distribution func-
tion of particles, f(r,v), one finds that the fluctuating field
component F, generates an effective “collision term” on
the right-hand side of the equation:

¥ _ 3 K7 o (5

ar "ot TV or oy \ of (3.13)

>col lisions *

s+t Vo:

Since small-angle scatterings dominate the interactions
between particles in large N systems, the collision term
can be written in the usual way as an expansion in the
small perturbations (e.g., in the velocity components)
which arise from two-body encounters. Keeping the
dominant first two terms in the expansion leads to the
Fokker-Planck equation, first studied for homogeneous
stellar systems by Chandrasekhar (1942), and later
developed for more general and realistic systems by
Rosenbluth et al. (1957).

Additional simplifications in the Fokker—Planck equa-
tion result from the fact that a large stellar system is
very nearly collisionless (cf. discussion in Sec. IIL.A.3),
so that Liouville’s theorem is approximately satisfied
and f is approximately a function of the energy and (in
a spherical system) angular momentum, E and J. If
f(E,J, t) is the phase space density of stars with energy
and angular momentum per unit mass in the range dE
and dJ about E and J, respectively, then the Fokker—
Planck equation for the time evolution of f(E,J, ¢) is
(cf. Spitzer and Shapiro, 1972; Lightman and Shapiro,
1977)

L0 -2 (1., txA,E)]——z— L7, (8,809

=7 LB, T, 1W{(A,E)AJ)]. (3.14)

J BEBJ

[

where 7,,,7,, v, are, respectively, the apocenter, peri-
center, and radial velocity. The energy and angular
momentum diffusion coefficients (AE), (AJ), ((AE)?),
{((AJ)?, and ((AE)(AJ)) may in turn be related to the
velocity diffusion coefficients (Av,), {(Av,)?), and
((Av,)%. Here (Av,) is the velocity transfer along the
direction of motion per unit time, ((Av,)? is the squared
velocity transfer perpendicular to the direction of mo-
tion, per unit time, etc.

To obtain the velocity diffusion coefficients, one must
average such expressions as Eq. (3.3) over a distribu-
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tion of “field stars” with density n(»). In many prob-
lems, the field star velocity distribution may be ap-
proximated as Maxwellian. For example, the “coeffic-
ient of dynamical friction” (drag),(Av,), for a “test star’
moving with velocity v, satisfies in such a case (Chand-
rasekhar, 1942; Spitzer, 1962; Spitzer and Hart,
1971a), assuming all stars have the same mass,

3

(Av,) = —20A 513G (x)/x, (3.16)
where

Ap=81G*m*n 1n(0.4N), (3.17a)

13=3/(20}), (3.17b)

x=lv, (3.17¢c)

and G(x)/x is a slowly varying function tabulated in Spit-
zer (1962). In general (Av,)/v, {(Av,)/v?, and {(An, )%/
v? are all of the same order and approximately equal to

£ [cf. Egs. (3.9), (3.16), (3.17)]. The energy and angular
momentum diffusion coefficients are, for example,

(AE) ={An,) + (A0, ) + K(Av, )%y, (3.18a)
(AJ} = 7’[(Avn>vt/v + %((AUJ.)Z>/Ut] s (3.18b)

where v, is the component of velocity transverse to the
instantaneous radial direction. The reader is referred
to the above quoted references and to an excellent re-
view by Hénon (1973) for further details on both the
Fokker—Planck approximation and the diffusion coef-
ficients. Numerous applications are found below.

B. Numerical methods

Because direct N-body calculations which follow each
star along its orbital trajectory are so expensive [see
Aarseth et al. (1974)], with the cost «N°® (Hénon, 1973),
and because globular clusters (N~ 10°) spend most of
their lifetime in a regime where statistical methods may
be valid, various investigators have devised statistical
methods for the numerical solution of globular cluster
dynamical evolution. We will return briefly to the nu-
merical N-body integrations for small N(N ~10°) sys-
tems in Sec. VI.C, which may apply to the very late
stages of cluster evolution where the highly reduced
size of the core requires such calculations. The statis-
tical methods may be divided into Monte Carlo tech-
niques, in which the discrete nature of the particles and
their interactions is explicitly maintained in the model -
ing, and fluid-dynamical methods, in which the system
is modeled as a smooth fluid with effective viscosity,
etc., arising from two-body interactions. For a general
review of numerical methods in stellar dynamics, we
refer the reader to Aarseth and Lecar (1975).

1. Monte Carlo methods

The Monte Carlo numerical methods are stochastic
realizations of the F—P equation. Two different Monte
Carlo methods have been developed, both tailored for
spherical stellar systems: the pioneering scheme of
Hénon (1967,1971, 1973) and the method of Spitzer and
associates (initially described in Spitzer and Hart,
1971a, with later improvements; see Spitzer, 1975 for
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a general review). In Hénon’s method, each star repre-
sents a much larger number of stars with identical velo-
cities but arranged in a spherical shell. The E and J of
each representative star, or “superstar,” is tabulated
and followed, but not the orbital phase. At regular time
intervals shorter than ¢, a superstar is chosen at some
random position on its orbit in accordance with the prob-
ability distribution given by its E, J, and the external
potential ¢ [see Eq. (3.12)]. An adjacent superstar is
then randomly chosen and the two experience a mutual
two-body encounter. All of the parameters of the en-
counter are chosen at random, with the constraint that
the initial conditions be satisfied and that the squared
velocity deflection equal the mean squared velocity
deflection which would have resulted from many two-
body encounters at the same location. As a result of

the encounter, new values of energy and angular mo-
mentum, E{,J{, E},J} are computed for the two colliding
superstars.

In the calculations of Spitzer and associates, a large
number (~1000) of superstars are followed in detail along
their dynamical trajectories determined by the smooth
potential ¢(r) [see Eq. (3.12)]. The cluster is divided
into 25 spherical regions each containing 40 superstars.
At regular intervals the velocity components of a super-
star are perturbed in accordance with the local diffusion
coefficients [see Egs. (3.16) and (3.17)], where the local
values of the coefficients are obtained by averaging over
all nearby stars in the same spherical region.

The principle difference between the above two meth-
ods is that Hénon’s method explicitly maintains the de-
tails of the underlying two-body interactions while Spit-
zer’s averages over these details; Spitzer’s method fol-
lows dynamical orbits in detail, while Hénon’s averages
over the trajectories. Hénon’s method has the advantage
of being somewhat less expensive but does not have the
capacity to consider effects in which the orbital details
are important [like the escape of stars (see Sec. V.A.)].

2. Fluid-dynamical methods

Considerably faster, but more highly idealized, than
either of the two methods discussed above is the fluid-
dynamical approach of Larson (1970a,b). Larson takes
velocity moments of the Boltzmann equation up to fourth
order and solves the resulting system of equations. The
system is comprised of six coupled differential equations
in the variables p, {(v), {(v - @))®, (W?, {(v - {(v))*), and
{(v ={v))", where v and w are the radial and tangential
velocity components, respectively, and { ) denotes lo-
cal spatial averages. In order to incorporate the effects
of relaxation, “collision terms” are included on the
right-hand side of the Boltzmann equation [cf. Eq. (3.13)].

A principle assumption of Larson’s method, which
must be used to relate hybrid terms like (w?*(v - (v))) to
the basic independent variables given above and to evalu-
ate the “collision terms,” is that the system is never
far from thermal and hydrostatic equilibrium. Such
a restriction probably forbids an accurate treatment
of the initial “violent relaxation” of a stellar system
(cf. Sec. IV), in which the stellar system is far out of
equilibrium, collectively oscillates, and loses all mem-
ory of initial conditions in a few relaxation timescales.
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FIG. 5. Histogram showing the distribution of values of ¢, in
32 clusters. The quantity ¢,, is the relaxation time for a star
whose velocity equals the rms value for the cluster, and which
is moving through a region of particle density equal to the mean
value for the inner half of the cluster’s mass. From Spitzer
(1975).

IV. INITIAL STAGES OF CLUSTER EVOLUTION

A. Observational evidence for violent relaxation

Globular clusters have aged for many relaxation time-
scales (cf. Table I and Fig. 5) so there are no direct
observations of the long-completed initial stages of
cluster evolution. However, there exist other N-body
systems which are much younger in relation to their
relaxation timescales and they can give us a glimpse of
these initial dynamical processes. For example, dwarf
elliptical galaxies (¢,,~10" yr) and rich clusters of gal-
axies like Coma (¢,,~10'® yr) are well fit by isothermal,
density distributions (Zwicky, 1957; Oort, 1958;
Peebles, 1969) as if they were fully relaxed, yet have
relaxation timescales exceeding the age of the universe.
Since it is unlikely that such systems formed with near-
ly thermal distributions, the only possible explanation
(Ogorodnikov, 1958; King, 1962) is that some collective
relaxation process has occurred which is much more
rapid than relaxation due to successive two-body en-
counters. For purposes of comparison, the latter pro-
cess, which occurs on the timescale ¢,,, will be called
“two-body relaxation.”

B. Theory of violent relaxation

If the gravitational potential in which a star moved
were strictly time independent, the star would conserve
its energy and thermalization could not occur. For a
cluster of stars in macroscopic equilibrium the large-
scale gravitational potential is indeed nearly time in-
dependent. It is only the small fluctuating components
of the potential field produced as another star passes
nearby [cf. Eq. (3.12)] which allow energy exchange be-
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tween pairs of stars and are the mechanism of two-
body relaxation.

If the cluster is not initially in macroscopic equili-
brium, however, then it will undergo macroscopic oscil-
lations on a (rapid) dynamical time scale ¢, [see Eq.
(3.10)]. As shown in Eq. (3.11), #, is much smaller than
¢, for large N-body systems, i.e., ¢,/t,,~InN/N. In
such a situation a star experiences an external gravita-
tional field which changes by order unity in a time ¢,
thus permitting the cluster as a whole to evolve on a
dynamical timescale. The importance of collective ef-
fects in stellar dynamical relaxation can be seen even
in the expression for the two-body relaxation timescale
ten [cf. Eq. (3.9)]. I coherence is mimicked by reducing
the number of independent gravitating objects N while
keeping the total mass M =mN fixed, then {,, decreases
in proportion to N. The rapid evolution of nonequilibrium
clusters due to strong collective effects has been called
“dynamical phase mixing” (“phase de mélange dy-
namique”) by Hénon (1964) and “violent relaxation” by
Lynden-Bell (1967).

Because of the inequality ¢, <<¢,,, the stellar system
can be considered collisionless during violent relaxa-
tion. Consequently the stellar distribution function
f(r,v) is a solution of the collisionless Boltzmann (Vla-

sov) equation, Eq. (3.13) with (8//0¢),111s10m =05
o .Y O
o7 +V or +Vo v =0. 4.1)

Two important results emerge promptly from Eq. (4.1):
phase space density is conserved along a stellar tra-
jectory (Liouville’s theorem) and the steady-state dis-
tribution function cannot depend upon stellar mass,
which occurs nowhere in the equation. The latter result
means that no mass segregation can occur (heavy stars
should not sink to the center), a conclusion which fol-
lows physically from the equivalence principle (in an
external potential ¢ all particles feel the same accelera-
tion).

A cluster will be displaced from quasisteady macro-
scopic equilibrium when a sizeable fraction of its mass
Examples, in terms
of macroscopic variables, are zero angular momentum
clusters with initially very nonspherical shapes, or
clusters with virial coefficient a= |2T/W| not initially
near unity, ‘where T and W are the total kinetic and gra-
vitational potential energies, respectively. In such situa-
tions a cluster of total energy E and total mass M will
oscillate about an equilibrium radius

R,~3(GM?|E|™), (4.2)
with period
P~t,~21GM® ?|E|-3/2, (4.3)

Unless the density is perfectly uniform and the stellar
velocities perfectly radial, however, oscillations will not
remain coherent (different shells will oscillate at differ-
ent periods); subsequently, Landau damping will set
in and the oscillations will damp out in a few periods.
There are many steady-state distributions compatible

with the conserved quantities and in macroscopic equili-
brium. We might expect, however, that as a result of
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violent fluctuations the system has undergone sufficient
phase mixing to have relaxed towards some unique, sta-
tistically probable state. Such a quasiequilibrium,
“violently relaxed” distribution function f would be ap-
plicable until individual stellar encounters become im-
portant, after which f would slowly drift towards a true
Maxwell=Boltzmann form (leading to mass segregation).

The statistics of the quasiequilibrium distribution re-
sulting from violent relaxation were first considered by
Lynden-Bell (1967) (see also Saslaw, 1969, 1973forre-
view and discussion). Because of Liouville’s theorem
no two elements of occupied phase space can cross as
the system evolves, leading to an exclusion principle
for the distribution of phase elements in phase space
cells. Because there is no mass segregation, the distri-
bution function will incorporate equipartition of energy
per unit mass, E= 302+ ¢. From the above, one
straightforwardly finds that the most probable coarse-
grained distribution function (for a zero angular momen-
tum system) satisfies Fermi~Dirac statistics (Lynden-
Bell, 1967):

- 1

f= T)m . (4.4)
Here fd 57 is'the total mass in the phase space element
d3vd3v=d° and B, p, and 1 are constants which must
be chosen to yield the correct total mass and energy of
the system. When the system has net rotation, £ — &

- (@Xr)*vin Eq. (4.4), where Q is independent of 7,
i.e., uniform rotation.

The constant 7 is the typical total mass in stars per
unit phase volume in an occupied microcell (unit) of
phase space. The value of 7 is determined at the time
of star formation, since it is a conserved quantity, in
addition to M and E, during violent relaxation. Clearly
the coarse-grained distribution function 7S n. The sys-
tem is degenerate when f~7. For a stellar system oc-
cupying a volume V, the distribution is degenerate when-
ever

E 1/2 _ M 1/3
Uw\3) =Ur=\vy) o

that is, when the mean dispersion velocity is less than
the “Fermi velocity” vp. Lynden-Bell (1967) has sug-
gested that realistic stellar systems are always non-
degenerate after violent relaxation. In the numerical
experiments (see Sec. IV.C below) the degree of degen-
eracy of the system is well determined by the initial
configuration. In the nondegenerate limit Eq. (4.4) yields
the Maxwell-Boltzmann expression (with no dependence
on particle mass)

F « exp(-BE). (4.6)

The distribution function for a spherically symmetric,
zero angular momentum cluster is isotropic at all ra-
dii [cf. Eq. (4.6)]. However, during violent relaxation
stars at large radius and angular momentum never pass
through the middle and central regions where the poten-
tial is changing rapidly. These stars experience roughly
constant mass interior to their orbits and are little af-
fected by violent relaxation. Thus, if phase space is not
initially occupied by such stars, it will not be after vio-

(4.5)
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lent relaxation. although a halo composed of stars in
nearly radial orbits can be produced during the violent
relaxation phase, as discussed in Sec. IV.C below. A
refinement to the distribution function given by Eq. (4.6)
which approximately includes these effects is (cf. Lyn-
den-Bell, 1967)

Foc exp[—B(E +H2R;2)], 4.7)

where 1= |rX v| is the angular momentum per unit
mass. The above distribution function indicates that
stars move isotropically at small radii » <R, and pre-
dominantly radially at large radii » >R,

The above considerations of the most probable quasi-
equilibrium distribution function assume that sufficient
phase mixing has occurred to make all phase states ac-
cessible. Kadomtsev and Pogutse (1970) have provided
a semiquantitative analytic treatment of the time-depen-
dent approach of a violently relaxing collisionless sys-
tem towards equilibrium. Their results indicate that
the final state will be of the form of Eq. (4.4) if and only
if the initial deviation from the final state is large.

C. Numerical calculations of violent relaxation

Numerical calculations by various investigators of the
initial evolution of a collisionless system of self-gra-
vitating point particles tend to confirm some features of
the above theoretical expectations. We should empha-
size here that to obtain an absolutely clear distinction
between effects occurring on the dynamical timescale and
on the two-body relaxation timescale a large (N = 10%)
N-body calculation is required. Typical dynamical be-
havior is illustrated in Fig. 6, showing the damped dy-

‘namical oscillations of the total kinetic energy of a

spherically symmetric system of 1000 equal mass con-
centric shells with an initial virial coefficient @ =0.5
(Bouvier and Janin, 1970). The calculations also in-
dicate that after a few violent oscillations, in which re-
gions at larger radii have larger amplitudes and longer
periods, the system settles into a quasiequilibrium con-
figuration. As expected, nomass segregationoccurs as
a result of violent relaxation (Hohl and Campbell, 1968).
After steady state has been achieved the system has a
marked core-halo structure with a nearly isothermal
density profile in the inner regions, »<R,, and a den-
sity falling more rapidly than isothermal in the outer
region, >R, [cf. Fig. 7, from Gott (1973), showing the
density profile for both rotating and nonrotating sys-
tems]. The structure of this initially formed halo is, in
fact, similar to that formed over longer periods of time
by two-body relaxation (cf. Sec. V.A).

Halo stars at large mean radii are found to have nearly
radial orbits as predicted(e.g., Spitzer and Thuan,
1972). Such high-energy orbits are produced from those
stars with initial orbital parameters which require that
they lag slightly behind the bulk of the stars in the early
collapse and reexpansion, and thus fall inward through
a huge potential well but rebound outward through a much
more shallow well. This transfer of energy to stars via
“potential scattering” has its analog in the two-body re-
laxation buildup of the halo through multiple scatterings
with core stars (see Sec. V.A.2).

Another common feature of the calculations is a drop-
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FIG. 6. Time behavior of the total kinetic energy T of a system
of 1000 concentric shells, for different values of the virial pa-
. . _ rameter «, defined in the text. Time is in units of the mean
dynamical timescale. From Bouvier and Janin (1970).
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FIG. 7. Stellar density in the galactic plane as a function of radius for the equilibrium models. The open circles represent the ac-
tual runs of density with radius while the solid line represents that expected from satisfaction of the stationary collisionless Boltz-
mann equation. The density py=3Mg,; /41rR% is a standard precollapse density which is the same for all four models. Model I is
nonrotating and the remaining models have varying degrees of net angular momentum. From Gott (1973).
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off of the velocity dispersion in the outer regions »>R,,.
This is a consequence of the escape of high-velocity
stars and of the depopulation of tangentially moving
stars in this region.

The numerical calculations also explore the role of
initial conditions. If a zero angular momentum system
begins with virial coefficient a=1, and is initially spher-
ical with uniform density and velocity dispersion, then
there are no large-scale oscillations (Hénon, 1964;
Bouvier and Janin, 1970) but there can be rearrange-
ment of positions and velocities. The calculations of
Bouvier and Janin indicate that systems which do not
undergo large-scale oscillation do not attain a Lynden-
Bell type distribution. On the other hand, systems with
an initially spherical shape, a=1, and substantial an-
gular momentum violently oscillate along the rotation
axis (Gott, 1973) and may come much nearer to the
predicted final distribution. In general, systems with
nonequilibrium initial geometry but with a near unity
form less pronounced halos, although their inner re-
gions may still be well described by Eq. (4.6). An ex-
treme example of the role of nonequilibrium initial geo-
metry is given by one of Peebles’ (1970) three-dimen-
sional, N-body models in which the system was initially
distributed uniformly inside a cone of half-angle =30°,
The final density distribution is very nearly isothermal
in the region » < 3R,, but is systematically high in the
outer regions.

Another feature of the initial conditions explored by
the numerical experiments relates to the question of
degeneracy of nondegeneracy. In the one-dimensional
calculations of Cuperman et al. (1969) and Lecar and
Cohen (1971), each initial configuration consists of
uniformly occupied patches of phase space with a speci-
fied value of 7 for the occupied regions. When the initial
configuration is more or less a single patch covering the
origin of phase space, then f~7, the system is degener-
ate in the sense of Eq. (4.5) and (Cuperman et al., 1969)
relaxes to a quasi-Fermi-Dirac distribution (with a
high-energy tail). When the initial configuration con-
sists of several isolated patches in phase space, dis-
tributed around the origin, the system begins nondeg-
enerate and relaxes to a configuration resembling the
Maxwell-Boltzmann distribution (Lecar and Cohen,
1971).

V. QUASISTEADY EVOLUTIONARY PHASE

A. Characteristic regions of the cluster ,

After a few oscillation periods [where the clus-
ter period P is comparable to #;; cf. Eq. (3.10)] follow-
ing the initial collapse, the cluster settles into a quasi-
static equilibrium structure which changes slowly, on
relaxation timescales. The equilibrium structure of an
isolated cluster during this phase may be divided into
three distinct regions, in a first approximation: Region
I, an isothermal core; Region II ,the cluster halo; and
Region III, the escaping stars. For most clusters or-
biting the galaxy, Region III is distorted by the tidal gra-
vitational force of the galaxy and is not observed. We
discuss each region below; for simplicity we first dis-
cuss one-component cluster models and then discuss
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the effects of a distribution of stellar masses. All nu-
merical estimates refer to a stellar mass m =M.

1. Region I: The isothermal core

The innermost region of a globular cluster is essen-
tially in local thermodynamic equilibrium. This equili-
brium is established by violent relaxation following dis-
sipationless collapse and is maintained by distinct, two-
body encounters in the core. Since relaxation times in
the core are shorter than ¢,,, local thermodynamic
equilibrium would be quickly established (in compari-
son to the age of the universe #;=1/H~2X 10* yr
% [H/55 km s7* Mpc™]"!, where H is Hubble’s constant)
even in the absence of violent relaxation. Moreover,
violent relaxation only equilibrates energy per unit mass
in the cluster (cf. Sec. IV), and energy equilibration,
leading to mass segregation, requires a duration ~¢,,.

The density profile in an isothermal sphere in local
equilibrium is well known (see, for example, Chand-
rasekhar, 1942). Assuming a Maxwellian distribution
function f(E) < exp(-3E/v%), where E=v2/2+¢(r) is the
total energy per unit mass of a star in the cluster, v
is the velocity, and ¢(7) is the potential, we may write
for the density n(r)

nr)e [ f(E)Ip < exp[-3¢()/12], (5.1)
»
where the integral is over all momentum states, p. Ac-
cording to Eq. (5.1) we can write"

n(r)=n, exp[-3¢(»)/v2], (5.2)

where 7, is the central density and ¢(0) has been set
equal to zero. (In multi-component systems, V2 ccm™,
indicating mass segregation.) Poisson’s equation re-
quires
1

2

424 40)

=41Gmn, exp[-3¢(r)/vL], (5.3)

where m is the mass of an individual star and p(»)
=mn(r) is the mass density. Equation (5.3) can be cast
into dimensionless form by introducing the nondimension-
al variables

v=3¢/v3, £=@%/12mnmG)* ?r. (5.4)
Substituting Eq. (5.4) into Eq. (5.3) yields

L od.dby_

EZ dg( d§>_e 9 (505)

which can be solved when supplemented by the two bound-
ary conditions at the cluster center: ¢=dy/dt=0 at

£=0. The above boundary conditions ensure that the po-
tential function and potential gradient (i.e., gravitational
force) both vanish at the center. Note that the nondimen-
sional isothermal equation (5.5) need only be integrated
once for all cluster input parameters. Specification of
po=n,m and »2, merely scales the dimensionless solu-
tion.

The density profile n=nye™ obtained from numerical
integration of Eq. (5.5) is plotted in Fig. 8 as a function
of the dimensionless radius £. Also plotted in the figure
is the surface density profile v(x), where v(x) repre-



FIG. 8. The isothermal density profiles. Curve 1 illustrates the
radial profile ¢ ¥ and curve 2 the projected profile v(£). See
text. From Chandrasekhar (1942).

sents the total number of stars per unit area in the line
of sight at a distance x from the center, projected on the
plane of the sky. The surface density is given by

v)= [ noas= (grn) [T et S
(5.6)

(Chandrasekhar, 1942), where s is measured along the
line of sight a distance x from the cluster center, andboth
s and x are measured in the same dimensionless units
as 7. The surface density v(x) is clearly most useful in
allowing direct comparisons of theoretical models with
star counts taken from photographic plates.

Since the isothermal equation (5.5) yields the asymp-
totic solution e’ ~2/&% as £ -, we have M(r)=2mnr?®
x e % ~o, Since the total mass M of a cluster must be
finite, the isothermal approximation apparently must
break down at some finite radius R_, defining the inner
(isothermal) “core” of the cluster. The physical
reason for the breakdown is clear: if the entire cluster
were confined in a box with perfectly reflecting walls the
system would achieve thermal equilibrium everywhere
with no net flow of stars or energy out of the system.
(See, however, the “gravothermal catastrophe” of Sec.
VI.A.) However, since the system is not confined by
rigid walls, the high-velocity stars occupying the tail
of the Maxwellian velocity distribution invariably
escape. Stellar escape proceeds on dynamical time-
scales #;, while the distribution function cannot be re-
plenished on timescales shorter than the relaxation time
t,n; consequently, significant departures from thermal
equilibrium must exist for the most energetic stars.

The escape rate of stars out of the isothermal core
and into the halo (and out of the cluster) can be estimated
from the following simple argument (Ambartsumian,
1938; Spitzer, 1940): From the virial theorem, Eq.
(3.4),

. GM

1
U’"_—ZR,, ____2_¢, (5.7a)
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where ¢ is the mean gravitational potential and the fac-
tor of 3 avoids a double counting of particles. Then the
mean escape velocity 7, is defined by

E.=305+¢=0, (5.7b)

or

V2 =402 (5.7¢)

Suppose we assume that all stars in the tail of the Max-
wellian distribution with velocity v exceeding (v2)'/2
=2v,, escape from the cluster, and that the tail is re-
plenished in a relaxation time £,,. The escape rate of
stars F is then given by

. N
F=N=~-yp
trh

) (5.8)

where v is the fraction of stars with v >2v,,:

54)1/2 ° ( 3% )vz dv
p=(= exp (————~ | —5 — =0.00739. (5.9)
( f (202) ) v5,

T v
2v,, m

The dot above the N in Eq. (5.8) refers to differentiation
with respect to time #. Numerically, the escape rate
during the quasisteady contraction phase thus equals

F~1x10"° yr-(M/10°M,)*/ 2(R,/5pc) /2. (5.10)

The escape rate given by the naive theory above is es-
sentially confirmed by detailed numerical calculations
by Spitzer and his colleagues (see, Spitzer, 1975 for a
comprehensive summary and review of this work), al-
though the numerical factor v is somewhat uncertain,
especially as it determines the rate of core evolution
(see Sec. V.E).

To accommodate the drop in the number of high-velocity
stars below a Maxwellian distribution due to escape,
a “lowered Maxwellian” distribution function has been
proposed for star clusters by Michie (1963) and King
(1965). The function f takes the form

f(E)=Clexp(-3E/v%) - C'], (5.11)

where C is a normalization constant and C’ is a constant
>1. In contrast to the fully isothermal distribution dis-
cussed previously, a distribution function of the form of
Eq. (5.11) causes the density to fall to zero at a finite
“tidal radius” 7, representing some tidal cutoff im-
posed on the cluster by the galaxy [see Eq. (5.21)]. Thus
a dimensionless “concentration parameter” »,(v%/
Gp,)t/2=7,/R, must be specified for each King model,
after which one integrates an equation similar to (5.5),
but with () given by the f of Eq. (5.11) instead of by
Eq. (5.1). The dimensionless solution may then be
scaled, as in the isothermal model, by choice of v,
and p,. (See King, 1966.)

The above distribution function has the problem that it
depends only on E, while in the halo regions the realis-
tic orbits are predominantly radial, and f presumably
depends on J as well. Nevertheless, f given above does
not require that stars have zero energy to escape the
cluster; the constant C’ reduces the escape energy be-
low zero. Moreover, the “lowered Maxwellian” distri-
bution function given above represents a significant im-
provement over the (pathological) isothermal sphere
and is in reasonable agreement with the equilibrium dis-



Alan P. Lightman and Stuart L. Shapiro: Dynamical evolution of globular clusters

tributions obtained by the Monte Carlo calculations of

Hénon (1973) and Spitzer (1975), and the fluid calculations

of Larson (1970b) for the quasisteady phases of cluster
evolution.

The outer boundary of the isothermal core R, is es-
sentially the radius at which the magnitudes of the first
and second terms in brackets in Eq. (5.11) are com-
parable. The condition exp[-3E(R,)/v%]~C’ gives R,
~R,~GM/v%, since E(r)~-GM/v. All the way to the
outer fringes of the halo, R, provides the only length
scale in the cluster. At radii »>R,, the density falls
rapidly and the local relaxation time increases dram-
atically, preventing the system from reaching thermal
equilibrium. Typical core dispersion velocities are
v2~GM/R,~10 km s™*,

2. Region II: The halo

The halo of a globular cluster can be generated initial-
ly by violent relaxation (cf. Sec. IV) during the initial
dynamical collapse of the protocluster. Over longer
periods of time, after stellar escape becomes important,
the halo is maintained by stars which gain energy by two-
body encounters with stars in the dense, isothermal core
and accumulate in highly eccentric orbits extending far
from the system at apocenter but passing through the
central regions at pericenter. As halo stars increase
their energy with time, their binding energies per unit
mass (—E) approach zero and the fraction of time they
spend far from the system center increases to arbitrari-
ly large values, as their periods P(E) increase accord-
ing to Kepler’s law P(E) = 27GM/(—-2E)3/ 2,

The density profile in the halo can be obtained directly
from the distribution function, Eq. (4.7) modified to ac-
count for tidal cutoff as in Eq. (5.11), in the limit of
nearly zero E satisfying —3E/v% <1 (Spitzer, 1975). It
is, perhaps, more instructive to obtain the density pro-
file from the scaling argument (Shapiro and Lightman,
1976) reproduced immediately below, which explicitly
incorporates the physical fact that the halo is charac-
terized by an outward flux of energy and stars, which
eventually escape from the cluster entirely.

The quasi-steady-state behavior of the halo is char-
acterized by dynamical, rather than thermal, equilib-
rium, whereby a constant net flux of stars and energy
flows out of the region. As the energy of a particular
group of stars occupying the radial zone between » and .
27 in the halo is continually exchanged with core stars,
the halo stars will be scattered ouf of this zone in a
time ¢,, an effective relaxation time. However, the
timescale associated with the ne? diffusion of stars (or
energy) across a sphere at » may be considerably
longer, since stars (and energy) from neighboring radial
zones are scattered info the zone between » and 27 in
roughly the same timescale. Clearly, no physical quan-
tity can be transported from one zone to the next on a
net rate exceeding ~t;!. In general, the net energy and
net particle diffusion timescales will not be equal, and
only the minimum of the two will be equal to ¢{,. The
boundary zone between the halo and escape regions in
the cluster specifies the magnitude of the net flux of
stars and energy out of the halo. )

Specifically, let the star and energy diffusion time-
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scales at radius 7 in the cluster be denoted by tg(») and
tg(r), respectively. Steady state requires that both the
net star flux ¥ and net energy flux & be constant, in-
dependent of radius. If n(») is the stellar density and
E(7) the mean energy (per unit mass) at », then the
number of stars between ¥ and 27 is roughly n»* and in
steady state we have

»~%(f()+)3=const, (5.12a)
&~ ___n(rt);;E)(r) =const . (5.12b)

In thermal equilibrium the constants appearing on the
right-hand sides of Egs. (5.12) are zero. In dynamic
equilibrium they are generally nonzero and Eqgs. (5.12)
give

t; r) <t (r)E(r), (5.13)

demonstrating the inequality of the nef star and energy
diffusion timescales.. We can determine the constant of
proportionality in Eq. (5.13) by considering ¢,, the rms
change of energy of a halo star during one orbit from
apocenter, through the dense core, and back again to
apocenter. Halo stars interact mainly with the core
rather than with other halo stars. The short time they
spend in the core is more than compensated by the
higher density there. Since all halo stars move with
nearly the same velocity v~ (GM,/R,)*” during their
periastron passage through the core, they all experience
roughly the same energy change €, each period, inde-
pendent of their energy E. Consequently, ¢, is given by
the (random walk) relation

V2
€,~ [f—@—)] |E| ~const.

.14
a (5.14a)

‘Note that €, may also be written in terms of the energy

diffusion coefficient (cf. Sec. III.A.5),
€,= (8, BP0, (5.14b)

Since E~-GM,/7, Eq. (5.14a) implies that halo stars
relax faster with increasing »:

tr(?)Ntr,.(r/Rc)'”z. (5.15)

This result follows because €, becomes an increas-
ingly large fraction of E, as the latter decreases with
increasing mean radius ». Evidently, the limiting fac-
tor in the escape rate of stars is their initial evapora-
tion from the core to the inner halo, since Eq. (5.15)
implies that stars can diffuse thvough Region II in a
time as shovt as a few t,;,. We point out that the above
discussion and equations apply only to Region II, where
stars still interpenetrate and interact with the core.

In steady state, the constant outward flux of stars in
the halo provides a constant escape rate of positive en-
ergy stars ejected from the outermost halo or “fringe”
beyond =z 7. ,. At this radius 7,,~ GM/¢, stars can
acquire positive energy in just one additional passage
through the core and can escape. Since at Te, there are
no ingoing stars, the net diffusion time for stars to
move from ~%'r€2 to Ve, equals the timescale for their
binding energy (—E) to decrease by a factor of 2. Thus
tg (r€2)~ t,;(rez) and Eq. (5.13) gives
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tgr)~lre /T)ts(r). (5.16)

For Ry<v<7,,,¢,r) =min[tg(r), tz(r)]=t;(»). The dis-
parity in diffusion timescales merely reflects the fact
that the energy is nearly conserved in a cluster ex-
periencing stellar evaporation so the net energy-loss
time is considerably longer than the net stellar-loss
time. Substituting t(r)~ ¢, <> *# into Eq. (5.12a) yields
the required halo density distribution law,

n(r)cr™/2, (5.17)

The halo density profile given by Eq. (5.17) provides
a reasonably good fit to the Monte Carlo data for the
halo obtained by Spitzer et al. (e.g., Spitzer, 1975); Eq.
(5.17) can also be obtained analytically by straightfor-
ward integration of the one-dimensional Fokker—Planck
equation in E space, with suitable approximations
(Spitzer and Shapiro, 1972). A numerical estimate for

-1 MODEL DI
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the outer boundary of the halo »._is given in the next
section. Note that the power law of Eq. (5.17) implies
that the halo mass is concentrated at the iwner boundary
of the halo. Because the isothermal distribution of the
core concentrates most of the core mass at the oufer
boundary of the core, we conclude that most of the
cluster mass lies at the boundary between the core and
halo. Figure 9, from Spitzer and Thuan (1972), illus-
trates numerical confirmation of the predicted density
run in the core and halo.

3. Region Ill: The escape region and tidal limit

For isolated clusters in space, as » exceeds v, the
star distribution receives a contribution from unbound,
noninteracting stars with energy E ~ €, moving radially
outward to infinity with constant velocity v, ~ €. Since
steady state requires F=$ ~nv,»2%=const, we have for

-1 MODEL F2
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FIG. 9. Density p as a function of radius 7. The points show the average density within regions containing 40 adjacent shells,

plotted against the median radius of each group of shells.

For each of the two models shown, values are plotted at three succes-

sive times, with p(») multiplied by 107 and 107%, respectively, at the two later times. The solid lines show p(#) in an isothermal
sphere, fitted to the central regions, together with the central density p(0); the dashed lines show p varying as 35 with the
same constant of proportionality at all three times. Model D starts off with an initial collapse, since the kinetic energy T is only
one-fourth the negative gravitational energy —W at the start, while model F is initially a homogeneous sphere in equilibrium, with
all stars in circular orbits. In this figure ¢, is the initial value of the mean relaxation timescale, denoted by %, in the text, and
T =1, —t is the time to collapse; see text and Eq. (5.38). From Spitzer and Thuan (1972).
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this region (out to some large radius)
n(r)cr™?, (5.18)

Clearly Eq. (5.18) is not a true steady solution for arbi-
trarily large 7, as it gives an infinite mass as » - «,
Nevertheless, the density profile given by Eq. (5.18)
applies to the outer regions (just outside », 2) of
idealized, isolated clusters with large N and has been
confirmed by more detailed numerical calculations by
Spitzer and Shapiro (1972). They have shown that, as

7 increases from ~r ., to ~10»_,, the ratio of densities
of bound tounbound stars decreases from ~10 to ~1 and
that the mean energy of the escaping stars equals
0.58€,. In order of magnitude, the rms energy €, can
be obtained from Eq. (5.14), where the right-hand side
can be evaluated at the inner edge of the halo at »~R,.
Then using Eq. (3.11) and setting P(E)~t, and |E|~22 /2,
we obtain

€,~ 3(log0.4N/N)2% ~ 10722, (5.19)

where the last equality assumes N~105. The outer
boundary of an isolated cluster can now be estimated
from Eqgs. (5.19) and (3.5) tobe

_GM N 1z R, )
2 €, <log0.4N> R»~500pe (Spc :

In reality the gravitational tidal field of the galaxy
determines the effective outer boundary of most globu-
lar clusters. The tidal cutoff radius », of a cluster
orbiting the galaxy is given, approximately, by

1/3 . 1/3

o) oo (i) () o
where R is the orbital distance from the galactic center
at pericenter and M, =1.4x 10" M (Allen, 1974) is the
total mass of the galaxy. Observations of globular
clusters in our galaxy do indeed indicate that they are
tidally limited, with stellar density profiles falling
rapidly to zero as cluster radii approach », e, (see,
for example, Peterson and King, 1975, and references
contained therein). The principal effect of the tidal
field, in addition to modifying the stellar density dis-
tribution in the far halo, is to reduce the required ex-
cape energy of a halo star below —¢,, thereby in-
creasing the escape rate. Monte Carlo computer calcu-
lations by Spitzer and Chevalier (1973) of spherically
symmetric, tidally limited clusters indicate that the
escape rate increases by at most a factor of 2 for »,/
R,~9.3[i.e., v=0.015 in Eq. (5.8)] and by roughly an
order of magnitude for »,/R,=~3.1(v=0.05). Thus,
according to Eq. (5.21), only the few globular clusters
orbiting close to the galactic center will experience an
appreciably enhanced escape rate due to tidal effects.
However, any conclusions concerning tidal forces
drawn from spherically symmetric model calculations
must be regarded as tentative.

Ve (5.20)

B. Mass segregation
1. Equipartition and equilibrium profiles
The tendency for the dense, inner regions of the clus-

ter to reach thermal equilibrium leads to energy equi-
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FIG. 10. Radius containing half the mass for each of three mass
groups. Time is in units of the initial mean relaxation time.
From Spitzer (1975).

partition among the different stellar mass groups:

1
M U, = %mzvfnz =etc. = const, (5.22)

where m , and m, are the masses of individual stars in
two such groups, each with nearly Maxwellian velocity
distributions, with rms velocities Vnm, and v,,_, respec-
tively. The resulting disparity of rms velocities be-
tween the distinct mass groups invariably leads to mass
segregation, with the heaviest stars most strongly con-
centrated toward the cluster center. The dynamical
Monte Carlo calculations by Spitzer et al. indicate that
equipartition and mass stratification is accomplished in
roughly one relaxation time [see Fig. 10, from Spitzer
(1975)]. More precisely, if the lighter stars (m,) pre-
dominate in a stellar cluster [the Salpeter mass distri-
bution function, derived for the solar neighborhood,
gives N(m)dm «<m™2-*dm (Salpeter, 1955)] then the
“equipartition time” f, for the heavier stars (m,) is
related to t,, by (Spitzer, 1969; 1975)

vz 3/2
lea 0,447 <1+—;"2> <1. (5.23)

rh my my
The dynamical calculations also indicate that the total
rate of escape from the core into the halo and beyond is
still approximately given by Eqgs. (5.8) and (5.9) in
multiple-mass component systems, but that the rate is
higher for the lighter stars than for the heavier ones.
The latter result is clear, of course, since the larger
rms velocities for the lighter group imply that a larger
fraction of these stars have velocities exceeding the
escape velocity at the cluster center. However, the
larger rms velocities of lighter stars also imply longer
relaxation timescales. The result is that differences in
escape rates of light and heavy stars are never very
great, as shown in the Monte Carlo calculation of
Spitzer (1975) and the small-N, numerical computations
of Wielen (1968) and Aarseth and Woolf (1972).
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Recently, Da Costa and Freeman (1976) have con-
structed multimass component, equilibrium models of
globular clusters. Following King (1966), they modify
the “lowered Maxwellian” velocity distribution function
given by Eq. (5.11) to include a finite tidal limit and a
distribution of stellar masses. The resulting multi-
mass, lowered Maxwellian distribution function, which
assumes energy equipartition, is substituted into
Poisson’s equation for the potential, and a self-consis-
tent dynamical model is determined. They find that the
most massive stars are strongly concentrated toward
the cluster center, while the low-mass stars are almost
evenly distributed throughout the cluster. All mass
classes exhibit a rapid decrease in their stellar den-
sities as the tidal radius 7, is approached, as the radius
7, is independent of stellar mass [see Eq. (5.21)]. For
the globular cluster M3, the observed radial distribu-
tion of surface brightness and star counts over five
decades in surface brightness can be fit extremely well
by the tidally limited, multimass (i.e., 10 mass groups
from 0.83 to 0.12M,) component model of Da Costa and
Freeman. The model for M3 gives a total number of
stars N ~10° with an average stellar mass m~0.33M,;
more than half the stars have masses below 0.5M; 8.8%
are white dwarfs and 0.05% are HB stars. The total
“mass to light” ratio in solar units is M/L,~1.6(Mo/
Le), where L, is the luminosity (erg s™) in the visual
band (cf. Sec. I.A). Da Costa and Freeman find no
evidence for a deficiency of low-mass stars.

In general, the fitting of multicomponent equilibrium
models to observations can yield significant information,
but the credibility of the results necessarily diminishes
with increasing number of fitting parameters, such as
the mass spectrum and total mass in each mass group.
Nevertheless, the excellent fit obtained by Da Costa
and Freeman, together with the similarity of their re-
sulting mass function to the Salpeter (1955) mass func-
tion constitutes strong evidence that mass segregation
occurs in globular clusters in approximately the manner
predicted by the theory.

2. The mass-segregation instability

As first theoretically predicted by Spitzer (1969), if a
sufficient fraction of the total cluster mass is in the
heavier stars, equipartition between heavy and light
stars cannot be achieved. For a two-component system
of stars of mass m,, and m, >m, with a finite poly-
tropic mass distribution (pressure proportional to some
power of density, p~pv®cxp’ and y >6/5), Spitzer (1969)
finds that equipartition can be achieved only if

Mo/M <B(m . /m,R%. (5.24)

Here M, and M, are the total masses in heavy and light
stars, respectively, and B8 is a slowly varying function
of m,/m,, which has a value of approximately 0.16 for
m,/m ;> 1. Qualitatively similar results have been
obtained for an artificially confined isothermal distribu-
tion of stars (Saito and Yoshizawa, 1976; Lightman,
1977). Recent work by Vishniac (1978) indicates that
the generalization of Eq. (5.24) for a continuous distri-
bution of particle masses is the requirement that
satisfy 6= 3.5, where N(m )dm <m™ ®dwm is the number
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of particles of mass between m and m +dm. This re-
sult suggests that systems with a Salpeter (1955) mass
function, 6~2.3, may not be able to achieve equiparti-
tion. '

A rough explanation of the inability to achieve equi-
partition is given as follows: As equipartition is ap-
proached the heavy stars sink to the core of the cluster.
If the total mass in heavy stars is small enough, the
core potential will be dominated by the light stars. The
heavy stars can then form a subsystem whose radius
will adjust to enclose a mass of light stars whose at-
traction just balances the isothermal “pressure” in
compliance with the virial theorem. If, however, there
is sufficient mass in the heavy stars that the subsystem
of heavy stars in the core becomes self-gravitating,
then the subsystem decouples from the light stars. The
equilibrium dispersion velocity of the core subsystem
can be driven above the equipartition value [cf. Eq.
(5.22)], after which energy is transferred from heavy
stars to light stars. Because the subsystem of heavy
stars is self-gravitating and has negative specific heat,
it contracts and heats up with the energy loss, thus in-
creasing the temperature gradient between heavy and
light stars and accelerating the collapse process [cf.
Fig. 14, from Lightman and Fall (1978)].

The timescale 7, for the collapse of the core of pre-
dominantly heavy stars due to conduction losses to the
halo of light stars can be obtained from the expression
for the time rate of change of E,, thetotal energy of the
heavy stars per unit mass (Spitzer and Hart, 1971a)

dE, _ 1 %, m V%
a2 tea \<1_ mZUIiz ) ©.25)

Here (2 and VU, are the mean square values for the
velocities of the light and heavy stars, respectively,
and l,q is the equipartition timescale defined in Eq.
(5.23). If R,, is the radius containing half the mass of
heavy stars, then the initial evolution of the heavy par-
ticles may be given as (Spitzer and Hart, 1971b)

_ Ry,
dR,,/dt

-1
Tms = =Xteq (1‘%> ’ (5-26)

zv'm2
where y is a numerical factor which varies between 1
and 4 and depends on the details of the mass distribution
in the core. Recent semianalytic calculations of two-
component systems by Lightman and Fall (1978) indi-
cate that when M,/M, exceeds the limit of Eq. (5.24), the
core of heavy stars contracts by conductive losses for
a total time #,~5¢,, m,/m, ~ 1)1, after which self-
interactiondominates and quickly drives M, to a sin-
gularity (cf. Sec. V.E.2 and Fig. 14). Monte Carlo cal-
culations for large N systems by Spitzer and Hart
(1971b) and by Spitzer and Shull (1975) confirm the gen-
eral features of the above discussion. When a popula-
tion of heavy stars is not able to come into equipartition
with the remaining cluster, the resulting dense subsys-
tem of heavy stars, in self-virial equilibrium, may
succeed in collapsing to a stage where stellar collisions
and/or binary formation become important in the sub-
system. We consider such processes in more detail in
Sec. VI.

It is interesting to contrast these results with direct



Alan P. Lightman and Stuart L. Shapiro:

N-body numerical calculations of small N systems (cf.
Sec. VI.C), which generally have fluctuations too large
to ever relax to quasi-isothermal distributions. In
systems with N=50 and N =100 Aarseth (1966) found no
tendency towards equipartition of energy. Other nu-
merical experiments of larger N <500, e.g., Aarseth
and Saslaw (1972), find significant mass segregation
but no tendency to establish local equipartition of kine-
tic energy. For the conductive losses of the mass-
segregation instability to occur as described above, it
is probably necessary to have both the spatial mass
segregation and the maintenance of a local temperature
characterizing the large N systems.

C. Gravothermal shock heating

It has been recently pointed out by Ostriker, Spitzer,
and Chevalier (1972) that the evolution of a globular
cluster will be influenced by gravitational shock heating,
which occurs whenever the cluster passes through the
galactic disk. The variation with height z above the
galactic plane of the gravitational acceleration g(z)
produces a differential acceleration across the cluster
which causes an initial compression of the cluster in
the z direction and can effectively heat the cluster
stars. Since stars outside the core, where the effect is
most significant, have orbital periods longer than the
passage time through the disk, the entire effect can be
computed in the impulse approximation.

Ostriker et al. (1972) estimate the relative accelera-
tion with respect to the cluster center dv,/dt of stars
situated a distance Z =z — z, from the center z, by

dv, _ -, ag
ar —8) —g(2)=Z =% (2,) .

(5.27)

Multiplying both sides of the above expression by df,
" setting dz, /dt equal to V.., the velocity of the cluster
center through the disk, one obtains upon integration

_2Zg,(zp)

Av, s
Ve
c

(5.28)
where z,, is the value of z above which g(z) is essenti-
ally constant. Symmetry above and below the galactic
plane has been assumed. The corresponding energy
change per unit mass AE is 3(Av,)?, so the heating rate
becomes

dE _ 3(Av,P? _ 4g22°
7 - %Pc - Pcvic ’ (5.29)
" where P, is the orbital period of the cluster, which
passes through the plane twice each period. Defining a
shock disruption time tg by tm = -E,/dE/dt, where E
~ -0.2GM/R, is the mean energy (per unit mass) of the
cluster of mass M, and dE/dt is evaluated at »=R,

[cf. Eqs. (3.4) and (3.5)], Ostriker et al. find

_3GMP, V%

tsh— ZORshgfn (5-30)

To estimate tg they take z,,=250 pc and g,,=4.7x107°
cms™ from Oort (1965), 1x10®°< P,< 4x10° yr, and
75 <V, <400 km s™, which gives
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4x10° yr /'\ 300 kms™/ °

It is clear from Eq. (5.31) above and Eq. (3.9) that ¢,
<ty for most globular clusters at the present epoch;
hence shock heating is unlikely to have influenced the
structure of the inner, isothermal core of globulars
significantly. However, since the heating rate varies as
Z* [see Eq. (5.29)], the influence of gravitational shocks
may be significant in the outer regions of clusters.
Numerical calculations by Spitzer and Chevalier (1972)
indicate that shock heating can increase the escape rate
and the initial rate of core contraction. They find that
the escape rate may be written in the form

1dN v B

S Nat Tt .

(5.31)

(5.32)

where v was discussed previously for tidally limited
clusters, and B=r2. Ostriker et al. (1972) argue that
mass segregation combined with gravitational shock
heating in the outer regions of clusters may cause the
escape of most of the low-mass stars from clusters,
thereby accounting for their low mass-to-light ratio.
Da Costa and Freeman (1975) have been able to fit the
observed light distribution of M3 with a multicom-
ponent, tidally limited model which assumed no defi-
ciency in low-mass stars. It is not clear, however,
whether an equally good fit could have been obtained
with light stars absent. Further observations are
needed to resolve this important issue.

An additional consequence of gravothermal shock heat-
ing, as pointed out by Tremaine et al.(1975), is that
globular clusters in the central regions of the galaxy
may be sufficiently decelerated toultimately plunge into
the galactic nucleus.

D. Rotating clusters

The above discussion dealing with quasistatic, equi-
librium cluster configurations assumed that clusters
are spherically symmetric and that they do not possess
any net angular momentum. Yet in one of the earliest
observational studies of globular clusters, Shapley
(1930) found that many clusters are characterized by a
small but nonzero apparent ellipticity e=1- (¢/a),
where a and ¢ are the semimajor and semiminor axes,
respectively. King (1961) has shown that the observed
ellipticities can be attributed to rotation and that rotating
clusters are flattened in much the same way as rotating
rigid bodies. He also pointed out that the ellipticities
could not be due to galactic tidal forces, since the ellip-
ticity measurements referred to the inner regions of the
clusters where the equipotential surfaces were nearly
spherical and essentially undisturbed by the tidal field.

The existence of nonzero cluster ellipticities is not
surprising —it is apparently a consequence of intrinsic
spin—but the small values of the observed ellipticities
is somewhat curious. Compared to galaxies, globular
clusters are anomalously spherical in shape. The flat-
testelliptical galaxies observed are of type E7 (where:
the notation Exn designates an elliptical (E) galaxy with
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n=10¢), corresponding to an axial ratio 33:1, while SO
and spiral galaxies have axial ratios as large as 20:1.

In striking contrast, the flattest globular cluster mea-
sured by Shapley (1930), NGC 6273 (M19), has an appar-
ent ellipticity € < 0.4. Most clusters in his survey ex-
hibit ellipticities less than 0.2.

The difference in shape between globular clusters and
typical galaxies is most unusual in light of recent
theoretical results of Thuan and Gott (1975) on the for-
mation of rotating, equilibrium, spheroidal systems.
These authors show, using Maclaurin spheroid models
(i.e., uniform density, uniformly rotating equilibrium
configurations with isotropic internal pressure), that
dissipationless collapse, conserving angular momentum,
of an initially spherical protogalaxy can result in an
equilibrium configuration with € as high as 0.709. They
also demonstrate that if the initial state is nonspherical,
or if energy is dissipated, the final configuration can be
even more oblate. Thus, unless the angular momenta
of protoclusters is unusually low in comparison to proto-
galaxies, the initial ellipticities of some clusters should
approach ~0.7.

A possible explanation of the above paradox was re-
cently provided by Shapiro and Marchant (1976), who
pointed out that escaping stars ejected from N-body
systems during their quasistatic dynamical evolution can
carry away excess angular momentum in addition to
mass. They showed that, depending on their initial
ellipticities, clusters may become more or less spheri-
cal as they evolve. Adopting a Maclaurin spheroid
model for a rotating cluster, Shapiro and Marchant de-
monstrated that rotating systems with € < 0.739 become
more spherical as they evolve, a result first suggested
by Agekian (1958). Since the relaxation times of most
galaxies greatly exceed the Hubble time, T ~10%° yr,
quasisteady evolution will not have proceeded for a
sufficiently long time to substantially alter the initial
dynamical structure and shape of galaxies. However,
the relaxation times of globular clusters are much
shorter (f,,~10°~10° yr) so that ¢,,/7T <1; consequently,
significant evolutionary changes will have occurred in
these clusters since their formation. Hence, even if
some clusters were formed with ellipticities compar-
able to those of the flattest ellipticals (as suggested by
the dissipationless collapse model), they would #ow be

Dynamical evolution of globular clusters

more spherical, in agreement with observations.

The effect described by Agekian (1958) and Shapiro
and Marchant (1976) can be summarized by the following
qualitative discussion. Assume that an equilibrium, N-
body system can be approximated by a Maclaurin spher-
oid in virial equilibrium, with uniform rotation and iso-
tropic pressure. This assumption is roughly consistent
with the work of Lynden-Bell (1967), who has shown
that the statistically most probable distribution function
for the relaxed core of a rotating N-body system is that
of solid-body rotation with nearly isothermal, Maxwell-
ian residual velocities [see Eq. (4.4) and following discus-
sion]. The energy of a Maclaurin spheroid of mass M
=Nm is given by

W_ 3 GOmP sinTle

E=% -5 = . (5.33)

2
where W is the gravitational potential energy and the
eccentricity e =[1 - (c/a)?]*/2. The eccentricity is di-
rectly determined by the ratio of the rotational kinetic
energy to the potential energy, ¢,=|T,../W|, where T,
=5J%/(4Nma®) and where (cf. Chandrasekhar, 1969)

[(3 — 2¢?) sin~%e — 3e(1 — €2)}2]
e? sin e '

=3 (5.34)
When £, =0 (no rotation), ¢ =0, and when ¢,=% (no ran-
dom motion), e=1. Consider the escape of stars from
the cluster. Since escaping stars carry no energy (see
Sec. V.E.), E and W remain constant with time; hence
axN? and f,«cJ?/N°. Accordingly, ¢, increases with
time if a typical escaping star carries off angular mo-
mentum, Jese<5(JY/2, where (J)=J/N is the mean
angular momentum per star. Otherwise f., decreases
with time. Now consider escape from a characteristic
region in the cluster where stars have a: mean rotation
velocity « and a rms (Maxwellian) dispersion w about
the mean. From Eq. (5.7¢) we have that the rms total
velocity v satisfies v= (u® +w?)*?=y_/2. Since all es-
caping stars populate the tail of the Maxwellian, they
all have velocities v ~v,, in the direction of u; escape

in other directions is suppressed by the Maxwellian
exponential in all cases. Thus the mean value of J,
carried off by an escaping star is

Jose = (I20/u . (5.35)
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When ¢, is very small (slow rotation), we have u <<v; so
Jese > {(J); hence nearly spherical systems (with low £,)
have #,<0 and become more spherical with time. How-
ever, in cold, nearly flat systems, we have v ~u and
Jese/{J)~2<5/2. Accordingly, flat systems become
flatter with time. Agekian (1958) and Shapiro and Mar-
chant (1976) find that the transition occurs at ¢,=0.30,
corresponding to an ellipticity € =0.739.

The evolution of cluster ellipticities with times as
determined by Shapiro and Marchant (1976) is shown
in Fig. 11, where €(¢) is plotted as a function of A#/7,
for various values of €,. Here Af={, —¢ is the time
elapsed from an earlier time f to the present time £,
7, is the present relaxation time, and ¢, is the present
ellipticity of a cluster. (Thus the ellipticity is shown
for earlier epochs in the cluster’s history.) From the
figure, itis evident that a cluster with an ellipticity
presently in the range 0.1 < ¢,< 0.3 had an ellipticity
nearly twice as large at an early epoch~ 1007, years
ago (~10%° yr). Figure 11 demonstrates that, according
to the naive theory described above, the primordial
distributions of cluster and elliptical galaxy ellipticities
could have been quite comparable and have slowly grown
dissimilar through cluster relaxation and spin-down.

E. Secular core contraction

The quasistatic, equilibrium stage in the dynamical
history of a globular cluster is characterized by a slow,
secular contraction of the isothermal core and outward
growth of the halo region. This intermediate phase of
cluster evolution is terminated by the complete collapse
and end-point evolution of the core (Sec. VI). Due to the
differences in timescales and processes, it is useful to
consider separately one- and multicomponent star sys-
tems.

1. Single-component systems

The long, secular phase of core contraction, for one-
component systems, can be examined analytically by a
simple homological model which assumes that the core
evolves independently of the halo and moves through a
sequence of increasingly compact configurations in vir-
ial equilibrium containing successively fewer and fewer
stars (see, for example, von Hoerner, 1958; Miller and
Parker, 1964; Spitzer and Saslaw, 1966; Lynden-Bell,
1975).

Adopting Eq. (5.8) for the escape rate of stars from
the inner core, where we might expect v~10-2 for
‘single-component systems [cf. Eq. (5.9)], and Eq. (3.5)
for the mean square velocity % of the core, we may
write

N,= —uN,/t,, (5.36)
and
1 1 GIN,m)? :
-E.= ENcmvf,ﬁ ZT‘;—=COHSt, (5.37)

where t,, < N*?R3%2/In(0.4N) is given by Eq. (3.9). In Eq.

(5.36), N, refers to the total number of core stars, each
assumed to have mass », and in Eq. (5.37), E_ repre-
sents the total core energy, evaluated according to the
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virial theorem. In the limit of large Nc(~10"-105 for
cluster cores) the escaping stars will have nearly zero
energy [i.e., €,/0%~ [log(0.4N,)/N, "2« 1, according to
Eq. (5.19] so E, remains constant during cove contvac-
tion. This result, together with Eq. (5.37), implies
that during contraction R, <N2; hence t,, N1/, if we
neglect the additional weak logarithmic dependence of
t,, on N.. Assuming this variation, Eq. (5.36) may be
integrated immediately, yielding

Nc ( t >2/7 (
=1~ — s 5.38)
NcO tcc
where N,=N,, and ¢,, =¢,,,at =0 and
toe=(2/TV)t 00 (5.39)

is the “core collapse” timescale. Employing Eq. (5.38)
together with the proportionality relationships between
parameters indicated above, we obtain

R, t\*"
=(1- — 4

Rco ( tcc) ’ (5 0)

2 t -2/7
Y =<1- _) , (5.41)
va cc

-10/7

Mo (1 - i) , (5.42)
Reo cc

where the mean core number density #. is defined by 7,
=3N,/(47R3). According to Egs. (5.38)-(5.42), the core
of a globular cluster will undergo collapse to a singular
state of zero radius and infinite density in a finite time
tc.- Note from the self-similar homology equations that
at any time £, the time to collapse is the same multiple
2/(v) of the instantaneous value of ¢,,(¢) since t,,(¢)
decreases linearly with time to zero (aside from the slow-
ly varying logN factor). Note also that the number of stars
in the core N, (¢) goes to zero as the singular state is ap-
proached. In Sec. VI we will see that the finite sizes of
stars prevent the system from evolving all the way to a
singular state, but Egs. (5.38)—(5.42) apply for a very
large fraction of the collapse time.

The numerical coefficient v is difficult to calculate
theoretically, since it is quite sensitive to the effective
escape velocity from the core [cf. Eq. (5.9)], and is only
reliably computed by numerical experiment. Spitzer
and Harm (1958), who consider the exact equation for
stellar diffusion ip velocity space in a square well po-
tential, obtain a theoretical value v~0.0113, instead of
0.00739 obtained in Eq. (5.9). Their result would indi-
cate a collapse time ¢, ~25¢,,. King (1958, 1965,
1966) has considered the effects of the strong central
concentration in a cluster and has provided somewhat
improved versions of Eq. (5.36).

Significantly, the detailed Monte Carlo simulations of
Spitzer and colleagues (see Spitzer, 1975, for a review)
and Hénon (1971) and the fluid-dynamical calculations
of Larson (1970b) confirm the secular rate of contrac-
tion of the core given by the homological (evaporation)
model. For one-component models, the effective value
of {,. is found to be in the range ~ 12~19 ¢,,,, leading
to an “effective” value v of ~0.02.

Figures 12 and 13, from Spitzer and Thuan (1972) and
Larson (1970b), respectively, illustrate the numerical
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FIG. 12. Time behavior of radii containing fixed amounts of
mass, denoted by Ry in the text, for a one-component system.
Here radii are labeled with their percentages of the initial
cluster mass and ¢, is the initial value of the mean relaxation
timescale, denoted by t,¢ in the text. From the Monte Carlo
computations of Spitzer and Thuan (1975).

results for the evaporative evolution of one-component
models. Spitzer and Thuan (1972) are able to follow the
collapse for ~95% of the collapse time. Graphed in Fig.
12 are the radii R, of spheres containing a fixed amount
of mass, labeled by their fraction of the initial mass of
the system M,. The outer fixed-mass radii expand, re-
presenting the outward expansion of the halo. The inner
radii, after an initial period of several ¢,, in which the
system settles down to homologous evolution, begin de-
creasing approximately as the square root of the time
to collapse, R, (1 —t/t..)°°. This numerical result is
quite consistent with that predicted by the theory of
evaporative evolution, Eqgs. (5.38)~(5.42) as emphasized
by Press (1976). While R,, lies well within R, (remem-
ber that R, is the core radius, containing an ever de-
creasing amount of mass), the density inside R, is the
core density p.. Thus if R, 1is the radius containing a
mass M;, M; =$7p, Rj,, or using Eq. (5.42) with p,
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FIG. 13. Time behavior of the central density and squared ve-
locity dispersion, p, and «,, respectively, for the collapse of
a one-component system. Here 7 has the same meaning as in
Fig. 9. From the fluid dynamical calculations of Larson
(1970b), with the permission of the Council of the Royal Astro-
nomical Society.

=mn,, we find

: 1/3
M ) (A = t/t,, )01 (5.43)

agreeing quite well with the numerical results. Once
M, < M;, the core radius R, passes within R,, Eq.
(5.43) ceases to be valid, and the curve for R, turns
around and begins increasing. For each M; this occurs
at a time ¢; satisfying

(1 - ti/tcc)’2 (Mi/"\lr;o)ZI/6 .

Such a turnaround has not yet occurred in the curves of
Fig. 12 for M; =2%-10% M, (M,~ 2—4M,,), because the
evolution is followed only for (1 —#/#.)= 0.05. Spitzer
and Thuan’s (1972) numerical values for the behavior of
the density and mean dispersion velocity in the inner
regions,

P (1= t/te)™5, %o (1 =1/t %2,

also agree well with those predicted by the evaporation
theory [cf. Egs. (5.41) and (5.42)].

Graphed in Fig. 13 are the time evolution of the cen-
tral density and dispersion velocity (.« »2) obtained
by Larson (1970b), who was able to follow the evolution
for >99.99% of the collapse time. In the model shown,
Larson (1970b) finds the numerical results,

(5.44)

neoc (1= 1/t,,)7158, v2 (1= t/8,)"02%°,
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over many decades of density increase, after the homo-
logous evolution sets in. Again, the numerical results
are quite consistent with those predicted by the evapo-
ration theory for the middle phase of cluster evolution.

We must point out that the detailed numerical calcula-
tions described above indicate that a true description of
core collapse can be quite complex. Modeling core col-
lapse by naive evaporation theory discussed above re-
presents a drastic oversimplification.

The main justification for adopting this crude analytic
model is twofold: (1) it provides timescales for core
collapse in reasonable agreement with more detailed
numerical calculations and (2) the predicted variations
of the core parameters with time (and with each other)
agree roughly with the numerical results. More gen-
erally, the evaporation model satisfies the physically
reasonable requirement that fewer and fewer stars in
the core plunge toward greater and greater binding en-
ergy as time increases (cf. Sec. VL.A).

2. Multicomponent systems

In realistic systems with a mass spectrum, energy
conduction between different mass groups, as briefly
described in Sec. V.B, complicates the description of
the evolution. Detailed Monte Carlo calculations by
Spitzer and Hart (1971b) and by Spitzer and Shull (1975)
indicate that the heaviest particles in the system can
collapse towards a singularity in just a few mean relax-
ation timescales, i.e., substantially faster than the time
for core collapse in one-component systems.

Lightman and Fall (1978) have recently proposed an
approximate theory for the core collapse of two-compo-
nent stellar systems which makes the assumption that
a synthesis of the simple conduction theory of Sec. V.B
with the simple evaporation theory above can be used to
model the main features of the realistic systems. Al-
though the crude conduction—evaporation theory is
clearly oversimplistic, it leads to results in reasonable
agreement with detailed numerical calculations and af-
fords a semiquantitative framework for analyzing the
end-point evolution of the cluster. Employment of the
virial theorems for the two (homogeneous) mass groups
and Eqgs. (5.23) and (5.25) for energy transfer lead to an
equation for the evolution of the virial (core) radius of
the heavy particles:

R 1 mpd \ -
Lo o _ = _muy 1
R, 1+40 l:(l+9> <1 myv 2 > teq

oMz q_ My _ g Br
2 A (1 (;)+29Ml 60 R ] , (5.45)
where 0= p,/p,=(M,/M,}R,/R,)®. A similar equation
holds for the time evolution of the virial (core)
radius of the light particles R,. Here M,(f) and M,(¢) are
assumed to decrease according to evaporation theory,
each obeying an equation of the form of Eq. (5.36) with
the appropriate self-relaxation timescales ¢,, and ¢,,,
respectively. (The evaporation formula for M, is only
appropriate after it becomes self-gravitating, 6= 1.)
The mean velocities of heavy and light particles are de-
noted by v, and »,, respectively.

It is convenient to divide into two regimes the evolu-
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tion and collapse of the heavy particles: the conductive
and evaporative regimes. Initially, the first term on
the right-hand side of Eq. (5.45) dominates, corre-
sponding to domination of the evolution by energy trans-
fer from the hotter heavy particles to the cooler light
particles. [After violent relaxation, »,=v,; hence T,
=(m,/m,)T,.] Eventually, the second term dominates
the first, corresponding to domination of the evolution
by self-interactions, modeled here by self-evaporation.
The relative contributions of evaporation and conduction
can be measured approximately by a “collapse param-
eter” £ [cf. Egs. (5.45) and (5.36)]:

ggz(teq/ytrz) .

Here v is the “effective” value of 1/v in Eq. (5.36), i.e.,
y=50 (cf. above discussion). The collapse parameter
exceeds unity for virial radii R, less than the “evapora-
tion radius” R,,,

(5.46)

Rye~0.1R, (¥/50)~2/3 (a1, /M,)"1/% . (5.47)

Because the initial decrease of R, is approximately ex-
ponential, the time 7, required for R, to decrease to
R,. does not depend much upon its initial value R,:

Te~ 4t,o(my/m; — 1) ' In(R,o/R,,) . (5.48)

Here ¢,, is the initial mean relaxation timescale of the
system as a whole.

Figure 14 from Lightman and Fall (1978) portrays the
time evolution of one of their models. Here the evolu-
tion begins immediately after violent relaxation (cf.
Sec. IV), whereby v,=v, and R, =R, initially. Because
of their hotter temperature, the heavy particles begin
losing energy to the light particles, thereby cooling and
contracting. The ratio (v,/v,)* decreases until the hea-
vy particles become self-gravitating, R,/R,~(M,/M,)'®.
If the latter condition occurs before equipartition is
reached, (v,/v,)%,=m,/m,(asitdoes in this model), sub-
sequent heat transfer from the heavy particles (now
with negative specific heat) to the light particles causes
(v,/v,? to increase (cf. Fig. 14). Note that when the
collapse parameter £ reaches about unity, the evolu-
tion of all quantities accelerates: heavy particles begin
to evaporate rapidly out of the inner core and the core
radius R, goes quickly to zero.

Once the evaporation vegime begins, the heavy pav-
ticles effectively become a one-component system,
evolving according to the equations [(5.38)—(5.43)]
above. As long as M,/M, is initially small, <0.5, the
light particles undergo relatively little evolution during
the entire collapse of the heavy particles; they act
mainly as an energy sink of large heat capacity, allow-
ing the heavy particles to lose enough energy to con-
tract to a self-gravitating and rapidly evolving inde-
pendent subsystem. It is significant that a small
amount of mass can collapse to a singularity without
visibly affecting the bulk of the system.

Both the functional behavior of the quantities in Fig.
14 and the overall timescale of inner core collapse
agree reasonably well with detailed calculations of
Spitzer and Hart (1971b) and Spitzer and Shull (1975).
In the following section, the crude conduction—evap-
oration model above will be extrapolated to provide a
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FIG. 14. Time evolution of a two-component stellar system in
which a simple conduction—evaporation model is used to ap-
proximate the detailed gravitational interactions. The ratio of
particle masses, my/m;, is 5 and the initial ratio of total mass
in heavy to light particles is 0.1. At =0 the heavy and light
components of the system have equal mean velocities, vy=v4,
and equal core radii Ry =R;, corresponding to the period im-
mediately following violent relaxation. M, is the total mass of
heavy particles within the heavy particle core radius R, (not
shown), and 7, ; is the radius containing 10% of the initial mass
of heavy particles. Analytic approximations to 7, are indi-
cated by arrows. Ry, M,, and 7 are in units of their initial
values and ¢ is in units of the initial mean relaxation timescale
of the combined system. When more than 90% of the heavy
particles have evaporated out of the inner core My <0.1, »(
abruptly increases, as shown by the dashed line. The relative
importance of evaporative self-interactions to conductive in-
teractions with light particles in the evolution and collapse of
the heavy particle core is measured by the ‘“collapse parame-
ter” £ [see text and Egs. (5.45) and (5.46)]. From Lightman and
Fall (1978).

framework for analyzing the end-point evolution of the
core.

VI. LATE STAGES OF CLUSTER EVOLUTION

As the collapse of the cluster core proceeds, new
processes eventually become important in determining
the subsequent evolution of the cluster. This end-point
evolution is dominated by the effects of binaries and by
dissipative effects associated with the finite size of
stars. These various end-point processes are dis-
cussed below. Since all of these effects become signi-
ficant only after the heavy particle subsystem falls to
< 100-1000 stars, direct N-body calculations with fin-
ite-size stars are probably required to accurately de-
termine the final evolutionary behavior.

A. Core collapse prior to end-point evolution:

The gravothermal catastrophe and the evaporation model
A decade and more ago Antonov (1962) and later Lyn-

den-Bell and Wood (1968) demonstrated that a self-gra-
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vitating gas of energy E and mass M confined within a
rigid, nonconducting sphere of radius 7 could not
achieve (isothermal) equilibrium if a=- E7,/(GM?)
=0.355. The speculated resulting evolution of the gas,
in which an increasingly large temperature gradient be-
tween the contracting core and outer regions conducts
energy from the former to the latter, has been called
the “gravothermal catastrophe” by Lynden-Bell and
Wood (1968).

The idealized gravothermal catastrophe reflects the
basic tendency of a self-gravitating system to increase
its entropy by forming a dense core and an extended
halo, a configuration which becomes increasingly prom-
inent in the late stages of core collapse in the numeri-
cal experiments. It also reflects the necessity for the
density profile in real stellar systems to fall below the
isothermal value well outside the core to satisfy the re-
quirements of finite total mass (see Sec. V.A.1). For
completeness we shall give a brief review of this ideal-
ized phenomenon.

Consider the isothermal equilibrium configurations
available to a self-gravitating confined gas, obtained as
truncated solutions of the isothermal Emden (1907) eq-
uation. The artificial confining sphere is required be-
cause a completely isothermal gas does not have a fin-
ite radius and has infinite total mass (Emden, 1907).
Figure 15 from Lynden-Bell and Wood (1968) gives a
graph of the value of the externally fixed parameter
for each equilibrium configuration, the latter forming
a one-parameter sequence parametrized by the ratio of
central to surface density p,/p,. As can be seen in the
figure, for values of a>a,, ~ 0.355, where a, corre-
sponds to a critical density contrast (Po/Ps)cm =~ 709, no
equilibrium solutions exist (Antonov, 1962; Lynden-
Bell and Wood, 1968). The explanation for this lack of
an equilibrium solution and subsequent thermal runaway,
confirmed by the dynamical calculations of Larson
(1970a) for the idealized confined gas, is very similar
to that for the mass segregation instability, Sec. V.B.
In the present case the steep density contrast within the
isothermal gas creates a core-halo structure which re-
places the role of the heavy star-light star structure in
the previous situation.

As one might expect, apportioning the total mass in a
multiple-mass component system has a destabilizing
effect on confined isothermal gas spheres which repre-
sents an enhancement of the gravothermal catastrophe
(Saito and Yoshizawa, 1976; Lightman, 1977). In gen-
eral, a ., is a function of the ratio of particle masses
and total mass fractions present, but is less than 0.355
for all but one-component systems. Because of mass
segregation, for a given o the two-phase core-halo
structure and the disparity between core and halo spec-
ific heats are more pronounced than in the single-com-
ponent case.

To what extent does the idealized gravothermal catas-
trophe provide an understanding of core collapse in rea-
listic systems? Such systems are not confined by rigid
walls and, acci)rdingly, are characterized by stellar
evaporation. Realistic stellar systems thus evolve with
time and never achieve the true equilibrium conditions
assumed in the models illustrating the idealized gravo-
thermal catastrophe. Is late core collapse driven by
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FIG. 15. Energy-radius density contract relationship for a
self-gravitating gas of total energy and mass, E and M, re-
spectively, confined within an isolated rigid sphere of radius
7,. The isothermal equilibrium solutions (solid line) from a
one-parameter sequence parametrized here by —v; = In(py/p;s),
the natural logarithm of the central to surface mass density.
Dashed lines are schematic and indicate curves of constant
entropy at fixed energy E, with each succeeding curve repre-
senting an entropy higher than that of the curve below it. No
equilibrium configurations are available for systems with the
externally fixed dimensionless energy exceeding ~0.355. Equi-
librium configurations to the right of the maximum A represent
local minima in the entropy and are thus unstable. From
Lynden-Bell and Wood (1968), with the permission of the Coun-
cil of the Royal Astronomical Society.

evaporation or conduction? It is clear that a fixed
amount of mass cannot collapse to a singularity: in the
absence of a confining wall to prevent escape of posi-
tive-energy stars, the resulting infinite binding energy
cannot be absorbed from the collapsing core. Accord-
ingly, realistic core collapse must be characterized by
evaporating mass from the core. Moreover, the nu-
merical calculations of core collapse indicate that the
collapse proceeds homologously in the case of one-com-
ponent systems and that the behavior can be approxi-
mated by the naive evaporation model described above
(Sec. V.E.1). In the more realistic case of multicom-
ponent systems, a simple conduction—evaporation model
(Sec. V.E.2) adequately describes the evolution of the
inner core of heavy stars after they evolve to an inde-
pendent (~ one-component) stellar subsystem. Accord-
ingly, we adopt this approximate description of core
collapse in the following sections to consider the in-
fluence of new processes in the core at the onset of end-
point evolution.

B. Effects of binaries

As we shall show, binary stars can be ignored in the
early and intermediate stages of cluster evolution, un-
less present initially in large numbers, in a narrow
range of binding energy. In the late stages of core col-
lapse, when the total number of stars in the heavy par-
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ticle subsystem is down to s 100-1000, stochastic pro-
cesses involving binaries may become important. If the
core succeeds in collapsing down to a few stars, a sin-
gle binary can dominate the evolution of the remaining
stars. For a discussion of numerical N-body calcula-
tions of binary processes, see Aarseth (1974) and Aar-
seth and Heggie (1976) and references therein. Most of
the recent detailed analytical studies of binaries have
been done by Heggie (e.g., Heggie, 1975a,b) and by
Hills (1975a,b), with some recent approximate calcula-
tions by Lightman and Fall (1978).

A binary is defined to be “hard” or “soft” depending
on whether its binding energy Ez is greater than or less
than the local stellar thermal energy e,

e=3m(v?, (6.1)
x=Eg/e<1: soft, (6.2a)
x>1: hard. (6.2b)

Because soft binaries do not absorb or release much
energy upon being disrupted or created, respectively,
we shall neglect them in our present discussion of the
effects of binaries, although soft binaries may harden
and become important in the presence of tidal dissipa-
tion (Milgrom and Shapiro, 1978).

1. Formation of binaries by three-body processes

A simple argument of Spitzer and Hart (1971a) demon-
strates that binary star formation via three-body gravi-
tational encounters is unimportant in large N-body sys-
tems. The argument begins by observing that three
stars must simultaneously experience a close encounter
to form a hard binary, with one of the stars taking up
the necessary energy to bind the other two. In one re-
laxation timescale, the number of close two-body en-
counters in a system of N stars is proportional to
N/10g(0.4N)[cf. Eq. (3.8)]. The probability that a third
star is within the same close encounter distance during
any of these events is ~ (ponl/a)%c N~2, where p, and »
are the close encounter distance and number density,
respectively, and n~1/3 is the mean separation between
stars [see Eq. (3.6)]. The total number of binaries
formed per unit time by three-body processes, Ng,,
may thus be written as

_ _3x107* (_Iy__‘ "t_l
B3 log(0.4N) 105> Th 2
where the overall numerical coefficient has been taken
from the more exact calculations of Heggie (1975a). I
the total number N of stars remaining in the core is
used instead of time as an independent variable, and the
evaporation laws, Eqs. (5.36) and (5.37), are used with
y=p~', then the number fraction of “three-body binaries”
fgs Satisfies the approximate relation (Lightman and

Fall, 1978)
1500 ( v ) N2
log(0.4N) \50 :

(6.32)

fas(N)= Npg/N~ (6.3b)
2. Formation of binaries by two-body processes

As first suggested and estimated by Fabian ef al.
(1976), sufficiently close tidal interactions between two
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stars can dissipate enough orbital kinetic energy to bind
the two stars in a binary system. Because the tidal
force varies rapidly (i.e., as the inverse cube) with the
distance of closest approach, the critical impact param-
eter d which results in a binary is a few stellar radii
and is only a weak function of the initial relative veloc-
ity of the two stars. In a detailed calculation of the non-
radial oscillations of polytropic stars, in which the or-
bit is assumed to be initially parabolic, Press and Teu-
kolsky (1977) have obtained the approximate expression

1}:2~el -0
s (ami)
where 7, denotes the stellar radius. With Eq. (6.4), the
cross section for two-body tidal capture can be compu-
ted [see Sec. VLD and Egs. (6.28) below] taking gravi-
tational focusing into account. Using Eq. (59) of Press
and Teukolsky and Eq. (3.9) for {,,, the fofal number of
binaries formed per unit time by two-body processes,
NBZ, may be written

N L 25 Z’_’f_ 0.9 (i —0.9
527 10g(0.4N) R®> Mo

v, L8 /N -

X(lOkms'1> (W) Lo -
Aside from the weak dependence of d on viy (m/r,)™" and
its resulting contribution to Eq. (6.5a), Z'VBZ is function-
ally identical to the rate for stellar collisions [cf. Eq.
(6.34)], and numerically larger by the simple factor
d/(2»,)~2. Comparing Eqgs. (6.3) and (6.5a) and using
the definition of the binding parameter 3, cf. Eq. (6.30),
we may write

(6.4)

(6.5a)

.

N v \18 / m > =0.9
—B2_ ~ =250.9772 _ 4 [ Zm T
Fne 1.0x107%25°-°N2 =8 X 10 (10> <M®

e 0.9 N 2
x (_R_> < TEB") :
‘Even though vaz > vaS, the number of hard binaries
formed by two-body processes will constitute a negli-
gible fraction of the total number of stars until the late
stages of collapse.

Eventually the end-point evolution of the collapsing
subsystem of heavy particles in a realistic stellar sys-
tem will be affected by tidal dissipation and formation
of “two-body binaries.” To estimate when these bin-
aries constitute a sizeable fraction of stars in the sub-
system core, Eq. (6.5a) can be integrated. Again, one
can use N (now the total number of stars in the sub-
system of heavy stars) as an independent variable and
Eqgs. (5.36) and (5.37) for N and R when the core of
heavy stars enters its evaporation regime with initial
values N=N, and R =R, (cf. Sec. VL.E.2). The number
fraction of two-body binaries, fg,, then has the solution
(Lightman and Fall, 1978)

Re -0.9
0.5 pc >

fsz(N)zN—;Z~§N9 <%> <;_:>

siiw) =)

(6.5b)

(6.6)
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The normalized value of R, here comes from Eq. (5.47)
and a cluster core size of ~3 pc; the normalized value
of N, corresponds to a cluster core of mass 5 x10% Mg
in which heavy stars of ~ 1M, comprise 10% of the total
mass. The explicit dependence of fz,(N) on the actual
size of R, comes from the fact that the stellar radius
introduces a scale length, unlike the case of “three-
body binaries.” From Eq. (6.8), evidently the col-
lapsing subsystem of heavy stars evaporates down to N
= 100 stars before most stars become “two-body bin-
arvies” (fg, = 1) and begin to dominate the end-point evo-
lution. At a somewhat larger value of N (perhaps a
few hundred) two-body dissipation will accelerate the
collapse above the rate given by stellar evaporation
alone (cf. Sec. VL.B.5). It also seems clear that two-
body binary formation and dissipation will become
important somewhat before collisions and coalescence
become important because of the slightly larger cross
section (~2) of the former (see Sec. VLD below).

After initial capture, further energy dissipation dur-
ing successive periastron passages will circularize the
orbit on a timescale Af,~30 yr, comparable to that
given by Eq. (6.33) below. Thus a final binding energy
of Ez ~Gm?/d is achieved where, approximately, an
amount € of this energy was removed from the initial
orbital kinetic energy of the interacting stars. Since
Eg> ¢ [cf. Egs. (6.4) and (6.30)], binaries formed in
such a manner are quite hard. In fact, since so much
energy must be dissipated by internal motions in the
stars (d ~3r,) and the timescale A¢, is much shorter
than a stellar thermal (“Kelvin—Helmholtz”) timescale
(e.g., Clayton, 1968)

Len~107 yr(m/Mo)™2"", m <1044,

~10° yr (m/My)"°7, m>10M,, (6.7)

it is possible that the two stars will swell tremendously
during the dissipation process. The typical outcome
could be that a single coalesced object is eventually
produced by the tidal capture of two stars.

3. Hardening of hard binaries

One of the main results of both: the theory (e.g., Heg-
gie, 1975a,b) and numerical results (e.g., Aarseth,
1974, 1975; Wielen, 1975) is that hard binaries become
harder while most soft binaries become softer as a re-
sult of their interactions with other stars. This can be
understood as the attempt of locally interacting particles
to achieve equipartition of their kinetic energies. Here
we neglect the role of (tidally induced) dissipative en-
counters between single stars and binaries.

Consider the interaction of a binary of energy EB with
a single star. Unless the distance of closest approach
is of the order of the binary separation d, the binary
will act as a single star, producing an elastic scattering.
When the pericenter approaches ~d, the energy exchange
will be comparable to Ep~Gm?/d, The cross section for
such an inelastic interaction is o ~7nd(2p,), taking into
account the usual gravitational focusing effect [cf. Eq.
(6.28)]. Then using the expression for by, Eq. (3.1),
and Eq. (3.9), the rate of binary hardening E; is (Heggie,
1975a; Hills, 1975a)
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. 0.1 n /v \3/2
N Xl () | ©.8)
where the numerical factor and expression in brackets
(7 is local density and {(#) is mean density) result from
the more accurate calculations. Note that the rate of
binary hardening is independent of binary energy be-
cause of reduction in cross section with increasing en-
ergy transfer [cancellation of @ in Eq. (6.8)].

As the core contracts in the intermediate and late
stages of evolution and if € increases at a faster rate
than Ez, hard binaries will become soft and will be dis-
rupted. The mean cluster kinetic energy increases on
a timescale proportional to ¢, [cf. Eq. (5.41)]. From
Eq. (6.8), it is clear that binaries satisfying ¥ ~1 harden
at this same rate, aside from the slowly varying loga-
rithmic and numerical factors. One may easily show,
using Eqgs. (3.5a), (5.36), (5.37), (6.1), (6.2a), and (6.8),
that the “hardness” of a binary, %, created at x ~1 at
N, stars in the core, has a hardness at some smaller N
(and later time) givenby (Lightmanand Fall, 1978; Heggie,

0.7y

1975a)
—< Z!) N
1og (0.4N) \" "N, A

Although the numerical factors in Eq. (6.9) are not
known with certainty, it seems clear that as the core
evaporates down to small N, x approaches a maximum
value ~10 (taking ¥ ~50). This maximum must be com-
pared with the maximum value of ¥ allowed for “effi-
cient” binaries, x5 (cf. Sec. VI.B.4) below.

x(N,N,) = 6.9)

4. Core heating by binaries and effects of an initial
population of binaries

To determine the dynamical effects of binaries, we
must estimate the rate at which hardbinaries heat the core.
Such heating manifests itself in the recoil energy of a
hard binary and its single-star collision companion, fol-
lowing a superelastic scattering between the two. Evi-
dently such heating is not significant enough to prevent
the first core collapse in the small N-body numerical
experiments (N < 500) (cf. Sec. VI.C), but could possibly
be important in a large N system with a large initial -
fraction of binaries, as pointed out by Heggie (19752a)
and by Hills (1975b).

A crucial limiting factor in the ability of binaries to
heat the core is the fact that only binaries in a very
narrow range of hardness are effective. Consider the
energy transferred from the internal binding energy of
a binary to the recoil energy of each collision, AEz;. A
certain fraction ¥ of this energy goes into the recoil of
the single star and the remaining fraction (1 —%) goes
into the b'inary recoil, As long as neither binary nor
single star gain sufficient recoil energy to escape the
system, all of the energy transfer AEy is given to the
core, AE.=AEg, But once the binary or the colliding
single star have sufficient recoil to escape (which occurs
for sufficiently high values of AEg/€), some of the energy
transfer is lost in the escaping star and AE.<AEg, If
the binary has mass m, and the single star mass m; and
the average stellar mass is m, then an analysis quite
similar to that leading to Eq. (5.7) shows that the single
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star will escape when
AE, /e > 3}1_(_471:_3_ - 1> , (6.10)
and the binary will escape when
aBy/fe> (A0 _y). 6.11)

Calculations of ¥ require knowledge of the cross section
for the superelastic scattering process. For the case of
m,=2m,, Heggie’s (1975a) numerical results indicate
¥~%. For m,>m,, clearly ¥ ~1. These two special
cases are shown in Fig. 16, illustrating the relation be-
tween AEg and AE,,

If one defines a binary heating efficiency

8=AE,/AEg, (6.12)

then & clearly drops below unity as AEgz/€ increases
above a few. Since AEp = Eg, only binaries with x < xg

= 3-10 are efficient in heating the core. The importance
of this limiting factor can be easily seen in the effect of
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FIG. 16. Efficiency of core heating by binary-single star in-
teractions. Here mj and mg are the mass of the binary and
single star, respectively, and u is the ratio of the mass of the
single star to the average stellar mass in the system. The
mean thermal energy of a star is €, and AE, and AE, are the
increase in binary binding energy and recoil energy transferred
to the cluster, respectively, as a result of the binary-single
star encounter. When encounters are sufficiently energetic to
eject participating stars, the heating efficiency decreases.



466

binary heating on the dynamical evolution of the core. If
fp is the fraction of all stars which are binaries and &
is the average efficiency factor, then the rate at which
binaries heat the core is [cf. Eq. (6.8)]

. oza _ 2p8E,
E,~fpN.6Eg .4, - (6.1;)
Combining Eq. (6.13) with Eqgs. (6.19) and (5.8) then
shows that the core radius obeys the approximate equa-
tion

R, 2 [ a8 1] 6.14)

E; N trh 1n(0-4Nc) - Y
Here 7 is the effective value of V™! in Eqs. (5.36) and
(5.39), i.e., y~50 for essentially one-component sys-
tems. Note that for sufficiently large values of fz8, the
cluster can actually begin by expanding. Taking fp as
constant and no cutoff value ¥ for efficient binaries
(&=1) Hills (1975b) has investigated the contraction and
reexpansion of clusters with a large initial population
of binaries. From Eq. (6.14), it is clear that the cluster
will reexpand when N =Nyounee , Where

Nbounce ~ 3 eXp(fBg)’) °

It is very difficult to measure binary populations in
globular cluster cores, but Eq. (6.14’)indicates thatun-
less fz8 = 0.1, which seems unlikely (Flannery, 1977),
an initial population of binaries probably has little dyna-
mical effect on cluster evolution until possibly the final
stages of core collapse. Binaries formed by two-body
processes will also have little effect, since the heating
efficiency of these very close binaries (¥ >>x;) is low
until the late stages of core collapse. For the case of
an insignificant number of initial binaries in the hard-
ness range 1<x<xg, Eqgs. (6.9), (6.14), and(6.3b) can
be used to show that binary heating by “three-body bi-
naries” is not important until the core has evaporated
down to an N =100, i.e., below the value of N where the
mean field, small-angle scattering approximation prob-
ably breaks down.

(6.14")

5. Accelerated collapse due to two-body tidal dissipation

Two-body tidal interactions in the core lead to the dis-
sipation of cluster (kinetic) energy. The total dissipa-
tion rate arises from three processes: (1) bound—bound
interactiong in which a soft binary pair tightens some-
what via tidal interaction but is eventually disrupted,

(2) free—free interactions in which an unbound pair dis-
sipates some, but not all, of the energy required to be-
come bound, and (3) free—bound interactions in which
an interacting unbound pair becomes hard (or coalesces;
see Sec..VI._D). For these processes we have approxi-
mately E,~Ng,€; more exactly

E, _8.1x10% ﬁ)”(ﬂ (o)t
E. 10g(0.4N) \R, Mg 10 km st rh
(6.15a)

(Milgrom and Shapiro, 1978). Inserting the above rate

into Eq. (6.19) for homological collapse with dissipation,
we find that such dissipation accelerates the rate of core
collapse above the rate given by evaporation above. Dis-
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sipation dominates whenever the rms core velocity ex-
ceeds a critical velocity )

~-1/2 12
V,,,'C,h=‘48[10g(0.4N]5/9<};§—> (—'—”—) km s7!,

Mo (6.15b)

Dissipation-dominated core collapse can drive the core
to a high-density “singular” state before all of the stars
have evaporated. For typically observed cluster param-
eters for one-component systems (N ~10° solar-type
stars and V,,~10 km s™!) the above equations give V,, qit
~80 km s™', N(Vy=Vp, )~ 2000 and N; ~ 700, where N;
is the number of stars remaining in the core when R,
approaches zero. Apparently, M;=mN,~102-10% Mo re-
presents an upper limit to the mass available for the
formation of supermassive objects (e.g., supermassive
stars and/or black holes; see Sec. VI.D) during the final
stages of core collapse. In any case, the effects of tidal
dissipation must be included in any detailed model which
describes the final stages of core contraction.

C. Small N-body systems

When the cluster as a whole, or a small subsystem in
self-virial equilibrium, has evolved due to the evapora-
tion of stars and core contraction to the point where
N =103 stars, large fluctuations around the mean sta-
tistical behavior become important, The statistical
treatment of large N-body systems may then not be ap-
plicable, and direct N-body numerical simulations be-
come necessary. These latter computations have been
performed for N < 102 by Aarseth, Wielen, and others,
utilizing sophisticated regularization techniques for
close encounters (e.g., Kustaanheimo and Stiefel, 1965).

In the direct N-body calculations (and also in the Monte
Carlo calculations for N > 10%), stars are treated as
mass points. This procedure thereby ignores two-body
binary formation, tidal dissipation, and star collisions
and coalescence, processes whichmaydominate the final
phase of core collapse (see Secs. VI.B and VI.D). Never-
theless, some of the features of systems of N =< 102 point
masses may still be applicable to realistic core collapse
and it is instructive to compare the results of the nu-
merical calculations with the theory for such systems.
The next generation of N-body calculations will pre-
sumably include dissipative effects.

The principal results of the direct N-body calculations
are the following (see, for example, Wielen, 1975; Aar-
seth, 1975, 1974): (i) Radii containing fixed amounts of
mass evolve in time at approximately the rate given by
the Monte Carlo calculations of large N-body systems
[cf. Fig. 17, from Aarseth et al. (1974)]. (ii) During the
initial and intermediate stages of cluster evolution, stars
escape at about the same rate found for the large N sys-
tems. The escaping stars have an energy which is of
the order of the mean thermal energy of a star. The
escape mechanism involves discrete close encounters.
(iii) If one defines a density-weighted core radius (cf.
Aarséth, 1974) by

RCPEZT;P,/ZM ,

pi=mryd (6.16b)

b

(6.16a)
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FIG. 17. Radii containing 10%,50%, 90% of the mass, plotted
versus time for a cluster with stars of equal masses. Open
triangles and squares: N-body integrations with N=100, N=250
(Wielen). Filled triangles and squares: N-body integrations

with N=250 (Aarseth). Full lines: Monte Carlo models (Hénon).

Dotted lines: Monte Carlo model (Shull and Spitzer). Dashed
lines: fluid-dynamical model (Larson). The unit of time is ap-
proximately 10 initial mean relaxation timescales. From Aar-
seth, Hénon, and Wielen (1974).

where 7,; is the distance from particle ¢ to the third
nearest neighbor, the core contracts and loses mass
until it is reduced to a few stars which contain a hard
binary. In a multispecies system the central hard bi-
nary is composed of heavy stars. This “first core col-
lapse” occurs on about the same timescale ¢, as that
required for the large N systems to obtain infinite den-
sity, f..~15¢,,, for single-component systems and 3-5
times smaller for multispecies systems. The collapse
thus appears to be a scaled-down, small-N analog of
large N core collapse [cf. Wielen (1 975)]. See Figures
18 and 19, from Aarseth (1974). (iv) By the time core
collapse produces a hard central binary, only a few per-
cent of the initial mass has escaped from the system.
(v) Subsequent to the first core collapse, both the mass
and radius of the core increase from their minimum
values. The remaining evolution is dominated by the
hard central binary, which continually hardens by ab-
sorbing a large fraction of the total system binding en-
ergy (Aarseth, 1975). This hardening may cause the re-
maining stars to evolve through a series of contractions
and reexpansions as it heats the stellar system. The
final reexpansion phase has been modeled with Monte
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FIG. 18. Core radius, defined in Eq. (6.16), as a function of

time, where the latter is measured in units of the initial dy-
namical (crossing) timescale. Filled circles refer to a model
with equal masses and 250 particles. Open circles refer to a
model with a mass spectrum and 250 particles. Triangles re-
fer to a model with a mass spectrum and 500 particles. From
the direct N-body computations of Aarseth (1974).

Carlo methods by Hénon (1975); cf. Sec. VL F.

Since the first core collapse proceeds until only a few
stars remain in a manner analogous to the large N sys-
tems, it appears that core heating by binaries in N < 500
systems does not constitute a significant dynamical ef-
fect during the initial period (cf. Sec. VI.B). We are
tempted to extrapolate these results to the large N sys-
tems up to the emergence of the dominating central bi-
nary (ignoring collisions for the moment). We must re-
mind ourselves, however, that for small N in the range
<10% the relaxation timescale is not much longer than the
dynamical time [cf. Eq. (3.11)], t,,2 3¢,, and that the re-
sults may thus differ qualitatively.

It is clear from the theory that escaping stars should
carry away more and more energy as N decreases, as
pointed out, for example, by Spitzer (1975). As was
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FIG. 19. Core masses as functions of time. The quantity M,
is the mass within the radius R, for the same models as shown
in Fig. 18. From Aarseth (1974).
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mentioned in Sec. V.A, a star escapes with an average
energy €es ~1/2€,, Rewriting our expression for €, [ef.
Eq. (5.19)], we then have
€es N -v2 10g(0.4N) V2
- 02(%(—)—) (2—) . 6.17)
Accordingly, even on the basis of the large N-body (en-
ergy diffusion) theory, we can understand qualitatively
result (ii).

Results (i) and (iii) suggest that the homological laws
for the large N regime may be extrapolated into the
small N domain. A modified quasihomological law for
core collapse when the energy carried away by escaping
stars may no longer be negligible can be simply derived
as follows:

. . 12
ot () 8]
(4

(4

(6.18)

where we have used E,=—€N,*<N2 /R, [cf. Eq. (3.5b)].
Now, using the relation

E, _2N, _k
&,

(6.19)

EC 'NC

obtained by differentiating the virial expression for E,,
Eq. (6.18) can be solved for R,(N,), yielding

2
(2] co
where
1 1
A =~6lo 0.4Nc)]1/2< - ) 6.21)
e( N7 TN,

For N,>1, we recover the usual “constant energy core”
relation R,<NZ% (cf. Sec. V.E). Equation (6.20) clearly
indicates that the core contracts more rapidly than N2
with decreasing N, because of energy loss to escaping
stars. However, the effect is small until N, 100 A= 1),
A second small N effect is a departure from the usual
halo distribution and maintenance discussed previously.
As N decreases, the rms angular momentum transfer
by the cluster to a halo star in one orbit, j,, becomes
comparable to the latter’s mean angular momentum j.
When this occurs the halo stars will get scattered out of
the “escape cone” intersecting the core before they can
make sufficient orbital passages through the core to get
boosted out of the cluster. For N smaller than this cri-
tical “freezing” limit ;, halo stars become “frozen”
into the cluster, “fossilizing” via their pericenters the
radius of the core at the time they were produced. To
calculate N;, we simply equate'j, to j,. If (j) is the
mean angular momentum of a cluster star, then the ex-
pression for the dispersion j, is similar to the random
walk expression for €, [cf. Eq. (5.14a)],
12
=@, p ¥ )15 (6.22)
.
Since most halo stars:occupy the region immediately out-
side the isothermal core, where j <72 and nr)<r v
{§)> ~2-3 jy. Then setting j, ~jy and using Eq. (6.22) and
Eq. (3.11) yield
N;~500-1000. (6.23)

For N = N, the halo stars begin to accumulate without
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evaporating, and the cluster maintains, approximately,
constant total mass as the core mass decreases to zero.
This is in qualitative agreement with the numerical N-
body result (iv).

From the above simple picture, together with mass
and energy conservation, one may also calculate a mo-
dified density distribution for the halo when N<N; (Press
and Lightman, 1978). If a typical star (mass dM) ejected
by the collapsing core gets “frozen” into the cluster at
a times the instantaneous core radius, thenthe energy of
the core has decreased by dE =-GMdM /(aR), where M
and R are the mass and radius of the core. This rela-
tion, together with the relation E =-GM?/R (which de-
fines an effective core radius R), gives a differential
relation for the distribution of halo stars as the remain-
ing core shrinks to successively smaller radii:

1IN\aM M
( _E>E =R 6.24)
leading to a halo density law
pocy'(sa-s)/(za-'l) . (6.25)

The entire distribution is parametrized by the single un-
known a, plausible values of which might be a ~2-3,
Note that the power index ranges only from -2 to —-2.5
for the entire allowed range of a, 1< a<w and that the
distribution of this “small-N halo” is always less steep
than that for the “large-N halo,” p<7~"% [cf, Eq. (5.17)].

D. Stellar collisions and coalescence
1. An approximate theory

As core contraction proceeds as discussed above,
eventually the stellar density grows sufficiently large
that contact collisions between stars become important.
Very energetic collisions can disrupt stars completely.
Less energetic collisions may eject only a small amount
of stellar material, yet still dissipate sufficient energy
to bind the parent stars into a single coalesced object.
Such coalesced stars will then eventually undergo gravi-
tational collapse (and, possibly, supernovae explosions)
releasing mass and energy. These dissipative processes,
together with binary formation (cf. Sec. VI.B), will de-
termine the ultimate state of the globular cluster core,

Stellar collisions and coalescence clearly involve com-
plicated physics and have been treated only approximate-
ly and in very special cases (e.g., Ulam and Walden,
1964; Gold et al., 1965; Spitzer and Saslaw, 1966; Col-
gate, 1967; Sanders, 1970; Seidl and Cameron, 1972;
see Spitzer, 1971 and Saslaw, 1973 for reviews), Most
calculations apply to galactic nuclei, where stellar ve-
locities are of the order ~1000 km s™!, Because stars
are so weakly bound in globulars @ is initially ~10 km
s™! and only =< 100 km s™! when collisions become im-
portant as discussed below) stellar collisions in globular
clusters will differ qualitatively from those in galactic
nuclei. Recently, Fall and Lightman (1977) have con-
sidered the effects of collisions and coalescence in the
late stages of core collapse of globular clusters.

The timescale for a star to experience physical con-
tact with another star, the collision timescale ¢, is
given by
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6.26)

where 7 is the number density of stars, 0, is the colli-
sion cross section, and vra is a typical relative velocity.
Because of gravitational focusing, the collision cross
section can be significantly larger than the geometrical
cross section. - From conservation of energy and angu-
lar momentum, one easily derives ¢, for two stars of
masses m,; and m, and radii 7, and %,

to=(n0,ve)t,

v2

G =T(Ty +7'*2)2<1 +7201_>’ (6.27a)
where
v2=2G(m, +m,)/ ¥y, +7,,). (6.27b)

A simple “rule of thumb” for calculating the cross sec-

tion for a collision requiring a pericenter separation I

involves the close encounter distance 2, [et. Eq. (3.1)]:
ml2 1>2p,
al(2p,) 1<<2p,

g~ (6.28)

If Egs. (6.26) and (6.27) are averaged over a thermal
stellar velocity distribution, one obtains for the collision
time for star 1 [cf. Hills and Day (1976)]

Vg +%, \ 71 n >"1
—92X 1011 X1 T %2
t,=2X10 yr( Ro ) <105 Y

(w22 ><m1 +m, )'1

X
(10 km s™! Mo

: -1/
X 2y 2{1 +:1_(_1____z_m + % <U2>:l.
m, +m 3\ 2Moe v

(6.29)

In subsequent discussion we will typically employ the
virial theorem [Eq. (3.5)] to write £, in terms of the core
radius R, and core star number N,, in place of the va-
riables # and (v2).

Assuming that no core evolution occurs, the above
collision timescale can be used to estimate the number
of collisions which have occurred in a cluster core of
age ~10'° yr. Usingdatafrom Peterson and King (1975)
for 7 and {v2) for 70 globular clusters, Hills and Day
(19776) have calculated that an average of 3.3% of all
the core stars in globulars have suffered collisions,
with a maximum of 41% in the case of M80. As core
evolution proceeds, however, ., drops considerably and
collisions become frequent as discussed below.

The outcome of stellar collisions depends significantly
on the “relative binding parameter” 90,

@ . ( v >(m ) 1*_>
° 2Gm/v,, =410 o km st Ms Ro )’
(6.30)

which measures the binding energy per mass of the star
to the cluster relative to the star’s self-gravitating
binding energy per unit mass. (For simplicity, we con-
sider here only the average star of mass m and radius
%4 in Secs. VI.D.3 and VI.D.4 the distinction between
large and small stars is discussed.) For large 8, cor-
responding to large kinetic energy upon impact, stellar
collisions tend to be disruptive, while for small 6, stel-
lar collisions tend to result in coalescence with less
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mass loss, as pointed out by Colgate (1967).

The most detailed treatment of collisions is the two-
dimensional hydrodynamical calculation by Seidl and
Cameron (1972), who considered head-on (zero impact
parameter) collisions between two solar-type stars to
form a single coalesced star. Their results indicate
that for 6 =8, 60% of the total mass is ejected to infinity,
while for 6 =0, only 5% of the total mass is lost. It
seems unlikely that “grazing” collisions, dominant.in
globular clusters, can eject as much mass as direct col-
lisions [cf. Sanders (1970)]. One uncertainty in calcu-
lating the mass loss is the effect of increased nuclear
burning and possible detonation in the initially disturbed
coalesced star. Approximate considerations by Spitzer

~ and Saslaw (1966) indicate that the nuclear energy re-

leased during the collision is a small fraction of the
thermal energy released for small values of 5. In the
absence of more refined calculations, we shall assume
that mass loss in collisions in globular clusters, where
6 <1, throughout most of the “collision regime,” is
negligible.

An approximate method for the treatment of off-axis
collisions, originally devised by Spitzer and Saslaw
(1966) and modified for “soft collisions” (6 <1) by San-
ders (1970), involves dividing each star into rectangular
tubes whose axes lie along the direction of relative mo-
tion. It is then assumed that each separate pair of col-
liding mass tubes conserves linear momentum and suf-
fers a completely inelastic collision. For grazing colli-
sions of similar stars, these approximations may be
justified because the outer surface layers will always be
colliding supersonically, and thus will be decoupled from
the rest of the stellar material. Furthermore, the
strong shocks generated in the outer stellar layers
should dissipate energy efficiently (Colgate, 1967).

If the total energy dissipated according to the above
scheme, AE;, exceeds the initial orbital kinetic energy
in the center of mass 7|, , then the stars will become
bound toeachother, will return for further collisions,
and will eventually coalesce (Colgate, 1967). Consider
a grazing collision between two stars of mass » and ra-
dius 7 in which a fraction f of the total mass lies in the
overlapping collision region., A simple analysis in the
center of mass frame indicates [cf. Colgate (1967) and
Sanders (1970)]

AET~fm(Urel/2)z ,
and
Toc.m. =m(vrel/2)2 ’

where U, is the relative impact velocity. If 6<<1, so
that the initial kinetic energy is small, then U2, ~ 2Gw/
7x. If we also use the fact that (v, )*=2(2? and use
Eq. (6.30), we obtain an approximate criterion for a
collision to produce a coalescence, AE.> T,

fz26.

(6.31a)

(6.31Db)

Coms, *

(6.32)

Because of the smallness of § for globular clusters, the
first collision a star undergoes will typically bind it to
its collision companion. Only grazing collisions, which
have the largest cross section, need be considered.

We can estimate an upper limit to the time interval
between the first collision and final coalescence, Af,.
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The orbital period P of two stars of mass m and orbital
binding energy E is given by Eq. (4.3), with M -~ wm.
Since the dissipated energy probably increases for each
successive collision, the total time Af, is less than
twice the first orbital period, as collisions occur more
and more frequently due to increasing ! E | Since

|E |/m~ AE/m~(0?) for the first period,

)7 (). o

where #,,4,,= (Gm/r%)"*/? is the oscillation time of a
star. Note that Af, does not depend upon stellar radius
¥ 4. The number of collisions before final coalescence
is <(Gm*/r )/AEp~ 6"

We next analyze what happens as coalescence occurs.
If Egs. (3.7). (6.26), (6.27), and (6.30) are combined,
the ratio of the relaxation timescale to the collision
timescale for equal mass stars is found to be

ty . 26(1+0)

Z log(0.4N) °

. - v
FAY RS 27rthvdro 673/2 ~ 30 yr (1—0'1251}12_571—

(6.34)

While 60 <1, we may assume that the dynamical behavior
of coalesced stars is always in thermal equilibrium with
the remaining stars.

If the main sequence lifetime Z_; of a star is less than
the time to its next collision, #,, the star will evolve
off the main sequence. Because of violent hydrogen
mixing, the coalescence of two stars probably produces
a new massive star whose age on the main sequence
starts at zero [cf. Sanders (1970)]. The ratio of £, to
t.s for m< 10 Mo may be expressed as [cf. Eqs. (2.3)
and (6.29)]

t, =4oo(-1i’-°- e J.L) 5’2(_71 ’<L_)
¢ 10° 5pc Mg R,

(6.35)

" As we shall see in Sec. VIL.D.2, collisions do not become
important until N, and R, become small, leading to the
result that {, <{__ in the collision regime. For m
>10M,, the inequality is even stronger. Thus, unlike
many situations in galactic nuclei (cf. Sanders, 1970),
stars in globular clusters lack sufficient time to evolve
off the main sequence once collisions become important
[until “saturation” occurs; cf. Eq. (6.45)].

The nature of the massive stars built up from collis-
ions and coalescence in globular clusters is difficult to
calculate. It is easily shown [cf. Eq. (6.29)], that the
timescale for stars to come into internal thermal equil-
ibrium #,, [cf. Eq. (6.7)] is substantially longer than £,
in the collision regime for globular clusters. Thus
stars are far out of thermal equilibrium and any sensi-
ble mass radius relation for the built-up stars, e.g.,

V% m

13
()
poses a formidable task for detailed calculation. In con-
trast, many interesting cases in galactic nuclei, where
tyy << t,, allow one to assume the main sequence relation
L~0.7 [cf. Sanders (1970)], a relation completely un-
justified in globular clusters. As we shall see, the most

(6.36)
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massive objects which can be formed are quite sensitive
to Eq. (6.36).

2. Evolution of cluster cores: The collision regime versus
the evaporation regime

The evolution of globular cluster cores evolving under
the influence of evaporation and collisions may be mod-
eled approximately by averaging variables; e.g., 7, (v%),
over the entire core and using characteristic values for
these variables, Then, approximate differential equa-
tions for the evolution of the number of core stars, N,(t),
average stellar mass m(t), and core energy E.(f) are
(in the remainder of this section we follow the work of
Fall and Lightman, 1977)

N, N
S @)
=2t - (6.37)
c
_Ne E
BT =T, : (6.37c)
(4 C -

The first term in Eq. (6.37a) expresses the familiar
stellar evaporation (cf, Sec. V.E), where 7 is ~50 for an
essentially single-component system. The second term
in Eq. (6.372) expresses the reduction in N, for each
stellar collision. Equation (6.37b) expresses the build-
up of the average stellar mass due to collisions and co-
alescence. Note that in the absence of evaporation, Nm
=const, as it should. Equation (6.37c) expresses the
fact that each collision between a pair of unbound stars
removes an energy ~€ from the orbital kinetic energy of
the cluster (see Sec. VI.B.5). Additional energy dissi-
pated on successive collisions of stars after the initial
binding collision comes out of the internal energy of the
binary rather than out of the cluster orbital energy; dis-
sipation due to tidal encounters between unbound stars
would accelerate core collapse and is ignored here.

From Egs. (6.19), but with an additional term 2/ /m,
and Eqgs. (6.37b) and (6.37c), one easily deduces a rela-
tion between m, R,, and N;:

R,xmN? , (6.38)

Until collisions become important and » begins increas-
ing, R <N?, as in the collision-free evaporation regime.
From Eq. (6.37a) it is clear that collisions dominate

when £, <yt,,. Using Eq. (6.34) we can then divide the
evolution into two regimes, depending on the size of the
“collision parameter, ”

_ log(0.4N,)
B= “oy5 - (6.39)
For B>>1, a stellar system is in its “evaporation re-
gime” and for <1 it is in its “collision regime.” Ga-
lactic nuclei are clearly in the collision regime (3~ 10~ 2)
while observed globular clusters (8~ 100-500) have
not yet evolved into their collision regime. (How-
ever, as shown in Sec. VIL. B, many globular clus-
ters could well have already collapsed and dissolved,
passing through the collision regime.) While clusters
are in the evaporation regime, Eqs. (5.38)-(5.42) hold
and show that 8 decreases monotonically with decreasing
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N,, BN, log(0.4N;). Once B=1, Egs. (6.37a), (6.37b),
and (6.38) give

meNG, (6.40a)

R, <N, , (6.40b)

so that B continues to decrease,

An important question is: How many stars are left in
the cluster when collisions first become important? To
obtain this critical number Neit one “evolves” the cluster
through the evaporation regime, where m, 7, ~const,
R,xNZ2 untilp~ 1, obtaining

Ncrit log(o'wcrit)N 1x 103(;/—0)(5‘—)

Re
N, \?

(38)
where N, and R, are the initial values of the number
of stars and core radius, respectively. The actual size
in parsecs of R, enters Eq. (6.41) because the stellar
radius introduces a length scale. Eqation (6.41) indi-
cates that N, might be in the range ~100-1000 for
typical globular clusters. A similar conclusion has been
obtained by Lecar (1976). Evidently, buildup of mass-
ive stars through collisions and coalescence is not now
occurring in the observable portion of globular cluster
cores, where N,z 10°.

We point out that the above normalizations and values
apply only to one-component cluster cores. As isdiscus-
sed in Sec. V.E.2, it is quite possible that a small,
self-gravitating subsystem of heavy stars in multicom-
ponent clusters could evolve into its own collision re-
gime, well ahead of the rest of the cluster. Equation
(6.41) can then be applied to the subsystem, if the rhs
is evaluated when the subsystem begins its self-evapor-
ative evolution (cf Sec. V.E.2). The results may be ex-
pressed in a form very similar to Egs. (6.6) and
(6.15b) in Sec. VI.B; N,,,, for physical collisions is
somewhat smaller than the value of a few hundreds
for tidal dissipation to become important. Tkis vep-
rvesents an upper limit to the size of a massive ob-
ject which could be formed. The dynamical influence
of the resulting singularity must then be considered
(cf. Sec. VI.F), but may be unimportant until the rest
of the cluster has also evolved substantially (cf. Sec.
VILB).

Rg ™

TR (6.41)

3. Heavy-mass runaway and limits to mass growth

It is easy to show that a strong instability exists in
which the most massive stars increase their size at a
greater rate than average stars increase their size,
because the former have greater gravitational focusing
and larger physical size. This result was first illus-
trated in one of the Monte Carlo runs of Sanders (1970).
Consider a larger than average star of mass M >m
and radius R, >>7 . Then Eq. (6.29) indicates that the
time for M to collide with an average star satisfies
T,~@ /R )m/M),. Thus

= (Bs (lﬁ)m
T, \r,/\m/t,
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Combining Eqs. (6.36), (6.37b), and (6.42), we obtain

i+u
ndc<1ﬂ> . M>m. (6.43)

dm \m
Thus, as long as the effective radius of a star increas-
es with increasing mass, u= 0, M will achieve an in-
finite value for finite m:.

What are the limits to growth of the largest mass in
the system? The obvious maximum limit is mN_.,.
However, a lower limit is probably realized. As first
pointed out by Colgate (1957), as M increases, its
mass per unit area decreases. Eventually, a collision
between it and an average star of mass m will not dis-
sipate enough energy to bind the two together in a bound
system. We can obtain an approximate relation for this
“saturation mass” M,,, by equating the product of the
mass swept out of the massive star M by m and the
impact velocity squared of m at M to the orbital kinetic
energy in the center of mass system (neglecting central
mass concentration in M):

<_1_‘4_,,z)<G_M>~€
rRZN\R, )€

Using Eqgs. (6.30) and (6.36), we obtain for Eq. (6.44)

l(l&)s“ -25 ~1

2\ m ’

where the factor of 3 is probably not reliable, but
chosen to agree with approximate numerical results of
Sanders (1970). Equation (6.45) indicates the important
fact that the largest mass w hich can be built up as a
vesult of collisions and coalescences depends crucially
on the mass -radius relation (value of 1) . For collisions
between stars of equal mass (m =M), Eq. (6.45) is still
approximately valid, if interpreted as the onset of the
regime where collisions are disrupting instead of coal-
escing (6>1). Typically & and M/m both increase in
time until Eq. (6.45) is satisfied, at which point the
growth of M dramatically slows down and M/m begins
decreasing.

(6.44)

(6.45)

4. Results of model calculations

Simple model calculations by Fall and Lightman
(1977) for clusters in which all stars remain in equi-
partition assume that negligible mass loss from stars
occurs in the collision—-coalescence processes and
that binding energy per unit mass in coalesced stars is
conserved, 7 , <m(u=1), as was assumed by Colgate
(1967). It is found that Eq. (6.41) is a good approxima-
tion for the number of average mass stars at the onset
of the cluster collision regime. A few large stars al-
ways experience a runaway. In a typical model with
N,,=2x10° R ,=3.5pc,m,=0.5M,,y=50, the most
massive star saturates at M ~35M,, at which point
there are ~600 stars of average mass m ~3M,, and &
~0.2. Subsequent evolution of the system is very un-
certain because of the small numbers of stars, and ef-
fects of binary formation, but the system may evolve
into 25-50 stars, each of mass 20-40 M, . Similar
calculations for stellar collisions in a small subsystem
of heavy stars yield a smaller saturation mass for the
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most massive star, plus a much smaller total number
of stars.

E. Dynamical influence of a massive black hole
in a globular cluster

Since massive black holes may form as the end pro-
duct of core collapse in spherical stellar systems, we
consider in this section the dynamical behavior of a
large N-body system containing a massive collapsed
object at its center. The results may be applicable to
fully evolved galactic nuclei as well as to globular
clusters, if black holes form in these systems. Mass-
ive black holes may also form primordially during the
early gas-dynamic collapse and fragmentation stages
of globular clusters and other bound systems in the
early universe. Although black hole masses will be
normalized to 10°® M, in this section we point out that
the dynamical calculations of core collapse, Secs. VI.B
and VI.D suggest ~100 M, as a more reasonable upper
limit to the size of a central black hole which can be
formed in a globular cluster.

1. Distribution of stars around a central black hole

Peebles (1972a,b) in his pioneering analysis of this
problem, pointed out that stars in the core of a stellar
system will be drawn toward the center by the potential
field of the black hole. The resulting “cusp” in stellar
systems containing massive black holes may provide a
relatively clean dynamical probe for massive collapsed
objects in N-body systems. Peebles suggested that the
stellar density varied as a power law in the cusp region
v,<v<7,. Here 7, is given by

GM
v~ E ~ 48X 107 pe M (v,,/10km s™ %)~ 2

m

(6.46)

and is the “capture” radius within which core stars
with velocity dispersion v% are bound to the black hole
of mass M(=M,x 10° M), and r,<<7, is the radius at
which stars are tidally disrupted by the black hole.
Beyond 7, the gravitational field of the hole has little
influence on the core density, which maintains a nearly
constant value of .. All stars are assumed to have the
same mass m, with m <M <M, where M, is the total
core mass. If these stars have a characteristic radius
7, then we have, approximately,

Ve~ (—~>1/S~2>< 10""pc (» /R )(m/M )"1/3M1/3
t *\ p *x e ® 3 -
(6.47)

The distribution of stars in the cusp region is esta-
blished by a steady, inward drift of stars from the iso-
thermal core at » 27, into » <7, to maintain a constant,
central star distribution in the face of continual tidal
disruption at » ~#,. The inward, net diffusion rate of
stars F toward the black hole is maintained by the lo-
cal, two body, small-angle scattering of stars in their
mutual gravitational potential fields. As energy and
angular momentum are exchanged in these collisions,
some stars lose energy and drift closer to the black
hole while other stars gain energy and move out into
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the core. On net, the destruction of bound stars (with
respect to the ambient core) at » ~#, with negative en-
ergy results in an outward flux of energy 8 from the
cusp into the core. The presence of a star “sink” at
the center of the cluster results in significant depar-
tures from thermal equilibrium there.

The inward flux of stars F and outward flux of energy
& leads to a state of dynamical equilibrium in the cusp,
not thermal equilibrium. Consequently the distribution
function is more appropriately described by a power-
law function of the form

AE)=k|E|?, (6.48)

with « and p nearly constant in the self-similar region
7 <<v <7,, far from the boundary zones (Peebles,
1972b). Equation (6.48) yields a density profile of the
form '

n(,r)oc,r-(NS/Z) A (6.49)

Recently, calculations first performed by Bahcall
and Wolf (1976) and later by Shapiro and Lightman
(1976) and Lightman and Shapiro (1977) have shown that
the appropriate density law in the self-similar cusp
zone 7, Ky <y, is

n@)=n,r/r,)y"*, (6.50)

which corresponds to the power-law phase space den-
sity distribution with p ~%.

A simple scaling argument (Shapiro and Lightman,
1976), which employs Egs. (5.12a), (5.12b), (5.13) in Sec.
V.A, together with the discussion immediately preced-
ing these equations, can be used to obtain Eq. (6.50).
This scaling argument assumes for simplicity that the
distribution of stars in the cusp is nearly isotropic
[i.e., f=A(E)] and neglects the consumption of low-J,
highly eccentric stars which pass within 7, at pericen-
ter. The analysis distinguishes between the net dif-
fusion timescales associated with star and energy
transport in the cusp (cf. Sec.V.A.2). Since the energy
(per unit mass) of a typical bound star orbiting the
black hole at radius » is E=~-GM /r, the two timescales
are related by

tg oty (6.51)

from Eq. (5.13). The proportionality constant in the
above expression can be obtained by noting that the ab-
sence of outgoing stars at 7, implies that the net dif-
fusion time for stars to move from 2r, to », equals the
timescale for their (negative) energy to decrease by a
factor of 2. Thus #4(r,)=1,(r,) and from Eq. (6.51)

te(r)~ (re/v)g(r). (6.52)
For r>7,, we have {¢(r)<#,(r), and according to our
discussion in Sec. V.A, we may equate to(r) to the local
relaxation timescale at 7:

2y3/2
t8(7)~tr(r)~g)27>n2n .

(6.53)

In Eq. (6.53) # is the local density at », and the (slowly
varying) dimensionless logarithmic factor in the denom-
inator of #, is ignored. For bound stars near the black

hole {(v*)~GM /r so Egs. (5.12b) in Sec. V.A, (6.52) and

(6.53) yield n(r) <77/ in agreement with Eq. (6.50).
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FIG. 20. The stellar density » () as a function of radius 7 in
an isolated spherical cluster containing a massive, central
black hole. In the absence of a black hole, the isothermal core
extends from 7 =0 to the core radius at » =7, and there is no
cusp (dotted line in I). In the presence of the galactic tidal
field, the density falls sharply at the galactic tidal radius » ,
(dotted line in III). See text for discussion of the various re-
gions. From Shapiro and Lightman (1976).

The entire run of the stellar density profile in an iso-
lated, spherical cluster containing a central black hole
is illustrated schematically in Fig. 20. The behavior
of n(r) in the isothermal zone 7, <7 sR, and in the halo
72 R, was previously described in Sec. V.A. There it
was noted that the density in a typical cluster in our
galaxy falls rapidly to zero at some finite radius 7,
<7, due to the galactic tidal field. To detect a mass-
ive black hole in a cluster it is necessary to resolve the
central cusp region ¥ <7, in the cluster core. If the
cluster is located a distance d from the earth, with the
cusp subtending an angle §,, we have from Eq. (6.46)

6,~1’"(d/10kpe)™ (v2/100km? s~2)1M, , (6.54)

which must be compared with the “seeing” disk (i.e.,
resolution limit) 6; of an optical telescope: 6,~1’" for
optimal ground based observations and ~0.03’’ for ob-
servations with an LST, i.e., a large space telescope
(Bahcall and Wolf, 1976). The conservative criterion
established by Bahcall and Wolf (1976) for believing
that a black hole is present in a cluster (i.e., the num-
ber of stars within a projected angular radius 6, from
the cluster center is at least F times the unperturbed
value for the core, where F =~ 3-10) yields for the
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minimum detectable black hole mass the value
F\/77 9. \4/7/ 9 \3/7 ' 2
M(detectable) ~5x 103M@ (ﬁ) (5_;"7> <1_,s’> 1'021{—_#2—?’

(6.55)

where 6, is the angular radius of the cluster core.
Equation (6.55) is obtained by comparing the total num-
ber of stars within 6, for an unperturbed (~ constant)
core density profile », with an approximate representa-
tion of the stellar density profile for a cluster core
containing a massive black hole

nr)=n 1+ (@, /r)4]. (6.56)

Apparently, ground based observations are only sensi-
tive to black hole masses greater than 5 x 103 M,

while LST observations can detect masses greater than
103 M,.

Recently, optical determinations of the central sur-
face density profiles of several globular clusters con-
taining x-ray sources indicate that if a central black
hole is present, its mass must be less than ~10*M, .
This conclusion is generally consistent with the results
of Bahcall et al. (1975) in the case of NGC 7078 (M15),
of Bahcall (1976) in the case of NGC 6624, and of
Bahcall and Hausman (1976) in the case of NGC 6440
and 6441. It is not clear whether the brightness excess
observed in M15 [and also found in other x-ray globular
clusters (Bahcall and Hausman, 1976)] represents a
concentration of stars at the center or some other
source of optical light (gas?).

As mentioned above, the analysis leading to Eq. (6.50)
explicitly ignores the removal of high-energy (E> E,
=-GM /7,) low angular momentum stars, satisfying J
S JpalB) = [2(E+ GM /7)) 2 v, ~(GMr,)*/ 2, which move
in highly eccentric orbits with large apocenter distances
7> 7, but which move within 7, at pericenter. The re-
moval of these stars which enter the so-called “loss-
cone” in J space is significant and indicates the two-
dimensional nature of the problem, i.e., f=f(E,J).
Recently, Lightman and Shapiro (1977) presented an
approximate, analytic analysis of the two-dimensional
Fokker-Planck equation describing diffusion in energy
E and angular momentum J for bound stars in the cusp,
i.e., Eq. (3.14). This two-dimensional equation has
been examined more recently by Ipser (1978), using
numerical integrations, valid for » <7, (see below),
and by Shapiro and Marchant (1978), using more exact
Monte Carlo techniques. The orbital period P(E) in Eq.
(3.14) is now given by P(E)=2rGM /(-2E)*/2. Equation
(3.14) is subject to the boundary conditions that (i) f=0
for J>J,(E)=GM/(-2E)*/?, where J,,, is the angular
momentum of a circular orbit at energy E, (ii) no
stars cross the “loss cone” at J=J,,,(E) from lower J,
and (iii) the unbound core stars satisfy a Maxwell-
Boltzmann distribution with rms velocity v,,.

The basic results of the above analyses are as fol-
lows: (i) A self-consistent solution exists for which
the distribution function is essentially isotropic for
large J[J;, <<J S J,,(E)], and decreases only logarith-
mically with J for smaller J, due to capture at J,, (E).
(ii) Loss-cone effects are significant inside the radius
¥erit at which j,, the rms angular momentum trans-
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ferred to a star in one orbital period, equals J,.

(iii) The total consumption rate of stars, F, is roughly
the total number of stars inside » ., divided by the re-
laxation time at 7,.;,. In some cases 7.,>7, and the
dominant contribution to F comes from unbound stars
(see below). (iv) The stellar density distribution in the
region v > v, satisfies n(r)=n[1+ (r,/r)*3/?], where n,
is the ambient density of unbound stars in the core and
p is 1 for r >, [cf. Eq. (6.60)], and decreases in-
side 7.;;. A modification of the simple scaling argu-
ment of Eq. (5.12b) to allow for a sink term due to loss-
cone consumption on the right-hand side, in the region
7 <74, yields the result (Ipser, 1978):

d (nr2\ _ nr y <y
dr te Bte ’ crit »

where 8 is the ratio of (the effective) loss-cone diffusion
timescale to energy diffusion timescale. Equation (6.57)
indicates that p must decrease somewhat as » decreases
and that the value of p is sensitive to the value of 8 un-
less 8> 1. However, the detailed Monte Carlo computa-
tions of Shapiro and Marchant (1978) indicate that 8> 1
and that the results of Lightman and Shapiro (1977),
which give p logarithmically decreasing below § with in-
creasing |E|, are substantially correct. Here and
above, we can associate a mean radius »~GM/ lE| with
each energy E. Frank and Rees (1976) have independently
obtained results consistent with conclusions (i)-(iii)
above. Conclusion (iv) agrees with more exact earlier
calculations of Bahcall and Wolf (1976) in the region

r>> Verit:

(6.57)

2. Consumption rate of stars by a massive black hole

As mentioned in conclusion (iii) above, the consumption
rate of bound stars in the cusp, F, is given approximate-
ly by (Frank and Rees, 1976; L1ghtman and Shapu‘o
1977)

9.0 v GM\'/2 |E 5/4
F~ _t n 1/3) (_> —crit

ln(E,?4Ecm) (ra)( e\ 3 E,
N,

~=t l ('ra>/rcrit) ) (6-58a)

7 =%erit
~0.6x10" 9M§1/27n;;’6R; /9 stars yr-' . (6.58b)
*

In Eqgs. (6.58), N,~n(r)r? is the total number of stars
within 7, #, is the local relaxation time at », and ».,,
= — GM/E,, is the critical radius corresponding to the
critical energy E,,,, at which j,(E) [cf. Eq. (6.22)], the
rms angular momentum transferred to a star in one
orbital period via stellar encounters, equals J,;.(E).
The radius 7., is located where g =(j,/J > =1. For
q<<1 stars can diffuse into the loss cone J <J_,,. For
q>>1 the step size of the random walk in J space, j,, is
larger than the cone size, and only a fraction ~¢~* of the
stars in the ring J,, <J <Jrnhl +3j, can jump into the cone
each orbital period (cf. Fig. 21). Setting ¢=1 gives
E=Eq:
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(E) (circutar orbit)
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Fg (capture flux)

To massive star
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FIG. 21. (a) Velocity distribution for ingoing stars with fixed
energy E, radius v z=GM/2| E|, and speed v =(2|E|)!/2. Stars
with angular momentum J in the range Jy;,(E) <J <Jnx(E) are
distributed nearly uniformly on the velocity sphere, where
Imin(E) = [2(B+GM /7 )1V, and Jo(E) =GM/ @| E| )12, Stars
scattered into the loss cone with J <Jp;,(E) may be removed
from the system in an orbital period. (b) The velocity sphere
viewed from below. The quantity j, represents the dispersion
in AJ suffered by a star in one orbital period due to stellar
encounters; q(E) =j3/J4:, (E). The phase space density of stars
outside the loss cone falls rapidly with J as J— Jy;, when ¢

<1 (the “diffusion” limit), but the density remains nearly uni-
form when ¢ > 1 (the “pinhole” limit). In each dynamical time
only stars in the ring Jpj, <JS Jpig +7, may enter the loss
cone. From Lightman and Shapiro (1977).

"Ecritg%[ (11m>(M>

4/9
n,vs _q_} , (6.59a)

¢ 7
~—E, (0.3M§°/27n;:/3R;:2/9) , (6.59b)
or, equivalently,
~0. 04M7/27 1/3R14/9 \
Verit (6.60)

The above expressions for E ., and 7., can be obtained
approximately from Eqs. (6.22), (6.46), (6.50), and (6.53)
together with the definitions of J,; (E), {J) ~ J,,..(E) and
P(E) given above. In Egs. (6. 58) (6.59), and (6.60)
we have employed a dimensionless core density #, Enc/
(5 x10* pc~?) and a dimensionless core radius R, R o/
(1 pc). For typical compact globular clusters Tcm/
v,s0.1.

On dimensional grounds alone, the ratio N,/f,= F .,
evaluated at any radius (or corresponding energy) in the
cusp, is the maximum possible net inward flux of stars
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in that radial interval # to 2%, since no physical quantity
can be transported on a timescale shorter than the local
relaxation time in a large N-body system. Defining
Fgd IE] to be the net consumption rate of stars with en-
ergy between E and E + |dE | , then the total consumption
rate for bound stars in the cusp is
1,1
F= [ " FualE|, (6.61)
(o]

where — E,=GM/7,. One finds that F is determined at
the radius 7., (i'e-:F~F|Ecﬂ” ° lEcrit[~Fmax[Ecrit])
since for |E|> |E,..|, Fg increases with decreasing
|E| according to the relation Fy~F, (E)/ |E|«< |E|"2,
while for |E|< |E.|, Fg decreases with decreasing
|E| according to Fp~ |E|*/%. Qualitatively, at small
radii < 7o, (i.e., |E|> |E.y,|) there are too tew stars
in the cusp to contribute significantly to the consumption
rate, while at large radii 7> 7y, (i-e., |E|< |E .y, |) the
condition that j,(E) > J,,,.(E) effectively causes all but a
small fraction ~¢~*(E)« |E|?/* of the bound stars origi-
nally moving in the loss cone at apocenter to be scat-
tered out of the loss cone by the time they reach the
tidal radius near pericenter. The manner in which bound
stars of a given energy E enter the loss cone Jstm(E)
is illustrated by the velocity phase space diagram in
Fig. 21(b).

Occasionally, the ratio ch/afa may exceed unity in an
N-body system, and then the consumption of unbound
core stars moving in hyperbolic orbits with constant
rms velocity v, about the black hole will dominate F.

To lowest order it is adequate to analyze the capture of
approximately isotropic, positive-energy, core stars in
the collisionless gas approximation, originally con-
sidered by Zel’dovich and Novikov (1971) for noninter-
acting gas particles accreting onto black holes and by
Hills (1975c¢) for stars tidally consumed by massive black
holes in galactic nuclei. The consumption rate in this
limit is given roughly by

F~0np,~ Ty i, Verit>¥, (6.62)

where o~ b2, is the cross section and b, ~J /v,
~(GMv,*'?/v,, is the impact parameter for capture at

7,. Numerically, the above rate gives

F~5x10"°M%/3:t/2 R;! stars yr-! (6.63)
*  Cx

(Frank and Rees, 1976).

F. Dissolution of clusters with central singularities:
The final state

The dynamical evolution of a large N-body system
leads invariably to core contraction and collapse, which
probably ends in the formation of a “singularity” at the
center of the cluster. It is not possible at the present
time to predict the exact nature of the final, dynamical
“singularity” which forms at the cluster center; only
the timescale of ~3-20 #,, required for its appearance
can be estimated with any confidence. It is possible that
the final state following core collapse will be dominated
by either a central, tight binary system or by a central,
massive black hole. In either of these cases, the re-
maining cluster remnant will be “heated” by the central
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singularity, expand to large core radii, and eventually
dissolve in the galactic tidal field, as discussed below.

If the central core forms a tight binary system, then
the N-body simulation experiments indicate that the
binary will grow tighter by absorbing a growing frac-
tion of the total negative energy of the system. Through
encounters with third bodies, the binary emits a con-
tinuous flow of (positive) energy to the ambient core,
causing it to expand in compliance with the virial
theorem (Hénon, 1961). A Monte Carlo calculation in-
volving a large N-body system containing an artificial
energy source at the center, representing a binary star
system, has been performed by Hénon (1975). The cal-
culation indicates that, following initial contraction and
the onset of catastrophic core collapse, the collapse of
the core is halted after a finite time and is eventually
reversed. The entire stellar system then undergoes
steady expansion, which proceeds indefinitely as more
and more of the binding energy of the cluster is absorbed
by the central singularity. Although the expansion de-
celerates with time as the cluster relaxation timescale
steadily increases with the expansion, it appears that
the cluster will ultimately dissolve completely, since
tidal forces can remove the outermost, loosely bound
stars with increasing ease (Wielen, 1971). The above
considerations may be modified somewhat by the de-
creasing efficiency of the central binary (Sec. VL. B.4).

If a massive black hole forms at the cluster center
following catastrophic core collapse, the dynamical fate
of the cluster may be similar, since the massive black
hole also acts as a source of (positive) energy for the
ambient core stars. These core stars are heated via
the consumption of bound, negative-energy stars in the
cusp (assuming 7,,,,<7,; see Sec. VI.E). The outward
flux of energy is achieved by small-angle, two-body
encounters in the cusp: in these encounters, some stars
lose energy, move closer to the black hole, and are
eventually consumed, while the neighboring stars with
which they interact gain energy and move outward from
the cusp and into the ambient core (see Sec. IV.C). Two-
body encounters in the ambient core thermalize this en-
ergy in a (central) core relaxation timescale ¢,,, even-
tually causing the core to expand and the core density and
velocity dispersion to decrease. For purposes of illus-
tration we shall assume that the massive hole resides
at the center of a moderately large N(N>10%) system.

Since the distribution and consumption of stars in the
cusp proceeds on the local relaxation time in the cusp,
t,=t,,(r/r))*/*, which is more rapid than ¢, inside 7, ,
the steady-state cusp solution presented in Sec. VI.E
applies at every moment during the quasisteady, reex-
pansion phase of the ambient core. Accordingly, the
rate of energy deposited in the core by the central black
hole, 8§, may be determined from Eq. (6.61) and the dis-
cussion following it, yielding

1B,
é’:m /(; ‘ FEIEIdIElnglEcritllnlEt/Ecrltl

(6.64a)
or, substituting Eqs. (6.58) and (6.59),
2
& ~(0.9%10°9) 9%1”- M3n;3/2R;? yrot . (6.64b)

c
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In deriving Eqgs. (6.64) we assume that 7,.,,/7, <1 and
that the dominant capture rate of stars by the black hole
is due to bound stars in the cusp. The response of the
ambient core to this outward flux of energy from the
center can be evaluated by a simple homology model
(Shapiro,1977). The model represents a straightforward
extension of Egs. (5.38)-(5.42) in Sec. V.A, employed to
analyze secular core contraction via stellar evaporation
in the absence of a central black hole. Modifying these
equations to account for the consumption of bound stars
by the black hole, we may write

N,=N_ +F=-0.00742e _ |

esc t
re

(6.65)

where N is the escape rate of core stars due to evap-
oration, 7, is the core relaxation time, and F is the rate
of consumption by the black hole, and we have used Eq.
(5.9) for the effective value of v and /,, as a representa-
tive relaxation time in the homogeneous core. With a
massive black hole present in the cluster center, the
total energy E, of the core constantly increases, ac-
cording to Eqs (6.64), E =8. The mstantaneous mag-
nitude of E, is not 1nfluenced by the black hole pro-
vided M << N,m. Using Eq. (6.19) and substituting Eqgs.
(6.64) and (6.65) yield

21\'7c F 7,
e = +0. crit M20/27 -4/3 p=32/9 .
Rc Nc Nc ( 7 ) ( 8 nc* Rc* )

(6.66)

The first term in Eq. (6.66) drives the secular contrac-
tion of the core in the absence of the black hole (F =0),
resulting in total core collapse in a time £~ 40¢,, (see
Sec. V.A). Thesecond term causes core contraction to
cease and reexpansion to occur. The mass of the cen-
tral black hole will increase somewhat with time due to
the consumption of stars and/or gas. If, for example,
the total consumption rate by the black hole originates '
from tidally disrupted stars, we may write

=103
M, =10 (MO)F

The three differential equations, Egs. (6.65)-(6.67),

(6.67)
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have been solved numerically (Shapiro,1977) and the
results are illustrated in Fig. 22. In the figure we plot
R, as a function of time (in units of the initial core re-
laxation time #,,,=6 x 10° yr) for different initial values
of M, between 0.1 and 1.0, assuming »n,, =0.2 and R.
=0.5 at =0 and m =M,. As demonstrated in the figure,
for sufficiently small black holes, stellar evaporation
dominates initially, driving core contraction for a time
t~40 t,,, at which time the contraction is halted and
reversed. In this circumstance, contraction terminates

when the core radius falls to a value R, o determmed
by setting R equal to zero. The result 1s
R N - MZ - 2 R-
_Rmm ~0.9x10°2 %0 . (6.68)
% [ ln(Nco/Z)]Z/ 3

after which reexpansion proceeds asymptotically to in-
finity according to

R,

~[1+2.8X1074(M$n;7/? R;

s min

)t] 2/3

°min

~12/3 a5 f—oo . (6.69)

For sufficiently massive black holes, stellar consump-
tion dominates from the onset and the core expands ac-
cording to Eq. (6.69), with R, , etc. In all cases
examined, the central black hole grgws by less than 15%
in mass durmg the entire lifetime of the cluster. During
reexpansion, the number of core stars N, decreases
very slowly with time so that n, varies almost as R;®

and (v?) varies as R;Y. Apparently, stellar consumption
functions as a self-regulating, dynamical dynamo whereby
the core is driven outward to keep the consumption

rate from destroying the cluster too rapidly. The ratio
Ver1t/7, decreases with increasing time, insuring the
validity of Eq. (6.58) for the capture rate F.

The end-point evolutionary state of a globular cluster
containing a massive central black hole is thus quite simi-
lar to the final state of a cluster containing a tight binary
system in its core—namely, cluster reexpansion and,
presumably, total dissolution. The situation is analo-
gous to that pertaining in a stellar interior, where the

1.0 T

FIG. 22. The core radius R}
as a function of time ¢ (in units
of the initial relaxation time
Try=6.2x10% yr) for a cluster
with an initial core density nJ 0
=0.2, radius RCO—O 5, and
black hole mass M3 between 0
and 1. Core parameters are
expressed in the following non-
dimensional units: »zX=n,/

(6 x10%pc™),RI=R, /(1 pe),
Mg=M/(10°Mc). Massive cen—
tral black holes invariably

halt and reverse core collapse.
From Shapiro (1977).
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ignition of a new energy source at the center halts the
contraction of the star. In the case of a massive, cen-
tral black hole, the dissolving cluster will eventually
leave behind a massive collapsed remnant, comparable
in mass to the initial black hole. An important issue is
whether the expanding cluster core can, in fact, “re-
absorb” and dissolve (by evaporation) the residual halo,
part of which was “frozen out” of the collapsing core
prior to the formation of the central singularity (cf.
Sec. VI.C). This question, raised again in Sec. VII.B
following a statistical analysis of globular cluster relax-
ation timescales, can be answered definitively only by
detailed numerical calculations of advanced cluster
evolution with a central singularity.

Vil. OBSERVATIONAL EVIDENCE FOR THE
EVOLUTION AND DEATH OF GLOBULAR CLUSTERS

A. Globular cluster x-ray sources

The recent discovery that x-ray sources may be asso-
ciated with globular clusters (Giacconi et al., 1974;
Clark, Markert, and Li 1975; Markert, 1975; Grindlay
et al., 1976; Clark et al., 1976) has stimulated new
interest in the final dynamical evolution of globular
clusters. The globular cluster x-ray sources appear to
be different from the other known galactic x-ray
sources: the cluster x-ray sources occur ~100 times
more frequently per unit mass (Katz, 1975; Clark,
1975) and, in contrast to previously identified sources
associated with luminous, young, Population I stars
or with recent supernovae remnants, the cluster sources
are optically related to the oldest (age ~10% yr), Pop-
ulation II stellar component in our galaxy. Their origin
may thus be associated with late evolutionary or dynam-
ical processes unique to old, globular cluster stellar
systems.

At the present time there are seven “steady” x-ray
sources identified with globular clusters (the clusters
are NGC 1851; 6440; 6441; 6624; 6712; 7078; and
Liller 1). At least two (probably more) of the = 30
“bursting” x-ray sources are located in globular clus-
ters. A detailed summary of the x-ray and optical data
of the cluster x-ray sources has recently been pre-
sented elsewhere by Grindlay (1977); the data for the
known x-ray burst sources have been compiled and re-
viewed by Lewin (1976) and by Lewin and Joss (1977).
We therefore confine our comments here to several
qualitative remarks. The spectra of the steady sources
are similar and well-represented by exponentials with
kT ~5-8 keV. The x-ray luminosities in the energy
band from ~2 to 10 keV all are in the range <8x10%5—
3%x10% erg s™'. The emission from the “steady”
sources varies by factors of 3-10 over timescales of
minutes to months. The x-ray burst sources emit at
more or less regular intervals of hours to tens of hours;
the intervals change by factors of ~2 or more. Typ-
ically, the x-ray burst sources have rise times =<1 sec,
last several seconds to tens of seconds, and have lum-
inosity factors of <2 to 150 times the associated
“steady” luminosity (for eight cases in which the latter
has been measured). The majority of the known burst
sources with positions determined to better than a few
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degrees are distributed along the galactic equator in a
wide arc (<359 about the galactic center less than
~8°from the galactic plane. The known sources do not
exhibit a globular cluster spatial distribution about the
galaxy, and it has been argued that most burst sources
cannot be located in globulars (Lewin, 1976). Very
recently Johnson (1976) and Terzian and Conklin (1977)
have reported the detection of several weak radio
sources from the direction (< 2’) of 10 globular clusters,
three of which are x-ray globulars.

Two classes of models have been proposed to explain
x-ray emission from globular clusters: binary star
systems, in which a normal primary transfers mass
into a compact secondary, thereby generating x-ray
emission (Katz, 1975; Clark, 1975), and supermassive
black holes (~100-1000 M), which may reside at the
centers of globular clusters and accrete gas ejected
from old, late-type stars (Bahcall and Ostriker, 1975;
Silk and Arons, 1975). In the binary star model, x-ray
bursts may be associated with instabilities in the mag-
netosphere of accreting neutron stars (Lamb et al.,
1976) or with time-varying mass flow due to the pre-
heating of the infalling gas by the emergent x-rays,
which suppresses accretion, (Ostriker et al., 1976;
Sunyaev, 1976). In the supermassive black hole model,
x-ray bursts may again be associated with x-ray pre-
heating of infalling matter (Ostriker et al., 1976; Grind-
lay, 1978) or with secular or thermal instabilities
occurring in the main, innermost radiating regions of
the gaseous accretion disk near the black hole. At the
present time both classes of models appear generally
consistent with the data, although both the dynamical
considerations of the last section and the statistical
analysis below suggest ~100 M, as the upper limit to
the mass of a black hole which can be formed in globular
clusters. The HEAO B x-ray satellite, scheduled for
launch in 1979 and possessing a positional accuracy of
1”, may be able to rule out the massive black hole
hypothesis if it locates the source far from the center
of the core.

B. Death rate of globular clusters and evidence for
evaporation and dissolution

Some remarkable conclusions about the evolution,
collapse, and dissolution of globular clusters, support-
ing much of the theory, result from combining simple
cosmological assumptions with a statistical analysis
of the observational data on cluster relaxation times.
As has been shown above, the theory (cf. Secs. V.E and
VI) indicates that globular clusters evolve by relaxation
and collapse to some sort of “singular state” in a finite
time. When the finite radii of stars are taken into
account, the singular state is probably one in which
stellar collisions dominate the subsequent evolution
and form one or more massive stars, unless there is
a large population of initial binaries. If the end-point
evolution is dominated by either the formation of a
massive black hole or a central binary, the subsequent
evolution may be much the same: ultimate and possi-
bly rapid expansion of the cluster core (cf. Sec. VL.F).
As suggested in Sec. VL F, the expansion of the cluster
core may, in fact, dissolve the entire cluster. In any
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case, in a finite time the cluster may evolve into a
regime in which it is no longer recognizable as a glob-
ular cluster, and we will say the cluster has then
“died.” We can test this hypothesis by examining the
relationship between the death rate and existing cluster
data. We closely follow here the work of Lightman et
al. (1978).

At any given time ¢ the remaining lifetime of the clus-
ter, t’, is taken to be some constant multiple of the
current central relaxation time ¢,.(f) (cf. Sec. V.E),

1= nt,o(t), (7.1)

with #,, decreasing in time to zero. In one-component
systems Eq. (7.1) is (1) observed in the numerical ex-
periments and (2) a consequence of the evaporation
theory of core collapse. In systems with a continuous
mass distribution, it may be true in some average
sense, since f,, is the only natural timescale. The re-
maining lifetime is more conveniently expressed in
terms of £, than in terms of the mean relaxation time
t,, because observational data is more readily available
for the former. After the initial violent relaxation

(cf. Sec. IV) £, is some 10 times shorter than{,. The
numerical experiments (cf. Sec. V.E) then indicate that
n is expected to be approximately 100.

When clusters were formed long ago at cosmological
time ¢#, (cf. Sec. II), the distribution in initial relaxa-
tion times (determined by the primordial masses and
binding energies) determined a distribution of times at
which each cluster was fated to die [cf. Eq. (7.1)]. One
may define a globular cluster death function g(¢) such
that q(¢)d¢ is the number of clusters destined to die
between time ¢ and ¢+ df, where ¢ is measured from the
“Big Bang”. At times #>t,, it is reasonable to assume
that ¢(¢) evolved into a smooth functional form. In
particular, ¢(#) should contain no structure which dis-
tinguishes the present epoch, ¢t=¢{,>¢,. The simplest
hypothesis for the form of ¢(¢) at > ¢, is a power law

qt) <™t for t>1t,. (7.2)

The number of clusters which will die in intervals
around ¢ in the future may be related to the number of
clusters with current relaxation times in the interval
t,, to t,.+dt,.,n(t,)dt,.. Then, since i=¢,+¢’ (by defin-
ition of the remaining lifetime at the current epoch),
one has the relation

n(t,e)=ng(to+ nt,e) - (7.3)

Integrating Eq. (7.3) to obtain a cumulative distribution
and using Eq. (7.2), one obtains

N(t,e)=N,[1 - (1+£t,c)'°‘] . (7.4)
Here N(f,,) is the number of clusters with central re-
laxation times <#,, and N, is the total number of clus-
ters in a data sample, plus one to ensure a finite value
for the longest observed relaxation time. The observed
cumulative distribution N*(f,.) is obtained by simply
ranking the observed clusters in order of increasing
relaxation time. Parameters a and 7/t, which best fit
the data are then obtained by fitting N(¢,.) to N*(¢,,).
Figure 23 from Lightman et al. (1978), gives the data
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FIG. 23. Data (one dot per cluster) for 83 globular clusters
for which central relaxation timescales are available. Clus-
ters are sequentially ranked in order of increasing relaxation
time. The theoretical cumulative distribution N(7) for a pure
power-law model has been fit to the data and is indicated by
the solid curve. The inset shows the 15 clusters of shortest
relaxation time plotted on a linear scale. The good fit for
these clusters to an almost-straight line suggests that no new
processes accelerate or retard the final stages of the evolu-
tion. From Lightman, Press, and Odenwald (1977).

for 83 clusters for which data are available, together
with the best fitting theoretical curve for the data set,

a,=1.02, (7.5a)

- S _—t(’
= 79(1.5 X 101 yr) ’

where we have adopted a value ~1.5 X 10'° yr for the
age of the universe, #,. Monte Carlo simulations of a
large number of independent sets of 83 clusters each,
with each set an independent stochastic realization of
the theoretical distribution, Eq. (7.4), indicate that
the observed data set fits the theoretical distribution
as well as ~50% of the Monte Carlo simulations. From
these simulations one may also estimate the probable
range of values of @ and n/to in the underlying theoret-
ical distribution which could have yielded the observed
values @, and (n/4,)p [cf. Eq. (7.5)]. The ranges con-
taining % of the likelihood are

0.7sa=<1.3,

(7.5b)

(7.6a)

2 ¢y )
o4 (1.5 X 1050 yr) =n= 132(1.5 X100 yr /) *

Additional Monte Carlo simulations indicate that an ex-
ponential function form for ¢(¢) fits the data set very
poorly compared to the well-fitting power law form.

It is possible that the measured central relaxation
timescales have little connection with the evolution of
the cluster and that the above fit of the theory with the
data (cf. Fig. 23) is merely a coincidence. However,

(7.6b)
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the high statistical significance of the fit, as indicated
by the Monte Carlo simulations, plus the agreement
between the fitted and theoretical values of 1, suggest
that the above theory of cluster deaths be seriously
considered. The following irnplications and questions
then follow: (i) Figure 23 implies that existing clusters
are collapsing smoothly to some state in which they are
no longer recognizable as globular clusters. There is
no evidence for a class of sufficiently evolved postcol-
lapse clusters (cf. Sec. VI.F) in the set of observed
globular clusters. It is highly unlikely that such ob-
jects could mock up a distribution merging smoothly
with that of Fig. 23. As suggested by the numerical
calculations of cluster cores with central singularities
(e.g., massive black holes and tight binary systems),
postcollapse clusters evolve with entirely different
homological reexpansion laws (see Sec. VI.F). In fact,
a reanalysis which tests the possibility that a fraction
of observed clusters could be in an expansion phase fol-
lowing core collapse shows that the data are inconsis-
tent with this possibility, unless we live in a preferred
epoch. In light of the numerical calculations the above
analysis of the observational results has the following
implication: assuming that we do not live in a prefer-
red epoch, the likely cluster reexpansion and dissolu-
tion must presumably occur on sufficiently rapid time-
scales (much less than typical observed values of 7t,,
~10°-10'° yr) that reexpanding stellar systems quickly
become too diffuse to be detected optically and hence do
not contaminate Fig. 23 in significant numbers. )
A serious challenge to this interpretation of the data
is to explain, in detail, how the entire cluster can be
dissolved after core collapse. It is conceivable that an
expanding core, heated by a central singularity, could
reabsorb and evaporate the residual ambient halo. If
the central singularity is a massive black hole, the dis-
cussion in Sec. VI.F and Fig. 22 indicate that the clus-
ter core could expand sufficiently rapidly to explain the
- data if M, ,, < 100M,, an upper limit also suggested by
dynamical considerations of black hole formation (cf.
Secs. VI.B and VI.D). In any case, detailed numerical
calculations are required to settle this issue. (ii) If
any singularities reside in observed clusters, formed,
for example, from the early collapse of a small sub-
system of heavy stars (cf. Secs. V.B, V.E, and VI.D),
such small singularities have little effect on the eva-
porative evolution of the cluster during its observable
lifetime. (iii) Thereis no evidence for clusters “hang-
ing up” on the edge of collapse, as was the initial in-
terpretation of Fig. 5. Such objects would produce a
horizontal edge in the lower left corner of Fig. 23,
which is not observed. )
(iv) The number of clusters which have died between
time £<#, and now, N(¢), canbe estimated by integrating
q(?):

m(t)=No[(%)a - 1] .

If ¢ is pushed back to a few #,, then the total number of
clusters which have died is a few to ~10° times the -
number of existing clusters, depending on the unknown
value of ¢, (see Sec. II).

(7.7)
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FIG. 1. The globular cluster Omega Centauri (NGC 5139),
taken with the 1-m Yale reflector at Cerro Tololo Inter-Ameri-
can Observatory, La Serena, Chile. Date: May 20, 1974; 15-
min exposure on blue sensitive emulsion. From Kitt Peak
National Observatory.



